Sample records for wheat class identification

  1. 19 CFR 19.31 - Bulk wheat of different classes and grades not to be commingled in storage.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 19 Customs Duties 1 2010-04-01 2010-04-01 false Bulk wheat of different classes and grades not to... CONTROL OF MERCHANDISE THEREIN Space Bonded for the Storage of Wheat § 19.31 Bulk wheat of different classes and grades not to be commingled in storage. All wheat shall be stored by class and grade according...

  2. Fourier Transform Infrared Spectroscopic Studies Of Wheat In The Mid Infrared

    NASA Astrophysics Data System (ADS)

    Olinger, Jill M.; Griffiths, Peter R.

    1989-12-01

    Official grain standards of the United States state that wheat may be divided into seven classes which are: Durum, Red Durum, Hard Red Spring, Hard Red Winter, Soft Red Winter, White, and Mixed.1 Most end uses of wheat involve converting the grain into flour through one of a variety of grinding methods. The quality of wheat-based products is often very dependent upon the type or class of wheat which was used to make the flour. Pasta products, for example, are made almost exclusively from the flour of durum wheats, which are the hardest of the wheats listed above. The highest quality breads are produced using flour from wheats classed as hard, whereas cakes, cookies and pastries are considered best when flour from wheats classed as soft are used. It is obvious then that the capability of determining the class of a particular wheat, especially with respect to hardness, is of economic importance to growers, processors, and merchants of wheat and wheat products. Hardness has been measured in many different ways 2-5 but, as of yet, no one method has become the method of choice. This paper reports on the use of principal components analysis (PCA) of mid infrared diffuse reflectance (DR) spectra of diluted ground wheats to aid in the classification of those wheats with respect to their hardness. The theory and mathematics involved in a principal component analysis have been described elsewhere.9

  3. Identification of new stress-induced microRNA and their targets in wheat using computational approach.

    PubMed

    Pandey, Bharati; Gupta, Om Prakash; Pandey, Dev Mani; Sharma, Indu; Sharma, Pradeep

    2013-05-01

    MicroRNAs (miRNAs) are a class of short endogenous non-coding small RNA molecules of about 18-22 nucleotides in length. Their main function is to downregