DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, Wei; Liu, Hongtao, E-mail: liuht100@126.com; Sun, Qinghe
A facile and quick fabrication method was proposed to prepare superhydrophobic surfaces on iron substrate by chemical immersion and subsequent stearic acid modification. The association between wettability and surface morphology was studied through altering the copper ion concentration and immersion time. Surface tension instrument, scanning electron microscopy, x-ray diffraction, x-ray photoelectron spectroscopy, and electrochemical workstation were used to characterize the wettability, physical morphology, chemical composition, and corrosion resistance ability of the prepared film. Results showed that both the rough micro/nanostructures and low surface energy material play critical roles in surface wettability. The superhydrophobic film achieved a better anticorrosion property comparedmore » to barrier iron by analysis of open circuit potential, potentiodynamic polarization curves, and Nyquist plots. In addition, the superhydrophobic surface showed excellent performance of acid and alkali resistance, anti-icing, and self-cleaning through a series of environmental tests. This study provides a valid method for quick-preparation of the stable superhydrophobic surfaces, which has a promising application in steel buildings and facilities.« less
NASA Astrophysics Data System (ADS)
Lukauskaitė, R.; Valiulis, A. V.; Černašėjus, O.; Škamat, J.; Rębiś, J. A.
2016-08-01
The article deals with the pretreatment technique for preparing the surface of aluminum alloy EN AW 5754 before thermal spray. The surface after different pretreatments, including degreasing with acetone, chemical etching with acidic and alkali solutions, grit-blasting, cathodic cleaning, and some combinations of these techniques, has been studied. The investigation of pre-treated surfaces covered the topographical study (using scanning electron microscopy, atomic force microscopy, and 3D profilometry), the chemical analysis by x-ray photoelectron spectroscopy, the evaluation of surface wettability (sessile drop method), and the assessment of surface free energy. Compared with all the techniques used in present work, the cathodic cleaning and its combination with grit-blasting provide the most preferable chemistry of the surface. Due to the absence of hydroxides at the surface and, possible, due to the diffusion of magnesium to the surface of substrate, the surface wettability and the surface free energy have been significantly improved. No direct correlation between the surface topography and the surface wettability has been established.
Murata, Tsuyoshi; Hieda, Junko; Saito, Nagahiro; Takai, Osamu
2012-05-01
SiO2-added MgF2 nanoparticle coatings with various surface roughness properties were formed on fused silica-glass substrates from autoclaved sols prepared at 100-180 °C. To give it hydrophobicity, we treated the samples with fluoro-alkyl silane (FAS) vapor to form self-assembled monolayers on the nanoparticle coating and we examined the wettability of the samples. The samples preserved good transparency even after the FAS treatment. The wettability examination revealed that higher autoclave temperatures produced a larger average MgF2 nanoparticle particle size, a larger surface roughness, and a higher contact angle and the roll-off angle.
NASA Astrophysics Data System (ADS)
Gu, Qiang; Chen, Ying; Chen, Dong; Zhang, Zeting
2018-01-01
This paper presents a method for preparing a super hydrophobic surface with a fast, simple, low-cost, one-step reaction by immersing copper alloy in an ethanol solution containing silver nitrate and myristic acid. The effects of reaction time, reaction temperature, reactant concentration and reaction time on the wettability of the material were studied. The surface wettability, appearance, chemical composition, durability and chemical stability of the prepared samples was measured by water contact angle (CA), scanning electron microscopy (SEM), energy dispersive spectrometer (EDS), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). The results show that when the reaction time is only 10min, the surface WCA of the prepared material can reach 154.9. This study provides an effective method for the rapid preparation of stable super hydrophobic surfaces.
Cellular Behavior of Human Adipose-Derived Stem Cells on Wettable Gradient Polyethylene Surfaces
Ahn, Hyun Hee; Lee, Il Woo; Lee, Hai Bang; Kim, Moon Suk
2014-01-01
Appropriate surface wettability and roughness of biomaterials is an important factor in cell attachment and proliferation. In this study, we investigated the correlation between surface wettability and roughness, and biological response in human adipose-derived stem cells (hADSCs). We prepared wettable and rough gradient polyethylene (PE) surfaces by increasing the power of a radio frequency corona discharge apparatus with knife-type electrodes over a moving sample bed. The PE changed gradually from hydrophobic and smooth surfaces to hydrophilic (water contact angle, 90º to ~50º) and rough (80 to ~120 nm) surfaces as the power increased. We found that hADSCs adhered better to highly hydrophilic and rough surfaces and showed broadly stretched morphology compared with that on hydrophobic and smooth surfaces. The proliferation of hADSCs on hydrophilic and rough surfaces was also higher than that on hydrophobic and smooth surfaces. Furthermore, integrin beta 1 gene expression, an indicator of attachment, and heat shock protein 70 gene expression were high on hydrophobic and smooth surfaces. These results indicate that the cellular behavior of hADSCs on gradient surface depends on surface properties, wettability and roughness. PMID:24477265
Shear bond, wettability and AFM evaluations on CO2 laser-irradiated CAD/CAM ceramic surfaces.
El Gamal, Ahmed; Medioni, Etienne; Rocca, Jean Paul; Fornaini, Carlo; Muhammad, Omid H; Brulat-Bouchard, Nathalie
2017-05-01
The purpose of this study is to determine the CO 2 laser irradiation in comparison with sandblasting (Sb), hydrofluoric acid (Hf) and silane coupling agent (Si) on shear bond strength (SBS), roughness (Rg) and wettability (Wt) of resin cement to CAD/CAM ceramics. Sixty (CAD/CAM) ceramic discs were prepared and distributed into six different groups: group A, control lithium disilicate (Li); group B, control zirconia (Zr); group C, Li: CO 2 /HF/Si; group D, Li: HF/Si; group E, Zr: CO 2 /Sb/Si; group F, Zr: Sb/Si. Result showed significant difference between irradiated and non-irradiated in terms of shear bond strength for zirconia ceramics (p value = 0.014). Moreover, partial surface wettability for irradiated and non-irradiated ceramics. Irradiated surface demonstrated more rough surface in lithium disilicate than zirconia ceramics. CO 2 irradiation could increase shear bond strength, surface roughness and wettability for both CAD/CAM ceramics.
Light-responsive smart surface with controllable wettability and excellent stability.
Zhou, Yin-Ning; Li, Jin-Jin; Zhang, Qing; Luo, Zheng-Hong
2014-10-21
Novel fluorinated gradient copolymer was designed for smart surface with light-responsive controllable wettability and excellent stability. The switchable mechanism and physicochemical characteristics of the as-prepared surface decorated by designed polymeric material were investigated by ultraviolet-visible (UV-vis) spectrum, scanning electron microscope (SEM), atomic force microscope (AFM), and X-ray photoelectron spectroscopy (XPS). Thanks to the functional film and surface roughening, etched silicon surface fabricated by copolymer involving spiropyran (Sp) moieties possesses a fairly large variation range of WCA (28.1°) and achieves the transformation between hydrophilicity (95.2° < 109.2°) and hydrophobicity (123.3° > 109.2°) relative to blank sample (109.2°). The synthetic strategy and developed smart surface offer a promising application in coating with controllable wettability, which bridge the gap between chemical structure and material properties.
Wetting properties of molecularly rough surfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Svoboda, Martin; Lísal, Martin, E-mail: lisal@icpf.cas.cz; Department of Physics, Institute of Science, J. E. Purkinje University, 400 96 Ústí n. Lab.
2015-09-14
We employ molecular dynamics simulations to study the wettability of nanoscale rough surfaces in systems governed by Lennard-Jones (LJ) interactions. We consider both smooth and molecularly rough planar surfaces. Solid substrates are modeled as a static collection of LJ particles arranged in a face-centered cubic lattice with the (100) surface exposed to the LJ fluid. Molecularly rough solid surfaces are prepared by removing several strips of LJ atoms from the external layers of the substrate, i.e., forming parallel nanogrooves on the surface. We vary the solid-fluid interactions to investigate strongly and weakly wettable surfaces. We determine the wetting properties bymore » measuring the equilibrium droplet profiles that are in turn used to evaluate the contact angles. Macroscopic arguments, such as those leading to Wenzel’s law, suggest that surface roughness always amplifies the wetting properties of a lyophilic surface. However, our results indicate the opposite effect from roughness for microscopically corrugated surfaces, i.e., surface roughness deteriorates the substrate wettability. Adding the roughness to a strongly wettable surface shrinks the surface area wet with the liquid, and it either increases or only marginally affects the contact angle, depending on the degree of liquid adsorption into the nanogrooves. For a weakly wettable surface, the roughness changes the surface character from lyophilic to lyophobic due to a weakening of the solid-fluid interactions by the presence of the nanogrooves and the weaker adsorption of the liquid into the nanogrooves.« less
NASA Astrophysics Data System (ADS)
Kim, Sunkyu; Jung, Minkyeong; Kim, Moonsu; Choi, Jinsub
2017-06-01
A uniformly colored TiO2, on which the surface is functionalized with nanotubes to control wettability, was prepared by a two-step anodization; the first anodization was carried out to prepare nanotubes for a super-hydrophilic or -hydrophobic surface and the second anodization was performed to fabricate a thin film barrier oxide to ensure uniform coloring. The effect of the nanotubes on barrier oxide coloring was examined by spectrophotometry and UV-vis-IR spectroscopy. We found four different regimes governing the color changes in terms of anodization voltage, indicating that the color of the duplex TiO2 was primarily determined by the thickness of the barrier oxide layer formed during the second anodization step. The surface wettability, as confirmed by the water contact angle, revealed that the single barrier TiO2 yielded 74.6° ± 2.1, whereas the nanotubes on the barrier oxide imparted super-hydrophilic properties as a result of increasing surface roughness as well as imparting a higher hydrophobicity after organic acid treatment.
Yang, Chao; Wu, Lei; Li, Gang
2018-06-13
A smart, magnetically responsive superhydrophobic surface was facilely prepared by combining spray coating and magnetic-field-directed self-assembly. The surface comprised a dense array of magnetorheological elastomer micropillars (MREMPs). Benefitting from the magnetic field-stiffening effect of the MREMPs, the surface exhibited reversible switching of the wettability and adhesion that was responsive to an on/off magnetic field. The wettability and adhesion properties of the surfaces with MREMPs were investigated under different magnetic fields. The results revealed that the adhesion force and sliding behaviors of these surfaces were strongly dependent on the intensity of the applied magnetic field and the mixing ratio of poly(dimethylsiloxane) (PDMS), iron particles, and solvent (in solution) used for preparation of the magnetically responsive superhydrophobic surfaces. The adhesion transition was attributed to the tunable mechanical properties of the MREMPs, which was easily controlled by an external magnetic field. It was also demonstrated that the magnetically responsive superhydrophobic surface can be used as a "mechanical hand" for no-loss liquid droplet transportation. This magnetically responsive superhydrophobic surface not only provides a novel interface for microfluidic control and droplet transportation, but also opens up new avenues for achieving smart liquid-repellent skin, programmable fluid collection and transport, and smart microfluidic devices.
Hou, Weixin; Mu, Bo; Wang, Qihua
2008-11-01
A polypropylene/methyl-silicone superhydrophobic surface was prepared using a simple casting method. Varying the ratio of polypropylene and methyl-silicone results in different surface microstructure. The wetting behavior of the as-prepared surface was investigated. A polypropylene monolithic material was also prepared. Its superhydrophobicity still retains when the material was cut or abraded. The as-prepared material can also be used to separate some organic solvents from water.
Surface porosity and roughness of micrographite film for nucleation of hydroxyapatite.
Asanithi, Piyapong
2014-08-01
Heterogeneous nucleation of hydroxyapatite (HAp) can be facilitated by physical and chemical properties of material surface. In this article, we reported how effective surface porosity and roughness are for inducing nucleation of HAp crystal in simulated body fluid. Two types of micrographite film (MGF) prepared from assembly of micrographite flakes were used as seeds to induce HAp crystal: uncompressed (high surface porosity) and compressed (low surface porosity) MGFs. Compressed MGF was prepared by applying mechanical compression to the uncompressed MGF. Uncompressed and compressed MGFs have similar surface wettability with the water contact angles (θ) of 113° and 107°, respectively. The number density of HAp crystals on the uncompressed MGF was higher than that of the compressed MGF by a factor of 6. This result implied that surface porosity and roughness were more effective parameters for inducing HAp crystal than surface wettability. Uncompressed MGF also induced HAp nucleation better than a cover glass although the glass had high wettability (θ = 64°). The effectiveness of uncompressed MGF on inducing HAp crystals was as high as that of the SiO2 -coated Si substrate. Our finding suggests that we do not require to functionalize material surface to be an effective seed; a surface with pores or roughness of the right scale is enough. © 2013 Wiley Periodicals, Inc.
Self-Cleaning Surfaces Prepared By Microstructuring System
NASA Astrophysics Data System (ADS)
Sabbah, Abbas; Vandeparre, H.; Brau, F.; Damman, P.
The wettability of materials is a very important aspect of surface science governed by the chemical composition of the surface and its morphology. In this context, materials replicating nature's superhydrophobic surfaces, such as lotus leafs, rose petals and butterfly wings, have widely attracted attention of physicists and material engineers [1-3]. Despite of considerable efforts during the last decade, superhydrophobic surfaces are still expensive and usually involved microfabrication processes, such as photolithography technique. In this study, we propose an original and simple method to create superhydrophobic surfaces by controling elastic instabilities [4-8]. Indeed, we demonstrate that the self-organization of wrinkles on top of non-wettable polymer surfaces leads to surperhydrophobic surfaces.
Chen, Shaohua; Xiao, Ying; Hu, Meiying; Zhong, Guohua
2014-01-01
Continuous use of the pesticide chlorpyrifos has resulted in harmful contaminations in environment and species. Based on a chlorpyrifos-degrading fungus Cladosporium cladosporioides strain Hu-01 (collection number: CCTCC M 20711), a fungal wettable powder preparation was developed aiming to efficiently remove chlorpyrifos residues from vegetables. The formula was determined to be 11.0% of carboxymethyl cellulose-Na, 9.0% of polyethylene glycol 6000, 5.0% of primary alcohol ethoxylate, 2.5% of glycine, 5.0% of fucose, 27.5% of kaolin and 40% of freeze dried fungi by response surface methodology (RSM). The results of quality inspection indicated that the fungal preparation could reach manufacturing standards. Finally, the degradation of chlorpyrifos by this fungal preparation was determined on pre-harvest cabbage. Compared to the controls without fungal preparation, the degradation of chlorpyrifos on cabbages, which was sprayed with the fungal preparation, was up to 91% after 7 d. These results suggested this freeze-dried fungal wettable powder may possess potential for biodegradation of chlorpyrifos residues on vegetables and provide a potential strategy for food and environment safety against pesticide residues. PMID:25061758
Liu, Jie; He, Yue; Chen, Shaohua; Xiao, Ying; Hu, Meiying; Zhong, Guohua
2014-01-01
Continuous use of the pesticide chlorpyrifos has resulted in harmful contaminations in environment and species. Based on a chlorpyrifos-degrading fungus Cladosporium cladosporioides strain Hu-01 (collection number: CCTCC M 20711), a fungal wettable powder preparation was developed aiming to efficiently remove chlorpyrifos residues from vegetables. The formula was determined to be 11.0% of carboxymethyl cellulose-Na, 9.0% of polyethylene glycol 6000, 5.0% of primary alcohol ethoxylate, 2.5% of glycine, 5.0% of fucose, 27.5% of kaolin and 40% of freeze dried fungi by response surface methodology (RSM). The results of quality inspection indicated that the fungal preparation could reach manufacturing standards. Finally, the degradation of chlorpyrifos by this fungal preparation was determined on pre-harvest cabbage. Compared to the controls without fungal preparation, the degradation of chlorpyrifos on cabbages, which was sprayed with the fungal preparation, was up to 91% after 7 d. These results suggested this freeze-dried fungal wettable powder may possess potential for biodegradation of chlorpyrifos residues on vegetables and provide a potential strategy for food and environment safety against pesticide residues.
Kondo, Hisami; Toyota, Hiroyasu; Kamiya, Takayuki; Yamashita, Kazunari; Hakomori, Tadashi; Imoto, Junko; Kimura, Shin-Ichiro; Iwao, Yasunori; Itai, Shigeru
2017-01-01
External lubrication is a useful method which reduces the adhesion of powder to punches and dies by spraying lubricants during the tableting process. However, no information is available on whether the tablets prepared using an external lubrication system can be applicable for a film coating process. In this study, we evaluated the adhesion force of the film coating layer to the surface of tablets prepared using an external lubrication method, compared with those prepared using internal lubrication method. We also evaluated wettability, roughness and lubricant distribution state on the tablet surface before film coating, and investigated the relationship between peeling of the film coating layer and these tablet surface properties. Increasing lubrication through the external lubrication method decreased wettability of the tablet surface. However, no change was observed in the adhesion force of the film coating layer. On the other hand, increasing lubrication through the internal lubrication method, decreased both wettability of the tablet surface and the adhesion force of the film coating layer. The magnesium stearate distribution state on the tablet surface was assessed using an X-ray fluorescent analyzer and lubricant agglomerates were observed in the case of the internal lubrication method. However, the lubricant was uniformly dispersed in the external lubrication samples. These results indicate that the distribution state of the lubricant affects the adhesion force of the film coating layer, and external lubrication maintained sufficient lubricity and adhesion force of the film coating layer with a small amount of lubricant.
The physics of water droplets on surfaces: exploring the effects of roughness and surface chemistry
NASA Astrophysics Data System (ADS)
Eid, K. F.; Panth, M.; Sommers, A. D.
2018-03-01
This paper explores the fluid property commonly called surface tension, its effect on droplet shape and contact angle, and the major influences of contact angle behaviour (i.e. surface roughness and surface chemistry). Images of water droplets placed on treated copper surfaces are used to measure the contact angles between the droplets and the surface. The surface wettability is manipulated either by growing a self-assembled monolayer on the surface to make it hydrophobic or by changing the surface roughness. The main activities in this experiment, then, are (1) preparing and studying surfaces with different surface wettability and roughness; (2) determining the shape and contact angles of water droplets on these surfaces; and (3) demonstrating the spontaneous motion of water droplets using surface tension gradients.
Bao, Rong-Rong; Zhang, Cheng-Yi; Zhang, Xiu-Juan; Ou, Xue-Mei; Lee, Chun-Sing; Jie, Jian-Sheng; Zhang, Xiao-Hong
2013-06-26
The controlled growth and alignment of one-dimensional organic nanostructures at well-defined locations considerably hinders the integration of nanostructures for electronic and optoelectronic applications. Here, we demonstrate a simple process to achieve the growth, alignment, and hierarchical patterning of organic nanowires on substrates with controlled patterns of surface wettability. The first-level pattern is confined by the substrate patterns of wettability. Organic nanostructures are preferentially grown on solvent wettable regions. The second-level pattern is the patterning of aligned organic nanowires deposited by controlling the shape and movement of the solution contact lines during evaporation on the wettable regions. This process is controlled by the cover-hat-controlled method or vertical evaportation method. Therefore, various new patterns of organic nanostructures can be obtained by combing these two levels of patterns. This simple method proves to be a general approach that can be applied to other organic nanostructure systems. Using the as-prepared patterned nanowire arrays, an optoelectronic device (photodetector) is easily fabricated. Hence, the proposed simple, large-scale, low-cost method of preparing patterns of highly ordered organic nanostructures has high potential applications in various electronic and optoelectronic devices.
Chen, Bo; Pernodet, Nadine; Rafailovich, Miriam H; Bakhtina, Asya; Gross, Richard A
2008-12-02
A series of epoxy-activated polymer films composed of poly(glycidyl methacrylate/butyl methacrylate/hydroxyethyl methacrylate) were prepared. Variation in comonomer composition allowed exploration of relationships between surface wettability and Candida antartica lipase B (CALB) binding to surfaces. By changing solvents and polymer concentrations, suitable conditions were developed for preparation by spin-coating of uniform thin films. Film roughness determined by AFM after incubation in PBS buffer for 2 days was less than 1 nm. The occurrence of single CALB molecules and CALB aggregates at surfaces was determined by AFM imaging and measurements of volume. Absolute numbers of protein monomers and multimers at surfaces were used to determine values of CALB specific activity. Increased film wettability, as the water contact angle of films increased from 420 to 550, resulted in a decreased total number of immobilized CALB molecules. With further increases in the water contact angle of films from 55 degrees to 63 degrees, there was an increased tendency of CALB molecules to form aggregates on surfaces. On all flat surfaces, two height populations, differing by more than 30%, were observed from height distribution curves. They are attributed to changes in protein conformation and/or orientation caused by protein-surface and protein-protein interactions. The fraction of molecules in these populations changed as a function of film water contact angle. The enzyme activity of immobilized films was determined by measuring CALB-catalyzed hydrolysis of p-nitrophenyl butyrate. Total enzyme specific activity decreased by decreasing film hydrophobicity.
A study on air bubble wetting: Role of surface wettability, surface tension, and ionic surfactants
NASA Astrophysics Data System (ADS)
George, Jijo Easo; Chidangil, Santhosh; George, Sajan D.
2017-07-01
Fabrication of hydrophobic/hydrophilic surfaces by biomimicking nature has attracted significant attention recently due to their potential usage in technologies, ranging from self-cleaning to DNA condensation. Despite the potential applications, compared to surfaces of tailored wettability, less attention has been paid towards development and understanding of air bubble adhesion and its dynamics on surfaces with varying wettability. In this manuscript, following the commonly used approach of oxygen plasma treatment, polydimethylsiloxane surfaces with tunable wettability are prepared. The role of plasma treatment conditions on the surface hydrophilicity and the consequent effect on adhesion dynamics of an underwater air bubble is explored for the first time. The ATR-FTIR spectroscopic analysis reveals that the change in hydrophilicity arises from the chemical modification of the surface, manifested as Si-OH vibrations in the spectra. The thickness of the formed thin liquid film at the surface responsible for the experimentally observed air bubble repellency is estimated from the augmented Young-Laplace equation. The concentration dependent studies using cationic as well as anionic surfactant elucidate that the reduced surface tension of the aqueous solution results in a stable thicker film and causes non-adherence of air bubble to the aerophilic surface. Furthermore, the study carried out to understand the combined effect of plasma treatment and surfactants reveals that even below critical micelle concentration, a negatively charged surface results in air bubble repellency for the anionic surfactant, whereas only enhanced air bubble contact angle is observed for the cationic surfactant.
NASA Astrophysics Data System (ADS)
Vivet, L.; Joudrier, A.-L.; Bouttemy, M.; Vigneron, J.; Tan, K. L.; Morelle, J. M.; Etcheberry, A.; Chalumeau, L.
2013-06-01
Electroless nickel-high-phosphorus Ni-P plating is known for its physical properties. In case of electronic and mechatronic assembly processes achieved under ambient conditions the wettability of the Ni-P layer under ambient temperature and ambient air stays a point of surface quality investigation. This contribution will be devoted to the study of the surface properties of Ni-P films for which we performed air plasma treatment. We focus our attention on the evolution of the surface wettability, using the classical sessile drop technique. Interpreting the results with the OWRK model we extract the polar and disperse surface tension components from which we deduced typical evolution of the surface properties with the different treatment settings. By controlling the variations of the parameters of the plasma exposure we are able to change the responses of our Ni-P sample from total hydrophobic to total hydrophilic behaviours. All the intermediate states can be reached by adapting the treatment parameters. So it is demonstrated that the apparent Ni-P surface properties can be fully adapted and the surface setting can be well characterized by wettability measurements. To deep our knowledge of the surface modifications induced by plasma we performed parallel SEM and XPS analyses which provide informations on the structure and the chemical composition of the surface for each set of treatment parameters. Using this double approach we were able to propose a correlation between the evolution of surface chemical composition and surface wettability which are completely governed by the plasma treatment conditions. Chemical parameters as the elimination of the carbon contamination, the progressive surface oxidation, and the slight incorporation of nitrogen due to the air plasma interaction are well associated with the evolution of the wettability properties. So a complete engineering for the Ni-P surface preparation has been established. The sessile drop method can be considered as a very efficient method to propose qualification of treatments onto Ni-P surfaces before performing electronic and mechatronic assembly processes that are achieved under ambient conditions.
Owoseni, Olasehinde; Zhang, Yueheng; Su, Yang; He, Jibao; McPherson, Gary L; Bose, Arijit; John, Vijay T
2015-12-29
The carbonization of hydrophilic particle surfaces provides an effective route for tuning particle wettability in the preparation of particle-stabilized emulsions. The wettability of naturally occurring halloysite clay nanotubes (HNT) is successfully tuned by the selective carbonization of the negatively charged external HNT surface. The positively charge chitosan biopolymer binds to the negatively charged external HNT surface by electrostatic attraction and hydrogen bonding, yielding carbonized halloysite nanotubes (CHNT) on pyrolysis in an inert atmosphere. Relative to the native HNT, the oil emulsification ability of the CHNT at intermediate levels of carbonization is significantly enhanced due to the thermodynamically more favorable attachment of the particles at the oil-water interface. Cryogenic scanning electron microscopy (cryo-SEM) imaging reveals that networks of CHNT attach to the oil-water interface with the particles in a side-on orientation. The concepts advanced here can be extended to other inorganic solids and carbon sources for the optimal design of particle-stabilized emulsions.
NASA Astrophysics Data System (ADS)
Schutzius, Thomas M.; Bayer, Ilker S.; Jursich, Gregory M.; Das, Arindam; Megaridis, Constantine M.
2012-08-01
Surfaces patterned with alternating (binary) superhydrophobic-superhydrophilic regions can be found naturally, offering a bio-inspired template for efficient fluid collection and management technologies. We describe a simple wet-processing, thermal treatment method to produce such patterns, starting with inherently superhydrophobic polysilsesquioxane-silica composite coatings prepared by spray casting nanoparticle dispersions. Such coatings become superhydrophilic after localized thermal treatment by means of laser irradiation or open-air flame exposure. When laser processed, the films are patternable down to ~100 μm scales. The dispersions consist of hydrophobic fumed silica (HFS) and methylsilsesquioxane resin, which are dispersed in isopropanol and deposited onto various substrates (glass, quartz, aluminum, copper, and stainless steel). The coatings are characterized by advancing, receding, and sessile contact angle measurements before and after thermal treatment to delineate the effects of HFS filler concentration and thermal treatment on coating wettability. SEM, XPS and TGA measurements reveal the effects of thermal treatment on surface chemistry and texture. The thermally induced wettability shift from superhydrophobic to superhydrophilic is interpreted with the Cassie-Baxter wetting theory. Several micropatterned wettability surfaces demonstrate potential in pool boiling heat transfer enhancement, capillarity-driven liquid transport in open surface-tension-confined channels (e.g., lab-on-a-chip), and select surface coating applications relying on wettability gradients. Advantages of the present approach include the inherent stability and inertness of the organosilane-based coatings, which can be applied on many types of surfaces (glass, metals, etc.) with ease. The present method is also scalable to large areas, thus being attractive for industrial coating applications.Surfaces patterned with alternating (binary) superhydrophobic-superhydrophilic regions can be found naturally, offering a bio-inspired template for efficient fluid collection and management technologies. We describe a simple wet-processing, thermal treatment method to produce such patterns, starting with inherently superhydrophobic polysilsesquioxane-silica composite coatings prepared by spray casting nanoparticle dispersions. Such coatings become superhydrophilic after localized thermal treatment by means of laser irradiation or open-air flame exposure. When laser processed, the films are patternable down to ~100 μm scales. The dispersions consist of hydrophobic fumed silica (HFS) and methylsilsesquioxane resin, which are dispersed in isopropanol and deposited onto various substrates (glass, quartz, aluminum, copper, and stainless steel). The coatings are characterized by advancing, receding, and sessile contact angle measurements before and after thermal treatment to delineate the effects of HFS filler concentration and thermal treatment on coating wettability. SEM, XPS and TGA measurements reveal the effects of thermal treatment on surface chemistry and texture. The thermally induced wettability shift from superhydrophobic to superhydrophilic is interpreted with the Cassie-Baxter wetting theory. Several micropatterned wettability surfaces demonstrate potential in pool boiling heat transfer enhancement, capillarity-driven liquid transport in open surface-tension-confined channels (e.g., lab-on-a-chip), and select surface coating applications relying on wettability gradients. Advantages of the present approach include the inherent stability and inertness of the organosilane-based coatings, which can be applied on many types of surfaces (glass, metals, etc.) with ease. The present method is also scalable to large areas, thus being attractive for industrial coating applications. Electronic supplementary information (ESI) available. See DOI: 10.1039/c2nr30979c
Gao, Zhan; Henthorn, David B.; Kim, Chang-Soo
2009-01-01
In this work, we detail a method whereby a polymeric hydrogel layer is grafted to the negative tone photoresist SU-8 in order to improve its wettability. A photoinitiator is first immobilized on freshly prepared SU-8 samples, acting as the starting point for various surface modifications strategies. Grafting of a 2-hydroxyethylmethacrylate-based hydrogel from the SU-8 surface resulted in the reduction of the static contact angle of a water droplet from 79 ± 1° to 36 ± 1°, while addition of a poly(ethylene glycol)-rich hydrogel layer resulted in further improvement (8 ± 1°). Wettability is greatly enhanced after 30 minutes of polymerization, with a continued but more gradual decrease in contact angle up to approximately 50 minutes. Hydrogel formation is triggered by exposure to UV irradiation, allowing for the formation of photopatterned structures using existing photolithographic techniques. PMID:19756177
Synthesis of ZnO nanoparticles for oil-water interfacial tension reduction in enhanced oil recovery
NASA Astrophysics Data System (ADS)
Soleimani, Hassan; Baig, Mirza Khurram; Yahya, Noorhana; Khodapanah, Leila; Sabet, Maziyar; Demiral, Birol M. R.; Burda, Marek
2018-02-01
Nanoparticles show potential use in applications associated with upstream oil and gas engineering to increase the performance of numerous methods such as wettability alteration, interfacial tension reduction, thermal conductivity and enhanced oil recovery operations. Surface tension optimization is an important parameter in enhanced oil recovery. Current work focuses on the new economical method of surface tension optimization of ZnO nanofluids for oil-water interfacial tension reduction in enhanced oil recovery. In this paper, zinc oxide (ZnO) nanocrystallites were prepared using the chemical route and explored for enhanced oil recovery (EOR). Adsorption of ZnO nanoparticles (NPs) on calcite (111) surface was investigated using the adsorption locator module of Materials Studio software. It was found that ZnO nanoparticles show maximum adsorption energy of - 253 kcal/mol. The adsorption of ZnO on the rock surface changes the wettability which results in capillary force reduction and consequently increasing EOR. The nanofluids have been prepared by varying the concentration of ZnO nanoparticles to find the optimum value for surface tension. The surface tension (ST) was calculated with different concentration of ZnO nanoparticles using the pendant drop method. The results show a maximum value of ST 35.57 mN/m at 0.3 wt% of ZnO NPs. It was found that the nanofluid with highest surface tension (0.3 wt%) resulted in higher recovery efficiency. The highest recovery factor of 11.82% at 0.3 wt% is due to the oil/water interfacial tension reduction and wettability alteration.
Preparation, anti-biofouling and drag-reduction properties of a biomimetic shark skin surface
Pu, Xia; Li, Guangji; Huang, Hanlu
2016-01-01
ABSTRACT Shark skin surfaces show non-smoothness characteristics due to the presence of a riblet structure. In this study, biomimetic shark skin was prepared by using the polydimethylsiloxane (PDMS)-embedded elastomeric stamping (PEES) method. Scanning electron microscopy (SEM) was used to examine the surface microstructure and fine structure of shark skin and biomimetic shark skin. To analyse the hydrophobic mechanism of the shark skin surface microstructure, the effect of biomimetic shark skin surface microstructure on surface wettability was evaluated by recording water contact angle. Additionally, protein adhesion experiments and anti-algae adhesion performance testing experiments were used to investigate and evaluate the anti-biofouling properties of the surface microstructure of biomimetic shark skin. The recorded values of the water contact angle of differently microstructured surfaces revealed that specific microstructures have certain effects on surface wettability. The anti-biofouling properties of the biomimetic shark skin surface with microstructures were superior to a smooth surface using the same polymers as substrates. Moreover, the air layer fixed on the surface of the biomimetic shark skin was found to play a key role in their antibiont adhesion property. An experiment into drag reduction was also conducted. Based on the experimental results, the microstructured surface of the prepared biomimetic shark skin played a significant role in reducing drag. The maximum of drag reduction rate is 12.5%, which is higher than the corresponding maximum drag reduction rate of membrane material with a smooth surface. PMID:26941105
Preparation, anti-biofouling and drag-reduction properties of a biomimetic shark skin surface.
Pu, Xia; Li, Guangji; Huang, Hanlu
2016-04-15
Shark skin surfaces show non-smoothness characteristics due to the presence of a riblet structure. In this study, biomimetic shark skin was prepared by using the polydimethylsiloxane (PDMS)-embedded elastomeric stamping (PEES) method. Scanning electron microscopy (SEM) was used to examine the surface microstructure and fine structure of shark skin and biomimetic shark skin. To analyse the hydrophobic mechanism of the shark skin surface microstructure, the effect of biomimetic shark skin surface microstructure on surface wettability was evaluated by recording water contact angle. Additionally, protein adhesion experiments and anti-algae adhesion performance testing experiments were used to investigate and evaluate the anti-biofouling properties of the surface microstructure of biomimetic shark skin. The recorded values of the water contact angle of differently microstructured surfaces revealed that specific microstructures have certain effects on surface wettability. The anti-biofouling properties of the biomimetic shark skin surface with microstructures were superior to a smooth surface using the same polymers as substrates. Moreover, the air layer fixed on the surface of the biomimetic shark skin was found to play a key role in their antibiont adhesion property. An experiment into drag reduction was also conducted. Based on the experimental results, the microstructured surface of the prepared biomimetic shark skin played a significant role in reducing drag. The maximum of drag reduction rate is 12.5%, which is higher than the corresponding maximum drag reduction rate of membrane material with a smooth surface. © 2016. Published by The Company of Biologists Ltd.
Effect of airborne contaminants on the wettability of supported graphene and graphite
NASA Astrophysics Data System (ADS)
Li, Zhiting; Wang, Yongjin; Kozbial, Andrew; Shenoy, Ganesh; Zhou, Feng; McGinley, Rebecca; Ireland, Patrick; Morganstein, Brittni; Kunkel, Alyssa; Surwade, Sumedh P.; Li, Lei; Liu, Haitao
2013-10-01
It is generally accepted that supported graphene is hydrophobic and that its water contact angle is similar to that of graphite. Here, we show that the water contact angles of freshly prepared supported graphene and graphite surfaces increase when they are exposed to ambient air. By using infrared spectroscopy and X-ray photoelectron spectroscopy we demonstrate that airborne hydrocarbons adsorb on graphitic surfaces, and that a concurrent decrease in the water contact angle occurs when these contaminants are partially removed by both thermal annealing and controlled ultraviolet-O3 treatment. Our findings indicate that graphitic surfaces are more hydrophilic than previously believed, and suggest that previously reported data on the wettability of graphitic surfaces may have been affected by unintentional hydrocarbon contamination from ambient air.
Effect of airborne contaminants on the wettability of supported graphene and graphite.
Li, Zhiting; Wang, Yongjin; Kozbial, Andrew; Shenoy, Ganesh; Zhou, Feng; McGinley, Rebecca; Ireland, Patrick; Morganstein, Brittni; Kunkel, Alyssa; Surwade, Sumedh P; Li, Lei; Liu, Haitao
2013-10-01
It is generally accepted that supported graphene is hydrophobic and that its water contact angle is similar to that of graphite. Here, we show that the water contact angles of freshly prepared supported graphene and graphite surfaces increase when they are exposed to ambient air. By using infrared spectroscopy and X-ray photoelectron spectroscopy we demonstrate that airborne hydrocarbons adsorb on graphitic surfaces, and that a concurrent decrease in the water contact angle occurs when these contaminants are partially removed by both thermal annealing and controlled ultraviolet-O3 treatment. Our findings indicate that graphitic surfaces are more hydrophilic than previously believed, and suggest that previously reported data on the wettability of graphitic surfaces may have been affected by unintentional hydrocarbon contamination from ambient air.
Effect of the morphology of adsorbed oleate on the wettability of a collophane surface
NASA Astrophysics Data System (ADS)
Ye, Junjian; Zhang, Qin; Li, Xianbo; Wang, Xianchen; Ke, Baolin; Li, Xianhai; Shen, Zhihui
2018-06-01
The adsorption of surfactants on a solid surface could alter its wettability, which offers a wide range of relevant applications such as mineral flotation, hydrophobic material preparation and nanomaterial dispersion. The morphology of adsorbed oleate on a collophane surface was visualized using the peakforce tapping mode of atomic force microscopy (AFM), and its effect on the wettability of collophane was analysed by contact angle measurements, adsorption measurements and molecular dynamics (MD) simulations. The AFM images demonstrated that the adsorbed structure varied with different oleate concentrations. First, the small cylindrical micelles with concomitant monolayer and bilayer structures were observed above the hemimicelle concentration (hmc) of 1 × 10-5 mol/L, which enhanced the hydrophobicity of the collophane surface, and the collophane surface was not completely covered with the oleate monolayer due to surface heterogeneity. Then, large cylindrical micelles with a major bilayer were formed as the critical micelle concentration (cmc) of 1 × 10-3 mol/L was approached, which decreased its hydrophobicity, and finally the formation of large cylindrical micelles with multilayer at the cmc caused the hydrophilicity of the collophane surface. Therefore, there was a suitable equilibrium concentration between the hmc and cmc for oleate as a collector during mineral flotation, and oleate could also be used as a dispersant for colloidal stability when its equilibrium concentration reached the cmc. The effect of the adsorbed structure on the wettability of collophane was also confirmed by MD simulations. This study provides a good understanding of the surface modification of particles by surfactants for flotation and dispersion applications.
NASA Astrophysics Data System (ADS)
Velayi, Elmira; Norouzbeigi, Reza
2018-05-01
Superhydrophobic ZnO surfaces with reversibly tunable wettability were fabricated on stainless steel meshes via a facile chemical bath deposition method just by regulating the micro/nano structured ZnO needles without using chemical post modifications. The obtained surfaces can be easily and reversibly switched between superhydrophobic and superhydrophilic/underwater superoleophobic characteristics by altering the annealing temperatures. As-prepared sample exhibited long-term superhydrophobic properties with a water contact angle (WCA) of 163.8° ± 1.8° and contact angle hysteresis (CAH) of 1.1° ± 0.8°. The SEM, XRD, XPS and Raman analyses were employed to characterize the morphological features and surface chemistry of the prepared samples. SEM images showed the formation of ZnO micro/nanoneedles with a diameter of ∼90 nm on the substrate. The superhydrophobic ZnO surface was switched to highly hydrophilic and underwater superoleophobic properties with an oil contact angle (OCA) of about 172.5° after being annealed at 400 °C in air for 30 min and restored to superhydrophobic state again by altering the annealing temperature to 150 °C. Mechanical durability of the ZnO superhydrophobic surface was tested by an abrasion test. Results confirmed that the prepared surface exhibited an excellent robustness after 20 abrasion cycles under the pressure of 4.7 kPa.
Adhesion switch on a gecko-foot inspired smart nanocupule surface
NASA Astrophysics Data System (ADS)
Song, Wenlong
2014-10-01
A gecko-foot inspired nanocupule surface prepared by an AAO template covering method was composed of poly(N-isopropylacrylamide) and polystyrene blend. Both superhydrophobicity and high adhesion force were exhibited on the PNIPAm/PS film at room temperature. Moreover, by controlling the temperature, the wettability of the film could be switched between 138.1 +/- 5.5° and 150.6 +/- 1.5°, and the adhesion force could also be correspondingly tuned accurately by temperature. This reversibility in both wettability and adhesion force could be used to construct smart devices for fine selection of water droplets. The proof-of-concept was demonstrated by the selective catching of precise weight controlled water droplets at different temperatures. This work could help us to design new type of devices for blood bioanalysis or lossless drug transportation.A gecko-foot inspired nanocupule surface prepared by an AAO template covering method was composed of poly(N-isopropylacrylamide) and polystyrene blend. Both superhydrophobicity and high adhesion force were exhibited on the PNIPAm/PS film at room temperature. Moreover, by controlling the temperature, the wettability of the film could be switched between 138.1 +/- 5.5° and 150.6 +/- 1.5°, and the adhesion force could also be correspondingly tuned accurately by temperature. This reversibility in both wettability and adhesion force could be used to construct smart devices for fine selection of water droplets. The proof-of-concept was demonstrated by the selective catching of precise weight controlled water droplets at different temperatures. This work could help us to design new type of devices for blood bioanalysis or lossless drug transportation. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr04090b
Wojcieszak, Damian; Kaczmarek, Danuta; Antosiak, Aleksandra; Mazur, Michal; Rybak, Zbigniew; Rusak, Agnieszka; Osekowska, Malgorzata; Poniedzialek, Agata; Gamian, Andrzej; Szponar, Bogumila
2015-11-01
The paper describes properties of thin-film coatings based on copper and titanium. Thin films were prepared by co-sputtering of Cu and Ti targets in argon plasma. Deposited coatings consist of 90at.% of Cu and 10at.% of Ti. Characterization of the film was made on the basis of investigations of microstructure and physicochemical properties of the surface. Methods such as scanning electron microscopy, x-ray microanalysis, x-ray diffraction, x-ray photoelectron spectroscopy, atomic force microscopy, optical profilometry and wettability measurements were used to assess the properties of deposited thin films. An impact of Cu-Ti coating on the growth of selected bacteria and viability of the living cells (line L929, NCTC clone 929) was described in relation to the structure, surface state and wettability of the film. It was found that as-deposited films were amorphous. However, in such surroundings the nanocrystalline grains of 10-15nm and 25-35nm size were present. High surface active area with a roughness of 8.9nm, had an effect on receiving relatively high water contact angle value (74.1°). Such wettability may promote cell adhesion and result in an increase of the probability of copper ion transfer from the film surface into the cell. Thin films revealed bactericidal and fungicidal effects even in short term-contact. High activity of prepared films was directly related to high amount (ca. 51 %) of copper ions at 1+ state as x-ray photoelectron spectroscopy results have shown. Copyright © 2015 Elsevier B.V. All rights reserved.
Song, Sung E; Choi, Gwan H; Yi, Gi-Ra; Yoo, Pil J
2017-11-01
Polymeric thin films coated on non-wettable substrates undergo film-instabilities, which are usually manifested as surface deformation in the form of dewetting or wrinkling. The former takes place in fluidic films, whereas the latter occurs in solid films. Therefore, there have rarely been reports of systems involving simultaneous deformations of dewetting and wrinkling. In this study, we propose polymeric thin films of liquid crystalline (LC) mesogens prepared on a non-wettable Si substrate and apply a treatment of plasma irradiation to form a thin polymerized layer at the surface. The resulting compressive stress generated in the surface region drives the formation of wrinkles, while at the same time, dipolar attraction between LC molecules induces competitive cohesive dewetting. Intriguing surface structures were obtained whereby dewetting-like hole arrays are nested inside the randomly propagated wrinkles. The structural features are readily controlled by the degree of surface cross-linking, hydrophilicity of the substrates, and the LC film thickness. In particular, dewetting of LC mesogens is observed to be restricted to occur at the trough regions of wrinkles, exhibiting the typical behavior of geometrically confined dewetting. Finally, wrinkling-dewetting mixed structures are separated from the substrate in the form of free standing films to demonstrate the potential applicability as membranes.
Young, T H; Lin, D T; Chen, L Y
2000-06-15
This study evaluated the effects of crystalline polyamide (Nylon-66), poly(ethylene-co-vinyl alcohol) (PEVA), and poly(vinylidene fluoride) (PVDF) polymers with nonporous and porous morphologies on the ability of monocytes to adhere and subsequently activate to produce IL-1beta, IL-6, and tumor necrosis factor alpha. The results indicated monocyte adhesion and activation on a material might differ to a great extent, depending on the surface morphology and wettability. As the polymer wettability increases, the ability of monocytes to adhere increases but the ability to produce cytokines decreases. Similarly, these polymers, when prepared with porous surfaces, enhance monocyte adhesion but suppress monocyte release of cytokines. Therefore, the hydrophobic PVDF with a nonporous surface stimulates the most activity in adherent monocytes but shows the greatest inhibition of monocyte adhesion when compared with all of the other membranes. In contrast, the hydrophilic Nylon-66, which has a porous surface, is a relatively better substrate for this work. Therefore, monocyte behavior on a biomaterial may be influenced by a specific surface property. Based on this result, we propose that monocyte adhesion is regulated by a different mechanism than monocyte activation. Consequently, the generation of cytokines by monocytes is not proportional to the number of cells adherent to the surface. Copyright 2000 John Wiley & Sons, Inc.
The influence of the emulsion composition on the wettability of the emulsion
NASA Astrophysics Data System (ADS)
Liu, Yan Jun; Shao, Jian Nan; Lei Liu, Peng
2018-03-01
In order to explore the influence of the emulsion composition on the wettability of the emulsion, using lauric acid polyoxyethylene esters (LAE) and polyethylene oleic acid diester (DQA) as the emulsifier and oleic acid ester (QA) as the smoothing agent, the spinning oil emulsion system with the content of smoothing agent above 30% was prepared. The results show that: with the increase of emulsion concentration, the surface tension of emulsion, the contact Angle of emulsion on the surface of the polypropylene fiber and the wetting time of canvas in emulsion all decreases. At the same time,the emulsion has critical micelle concentration, when the concentration is less than CMC, the surface tension of emulsion, the contact Angle of emulsion on the surface of the polypropylene fiber and the wetting time of canvas in the emulsion decreases rapidly with the increase of the emulsion concentration, while it’s more than this concentration, the influence of emulsion concentration on the three kinds of nature is smaller. Besides, the increase of the mass fraction of the smoothing agent and the increase of the compound emulsifier HLB will result in worse wettability.
Tunable Pickering Emulsions with Environmentally Responsive Hairy Silica Nanoparticles.
Liu, Min; Chen, Xiaoli; Yang, Zongpeng; Xu, Zhou; Hong, Liangzhi; Ngai, To
2016-11-30
Surface modification of the nanoparticles using surface anchoring of amphiphilic polymers offers considerable scope for the design of a wide range of brush-coated hybrid nanoparticles with tunable surface wettability that may serve as new class of efficient Pickering emulsifiers. In the present study, we prepared mixed polymer brush-coated nanoparticles by grafting ABC miktoarm star terpolymers consisting of poly(ethylene glycol), polystyrene, and poly[(3-triisopropyloxysilyl)propyl methacrylate] (μ-PEG-b-PS-b-PIPSMA) on the surface of silica nanoparticles. The wettability of the as-prepared nanoparticles can be precisely tuned by a change of solvent or host-guest complexation. 1 H NMR result confirmed that such wettability change is due to the reorganization of the polymer chain at the grafted layer. We show that this behavior can be used for stabilization and switching between water-in-oil (W/O) and oil-in-water (O/W) emulsions. For hairy particles initially dispersed in oil, W/O emulsions were always obtained with collapsed PEG chains and mobile PS chains at the grafted layer. However, initially dispersing the hairy particles in water resulted in O/W emulsions with collapsed PS chains and mobile PEG chains. When a good solvent for both PS and PEG blocks such as toluene was used, W/O emulsions were always obtained no matter where the hairy particles were dispersed. The wettability of the mixed polymer brush-coated silica particles can also be tuned by host-guest complexation between PEG block and α-CD. More importantly, our result showed that surprisingly the resultant mixed brush-coated hairy nanoparticles can be employed for the one-step production of O/W/O multiple emulsions that are not attainable from conventional Pickering emulsifiers. The functionalized hairy silica nanoparticles at the oil-water interface can be further linked together utilizing poly(acrylic acid) as the reversible linker to form supramolecular colloidosomes, which show pH-dependent release of cargo.
NASA Astrophysics Data System (ADS)
Lu, Yao; Xu, Wenji; Song, Jinlong; Liu, Xin; Xing, Yingjie; Sun, Jing
2012-12-01
The preparation of superhydrophobic surfaces on hydrophilic metal substrates depends on both surface microstructures and low surface energy modification. In this study, a simple and inexpensive electrochemical method for preparing robust superhydrophobic titanium surfaces is reported. The neutral sodium chloride solution is used as electrolyte. Fluoroalkylsilane (FAS) was used to reduce the surface energy of the electrochemically etched surface. Scanning electron microscopy (SEM) images, energy-dispersive spectroscopy (EDS), Fourier transform infrared spectroscopy (FTIR) spectra, and contact angle measurement are performed to characterize the morphological features, chemical composition, and wettability of the titanium surfaces. Stability and friction tests indicate that the prepared titanium surfaces are robust. The analysis of electrolyte, reaction process, and products demonstrates that the electrochemical processing is very inexpensive and environment-friendly. This method is believed to be easily adaptable for use in large-scale industry productions to promote the application of superhydrophobic titanium surfaces in aviation, aerospace, shipbuilding, and the military industry.
Thermal Instability of Fats Relative to Surface Wettability of Yellow Birchwood (Betula lutea)
Richard W. Hemingway
1969-01-01
The surface wettability and fats of yellow birchwood were examined in an attempt to illustrate how heat-induced changes in wood fats might be related to changes in surface wettability. A marked reduction of surface wettability accompanied heating of yellow birchwood. The degree of water repellency imparted to the wood was highly dependent upon heating temperature and...
Huggett, Megan J; Nedved, Brian T; Hadfield, Michael G
2009-01-01
Hydroides elegans is a major fouling organism in tropical waters around the world, including Pearl Harbor, Hawaii. To determine the importance of initial surface characteristics on biofilm community composition and subsequent colonization by larvae of H. elegans, the settlement and recruitment of larvae to biofilmed surfaces with six different initial surface wettabilities were tested in Pearl Harbor. Biofilm community composition, as determined by a combined approach of denaturing gradient gel electrophoresis and fluorescence in situ hybridization, was similar across all surfaces, regardless of initial wettability, and all surfaces had distinct temporal shifts in community structure over a 10 day period. Larvae settled and recruited in higher numbers to surfaces with medium to low wettability in both May and August, and also to slides with high wettability in August. Pearl Harbor biofilm communities developed similarly on a range of surface wettabilities, and after 10 days in Pearl Harbor all surfaces were equally attractive to larvae of Hydroides elegans, regardless of initial surface properties.
Study of wettability and cell viability of H implanted stainless steel
NASA Astrophysics Data System (ADS)
Shafique, Muhammad Ahsan; Ahmad, Riaz; Rehman, Ihtesham Ur
2018-03-01
In the present work, the effect of hydrogen ion implantation on surface wettability and biocompatibility of stainless steel is investigated. Hydrogen ions are implanted in the near-surface of stainless steel to facilitate hydrogen bonding at different doses with constant energy of 500 KeV, which consequently improve the surface wettability. Treated and untreated sample are characterized for surface wettability, incubation of hydroxyapatite and cell viability. Contact angle (CA) study reveals that surface wettability increases with increasing H-ion dose. Raman spectroscopy shows that precipitation of hydroxyapatite over the surface increase with increasing dose of H-ions. Cell viability study using MTT assay describes improved cell viability in treated samples as compared to the untreated sample. It is found that low dose of H-ions is more effective for cell proliferation and the cell count decreases with increasing ion dose. Our study demonstrates that H ion implantation improves the surface wettability and biocompatibility of stainless steel.
NASA Astrophysics Data System (ADS)
Cho, Jaeyong; Lee, Joonsang
2017-11-01
The condensation is the one of the efficient heat transfer phenomenon that transfers the heat along an interface between two phases. This condensation is affected by the wettability of surface. Heat transfer rate can be improved by controlling the wettability of surface. Recently, the researches with patterned wettability, which is composed by a combination of hydrophilic and hydrophobic surface, have been performed to improve the heat transfer rate of condensation. In this study, we performed numerical simulation for condensation of droplet on the patterned wettability, and we analyze condensation phenomenon on the wettability pattered surface through the kinetic energy, heat flux curve, and droplet shape in the vicinity of the droplet. When we performed numerical simulations and analyzing the condensation with patterned wettability, we used the lattice Boltzmann method for the base model, and phase change was solved by Peng-Robinson equation of sate. We can find that the droplet is generated at the bottom surface and high condensation rate can be maintained on the patterned wettability. This work was also supported by the National Research Foundation of Korea (NRF) Grant funded by the Korean Government (MSIP) (No. 2015R1A5A1037668) and BrainKorea21plus.
NASA Astrophysics Data System (ADS)
Razi, Sepehr; Mollabashi, Mahmoud; Madanipour, Khosro
2015-12-01
Q -switched Nd:YAG laser is used to manipulate the surface morphology and wettability characteristic of 316L stainless steel (SS) and titanium biomaterials. Water and glycerol are selected as wettability testing liquids and the sessile drop method is used for the contact angle measurements. Results indicate that on both of the metals, wettability toward water improves significantly after the laser treatment. Different analyses including the study of the surface morphology, free energy and oxidation are assessed in correlation with wettability. Beside the important role of the laser-induced surface patterns, the increase in the surface roughness, oxygen content and the polar component of the surface energy, are detected as the most important physical and chemical phenomena controlling the improvement in the wettability. However, all the processed hydrophilic surfaces that are exposed to air become hydrophobic over time. The time dependency of the surface wettability is related to the chemical activities on the treated surfaces and the reduction of oxygen/carbon (O/C) ratio on them. The behavior is further studied with investigating the effect of the keeping environment and changes of the components of the surface tension. Results show that the pulsed laser treatment is a versatile approach to create either hydrophobic or super hydrophilic surfaces for industrial and medical applications.
Visible light guided manipulation of liquid wettability on photoresponsive surfaces
Kwon, Gibum; Panchanathan, Divya; Mahmoudi, Seyed Reza; Gondal, Mohammed A.; McKinley, Gareth H.; Varanasi, Kripa K.
2017-01-01
Photoresponsive titania surfaces are of great interest due to their unique wettability change upon ultraviolet light illumination. However, their applications are often limited either by the inability to respond to visible light or the need for special treatment to recover the original wettability. Sensitizing TiO2 surfaces with visible light-absorbing materials has been utilized in photovoltaic applications. Here we demonstrate that a dye-sensitized TiO2 surface can selectively change the wettability towards contacting liquids upon visible light illumination due to a photo-induced voltage across the liquid and the underlying surface. The photo-induced wettability change of our surfaces enables external manipulation of liquid droplet motion upon illumination. We show demulsification of surfactant-stabilized brine-in-oil emulsions via coalescence of brine droplets on our dye-sensitized TiO2 surface upon visible light illumination. We anticipate that our surfaces will have a wide range of applications including microfluidic devices with customizable wettability, solar-driven oil–water clean-up and demulsification technologies. PMID:28440292
NASA Astrophysics Data System (ADS)
Wu, M. L.; Ren, C. Z.; Xu, H. Z.
2016-11-01
The coefficient of thermal conductivity was influenced by the wetting state of material. The wetting state usually depends on the surface wettability. C/SiC is a promising ceramic composites with multi-components. The wettability of C/SiC composites is hard to resort to the classical wetting theory directly. So far, few investigations focused on C/SiC surface wettability diversity after different material removal processes. In this investigation, comparative studies of surface wettability of ground C/SiC surface and laser-ablated C/SiC surface were carried out through apparent contact angle (APCA) measurements. The results showed that water droplets easily reached stable state on ground C/SiC surface; while the water droplets rappidly penetrated into the laser-ablated C/SiC surface. In order to find out the reason for wettability distinctions between the ground C/SiC surface and the laser-ablated C/SiC surface, comparative studies on the surface micro-structure, surface C-O-Si distribution, and surface C-O-Si weight percentage were carried out. The results showed that (1) A large number of micro cracks in the fuzzy pattern layer over laser-ablated C/SiC surfaces easily destoried the surface tension of water droplets, while only a few cracks existed over the ground C/SiC surfaces. (2) Chemical components (C, O, Si) were non-uniformly distributed on ground C/SiC surfaces, while the chemical components (C, O, Si) were uniformly distributed on laser-ablated C/SiC surfaces. (3) The carbon weight percentage on ground C/SiC surfaces were higher than that on laser-ablated C/SiC surfaces. All these made an essential contribution to the surface wettability diversity of C/SiC surface. Although more investigations about the quantitative influence of surface topography and surface chemical composition on composites wettability are still needed, the conslusion can be used in application: the wettability of C/SiC surface can be controlled by different material removal process without individual following up surface modification process.
Analogies to Demonstrate the Effect of Roughness on Surface Wettability
ERIC Educational Resources Information Center
Yolcu, Hasan
2017-01-01
This article presents an analogy to illustrate the effect of surface roughness on surface wettability. I used a water-filled balloon to represent water droplet, a toothpick to represent surface roughness and Styrofoam as the surface. The analogies presented in this article will help visualize how roughness affects the wettability of the surface…
Fabrication of high wettability gradient on copper substrate
NASA Astrophysics Data System (ADS)
Huang, Ding-Jun; Leu, Tzong-Shyng
2013-09-01
Copper is one of the most widely used materials in condensation heat transfer. Recently there has been great interest in improving the condensation heat transfer efficiency through copper surface modification. In this study, we describe the fabrication processes of how copper surfaces were modified to be superhydrophilic (CA ≤ 10°) and superhydrophobic (CA > 150°) by means of H2O2 immersion and fluorination with Teflon. The wettability gradient of copper surfaces with contact angles (CA) changing from superhydrophilic to superhydrophobic are also demonstrated. Unlike previous studies on gradient surfaces in which the wettability gradient is controlled either non-precisely or entirely uncontrolled, in this study, the contact angles along wettability gradient copper surfaces vary with a precisely designed gradient. It is demonstrated that a high wettability gradient copper surface can be successfully fabricated using photolithography to define the area ratios between superhydrophilic and superhydrophobic patterns within a short distance. The fabricated wettability gradient of copper surfaces is expected to be able to enhance the condensation heat transfer efficiency.
Large-scale Generation of Patterned Bubble Arrays on Printed Bi-functional Boiling Surfaces
NASA Astrophysics Data System (ADS)
Choi, Chang-Ho; David, Michele; Gao, Zhongwei; Chang, Alvin; Allen, Marshall; Wang, Hailei; Chang, Chih-Hung
2016-04-01
Bubble nucleation control, growth and departure dynamics is important in understanding boiling phenomena and enhancing nucleate boiling heat transfer performance. We report a novel bi-functional heterogeneous surface structure that is capable of tuning bubble nucleation, growth and departure dynamics. For the fabrication of the surface, hydrophobic polymer dot arrays are first printed on a substrate, followed by hydrophilic ZnO nanostructure deposition via microreactor-assisted nanomaterial deposition (MAND) processing. Wettability contrast between the hydrophobic polymer dot arrays and aqueous ZnO solution allows for the fabrication of heterogeneous surfaces with distinct wettability regions. Heterogeneous surfaces with various configurations were fabricated and their bubble dynamics were examined at elevated heat flux, revealing various nucleate boiling phenomena. In particular, aligned and patterned bubbles with a tunable departure frequency and diameter were demonstrated in a boiling experiment for the first time. Taking advantage of our fabrication method, a 6 inch wafer size heterogeneous surface was prepared. Pool boiling experiments were also performed to demonstrate a heat flux enhancement up to 3X at the same surface superheat using bi-functional surfaces, compared to a bare stainless steel surface.
NASA Astrophysics Data System (ADS)
Wei, Yuefan; Du, Hejun; Kong, Junhua; Tran, Van-Thai; Koh, Jia Kai; Zhao, Chenyang; He, Chaobin
2017-11-01
Zinc oxide (ZnO) has gained much attention recently due to its excellent physical and chemical properties, and has been extensively studied in energy harvesting applications such as photovoltaic and piezoelectric devices. In recent years, its reversible wettability has also attracted increasing interest. The wettability of ZnO nanostructures with various morphologies has been studied. However, to the best of our knowledge, there is still a lack of investigations on further modifications on ZnO to provide more benefits than pristine ZnO. Comprehensive studies on the reversible wettability are still needed. In this study, a ZnO nanorod array was prepared via a hydrothermal process and subsequently coated with thin gold layers with varied thickness. The morphologies and structures, optical properties and wettability were investigated. It is revealed that the ZnO-Au system possesses recoverable wettability upon switching between visible-ultraviolet light and a dark environment, which is verified by the contact angle change. The introduction of the thin gold layer to the ZnO nanorod array effectively increases the recovery rate of the wettability. The improvements are attributed to the hierarchical structures, which are formed by depositing thin gold layers onto the ZnO nanorod array, the visible light sensitivity due to the plasmonic effect of the deposited gold, as well as the fast charge-induced surface status change upon light illumination or dark storage. The improvement is beneficial to applications in environmental purification, energy harvesting, micro-lenses, and smart devices.
Wennerberg, Ann; Jimbo, Ryo; Stübinger, Stefan; Obrecht, Marcel; Dard, Michel; Berner, Simon
2014-09-01
Implant surface properties have long been identified as an important factor to promote osseointegration. The importance of nanostructures and hydrophilicity has recently been discussed. The aim of this study was to investigate how nanostructures and wettability influence osseointegration and to identify whether the wettability, the nanostructure or both in combination play the key role in improved osseointegration. Twenty-six adult rabbits each received two Ti grade 4 discs in each tibia. Four different types of surface modifications with different wettability and nanostructures were prepared: hydrophobic without nanostructures (SLA), with nanostructures (SLAnano); hydrophilic with two different nanostructure densities (low density: pmodSLA, high density: SLActive). All four groups were intended to have similar chemistry and microroughness. The surfaces were evaluated with contact angle measurements, X-ray photoelectron spectroscopy, scanning electron microscopy, atomic force microscopy and interferometry. After 4 and 8 weeks healing time, pull-out tests were performed. SLA and SLAnano were hydrophobic, whereas SLActive and pmodSLA were super-hydrophilic. No nanostructures were present on the SLA surface, but the three other surface modifications clearly showed the presence of nanostructures, although more sparsely distributed on pmodSLA. The hydrophobic samples showed higher carbon contamination levels compared with the hydrophilic samples. After 4 weeks healing time, SLActive implants showed the highest pull-out values, with significantly higher pull-out force than SLA and SLAnano. After 8 weeks, the SLActive implants had the highest pull-out force, significantly higher than SLAnano and SLA. The strongest bone response was achieved with a combination of wettability and the presence of nanostructures (SLActive). © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Spontaneous wettability patterning via creasing instability
Chen, Dayong; McKinley, Gareth H.; Cohen, Robert E.
2016-01-01
Surfaces with patterned wettability contrast are important in industrial applications such as heat transfer, water collection, and particle separation. Traditional methods of fabricating such surfaces rely on microfabrication technologies, which are only applicable to certain substrates and are difficult to scale up and implement on curved surfaces. By taking advantage of a mechanical instability on a polyurethane elastomer film, we show that wettability patterns on both flat and curved surfaces can be generated spontaneously via a simple dip coating process. Variations in dipping time, sample prestress, and chemical treatment enable independent control of domain size (from about 100 to 500 μm), morphology, and wettability contrast, respectively. We characterize the wettability contrast using local surface energy measurements via the sessile droplet technique and tensiometry. PMID:27382170
Song, Yun-Yun; Liu, Yan; Jiang, Hao-Bo; Li, Shu-Yi; Kaya, Cigdem; Stegmaier, Thomas; Han, Zhi-Wu; Ren, Lu-Quan
2018-02-22
We designed a type of smart bioinspired wettable surface with tip-shaped patterns by combining polydimethylsiloxane (PDMS) and graphene (PDMS/G). The laser etched porous graphene surface can produce an obvious wettability change between 200 °C and 0 °C due to a change in aperture size and chemical components. We demonstrate that the cooperation of the geometrical structure and the controllable wettability play an important role in water gathering, and surfaces with tip-shaped wettability patterns can quickly drive tiny water droplets toward more wettable regions, so making a great contribution to the improvement of water collection efficiency. In addition, due to the effective cooperation between super hydrophobic and hydrophilic regions of the special tip-shaped pattern, unidirectional water transport on the 200 °C heated PDMS/G surface can be realized. This study offers a novel insight into the design of temperature-tunable materials with interphase wettability that may enhance fog collection efficiency in engineering liquid harvesting equipment, and realize unidirectional liquid transport, which could potentially be applied to the realms of microfluidics, medical devices and condenser design.
Yin, Kai; Du, Haifeng; Dong, Xinran; Wang, Cong; Duan, Ji-An; He, Jun
2017-10-05
Fog collection is receiving increasing attention for providing water in semi-arid deserts and inland areas. Inspired by the fog harvesting ability of the hydrophobic-hydrophilic surface of Namib desert beetles, we present a simple, low-cost method to prepare a hybrid superhydrophobic-hydrophilic surface. The surface contains micro/nanopatterns, and is prepared by incorporating femtosecond-laser fabricated polytetrafluoroethylene nanoparticles deposited on superhydrophobic copper mesh with a pristine hydrophilic copper sheet. The as-prepared surface exhibits enhanced fog collection efficiency compared with uniform (super)hydrophobic or (super)hydrophilic surfaces. This enhancement can be tuned by controlling the mesh number, inclination angle, and fabrication structure. Moreover, the surface shows excellent anti-corrosion ability after immersing in 1 M HCl, 1 M NaOH, and 10 wt% NaCl solutions for 2 hours. This work may provide insight into fabricating hybrid superhydrophobic-hydrophilic surfaces for efficient atmospheric water collection.
Mechanistic study of wettability alteration of oil-wet sandstone surface using different surfactants
NASA Astrophysics Data System (ADS)
Hou, Bao-feng; Wang, Ye-fei; Huang, Yong
2015-03-01
Different analytical methods including Fourier transform infrared (FTIR), atomic force microscopy (AFM), zeta potential measurements, contact angle measurements and spontaneous imbibition tests were utilized to make clear the mechanism for wettability alteration of oil-wet sandstone surface using different surfactants. Results show that among three types of surfactants including cationic surfactants, anionic surfactants and nonionic surfactants, the cationic surfactant CTAB demonstrates the best effect on the wettability alteration of oil-wet sandstone surface. The positively charged head groups of CTAB molecules and carboxylic acid groups from crude oil could interact to form ion pairs, which could be desorbed from the solid surface and solubilized into the micelle formed by CTAB. Thus, the water-wetness of the solid surface is improved. Nonionic surfactant TX-100 could be adsorbed on oil-wet sandstone surface through hydrogen bonds and hydrophobic interaction to alter the wettability of oil-wet solid surface. The wettability alteration of oil-wet sandstone surface using the anionic surfactant POE(1) is caused by hydrophobic interaction. Due to the electrostatic repulsion between the anionic surfactant and the negatively charged surface, POE(1) shows less effect on the wettability alteration of oil-wet sandstone surface.
Superhydrophobic cotton fabrics prepared by sol–gel coating of TiO2 and surface hydrophobization
Xue, Chao-Hua; Jia, Shun-Tian; Chen, Hong-Zheng; Wang, Mang
2008-01-01
By coating fibers with titania sol to generate a dual-size surface roughness, followed by hydrophobization with stearic acid, 1H,1H,2H,2H-perfluorodecyltrichlorosilane or their combination, hydrophilic cotton fabrics were made superhydrophobic. The surface wettability and topology of cotton fabrics were studied by contact angle measurement and scanning electron microscopy. The UV-shielding property of the treated fabrics was also characterized by UV-vis spectrophotometry. PMID:27877998
Splashing Threshold of Oblique Droplet Impacts on Surfaces of Various Wettability.
Aboud, Damon G K; Kietzig, Anne-Marie
2015-09-15
Oblique drop impacts were performed at high speeds (up to 27 m/s, We > 9000) with millimetric water droplets, and a linear model was applied to define the oblique splashing threshold. Six different sample surfaces were tested: two substrate materials of different inherent surface wettability (PTFE and aluminum), each prepared with three different surface finishes (smooth, rough, and textured to support superhydrophobicity). Our choice of surfaces has allowed us to make several novel comparisons. Considering the inherent surface wettability, we discovered that PTFE, as the more hydrophobic surface, exhibits lower splashing thresholds than the hydrophilic surface of aluminum of comparable roughness. Furthermore, comparing oblique impacts on smooth and textured surfaces, we found that asymmetrical spreading and splashing behaviors occurred under a wide range of experimental conditions on our smooth surfaces; however, impacts occurring on textured surfaces were much more symmetrical, and one-sided splashing occurred only under very specific conditions. We attribute this difference to the air-trapping nature of textured superhydrophobic surfaces, which lowers the drag between the spreading lamella and the surface. The reduced drag affects oblique drop impacts by diminishing the effect of the tangential component of the impact velocity, causing the impact behavior to be governed almost exclusively by the normal velocity. Finally, by comparing oblique impacts on superhydrophobic surfaces at different impact angles, we discovered that although the pinning transition between rebounding and partial rebounding is governed primarily by the normal impact velocity, there is also a weak dependence on the tangential velocity. As a result, pinning is inhibited in oblique impacts. This led to the observation of a new behavior in highly oblique impacts on our superhydrophobic surfaces, which we named the stretched rebound, where the droplet is extended into an elongated pancake shape and rebounds while still outstretched, without exhibiting a recession phase.
Wettability transition of laser textured brass surfaces inside different mediums
NASA Astrophysics Data System (ADS)
Yan, Huangping; Abdul Rashid, Mohamed Raiz B.; Khew, Si Ying; Li, Fengping; Hong, Minghui
2018-01-01
Hydrophobic surface on brass has attracted intensive attention owing to its importance in scientific research and practical applications. Laser texturing provides a simple and promising method to achieve it. Reducing wettability transition time from hydrophilicity to hydrophobicity or superhydrophobicity remains a challenge. Herein, wettability transition of brass surfaces with hybrid micro/nano-structures fabricated by laser texturing was investigated by immersing the samples inside different mediums. Scanning electron microscopy, energy-dispersive X-ray analysis, X-ray photoelectron spectroscopy and surface contact angle measurement were employed to characterize surface morphology, chemical composition and wettability of the fabricated surfaces of brass samples. Wettability transition time from hydrophilicity to hydrophobicity was shortened by immersion into isopropyl alcohol for a period of 3 h as a result of the absorption and accumulation of organic substances on the textured brass surface. When the textured brass sample was immersed into sodium bicarbonate solution, flower-like structures on the sample surface played a key role in slowing down wettability transition. Moreover, it had the smallest steady state contact angle as compared to the others. This study provides a facile method to construct textured surfaces with tunable wetting behaviors and effectively extend the industrial applications of brass.
NASA Astrophysics Data System (ADS)
Guan, Wei-Sheng; Huang, Han-Xiong; Wang, Bin
2013-10-01
In recent years, the fast growing demand for biomimetic surfaces featuring unique wettability and functionality in various fields highlights the necessity of developing a reliable technique for mass production. In this work, hierarchical topography designs of templates were applied to prepare superhydrophobic surfaces via microinjection compression molding, comprehensively considering the feasibility of mechanical demolding and the superhydrophobicity and mechanical robustness of the molded polypropylene parts. Mimicking the wettability of a lotus leaf or rose petal, superhydrophobic surfaces were replicated. An unstable wetting state formed on the surface exhibiting the petal effect. On such a surface, the increased water pressure could cause water penetration into the micro gaps between the hierarchical asperities featuring low-roughness sidewalls and bottom surface; the resultant water membrane led to drastically increased water adhesion of the surface. Moreover, the low-adhesion superhydrophobicity of the molded surface was changed into superhydrophilicity, by means of introducing carbonyl groups via ultraviolet/ozone treatment and the subsequent water membrane preserved in microstructures via the pre-wetting process. Patterning the superhydrophilic micro channel on the superhydrophobic surface developed the surface microfluidic devices for micro-liter fluid pumping and mixing processes driven by surface tension.
Novel hybrid materials for preparation of bone tissue engineering scaffolds.
Lewandowska-Łańcucka, Joanna; Fiejdasz, Sylwia; Rodzik, Łucja; Łatkiewicz, Anna; Nowakowska, Maria
2015-09-01
The organic-inorganic hybrid systems based on biopolymer hydrogels with dispersed silica nanoparticles were obtained and characterized in terms of their physicochemical properties, cytocompatibility and bioactivity. The hybrid materials were prepared in a form of collagen and collagen-chitosan sols to which the silica nanoparticles of two different sizes were incorporated. The ability of these materials to undergo in situ gelation under physiological temperature was assessed by microviscosity and gelation time determination based on steady-state fluorescence anisotropy measurements. The effect of silica nanoparticles addition on the physicochemical properties (surface wettability, swellability) of hybrid materials was analyzed and compared with those characteristic for pristine collagen and collagen-chitosan hydrogels. Biological studies indicate that surface wettability determined in terms of contact angle for all of the hybrids prepared is optimal and thus can provide satisfactory adhesion of fibroblasts. Cytotoxicity test results showed high metabolic activity of mouse as well as human fibroblast cell lines cultured on hybrid materials. The composition of hybrids was optimized in terms of concentration of silica nanoparticles. The effect of silica on the formation of bone-like mineral structures on exposition to simulated body fluid was determined. SEM images revealed mineral phase formation not only at the surfaces but also in the whole volumes of all hybrid materials developed suggesting their usefulness for bone tissue engineering. EDS and FTIR analyses indicated that these mineral phases consist of apatite-like structures.
Biocompatible patterning of proteins on wettability gradient surface by thermo-transfer printing.
Kim, Sungho; Ryu, Yong-Sang; Suh, Jeng-Hun; Keum, Chang-Min; Sohn, Youngjoo; Lee, Sin-Doo
2014-08-01
We develop a simple and biocompatible method of patterning proteins on a wettability gradient surface by thermo-transfer printing. The wettability gradient is produced on a poly(dimethylsiloxane) (PDMS)-modified glass substrate through the temperature gradient during thermo-transfer printing. The water contact angle on the PDMS-modified surface is found to gradually increase along the direction of the temperature gradient from a low to a high temperature region. Based on the wettability gradient, the gradual change in the adsorption and immobilization of proteins (cholera toxin B subunit) is achieved in a microfluidic cell with the PDMS-modified surface.
Taneda, Haruhiko; Watanabe-Taneda, Ayako; Chhetry, Rita; Ikeda, Hiroshi
2015-01-01
Background and Aims The epidermal surface of a flower petal is composed of convex cells covered with a structured cuticle, and the roughness of the surface is related to the wettability of the petal. If the surface remains wet for an excessive amount of time the attractiveness of the petal to floral visitors may be impaired, and adhesion of pathogens may be promoted. However, it remains unclear how the epidermal cells and structured cuticle contribute to surface wettability of a petal. Methods By considering the additive effects of the epidermal cells and structured cuticle on petal wettability, a thermodynamic model was developed to predict the wetting mode and contact angle of a water droplet at a minimum free energy. Quantitative relationships between petal wettability and the geometries of the epidermal cells and the structured cuticle were then estimated. Measurements of contact angles and anatomical traits of petals were made on seven herbaceous species commonly found in alpine habitats in eastern Nepal, and the measured wettability values were compared with those predicted by the model using the measured geometries of the epidermal cells and structured cuticles. Key Results The model indicated that surface wettability depends on the height and interval between cuticular steps, and on a height-to-width ratio for epidermal cells if a thick hydrophobic cuticle layer covers the surface. For a petal epidermis consisting of lenticular cells, a repellent surface results when the cuticular step height is greater than 0·85 µm and the height-to-width ratio of the epidermal cells is greater than 0·3. For an epidermis consisting of papillate cells, a height-to-width ratio of greater than 1·1 produces a repellent surface. In contrast, if the surface is covered with a thin cuticle layer, the petal is highly wettable (hydrophilic) irrespective of the roughness of the surface. These predictions were supported by the measurements of petal wettability made on flowers of alpine species. Conclusions The results indicate that surface roughness caused by epidermal cells and a structured cuticle produces a wide range of petal wettability, and that this can be successfully modelled using a thermodynamic approach. PMID:25851137
Moradi, Sona; Hadjesfandiari, Narges; Toosi, Salma Fallah; Kizhakkedathu, Jayachandran N; Hatzikiriakos, Savvas G
2016-07-13
In order to design antithrombotic implants, the effect of extreme wettability (superhydrophilicity to superhydrophobicity) on the biocompatibility of the metallic substrates (stainless steel and titanium) was investigated. The wettability of the surface was altered by chemical treatments and laser ablation methods. The chemical treatments generated different functionality groups and chemical composition as evident from XPS analysis. The micro/nanopatterning by laser ablation resulted in three different pattern geometry and different surface roughness and consequently wettability. The patterned surface were further modified with chemical treatments to generate a wide range of surface wettability. The influence of chemical functional groups, pattern geometry, and surface wettability on protein adsorption and platelet adhesion was studied. On chemically treated flat surfaces, the type of hydrophilic treatment was shown to be a contributing factor that determines the platelet adhesion, since the hydrophilic oxidized substrates exhibit less platelet adhesion in comparison to the control untreated or acid treated surfaces. Also, the surface morphology, surface roughness, and superhydrophobic character of the surfaces are contributing factors to platelet adhesion on the surface. Our results show that superhydrophobic cauliflower-like patterns are highly resistant to platelet adhesion possibly due to the stability of Cassie-Baxter state for this pattern compared to others. Our results also show that simple surface treatments on metals offer a novel way to improve the hemocompatibility of metallic substrates.
Large-scale Generation of Patterned Bubble Arrays on Printed Bi-functional Boiling Surfaces
Choi, Chang-Ho; David, Michele; Gao, Zhongwei; Chang, Alvin; Allen, Marshall; Wang, Hailei; Chang, Chih-hung
2016-01-01
Bubble nucleation control, growth and departure dynamics is important in understanding boiling phenomena and enhancing nucleate boiling heat transfer performance. We report a novel bi-functional heterogeneous surface structure that is capable of tuning bubble nucleation, growth and departure dynamics. For the fabrication of the surface, hydrophobic polymer dot arrays are first printed on a substrate, followed by hydrophilic ZnO nanostructure deposition via microreactor-assisted nanomaterial deposition (MAND) processing. Wettability contrast between the hydrophobic polymer dot arrays and aqueous ZnO solution allows for the fabrication of heterogeneous surfaces with distinct wettability regions. Heterogeneous surfaces with various configurations were fabricated and their bubble dynamics were examined at elevated heat flux, revealing various nucleate boiling phenomena. In particular, aligned and patterned bubbles with a tunable departure frequency and diameter were demonstrated in a boiling experiment for the first time. Taking advantage of our fabrication method, a 6 inch wafer size heterogeneous surface was prepared. Pool boiling experiments were also performed to demonstrate a heat flux enhancement up to 3X at the same surface superheat using bi-functional surfaces, compared to a bare stainless steel surface. PMID:27034255
Rolling viscous drops on a non-wettable surface containing both micro- and macro-scale roughness
NASA Astrophysics Data System (ADS)
Abolghasemibizaki, Mehran; Robertson, Connor J.; Fergusson, Christian P.; McMasters, Robert L.; Mohammadi, Reza
2018-02-01
It has previously been shown that when a liquid drop of high viscosity is placed on a non-wettable inclined surface, it rolls down at a constant descent velocity determined by the balance between viscous dissipation and the reduction rate of its gravitational potential energy. Since increasing the roughness of the surface boosts its non-wetting property, the drop should move faster on a surface structured with macrotextures (ribbed surface). Such a surface was obtained from a superhydrophobic soot coating on a solid specimen printed with an extruder-type 3D printer. The sample became superoleophobic after a functionalization process. The descent velocity of glycerol drops of different radii was then measured on the prepared surface for varied tilting angles. Our data show that the drops roll down on the ribbed surface approximately 27% faster (along the ridges) than on the macroscopically smooth counterpart. This faster velocity demonstrates that ribbed surfaces can be promising candidates for drag-reduction and self-cleaning applications. Moreover, we came up with a modified scaling model to predict the descent velocity of viscous rolling drops more accurately than what has previously been reported in the literature.
Puente, Diana W Moran; Baur, Peter
2011-07-01
Leaf wettability considerably defines the degree of retention of water and agrochemical sprays on crop and non-target plant surfaces. Plant surface structure varies with development therefore the goal was to characterise the wettability of soybean leaf surfaces as a function of growth stage (GS). Adaxial surfaces of leaves developed at GS 16 (BBCH) were 10 times more wettable with water than leaves at the lower canopy (GS 13). By measuring contact angles of a liquid having an intermediate surface tension on different leaf patches, an illustrative wetting profile was elucidated, showing to what degree wetting varies (from > 120° to < 20°) depending on leaf patch and GS. While the critical surface tension of leaf surfaces at different GSs did not correlate with the observed changes, the slope of the Zisman plot accurately represented the increase in wettability of leaves at the upper canopy and lateral shoots (GSs 17 to 19, 21 and 24). The discrimination given by the slopes was even better than that by water contact angles. SEM observations revealed that the low wettability observed at early GSs is mainly due to a dense layer of epicuticular wax crystals. The Zisman plot slope does not represent the changes in leaf roughness (i.e. epicuticular wax deposition), but provides an insight into chemical and compositional surface characteristics at the droplet-leaf interface. The results with different wettability measurement methods demonstrated that wetting is a feature that characterises each developmental stage of soybean leaves. Positional wettability differences among leaves at the same plant and within the same leaf are relevant for performance, selectivity and plant compatibility of agrochemicals. Implications are discussed. Copyright © 2011 Society of Chemical Industry.
Biocompatible Nb2O5 thin films prepared by means of the sol-gel process.
Velten, D; Eisenbarth, E; Schanne, N; Breme, J
2004-04-01
Thin biocompatible oxide films with an optimised composition and structure on the surface of titanium and its alloys can improve the implant integration. The preparation of these thin oxide layers with the intended improvement of the surface properties can be realised by means of the sol-gel process. Nb2O5 is a promising coating material for this application because of its extremely high corrosion resistance and thermodynamic stability. In this study, thin Nb2O5 layers ( < 200 nm) were prepared by spin coating of polished discs of cp-titanium with a sol consisting of a mixture of niobium ethoxide, butanol and acetylacetone. The thickness, phase composition, corrosion resistance and the wettability of the oxide layers were determined after an optimisation of the processing parameters for deposition of oxide without any organic impurities. The purity of the oxide layer is an important aspect in order to avoid a negative response to the cell adhesion. The biocompatibility of the oxide layers which was investigated by in vitro tests (morphology, proliferation rate, WST-1, cell spreading) is improved as compared to uncoated and TiO2 sol-gel coated cp-titanium concerning the spreading of cells, collagen I synthesis and wettability.
Effects of Engineered Wettability on the Efficiency of Dew Collection.
Gerasopoulos, Konstantinos; Luedeman, William L; Ölçeroglu, Emre; McCarthy, Matthew; Benkoski, Jason J
2018-01-31
Surface wettability plays an important role in dew collection. Nucleation is faster on hydrophilic surfaces, while droplets slide more readily on hydrophobic surfaces. Plants and animals in coastal desert environments appear to overcome this trade-off through biphilic surfaces with patterned wettability. In this study, we investigate the effects of millimeter-scale wettability patterns, mimicking those of the Stenocara beetle, on the rate of water collection from humid air. The rate of water collection per unit area is measured as a function of subcooling (ΔT = 1, 7, and 27 °C) and angle of inclination (from 10° to 90°). It is then compared for superbiphilic, hydrophilic, hydrophobic, and surperhydrophobic surfaces. For large subcooling, neither wettability nor tilt angle has a significant effect because the rate of condensation is so great. For 1 °C subcooling and large angles, hydrophilic surfaces perform best because condensation is the rate-limiting step. For low angles of inclination, superhydrophobic samples are best because droplet sliding is the rate-limiting step. Superbiphilic surfaces, in contrast to their superior fog collecting capabilities, generally collected dew at the slowest rate due to their inherent contact angle hysteresis. Theoretical considerations suggest that this finding may apply more generally to surfaces with patterned wettability.
Flake storage effects on properties of laboratory-made flakeboards
C. G. Carll
1998-01-01
Aspen (Populus gradidentata) and loblolly pine (Pinus taeda) flakes were prepared with tangential-grain and radial-grain faces on a laboratory disk flaker. These were gently dried in a steam-heated rotary drum dryer. Approximately 1 week after drying, surface wettability was measured on a large sample of flakes using an aqueous dye solution. Three replicate boards of...
Shen, Yang; Wang, Guixue; Huang, Xianliang; Zhang, Qin; Wu, Jiang; Tang, Chaojun; Yu, Qingsong; Liu, Xiaoheng
2012-01-01
Vascular endothelial cell (EC) adhesion and migration are essential processes in re-endothelialization of implanted biomaterials. There is no clear relationship and mechanism between EC adhesion and migration behaviour on surfaces with varying wettabilities. As model substrates, plasma SiOx:H nanocoatings with well-controlled surface wettability (with water contact angles in the range of 98.5 ± 2.3° to 26.3 ± 4.0°) were used in this study to investigate the effects of surface wettability on cell adhesion/migration and associated protein expressions in FAK-Rho GTPases signalling pathways. It was found that EC adhesion/migration showed opposite behaviour on the hydrophilic and hydrophobic surfaces (i.e. hydrophobic surfaces promoted EC migration but were anti-adhesions). The number of adherent ECs showed a maximum on hydrophilic surfaces, while cells adhered to hydrophobic surfaces exhibited a tendency for cell migration. The focal adhesion kinase (FAK) inhibitor targeting the Y-397 site of FAK could significantly inhibit cell adhesion/migration, suggesting that EC adhesion and migration on surfaces with different wettabilities involve (p)FAK and its downstream signalling pathways. Western blot results suggested that the FAK-Rho GTPases signalling pathways were correlative to EC migration on hydrophobic plasma SiOx:H surfaces, but uncertain to hydrophilic surfaces. This work demonstrated that surface wettability could induce cellular behaviours that were associated with different cellular signalling events. PMID:21715399
NASA Astrophysics Data System (ADS)
Leu, Tzong-Shyng; Huang, Hung-Ming; Huang, Ding-Jun
2016-06-01
In this paper, wettability gradient pattern is applied to condensation heat transfer on a copper tube surface. For this application, the vital issue is how to fabricate gradient patterns on a curve tube surface to accelerate the droplet collection efficiently. For this purpose, novel fabrication processes are developed to form wettability gradient patterns on a curve copper tube surface by using roller screen printing surface modification techniques. The roller screen printing surface modification techniques can easily realize wettability gradient surfaces with superhydrophobicity and superhydrophilicity on a copper tube surface. Experimental results show the droplet nucleation sites, movement and coalescence toward the collection areas can be effectively controlled which can assist in removing the condensation water from the surface. The effectiveness of droplet collection is appropriate for being applied to condensation heat transfer in the foreseeable future.
Fabrication of a wettability-gradient surface on copper by screen-printing techniques
NASA Astrophysics Data System (ADS)
Huang, Ding-Jun; Leu, Tzong-Shyng
2015-08-01
In this study, a screen-printing technique is utilized to fabricate a wettability-gradient surface on a copper substrate. The pattern definitions on the copper surface were freely fabricated to define the regions with different wettabilities, for which the printing definition technique was developed as an alternative to the existing costly photolithography techniques. This fabrication process using screen printing in tandem with chemical modification methods can easily realize an excellent wettability-gradient surface with superhydrophobicity and superhydrophilicity. Surface analyses were performed to characterize conditions in some fabrication steps. A water droplet movement sequence is provided to clearly demonstrate the droplet-driving effectiveness of the fabricated gradient surface. The droplet-driving efficiency offers a promising solution for condensation heat transfer applications in the foreseeable future.
NASA Astrophysics Data System (ADS)
Zhang, Hongrui; Yuan, Li; Liang, Guozheng; Gu, Aijuan
2014-11-01
Four hyperbranched polysiloxanes (HPSis) with different molecular weights and concentration ratios of double bonds to epoxy groups (1:6.5-1:0.7) were synthesized and characterized. Each HPSi was facilely grafted onto surfaces of Kevlar fibers (KFs) to develop novel modified fibers (HPSi-g-KFs). The structures and integrated properties of HPSi-g-KFs as well as the origin behind were systematically investigated. Results show that HPSi-g-KFs have much rougher surface morphologies, and their surface free energies are as high as about 1.7 times that of KFs, showing greatly improved wettability. Besides, HPSi-g-KFs have excellent UV resistance after 168 h UV irradiation, the retentions of tenacity, energy to break, modulus and break extension are as high as 92, 86, 95 and 96%, respectively, while those of KFs are 66-85%. In addition, compared with KFs, HPSi-g-KFs have higher tensile tenacity and energy to break with similar modulus and break extension, much better thermal stability and flame retardancy. The nature of HPSi has different influence on different property of fibers, the HPSi with smaller molecular weight and more epoxy groups is beneficial to prepare HPSi-g-KFs with better wettability, while that with larger molecular weight and more double bonds tends to prepare HPSi-g-KF with better flame retardancy and UV resistance.
Lin, Shiji; Zhao, Binyu; Zou, Song; Guo, Jianwei; Wei, Zheng; Chen, Longquan
2018-04-15
In this paper, we experimentally investigated the impact dynamics of different viscous droplets on solid surfaces with diverse wettabilities. We show that the outcome of an impinging droplet is dependent on the physical property of the droplet and the wettability of the surface. Whereas only deposition was observed on lyophilic surfaces, more impact phenomena were identified on lyophobic and superlyophobic surfaces. It was found that none of the existing theoretical models can well describe the maximum spreading factor, revealing the complexity of the droplet impact dynamics and suggesting that more factors need to be considered in the theory. By using the modified capillary-inertial time, which considers the effects of liquid viscosity and surface wettability on droplet spreading, a universal scaling law describing the spreading time was obtained. Finally, we analyzed the post-impact droplet oscillation with the theory for damped harmonic oscillators and interpreted the effects of liquid viscosity and surface wettability on the oscillation by simple scaling analyses. Copyright © 2017 Elsevier Inc. All rights reserved.
The effect of surface wettability on the performance of a piezoelectric membrane pump
NASA Astrophysics Data System (ADS)
Wang, Jiantao; Yang, Zhigang; Liu, Yong; Shen, Yanhu; Chen, Song; Yu, Jianqun
2018-04-01
In this paper, we studied the effect of surface wettability on the bubble tolerance of a piezoelectric membrane pump, by applying the super-hydrophilic or super-hydrophobic surface to the key elements on the pump. Wettability for the flow passage surface has a direct influence on the air bubbles flowing in the fluid. Based on the existing research results, we first analyzed the relationship between the flow passage surface of the piezoelectric pump and the bubbles in the fluid. Then we made three prototypes where pump chamber walls and valve plate surfaces were given different wettability treatments. After the output performance test, results demonstrate that giving super-hydrophilic treatment on the surface of key elements can improve the bubble tolerance of piezoelectric pump; in contrast, giving super-hydrophobic treatment will reduce the bubble tolerance.
Wettability and Contact Time on a Biomimetic Superhydrophobic Surface.
Liang, Yunhong; Peng, Jian; Li, Xiujuan; Huang, Jubin; Qiu, Rongxian; Zhang, Zhihui; Ren, Luquan
2017-03-02
Inspired by the array microstructure of natural superhydrophobic surfaces (lotus leaf and cicada wing), an array microstructure was successfully constructed by high speed wire electrical discharge machining (HS-WEDM) on the surfaces of a 7075 aluminum alloy without any chemical treatment. The artificial surfaces had a high apparent contact angle of 153° ± 1° with a contact angle hysteresis less than 5° and showed a good superhydrophobic property. Wettability, contact time, and the corresponding superhydrophobic mechanism of artificial superhydrophobic surface were investigated. The results indicated that the micro-scale array microstructure was an important factor for the superhydrophobic surface, while different array microstructures exhibited different effects on the wettability and contact time of the artificial superhydrophobic surface. The length ( L ), interval ( S ), and height ( H ) of the array microstructure are the main influential factors on the wettability and contact time. The order of importance of these factors is H > S > L for increasing the apparent contact angle and reducing the contact time. The method, using HS-WEDM to fabricate superhydrophobic surface, is simple, low-cost, and environmentally friendly and can easily control the wettability and contact time on the artificial surfaces by changing the array microstructure.
Wettability and Contact Time on a Biomimetic Superhydrophobic Surface
Liang, Yunhong; Peng, Jian; Li, Xiujuan; Huang, Jubin; Qiu, Rongxian; Zhang, Zhihui; Ren, Luquan
2017-01-01
Inspired by the array microstructure of natural superhydrophobic surfaces (lotus leaf and cicada wing), an array microstructure was successfully constructed by high speed wire electrical discharge machining (HS-WEDM) on the surfaces of a 7075 aluminum alloy without any chemical treatment. The artificial surfaces had a high apparent contact angle of 153° ± 1° with a contact angle hysteresis less than 5° and showed a good superhydrophobic property. Wettability, contact time, and the corresponding superhydrophobic mechanism of artificial superhydrophobic surface were investigated. The results indicated that the micro-scale array microstructure was an important factor for the superhydrophobic surface, while different array microstructures exhibited different effects on the wettability and contact time of the artificial superhydrophobic surface. The length (L), interval (S), and height (H) of the array microstructure are the main influential factors on the wettability and contact time. The order of importance of these factors is H > S > L for increasing the apparent contact angle and reducing the contact time. The method, using HS-WEDM to fabricate superhydrophobic surface, is simple, low-cost, and environmentally friendly and can easily control the wettability and contact time on the artificial surfaces by changing the array microstructure. PMID:28772613
Wettability of eutectic NaLiCO3 salt on magnesium oxide substrates at 778 K
NASA Astrophysics Data System (ADS)
Li, Chuan; Li, Qi; Cao, Hui; Leng, Guanghui; Li, Yongliang; Wang, Li; Zheng, Lifang; Ding, Yulong
2018-06-01
We investigated the wetting behavior of a eutectic carbonate salt of NaLiCO3 on MgO substrates at an elevated temperature of 778 K by measuring contact angle with a sessile drop method. Both sintered and non-sintered MgO were prepared and used as the substrates. The sintered substrates were obtained by sintering compacted MgO powders at 500-1300 °C. For comparison purposes, a single crystal MgO substrate was also used in the work. The different sintering temperatures provided MgO substrates with different structures, allowing their effects on salt penetration and hence wettability and surface energy to be investigated. A scanning electron microscope equipped with energy dispersive spectrometry and an atomic force microscope were used to observe the morphology and structures of the MgO substrates as well as the salt penetration. The results showed a good wettability of the carbonate salt on both the sintered and non-sintered MgO substrates and the wettability depended strongly on the structure of the substrates. The non-sintered MgO substrate has a loose surface particle packing with large pores and crevices, leading to significant salt infiltration, and the corresponding contact angle was measured to be ∼25°. The contact angle of the salt on the sintered MgO substrates increased with an increase in the sintering temperature of the MgO substrate, and the contact angle of the salt on the single crystal substrate was the highest at ∼40°. The effect of the sintering temperature for making the MgO substrate could be linked to the surface energy, and the linkage is validated by the AFM measurements of the adhesion forces of the MgO substrates.
Control of interfaces in Al-C fibre composites
NASA Technical Reports Server (NTRS)
Warrier, S. G.; Blue, C. A.; Lin, R. Y.
1993-01-01
The interface of Al-C fiber composite was modified by coating a silver layer on the surface of carbon fibres prior to making composites, in an attempt to improve the wettability between molten aluminum and carbon fibers during infiltration. An electroless plating technique was adopted and perfected to provide a homogeneous silver coating on the carbon fiber surface. Al-C fiber composites were prepared using a liquid infiltration technique in a vacuum. It was found that silver coating promoted the wetting between aluminum and carbon fibers, particularly with polyacrylonitrile-base carbon fibers. However, due to rapid dissolution of silver in molten aluminum, it was believed that the improved infiltration was not due to the wetting behavior between molten aluminum and silver. The cleaning of the fiber surface and the preservation of the cleaned carbon surface with silver coating was considered to be the prime reason for the improved wettability. Interfacial reactions between aluminum and carbon fibers were observed. Amorphous carbon was found to react more with aluminum than graphitic carbon. This is believed to be because of the inertness of the graphitic basal planes.
Distinct ice patterns on solid surfaces with various wettabilities
Liu, Jie; Zhu, Chongqin; Liu, Kai; Jiang, Ying; Song, Yanlin; Francisco, Joseph S.; Zeng, Xiao Cheng; Wang, Jianjun
2017-01-01
No relationship has been established between surface wettability and ice growth patterns, although ice often forms on top of solid surfaces. Here, we report experimental observations obtained using a process specially designed to avoid the influence of nucleation and describe the wettability-dependent ice morphology on solid surfaces under atmospheric conditions and the discovery of two growth modes of ice crystals: along-surface and off-surface growth modes. Using atomistic molecular dynamics simulation analysis, we show that these distinct ice growth phenomena are attributable to the presence (or absence) of bilayer ice on solid surfaces with different wettability; that is, the formation of bilayer ice on hydrophilic surface can dictate the along-surface growth mode due to the structural match between the bilayer hexagonal ice and the basal face of hexagonal ice (ice Ih), thereby promoting rapid growth of nonbasal faces along the hydrophilic surface. The dramatically different growth patterns of ice on solid surfaces are of crucial relevance to ice repellency surfaces. PMID:29073045
Distinct ice patterns on solid surfaces with various wettabilities.
Liu, Jie; Zhu, Chongqin; Liu, Kai; Jiang, Ying; Song, Yanlin; Francisco, Joseph S; Zeng, Xiao Cheng; Wang, Jianjun
2017-10-24
No relationship has been established between surface wettability and ice growth patterns, although ice often forms on top of solid surfaces. Here, we report experimental observations obtained using a process specially designed to avoid the influence of nucleation and describe the wettability-dependent ice morphology on solid surfaces under atmospheric conditions and the discovery of two growth modes of ice crystals: along-surface and off-surface growth modes. Using atomistic molecular dynamics simulation analysis, we show that these distinct ice growth phenomena are attributable to the presence (or absence) of bilayer ice on solid surfaces with different wettability; that is, the formation of bilayer ice on hydrophilic surface can dictate the along-surface growth mode due to the structural match between the bilayer hexagonal ice and the basal face of hexagonal ice (ice I h ), thereby promoting rapid growth of nonbasal faces along the hydrophilic surface. The dramatically different growth patterns of ice on solid surfaces are of crucial relevance to ice repellency surfaces. Published under the PNAS license.
[Surface modification of dental alumina ceramic with silica coating].
Xie, Hai-Feng; Zhang, Fei-Min; Wang, Xiao-Zu; Xia, Yang
2006-12-01
To make silica coating through sol-gel process, and to evaluate the wettability of dental alumina ceramic with or without coating. Silica coating was prepared with colloidal silica sol on In-Ceram alumina ceramic surface which had been treated with air particle abrasion. Coating gel after heat treatment was observed with atomic force microscope (AFM), and was analyzed by infrared spectrum (IR) with gel without sintered as control. Contact angles of oleic acid to be finished, sandblasted and coated ceramic surface of were measured. AFM pictures showed that some parts of nano-particles in coating gel conglomerated after heat treatment. It can be seen from the IR picture that bending vibration absorption kurtosis of Si-OH also vanished after heat treatment. Among contact angles of three treated surface, the ones on polished surface were the biggest (P = 0.000, P = 0.000), and sandblasting+silica coating surface the smallest (P = 0.000, P = 0.003). Silica coating can be made with sol-gel process successfully. Heat treatment may reinforce Si-O-Si net structure of coating gel. Wettability of dental alumina ceramic with silica coating is higher than with sandblasting and polishing.
Electrospinning onto Insulating Substrates by Controlling Surface Wettability and Humidity
NASA Astrophysics Data System (ADS)
Choi, WooSeok; Kim, Geon Hwee; Shin, Jung Hwal; Lim, Geunbae; An, Taechang
2017-11-01
We report a simple method for electrospinning polymers onto flexible, insulating substrates by controlling the wettability of the substrate surface. Water molecules were adsorbed onto the surface of a hydrophilic polymer substrate by increasing the local humidity around the substrate. The adsorbed water was used as the ground electrode for electrospinning. The electrospun fibers were deposited only onto hydrophilic areas of the substrate, allowing for patterning through wettability control. Direct writing of polymer fiber was also possible through near-field electrospinning onto a hydrophilic surface.
Creation of wettability contrast patterns on metallic surfaces via pen drawn masks
NASA Astrophysics Data System (ADS)
Choi, Won Tae; Yang, Xiaolong; Breedveld, Victor; Hess, Dennis W.
2017-12-01
Micropatterned surfaces with wettability contrast have attracted considerable attention due to potential applications in 2D microfluidics, bioassays, and water harvesting. A simple method to develop wettability contrast patterns on metallic surfaces by using a commercial marker is described. A marker-drawn ink pattern on a copper surface displays chemical resistance to an aqueous solution of sodium bicarbonate and ammonium persulfate, thereby enabling selective nanowire growth in areas where ink is absent. Subsequent ink removal by an organic solvent followed by fluorocarbon film deposition yields a stable hydrophobic/super-hydrophobic patterned copper surface. Using this approach, hydrophobic dot and line patterns were constructed. The adhesion force of water droplets to the dots was controlled by adjusting pattern size, thus enabling controlled droplet transfer between two surfaces. Anisotropy of water droplet adhesion to line patterns can serve as a basis for directional control of water droplet motion. This general approach has also been employed to generate wettability contrast on aluminum surfaces, thereby demonstrating versatility. Due to its simplicity, low cost, and virtual independence of solid surface material, ink marker pens can be employed to create wettability patterns for a variety of applications, in fields as diverse as biomedicine and energy.
Ramakrishnaiah, Ravikumar; Alkheraif, Abdulaziz A.; Divakar, Darshan Devang; Matinlinna, Jukka P.; Vallittu, Pekka K.
2016-01-01
The current laboratory study is evaluating the effect of hydrofluoric acid etching duration on the surface characteristics of five silica-based glass ceramics. Changes in the pore pattern, crystal structure, roughness, and wettability were compared and evaluated. Seventy-five rectangularly shaped specimens were cut from each material (IPS e-max™, Dentsply Celtra™, Vita Suprinity™, Vita mark II™, and Vita Suprinity FC™); the sectioned samples were finished, polished, and ultrasonically cleaned. Specimens were randomly assigned into study groups: control (no etching) and four experimental groups (20, 40, 80 and 160 s of etching). The etched surfaces’ microstructure including crystal structure, pore pattern, pore depth, and pore width was studied under a scanning electron microscope, and the surface roughness and wettability were analyzed using a non-contact surface profilometer and a contact angle measuring device, respectively. The results were statistically analyzed using one-way analysis of variance (ANOVA) and the post hoc Tukey’s test. The results showed a significant change in the pore number, pore pattern, crystal structure, surface roughness, and wettability with increased etching duration. Etching for a short time resulted in small pores, and etching for longer times resulted in wider, irregular grooves. A significant increase in the surface roughness and wettability was observed with an increase in the etching duration. The findings also suggested a strong association between the surface roughness and wettability. PMID:27240353
Surface free energy predominates in cell adhesion to hydroxyapatite through wettability.
Nakamura, Miho; Hori, Naoko; Ando, Hiroshi; Namba, Saki; Toyama, Takeshi; Nishimiya, Nobuyuki; Yamashita, Kimihiro
2016-05-01
The initial adhesion of cells to biomaterials is critical in the regulation of subsequent cell behaviors. The purpose of this study was to investigate a mechanism through which the surface wettability of biomaterials can be improved and determine the effects of biomaterial surface characteristics on cellular behaviors. We investigated the surface characteristics of various types of hydroxyapatite after sintering in different atmospheres and examined the effects of various surface characteristics on cell adhesion to study cell-biomaterial interactions. Sintering atmosphere affects the polarization capacity of hydroxyapatite by changing hydroxide ion content and grain size. Compared with hydroxyapatite sintered in air, hydroxyapatite sintered in saturated water vapor had a higher polarization capacity that increased surface free energy and improved wettability, which in turn accelerated cell adhesion. We determined the optimal conditions of hydroxyapatite polarization for the improvement of surface wettability and acceleration of cell adhesion. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Rodriguez-Contreras, Alejandra; Guadarrama Bello, Dainelys; Nanci, Antonio
2018-07-01
There has been much emphasis on the influence of crystallinity and wettability for modulating cell activity, particularly for bone biomaterials. In this context, we have generated titanium oxide layers with similar mesoporous topography and surface roughness but with amorphous or crystalline oxide layers and differential wettability. We then investigated their influence on the behavior of MC3T3 osteoblastic and bacterial cells. There was no difference in cell adhesion, spreading and growth on amorphous and crystalline surfaces. The number of focal adhesions was similar, however, cells on the amorphous surface exhibited a higher frequency of mature adhesions. The crystallinity of the surface layers also had no bearing on bacterial adhesion. While it cannot be excluded that surface crystallinity, roughness and wettability contribute to some degree to determining cell behavior, our data suggest that physical characteristics of surfaces represent the major determinant.
Bactericidal effects of plasma-modified surface chemistry of silicon nanograss
NASA Astrophysics Data System (ADS)
Ostrikov, Kola; Macgregor-Ramiasa, Melanie; Cavallaro, Alex; (Ken Ostrikov, Kostya; Vasilev, Krasimir
2016-08-01
The surface chemistry and topography of biomaterials regulate the adhesion and growth of microorganisms in ways that are still poorly understood. Silicon nanograss structures prepared via inductively coupled plasma etching were coated with plasma deposited nanometer-thin polymeric films to produce substrates with controlled topography and defined surface chemistry. The influence of surface properties on Staphylococcus aureus proliferation is demonstrated and explained in terms of nanograss substrate wetting behaviour. With the combination of the nanograss topography; hydrophilic plasma polymer coatings enhanced antimicrobial activity while hydrophobic coatings reduced it. This study advances the understanding of the effects of surface wettability on the bactericidal properties of reactive nano-engineered surfaces.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yue, Mengyao; Zhou, Baoming; Jiao, Kunyan
A switchable surface that promotes either hydrophobic or hydrophilic wettability of poly (L-lactide) (PLLA) microfibrous membranes is obtained by CF₄ microwave plasma treatment in this paper. The results indicated that both etching and grafting process occurred during the CF₄ plasma treatment and these two factors synergistically affected the final surface wettability of PLLA membranes. When plasma treatment was taken under a relatively low power, the surface wettability of PLLA membranes turned from hydrophobic to hydrophilic. Especially when CF₄ plasma treatment was taken under 100 W for 10 min and 150 W for 5 min, the water contact angle sharply decreasedmore » from 116 ± 3.0° to ~0°. According to Field-emission scanning electron microscopy (FESEM) results, the PLLA fibers were notably etched by CF₄ plasma treatment. Combined with the X-ray photoelectron spectroscopy (XPS) measurements, only a few fluorine-containing groups were grafted onto the surface, so the etching effect directly affected the surface wettability of PLLA membranes in low plasma power condition. However, with the plasma power increasing to 200 W, the PLLA membrane surface turned to hydrophobic again. In contrast, the morphology changes of PLLA fiber surfaces were not obvious while a large number of fluorine-containing groups grafted onto the surface. So the grafting effect gradually became the major factor for the final surface wettability.« less
NASA Astrophysics Data System (ADS)
Özen, İlhan; Şimşek, Süleyman; Okyay, Gamze
2015-03-01
In this study, a diatomite sample, which is a natural inorganic mineral with inherently high water and oil absorption capacity, was subjected to grinding before surface modification. Afterwards, the diatomite surface was modified via facile methods using a fluorocarbon (FC) chemical and stearic acid (SA) in addition to the sol-gel fluorosilanization (FS) process. The water and oil wettability, and oil absorbency properties of the unmodified and modified diatomites were investigated in addition to diatomite characterizations such as chemical content, surface area, particle size distribution, morphology, and modification efficiency. It was revealed that the wettability was changed completely depending on the surface modification agent and the media used, while the oil absorbency property surprisingly did not change. On the other hand, the oil absorbency was worsened by the grinding process, whereas the wettability was not affected.
Pool-Boiling Heat-Transfer Enhancement on Cylindrical Surfaces with Hybrid Wettable Patterns.
Kumar C S, Sujith; Chang, Yao Wen; Chen, Ping-Hei
2017-04-10
In this study, pool-boiling heat-transfer experiments were performed to investigate the effect of the number of interlines and the orientation of the hybrid wettable pattern. Hybrid wettable patterns were produced by coating superhydrophilic SiO2 on a masked, hydrophobic, cylindrical copper surface. Using de-ionized (DI) water as the working fluid, pool-boiling heat-transfer studies were conducted on the different surface-treated copper cylinders of a 25-mm diameter and a 40-mm length. The experimental results showed that the number of interlines and the orientation of the hybrid wettable pattern influenced the wall superheat and the HTC. By increasing the number of interlines, the HTC was enhanced when compared to the plain surface. Images obtained from the charge-coupled device (CCD) camera indicated that more bubbles formed on the interlines as compared to other parts. The hybrid wettable pattern with the lowermost section being hydrophobic gave the best heat-transfer coefficient (HTC). The experimental results indicated that the bubble dynamics of the surface is an important factor that determines the nucleate boiling.
The dynamics of the water droplet impacting onto hot solid surfaces at medium Weber numbers
NASA Astrophysics Data System (ADS)
Mitrakusuma, Windy H.; Kamal, Samsul; Indarto; Dyan Susila, M.; Hermawan; Deendarlianto
2017-10-01
The effects of the wettability of a droplet impacting onto a hot solid surface under medium Weber numbers were studied experimentally. The Weber numbers used in the present experiment were 52.1, 57.6, and 63.1. Three kinds of solid surfaces with different wettability were used. These were normal stainless steel (NSS), TiO2 coated NSS, and TiO2 coated NSS radiated with ultraviolet rays. The surface temperatures were varied from 60 to 200 °C. The image of side the view and 30° from horizontal were taken to explain the spreading and the interfacial behavior of a single droplet during impact the hot solid surfaces. It was found that under medium Weber numbers, the surface wettability plays an important role on the droplet spreading and evaporation time during the impact on the hot solid surfaces. The higher the wettability, the larger the droplet spreading on the hot surface, and the lower the evaporation time.
Fabrication and anisotropic wettability of titanium-coated microgrooves
NASA Astrophysics Data System (ADS)
Gui, N.; Xu, W.; Tian, J.; Rosengarten, G.; Brandt, M.; Qian, M.
2018-03-01
Surface wettability plays a critical role in a variety of key areas including orthopaedic implants and chemical engineering. Anisotropy in wettability can arise from surface grooves, which are of particular relevance to orthopaedic implants because they can mimic collagen fibrils that are the basic components of the extracellular matrix. Titanium (Ti) and its alloys have been widely used for orthopaedic and dental implant applications. This study is concerned with the fabrication of Ti-coated microgrooves with different groove widths and the characterisation of the anisotropy in wettability through measuring water contact angles, compared with both the Wenzel and Cassie models. Experimental results revealed that there existed significant anisotropy in the wettability of Ti-coated microgrooves, and the degree of anisotropy (Δθ) increased with an increasing groove width from 5 μm to 20 μm. On average, the contact angle measured parallel to the groove direction (θ//) was about 50°-60° smaller than that measured perpendicular to the groove direction (θ⊥). In general, the Wenzel model predicted the contact angles along the surface groove direction reasonably, and so did the Cassie model for the contact angles perpendicular to the groove direction. Osteoblast spreading was affected by the anisotropy in wettability, which occurred preferably along, rather than perpendicular to, the groove direction. These findings are informative for the design of Ti implant surfaces when anisotropy in wettability matters.
NASA Astrophysics Data System (ADS)
Chen, Jiaxuan; Chen, Wenyang; Xie, Yajing; Wang, Zhiguo; Qin, Jianbo
2017-02-01
Molecular dynamics (MD) is applied to research the wettability behaviors of different scale of water clusters absorbed on organic-polluted fused quartz (FQ) surface and different surface structures. The wettability of water clusters is studied under the effect of organic pollutant. With the combined influence of pillar height and interval, the stair-step Wenzel-Cassie transition critical line is obtained by analyzing stable state of water clusters on different surface structures. The results also show that when interval of pillars and the height of pillars keep constant respectively, the changing rules are exactly the opposite and these are termed as the "waterfall" rules. The substrate models of water clusters at Cassie-Baxter state which are at the vicinity of critical line are chosen to analyze the relationship of HI (refers to the pillar height/interval) ratio and scale of water cluster. The study has found that there is a critical changing threshold in the wettability changing process. When the HI ratio keeps constant, the wettability decreases first and then increase as the size of cluster increases; on the contrary, when the size of cluster keeps constant, the wettability decreases and then increase with the decrease of HI ratio, but when the size of water cluster is close to the threshold the HI ratio has little effect on the wettability.
Effects of surface wettability and liquid viscosity on the dynamic wetting of individual drops.
Chen, Longquan; Bonaccurso, Elmar
2014-08-01
In this paper, we experimentally investigated the dynamic spreading of liquid drops on solid surfaces. Drop of glycerol water mixtures and pure water that have comparable surface tensions (62.3-72.8 mN/m) but different viscosities (1.0-60.1 cP) were used. The size of the drops was 0.5-1.2 mm. Solid surfaces with different lyophilic and lyophobic coatings (equilibrium contact angle θ(eq) of 0°-112°) were used to study the effect of surface wettability. We show that surface wettability and liquid viscosity influence wetting dynamics and affect either the coefficient or the exponent of the power law that describes the growth of the wetting radius. In the early inertial wetting regime, the coefficient of the wetting power law increases with surface wettability but decreases with liquid viscosity. In contrast, the exponent of the power law does only depend on surface wettability as also reported in literature. It was further found that surface wettability does not affect the duration of inertial wetting, whereas the viscosity of the liquid does. For low viscosity liquids, the duration of inertial wetting corresponds to the time of capillary wave propagation, which can be determined by Lamb's drop oscillation model for inviscid liquids. For relatively high viscosity liquids, the inertial wetting time increases with liquid viscosity, which may due to the viscous damping of the surface capillary waves. Furthermore, we observed a viscous wetting regime only on surfaces with an equilibrium contact angle θ(eq) smaller than a critical angle θ(c) depending on viscosity. A scaling analysis based on Navier-Stokes equations is presented at the end, and the predicted θ(c) matches with experimental observations without any additional fitting parameters.
Effect of surface treatment on the corrosion properties of magnesium-based fibre metal laminate
NASA Astrophysics Data System (ADS)
Zhang, X.; Zhang, Y.; Ma, Q. Y.; Dai, Y.; Hu, F. P.; Wei, G. B.; Xu, T. C.; Zeng, Q. W.; Wang, S. Z.; Xie, W. D.
2017-02-01
The surface roughness, weight of phosphating film and wettability of magnesium alloy substrates after abrasion and phosphating treatment were investigated in this work. The interfacial bonding and corrosion properties of a magnesium-based fibre metal laminate (MgFML) were analysed. The results showed that the wettability of the magnesium alloy was greatly influenced by the surface roughness, and the rough surface possessed a larger surface energy and better wettability. The surface energy and wettability of the magnesium alloy were significantly improved by the phosphating treatment. After phosphating for 5 min, a phosphating film with a double-layer structure was formed on the magnesium substrate, and the weight of the phosphating film and the surface energy reached their maximum values. The surface energies of the phosphated substrate after abrasion with #120 and #3000 grit abrasive papers were 84.31 mJ/m2 and 83.65 mJ/m2, respectively. The wettability of the phosphated magnesium was significantly better than the abraded magnesium. The phosphated AZ31B sheet had a better corrosion resistance than the abraded AZ31B sheet within short times. The corrosion resistance of the magnesium alloy was greatly increased by being composited with glass fibre/epoxy prepregs.
Cao, Junhua; Liu, Yang; Ning, Xiao-Shan
2018-05-11
A successful application of a hot dip coating process that coats aluminum (Al) on aluminum nitride (AlN) ceramics, revealed that Al had a perfect wettability to the ceramics under specific circumstances, which was different from previous reports. In order to elucidate the mechanism that controlled the supernormal wetting phenomenon during the dip coating, a first-principle calculation of an Al(111)/AlN(0001) interface, based on the density functional theory (DFT), was employed. The wettability of the Al melt on the AlN(0001) surface, as well as the effect that the surface reconstruction of AlN and the oxygen adsorption had on Al for the adhesion and the wettability of the Al/AlN system, were studied. The results revealed that a LCM (laterally contracted monolayer) reconstruction could improve the adhesion and wettability of the system. Oxygen adsorption on the free surface of Al decreased the contact angle, because the adsorption reduced of the surface tension of Al. A prefect wetting was obtained only after some of the oxygen atoms adsorbed on the free surface of Al. The supernormal wetting phenomenon came from the surface reconstruction of the AlN and the adsorption of oxygen atoms on the Al melt surface.
NASA Astrophysics Data System (ADS)
Xiang, Jing; Wang, Chong; Chen, Yuanming; Wang, Shouxu; Hong, Yan; Zhang, Huaiwu; Gong, Lijun; He, Wei
2017-07-01
The wettability of the photo-resistive film (PF) surfaces undergoing different pretreatments including the O2sbnd CF4 low-pressure plasma (OCLP) and air plasma (AP), is investigated by water contact angle measurement instrument (WCAMI) before the bottom-up copper pillar plating. Chemical groups analysis performed by attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) and X-ray photoelectron spectra (XPS) shows that after the OCLP and wash treatment, the wettability of PF surface is attenuated, because embedded fluorine and decreased oxygen content both enhance hydrophobicity. Compared with OCLP treatment, the PF surface treatment by non-toxic air plasma displays features of Csbnd O, Osbnd Cdbnd O, Cdbnd O and sbnd NO2 by AIR-FTIR and XPS, and a promoted wettability by WCAM. Under the identical electroplating condition, the surface with a better wettability allows electrolyte to spontaneously soak all the places of vias, resulting in improved copper pillar uniformity. Statistical analysis of metallographic data shows that more coplanar and flat copper pillars are achieved with the PF treatment of air plasma. Such modified copper-pillar-plating technology meets the requirement of accurate impedance, the high density interconnection for IC substrates.
NASA Astrophysics Data System (ADS)
Gagliardi, S.; Rondino, F.; D'Erme, C.; Persia, F.; Menchini, F.; Santarelli, M. L.; Paulke, B.-R.; Enayati, A. L.; Falconieri, M.
2017-08-01
Addiction of ceramic nanoparticles to acrylic polymers provides a simple and effective means to produce paints with important properties, such as mechanical resistance and tailored wettability, even though for optimal performances, an engineered nanoparticle distribution would be desirable. In this paper we report on the realization and on the morphological and functional characterization of nanocomposites where the nanophase is distributed on the surface of acrylic polymer films, in order to enhance the expression of surface-related properties. To this aim, commercial titanium oxide and silicon oxide nanopowders were dispersed in water and the suspensions were air-sprayed on polymeric films prepared by paint brushing, thus producing a nanostructured ceramic surface coating. Control of the pH of suspensions and acrylic acid functionalization of the surface of titania were used together with high power ultrasonic treatments in order to control dimension of the aggregates in the sprayed suspensions. Optical microscopy, mechanical profilometry, and atomic force microscopy were used to characterize the nanocomposite surface morphology and correlate it to the coating functional properties, evaluated through mechanical abrasion tests and contact angle measurements; also, colorimetry on coated stones was performed in order to test the impact of the coatings on the aesthetical appearance and their photostability under UV irradiation. Results show that the nanostructured ceramic layer slightly improves the resistance of coatings to mechanical abrasion in case of polymer films prepared from latexes. The nanocomposite surface layer does not affect the wettability of the polymer, which remained slightly hydrophilic; this behavior is likely due to inadequate distribution of the nanophase. On the other hand UV-induced superhydrophilicity was observed when the concentration of surface titania nanoparticles is about 0.6 mg/cm2. Colorimetric analysis on historical and Carrara marbles before and after coating evidenced the good transparency of the nanocomposites. Accelerated aging tests permitted to demonstrate that, on the historical marbles, the presence of the nanoparticles has a protective action against UV-induced damage of the underlying polymer film, preventing photodegradation.
A Brief Note on the Magnetowetting of Magnetic Nanofluids on AAO Surfaces
Chien, Yu-Chin
2018-01-01
In magnetowetting, the material properties of liquid, surface morphology of solid, and applied external field are three major factors used to determine the wettability of a liquid droplet on a surface. For wetting measurements, an irregular or uneven surface could result in a significant experimental uncertainty. The periodic array with a hexagonal symmetry structure is an advantage of the anodic aluminum oxide (AAO) structure. This study presents the results of the wetting properties of magnetic nanofluid sessile droplets on surfaces of various AAO pore sizes under an applied external magnetic field. Stable, water-based magnetite nanofluids are prepared by combining the chemical co-precipitation with the sol-gel technique, and AAO surfaces are then generated by anodizing the aluminum sheet in the beginning. The influence of pore size and magnetic field gradient on the magnetowetting of magnetic nanofluids on AAO surfaces is then investigated by an optical test system. Experimental results show that increasing the processing voltage of AAO templates could result in enhanced non-wettability behavior; that is, the increase in AAO pore size could lead to the increase in contact angle. The contact angle could be reduced by the applied magnetic field gradient. In general, the magnetic field has a more significant effect at smaller AAO pore sizes. PMID:29461509
Shiraz, Hana; Peake, Simon J; Davey, Tim; Cameron, Neil R; Tabor, Rico F
2018-05-15
Film-forming polymer latex particles of diameter <300 nm can be prepared in the complete absence of surfactants, stabilised in part by silica nanoparticles through a Pickering type emulsion polymerisation. Control of the silica wettability through modulation of reaction pH or by reaction of the nanoparticles with a hydrophobic silane results in silica-covered latex particles. The oil-in-water polymerisation process used methyl methacrylate (MMA) and n-butyl acrylate (BA) as co-monomers, potassium persulphate (KPS) as an initiator and a commercially available colloidal nano-silica (Ludox®-TM40). It was found that pH control before polymerisation using methacrylic acid (MAA) facilitated the formation of armoured latexes, and mechanistic features of this process are discussed. An alternative, more robust protocol was developed whereby addition of vinyltriethoxysilane (VTES) to control wettability resulted in latexes completely armoured in colloidal nano-silica. The latexes were characterised using SEM, cryo-TEM and AFM imaging techniques. The mechanism behind the adsorption was investigated through surface pressure and contact angle measurements to understand the factors that influence this irreversible adsorption. Results indicate that nanoparticle attachment (but intriguingly not latex size) is dependent on particle wettability, providing new insight into the formation of nanoparticle-armoured latexes, along with opportunities for further development of diversely functionalized inorganic/organic polymer composite particles. Copyright © 2018 Elsevier Inc. All rights reserved.
Yue, Mengyao; Zhou, Baoming; Jiao, Kunyan; ...
2014-11-29
A switchable surface that promotes either hydrophobic or hydrophilic wettability of poly (L-lactide) (PLLA) microfibrous membranes is obtained by CF₄ microwave plasma treatment in this paper. The results indicated that both etching and grafting process occurred during the CF₄ plasma treatment and these two factors synergistically affected the final surface wettability of PLLA membranes. When plasma treatment was taken under a relatively low power, the surface wettability of PLLA membranes turned from hydrophobic to hydrophilic. Especially when CF₄ plasma treatment was taken under 100 W for 10 min and 150 W for 5 min, the water contact angle sharply decreasedmore » from 116 ± 3.0° to ~0°. According to Field-emission scanning electron microscopy (FESEM) results, the PLLA fibers were notably etched by CF₄ plasma treatment. Combined with the X-ray photoelectron spectroscopy (XPS) measurements, only a few fluorine-containing groups were grafted onto the surface, so the etching effect directly affected the surface wettability of PLLA membranes in low plasma power condition. However, with the plasma power increasing to 200 W, the PLLA membrane surface turned to hydrophobic again. In contrast, the morphology changes of PLLA fiber surfaces were not obvious while a large number of fluorine-containing groups grafted onto the surface. So the grafting effect gradually became the major factor for the final surface wettability.« less
A Review on the Wettability of Dental Implant Surfaces II: Biological and Clinical Aspects
Gittens, Rolando A.; Scheideler, Lutz; Rupp, Frank; Hyzy, Sharon L.; Geis-Gerstorfer, Jürgen; Schwartz, Zvi; Boyan, Barbara D.
2014-01-01
Dental and orthopaedic implants have been under continuous advancement to improve their interactions with bone and ensure a successful outcome for patients. Surface characteristics such as surface topography and surface chemistry can serve as design tools to enhance the biological response around the implant, with in vitro, in vivo and clinical studies confirming their effects. However, the comprehensive design of implants to promote early and long-term osseointegration requires a better understanding of the role of surface wettability and the mechanisms by which it affects the surrounding biological environment. This review provides a general overview of the available information about the contact angle values of experimental and of marketed implant surfaces, some of the techniques used to modify surface wettability of implants, and results from in vitro and clinical studies. We aim to expand the current understanding on the role of wettability of metallic implants at their interface with blood and the biological milieu, as well as with bacteria, and hard and soft tissues. PMID:24709541
NASA Astrophysics Data System (ADS)
Pei, Xiaoqiang; Cheng, Shaoheng; Ma, Yibo; Wu, Danfeng; Liu, Junsong; Wang, Qiliang; Yang, Yizhou; Li, Hongdong
2015-08-01
This paper reports the surface features and wettability properties of the (1 0 0)-textured freestanding chemical vapor deposited (CVD) diamond films after thermal exposure in air at high temperature. Thermal oxidation at proper conditions eliminates selectively nanodiamonds and non-diamond carbons in the films. The growth side of the films contains (1 0 0)-oriented micrometer-sized columns, while its nucleation side is formed of nano-sized tips. The examined wettability properties of the as-treated diamond films reveal a hydrophilicity and superhydrophilicity on the growth surface and nucleation surface, respectively, which is determined by oxygen termination and geometry structure of the surface. When the surface termination is hydrogenated, the wettability of nucleation side converted from superhydrophilicity to high hydrophobicity, while the hydrophilicity of the growth side does not change significantly. The findings open a possibility for realizing freestanding diamond films having not only novel surface structures but also multifunction applications, especially proposed on the selected growth side or nucleation side in one product.
NASA Astrophysics Data System (ADS)
Sakhaei, Zahra; Azin, Reza; Naghizadeh, Arefeh; Osfouri, Shahriar; Saboori, Rahmatollah; Vahdani, Hosein
2018-03-01
Condensate blockage phenomenon in near-wellbore region decreases gas production rate remarkably. Wettability alteration using fluorinated chemicals is an efficacious way to vanquish this problem. In this study, new synthesized fluorinated silica nanoparticles with an optimized condition and mean diameter of 50 nm is employed to modify carbonate rock surface wettability. Rock characterization tests consisting Field Emission Scanning Electron Microscopy (FE-SEM) and Energy Dispersive x-ray Spectroscopy (EDX) were utilized to assess the nanofluid adsorption on rock surface after treatment. Contact angle, spontaneous imbibition and core flooding experiments were performed to investigate the effect of synthesized nanofluid adsorption on wettability of rock surface and liquid mobility. Results of contact angle experiments revealed that wettability of rock could alter from strongly oil-wetting to the intermediate gas-wetting even at elevated temperature. Imbibition rates of oil and brine were diminished noticeably after treatment. 60% and 30% enhancement in pressure drop of condensate and brine floods after wettability alteration with modified nanofluid were observed which confirm successful field applicability of this chemical.
Influence of surface contamination on the wettability of heat transfer surfaces
Forrest, Eric Christopher; Schulze, Roland; Liu, Cheng; ...
2015-08-08
In this study, the wettability of heat transfer surfaces plays an important role in liquid–vapor phase change phenomena, including boiling incipience, the critical heat flux, the Leidenfrost transition, and condensation. The influence of adsorbed surface contamination at the nanoscale, though seldom considered, can have a profound impact on wetting behavior. This study quantitatively investigates the impact of contaminant layer thickness on wettability. Various cleaning treatments are explored on zirconium and 6061 aluminum to determine the effect on contaminant and oxide layer thickness. Angle-resolved X-ray photoelectron spectroscopy can be used to measure the thickness of oxide and contaminant layers, which ismore » then correlated to wettability by measuring the equilibrium contact angle. Results indicate that even after solvent cleaning, the contact angle of water on practical heat transfer surfaces is dominated by a hydrocarbon contaminant overlayer around five nanometers thick.« less
Influence of surface contamination on the wettability of heat transfer surfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Forrest, Eric Christopher; Schulze, Roland; Liu, Cheng
In this study, the wettability of heat transfer surfaces plays an important role in liquid–vapor phase change phenomena, including boiling incipience, the critical heat flux, the Leidenfrost transition, and condensation. The influence of adsorbed surface contamination at the nanoscale, though seldom considered, can have a profound impact on wetting behavior. This study quantitatively investigates the impact of contaminant layer thickness on wettability. Various cleaning treatments are explored on zirconium and 6061 aluminum to determine the effect on contaminant and oxide layer thickness. Angle-resolved X-ray photoelectron spectroscopy can be used to measure the thickness of oxide and contaminant layers, which ismore » then correlated to wettability by measuring the equilibrium contact angle. Results indicate that even after solvent cleaning, the contact angle of water on practical heat transfer surfaces is dominated by a hydrocarbon contaminant overlayer around five nanometers thick.« less
NASA Astrophysics Data System (ADS)
Park, Young-Sang; Son, Hyeong-Guk; Kim, Dae-Hoon; Oh, Hong-Gi; Lee, Da-Som; Kim, Min-Hye; Lim, Ki-Moo; Song, Kwang-Soup
2016-01-01
Nanocrystalline diamond (NCD) film surfaces were modified with fluorine or oxygen by plasma treatment in an O2 or C3F8 gas environment in order to induce wettability. The oxygenated-NCD (O-NCD) film surface was hydrophilic and the fluorinated-NCD (F-NCD) surface was hydrophobic. The efficiency of early cell adhesion, which is dependent on the wettability of the cell culture plate and necessary for the growth and proliferation of cells, was 89.62 ± 3.92% on the O-NCD film and 7.78 ± 0.77% on the F-NCD film surface after 3 h of cell culture. The wettability of the NCD film surface was artificially modified using a metal mask and plasma treatment to fabricate a micro-pattern. Four types of micro-patterns were fabricated (line, circle, mesh, and word) on the NCD film surface. We precisely arrayed the neuroblastoma cells on the micro-patterned NCD film surfaces by controlling the surface wettability and cell seeding density. The neuroblastoma cells adhered and proliferated along the O-NCD film surface.
NASA Astrophysics Data System (ADS)
Gao, Yuanji; Xia, Bing; Liu, Jie; Ding, Lisheng; Li, Bangjing; Zhou, Yan
2015-02-01
This study reported a smart, easy to apply, flexible and green strategy for obtaining a biomimic micro-nanostructures. 1-Mercapto-12-(p-nitrophenoxy) dodecane (MPND) and n-dodecanethiol were used to form low surface energy film on a silver mesodendritic structure coated zinc substrate. Scanning electron microscope (SEM) and X-ray photoelectron spectroscopy (XPS) were used to characterize surface morphology and mesocrystal structures. Noncovalently linked sodium nonanoyloxy benzene sulfonate (NOBS) was used to form "lipid-like bilayers" on the surface, making it possible for the surface to switch its surface wettability reversibly. The water contact angle (CA) on the constructed surface varies from 168 ± 2° (before processed by NOBS) to 55 ± 2° (after processed by NOBS). This phenomenon can be explained by the formation and disruption of "lipid-like bilayers" to affect the wettability of the surface. This work is of great scientific interests and may provide insights into the design of novel functional devices that are relevant to surface wettability, such as microfluidic devices and sensors.
Controlled droplet transport to target on a high adhesion surface with multi-gradients
Deng, Siyan; Shang, Weifeng; Feng, Shile; Zhu, Shiping; Xing, Yan; Li, Dan; Hou, Yongping; Zheng, Yongmei
2017-01-01
We introduce multi-gradients including Laplace pressure gradient, wettable gradient and wettable different gradient on a high adhesion surface via special wedge-pattern and improved anodic oxidation method. As a result of the cooperative effect mentioned above, controlled directional motion of a droplet on a high adhesion surface is realized, even when the surface is turned upside down. The droplet motion can be predicted and the movement distances can be controlled by simply adjusting the wedge angle and droplet volume. More interestingly, when Laplace pressure gradient is introduced on a V-shaped wettable gradient surface, two droplets can move toward one another as designed. PMID:28368020
Deng, Wanshun; Long, Mengying; Zhou, Qiannan; Wen, Ni; Deng, Wenli
2018-02-01
Superhydrophobic membranes with opposite wettability toward water and oil are able to separate water-in-oil emulsions. By constructing porous and hierarchal-structured superhydrophobic coating on filter paper, we hope a quick separation process could be achieved due to the acceleration of both demulsification and penetration process. Here, superhydrophobic coatings were prepared by simply spraying environmental and cost-effective acrylonitrile-butadiene-styrene copolymer (ABS) colloid in dichloromethane onto filter paper. The morphologies and wettability of the obtained coatings were carefully studied. Moreover, the separation performances in dealing with various surfactant-stabilized water-in-oil emulsions (SSWOE) were also investigated to verify our hypothesis. The morphologies of the ABS coatings varied with its weight concentration in dichloromethane and they changed from porous and plain surface into porous and hierarchal-structured surface. Besides, the hydrophobicity of the above coatings varied form hydrophobic to superhydrophobic. Moreover, the resulted superhydrophobic membranes show great separation capability in separating various span 80-stabilized water-in-oil emulsions with oil filtrate purities larger than 99.90% and huge penetration fluxes whose maximum is over 13,000L/(m 2 h). Thus, we envision that such membrane can be a practical candidate in dealing with water-in-oil emulsions to obtain pure oils. Copyright © 2017 Elsevier Inc. All rights reserved.
A combined bottom-up/top-down approach to prepare a sterile injectable nanosuspension.
Hu, Xi; Chen, Xi; Zhang, Ling; Lin, Xia; Zhang, Yu; Tang, Xing; Wang, Yanjiao
2014-09-10
To prepare a uniform nanosuspension of strongly hydrophobic riboflavin laurate (RFL) allowing sterile filtration, physical modification (bottom-up) was combined with high-pressure homogenization (top-down) method. Unlike other bottom-up approaches, physical modification with surfactants (TPGS and PL-100) by lyophilization controlled crystallization and compensated for the poor wettability of RFL. On one hand, crystal growth and aggregation during freezing was restricted by a stabilizer-layer adsorbed on the drug surface by hydrophobic interaction. On the other hand, subsequent crystallization of drug in the sublimation process was limited to the interstitial spaces between solvent crystals. After lyophilization, modified drug with a smaller particle size and better wettability was obtained. When adding surfactant solution, water molecules passed between the hydrophilic groups of surface active molecules and activated the polymer chains allowing them to stretch into water. The coarse suspension was crushed into a nanosuspension (MP=162 nm) by high-pressure homogenization. For long term stability, lyophilization was applied again to solidify the nanosuspension (sorbitol as cryoprotectant). A slight crystal growth to about 600 nm was obtained to allow slow release for a sustained effect after muscular administration. Moreover, no paw-licking responses and very slight muscular inflammation demonstrated the excellent biocompatibility of this long-acting RFL injection. Copyright © 2014 Elsevier B.V. All rights reserved.
Photoinduced underwater superoleophobicity of TiO2 thin films.
Sawai, Yusuke; Nishimoto, Shunsuke; Kameshima, Yoshikazu; Fujii, Eiji; Miyake, Michihiro
2013-06-11
The photoinduced wettabilities of water, n-hexadecane, dodecane, and n-heptane on a flat TiO2 surface prepared by a sol-gel method-based coating were investigated. An amphiphilic surface produced by UV irradiation exhibited underwater superoleophobicity with an extremely high static oil contact angle (CA) of over 160°. The TiO2 surface almost completely repelled the oil droplet in water. A robust TiO2 surface with no fragile nanomicrostructure was fabricated on a Ti mesh with a pore size of approximately 150 μm. The fabricated mesh was found to be applicable as an oil/water separation filter.
NASA Astrophysics Data System (ADS)
Ishii, Daisuke; Yamasaki, Hiroshi; Uozumi, Ryosuke; Hirose, Euichi
2016-10-01
The body surface of aquatic invertebrates is generally thought to be hydrophilic to prevent the attachment of air bubbles. In contrast, some interstitial invertebrates, such as kinorhynchs and some crustaceans, have a hydrophobic body surface: they are often trapped at the water surface when the sediment in which they reside is mixed with air and water. Here, we directly measured the wettability of the body surface of the kinorhynch Echinoderes komatsui, using a microscopic contact angle meter. The intact body surface of live specimens was not hydrophobic, but the anterior part was less hydrophilic. Furthermore, washing with seawater significantly decreased the wettability of the body surface, but a hydrophilic surface was recovered after a 1 h incubation in seawater. We believe that the hydrophobic cuticle of the kinorhynch has a hydrophilic coat that is readily exfoliated by disturbance. Ultrastructural observations supported the presence of a mucus-like coating on the cuticle. Regulation of wettability is crucial to survival in shallow, fluctuating habitats for microscopic organisms and may also contribute to expansion of the dispersal range of these animals.
NASA Astrophysics Data System (ADS)
El-Saftawy, A. A.; Ragheb, M. S.; Zakhary, S. G.
2018-06-01
In the present study, electron beam (EB) is utilized to tailor the surface structure and wetting behavior of ethylene-vinyl alcohol (EVOH) copolymer. The structural deformation is examined by x-ray diffractometer (XRD). The recorded patterns reveal the formation of disordered systems on the irradiated surface. Also, the surface crystallinity degree, crystallite size, and micro-strain are studied. The microstructure induced modifications of the irradiated samples are investigated by 1-dimensional proton nuclear magnetic resonance 1H NMR spectroscopic analysis. The recorded spectra showed that the hydroxyl group (O-H) absorption intensity, enhanced compared to that of methylene (-CH2) and methine (>C-H) groups. Likewise, the changes of the polymer surface chemistry are studied by Fourier transform infrared spectroscopy (FTIR) and showed that the surface polarity improved after irradiation. The contact angle method is used to prove the surface wettability improvements after irradiation. Additionally, the fucoidan-coated samples exhibit great enhancements in surface wettability and have a reduced recovery effect compared to the uncoated samples. The surface free energy and bonding adhesion are studied as well. The fucoidan-coated samples are found to have a larger adhesion strength than that of the EVOH samples (pristine and irradiated). Finally, surface morphology and roughness are traced by atomic force microscopy (AFM). The improvements in surface wettability and adhesion are attributed to the modified surface roughness and the increased surface polarity. To sum up, combining EB irradiation and fucoidan enhance the surface wettability of EVOH in a controlled way keeping the bulk properties unaffected.
NASA Astrophysics Data System (ADS)
Yen, Tsu-Hsu
2015-12-01
Solid-fluid boundary conditions are strongly influenced by a number of factors, including the intrinsic properties of the solid/fluid materials, surface roughness, wettability, and the presence of interfacial nanobubbles (INBs). The interconnected nature of these factors means that they should be considered jointly. This paper employs molecular dynamics (MD) simulation in a series of studies aimed at elucidating the influence of wettability in boundary behaviour and the accumulation of interfacial gas. Specifically, we examined the relationship between effective slip length, the morphology of nanobubbles, and wettability. Two methods were employed for the promotion of hydrophobicity between two structured substrates with similar intrinsic contact angles. We also compared anisotropic and isotropic atomic arrangements in the form of graphite and Si(100), respectively. A physical method was employed to deal with variations in surface roughness, whereas a chemical method was used to adjust the wall-fluid interaction energy (ɛwf). We first compared the characteristic properties of wettability, including contact angle and fluid density within the cavity. We then investigated the means by which variations in solid-fluid interfacial wettability affect interfacial gas molecules. Our results reveal that the morphology of INB on a patterned substrate is determined by wettability as well as the methods employed for the promotion of hydrophobicity. The present study also illustrates the means by which the multiple effects of the atomic arrangement of solids, surface roughness, wettability and INB influence effective slip length.
Zheng, Zhenhuan; Zhang, Ling; Kong, Lijun; Wang, Aijun; Gong, Yandao; Zhang, Xiufang
2009-05-01
In the present work, a series of composite films were produced from chitosan/poly-L-lysine blend solutions. The surface topography, chemistry, and wettability of composite films were characterized by atomic force microscopy (AFM), attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy, and contact angle assay, respectively. For all composite films, blending with poly-L-lysine induced changes in surface chemistry and wettability. Interestingly, it was also found that increasing poly-L-lysine weight fraction in blend solutions could result in different nanoscaled surface topographic features, which displayed particle-, granule-, or fiber-dominant morphologies. MC3T3-E1 osteoblast-like cells were cultured on all composite films to evaluate the effects of surface nanotopography, chemistry, and wettability on cell behavior. The observations indicated that MC3T3-E1 cell behavior was affected by surface topography, chemistry, and wettability simultaneously and that cells showed strong responses to surface topography. On fiber-dominant surface, cells fully spread with obvious cytoskeleton organization and exhibited significantly higher level of adhesion and proliferation compared with particle- or granule-dominant surfaces. Furthermore, fiber-dominant surface also induced greater expression of mature osteogenic marker osteocalcin and higher mineralization based on RT-PCR and von Kossa staining. The results suggest that topographic modification of chitosan substratum at the nanoscale may be exploited in regulating cell behavior for its applications in tissue engineering.
Exploring the Role of Habitat on the Wettability of Cicada Wings.
Oh, Junho; Dana, Catherine E; Hong, Sungmin; Román, Jessica K; Jo, Kyoo Dong; Hong, Je Won; Nguyen, Jonah; Cropek, Donald M; Alleyne, Marianne; Miljkovic, Nenad
2017-08-16
Evolutionary pressure has pushed many extant species to develop micro/nanostructures that can significantly affect wettability and enable functionalities such as droplet jumping, self-cleaning, antifogging, antimicrobial, and antireflectivity. In particular, significant effort is underway to understand the insect wing surface structure to establish rational design tools for the development of novel engineered materials. Most studies, however, have focused on superhydrophobic wings obtained from a single insect species, in particular, the Psaltoda claripennis cicada. Here, we investigate the relationship between the spatially dependent wing wettability, topology, and droplet jumping behavior of multiple cicada species and their habitat, lifecycle, and interspecies relatedness. We focus on cicada wings of four different species: Neotibicen pruinosus, N. tibicen, Megatibicen dorsatus, and Magicicada septendecim and take a comparative approach. Using spatially resolved microgoniometry, scanning electron microscopy, atomic force microscopy, and high speed optical microscopy, we show that within cicada species, the wettability of wings is spatially homogeneous across wing cells. All four species were shown to have truncated conical pillars with widely varying length scales ranging from 50 to 400 nm in height. Comparison of the wettability revealed three cicada species with wings that are superhydrophobic (>150°) with low contact angle hysteresis (<5°), resulting in stable droplet jumping behavior. The fourth, more distantly related species (Ma. septendecim) showed only moderate hydrophobic behavior, eliminating some of the beneficial surface functional aspects for this cicada. Correlation between cicada habitat and wing wettability yielded little connection as wetter, swampy environments do not necessarily equate to higher measured wing hydrophobicity. The results, however, do point to species relatedness and reproductive strategy as a closer proxy for predicting wettability and surface structure and resultant enhanced wing surface functionality. This work not only elucidates the differences between inter- and intraspecies cicada wing topology, wettability, and water shedding behavior but also enables the development of rational design tools for the manufacture of artificial surfaces for energy and water applications.
A numerical investigation of the effect of surface wettability on the boiling curve.
Hsu, Hua-Yi; Lin, Ming-Chieh; Popovic, Bridget; Lin, Chii-Ruey; Patankar, Neelesh A
2017-01-01
Surface wettability is recognized as playing an important role in pool boiling and the corresponding heat transfer curve. In this work, a systematic study of pool boiling heat transfer on smooth surfaces of varying wettability (contact angle range of 5° - 180°) has been conducted and reported. Based on numerical simulations, boiling curves are calculated and boiling dynamics in each regime are studied using a volume-of-fluid method with contact angle model. The calculated trends in critical heat flux and Leidenfrost point as functions of surface wettability are obtained and compared with prior experimental and theoretical predictions, giving good agreement. For the first time, the effect of contact angle on the complete boiling curve is shown. It is demonstrated that the simulation methodology can be used for studying pool boiling and related dynamics and providing more physical insights.
A numerical investigation of the effect of surface wettability on the boiling curve
Lin, Ming-Chieh; Popovic, Bridget; Lin, Chii-Ruey; Patankar, Neelesh A.
2017-01-01
Surface wettability is recognized as playing an important role in pool boiling and the corresponding heat transfer curve. In this work, a systematic study of pool boiling heat transfer on smooth surfaces of varying wettability (contact angle range of 5° − 180°) has been conducted and reported. Based on numerical simulations, boiling curves are calculated and boiling dynamics in each regime are studied using a volume-of-fluid method with contact angle model. The calculated trends in critical heat flux and Leidenfrost point as functions of surface wettability are obtained and compared with prior experimental and theoretical predictions, giving good agreement. For the first time, the effect of contact angle on the complete boiling curve is shown. It is demonstrated that the simulation methodology can be used for studying pool boiling and related dynamics and providing more physical insights. PMID:29125847
Impact of a complex fluid droplet on wettable and non wettable surfaces
NASA Astrophysics Data System (ADS)
Bolleddula, Daniel; Aliseda, Alberto
2008-11-01
The impact of liquid droplets is a phenomenon prevalent in many natural and industrial processes. Such events include rain drops, fuel injection, and ink-jet printing. To date, research in atomization and droplet impact has been focused on Newtonian fluids. In the coating of pharmaceutical tablets, the coating solutions contain polymers, surfactants, and large concentrations of insoluble solids in suspension which inherently exhibit non-Newtonian behavior. In this work, we will present ongoing droplet impact experiments using complex rheology fluids under a wide range of Weber and Ohnesorge numbers. Both hydrophilic and hydrophobic surfaces are been studied, and the effect of surface roughness has also been considered. We will describe the limits of bouncing, spreading, and splashing for these complex fluids. We will also discuss quantitative information such as spreading rates and contact angle measurements on wettable and non-wettable surfaces obtained from high speed images.
Reversible wettability of electron-beam deposited indium-tin-oxide driven by ns-UV irradiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Persano, Luana; Center for Biomolecular Nanotechnologies UNILE, Istituto Italiano di Tecnologia, Via Barsanti, I-73010 Arnesano-LE; Del Carro, Pompilio
2012-04-09
Indium tin oxide (ITO) is one of the most widely used semiconductor oxides in the field of organic optoelectronics, especially for the realization of anode contacts. Here the authors report on the control of the wettability properties of ITO films deposited by reactive electron beam deposition and irradiated by means of nanosecond-pulsed UV irradiation. The enhancement of the surface water wettability, with a reduction of the water contact angle larger than 50 deg., is achieved by few tens of seconds of irradiation. The analyzed photo-induced wettability change is fully reversible in agreement with a surface-defect model, and it can bemore » exploited to realize optically transparent, conductive surfaces with controllable wetting properties for sensors and microfluidic circuits.« less
Surface wettability enhancement of silicone hydrogel lenses by processing with polar plastic molds.
Lai, Y C; Friends, G D
1997-06-05
In the quest for hydrogel contact lenses with improved extended wear capability, the use of siloxane moieties in the lens materials was investigated. However, the introduction of hydrophobic siloxane groups gave rise to wettability and lipidlike deposit problems. It was found that when polysiloxane-based compositions for hydrogels were processed with polar plastic molds, such as those fabricated from an acrylonitrile-based polymer, the hydrogel lenses fabricated were wettable, with minimized lipidlike deposits. These findings were supported by the wettability of silicone hydrogel films, silicon, and nitrogen element contents near lens surfaces, as well as the results from clinical assessment of silicone hydrogel lenses.
Facile fabrication of super-hydrophobic nano-needle arrays via breath figures method.
Kim, Jiseok; Lew, Brian; Kim, Woo Soo
2011-12-06
Super-hydrophobic surfaces which have been fabricated by various methods such as photolithography, chemical treatment, self-assembly, and imprinting have gained enormous attention in recent years. Especially 2D arrays of nano-needles have been shown to have super-hydrophobicity due to their sharp surface roughness. These arrays can be easily generated by removing the top portion of the honeycomb films prepared by the breath figures method. The hydrophilic block of an amphiphilic polymer helps in the fabrication of the nano-needle arrays through the production of well-ordered honeycomb films and good adhesion of the film to a substrate. Anisotropic patterns with water wettability difference can be useful for patterning cells and other materials using their selective growth on the hydrophilic part of the pattern. However, there has not been a simple way to generate patterns with highly different wettability. Mechanical stamping of the nano-needle array with a polyurethane stamp might be the simplest way to fabricate patterns with wettability difference. In this study, super-hydrophobic nano-needle arrays were simply fabricated by removing the top portion of the honeycomb films. The maximum water contact angle obtained with the nano-needle array was 150°. By controlling the pore size and the density of the honeycomb films, the height, width, and density of nano-needle arrays were determined. Anisotropic patterns with different wettability were fabricated by simply pressing the nano-needle array at ambient temperature with polyurethane stamps which were flexible but tough. Mechanical stamping of nano-needle arrays with micron patterns produced hierarchical super-hydrophobic structures.PACS: 05.70.Np, 68.55.am, 68.55.jm.
Facile fabrication of super-hydrophobic nano-needle arrays via breath figures method
2011-01-01
Super-hydrophobic surfaces which have been fabricated by various methods such as photolithography, chemical treatment, self-assembly, and imprinting have gained enormous attention in recent years. Especially 2D arrays of nano-needles have been shown to have super-hydrophobicity due to their sharp surface roughness. These arrays can be easily generated by removing the top portion of the honeycomb films prepared by the breath figures method. The hydrophilic block of an amphiphilic polymer helps in the fabrication of the nano-needle arrays through the production of well-ordered honeycomb films and good adhesion of the film to a substrate. Anisotropic patterns with water wettability difference can be useful for patterning cells and other materials using their selective growth on the hydrophilic part of the pattern. However, there has not been a simple way to generate patterns with highly different wettability. Mechanical stamping of the nano-needle array with a polyurethane stamp might be the simplest way to fabricate patterns with wettability difference. In this study, super-hydrophobic nano-needle arrays were simply fabricated by removing the top portion of the honeycomb films. The maximum water contact angle obtained with the nano-needle array was 150°. By controlling the pore size and the density of the honeycomb films, the height, width, and density of nano-needle arrays were determined. Anisotropic patterns with different wettability were fabricated by simply pressing the nano-needle array at ambient temperature with polyurethane stamps which were flexible but tough. Mechanical stamping of nano-needle arrays with micron patterns produced hierarchical super-hydrophobic structures. PACS: 05.70.Np, 68.55.am, 68.55.jm PMID:22145673
Kocaağaoğlu, Hasan; Manav, Taha; Albayrak, Haydar
2017-04-01
When fracture of an all-ceramic restoration occurs, it can be necessary to repair without removing the restoration. Although there are many studies about the repair of metal-ceramic restorations, there are few about all-ceramic restorations. The aim of this study was to evaluate the shear bond strength between ceramic repair systems and esthetic core materials and to evaluate the wettability of all-ceramic core materials. Disk-like specimens (N = 90) made of three dental ceramic infrastructure materials (zirconia ceramic, alumina ceramic, glass ceramic) were polished with silicon carbide paper, prepared for bonding (abrasion with 30 μm diamond rotary cutting instrument). Thirty specimens of each infrastructure were obtained. Each infrastructure group was divided into three subgroups; they were bonded using 3 repair systems: Bisco Intraoral Repair Kit, Cimara & Cimara Zircon Repair System, and Clearfil Repair System. After 1200 thermocycles, shear bond strength was measured in a universal testing machine at a 0.5 mm/min crosshead speed. In addition, the contact angle values of the infrastructures after surface treatments were examined for wettability. Data were analyzed by using ANOVA and Tukey post hoc tests. Although there were no significant differences among the repair systems (p > 0.05) in the glass ceramic and zirconia groups, a significant difference was found among the repair systems in alumina infrastructure (p < 0.001). There were no statistically significant differences among the infrastructures (p > 0.05); however, a statistically significant difference was found among the repair systems (p < 0.05). No difference was found among the infrastructures and repair systems in terms of contact angle values. Cimara & Cimara Zircon Repair System had higher bond strength values than the other repair systems. Although no difference was found among the infrastructures and repair systems, contact wettability angle was decreased by surface treatments compared with polished surfaces. © 2015 by the American College of Prosthodontists.
Antibacterial properties of Ag-doped hydroxyapatite layers prepared by PLD method
NASA Astrophysics Data System (ADS)
Jelínek, Miroslav; Kocourek, Tomáš; Jurek, Karel; Remsa, Jan; Mikšovský, Jan; Weiserová, Marie; Strnad, Jakub; Luxbacher, Thomas
2010-12-01
Thin hydroxyapatite (HA), silver-doped HA and silver layers were prepared using a pulsed laser deposition method. Doped layers were ablated from silver/HA targets. Amorphous and crystalline films of silver concentrations of 0.06 at.%, 1.2 at.%, 4.4 at.%, 8.3 at.% and 13.7 at.% were synthesized. Topology was studied using scanning electron microscopy and atomic force microscopy. Contact angle and zeta potential measurements were conducted to determine the wettability, surface free energy and electric surface properties. In vivo measurement (using Escherichia coli cells) of antibacterial properties of the HA, silver-doped HA and silver layers was carried out. The best antibacterial results were achieved for silver-doped HA layers of silver concentration higher than 1.2 at.%.
Shahrousvand, Mohsen; Mir Mohamad Sadeghi, Gity; Salimi, Ali
2016-12-01
The cells as a tissue component need to viscoelastic, biocompatible, biodegradable, and wettable extracellular matrix for their biological activity. In this study, in order to prepare biomedical polyurethane elastomers with good mechanical behavior and biodegradability, a series of novel polyester-polyether- based polyurethanes (PUs) were synthesized using a two-step bulk reaction by melting pre-polymer method, taking 1,4-Butanediol (BDO) as chain extender, hexamethylene diisocyanate as the hard segment, and poly (tetramethylene ether) glycol (PTMEG) and poly (ε-caprolactone diol) (PCL-Diol) as the soft segment without a catalyst. The soft to the hard segment ratio was kept constant in all samples. Polyurethane characteristics such as thermal and mechanical properties, wettability and water adsorption, biodegradability, and cellular behavior were changed by changing the ratio of polyether diol to polyester diol composition in the soft segment. Our present work provides a new procedure for the preparation of engineered polyurethanes in surface properties and biodegradability, which could be a good candidate for bone, cartilage, and skin tissue engineering.
Cover-gas seal program. Test report - sodium dip-seal wetting study. [at 450/sup 0/F
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carnevali, R.
1977-10-20
This report documents the tests conducted to find a reliable surface preparation method of treating the CRBRP dip seal blade (SA508 Class 2 steel) to insure its sodium wettability at 450F or less. Two techniques were established which depressed the sodium wetting temperature of SA 508, Class 2 dip seal blade material to 375F. These techniques were depositing an approx. 60 x 10/sup -6/ inch layer of tin on the blade surface by a brush-on plating process, and, by cleaning the blade surface with ultrasonics while it is immersed in sodium. The tin plating technique is recommended as the initialmore » and primary surface preparation method and ultrasonics as a rewetting and backup technique. This work was conducted in support of the Sodium Dip Seal Feature Test, DRS 32.05.« less
NASA Astrophysics Data System (ADS)
Schneider, Ling; Laustsen, Milan; Mandsberg, Nikolaj; Taboryski, Rafael
2016-02-01
We discuss the influence of surface structure, namely the height and opening angles of nano- and microcones on the surface wettability. We show experimental evidence that the opening angle of the cones is the critical parameter on sample superhydrophobicity, namely static contact angles and roll-off angles. The textured surfaces are fabricated on silicon wafers by using a simple one-step method of reactive ion etching at different processing time and gas flow rates. By using hydrophobic coating or hydrophilic surface treatment, we are able to switch the surface wettability from superhydrophilic to superhydrophobic without altering surface structures. In addition, we show examples of polymer replicas (polypropylene and poly(methyl methacrylate) with different wettability, fabricated by injection moulding using templates of the silicon cone-structures.
How a Nanodroplet Diffuses on Smooth Surfaces
NASA Astrophysics Data System (ADS)
Li, Chu; Huang, Jizu; Li, Zhigang
2016-11-01
In this study, we investigate how nanodroplets diffuse on smooth surfaces through molecular dynamics (MD) simulations and theoretical analyses. The simulations results show that the surface diffusion of nanodroplet is different from that of single molecules and solid nanoparticles. The dependence of nanodroplet diffusion coefficient on temperature is surface wettability dependent, which undergoes a transition from linear to nonlinear as the surface wettability is weakened due to the coupling of temperature and surface energy. We also develop a simple relation for the diffusion coefficient by using the contact angle and contact radius of the droplet. It works well for different surface wettabilities and sized nanodroplets, as confirmed by MD simulations. This work was supported by the Research Grants Council of the Hong Kong Special Administrative Region under Grant No. 615312.
The tunable wettability in multistimuli-responsive smart graphene surfaces
NASA Astrophysics Data System (ADS)
Wan, Shanhong; Pu, Jibin; Zhang, Xiaoqian; Wang, Liping; Xue, Qunji
2013-01-01
The tunable wettability of smart graphene films onto stainless steel substrates with a multi-response to different environmental stimuli has been investigated including light irradiation, pH, electric field, and annealing temperature. Conductive graphene film exhibited the controllable transition from water-repellent to water-loving characteristic in response to different environment fields, which primarily resulted from the morpho-chemically synergistic effect as well as the restoration of electronic stucture. Based on the fundamental theories of wettability, mechanisms in switching from hydrophobicity to hydrophilicity for smart graphene surface including thermal chemistry, electrostatic, photo-induced surface chemistry, solvent, and pH methods were presented.
Directional transport of droplets on wettability patterns at high temperature
NASA Astrophysics Data System (ADS)
Huang, Shuai; Yin, Shaohui; Chen, Fengjun; Luo, Hu; Tang, Qingchun; Song, Jinlong
2018-01-01
Directional transport of liquid has attracted increasing interest owing to its potential of application in lab-on-a-chip, microfluidic devices and thermal management technologies. Although numerous strategies have been developed to achieve directional transport of liquid at low temperature, controlling the directional transport of liquid at high temperature remains to be a challenging issue. In this work, we reported a novel strategy in which different parts of droplet contacted with surface with different wettability patterns, resulting in a discrepant evaporative vapor film to achieve the directional transport of liquid. The experimental results showed that the state of the liquid on wettability patterned surface gradually changed from contact boiling to Leidenfrost state with the increase of substrate temperature Ts, and liquid on superhydrophilic surface was in composite state of contact boiling and Leidenfrost when Ts was higher than 200 °C. Inspired by the different evaporation states of droplet on the wettability boundary, controlling preferential motion of droplets was observed at high temperature. By designing a surface with wettability pattern on which superhydrophobic region and superhydrophilic region are alternately arranged, a controlled directional transport of droplet can be achieved at high temperature.
Superhydrophobic Natural and Artificial Surfaces-A Structural Approach.
Avrămescu, Roxana-Elena; Ghica, Mihaela Violeta; Dinu-Pîrvu, Cristina; Prisada, Răzvan; Popa, Lăcrămioara
2018-05-22
Since ancient times humans observed animal and plants features and tried to adapt them according to their own needs. Biomimetics represents the foundation of many inventions from various fields: From transportation devices (helicopter, airplane, submarine) and flying techniques, to sports' wear industry (swimming suits, scuba diving gear, Velcro closure system), bullet proof vests made from Kevlar etc. It is true that nature provides numerous noteworthy models (shark skin, spider web, lotus leaves), referring both to the plant and animal kingdom. This review paper summarizes a few of "nature's interventions" in human evolution, regarding understanding of surface wettability and development of innovative special surfaces. Empirical models are described in order to reveal the science behind special wettable surfaces (superhydrophobic /superhydrophilic). Materials and methods used in order to artificially obtain special wettable surfaces are described in correlation with plants' and animals' unique features. Emphasis is placed on joining superhydrophobic and superhydrophilic surfaces, with important applications in cell culturing, microorganism isolation/separation and molecule screening techniques. Bio-inspired wettability is presented as a constitutive part of traditional devices/systems, intended to improve their characteristics and extend performances.
Poortavasoly, Hajar; Montazer, Majid; Harifi, Tina
2016-01-01
This research concerned the simultaneous polyester surface modification and synthesis of zinc oxide nano-reactors to develop durable photo-bio-active fabric with variable hydrophobicity/hydrophilicity under sunlight. For this purpose, triethanolamine (TEA) was applied as a stabilizer and pH adjusting chemical for the aminolysis of polyester surface and enhancing the surface reactivity along with synthesis and deposition of ZnO nanoparticles on the fabric. Therefore, TEA played a crucial role in providing the alkaline condition for the preparation of zinc oxide nanoparticles and acting as stabilizer controlling the size of the prepared nanoparticles. The stain-photodegradability regarded as self-cleaning efficiency, wettability and weight change under the process was optimized based on zinc acetate and TEA concentrations, using central composite design (CCD). Findings also suggested the potential of the prepared fabric in inhibiting Staphylococcus aureus and Escherichia coli bacteria growth with greater than 99.99% antibacterial efficiency. Besides, the proposed treatment had no detrimental effect on tensile strength and hand feeling of the polyester fabric. Copyright © 2015 Elsevier B.V. All rights reserved.
Chen, Cong; Zhang, Ning; Li, Weizhong; Song, Yongchen
2015-12-15
Functional groups on silica surfaces under CO2 sequestration conditions are complex due to reactions among supercritical CO2, brine and silica. Molecular dynamics simulations have been performed to investigate the effects of hydroxyl functional groups on wettability. It has been found that wettability shows a strong dependence on functional groups on silica surfaces: silanol number density, space distribution, and deprotonation/protonation degree. For neutral silica surfaces with crystalline structure (Q(3), Q(3)/Q(4), Q(4)), as silanol number density decreases, contact angle increases from 33.5° to 146.7° at 10.5 MPa and 318 K. When Q(3) surface changes to an amorphous structure, water contact angle increases 20°. Water contact angle decreases about 12° when 9% of silanol groups on Q(3) surface are deprotonated. When the deprotonation degree increases to 50%, water contact angle decreases to 0. The dependence of wettability on silica surface functional groups was used to analyze contact angle measurement ambiguity in literature. The composition of silica surfaces is complicated under CO2 sequestration conditions, the results found in this study may help to better understand wettability of CO2/brine/silica system.
Titanium Surface Chemical Composition Interferes in the Pseudomonas aeruginosa Biofilm Formation.
Nunes Filho, Antonio; Aires, Michelle de Medeiros; Braz, Danilo Cavalcante; Hinrichs, Ruth; Macedo, Alexandre José; Alves, Clodomiro
2018-02-01
Bacterial adhesion on three different surfaces: untreated Ti, plasma nitriding, and plasma carbonitriding Ti substrates were investigated. The samples were placed in bacterial cultures of Pseudomonas aeruginosa to assess biofilm formation. The correlation between the amount of bacteria attached to the surface after a lapse of time with nanotopography and physicochemical properties was performed. TiN showed the highest capacity to avoid bacterial adhesion, while presenting intermediate roughness and wettability. Although the surface of TiCN had the highest surface roughness and low contact angle (high wettability), bacterial adhesion was intermediate on this sample. Untreated Ti, even though presenting a smooth surface and low wettability, had the highest tendency to form biofilms. © 2018 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Yuan, Haojie; Zhang, Shouchun; Lu, Chunxiang
2014-10-01
Interests on carbon fiber-reinforced thermoplastic composites are growing rapidly, but the challenges with poor interfacial adhesion have slowed their adoption. In this work, a polyether sulfone (PES) emulsion sizing was prepared successfully for increased interfacial adhesion of carbon fiber/PES composites. To obtain a high-quality PES emulsion sizing, the key factor, emulsifier concentration, was studied by dynamic light scattering technique. The results demonstrated that the suitable weight ratio of PES to emulsifier was 8:3, and the resulting PES emulsion sizing had an average particle diameter of 117 nm and Zeta potential of -52.6 mV. After sizing, the surface oxygen-containing functional groups, free energy and wettability of carbon fibers increased significantly, which were advantageous to promote molecular-level contact between carbon fiber and PES. Finally, short beam shear tests were performed to evaluate the interfacial adhesion of carbon fiber/PES composites. The results indicated that PES emulsion sizing played a critical role for the enhanced interfacial adhesion in carbon fiber/PES composites, and a 26% increase of interlaminar shear strength was achieved, because of the improved fiber surface wettability and interfacial compatibility between carbon fiber and PES.
Effects of Surface Wettability on the Porosity and Wickability of Frost
NASA Astrophysics Data System (ADS)
Witt, Katherine; Ahmadi, Farzad; Boreyko, Jonathan
2017-11-01
The wicking of liquids through porous media has been studied for many materials, but never for frost, despite its implications for arctic oil spills and oil-infused surfaces. Here, we characterize silicone oils wicking up frost sheets. A layer of frost was grown on aluminum plates of varying surface wettability: superhydrophilic, hydrophilic, hydrophobic, and superhydrophobic. Once the desired frost thickness was grown, a humidity chamber was used to maintain the frost at the dew point and the bottom of the plate was dipped in a reservoir of fluorescent silicone oil. For all surfaces, the wicking rate of the oil increased with increasing wettability. For the wetting surfaces, this is manifested in the length vs. time data following the classical Washburn equation, exhibiting a power slope of about 1/2 and resulting in a larger effective pore radius with increasing wettability. However, we observed that on the non-wetting surfaces, the discrete distribution of the frosted dew droplets resulted in a new scaling law with a slope much less than 1/2, especially for the superhydrophobic surface which promoted jumping-droplet condensation. This research shows that the wicking of oil up a layer of frost can give insight into the morphology of frost. Conversely, if the underlying wettability of a frost sheet can be controlled, the spread of oil can be widely tuned. This work was supported by a Virginia Space Grant Consortium Undergraduate Research Scholarship (PMPTX7EP).
Hao, Lijing; Fu, Xiaoling; Li, Tianjie; Zhao, Naru; Shi, Xuetao; Cui, Fuzhai; Du, Chang; Wang, Yingjun
2016-12-01
Self-assembled monolayers (SAMs) of alkanethiols on gold are highly controllable model substrates and have been employed to mimic the extracellular matrix for cell-related studies. This study aims to systematically explore how surface chemistry influences the adhesion, morphology, proliferation and osteogenic differentiation of mouse mesenchymal stem cells (mMSCs) using various functional groups (-OEG, -CH 3 , -PO 3 H 2 , -OH, -NH 2 and -COOH). Surface analysis demonstrated that these functional groups produced a wide range of wettability and charge: -OEG (hydrophilic and moderate iso-electric point (IEP)), -CH 3 (strongly hydrophobic and low IEP), -PO 3 H 2 (moderate wettability and low IEP), -OH (hydrophilic and moderate IEP), -NH 2 (moderate wettability and high IEP) and -COOH (hydrophilic and low IEP). In terms of cell responses, the effect of wettability may be more influential than charge for these groups. Moreover, compared to -OEG and -CH 3 groups, -PO 3 H 2 , -OH, -NH 2 and -COOH functionalities tended to promote not only cell adhesion, proliferation and osteogenic differentiation but also the expression of α v and β 1 integrins. This finding indicates that the surface chemistry may guide mMSC activities through α v and β 1 integrin signaling pathways. Model surfaces with controllable chemistry may provide insight into biological responses to substrate surfaces that would be useful for the design of biomaterial surfaces. Copyright © 2016 Elsevier B.V. All rights reserved.
Contact Lenses Wettability In Vitro: Effect of Surface-Active Ingredients
Lin, Meng C.; Svitova, Tatyana F.
2010-01-01
Purpose To investigate the release of surface-active agents (surfactants) from unworn soft contact lenses and their influence on the lens surface wettability in vitro. Methods Surface tension (ST) of blister pack solutions was measured by pendant-drop technique. STs at the air-aqueous interface and contact angles (CAs) of four conventional and seven silicone hydrogel (SiH) soft contact lenses (SCLs) were evaluated in a dynamic-cycling regime using a modified captive-bubble tensiometer-goniometer. Measurements were performed immediately after removal from blister packs, and after soaking in a glass vial filled with a surfactant-free solution, which was replaced daily for one week. Lens surface wettability was expressed as adhesion energy (AE) according to Young’s equation. Results STs of all blister pack solutions were lower than the reference ST of pure water (72.5 mN/m), indicating the presence of surfactants. When lenses were depleted of surfactants by soaking, the STs of all studied lenses and advancing CAs of selected lenses increased (p < 0.001). Receding CAs of all studied lenses were 12° ± 5° and were not affected by the presence of surfactants. For most of the conventional lenses, the surface wettability was largely dependent on surfactants, and reduced significantly after surfactant depletion. In contrast, most SiH lenses exhibited stable and self-sustained surface wettability in vitro. Conclusions The manufacturer-added surfactants affected wetting properties of all studied SCLs, although to different degrees. PMID:20400924
NASA Astrophysics Data System (ADS)
Sucipto, T.; Hartono, R.; Dwianto, W.
2018-02-01
The aim of this study was to determine the wettability of the inner part of oil palm trunk (OPT), the outer part of OPT, OPT that densified 50%, Shorea sp. and Paraserianthes falcataria wood, as raw material for laminated beams. The wettability of the wood was measured by using cosine-contact angle (CCA) method, which is measuring the angle between dripped resin liquid and the wood surface. The resins that used in this study is phenol formaldehyde (PF) and urea formaldehyde (UF). The results showed that the Shorea sp. and P. falcataria woods have the smallest contact angle or the best wettability properties than OPT. Shorea sp. has the best wettability on PF resin (83.00°), while P. falcataria on UF resin (90.89°), this is due to the levels of starch and extractive substances in Shorea sp. and P. falcataria wood are smaller than OPT. Furthermore, Shorea sp. and P. falcataria wood surfaces are flatter and smoother than OPT, so that the resin will flow easier and wetting the wood surface. In this condition, the liquid resin will flow easier and formed a smaller contact angle. The good wettability of wood will enhance the adhesion properties of laminated beams.
Li, Jing; Guo, Yingyu
2017-04-01
Herein, the present work devoted to study the basic capacity of nanoporous silica nanoparticles in being drug carrier that covered structure, wettability and hemolysis so as to provide crucial evaluation. Typical nanoporous silica nanoparticles that consist of nanoporous silica nanoparticles (NSN), amino modified nanoporous silica nanoparticles (amino-NSN), carboxyl modified nanoporous silica nanoparticles (carboxyl-NSN) and hierachical nanoporous silica nanoparticles (hierachical-NSN) were studied. The results showed that their wettability and hemolysis were closely related to structure and surface modification. Basically, wettability became stronger as the amount of OH on the surface of NSN was higher. Both large nanopores and surface modification can reduce the wettability of NSN. Furthermore, NSN series were safe to be used when they circulated into the blood in low concentration, while if high concentration can not be avoided during administration, high porosity or amino modification of NSN were safer to be considered. It is believed that the basic evaluation of NSN can make contribution in providing scientific instruction for designing drug loaded NSN systems. Copyright © 2016 Elsevier B.V. All rights reserved.
Seo, Donghyun; Lee, Junghun; Lee, Choongyeop; Nam, Youngsuk
2016-01-01
The efficient water harvesting from air-laden moisture has been a subject of great interest to address world-wide water shortage issues. Recently, it has been shown that tailoring surface wettability can enhance the moisture harvesting performance. However, depending on the harvesting condition, a different conclusion has often been reported and it remains unclear what type of surface wettability would be desirable for the efficient water harvesting under the given condition. Here we compare the water harvesting performance of the surfaces with various wettability under two different harvesting conditions–dewing and fogging, and show that the different harvesting efficiency of each surface under these two conditions can be understood by considering the relative importance of the water capturing and removal efficiency of the surface. At fogging, the moisture harvesting performance is determined by the water removal efficiency of the surface with the oil-infused surfaces exhibiting the best performance. Meanwhile, at dewing, both the water capturing and removal efficiency are crucial to the harvesting performance. And well-wetting surfaces with a lower barrier to nucleation of condensates exhibit a better harvesting performance due to the increasing importance of the water capture efficiency over the water removal efficiency at dewing. PMID:27063149
Zhou, Gang; Xu, Cuicui; Cheng, Weimin; Zhang, Qi; Nie, Wen
2015-01-01
To investigate the difference of surface oxygen element and oxygen-containing functional groups among coal dusts with different metamorphic degrees and their influence on surface wettability, a series of X-ray photoelectron spectroscopy experiments on 6 coal samples are carried out. The result demonstrates that the O/C ratio of coal surface shows an overall increasing trend compared with the result of its elements analysis. As the metamorphic degree increases, the O/C ratio on the surface gradually declines and the hydrophilic groups tend to fall off from coal surface. It could be found that different coals show different surface distributions of carboxyl and hydroxyl which are considered as the greatest promoter to the wettability of coal surface. With the change of metamorphic degree, the distribution of ether group is irregular while the carbonyl distribution keeps stable. In general, as the metamorphic degree goes higher, the content of oxygen-containing polar group tends to reduce. According to the measurement results, the contact angle is negatively related to the content of oxygen element, surface oxygen, and polar groups. In addition, compared with surface oxygen content, the content of oxygen-containing polar group serves as a more reasonable indicator of coal dust wettability. PMID:26257980
Highly transparent, flexible, and thermally stable superhydrophobic ORMOSIL aerogel thin films.
Budunoglu, Hulya; Yildirim, Adem; Guler, Mustafa O; Bayindir, Mehmet
2011-02-01
We report preparation of highly transparent, flexible, and thermally stable superhydrophobic organically modified silica (ORMOSIL) aerogel thin films from colloidal dispersions at ambient conditions. The prepared dispersions are suitable for large area processing with ease of coating and being directly applicable without requiring any pre- or post-treatment on a variety of surfaces including glass, wood, and plastics. ORMOSIL films exhibit and retain superhydrophobic behavior up to 500 °C and even on bent flexible substrates. The surface of the films can be converted from superhydrophobic (contact angle of 179.9°) to superhydrophilic (contact angle of <5°) by calcination at high temperatures. The wettability of the coatings can be changed by tuning the calcination temperature and duration. The prepared films also exhibit low refractive index and high porosity making them suitable as multifunctional coatings for many application fields including solar cells, flexible electronics, and lab on papers.
Holm, René; Borkenfelt, Simon; Allesø, Morten; Andersen, Jens Enevold Thaulov; Beato, Stefania; Holm, Per
2016-02-10
Compounds wettability is critical for a number of central processes including disintegration, dispersion, solubilisation and dissolution. It is therefore an important optimisation parameter both in drug discovery but also as guidance for formulation selection and optimisation. Wettability for a compound is determined by its contact angle to a liquid, which in the present study was measured using the sessile drop method applied to a disc compact of the compound. Precise determination of the contact angle is important should it be used to either rank compounds or selected excipients to e.g. increase the wetting from a solid dosage form. Since surface roughness of the compact has been suggested to influence the measurement this study investigated if the surface quality, in terms of surface porosity, had an influence on the measured contact angle. A correlation to surface porosity was observed, however for six out of seven compounds similar results were obtained by applying a standard pressure (866 MPa) to the discs in their preparation. The data presented in the present work therefore suggest that a constant high pressure should be sufficient for most compounds when determining the contact angle. Only for special cases where compounds have poor compressibility would there be a need for a surface-quality-control step before the contact angle determination. Copyright © 2015 Elsevier B.V. All rights reserved.
[Application of plasma sprayed zirconia coating in dental implant: study in implant].
Huang, Z F; Wang, Z F; Li, C H; Hao, D; Lan, J
2018-04-09
Objective: To investigate the osseointegration of a novel coating-plasma-sprayed zirconia in dental implant. Methods: Zirconia coating on non-thread titanium implant was prepared using plasma spraying, the implant surface morphology, surface roughness and wettability were measured. In vivo , zirconia coated implants were inserted in rabbit tibia and animals were respectively sacrificed at 2, 4, 8 and 12 weeks after implantation. The bond strength between implant and bone was measured by push-out test. The osseointegration was observed by scanning electron microscopy (SEM), micro CT and histological analyses. Quantified parameters including removal torque, and bone-implant contact (BIC) percentage were calculated. Results: The surface roughness (1.6 µm) and wettability (54.6°) of zirconia coated implant was more suitable than those of titanium implant (0.6 µm and 74.4°) for osseointegration. At 12 weeks, the push-out value of zirconia coated implant and titanium implant were (64.9±3.0) and (50.4±2.9) N, and BIC value of these two groups were (54.7±3.6)% and (41.5±3.6)%. All these differences had statistical significance. Conclusions: The surface characters of zirconia coated implant were more suitable for osseointegration and present better osseointegration than smooth titanium implant in vivo , especially at early stage.
NASA Astrophysics Data System (ADS)
Wu, M. L.; Ren, C. Z.; Xu, H. Z.; Zhou, C. L.
2018-05-01
The material removal processes generate interesting surface topographies, unfortunately, that was usually considered to be surface defects. To date, little attention has been devoted to the positive applications of these interesting surface defects resulted from laser ablation to improve C/SiC surface wettability. In this study, the formation mechanism behind surface defects (residual particles) is discussed first. The results showed that the residual particles with various diameters experienced regeneration and migration, causing them to accumulate repeatedly. The effective accumulation of these residual particles with various diameters provides a new method about fabricating bionic microstructures for surface wetting control. The negligible influence of ablation processes on the chemical component of the subsurface was studied by comparing the C-O-Si weight percentage at the C/SiC subsurface. A group of microstructures were fabricated under different laser trace and different laser parameters. Surface wettability experimental results for different types of microstructures were compared. The results showed that the surface wettability increased as the laser scanning speed decreased. The surface wettability increased with the density of the laser scanning trace. We also demonstrated the application of optimized combination of laser parameters and laser trace to simulate a lotus leaf's microstructure on C/SiC surfaces. The parameter selection depends on the specific material properties.
Wettability control of micropore-array films by altering the surface nanostructures.
Chang, Chi-Jung; Hung, Shao-Tsu
2010-07-01
By controlling the surface nanostructure, the wettability of films with similar pore-array microstructure can be tuned from hydrophilic to nearly superhydrophobic without variation of the chemical composition. PA1 pore-array film consisting of the horizontal ZnO nanosheets was nearly superhydrophobic. PA2 pore-array film consisting of growth-hindered vertically-aligned ZnO nanorods was hydrophilic. The influences of the nanostructure shape, orientation and the micropore size on the contact angle of the PA1 films were studied. This study provides a new approach to control the wettability of films with similar pore-array structure at the micro-scale by changing their surface nanostructure. PA1 films exhibited irradiation induced reversible wettability transition. The feasibility of creating a wetted radial pattern by selective UV irradiation of PA1 film through a mask with radial pattern and water vapor condensation was also evaluated.
NASA Astrophysics Data System (ADS)
Xiang, Meisu; Jiang, Meihuizi; Zhang, Yanzong; Liu, Yan; Shen, Fei; Yang, Gang; He, Yan; Wang, Lilin; Zhang, Xiaohong; Deng, Shihuai
2018-03-01
A novel superhydrophobic and superoleophilic surface was fabricated by one-step electrodeposition on stainless steel meshes, and the durability and oil/water separation properties were assessed. Field emission scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), fourier transform infrared spectroscopy (FT-IR) and optical contact angle measurements were used to characterize surface morphologies, chemical compositions, and wettabilities, respectively. The results indicated that the as-prepared mesh preformed excellent superhydrophobicity and superoleophilicity with a high water contact angle (WCA) of 162 ± 1° and oil contact angle of (OCA) 0°. Meanwhile, the as-prepared mesh also exhibited continuous separation capacity of many kinds of oil/water mixtures, and the separation efficiency for lubrication oil/water mixture was about 98.6%. In addition, after 10 separation cycles, the as-prepared mesh possessed the WCAs of 155 ± 2°, the OCAs of 0° and the separation efficiency of 97.8% for lubrication oil/water mixtures. The as-prepared mesh also retained superhydrophobic and superoleophilic properties after abrading, immersing in salt solutions and different pH solutions.
Lv, Tong; Cheng, Zhongjun; Zhang, Dongjie; Zhang, Enshuang; Zhao, Qianlong; Liu, Yuyan; Jiang, Lei
2016-09-21
Recently, superhydrophobic surfaces with tunable wettability have aroused much attention. Noticeably, almost all present smart performances rely on the variation of surface chemistry on static micro/nanostructure, to obtain a surface with dynamically tunable micro/nanostructure, especially that can memorize and keep different micro/nanostructures and related wettabilities, is still a challenge. Herein, by creating micro/nanostructured arrays on shape memory polymer, a superhydrophobic surface that has shape memory ability in changing and recovering its hierarchical structures and related wettabilities was reported. Meanwhile, the surface was successfully used in the rewritable functional chip for droplet storage by designing microstructure-dependent patterns, which breaks through current research that structure patterns cannot be reprogrammed. This article advances a superhydrophobic surface with shape memory hierarchical structure and the application in rewritable functional chip, which could start some fresh ideas for the development of smart superhydrophobic surface.
Surface modification of polylactic acid films by atmospheric pressure plasma treatment
NASA Astrophysics Data System (ADS)
Kudryavtseva, V. L.; Zhuravlev, M. V.; Tverdokhlebov, S. I.
2017-09-01
A new approach for the modification of polylactic acid (PLA) materials using atmospheric pressure plasma (APP) is described. PLA films plasma exposure time was 20, 60, 120 s. The surface morphology and wettability of the obtained PLA films were investigated by atomic force microscopy (AFM) and the sitting drop method. The atmospheric pressure plasma increased the roughness and surface energy of PLA film. The wettability of PLA has been improved with the application of an atmospheric plasma surface treatment. It was shown that it is possible to obtain PLA films with various surface relief and tunable wettability. Additionally, we demonstrated that the use of cold atmospheric pressure plasma for surface activation allows for the immobilization of bioactive compounds like hyaluronic acid (HA) on the surface of obtained films. It was shown that composite PLA-HA films have an increased long-term hydrophilicity of the films surface.
Polymeric surfaces exhibiting photocatalytic activity and controlled anisotropic wettability
NASA Astrophysics Data System (ADS)
Anastasiadis, Spiros H.; Frysali, Melani A.; Papoutsakis, Lampros; Kenanakis, George; Stratakis, Emmanuel; Vamvakaki, Maria; Mountrichas, Grigoris; Pispas, Stergios
2015-03-01
In this work we focus on surfaces, which exhibit controlled, switchable wettability in response to one or more external stimuli as well as photocatalytic activity. For this we are inspired from nature to produce surfaces with a dual-scale hierarchical roughness and combine them with the appropriate inorganic and/or polymer coating. The combination of the hierarchical surface with a ZnO coating and a pH- or temperature-responsive polymer results in efficient photo-active properties as well as reversible superhydrophobic / superhydrophilic surfaces. Furthermore, we fabricate surfaces with unidirectional wettability variation. Overall, such complex surfaces require advanced design, combining hierarchically structured surfaces with suitable polymeric materials. Acknowledgment: This research was partially supported by the European Union (European Social Fund, ESF) and Greek national funds through the ``ARISTEIA II'' Action (SMART-SURF) of the Operational Programme ``Education and Lifelong Learning,'' NSRF 2007-2013, via the General Secretariat for Research & Technology, Ministry of Education and Religious Affairs, Greece.
Superhydrophobic Natural and Artificial Surfaces—A Structural Approach
Avrămescu, Roxana-Elena; Ghica, Mihaela Violeta; Dinu-Pîrvu, Cristina; Prisada, Răzvan; Popa, Lăcrămioara
2018-01-01
Since ancient times humans observed animal and plants features and tried to adapt them according to their own needs. Biomimetics represents the foundation of many inventions from various fields: From transportation devices (helicopter, airplane, submarine) and flying techniques, to sports’ wear industry (swimming suits, scuba diving gear, Velcro closure system), bullet proof vests made from Kevlar etc. It is true that nature provides numerous noteworthy models (shark skin, spider web, lotus leaves), referring both to the plant and animal kingdom. This review paper summarizes a few of “nature’s interventions” in human evolution, regarding understanding of surface wettability and development of innovative special surfaces. Empirical models are described in order to reveal the science behind special wettable surfaces (superhydrophobic /superhydrophilic). Materials and methods used in order to artificially obtain special wettable surfaces are described in correlation with plants’ and animals’ unique features. Emphasis is placed on joining superhydrophobic and superhydrophilic surfaces, with important applications in cell culturing, microorganism isolation/separation and molecule screening techniques. Bio-inspired wettability is presented as a constitutive part of traditional devices/systems, intended to improve their characteristics and extend performances. PMID:29789488
Fabrication of superhydrophobic polyaniline films with rapidly switchable wettability
NASA Astrophysics Data System (ADS)
Zhou, Xiaoyan; Zhang, Zhaozhu; Men, Xuehu; Yang, Jin; Xu, Xianghui; Zhu, Xiaotao; Xue, Qunji
2011-10-01
A superhydrophobic polyaniline (PANI) film has been fabricated by using a facile one-step spraying method. The PANI was synthesized via in situ doping polymerization in the presence of perfluorooctanoic acid (PFOA) as the dopant. The water contact angle of this superhydrophobic surface reaches to 156°. Both the surface chemical compositions and morphological structures were analyzed. A granular morphology of PANI with a moderate amount of nanofibers was obtained. Moreover, a rapid surface wettability transition between superhydrophobicity and superhydrophilicity can be observed when it is doped with PFOA and de-doped with base. The mechanism for this tunable wettability has been discussed in detail.
NASA Astrophysics Data System (ADS)
Shan, Chao; Yong, Jiale; Yang, Qing; Chen, Feng; Huo, Jinglan; Zhuang, Jian; Jiang, Zhuangde; Hou, Xun
2018-04-01
Controlling the underwater bubble wettability on a solid surface is of great research significance. In this letter, a simple method to achieve reversible switch between underwater superaerophilicity and underwater superaerophobicity on a superhydrophobic nanowire-haired mesh by alternately vacuumizing treatment in water and drying in air is reported. Such reversible switch endows the as-prepared mesh with many functional applications in controlling bubble's behavior on a solid substrate. The underwater superaerophilic mesh is able to absorb/capture bubbles in water, while the superaerophobic mesh has great anti-bubble ability. The reversible switch between underwater superaerophilicity and superaerophobicity can selectively allow bubbles to go through the resultant mesh; that is, bubbles can pass through the underwater superaerophilic mesh while are fully intercepted by the underwater superaerophobic mesh in a water medium. We believe these meshes will have important applications in removing or capturing underwater bubbles/gas.
Tuning and predicting the wetting of nanoengineered material surface
NASA Astrophysics Data System (ADS)
Ramiasa-MacGregor, M.; Mierczynska, A.; Sedev, R.; Vasilev, K.
2016-02-01
The wetting of a material can be tuned by changing the roughness on its surface. Recent advances in the field of nanotechnology open exciting opportunities to control macroscopic wetting behaviour. Yet, the benchmark theories used to describe the wettability of macroscopically rough surfaces fail to fully describe the wetting behaviour of systems with topographical features at the nanoscale. To shed light on the events occurring at the nanoscale we have utilised model gradient substrata where surface nanotopography was tailored in a controlled and robust manner. The intrinsic wettability of the coatings was varied from hydrophilic to hydrophobic. The measured water contact angle could not be described by the classical theories. We developed an empirical model that effectively captures the experimental data, and further enables us to predict the wetting of surfaces with nanoscale roughness by considering the physical and chemical properties of the material. The fundamental insights presented here are important for the rational design of advanced materials having tailored surface nanotopography with predictable wettability.The wetting of a material can be tuned by changing the roughness on its surface. Recent advances in the field of nanotechnology open exciting opportunities to control macroscopic wetting behaviour. Yet, the benchmark theories used to describe the wettability of macroscopically rough surfaces fail to fully describe the wetting behaviour of systems with topographical features at the nanoscale. To shed light on the events occurring at the nanoscale we have utilised model gradient substrata where surface nanotopography was tailored in a controlled and robust manner. The intrinsic wettability of the coatings was varied from hydrophilic to hydrophobic. The measured water contact angle could not be described by the classical theories. We developed an empirical model that effectively captures the experimental data, and further enables us to predict the wetting of surfaces with nanoscale roughness by considering the physical and chemical properties of the material. The fundamental insights presented here are important for the rational design of advanced materials having tailored surface nanotopography with predictable wettability. Electronic supplementary information (ESI) available: Detailed characterization of the nanorough substrates and model derivation. See DOI: 10.1039/c5nr08329j
Preparation of hierarchical porous Zn-salt particles and their superhydrophobic performance
NASA Astrophysics Data System (ADS)
Gao, Dahai; Jia, Mengqiu
2015-12-01
Superhydrophobic surfaces arranged by hierarchical porous particles were prepared using modified hydrothermal routes under the effect of sodium citrate. Two particle samples were generated in the medium of hexamethylenetetramine (P1) and urea (P2), respectively. X-ray diffraction, scanning electron microscope, and transmission electron microscope were adopted for the investigation, and results revealed that the P1 and P2 particles are porous microspheres with crosslinked extremely thin (10-30 nm) sheet crystals composed of Zn5(OH)8Ac2·2H2O and Zn5(CO3)2(OH)6, respectively. The prepared particles were treated with a fluoroethylene vinyl ether derivative and studied using Fourier transform infrared spectroscopy and energy-dispersive X-ray spectrometer. Results showed that the hierarchical surfaces of these particles were combined with low-wettable fluorocarbon layers. Moreover, the fabricated surface composed of the prepared hierarchical particles displayed considerably high contact angles, indicating great superhydrophobicity for the products. The wetting behavior of the particles was analyzed with a theoretical wetting model in comparison with that of chestnut-like ZnO products obtained through a conventional hydrothermal route. Correspondingly, this study provided evidence that high roughness surface plays a great role in superhydrophobic behavior.
NASA Astrophysics Data System (ADS)
Zong, Diyuan; Yang, Zhen; Duan, Yuanyuan
2017-10-01
Wetting kinetics of water droplets on substrates with lyophilic nanopillars was investigated using molecular dynamics simulations. Early spreading of the droplet is hindered by the nanopillars because of the penetration of the liquid which induce an extra dissipation in the droplet. Droplet spreading is mainly controlled by liquid viscosity and surface tension and not dependent on solid wettability. Propagation of the fringe film is hindered by the enhanced solid wettability because of the energy barrier introduced by the interaction between water molecules and nanopillars which increase with solid wettability.
Drop splashing: the role of surface wettability and liquid viscosity
NASA Astrophysics Data System (ADS)
Almohammadi, Hamed; Amirfazli, Alidad; -Team
2017-11-01
There are seemingly contradictory results in the literature about the role of surface wettability and drop viscosity for the splashing behavior of a drop impacting onto a surface. Motivated by such issues, we conducted a systematic experimental study where splashing behavior for a wide range of the liquid viscosity (1-100 cSt) and surface wettability (hydrophilic to hydrophobic) are examined. The experiments were performed for the liquids with both low and high surface tensions ( 20 and 72 mN/m). We found that the wettability affects the splashing threshold at high or low contact angle values. At the same drop velocity, an increase of the viscosity (up to 4 cSt) promotes the splashing; while, beyond such value, any increase in viscosity shows the opposite effect. It is also found that at a particular combination of liquid surface tension and viscosity (e.g. silicone oil, 10 cSt), an increase in the drop velocity changes the splashing to spreading. We relate such behaviors to the thickness, shape, and the velocity of the drop's lamella. Finally, to predict the splashing, we developed an empirical correlation which covers all of the previous reported data, hence clarifying the ostensible existing contradictions.
Revilla, Pedro; Fernández, Victoria; Álvarez-Iglesias, Lorena; Medina, Eva T; Cavero, José
2016-10-01
In this study we evaluated the leaf surface properties of maize populations native to different water availability environments. Leaf surface topography, wettability and gas exchange performance of five maize populations from the Sahara desert, dry (south) and humid (north-western) areas of Spain were analysed. Differences in wettability, stomatal and trichome densities, surface free energy and solubility parameter values were recorded between populations and leaf sides. Leaves from the humid Spanish population with special regard to the abaxial side, were less wettable and less susceptible to polar interactions. The higher wettability and hydrophilicity of Sahara populations with emphasis on the abaxial leaf surfaces, may favour dew deposition and foliar water absorption, hence improving water use efficiency under extremely dry conditions. Compared to the other Saharan populations, the dwarf one had a higher photosynthesis rate suggesting that dwarfism may be a strategy for improving plant tolerance to arid conditions. The results obtained for different maize populations suggest that leaf surfaces may vary in response to drought, but further studies will be required to examine the potential relationship between leaf surface properties and plant stress tolerance. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Graphene/Ionic Liquid Composite Films and Ion Exchange
Mo, Yufei; Wan, Yunfang; Chau, Alicia; Huang, Fuchuan
2014-01-01
Wettability of graphene is adjusted by the formation of various ionic surfaces combining ionic liquid (IL) self-assembly with ion exchange. The functionalized ILs were designed and synthesized with the goal of obtaining adjustable wettability. The wettability of the graphene surface bearing various anions was measured systematically. The effect of solvent systems on ion exchange ratios on the graphene surface has also been investigated. Meanwhile, the mechanical properties of the graphene/IL composite films were investigated on a nanometer scale. The elasticity and adhesion behavior of the thin film was determined with respected to the indentation deformation by colloid probe nanoindentation method. The results indicate that anions played an important role in determining graphene/IL composite film properties. In addition, surface wetting and mechanics can be quantitatively determined according to the counter-anions on the surface. This study might suggest an alternate way for quantity detection of surface ions by surface force. PMID:24970602
Mise, Ryohei; Iwao, Yasunori; Kimura, Shin-Ichiro; Osugi, Yukiko; Noguchi, Shuji; Itai, Shigeru
2015-01-01
The effect of some drug properties (wettability and particle size distribution) on granule properties (mean particle size, particle size distribution, sphericity, and granule strength) were investigated in a high (>97%) drug-loading formulation using fluidized bed rotor granulation. Three drugs: acetaminophen (APAP); ibuprofen (IBU); and ethenzamide (ETZ) were used as model drugs based on their differences in wettability and particle size distribution. Granules with mean particle sizes of 100-200 µm and a narrow particle size distribution (PSD) could be prepared regardless of the drug used. IBU and ETZ granules showed a higher sphericity than APAP granules, while APAP and ETZ granules exhibited higher granule strength than IBU. The relationship between drug and granule properties suggested that the wettability and the PSD of the drugs were critical parameters affecting sphericity and granule strength, respectively. Furthermore, the dissolution profiles of granules prepared with poorly water-soluble drugs (IBU and ETZ) showed a rapid release (80% release in 20 min) because of the improved wettability with granulation. The present study demonstrated for the first time that fluidized bed rotor granulation can prepare high drug-loaded (>97%) globular granules with a mean particle size of less than 200 µm and the relationship between physicochemical drug properties and the properties of the granules obtained could be readily determined, indicating the potential for further application of this methodology to various drugs.
NASA Astrophysics Data System (ADS)
Liu, Yan; Li, Xinlin; Jin, Jingfu; Liu, Jiaan; Yan, Yuying; Han, Zhiwu; Ren, Luquan
2017-04-01
Ice accumulation is a thorny problem which may inflict serious damage even disasters in many areas, such as aircraft, power line maintenance, offshore oil platform and locators of ships. Recent researches have shed light on some promising bio-inspired anti-icing strategies to solve this problem. Inspired by typical plant surfaces with super-hydrophobic character such as lotus leaves and rose petals, structured superhydrophobic surface are prepared to discuss the anti-icing property. 7075 Al alloy, an extensively used materials in aircrafts and marine vessels, is employed as the substrates. As-prepared surfaces are acquired by laser processing after being modified by stearic acid for 1 h at room temperature. The surface morphology, chemical composition and wettability are characterized by means of SEM, XPS, Fourier transform infrared (FTIR) spectroscopy and contact angle measurements. The morphologies of structured as-prepared samples include round hump, square protuberance and mountain-range-like structure, and that the as-prepared structured surfaces shows an excellent superhydrophobic property with a WCA as high as 166 ± 2°. Furthermore, the anti-icing property of as-prepared surfaces was tested by a self-established apparatus, and the crystallization process of a cooling water on the sample was recorded. More importantly, we introduced a model to analyze heat transfer process between the droplet and the structured surfaces. This study offers an insight into understanding the heat transfer process of the superhydrophobic surface, so as to further research about its unique property against ice accumulation.
Grundke, K; Pöschel, K; Synytska, A; Frenzel, R; Drechsler, A; Nitschke, M; Cordeiro, A L; Uhlmann, P; Welzel, P B
2015-08-01
Contact angle hysteresis phenomena on polymer surfaces have been studied by contact angle measurements using sessile liquid droplets and captive air bubbles in conjunction with a drop shape method known as Axisymmetric Drop Shape Analysis - Profile (ADSA-P). In addition, commercially available sessile drop goniometer techniques were used. The polymer surfaces were characterized with respect to their surface structure (morphology, roughness, swelling) and surface chemistry (elemental surface composition, acid-base characteristics) by scanning electron microscopy (SEM), scanning force microscopy (SFM), ellipsometry, X-ray photoelectron spectroscopy (XPS) and streaming potential measurements. Heterogeneous polymer surfaces with controlled roughness and chemical composition were prepared by different routes using plasma etching and subsequent dip coating or grafting of polymer brushes, anodic oxidation of aluminium substrates coated with thin polymer films, deposition techniques to create regular patterned and rough fractal surfaces from core-shell particles, and block copolymers. To reveal the effects of swelling and reorientation at the solid/liquid interface contact angle hysteresis phenomena on polyimide surfaces, cellulose membranes, and thermo-responsive hydrogels have been studied. The effect of different solutes in the liquid (electrolytes, surfactants) and their impact on contact angle hysteresis were characterized for solid polymers without and with ionizable functional surface groups in aqueous electrolyte solutions of different ion concentrations and pH and for photoresist surfaces in cationic aqueous surfactant solutions. The work is an attempt toward the understanding of contact angle hysteresis phenomena on polymer surfaces aimed at the control of wettability for different applications. Copyright © 2014 Elsevier B.V. All rights reserved.
Wettability and surface free energy of polarised ceramic biomaterials.
Nakamura, Miho; Hori, Naoko; Namba, Saki; Toyama, Takeshi; Nishimiya, Nobuyuki; Yamashita, Kimihiro
2015-01-13
The surface modification of ceramic biomaterials used for medical devices is expected to improve osteoconductivity through control of the interfaces between the materials and living tissues. Polarisation treatment induced surface charges on hydroxyapatite, β-tricalcium phosphate, carbonate-substituted hydroxyapatite and yttria-stabilized zirconia regardless of the differences in the carrier ions participating in the polarisation. Characterization of the surfaces revealed that the wettability of the polarised ceramic biomaterials was improved through the increase in the surface free energies compared with conventional ceramic surfaces.
Kozbial, Andrew; Trouba, Charlie; Liu, Haitao; Li, Lei
2017-01-31
Elucidating the intrinsic water wettability of the graphitic surface has increasingly attracted research interests, triggered by the recent finding that the well-established hydrophobicity of graphitic surfaces actually results from airborne hydrocarbon contamination. Currently, static water contact angle (WCA) is often used to characterize the intrinsic water wettability of graphitic surfaces. In the current paper, we show that because of the existence of defects, static WCA does not necessarily characterize the intrinsic water wettability. Freshly exfoliated graphite of varying qualities, characterized using atomic force microscopy and Raman spectroscopy, was studied using static, advancing, and receding WCA measurements. The results showed that graphite of different qualities (i.e., defect density) always has a similar advancing WCA, but it could have very different static and receding WCAs. This finding indicates that defects play an important role in contact angle measurements, and the static contact angle does not always represent the intrinsic water wettability of pristine graphite. On the basis of the experimental results, a qualitative model is proposed to explain the effect of defects on static, advancing, and receding contact angles. The model suggests that the advancing WCA reflects the intrinsic water wettability of pristine (defect-free) graphite. Our results showed that the advancing WCA for pristine graphite is 68.6°, which indicates that graphitic carbon is intrinsically mildly hydrophilic.
NASA Astrophysics Data System (ADS)
Getnet Tadesse, Melkie; Loghin, Carmen; Chen, Yan; Wang, Lichuan; Catalin, Dumitras; Nierstrasz, Vincent
2017-06-01
Coating of textile fabrics with poly (3, 4-ethylenedioxythiophene): poly (styrene sulfonate) (PEDOT:PSS) is one of the methods used for obtaining functional or smart applications. In this work, we prepared PEDOT:PSS polymer with certain additives such as polyethylene glycol, methanol (MeOH), and ethylene glycol on polyester fabric substrates by a simple immersion process. Surface resistance was measured and analyzed with analysis of variance to determine the coating parameters at 95% confidence level. Fourier transform infrared (FTIR) analysis and scanning electron microscopy (SEM) study of the samples were performed. Contact angle and washing fastness measurements were conducted, to observe the wettability and washing fastness of the samples, respectively. Surface resistance values were decreased by a factor of 100, due to conductive enhancers. As the immersion time and temperature condition varies, surface resistance showed no difference, statistically. FTIR analysis supports the idea that the mechanism responsible for the conductivity enhancement is the partial replacement of PSS from PEDOT chain by forming a hydrogen bond with hydroxyl ion (OH) of the conductive enhancers. A SEM images showed that PEDOT:PSS is well distributed to the surface of the fabrics. Contact angle measurements showed morphology change in the samples. The conductivity was reasonably stable after 10 washing cycles. Altogether, an effective simple immersion of coated polyester fabric is presented to achieve functional textiles that offer a broad range of possible applications.
Time Evolution of the Wettability of Supported Graphene under Ambient Air Exposure
2016-01-01
The wettability of graphene is both fundamental and crucial for interfacing in most applications, but a detailed understanding of its time evolution remains elusive. Here we systematically investigate the wettability of metal-supported, chemical vapor deposited graphene films as a function of ambient air exposure time using water and various other test liquids with widely different surface tensions. The wettability of graphene is not constant, but varies with substrate interactions and air exposure time. The substrate interactions affect the initial graphene wettability, where, for instance, water contact angles of ∼85 and ∼61° were measured for Ni and Cu supported graphene, respectively, after just minutes of air exposure. Analysis of the surface free energy components indicates that the substrate interactions strongly influence the Lewis acid–base component of supported graphene, which is considerably weaker for Ni supported graphene than for Cu supported graphene, suggesting that the classical van der Waals interaction theory alone is insufficient to describe the wettability of graphene. For prolonged air exposure, the effect of physisorption of airborne contaminants becomes increasingly dominant, resulting in an increase of water contact angle that follows a universal linear-logarithmic relationship with exposure time, until saturating at a maximum value of 92–98°. The adsorbed contaminants render all supported graphene samples increasingly nonpolar, although their total surface free energy decreases only by 10–16% to about 37–41 mJ/m2. Our finding shows that failure to account for the air exposure time may lead to widely different wettability values and contradicting arguments about the wetting transparency of graphene. PMID:26900413
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grate, Jay W.; Warner, Marvin G.; Pittman, Jonathan W.
2013-08-05
The wettability of silicon and glass surfaces can be modified by silanization. However, similar treatments of glass and silica surfaces using the same silane do not necessarily yield the same wettability as determined by the oil-water contact angle. In this technical note, surface cleaning pretreatments were investigated to determine conditions that would yield oil-wet surfaces on glass with similar wettability to silica surfaces treated with the same silane, and both air-water and oil-water contact angles were determined. Air-water contact angles were less sensitive to differences between silanized silica and glass surfaces, often yielding similar values while the oil-water contact anglesmore » were quite different. Borosilicate glass surfaces cleaned with standard cleaning solution 1 (SC1) yield intermediate-wet surfaces when silanized with hexamethyldisilazane, while the same cleaning and silanization yields oil-wet surfaces on silica. However, cleaning glass in boiling concentrated nitric acid creates a surface that can be silanized to obtain oil-wet surfaces using HDMS. Moreover, this method is effective on glass with prior thermal treatment at an elevated temperature of 400oC. In this way, silica and glass can be silanized to obtain equally oil-wet surfaces using HMDS. It is demonstrated that pretreatment and silanization is feasible in silicon-silica/glass micromodels previously assembled by anodic bonding, and that the change in wettability has a significant observable effect on immiscisble fluid displacements in the pore network.« less
NASA Astrophysics Data System (ADS)
Nizar, M. Mohd; Hamzah, M. S. A.; Razak, S. I. Abd; Mat Nayan, N. H.
2018-03-01
This paper reports the preliminary study about the incorporation of halloysite nanotubes (HNT) into polylactic acid (PLA) scaffold to improve the thermal resistance and surface wettability properties. The fabrication of the porous scaffold requires a simple yet effective technique with low-cost materials within freeze extraction method. The thermal stability of PLA/HNT scaffold compared to neat PLA scaffold achieved with increased content of HNT by 5 wt%. Moreover, the surface wettability of the scaffold also shows a positive impact with high content of HNT by 5 wt%. This new nanocomposite scaffold may have high potential as a suitable template for tissue regeneration.
Drop impact and wettability: From hydrophilic to superhydrophobic surfaces
NASA Astrophysics Data System (ADS)
Antonini, Carlo; Amirfazli, Alidad; Marengo, Marco
2012-10-01
Experiments to understand the effect of surface wettability on impact characteristics of water drops onto solid dry surfaces were conducted. Various surfaces were used to cover a wide range of contact angles (advancing contact angle from 48° to 166°, and contact angle hysteresis from 5° to 56°). Several different impact conditions were analyzed (12 impact velocities on 9 different surfaces, among which 2 were superhydrophobic). Results from impact tests with millimetric drops show that two different regimes can be identified: a moderate Weber number regime (30 < We < 200), in which wettability affects both drop maximum spreading and spreading characteristic time; and a high Weber number regime (We > 200), in which wettability effect is secondary, because capillary forces are overcome by inertial effects. In particular, results show the role of advancing contact angle and contact angle hysteresis as fundamental wetting parameters to allow understanding of different phases of drop spreading and beginning of recoiling. It is also shown that drop spreading on hydrophilic and superhydrophobic surfaces occurs with different time scales. Finally, if the surface is superhydrophobic, eventual impalement, i.e., transition from Cassie to Wenzel wetting state, which might occur in the vicinity of the drop impact area, does not influence drop maximum spreading.
Zillohu, Ahnaf Usman; Abdelaziz, Ramzy; Homaeigohar, Shahin; Krasnov, Igor; Müller, Martin; Strunskus, Thomas; Elbahri, Mady
2014-01-01
We demonstrate a transferable device that can turn wettability of surfaces to sticky or slippy, as per requirement. It is composed of polymeric yarn with a fibrous structure, which can be lifted and placed on any surface to render it the unique wettability properties. We introduce Polyvinylidenefluoride (PVDF) random fiber as biomimetic rose petal surface. When it is decorated with PVDF nanofibers yarns, the random mesh transform from rose petal sticky state into grass leaf slippy state. When it is placed on sticky, hydrophilic metal coin, it converts the surface of the coin to super hydrophobic. Adjustments in the yarn system, like interyarn spacing, can be done in real time to influence its wettability, which is a unique feature. Next, we load the polymer with a photochromic compound for chemical restructuring. It affects the sliding angle of water drop and makes the fibers optically active. We also demonstrate a “water droplets lens” concept that enables erasable writing on photochromic rose petal sticky fibrous surface. The droplet on a highly hydrophobic surface acts as a ball lens to concentrate light onto a hot spot; thereby we demonstrate UV light writing with water lenses and visible light erasing. PMID:25491016
Zhang, Yuqi; Gao, Loujun; Heng, Liping; Wei, Qingbo; Yang, Hua; Wang, Qiao
2013-03-01
The photonic crystals (PCs) films with tunable wettability were fabricated from self-assembly of an amphiphilic latex nano/microspheres poly(styrene-acrylamide) at different temperatures. The results demonstrate that the surface wettability of the PCs film can be tuned from high hydrophilic (CA, 17 degrees) to high hydrophobic (CA, 127.8 degrees) by controlling the assembly temperature from 30 degrees C to 90 degrees C, while the position of the photonic stopbands of the PCs films unchanged virtually. The obvious wettability transition is due to the change of the surface chemical component of the latex spheres, which mainly derives from the phase separation of polymer segments driven toward minimum interfacial energy. The facile method could open new application fields of PCs in diverse environments.
An investigation of selected factors that influence hardwood wettability
Todd F. Shupe; Chung-Yun Hse; Wan H. Wang
2001-01-01
Wettability of sanded and non-sanded transverse and tangential sections of 22 southern hardwoods species was judged by measurement of contact angles using phenol formaldehyde resins. As expected, contact angle values on transverse sections were higher than those on tangential sections for both sanded and non-sanded surfaces. On sanded surfaces, hackberry had the...
NASA Astrophysics Data System (ADS)
Yoon, Joonsung
The primary objective of this research is to investigate the morphological and mechanical properties of composite materials and porous materials prepared by thermally induced phase separation. High melting crystallizable diluents were mixed with polymers so that the phase separation would be induced by the solidification of the diluents upon cooling. Theoretical phase diagrams were calculated using Flory-Huggins solution thermodynamics which show good agreement with the experimental results. Porous materials were prepared by the extraction of the crystallized diluents after cooling the mixtures (hexamethylbenzene/polyethylene and pyrene/polyethylene). Anisotropic structures show strong dependence on the identity of the diluents and the composition of the mixtures. Anisotropic crystal growth of the diluents was studied in terms of thermodynamics and kinetics using DSC, optical microscopy and SEM. Microstructures of the porous materials were explained in terms of supercooling and dendritic solidification. Dual functionality of the crystallizable diluents for composite materials was evaluated using isotactic polypropylene (iPP) and compatible diluents that crystallize upon cooling. The selected diluents form homogeneous mixtures with iPP at high temperature and lower the viscosity (improved processability), which undergo phase separation upon cooling to form solid particles that function as a toughening agent at room temperature. Tensile properties and morphology of the composites showed that organic crystalline particles have the similar effect as rigid particles to increase toughness; de-wetting between the particle and iPP matrix occurs at the early stage of deformation, followed by unhindered plastic flow that consumes significant amount of fracture energy. The effect of the diluents, however, strongly depends on the identity of the diluents that interact with the iPP during solidification step, which was demonstrated by comparing tetrabromobisphenol-A and phthalic anhydride. A simple method to prepare composite surfaces that can change the wettability in response to the temperature change was proposed and evaluated. Composite surfaces prepared by nanoporous alumina templates filled with polymers showed surface morphology and wettability that depend on temperature. This effect is attributed to the significant difference in thermal conductivity and the thermal expansion coefficient between the alumina and the polymers. The reversibility in thermal response depends on the properties of the polymers.
Precise micropatterning of silver nanoparticles on plastic substrates
NASA Astrophysics Data System (ADS)
Ammosova, Lena; Jiang, Yu; Suvanto, Mika; Pakkanen, Tapani A.
2017-04-01
Conventional fabrication methods to obtain metal patterns on polymer substrates are restricted by high operating temperature and complex preparation steps. The present study demonstrates a simple yet versatile method for preparation of silver nanoparticle micropatterns on polymer substrates with various surface geometry. With the microworking robot technique, we were able not only to directly structure the surface, but also precisely deposit silver nanoparticle ink on the desired surface location with the minimum usage of ink material. The prepared silver nanoparticle ink, containing silver cations and polyethylene glycol (PEG) as a reducing agent, yields silver nanoparticle micropatterns on plastic substrates at low sintering temperature without any contamination. The influence of the ink behaviour was studied, such as substrate wettability, ink volume, and sintering temperature. The ultraviolet visible (UV-vis), scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS) measurements revealed the formation of micropatterns with uniformly distributed silver nanoparticles. The prepared patterns are expected to have a broad range of applications in optics, medicine, and sensor devices owing to the unique properties of silver. Furthermore, the deposition of a chemical compound, which is different from the substrate material, not only adds a fourth dimension to the prestructured three-dimensional (3D) surfaces, but also opens new application areas to the conventional surface structures.
NASA Astrophysics Data System (ADS)
Jiao, Weiwei; Cai, Yemeng; Liu, Wenbo; Yang, Fan; Jiang, Long; Jiao, Weicheng; Wang, Rongguo
2018-05-01
The practical application of carbon fiber (CF) reinforced vinyl ester resin (VE) composite was hampered seriously by the poor interfacial adhesion property. In this work, a novel unsaturated sizing agent was designed and prepared to improve the interfacial strength by covalently bonding CF with VE matrix. The main component of the sizing agent, N-(4‧4-diaminodiphenyl methane)-2-hydroxypropyl methacrylate (DMHM), was synthesized and confirmed by FTIR and NMR. XPS results of sized carbon fiber (SCF) showed that DMHM has adhered to desized fiber surface and reacted with some active functional groups on the surface. The SCF was characterized by high surface roughness and surface energy (especially the polar component), which means better wettability by VE. As a result, the interface shear strength and interlaminar shear strength of SCF/VE composite were enhanced by 96.56% and 66.07% respectively compared with CF/VE composite, benefited mainly from the strong and tough interphase.
NASA Astrophysics Data System (ADS)
Dinca-Balan, Virginia; Vladoiu, Rodica; Mandes, Aurelia; Prodan, Gabriel
2017-11-01
The synthesis of Ag, Mg and Si nanocrystalline, embedded in a hydrogen-free amorphous carbon (a-C) matrix, deposited by a high vacuum and free buffer gas technique, were investigated. The films with compact structures and extremely smooth surfaces were prepared using the thermionic vacuum arc method in one electron gun configuration, on glass and silicon substrates. The surface morphology and wettability of the obtained multifunctional thin films were investigated using transmission electron microscopy (TEM), scanning electron microscopy (SEM) and free surface energy (FSE) by See System. The results from the TEM measurements show how the Ag, Mg and Si interacted with carbon and the influence these materials have on the thin film structure formation and the grain size distribution. SEM correlated with EDX results reveal a very precise comparative study, regarding the quantity of the elements that morphed into carbides nanostructures. Also, the FSE results prove how different materials in combination with carbon can make changes to the surface properties.
NASA Astrophysics Data System (ADS)
Muzammil, I.; Li, Y. P.; Li, X. Y.; Lei, M. K.
2018-04-01
Octafluorocyclobutane and acrylic acid (C4F8-co-AA) plasma copolymer coatings are deposited using a pulsed wave (PW) radio frequency (RF) plasma on low density polyethylene (LDPE). The influence of duty cycle in pulsed process with the monomer feed rate on the surface chemistry and wettability of C4F8-co-AA plasma polymer coatings is studied. The concentration of the carboxylic acid (hydrophilic) groups increase, and that of fluorocarbon (hydrophobic) groups decrease by lowering the duty cycle. The combined effect of surface chemistry and surface morphology of the RF pulsed plasma copolymer coatings causes tunable surface wettability and surface adhesion. The gradual emergence of hydrophilic contents leads to surface heterogeneity by lowering duty cycle causing an increased surface adhesion in hydrophobic coatings. The C4F8-co-AA plasma polymer coatings on the nanotextured surfaces are tuned from repulsive superhydrophobicity to adhesive superhydrophobicity, and further to superhydrophilicity by adjusting the duty cycles with the monomer feed rates.
Laser surface modification of AZ31B Mg alloy for bio-wettability.
Ho, Yee-Hsien; Vora, Hitesh D; Dahotre, Narendra B
2015-02-01
Magnesium alloys are the potential degradable materials for load-bearing implant application due to their comparable mechanical properties to human bone, excellent bioactivity, and in vivo non-toxicity. However, for a successful load-bearing implant, the surface of bio-implant must allow protein absorption and layer formation under physiological environment that can assist the cell/osteoblast growth. In this regard, surface wettability of bio-implant plays a key role to dictate the quantity of protein absorption. In light of this, the main objective of the present study was to produce favorable bio-wettability condition of AZ31B Mg alloy bio-implant surface via laser surface modification technique under various laser processing conditions. In the present efforts, the influence of laser surface modification on AZ31B Mg alloy surface on resultant bio-wettability was investigated via contact-angle measurements and the co-relationships among microstructure (grain size), surface roughness, surface energy, and surface chemical composition were established. In addition, the laser surface modification technique was simulated by computational (thermal) model to facilitate the prediction of temperature and its resultant cooling/solidification rates under various laser processing conditions for correlating with their corresponding composition and phase evolution. These predicted thermal properties were later used to correlate with the corresponding microstructure, chemical composition, and phase evolution via experimental analyses (X-ray diffractometer, scanning electron microscope, energy-dispersive spectroscopy). © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.
NASA Astrophysics Data System (ADS)
Koltsov, A.; Cornu, M.-J.; Scheid, J.
2018-02-01
The understanding of gas-metal reactions and related surface wettability at high temperatures is often limited due to the lack of in situ surface characterization. Ex situ transfers at low temperature between annealing furnace, wettability device, and analytical tools induce noticeable changes of surface composition distinct from the reality of the phenomena.Therefore, a high temperature wettability device was designed in order to allow in situ sample surface characterization by x-rays photoelectron spectroscopy after gas/metal and liquid metal/solid metal surface reactions. Such airless characterization rules out any contamination and oxidation of surfaces and reveals their real composition after heat treatment and chemical reaction. The device consists of two connected reactors, respectively, dedicated to annealing treatments and wettability measurements. Heat treatments are performed in an infrared lamp furnace in a well-controlled atmosphere conditions designed to reproduce gas-metal reactions occurring during the industrial recrystallization annealing of steels. Wetting experiments are carried out in dispensed drop configuration with the precise control of the deposited droplets kinetic energies. The spreading of drops is followed by a high-speed CCD video camera at 500-2000 frames/s in order to reach information at very low contact time. First trials have started to simulate phenomena occurring during recrystallization annealing and hot-dip galvanizing on polished pure Fe and FeAl8 wt.% samples. The results demonstrate real surface chemistry of steel samples after annealing when they are put in contact with liquid zinc alloy bath during hot-dip galvanizing. The wetting results are compared to literature data and coupled with the characterization of interfacial layers by FEG-Auger. It is fair to conclude that the results show the real interest of such in situ experimental setup for interfacial chemistry studies.
Contact angles and wettability of ionic liquids on polar and non-polar surfaces.
Pereira, Matheus M; Kurnia, Kiki A; Sousa, Filipa L; Silva, Nuno J O; Lopes-da-Silva, José A; Coutinho, João A P; Freire, Mara G
2015-12-21
Many applications involving ionic liquids (ILs) require the knowledge of their interfacial behaviour, such as wettability and adhesion. In this context, herein, two approaches were combined aiming at understanding the impact of the IL chemical structures on their wettability on both polar and non-polar surfaces, namely: (i) the experimental determination of the contact angles of a broad range of ILs (covering a wide number of anions of variable polarity, cations, and cation alkyl side chain lengths) on polar and non-polar solid substrates (glass, Al-plate, and poly-(tetrafluoroethylene) (PTFE)); and (ii) the correlation of the experimental contact angles with the cation-anion pair interaction energies generated by the Conductor-like Screening Model for Real Solvents (COSMO-RS). The combined results reveal that the hydrogen-bond basicity of ILs, and thus the IL anion, plays a major role through their wettability on both polar and non-polar surfaces. The increase of the IL hydrogen-bond accepting ability leads to an improved wettability of more polar surfaces (lower contact angles) while the opposite trend is observed on non-polar surfaces. The cation nature and alkyl side chain lengths have however a smaller impact on the wetting ability of ILs. Linear correlations were found between the experimental contact angles and the cation-anion hydrogen-bonding and cation ring energies, estimated using COSMO-RS, suggesting that these features primarily control the wetting ability of ILs. Furthermore, two-descriptor correlations are proposed here to predict the contact angles of a wide variety of ILs on glass, Al-plate, and PTFE surfaces. A new extended list is provided for the contact angles of ILs on three surfaces, which can be used as a priori information to choose appropriate ILs before a given application.
Li, Heng; Wu, Dabei; Wu, Jin; Dong, Li-Ying; Zhu, Ying-Jie; Hu, Xianluo
2017-11-01
Separators play a pivotal role in the electrochemical performance and safety of lithium-ion batteries (LIBs). The commercial microporous polyolefin-based separators often suffer from inferior electrolyte wettability, low thermal stability, and severe safety concerns. Herein, a novel kind of highly flexible and porous separator based on hydroxyapatite nanowires (HAP NWs) with excellent thermal stability, fire resistance, and superior electrolyte wettability is reported. A hierarchical cross-linked network structure forms between HAP NWs and cellulose fibers (CFs) via hybridization, which endows the separator with high flexibility and robust mechanical strength. The high thermal stability of HAP NW networks enables the separator to preserve its structural integrity at temperatures as high as 700 °C, and the fire-resistant property of HAP NWs ensures high safety of the battery. In particular, benefiting from its unique composition and highly porous structure, the as-prepared HAP/CF separator exhibits near zero contact angle with the liquid electrolyte and high electrolyte uptake of 253%, indicating superior electrolyte wettability compared with the commercial polyolefin separator. The as-prepared HAP/CF separator has unique advantages of superior electrolyte wettability, mechanical robustness, high thermal stability, and fire resistance, thus, is promising as a new kind of separator for advanced LIBs with enhanced performance and high safety. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Switchable Wettability of the Honeybee’s Tongue Surface Regulated by Erectable Glossal Hairs
Chen, Ji; Wu, Jianing; Yan, Shaoze
2015-01-01
Various nectarivorous animals apply bushy-hair-equipped tongues to lap nectar from nectaries of flowers. A typical example is provided by the Italian honeybee (Apis mellifera ligustica), who protracts and retracts its tongue (glossa) through a temporary tube, and actively controls the erectable glossal hairs to load nectar. We first examined the microstructure of the honeybee’s glossal surface, recorded the kinematics of its glossal hairs during nectar feeding process and observed the rhythmical hair erection pattern clearly. Then we measured the wettability of the glossal surface under different erection angles (EA) in sugar water of the mass concentration from 25 to 45%, mimicked by elongating the glossa specimens. The results show that the EA in retraction approximately remains stable under different nectar concentrations. In a specific concentration (35, 45, or 55%), the contact angle decreases and glossal surface area increases while the EA of glossal hairs rises, the glossa therefore could dynamically alter the glossal surface and wettability in foraging activities, not only reducing the energy consumption for impelling the nectar during tongue protraction, but also improving the nectar-trapping volume for feeding during glossa retraction. The dynamic glossal surface with switchable wettability regulated by erectable hairs may reveal the effective adaptation of the honeybee to nectar intake activities. PMID:26643560
A Smart Superwetting Surface with Responsivity in Both Surface Chemistry and Microstructure.
Zhang, Dongjie; Cheng, Zhongjun; Kang, Hongjun; Yu, Jianxin; Liu, Yuyan; Jiang, Lei
2018-03-26
Recently, smart surfaces with switchable wettability have aroused much attention. However, only single surface chemistry or the microstructure can be changed on these surfaces, which significantly limits their wetting performances, controllability, and applications. A new surface with both tunable surface microstructure and chemistry was prepared by grafting poly(N-isopropylacrylamide) onto the pillar-structured shape memory polymer on which multiple wetting states from superhydrophilicity to superhydrophobicity can be reversibly and precisely controlled by synergistically regulating the surface microstructure and chemistry. Meanwhile, based on the excellent controllability, we also showed the application of the surface as a rewritable platform, and various gradient wettings can be obtained. This work presents for the first time a surface with controllability in both surface chemistry and microstructure, which starts some new ideas for the design of novel superwetting materials. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Photoresponsive Polymer Surfaces
NASA Astrophysics Data System (ADS)
Anastasiadis, Spiros H.; Lygeraki, M. I.; Lakiotaki, K.; Varda, M.; Athanassiou, A.; Farsari, M.; Fotakis, C.
2007-03-01
Photochromic spiropyran molecules are utilized as additives for the development of polymer surfaces whose wetting characteristics can reversibly respond to irradiation with laser beams of properly chosen photon energy. The hydrophilicity is enhanced upon UV laser irradiation since the embedded non-polar spiropyran molecules convert to their polar merocyanine isomers, which is reversed upon green laser irradiation. Micropatterning of the photochromic-polymer films using soft lithography or photo-polymerization techniques affects their wettability towards a more hydrophobic or more hydrophilic behavior depending on the dimensions of the patterned features and on the hydrophilicity-hydrophobicity of the flat surface. The light-induced wettability variations of the structured surfaces are enhanced by up to a factor of three as compared to those on the flat surfaces. This enhancement is attributed to the photoinduced reversible volume changes to the imprinted gratings, which additionally contribute to the wettability changes due to the light-induced photochromic interconversions.
NASA Astrophysics Data System (ADS)
Ishii, Daisuke; Horiguchi, Hiroko; Hirai, Yuji; Yabu, Hiroshi; Matsuo, Yasutaka; Ijiro, Kuniharu; Tsujii, Kaoru; Shimozawa, Tateo; Hariyama, Takahiko; Shimomura, Masatsugu
2013-10-01
Some small animals only use water transport mechanisms passively driven by surface energies. However, little is known about passive water transport mechanisms because it is difficult to measure the wettability of microstructures in small areas and determine the chemistry of biological surfaces. Herein, we developed to directly analyse the structural effects of wettability of chemically modified biological surfaces by using a nanoliter volume water droplet and a hi-speed video system. The wharf roach Ligia exotica transports water only by using open capillaries in its legs containing hair- and paddle-like microstructures. The structural effects of legs chemically modified with a self-assembled monolayer were analysed, so that the wharf roach has a smart water transport system passively driven by differences of wettability between the microstructures. We anticipate that this passive water transport mechanism may inspire novel biomimetic fluid manipulations with or without a gravitational field.
The Measurement of Wettability
ERIC Educational Resources Information Center
Pirie, Brian J. S.; Gregory, David W.
1973-01-01
Discusses the use of a simple apparatus to measure contact angles between a liquid drop and a solid surface which are determining factors of wettability. Included are examples of applying this technique to various experimental situations. (CC)
Time dependent wettability of graphite upon ambient exposure: The role of water adsorption
NASA Astrophysics Data System (ADS)
Amadei, Carlo A.; Lai, Chia-Yun; Heskes, Daan; Chiesa, Matteo
2014-08-01
We report the temporal evolution of the wettability of highly ordered pyrolytic graphite (HOPG) exposed to environmental conditions. Macroscopic wettability is investigated by static and dynamic contact angles (SCA and DCA) obtaining values comparable to the ones presented in the literature. SCA increases from ˜68° to ˜90° during the first hour of exposure after cleaving, whereas DCA is characterized by longer-scale (24 h) time evolution. We interpret these results in light of Fourier transform infrared spectroscopy, which indicates that the evolution of the HOPG wettability is due to adsorption of molecules from the surrounding atmosphere. This hypothesis is further confirmed by nanoscopic observations obtained by atomic force microscope (AFM)-based force spectroscopy, which monitor the evolution of surface properties with a spatial resolution superior to macroscopic experiments. Moreover, we observe that the results of macro- and nanoscale measurements evolve in similar fashion with time and we propose a quantitative correlation between SCA and AFM measurements. Our results suggest that the cause of the transition in the wettability of HOPG is due to the adsorption of hydrocarbon contaminations and water molecules from the environment. This is corroborated by annealing the HOPG is vacuum conditions at 150°, allowing the desorption of molecules on the surface, and thus re-establishing the initial macro and nano surface properties. Our findings can be used in the interpretation of the wettability of more complicated systems derived from HOPG (i.e., graphene).
Time dependent wettability of graphite upon ambient exposure: The role of water adsorption
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amadei, Carlo A.; Lai, Chia-Yun; Heskes, Daan
We report the temporal evolution of the wettability of highly ordered pyrolytic graphite (HOPG) exposed to environmental conditions. Macroscopic wettability is investigated by static and dynamic contact angles (SCA and DCA) obtaining values comparable to the ones presented in the literature. SCA increases from ∼68° to ∼90° during the first hour of exposure after cleaving, whereas DCA is characterized by longer-scale (24 h) time evolution. We interpret these results in light of Fourier transform infrared spectroscopy, which indicates that the evolution of the HOPG wettability is due to adsorption of molecules from the surrounding atmosphere. This hypothesis is further confirmedmore » by nanoscopic observations obtained by atomic force microscope (AFM)-based force spectroscopy, which monitor the evolution of surface properties with a spatial resolution superior to macroscopic experiments. Moreover, we observe that the results of macro- and nanoscale measurements evolve in similar fashion with time and we propose a quantitative correlation between SCA and AFM measurements. Our results suggest that the cause of the transition in the wettability of HOPG is due to the adsorption of hydrocarbon contaminations and water molecules from the environment. This is corroborated by annealing the HOPG is vacuum conditions at 150°, allowing the desorption of molecules on the surface, and thus re-establishing the initial macro and nano surface properties. Our findings can be used in the interpretation of the wettability of more complicated systems derived from HOPG (i.e., graphene)« less
Recent Advances in TiO2 -Based Nanostructured Surfaces with Controllable Wettability and Adhesion.
Lai, Yuekun; Huang, Jianying; Cui, Zequn; Ge, Mingzheng; Zhang, Ke-Qin; Chen, Zhong; Chi, Lifeng
2016-04-27
Bioinspired surfaces with special wettability and adhesion have attracted great interest in both fundamental research and industry applications. Various kinds of special wetting surfaces have been constructed by adjusting the topographical structure and chemical composition. Here, recent progress of the artificial superhydrophobic surfaces with high contrast in solid/liquid adhesion has been reviewed, with a focus on the bioinspired construction and applications of one-dimensional (1D) TiO2-based surfaces. In addition, the significant applications related to artificial super-wetting/antiwetting TiO2-based structure surfaces with controllable adhesion are summarized, e.g., self-cleaning, friction reduction, anti-fogging/icing, microfluidic manipulation, fog/water collection, oil/water separation, anti-bioadhesion, and micro-templates for patterning. Finally, the current challenges and future prospects of this renascent and rapidly developing field, especially with regard to 1D TiO2-based surfaces with special wettability and adhesion, are proposed and discussed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Morphology modulating the wettability of a diamond film.
Tian, Shibing; Sun, Weijie; Hu, Zhaosheng; Quan, Baogang; Xia, Xiaoxiang; Li, Yunlong; Han, Dong; Li, Junjie; Gu, Changzhi
2014-10-28
Control of the wetting property of diamond surface has been a challenge because of its maximal hardness and good chemical inertness. In this work, the micro/nanoarray structures etched into diamond film surfaces by a maskless plasma method are shown to fix a surface's wettability characteristics, and this means that the change in morphology is able to modulate the wettability of a diamond film from weakly hydrophilic to either superhydrophilic or superhydrophobic. It can be seen that the etched diamond surface with a mushroom-shaped array is superhydrophobic following the Cassie mode, whereas the etched surface with nanocone arrays is superhydrophilic in accordance with the hemiwicking mechnism. In addition, the difference in cone densities of superhydrophilic nanocone surfaces has a significant effect on water spreading, which is mainly derived from different driving forces. This low-cost and convenient means of altering the wetting properties of diamond surfaces can be further applied to underlying wetting phenomena and expand the applications of diamond in various fields.
Chakraborty, Monojit; Chowdhury, Anamika; Bhusan, Richa; DasGupta, Sunando
2015-10-20
Droplet motion on a surface with chemical energy induced wettability gradient has been simulated using molecular dynamics (MD) simulation to highlight the underlying physics of molecular movement near the solid-liquid interface including the contact line friction. The simulations mimic experiments in a comprehensive manner wherein microsized droplets are propelled by the surface wettability gradient against forces opposed to motion. The liquid-wall Lennard-Jones interaction parameter and the substrate temperature are varied to explore their effects on the three-phase contact line friction coefficient. The contact line friction is observed to be a strong function of temperature at atomistic scales, confirming their experimentally observed inverse functionality. Additionally, the MD simulation results are successfully compared with those from an analytical model for self-propelled droplet motion on gradient surfaces.
NASA Astrophysics Data System (ADS)
Gorodzha, S. N.; Surmeneva, M. A.; Prymak, O.; Wittmar, A.; Ulbricht, M.; Epple, M.; Teresov, A.; Koval, N.; Surmenev, R. A.
2015-11-01
The influence of surface properties of radio-frequency (RF) magnetron deposited hydroxyapatite (HA) and Si-containing HA coatings on wettability was studied. The composition and morphology of the coatings fabricated on titanium (Ti) were characterized using atomic force microscopy (AFM) and X-ray diffraction (XRD). The surface wettability was studied using contact angle analysis. Different geometric parameters of acid-etched (AE) and pulse electron beam (PEB)-treated Ti substrates and silicate content in the HA films resulted in the different morphology of the coatings at micro- and nano- length scales. Water contact angles for the HA coated Ti samples were evaluated as a combined effect of micro roughness of the substrate and nano-roughness of the HA films resulting in higher water contact angles compared with acid-etched (AE) or pulse electron beam (PEB) treated Ti substrates.
Tyliszczak, Bożena; Drabczyk, Anna; Kudłacik-Kramarczyk, Sonia; Grabowska, Beata; Kędzierska, Magdalena
2017-01-01
Currently, increasing attention is being paid to issues related to environmental protection, waste management, as well as to the development of polymers with useful properties. The research presented here involved preparation of hydrogels based on Beetosan® - a chitosan derived from the multi-stage processing of dead bees. Moreover, hydrogels were additionally modified with natural substances - i.e. bee pollen and extract of Salvia officinalis (sage) that are well known for the presence of many compounds with beneficial properties from a medical point of view. Materials have been first obtained by photopolymerization. Then, their surface morphology, wettability and cytotoxicity to selected cell lines have been determined. It can be stated that such combination of Beetosan® hydrogel matrix and the mentioned additives resulted in a preparation of polymers characterized by negative impact on cancer cells. Impact of hydrogels with sage is slightly more intense due to the presence of substances such as ursalic or rosmaric acid that are characterized to have anticancer activity. Such negative impact has not been observed in case of studies using fibroblasts. Furthermore, addition of natural substances into hydrogels resulted in a more homogeneous surface and in the decrease of wettability angle of the tested polymers. It can be concluded that the use of natural-derived reagents and synthesis of polymers using these reagents (as a result of environmentally friendly photopolymerization) yields materials with interesting properties for medical purposes, with particular emphasis on antitumor activity, and without significant negative impact on fibroblasts.
Liu, X M; Wu, S L; Chu, Paul K; Chung, C Y; Chu, C L; Chan, Y L; Lam, K O; Yeung, K W K; Lu, W W; Cheung, K M C; Luk, K D K
2009-06-01
Plasma immersion ion implantation (PIII) is an effective method to increase the corrosion resistance and inhibit nickel release from orthopedic NiTi shape memory alloy. Nitrogen was plasma-implanted into NiTi using different pulsing frequencies to investigate the effects on the nano-scale surface morphology, structure, wettability, as well as biocompatibility. X-ray photoelectron spectroscopy (XPS) results show that the implantation depth of nitrogen increases with higher pulsing frequencies. Atomic force microscopy (AFM) discloses that the nano-scale surface roughness increases and surface features are changed from islands to spiky cones with higher pulsing frequencies. This variation in the nano surface structures leads to different surface free energy (SFE) monitored by contact angle measurements. The adhesion, spreading, and proliferation of osteoblasts on the implanted NiTi surface are assessed by cell culture tests. Our results indicate that the nano-scale surface morphology that is altered by the implantation frequencies impacts the surface free energy and wettability of the NiTi surfaces, and in turn affects the osteoblast adhesion behavior.
Nucleate boiling performance on nano/microstructures with different wetting surfaces
2012-01-01
A study of nucleate boiling phenomena on nano/microstructures is a very basic and useful study with a view to the potential application of modified surfaces as heating surfaces in a number of fields. We present a detailed study of boiling experiments on fabricated nano/microstructured surfaces used as heating surfaces under atmospheric conditions, employing identical nanostructures with two different wettabilities (silicon-oxidized and Teflon-coated). Consequently, enhancements of both boiling heat transfer (BHT) and critical heat flux (CHF) are demonstrated in the nano/microstructures, independent of their wettability. However, the increment of BHT and CHF on each of the different wetting surfaces depended on the wetting characteristics of heating surfaces. The effect of water penetration in the surface structures by capillary phenomena is suggested as a plausible mechanism for the enhanced CHF on the nano/microstructures regardless of the wettability of the surfaces in atmospheric condition. This is supported by comparing bubble shapes generated in actual boiling experiments and dynamic contact angles under atmospheric conditions on Teflon-coated nano/microstructured surfaces. PMID:22559173
Wettability of graphitic-carbon and silicon surfaces: MD modeling and theoretical analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramos-Alvarado, Bladimir; Kumar, Satish; Peterson, G. P.
2015-07-28
The wettability of graphitic carbon and silicon surfaces was numerically and theoretically investigated. A multi-response method has been developed for the analysis of conventional molecular dynamics (MD) simulations of droplets wettability. The contact angle and indicators of the quality of the computations are tracked as a function of the data sets analyzed over time. This method of analysis allows accurate calculations of the contact angle obtained from the MD simulations. Analytical models were also developed for the calculation of the work of adhesion using the mean-field theory, accounting for the interfacial entropy changes. A calibration method is proposed to providemore » better predictions of the respective contact angles under different solid-liquid interaction potentials. Estimations of the binding energy between a water monomer and graphite match those previously reported. In addition, a breakdown in the relationship between the binding energy and the contact angle was observed. The macroscopic contact angles obtained from the MD simulations were found to match those predicted by the mean-field model for graphite under different wettability conditions, as well as the contact angles of Si(100) and Si(111) surfaces. Finally, an assessment of the effect of the Lennard-Jones cutoff radius was conducted to provide guidelines for future comparisons between numerical simulations and analytical models of wettability.« less
Altering Emulsion Stability with Heterogeneous Surface Wettability
NASA Astrophysics Data System (ADS)
Meng, Qiang; Zhang, Yali; Li, Jiang; Lammertink, Rob G. H.; Chen, Haosheng; Tsai, Peichun Amy
2016-06-01
Emulsions-liquid droplets dispersed in another immiscible liquid-are widely used in a broad spectrum of applications, including food, personal care, agrochemical, and pharmaceutical products. Emulsions are also commonly present in natural crude oil, hampering the production and quality of petroleum fuels. The stability of emulsions plays a crucial role in their applications, but controlling the stability without external driving forces has been proven to be difficult. Here we show how heterogeneous surface wettability can alter the stability and dynamics of oil-in-water emulsions, generated by a co-flow microfluidic device. We designed a useful methodology that can modify a micro-capillary of desired heterogeneous wettability (e.g., alternating hydrophilic and hydrophobic regions) without changing the hydraulic diameter. We subsequently investigated the effects of flow rates and heterogeneous wettability on the emulsion morphology and motion. The experimental data revealed a universal critical timescale of advective emulsions, above which the microfluidic emulsions remain stable and intact, whereas below they become adhesive or inverse. A simple theoretical model based on a force balance can be used to explain this critical transition of emulsion dynamics, depending on the droplet size and the Capillary number-the ratio of viscous to surface effects. These results give insight into how to control the stability and dynamics of emulsions in microfluidics with flow velocity and different wettability.
Water-wettable polypropylene fibers by facile surface treatment based on soy proteins.
Salas, Carlos; Genzer, Jan; Lucia, Lucian A; Hubbe, Martin A; Rojas, Orlando J
2013-07-24
Modification of the wetting behavior of hydrophobic surfaces is essential in a variety of materials, including textiles and membranes that require control of fluid interactions, adhesion, transport processes, sensing, etc. This investigation examines the enhancement of wettability of an important class of textile materials, viz., polypropylene (PP) fibers, by surface adsorption of different proteins from soybeans, including soy flour, isolate,glycinin, and β-conglycinin. Detailed investigations of soy adsorption from aqueous solution (pH 7.4, 25 °C) on polypropylene thin films is carried out using quartz crystal microbalance (QCM) and surface plasmon resonance (SPR). A significant amount of protein adsorbs onto the PP surfaces primarily due to hydrophobic interactions. We establish that adsorption of a cationic surfactant, dioctadecyldimethylammonium bromide (DODA) onto PP surfaces prior to the protein deposition dramatically enhances its adsorption. The adsorption of proteins from native (PBS buffer, pH 7.4, 25 °C) and denatured conditions (PBS buffer, pH 7.4, 95 °C) onto DODA-treated PP leads to a high coverage of the proteins on the PP surface as confirmed by a significant improvement in water wettability. A shift in the contact angle from 128° to completely wettable surfaces (≈0°) is observed and confirmed by imaging experiments conducted with fluorescence tags. Furthermore, the results from wicking tests indicate that hydrophobic PP nonwovens absorb a significant amount of water after protein treatment, i.e., the PP-modified surfaces become completely hydrophilic.
Wettability shifts caused by CO2 aging on mineral surfaces
NASA Astrophysics Data System (ADS)
Liang, B.; Clarens, A. F.
2015-12-01
Interfacial forces at the CO2/brine/mineral ternary interface have a well-established impact on multiphase flow properties through porous media. In the context of geologic carbon sequestration, this wettability will impact capillary pressure, residual trapping, and a variety of other key parameters of interest. While the wettability of CO2 on pure mineral and real rock sample have been studied a great deal over the past few year, very little is known about how the wettability of these rocks could change over long time horizons as CO2 interacts with species in the brine and on the mineral surface. In this work we sought to explore the role that dilute inorganic and organic species that are likely to exist in connate brines might have on a suite of mineral species. High-pressure contact angle experiments were carried out on a suite of polished mineral surfaces. Both static captive bubble and advancing/receding contact angle measurements were carried out. The effect of ionic strength, and in particular the valence of the dominant ions in the brine are found to have an important impact on the wettability which cannot be explained solely based on the shifts in the interfacial tension between the CO2 and brine. More significantly, three organic species, formate, acetate, and oxalate, all three of which are representative species commonly encountered in the saline aquifers that are considered target repositories for carbon sequestration. All three organic species show impacts on wettability, with the organics generally increasing the CO2 wetting of the mineral surface. Not all pure minerals respond the same to the presence of organics, with micas showing a more pronounced influence than quartz. Sandstone and limestone samples aged with different kinds of hydrocarbons, a surrogate for oil-bearing rocks, are generally more CO2-wet, with larger contact angles in the CO2/brine system. Over multiple days, the contact angle decreases, which could be attributed to partitioning of oil films off of the surface and into the CO2 phase, which drives the wettability towards the original water-wet state. This effect could be particularly important for organic rich repositories like depleted oil and gas fields or fractured shale formations where organic species could be presented both on mineral surfaces and in the aqueous phase.
Harikrishnan, A R; Dhar, Purbarun; Agnihotri, Prabhat K; Gedupudi, Sateesh; Das, Sarit Kumar
2017-06-22
Even though there are quite large studies on wettability of aqueous surfactants and a few studies on effects of nanoparticles on wettability of colloids, to the best of authors' knowledge, there is no study reported on the combined effect of surfactant and nanoparticles in altering the wettability. The present study, for the first time, reports an extensive experimental and theoretical study on the combined effect of surfactants and nanoparticles on the wettability of complex fluids such as nanocolloids on different substrates, ranging from hydrophilic with a predominantly polar surface energy component (silicon wafer and glass) to near hydrophobic range with a predominantly dispersive component of surface energy (aluminum and copper substrates). Systematically planned experiments are carried out to segregate the contributing effects of surfactants, particles, and combined particle and surfactants in modulating the wettability. The mechanisms and the governing parameters behind the interactions of nanocolloids alone and of surfactant capped nanocolloids with different surfaces are found to be grossly different. The article, for the first time, also analyzes the interplay of the nature of surfaces, surfactant and particle concentrations on contact angle, and contact angle hysteresis (CAH) of particle and surfactant impregnated colloidal suspensions. In the case of nanoparticle suspensions, the contact angle is observed to decrease for the hydrophobic system and increase for the hydrophilic systems considered. On the contrary, the combined particle and surfactant colloidal system shows a quasi-unique wetting behavior of decreasing contact angle with particle concentration on all substrates. Also interestingly, the combined particle surfactant system at all particle concentrations shows a wetting angle much lower than that of the only-surfactant case at the same surfactant concentration. Such counterintuitive observations have been explained based on the near-surface interactivity of the particle, fluid, and surfactant molecules based on effective slip length considerations. The CAH analyses of colloidal suspensions at varying surfactant and particle concentrations reveal in-depth physical insight into contact line pinning, and a unique novel relationship is established between the contact angle and differential energy for distorting the instantaneous contact angle for a pinned sessile droplet. A detailed theoretical analysis of the governing parameters influencing the wettability has been presented invoking the principles of DLVO (Derjaguin-Landau-Verwey-Overbeek), surface energy and interaction parameters influencing at the molecular scale, and the theoretical framework is found to support the experimental observations.
NASA Astrophysics Data System (ADS)
Hill, Kristina M.
Modified imbibition tests were performed on 69 subsurface samples from Monterey Formation reservoirs in the San Joaquin Valley to measure wettability variation as a result of composition and silica phase change. Contact angle tests were also performed on 6 chert samples from outcrop and 3 nearly pure mineral samples. Understanding wettability is important because it is a key factor in reservoir fluid distribution and movement, and its significance rises as porosity and permeability decrease and fluid interactions with reservoir grain surface area increase. Although the low permeability siliceous reservoirs of the Monterey Formation are economically important and prolific, a greater understanding of factors that alter their wettability will help better develop them. Imbibition results revealed a strong trend of decreased wettability to oil with increased detrital content in opal-CT phase samples. Opal-A phase samples exhibited less wettability to oil than both opal-CT and quartz phase samples of similar detrital content. Subsurface reservoir samples from 3 oil fields were crushed to eliminate the effect of capillary pressure and cleansed of hydrocarbons to eliminate wettability alterations by asphaltene, then pressed into discs of controlled density. Powder discs were tested for wettability by dispensing a controlled volume of water and motor oil onto the surface and measuring the time required for each fluid to imbibe into the sample. The syringe and software of a CAM101 tensiometer were used to control the amount of fluid dispensed onto each sample, and imbibition completion times were determined by high-speed photography for water drops; oil drop imbibition was significantly slower and imbibition was timed and determined visually. Contact angle of water and oil drops on polished chert and mineral sample surfaces was determined by image analysis and the Young-Laplace equation. Oil imbibition was significantly slower with increased detrital composition and faster with increased silica content in opal-CT and quartz phase samples, implying decreased wettability to oil with increased detrital (clay) content. However, contact angle tests showed that opal-CT is more wetting to oil with increased detritus and results for oil on quartz-phase samples were inconsistent between different proxies for detritus over their very small compositional range. Water contact angle trends also showed inconsistent wetting trends compared to imbibition tests. We believe this is because the small range in bulk detrital composition between the "pure" samples used in contact angle tests was close to analytical error and because small-scale spatial compositional variability may be significant enough to effect wettability. These experiments show that compositional variables significantly affect wettability, outweighing the effect of silica phase.
Contact angles and wettability of ionic liquids on polar and non-polar surfaces†
Sousa, Filipa L.; Silva, Nuno J. O.; Lopes-da-Silva, José A.; Coutinho, João A. P.; Freire, Mara G.
2016-01-01
Many applications involving ionic liquids (ILs) require the knowledge of their interfacial behaviour, such as wettability and adhesion. In this context, herein, two approaches were combined aiming at understanding the impact of the IL chemical structures on their wettability on both polar and non-polar surfaces, namely: (i) the experimental determination of the contact angles of a broad range of ILs (covering a wide number of anions of variable polarity, cations, and cation alkyl side chain lengths) on polar and non-polar solid substrates (glass, Al-plate, and poly-(tetrafluoroethylene) (PTFE)); and (ii) the correlation of the experimental contact angles with the cation–anion pair interaction energies generated by the Conductor-like Screening Model for Real Solvents (COSMO-RS). The combined results reveal that the hydrogen-bond basicity of ILs, and thus the IL anion, plays a major role through their wettability on both polar and non-polar surfaces. The increase of the IL hydrogen-bond accepting ability leads to an improved wettability of more polar surfaces (lower contact angles) while the opposite trend is observed on non-polar surfaces. The cation nature and alkyl side chain lengths have however a smaller impact on the wetting ability of ILs. Linear correlations were found between the experimental contact angles and the cation–anion hydrogen-bonding and cation ring energies, estimated using COSMO-RS, suggesting that these features primarily control the wetting ability of ILs. Furthermore, two-descriptor correlations are proposed here to predict the contact angles of a wide variety of ILs on glass, Al-plate, and PTFE surfaces. A new extended list is provided for the contact angles of ILs on three surfaces, which can be used as a priori information to choose appropriate ILs before a given application. PMID:26554705
Chen, Yongqiang; Xie, Quan; Sari, Ahmad; ...
2017-11-21
Wettability of the oil/brine/rock system is an essential petro-physical parameter which governs subsurface multiphase flow behaviour and the distribution of fluids, thus directly affecting oil recovery. Recent studies [1–3] show that manipulation of injected brine composition can enhance oil recovery by shifting wettability from oil-wet to water-wet. However, what factor(s) control system wettability has not been completely elucidated due to incomplete understanding of the geochemical system. To isolate and identify the key factors at play we used in this paper SO 4 2—free solutions to examine the effect of salinity (formation brine/FB, 10 times diluted formation brine/10 dFB, and 100more » times diluted formation brine/100 dFB) on the contact angle of oil droplets at the surface of calcite. We then compared contact angle results with predictions of surface complexation by low salinity water using PHREEQC software. We demonstrate that the conventional dilution approach likely triggers an oil-wet system at low pH, which may explain why the low salinity water EOR-effect is not always observed by injecting low salinity water in carbonated reservoirs. pH plays a fundamental role in the surface chemistry of oil/brine interfaces, and wettability. Our contact angle results show that formation brine triggered a strong water-wet system (35°) at pH 2.55, yet 100 times diluted formation brine led to a strongly oil-wet system (contact angle = 175°) at pH 5.68. Surface complexation modelling correctly predicted the wettability trend with salinity; the bond product sum ([>CaOH 2 +][–COO -] + [>CO 3 -][–NH +] + [>CO 3 -][–COOCa +]) increased with decreasing salinity. Finally, at pH < 6 dilution likely makes the calcite surface oil-wet, particularly for crude oils with high base number. Yet, dilution probably causes water wetness at pH > 7 for crude oils with high acid number.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Yongqiang; Xie, Quan; Sari, Ahmad
Wettability of the oil/brine/rock system is an essential petro-physical parameter which governs subsurface multiphase flow behaviour and the distribution of fluids, thus directly affecting oil recovery. Recent studies [1–3] show that manipulation of injected brine composition can enhance oil recovery by shifting wettability from oil-wet to water-wet. However, what factor(s) control system wettability has not been completely elucidated due to incomplete understanding of the geochemical system. To isolate and identify the key factors at play we used in this paper SO 4 2—free solutions to examine the effect of salinity (formation brine/FB, 10 times diluted formation brine/10 dFB, and 100more » times diluted formation brine/100 dFB) on the contact angle of oil droplets at the surface of calcite. We then compared contact angle results with predictions of surface complexation by low salinity water using PHREEQC software. We demonstrate that the conventional dilution approach likely triggers an oil-wet system at low pH, which may explain why the low salinity water EOR-effect is not always observed by injecting low salinity water in carbonated reservoirs. pH plays a fundamental role in the surface chemistry of oil/brine interfaces, and wettability. Our contact angle results show that formation brine triggered a strong water-wet system (35°) at pH 2.55, yet 100 times diluted formation brine led to a strongly oil-wet system (contact angle = 175°) at pH 5.68. Surface complexation modelling correctly predicted the wettability trend with salinity; the bond product sum ([>CaOH 2 +][–COO -] + [>CO 3 -][–NH +] + [>CO 3 -][–COOCa +]) increased with decreasing salinity. Finally, at pH < 6 dilution likely makes the calcite surface oil-wet, particularly for crude oils with high base number. Yet, dilution probably causes water wetness at pH > 7 for crude oils with high acid number.« less
Measuring the wetting angle and perimeter of single wood pulp fibers : a modified method
John H. Klungness
1981-01-01
In pulp processing development it is often necessary to measure the effect of a process variable on individual pulp fiber wettability. Such processes would include drying of market pulps, recycling of secondary fibers, and surface modification of fibers as in sizing. However, if wettability is measured on a fiber sheet surface, the results are confounded by...
Wettability modification of porous PET by atmospheric femtosecond PLD
NASA Astrophysics Data System (ADS)
Assaf, Youssef; Forstmann, Guillaume; Kietzig, Anne-Marie
2018-04-01
In this study, porous structures were created on poly(ethylene terephthalate) (PET) by femtosecond (fs) laser micromachining. While such structures offer a texture that is desirable for several applications, their wettability does not always match the application in question. The aim of this investigation is to tune the wettability of such surfaces by incorporating a controlled amount of nanoparticles into the structure. The machined PET samples were thus used as substrates for fs pulsed laser deposition (PLD) of titanium under ambient conditions. The nanoparticles were deposited as nanochain clusters due to the formation of an oxide layer between individual nanoparticles. The stability of nanoparticle incorporation was tested by placing the samples in an ultrasonic ethanol bath. Results indicated that nanoparticles were still successfully incorporated into the microstructure after sonication. Nanoparticle surface coverage was observed to be controllable through the operating fluence. The dynamic contact angles of the resulting composite surface were observed to decrease with increasing titanium incorporation. Therefore, this work highlights atmospheric fs PLD as a method for wettability modification of high surface area microstructures without undermining their topology. In addition, this technique uses almost the same equipment as the machining process by which the microstructures are initially created, further highlighting its practicality.
Shi, Xiu-Juan; Chen, Gao-Jian; Wang, Yan-Wei; Yuan, Lin; Zhang, Qiang; Haddleton, David M; Chen, Hong
2013-11-19
Surface-initiated SET-LRP was used to synthesize polymer brush containing N-isopropylacrylamide and adamantyl acrylate using Cu(I)Cl/Me6-TREN as precursor catalyst and isopropanol/H2O as solvent. Different reaction conditions were explored to investigate the influence of different parameters (reaction time, catalyst concentration, monomer concentration) on the polymerization. Copolymers with variable 1-adamantan-1-ylmethyl acrylate (Ada) content and comparable thickness were synthesized onto silicon surfaces. Furthermore, the hydrophilic and bioactive molecule β-cyclodextrin-(mannose)7 (CDm) was synthesized and complexed with adamantane via host-guest interaction. The effect of adamantane alone and the effect of CDm together with adamantane on the wettability and thermoresponsive property of surface were investigated in detail. Experimental and molecular structure analysis showed that Ada at certain content together with CDm has the greatest impact on surface wettability. When Ada content was high (20%), copolymer-CDm surfaces showed almost no CDm complexed with Ada as the result of steric hindrance.
Femtosecond laser-induced surface wettability modification of polystyrene surface
NASA Astrophysics Data System (ADS)
Wang, Bing; Wang, XinCai; Zheng, HongYu; Lam, YeeCheong
2016-12-01
In this paper, we demonstrated a simple method to create either a hydrophilic or hydrophobic surface. With femtosecond laser irradiation at different laser parameters, the water contact angle (WCA) on polystyrene's surface can be modified to either 12.7° or 156.2° from its original WCA of 88.2°. With properly spaced micro-pits created, the surface became hydrophilic probably due to the spread of the water droplets into the micro-pits. While with properly spaced micro-grooves created, the surface became rough and more hydrophobic. We investigated the effect of laser parameters on WCAs and analyzed the laser-treated surface roughness, profiles and chemical bonds by surface profilometer, scanning electron microscope (SEM) and X-ray photoelectron spectroscopy (XPS). For the laser-treated surface with low roughness, the polar (such as C—O, C=O, and O—C=O bonds) and non-polar (such as C—C or C—H bonds) groups were found to be responsible for the wettability changes. While for a rough surface, the surface roughness or the surface topography structure played a more significant role in the changes of the surface WCA. The mechanisms involved in the laser surface wettability modification process were discussed.
Li, Taohai; Li, Quanguo; Yan, Jing; Li, Feng
2014-04-21
Superhydrophobic and superoleophilic MnWO4:Dy(3+) microbouquets were successfully fabricated via a facile hydrothermal process. The surface morphologies and chemical composition were investigated by scanning electron microscopy (SEM) and X-ray powder diffraction (XRD). The wettability of the as-synthesized MnWO4:Dy(3+) microbouquet film was studied by measuring the water contact angle (CA). A static CA for water of 165° and a very low sliding angle (SA) were observed, which were closely related to both the MnWO4:Dy(3+) microbouquet structure and chemical modification. Furthermore, the as-prepared MnWO4:Dy(3+) surface showed superhydrophobicity for some corrosive liquids such as aqueous basic and salt solutions.
The Probable Explanation for the Low Friction of Natural Joints.
Pawlak, Zenon; Urbaniak, Wieslaw; Hagner-Derengowska, Magdalena; Hagner, Wojciech
2015-04-01
The surface of an articular cartilage, coated with phospholipid (PL) bilayers, plays an important role in its lubrication and movement. Intact (normal) and depleted surfaces of the joint were modelled and the pH influence on the surface interfacial energy, wettability and friction were investigated. In the experiments, the deterioration of the PL bilayer was controlled by its wettability and the applied friction. The surrounding fluid of an undamaged articular cartilage, the synovial fluid, has a pH value of approximately 7.4. Buffer solutions were formulated to represent the synovial fluid with various pH values. It was found that the surface interfacial energy was stabilised at its lowest values when the pH varied between 6.5 and 9.5. These results suggested that as the PL bilayers deteriorated, the hydration repulsion mechanism became less effective as friction increased. The decreased number of bilayers changed the wettability and lowered PL lubricant properties.
Evaluation of Reservoir Wettability and its Effect on Oil Recovery
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buckley, Jill S.
1999-07-01
The objective of this five-year project are: (1) to achieve improved understanding of the surface and interfacial properties of crude oils and their interactions with mineral surfaces, (2) to apply the results of surface studies to improve predictions of oil production from laboratory measurements, and (3) to use the results of this research to recommend ways to improve oil recovery by waterflooding. During the second year of this project we have tested the generality of the proposed mechanisms by which crude oil components can alter wetting. Using these mechanisms, we have begun a program of characterizing crude oils with respectmore » to their wettability altering potential. Wettability assessment has been improved by replacing glass with mica as a standard surface material and crude oils have been used to alter wetting in simple square glass capillary tubes in which the subsequent imbibition of water can be followed visually.« less
Gómora-Herrera, Diana; Navarrete Bolaños, Juan; Lijanova, Irina V; Olivares-Xometl, Octavio; Likhanova, Natalya V
2018-04-01
The effects exerted by the adsorption of vapors of a non-polar compound (deuterated benzene) and a polar compound (water) on the surface of Ottawa sand and a sample of reservoir sand (Channel), which was previously impregnated with silicon oil or two kinds of surfactants, (2-hydroxyethyl) trimethylammonium oleate (HETAO) and (2-hydroxyethyl)trimethylammonium azelate (HETAA), were studied by diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and thermogravimetric analysis (TGA). The surface chemistry of the sandstone rocks was elucidated by X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) with energy dispersive X-ray spectroscopy (EDX). Terminal surface groups such as hydroxyls can strongly adsorb molecules that interact with these surface groups (surfactants), resulting in a wettability change. The wettability change effect suffered by the surface after treating it with surfactants was possible to be detected by the DRIFTS technique, wherein it was observed that the surface became more hydrophobic after being treated with silicon oil and HETAO; the surface became more hydrophilic after treating it with HETAA.
Yin, Hongyao; Feng, Yujun; Billon, Laurent
2018-01-09
Amphiphilic copolymers are widely used in the fabrication of hierarchically honeycomb-structured films through a "breath figure" (BF) process because the hydrophilic block plays a key role in stabilising water templating. However, the hydrophilic monomers reported are mainly confined to acrylic acid and its derivatives, which largely limits understanding of the formation of BF arrays and the introduction of additional functions on porous films. The relationship between polymer composition, film microstructure and surface properties are also less documented. Herein, a novel melamine-based hydrophilic moiety, N-[3-({3-[(4,6-bis{[3-(dimethylamino)propyl]amino}-1,3,5-triazin-2yl)amino]propyl}(methyl)amino)propyl]methacrylamide (ANME), was incorporated into polystyrene (PS) chains by combining atom-transfer radical polymerisation and post-modification to afford three well-defined end-functionalised PS-PANME derivatives. These polymers were used to fabricate honeycomb films through the BF technique. Both inner and outer microstructures of the films were characterised by optical microscopy, AFM and SEM. Polymer hydrophilicity is enhanced upon increasing the PANME content, which results in variation of the film microstructure and porosity, and provokes a transition from Cassie-Baxter to Wenzel behaviour. Furthermore, the surface wettability of as-prepared honeycomb films and corresponding pillared films is mainly governed by film morphology, rather than by the properties of the polymers. Knowledge of the relationships between polymer composition and film structure, as well as surface wettability, is beneficial to design and prepare hierarchically porous films with desirable structures and properties. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Direct Measurement of the Wettability of Minerals Using Atomic Force Microscopy
NASA Astrophysics Data System (ADS)
Deng, Y.; Xu, L.; Lu, H.; Wang, H.; Shi, Y.
2016-12-01
The wettability of reservoir rock plays an essential role in affecting the states of fluids (water, oil, etc) in pores which are constructed with various minerals. The contact angle method, which is based on the optical microscope photographs of millimeter-sized droplets on a smooth mineral surface, is one of the most widely employed methods to evaluate the wettability of a rock. However, the real reservoir rocks are composed of several kinds of minerals and thus nonhomogeneous, which leads to different wettability at different location of the rock. The mineral grains are usually micrometer-sized so that the traditional optical contact angle method cannot obtain the wettability of different minerals in the rock. Here we used a tapping-mode atomic force microscopy (TM-AFM, MFP-3D-BIO, Asylum Research) to measure the contact angles of micrometer-sized water droplets on different minerals in a tight sand rock which is mainly composed of quartz, albite, potash feldspar and anorthite. The water droplets varied from submicron to several tens micron in diameter. With the optimization of tool and operation parameters, the AFM tip was well controlled so that the nanoscale morphology of the contact configuration between water film and the mineral surface can be obtained at high resolution without disturbing the liquid surface. The AFM results showed that the contact angles of water on quartz and albite were 30-40 ° and 37-45 °, respectively. The AFM method provides a new measure for the wettability evaluation of reservoir rocks, and it is with potential to be applied to oil and gas hydrate studies.
Effects of surface wettability and contact time on protein adhesion to biomaterial surfaces
Xu, Li-Chong; Siedlecki, Christopher A.
2013-01-01
Atomic force microscopy (AFM) was used to directly measure the adhesion forces between three test proteins and low density polyethylene (LDPE) surfaces treated by glow discharge plasma to yield various levels of water wettability. The adhesion of proteins to the LDPE substrates showed a step dependence on the wettability of surfaces as measured by the water contact angle (θ). For LDPE surfaces with θ > ∼60–65°, stronger adhesion forces were observed for bovine serum albumin, fibrinogen and human FXII than for the surfaces with θ < 60°. Smaller adhesion forces were observed for FXII than for the other two proteins on all surfaces although trends were identical. Increasing the contact time from 0 to 50 s for each protein–surface combination increased the adhesion force regardless of surface wettability. Time varying adhesion data was fit to an exponential model and free energies of protein unfolding were calculated. This data, viewed in light of previously published studies, suggests a 2-step model of protein denaturation, an early stage on the order of seconds to minutes where the outer surface of the protein interacts with the substrate and a second stage involving movement of hydrophobic amino acids from the protein core to the protein/surface interface. Impact statement The work described in this manuscript shows a stark transition between protein adherent and protein non-adherent materials in the range of water contact angles 60–65°, consistent with known changes in protein adsorption and activity. Time-dependent changes in adhesion force were used to calculate unfolding energies relating to protein–surface interactions. This analysis provides justification for a 2-step model of protein denaturation on surfaces. PMID:17466368
The impact of surface chemistry on the performance of localized solar-driven evaporation system
Yu, Shengtao; Zhang, Yao; Duan, Haoze; Liu, Yanming; Quan, Xiaojun; Tao, Peng; Shang, Wen; Wu, Jianbo; Song, Chengyi; Deng, Tao
2015-01-01
This report investigates the influence of surface chemistry (or wettability) on the evaporation performance of free-standing double-layered thin film on the surface of water. Such newly developed evaporation system is composed of top plasmonic light-to-heat conversion layer and bottom porous supporting layer. Under solar light illumination, the induced plasmonic heat will be localized within the film. By modulating the wettability of such evaporation system through the control of surface chemistry, the evaporation rates are differentiated between hydrophilized and hydrophobized anodic aluminum oxide membrane-based double layered thin films. Additionally, this work demonstrated that the evaporation rate mainly depends on the wettability of bottom supporting layer rather than that of top light-to-heat conversion layer. The findings in this study not only elucidate the role of surface chemistry of each layer of such double-layered evaporation system, but also provide additional design guidelines for such localized evaporation system in applications including desalination, distillation and power generation. PMID:26337561
The impact of surface chemistry on the performance of localized solar-driven evaporation system.
Yu, Shengtao; Zhang, Yao; Duan, Haoze; Liu, Yanming; Quan, Xiaojun; Tao, Peng; Shang, Wen; Wu, Jianbo; Song, Chengyi; Deng, Tao
2015-09-04
This report investigates the influence of surface chemistry (or wettability) on the evaporation performance of free-standing double-layered thin film on the surface of water. Such newly developed evaporation system is composed of top plasmonic light-to-heat conversion layer and bottom porous supporting layer. Under solar light illumination, the induced plasmonic heat will be localized within the film. By modulating the wettability of such evaporation system through the control of surface chemistry, the evaporation rates are differentiated between hydrophilized and hydrophobized anodic aluminum oxide membrane-based double layered thin films. Additionally, this work demonstrated that the evaporation rate mainly depends on the wettability of bottom supporting layer rather than that of top light-to-heat conversion layer. The findings in this study not only elucidate the role of surface chemistry of each layer of such double-layered evaporation system, but also provide additional design guidelines for such localized evaporation system in applications including desalination, distillation and power generation.
Femtosecond laser ablated durable superhydrophobic PTFE sheet for oil/water separation
NASA Astrophysics Data System (ADS)
Li, Wentao; Yang, Qing; Chen, Feng; Yong, Jiale; Fang, Yao; Huo, Jinglan
2017-02-01
Femtosecond laser microfabrication has been attracting increasing interest of researchers in recent years, and been applied on interface science to control the wettability of solid surfaces. Herein, we fabricate a kind of rough microstructures on polytetrafluoroethylene (PTFE) sheet by femtosecond laser. The femtosecond laser ablated surfaces show durable superhydrophobicity and ultralow water adhesion even after storing in a harsh environment for a long time, including strong acid, strong alkali, and high temperature. A penetrating microholes array was further generated on the rough superhydrophobic PTFE sheet by a subsequent mechanical drilling process. The as-prepared material was successfully applied in the field of oil/water separation due to the inverse superhydrophobicity and superoleophilicity.
Sarafzadeh, Pegah; Hezave, Ali Zeinolabedini; Ravanbakhsh, Moosa; Niazi, Ali; Ayatollahi, Shahab
2013-05-01
Microbial enhanced oil recovery (MEOR) process utilizes microorganisms or their metabolites to mobilize the trapped oil in the oil formation after primary and secondary oil recovery stages. MEOR technique is considered as more environmentally friendly and low cost process. There are several identified mechanisms for more oil recovery using MEOR processes however; wettability alteration and interfacial tension (IFT) reduction are the important ones. Enterobacter Cloacae, a facultative bio-surfactant producer bacterium, was selected as a bacterial formulation due to its known performance on IFT reduction and wettability alteration. To quantify the effects of these two mechanisms, different tests including oil spreading, in situ and ex situ core flooding, wettability measurement (Amott), IFT, viscosity and pH measurements were performed. The obtained results revealed that the experimental procedure used in this study was able to quantitatively identify the individual effects of both mechanisms on the ultimate microbial oil recovery. The results demonstrated considerable effects of both mechanisms on the tertiary oil recovery; however after a proper shut in time period, more tertiary oil was recovered because of wettability alteration mechanism. Finally, SEM images taken from the treated cores showed biofilm formation on the rock pore surfaces, which is responsible for rock surface wettability alteration. Copyright © 2013 Elsevier B.V. All rights reserved.
Graphite fiber/copper composites prepared by spontaneous infiltration
NASA Astrophysics Data System (ADS)
Wang, Hongbao; Tao, Zechao; Li, Xiangfen; Yan, Xi; Liu, Zhanjun; Guo, Quangui
2018-05-01
The major bottleneck in developing graphite fiber reinforced copper (GF/Cu) composites is the poor wettability of Cu/graphite system. Alloying element of chromium (Cr) is introduced to improve the wettability of liquid copper on graphite. Sessile drop method experiments illustrate that the contact angle of liquid Cu-Cr (1.0 wt.%) alloy on graphite substrate decreases to 43° at 1300 °C. The improvement of wettability is related to the formation of chromium carbide layer at interface zone. Based on the wetting experiment, a spontaneous infiltration method for preparing GF/Cu composites is proposed. Unidirectional GF preforms are infiltrated by Cu-Cr alloys without external pressure in a tubular furnace. Results reveal that the GF preform can be fully infiltrated by Cu-Cr alloy (8 wt.%) spontaneously when fiber volume fraction is 40%. The coefficient of thermal expansion (CTE) of GF/Cu-Cr (8.0 wt.%) composites is 4.68 × 10-6/K along the longitudinal direction.
Electrokinetic mechanism of wettability alternation at oil-water-rock interface
NASA Astrophysics Data System (ADS)
Tian, Huanhuan; Wang, Moran
2017-12-01
Design of ions for injection water may change the wettability of oil-brine-rock (OBR) system, which has very important applications in enhanced oil recovery. Though ion-tuned wettability has been verified by various experiments, the mechanism is still not clear. In this review paper, we first present a comprehensive summarization of possible wettability alteration mechanisms, including fines migration or dissolution, multicomponent ion-exchange (MIE), electrical double layer (EDL) interaction between rock and oil, and repulsive hydration force. To clarify the key mechanism, we introduce a complete frame of theories to calculate attribution of EDL repulsion to wettability alteration by assuming constant binding forces (no MIE) and rigid smooth surface (no fines migration or dissolution). The frame consists of three parts: the classical Gouy-Chapman model coupled with interface charging mechanisms to describe EDL in oil-brine-rock systems, three methods with different boundary assumptions to evaluate EDL interaction energy, and the modified Young-Dupré equation to link EDL interaction energy with contact angle. The quantitative analysis for two typical oil-brine-rock systems provides two physical maps that show how the EDL interaction influences contact angle at different ionic composition. The result indicates that the contribution of EDL interaction to ion-tuned wettability for the studied system is not quite significant. The classical and advanced experimental work using microfabrication is reviewed briefly on the contribution of EDL repulsion to wettability alteration and compared with the theoretical results. It is indicated that the roughness of real rock surface may enhance EDL interaction. Finally we discuss some pending questions, perspectives and promising applications based on the mechanism.
NASA Astrophysics Data System (ADS)
Yang, Guang; Song, Jialu; Hou, Xianghui
2018-05-01
Highly hydrophobic thermosetting polyurethane (TSU) surfaces with micro-nano hierarchical structures were developed by a simple process combined with sandpaper templates and nano-silica embellishment. Sandpapers with grit sizes varying from 240 to 7000 grit were used to obtain micro-scale roughness on an intrinsic hydrophilic TSU surface. The surface wettability was investigated by contact angle measurement. It was found that the largest contact angle of the TSU surface without nanoparticles at 102 ± 3° was obtained when the template was 240-grit sandpaper and the molding progress started after 45 min curing of TSU. Silica nanoparticles modified with polydimethylsiloxane were scattered onto the surfaces of both the polymer and the template to construct the desirable nanostructures. The influences of the morphology, surface composition and the silica content on the TSU surface wettability were studied by scanning electron microscopy (SEM), attenuated total reflection (ATR) infrared (IR) spectroscopy, X-ray photoelectron spectroscopy (XPS) and contact angle measurements. The surface of the TSU/SiO2 nanocomposites containing 4 wt% silica nanoparticles exhibited a distinctive dual-scale structure and excellent hydrophobicity with the contact angle above 150°. The mechanism of wettability was also discussed by Wenzel model and Cassie-Baxter model.
Adsorption energy as a metric for wettability at the nanoscale
Giro, Ronaldo; Bryant, Peter W.; Engel, Michael; Neumann, Rodrigo F.; Steiner, Mathias B.
2017-01-01
Wettability is the affinity of a liquid for a solid surface. For energetic reasons, macroscopic drops of liquid form nearly spherical caps. The degree of wettability is then captured by the contact angle where the liquid-vapor interface meets the solid-liquid interface. As droplet volumes shrink to the scale of attoliters, however, surface interactions become significant, and droplets assume distorted shapes. In this regime, the contact angle becomes ambiguous, and a scalable metric for quantifying wettability is needed, especially given the emergence of technologies exploiting liquid-solid interactions at the nanoscale. Here we combine nanoscale experiments with molecular-level simulation to study the breakdown of spherical droplet shapes at small length scales. We demonstrate how measured droplet topographies increasingly reveal non-spherical features as volumes shrink. Ultimately, the nanoscale droplets flatten out to form layer-like molecular assemblies at the solid surface. For the lack of an identifiable contact angle at small scales, we introduce a droplet’s adsorption energy density as a new metric for a liquid’s affinity for a surface. We discover that extrapolating the macroscopic idealization of a drop to the nanoscale, though it does not geometrically resemble a realistic droplet, can nonetheless recover its adsorption energy if line tension is included. PMID:28397869
Steady anti-icing coatings on weathering steel fabricated by HVOF spraying
NASA Astrophysics Data System (ADS)
Xi, Naiyuan; Liu, Yan; Zhang, Xiangning; Liu, Nan; Fu, Hao; Hang, Zongqiu; Yang, Guiying; Chen, Hui; Gao, Wei
2018-06-01
Super-hydrophobic surface has attracted much attention over the years due to their unique wettability and excellent performances like highly hydrophobic, ice-phobic, etc. A fast and straightforward fabrication method in this work was proposed to prepare super-hydrophobic coating on weathering steel substrate by high velocity oxygen-fuel (HVOF) spraying, which aimed to delay the beginning freezing time, decrease the ice accumulation amount and reduce the adhesion of ice. The resulting showed that the contact angle of the coatings was about 154.3 ± 3.0°, and the sliding angle was about 4.1 ± 0.1°. Moreover, compared with steel substrate, as-prepared super-hydrophobic coatings exhibit memorable promotion in reducing icing weight and repelling ice.
Impact of carbon nanotubes based nanofluid on oil recovery efficiency using core flooding
NASA Astrophysics Data System (ADS)
Soleimani, Hassan; Baig, Mirza Khurram; Yahya, Noorhana; Khodapanah, Leila; Sabet, Maziyar; Demiral, Birol M. R.; Burda, Marek
2018-06-01
This study aims to investigate the influence of carbon nanotubes based nanofluid on interfacial tension and oil recovery efficiency. Practically multi-walled carbon nanotubes were successfully synthesized using chemical vapour deposition technique and characterized using X-ray diffraction and Field Emission Scanning Electron microscope in order to understand its structure, shape, and morphology. Nanofluids are one of the interesting new agents for enhanced oil recovery (EOR) that can change the reservoir rock-fluid properties in terms of interfacial tension and wettability. In this work, different concentration of carbon nanotubes based fluids were prepared and the effect of each concentration on surface tension was determined using pendant drop method. After specifying the optimum concentration of carbon nanotubes based nanofluid, core flooding experiment was conducted by two pore volume of brine and two pore volume of nanofluid and then oil recovery factor was calculated. The results show that carbon nanotubes can bring in additional recovery factor of 18.57% in the glass bead sample. It has been observed that nanofluid with high surface tension value gives higher recovery. It was found that the optimum value of concentration is 0.3 wt% at which maximum surface tension of 33.46 mN/m and oil recovery factor of 18.57% was observed. This improvement in recovery factor can be recognized due to interfacial tension reduction and wettability alteration.
Bioinspired Functional Surfaces for Technological Applications
NASA Astrophysics Data System (ADS)
Sharma, Vipul; Kumar, Suneel; Reddy, Kumbam Lingeshwar; Bahuguna, Ashish; Krishnan, Venkata
2016-08-01
Biological matters have been in continuous encounter with extreme environmental conditions leading to their evolution over millions of years. The fittest have survived through continuous evolution, an ongoing process. Biological surfaces are the important active interfaces between biological matters and the environment, and have been evolving over time to a higher state of intelligent functionality. Bioinspired surfaces with special functionalities have grabbed attention in materials research in the recent times. The microstructures and mechanisms behind these functional biological surfaces with interesting properties have inspired scientists to create artificial materials and surfaces which possess the properties equivalent to their counterparts. In this review, we have described the interplay between unique multiscale (micro- and nano-scale) structures of biological surfaces with intrinsic material properties which have inspired researchers to achieve the desired wettability and functionalities. Inspired by naturally occurring surfaces, researchers have designed and fabricated novel interfacial materials with versatile functionalities and wettability, such as superantiwetting surfaces (superhydrophobic and superoleophobic), omniphobic, switching wettability and water collecting surfaces. These strategies collectively enable functional surfaces to be utilized in different applications such as fog harvesting, surface-enhanced Raman spectroscopy (SERS), catalysis, sensing and biological applications. This paper delivers a critical review of such inspiring biological surfaces and artificial bioinspired surfaces utilized in different applications, where material science and engineering have merged by taking inspiration from the natural systems.
Desrousseaux, Camille; Cueff, Régis; Aumeran, Claire; Garrait, Ghislain; Mailhot-Jensen, Bénédicte; Traoré, Ousmane; Sautou, Valérie
2015-01-01
Medical devices can be contaminated by microbial biofilm which causes nosocomial infections. One of the strategies for the prevention of such microbial adhesion is to modify the biomaterials by creating micro or nanofeatures on their surface. This study aimed (1) to nanostructure acrylonitrile-butadiene-styrene (ABS), a polymer composing connectors in perfusion devices, using Anodic Alumina Oxide templates, and to control the reproducibility of this process; (2) to characterize the physico-chemical properties of the nanostructured surfaces such as wettability using captive-bubble contact angle measurement technique; (3) to test the impact of nanostructures on Staphylococcus epidermidis biofilm development. Fabrication of Anodic Alumina Oxide molds was realized by double anodization in oxalic acid. This process was reproducible. The obtained molds present hexagonally arranged 50 nm diameter pores, with a 100 nm interpore distance and a length of 100 nm. Acrylonitrile-butadiene-styrene nanostructures were successfully prepared using a polymer solution and two melt wetting methods. For all methods, the nanopicots were obtained but inside each sample their length was different. One method was selected essentially for industrial purposes and for better reproducibility results. The flat ABS surface presents a slightly hydrophilic character, which remains roughly unchanged after nanostructuration, the increasing apparent wettability observed in that case being explained by roughness effects. Also, the nanostructuration of the polymer surface does not induce any significant effect on Staphylococcus epidermidis adhesion. PMID:26284922
Liu, Jianxi; Li, Jinlong; Yu, Bo; Ma, Baodong; Zhu, Yangwen; Song, Xinwang; Cao, Xulong; Yang, Wu; Zhou, Feng
2011-09-20
A novel compound of an imidazolium type of ionic liquid (IL) containing a biomimetic catecholic functional group normally seen in mussel adhesive proteins was synthesized. The IL can be immobilized on a silicon surface and a variety of other engineering material surfaces via the catecholic anchor, allowing the tribological protection of these substrates for engineering applications. The surface wetting and adhesive properties and the tribological property of the synthesized self-assembled monolayers (SAMs) are successfully modulated by altering the counteranions. The chemical composition and wettability of the IL SAMs were characterized by means of X-ray photoelectron spectroscopy (XPS) and contact angle (CA) measurements. The adhesive and friction forces were measured with an atomic force microscope (AFM) on the nanometer scale. IL composite films were prepared by spin coating thin IL films on top of the SAMs. The macrotribological properties of these IL composite films were investigated with a pin-on-disk tribometer. The results indicate that the presence of IL SAMs on a surface can improve the wettability of spin-coated ionic liquids and thus the film quality and the tribological properties. These films registered a reduced friction coefficient and a significantly enhanced durability and load-carrying capacity. The tribological properties of the composite films are better than those of pure IL films because the presence of the monolayers improves the adhesion and compatibility of spin-coated IL films with substrates. © 2011 American Chemical Society
NASA Astrophysics Data System (ADS)
Ngo, Chi-Vinh; Chun, Doo-Man
2018-03-01
Recently, controlling the wettability of a metallic surface so that it is either superhydrophobic or superhydrophilic has become important for many applications. However, conventional techniques require long fabrication times or involve toxic chemicals. Herein, through a combination of pulse laser ablation and simple post-processing, the surface of aluminum was controlled to either superhydrophobic or superhydrophilic in a short time of only a few hours. In this study, grid patterns were first fabricated on aluminum using a nanosecond pulsed laser, and then additional post-processing without any chemicals was used. Under heat treatment, the surface became superhydrophobic with a contact angle (CA) greater than 150° and a sliding angle (SA) lower than 10°. Conversely, when immersed in boiling water, the surface became superhydrophilic with a low contact angle. The mechanism for wettability change was also explained. The surfaces, obtained in a short time with environmentally friendly fabrication and without the use of toxic chemicals, could potentially be applied in various industry and manufacturing applications such as self-cleaning, anti-icing, and biomedical devices.
Novel robust cellulose-based foam with pH and light dual-response for oil recovery
NASA Astrophysics Data System (ADS)
Wang, Qian; Meng, Guihua; Wu, Jianning; Wang, Yixi; Liu, Zhiyong; Guo, Xuhong
2018-05-01
We fabricated pH and light dual-responsive adsorption materials which could induce the transition of surface wettability between hydrophobicity and hydrophilicity by using ATRP. The structure and morphology of adsorption materials were confirmed by ATR-FTIR, XPS, TGA and SEM. It showed that the modified cellulose (CE)-based foam was hydrophobic, which can adsorb a range of oils and organic solvents in water under pH = 7.0 or visible light irradiation (λ > 500 nm). Meanwhile, the wettability of robust CE-based foam can convert hydrophobicity into hydrophilicity and underwater oleophobicity under pH = 3.0 or UV irradiation (λ = 365 nm), giving rise to release oils and organic solvents. Most important of all, the adsorption and desorption processes of the modified CE-based foam could be switched by external stimuli. Furthermore, the modified CE-based foam was not damaged and still retained original performance after reversible cycle repeated for many times with variation of surface wettability. In short, it indicates that CE-based foam materials with switchable surface wettability are new responsive absorbent materials and have owned potential application in the treatment of oil recovery.
Kim, Yongman; Wan, Jiamin; Kneafsey, Timothy J; Tokunaga, Tetsu K
2012-04-03
Wettability of reservoir minerals and rocks is a critical factor controlling CO(2) mobility, residual trapping, and safe-storage in geologic carbon sequestration, and currently is the factor imparting the greatest uncertainty in predicting capillary behavior in porous media. Very little information on wettability in supercritical CO(2) (scCO(2))-mineral-brine systems is available. We studied pore-scale wettability and wettability alteration in scCO(2)-silica-brine systems using engineered micromodels (transparent pore networks), at 8.5 MPa and 45 °C, over a wide range of NaCl concentrations up to 5.0 M. Dewetting of silica surfaces upon reactions with scCO(2) was observed through water film thinning, water droplet formation, and contact angle increases within single pores. The brine contact angles increased from initial values near 0° up to 80° with larger increases under higher ionic strength conditions. Given the abundance of silica surfaces in reservoirs and caprocks, these results indicate that CO(2) induced dewetting may have important consequences on CO(2) sequestration including reducing capillary entry pressure, and altering quantities of CO(2) residual trapping, relative permeability, and caprock integrity.
Novel robust cellulose-based foam with pH and light dual-response for oil recovery
NASA Astrophysics Data System (ADS)
Wang, Qian; Meng, Guihua; Wu, Jianning; Wang, Yixi; Liu, Zhiyong; Guo, Xuhong
2018-06-01
We fabricated pH and light dual-responsive adsorption materials which could induce the transition of surface wettability between hydrophobicity and hydrophilicity by using ATRP. The structure and morphology of adsorption materials were confirmed by ATR-FTIR, XPS, TGA and SEM. It showed that the modified cellulose (CE)-based foam was hydrophobic, which can adsorb a range of oils and organic solvents in water under pH = 7.0 or visible light irradiation ( λ > 500 nm). Meanwhile, the wettability of robust CE-based foam can convert hydrophobicity into hydrophilicity and underwater oleophobicity under pH = 3.0 or UV irradiation ( λ = 365 nm), giving rise to release oils and organic solvents. Most important of all, the adsorption and desorption processes of the modified CE-based foam could be switched by external stimuli. Furthermore, the modified CE-based foam was not damaged and still retained original performance after reversible cycle repeated for many times with variation of surface wettability. In short, it indicates that CE-based foam materials with switchable surface wettability are new responsive absorbent materials and have owned potential application in the treatment of oil recovery.
Smart Polymers with Special Wettability.
Chang, Baisong; Zhang, Bei; Sun, Taolei
2017-01-01
Surface wettability plays a key role in addressing issues ranging from basic life activities to our daily life, and thus being able to control it is an attractive goal. Learning from nature, both of its structure and function, brings us much inspiration in designing smart polymers to tackle this major challenge. Life functions particularly depend on biomolecular recognition-induced interfacial properties from the aqueous phase onto either "soft" cell and tissue or "hard" inorganic bone and tooth surfaces. The driving force is noncovalent weak interactions rather than strong covalent combinations. An overview is provided of the weak interactions that perform vital actions in mediating biological processes, which serve as a basis for elaborating multi-component polymers with special wettabilities. The role of smart polymers from molecular recognitions to macroscopic properties are highlighted. The rationale is that highly selective weak interactions are capable of creating a dynamic synergetic communication in the building components of polymers. Biomolecules could selectively induce conformational transitions of polymer chains, and then drive a switching of physicochemical properties, e.g., roughness, stiffness and compositions, which are an integrated embodiment of macroscopic surface wettabilities. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
ODS - modified TiO2 nanoparticles for the preparation of self-cleaning superhydrophobic coating
NASA Astrophysics Data System (ADS)
Kokare, Ashvini M.; Sutar, Rajaram S.; Deshmukh, S. G.; Xing, Ruimin; Liu, Shanhu; Latthe, Sanjay S.
2018-05-01
Rolling water drops takes off dust particles from lotus leaf showing self-cleaning performance. Self-cleaning effect has great importance in industry as well as in daily life. The present paper describes the preparation of self-cleaning superhydrophobic coating through simple and low cost dip coating technique. The prepared superhydrophobic surface enact as lotus leaf. Firstly TiO2 nanoparticles were dispersed in ethanol and different concentration of octadecyltrichlorosilane (ODS) was added in TiO2 dispersion. The effect of number of deposition layer on the wettability of the coating was studied. The coating prepared from five deposition layers showed contact angle higher than 150° and sliding angle less than 10°. The superhydrophobicity increases with increasing concentration of ODS. The hierarchical rough morphology which is preferable for superhydrophobicity was obtained. The prepared coatings were stable against water jet impact and showed repellent towards colored and muddy water. Such superhydrophobic coating can find enormous scope in self-cleaning application.
Preheat effect on titanium plate fabricated by sputter-free selective laser melting in vacuum
NASA Astrophysics Data System (ADS)
Sato, Yuji; Tsukamoto, Masahiro; Shobu, Takahisa; Yamashita, Yorihiro; Yamagata, Shuto; Nishi, Takaya; Higashino, Ritsuko; Ohkubo, Tomomasa; Nakano, Hitoshi; Abe, Nobuyuki
2018-04-01
The dynamics of titanium (Ti) melted by laser irradiation was investigated in a synchrotron radiation experiment. As an indicator of wettability, the contact angle between a selective laser melting (SLM) baseplate and the molten Ti was measured by synchrotron X-rays at 30 keV during laser irradiation. As the baseplate temperature increased, the contact angle decreased, down to 28° at a baseplate temperature of 500 °C. Based on this result, the influence of wettability of a Ti plate fabricated by SLM in a vacuum was investigated. It was revealed that the improvement of wettability by preheating suppressed sputtering generation, and a surface having a small surface roughness was fabricated by SLM in a vacuum.
NASA Astrophysics Data System (ADS)
Hizir, F. E.; Hardt, D. E.
2017-05-01
An in-depth understanding of the liquid transport in roll-based printing systems is essential for advancing the roll-based printing technology and enhancing the performance of the printed products. In this study, phase-field simulations are performed to characterize the liquid transport in roll-based printing systems, and the phase-field method is shown to be an effective tool to simulate the liquid transport. In the phase-field simulations, the liquid transport through the ink transfer rollers is approximated as the stretching and splitting of liquid bridges with pinned or moving contact lines between vertically separating surfaces. First, the effect of the phase-field parameters and the mesh characteristics on the simulation results is examined. The simulation results show that a sharp interface limit is approached as the capillary width decreases while keeping the mobility proportional to the capillary width squared. Close to the sharp interface limit, the mobility changes over a specified range are observed to have no significant influence on the simulation results. Next, the ink transfer from the cells on the surface of an ink-metering roller to the surface of stamp features is simulated. Under negligible inertial effects and in the absence of gravity, the amount of liquid ink transferred from an axisymmetric cell with low surface wettability to a stamp with high surface wettability is found to increase as the cell sidewall steepness and the cell surface wettability decrease and the stamp surface wettability and the capillary number increase. Strategies for improving the resolution and quality of roll-based printing are derived based on an analysis of the simulation results. The application of novel materials that contain cells with irregular surface topography to stamp inking in high-resolution roll-based printing is assessed.
Banuprasad, Theneyur Narayanaswamy; Vinay, Thamarasseril Vijayan; Subash, Cherumannil Karumuthil; Varghese, Soney; George, Sajan D; Varanakkottu, Subramanyan Namboodiri
2017-08-23
In spite of the reported temperature dependent tunability in wettability of poly(N-isopropylacrylamide) (PNIPAAm) surfaces for below and above lower critical solution temperature (32 °C), the transport of water droplets is inhibited by the large contact angle hysteresis. Herein, for the first time, we report on-demand, fast, and reconfigurable droplet manipulation over a PNIPAAm grafted structured polymer surface using temperature-induced wettability gradient. Our study reveals that the PNIPAAm grafted on intrinsically superhydrophobic surfaces exhibit hydrophilic nature with high contact angle hysteresis below 30 °C and superhydrophobic nature with ultralow contact angle hysteresis above 36 °C. The transition region between 30 and 36 °C is characterized by a large change in water contact angle (∼100°) with a concomitant change in contact angle hysteresis. By utilizing this "transport zone" wherein driving forces overcome the frictional forces, we demonstrate macroscopic transport of water drops with a maximum transport velocity of approximately 40 cm/s. The theoretical calculations on the force measurements concur with dominating behavior of driving forces across the transport zone. The tunability in transport velocity by varying the temperature gradient along the surface or the inclination angle of the surface (maximum angle of 15° with a reduced velocity 0.4 mm/s) is also elucidated. In addition, as a practical application, coalescence of water droplets is demonstrated by using the temperature controlled wettability gradient. The presented results are expected to provide new insights on the design and fabrication of smart multifunctional surfaces for applications such as biochemical analysis, self-cleaning, and microfluidics.
Modeling CO2-Water-Mineral Wettability and Mineralization for Carbon Geosequestration.
Liang, Yunfeng; Tsuji, Shinya; Jia, Jihui; Tsuji, Takeshi; Matsuoka, Toshifumi
2017-07-18
Carbon dioxide (CO 2 ) capture and storage (CCS) is an important climate change mitigation option along with improved energy efficiency, renewable energy, and nuclear energy. CO 2 geosequestration, that is, to store CO 2 under the subsurface of Earth, is feasible because the world's sedimentary basins have high capacity and are often located in the same region of the world as emission sources. How CO 2 interacts with the connate water and minerals is the focus of this Account. There are four trapping mechanisms that keep CO 2 in the pores of subsurface rocks: (1) structural trapping, (2) residual trapping, (3) dissolution trapping, and (4) mineral trapping. The first two are dominated by capillary action, where wettability controls CO 2 and water two-phase flow in porous media. We review state-of-the-art studies on CO 2 /water/mineral wettability, which was found to depend on pressure and temperature conditions, salt concentration in aqueous solutions, mineral surface chemistry, and geometry. We then review some recent advances in mineral trapping. First, we show that it is possible to reproduce the CO 2 /water/mineral wettability at a wide range of pressures using molecular dynamics (MD) simulations. As the pressure increases, CO 2 gas transforms into a supercritical fluid or liquid at ∼7.4 MPa depending on the environmental temperature. This transition leads to a substantial decrease of the interfacial tension between CO 2 and reservoir brine (or pure water). However, the wettability of CO 2 /water/rock systems depends on the type of rock surface. Recently, we investigated the contact angle of CO 2 /water/silica systems with two different silica surfaces using MD simulations. We found that contact angle increased with pressure for the hydrophobic (siloxane) surface while it was almost constant for the hydrophilic (silanol) surface, in excellent agreement with experimental observations. Furthermore, we found that the CO 2 thin films at the CO 2 -hydrophilic silica and CO 2 -H 2 O interfaces displayed a linear correlation, which can in turn explain the constant contact angle on the hydrophilic silica surface. In view of the literature and our study results, a few recommendations seem necessary to construct a molecular system suitable to study wettability with MD simulations. Future work should be conducted to determine the influence of brine salinity on the wettability of minerals with high cation exchange capacity. Mineral trapping is believed to be an extremely slow process, likely taking thousands of years. However, a recent pilot study demonstrated that CO 2 mineralization occurs within 2 years in highly reactive basalt reservoirs. A first-principles MD study has also shown that carbonation reactions occur rapidly at the surface oxygen sites of a reactive mineral. We observed carbonate ions on both a newly cleaved quartz surface (without hydrolysis), and a basalt andesine surface after hydrolysis in a CO 2 -rich environment. Future work should consider the influence of water, gas impurities, and mineral cation type on carbonation.
The impact of diamond nanocrystallinity on osteoblast functions.
Yang, Lei; Sheldon, Brian W; Webster, Thomas J
2009-07-01
Nanocrystalline diamond has been proposed as an anti-abrasive film on orthopedic implants. In this study, osteoblast (bone forming cells) functions including adhesion (up to 4h), proliferation (up to 5 days) and differentiation (up to 21 days) on different diamond film topographies were systematically investigated. In order to exclude interferences from changes in surface chemistry and wettability (energy), diamond films with nanometer and micron scale topographies were fabricated through microwave plasma enhanced chemical-vapor-deposition and hydrogen plasma treatment. Scanning electron microscopy (SEM), atomic force microscopy (AFM), Raman spectroscopy and water contact angle measurements verified the similar surface chemistry and wettability but varied topographies for all of the diamond films prepared on silicon in this study. Cytocompatibility assays demonstrated enhanced osteoblast functions (including adhesion, proliferation, intracellular protein synthesis, alkaline phosphatase activity and extracellular calcium deposition) on nanocrystalline diamond compared to submicron diamond grain size films for all time periods tested up to 21 days. An SEM study of osteoblast attachment helped to explain the topographical impact diamond had on osteoblast functions by showing altered filopodia extensions on the different diamond topographies. In summary, these results provided insights into understanding the role diamond nanotopography had on osteoblast interactions and more importantly, the application of diamond films to improve orthopedic implant lifetimes.
Macro and micro wettability of hydrophobic siloxane films with hierarchical surface roughness
NASA Astrophysics Data System (ADS)
Terpilowski, Konrad; Goncharuk, Olena; Gun’ko, Vladimir M.
2018-07-01
A method has been proposed to control the macro- and micro-wetting properties of hydrophobic surfaces through changes in the roughness due to modifying siloxane films with silica microparticles (MP). An experimental and theoretical analysis of macro- and micro-wettability dependence on the roughness of a film surface was carried out by combination of SEM and XPS methods with evaluation of equilibrium contact angles from Tadmor’s equation. SEM images (environmental mode) allowed characterizing the mosaic hydrophobicity/hydrophilicity of the siloxane film surface. Hydrophobic siloxane films filled with silica MP were synthesized on the plasma activated and non-activated glass substrates by the sol-gel dip-coating method using tetraethylorthosilicate based precursor compositions with subsequent reaction with hexamethyldisilazane. The values of water contact angles higher than 150° indicating a superhydrophobic effect were observed for films with combining nano- and micro-hierarchical roughness. Moreover, considering wettability on the micro scale the hybrid effect was discovered and confirmed by the SEM and XPS studies showing the presence of not only hydrophobic but also hydrophilic surface domains.
Spatial Control of Condensation using Chemical Micropatterns
NASA Astrophysics Data System (ADS)
Murphy, Kevin; Hansen, Ryan; Nath, Saurabh; Retterer, Scott; Collier, Patrick; Boreyko, Jonathan; Nature-Inspired Fluids; Interfaces Team; CenterNanophase Materials Sciences Team
2015-11-01
Surfaces exhibiting wettability patterns can spatially control the nucleation of condensation to enable enhanced fog harvesting and phase-change heat transfer. To date, studies of patterned condensation have utilized a combination of chemical and topographical features, making it difficult to isolate the effects of intrinsic wettability versus surface roughness on spatially controlling the condensate. Here, we fabricate chemical micropatterns consisting of hydrophilic silicon oxide and a smooth hydrophobic silane monolayer to isolate the effects of changes in intrinsic wettability on the spatial control of condensation. Complete spatial control, defined as every nucleation and growth event occurring exclusively on the hydrophilic features, was observed even for supercooled droplets at high water vapor supersaturation. However, this complete spatial control was found to break down beyond a critical spacing that depended upon the extent of supersaturation. The average diameter of condensate was found to be smaller for the chemically micropatterned surfaces compared to a uniformly hydrophobic surface. Control of inter-droplet spacing between supercooled condensate through chemical patterning can be employed to minimize the growth of inter-droplet frost on cold surfaces.
Chandaluri, Chanchayya Gupta; Pelossof, Gilad; Tel-Vered, Ran; Shenhar, Roy; Willner, Itamar
2016-01-20
ITO electrodes modified with a nanopatterned film of polystyrene-block-poly(2-vinylpyridine), PS-b-P2VP, where the P2VP domains are quaternized with iodomethane, are used for selective deposition of redox-active materials. Electrochemical studies (cyclic voltammetry, Faradaic impedance measurements) indicate that the PS domains insulate the conductive surface toward redox labels in solution. In turn, the quaternized P2VP domains electrostatically attract negatively charged redox labels solubilized in the electrolyte solution, resulting in an effective electron transfer between the electrode and the redox label. This phenomenon is implemented for the selective deposition of the electroactive Prussian blue on the nanopatterned surface and for the electrochemical deposition of Au nanoparticles, modified with a monolayer of p-aminothiophenol/2-mercaptoethanesulfonic acid, on the quaternized P2VP domains. The patterned Prussian blue-modified surface enables controlling the wettability properties by the content of the electrochemically deposited Prussian blue. Controlled wettability is unattainable with the homopolymer-modified surface, attesting to the role of the nanopattern.
Feng, Xunda; Mei, Shilin; Jin, Zhaoxia
2011-12-06
We apply the concept of wettability transition to manipulate the morphology and entrapment of polymer nanostructures inside cylindrical nanopores of anodic aluminum oxide (AAO) membranes. When AAO/polystyrene (PS) hybrids, i.e., AAO/PS nanorods or AAO/PS nanotubes, are immersed into a polyethylene glycol (PEG) reservoir above the glass transition temperature of PS, a wettability transition from wetting to nonwetting of PS can be triggered due to the invasion of the more wettable PEG melt. The wettability transition enables us to develop a nondestructive method to entrap hemispherically capped nanorods inside nanopores. Moreover, we can obtain single nanorods with the desired aspect ratio by further dissolving the AAO template, in contrast to the drawbacks of nonuniformity or destructiveness from the conventional ultrasonication method. In the case of AAO/PS nanotubes, the wettability transition induced dewetting of PS nanotube walls results in the disconnection and entrapment of nonwetting PS domains (i.e., nanospheres, nanocapsules, or capped nanorods). Moreover, PEG is then washed to recover the pristine wettability of PS on the alumina surface; further annealing of the PS nanospheres inside AAO nanopores under vacuum can generate some unique nanostructures, particularly semicylindrical nanorods. © 2011 American Chemical Society
Wettability of three Honduran bamboo species
X. B. Li; T.F. Shube; C.Y. Hse
2004-01-01
This study was initiated to determine the wettability of three Honduran bamboo species by contact-angiemeasurements. Static contact angles of urea formaldehyde (UF), phenol formaldehyde (PF), isocyanate (ISO) and distilled water on the bamboo surfaces were measured. The effects of bamboo species, layer (outer, middle and inner) and chemical treatment (hydrochloric acid...
Surfactant and Irrigation Effects on Runoff, Erosion, and Water Retention of Three Wettable Soils
USDA-ARS?s Scientific Manuscript database
Surfactants are chemical compounds that change the contact angle of water on solid surfaces and are commonly used to increase infiltration into hydrophobic soil. Since production fields with water-repellent soil often contain areas of wettable soil, surfactants applied to such fields will likely be ...
Surfactant and irrigation effects on wettable soils: Runoff, erosion, and water retention responses
USDA-ARS?s Scientific Manuscript database
Surfactants are chemical compounds that change the contact angle of water on solid surfaces and are commonly used to increase infiltration into hydrophobic soil. Since production fields with water-repellent soil often contain areas of wettable soil, surfactants applied to such fields will likely be ...
Watanabe, Satoshi; Akiyoshi, Yuri; Matsumoto, Mutsuyoshi
2014-01-01
We report a soft liquid-phase adsorption (SLPA) technique for the fabrication of organic semiconductor films on wettability-patterned substrates using toluene/water emulsions. Wettability-patterned substrates were obtained by the UV-ozone treatment of self-assembled monolayers of silane coupling agents on glass plates using a metal mask. Organic semiconductor polymer films were formed selectively on the hydrophobic part of the wettability-patterned substrates. The thickness of the films fabricated by the SLPA technique is significantly larger than that of the films fabricated by dip-coating and spin-coating techniques. The film thickness can be controlled by adjusting the volume ratio of toluene to water, immersion angle, immersion temperature, and immersion time. The SLPA technique allows for the direct production of organic semiconductor films on wettability-patterned substrates with minimized material consumption and reduced number of fabrication steps.
Lallbeeharry, P; Tian, Y; Fu, N; Wu, W D; Woo, M W; Selomulya, C; Chen, X D
2014-09-01
Mixing surfactants with whole milk feed before spray drying could be a commercially favorable approach to produce instant whole milk powders in a single step. Pure whole milk powders obtained directly from spray drying often have a high surface fat coverage (up to 98%), rendering them less stable during storage and less wettable upon reconstitution. Dairy industries often coat these powders with lecithin, a food-grade surfactant, in a secondary fluidized-bed drying stage to produce instant powders. This study investigated the changes in wetting behavior on the surface of a whole milk particle caused by the addition of surfactants before drying. Fresh whole milk was mixed with 0.1% (wt/wt) Tween 80 or 1% (wt/wt) lecithin (total solids), and the wetting behavior of the shell formed by each sample was captured using a single-droplet drying device at intermediate drying stages as the shell was forming. The addition of surfactants improved shell wettability from the beginning of shell formation, producing more wettable milk particles after drying. The increase in surfactant loading by 10 times reduced the wetting time from around 30s to <5s. At the same loading of 1% (wt/wt; total solids), milk particles with Tween 80 were much more wettable than those with lecithin (<5s compared with >30s). We proposed that Tween 80 could adsorb at the oil-water interface of fat globules, making the surface fat more wettable, whereas lecithin tends to combine with milk proteins to form a complex, which then competes for the air-water surface with fat globules. Spray-drying experiments confirmed the greatly improved wettability of whole milk powders by the addition of either 0.1% (wt/wt) Tween 80 or 1% (wt/wt) lecithin; wetting time was reduced from 35±4s to <15s. To the best of our knowledge, this is the first time that a dynamic droplet drying system has been used to elucidate the complex interactions between ionic or nonionic surfactants and milk components (both proteins and fat), as well as the resultant effect on the development of milk particle functionality during drying. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Structural, surface wettability and antibacterial properties of HPMC-ZnO nanocomposite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rao, B. Lakshmeesha; Asha, S.; Madhukumar, R.
The developed hydroxypropyl methylcellulose (HPMC)/Zinc oxide (ZnO) nanocomposite films were examined for structural property and surface wettability using X-ray diffraction and contact angle measurement. Antibacterial activity of these films was evaluated as a function of ZnO concentration. The microstructuralline parameters ( and (g in %)) decreased with increasing concentration of ZnO nanoparticles and there was increase in hydrophilicity. Addition of ZnO nanoparticles in films resulted in antimicrobial activity against tested microorganisms.
Ju, Jie; Xiao, Kai; Yao, Xi; Bai, Hao; Jiang, Lei
2013-11-06
Inspired by the efficient fog collection on cactus spines, conical copper wires with gradient wettability are fabricated through gradient electrochemical corrosion and subsequent gradient chemical modification. These dual-gradient copper wires' fog-collection ability is demonstrated to be higher than that of conical copper wires with pure hydrophobic surfaces or pure hydrophilic surfaces, and the underlying mechanism is also analyzed. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Wettability control of droplet deposition and detachment.
Baret, Jean-Christophe; Brinkmann, Martin
2006-04-14
The conditions for droplet deposition on plane substrates are studied using electrowetting to continuously modulate the surface wettability. Droplets of controlled volume attached to the tip of a pipette are brought into contact with the surface. During retraction of the pipette the droplets are deposited or detach completely depending on volume and contact angle. The experimental limit of deposition in the contact angle or volume plane is in good agreement with analytical and numerical predictions obtained within the capillary model.
Surface chemical structure for soft contact lenses as a function of polymer processing.
Grobe, G L; Valint, P L; Ammon, D M
1996-09-01
The surface chemistry and topography of cast-molded Etafilcon-A and doubled-sided lathed Etafilcon-A soft contact lenses were determined to be significantly different. The variations in surface chemical and morphologic structure between the two lenses were the result of contact lens manufacturing methods. The surface of the cast-molded Etafilcon-A had a consistently less rough surface compared to the doubled sided lathed Etafilcon-A as determined by atomic force microscopy. The surface of the doubled sided lathed Etafilcon-A contained primarily silicone and wax contamination in addition to minute amounts of HEMA. The cast-molded Etafilcon-A had an elemental and chemical content which was consistent with the polymer stoichiometry. Contact angle wettability profiles revealed inherent wettability differences between the two lenses types. The cast-molded Etafilcon-A had an inherently greater water wettability, polarity, and critical surface tension. This means that these two lenses cannot be compared as similar or identical lens materials in terms of surface composition. The manufacturing method used to produce a soft contact lens directly determines the surface elemental and chemical structure as well as the morphology of the finished lens material. These results suggest possible differences in the clinical comfort, spoilage, and lubricity felt during patient wear.
Bergslien, Elisa; Fountain, John
2006-12-15
By using translucent epoxy replicas of natural single fractures, it is possible to optically measure aperture distribution and directly observe NAPL flow. However, detailed characterization of epoxy reveals that it is not a sufficiently good analogue to natural rock for many two-phase flow studies. The surface properties of epoxy, which is hydrophobic, are quite unlike those of natural rock, which is generally assumed to be hydrophilic. Different surface wettabilities result in dramatically different two-phase flow behavior and residual distributions. In hydrophobic replicas, the NAPL flows in well-developed channels, displacing water and filling all of the pore space. In hydrophilic replicas, the invading NAPL is confined to the largest aperture pathways and flow frequently occurs in pulses, with no limited or no stable channel development, resulting in isolated blobs with limited accessible surface area. The pulsing and channel abandonment behaviors described are significantly different from the piston-flow frequently assumed in current modeling practice. In addition, NAPL never achieved total saturation in hydrophilic models, indicating that significantly more than a monolayer of water was bound to the model surface. Despite typically only 60-80% NAPL saturation, there was generally good agreement between theoretically calculated Young-Laplace aperture invasion boundaries and the observed minimum apertures invaded. The key to determining whether surface wettability is negligible, or not, lies in accurate characterization of the contaminant-geologic media system under study. As long as the triple-point contact angle of the system is low (<20 degrees), the assumption of perfect water wettability is not a bad one.
Impacts of Natural Surfactant Soybean Phospholipid on Wettability of High-rank Coal Reservoir
NASA Astrophysics Data System (ADS)
Lyu, S.; Xiao, Y.; Yuan, M.; Wang, S.
2017-12-01
It is significant to change the surface wettability of coal rock with the surfactant in coal mining and coalbed methane exploitation. Soybean phospholipid (SP) is a kind of natural zwitterionic surfactant which is non-toxic and degradable. In order to study the effects of soybean phospholipid on wettability of high-rank coal in Qinshui Basin, some experiments including surface tension test, contact angle measurement on the coal surface, coal fines imbibition, observation of dispersion effect and gas permeability test were carried out, and water locking mechanism of fracturing fluid in micro fractures of coal reservoir was analyzed. The results show that the surface of high-rank coal was negatively charged in solution and of weak hydrophilicity. The soybean phospholipid with the mass fraction of 0.1% reduced the surface tension of water by 69%, and increased the wettability of coal. Meanwhile, the soybean phospholipid helped coal fines to disperse by observation of the filter cake with the scanning electron microscope. The rising rate of soybean phospholipid solution in the pipe filled with coal fines was lower than that of anionic and cationic surfactant, higher than that of clean water and non-ionic surfactant. Composite surfactant made up of soybean phospholipid and OP-10 at the ratio of 1:3 having a low surface tension and large contact angle, reduced the capillary force effectively, which could be conducive to discharge of fracturing fluid from coal reservoir micro fracture and improve the migration channels of gas. Therefore it has a broad application prospect.
NASA Astrophysics Data System (ADS)
Razi, Sepehr; Madanipour, Khosro; Mollabashi, Mahmoud
2016-06-01
Laser processing of materials in water contact is sometimes employed for improving the machining, cutting or welding quality. Here, we demonstrate surface patterning of stainless steel grade 316L by nano-second laser processing in air and water. Suitable adjustments of laser parameters offer a variety of surface patterns on the treated targets. Furthermore alterations of different surface features such as surface chemistry and wettability are investigated in various processing circumstances. More than surface morphology, remarkable differences are observed in the surface oxygen content and wettability of the samples treated in air and water at the same laser processing conditions. Mechanisms of the changes are discussed extensively.
NASA Astrophysics Data System (ADS)
Liu, Wendong; Liu, Xueyao; Fangteng, Jiaozi; Wang, Shuli; Fang, Liping; Shen, Huaizhong; Xiang, Siyuan; Sun, Hongchen; Yang, Bai
2014-10-01
This paper presents a facile method to fabricate bioinspired polyethylene terephthalate (PET) nanocone arrays via colloidal lithography. The aspect ratio (AR) of the nanocones can be finely modulated ranging from 1 to 6 by regulating the etching time. The samples with the AR value of 6 can present underwater superoleophobicity with the underwater oil contact angle (OCA) of 171.8°. The as-prepared PET nanocone arrays perform anti-bioadhesion behavior, which inhibits the formation of the actin cytoskeleton when it used as the substrate for cell culture. Moreover, the oil wettability is temperature controlled after modifying the PET nanocone arrays with PNIPAAm film, and the oil wettability of the functionalized nanocone arrays can be transformed from the superoleophobic state with OCA about 151° to the oleophilic state with OCA about 25° reversibly. Due to the high-throughput, parallel fabrication and cost-efficiency of this method, it will be favourable for researchers to introduce oleophobic properties to various substrate and device surfaces. Due to the superoleophobicity and simple functionalizing properties, the PET nanocone arrays are very promising surfaces for anti-adhesion, self-cleaning and have potential applications in material, medical, and biological fields.This paper presents a facile method to fabricate bioinspired polyethylene terephthalate (PET) nanocone arrays via colloidal lithography. The aspect ratio (AR) of the nanocones can be finely modulated ranging from 1 to 6 by regulating the etching time. The samples with the AR value of 6 can present underwater superoleophobicity with the underwater oil contact angle (OCA) of 171.8°. The as-prepared PET nanocone arrays perform anti-bioadhesion behavior, which inhibits the formation of the actin cytoskeleton when it used as the substrate for cell culture. Moreover, the oil wettability is temperature controlled after modifying the PET nanocone arrays with PNIPAAm film, and the oil wettability of the functionalized nanocone arrays can be transformed from the superoleophobic state with OCA about 151° to the oleophilic state with OCA about 25° reversibly. Due to the high-throughput, parallel fabrication and cost-efficiency of this method, it will be favourable for researchers to introduce oleophobic properties to various substrate and device surfaces. Due to the superoleophobicity and simple functionalizing properties, the PET nanocone arrays are very promising surfaces for anti-adhesion, self-cleaning and have potential applications in material, medical, and biological fields. Electronic supplementary information (ESI) available: The optical microscopy image of the self-assembled 2D PS microspheres over a large area, the diameter of the PS microsphere is 580 nm; The top-view SEM image of the PET nanocone arrays over a large area, the AR of the nanocone is 6; The SEM image of the PET nanocone arrays obtained after 30 min etching; The optical image of the water droplet on the PET nanocone arrays with an AR of 6; The schematic illustration of the nanocone arrays modification with PNIPAAm; High resolution XPS spectra of the PNIPAAm modified PET nanocone arrays. See DOI: 10.1039/c4nr04471a
Influence of hydrophobic and superhydrophobic surfaces on reducing aerodynamic insect residues
NASA Astrophysics Data System (ADS)
Krishnan, K. Ghokulla; Milionis, Athanasios; Loth, Eric; Farrell, Thomas E.; Crouch, Jeffrey D.; Berry, Douglas H.
2017-01-01
Insect fouling during takeoff, climb and landing can result in increased drag and fuel consumption for aircrafts with laminar-flow surfaces. This study investigates the effectiveness of various hydrophobic and superhydrophobic surfaces in reducing residue of insects on an aerodynamic surface at relatively high impact speeds (about 45 m/s). An experimental setup consisting of a wind tunnel and a method to inject live flightless fruit flies was used to test the effectiveness of various surfaces against insect fouling. Insect fouling was analyzed based on residue area and height from multiple impacts. In general most of the residue area was due to the hemolymph spreading while most of the residue height was due to adhesion of exoskeleton parts. Hydrophobic and especially superhydrophobic surfaces performed better than a hydrophilic aluminum surface in terms of minimizing the residue area of various insect components (exoskeleton, hemolymph, and red fluid). Surfaces with reduced wettability and short lateral length scales tended to have the smallest residue area. Residue height was not as strongly influenced by surface wettability since even a single exoskeleton adhered to the surface upon impact was enough to produce a residue height of the order of one mm. In general, the results indicate that hemolymph spread needs to be avoided (e.g. by having reduced wettability and short lateral correlation lengths) in order to minimize the residue area, while exoskeleton adherence needs to be avoided (e.g. by having oleophobic properties and micro/nano roughness) in order to minimize the residue height. In particular, two of the superhydrophobic coatings produced substantial reduction in residue height and area, relative to the baseline surface of aluminum. However, the surfaces also showed poor mechanical durability on the high-speed insect impact location. This suggests that although low wettability materials show great insect anti-fouling behavior, their durability needs to be substantially improved in order to withstand harsh aerospace conditions.
Functional wettability in carbonate reservoirs
Brady, Patrick V.; Thyne, Geoffrey
2016-10-11
Oil adsorbs to carbonate reservoirs indirectly through a relatively thick separating water layer, and directly to the surface through a relatively thin intervening water layer. Whereas directly sorbed oil desorbs slowly and incompletely in response to changes in reservoir conditions, indirectly sorbed oil can be rapidly desorbed by changing the chemistry of the separating water layer. The additional recovery might be as much as 30% original oil in place (OOIP) above the ~30% OOIP recovered from carbonates through reservoir depressurization (primary production) and viscous displacement (waterflooding). Electrostatic adhesive forces are the dominant control over carbonate reservoir wettability. A surface complexationmore » model that quantifies electrostatic adhesion accurately predicts oil recovery trends for carbonates. Furthermore, the approach should therefore be useful for estimating initial wettability and designing fluids that improve oil recovery.« less
Environmental Applications of Interfacial Materials with Special Wettability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Zhangxin; Elimelech, Menachem; Lin, Shihong
Interfacial materials with special wettability have become a burgeoning research area in materials science in the past decade. The unique surface properties of materials and interfaces generated by biomimetic approaches can be leveraged to develop effective solutions to challenging environmental problems. This critical review presents the concept, mechanisms, and fabrication techniques of interfacial materials with special wettability, and assesses the environmental applications of these materials for oil-water separation, membrane-based water purification and desalination, biofouling control, high performance vapor condensation, and atmospheric water collection. We also highlight the most promising properties of interfacial materials with special wettability that enable innovative environmentalmore » applications and discuss the practical challenges for large-scale implementation of these novel materials.« less
Environmental Applications of Interfacial Materials with Special Wettability
Wang, Zhangxin; Elimelech, Menachem; Lin, Shihong
2016-02-01
Interfacial materials with special wettability have become a burgeoning research area in materials science in the past decade. The unique surface properties of materials and interfaces generated by biomimetic approaches can be leveraged to develop effective solutions to challenging environmental problems. This critical review presents the concept, mechanisms, and fabrication techniques of interfacial materials with special wettability, and assesses the environmental applications of these materials for oil-water separation, membrane-based water purification and desalination, biofouling control, high performance vapor condensation, and atmospheric water collection. We also highlight the most promising properties of interfacial materials with special wettability that enable innovative environmentalmore » applications and discuss the practical challenges for large-scale implementation of these novel materials.« less
A review of factors that affect contact angle and implications for flotation practice.
Chau, T T; Bruckard, W J; Koh, P T L; Nguyen, A V
2009-09-30
Contact angle and the wetting behaviour of solid particles are influenced by many physical and chemical factors such as surface roughness and heterogeneity as well as particle shape and size. A significant amount of effort has been invested in order to probe the correlation between these factors and surface wettability. Some of the key investigations reported in the literature are reviewed here. It is clear from the papers reviewed that, depending on many experimental conditions such as the size of the surface heterogeneities and asperities, surface cleanliness, and the resolution of measuring equipment and data interpretation, obtaining meaningful contact angle values is extremely difficult and such values are reliant on careful experimental control. Surface wetting behaviour depends on not only surface texture (roughness and particle shape), and surface chemistry (heterogeneity) but also on hydrodynamic conditions in the preparation route. The inability to distinguish the effects of each factor may be due to the interplay and/or overlap of two or more factors in each system. From this review, it was concluded that: Surface geometry (and surface roughness of different scales) can be used to tune the contact angle; with increasing surface roughness the apparent contact angle decreases for hydrophilic materials and increases for hydrophobic materials. For non-ideal surfaces, such as mineral surfaces in the flotation process, kinetics plays a more important role than thermodynamics in dictating wettability. Particle size encountered in flotation (10-200 microm) showed no significant effect on contact angle but has a strong effect on flotation rate constant. There is a lack of a rigid quantitative correlation between factors affecting wetting, wetting behaviour and contact angle on minerals; and hence their implication for flotation process. Specifically, universal correlation of contact angle to flotation recovery is still difficult to predict from first principles. Other advanced techniques and measures complementary to contact angle will be essential to establish the link between research and practice in flotation.
Optimal design of permeable fiber network structures for fog harvesting.
Park, Kyoo-Chul; Chhatre, Shreerang S; Srinivasan, Siddarth; Cohen, Robert E; McKinley, Gareth H
2013-10-29
Fog represents a large untapped source of potable water, especially in arid climates. Numerous plants and animals use textural and chemical features on their surfaces to harvest this precious resource. In this work, we investigate the influence of the surface wettability characteristics, length scale, and weave density on the fog-harvesting capability of woven meshes. We develop a combined hydrodynamic and surface wettability model to predict the overall fog-collection efficiency of the meshes and cast the findings in the form of a design chart. Two limiting surface wettability constraints govern the re-entrainment of collected droplets and clogging of mesh openings. Appropriate tuning of the wetting characteristics of the surfaces, reducing the wire radii, and optimizing the wire spacing all lead to more efficient fog collection. We use a family of coated meshes with a directed stream of fog droplets to simulate a natural foggy environment and demonstrate a five-fold enhancement in the fog-collecting efficiency of a conventional polyolefin mesh. The design rules developed in this work can be applied to select a mesh surface with optimal topography and wetting characteristics to harvest enhanced water fluxes over a wide range of natural convected fog environments.
The influence of polishing techniques on pre-polymerized CAD\\CAM acrylic resin denture bases
Alammari, Manal Rahma
2017-01-01
Background Lately, computer-aided design and computer-aided manufacturing (CAD/CAM) has broadly been successfully employed in dentistry. The CAD/CAM systems have recently become commercially available for fabrication of complete dentures, and are considered as an alternative technique to conventionally processed acrylic resin bases. However, they have not yet been fully investigated. Objective The purpose of this study was to inspect the effects of mechanical polishing and chemical polishing on the surface roughness (Ra) and contact angle (wettability) of heat-cured, auto-cured and CAD/CAM denture base acrylic resins. Methods This study was conducted at the Advanced Dental Research Laboratory Center of King Abdulaziz University from March to June 2017. Three denture base materials were selected: heat cure poly-methylmethacrylate resin, thermoplastic (polyamide resin) and (CAD\\CAM) denture base resin. Sixty specimens were prepared and divided into three groups, twenty in each. Each group was divided according to the polishing techniques into (Mech P) and (Chem P), ten specimens in each; surface roughness and wettability were investigated. Data were analyzed by SPSS version 22, using one-way ANOVA and Pearson coefficient. Results One-way analysis of variance (ANOVA) and post hoc tests were used for comparing the surface roughness values between three groups which revealed a statistical significant difference between them (p1<0.001). Heat-cured denture base material of (Group I) in both methods, showed the highest mean surface roughness value (2.44±0.07, 2.72±0.09, Mech P and Chem P respectively); while CAD\\CAM denture base material (group III) showed the least mean values (1.08±0.23, 1.39±0.31, Mech P and Chem P respectively). CAD/CAM showed the least contact angle in both polishing methods, which were statistically significant at 5% level (p=0.034 and p<0.001). Conclusion Mechanical polishing produced lower surface roughness of CAD\\CAM denture base resin with superior smooth surface compared to chemical polishing. Mechanical polishing is considered the best effective polishing technique. CAD/CAM denture base material should be considered as the material of choice for complete denture construction in the near future, especially for older dental patients with changed salivary functions, because of its wettability. PMID:29238483
The influence of polishing techniques on pre-polymerized CAD\\CAM acrylic resin denture bases.
Alammari, Manal Rahma
2017-10-01
Lately, computer-aided design and computer-aided manufacturing (CAD/CAM) has broadly been successfully employed in dentistry. The CAD/CAM systems have recently become commercially available for fabrication of complete dentures, and are considered as an alternative technique to conventionally processed acrylic resin bases. However, they have not yet been fully investigated. The purpose of this study was to inspect the effects of mechanical polishing and chemical polishing on the surface roughness (Ra) and contact angle (wettability) of heat-cured, auto-cured and CAD/CAM denture base acrylic resins. This study was conducted at the Advanced Dental Research Laboratory Center of King Abdulaziz University from March to June 2017. Three denture base materials were selected: heat cure poly-methylmethacrylate resin, thermoplastic (polyamide resin) and (CAD\\CAM) denture base resin. Sixty specimens were prepared and divided into three groups, twenty in each. Each group was divided according to the polishing techniques into (Mech P) and (Chem P), ten specimens in each; surface roughness and wettability were investigated. Data were analyzed by SPSS version 22, using one-way ANOVA and Pearson coefficient. One-way analysis of variance (ANOVA) and post hoc tests were used for comparing the surface roughness values between three groups which revealed a statistical significant difference between them (p 1 <0.001). Heat-cured denture base material of (Group I) in both methods, showed the highest mean surface roughness value (2.44±0.07, 2.72±0.09, Mech P and Chem P respectively); while CAD\\CAM denture base material (group III) showed the least mean values (1.08±0.23, 1.39±0.31, Mech P and Chem P respectively). CAD/CAM showed the least contact angle in both polishing methods, which were statistically significant at 5% level (p=0.034 and p<0.001). Mechanical polishing produced lower surface roughness of CAD\\CAM denture base resin with superior smooth surface compared to chemical polishing. Mechanical polishing is considered the best effective polishing technique. CAD/CAM denture base material should be considered as the material of choice for complete denture construction in the near future, especially for older dental patients with changed salivary functions, because of its wettability.
Aladpoosh, Razieh; Montazer, Majid
2016-05-05
In this study, nano-photo active cellulosic fabric was prepared through in situ phytosynthesis of star-like Ag/ZnO nanocomposites using the ashes of Seidlitzia rosmarinus plants so-called Keliab. This is provided alkali media as a vital condition for synthesis of nanocomposites, further increasing the reduce-ability of cellulosic chains by activation of hydroxyl groups. The intermolecular dehydrolysis of intermediates ions under thermal and alkaline conditions leads to formation of Ag/ZnO heterostructure. Various analytical techniques were employed to confirm Ag/ZnO nanocomposites on the cotton fabric. The surface morphology, crystal phase and chemical structure of the treated fabrics were characterized by field emission and scanning electron microscopy (FE-SEM and SEM), X-ray diffraction (XRD), and energy dispersive X-ray spectroscopy (EDX). Moreover, influence of precursors: silver nitrate, zinc acetate and Keliab solution on attributes associated with photocatalytic activities including self-cleaning, whiteness and wettability was investigated via central composite design (CCD). The treated cotton samples exhibited self-cleaning activities through methylene blue degradation under day-light exposure along with improved wettability and whiteness. The prepared sample in optimized conditions showed good antibacterial activities against Staphylococcus aureus and Escherichia coli with enhanced fabric tensile strength. Copyright © 2016 Elsevier Ltd. All rights reserved.
Effect of dimethyl sulfoxide on dentin collagen.
Mehtälä, P; Pashley, D H; Tjäderhane, L
2017-08-01
Infiltration of adhesive on dentin matrix depends on interaction of surface and adhesive. Interaction depends on dentin wettability, which can be enhanced either by increasing dentin surface energy or lowering the surface energy of adhesive. The objective was to examine the effect of dimethyl sulfoxide (DMSO) on demineralized dentin wettability and dentin organic matrix expansion. Acid-etched human dentin was used for sessile drop contact angle measurement to test surface wetting on 1-5% DMSO-treated demineralized dentin surface, and linear variable differential transformer (LVDT) to measure expansion/shrinkage of dentinal matrix. DMSO-water binary liquids were examined for surface tension changes through concentrations from 0 to 100% DMSO. Kruskal-Wallis and Mann-Whitney tests were used to test the differences in dentin wettability, expansion and shrinkage, and Spearman test to test the correlation between DMSO concentration and water surface tension. The level of significance was p<0.05. Pretreatment with 1-5% DMSO caused statistically significant concentration-dependent increase in wetting: the immediate contact angles decreased by 11.8% and 46.6% and 60s contact angles by 9.5% and 47.4% with 1% and 5% DMSO, respectively. DMSO-water mixtures concentration-dependently expanded demineralized dentin samples less than pure water, except with high (≥80%) DMSO concentrations which expanded demineralized dentin more than water. Drying times of LVDT samples increased significantly with the use of DMSO. Increased dentin wettability may explain the previously demonstrated increase in adhesive penetration with DMSO-treated dentin, and together with the expansion of collagen matrix after drying may also explain previously observed increase in dentin adhesive bonding. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Surface treatment of a titanium implant using low temperature atmospheric pressure plasmas
NASA Astrophysics Data System (ADS)
Lee, Hyun-Young; Tang, Tianyu; Ok, Jung-Woo; Kim, Dong-Hyun; Lee, Ho-Jun; Lee, Hae June
2015-09-01
During the last two decades, atmospheric pressure plasmas(APP) are widely used in diverse fields of biomedical applications, reduction of pollutants, and surface treatment of materials. Applications of APP to titanium surface of dental implants is steadily increasing as it renders surfaces wettability and modifies the oxide layer of titanium that hinders the interaction with cells and proteins. In this study, we have treated the titanium surfaces of screw-shaped implant samples using a plasma jet which is composed of a ceramic coaxial tube of dielectrics, a stainless steel inner electrode, and a coper tube outer electrode. The plasma ignition occurred with Ar gas flow between two coaxial metal electrodes and a sinusoidal bias voltage of 3 kV with a frequency of 20 kHz. Titanium materials used in this study are screw-shaped implants of which diameter and length are 5 mm and 13 mm, respectively. Samples were mounted at a distance of 5 mm below the plasma source, and the plasma treatment time was set to 3 min. The wettability of titanium surface was measured by the moving speed of water on its surface, which is enhanced by plasma treatment. The surface roughness was also measured by atomic force microscopy. The optimal condition for wettability change is discussed.
Hao, L; Lawrence, J; Phua, Y F; Chian, K S; Lim, G C; Zheng, H Y
2005-04-01
An effective and novel technique for improving the biocompatibility of a biograde 316 LS stainless steel through the application of CO(2) laser treatment to modify the surface properties of the material is described herein. Different surface properties, such as surface roughness, surface oxygen content, and surface energy for CO(2) laser-treated 316 LS stainless steel, untreated, and mechanically roughened samples were analyzed, and their effects on the wettability characteristics of the material were studied. It was found that modification of the wettability characteristics of the 316 LS stainless steel following CO(2) laser treatment was achieved. This improvement was identified as being mainly due to the change in the polar component of the surface energy. One-day cell adhesion tests showed that cells not only adhered and spread better, but also grew faster on the CO(2) laser-treated sample than on either the untreated or mechanically roughened sample. Further, compared with the untreated sample, MTT cell proliferation analysis revealed that the mechanically roughed surface resulted in a slight enhancement, and CO(2) laser treatment brought about a significant increase in cell proliferation. An increase in the wettability of the 316 LS stainless steel was observed to positively correlate with the cell proliferation. (c) 2004 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Pogorzelski, Stanisław J.; Rochowski, Pawel; Szurkowski, Janusz
2014-02-01
An investigation of water contact angles (CAs), contact angle hysteresis (CAH) was carried out for 1-year to 4-year old needles (Pinus sylvestris) collected in urban (Gdansk) and rural (Karsin) locations using an original measuring technique based on the geometry of the drop on a vertical filament. Concentrations of air pollutants (SO2, NOx, C6H6, and suspended particular matter - SPM) currently considered to be most important in causing direct damage to vegetation were simultaneously monitored. A set of the surface wettability parameters: the apparent surface free energy γSV, adhesive film tension Π, work of adhesion WA, and spreading WS, were determined from CAH data using the approach developed by Chibowski (2003) to quantify the surface energetics of the needle substrata affected by aging and pollution impacts. This formalism relates the total apparent surface free energy of the solid γSV with only three measurable quantities: the surface tension of the probe liquid γLV and its advancing θA and receding θR contact angle hysteresis. Since CAH depends on the outermost wax layer surface roughness and spatial physicochemical heterogeneity of a solid surface, CA data were corrected using surface architecture profiles registered with confocal scanning laser microscopy. It was found that the roughness parameter r is significantly negatively correlated (R = -0.74) with the needle age (collected at Karsin). The needle surface aging process resulted in its surface hydrophilization (CA↓ and CAH↓ with γSV↑ and WA↑). A temporal evolution of the needles wettability was traced with the data point distribution in the 2D space of CAH plotted versus WS. The wettability parameters were closely correlated to pollutant concentrations as evidenced from Spearman's rank correlation procedure (R = 0.63-0.91; p < 0.05). The aim of the study was to validate the established CA methodology to create a new non-invasive, low-cost technique suitable for monitoring of structural changes at interfaces of biological systems.
Water and oil wettability of anodized 6016 aluminum alloy surface
NASA Astrophysics Data System (ADS)
Rodrigues, S. P.; Alves, C. F. Almeida; Cavaleiro, A.; Carvalho, S.
2017-11-01
This paper reports on the control of wettability behaviour of a 6000 series aluminum (Al) alloy surface (Al6016-T4), which is widely used in the automotive and aerospace industries. In order to induce the surface micro-nanostructuring of the surface, a combination of prior mechanical polishing steps followed by anodization process with different conditions was used. The surface polishing with sandpaper grit size 1000 promoted aligned grooves on the surface leading to static water contact angle (WCA) of 91° and oil (α-bromonaphthalene) contact angle (OCA) of 32°, indicating a slightly hydrophobic and oleophilic character. H2SO4 and H3PO4 acid electrolytes were used to grow aluminum oxide layers (Al2O3) by anodization, working at 15 V/18° C and 100 V/0 °C, respectively, in one or two-steps configuration. Overall, the anodization results showed that the structured Al surfaces were hydrophilic and oleophilic-like with both WCA and OCA below 90°. The one-step configuration led to a dimple-shaped Al alloy surface with small diameter of around 31 nm, in case of H2SO4, and with larger diameters of around 223 nm in case of H3PO4. The larger dimples achieved with H3PO4 electrolyte allowed to reach a slight hydrophobic surface. The thicker porous Al oxide layers, produced by anodization in two-step configuration, revealed that the liquids can penetrate easily inside the non-ordered porous structures and, thus, the surface wettability tended to superhydrophilic and superoleophilic character (CA < 10°). These results indicate that the capillary-pressure balance model, described for wettability mechanisms of porous structures, was broken. Moreover, thicker oxide layers with narrow pores of about 29 nm diameter allowed to achieve WCA < OCA. This inversion in favour of the hydrophilic-oleophobic surface behaviour is of great interest either for lubrication of mechanical components or in water-oil separation process.
NASA Astrophysics Data System (ADS)
Liu, Ai-Ping; Liu, Min; Yu, Jian-Can; Qian, Guo-Dong; Tang, Wei-Hua
2015-05-01
Nitrogen-doped diamond-like carbon (DLC:N) films prepared by the filtered cathodic vacuum arc technology are functionalized with various chemical molecules including dopamine (DA), 3-Aminobenzeneboronic acid (APBA), and adenosine triphosphate (ATP), and the impacts of surface functionalities on the surface morphologies, compositions, microstructures, and cell compatibility of the DLC:N films are systematically investigated. We demonstrate that the surface groups of DLC:N have a significant effect on the surface and structural properties of the film. The activity of PC12 cells depends on the particular type of surface functional groups of DLC:N films regardless of surface roughness and wettability. Our research offers a novel way for designing functionalized carbon films as tailorable substrates for biosensors and biomedical engineering applications. Project supported by the National Natural Science Foundation of China (Grant Nos. 51272237, 51272231, and 51010002) and the China Postdoctoral Science Foundation (Grant Nos. 2012M520063, 2013T60587, and Bsh1201016).
Peng, Shan; Bhushan, Bharat
2016-01-01
Superoleophobic aluminum surfaces are of interest for self-cleaning, anti-smudge (fingerprint resistance), anti-fouling, and corrosion resistance applications. In the published literature on superoleophobic aluminum surfaces, mechanical durability, self-cleaning, and anti-smudge properties data are lacking. Microstep structure has often been used to prepare superhydrophobic aluminum surfaces which produce the microstructure. The nanoreticula structure has also been used, and is reported to be able to trap air-pockets, which are desirable for a high contact angle. In this work, the microstep and nanoreticula structures were produced on aluminum surfaces to form a hierarchical micro/nanostructure by a simple two-step chemical etching process. The hierarchical structure, when modified with fluorosilane, made the surface superoleophobic. The effect of nanostructure, microstructure, and hierarchical structure on wettability and durability were studied and compared. The superoleophobic aluminum surfaces were found to be wear resistant, self-cleaning, and have anti-smudge and corrosion resistance properties. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Czachor, H.; Doerr, S. H.; Lichner, L.
2010-01-01
SummarySoil organic matter can modify the surface properties of the soil mineral phase by changing the surface tension of the mineral surfaces. This modifies the soil's solid-water contact angle, which in turn would be expected to affect its water retention curve (SWRC). Here we model the impact of differences in the soil pore-water contact angle on capillarity in non-cylindrical pores by accounting for their complex pore geometry. Key outcomes from the model include that (i) available methods for measuring the Young's wetting angle on soil samples are insufficient in representing the wetting angle in the soil pore space, (ii) the wetting branch of water retention curves is strongly affected by the soil pore-water contact angle, as manifest in the wetting behavior of water repellent soils, (iii) effects for the drying branch are minimal, indicating that both wettable and water repellent soils should behave similarly, and (vi) water retention is a feature not of only wettable soils, but also soils that are in a water repellent state. These results are tested experimentally by determining drying and wetting branches for (a) 'model soil' (quartz sands with four hydrophobization levels) and (b) five field soil samples with contrasting wettability, which were used with and without the removal of the soil organic matter. The experimental results support the theoretical predictions and indicate that small changes in wetting angle can cause switches between wettable and water repellent soil behavior. This may explain the common observation that relatively small changes in soil water content can cause substantial changes in soil wettability.
Influence of extractives on wood gluing and finishing- a review
Chung-Yun Hse; Mon-Lin Kuo
1988-01-01
Migration of extractives to the wood surface alters the properties of wood as an adherent. Extractives change the wettability and the curing properties of adhesives. A desirable wettability-permeability relationship is sometimes affected by extractives, thus reducing the gluebond strength and performance. Past efforts to determine which of the components of extractives...
Wettability Switching Techniques on Superhydrophobic Surfaces
2007-01-01
The wetting properties of superhydrophobic surfaces have generated worldwide research interest. A water drop on these surfaces forms a nearly perfect spherical pearl. Superhydrophobic materials hold considerable promise for potential applications ranging from self cleaning surfaces, completely water impermeable textiles to low cost energy displacement of liquids in lab-on-chip devices. However, the dynamic modification of the liquid droplets behavior and in particular of their wetting properties on these surfaces is still a challenging issue. In this review, after a brief overview on superhydrophobic states definition, the techniques leading to the modification of wettability behavior on superhydrophobic surfaces under specific conditions: optical, magnetic, mechanical, chemical, thermal are discussed. Finally, a focus on electrowetting is made from historical phenomenon pointed out some decades ago on classical planar hydrophobic surfaces to recent breakthrough obtained on superhydrophobic surfaces.
Droplet flow along the wall of rectangular channel with gradient of wettability
NASA Astrophysics Data System (ADS)
Kupershtokh, A. L.
2018-03-01
The lattice Boltzmann equations (LBE) method (LBM) is applicable for simulating the multiphysics problems of fluid flows with free boundaries, taking into account the viscosity, surface tension, evaporation and wetting degree of a solid surface. Modeling of the nonstationary motion of a drop of liquid along a solid surface with a variable level of wettability is carried out. For the computer simulation of such a problem, the three-dimensional lattice Boltzmann equations method D3Q19 is used. The LBE method allows us to parallelize the calculations on multiprocessor graphics accelerators using the CUDA programming technology.
Surface Modification of Nonwoven fabrics by Atmospheric Brush Plasma
NASA Astrophysics Data System (ADS)
Oksuz, Lutfi; Uygun, Emre; Bozduman, Ferhat; Yurdabak Karaca, Gozde; Asan, Orkun Nuri; Uygun Oksuz, Aysegul
2017-10-01
Polypropylene nonwoven fabrics (PPNF) are used in disposable absorbent articles, such as diapers, feminine care products, wipes. PPNF need to be wettable by water or aqueous-based liquid. Plasma surface treatment/modification has turned out to be a well-accepted method since it offers superior surface property enhancement than other chemical methods. The cold plasma brush can most efficiently use the discharge power as well as the plasma gas for material and surface treatment. The very low power consumption of such an atmospheric argon plasma brush provides many unique advantages in practical application. The purpose of this study was to reveal the effectiveness of non-thermal atmospheric plasma brush in surface wettability and modification of two different nonwoven surfaces.
Li, Dan; Shi, Dingqin; Xia, Yonggao; Qiao, Lin; Li, Xianfeng; Zhang, Huamin
2017-03-15
Separators with high security, reliability, and rate capacity are in urgent need for the advancement of high power lithium ion batteries. The currently used porous polyolefin membranes are critically hindered by their low thermal stability and poor electrolyte wettability, which further lead to low rate capacity. Here we present a novel promising porous polybenzimidazole (PBI) membrane with super high thermal stability and electrolyte wettability. The rigid structure and functional groups in the PBI chain enable membranes to be stable at temperature as high as 400 °C, and the unique flame resistance of PBI could ensure the high security of a battery as well. In particular, the prepared membrane owns 328% electrolyte uptake, which is more than two times higher than commercial Celgard 2325 separator. The unique combination of high thermal stability, high flame resistance and super high electrolyte wettability enable the PBI porous membranes to be highly promising for high power lithium battery.
A dual ammonia-responsive sponge sensor: preparation, transition mechanism and sensitivity.
Guo, Jiahong; Bai, Zhiwei; Lyu, Yonglei; Wang, Jikui; Wang, Qiang
2018-06-13
PDMS-PU (polydimethylsiloxane-polyurethane) sponge decorated with In(OH)3 (indium hydroxide) and BCP (bromocresol purple) particles is shown to be a room-temperature ammonia sensor with high sensitivity and excellent reproducibility; it can accomplish real-time detection and monitoring of ammonia in the surrounding environment. The superhydrophobic and yellowish In(OH)3-BCP-TiO2-based ammonia-responsive (IBT-AR) sponge changes to a purple superhydrophilic one when exposed to ammonia. Notably, after reacting with ammonia, the sponge can recover its original wettability and color after heating in air. The wettability, color and absorption signal of IBT-AR sponge have been measured for sensing ammonia using the water contact angle, macroscopic observation and UV-vis absorption spectrometry, respectively. The minimum ammonia concentrations that can be detected by the sponge wettability, color and absorption signal are 0.5%, 1.4 ppm and 50 ppb, respectively. This kind of sponge with smart wettability and color is a promising new ammonia detector.
Reducing Ice Adhesion on Nonsmooth Metallic Surfaces: Wettability and Topography Effects.
Ling, Edwin Jee Yang; Uong, Victor; Renault-Crispo, Jean-Sébastien; Kietzig, Anne-Marie; Servio, Phillip
2016-04-06
The effects of ice formation and accretion on external surfaces range from being mildly annoying to potentially life-threatening. Ice-shedding materials, which lower the adhesion strength of ice to its surface, have recently received renewed research attention as a means to circumvent the problem of icing. In this work, we investigate how surface wettability and surface topography influence the ice adhesion strength on three different surfaces: (i) superhydrophobic laser-inscribed square pillars on copper, (ii) stainless steel 316 Dutch-weave meshes, and (iii) multiwalled carbon nanotube-covered steel meshes. The finest stainless steel mesh displayed the best performance with a 93% decrease in ice adhesion relative to polished stainless steel, while the superhydrophobic square pillars exhibited an increase in ice adhesion by up to 67% relative to polished copper. Comparisons of dynamic contact angles revealed little correlation between surface wettability and ice adhesion. On the other hand, by considering the ice formation process and the fracture mechanics at the ice-substrate interface, we found that two competing mechanisms governing ice adhesion strength arise on nonplanar surfaces: (i) mechanical interlocking of the ice within the surface features that enhances adhesion, and (ii) formation of microcracks that act as interfacial stress concentrators, which reduce adhesion. Our analysis provides insight toward new approaches for the design of ice-releasing materials through the use of surface topographies that promote interfacial crack propagation.
NASA Astrophysics Data System (ADS)
Rajab, Fatema H.; Liu, Zhu; Li, Lin
2018-01-01
Superhydrophilic surfaces with liquid contact angles of less than 5 ° have attracted much interest in practical applications including self-cleaning, cell manipulation, adhesion enhancement, anti-fogging, fluid flow control and evaporative cooling. Standard laser metal texturing method often result in unstable wetting characteristics, i.e. changing from super hydrophilic to hydrophobic in a few days or weeks. In this paper, a simple one step method is reported for fabricating a stable superhydrophilic metallic surface that lasted for at least 6 months. Here, 316L stainless steel substrates were textured using a nanosecond laser with in-situ SiO2 deposition. Morphology and chemistry of laser-textured surfaces were characterised using SEM, XRD, XPS and an optical 3D profiler. Static wettability analysis was carried out over a period of 6 months after the laser treatment. The effect of surface roughness on wettability was also studied. Results showed that the wettability of the textured surfaces could be controlled by changing the scanning speed of laser beam and number of passes. The main reason for the realisation of the stable superhydrophilic surface is the combination of the melted glass particles mainly Si and O with that of stainless steel in the micro-textured patterns. This study presents a useful method
Lantada, Andrés Díaz; Hengsbach, Stefan; Bade, Klaus
2017-10-16
In this study we present the combination of a math-based design strategy with direct laser writing as high-precision technology for promoting solid free-form fabrication of multi-scale biomimetic surfaces. Results show a remarkable control of surface topography and wettability properties. Different examples of surfaces inspired on the lotus leaf, which to our knowledge are obtained for the first time following a computer-aided design with this degree of precision, are presented. Design and manufacturing strategies towards microfluidic systems whose fluid driving capabilities are obtained just by promoting a design-controlled wettability of their surfaces, are also discussed and illustrated by means of conceptual proofs. According to our experience, the synergies between the presented computer-aided design strategy and the capabilities of direct laser writing, supported by innovative writing strategies to promote final size while maintaining high precision, constitute a relevant step forward towards materials and devices with design-controlled multi-scale and micro-structured surfaces for advanced functionalities. To our knowledge, the surface geometry of the lotus leaf, which has relevant industrial applications thanks to its hydrophobic and self-cleaning behavior, has not yet been adequately modeled and manufactured in an additive way with the degree of precision that we present here.
Bio-Inspired Extreme Wetting Surfaces for Biomedical Applications
Shin, Sera; Seo, Jungmok; Han, Heetak; Kang, Subin; Kim, Hyunchul; Lee, Taeyoon
2016-01-01
Biological creatures with unique surface wettability have long served as a source of inspiration for scientists and engineers. More specifically, materials exhibiting extreme wetting properties, such as superhydrophilic and superhydrophobic surfaces, have attracted considerable attention because of their potential use in various applications, such as self-cleaning fabrics, anti-fog windows, anti-corrosive coatings, drag-reduction systems, and efficient water transportation. In particular, the engineering of surface wettability by manipulating chemical properties and structure opens emerging biomedical applications ranging from high-throughput cell culture platforms to biomedical devices. This review describes design and fabrication methods for artificial extreme wetting surfaces. Next, we introduce some of the newer and emerging biomedical applications using extreme wetting surfaces. Current challenges and future prospects of the surfaces for potential biomedical applications are also addressed. PMID:28787916
Wetting behavior of selected crude oil/brine/rock systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1997-04-01
Of the many methods of characterizing wettability of a porous medium, the most commonly used are the Amott test and the USBM test. The Amott test does not discriminate adequately between systems that give high values of wettability index to water and are collectively described as very strongly water-wet. The USBM test does not recognize systems that achieve residual oil saturation by spontaneous imbibition. For such systems, and for any systems that exhibit significant spontaneous imbibition, measurements of imbibition rate provide a useful characterization of wettability. Methods of interpreting spontaneous imbibition data are reviewed and a new method of quantifyingmore » wettability from rate of imbibition is proposed. Capillary pressure is the driving force in spontaneous imbibition. The area under an imbibition curve is closely related to the work of displacement that results from decrease in surface free energy. Imbibition rate data can be correlated to allow for differences in interracial tension, viscosities, pore structure, and sample size. Wettability, the remaining key factor in determining the capillary driving force and the related imbibition rate, then largely determines the differences in saturation vs. scaled time curves. These curves are used to obtain pseudo imbibition capillary pressure curves; a wettability index based on relative areas under these curves is defined as the relative pseudo work of imbibition. The method is applied for two crude oil/brine/rock systems. Comparison of the method with the Amott wettability index is made for different wettability states given by differences in aging of cores with crude oil. Correlations of wettability indices with waterflood recoveries are presented.« less
4H-SiC surface energy tuning by nitrogen up-take
NASA Astrophysics Data System (ADS)
Pitthan, E.; Amarasinghe, V. P.; Xu, C.; Gustafsson, T.; Stedile, F. C.; Feldman, L. C.
2017-04-01
Surface energy modification and surface wettability of 4H silicon carbide (0001) as a function of nitrogen adsorption is reported. The surface wettability is shown to go from primarily hydrophilic to hydrophobic and the surface energy was significantly reduced with increasing nitrogen incorporation. These changes are investigated by x-ray photoelectron spectroscopy and contact angle measurements. The surface energy was quantitatively determined by the Fowkes model and interpreted primarily in terms of the variation of the surface chemistry with nitrogen coverage. Variable control of SiC surface energies with a simple and controllable atomic additive such as nitrogen that is inert to etching, stable against time, and also effective in electrical passivation, can provide new opportunities for SiC biomedical applications, where surface wetting plays an important role in the interaction with the biological interfaces.
Preparation of Superhydrophobic Film on Ti Substrate and Its Anticorrosion Property
Zhu, Min; Tang, Wenchuan; Huang, Luyao; Zhang, Dawei; Du, Cuiwei; Yu, Gaohong; Chen, Ming; Chowwanonthapunya, Thee
2017-01-01
Superhydrophobic films were fabricated on a titanium substrate with or without anodizing by using a self-assembling method. Firstly, the pretreatments of mechanical polishing/anodizing or mechanical polishing only were conducted, respectively. Subsequently, the preparation of polydopamine film layer, deposition of nano-silver particles, and post modification of 1H,1H,2H,2H-perfluorodecanethiol were performed on the surface of the pretreated substrate. The surface morphologies, compositions, wettability, and corrosion resistance of the films were investigated with scanning electron microscopy (SEM), energy-dispersive spectrometry (EDS), water contact angle measurements, and electrochemical tests, respectively. Meanwhile, the effect of the deposition time in the silver nitrate solution on the hydrophobicity of the specimen surface was investigated. The result showed that with the increase of deposition time, the hydrophobic property enhanced gradually. The surface deposited for 7 h exhibited an optimum hydrophobic effect, which was characterized with a large water contact angle (WCA) of 154°, and the surface was rather rough and covered by a relatively uniform layer of micro-nano silver particles. The excellent hydrophobicity was attributed to a rough stratified microstructure along with the low surface energy. The electrochemical measurements showed that the existence of the superhydrophobic film can effectively enhance the corrosion resistance of Ti samples. PMID:28772987
Preparation of Superhydrophobic Film on Ti Substrate and Its Anticorrosion Property.
Zhu, Min; Tang, Wenchuan; Huang, Luyao; Zhang, Dawei; Du, Cuiwei; Yu, Gaohong; Chen, Ming; Chowwanonthapunya, Thee
2017-06-08
Superhydrophobic films were fabricated on a titanium substrate with or without anodizing by using a self-assembling method. Firstly, the pretreatments of mechanical polishing/anodizing or mechanical polishing only were conducted, respectively. Subsequently, the preparation of polydopamine film layer, deposition of nano-silver particles, and post modification of 1H,1H,2H,2H-perfluorodecanethiol were performed on the surface of the pretreated substrate. The surface morphologies, compositions, wettability, and corrosion resistance of the films were investigated with scanning electron microscopy (SEM), energy-dispersive spectrometry (EDS), water contact angle measurements, and electrochemical tests, respectively. Meanwhile, the effect of the deposition time in the silver nitrate solution on the hydrophobicity of the specimen surface was investigated. The result showed that with the increase of deposition time, the hydrophobic property enhanced gradually. The surface deposited for 7 h exhibited an optimum hydrophobic effect, which was characterized with a large water contact angle (WCA) of 154°, and the surface was rather rough and covered by a relatively uniform layer of micro-nano silver particles. The excellent hydrophobicity was attributed to a rough stratified microstructure along with the low surface energy. The electrochemical measurements showed that the existence of the superhydrophobic film can effectively enhance the corrosion resistance of Ti samples.
Initial biocompatibility of plasma polymerized hexamethyldisiloxane films with different wettability
NASA Astrophysics Data System (ADS)
Krasteva, N. A.; Toromanov, G.; Hristova, K. T.; Radeva, E. I.; Pecheva, E. V.; Dimitrova, R. P.; Altankov, G. P.; Pramatarova, L. D.
2010-11-01
Understanding the relationships between material surface properties, behaviour of adsorbed proteins and cellular responses is essential to design optimal material surfaces for tissue engineering. In this study we modify thin layers of plasma polymerized hexamethyldisiloxane (PPHMDS) by ammonia treatment in order to increase surface wettability and the corresponding biological response. The physico-chemical properties of the polymer films were characterized by contact angle (CA) measurements and Fourier Transform Infrared Spectroscopy (FTIR) analysis.Human umbilical vein endothelial cells (HUVEC) were used as model system for the initial biocompatibility studies following their behavior upon preadsorption of polymer films with three adhesive proteins: fibronectin (FN), fibrinogen (FG) and vitronectin (VN). Adhesive interaction of HUVEC was evaluated after 2 hours by analyzing the overall cell morphology, and the organization of focal adhesion contacts and actin cytoskeleton. We have found similar good cellular response on FN and FG coated polymer films, with better pronounced vinculin expression on FN samples while. Conversely, on VN coated surfaces the wettability influenced significantly initial celular interaction spreading. The results obtained suggested that ammonia plasma treatment can modulate the biological activity of the adsorbed protein s on PPHMDS surfaces and thus to influence the interaction with endothelial cells.
Ghosh, Uddipta; Chakraborty, Suman
2012-04-01
In the present study, we focus on alterations in flow physics as a consequence of interactions between patterned-wettability gradients on microfluidic substrates with modulated surface charge distributions, giving rise to an intricate electrohydrodynamic coupling over small scales. We demonstrate that by exploiting such intricate coupling, it may be possible to pattern vortices occurring in the fluidic confinement by exploiting an interplay between the Navier slip and electro-osmotic transport. Our studies do reveal that the resultant flow structure originating out of the spatially periodic variations in the surface charge and surface wettability may depend critically on several independently tunable controlling parameters, such as the amplitudes and frequencies of the respective patterning functions, the phase shift between the two, an asymmetry factor, and the channel height to Debye length ratio. We show that judicious choices with regard to the combinations of these parameters may result in significant augmentations in the corresponding mixing efficiency without any appreciable compromise in the net microfluidic throughput. Furthermore, our studies reveal an optimum patterning frequency, which results in the most efficient microfluidic mixing within the constraints of achieving a desired volumetric flow rate. Our results also demonstrate that the net flow rate is maximized when the surface wettability variation functions and surface charge-density functions are in phase, whereas mixing is best facilitated when they are in opposite phase. In practice, therefore, one may select an intermediate value of the phase angle depending on the extent of compromise necessary between flow rate and mixing characteristics, yielding far-ranging scientific and technological advances toward an improved design of miniaturized fluidic devices of practical relevance.
Espinar-Escalona, Eduardo; Bravo-Gonzalez, Luis-Alberto; Pegueroles, Marta; Gil, Francisco Javier
2016-06-01
Self-drilling orthodontic mini-implants can be used as temporary devices for orthodontic treatments. Our main goal was to evaluate surface characteristics, roughness and wettability, of surface modified mini-implants to increase their stability during orthodontic treatment without inducing bone fracture and tissue destruction during unscrewing. Modified mini-implants by acid etching, grit-blasting and its combination were implanted in 20 New Zealand rabbits during 10 weeks. After that, the bone-to-implant (BIC) parameter was determined and the torque during unscrewing was measured. The surface characteristics, roughness and wettability, were also measured, onto modified Ti c.p. discs. Acid-etched mini-implants (R a ≈ 1.7 μm, contact angle (CA) ≈ 66°) significantly improved the bone-to-implant parameter, 26 %, compared to as-machined mini-implants (R a ≈ 0.3 μm, CA ≈ 68°, BIC = 19 %) due to its roughness. Moreover, this surface treatment did not modify torque during unscrewing due to their statistically similar wettability (p > 0.05). Surface treatments with higher roughness and hydrophobicity (R a ≈ 4.5 μm, CA ≈ 74°) lead to a greater BIC and to a higher removal torque during unscrewing, causing bone fracture, compared to as-machined mini-implants. Based on these in vivo findings, we conclude that acid-etching surface treatment can support temporary anchoring of titanium mini-implants. This treatment represents a step forward in the direction of reducing the time prior to mini-implant loading by increasing their stability during orthodontic treatment, without inducing bone fracture and tissue destruction during unscrewing.
NASA Astrophysics Data System (ADS)
Park, Joung-Man; Wang, Zuo-Jia; Kwon, Dong-Jun; DeVries, Lawrence
2011-02-01
Nano- and hetero-structures of carbon nanotube (CNT) and indium tin oxide (ITO) can control significantly piezoelectric and optoelectronic properties in Microelectromechanical Systems (MEMS) as sensing and actuator under cyclic loading. Optimized preparing conditions were obtained for multi-functional purpose of the specimen by obtaining the best dispersion and turbidity in the solution. Optical transmittance and electrical properties were investigated for CNT and ITO dipping and spraying coating on boro-silicate glass and polyethylene terephthalate (PET) substrates by electrical resistance measurement under cyclic loading and wettability test. Uniform dip-coating was performed using Wilhelmy plate method due to its simple and convenience. Spraying coating was applied to the specimen additionally. The change in the electrical resistance and optical properties of coated layer were mainly dependent upon the number of dip-coating, the concentration of CNT and ITO solutions, and the surface treatment condition. Electric properties of coating layers were measured using four-point probe method, and surface resistance was calculated using a dual configuration method. Optical transmittance of CNT and ITO coated PET film was also evaluated using UV spectrum. Surface energy and their hydrophilic and hydrophobic properties of CNT and ITO coated substrates were investigated by wettability test via static and dynamic contact angle measurements. As the elapsing time of cyclic loading passed, the stability of surface resistance and thus comparative interfacial adhesion between coated layer and substrates was evaluated to compare the thermodynamic work of adhesion, Wa. As dip-coating number increased, surface resistance of coated CNT decreased, whereas the transmittance decreased step-by-step due to the thicker CNT and ITO networked layer. Nano- and heterostructural effects of CNT and ITO solution on the optical and electrical effects have been studied continuously.
Simulating condensation on microstructured surfaces using Lattice Boltzmann Method
NASA Astrophysics Data System (ADS)
Alexeev, Alexander; Vasyliv, Yaroslav
2017-11-01
We simulate a single component fluid condensing on 2D structured surfaces with different wettability. To simulate the two phase fluid, we use the athermal Lattice Boltzmann Method (LBM) driven by a pseudopotential force. The pseudopotential force results in a non-ideal equation of state (EOS) which permits liquid-vapor phase change. To account for thermal effects, the athermal LBM is coupled to a finite volume discretization of the temperature evolution equation obtained using a thermal energy rate balance for the specific internal energy. We use the developed model to probe the effect of surface structure and surface wettability on the condensation rate in order to identify microstructure topographies promoting condensation. Financial support is acknowledged from Kimberly-Clark.
Hierarchical roughness of sticky and non-sticky superhydrophobic surfaces
NASA Astrophysics Data System (ADS)
Raza, Muhammad Akram; Kooij, Stefan; van Silfhout, Arend; Zandvliet, Harold; Poelsema, Bene; Physics Of Interfaces; Nanomaterials Team
2011-03-01
The importance of superhydrophobic substrates (contact angle > 150 r withslidingangle 10 r) inmoderntechnologyisundeniable . Wepresentasimplecolloidalroutetomanufacturesuperstructuredarrayswithsingle - andmulti - length - scaledroughnesstoobtainstickyandnon - stickysuperhydrophobicsurfaces . Thelargestlengthscaleisprovidedby (multi -) layersofsilicaspheres (1 μ m, 500nm and 150nm diameter). Decoration with gold nanoparticles (14nm, 26nm and 47nm) gives rise to a second length scale. To lower the surface energy, gold nanoparticles are functionalized with dodecanethiol and the silica spheres by perfluorooctyltriethoxysilane. The morphology was examined by helium ion microscopy (HIM), while wettability measurements were performed by using the sessile drop method. We conclude that wettability can be controlled by changing the surface chemistry and/or length scales of the structures. To achieve truly non-sticky superhydrophobic surfaces, hierarchical roughness plays a vital role.
Contamination and Surface Preparation Effects on Composite Bonding
NASA Technical Reports Server (NTRS)
Kutscha, Eileen O.; Vahey, Paul G.; Belcher, Marcus A.; VanVoast, Peter J.; Grace, William B.; Blohowiak, Kay Y.; Palmieri, Frank L.; Connell, John W.
2017-01-01
Results presented here demonstrate the effect of several prebond surface contaminants (hydrocarbon, machining fluid, latex, silicone, peel ply residue, release film) on bond quality, as measured by fracture toughness and failure modes of carbon fiber reinforced epoxy substrates bonded in secondary and co-bond configurations with paste and film adhesives. Additionally, the capability of various prebond surface property measurement tools to detect contaminants and potentially predict subsequent bond performance of three different adhesives is also shown. Surface measurement methods included water contact angle, Dyne solution wettability, optically stimulated electron emission spectroscopy, surface free energy, inverse gas chromatography, and Fourier transform infrared spectroscopy with chemometrics analysis. Information will also be provided on the effectiveness of mechanical and energetic surface treatments to recover a bondable surface after contamination. The benefits and drawbacks of the various surface analysis tools to detect contaminants and evaluate prebond surfaces after surface treatment were assessed as well as their ability to correlate to bond performance. Surface analysis tools were also evaluated for their potential use as in-line quality control of adhesive bonding parameters in the manufacturing environment.
Effect of Collagen Matrix Saturation on the Surface Free Energy of Dentin using Different Agents.
de Almeida, Leopoldina de Fátima Dantas; Souza, Samilly Evangelista; Sampaio, Aline Araújo; Cavalcanti, Yuri Wanderley; da Silva, Wander José; Del Bel Cur, Altair A; Hebling, Josimeri
2015-07-01
The surface free energy of conditioned-dentin is one of the factors that interfere with monomeric infiltration of the interfibrillar spaces. Saturation of the tooth matrix with different substances may modulate this energy and, consequently, the wettability of the dentin. To evaluate the influence of different substances used to saturate conditioned-dentin on surface free energy (SFE) of this substrate. Dentin blocks (4 × 7 × 1 mm, n = 6/ group), obtained from the roots of bovine incisors, were etched using phosphoric acid for 15 seconds, rinsed and gently dried. The surfaces were treated for 60 seconds with: ultra-purified water (H20-control); ethanol (EtOH), acetone (ACT), chlorhexidine (CHX), ethylenediaminetetraacetic acid (EDTA); or sodium hypochlorite (NaOCl). The tooth surfaces were once again dried with absorbent paper and prepared for SFE evaluation using three standards: water, formamide and bromonaphthalene. Analysis of variance (ANOVA) and Dunnet's tests (a = 0.05) were applied to the data. Ethylenediaminetetraacetic acid was the only substance that caused a change to the contact angle for the standards water and formamide, while only EtOH influenced the angles formed between formamide and the dentin surface. None of the substances exerted a significant effect for bromonaphtha-lene. In comparison to the control, only EDTA and NaOCl altered both polar components of the SFE. Total SFE was increased by saturation of the collagen matrix by EDTA and reduced when NaOCl was used. Saturation of the collagen matrix by EDTA and EtOH changed the surface free energy of the dentin. In addition, the use of NaOCl negatively interfered with the properties evaluated. The increase of surface free energy and wettability of the dentin surface would allow higher penetration of the the adhesive system, which would be of importance to the clinical success of resin-dentin union.
NASA Astrophysics Data System (ADS)
Moench, Molly K.
The preparation of the surfaces to be bonded is critical to the success of composite bonds. Peel ply surface preparation is attractive from a manufacturing and quality assurance standpoint, but is a well known example of the extremely system-specific nature of composite bonds. This study examined the role of the surface energy, morphology, and chemistry left by peel ply removal in resulting bond quality. It also evaluated the use of contact angle surface energy measurement techniques for predicting the resulting bond quality of a prepared surface. The surfaces created by preparing three aerospace fiber-reinforced composite prepregs were compared when prepared with a nylon vs a polyester peel ply. The prepared surfaces were characterized with contact angle measurements with multiple fluids, scanning electron microscopy (SEM), and x-ray electron spectroscopy. The laminates were bonded with aerospace grade film adhesives. Bond quality was assessed via double cantilever beam testing followed by optical and scanning electron microscopy of the fracture surfaces.The division was clear between strong bonds (GIC of 600- 1000J/m2 and failure in cohesion) and weak bonds (GIC of 80-400J/m2 and failure in adhesion). All prepared laminates showed the imprint of the peel ply texture and evidence of peel ply remnants after fabric removal, either through SEM or XPS. Within an adhesive system, large amounts of SEM-visible peel ply material transfer correlated with poor bond quality and cleaner surfaces with higher bond quality. The both sides of failed weak bonds showed evidence of peel ply remnants under XPS, showing that at least some failure is occurring through the remnants. The choice of adhesive was found to be significant. AF 555 adhesive was more tolerant of peel ply contamination than MB 1515-3. Although the bond quality results varied substantially between tested combinations, the total surface energies of all prepared surfaces were very similar. Single fluid contact angle measurements/water break tests were therefore not predictive of bond quality, and are recommended against. The multiple fluids used allowed the construction of wettability envelopes, a more detailed look at the surface energy profile. The envelopes of nylon and polyester prepared systems were noticeably different, but while potentially useful for detecting changes or errors in surface preparation of known systems, they were not valid for predicting bond quality in new systems. Ultimately, it was determined that wetting is a necessary but not sufficient condition for bonding.
2015-01-01
Combination of two physical phenomena, capillary pressure gradient and wettability gradient, allows a simple two-step fabrication process that yields a reliable hydrophobic self-cleaning condenser surface. The surface is fabricated with specific microscopic topography and further treatment with a chemically inert low-surface-energy material. This process does not require growth of nanofeatures (nanotubes) or hydrophilic–hydrophobic patterning of the surface. Trapezoidal geometry of the microfeatures facilitates droplet transfer from the Wenzel to the Cassie state and reduces droplet critical diameter. The geometry of the micropatterns enhances local coalescence and directional movement for droplets with diameter much smaller than the radial length of the micropatterns. The hydrophobic self-cleaning micropatterned condenser surface prevents liquid film formation and promotes continuous dropwise condensation cycle. Upon dropwise condensation, droplets follow a designed wettability gradient created with micropatterns from the most hydrophobic to the least hydrophobic end of the surface. The surface has higher condensation efficiency, due to its directional self-cleaning property, than a plain hydrophobic surface. We explain the self-actuated droplet collection mechanism on the condenser surface and demonstrate experimentally the creation of an effective wettability gradient over a 6 mm radial distance. In spite of its fabrication simplicity, the fabricated surface demonstrates self-cleaning property, enhanced condensation performance, and reliability over time. Our work enables creation of a hydrophobic condenser surface with the directional self-cleaning property that can be used for collection of biological (chemical, environmental) aerosol samples or for condensation enhancement. PMID:25073014
Zamuruyev, Konstantin O; Bardaweel, Hamzeh K; Carron, Christopher J; Kenyon, Nicholas J; Brand, Oliver; Delplanque, Jean-Pierre; Davis, Cristina E
2014-08-26
Combination of two physical phenomena, capillary pressure gradient and wettability gradient, allows a simple two-step fabrication process that yields a reliable hydrophobic self-cleaning condenser surface. The surface is fabricated with specific microscopic topography and further treatment with a chemically inert low-surface-energy material. This process does not require growth of nanofeatures (nanotubes) or hydrophilic-hydrophobic patterning of the surface. Trapezoidal geometry of the microfeatures facilitates droplet transfer from the Wenzel to the Cassie state and reduces droplet critical diameter. The geometry of the micropatterns enhances local coalescence and directional movement for droplets with diameter much smaller than the radial length of the micropatterns. The hydrophobic self-cleaning micropatterned condenser surface prevents liquid film formation and promotes continuous dropwise condensation cycle. Upon dropwise condensation, droplets follow a designed wettability gradient created with micropatterns from the most hydrophobic to the least hydrophobic end of the surface. The surface has higher condensation efficiency, due to its directional self-cleaning property, than a plain hydrophobic surface. We explain the self-actuated droplet collection mechanism on the condenser surface and demonstrate experimentally the creation of an effective wettability gradient over a 6 mm radial distance. In spite of its fabrication simplicity, the fabricated surface demonstrates self-cleaning property, enhanced condensation performance, and reliability over time. Our work enables creation of a hydrophobic condenser surface with the directional self-cleaning property that can be used for collection of biological (chemical, environmental) aerosol samples or for condensation enhancement.
Tatara, Shingo; Kuzumoto, Yasutaka; Kitamura, Masatoshi
2016-04-01
The water wettability of Au surfaces has been controlled using various benzenethiol derivatives including 4-methylbenzenethiol, pentafluorobenzenethiol, 4-flubrobenzenethiol, 4-methoxy-benzenethiol, 4-nitrobenzenethiol, and 4-hydroxybenzenethiol. The water contact angle of the Au surface modified with the benzenethiol derivative was found to vary in the wide range of 30.9° to 88.3°. The contact angle of the modified Au films annealed was also measured in order to investigate their thermal stability. The change in the contact angle indicated that the modified surface is stable at temperatures below about 400 K. Meanwhile, the activation energy of desorption from the modified surface was estimated from the change in the contact angle. The modified Au surface was also examined using X-ray photoelectron spectroscopy.
NASA Astrophysics Data System (ADS)
Mehdikhani, Mehdi; Ghaziof, Sharareh
2018-01-01
In this research, poly-ɛ-caprolactone (PCL), polyethylene glycol (PEG), multi-wall carbon nanotubes (MWCNTs), and nanocomposite scaffolds containing 0.5 and 1% (w/w) MWCNTs coated with fibrin glue (FG) were prepared via solvent casting and freeze-drying technique for cardiac tissue engineering. Scanning electron microscopy, transmission electron microscopy, Fourier transform-infrared spectroscopy, and X-ray diffraction were used to characterize the samples. Furthermore, mechanical properties, electrical conductivity, degradation, contact angle, and cytotoxicity of the samples were evaluated. Results showed the uniform distribution of the MWCNTs with some aggregates in the prepared nanocomposite scaffolds. The scaffolds containing 1% (w/w) MWCNTs with and without FG coating illustrated optimum modulus of elasticity, high electrical conductivity, and wettability compared with PCL/PEG and PCL/PEG/0.5%(w/w) MWCNTs' scaffolds. FG coating enhanced electrical conductivity and cell response, and increased wettability of the constructs. The prepared scaffolds were degraded significantly after 60 days of immersion in PBS. Meanwhile, the nanocomposite containing 1% (w/w) MWCNTs with FG coating (S3) showed proper spreading and viability of the myoblasts seeded on it after 1, 4, and 7 days of culture. The scaffold containing 1% (w/w) MWCNTs with FG coating demonstrated optimal properties including acceptable mechanical properties, proper wettability, high electrical conductivity, satisfactory degradation, and excellent myoblasts response to it.
NASA Astrophysics Data System (ADS)
Hong, Wei; Guo, Fangwei; Chen, Jianwei; Wang, Xin; Zhao, Xiaofeng; Xiao, Ping
2018-05-01
To improve the osteointegration of polyetheretherketone (PEEK) spinal fusions, the 45S5 bioactive glass® (BG)-chitosan (CH) composite was used to coat the PEEK by a dip-coating method at room temperature. A robust bonding between the BG-CH composite coating and the PEEK was achieved by a combined surface treatment of sand blasting and acid etching. The effects of surface wettability and surface roughness on the adhesion of the BG-CH composite coating were characterized by fracture resistance (Gc), respectively, measured by four-point bending tests. Compared with the surface polar energy (wettability), the surface roughness (>3 μm) played a more important role for the increase in Gc values by means of crack shielding effect under the mixed mode stress. The maximum adhesion strength (σ) of the coatings on the modified PEEK measured by the tensile pull-off test was about 5.73 MPa. The in vitro biocompatibilities of PEEK, including cell adhesion, cell proliferation, differentiation, and bioactivity in the stimulated body fluid (SBF), were enhanced by the presence of BG-CH composite coatings, which also suggested that this composite coating method could provide an effective solution for the weak PEEK-bone integration.
Su, Xiaojing; Li, Hongqiang; Lai, Xuejun; Zhang, Lin; Liang, Tao; Feng, Yuchun; Zeng, Xingrong
2017-01-25
Functional surfaces for reversibly switchable wettability and oil-water separation have attracted much interest with pushing forward an immense influence on fundamental research and industrial application in recent years. This article proposed a facile method to fabricate superhydrophobic surfaces on steel substrates via electroless replacement deposition of copper sulfate (CuSO 4 ) and UV curing of vinyl-terminated polydimethylsiloxane (PDMS). PDMS-based superhydrophobic surfaces exhibited water contact angle (WCA) close to 160° and water sliding angle (WSA) lower than 5°, preserving outstanding chemical stability that maintained superhydrophobicity immersing in different aqueous solutions with pH values from 1 to 13 for 12 h. Interestingly, the superhydrophobic surface could dramatically switch to the superhydrophilic state under UV irradiation and then gradually recover to the highly hydrophobic state with WCA at 140° after dark storage. The underlying mechanism was also investigated by scanning electron microscopy, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy. Additionally, the PDMS-based steel mesh possessed high separation efficiency and excellent reusability in oil-water separation. Our studies provide a simple, fast, and economical fabrication method for wettability-transformable superhydrophobic surfaces and have the potential applications in microfluidics, the biomedical field, and oil spill cleanup.
Are superhydrophobic surfaces best for icephobicity?
Jung, Stefan; Dorrestijn, Marko; Raps, Dominik; Das, Arindam; Megaridis, Constantine M; Poulikakos, Dimos
2011-03-15
Ice formation can have catastrophic consequences for human activity on the ground and in the air. Here we investigate water freezing delays on untreated and coated surfaces ranging from hydrophilic to superhydrophobic and use these delays to evaluate icephobicity. Supercooled water microdroplets are inkjet-deposited and coalesce until spontaneous freezing of the accumulated mass occurs. Surfaces with nanometer-scale roughness and higher wettability display unexpectedly long freezing delays, at least 1 order of magnitude longer than typical superhydrophobic surfaces with larger hierarchical roughness and low wettability. Directly related to the main focus on heterogeneous nucleation and freezing delay of supercooled water droplets, the observed ensuing crystallization process consisted of two distinct phases: one very rapid recalescent partial solidification phase and a subsequent slower phase. Observations of the droplet collision process employed for the continuous liquid mass accumulation up to the point of ice formation reveal a previously unseen atmospheric-pressure, subfreezing-temperature regime for liquid-on-liquid bounce. On the basis of the entropy reduction of water near a solid surface, we formulate a modification to the classical heterogeneous nucleation theory, which predicts the observed freezing delay trends. Our results bring to question recent emphasis on super water-repellent surface formulations for ice formation retardation and suggest that anti-icing design must optimize the competing influences of both wettability and roughness.
Numerical study of droplet impact and rebound on superhydrophobic surface
NASA Astrophysics Data System (ADS)
Cai, Xuan; Wu, Yanchen; Woerner, Martin; Frohnapfel, Bettina
2017-11-01
Droplet impact and rebound on superhydrophobic surface is an important process in many applications; among them are developing self-cleaning or anti-icing materials and limiting liquid film formation of Diesel Exhaust Fluid (DEF) in exhaust gas pipe. In the latter field, rebound of DEF droplet from wall is desired as an effective mean for avoiding or reducing unwanted solid deposition. Our goal is to numerically study influence of surface wettability on DEF droplet impact and rebound behavior. A phase-field method is chosen, which was implemented in OpenFOAM by us and validated for wetting-related interfacial flow problems. In the present contribution we first numerically reproduce relevant experimental studies in literature, to validate the code for droplet impact and rebound problem. There we study droplet-surface contact time, maximum/instantaneous spreading factor and droplet shape evolution. Our numerical results show good agreement with experimental data. Next we investigate for DEF droplets the effects of diameter, impact velocity and surface wettability on rebound behavior and jumping height. Based on Weber number and equilibrium contact angle, two regimes are identified. We show that surface wettability is a deciding factor for achieving rebound event. This work is supported by Foundation ``Friedrich-und-Elisabeth Boysen Stiftung fuer Forschung und Innovation'' (BOY-127-TP1).
Wang, Ben; Liang, Weixin; Guo, Zhiguang; Liu, Weimin
2015-01-07
Oil spills and industrial organic pollutants have induced severe water pollution and threatened every species in the ecological system. To deal with oily water, special wettability stimulated materials have been developed over the past decade to separate oil-and-water mixtures. Basically, synergy between the surface chemical composition and surface topography are commonly known as the key factors to realize the opposite wettability to oils and water and dominate the selective wetting or absorption of oils/water. In this review, we mainly focus on the development of materials with either super-lyophobicity or super-lyophilicity properties in oil/water separation applications where they can be classified into four kinds as follows (in terms of the surface wettability of water and oils): (i) superhydrophobic and superoleophilic materials, (ii) superhydrophilic and under water superoleophobic materials, (iii) superhydrophilic and superoleophobic materials, and (iv) smart oil/water separation materials with switchable wettability. These materials have already been applied to the separation of oil-and-water mixtures: from simple oil/water layered mixtures to oil/water emulsions (including oil-in-water emulsions and water-in-oil emulsions), and from non-intelligent materials to intelligent materials. Moreover, they also exhibit high absorption capacity or separation efficiency and selectivity, simple and fast separation/absorption ability, excellent recyclability, economical efficiency and outstanding durability under harsh conditions. Then, related theories are proposed to understand the physical mechanisms that occur during the oil/water separation process. Finally, some challenges and promising breakthroughs in this field are also discussed. It is expected that special wettability stimulated oil/water separation materials can achieve industrial scale production and be put into use for oil spills and industrial oily wastewater treatment in the near future.
NASA Astrophysics Data System (ADS)
Huang, Qi-Zhang; Fang, Yue-Yun; Liu, Peng-Yi; Zhu, Yan-Qing; Shi, Ji-Fu; Xu, Gang
2018-01-01
The practical application of superhydrophobic coatings on glass is usually restricted by their poor wear resistance due to the insufficient adhesion. A double-silica-layered structure was proposed to reinforce the coating adhesion on glass substrate. The wettability, surface morphologies, and chemical composition were investigated by water contact angle measurement, scanning electron microscopy (SEM), and fourier transformed infrared (FTIR) spectroscopy. The prepared superhydrophobic coating displays a good wear-resistance by emery paper and sand abrasion, which also has excellent thermal stability and UV resistance. This strategy shows a bright future for durable superhydrophobic coating on glass.
NASA Astrophysics Data System (ADS)
Klamerus-Iwan, Anna; Błońska, Ewa
2018-04-01
The canopy storage capacity (S) is a major component of the surface water balance. We analysed the relationship between the tree canopy water storage capacity and leaf wettability under changing simulated rainfall temperature. We estimated the effect of the rain temperature change on the canopy storage capacity and contact angle of leave and needle surfaces based on two scenarios. Six dominant forest trees were analysed: English oak (Quercus roburL.), common beech (Fagus sylvatica L.), small-leaved lime (Tilia cordata Mill), silver fir (Abies alba), Scots pine (Pinus sylvestris L.),and Norway spruce (Picea abies L.). Twigs of these species were collected from Krynica Zdrój, that is, the Experimental Forestry unit of the University of Agriculture in Cracow (southern Poland). Experimental analyses (simulations of precipitation) were performed in a laboratory under controlled conditions. The canopy storage capacity and leaf wettability classification were determined at 12 water temperatures and a practical calculator to compute changes of S and contact angles of droplets was developed. Among all species, an increase of the rainfall temperature by 0.7 °C decreases the contact angle between leave and needle surfaces by 2.41° and increases the canopy storage capacity by 0.74 g g-1; an increase of the rain temperature by 2.7 °C decreases the contact angle by 9.29° and increases the canopy storage capacity by 2.85 g g-1. A decreased contact angle between a water droplet and leaf surface indicates increased wettability. Thus, our results show that an increased temperature increases the leaf wettability in all examined species. The comparison of different species implies that the water temperature has the strongest effect on spruce and the weakest effect on oak. These data indicate that the rainfall temperature influences the canopy storage capacity.
NASA Astrophysics Data System (ADS)
Alsih, Abdulkareem; Flavel, Richard; McGrath, Gavan
2017-04-01
This study presents experimental results investigating spatial patterns of infiltration and evaporation in heterogeneous water repellent media. Infrared camera measurements and 3D X-ray computed tomography imaging was performed across wet-dry cycles on glass beads with engineered patches of water repellence. The imaging revealed spatial variability in infiltration and the redistribution of water in the media resulting in differences in relative evaporation rates during drying. It appears that the spatial organization of the heterogeneity play a role in the breakdown of water repellence at the interface of the two media. This suggests a potential mechanism for self-organization of repellency spatial patterns in field soils. At the interface between wettable and water repellent beads a lateral drying front propagates towards the wettable beads from the repellent beads. During this drying the relative surface temperatures change from a relatively cooler repellent media surface to a relatively cooler wettable media surface indicating the changes in evaporative water loss between the beads of varying water repellence. The lateral drying front was confirmed using thermography in a small-scale model of glass beads with chemically induced repellence and then subjected to 3D X-ray imaging. Pore-scale imaging identified the hydrology at the interface of the two media and at the drying front giving insights into the physics of water flow in water repellent soil.
NASA Astrophysics Data System (ADS)
Maes, Julien; Geiger, Sebastian
2018-01-01
Laboratory experiments have shown that oil production from sandstone and carbonate reservoirs by waterflooding could be significantly increased by manipulating the composition of the injected water (e.g. by lowering the ionic strength). Recent studies suggest that a change of wettability induced by a change in surface charge is likely to be one of the driving mechanism of the so-called low-salinity effect. In this case, the potential increase of oil recovery during waterflooding at low ionic strength would be strongly impacted by the inter-relations between flow, transport and chemical reaction at the pore-scale. Hence, a new numerical model that includes two-phase flow, solute reactive transport and wettability alteration is implemented based on the Direct Numerical Simulation of the Navier-Stokes equations and surface complexation modelling. Our model is first used to match experimental results of oil droplet detachment from clay patches. We then study the effect of wettability change on the pore-scale displacement for simple 2D calcite micro-models and evaluate the impact of several parameters such as water composition and injected velocity. Finally, we repeat the simulation experiments on a larger and more complex pore geometry representing a carbonate rock. Our simulations highlight two different effects of low-salinity on oil production from carbonate rocks: a smaller number of oil clusters left in the pores after invasion, and a greater number of pores invaded.
Self-cleaning of Surfaces: the Role of Surface Wettability and Dust Types
NASA Astrophysics Data System (ADS)
Quan, Yun-Yun; Zhang, Li-Zhi; Qi, Rong-Hui; Cai, Rong-Rong
2016-12-01
The self-cleaning property is usually connected to superhydrophobic surfaces (SHSs) where the dust particles can be easily removed by the rolling motion of droplets. It seems that superhydrophobicity (its durability is questionable nowadays) is a necessity. However here, it is disclosed that self-cleaning can also be realized on an ordinary surface by droplet impinging. The effects of surface wettability and the types of dust particles are considered. The self-cleaning is realized by two steps: (1) the pickup of particles by the water-air interface of an impinging droplet, (2) the release of the impinging droplets from the surface. It can be observed that only the trailing edges of the droplets can pick up particles when the droplets recoil from the inclined surfaces. The hydrophilic surface can also achieve self-cleaning under some conditions. This interesting finding may be helpful for the successful implementation of self-cleaning with common surfaces.
Wettability and friction coefficient of micro-magnet arrayed surface
NASA Astrophysics Data System (ADS)
Huang, Wei; Liao, Sijie; Wang, Xiaolei
2012-01-01
Surface coating is an important part of surface engineering and it has been successfully used in many applications to improve the performance of surfaces. In this paper, magnetic arrayed films with different thicknesses were fabricated on the surface of 316 stainless steel disks. Controllable colloid - ferrofluids (FF) was chosen as lubricant, which can be adsorbed on the magnetic surface. The wettability of the micro-magnet arrayed surface was evaluated by measuring the contract angle of FF drops on surface. Tribological experiments were carried out to investigate the effects of magnetic film thickness on frictional properties when lubricated by FF under plane contact condition. It was found that the magnetic arrayed surface with thicker magnetic films presented larger contract angle. The frictional test results showed that samples with thicker magnetic films could reduce friction and wear more efficiently at higher sliding velocity under the lubrication of FF.
Experiments on the Motion of Drops on a Horizontal Solid Surface due to a Wettability Gradient
NASA Technical Reports Server (NTRS)
Moumen, Nadjoua; Subramanian, R, Shankar; MLaughlin, john B.
2006-01-01
Results from experiments performed on the motion of drops of tetraethylene glycol in a wettability gradient present on a silicon surface are reported and compared with predictions from a recently developed theoretical model. The gradient in wettability was formed by exposing strips cut from a silicon wafer to decyltrichlorosiland vapors. Video images of the drops captured during the experiments were subsequently analyzed for drop size and velocity as functions of position along the gradient. In separate experiments on the same strips, the static contact angle formed by small drops was measured and used to obtain the local wettability gradient to which a drop is subjected. The velocity of the drops was found to be a strong function of position along the gradient. A quasi-steady theoretical model that balances the local hydrodynamic resistance with the local driving force generally describes the observations; possible reasons for the remaining discrepancies are discussed. It is shown that a model in which the driving force is reduced to accomodate the hysteresis effect inferred from the data is able to remove most of the discrepancy between the observed and predicted velocities.
Fabrication of TiO2/EP super-hydrophobic thin film on filter paper surface.
Gao, Zhengxin; Zhai, Xianglin; Liu, Feng; Zhang, Ming; Zang, Deli; Wang, Chengyu
2015-09-05
A composite filter paper with super-hydrophobicity was obtained by adhering micro/nano structure of amorphous titanium dioxide on the filter paper surface with modifying low surface energy material. By virtue of the coupling agent, which plays an important part in bonding amorphous titanium dioxide and epoxy resin, the structure of super-hydrophobic thin film on the filter paper surface is extremely stable. The microstructure of super-hydrophobic filter paper was characterized by scanning electron microscopy (SEM), the images showed that the as-prepared filter paper was covered with uniform amorphous titanium dioxide particles, generating a roughness structure on the filter paper surface. The super-hydrophobic performance of the filter paper was characterized by water contact angle measurements. The observations showed that the wettability of filter paper samples transformed from super-hydrophilicity to super-hydrophobicity with the water contact angle of 153 ± 1°. Some experiments were also designed to test the effect of water-oil separation and UV-resistant by the super-hydrophobic filter paper. The prepared super-hydrophobic filter paper worked efficiently and simply in water-oil separation as well as enduringly in anti-UV property after the experiments. This method offers an opportunity to the practical applications of the super-hydrophobic filter paper. Copyright © 2015 Elsevier Ltd. All rights reserved.
Müller, Christine; Lüders, Anne; Hoth-Hannig, Wiebke; Hannig, Matthias; Ziegler, Christiane
2010-03-16
The adsorption of bovine serum albumin (BSA) on surfaces of dental enamel and of dental materials was investigated by scanning force spectroscopy. This method provides adhesion forces which can be measured as a function of contact time between protein and surface, pH, wettability, and isoelectric point of the surface. Whereas the chosen ceramic and composite materials resemble very well the adhesion on natural enamel, a much stronger adhesion was found for the more hydrophobic surfaces, that is, gold, titanium, poly(methyl methacrylate) (PMMA), and poly(tetrafluoroethylene) (PTFE). On hydrophilic surfaces, adhesion is mainly influenced by the electrostatic forces between protein and surface. However, the conformational change of BSA at pH values above pH 8 has to be taken into account. On the very hydrophobic PTFE surface, the special interface structure between PTFE and water plays an important role which governs BSA adhesion.
A travel in the Echeveria genus wettability's world
NASA Astrophysics Data System (ADS)
Godeau, Guilhem; Laugier, Jean-Pierre; Orange, François; Godeau, René-Paul; Guittard, Frédéric; Darmanin, Thierry
2017-07-01
Nature is a constant source of inspiration for researchers and engineers. In this work, we study the wettability of various species from the genus Echeveria. All species studied present very strong hydrophobic properties with various water adhesions. Echeveria 'Perle von Nürnberg' has properties very close to superhydrophobicity with low water adhesion (sliding angle α = 15° and contact angle hysteresis H = 9°) while Echeveria pallida and Echeveria runyonii are completely sticky (parahydrophobic) and water droplets do not move even if the surface is inclined to 90°. This work shows that most of the differences in the hydrophobic properties depend on the amount of wax crystallization. However, Echeveria pulvinata shows special wettability results. Their leaves possess long hairs. When a water droplet is placed on the surface, the water droplet is completely sticky. When the size of the droplets becomes critical, the water droplets spread across the leaf surface displaying superhydrophilic properties. More investigations reveal that the hairs are highly hydrophobic and rough due to the presence of wax crystals while the bottom of the surface is smooth and hydrophilic. Such materials are excellent candidates for water harvesting systems and oil/water separation membranes.
Doping-Driven Wettability of Two-Dimensional Materials: A Multiscale Theory.
Tian, Tian; Lin, Shangchao; Li, Siyu; Zhao, Lingling; Santos, Elton J G; Shih, Chih-Jen
2017-11-07
Engineering molecular interactions at two-dimensional (2D) materials interfaces enables new technological opportunities in functional surfaces and molecular epitaxy. Understanding the wettability of 2D materials represents the crucial first step toward quantifying the interplay between the interfacial forces and electric potential of 2D materials interfaces. Here we develop the first theoretical framework to model the wettability of the doped 2D materials by properly bridging the multiscale physical phenomena at the 2D interfaces, including (i) the change of 2D materials surface energy (atomistic scale, several angstroms), (ii) the molecular reorientation of liquid molecules adjacent to the interface (molecular scale, 10 0 -10 1 nm), and (iii) the electrical double layer (EDL) formed in the liquid phase (mesoscopic scales, 10 0 -10 4 nm). The latter two effects are found to be the major mechanisms responsible for the contact angle change upon doping, while the surface energy change of a pure 2D material has no net effect on the wetting property. When the doping level is electrostatically tuned, we demonstrate that 2D materials with high quantum capacitances (e.g., transition metal dichalcogenides, TMDCs) possess a wider range of tunability in the interfacial tension, under the same applied gate voltage. Furthermore, practical considerations such as defects and airborne contamination are also quantitatively discussed. Our analysis implies that the doping level can be another variable to modulate the wettability at 2D materials interfaces, as well as the molecular packing behavior on a 2D material-coated surface, essentially facilitating the interfacial engineering of 2D materials.
Influence of Surfactants and Fluoride against Enamel Erosion.
Zanatta, Rayssa Ferreira; Ávila, Daniele Mara da Silva; Miyamoto, Karen Mayumi; Torres, Carlos Rocha Gomes; Borges, Alessandra Bühler
2018-06-06
This study investigated the effect of surfactants associated with sodium fluoride (NaF) on enamel erosion prevention, using an erosion-remineralization in vitro model. Sodium lauryl sulfate (SLS), polysorbate 20 (P20), and cocoamidopropyl betaine (CAPB) were tested, at concentrations of 1.0 and 1.5%, and associated or not with NaF (275 ppm). The control groups were distilled water and the NaF solution. Bovine enamel samples (n = 12) were prepared and submitted to a 5-day cycling model: acid challenge (0.3% citric acid, pH 2.6, 4×/day), human saliva (2 h, 4×/day), and the treatment solutions (2 min, 2×/day). The protective potential of the agents against initial erosion was assessed by microhardness and the surface loss by profilometry. Enamel surface wettability was determined by goniometry, protein adsorption was measured by spectroscopy (FTIR), and the KOH-soluble fluoride was quantified. Goniometry showed that SLS and CAPB increased enamel wettability. No differences were found among the surfactants regarding protein adsorption. Microhardness showed that SLS reduced NaF protection. P20 (1 and 1.5%) and CAPB 1.5% presented a protective effect, but lower than the NaF solution. Profilometry showed that CAPB protected enamel, but no agent associated with NaF promoted a higher protection than the NaF solution alone. KOH-soluble fluoride analysis showed that all surfactants reduced the fluoride adsorption on the enamel surface. Therefore, the surfactants tested (except for P20) changed the enamel surface energy. The SLS decreased the protective potential of NaF on initial erosion, but no tested agent interfered with the protective effect of NaF on enamel erosive wear. © 2018 S. Karger AG, Basel.
Biphilic Surfaces for Enhanced Water Collection from Humid Air
NASA Astrophysics Data System (ADS)
Benkoski, Jason; Gerasopoulos, Konstantinos; Luedeman, William
Surface wettability plays an important role in water recovery, distillation, dehumidification, and heat transfer. The efficiency of each process depends on the rate of droplet nucleation, droplet growth, and mass transfer. Unfortunately, hydrophilic surfaces are good at nucleation but poor at shedding. Hydrophobic surfaces are the reverse. Many plants and animals overcome this tradeoff through biphilic surfaces with patterned wettability. For example, the Stenocara beetle uses hydrophilic patches on a superhydrophobic background to collect fog from air. Cribellate spiders similarly collect fog on their webs through periodic spindle-knot structures. In this study, we investigate the effects of wettability patterns on the rate of water collection from humid air. The steady state rate of water collection per unit area is measured as a function of undercooling, angle of inclination, water contact angle, hydrophilic patch size, patch spacing, area fraction, and patch height relative to the hydrophobic background. We then model each pattern by comparing the potential and kinetic energy of a droplet as it rolls downwards at a fixed angle. The results indicate that the design rules for collecting fog differ from those for condensation from humid air. The authors gratefully acknowledge the Office of Naval Research for financial support through Grant Number N00014-15-1-2107.
NASA Astrophysics Data System (ADS)
Fathi, H.; Raoof, A.; Mansouri, S. H.
2017-05-01
The production of liquid water in cathode catalyst layer, CCL, is a significant barrier to increase the efficiency of proton exchange membrane fuel cell. Here we present, for the first time, a direct three-dimensional pore-scale modelling to look at the complex immiscible two-phase flow in CCL. After production of the liquid water at the surface of CCL agglomerates due to the electrochemical reactions, water spatial distribution affects transport of oxygen through the CCL as well as the rate of reaction at the agglomerate surfaces. To explore the wettability effects, we apply hydrophilic and hydrophobic properties using different surface contact angles. Effective diffusivity is calculated under several water saturation levels. Results indicate larger diffusive transport values for hydrophilic domain compared to the hydrophobic media where the liquid water preferentially floods the larger pores. However, hydrophobic domain showed more available surface area and higher oxygen consumption rate at the reaction sites under various saturation levels, which is explained by the effect of wettability on pore-scale distribution of water. Hydrophobic domain, with a contact angle of 150, reveals efficient water removal where only 28% of the pore space stays saturated. This condition contributes to the enhanced available reaction surface area and oxygen diffusivity.
CO2-Water-Rock Wettability: Variability, Influencing Factors, and Implications for CO2 Geostorage.
Iglauer, Stefan
2017-05-16
Carbon geosequestration (CGS) has been identified as a key technology to reduce anthropogenic greenhouse gas emissions and thus significantly mitigate climate change. In CGS, CO 2 is captured from large point-source emitters (e.g., coal fired power stations), purified, and injected deep underground into geological formations for disposal. However, the CO 2 has a lower density than the resident formation brine and thus migrates upward due to buoyancy forces. To prevent the CO 2 from leaking back to the surface, four trapping mechanisms are used: (1) structural trapping (where a tight caprock acts as a seal barrier through which the CO 2 cannot percolate), (2) residual trapping (where the CO 2 plume is split into many micrometer-sized bubbles, which are immobilized by capillary forces in the pore network of the rock), (3) dissolution trapping (where CO 2 dissolves in the formation brine and sinks deep into the reservoir due to a slight increase in brine density), and (4) mineral trapping (where the CO 2 introduced into the subsurface chemically reacts with the formation brine or reservoir rock or both to form solid precipitates). The efficiency of these trapping mechanisms and the movement of CO 2 through the rock are strongly influenced by the CO 2 -brine-rock wettability (mainly due to the small capillary-like pores in the rock which form a complex network), and it is thus of key importance to rigorously understand CO 2 -wettability. In this context, a substantial number of experiments have been conducted from which several conclusions can be drawn: of prime importance is the rock surface chemistry, and hydrophilic surfaces are water-wet while hydrophobic surfaces are CO 2 -wet. Note that CO 2 -wet surfaces dramatically reduce CO 2 storage capacities. Furthermore, increasing pressure, salinity, or dissolved ion valency increases CO 2 -wettability, while the effect of temperature is not well understood. Indeed theoretical understanding of CO 2 -wettability and the ability to quantitatively predict it are currently limited although recent advances have been made. Moreover, data for real storage rock and real injection gas (which contains impurities) is scarce and it is an open question how realistic subsurface conditions can be reproduced in laboratory experiments. In conclusion, however, it is clear that in principal CO 2 -wettability can vary drastically from completely water-wet to almost completely CO 2 -wet, and this possible variation introduces a large uncertainty into trapping capacity and containment security predictions.
Callow, Maureen E.; Callow, J. A.; Ista, Linnea K.; Coleman, Sarah E.; Nolasco, Aleece C.; López, Gabriel P.
2000-01-01
We investigated surface selection and adhesion of motile zoospores of a green, macrofouling alga (Enteromorpha) to self-assembled monolayers (SAMs) having a range of wettabilities. The SAMs were formed from alkyl thiols terminated with methyl (CH3) or hydroxyl (OH) groups or mixtures of CH3- and OH-terminated alkyl thiols and were characterized by measuring the advancing contact angles and by X-ray photoelectron spectroscopy. There was a positive correlation between the number of spores that attached to the SAMs and increasing contact angle (hydrophobicity). Moreover, the sizes of the spore groups (adjacent spores touching) were larger on the hydrophobic SAMs. Video microscopy of a patterned arrangement of SAMs showed that more zoospores were engaged in swimming and “searching” above the hydrophobic sectors than above the hydrophilic sectors, suggesting that the cells were able to “sense” that the hydrophobic surfaces were more favorable for settlement. The results are discussed in relation to the attachment of microorganisms to substrata having different wettabilities. PMID:10919777
Wettability of magnesium based alloys
NASA Astrophysics Data System (ADS)
Ornelas, Victor Manuel
The premise of this project was to determine the wettability behavior of Mg-based alloys using three different liquids. Contact angle measurements were carried out along with utilizing the Zisman method for obtaining values for the critical surface tension. Adhesion energy values were also found through the use of the Young-Dupre equation. This project utilized the Mg-based alloy Mg-2Zn-2Gd with supplemented alpha-Minimum Essential Medium (MEM), Phosphate Buffer Saline solution (PBS), and distilled water. These three liquids are commonly used in cell cultivation and protein adsorption studies. Supplemented alpha-MEM consisted of alpha-MEM, fetal bovine serum, and penicillin-streptomycin. Mg-2Zn-2Gd was used because of observed superior mechanical properties and better corrosion resistance as compared to conventional Mg-alloys. These attractive properties have made it possible for this alloy to be used in biomedical devices within the human body. However, the successful use of this alloy system in the human body requires knowledge in the response of protein adsorption on the alloy surface. Protein adsorption depends on many parameters, but one of the most important factors is the wettability behavior at the surface.
Electroactive polymer-peptide conjugates for adhesive biointerfaces.
Maione, Silvana; Gil, Ana M; Fabregat, Georgina; Del Valle, Luis J; Triguero, Jordi; Laurent, Adele; Jacquemin, Denis; Estrany, Francesc; Jiménez, Ana I; Zanuy, David; Cativiela, Carlos; Alemán, Carlos
2015-10-15
Electroactive polymer-peptide conjugates have been synthesized by combining poly(3,4-ethylenedioxythiophene), a polythiophene derivative with outstanding properties, and an Arg-Gly-Asp (RGD)-based peptide in which Gly has been replaced by an exotic amino acid bearing a 3,4-ethylenedioxythiophene ring in the side chain. The incorporation of the peptide at the ends of preformed PEDOT chains has been corroborated by both FTIR and X-ray photoelectron spectroscopy. Although the morphology and topology are not influenced by the incorporation of the peptide at the ends of PEDOT chains, this process largely affects other surface properties. Thus, the wettability of the conjugates is considerably higher than that of PEDOT, independently of the synthetic strategy, whereas the surface roughness only increases when the conjugate is obtained using a competing strategy (i.e. growth of the polymer chains against termination by end capping). The electrochemical activity of the conjugates has been found to be higher than that of PEDOT, evidencing the success of the polymer-peptide links designed by chemical similarity. Density functional theory calculations have been used not only to ascertain the conformational preferences of the peptide but also to interpret the electronic transitions detected by UV-vis spectroscopy. Electroactive surfaces prepared using the conjugates displayed the higher bioactivities in terms of cell adhesion, with the relative viabilities being dependent on the roughness, wettability and electrochemical activity of the conjugate. In addition to the influence of the peptide fragment in the initial cell attachment and subsequent cell spreading and survival, the results indicate that PEDOT promotes the exchange of ions at the conjugate-cell interface.
The effect of fluoroalkylsilanes on tribological properties and wettability of Si-DLC coatings
NASA Astrophysics Data System (ADS)
Bystrzycka, E.; Prowizor, M.; Piwoński, I.; Kisielewska, A.; Batory, D.; Jędrzejczak, A.; Dudek, M.; Kozłowski, W.; Cichomski, M.
2018-03-01
Silicon-containing diamond-like carbon (Si-DLC) coatings were prepared on silicon wafers by Radio Frequency Plasma Enhanced Chemical Vapor Deposition (RF-PECVD) method using methane/hexamethyl-disiloxane atmosphere. Herein, we report that Si-DLC coatings can be effectively modified by fluoroalkylsilanes which results in significant enhancement of frictional and wettability properties. Two types of fluoroalkylsilanes differing in the length of fluorocarbon chains were deposited on Si-DLC coatings with the use of Vapor Phase Deposition (VPD) method. The chemical composition of Si-DLC coatings and effectiveness of modification with fluoroalkylsilanes were confirmed by Fourier Transform Infrared Spectroscopy (FTIR) and x-ray Photoelectron Spectroscopy (XPS). Frictional properties in microscale were investigated with the use of ball-on-flat apparatus operating at millinewton (mN) load range. It was found that the presence of silicon enhances the chemisorption of fluoroalkylsilanes on Si-DLC coatings by creating adsorption anchoring centers. In consequence, a decrease of adhesion and an increase of hydrophobicity along with a decrease of coefficient of friction were observed. Experimental results indicate, that tribological properties are correlated with dispersive and acid-base components of the surface free energy as well as with the work of adhesion.
Reversible superhydrophobic-superhydrophilic transition of ZnO nanorod/epoxy composite films.
Liu, Yan; Lin, Ziyin; Lin, Wei; Moon, Kyoung Sik; Wong, C P
2012-08-01
Tuning the surface wettability is of great interest for both scientific research and practical applications. We demonstrated reversible transition between superhydrophobicity and superhydrophilicity on a ZnO nanorod/epoxy composite film. The epoxy resin serves as an adhesion and stress relief layer. The ZnO nanorods were exposed after oxygen reactive ion etching of the epoxy matrix. A subsequent chemcial treatment with fluoroalkyl and alkyl silanes resulted in a superhydrophobic surface with a water contact angle up to 158.4° and a hysteresis as low as 1.3°. Under UV irradiation, the water contact angle decreased gradually, and the surface eventually became superhydrophilic because of UV induced decomposition of alkyl silanes and hydroxyl absorption on ZnO surfaces. A reversible transition of surface wettability was realized by alternation of UV illumination and surface treatment. Such ZnO nanocomposite surface also showed improved mechanical robustness.
The effect of organic acids on wettability of sandstone and carbonate rocks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mwangi, Paulina; Brady, Patrick V.; Radonjic, Mileva
This paper examines the role of crude oil’s organic acid surface active compounds (SAC) in determining the reservoir wettability over a range of salinities and temperatures. To isolate the effects of individual SACs, this project used model oil mixtures of pure decane and single SACs to represent the oleic phase. Due to the large number of experiments in this study, we used wettability measurement method by the modified flotation technique (MFT) to produce fast, reliable, and quantitative results. The results showed that oil wetting by decane increased with temperature for carbonate rocks. Sandstones oil wetting showed little temperature dependency. Themore » presence of long-chained acids in decane increased oil wetting in sandstone and carbonate rocks as salinity was lowered, while the short-chained acid increased water wetting under the same conditions. The effect of organic acids on wettability was slightly enhanced with increasing temperature for all rock types.« less
The effect of organic acids on wettability of sandstone and carbonate rocks
Mwangi, Paulina; Brady, Patrick V.; Radonjic, Mileva; ...
2018-02-21
This paper examines the role of crude oil’s organic acid surface active compounds (SAC) in determining the reservoir wettability over a range of salinities and temperatures. To isolate the effects of individual SACs, this project used model oil mixtures of pure decane and single SACs to represent the oleic phase. Due to the large number of experiments in this study, we used wettability measurement method by the modified flotation technique (MFT) to produce fast, reliable, and quantitative results. The results showed that oil wetting by decane increased with temperature for carbonate rocks. Sandstones oil wetting showed little temperature dependency. Themore » presence of long-chained acids in decane increased oil wetting in sandstone and carbonate rocks as salinity was lowered, while the short-chained acid increased water wetting under the same conditions. The effect of organic acids on wettability was slightly enhanced with increasing temperature for all rock types.« less
Tuning Wettability and Adhesion of Structured Surfaces
NASA Astrophysics Data System (ADS)
Badge, Ila
Structured surfaces with feature size ranging from a few micrometers down to nanometers are of great interest in the applications such as design of anti-wetting surfaces, tissue engineering, microfluidics, filtration, microelectronic devices, anti-reflective coatings and reversible adhesives. A specific surface property demands particular roughness geometry along with suitable surface chemistry. Plasma Enhanced Chemical Vapor Deposition (PECVD) is a technique that offers control over surface chemistry without significantly affecting the roughness and thus, provides a flexibility to alter surface chemistry selectively for a given structured surface. In this study, we have used PECVD to fine tune wetting and adhesion properties. The research presented focuses on material design aspects as well as the fundamental understanding of wetting and adhesion phenomena of structured surfaces. In order to study the effect of surface roughness and surface chemistry on the surface wettability independently, we developed a model surface by combination of colloidal lithography and PECVD. A systematically controlled hierarchical roughness using spherical colloidal particles and surface chemistry allowed for quantitative prediction of contact angles corresponding to metastable and stable wetting states. A well-defined roughness and chemical composition of the surface enabled establishing a correlation between theory predictions and experimental measurements. We developed an extremely robust superhydrophobic surface based on Carbon-Nanotubes (CNT) mats. The surface of CNTs forming a nano-porous mesh was modified using PECVD to deposit a layer of hydrophobic coating (PCNT). The PCNT surface thus formed is superhydrophobic with almost zero contact angle hysteresis. We demonstrated that the PCNT surface is not wetted under steam condensation even after prolonged exposure and also continues to retain its superhydrophobicity after multiple frosting-defrosting cycles. The anti-wetting behavior of PCNT surface is consistent with our model predictions, derived based on thermodynamic theory of wetting. The surface of gecko feet is a very unique natural structured surface. The hierarchical surface structure of a Gecko toe pad is responsible for its reversible adhesive properties and superhydrophobicity. van der Waals interactions is known to be the key mechanism behind Gecko adhesion. However, we found that the wettability, thus the surface chemistry plays a significant role in Gecko adhesion mechanism, especially in the case of underwater adhesion. We used PECVD process to deposit a layer of coating with known chemistry on the surface of sheds of gecko toes to study the effect that wettability of the toe surface has on its adhesion. In summary, we demonstrated that PECVD can be effectively used as means of surface chemistry control for tunable structure-property relationship of three types of structured surfaces; each having unique surface features.
NASA Astrophysics Data System (ADS)
Oka, C.; Odagiri, K.; Nagano, H.
2017-12-01
Control of thermally induced liquid-vapor interface behavior at the contact surface of porous media is crucial for development of two-phase heat transfer devices such as loop heat pipes. The behavior experiences three modes with increase of heat flux, and the middle mode possesses the highest heat transfer performance. In this paper, the effect of improving wettability of the porous media is demonstrated experimentally and numerically for the first time, in particular with regard to the effect on a domain of the middle mode. Ethanol wettability of a porous stainless steel was improved via a facile method, which was a simple acid treatment. As a result, the domain of the middle mode was extended as a consequence of the wettability improvement. The mode transfers from the middle to the last one when the pressure drop in the liquid supply exceeds the capillary pressure of liquid bridges formed between the heating plate and the porous medium. Hence, the extension of the domain suggested that the capillary pressure was increased by the wettability improvement. This was verified via numerical calculation. The calculated capillary pressure was increased by 7% after improving wettability, which resulted in the extension of the domain of the middle mode.
Superhydrophobic surface prepared by micro-milling and WEDM on aluminum alloy
NASA Astrophysics Data System (ADS)
Yanling, Wan; Jian, Yang; Huadong, Yu
2018-06-01
To simulate the hydrophobic microstructure of rice leaf surface, high-speed precision micro-milling machine was used to fabricate micro groove array structure on the surface of aluminum alloy. The micro-and nanostructure was constructed on the surface of the grooved convex platform by Wire Cut Electrical Discharge Machining (WEDM). The surface morphology and hydrophobic properties of the aluminum alloy microstructures fabricated by two processing methods were observed respectively, and the hydrophobic mechanism was analyzed. The results show that the contact angle was effectively improved from 49° up to 158.4° in the vertical direction, and 146.7° in the parallel direction. The change of surface wettability from hydrophilic to hydrophobic was realized. By comparison, the micro-and nanostructure fabricated by WEDM had improved the hydrophobic stability of the aluminum alloy surface while enlarging the contact Angle, and the micro-milling groove structure further amplified the contact angle and greatly reduced the contact area of the water droplet, it was also observed that the drop took longer to completely spread on the sample after WEDM.
Wettability, Polarity, and Water Absorption of Holm Oak Leaves: Effect of Leaf Side and Age1[OPEN
Fernández, Victoria; Sancho-Knapik, Domingo; Guzmán, Paula; Peguero-Pina, José Javier; Gil, Luis; Karabourniotis, George; Khayet, Mohamed; Fasseas, Costas; Heredia-Guerrero, José Alejandro; Heredia, Antonio; Gil-Pelegrín, Eustaquio
2014-01-01
Plant trichomes play important protective functions and may have a major influence on leaf surface wettability. With the aim of gaining insight into trichome structure, composition, and function in relation to water-plant surface interactions, we analyzed the adaxial and abaxial leaf surface of holm oak (Quercus ilex) as a model. By measuring the leaf water potential 24 h after the deposition of water drops onto abaxial and adaxial surfaces, evidence for water penetration through the upper leaf side was gained in young and mature leaves. The structure and chemical composition of the abaxial (always present) and adaxial (occurring only in young leaves) trichomes were analyzed by various microscopic and analytical procedures. The adaxial surfaces were wettable and had a high degree of water drop adhesion in contrast to the highly unwettable and water-repellent abaxial holm oak leaf sides. The surface free energy and solubility parameter decreased with leaf age, with higher values determined for the adaxial sides. All holm oak leaf trichomes were covered with a cuticle. The abaxial trichomes were composed of 8% soluble waxes, 49% cutin, and 43% polysaccharides. For the adaxial side, it is concluded that trichomes and the scars after trichome shedding contribute to water uptake, while the abaxial leaf side is highly hydrophobic due to its high degree of pubescence and different trichome structure, composition, and density. Results are interpreted in terms of water-plant surface interactions, plant surface physical chemistry, and plant ecophysiology. PMID:24913938
Idaszek, J; Bruinink, A; Święszkowski, W
2015-07-01
Poly(ε-caprolactone), PCL, is of great interest for fabrication of biodegradable scaffolds due to its high compatibility with various manufacturing techniques, especially Fused Deposition Modeling (FDM). However, slow degradation and low strength make application of PCL limited only to longer-term bioresorbable and non-load bearing implants. To overcome latter drawbacks, ternary PCL-based composite fibrous scaffolds consisting of 70-95 wt % PCL, 5 wt % Tricalcium Phosphate (TCP) and 0-25 wt % poly(lactide-co-glycolide) (PLGA) were fabricated using FDM. In the present study, the effect of composition of the scaffolds on their mechanical properties, degradation kinetics, and surface properties (wettability, surface energy, and roughness) was investigated and correlated with response of human bone marrow mesenchymal stromal cells (HBMC). The presence of PLGA increased degradation kinetics, surface roughness and significantly improved scaffold colonization. Of the evaluated surface properties only the wettability was correlated with the surface area colonized by HBMC. This study demonstrates that introduction of PLGA into PCL-TCP binary composite could largely abolish the disadvantages of the PCL matrix and improve biocompatibility by increasing wettability and polar interactions rather than surface roughness. Additionally, we showed great potential of multicellular spheroids as a sensitive in vitro tool for detection of differences in chemistry of 3D scaffolds. © 2014 Wiley Periodicals, Inc.
Influence of Bulk PDMS Network Properties on Water Wettability
NASA Astrophysics Data System (ADS)
Melillo, Matthew; Walker, Edwin; Klein, Zoe; Efimenko, Kirill; Genzer, Jan
Poly(dimethylsiloxane) (PDMS) is one of the most common elastomers, with applications ranging from sealants and marine antifouling coatings to absorbents for water treatment. Fundamental understanding of how liquids spread on the surface of and absorb into PDMS networks is of critical importance for the design and use of another application - medical devices. We have systematically studied the effects of polymer molecular weight, loading of tetra-functional crosslinker, and end-group chemical functionality on the mechanical and surface properties of end-linked PDMS networks. Wettability was investigated through the sessile drop technique, wherein a DI water droplet was placed on the bulk network surface and droplet volume, shape, surface area, and contact angle were monitored as a function of time. Various silicone substrates ranging from incredibly soft and flexible materials (E' 50 kPa) to highly rigid networks (E' 5 MPa) were tested. The dynamic behavior of the droplet on the surfaces demonstrated equilibration times between the droplet and surface on the order of 5 minutes. Similar trends were observed for the commercial PDMS material, Sylgard-184. Our results have provided new evidence for the strong influence that substrate modulus and molecular network structure have on the wettability of PDMS elastomers. These findings will aid in the design and implementation of efficient, accurate, and safe PDMS-based medical devices and microfluidic materials that involve aqueous media.
NASA Astrophysics Data System (ADS)
Hu, R.; Wan, J.
2015-12-01
Wettability of reservoir minerals along pore surfaces plays a controlling role in capillary trapping of supercritical (sc) CO2 in geologic carbon sequestration. The mechanisms controlling scCO2 residual trapping are still not fully understood. We studied the effect of pore surface wettability on CO2 residual saturation at the pore-scale using engineered high pressure and high temperature micromodel (transparent pore networks) experiments and numerical modeling. Through chemical treatment of the micromodel pore surfaces, water-wet, intermediate-wet, and CO2-wet micromodels can be obtained. Both drainage and imbibition experiments were conducted at 8.5 MPa and 45 °C with controlled flow rate. Dynamic images of fluid-fluid displacement processes were recorded using a microscope with a CCD camera. Residual saturations were determined by analysis of late stage imbibition images of flow path structures. We performed direct numerical simulations of the full Navier-Stokes equations using a volume-of-fluid based finite-volume framework for the primary drainage and the followed imbibition for the micromodel experiments with different contact angles. The numerical simulations agreed well with our experimental observations. We found that more scCO2 can be trapped within the CO2-wet micromodel whereas lower residual scCO2 saturation occurred within the water-wet micromodels in both our experiments and the numerical simulations. These results provide direct and consistent evidence of the effect of wettability, and have important implications for scCO2 trapping in geologic carbon sequestration.
NASA Astrophysics Data System (ADS)
Mao, Weiji; Noji, Takayasu; Teshima, Kenichiro; Shinozaki, Nobuya
2016-06-01
The wettability of molten aluminum-silicon alloys with silicon contents of 0, 6, 10, and 20 mass pct on graphite substrates by changing the placing sequence of aluminum and silicon and the surface tension of those alloys were investigated at 1273 K (1000 °C) using the sessile drop method under vacuum. The results showed that the wetting was not affected by changing the placing sequence of the Al-Si alloys on the graphite substrates. The wettability was not improved significantly upon increasing the Si content from 0 to 10 mass pct, whereas a notable decrease of 22 deg in the contact angle was observed when increasing the Si content from 10 to 20 mass pct. This was attributed to the transformation of the interfacial reaction product from Al4C3 into SiC, provided the addition of Si to Al was sufficient. It was verified that the liquid Al can wet the SiC substrate very well in nature, which might explain why the occurrence of SiC would improve the wettability of the Al-20 mass pct Si alloy on the graphite substrate. The results also showed that the surface tension values of the molten Al-Si alloys decreased monotonously with an increase in Si content, being 875, 801, 770, and 744 mN/m for molten Al, Al-6 mass pct Si, Al-10 mass pct Si, and Al-20 mass pct Si alloys, respectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanchez-Nacher, L.; Garcia-Sanoguera, D.; Fenollar, O.
2010-06-02
In this work we have used atmospheric plasma technology on polyethylene surface with different treatment conditions. These modify surface pre-treatments on polyethylene, thus having a positive effect on overall surface activity of polymer surface and, consequently, adhesion properties can be remarkably improved. We have evaluated the influence of the nozzle/substrate distance and atmospheric plasma speed on wettability changes and adhesion properties. Wettability changes have been studied by contact angle measurements and subsequent surface energy calculation. Mechanical characterization of adhesion joints has been carried out in two different ways: peel and shear tensile test. The overall results show a remarkable increasemore » in mechanical properties of adhesion joints for low nozzle/substrate distances and low speed. So plasma atmospheric technology is highly useful to increase adhesion properties of polypropylene.« less
Study on the electrochemical properties of cubic ordered mesoporous carbon for supercapacitors
NASA Astrophysics Data System (ADS)
Lang, Jun-Wei; Yan, Xing-Bin; Yuan, Xiao-Yan; Yang, Jie; Xue, Qun-Ji
Highly ordered, three-dimensional (3D) cubic mesoporous carbon CMK-8 is prepared by a facile nanocasting approach using cubic mesoporous silica KIT-6 as starting template. Afterwards, in order to increase the active sites of surface electrochemical reactions and promote the wettability in aqueous electrolyte, a chemical surface modification is carried out on the CMK-8 by nitric acid treatment. Two electrodes are prepared from the CMK-8 and the acid-modified CMK-8 (H-CMK-8) and used as the active materials for supercapacitors. The unique 3D mesoporous network combined with high specific surface area makes the nano-channel surfaces of the CMK-8 carbon favorable for charging the electric double-layer, resulting in that the CMK-8 and the H-CMK-8 electrodes both show well supercapacitive properties. Furthermore, the specific capacitance of the CMK-8 can be further improved by acid treatment, so that the H-CMK-8 exhibits the largest specific capacitance of 246 F g -1 at a current density of 0.625 A g -1 in 2 M KOH electrolyte. Also, the two carbon electrodes both exhibit good cycling stability and lifetime. Therefore, based on the above investigations, such CMK-8 carbon, especially H-CMK-8 carbon can be a potential candidate for supercapacitors.
Wojcieszak, D; Mazur, M; Kalisz, M; Grobelny, M
2017-02-01
In this work influence of copper, silver and gold additives on structural and surface properties of biologically active thin films based on titanium have been described. Coatings were prepared by magnetron sputtering method. During each process metallic discs (targets) - Ti and the additive (Cu, Ag or Au) were co-sputtered in argon atmosphere. Structural investigation of as-deposited coatings was performed with the aid of XRD and SEM/EDS method. It was found that all prepared thin films were homogenous. Addition of Cu, Ag and Au resulted in nanocrystalline structure. Moreover, influence of these additives on hardness and antibacterial activity of titanium coatings was also studied. Ti-Cu, Ti-Ag and Ti-Au films had lower hardness as-compared to Ti. According to AAS results the difference of their activity was related to the ion migration process. It was found that Ti-Ag and Ti-Au coatings had biocidal effect related to direct contact of their surface with microorganisms. In the case of Ti-Cu antimicrobial activity had direct and indirect nature due to efficient ion migration process from the film surface to the surrounding environment. Functional features of coatings such as wettability and corrosion resistance were also examined and included in the comprehensive analysis. Copyright © 2016 Elsevier B.V. All rights reserved.
Yonemoto, Yukihiro; Kunugi, Tomoaki
2014-01-01
The wettability of droplets on a low surface energy solid is evaluated experimentally and theoretically. Water-ethanol binary mixture drops of several volumes are used. In the experiment, the droplet radius, height, and contact angle are measured. Analytical equations are derived that incorporate the effect of gravity for the relationships between the droplet radius and height, radius and contact angle, and radius and liquid surface energy. All the analytical equations display good agreement with the experimental data. It is found that the fundamental wetting behavior of the droplet on the low surface energy solid can be predicted by our model which gives geometrical information of the droplet such as the contact angle, droplet radius, and height from physical values of liquid and solid.
Patterned polyaniline encapsulated in titania nanotubes for electrochromism.
Lv, Haiming; Wang, Yi; Pan, Lei; Zhang, Leipeng; Zhang, Hangchuan; Shang, Lei; Qu, Huiying; Li, Na; Zhao, Jiupeng; Li, Yao
2018-02-21
In this article, we report the preparation of a TiO 2 nanotube array (TNA) film used as a transparent electrochromic material and a TNA/polyaniline patterned hybrid electrochromic film utilized as an information display material. The TNA film was fabricated by an anodizing process, and a surface patterned TNA with extreme wettability contrast (hydrophilic/hydrophobic) on a TNA surface through self-assembly (SAM) and photocatalytic lithography is fabricated. Then the TNA/polyaniline hybrid film was prepared by electrodeposition of aniline in an aqueous solution. Finally, the electrochromic properties of the TNA film and the TNA/polyaniline hybrid film were investigated. Compared with neat TNA film and polyaniline (PANI) films, the hybrid film shows a much higher optical contrast in the near infrared range. The TNA/polyaniline hybrid film shows higher coloration efficiencies of 24.4 cm 2 C -1 at a wavelength of 700 nm and 17.1 cm 2 C -1 at a wavelength of 1050 nm compared to the TNA coloration efficiency. The color switching time (20.9 s or 22.9 s) of TNA/polyaniline is faster than TNA.
Surface interaction of polyimide with oxygen ECR plasma
NASA Astrophysics Data System (ADS)
Naddaf, M.; Balasubramanian, C.; Alegaonkar, P. S.; Bhoraskar, V. N.; Mandle, A. B.; Ganeshan, V.; Bhoraskar, S. V.
2004-07-01
Polyimide (Kapton-H), was subjected to atomic oxygen from an electron cyclotron resonance plasma. An optical emission spectrometer was used to characterize the atomic oxygen produced in the reactor chamber. The energy of the ions was measured using a retarding field analyzer, placed near the substrate. The density of atomic oxygen in the plasma was estimated using a nickel catalytic probe. The surface wettability of the polyimide samples monitored by contact angle measurements showed considerable improvement when treated with plasma. X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopic studies showed that the atomic oxygen in the plasma is the main specie affecting the surface chemistry and adhesion properties of polyimide. The improvement in the surface wettability is attributed to the high degree of cross-linking and large concentration of polar groups generated in the surface region of polyimide, after plasma treatment. The changes in the surface region of polyimide were observed by atomic force microscopic analysis.
Effect of natural ageing on surface of silver loaded TPE and its influence in antimicrobial efficacy
NASA Astrophysics Data System (ADS)
Tomacheski, Daiane; Pittol, Michele; Simões, Douglas Naue; Ribeiro, Vanda Ferreira; Santana, Ruth Marlene Campomanes
2017-05-01
The aim of this study is to characterize the modifications in silver loaded TPE surfaces exposed to weathering and their relation to susceptibility to microbial attack. Silver loaded TPE materials were exposed to natural ageing for nine months and modifications in antimicrobial properties and surface characteristics were evaluated. Chemical changes were investigated by using the infrared spectra. The average surface roughness and topography were determined by atomic force microscopy. Contact angle was measured to verify wettability conditions and surface free energy (SFE). After nine months of exposure, a decrease in the antimicrobial properties of loaded TPE compounds was observed. A reduction in surface roughness and improvement in wettability and high values of polar component of SFE were verified. The best antibacterial action was noticed in the sample with high Lewis acid force, lower roughness and lower carbonyl index.
Altering wettability to recover more oil from tight formations
Brady, Patrick V.; Bryan, Charles R.; Thyne, Geoffrey; ...
2016-06-03
We describe here a method for chemically modifying fracturing fluids and overflushes to chemically increase oil recovery from tight formations. Oil wetting of tight formations is usually controlled by adhesion to illite, kerogen, or both; adhesion to carbonate minerals may also play a role. Oil-illite adhesion is sensitive to salinity, dissolved divalent cation content, and pH. We measure oil-rock adhesion with middle Bakken formation oil and core to verify a surface complexation model of reservoir wettability. The agreement between the model and experiments suggests that wettability trends in tight formations can be quantitatively predicted and that fracturing fluid and overflushmore » compositions can be individually tailored to increase oil recovery.« less
Altering wettability to recover more oil from tight formations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brady, Patrick V.; Bryan, Charles R.; Thyne, Geoffrey
We describe here a method for chemically modifying fracturing fluids and overflushes to chemically increase oil recovery from tight formations. Oil wetting of tight formations is usually controlled by adhesion to illite, kerogen, or both; adhesion to carbonate minerals may also play a role. Oil-illite adhesion is sensitive to salinity, dissolved divalent cation content, and pH. We measure oil-rock adhesion with middle Bakken formation oil and core to verify a surface complexation model of reservoir wettability. The agreement between the model and experiments suggests that wettability trends in tight formations can be quantitatively predicted and that fracturing fluid and overflushmore » compositions can be individually tailored to increase oil recovery.« less
Kloss, Frank R; Steinmüller-Nethl, Doris; Stigler, Robert G; Ennemoser, Thomas; Rasse, Michael; Hächl, Oliver
2011-07-01
Connective tissue in contact to transgingival/-dermal implants presents itself as tight scar formation. Although rough surfaces support the attachment they increase bacterial colonisation as well. In contrast to surface roughness, little is known about the influence of surface wettability on soft-tissue healing in vivo. We therefore investigated the influence of different surface wettabilities on connective tissue healing at polished implant surfaces in vivo. Three polished experimental groups (titanium, titanium coated with hydrophobic nano-crystalline diamond (H-NCD) and titanium coated with hydrophilic nano-crystalline diamond (O-NCD) were inserted into the subcutaneous connective tissue of the abdominal wall of 24 rats. Animals were sacrificed after 1 and 4 weeks resulting in eight specimen per group per time point. Specimen were subjected to histological evaluation (van Giesson's staining) and immunohistochemistry staining for proliferating cell nuclear antigen (PCNA), fibronectin and tumour necrosis factor-alpha (TNF-α). Histological evaluation revealed dense scar formation at the titanium and H-NCD surfaces. In contrast, the connective tissue was loose at the O-NCD surface with a significantly higher number of cells after 4 weeks. O-NCD demonstrated a strong expression of PCNA and fibronectin but a weak expression of TNF-α. In contrast, the PCNA and fibronectin expression was low at the titanium and H-NCD, with a strong signal of TNF-α at the H-NCD surface. Hydrophilicity influences the connective tissue healing at polished implant surfaces in vivo positively. The attachment of connective tissue and the number of cells in contact to the surface were increased. Moreover, the inflammatory response is decreased at the hydrophilic surface. © 2010 John Wiley & Sons A/S.
Thermoswitchable Janus Gold Nanoparticles with Stimuli-Responsive Hydrophilic Polymer Brushes.
Niu, Xiaoqin; Ran, Fen; Chen, Limei; Lu, Gabriella Jia-En; Hu, Peiguang; Deming, Christopher P; Peng, Yi; Rojas-Andrade, Mauricio D; Chen, Shaowei
2016-05-03
Well-defined thermoswitchable Janus gold nanoparticles with stimuli-responsive hydrophilic polymer brushes were fabricated by combining ligand exchange reactions and the Langmuir technique. Stimuli-responsive polydi(ethylene glycol) methyl ether methacrylate was prepared by addition-fragmentation chain-transfer polymerization. The polymer brushes were then anchored onto the nanoparticle surface by interfacial ligand exchange reactions with hexanethiolate-protected gold nanoparticles, leading to the formation of a hydrophilic (polymer) hemisphere and a hydrophobic (hexanethiolate) one. The resulting Janus nanoparticles showed temperature-switchable wettability, hydrophobicity at high temperatures, and hydrophilicity at low temperatures, due to thermally induced conformational transition of the polymer ligands. The results further highlight the importance of interfacial engineering in the deliberate functionalization of nanoparticle materials.
Filling schemes of silver dots inkjet-printed on pixelated nanostructured surfaces
NASA Astrophysics Data System (ADS)
Alan, Sheida; Jiang, Hao; Shahbazbegian, Haleh; Patel, Jasbir N.; Kaminska, Bozena
2017-03-01
Recently, our group demonstrated an inkjet-based technique to enable high-throughput, versatile and full-colour printing of structural colours on generic pixelated nanostructures, termed as molded ink on nanostructured surfaces. The printed colours are controlled by the area of printed silver on the pixelated red, green and blue polymer nanostructure arrays. This paper investigates the behaviour of jetted silver ink droplets on nanostructured surfaces and the microscale dot patterns implemented during printing process, for achieving accurate and consistent colours in the printed images. The surface wettability and the schemes of filling silver dots inside the subpixels are crucial to the quality of printed images. Several related concepts and definitions are introduced, such as filling ratio, full dots per subpixel (DPSP), number of printable colours, colour leaking and dot merging. In our experiments, we first chemically modified the surface to control the wettability and dot size. From each type of modified surface, various filling schemes were experimented and the printed results were evaluated with comprehensive considerations on the number of printable colours and the negative effects of colour leaking and dot merging. Rational selection of the best filling scheme resulted in a 2-line filling scheme using 20 μm dot spacing and line spacing capable of printing 9261 different colours with 121 pixel per inch display resolution, on low-wettability surface. This study is of vital importance for scaling up the printing technique in industrial applications and provides meaningful insights for inkjet-printing on nanostructures.
Surface modification of polyethylene/graphene composite using corona discharge
NASA Astrophysics Data System (ADS)
Popelka, Anton; Noorunnisa Khanam, P.; AlMaadeed, Mariam Ali
2018-03-01
Polyethylene/graphene composites are suitable for electromagnetic interference shielding applications and are often fabricated as sandwich structures. However, the hydrophobic character of these composites can lead to delamination. Corona treatment was used to enhance the surface hydrophilicity of composites prepared from linear low-density polyethylene (LLDPE) and graphene nanoplatelets (GNPs) with different content (2, 4, 6, and 8 wt.%). This enhancement of wettability also led to good adhesion properties. The presence of GNPs in LLDPE had a positive effect on the surface properties after corona treatment. The surface free energy of the LLDPE/GNP composites increased by almost 64.6% for 2 wt.% of GNPs in the LLDPE/GNP composite, while the surface free energy of neat LLDPE increased by only 38.1%. The best improvement in adhesion properties after corona treatment was observed for 2 wt.% of GNPs in the LLDPE/GNP composite, while peel resistance increased by 137.9%. Various analytical techniques and methods proved that the changes in the surface morphology and chemical composition of the LLDPE/GNP composite after this treatment resulted in an improvement of adhesion.
Zhang, Chunmei; Wang, Liwei; Zhai, Tianliang; Wang, Xinchao; Dan, Yi; Turng, Lih-Sheng
2016-01-01
Graphene oxide (GO) was incorporated into poly(lactic acid) (PLA) as a reinforcing nanofiller to produce composite nanofibrous scaffolds using the electrospinning technique. To improve the dispersion of GO in PLA and the interfacial adhesion between the filler and matrix, GO was surface-grafted with poly(ethylene glycol) (PEG). Morphological, thermal, mechanical, and wettability properties, as well as preliminary cytocompatibility with Swiss mouse NIH 3T3 cells of PLA, PLA/GO, and PLA/GO-g-PEG electrospun nanofibers, were characterized. Results showed that the average diameter of PLA/GO-g-PEG electrospun nanofibers decreased with filler content. Both GO and GO-g-PEG improved the thermal stability of PLA, but GO-g-PEG was more effective. The water contact angle test of the nanofiber mats showed that the addition of GO in PLA did not change the surface wettability of the materials, but PLA/GO-g-PEG samples exhibited improved wettability with lower water contact angles. The tensile strength of the composite nanofiber mats was improved with the addition of GO, and it was further enhanced when GO was surface grafted with PEG. This suggested that improved interfacial adhesion between GO and PLA was achieved by grafting PEG onto the GO. The cell viability and proliferation results showed that the cytocompatibility of PLA was not compromised with the addition of GO and GO-g-PEG. With enhanced mechanical properties as well as good wettability and cytocompatibility, PLA/GO-g-PEG composite nanofibers have the potential to be used as scaffolds in tissue engineering. Copyright © 2015 Elsevier Ltd. All rights reserved.
An investigation into a micro-sized droplet impinging on a surface with sharp wettability contrast
NASA Astrophysics Data System (ADS)
Lim, C. Y.; Lam, Y. C.
2014-10-01
An experimental investigation was conducted into a micro-sized droplet jetted onto a surface with sharp wettability contrast. The dynamics of micro-sized droplet impingement on a sharp wettability contrast surface, which is critical in inkjet printing technology, has not been investigated in the literature. Hydrophilic lines with line widths ranging from 27 to 53 µm, and contact angle ranging from 17° to 77°, were patterned on a hydrophobic surface with a contact angle of 107°. Water droplets with a diameter of 81 µm were impinged at various offset distances from the centre of the hydrophilic line. The evolution of the droplet upon impingement can be divided into three distinct phases, namely the kinematic phase, the translating phase where the droplet moves towards the centre of the hydrophilic line, and the conforming phase where the droplet spreads along the line. The key parameters affecting the conformability of the droplet to the hydrophilic line pattern are the ratio of the line width to the initial droplet diameter and the contact angle of the hydrophilic line. The droplet will only conform completely to the hydrophilic pattern if the line width is not overly small relative to the droplet and the contact angle of the hydrophilic line is sufficiently low. The impact offset distance does not affect the final shape and final location of the droplet, as long as part of the droplet touches the hydrophilic line upon impingement. This process has a significant impact on inkjet printing technology as high accuracy of inkjet droplet deposition and shape control can be achieved through wettability patterning.
NASA Astrophysics Data System (ADS)
Ali, Naser; Teixeira, Joao A.; Addali, Abdulmajid; Al-Zubi, Feras; Shaban, Ehab; Behbehani, Ismail
2018-06-01
Experimental investigation was performed to highlight the influence of ionic bounding and surface roughness effects on the surface wettability. Nanocoating technique via e-beam physical vapor deposition process was used to fabricate aluminium (Al) film of 50, 100, and 150 nm on the surface of an Al substrate. Microstructures of the samples before and after deposition were observed using an atomic force microscopy. A goniometer device was later on used to examine the influence of surface topography on deionised water of pH 4, 7 and 9 droplets at a temperature ranging from 10 °C to 60 °C through their contact angles with the substrate surface, for both coated and uncoated samples. It was found that, although the coated layer has reduced the mean surface roughness of the sample from 10.7 nm to 4.23 nm, by filling part of the microstructure gaps with Al nanoparticles, the wettability is believed to be effected by the ionic bounds between the surface and the free anions in the fluid. As the deionised water of pH 4, and 9 gave an increase in the average contact angles with the increase of the coated layer thickness. On the other hand, the deionised water of pH 7 has showed a negative relation with the film thickness, where the contact angle reduced as the thickness of the coated layer was increased. The results from the aforementioned approach had showed that nanocoating can endorse the hydrophobicity (unwitting) nature of the surface when associated with free ions hosted by the liquid.
Fog collecting biomimetic surfaces: Influence of microstructure and wettability.
Azad, M A K; Ellerbrok, D; Barthlott, W; Koch, K
2015-01-19
We analyzed the fog collection efficiency of three different sets of samples: replica (with and without microstructures), copper wire (smooth and microgrooved) and polyolefin mesh (hydrophilic, superhydrophilic and hydrophobic). The collection efficiency of the samples was compared in each set separately to investigate the influence of microstructures and/or the wettability of the surfaces on fog collection. Based on the controlled experimental conditions chosen here large differences in the efficiency were found. We found that microstructured plant replica samples collected 2-3 times higher amounts of water than that of unstructured (smooth) samples. Copper wire samples showed similar results. Moreover, microgrooved wires had a faster dripping of water droplets than that of smooth wires. The superhydrophilic mesh tested here was proved more efficient than any other mesh samples with different wettability. The amount of collected fog by superhydrophilic mesh was about 5 times higher than that of hydrophilic (untreated) mesh and was about 2 times higher than that of hydrophobic mesh.
The Wettability of LaRC Colorless Polyimide Resins on Casting Surfaces
NASA Technical Reports Server (NTRS)
Miner, Gilda A.; Stoakley, Diane M.; St.Clair, Anne K.; Gierow, Paul A.; Bates, Kevin
1997-01-01
Two colorless polyimides developed at NASA Langley Research Center, LaRC -CP1 and LaRC -CP2, are noted for being optically transparent, resistant to radiation, and soluble in the imide form. These materials may be used to make transparent, thin polymer films for building large space reflector/collector inflatable antennas, solar arrays, radiometers, etc. Structures such as these require large area, seamless films produced via spin casting or spray coating the soluble imide on a variety of substrates. The ability of the soluble imide to wet and spread over the mandrel or casting substrate is needed information for processing these structures with minimum waste and reprocessing, thereby, reducing the production costs. The wettability of a liquid is reported as the contact angle of the solid/liquid system. This fairly simple measurement is complicated by the porosity and the amount of contamination of the solid substrate. This work investigates the effect of inherent viscosity, concentration of polyimide solids, and solvent type on the wettability of various curing surfaces.
Motion of Drops on Surfaces with Wettability Gradients
NASA Technical Reports Server (NTRS)
Subramanian, R. Shankar; McLaughlin, John B.; Moumen, Nadjoua; Qian, Dongying
2002-01-01
A liquid drop present on a solid surface can move because of a gradient in wettability along the surface, as manifested by a gradient in the contact angle. The contact angle at a given point on the contact line between a solid and a liquid in a gaseous medium is the angle between the tangent planes to the liquid and the solid surfaces at that point and is measured within the liquid side, by convention. The motion of the drop occurs in the direction of increasing wettability. The cause of the motion is the net force exerted on the drop by the solid surface because of the variation of the contact angle around the periphery. This force causes acceleration of an initially stationary drop, and leads to its motion in the direction of decreasing contact angle. The nature of the motion is determined by the balance between the motivating force and the resisting hydrodynamic force from the solid surface and the surrounding gaseous medium. A wettability gradient can be chemically induced as shown by Chaudhury and Whitesides who provided unambiguous experimental evidence that drops can move in such gradients. The phenomenon can be important in heat transfer applications in low gravity, such as when condensation occurs on a surface. Daniel et al have demonstrated that the velocity of a drop on a surface due to a wettability gradient in the presence of condensation can be more than two orders of magnitude larger than that observed in the absence of condensation. In the present research program, we have begun to study the motion of a drop in a wettability gradient systematically using a model system. Our initial efforts will be restricted to a system in which no condensation occurs. The experiments are performed as follows. First, a rectangular strip of approximate dimensions 10 x 20 mm is cut out of a silicon wafer. The strip is cleaned thoroughly and its surface is exposed to the vapor from an alkylchlorosilane for a period lasting between one and two minutes inside a desiccator. This is done using an approximate line source of the vapor in the form of a string soaked in the alkylchlorosilane. Ordinarily, many fluids, including water, wet the surface of silicon quite well. This means that the contact angle is small. But the silanized surface resists wetting, with contact angles that are as large as 100 degs. Therefore, a gradient of wettability is formed on the silicon surface. The region near the string is highly hydrophobic, and the contact angle decreases gradually toward a small value at the hydrophilic end away from this region. The change in wettability occurs over a distance of several mm. The strip is placed on a platform within a Plexiglas cell. Drops of a suitable liquid are introduced on top of the strip near the hydrophobic end. An optical system attached to a video camera is trained on the drop so that images of the moving drop can be captured on videotape for subsequent analysis. We have performed preliminary experiments with water as well as ethylene glycol drops. Results from these experiments will be presented in the poster. Future plans include the refinement of the experimental system so as to permit images to be recorded from the side as well as the top, and the conduct of a systematic study in which the drop size is varied over a good range. Experiments will be conducted with different fluids so as to obtain the largest possible range of suitably defined Reynolds and Capillary numbers. Also, an effort will be initiated on theoretical modeling of this motion. The challenges in the development of the theoretical description lie in the proper analysis of the region in the vicinity of the contact line, as well as in the free boundary nature of the problem. It is known that continuum models assuming the no slip condition all the way to the contact line fail by predicting that the stress on the solid surface becomes singular as the contact line is approached. One approach for dealing with this issue has been to relax the no-slip boundary condition using the Navier model. Molecular dynamics simulations of the contact line region show that for a non-polar liquid on a solid surface, the no-slip boundary condition is in fact incorrect near the contact line. Furthermore, the same simulations also show that the usual relationship between stress and the rate of deformation breaks down in the vicinity of the contact line. In developing continuum theoretical models of the system, we shall accommodate this knowledge to the extent possible.
Amirikia, Mehdi; Shariatzadeh, Seyed Mohammad Ali; Jorsaraei, Seyed Gholam Ali; Soleimani Mehranjani, Malek
2017-12-01
Cell behaviours such as proliferation and attachment can be affected by the length of pre-incubation period of the scaffolds in the culture medium for long term. The aim of this study was to investigate the long term pre-incubation of 3D silk fibroin scaffolds in complete culture medium on cell attachment and proliferation. After the preparation of silk fibroin scaffolds by the technique of freeze drying, the scaffolds were pre-incubated in complete culture medium for 2 d, 6 d or 10 d before apical papilla stem cells (SCAP) seeding. Modifications of the scaffold surface and wettability were examined by FE-SEM and water contact angle, respectively. Results showed a decrease both in roughness and water contact angle as pre-incubation time increases. DNA measurement after 18h and 10 d cell seeding showed a significant increase of DNA concentration which represents better attachment and proliferation with pre-incubation time increase. Qualitative examination, live&dead assay or H&E staining method after 30h and 10 d cell seeding respectively, indicated that pre-incubation of scaffolds has time dependent effect on cell proliferation and attachment. This suggests that improvement of cell attachment and proliferation may be mediated by differences in the amount of wettability (decreased water contact angle) after exposure of scaffold to culture medium for long term which, in turn, causes more protein adsorption in the surface of silk fibroin scaffold (decreased roughness). Copyright © 2017. Published by Elsevier Ltd.
A comparative study of physico-chemical properties of CBD and SILAR grown ZnO thin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jambure, S.B.; Patil, S.J.; Deshpande, A.R.
2014-01-01
Graphical abstract: Schematic model indicating ZnO nanorods by CBD (Z{sub 1}) and nanograins by SILAR (Z{sub 2}). - Highlights: • Simple methods for the synthesis of ZnO thin films. • Comparative study of physico-chemical properties of ZnO thin films prepared by CBD and SILAR methods. • CBD outperforms SILAR method. - Abstract: In the present work, nanocrystalline zinc oxide (ZnO) thin films have been successfully deposited onto glass substrates by simple and economical chemical bath deposition (CBD) and successive ionic layer adsorption reaction (SILAR) methods. These films were further characterized for their structural, optical, surface morphological and wettability properties. Themore » X-ray diffraction (XRD) patterns for both CBD and SILAR deposited ZnO thin films reveal the highly crystalline hexagonal wurtzite structure. From optical studies, band gaps obtained are 2.9 and 3.0 eV for CBD and SILAR deposited thin films, respectively. The scanning electron microscope (SEM) patterns show growth of well defined randomly oriented nanorods and nanograins on the CBD and SILAR deposited samples, respectively. The resistivity of CBD deposited films (10{sup 2} Ω cm) is lower than that of SILAR deposited films (10{sup 5} Ω cm). Surface wettability studies show hydrophobic nature for both films. From the above results it can be concluded that CBD grown ZnO thin films show better properties as compared to SILAR method.« less
NASA Astrophysics Data System (ADS)
Kaltenbach, Robin; Diehl, Dörte; Schaumann, Gabriele E.
2017-04-01
Organic coatings are considered as main cause of soil water repellency (SWR). This phenomenon plays a crucial role in the rhizosphere, at the interface of plant water uptake and soil hydraulics. Still, there is little knowledge about the nanoscale properties of natural soil compounds such as root-mucilage and its mechanistic effect on wettability. In this study, dried films of natural root-mucilage from Sorghum (Sorghum sp., MOENCH) on glass substrates were studied in order to explore experimental and evaluation methods that allow to link between macroscopic wettability and nano-/microscopic surface properties in this model soil system. SWR was assessed by optical contact angle (CA) measurements. The nanostructure of topography and adhesion forces of the mucilage surfaces was revealed by atomic force microscopy (AFM) measurements in ambient air, using PeakForce Quantitative Nanomechanical Mapping (PFQNM). Undiluted mucilage formed hydrophobic films on the substrate with CA > 90° and rather homogeneous nanostructure. Contact angles showed reduced water repellency of surfaces, when concentration of mucilage was decreased by dilution. AFM height and adhesion images displayed incomplete mucilage surface coverage for diluted samples. Hole-like structures in the film frequently exhibited increased adhesion forces. Spatial analysis of the AFM data via variograms enabled a numerical description of such 'adhesion holes'. The use of geostatistical approaches in AFM studies of the complex surface structure of soil compounds was considered meaningful in view of the need of comprehensive analysis of large AFM image data sets that exceed the capability of comparative visual inspection. Furthermore, force curves measured with the AFM showed increased break-free distances and pull-off forces inside the observed 'adhesion holes', indicating enhanced capillary forces due to adsorbed water films at hydrophilic domains for ambient RH (40 ± 2 %). This offers the possibility of mapping the nanostructure of water layers on soil surfaces and assessing the consequences for wettability. The collected information on macroscopic wetting properties, nanoscale roughness and adhesion structure of the investigated surfaces in this study are discussed in view of the applicability of the mechanistic wetting models given by Wenzel and Cassie-Baxter.
Kaltenbach, Robin; Diehl, Dörte; Schaumann, Gabriele E
2018-04-15
Soil water repellency originating from organic coatings plays a crucial role for soil hydraulics and plant water uptake. Focussing on hydrophobicity in the rhizosphere induced by root-mucilage, this study aims to explore the link between macroscopic wettability and nano-microscopic surface properties. The existing knowledge of the nanostructures of organic soil compounds and its effect on wettability is limited by the lack of a method capable to assess the natural spatial heterogeneity of physical and chemical properties. In this contribution, this task is tackled by a geostatistical approach via variogram analysis of topography and adhesion force data acquired by atomic force microscopy and macroscopic sessile drop measurements on dried films of mucilage. The results are discussed following the wetting models given by Wenzel and Cassie-Baxter. Undiluted mucilage formed homogeneous films on the substrate with contact angles >90°. For diluted samples contact angles were smaller and incomplete mucilage surface coverage with hole-like structures frequently exhibited increased adhesion forces. Break-free distances of force curves indicated enhanced capillary forces due to adsorbed water films at atmospheric RH (35 ± 2%) that promote wettability. Variogram analysis enabled a description of complex surface structures exceeding the capability of comparative visual inspection. Copyright © 2018 Elsevier Inc. All rights reserved.
[Effect of Membrane Wettability on Membrane Fouling and Chemical Durability of SPG Membranes].
Zhang, Jing; Xiao, Tai-min; Zhang, Jing; Cao, Li-ya; Du, Ya-wei; Liu, Chun; Zhang, Lei
2015-05-01
Shirasu porous glass (SPG) membranes have been applied for microbubble aeration in aerobic wastewater treatment. In the present study, both hydrophilic and hydrophobic SPG membranes were used in a microbubble-aerated biofilm reactor with online chemical cleaning, and their membrane fouling and chemical durability were determined to be strongly dependent on the membrane wettability. The fouling layer formed on the surface of both membranes was confirmed to be mainly organic fouling, and the hydrophobic membrane showed a relatively stronger resistance to the organic fouling. The severe chemical corrosion of the hydrophilic membrane was observed due to exposure to the alkaline sodium hypochlorite solution used for chemical cleaning, which resulted in significant increases in the median pore diameter and the porosity. On the other hand, the pore structure of the hydrophobic membrane changed slightly when exposed to the alkaline sodium hypochlorite solution, suggesting its strong alkali-resistance due to the non-wetting surface. However, the surface hydrophobic groups of hydrophobic membrane could be oxidized by sodium hypochlorite solution, resulting in more wettable membrane surface. The hydrophobic membrane also showed better performance in the respects of oxygen transfer, contaminant removal and energy-saving. Therefore, the hydrophobic membrane seemed more appropriate to be applied for microbubble aeration in aerobic wastewater treatment process.
Ashoke Raman, K
2018-04-15
The quality of the printed lines in applications such as ink-jet printing and additive manufacturing is affected by the interactions between the impinging drops. Impact shape and the inhomogeneity in surface wettability govern the spreading and recoiling dynamics of the interacting drops. Hence, understanding the role of these factors on the interaction dynamics is essential to optimize these applications. Phase-field based lattice Boltzmann method solver has been employed to investigate the interaction dynamics of two simultaneously impinging drops onto a dry surface. A geometry-based contact angle scheme is used to model the moving contact line. Numerical simulations reveal that the previously identified interaction modes (Raman et al., 2017) are sensitive to the contact angle hysteresis, resulting in different impact outcomes. Two different interaction mechanisms have been discerned when drops impinge on a surface with a wettability gradient. It is shown that the deviation from the spherical geometry of the impact shape leads to different spreading behaviors and droplet morphology around the connecting region. With the increase in the cross-sectional aspect ratio, the interaction dynamics of oblate-oblate combination is similar to its spherical counterpart, albeit at a faster recoiling rate. Copyright © 2018 Elsevier Inc. All rights reserved.
A multifunctional polymeric nanofilm with robust chemical performances for special wettability.
Wang, Yabin; Lin, Feng; Dong, Yaping; Liu, Zhong; Li, Wu; Huang, Yudong
2016-03-07
A multifunctional polymeric nanofilm of a triazinedithiolsilane compound, which can protect metallic substrates and activate the corresponding surface simultaneously, is introduced onto a copper mesh surface via facile solution-immersion approaches. The resultant interface exhibits hydrophilic features due to the existence of silanol groups (SiOH) outward and has the potential to act as a superhydrophilic and underwater superoleophobic material. As the polymeric nanofilm atop the copper mesh is modified with long-chain octadecyltrichlorosilane (OTS), the functionalized surface becomes superhydrophobic and superoleophilic. The OTS-modified polymeric nanofilm shows outstanding chemical durability and stability that are seldom concurrently satisfied for a material with special wettability, owing to its inherent architecture. These textures generate high separation efficiency, durable separation capability and excellent thermal stability. The protective ability, originating from the textures of the underlying cross-linked disulfide units (-SS-) and siloxane networks (SiOSi) on the top of the nanofilm, prolongs the chemical durability. The activating capability stemming from the residual SiOH groups improves the chemical stability as a result of the chemical bonds developed by these sites. The significant point of this investigation lies in enlightening us on the fabrication of multifunctional polymeric nanofilms on different metal surfaces using various triazinedithiolsilane compounds, and on the construction of interfaces with controllable wettable performances in demanding research or industrial applications.
NASA Astrophysics Data System (ADS)
Zhang, Chunzi; Peng, Zhiguang; Cui, Xiaoyu; Neil, Eric; Li, Yuanshi; Kasap, Safa; Yang, Qiaoqin
2018-03-01
V2O5 thin films are well-known "smart" materials due to their reversible wettability under UV irradiation and dark storage. Their surfaces are usually hydrophobic and turn into hydrophilic under UV irradiation. However, the V2O5 thin films deposited by magnetron sputtering in present work are superhydrophilic and turned into hydrophobic after days' of storage in air. This change can be recovered by heating. The effects of many factors including surface roughness, irradiation from visible light, UV, & X-ray, and storage in air & vacuum on the reversible switching of wettability were investigated. The results show that air absorption is the main factor causing the film surface change from superhydrophilicity to hydrophobicity.
NASA Astrophysics Data System (ADS)
Rajab, Fatema H.; Whitehead, David; Liu, Zhu; Li, Lin
2017-12-01
Laser surface texturing or micro/nano surface structuring in the air has been extensively studied. However, until now, there are very few studies on the characteristics of laser-textured surfaces in water, and there was no reported work on picosecond laser surface micro/nano-structuring in water. In this work, the surface properties of picosecond laser surface texturing in water and air were analysed and compared. 316L stainless steel substrates were textured using a picosecond laser. The surface morphology and the chemical composition were characterised using Philips XL30 FEG-SEM, EDX and confocal laser microscopy. The wettability of the textured surfaces was determined using a contact angle analyser FTA 188. Results showed that a variety of hierarchical micro/nano surface patterns could be controlled by a suitable adjustment of laser parameters. Not only surface morphology but also remarkable differences in wettability, optical reflectivity and surface oxygen content were observed for different types of surface textures produced by laser surface texture in water and air. The possible mechanisms of the changes in the behaviour of laser-textured surfaces are discussed.
Probing Anisotropic Surface Properties of Molybdenite by Direct Force Measurements.
Lu, Zhenzhen; Liu, Qingxia; Xu, Zhenghe; Zeng, Hongbo
2015-10-27
Probing anisotropic surface properties of layer-type mineral is fundamentally important in understanding its surface charge and wettability for a variety of applications. In this study, the surface properties of the face and the edge surfaces of natural molybdenite (MoS2) were investigated by direct surface force measurements using atomic force microscope (AFM). The interaction forces between the AFM tip (Si3N4) and face or edge surface of molybdenite were measured in 10 mM NaCl solutions at various pHs. The force profiles were well-fitted with classical DLVO (Derjaguin-Landau-Verwey-Overbeek) theory to determine the surface potentials of the face and the edge surfaces of molybdenite. The surface potentials of both the face and edge surfaces become more negative with increasing pH. At neutral and alkaline conditions, the edge surface exhibits more negative surface potential than the face surface, which is possibly due to molybdate and hydromolybdate ions on the edge surface. The point of zero charge (PZC) of the edge surface was determined around pH 3 while PZC of the face surface was not observed in the range of pH 3-11. The interaction forces between octadecyltrichlorosilane-treated AFM tip (OTS-tip) and face or edge surface of molybdenite were also measured at various pHs to study the wettability of molybdenite surfaces. An attractive force between the OTS-tip and the face surface was detected. The force profiles were well-fitted by considering DLVO forces and additional hydrophobic force. Our results suggest the hydrophobic feature of the face surface of molybdenite. In contrast, no attractive force between the OTS-tip and the edge surface was detected. This is the first study in directly measuring surface charge and wettability of the pristine face and edge surfaces of molybdenite through surface force measurements.
Neuhaus, Sonja; Padeste, Celestino; Spencer, Nicholas D
2011-06-07
A method to create a wettability gradient by variation of the chemical functionality in a polymer brush is presented. A poly(N-methyl-vinylpyridinium) (QP4VP) brush was created on a poly(ethylene-alt-tetrafluoroethylene) (ETFE) foil by the grafting of 4-vinylpyridine and subsequent quaternization. The instability of QP4VP, a strong polyelectrolyte, in alkaline media was exploited to transform it to the neutral poly(vinyl(N-methyl-2-pyridone)) (PVMP), as confirmed with ATR-IR spectroscopy. The slow transformation resulted in a substantial, time-dependent decrease in wettability. A nearly linear gradient in water contact angle (CA) was created by immersion of a QP4VP brush modified sample into a sodium hydroxide solution, resulting in CAs ranging from 10° to 60°. The concurrent decrease in the number of charged functional groups along the gradient was characterized by loading an anionic dye into the polymer brush and measuring the UV transmittance of the sample. The versatility of the wettability gradient was demonstrated by exchanging the counterions of the N-methyl-vinylpyridinium groups, whereby a reversal of gradient direction was reproducibly achieved.
NASA Astrophysics Data System (ADS)
Shang, Yanwei; Si, Yang; Raza, Aikifa; Yang, Liping; Mao, Xue; Ding, Bin; Yu, Jianyong
2012-11-01
Superhydrophobic and superoleophilic nanofibrous membranes exhibiting robust oil-water separation performance were prepared by a facile combination of electrospun cellulose acetate (CA) nanofibers and a novel in situ polymerized fluorinated polybenzoxazine (F-PBZ) functional layer that incorporated silica nanoparticles (SiO2 NPs). By employing the F-PBZ/SiO2 NPs modification, the pristine hydrophilic CA nanofibrous membranes were endowed with a superhydrophobicity with the water contact angle of 161° and a superoleophilicity with the oil contact angle of 3°. Surface morphological studies have indicated that the wettability of resultant membranes could be manipulated by tuning the surface composition as well as the hierarchical structures. The quantitative hierarchical roughness analysis using the N2 adsorption method has confirmed the major contribution of SiO2 NPs on enhancing the porous structure, and a detailed correlation between roughness and solid-liquid interface pinning is proposed. Furthermore, the as-prepared membranes exhibited fast and efficient separation for oil-water mixtures and excellent stability over a wide range of pH conditions, which would make them a good candidate in industrial oil-polluted water treatments and oil spill cleanup, and also provided a new insight into the design and development of functional nanofibrous membranes through F-PBZ modification.Superhydrophobic and superoleophilic nanofibrous membranes exhibiting robust oil-water separation performance were prepared by a facile combination of electrospun cellulose acetate (CA) nanofibers and a novel in situ polymerized fluorinated polybenzoxazine (F-PBZ) functional layer that incorporated silica nanoparticles (SiO2 NPs). By employing the F-PBZ/SiO2 NPs modification, the pristine hydrophilic CA nanofibrous membranes were endowed with a superhydrophobicity with the water contact angle of 161° and a superoleophilicity with the oil contact angle of 3°. Surface morphological studies have indicated that the wettability of resultant membranes could be manipulated by tuning the surface composition as well as the hierarchical structures. The quantitative hierarchical roughness analysis using the N2 adsorption method has confirmed the major contribution of SiO2 NPs on enhancing the porous structure, and a detailed correlation between roughness and solid-liquid interface pinning is proposed. Furthermore, the as-prepared membranes exhibited fast and efficient separation for oil-water mixtures and excellent stability over a wide range of pH conditions, which would make them a good candidate in industrial oil-polluted water treatments and oil spill cleanup, and also provided a new insight into the design and development of functional nanofibrous membranes through F-PBZ modification. Electronic supplementary information (ESI) available: Detailed synthesis and structural confirmation of BAF-tfa, FT-IR results, OCA results and Movie S1. See DOI: 10.1039/c2nr33063f
Jin, Biyu; Liu, Mingzhu; Zhang, Qinghua; Zhan, Xiaoli; Chen, Fengqiu
2017-10-03
In this work, a novel substrate building block, magnetic Fe 3 O 4 nanoparticles armed with dopamine molecules were developed via mussel-inspired metal-coordination bonds. Combined with glycidyl methacrylate, polydimethylsiloxane propyl ether methacrylate, and diethylenetriamine, the original silicone oil swelling slippery liquid-infused porous surfaces (SLIPS) were first prepared by reversible coordinate bonds and strong covalent bonds cross-linking process. The matrix mechanical characteristics and surface physicochemical properties were systematically investigated. Results showed that the mechanical property of copolymer matrix and surface wettability of SLIPS can be remarkably recovered, which were due to the synergistic interactions of magnetic nanoparticles' intrinsic photothermal effect, reversible Fe-catechol coordination, and diffused lubricating liquid. After irradiating with sunlamp for 2 h and sequentially healing for 10 h under ambient conditions, the crack almost disappeared under optical microscopy with 78.25% healing efficiency (HEf) of toughness, and surface slippery was completely retrieved to water droplets. The efficient self-heal of copolymer matrix (66.5% HEf after eighth cutting-healing cycle) and recovering of slipperiness (SA < 5° and 5° < SA < 17° after fourth and eighth cutting-centrifuging-healing cycles, respectively) would extend longevity of SLIPS when subjected to multiple damages. Moreover, the prepared SLIPS displayed superb self-cleaning and liquid-repellent properties to a wide range of particulate contaminants and fluids.
NASA Astrophysics Data System (ADS)
Maidaniuc, Andreea; Miculescu, Florin; Voicu, Stefan Ioan; Andronescu, Corina; Miculescu, Marian; Matei, Ecaterina; Mocanu, Aura Catalina; Pencea, Ion; Csaki, Ioana; Machedon-Pisu, Teodor; Ciocan, Lucian Toma
2018-04-01
Hydroxyapatite powders characteristics need to be determined both for quality control purposes and for a proper control of microstructural features of bone reconstruction products. This study combines bulk morphological and compositional analysis methods (XRF, SEM-EDS, FT-IR) with surface-related methods (XPS, contact angle measurements) in order to correlate the characteristics of hydroxyapatite powders derived from bovine bone for its use in medical applications. An experimental approach for correlating the surface and volume composition was designed based on the analysis depth of each spectral method involved in the study. Next, the influences of powder particle size and forming method on the contact angle between water drops and ceramic surface were evaluated for identifying suitable strategies of tuning hydroxyapatite's wettability. The results revealed a preferential arrangement of chemical elements at the surface of hydroxyapatite particles which could induce a favourable material behaviour in terms of sinterability and biological performance.
Zhong, Lieshuang; Zhu, Hai; Wu, Yang; Guo, Zhiguang
2018-09-01
The Namib Desert beetle-Stenocara can adapt to the arid environment by its fog harvesting ability. A series of samples with different topography and wettability that mimicked the elytra of the beetle were fabricated to study the effect of these factors on fog harvesting. The superhydrophobic bulgy sample harvested 1.5 times the amount of water than the sample with combinational pattern of hydrophilic bulgy/superhydrophobic surrounding and 2.83 times than the superhydrophobic surface without bulge. These bulges focused the droplets around them which endowed droplets with higher velocity and induced the highest dynamic pressure atop them. Superhydrophobicity was beneficial for the departure of harvested water on the surface of sample. The bulgy topography, together with surface wettability, dominated the process of water supply and water removal. Copyright © 2018 Elsevier Inc. All rights reserved.
Hierarchical roughness of sticky and non-sticky superhydrophobic surfaces
NASA Astrophysics Data System (ADS)
Raza, Muhammad; Kooij, Stefan; van Silfhout, Arend; Zandvliet, Harold; Poelsema, Bene
2011-11-01
The importance of superhydrophobic substrates (contact angle >150° with sliding angle <10°) in modern technology is undeniable. We present a simple colloidal route to manufacture superstructured arrays with single- and multi-length-scaled roughness to obtain sticky and non-sticky superhydrophobic surfaces. The largest length scale is provided by (multi-)layers of silica spheres (1 μm, 500nm and 150nm diameter). Decoration with gold nanoparticles (14nm, 26nm and 47nm) gives rise to a second length scale. To lower the surface energy, gold nanoparticles are functionalized with dodecanethiol and the silica spheres by perfluorooctyltriethoxysilane. The morphology was examined by helium ion microscopy (HIM), while wettability measurements were performed by using the sessile drop method. We conclude that wettability can be controlled by changing the surface chemistry and/or length scales of the structures. To achieve truly non-sticky superhydrophobic surfaces, hierarchical roughness plays a vital role.
Electrowetting of Weak Polyelectrolyte-Coated Surfaces.
Sénéchal, Vincent; Saadaoui, Hassan; Rodriguez-Hernandez, Juan; Drummond, Carlos
2017-05-23
Polymer coatings are commonly used to modify interfacial properties like wettability, lubrication, or biocompatibility. These properties are determined by the conformation of polymer molecules at the interface. Polyelectrolytes are convenient elementary bricks to build smart materials, given that polyion chain conformation is very sensitive to different environmental variables. Here we discuss the effect of an applied electric field on the properties of surfaces coated with poly(acrylic acid) brushes. By combining atomic force microscopy, quartz crystal microbalance, and contact angle experiments, we show that it is possible to precisely tune polyion chain conformation, surface adhesion, and surface wettability using very low applied voltages if the polymer grafting density and environmental conditions (pH and ionic strength) are properly formulated. Our results indicate that the effective ionization degree of the grafted weak polyacid can be finely controlled with the externally applied field, with important consequences for the macroscopic surface properties.
Topography printing to locally control wettability.
Zheng, Zijian; Azzaroni, Omar; Zhou, Feng; Huck, Wilhelm T S
2006-06-21
This paper reports a new patterning method, which utilizes NaOH to facilitate the irreversible binding between the PDMS stamp and substrates and subsequent cohesive mechanical failure to transfer the PDMS patterns. Our method shows high substrate tolerance and can be used to "print" various PDMS geometries on a wide range of surfaces, including Si100, glass, gold, polymers, and patterned SU8 photoresist. Using this technique, we are able to locally change the wettability of substrate surfaces by printing well-defined PDMS architectures on the patterned SU8 photoresist. It is possible to generate differential wetting and dewetting properties in microchannels and in the PDMS printed area, respectively.
A pore-level scenario for the development of mixed-wettability in oil reservoirs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kovscek, A.R.; Wong, H.; Radke, C.J.
Understanding the role of thin films in porous media is vital if wettability is to be elucidated at the pore level. The type and thickness of films coating pore walls determines reservoir wettability and whether or not reservoir rock can be altered from its initial state of wettability. Pore shape, especially pore wall curvature, is an important factor in determining wetting-film thicknesses. Yet, pore shape and the physics of thin wetting films are generally neglected in models of flow in porous rocks. This paper incorporates thin-film forces into a collection of star-shaped capillary tubes model to describe the geological developmentmore » of mixed-wettability in reservoir rock. Here, mixed-wettability refers to continuous and distinct oil and water-wetting surfaces coexisting in the porous medium. The proposed model emphasizes the remarkable role of thin films. New pore-level fluid configurations arise that are quite unexpected. For example, efficient water displacement of oil (i.e, low residual oil saturation) characteristic of mixed-wettability porous media is ascribed to interconnected oil lenses or rivulets which bridge the walls adjacent to a pore corner. Predicted residual oil saturations are approximately 35 % less in mixed-wet rock compared to completely water-wet rock. Calculated capillary pressure curves mimic those of mixed-wet porous media in the primary drainage of water, imbibition of water, and secondary drainage modes. Amott-Harvey indices range from {minus}0.18 to 0.36 also in good agreement with experimental values. (Morrow et al, 1986; Judhunandan and Morrow, 1991).« less
Wettability, polarity, and water absorption of holm oak leaves: effect of leaf side and age.
Fernández, Victoria; Sancho-Knapik, Domingo; Guzmán, Paula; Peguero-Pina, José Javier; Gil, Luis; Karabourniotis, George; Khayet, Mohamed; Fasseas, Costas; Heredia-Guerrero, José Alejandro; Heredia, Antonio; Gil-Pelegrín, Eustaquio
2014-09-01
Plant trichomes play important protective functions and may have a major influence on leaf surface wettability. With the aim of gaining insight into trichome structure, composition, and function in relation to water-plant surface interactions, we analyzed the adaxial and abaxial leaf surface of holm oak (Quercus ilex) as a model. By measuring the leaf water potential 24 h after the deposition of water drops onto abaxial and adaxial surfaces, evidence for water penetration through the upper leaf side was gained in young and mature leaves. The structure and chemical composition of the abaxial (always present) and adaxial (occurring only in young leaves) trichomes were analyzed by various microscopic and analytical procedures. The adaxial surfaces were wettable and had a high degree of water drop adhesion in contrast to the highly unwettable and water-repellent abaxial holm oak leaf sides. The surface free energy and solubility parameter decreased with leaf age, with higher values determined for the adaxial sides. All holm oak leaf trichomes were covered with a cuticle. The abaxial trichomes were composed of 8% soluble waxes, 49% cutin, and 43% polysaccharides. For the adaxial side, it is concluded that trichomes and the scars after trichome shedding contribute to water uptake, while the abaxial leaf side is highly hydrophobic due to its high degree of pubescence and different trichome structure, composition, and density. Results are interpreted in terms of water-plant surface interactions, plant surface physical chemistry, and plant ecophysiology. © 2014 American Society of Plant Biologists. All Rights Reserved.
Wu, Ruomei; Chao, Guang Hua; Jiang, Haiyun; Pan, Anqiang; Chen, Hong; Yuan, Zhiqing; Liu, Qilong
2013-10-01
A simple and novel approach has been developed to obtain a microporous film with compound nanoparticles on the surface of aluminum alloy substrate using the galvanic corrosion method. The wettability of the surface changes from hydrophilicity to superhydrophobicity after chemical modification with stearic acid (SA). The water contact angle (WCA) and sliding angle (WSA) of superhydrophobic aluminum alloy surface (SAAS) are 154 degrees and 9 degrees, respectively. The roughness of the aluminum substrate increases after the oxidation reaction. The porous aluminum matrix surface is covered with irregularly shaped holes with a mean radius of about 15 microm, similar to the surface papillae of natural Lotus leaf, with villus-like nanoparticles array on pore surfaces. The superhydrophobic property is attributed to this special surface morphology and low surface energy SA. X-ray powder diffraction (XRD) pattern and Energy Dispersive X-Ray Spectroscopy (EDS) spectrum indicate that Al2O3, Al(OH)3 and AIO(OH) has been formed on the surface of aluminum substrate after the oxidation reaction. The Raman spectra indicate that C-H bond from SA and the Al-O are formed on the SAAS. The as-formed SAAS has good stability.
Lee, Anna; Moon, Myoung-Woon; Lim, Hyuneui; Kim, Wan-Doo; Kim, Ho-Young
2012-07-10
Harvesting water from humid air via dewing can provide a viable solution to a water shortage problem where liquid-phase water is not available. Here we experimentally quantify the effects of wettability and geometry of the condensation substrate on the water harvest efficiency. Uniformly hydrophilic surfaces are found to exhibit higher rates of water condensation and collection than surfaces with lower wettability. This is in contrast to a fog basking method where the most efficient surface consists of hydrophilic islands surrounded by hydrophobic background. A thin drainage path in the lower portion of the condensation substrate is revealed to greatly enhance the water collection efficiency. The optimal surface conditions found in this work can be used to design a practical device that harvests water as its biological counterpart, a green tree frog, Litoria caerulea , does during the dry season in tropical northern Australia.
Probing the intrinsically oil-wet surfaces of pores in North Sea chalk at subpore resolution.
Hassenkam, T; Skovbjerg, L L; Stipp, S L S
2009-04-14
Pore surface properties control oil recovery. This is especially true for chalk reservoirs, where pores are particularly small. Wettability, the tendency for a surface to cover itself with fluid, is traditionally defined by the angle a droplet makes with a surface, but this macroscopic definition is meaningless when the particles are smaller than even the smallest droplet. Understanding surface wetting, at the pore scale, will provide clues for more effective oil recovery. We used a special mode of atomic force microscopy and a hydrophobic tip to collect matrices of 10,000 force curves over 5- x 5-mum(2) areas on internal pore surfaces and constructed maps of topography, adhesion, and elasticity. We investigated chalk samples from a water-bearing formation in the Danish North Sea oil fields that had never seen oil. Wettability and elasticity were inhomogeneous over scales of 10s of nanometers, smaller than individual chalk particles. Some areas were soft and hydrophobic, whereas others showed no correlation between hardness and adhesion. We conclude that the macroscopic parameter, "wetting," averages the nanoscopic behavior along fluid pathways, and "mixed-wet" samples have patches with vastly different properties. Development of reservoir hydrophobicity has been attributed to infiltrating oil, but these new results prove that wettability and elasticity are inherent properties of chalk. Their variability, even on single particles, must result from material originally present during sedimentation or material sorbed from the pore fluid some time later.
Probing the intrinsically oil-wet surfaces of pores in North Sea chalk at subpore resolution
Hassenkam, T.; Skovbjerg, L. L.; Stipp, S. L. S.
2009-01-01
Pore surface properties control oil recovery. This is especially true for chalk reservoirs, where pores are particularly small. Wettability, the tendency for a surface to cover itself with fluid, is traditionally defined by the angle a droplet makes with a surface, but this macroscopic definition is meaningless when the particles are smaller than even the smallest droplet. Understanding surface wetting, at the pore scale, will provide clues for more effective oil recovery. We used a special mode of atomic force microscopy and a hydrophobic tip to collect matrices of 10,000 force curves over 5- × 5-μm2 areas on internal pore surfaces and constructed maps of topography, adhesion, and elasticity. We investigated chalk samples from a water-bearing formation in the Danish North Sea oil fields that had never seen oil. Wettability and elasticity were inhomogeneous over scales of 10s of nanometers, smaller than individual chalk particles. Some areas were soft and hydrophobic, whereas others showed no correlation between hardness and adhesion. We conclude that the macroscopic parameter, “wetting,” averages the nanoscopic behavior along fluid pathways, and “mixed-wet” samples have patches with vastly different properties. Development of reservoir hydrophobicity has been attributed to infiltrating oil, but these new results prove that wettability and elasticity are inherent properties of chalk. Their variability, even on single particles, must result from material originally present during sedimentation or material sorbed from the pore fluid some time later. PMID:19321418
Kim, In-hye; Son, Jun Sik; Choi, Seok Hwa; Kim, Kyo-han; Kwon, Tae-yub
2016-02-01
A simple and scalable surface modification treatment is demonstrated, in which nano- and microscale features are introduced into the surface of titanium (Ti) substrates by means of a novel and eco-friendly oxidative aqueous solution composed of hydrogen peroxide (H202) and sodium bicarbonate (NaHCO3). By immersing mirror-polished Ti discs in an aqueous mixture of 30 wt% H2O2/5 wt% NaHCO3 at 23 +/- 3 degrees C for 4 h, it was confirmed that this mixture is capable of generating microscale topographies on Ti surfaces. It also simultaneously formed nanochannels that were regularly arranged in a comb-like pattern on the Ti surface, thus forming a hierarchical surface structure. Further, these nano/micro-textured Ti surfaces showed great surface roughness and excellent wettability when compared with control Ti surfaces. This study demonstrates that a H2O2/NaHCO3 mixture can be effectively utilized to create reproducible nano/microscale topographies on Ti implant surfaces, thus providing an economical new oxidative solution that may be used effectively and safely as a Ti surface modification treatment.
Proposition of stair climb of a drop using chemical wettability gradient
NASA Astrophysics Data System (ADS)
Seerha, Prabh P. S.; Kumar, Parmod; Das, Arup K.; Mitra, Sushanta K.
2017-07-01
We propose a passive technique for a drop to climb along the staircase textured surface using chemical wettability gradients. The stair structure, droplet configuration, and contact angle gradient are modeled using Lagrangian smoothed particle hydrodynamics. The stair climb efficiency of the droplet is found to be a function of wettability gradient strength. Using analytical balance of actuation and resistive forces across droplets, physical reasons behind stair climbing are established and influencing parameters are identified. Evolution of the droplet shape along with the advancing and the receding contact angles is presented from where instantaneous actuation and hysteresis forces are calculated. Using history of Lagrangian particles, circulation at the foot of stairs and progressing development of the advancing drop front are monitored. Higher efficiency in stair climbing in the case of a bigger sized drop than smaller one is obtained from simulation results and realized from force balance. Difficulty in climbing steeper stairs is also demonstrated to delineate the effect of gravitational pull against the actuation force due to the wettability gradient.
Wettability of nano-epoxies to UHMWPE fibers.
Neema, S; Salehi-Khojin, A; Zhamu, A; Zhong, W H; Jana, S; Gan, Y X
2006-07-01
Ultra high molecular weight polyethylene (UHMWPE) fibers have a unique combination of outstanding mechanical, physical, and chemical properties. However, as reinforcements for manufacturing high performance composite materials, UHMWPE fibers have poor wettability with most polymers. As a result, the interfacial bonding strength between the fibers and polymer matrices is very low. Recently, developing so-called nano-matrices containing reactive graphitic nanofibers (r-GNFs) has been proposed to promote the wetting of such matrices to certain types of fiber reinforcements. In this work, the wettability of UHMWPE fibers with different epoxy matrices including a nano-epoxy, and a pure epoxy was investigated. Systematic experimental work was conducted to determine the viscosity of the epoxies, the contact angle between the epoxies and the fibers. Also obtained are the surface energy of the fibers and the epoxies. The experimental results show that the wettability of the UHMWPE fibers with the nano-epoxy is much better than that of the UHMWPE fibers with the pure epoxy.
NASA Astrophysics Data System (ADS)
Przybylak, Marcin; Maciejewski, Hieronim; Dutkiewicz, Agnieszka
2016-11-01
The surface modification of cotton fabrics was carried out using two types of bifunctional fluorinated silsesquioxanes with different ratios of functional groups. The modification was performed either by one- or two-step process. Two methods, the sol-gel and the dip coating method were used in different configurations. The heat treatment and the washing process were applied after modification. The wettability of cotton fabric was evaluated by measuring water contact angles (WCA). Changes in the surface morphology were examined by scanning electron microscopy (SEM, SEM-LFD) and atomic force microscopy (AFM). Moreover, the modified fabrics were subjected to analysis of elemental composition of the applied coatings using SEM-EDS techniques. Highly hydrophobic textiles were obtained in all cases studied and one of the modifications resulted in imparting superhydrophobic properties. Most of impregnated textiles remained hydrophobic even after multiple washing process which shows that the studied modification is durable.
Kim, Yebyeol; Bae, Jaehyun; Song, Hyun Woo; An, Tae Kyu; Kim, Se Hyun; Kim, Yun-Hi; Park, Chan Eon
2017-11-15
Electrohydrodynamic-jet (EHD-jet) printing provides an opportunity to directly assembled amorphous polymer chains in the printed pattern. Herein, an EHD-jet printed amorphous polymer was employed as the active layer for fabrication of organic field-effect transistors (OFETs). Under optimized conditions, the field-effect mobility (μ FET ) of the EHD-jet printed OFETs was 5 times higher than the highest μ FET observed in the spin-coated OFETs, and this improvement was achieved without the use of complex surface templating or additional pre- or post-deposition processing. As the chain alignment can be affected by the surface energy of the dielectric layer in EHD-jet printed OFETs, dielectric layers with varying wettability were examined. Near-edge X-ray absorption fine structure measurements were performed to compare the amorphous chain alignment in OFET active layers prepared by EHD-jet printing and spin coating.
NASA Astrophysics Data System (ADS)
Hasan, Mohammad Nasim; Rabbi, Kazi Fazle; Mukut, K. M.; Tamim, Saiful Islam; Faisal, A. H. M.
2017-06-01
This study focuses on the occurrence of bubble nucleation in a liquid confined in a nano scale confinement and subjected to rapid cooling at one of its wall. Due to the very small size scale of the present problem, we adopt the molecular dynamics (MD) approach. The liquid (Argon) is confined within two solid (Platinum) walls. The temperature of the upper wall of the confinement is maintained at 90 K while the lower wall is being cooled rapidly to 50 K from initial equilibrium temperature of 90 K within 0.1 ns. This results in the nucleation and formation of nanobubbles in the liquid. The pattern of bubble nucleation has been studied for three different conditions of solid-liquid interfacial wettability such as hydrophilic, hydrophobic and neutral. Behavior of bubble nucleation is significantly different in the three case of solid-liquid interfacial wettability. In case of the hydrophobic confinement (weakly adsorbing), the liquid cannot achieve deeper metastability; vapor layers appear immediately on the walls. In case of the neutral confinement (moderately adsorbing), bubble nucleation is promoted by the walls where the nucleation is heterogeneous. In case of the hydrophilic walls (strongly adsorbing) bubbles are developed inside the liquid; that is the nucleation process is homogeneous. The variation in bubble nucleation under different conditions of surface wettability has been studied by the analysis of number density distribution, spatial temperature distribution, spatial number density distribution and heat flux through the upper and lower walls of the confinement. The present study indicates that the variation of heat transfer efficiency due to different surface wettability has significant effect on the size, shape and location of bubble nucleation in case rapid cooling of liquid in nano confinement.
Thermal singularity and contact line motion in pool boiling: Effects of substrate wettability.
Taylor, M T; Qian, Tiezheng
2016-03-01
The dynamic van der Waals theory [Phys. Rev. E 75, 036304 (2007)] is employed to model the growth of a single vapor bubble in a superheated liquid on a flat homogeneous substrate. The bubble spreading dynamics in the pool boiling regime has been numerically investigated for one-component van der Waals fluids close to the critical point, with a focus on the effect of the substrate wettability on bubble growth and contact line motion. The substrate wettability is found to control the apparent contact angle and the rate of bubble growth (the rate of total evaporation), through which the contact line speed is determined. An approximate expression is derived for the contact line speed, showing good agreement with the simulation results. This demonstrates that the contact line speed is primarily governed by (1) the circular shape of interface (for slow bubble growth), (2) the constant apparent contact angle, and (3) the constant bubble growth rate. It follows that the contact line speed has a sensitive dependence on the substrate wettability via the apparent contact angle which also determines the bubble growth rate. Compared to hydrophilic surfaces, hydrophobic surfaces give rise to a thinner shape of bubble and a higher rate of total evaporation, which combine to result in a much faster contact line speed. This can be linked to the earlier formation of a vapor film and hence the onset of boiling crisis.
Surface modification of gutta-percha cones by non-thermal plasma.
Prado, Maíra; Menezes, Marilia Santana de Oliveira; Gomes, Brenda Paula Figueiredo de Almeida; Barbosa, Carlos Augusto de Melo; Athias, Leonardo; Simão, Renata Antoun
2016-11-01
This study was designed to evaluate the effects of Oxygen and Argon plasma on gutta-percha surfaces. A total of 185 flat smooth gutta-percha surfaces were used. Samples were divided into groups: control: no plasma treatment; Oxygen: treatment with Oxygen plasma for 1min; Argon: treatment with Argon plasma for 1min. Samples were evaluated topographically by scanning electron microscopy and atomic force microscopy; and chemically by Fourier Transform-infrared Spectroscopy. A goniometer was used to determine the surface free energy and the wettability of the endodontic sealers. Additionally 60 bovine teeth were filled using pellets of gutta-percha (control, oxygen and argon plasma) and the sealers. Teeth were evaluated by push-out and microleakage tests. Data were statistically analyzed using specific tests. Argon plasma did not change the surface topography, while Oxygen plasma led to changes. Both treatments chemically modified the gutta-percha surface. Argon and Oxygen plasma increased the surface free energy and favored the wettability of AH Plus and Pulp Canal Sealer EWT. Regarding bond strength analysis, for AH Plus sealer, both plasma treatments on gutta-percha favored the bond strength to dentin. However, for Pulp Canal Sealer, there is no statistically significant influence. For leakage test, dye penetration occurred between sealer and dentin in all groups. In conclusion, Oxygen plasma led to both topographic and chemical changes in the gutta-percha surface, while Argon plasma caused only chemical changes. Both treatments increased the surface free energy, favoring the wettability of AH Plus and Pulp Canal Sealer EWT sealers and influenced positively in the adhesion and leakage. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Rezaei, Fatemeh; Abbasi-Firouzjah, Marzieh; Shokri, Babak
2014-02-01
The main objective of this research is the experimental investigation of the surface properties of polymethyl methacrylate (PMMA) such as wettability and the roughness effect on Escherichia coli (gram negative) cell adhesion. Radio frequency (RF; 13.56 MHz) oxygen plasma was used to enhance the antibacterial and wettability properties of this polymer for biomedical applications, especially ophthalmology. The surface was activated by O2 plasma to produce hydrophilic functional groups. Samples were treated with various RF powers from 10 to 80 W and different gas flow rates from 20 to 120 sccm. Optical emission spectroscopy was used to monitor the plasma process. The modified surface hydrophilicity, morphology and transparency characteristics were studied by water contact angle measurements, atomic force microscopy and UV-vis spectroscopy, respectively. Based on the contact angle measurements of three liquids, surface free energy variations were investigated. Moreover, the antibacterial properties were evaluated utilizing the method of plate counting of Escherichia coli. Also, in order to investigate stability of the plasma treatment, an ageing study was carried out by water contact angle measurements repeated in the days after the treatment. For biomedical applications, especially eye lenses, highly efficient antibacterial surfaces with appropriate hydrophilicity and transparency are of great importance. In this study, it is shown that the plasma process is a reliable and convenient method to achieve these purposes. A significant alteration in the hydrophilicity of a pristine PMMA surface was observed after treatment. Also, our results indicated that the plasma-modified PMMAs exhibit appropriate antibacterial performance. Moreover, surface hydrophilicity and surface charge have more influence on bacterial adhesion rate than surface roughness. UV-vis analysis results do not show a considerable difference for transparency of samples after plasma treatment.
Pinus Pinaster surface treatment realized in spatial and temporal afterglow DBD conditions
NASA Astrophysics Data System (ADS)
Lecoq, E.; Clément, F.; Panousis, E.; Loiseau, J.-F.; Held, B.; Castetbon, A.; Guimon, C.
2008-04-01
This experimental work deals with the exposition of Pinus Pinaster wood samples to a DBD afterglow. Electrical parameters like duty cycle and injected energy in the gas are being varied and the modifications induced by the afterglow on the wood are analysed by several macroscopic and microscopic ways like wettability, XPS analyses and also soaking tests of treated wood in a commercial fungicide solution. Soaking tests show that plasma treatment could enhance the absorption of fungicide into the wood. The wettability results point out that the plasma treatment can inflict on the wood different surface properties, making it hydrophilic or hydrophobic, when varying electrical parameters. XPS analyses reveal several chemical modifications like an increase of the O/C ratio and the presence of carboxyl groups on the surface after plasma treatments.
The effect of iron and copper impurities on the wettability of sphalerite (110) surface.
Simpson, Darren J; Bredow, Thomas; Chandra, Anand P; Cavallaro, Giuseppe P; Gerson, Andrea R
2011-07-15
The effect of impurities in the zinc sulfide mineral sphalerite on surface wettability has been investigated theoretically to shed light on previously reported conflicting results on sphalerite flotation. The effect of iron and copper impurities on the sphalerite (110) surface energy and on the water adsorption energy was calculated with the semi-empirical method modified symmetrically orthogonalized intermediate neglect of differential overlap (MSINDO) using the cyclic cluster model. The effect of impurities or dopants on surface energies is small but significant. The surface energy increases with increasing surface iron concentration while the opposite effect is reported for increasing copper concentration. The effect on adsorption energies is much more pronounced with water clearly preferring to adsorb on an iron site followed by a zinc site, and copper site least favorable. The theoretical results indicate that a sphalerite (110) surface containing iron is more hydrophilic than the undoped zinc sulfide surface. In agreement with the literature, the surface containing copper (either naturally or by activation) is more hydrophobic than the undoped surface. Copyright © 2011 Wiley Periodicals, Inc.
Fabrication of zero contact angle ultra-super hydrophilic surfaces.
Jothi Prakash, C G; Clement Raj, C; Prasanth, R
2017-06-15
Zero contact angle surfaces have been created with the combined effect of nanostructure and UV illumination. The contact angle of titanium surface has been optimized to 3.25°±1°. with nanotubular structures through electrochemical surface modification. The porosity and surface energy of tubular TiO 2 layer play critical role over the surface wettability and the hydrophilicity of the surface. The surface free energy has been enhanced from 23.72mJ/m 2 (bare titanium surface) to 87.11mJ/m 2 (nanotubular surface). Similar surface with TiO 2 nanoparticles coating shows superhydrophilicity with contact angle up to 5.63°±0.95°. This implies liquid imbibition and surface curvature play a crucial role in surface hydrophilicity. The contact angle has been further reduced to 0°±0.86° by illuminating the surface with UV radiation. Results shows that by tuning the nanotube morphology, highly porous surfaces can be fabricated to reduce contact angle and enhance wettability. This study provides an insight into the inter-relationship between surface structural factors and ultra-superhydrophilic surfaces which can help to optimize thermal hydraulic and self cleaning surfaces. Copyright © 2017. Published by Elsevier Inc.
Diverse wettability of superoleophilicity and superoleophobicity for oil spill cleanup and recycling
NASA Astrophysics Data System (ADS)
Xu, Mengya; Wang, Gang; Zeng, Zhixiang; Chen, Junjun; Zhang, Xingyuan; Wang, Longsheng; Song, Weiguang; Xue, Qunji
2017-12-01
The frequent marine oil spill accidents in nowadays has aroused great attention all over the world. Lots of superwetting absorption materials with 2D or 3D structures are fabricated to efficiently remove oil spill, but the desorption of the absorbed oil is more difficult. Oil contaminants adhere on the surface will decline the performance and reusability of the absorption materials. Discarding or burning them will bring secondary pollution. Faced with these problems, we prepared an oil extractor integrated by a superhydrophobic-superoleophilic stainless steels wire mesh and a 3D porous cellulose sponge with superhydrophilicity-superoleophilicity in air and superoleophobicity in water. The oil extractor can in situ collect oil spill no matter on the water or under the water. More importantly, it is good at underwater oil desorption, which ensure the recovery and reuse of oil, and meanwhile avoid the materials being fouled by oils. More than 85.5% of crude oil could be successfully discharged only in 2 min when the oil-contaminated sponge was placed in water. The findings in this work not only put forward a new strategy for collection and reuse of various "oils", but also offer a facile method to achieve a combination of two kinds of materials with diverse wettability.
Knowles, Brianna R; Wagner, Pawel; Maclaughlin, Shane; Higgins, Michael J; Molino, Paul J
2017-06-07
The growing need to develop surfaces able to effectively resist biological fouling has resulted in the widespread investigation of nanomaterials with potential antifouling properties. However, the preparation of effective antifouling coatings is limited by the availability of reactive surface functional groups and our ability to carefully control and organize chemistries at a materials' interface. Here, we present two methods of preparing hydrophilic low-fouling surface coatings through reaction of silica-nanoparticle suspensions and predeposited silica-nanoparticle films with zwitterionic sulfobetaine (SB). Silica-nanoparticle suspensions were functionalized with SB across three pH conditions and deposited as thin films via a simple spin-coating process to generate hydrophilic antifouling coatings. In addition, coatings of predeposited silica nanoparticles were surface functionalized via exposure to zwitterionic solutions. Quartz crystal microgravimetry with dissipation monitoring was employed as a high throughput technique for monitoring and optimizing reaction to the silica-nanoparticle surfaces. Functionalization of nanoparticle films was rapid and could be achieved over a wide pH range and at low zwitterion concentrations. All functionalized particle surfaces presented a high degree of wettability and resulted in large reductions in adsorption of bovine serum albumin protein. Particle coatings also showed a reduction in adhesion of fungal spores (Epicoccum nigrum) and bacteria (Escherichia coli) by up to 87 and 96%, respectively. These results indicate the potential for functionalized nanosilicas to be further developed as versatile fouling-resistant coatings for widespread coating applications.
Deng, Zilong; Jung, Jooyeoun; Simonsen, John; Zhao, Yanyun
2017-10-01
Cellulose nanomaterials (CNs)-incorporated emulsion coatings with improved moisture barrier, wettability and surface adhesion onto fruit surfaces were developed for controlling postharvest physiological activity and enhancing storability of bananas during ambient storage. Cellulose nanofiber (CNF)-based emulsion coating (CNFC: 0.3% CNF/1% oleic acid/1% sucrose ester fatty acid (w/w wet base)) had low contact angle, high spread coefficient onto banana surfaces, and lower surface tension (ST, 25.4mN/m) than the critical ST (35.2mN/m) of banana peels, and exhibited good wettability onto banana surfaces. CNFC coating delayed the ethylene biosynthesis pathway and reduced ethylene and CO 2 production, thus delaying fruit ripening. As the result, CNFC coating minimized chlorophyll degradation, weight loss, and firmness of bananas while ensuring the properly fruit ripening during 10d of ambient storage. This study demonstrated the effectiveness of CNF based emulsion coatings for improving the storability of postharvest bananas. Copyright © 2017 Elsevier Ltd. All rights reserved.
Kim, Ki Jae; Lee, Seung-Wook; Yim, Taeeun; Kim, Jae-Geun; Choi, Jang Wook; Kim, Jung Ho; Park, Min-Sik; Kim, Young-Jun
2014-01-01
The effects of surface treatment combining corona discharge and hydrogen peroxide (H2O2) on the electrochemical performance of carbon felt electrodes for vanadium redox flow batteries (VRFBs) have been thoroughly investigated. A high concentration of oxygen functional groups has been successfully introduced onto the surface of the carbon felt electrodes by a specially designed surface treatment, which is mainly responsible for improving the energy efficiency of VRFBs. In addition, the wettability of the carbon felt electrodes also can be significantly improved. The energy efficiency of the VRFB cell employing the surface modified carbon felt electrodes is improved by 7% at high current density (148 mA cm−2). Such improvement is attributed to the faster charge transfer and better wettability allowed by surface-active oxygen functional groups. Moreover, this method is much more competitive than other surface treatments in terms of processing time, production costs, and electrochemical performance. PMID:25366060
NASA Astrophysics Data System (ADS)
Jing, W. X.; Shi, J. F.; Xu, Z. P.; Jiang, Z. D.; Wei, Z. Y.; Zhou, F.; Wu, Q.; Cui, Q. B.
2018-03-01
Batches of un-doped and Ag-doped ZnO nanowires (ZnONWs) were prepared hydrothermally on stainless steel wire sieves at varied Zn2+ concentrations of the growth solution and at different Ag+ concentrations of the silver nitrate solution. Methylene blue solution was degraded with these as-prepared ZnONWs in the presences of ultraviolet irradiation. It is found that both the processing parameters greatly affect the surface textures, wettability, and photo-activity of the ZnONWs. The latter synthesizing parameter is optimized only after the former one has been finely regulated. The un-doped and Ag-doped ZnONWs at Zn2+ concentration of 75 mM of the growth solution and at Ag+ concentration of3 mM of the silver nitrate solution both produce Gaussian rough surfaces and in each batch are most hydrophilic. Therefore, in the related batch the contacting surface area of the catalyst is the largest, the hydroxyl radicals attached on the top ends of corresponding ZnONWs the most, and the catalytic activity of these catalysts the optimal. Besides these, the latter synthesizing parameter affects the photo-activity of Ag-doped ZnONWs more significantly than the former one does that of un-doped ZnONWs.
NASA Astrophysics Data System (ADS)
Hasan, Mohammad Nasim; Shavik, Sheikh Mohammad; Rabbi, Kazi Fazle; Haque, Mominul
2016-07-01
Molecular dynamics (MD) simulations have been carried out to investigate evaporation and explosive boiling phenomena of thin film liquid argon on nanostructured solid surface with emphasis on the effect of solid-liquid interfacial wettability. The nanostructured surface considered herein consists of trapezoidal internal recesses of the solid platinum wall. The wetting conditions of the solid surface were assumed such that it covers both the hydrophilic and hydrophobic conditions and hence effect of interfacial wettability on resulting evaporation and boiling phenomena was the main focus of this study. The initial configuration of the simulation domain comprised of a three phase system (solid platinum, liquid argon and vapor argon) on which equilibrium molecular dynamics (EMD) was performed to reach equilibrium state at 90 K. After equilibrium of the three-phase system was established, the wall was set to different temperatures (130 K and 250 K for the case of evaporation and explosive boiling respectively) to perform non-equilibrium molecular dynamics (NEMD). The variation of temperature and density as well as the variation of system pressure with respect to time were closely monitored for each case. The heat flux normal to the solid surface was also calculated to illustrate the effectiveness of heat transfer for hydrophilic and hydrophobic surfaces in cases of both nanostructured surface and flat surface. The results obtained show that both the wetting condition of the surface and the presence of internal recesses have significant effect on normal evaporation and explosive boiling of the thin liquid film. The heat transfer from solid to liquid in cases of surface with recesses are higher compared to flat surface without recesses. Also the surface with higher wettability (hydrophilic) provides more favorable conditions for boiling than the low-wetting surface (hydrophobic) and therefore, liquid argon responds quickly and shifts from liquid to vapor phase faster in case of hydrophilic surface. The heat transfer rate is also much higher in case of hydrophilic surface.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hasan, Mohammad Nasim, E-mail: nasim@me.buet.ac.bd.com; Shavik, Sheikh Mohammad, E-mail: shavik@me.buet.ac.bd.com; Rabbi, Kazi Fazle, E-mail: rabbi35.me10@gmail.com
2016-07-12
Molecular dynamics (MD) simulations have been carried out to investigate evaporation and explosive boiling phenomena of thin film liquid argon on nanostructured solid surface with emphasis on the effect of solid-liquid interfacial wettability. The nanostructured surface considered herein consists of trapezoidal internal recesses of the solid platinum wall. The wetting conditions of the solid surface were assumed such that it covers both the hydrophilic and hydrophobic conditions and hence effect of interfacial wettability on resulting evaporation and boiling phenomena was the main focus of this study. The initial configuration of the simulation domain comprised of a three phase system (solidmore » platinum, liquid argon and vapor argon) on which equilibrium molecular dynamics (EMD) was performed to reach equilibrium state at 90 K. After equilibrium of the three-phase system was established, the wall was set to different temperatures (130 K and 250 K for the case of evaporation and explosive boiling respectively) to perform non-equilibrium molecular dynamics (NEMD). The variation of temperature and density as well as the variation of system pressure with respect to time were closely monitored for each case. The heat flux normal to the solid surface was also calculated to illustrate the effectiveness of heat transfer for hydrophilic and hydrophobic surfaces in cases of both nanostructured surface and flat surface. The results obtained show that both the wetting condition of the surface and the presence of internal recesses have significant effect on normal evaporation and explosive boiling of the thin liquid film. The heat transfer from solid to liquid in cases of surface with recesses are higher compared to flat surface without recesses. Also the surface with higher wettability (hydrophilic) provides more favorable conditions for boiling than the low-wetting surface (hydrophobic) and therefore, liquid argon responds quickly and shifts from liquid to vapor phase faster in case of hydrophilic surface. The heat transfer rate is also much higher in case of hydrophilic surface.« less
NASA Astrophysics Data System (ADS)
Li, Xuewu; Zhang, Qiaoxin; Guo, Zheng; Shi, Tian; Yu, Jingui; Tang, Mingkai; Huang, Xingjiu
2015-07-01
This work has developed a simple and low-cost method to render 6061 aluminum alloy surface superhydrophobicity and excellent corrosion inhibition. The superhydrophobic aluminum alloy surface has been fabricated by hydrochloric acid etching, potassium permanganate passivation and fluoroalkyl-silane modification. Meanwhile, the effect of the etching and passivation time on the wettability and corrosion inhibition of the fabricated surface has also been investigated. Results show that with the etching time of 6 min and passivation time of 180 min the fabricated micro/nano-scale terrace-like hierarchical structures accompanying with the nanoscale coral-like network bulge structures after being modified can result in superhydrophobicity with a water contact angle (CA) of 155.7°. Moreover, an extremely weak adhesive force to droplets as well as an outstanding self-cleaning behavior of the superhydrophobic surface has also been proved. Finally, corrosion inhibition in seawater of the as-prepared aluminum alloy surface is characterized by potentiodynamic polarization curves and electrochemical impedance spectroscopy. Evidently, the fabricated superhydrophobic surface attained an improved corrosion inhibition efficiency of 83.37% compared with the traditional two-step processing consisting of etching and modification, which will extend the further applications of aluminum alloy especially in marine engineering fields.
Simple treatment of cotton textile to impart high water repellent properties
NASA Astrophysics Data System (ADS)
Ivanova, N. A.; Zaretskaya, A. K.
2010-12-01
We describe two methods to impart the water repellency for the surface of cotton fabric, using a commercially available and a laboratory synthesized fluoroalkylsiloxanes. To characterize the wettability and the durability of water repellent properties of hydrophobic coating produced, we have studied the advancing water contact angles, rolling angles and the evolution of water contact angle in time during a continuous contact of the surface with the water drop. The quality of the coatings was also assessed after the washing procedure. The analysis of the wettability of hydrophobized fabrics indicated that a better effect, leading to the superhydrophobic state of the surface, was observed when the surface relief of the fabric with the coating is determined by not only the structure and braiding of the fabric, but also the additional elements of texture created by the aggregates of molecules of hydrophobic agent.
Yang, Seung Yun; Kim, Eung-Sam; Jeon, Gumhye; Choi, Kwan Yong; Kim, Jin Kon
2013-04-01
We independently controlled surface topography and wettability of polystyrene (PS) films by CF4 and oxygen plasma treatments, respectively, to evaluate the adhesion and proliferation of human fetal osteoblastic (hFOB) cells on the films. Among the CF4 plasma-treated PS films with the average surface roughness ranging from 0.9 to 70 nm, the highest adhesion of hFOB cells was observed on a PS film with roughness of ~11 nm. When this film was additionally treated by oxygen plasma to provide a hydrophilic surface with a contact angle less than 10°, the proliferation of bone-forming cell was further enhanced. Thus, the plasma-based independent modification of PS film into an optimum nanotexture for human osteoblast cells could be appplied to materials used in bone tissue engineering. Copyright © 2012 Elsevier B.V. All rights reserved.
Impact of surface wettability on S-layer recrystallization: a real-time characterization by QCM-D.
Iturri, Jagoba; Vianna, Ana C; Moreno-Cencerrado, Alberto; Pum, Dietmar; Sleytr, Uwe B; Toca-Herrera, José Luis
2017-01-01
Quartz crystal microbalance with dissipation monitoring (QCM-D) has been employed to study the assembly and recrystallization kinetics of isolated SbpA bacterial surface proteins onto silicon dioxide substrates of different surface wettability. Surface modification by UV/ozone oxidation or by vapor deposition of 1 H ,1 H ,2 H ,2 H -perfluorododecyltrichlorosilane yielded hydrophilic or hydrophobic samples, respectively. Time evolution of frequency and dissipation factors, either individually or combined as the so-called Df plots, showed a much faster formation of crystalline coatings for hydrophobic samples, characterized by a phase-transition peak at around the 70% of the total mass adsorbed. This behavior has been proven to mimic, both in terms of kinetics and film assembly steps, the recrystallization taking place on an underlying secondary cell-wall polymer (SCWP) as found in bacteria. Complementary atomic force microscopy (AFM) experiments corroborate these findings and reveal the impact on the final structure achieved.
Enhancing dropwise condensation through bioinspired wettability patterning.
Ghosh, Aritra; Beaini, Sara; Zhang, Bong June; Ganguly, Ranjan; Megaridis, Constantine M
2014-11-04
Dropwise condensation (DWC) heat transfer depends strongly on the maximum diameter (Dmax) of condensate droplets departing from the condenser surface. This study presents a facile technique implemented to gain control of Dmax in DWC within vapor/air atmospheres. We demonstrate how this approach can enhance the corresponding heat transfer rate by harnessing the capillary forces in the removal of the condensate from the surface. We examine various hydrophilic-superhydrophilic patterns, which, respectively, sustain and combine DWC and filmwise condensation on the substrate. The material system uses laser-patterned masking and chemical etching to achieve the desired wettability contrast and does not employ any hydrophobizing agent. By applying alternating straight parallel strips of hydrophilic (contact angle ∼78°) mirror-finish aluminum and superhydrophilic regions (etched aluminum) on the condensing surface, we show that the average maximum droplet size on the less-wettable domains is nearly 42% of the width of the corresponding strips. An overall improvement in the condensate collection rate, up to 19% (as compared to the control case of DWC on mirror-finish aluminum) was achieved by using an interdigitated superhydrophilic track pattern (on the mirror-finish hydrophilic surface) inspired by the vein network of plant leaves. The bioinspired interdigitated pattern is found to outperform the straight hydrophilic-superhydrophilic pattern design, particularly under higher humidity conditions in the presence of noncondensable gases (NCG), a condition that is more challenging for maintaining sustained DWC.
Effect of Oblique-Angle Sputtered ITO Electrode in MAPbI3 Perovskite Solar Cell Structures.
Lee, Kun-Yi; Chen, Lung-Chien; Wu, Yu-June
2017-10-03
This investigation reports on the characteristics of MAPbI 3 perovskite films on obliquely sputtered ITO/glass substrates that are fabricated with various sputtering times and sputtering angles. The grain size of a MAPbI 3 perovskite film increases with the oblique sputtering angle of ITO thin films from 0° to 80°, indicating that the surface properties of the ITO affect the wettability of the PEDOT:PSS thin film and thereby dominates the number of perovskite nucleation sites. The optimal power conversion efficiency (Eff) is achieved 11.3% in a cell with an oblique ITO layer that was prepared using a sputtering angle of 30° for a sputtering time of 15 min.
Chemically prepared La2Se3 nanocubes thin film for supercapacitor application.
Patil, S J; Lokhande, V C; Chodankar, N R; Lokhande, C D
2016-05-01
Lanthanum selenide (La2Se3) nanocubes thin film is prepared via successive ionic layer adsorption and reaction (SILAR) method and utilized for energy storage application. The prepared La2Se3 thin film is characterized by X-ray diffraction, field emission scanning electron microscopy and contact angle measurement techniques for structural, surface morphological and wettability studies, respectively. Energy dispersive X-ray microanalysis (EDAX) is performed in order to obtain the elemental composition of the thin film. The La2Se3 film electrode shows a maximum specific capacitance of 363 F g(-1) in a 0.8 M LiClO4/PC electrolyte at a scan rate of 5 mV s(-1) within 1.3 V/SCE potential range. The specific capacitive retention of 83 % of La2Se3 film electrode is obtained over 1000 cyclic voltammetry cycles. The predominant performance, such as high energy (80 Wh kg(-1)) and power density (2.5 kW kg(-1)), indicates that La2Se3 film electrode facilitates fast ion diffusion during redox processes. Copyright © 2016 Elsevier Inc. All rights reserved.
Patterned surface with controllable wettability for inkjet printing of flexible printed electronics.
Nguyen, Phuong Q M; Yeo, Lip-Pin; Lok, Boon-Keng; Lam, Yee-Cheong
2014-03-26
Appropriate control of substrate surface properties prior to inkjet printing could be employed to improve the printing quality of fine resolution structures. In this paper, novel methods to fabricate patterned surfaces with a combination of hydrophilic and hydrophobic properties are investigated. The results of inkjet printing of PEDOT/PSS conductive ink on these modified surfaces are presented. Selective wetting was achieved via a two-step hydrophilic-hydrophobic coating of 3-aminopropyl trimethoxysilane (APTMS) and 3M electronic grade chemical respectively on PET surfaces; this was followed by a selective hydrophilic treatment (either atmospheric O2/Ar plasma or UV/ozone surface treatment) with the aid of a Nickel stencil. Hydrophobic regions with water contact angle (WCA) of 105° and superhydrophilic regions with WCA <5° can be achieved on a single surface. During inkjet printing of the treated surfaces, PEDOT/PSS ink spread spontaneously along the hydrophilic areas while avoiding the hydrophobic regions. Fine features smaller than the inkjet droplet size (approximately 55 μm in diameter) can be successfully printed on the patterned surface with high wettability contrast.
Barshilia, Harish C.; Chaudhary, Archana; Kumar, Praveen; Manikandanath, Natarajan T.
2012-01-01
The wettability of reactively sputtered Y2O3, thermally oxidized Y-Y2O3 and Cd-CdO template assisted Y2O3 coatings has been studied. The wettability of as-deposited Y2O3 coatings was determined by contact angle measurements. The water contact angles for reactively sputtered, thermally oxidized and template assisted Y2O3 nanostructured coatings were 99°, 117° and 155°, respectively. The average surface roughness values of reactively sputtered, thermally oxidized and template assisted Y2O3 coatings were determined by using atomic force microscopy and the corresponding values were 3, 11 and 180 nm, respectively. The low contact angle of the sputter deposited Y2O3 and thermally oxidized Y-Y2O3 coatings is attributed to a densely packed nano-grain like microstructure without any void space, leading to low surface roughness. A water droplet on such surfaces is mostly in contact with a solid surface relative to a void space, leading to a hydrophobic surface (low contact angle). Surface roughness is a crucial factor for the fabrication of a superhydrophobic surface. For Y2O3 coatings, the surface roughness was improved by depositing a thin film of Y2O3 on the Cd-CdO template (average roughness = 178 nm), which resulted in a contact angle greater than 150°. The work of adhesion of water was very high for the reactively sputtered Y2O3 (54 mJ/m2) and thermally oxidized Y-Y2O3 coatings (43 mJ/m2) compared to the Cd-CdO template assisted Y2O3 coating (7 mJ/m2). PMID:28348296
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stephen Johnson; Mehdi Salehi; Karl Eisert
This report describes the progress of our research during the first 30 months (10/01/2004 to 03/31/2007) of the original three-year project cycle. The project was terminated early due to DOE budget cuts. This was a joint project between the Tertiary Oil Recovery Project (TORP) at the University of Kansas and the Idaho National Laboratory (INL). The objective was to evaluate the use of low-cost biosurfactants produced from agriculture process waste streams to improve oil recovery in fractured carbonate reservoirs through wettability mediation. Biosurfactant for this project was produced using Bacillus subtilis 21332 and purified potato starch as the growth medium.more » The INL team produced the biosurfactant and characterized it as surfactin. INL supplied surfactin as required for the tests at KU as well as providing other microbiological services. Interfacial tension (IFT) between Soltrol 130 and both potential benchmark chemical surfactants and crude surfactin was measured over a range of concentrations. The performance of the crude surfactin preparation in reducing IFT was greater than any of the synthetic compounds throughout the concentration range studied but at low concentrations, sodium laureth sulfate (SLS) was closest to the surfactin, and was used as the benchmark in subsequent studies. Core characterization was carried out using both traditional flooding techniques to find porosity and permeability; and NMR/MRI to image cores and identify pore architecture and degree of heterogeneity. A cleaning regime was identified and developed to remove organic materials from cores and crushed carbonate rock. This allowed cores to be fully characterized and returned to a reproducible wettability state when coupled with a crude-oil aging regime. Rapid wettability assessments for crushed matrix material were developed, and used to inform slower Amott wettability tests. Initial static absorption experiments exposed limitations in the use of HPLC and TOC to determine surfactant concentrations. To reliably quantify both benchmark surfactants and surfactin, a surfactant ion-selective electrode was used as an indicator in the potentiometric titration of the anionic surfactants with Hyamine 1622. The wettability change mediated by dilute solutions of a commercial preparation of SLS (STEOL CS-330) and surfactin was assessed using two-phase separation, and water flotation techniques; and surfactant loss due to retention and adsorption on the rock was determined. Qualitative tests indicated that on a molar basis, surfactin is more effective than STEOL CS-330 in altering wettability of crushed Lansing-Kansas City carbonates from oil-wet to water-wet state. Adsorption isotherms of STEOL CS-330 and surfactin on crushed Lansing-Kansas City outcrop and reservoir material showed that surfactin has higher specific adsorption on these oomoldic carbonates. Amott wettability studies confirmed that cleaned cores are mixed-wet, and that the aging procedure renders them oil-wet. Tests of aged cores with no initial water saturation resulted in very little spontaneous oil production, suggesting that water-wet pathways into the matrix are required for wettability change to occur. Further investigation of spontaneous imbibition and forced imbibition of water and surfactant solutions into LKC cores under a variety of conditions--cleaned vs. crude oil-aged; oil saturated vs. initial water saturation; flooded with surfactant vs. not flooded--indicated that in water-wet or intermediate wet cores, sodium laureth sulfate is more effective at enhancing spontaneous imbibition through wettability change. However, in more oil-wet systems, surfactin at the same concentration performs significantly better.« less
NASA Astrophysics Data System (ADS)
Ngo, Chi-Vinh; Chun, Doo-Man
2017-07-01
Recently, the fabrication of superhydrophobic metallic surfaces by means of pulsed laser texturing has been developed. After laser texturing, samples are typically chemically coated or aged in ambient air for a relatively long time of several weeks to achieve superhydrophobicity. To accelerate the wettability transition from hydrophilicity to superhydrophobicity without the use of additional chemical treatment, a simple annealing post process has been developed. In the present work, grid patterns were first fabricated on stainless steel by a nanosecond pulsed laser, then an additional low-temperature annealing post process at 100 °C was applied. The effect of 100-500 μm step size of the textured grid upon the wettability transition time was also investigated. The proposed post process reduced the transition time from a couple of months to within several hours. All samples showed superhydrophobicity with contact angles greater than 160° and sliding angles smaller than 10° except samples with 500 μm step size, and could be applied in several potential applications such as self-cleaning and control of water adhesion.
Laser-structured Janus wire mesh for efficient oil-water separation.
Liu, Yu-Qing; Han, Dong-Dong; Jiao, Zhi-Zhen; Liu, Yan; Jiang, Hao-Bo; Wu, Xuan-Hang; Ding, Hong; Zhang, Yong-Lai; Sun, Hong-Bo
2017-11-23
We report here the fabrication of a Janus wire mesh by a combined process of laser structuring and fluorosilane/graphene oxide (GO) modification of the two sides of the mesh, respectively, toward its applications in efficient oil/water separation. Femtosecond laser processing has been employed to make different laser-induced periodic surface structures (LIPSS) on each side of the mesh. Surface modification with fluorosilane on one side and GO on the other side endows the two sides of the Janus mesh with distinct wettability. Thus, one side is superhydrophobic and superoleophilic in air, and the other side is superhydrophilic in air and superoleophobic under water. As a proof of concept, we demonstrated the separation of light/heavy oil and water mixtures using this Janus mesh. To realize an efficient separation, the intrusion pressure that is dominated by the wire mesh framework and the wettability should be taken into account. Our strategy may open up a new way to design and fabricate Janus structures with distinct wettability; and the resultant Janus mesh may find broad applications in the separation of oil contaminants from water.
Campbell, Darren; Carnell, Sarah Maria; Eden, Russell John
2013-05-01
Contact angle, as a representative measure of surface wettability, is often employed to interpret contact lens surface properties. The literature is often contradictory and can lead to confusion. This literature review is part of a series regarding the analysis of hydrogel contact lenses using contact angle techniques. Here we present an overview of contact angle terminology, methodology, and analysis. Having discussed this background material, subsequent parts of the series will discuss the analysis of contact lens contact angles and evaluate differences in published laboratory results. The concepts of contact angle, wettability and wetting are presented as an introduction. Contact angle hysteresis is outlined and highlights the advantages in using dynamic analytical techniques over static methods. The surface free energy of a material illustrates how contact angle analysis is capable of providing supplementary surface characterization. Although single values are able to distinguish individual material differences, surface free energy and dynamic methods provide an improved understanding of material behavior. The frequently used sessile drop, captive bubble, and Wilhelmy plate techniques are discussed. Their use as both dynamic and static methods, along with the advantages and disadvantages of each technique, is explained. No single contact angle technique fully characterizes the wettability of a material surface, and the application of complimenting methods allows increased characterization. At present, there is not an ISO standard method designed for soft materials. It is important that each contact angle technique has a standard protocol, as small protocol differences between laboratories often contribute to a variety of published data that are not easily comparable.
NASA Astrophysics Data System (ADS)
Liu, Yang; Shen, Xin; Zhou, Huan; Wang, Yingjun; Deng, Linhong
2016-05-01
We develop a novel chitosan-citric acid film (abbreviated as CS-CA) suitable for biomedical applications in this study. In this CS-CA film, the citric acid, which is a harmless organic acid has been extensively investigated as a modifying agent on carbohydrate polymers, was cross-linked by 1-Ethyl-3-(3-dimethyl aminopropyl) carbodiimide (EDC) and N-hydroxysuccinimide (NHS) onto the surface of chitosan (CS) film. Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) confirms the graft copolymerization of the modified chitosan film (CS-CA). Surface wettability, moisturizing performance, the capacity of mineralization in vitro and biocompatibility of the films were characterized. After modification, this CS-CA film has good hydrophilicity. It is very evident that the citric acid grafting treatment significantly promotes the biomineralization of the chitosan based substrates. Cell experiments show that the MC3T3-E1 osteoblasts can adhere and proliferate well on the surface of CS-CA film. This CS-CA film, which can be prepared in large quantities and at low cost, should have potential application in bone tissue engineering.
Liu, Yan; Xue, Jingze; Luo, Dan; Wang, Huiyuan; Gong, Xu; Han, Zhiwu; Ren, Luquan
2017-04-01
A facile, rapid and one-step electrodeposition process has been employed to construct a superhydrophobic surface with micro/nano scale structure on a Mg-Sn-Zn (TZ51) alloy, which is expected to be applied as a biodegradable biomedical implant materials. By changing the electrodeposition time, the maximum contact angle of the droplet was observed as high as 160.4°±0.7°. The characteristics of the as-prepared surface were conducted by field emission scanning electron microscopy (FE-SEM), X-ray photoelectron spectroscopy (XPS) and Fourier-transform infrared spectroscopy (FT-IR). Besides, the anti-corrosion performance of the coatings in stimulated body fluid (SBF) solution were investigated by electrochemical measurement. The results demonstrated that the anti-corrosion property of superhydrophobic surface was greatly improved. This method show beneficial effects on the wettability and corrosion behavior, and therefore provides a efficient route to mitigate the undesirable rapid corrosion of magnesium alloy in favor of application for clinical field. Copyright © 2016 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, Nicholas R.; Wysocki, Aaron J.; Terrani, Kurt A.
The U.S. Department of Energy Office of Nuclear Energy (DOE-NE) Advanced Fuels Campaign (AFC) is working closely with the nuclear industry to develop fuel and cladding candidates with potentially enhanced accident tolerance, also known as accident tolerant fuel (ATF). Thermal-fluids characteristics are a vital element of a holistic engineering evaluation of ATF concepts. One vital characteristic related to boiling heat transfer is the critical heat flux (CHF). CHF plays a vital role in determining safety margins during normal operation and also in the progression of potential transient or accident scenarios. This deliverable is a scoping survey of thermal-fluids evaluation andmore » confirmatory experimental validation requirements of accident tolerant cladding concepts with a focus on boiling heat transfer characteristics. The key takeaway messages of this report are: 1. CHF prediction accuracy is important and the correlations may have significant uncertainty. 2. Surface conditions are important factors for CHF, primarily the wettability that is characterized by contact angle. Smaller contact angle indicates greater wettability, which increases the CHF. Surface roughness also impacts wettability. Results in the literature for pool boiling experiments indicate changes in CHF by up to 60% for several ATF cladding candidates. 3. The measured wettability of FeCrAl (i.e., contact angle and roughness) indicates that CHF should be investigated further through pool boiling and flow boiling experiments. 4. Initial measurements of static advancing contact angle and surface roughness indicate that FeCrAl is expected to have a higher CHF than Zircaloy. The measured contact angle of different FeCrAl alloy samples depends on oxide layer thickness and composition. The static advancing contact angle tends to decrease as the oxide layer thickness increases.« less
Granados, Eduardo; Calderon, Miguel Martinez; Krzywinski, Jacek; ...
2017-08-28
We demonstrate the formation of laser-induced periodic surface structures (LIPSS) in boron-doped diamond (BDD) by irradiation with femtosecond near-IR laser pulses. The results show that the obtained LIPSS are perpendicular to the laser polarization, and the ripple periodicity is on the order of half of the irradiation wavelength. The surface structures and their electrochemical properties were characterized using Raman micro-spectroscopy, in combination with scanning electron and atomic force microscopies. The textured BDD surface showed a dense and large surface area with no change in its structural characteristics. The effective surface area of the textured BDD electrode was approximately 50% largermore » than that of a planar substrate, while wetting tests showed that the irradiated area becomes highly hydrophilic. Lastly, our results indicate that LIPSS texturing of BDD is a straightforward and simple technique for enhancing the surface area and wettability properties of the BDD electrodes, which could enable higher current efficiency and lower energy consumption in the electrochemical oxidation of toxic organics.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Granados, Eduardo; Calderon, Miguel Martinez; Krzywinski, Jacek
We demonstrate the formation of laser-induced periodic surface structures (LIPSS) in boron-doped diamond (BDD) by irradiation with femtosecond near-IR laser pulses. The results show that the obtained LIPSS are perpendicular to the laser polarization, and the ripple periodicity is on the order of half of the irradiation wavelength. The surface structures and their electrochemical properties were characterized using Raman micro-spectroscopy, in combination with scanning electron and atomic force microscopies. The textured BDD surface showed a dense and large surface area with no change in its structural characteristics. The effective surface area of the textured BDD electrode was approximately 50% largermore » than that of a planar substrate, while wetting tests showed that the irradiated area becomes highly hydrophilic. Lastly, our results indicate that LIPSS texturing of BDD is a straightforward and simple technique for enhancing the surface area and wettability properties of the BDD electrodes, which could enable higher current efficiency and lower energy consumption in the electrochemical oxidation of toxic organics.« less
The wettability of selected organic soils in Poland
NASA Astrophysics Data System (ADS)
Całka, A.; Hajnos, M.
2009-04-01
The wettability was measured in the laboratory by means of two methods: Water Drop Penetration Time (WDPT) test and Thin Column Wicking (TCW) method. WDPT is fast and simple method and was used to investigate potential water repellency of analyzed samples. TCW is an indirect method and was used to determine contact angles and surface free energy components. The measurement was performed in horizontal teflon chambers for thin-layer chromatography, adapted for tubes 10 cm long. The experiment was carried out on muck soils (samples were taken from two levels of soil profile: 0-20 cm and 20-40 cm) and peat soils. There were two types of peats: low-moor peats and high moor peats. Samples of low-moor peats were taken from level 25-75 cm (alder peat) and 75-125cm (sedge peat) and 25-75 cm (peloid peat). Samples of high moor peats from level 25-175 cm (sphagnum peat) and 175-225 cm (sphagnum peat with Eriophorum). There was found no variability in persistence of potential water repellency but there were differences in values of contact angles of individual soil samples. Both muck and peat samples are extremely water repellent soils. Water droplets persisted on the surface of soils for more than 24 hours. Contact angles and surface free energy components for all samples were differentiated. Ranges of water contact angles for organic soils are from 27,54o to 96,50o. The highest values of contact angles were for sphagnum peats, and the lowest for muck soil from 20-40 cm level. It means, that there are differences in wettability between these samples. Muck soil is the best wettable and sphagnum peats is the worst wettable soil. If the content of organic compounds in the soil exceeds 40% (like in peats), the tested material displays only dispersion-type interactions. Therefore for peat soils, the technique of thin column wicking could only be used to determine the dispersive component γiLW. For muck soils it was also determined electron-acceptor (Lewis acid) γ+ and electron-donor (Lewis base) γ- surface free energy components. The authors gratefully acknowledge the Ministry of Science and Higher Education for financial support of this work (grant No. N N310 149335).
Kozlov, Mikhail; McCarthy, Thomas J
2004-10-12
The adsorption of poly(vinyl alcohol) (PVOH) from aqueous solutions to a silicon-supported fluoroalkyl monolayer is described. Thickness, wettability, and roughness of adsorbed films are studied as a function of polymer molecular weight, degree of hydrolysis (from the precursor, poly(vinyl acetate)), polymer concentration, salt type and concentration, and temperature. The data suggest a two-stage process for adsorption of the polymer: physisorption due to a hydrophobic effect (decrease in interfacial free energy) and subsequent stabilization of the adsorbed layer due to crystallization of the polymer. Adsorption of lower-molecular-weight polymers results in thicker films than those prepared with a higher molecular weight; this is ascribed to better crystallization of more mobile short chains. Higher contents of unhydrolyzed acetate groups on the poly(vinyl alcohol) chain lead to thicker adsorbed films. Residual acetate groups partition to the outermost surface of the films and determine wettability. Salts, including sodium chloride and sodium sulfate, promote adsorption, which results in thicker films; at the same time, their presence over a wide concentration range leads to formation of rough coatings. Sodium thiocyanate has little effect on PVOH adsorption, only slightly reducing the thickness in a 2 M salt solution. Increased temperature promotes adsorption in the presence of salt, but has little effect on salt-free solutions. Evidently, higher temperatures favor adsorption but cause crystallization to be less thermodynamically favorable. These competing effects result in the smoothest coatings being formed in an intermediate temperature range. Copyright 2004 American Chemical Society
NASA Astrophysics Data System (ADS)
Tang, Hui; Han, Yu; Wu, Tao; Tao, Wei; Jian, Xian; Wu, Yunfeng; Xu, Fangjun
2017-04-01
In this study, hydroxyapatite-containing coatings were prepared by microarc oxidation on AZ31 magnesium alloy surface to improve its biodegradation performance. Five applied voltages were chosen to prepare the MAO coatings. The results demonstrate that the number of micropores in the films increases but their dimensions decrease after higher voltage is applied. As the surface roughness of the MAO coatings increases with the applied voltage, the wettability of the coatings improves continuously. The MAO coatings were mainly composed of magnesium oxide (MgO) and hydroxyapatite. The amount of hydroxyapatite phase increased with increasing voltage that was applied. The bonding strength became slightly weaker after a higher voltage was applied. But the bonding strengths of all the coatings were consistently higher than 37 MPa, which met the requirement of implant biomaterials. All coatings exhibited higher corrosion resistances and lower hydrogen evolution rate than the bare AZ31 Mg substrate, implying that the degradation rate of the AZ31 Mg alloy was enhanced by the hydroxyapatite-containing coatings. The results indicate that the present treatment of applying hydroxyapatite-containing coatings is a promising technique for the degradable Mg-based biomaterials for orthopedic applications.
NASA Astrophysics Data System (ADS)
Yao, Caizhen; Ye, Yayun; Jia, Baoshen; Li, Yuan; Ding, Renjie; Jiang, Yong; Wang, Yuxin; Yuan, Xiaodong
2017-12-01
In this paper, micro/nano structures on stainless steel were prepared in single spot irradiation mode and scan mode by using femtosecond laser technique. The influence of polarization and fluence on the formation of micro/nano structures were explored. Surface morphology, microstructure, roughness and composition of prepared samples were characterized. The antireflection property and wettability of laser treated samples were also tested and compared with that of original stainless steel.Results showed that the laser-induced spot consists of two distinct regions due to the Gaussian beam profile: a core region of moth-eye-like structure and a peripheral region of nanoparticles-covered laser-induced periodic surface structure (NC-LIPSS). The proportion of the core region and dimension of micro/nano structure increase with increasing laser fluence. Polarization can be used to tune the direction of NC-LIPSS. Atomic ratios of Cr and Mn increase and atomic ratio of Ni decreases after laser irradiation. Oxygen is not detected on laser irradiated samples, indicating that oxidation reactions are not significant during the interaction process between femtosecond laser and 304 stainless steel. These are good for the application of stainless steel as its physical properties would not change or even enhanced. The overlaps between two laser scan lines significantly influence the surface roughness and should be controlled carefully during the preparation process. The laser irradiated surface has a better antireflection property in comparison with that of original stainless steel, which may due to the scattering and absorption of micro/nano structures. Contact angle of micro/nano structured stainless steel decreases with the increase of laser fluence. The hydrophilic property can be explained by Wenzel's model. The interference between the surface plasmon wave and the incident light wave leads to the formation of NC-LIPSS.
Micro-scale displacement of NAPL by surfactant and microemulsion in heterogeneous porous media
NASA Astrophysics Data System (ADS)
Javanbakht, Gina; Arshadi, Maziar; Qin, Tianzhu; Goual, Lamia
2017-07-01
Industrial processes such as remediation of oil-contaminated aquifers and enhanced oil recovery (EOR) often utilize chemical additives to increase the removal of non-aqueous phase liquids (NAPLs) from subsurface formations. Although the majority of crude oils are classified as LNAPLs, they often contain heavy molecules (DNAPLs) such as asphaltenes that tend to adsorb on minerals and alter their wettability. Effective additives are therefore those that can reduce the threshold capillary pressure, thus mobilizing LNAPL inside pore spaces and solubilizing DNAPL from rock surfaces. Nonionic surfactants in brine have often been injected to oil or contaminated aquifer formations in order to enhance NAPL displacement through IFT reduction. Recent studies revealed that surfactant-based microemulsions have a higher tendency to alter the wettability of surfaces, compared to surfactants alone, leading to more effective NAPL removal. However, the impact of these additives on pore-scale displacement mechanisms and multi-phase fluid occupancy in porous media is, to date, still unclear. In this study, x-ray microtomography experiments were performed to investigate the impact of surfactants and microemulsions on the mobilization and solubilization of NAPL in heterogeneous rocks. Saturation profiles indicated that an incremental NAPL removal was attained by addition of microemulsion to brine, compared with surfactant. Residual cluster size distributions revealed that microemulsions could break up large clusters into smaller disconnected ones, improving their mobilization in the rock. In-situ contact angle measurements showed that microemulsions could reverse the wettability of rough contaminated surfaces to a higher extent than surfactants. Unlike surfactant alone, the surfactant-solvent blend in the carrier fluid of microemulsions was able to penetrate rough grain surfaces, particularly those of dolomite cement, and desorb asphaltenes in the form of small-emulsified NAPL droplets, which were eventually washed away by the continuous flow process. The greater wettability alteration caused by microemulsions resulted in a lower threshold capillary pressure, which in turn promoted the mobilization of NAPL ganglia more than surfactant alone.
When the Desert Beetle Met the Carnivorous Plant: A Perfect Match for Droplet Growth and Shedding
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aizenberg, Joanna; Park, Kyoo Chul; Kim, Philseok
2015-01-14
Phase change of vapor followed by coalescence and transport on ubiquitous bumped or curved surfaces is of fundamental importance for a wide range of phenomena and applications from water condensation on cold beverage bottles, to fogging on glasses and windshields, self-cleaning by jumping droplets, weathering, self-assembly, desalination, latent heat transfer, etc. Over the past decades, many attempts to understand and control the droplet growth dynamics and shedding of condensates on textured surfaces have focused on finding the role of micro/nanotexture combined with wettability. In particular, inspired by the Namib desert beetle bump structure, studies tested the effect of topography onmore » the preferential condensation. However, like the preferential condensation observed on flat surfaces, hybrid wettability rather than texture plays a major role; the role of bump topography on local preferential condensation has been unexplored and still not clearly understood. In addition, given that not only facilitating the droplet growth but also transporting the condensed droplets toward the desired reservoir is essential to make fresh sites for renucleation and regrowth of the droplets for enhancing condensation efficiency, the current hybrid-wettability- based design is not efficient to transport the condensates due to the high contact angle hysteresis created by highly wettable pinning points. Here we show that beetle-inspired bump topography leads faster localized condensation and transport of water. Employing simple analytic and more complicated numerical calculations, we reveal the detailed role of topography and predict the focused diffusion flux based on the distortion of concentration gradient around convex surface topography. We experimentally demonstrate the systematic understanding on the unseen effect of topographical parameters on faster droplet growth dynamics on various bump geometries. Further rational design of asymmetric topography and synergetic combination with slippery coating simultaneously enable both faster droplet growth and transport for applications including efficient water condensation.« less
do Nascimento, Rodney Marcelo; de Carvalho, Vanessa Rafaela; Govone, José Silvio; Hernandes, Antônio Carlos; da Cruz, Nilson Cristino
2017-02-01
This manuscript reports an evaluation of the effects of simple chemical-heat treatments on the deposition of different ceramic coatings, i.e., TiO 2 , CaTiO 3 and CaP, on commercially pure titanium (cp-Ti) and Ti6Al4V and the influence of the coatings on cells interaction with the surfaces. The ceramic materials were prepared by the sol-gel method and the coating adhesion was analyzed by pull-off bending tests. The wettability of positively or negatively charged surfaces was characterized by contact angle measurements, which also enabled the calculation of the surface free energy through the polar-apolar liquids approach. Both acid and alkaline treatments activated the cp-Ti, whereas Ti6Al4V was only activated by the alkaline treatment. Such treatment led to increased hydrophilicity with inhibition of the fibroblastic response on Ti6Al4V. On the other hand, osteoblastic cells adhered to and proliferated on the positively and negatively charged surfaces. The maximum adhesion strength (~ 3400 N) was obtained with a negative Ti6Al4V-CaTiO 3 -CaP multilayer surface.
Zanini, Michele; Marschelke, Claudia; Anachkov, Svetoslav E.; Marini, Emanuele; Synytska, Alla; Isa, Lucio
2017-01-01
Surface heterogeneities, including roughness, significantly affect the adsorption, motion and interactions of particles at fluid interfaces. However, a systematic experimental study, linking surface roughness to particle wettability at a microscopic level, is currently missing. Here we synthesize a library of all-silica microparticles with uniform surface chemistry, but tuneable surface roughness and study their spontaneous adsorption at oil–water interfaces. We demonstrate that surface roughness strongly pins the particles' contact lines and arrests their adsorption in long-lived metastable positions, and we directly measure the roughness-induced interface deformations around isolated particles. Pinning imparts tremendous contact angle hysteresis, which can practically invert the particle wettability for sufficient roughness, irrespective of their chemical nature. As a unique consequence, the same rough particles stabilize both water-in-oil and oil-in-water emulsions depending on the phase they are initially dispersed in. These results both shed light on fundamental phenomena concerning particle adsorption at fluid interfaces and indicate future design rules for particle-based emulsifiers. PMID:28589932
NASA Astrophysics Data System (ADS)
Zanini, Michele; Marschelke, Claudia; Anachkov, Svetoslav E.; Marini, Emanuele; Synytska, Alla; Isa, Lucio
2017-06-01
Surface heterogeneities, including roughness, significantly affect the adsorption, motion and interactions of particles at fluid interfaces. However, a systematic experimental study, linking surface roughness to particle wettability at a microscopic level, is currently missing. Here we synthesize a library of all-silica microparticles with uniform surface chemistry, but tuneable surface roughness and study their spontaneous adsorption at oil-water interfaces. We demonstrate that surface roughness strongly pins the particles' contact lines and arrests their adsorption in long-lived metastable positions, and we directly measure the roughness-induced interface deformations around isolated particles. Pinning imparts tremendous contact angle hysteresis, which can practically invert the particle wettability for sufficient roughness, irrespective of their chemical nature. As a unique consequence, the same rough particles stabilize both water-in-oil and oil-in-water emulsions depending on the phase they are initially dispersed in. These results both shed light on fundamental phenomena concerning particle adsorption at fluid interfaces and indicate future design rules for particle-based emulsifiers.
Spatially selective modification of PLLA surface: From hydrophobic to hydrophilic or to repellent
NASA Astrophysics Data System (ADS)
Bastekova, Kristina; Guselnikova, Olga; Postnikov, Pavel; Elashnikov, Roman; Kunes, Martin; Kolska, Zdenka; Švorčík, Vaclav; Lyutakov, Oleksiy
2017-03-01
A universal approach to controlled surface modification of polylactic acid (PLLA) films using diazonium chemistry was proposed. The multistep procedure includes surface activation of PLLA by argon plasma treatment and chemical activation of arenediazonium tosylates by NaBH4. The surface of PLLA film was grafted with different functional organic groups (OFGs), changing the PLLA surface properties (wettability, morphology, zeta potential, chemical composition, and mechanical response). Three approaches of OFG grafting were examined: (i) plasma treatment following by PLLA immersion into diazonium salt aqueous solution; (ii) grafting of PLLA surface through the reaction with chemically created aryl radicals; (iii) mutual combination of both methods The best results were achieved in the last case, where the previous plasma treatment was combined with further reaction of PLLA surface with generated aryl radicals. Using this method PLLA surface was successfully grafted with amino, carboxyl, aliphatic and fluorinated OFGs. Further investigation of surface properties from potential biological and medical points of view was performed using zeta potential, biodegradation and biofouling tests. It was shown that proposed technique allows preparation of biorepellent or bioabsorptive surfaces, tuning of PLLA biodegradation rate and nanomechanical properties, as well as the introduction of inverse properties (such as hydrophilic and hydrophobic) on both sides of PLLA films.
Chitosan/Mimosa tenuiflora films as potential cellular patch for skin regeneration.
Valencia-Gómez, Laura Elizabeth; Martel-Estrada, Santos Adriana; Vargas-Requena, Claudia; Rivera-Armenta, José Luis; Alba-Baena, Noe; Rodríguez-González, Claudia; Olivas-Armendáriz, Imelda
2016-12-01
Bio-composites films were prepared by casting and drying of aqueous solutions containing different weight ratios of chitosan and bark of Mimosa tenuiflora. The physico-chemical and functional properties of the films were characterized by scanning electron microscopy, dynamical mechanical analysis, wettability, cytotoxicity and in vitro antibacterial activities. The morphology studies confirmed that the presence of Mimosa tenuiflora change the surface of films. Moreover, the incorporation of Mimosa tenuiflora improved the thermal stability of the films, as it was indicated by the changes in the glass temperatures obtained. Water-uptake ability changed in relation to polymeric composition of film. This property increased by the addition of Mimosa tenuiflora to the film. Improved antibacterial properties were measured against Escherichia Coli and Micrococcus lysodeikticus or luteus. Finally, cytotoxicity was studied by MTT assay and the films were non-toxic. These preliminary results provide a cheap way to prepare chitosan/Mimosa tenuiflora films for wound healing and skin regeneration. Copyright © 2016 Elsevier B.V. All rights reserved.
Influence of Chemical Precleaning on the Plasma Treatment Efficiency of Aluminum by RF Plasma Pencil
NASA Astrophysics Data System (ADS)
Vadym, Prysiazhnyi; Pavel, Slavicek; Eliska, Mikmekova; Milos, Klima
2016-04-01
This paper is aimed to show the influence of initial chemical pretreatment prior to subsequent plasma activation of aluminum surfaces. The results of our study showed that the state of the topmost surface layer (i.e. the surface morphology and chemical groups) of plasma modified aluminum significantly depends on the chemical precleaning. Commonly used chemicals (isopropanol, trichlorethane, solution of NaOH in deionized water) were used as precleaning agents. The plasma treatments were done using a radio frequency driven atmospheric pressure plasma pencil developed at Masaryk University, which operates in Ar, Ar/O2 gas mixtures. The effectiveness of the plasma treatment was estimated by the wettability measurements, showing high wettability improvement already after 0.3 s treatment. The effects of surface cleaning (hydrocarbon removal), surface oxidation and activation (generation of OH groups) were estimated using infrared spectroscopy. The changes in the surface morphology were measured using scanning electron microscopy. Optical emission spectroscopy measurements in the near-to-surface region with temperature calculations showed that plasma itself depends on the sample precleaning procedure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Shanju; Liu, Zhan; Bucknall, David G.
2011-01-01
The thermo-responsive behavior of polymer films consisting of novel linear triblock copolymers of poly(n-butyl methacrylate)-poly(methyl methacrylate)-poly(2-fluoroethyl methacrylate) (PnBuMA-PMMA-P2FEMA) are reported using differential scanning calorimetry (DSC), atomic forcing microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and contacting angle (CA) measurements. The surface morphology, wettability and chemical structure of thin films of these triblock copolymers on silicon wafers as a function of temperature have been investigated. It has been shown that the wettability of the films is thermally switchable. Detailed structural analysis shows that thermo-responsive surface composition changes are produced. The underlying mechanism of the thermoresponsive behavior is discussed.
Motion of a Drop on a Solid Surface Due to a Wettability Gradient
NASA Technical Reports Server (NTRS)
Subramanian, R.; Moumen, Nadjoua; McLaughlin, John B.
2005-01-01
The hydrodynamic force experienced by a spherical-cap drop moving on a solid surface is obtained from two approximate analytical solutions and used to predict the quasi-steady speed of the drop in a wettability gradient. One solution is based on approximation of the shape of the drop as a collection of wedges, and the other is based on lubrication theory. Also, asymptotic results from both approximations for small contact angles, as well as an asymptotic result from lubrication theory that is good when the length scale of the drop is large compared with the slip length, are given. The results for the hydrodynamic force also can be used to predict the quasi-steady speed of a drop sliding down an incline.
NASA Astrophysics Data System (ADS)
Shen, Ming-xue; Zhang, Zhao-xiang; Peng, Xu-dong; Lin, Xiu-zhou
2017-09-01
For the purpose of prolonging the service life for rubber sealing elements, the frictional behavior of acrylonitrile-butadiene rubber (NBR) surface by dielectric barrier discharge plasma treatments was investigated in this paper. Surface microstructure and chemical composition were measured by atomic force microscopy, field-emission scanning electron microscopy, and X-ray photoelectron spectroscopy, respectively. Water contact angles of the modified rubber surface were also measured to evaluate the correlation between surface wettability and tribological properties. The results show that plasma treatments can improve the properties of the NBR against friction and wear effectively, the surface microstructure and roughness of plasma-modified NBR surface had an important influence on the surface tribological behavior, and the wear depth first decreased and then increased along with the change of plasma treatment time. It was found that the wettability of the modified surface was gradually improved, which was mainly due to the change of the chemical composition after the treatment. This study suggests that the plasma treatment could effectively improve the tribological properties of the NBR surface, and also provides information for developing wear-resistant NBR for industrial applications.
Poetsch, Ansgar; Schlüsener, Daniela; Florizone, Christine; Eltis, Lindsay; Menzel, Christoph; Rögner, Matthias; Steinert, Kerstin; Roth, Udo
2008-01-01
Integral membrane proteins are notoriously difficult to identify and analyze by mass spectrometry because of their low abundance and limited number of trypsin cleavage sites. Our strategy to address this problem is based on a novel technology for MALDI-MS peptide sample preparation that increases the success rate of membrane protein identification by increasing the sensitivity of the MALDI-TOF system. For this, we used sample plates with predeposited matrix spots of CHCA crystals prepared by vacuum sublimation onto an extremely low wettable (ultraphobic) surface. In experiments using standard peptides, an up to 10-fold gain of sensitivity was found for on-chip preparations compared with classical dried-droplet preparations on a steel target. In order to assess the performance of the chips with membrane proteins, three model proteins (bacteriorhodopsin, subunit IV(a) of ATP synthase, and the cp47 subunit from photosystem II) were analyzed. To mimic realistic analysis conditions, purified proteins were separated by SDS-PAGE and digested with trypsin. The digest MALDI samples were prepared either by dried-droplet technique on steel plates using CHCA as matrix, or applied directly onto the matrix spots of the chip surface. Significantly higher signal-to-noise ratios were observed for all of the spectra resulting from on-chip preparations of different peptides. In a second series of experiments, the membrane proteome of Rhodococcus jostii RHA1 was investigated by AIEC/SDS-PAGE in combination with MALDI-TOF MS/MS. As in the first experiments, Coomassie-stained SDS-PAGE bands were digested and the two different preparation methods were compared. For preparations on the Mass·Spec·Turbo Chip, 43 of 60 proteins were identified, whereas only 30 proteins were reliably identified after classical sample preparation. Comparison of the obtained Mascot scores, which reflect the confidence level of the protein identifications, revealed that for 70% of the identified proteins, higher scores were obtained by on-chip sample preparation. Typically, this gain was a consequence of higher sequence coverage due to increased sensitivity. PMID:19137096
The influence of interfacial slip on two-phase flow in rough pores
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kucala, Alec; Martinez, Mario J.; Wang, Yifeng
The migration and trapping of supercritical CO 2 (scCO 2) in geologic carbon storage is strongly dependent on the geometry and wettability of the pore network in the reservoir rock. During displacement, resident fluids may become trapped in the pits of a rough pore surface forming an immiscible two-phase fluid interface with the invading fluid, allowing apparent slip flow at this interface. We present a two-phase fluid dynamics model, including interfacial tension, to characterize the impact of mineral surface roughness on this slip flow. We show that the slip flow can be cast in more familiar terms as a contact-anglemore » (wettability)-dependent effective permeability to the invading fluid, a nondimensional measurement which relates the interfacial slip to the pore geometry. The analysis shows the surface roughness-induced slip flow can effectively increase or decrease this effective permeability, depending on the wettability and roughness of the mineral surfaces. Configurations of the pore geometry where interfacial slip has a tangible influence on permeability have been identified. The results suggest that for large roughness features, permeability to CO 2 may be enhanced by approximately 30% during drainage, while the permeability to brine during reimbibition may be enhanced or diminished by 60%, depending on the contact angle with the mineral surfaces and degrees of roughness. For smaller roughness features, the changes in permeability through interfacial slip are small. As a result, a much larger range of effective permeabilities are suggested for general fluid pairs and contact angles, including occlusion of the pore by the trapped phase.« less
The influence of interfacial slip on two-phase flow in rough pores
Kucala, Alec; Martinez, Mario J.; Wang, Yifeng; ...
2017-08-01
The migration and trapping of supercritical CO 2 (scCO 2) in geologic carbon storage is strongly dependent on the geometry and wettability of the pore network in the reservoir rock. During displacement, resident fluids may become trapped in the pits of a rough pore surface forming an immiscible two-phase fluid interface with the invading fluid, allowing apparent slip flow at this interface. We present a two-phase fluid dynamics model, including interfacial tension, to characterize the impact of mineral surface roughness on this slip flow. We show that the slip flow can be cast in more familiar terms as a contact-anglemore » (wettability)-dependent effective permeability to the invading fluid, a nondimensional measurement which relates the interfacial slip to the pore geometry. The analysis shows the surface roughness-induced slip flow can effectively increase or decrease this effective permeability, depending on the wettability and roughness of the mineral surfaces. Configurations of the pore geometry where interfacial slip has a tangible influence on permeability have been identified. The results suggest that for large roughness features, permeability to CO 2 may be enhanced by approximately 30% during drainage, while the permeability to brine during reimbibition may be enhanced or diminished by 60%, depending on the contact angle with the mineral surfaces and degrees of roughness. For smaller roughness features, the changes in permeability through interfacial slip are small. As a result, a much larger range of effective permeabilities are suggested for general fluid pairs and contact angles, including occlusion of the pore by the trapped phase.« less
The influence of interfacial slip on two-phase flow in rough pores
NASA Astrophysics Data System (ADS)
Kucala, Alec; Martinez, Mario J.; Wang, Yifeng; Noble, David R.
2017-08-01
The migration and trapping of supercritical CO2 (scCO2) in geologic carbon storage is strongly dependent on the geometry and wettability of the pore network in the reservoir rock. During displacement, resident fluids may become trapped in the pits of a rough pore surface forming an immiscible two-phase fluid interface with the invading fluid, allowing apparent slip flow at this interface. We present a two-phase fluid dynamics model, including interfacial tension, to characterize the impact of mineral surface roughness on this slip flow. We show that the slip flow can be cast in more familiar terms as a contact-angle (wettability)-dependent effective permeability to the invading fluid, a nondimensional measurement which relates the interfacial slip to the pore geometry. The analysis shows the surface roughness-induced slip flow can effectively increase or decrease this effective permeability, depending on the wettability and roughness of the mineral surfaces. Configurations of the pore geometry where interfacial slip has a tangible influence on permeability have been identified. The results suggest that for large roughness features, permeability to CO2 may be enhanced by approximately 30% during drainage, while the permeability to brine during reimbibition may be enhanced or diminished by 60%, depending on the contact angle with the mineral surfaces and degrees of roughness. For smaller roughness features, the changes in permeability through interfacial slip are small. A much larger range of effective permeabilities are suggested for general fluid pairs and contact angles, including occlusion of the pore by the trapped phase.
Rojewska, M; Olejniczak-Rabinek, M; Bartkowiak, A; Snela, A; Prochaska, K; Lulek, J
2017-08-01
The surface properties play a particularly important role in the mucoadhesive drug delivery systems. In these formulations, the adsorption of polymer matrix to mucous membrane is limited by the wetting and swelling process of the polymer structure. Hence, the performance of mucoadhesive drug delivery systems made of polymeric materials depends on multiple factors, such as contact angle, surface free energy and water absorption rate. The aim of our study was to analyze the effect of model saliva and vaginal fluids on the wetting properties of selected mucoadhesive (Carbopol 974P NF, Noveon AA-1, HEC) and film-forming (Kollidon VA 64) polymers as well as their blends at the weight ratio 1:1 and 1:1:1, prepared in the form of discs. Surface properties of the discs were determined by measurements of advancing contact angle on the surface of polymers and their blends using the sessile drop method. The surface energy was determined by the OWRK method. Additionally, the mass swelling factor and hydration percentage of examined polymers and their blends in simulated biological fluids were evaluated. Copyright © 2017 Elsevier B.V. All rights reserved.
Pinning effects from substrate and AFM tip surfaces on interfacial nanobubbles
NASA Astrophysics Data System (ADS)
Teshima, Hideaki; Takahashi, Koji; Takata, Yasuyuki; Nishiyama, Takashi
2017-11-01
Measurement accuracy of atomic force microscopy (AFM) is vital to understand the mechanism of interfacial nanobubbles. In this study, we report the influence of pinning derived from both substrate and AFM tip surfaces on the measured shape of interfacial nanobubbles in peak force tapping mode. First, we pushed the nanobubbles using the AFM tip with high peak force setpoint. As a result, the deformed nanobubbles kept their flat shape for several tens of minutes. We quantitatively discuss the pinning force from substrate surface, which retains the flat shape enhancing the stability of nanobubbles. Next, we prepared three AFM tips with different wettability and measured the nanobubbles with an identical setpoint. By comparing the force curves obtained during the measurements, it seems that the (middle-)hydrophobic tips penetrated the liquid/gas interface and received repulsive force resulting from positive meniscus formed by pinning at the tip surface. In contrast, hydrophilic tip didn't penetrate the interface and received the force from the deformation of the interface of the nanobubbles. In addition, the measurements using the (middle-)hydrophobic tips led to the underestimation of the nanobubbles profile corresponding to the pinning position at the tip surfaces.
Surface and Electrochemical Properties of Polymer Brush-Based Redox Poly(Ionic Liquid).
Bui-Thi-Tuyet, Van; Trippé-Allard, Gaëlle; Ghilane, Jalal; Randriamahazaka, Hyacinthe
2016-10-26
Redox-active poly(ionic liquid) poly(3-(2-methacryloyloxy ethyl)-1-(N-(ferrocenylmethyl) imidazolium bis(trifluoromethylsulfonyl)imide deposited onto electrode surfaces has been prepared using surface-initiated atom transfer radical polymerization SI-ATRP. The process starts by electrochemical immobilization of initiator layer, and then methacrylate monomer carrying ferrocene and imidazolium units is polymerized in ionic liquid media via SI-ATRP process. The surfaces analyses of the polymer exhibit a well-defined polymer brushlike structure and confirm the presence of ferrocene and ionic moieties within the film. Furthermore, the electrochemical investigations of poly(redox-active ionic liquid) in different media demonstrate that the electron transfer is not restricted by the rate of counterion migration into/out of the polymer. The attractive electrochemical performance of these materials is further demonstrated by performing electrochemical measurement, of poly(ferrocene ionic liquid), in solvent-free electrolyte. The facile synthesis of such highly ordered electroactive materials based ionic liquid could be useful for the fabrication of nanostructured electrode suitable for performing electrochemistry in solvent free electrolyte. We also demonstrate possible applications of the poly(FcIL) as electrochemically reversible surface wettability system and as electrochemical sensor for the catalytic activity toward the oxidation of tyrosine.
Improving the durability of a drag-reducing nanocoating by enhancing its mechanical stability.
Cheng, Mengjiao; Zhang, Songsong; Dong, Hongyu; Han, Shihui; Wei, Hao; Shi, Feng
2015-02-25
The durability of superhydrophobic surface is a major problem to restrict industrial application of superhydrophobic materials from laboratory research, which can be attributed to a more general issue of mechanical stability for superhydrophobic coatings. Therefore, in order to handle this issue, we have fabricated a mechanically stable drag-reducing coating composed of elastic polydimethylsiloxane (PDMS) and hydrophobic copper particles on model ships, which can resist mechanical abrasion and has displayed a durable drag-reducing effect. In comparison with normal Au superhydrophobic coatings, the as-prepared PDMS/copper coatings showed durable drag reduction performance with a similar drag-reducing rate before (26%) and after (24%) mechanical abrasion. The mechanism for the enhanced mechanical stability and maintained drag reduction of the superhydrophobic surfaces was investigated through characterizations of surface morphology, surface wettability, and water adhesive force evaluation before and after abrasion. This is the first demonstration to realize the application of durable drag reduction by improving the mechanical stability of superhydrophobic coatings. We do believe that superhydrophobic surfaces with good resistance to mechanical abrasion or scratching may draw wide attention and gain significant applications with durable drag-reducing properties.
Surface modification of several dental substrates by non-thermal, atmospheric plasma brush.
Chen, Mingsheng; Zhang, Ying; Sky Driver, M; Caruso, Anthony N; Yu, Qingsong; Wang, Yong
2013-08-01
The purpose of this study was to reveal the effectiveness of non-thermal atmospheric plasma brush in surface wettability and modification of four dental substrates. Specimens of dental substrates including dentin, enamel, and two composites Filtek Z250, Filtek LS Silorane were prepared (∼2mm thick, ∼10mm diameter). The prepared surfaces were treated for 5-45s with a non-thermal atmospheric plasma brush working at temperatures from 36 to 38°C. The plasma-treatment effects on these surfaces were studied with contact-angle measurement, X-ray photoemission spectroscopy (XPS) and scanning electron microscopy (SEM). The non-thermal atmospheric argon plasma brush was very efficient in improving the surface hydrophilicity of four substrates studied. The results indicated that water contact angle values decreased considerably after only 5s plasma treatment of all these substrates. After 30s treatment, the values were further reduced to <5°, which was close to a value for super hydrophilic surfaces. XPS analysis indicated that the percent of elements associated with mineral in dentin/enamel or fillers in the composites increased. In addition, the percent of carbon (%C) decreased while %O increased for all four substrates. As a result, the O/C ratio increased dramatically, suggesting that new oxygen-containing polar moieties were formed on the surfaces after plasma treatment. SEM surface images indicated that no significant morphology change was induced on these dental substrates after exposure to plasmas. Without affecting the bulk properties, a super-hydrophilic surface could be easily achieved by the plasma brush treatment regardless of original hydrophilicity/hydrophobicity of dental substrates tested. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Surface modification of several dental substrates by non-thermal, atmospheric plasma brush
Chen, Mingsheng; Zhang, Ying; Driver, M. Sky; Caruso, Anthony N.; Yu, Qingsong; Wang, Yong
2013-01-01
Objective The purpose of this study was to reveal the effectiveness of non-thermal atmospheric plasma brush in surface wettability and modification of four dental substrates. Methods Specimens of dental substrates including dentin, enamel, and two composites Filtek Z250, Filtek LS Silorane were prepared (~2 mm thick, ~10 mm diameter). The prepared surfaces were treated for 5–45 s with a non-thermal atmospheric plasma brush working at temperatures from 36 to 38 °C. The plasma-treatment effects on these surfaces were studied with contact-angle measurement, X-ray photoemission spectroscopy (XPS) and scanning electron microscopy (SEM). Results The non-thermal atmospheric argon plasma brush was very efficient in improving the surface hydrophilicity of four substrates studied. The results indicated that water contact angle values decreased considerably after only 5 s plasma treatment of all these substrates. After 30 s treatment, the values were further reduced to <5°, which was close to a value for super hydrophilic surfaces. XPS analysis indicated that the percent of elements associated with mineral in dentin/enamel or fillers in the composites increased. In addition, the percent of carbon (%C) decreased while %O increased for all four substrates. As a result, the O/C ratio increased dramatically, suggesting that new oxygen-containing polar moieties were formed on the surfaces after plasma treatment. SEM surface images indicated that no significant morphology change was induced on these dental substrates after exposure to plasmas. Significance Without affecting the bulk properties, a super-hydrophilic surface could be easily achieved by the plasma brush treatment regardless of original hydrophilicity/hydrophobicity of dental substrates tested. PMID:23755823
Surface modification of Ni–Ti alloys for stent application after magnetoelectropolishing
Musaramthota, Vishal; Munroe, Norman; Datye, Amit; Dua, Rupak; Haider, Waseem; McGoron, Anthony; Rokicki, Ryszard
2015-01-01
The constant demand for new implant materials and the multidisciplinary design approaches for stent applications have expanded vastly over the past decade. The biocompatibility of these implant materials is a function of their surface characteristics such as morphology, surface chemistry, roughness, surface charge and wettability. These surface characteristics can directly influence the material's corrosion resistance and biological processes such as endothelialization. Surface morphology affects the thermodynamic stability of passivating oxides, which renders corrosion resistance to passivating alloys. Magnetoelectropolishing (MEP) is known to alter the morphology and composition of surface films, which assist in improving corrosion resistance of Nitinol alloys. This work aims at analyzing the surface characteristics of MEP Nitinol alloys by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The wettability of the alloys was determined by contact angle measurements and the mechanical properties were assessed by Nanoindentation. Improved mechanical properties were observed with the addition of alloying elements. Cyclic potentiodynamic polarization tests were performed to determine the corrosion susceptibility. Further, the alloys were tested for their cytotoxicity and cellular growth with endothelial cells. Improved corrosion resistance and cellular viability were observed with MEP surface treated alloys. PMID:25746243
NASA Astrophysics Data System (ADS)
Chantada, A.; Penide, J.; Riveiro, A.; del Val, J.; Quintero, F.; Meixus, M.; Soto, R.; Lusquiños, F.; Pou, J.
2017-10-01
Tailoring the wetting characteristics of materials has gained much interest in applications related to surface cleaning in both industry and home. Zimbabwe black granite is a middle-to-fine-grained natural stone commonly used as countertops in kitchens and bathrooms. In this study, the laser texturing of Zimbabwe black granite surfaces is investigated with the aim to enhance its hydrophobic character, thus reducing the attachment of contaminants on the surface. Two laser sources (λ = 1064 and 532 nm) were used for this purpose. The treatment is based on the irradiation of the stone by a laser focused on the surface of the targeting sample. The influence of different laser processing parameters on the surface characteristics of granite (wettability, roughness, and chemistry) was statistically assessed. Most suitable laser processing parameters required to obtain the highest hydrophobicity degree were identified. It has been possible to identify the 532 nm laser wavelength as the most effective one to increase the hydrophobic degree of Zimbabwe black granite surface. The phenomenon governing wettability changes was found to be the surface roughness patterns, given the unaltered chemical surface composition after laser processing.
NASA Astrophysics Data System (ADS)
Huerta-Murillo, D.; Aguilar-Morales, A. I.; Alamri, S.; Cardoso, J. T.; Jagdheesh, R.; Lasagni, A. F.; Ocaña, J. L.
2017-11-01
In this work, hierarchical surface patterns fabricated on Ti-6Al-4V alloy combining two laser micro-machining techniques are presented. The used technologies are based on nanosecond Direct Laser Writing and picosecond Direct Laser Interference Patterning. Squared shape micro-cells with different hatch distances were produced by Direct Laser Writing with depths values in the micro-scale, forming a well-defined closed packet. Subsequently, cross-like periodic patterns were fabricated by means of Direct Laser Interference Patterning using a two-beam configuration, generating a dual-scale periodic surface structure in both micro- and nano-scale due to the formation of Laser-Induced Periodic Surface Structure after the picosecond process. As a result a triple hierarchical periodic surface structure was generated. The surface morphology of the irradiated area was characterized with scanning electron microscopy and confocal microscopy. Additionally, static contact angle measurements were made to analyze the wettability behavior of the structures, showing a hydrophobic behavior for the hierarchical structures.
Zahran, R.; Rosales Leal, J. I.; Rodríguez Valverde, M. A.; Cabrerizo Vílchez, M. A.
2016-01-01
Titanium implant surface etching has proven an effective method to enhance cell attachment. Despite the frequent use of hydrofluoric (HF) acid, many questions remain unresolved, including the optimal etching time and its effect on surface and biological properties. The objective of this study was to investigate the effect of HF acid etching time on Ti topography, surface chemistry, wettability, and cell adhesion. These data are useful to design improved acid treatment and obtain an improved cell response. The surface topography, chemistry, dynamic wetting, and cell adhesiveness of polished Ti surfaces were evaluated after treatment with HF acid solution for 0, 2; 3, 5, 7, or 10 min, revealing a time-dependent effect of HF acid on their topography, chemistry, and wetting. Roughness and wetting increased with longer etching time except at 10 min, when roughness increased but wetness decreased. Skewness became negative after etching and kurtosis tended to 3 with longer etching time. Highest cell adhesion was achieved after 5–7 min of etching time. Wetting and cell adhesion were reduced on the highly rough surfaces obtained after 10-min etching time. PMID:27824875
Effect of heat treatment on surface hydrophilicity-retaining ability of titanium dioxide nanotubes
NASA Astrophysics Data System (ADS)
Sun, Yu; Sun, Shupei; Liao, Xiaoming; Wen, Jiang; Yin, Guangfu; Pu, Ximing; Yao, Yadong; Huang, Zhongbing
2018-05-01
The aim of this study is to investigate the effect of different annealing temperature and atmosphere on the surface wettability retaining properties of titania nanotubes (TNs) fabricated by anodization. The TNs morphology, crystal phase composition and surface elemental composition and water contact angle (WCA) were investigated by scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy and contact angle instrument, respectively. After the samples annealed at 200 °C, 450 °C, 850 °C have been stored in air for 28 days, the WCAs increase to 31.7°, 21.1° and 110.5°, respectively. The results indicate that crystal phase composition of TNs plays an important role in surface wettability. Compared with the WCA (21.1°) of the samples annealed in air after 28 days, the WCA of samples annealed in oxygen-deficient atmosphere is lower, suggesting the contribution of oxygen vacancy in the enhanced hydrophilicity-retaining ability. Our study demonstrates that the surface hydrophilicity-retaining ability of TNs is related to the ordered nanotubular structure, crystal structure, the amount of surface hydroxyl group and oxygen vacancy defects.
Bauer, Ulrike; Scharmann, Mathias; Skepper, Jeremy; Federle, Walter
2013-02-22
Trichomes are a common feature of plants and perform important and diverse functions. Here, we show that the inward-pointing hairs on the inner wall of insect-trapping Heliamphora nutans pitchers are highly wettable, causing water droplets to spread rapidly across the surface. Wetting strongly enhanced the slipperiness and increased the capture rate for ants from 29 to 88 per cent. Force measurements and tarsal ablation experiments revealed that wetting affected the insects' adhesive pads but not the claws, similar to the 'aquaplaning' mechanism of (unrelated) Asian Nepenthes pitcher plants. The inward-pointing trichomes provided much higher traction when insects were pulled outwards. The wetness-dependent capture mechanisms of H. nutans and Nepenthes pitchers present a striking case of functional convergence, whereas the use of wettable trichomes constitutes a previously unknown mechanism to make plant surfaces slippery.
Turning bubbles on and off during boiling using charged surfactants
Cho, H. Jeremy; Mizerak, Jordan P.; Wang, Evelyn N.
2015-01-01
Boiling—a process that has powered industries since the steam age—is governed by bubble formation. State-of-the-art boiling surfaces often increase bubble nucleation via roughness and/or wettability modification to increase performance. However, without active in situ control of bubbles, temperature or steam generation cannot be adjusted for a given heat input. Here we report the ability to turn bubbles ‘on and off' independent of heat input during boiling both temporally and spatially via molecular manipulation of the boiling surface. As a result, we can rapidly and reversibly alter heat transfer performance up to an order of magnitude. Our experiments show that this active control is achieved by electrostatically adsorbing and desorbing charged surfactants to alter the wettability of the surface, thereby affecting nucleation. This approach can improve performance and flexibility in existing boiling technologies as well as enable emerging or unprecedented energy applications. PMID:26486275
NASA Astrophysics Data System (ADS)
Zhong, Yuxing; Hu, Jin; Zhang, Yufen; Tang, Shawei
2018-01-01
A calcium myristic superhydrophobicity coating with a hierarchical micro-nanostructure was fabricated on AZ31 magnesium alloy by one-step electroposition. The effects of deposition time on the coating structure, such as morphology, thickness, wettability and phase composition of the coating were studied. The corrosion behavior of the coated samples in 3.5% NaCl solution was also investigated and the corrosion mechanism was discussed. It was found that the deposition time has a visible effect on the morphology, thickness and wettability, which distinctly affects the corrosion resistance of coatings. The corrosion resistance of the coating gradually decreases with the increase in the immersion time due to the disappearance of the air layer which exists on the coating surface. The superhydrophobic surfaces present the temporal limitations to the corrosion resistance of AZ31 magnesium alloy.
Bauer, Ulrike; Scharmann, Mathias; Skepper, Jeremy; Federle, Walter
2013-01-01
Trichomes are a common feature of plants and perform important and diverse functions. Here, we show that the inward-pointing hairs on the inner wall of insect-trapping Heliamphora nutans pitchers are highly wettable, causing water droplets to spread rapidly across the surface. Wetting strongly enhanced the slipperiness and increased the capture rate for ants from 29 to 88 per cent. Force measurements and tarsal ablation experiments revealed that wetting affected the insects' adhesive pads but not the claws, similar to the ‘aquaplaning’ mechanism of (unrelated) Asian Nepenthes pitcher plants. The inward-pointing trichomes provided much higher traction when insects were pulled outwards. The wetness-dependent capture mechanisms of H. nutans and Nepenthes pitchers present a striking case of functional convergence, whereas the use of wettable trichomes constitutes a previously unknown mechanism to make plant surfaces slippery. PMID:23256197
Synthesis and characterization of polymer layers for control of fluid transport
NASA Astrophysics Data System (ADS)
Vatansever, Fehime
The level of wetting of fiber surface with liquids is an important characteristic of fibrous materials. It is related to fiber surface energy and the structure of the material. Surface energy can be changed by surface modification via the grafting methodologies that have been reported for introducing new and stable functionality to fibrous substrates without changing bulk properties. Present work is dedicated to synthesis and characterization of macromolecular layers grafted to fiber surface in order to achieve directional liquid transport for the modified fabric. Modification technique used here is based on formation of stable polymer layer on fabric surface using "grafting to" technique. Specifically, modification of fabric with wettability gradient for facilitated one way-liquid transport, and pointed modification of yarn-based channels on textile microfluidic device for directional liquid transport are reported here. First, fabric was activated with alkali (NaOH) solution. Second, poly (glycidyl methacrylate) (PGMA) was deposited on fabric as an anchoring layer. Finally, polymers of interest were grafted to surface through the epoxy functionality of PGMA. Effect of polymer grafting on the wicking property of the fabric has been evaluated by vertical wicking technique at the each step of surface modification. The results shows that wicking performance of fabric can be altered by grafting of a thin nanoscale polymeric film. For the facilitated liquid transport, the gradient polymer coating was created using "grafting to" technique and its dependence on the grafting temperature. Wettability gradient from hydrophilic to hydrophobic (change in water contact angle from 0 to 140 degrees on fabric) was achieved by grafting of polystyrene (PS) and polyacrylic acid (PAA) sequentially with concentration gradient. This study proposes that fabric with wettability gradient property can be used to transfer sweat from skin and support moisture management when it is used in a laminated garment structure. For cooling performance evaluation, modified fabrics were tested with surface differential scanning calorimeter, and improved cooling effect was found with the fabric that has wettability gradient. Directional liquid transport can be achieved on amphiphilic fabric. To this end, fabric consisting of PET and PP yarn is fabricated. Activation and PGMA deposition yields an array of highly reactive PET channels that are constrained by hydrophobic PP boundaries. Aqueous solutions are transported in the channels by capillary forces where the direction of the liquid transport is defined by pH-response of the grafted polymers. The system of pH-selective channels in the developed textile based microfluidic chip could find analytical applications and can be used for smart cloth.
Surface characteristics of a novel hydroxyapatite-coated dental implant
Jung, Ui-Won; Hwang, Ji-Wan; Choi, Da-Yae; Hu, Kyung-Seok; Kwon, Mi-Kyung; Choi, Seong-Ho
2012-01-01
Purpose This study evaluated the surface characteristics and bond strength produced using a novel technique for coating hydroxyapatite (HA) onto titanium implants. Methods HA was coated on the titanium implant surface using a super-high-speed (SHS) blasting method with highly purified HA. The coating was performed at a low temperature, unlike conventional HA coating methods. Coating thickness was measured. The novel HA-coated disc was fabricated. X-ray diffraction analysis was performed directly on the disc to evaluate crystallinity. Four novel HA-coated discs and four resorbable blast medium (RBM) discs were prepared. Their surface roughnesses and areas were measured. Five puretitanium, RBM-treated, and novel HA-coated discs were prepared. Contact angle was measured. Two-way analysis of variance and the post-hoc Scheffe's test were used to analyze differences between the groups, with those with a probability of P<0.05 considered to be statistically significant. To evaluate exfoliation of the coating layer, 7 sites on the mandibles from 7 mongrel dogs were used. Other sites were used for another research project. In total, seven novel HA-coated implants were placed 2 months after extraction of premolars according to the manufacturer's instructions. The dogs were sacrificed 8 weeks after implant surgery. Implants were removed using a ratchet driver. The surface of the retrieved implants was evaluated microscopically. Results A uniform HA coating layer was formed on the titanium implants with no deformation of the RBM titanium surface microtexture when an SHS blasting method was used. Conclusions These HA-coated implants exhibited increased roughness, crystallinity, and wettability when compared with RBM implants. PMID:22586524
NASA Astrophysics Data System (ADS)
Hosseini, Somaye; Savaloni, Hadi; Gholipour-Shahraki, Mehran
2017-03-01
The wettability of solid surfaces is important from the aspects of both science and technology. The Mn nano-sculptured thin films were designed and fabricated by oblique angle deposition of Mn on glass substrates at room temperature. The obtained structure was characterized by field emission scanning electron microscopy and atomic force microscopy. The wettability of thin films samples was investigated by water contact angle (WCA). The 4-pointed helical star-shaped structure exhibits hydrophobicity with static WCAs of more than 133° for a 10-mg distilled water droplet. This sample also shows the rose petal effect with the additional property of high adhesion. The Mn nano-sculptured thin films also act as a sticky surface which is confirmed by hysteresis of the contact angle obtained from advancing and receding contact angles measurements. Physicochemical property of liquid phase could effectively change the contact angle, and polar solvents in contact with hydrophobic solid surfaces do not necessarily show high contact angle value.
Impact of surface wettability on S-layer recrystallization: a real-time characterization by QCM-D
Vianna, Ana C; Moreno-Cencerrado, Alberto; Pum, Dietmar; Sleytr, Uwe B
2017-01-01
Quartz crystal microbalance with dissipation monitoring (QCM-D) has been employed to study the assembly and recrystallization kinetics of isolated SbpA bacterial surface proteins onto silicon dioxide substrates of different surface wettability. Surface modification by UV/ozone oxidation or by vapor deposition of 1H,1H,2H,2H-perfluorododecyltrichlorosilane yielded hydrophilic or hydrophobic samples, respectively. Time evolution of frequency and dissipation factors, either individually or combined as the so-called Df plots, showed a much faster formation of crystalline coatings for hydrophobic samples, characterized by a phase-transition peak at around the 70% of the total mass adsorbed. This behavior has been proven to mimic, both in terms of kinetics and film assembly steps, the recrystallization taking place on an underlying secondary cell-wall polymer (SCWP) as found in bacteria. Complementary atomic force microscopy (AFM) experiments corroborate these findings and reveal the impact on the final structure achieved. PMID:28144568
Controlling liquid splash on superhydrophobic surfaces by a vesicle surfactant.
Song, Meirong; Ju, Jie; Luo, Siqi; Han, Yuchun; Dong, Zhichao; Wang, Yilin; Gu, Zhen; Zhang, Lingjuan; Hao, Ruiran; Jiang, Lei
2017-03-01
Deposition of liquid droplets on solid surfaces is of great importance to many fundamental scientific principles and technological applications, such as spraying, coating, and printing. For example, during the process of pesticide spraying, more than 50% of agrochemicals are lost because of the undesired bouncing and splashing behaviors on hydrophobic or superhydrophobic leaves. We show that this kind of splashing on superhydrophobic surfaces can be greatly inhibited by adding a small amount of a vesicular surfactant, Aerosol OT. Rather than reducing splashing by increasing the viscosity via polymer additives, the vesicular surfactant confines the motion of liquid with the help of wettability transition and thus inhibits the splash. Significantly, the vesicular surfactant exhibits a distinguished ability to alter the surface wettability during the first inertial spreading stage of ~2 ms because of its dense aggregates at the air/water interface. A comprehensive model proposed by this idea could help in understanding the complex interfacial interactions at the solid/liquid/air interface.
Controlling liquid splash on superhydrophobic surfaces by a vesicle surfactant
Song, Meirong; Ju, Jie; Luo, Siqi; Han, Yuchun; Dong, Zhichao; Wang, Yilin; Gu, Zhen; Zhang, Lingjuan; Hao, Ruiran; Jiang, Lei
2017-01-01
Deposition of liquid droplets on solid surfaces is of great importance to many fundamental scientific principles and technological applications, such as spraying, coating, and printing. For example, during the process of pesticide spraying, more than 50% of agrochemicals are lost because of the undesired bouncing and splashing behaviors on hydrophobic or superhydrophobic leaves. We show that this kind of splashing on superhydrophobic surfaces can be greatly inhibited by adding a small amount of a vesicular surfactant, Aerosol OT. Rather than reducing splashing by increasing the viscosity via polymer additives, the vesicular surfactant confines the motion of liquid with the help of wettability transition and thus inhibits the splash. Significantly, the vesicular surfactant exhibits a distinguished ability to alter the surface wettability during the first inertial spreading stage of ~2 ms because of its dense aggregates at the air/water interface. A comprehensive model proposed by this idea could help in understanding the complex interfacial interactions at the solid/liquid/air interface. PMID:28275735
McCully, Margaret; Canny, Martin; Baker, Adam; Miller, Celia
2014-01-01
Background and Aims Since the proposal of the cohesion theory there has been a paradox that the lumenal surface of vessels is rich in hydrophobic lignin, while tension in the rising sap requires adhesion to a hydrophilic surface. This study sought to characterize the strength of that adhesion in maize (Zea mays), the wettability of the vessel surface, and to reconcile this with its histochemical and physical nature. Methods Wettability was assessed by emptying the maize root vessels of sap, perfusing them with either water or oil, and examining the adhesion (as revealed by contact angles) of the two liquids to vessel walls by cryo-scanning electron microscopy. The phobicity of the lumenal surface was also assessed histochemically with hydrophilic and hydrophobic probes. Key Results Pit borders in the lumen-facing vessel wall surface were wetted by both sap/water and oil. The attraction for oil was weaker: water could replace oil but not vice versa. Pit apertures repelled oil and were strongly stained by hydrophilic probes. Pit chambers were probably hydrophilic. Oil never entered the pits. When vessels were emptied and cryo-fixed immediately, pit chambers facing away from the vessels were always sap-filled. Pit chambers facing vessel lumens were either sap- or gas-filled. Sap from adjoining tracheary elements entering empty vessels accumulated on the lumenal surface in hemispherical drops, which spread out with decreasing contact angles to fill the lumen. Conclusions The vessel lumenal surface has a dual nature, namely a mosaic of hydrophilic and hydrophobic patches at the micrometre scale, with hydrophilic predominating. A key role is shown, for the first time, of overarching borders of pits in determining the dual nature of the surface. In gas-filled (embolized) vessels they are hydrophobic. When wetted by sap (vessels refilling or full) they are hydrophilic. A hypothesis is proposed to explain the switch between the two states. PMID:24709790
Influence of biochar and terra preta substrates on wettability and erodibility of soils
NASA Astrophysics Data System (ADS)
Smetanova, A.; Dotterweich, M.; Diehl, D.; Ulrich, U.; Fohrer, N.
2012-04-01
Biochar (BC) and terra preta substrates (TPS) have recently been promoted as soil amendments suitable for soil stabilization, soil amelioration and long-term carbon sequestration. BC is a carbon-enriched substance produced by thermal decomposition of organic material. TPS is composed of liquid and solid organic matter, including BC, altered by acid-lactic fermentation. Their effect on wettability, soil erodibility and nutrient discharge through overland flow was studied by laboratory experiments. At water contents between 0 and 100% BC is water repellent, while TPS changes from a wettable into a repellent state. The 5 and 10 vol % mixtures of BC and 10 and 20 vol% mixtures of TPS with sand remain mainly wettable during drying but repellency maxima are shifted to higher water contents with respect to pure sand and are mainly of subcritical nature. The runoff response was dominated by infiltration properties of the substrates rather than their wettability.Only one mixtures (20% TPS) produced more runoff than sandy-loamy soil on a 15% slope at an intensity of 25 mm•h-1. The 10% BC decreased runoff by up to 40%. At higher rainfall intensities (45 and 55 mm•h-1) the 10% TPS7 was up to 35% less erodible than 10% BC. Despite the TPS containing more nutrients, nutrient discharge varied between types of nutrients, slopes, rainfall intensities and mixtures. The application of a 1 cm layer onto the soil surface instead of 10% mixtures is not recommended due to high nutrient concentrations in the runoff and the wettability of pure substrates. The usage of 10% BC in lowland areas with low frequency and low-intensity precipitation and 10% TPS7 in areas with higher rainfall intensities appears to be appropriate and commendable according to current results. However, together with reversibility of repellency, it needs to undergo further examination in the field under different environmental and land use conditions Key words: biochar, terra preta substrate, wettability, erodibility, nutrient discharge
Krishnan, Sitaraman; Wang, Nick; Ober, Christopher K; Finlay, John A; Callow, Maureen E; Callow, James A; Hexemer, Alexander; Sohn, Karen E; Kramer, Edward J; Fischer, Daniel A
2006-05-01
To understand the role of surface wettability in adhesion of cells, the attachment of two different marine algae was studied on hydrophobic and hydrophilic polymer surfaces. Adhesion of cells of the diatom Navicula and sporelings (young plants) of the green macroalga Ulva to an underwater surface is mainly by interactions between the surface and the adhesive exopolymers, which the cells secrete upon settlement and during subsequent colonization and growth. Two types of block copolymers, one with poly(ethylene glycol) side-chains and the other with liquid crystalline, fluorinated side-chains, were used to prepare the hydrophilic and hydrophobic surfaces, respectively. The formation of a liquid crystalline smectic phase in the latter inhibited molecular reorganization at the surface, which is generally an issue when a highly hydrophobic surface is in contact with water. The adhesion strength was assessed by the fraction of settled cells (Navicula) or biomass (Ulva) that detached from the surface in a water flow channel with a wall shear stress of 53 Pa. The two species exhibited opposite adhesion behavior on the same sets of surfaces. While Navicula cells released more easily from hydrophilic surfaces, Ulva sporelings showed higher removal from hydrophobic surfaces. This highlights the importance of differences in cell-surface interactions in determining the strength of adhesion of cells to substrates.
Knapp, Marius; Hoffmann, René; Cimalla, Volker; Ambacher, Oliver
2017-01-01
The two-dimensional and virtually massless character of graphene attracts great interest for radio frequency devices, such as surface and bulk acoustic wave resonators. Due to its good electric conductivity, graphene might be an alternative as a virtually massless electrode by improving resonator performance regarding mass-loading effects. We report on an optimization of the commonly used wet transfer technique for large-area graphene, grown via chemical vapor deposition, onto aluminum nitride (AlN), which is mainly used as an active, piezoelectric material for acoustic devices. Today, graphene wet transfer is well-engineered for silicon dioxide (SiO2). Investigations on AlN substrates reveal highly different surface properties compared to SiO2 regarding wettability, which strongly influences the quality of transferred graphene monolayers. Both physical and chemical effects of a plasma treatment of AlN surfaces change wettability and avoid large-scale cracks in the transferred graphene sheet during desiccation. Spatially-resolved Raman spectroscopy reveals a strong strain and doping dependence on AlN plasma pretreatments correlating with the electrical conductivity of graphene. In our work, we achieved transferred crack-free large-area (40 × 40 mm2) graphene monolayers with sheet resistances down to 350 Ω/sq. These achievements make graphene more powerful as an eco-friendly and cheaper replacement for conventional electrode materials used in radio frequency resonator devices. PMID:28820462
Schroën, Karin; Ferrando, Montse; de Lamo-Castellví, Silvia; Sahin, Sami; Güell, Carme
2016-01-01
In microfluidics and other microstructured devices, wettability changes, as a result of component interactions with the solid wall, can have dramatic effects. In emulsion separation and emulsification applications, the desired behavior can even be completely lost. Wettability changes also occur in one phase systems, but the effect is much more far-reaching when using two-phase systems. For microfluidic emulsification devices, this can be elegantly demonstrated and quantified for EDGE (Edge-base Droplet GEneration) devices that have a specific behavior that allows us to distinguish between surfactant and liquid interactions with the solid surface. Based on these findings, design rules can be defined for emulsification with any micro-structured emulsification device, such as direct and premix membrane emulsification. In general, it can be concluded that mostly surface interactions increase the contact angle toward 90°, either through the surfactant, or the oil that is used. This leads to poor process stability, and very limited pressure ranges at which small droplets can be made in microfluidic systems, and cross-flow membrane emulsification. In a limited number of cases, surface interactions can also lead to lower contact angles, thereby increasing the operational stability. This paper concludes with a guideline that can be used to come to the appropriate combination of membrane construction material (or any micro-structured device), surfactants and liquids, in combination with process conditions. PMID:27187484
Zangi, Sepideh; Hejazi, Iman; Seyfi, Javad; Hejazi, Ehsan; Khonakdar, Hossein Ali; Davachi, Seyed Mohammad
2016-06-01
Development of surface modification procedures which allow tuning the cell adhesion on the surface of biomaterials and devices is of great importance. In this study, the effects of different topographies and wettabilities on cell adhesion behavior of polymeric surfaces are investigated. To this end, an improved phase separation method was proposed to impart various wettabilities (hydrophobic and superhydrophobic) on polypropylene surfaces. Surface morphologies and compositions were characterized by scanning electron microscopy and X-ray photoelectron spectroscopy, respectively. Cell culture was conducted to evaluate the adhesion of 4T1 mouse mammary tumor cells. It was found that processing conditions such as drying temperature is highly influential in cell adhesion behavior due to the formation of an utterly different surface topography. It was concluded that surface topography plays a more significant role in cell adhesion behavior rather than superhydrophobicity since the nano-scale topography highly inhibited the cell adhesion as compared to the micro-scale topography. Such cell repellent behavior could be very useful in many biomedical devices such as those in drug delivery and blood contacting applications as well as biosensors. Copyright © 2016 Elsevier B.V. All rights reserved.
Fabrication of biomimetic superhydrophobic surface using hierarchical polyaniline spheres.
Dong, Xiaofei; Wang, Jixiao; Zhao, Yanchai; Wang, Zhi; Wang, Shichang
2011-06-01
Wettability and water-adhesion behavior are the most important properties of solid surfaces from both fundamental and practical aspects. Here, the biomimetic superhydrophobic surface was fabricated via a simple coating process using polyaniline (PANI) microspheres which is covered with PANI nanowires as functional component, and poly-vinyl butyral (PVB, poly-vinyl alcohol crosslinked with n-butylaldehyde) as PANI microsphere adhering improvement agent to the substrate. The obtained surface displays superhydrophobic behavior without any modification with low-surface-energy materials such as thiol- or fluoroalkylsilane. The effects of coating process and the content of PANI microspheres on superhydropbobic behavior were discussed. Combine contact angle, water-adhesion measurements, scanning electronic microscopy (SEM) observations with selected areas energy dispersion spectrometer (EDS), the hydrophobic mechanism was proposed. The superhydrophobicity is attributed to a hierarchical morphology of PANI microspheres and the nature of the material itself. In addition, induced by van der Waals forces, the created superhydrophobic surface here shows the strong water-adhesion behavior. The surface has the combination performance of Lotus leaf and gecko's pad. The special wettability would be of great significance to the liquid microtransport in microfluid devices. The experimental results show that the ordinary coating process is a facile approach for fabrication of superhydrophobic surfaces.
Tatavarti, Aditya; Kesisoglou, Filippos
2015-11-01
Vitamin E tocopherol polyethylene glycol succinate (TPGS) is a non-ionic surface active agent, known to enhance the bioavailability of lipophilic compounds via wettability, solubility, and in some cases permeability enhancement. MK-0536 is an anti-retroviral drug with poor wettability and solubility and a high dose. Based on pharmacokinetic studies in dogs and humans, use of vitamin E TPGS in oral solid formulations of MK-0536 provides desired PK characteristics. The use of vitamin E TPGS, however, in solid dosage forms is limited because of the processing challenges resulting from its waxy nature and low melting temperature (∼37°C). The current study, for the first time, demonstrates the use of an alternative low pressure extrusion and spheronization approach to enable high loadings of the poorly soluble, poorly compactable drug and relatively high levels of vitamin E TPGS. This approach not only aided in mitigating processing challenges arising from most high energy process steps such as milling, compression, and coating, but also enabled a higher drug load formulation that provided superior bioperformance relative to a conventional high shear wet granulated formulation. An encapsulated dosage form consisting of pellets prepared by extrusion spheronization with 75% (w/w) MK-0536 and 10% (w/w) vitamin E TPGS was developed. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.
Soft contact lens biomaterials from bioinspired phospholipid polymers.
Goda, Tatsuro; Ishihara, Kazuhiko
2006-03-01
Soft contact lens (SCL) biomaterials originated from the discovery of a poly(2-hydroxyethyl methacrylate) (poly[HEMA])-based hydrogel in 1960. Incorporation of hydrophilic polymers into poly(HEMA) hydrogels was performed in the 1970-1980s, which brought an increase in the equilibrium water content, leading to an enhancement of the oxygen permeability. Nowadays, the poly(HEMA)-based hydrogels have been applied in disposable SCL. At the same time, high oxygen-permeable silicone hydrogels were produced, which made it possible to continually wear SCL. Recently, numerous trials for improving the water wettability of silicone hydrogels have been performed. However, little attention has been paid to improving their anti-biofouling properties and biocompatibility. Since biomimetic phospholipid polymers possess excellent anti-biofouling properties and biocompatibility they have the potential to play a valuable role in the surface modification of the silicone hydrogel. The representative phospholipid polymers containing a 2-methacryloyloxyethyl phosphorylcholine (MPC) unit suppressed nonspecific protein adsorption, increased cell compatibility and contributed to blood compatible biomaterials. The MPC polymer coating on the silicone hydrogel improved its water wettability and biocompatibility, while maintaining high oxygen permeability compared with the original silicone hydrogel. Furthermore, the newly prepared phospholipid-type intermolecular crosslinker made it possible to synthesize a 100% phospholipid polymer hydrogel that can enhance the anti-biofouling properties and biocompatibility. In this review, the authors discuss how polymer hydrogels should be designed in order to obtain a biocompatible SCL and future perspectives.
Robust Non-Wetting PTFE Surfaces by Femtosecond Laser Machining
Liang, Fang; Lehr, Jorge; Danielczak, Lisa; Leask, Richard; Kietzig, Anne-Marie
2014-01-01
Nature shows many examples of surfaces with extraordinary wettability, which can often be associated with particular air-trapping surface patterns. Here, robust non-wetting surfaces have been created by femtosecond laser ablation of polytetrafluoroethylene (PTFE). The laser-created surface structure resembles a forest of entangled fibers, which support structural superhydrophobicity even when the surface chemistry is changed by gold coating. SEM analysis showed that the degree of entanglement of hairs and the depth of the forest pattern correlates positively with accumulated laser fluence and can thus be influenced by altering various laser process parameters. The resulting fibrous surfaces exhibit a tremendous decrease in wettability compared to smooth PTFE surfaces; droplets impacting the virgin or gold coated PTFE forest do not wet the surface but bounce off. Exploratory bioadhesion experiments showed that the surfaces are truly air-trapping and do not support cell adhesion. Therewith, the created surfaces successfully mimic biological surfaces such as insect wings with robust anti-wetting behavior and potential for antiadhesive applications. In addition, the fabrication can be carried out in one process step, and our results clearly show the insensitivity of the resulting non-wetting behavior to variations in the process parameters, both of which make it a strong candidate for industrial applications. PMID:25110862
Rabiei, Arash; Sharifinik, Milad; Niazi, Ali; Hashemi, Abdolnabi; Ayatollahi, Shahab
2013-07-01
Microbial enhanced oil recovery (MEOR) refers to the process of using bacterial activities for more oil recovery from oil reservoirs mainly by interfacial tension reduction and wettability alteration mechanisms. Investigating the impact of these two mechanisms on enhanced oil recovery during MEOR process is the main objective of this work. Different analytical methods such as oil spreading and surface activity measurements were utilized to screen the biosurfactant-producing bacteria isolated from the brine of a specific oil reservoir located in the southwest of Iran. The isolates identified by 16S rDNA and biochemical analysis as Enterobacter cloacae (Persian Type Culture Collection (PTCC) 1798) and Enterobacter hormaechei (PTCC 1799) produce 1.53 g/l of biosurfactant. The produced biosurfactant caused substantial surface tension reduction of the growth medium and interfacial tension reduction between oil and brine to 31 and 3.2 mN/m from the original value of 72 and 29 mN/m, respectively. A novel set of core flooding tests, including in situ and ex situ scenarios, was designed to explore the potential of the isolated consortium as an agent for MEOR process. Besides, the individual effects of wettability alteration and IFT reduction on oil recovery efficiency by this process were investigated. The results show that the wettability alteration of the reservoir rock toward neutrally wet condition in the course of the adsorption of bacteria cells and biofilm formation are the dominant mechanisms on the improvement of oil recovery efficiency.
Viscous drop collisions on surfaces of varying wettability
NASA Astrophysics Data System (ADS)
Bolleddula, Daniel; Berchielli, Al; Aliseda, Alberto
2010-11-01
We present an experimental study of increasingly viscous acetone rich and Newtonian equivalent liquid drops colliding on surfaces of varying wettability. This class of liquids applies directly to spray coating processes in pharmaceutical industries. The results from this study will elucidate the physics in a regime where resisting viscous forces and the restoring forces of capillarity are balanced, Oh˜ 1. Early spreading dynamics τ=Ut/D 1 indicate negligible dependence on contact angles while longer times demonstrate deviations from Tanner's law, D˜t^1/10. We will compare our results with recent theory to demonstrate the feasibility of modelling complex rheology spreading characteristics over short and long time scales. Preliminary results indicate an intermediate spreading regime following the inertial phase where the diameter, D˜t^n with 1/7 < n < 1/5.
The Problems of Ensure of Safe Labor Conditions on Workplaces for Adhesive Bonding
NASA Astrophysics Data System (ADS)
Ciecińska, Barbara; Homik, Wojciech
2016-06-01
In the performance a variety of technological operations a human may come into contact with a variety of factors causing deterioration of safety at work. As an example of which is described in article, adhesive bonding operations are requiring use of specific chemicals, which are adhesives. They are produced on the basis of a variety of compounds, often hazardous to human health. Furthermore, adhesive bonding requires a series of preparatory operations such as degreasing or surface preparation with a specific structure and roughness and auxiliary operations such as measurement of the wettability of surface. In this paper are described examples of risks occurring during adhesive bonding, it is a simple way to estimate the risks associated with the performance of operations. The examples of the determination by the producers of chemicals are described which are used in adhesive bonding and fragment of international chemical safety card (ICSC), as a source of information important to the workplace organization and ensuring safety during adhesive bonding.
The formation of periodic micro/nano structured on stainless steel by femtosecond laser irradiation
NASA Astrophysics Data System (ADS)
Yao, Caizhen; Gao, Wei; Ye, Yayun; Jiang, Yong; Xu, Shizhen; Yuan, Xiaodong
2017-07-01
Stainless steel surface was irradiated by linear polarized laser (800 nm, 35 fs, 4 Hz and 0.7 J/cm2) with different pulse numbers. Environmental scanning electron microscope (ESEM/EDS) was used for detailed morphology, microstructure and composition studies. The wettability of irradiated steel surface was tested by Interface Tensiometer JC-2000X and compared with untreated stainless steel. Results showed that micro/nanostripes with different periods were formed. The period increased with the increasing pulse numbers from 450 nm for 90 pulses to 500 nm for 180 pulses. The orientation of those stripes was parallel with the laser beam polarization. Nanoparticles were observed on those periodic structures. EDS indicated that the atomic ratio of Cr increased and the atomic ratios of Fe and Ni decreased after laser irradiation, which may enhance the corrosion resistance due to the Cr-rich layer. The prepared structure exhibited hydrophobic property without further treatment. The formation mechanism of micro/nanoperiodic structures was also explored.
Fabrication of a superhydrophobic and high-glossy copper coating on aluminum substrates
NASA Astrophysics Data System (ADS)
Yang, Hao; He, Yuantao; Wu, Zhongqiang; Miao, Jing; Yang, Fang; Lu, Zhong
2018-03-01
Superhydrophobic metal coatings have been extensively studied in recent years because of their significant potential applications. Unfortunately, most of them lost the original metallic luster due to the micro/nano binary structures. In this paper, a facile method was developed to prepare a superhydrophobic and high-glossy copper coating on aluminum substrates. The bionic lotus leaf surfaces were constructed by electroless plating method and further modified with octadecanethiol. The wettability and gloss could be tuned by the concentration of the precursor. With the increase of CuSO4 concentration, the surface roughness of the coating raised, thus resulting in increase of contact angle and decrease of glossiness. When the CuSO4 concentration was 30 mmol/L, the coating exhibited a sub-micro/nano binary structure, in which 20-30 nm protuberances were grown on 300-500 nm mastoids. Such special morphology endowed the coating with superhydrophobic and high-glossy properties, and the coating also showed ultra-low water adhesion and stable dynamic water repellence.
NASA Astrophysics Data System (ADS)
Gartner, Hunter; Li, Yana; Almenar, Eva
2015-03-01
The objective of this study was to investigate the effect of methyldiphenyl diisocyanate (MDI) concentration (0, 0.2, 1, 2, and 3%) on the wettability and adhesion of blend solutions of poly(lactic acid) (PLA) and chitosan (CS) when coated on PLA film for development of a bio-based multi-layer film suitable for food packaging and other applications. Characterization was carried out by attenuated total reflectance infrared spectrometry (ATR-FTIR), contact angle (θ), mechanical adhesion pull-off testing, and scanning electron microscopy (SEM). The θ of the PLA/CS blend shifted to a lower value (41-35°) with increasing MDI concentration showing that the surface tension was modified between the PLA/CS blend solution and PLA film and better wettability was achieved. The increase in MDI also resulted in an increased breaking strength (228-303 kPa) due to the increased H-bonding resulting from the more urethane groups formed within the PLA/CS blend as shown by ATR-FTIR. The improved adhesion was also shown by the increased number of physical entanglements observed by SEM. It can be concluded that MDI can be used to improve wettability and adhesion between PLA/CS coating and PLA film.
Hulterström, Anna Karin; Berglund, Anders; Ruyter, I Eystein
2008-01-01
The wettability, water sorption and solubility of silicone elastomers used for maxillofacial prostheses were studied. The hypothesis was, that a material that has absorbed water would show an increase in the wettability and thus also the surface free energy of the material. Seven silicone elastomers, both addition- and condensation type polymers, were included. Five specimens of each material were subjected to treatment according to ISO standards 1567:1999 and 10477: 2004 for water sorption and solubility. The volumes of the specimens were measured according to Archimedes principle. The contact angle was measured with a contact angle goniometer at various stages of the sorption/solubility test. Wettability changed over the test period, but not according to theory. The addition type silicones showed little or no sorption and solubility, but two of the condensation type polymers tested had a significant sorption and solubility. This study showed that condensation type polymers may show too large volumetric changes when exposed to fluids, and therefore should no longer be used in prosthetic devices. The results of this study also suggests that it might be of interest to test sorption and solubility of materials that are to be implanted, since most of the materials had some solubility.
NASA Astrophysics Data System (ADS)
Zheng, C. Y.; Nie, F. L.; Zheng, Y. F.; Cheng, Y.; Wei, S. C.; Valiev, R. Z.
2011-08-01
Bulk ultrafine-grained Ni 50.8Ti 49.2 alloy (UFG-NiTi) was successfully fabricated by equal-channel angular pressing (ECAP) technique in the present study, and to further improve its surface biocompatibility, surface modification techniques including sandblasting, acid etching and alkali treatment were employed to produce either irregularly roughened surface or microporous surface or hierarchical porous surface with bioactivity. The effect of the above surface treatments on the surface roughness, wettability, corrosion behavior, ion release, apatite forming ability and cytocompatibility of UFG-NiTi alloy were systematically investigated with the coarse-grained NiTi alloy as control. The pitting corrosion potential ( Epit) was increased from 393 mV (SCE) to 704 mV (SCE) with sandblasting and further increased to 1539 mV (SCE) with following acid etching in HF/HNO 3 solution. All the above surface treatment increased the apatite forming ability of UFG-NiTi in varying degrees when soaked them in simulated body fluid (SBF). Meanwhile, both sandblasting and acid etching could promote the cytocompatibility for osteoblasts: sandblasting enhanced cell attachment and acid etching increased cell proliferation. The different corrosion behavior, apatite forming ability and cellular response of UFG-NiTi after different surface modifications are attributed to the topography and wettability of the resulting surface oxide layer.
Surmeneva, Maria A; Kleinhans, Claudia; Vacun, Gabriele; Kluger, Petra Juliane; Schönhaar, Veronika; Müller, Michaela; Hein, Sebastian Boris; Wittmar, Alexandra; Ulbricht, Mathias; Prymak, Oleg; Oehr, Christian; Surmenev, Roman A
2015-11-01
Thin radio-frequency magnetron sputter deposited nano-hydroxyapatite (HA) films were prepared on the surface of a Fe-tricalcium phosphate (Fe-TCP) bioceramic composite, which was obtained using a conventional powder injection moulding technique. The obtained nano-hydroxyapatite coated Fe-TCP biocomposites (nano-HA-Fe-TCP) were studied with respect to their chemical and phase composition, surface morphology, water contact angle, surface free energy and hysteresis. The deposition process resulted in a homogeneous, single-phase HA coating. The ability of the surface to support adhesion and the proliferation of human mesenchymal stem cells (hMSCs) was studied using biological short-term tests in vitro. The surface of the uncoated Fe-TCP bioceramic composite showed an initial cell attachment after 24h of seeding, but adhesion, proliferation and growth did not persist during 14 days of culture. However, the HA-Fe-TCP surfaces allowed cell adhesion, and proliferation during 14 days. The deposition of the nano-HA films on the Fe-TCP surface resulted in higher surface energy, improved hydrophilicity and biocompatibility compared with the surface of the uncoated Fe-TCP. Furthermore, it is suggested that an increase in the polar component of the surface energy was responsible for the enhanced cell adhesion and proliferation in the case of the nano-HA-Fe-TCP biocomposites. Copyright © 2015 Elsevier B.V. All rights reserved.
A Novel Approach Toward Fabrication of High Performance Thin Film Composite Polyamide Membranes.
Khorshidi, Behnam; Thundat, Thomas; Fleck, Brian A; Sadrzadeh, Mohtada
2016-02-29
A practical method is reported to enhance water permeability of thin film composite (TFC) polyamide (PA) membranes by decreasing the thickness of the selective PA layer. The composite membranes were prepared by interfacial polymerization (IP) reaction between meta-phenylene diamine (MPD)-aqueous and trimesoyl chloride (TMC)-organic solvents at the surface of polyethersulfone (PES) microporous support. Several PA TFC membranes were prepared at different temperatures of the organic solution ranging from -20 °C to 50 °C. The physico-chemical and morphological properties of the synthesized membranes were carefully characterized using serval analytical techniques. The results confirmed that the TFC membranes, synthesized at sub-zero temperatures of organic solution, had thinner and smoother PA layer with a greater degree of cross-linking and wettability compared to the PA films prepared at 50 °C. We demonstrated that reducing the temperature of organic solution effectively decreased the thickness of the PA active layer and thus enhanced water permeation through the membranes. The most water permeable membrane was prepared at -20 °C and exhibited nine times higher water flux compared to the membrane synthesized at room temperature. The method proposed in this report can be effectively applied for energy- and cost-efficient development of high performance nanofiltration and reverse osmosis membranes.
Carbon nanotube-coating accelerated cell adhesion and proliferation on poly (L-lactide)
NASA Astrophysics Data System (ADS)
Hirata, Eri; Akasaka, Tsukasa; Uo, Motohiro; Takita, Hiroko; Watari, Fumio; Yokoyama, Atsuro
2012-12-01
The surface of a polylactic acid (PLLA) was coated multiwalled carbon nanotubes (MWCNTs) in order to improve the surface properties. In addition, its surface characteristics and cell culturing properties were examined. Whole surface of PLLA was homogeneously covered by MWCNTs maintained a unique tubular structure. MWCNT-coated PLLA showed remarkable higher wettability than uncoated PLLA. Human osteosarcoma cell line (Saos2) adhered well on the CNT-coated PLLA whereas there are few cells attached on the uncoated PLLA at 2 h after seeding. The number of the cells on uncoated PLLA was still smaller than on the MWCNT-coated PLLA at 1 and 3 days. Moreover, The DNA content in the cells attached to the MWCNT-coated PLLA was significantly higher than that on the uncoated PLLA (p < 0.05) at 1 and 3 days. There was no significant difference between the scaffolds for ALP activity normalized by DNA content at both term (p > 0.1). Therefore MWCNT-coating on PLLA improved the surface wettability and initial cell attachment at early stage.
NASA Astrophysics Data System (ADS)
Grandoni, Andrea; Mannini, Giacomo; Glisenti, Antonella; Manariti, Antonella; Galli, Giancarlo
2017-10-01
A statistical design of experiments (DoE) was used to evaluate the effects of CF4sbnd O2 plasma on Kapton films in which the duration of treatment, volume ratio of plasma gases, and microwave power were selected as effective experimental factors for systematic investigation of surface modification. Static water contact angle (θW), polar component of surface free energy (γSp) and surface O/C atomic ratio were analyzed as response variables. A significant enhancement in wettability and polarity of the treated films compared to untreated Kapton films was observed; depending on the experimental conditions, θW very significantly decreased, showing full wettability, and γSp rose dramatically, up to ten times. Within the DoE the conditions of plasma treatment were identified that resulted in selected optimal values of θW, γSp and O/C responses. Surface chemical changes were detected by XPS and ATR-IR investigations that evidenced both the introduction of fluorinated groups and the opening of the imide ring in the plasma-treated films.
NASA Astrophysics Data System (ADS)
Ren, Yu; Xu, Lin; Wang, Chunxia; Wang, Xiaona; Ding, Zhirong; Chen, Yuyue
2017-12-01
Polylactic acid (PLA) nonwoven fabrics are treated with atmospheric dielectric barrier discharge (DBD) plasma to improve surface wettability. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) show that micro- to nano-scale textures appear on the treated PLA surfaces dependent on the treatment time. X-ray photoelectron spectroscopy (XPS) analysis reveals that the DBD plasma treatments result in decreased carbon contents and increased oxygen contents as well as slightly increased nitrogen contents. The water contact angle decreases sharply with the increase of the DBD plasma treatment time. The super hydrophilic PLA surfaces (the water contact angle reached 0°) are obtained when the treatment time is longer than 90 s. Ninety days after the DBD plasma treatment, the XPS analysis shows that Csbnd O/Csbnd N and Cdbnd O/Osbnd Cdbnd O percentages decline for all treatment groups. However, the water contact angle is kept constant at 0° for the groups treated above 90 s, which could be due to the oxidized nano-structured layer on the DBD plasma treated PLA surfaces.
NASA Astrophysics Data System (ADS)
Sando, Shota; Zhang, Bo; Cui, Tianhong
2017-12-01
Combination of shrink induced nano-composites technique and layer-by-layer (LbL) self-assembled graphene challenges controlling surface morphology. Adjusting shrink temperature achieves tunability on graphene surface morphology on shape memory polymers, and it promises to be an alternative in fields of high-surface-area conductors and molecular detection. In this study, self-assembled graphene on a shrink polymer substrate exhibits nanowrinkles after heating. Induced nanowrinkles on graphene with different shrink temperature shows distinct surface roughness and wettability. As a result, it becomes more hydrophilic with higher shrink temperatures. The tunable wettability promises to be utilized in, for example, microfluidic devices. The graphene on shrink polymer also exhibits capability of being used in sensing applications for pH and alpha-fetoprotein (AFP) detection with advantages of label free and low cost, due to self-assembly technique, easy functionalization, and antigen-antibody reaction on graphene surface. The detection limit of AFP detection is down to 1 pg/mL, and therefore the sensor also has a significant potential for biosensing as it relies on low-cost self-assembly and label-free assay.
Li, Yan; He, Linlin; Zhang, Xiaofang; Zhang, Na; Tian, Dongliang
2017-12-01
External-field-responsive liquid transport has received extensive research interest owing to its important applications in microfluidic devices, biological medical, liquid printing, separation, and so forth. To realize different levels of liquid transport on surfaces, the balance of the dynamic competing processes of gradient wetting and dewetting should be controlled to achieve good directionality, confined range, and selectivity of liquid wetting. Here, the recent progress in external-field-induced gradient wetting is summarized for controllable liquid transport from movement on the surface to penetration into the surface, particularly for liquid motion on, patterned wetting into, and permeation through films on superwetting surfaces with external field cooperation (e.g., light, electric fields, magnetic fields, temperature, pH, gas, solvent, and their combinations). The selected topics of external-field-induced liquid transport on the different levels of surfaces include directional liquid motion on the surface based on the wettability gradient under an external field, partial entry of a liquid into the surface to achieve patterned surface wettability for printing, and liquid-selective permeation of the film for separation. The future prospects of external-field-responsive liquid transport are also discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Li, S.; Jackson, M.
2017-12-01
Wettability alteration is widely recognised as a primary role in improved oil recovery (IOR) during controlled salinity waterflooding (CSW) by modifying brine composition. The change of wettability of core sample depends on adsorption of polar oil compounds into the mineral surface which influences its surface charge density and zeta potential. It has been proved that zeta potentials can be useful to quantify the wettability and incremental oil recovery in natural carbonates. However, the study of zeta potential in oil-brine-sandstone system has not investigated yet. In this experimental study, the zeta potential is used to examine the controlled salinity effects on IOR in nature sandstone (Doddington) aged with two types of crude oils (Oil T and Oil D) over 4 weeks at 80 °C. Results show that the zeta potential measured in the Oil T-brine-sandstone system following primary waterflooding decreases compared to that in fully water saturation, which is consistent with the negative oil found in carbonates study, and IOR response during secondary waterflooding using diluted seawater was observed. In the case of negative oil, the injected low salinity brine induces a more repulsive electrostatic force between the mineral-brine interface and oil-brine interface, which results in an increase disjoining pressure and alters the rock surface to be more water-wet. For Oil D with a positive oil-brine interface, the zeta potential becomes more positive compared to that under single phase condition. The conventional waterflooding fails to observe the IOR in Oil D-brine-sandstone system due to a less repulsive electrostatic force built up between the two interfaces. After switching the injection brine from low salinity brine to formation brine, the IOR was observed. Measured zeta potentials shed some light on the mechanism of wettability alteration in the oil-brine-sandstone system and oil recovery during CSW.
Stocking rate impact on soil water repellency and erodibility of burnt lands
NASA Astrophysics Data System (ADS)
Stavi, Ilan; Zaady, Eli
2017-04-01
Wildfires and prescribed burnings are common, modifying the functioning of geo-ecosystems. Such fires have been extensively studied, and reported to considerably affect soil properties. Yet, understanding of the impact of livestock grazing, or more precisely, trampling, in fire-affected lands is limited. The objective of this study was to assess the impact of livestock trampling (hoof action) on the functioning of burnt vs. non-burnt lands. This was studied by focusing on the effects on wettability and related properties of solid soil, as well as on the quantity of unconsolidated material (detached matter) lying on the solid ground surface. The study was implemented in the semi-arid northern Negev of Israel, in lands which experienced a one cycle of (unintended) low- to moderate-fire severity. The study was conducted by allowing livestock to access plots under high, medium, and low stocking rates. Also, livestock exclusion plots were assigned as a control treatment. Soil wettability was studied by water drop penetration time (WDPT) and critical surface tension (CST) tests. Results show that fire slightly decreased the soil wettability. However, WDPT was negatively related to the stocking rate, and CST was 13% smaller in the control plots than in the livestock-presence treatments. Also, the results show that following burning, the resistance of soil to shear decreased by 70%. Mass of unconsolidated material was similar in the control plots of the burnt and non-burnt plots. At the same time, it was three-, eight-, and nine- fold greater in the plots of the burnt × low, burnt × medium, and burnt × high stocking rates, respectively, than in the corresponding non-burnt ones. This study shows that livestock trampling in low- to moderate-intensity fire-affected lands increases the shearing of the ground surface layer. On the one hand, this increases soil wettability. On the other hand, this impact considerably increases risks of on-site soil erosion and land degradation, and off-site environmental pollution.
Alshakhs, Mohammed J; Kovscek, Anthony R
2016-07-01
The impact of injection brine salinity and ionic composition on oil recovery has been an active area of research for the past 25years. Evidence from laboratory studies and field tests suggests that implementing certain modifications to the ionic composition of the injection brine leads to greater oil recovery. The role of salinity modification is attributed to its ability to shift wettability of a rock surface toward water wetness. The amount of trapped oil released depends on the nature of rock, oil, and brine surface interactions. Reservoir rocks exhibit different affinities to fluids. Carbonates show stronger adsorption of oil films as opposed to the strongly water-wet and mixed-wet sandstones. The concentration of divalent ions and total salinity of the injection brine are other important factors to consider. Accordingly, this paper provides a review of laboratory and field studies of the role of brine composition on oil recovery from carbonaceous rock as well as rationalization of results using DLVO (Derjaguin, Landau, Verwey and Overbeek) theory of surface forces. DLVO evaluates the contribution of each component of the oil/brine/rock system to the wettability. Measuring zeta potential of each pair of surfaces by a charged particle suspension method is used to estimate double layer forces, disjoining pressure, and contact-angle. We demonstrate the applicability of the DLVO approach by showing a comprehensive experimental study that investigates the effect of divalent ions in carbonates, and uses disjoining pressure results to rationalize observations from core flooding and direct contact-angle measurements. Copyright © 2015 Elsevier B.V. All rights reserved.
Reduction of bacterial adhesion on dental composite resins by silicon-oxygen thin film coatings.
Mandracci, Pietro; Mussano, Federico; Ceruti, Paola; Pirri, Candido F; Carossa, Stefano
2015-01-29
Adhesion of bacteria on dental materials can be reduced by modifying the physical and chemical characteristics of their surfaces, either through the application of specific surface treatments or by the deposition of thin film coatings. Since this approach does not rely on the use of drugs or antimicrobial agents embedded in the materials, its duration is not limited by their possible depletion. Moreover it avoids the risks related to possible cytotoxic effects elicited by antibacterial substances released from the surface and diffused in the surrounding tissues. In this work, the adhesion of Streptococcus mutans and Streptococcus mitis was studied on four composite resins, commonly used for manufacturing dental prostheses. The surfaces of dental materials were modified through the deposition of a-SiO(x) thin films by plasma enhanced chemical vapor deposition. The chemical bonding structure of the coatings was analyzed by Fourier-transform infrared spectroscopy. The morphology of the dental materials before and after the coating deposition was assessed by means of optical microscopy and high-resolution mechanical profilometry, while their wettability was investigated by contact angle measurements. The sample roughness was not altered after coating deposition, while a noticeable increase of wettability was detected for all the samples. Also, the adhesion of S. mitis decreased in a statistically significant way on the coated samples, when compared to the uncoated ones, which did not occur for S. mutans. Within the limitations of this study, a-SiO(x) coatings may affect the adhesion of bacteria such as S. mitis, possibly by changing the wettability of the composite resins investigated.
Szczurek, Anna; Barcikowski, Michał; Leluk, Karol; Babiarczuk, Bartosz; Kaleta, Jerzy; Krzak, Justyna
2017-08-25
The modification of carbon fibers for improving adhesion between fibers and an epoxy resin in composite materials has become the focus of attention. In this work the carbon fiber coating process has been devised in a way preventing the stiffening and clumping of fibers. To improve interactions between coated fibers and a resin in composites, four types of silica coatings with different organic functional groups (3-aminopropyl-coating 1, 3-mercaptopropyl-coating 2, 2-(3,4-epoxycyclohexyl) ethyl-coating 3, methyl-coating 4) were obtained. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) were used to distinguish the changes of a carbon fibers surface after coating deposition. The thickness of the obtained coatings, including the diversity of thickness, was determined by transmission electron microscopy (TEM). The increase in surface free energy (SFE) of modified fibers, including the distinction between the polar and dispersive parts, was examined by wettability measurements using a tensometric test. The developed coating preparation process allowed to cover fibers separately with nanoscale silica layers, which changed their morphology. The introduction of organic functional groups resulted in surface free energy changes, especially an increase in specific polar surface energy components.
Barcikowski, Michał; Leluk, Karol; Babiarczuk, Bartosz; Kaleta, Jerzy
2017-01-01
The modification of carbon fibers for improving adhesion between fibers and an epoxy resin in composite materials has become the focus of attention. In this work the carbon fiber coating process has been devised in a way preventing the stiffening and clumping of fibers. To improve interactions between coated fibers and a resin in composites, four types of silica coatings with different organic functional groups (3-aminopropyl–coating 1, 3-mercaptopropyl–coating 2, 2-(3,4-epoxycyclohexyl) ethyl–coating 3, methyl–coating 4) were obtained. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) were used to distinguish the changes of a carbon fibers surface after coating deposition. The thickness of the obtained coatings, including the diversity of thickness, was determined by transmission electron microscopy (TEM). The increase in surface free energy (SFE) of modified fibers, including the distinction between the polar and dispersive parts, was examined by wettability measurements using a tensometric test. The developed coating preparation process allowed to cover fibers separately with nanoscale silica layers, which changed their morphology. The introduction of organic functional groups resulted in surface free energy changes, especially an increase in specific polar surface energy components. PMID:28841187
Effect of Laminating Pressure on Polymeric Multilayer Nanofibrous Membranes for Liquid Filtration.
Yalcinkaya, Fatma; Hruza, Jakub
2018-04-24
In the new century, electrospun nanofibrous webs are widely employed in various applications due to their specific surface area and porous structure with narrow pore size. The mechanical properties have a major influence on the applications of nanofiber webs. Lamination technology is an important method for improving the mechanical strength of nanofiber webs. In this study, the influence of laminating pressure on the properties of polyacrylonitrile (PAN) and polyvinylidene fluoride (PVDF) nanofibers/laminate was investigated. Heat-press lamination was carried out at three different pressures, and the surface morphologies of the multilayer nanofibrous membranes were observed under an optical microscope. In addition, air permeability, water filtration, and contact angle experiments were performed to examine the effect of laminating pressure on the breathability, water permeability and surface wettability of multilayer nanofibrous membranes. A bursting strength test was developed and applied to measure the maximum bursting pressure of the nanofibers from the laminated surface. A water filtration test was performed using a cross-flow unit. Based on the results of the tests, the optimum laminating pressure was determined for both PAN and PVDF multilayer nanofibrous membranes to prepare suitable microfilters for liquid filtration.
Surface properties of Ti-6Al-4V alloy part I: Surface roughness and apparent surface free energy.
Yan, Yingdi; Chibowski, Emil; Szcześ, Aleksandra
2017-01-01
Titanium (Ti) and its alloys are the most often used implants material in dental treatment and orthopedics. Topography and wettability of its surface play important role in film formation, protein adhesion, following osseointegration and even duration of inserted implant. In this paper, we prepared Ti-6Al-4V alloy samples using different smoothing and polishing materials as well the air plasma treatment, on which contact angles of water, formamide and diiodomethane were measured. Then the apparent surface free energy was calculated using four different approaches (CAH, LWAB, O-W and Neumann's Equation of State). From LWAB approach the components of surface free energy were obtained, which shed more light on the wetting properties of samples surface. The surface roughness of the prepared samples was investigated with the help of optical profilometer and AFM. It was interesting whether the surface roughness affects the apparent surface free energy. It was found that both polar interactions the electron donor parameter of the energy and the work of water adhesion increased with decreasing roughness of the surfaces. Moreover, short time plasma treatment (1min) caused decrease in the surface hydrophilic character, while longer time (10min) treatment caused significant increase in the polar interactions and the work of water adhesion. Although Ti-6Al-4V alloy has been investigated many times, to our knowledge, so far no paper has been published in which surface roughness and changes in the surface free energy of the alloy were compared in the quantitative way in such large extent. This novel approach deliver better knowledge about the surface properties of differently smoothed and polished samples which may be helpful to facilitate cell adhesion, proliferation and mineralization. Therefore the results obtained present also potentially practical meaning. Copyright © 2016 Elsevier B.V. All rights reserved.
Xu, Zhemi; Ao, Zhimin; Chu, Dewei; Younis, Adnan; Li, Chang Ming; Li, Sean
2014-01-01
Although the reversible wettability transition between hydrophobic and hydrophilic graphene under ultraviolet (UV) irradiation has been observed, the mechanism for this phenomenon remains unclear. In this work, experimental and theoretical investigations demonstrate that the H2O molecules are split into hydrogen and hydroxyl radicals, which are then captured by the graphene surface through chemical binding in an ambient environment under UV irradiation. The dissociative adsorption of H2O molecules induces the wettability transition in graphene from hydrophobic to hydrophilic. Our discovery may hold promise for the potential application of graphene in water splitting. PMID:25245110
Jiang, Mengjin; Zhu, Jiadeng; Chen, Chen; Lu, Yao; Ge, Yeqian; Zhang, Xiangwu
2016-02-10
Gel polymer electrolytes (GPEs) have been studied for preparing flexible and compact electrochemical energy storage devices. However, the preparation and use of GPEs are complex, and most GPEs prepared through traditional methods do not have good wettability with the electrodes, which retard them from achieving their performance potential. In this study, these problems are addressed by conceiving and implementing a simple, but effective, method of electrodepositing poly(vinyl alcohol) potassium borate (PVAPB) GPEs directly onto the surfaces of active carbon electrodes for electrochemical supercapacitors. PVAPB GPEs serve as both the electrolyte and the separator in the assembled supercapacitors, and their scale and shape are determined solely by the geometry of the electrodes. PVAPB GPEs have good bonding to the active electrode materials, leading to excellent and stable electrochemical performance of the supercapacitors. The electrochemical performance of PVAPB GPEs and supercapacitors can be manipulated simply by adjusting the concentration of KCl salt used during the electrodeposition process. With a 0.9 M KCl concentration, the as-prepared supercapacitors deliver a specific capacitance of 65.9 F g(-1) at a current density of 0.1 A g(-1) and retain more than 95% capacitance after 2000 charge/discharge cycles at a current density of 1 A g(-1). These supercapacitors also exhibit intelligent high voltage self-protection function due to the electrolysis-induced cross-linking effect of PVAPB GPEs.
NASA Astrophysics Data System (ADS)
Zhang, Lashuang; Jiang, Yue; Zai, Wei; Li, Guangyu; Liu, Shaocheng; Lian, Jianshe; Jiang, Zhonghao
2017-12-01
A novel superhydrophobic calcium phosphate coating was prepared on a magnesium alloy substrate by a highly effective chemical conversion process and subsequent chemical modification. Different methods were employed to characterize the surface morphology and chemical composition as well as measure the wettability of the coating. It was demonstrated that the as-prepared superhydrophobic calcium phosphate coating has a typical three-level hierarchical structure consisted of micro-protrusions, submicro-lumps and nano-grains, conferring excellent superhydrophobicity with a water contact angle of 159°. The electrochemical measurements and appropriate equivalent circuit revealed that the corrosion-resistant performance of the superhydrophobic calcium phosphate coating was significantly improved as compared with that of the substrate, the corrosion potential of the superhydrophobic coating increases from -1.56 to -1.36 V, and its corrosion current density decreases from 1.29 × 10-4 to 1.3 × 10-6 A/cm2. The anti-corrosion mechanism of the superhydrophobic coating was also discussed. It can be indicated that the corrosion inhibitive properties of the coating are in accordance with its hydrophobicity, which is owing to the presence of a protective layer of air trapped in the grooves of the coating surface to isolate the underlying materials from the external environment.
Shang, Yanwei; Si, Yang; Raza, Aikifa; Yang, Liping; Mao, Xue; Ding, Bin; Yu, Jianyong
2012-12-21
Superhydrophobic and superoleophilic nanofibrous membranes exhibiting robust oil-water separation performance were prepared by a facile combination of electrospun cellulose acetate (CA) nanofibers and a novel in situ polymerized fluorinated polybenzoxazine (F-PBZ) functional layer that incorporated silica nanoparticles (SiO(2) NPs). By employing the F-PBZ/SiO(2) NPs modification, the pristine hydrophilic CA nanofibrous membranes were endowed with a superhydrophobicity with the water contact angle of 161° and a superoleophilicity with the oil contact angle of 3°. Surface morphological studies have indicated that the wettability of resultant membranes could be manipulated by tuning the surface composition as well as the hierarchical structures. The quantitative hierarchical roughness analysis using the N(2) adsorption method has confirmed the major contribution of SiO(2) NPs on enhancing the porous structure, and a detailed correlation between roughness and solid-liquid interface pinning is proposed. Furthermore, the as-prepared membranes exhibited fast and efficient separation for oil-water mixtures and excellent stability over a wide range of pH conditions, which would make them a good candidate in industrial oil-polluted water treatments and oil spill cleanup, and also provided a new insight into the design and development of functional nanofibrous membranes through F-PBZ modification.
Ölçeroğlu, Emre; McCarthy, Matthew
2016-03-02
Superhydrophobic surfaces enhance condensation by inhibiting the formation of an insulating liquid layer. While this produces efficient heat transfer at low supersaturations, superhydrophobicity has been shown to break down at increased supersaturations. As heat transfer increases, the random distribution and high density of nucleation sites produces pinned droplets, which lead to uncontrollable flooding. In this work, engineered variations in wettability are used to promote the self-organization of microscale droplets, which is shown to effectively delay flooding. Virus-templated superhydrophobic surfaces are patterned with an array of superhydrophilic islands designed to minimize surface adhesion while promoting spatial order. By use of optical and electron microscopy, the surfaces are optimized and characterized during condensation. Mixed wettability imparts spatial order not only through preferential nucleation but more importantly through the self-organization of coalescing droplets at high supersaturations. The self-organization of microscale droplets (diameters of <25 μm) is shown to effectively delay flooding and govern the global wetting behavior of larger droplets (diameters of >1 mm) on the surface. As heat transfer increases, the surfaces transition from jumping-mode to shedding-mode removal with no flooding. This demonstrates the ability to engineer surfaces to resist flooding and can act as the basis for developing robust superhydrophobic surfaces for condensation applications.
Miyajima, Hiroyuki; Ozer, Fusun; Imazato, Satoshi; Mante, Francis K
2017-09-01
Artificial hip joints are generally expected to fail due to wear after approximately 15years and then have to be replaced by revision surgery. If articular cartilage can be integrated onto the articular surfaces of artificial joints in the same way as osseo-integration of titanium dental implants, the wear of joint implants may be reduced or prevented. However, very few studies have focused on the relationship between Ti surface and cartilage. To explore the possibility of cartilaginous-integration, we fabricated chemically treated Ti surfaces with H 2 O 2 /HCl, collagen type II and SBF, respectively. Then, we evaluated surface characteristics of the prepared Ti samples and assessed the cartilage formation by culturing chondrocytes on the Ti samples. When oxidized Ti was immersed in SBF for 7days, apatite was formed on the Ti surface. The surface characteristics of Ti indicated that the wettability was increased by all chemical treatments compared to untreated Ti, and that H 2 O 2 /HCl treated surface had significantly higher roughness compared to the other three groups. Chondrocytes produced significantly more cartilage matrix on all chemically treated Ti surfaces compared to untreated Ti. Thus, to realize cartilaginous-integration and to prevent wear of the implants in joints, application of bioactive Ti formed by chemical treatment would be a promising and effective strategy to improve durability of joint replacement. Copyright © 2017 Elsevier B.V. All rights reserved.
Koch, Kerstin; Bennemann, Michael; Bohn, Holger F; Albach, Dirk C; Barthlott, Wilhelm
2013-09-01
The surface microstructures on ray florets of 62 species were characterized and compared with modern phylogenetic data of species affiliation in Asteraceae to determine sculptural patterns and their occurrence in the tribes of Asteraceae. Their wettability was studied to identify structural-induced droplet adhesion, which can be used for the development of artificial surfaces for water harvesting and passive surface water transport. The wettability was characterized by contact angle (CA) and tilt angle measurements, performed on fresh ray florets and their epoxy resin replica. The CAs on ray florets varied between 104° and 156°, but water droplets did not roll off when surface was tilted at 90°. Elongated cell structures and cuticle folding orientated in the same direction as the cell elongation caused capillary forces, leading to anisotropic wetting, with extension of water droplets along the length axis of epidermis cells. The strongest elongation of the droplets was also supported by a parallel, cell-overlapping cuticle striation. In artificial surfaces made of epoxy replica of ray florets, this effect was enhanced. The distribution of the identified four structural types exhibits a strong phylogenetic signal and allows the inference of an evolutionary trend in the modification of floret epidermal cells.
Zhang, E W; Wang, Y B; Shuai, K G; Gao, F; Bai, Y J; Cheng, Y; Xiong, X L; Zheng, Y F; Wei, S C
2011-04-01
The present study aimed to evaluate the bioactivity of titanium surfaces sandblasted with large-grit corundum and acid etched (SLA) plus further alkali or hydrogen peroxide and heat treatment for dental implant application. Pure titanium disks were mechanically polished as control surface (Ti-control) and then sandblasted with large-grit corundum and acid etched (SLA). Further chemical modifications were conducted using alkali and heat treatment (ASLA) and hydrogen peroxide and heat treatment (HSLA) alternatively. The surface properties were characterized by scanning electron microscopy (SEM), x-ray photoelectron spectroscopy (XPS), and contact angle and roughness measurements. Further evaluation of surface bioactivity was conducted by MC3T3-E1 cell attachment, proliferation, morphology, alkaline phosphatase (ALP) activity and calcium deposition on the sample surfaces. After insertion in the beagle's mandibula for a specific period, cylindrical implant samples underwent micro-CT examination and then histological examination. It was found that ASLA and HSLA surfaces significantly increased the surface wettability and MC3T3-E1 cell attachment percentage, ALP activity and the quality of calcium deposition in comparison with simple SLA and Ti-control surfaces. Animal studies showed good osseointegration of ASLA and HSLA surfaces with host bone. In conclusion, ASLA and HSLA surfaces enhanced the bioactivity of the traditional SLA surface by integrating the advantages of surface topography, composition and wettability.
NASA Astrophysics Data System (ADS)
Kravchenko, O. G.; Pedrazzoli, D.; Kovtun, D.; Qian, X.; Manas-Zloczower, I.
2018-01-01
A new approach employing carbon nanostructure (CNS) buckypapers (BP) was used to prepare glass fiber/epoxy composite materials with enhanced resistance to delamination along with damage monitoring capability. The CNS-BP was subjected to plasma treatment to improve its wettability by epoxy and to promote stronger interfacial bonding. An increase up to 20% in interlaminar fracture toughness in mode I and mode II was observed in composite laminates incorporating CNS BP. Morphological analysis of the fracture surfaces indicated that failure in the conductive CNS layer provided a more effective energy dissipation mechanism, resulting in interlaminar fracture toughness increase. Moreover, fracture of the conductive CNS layer enabled damage monitoring of the composite by electrical resistance measurements upon delamination. The proposed approach provides multifunctional ply interphases, allowing to couple damage monitoring with interlaminar reinforcement of composite laminates.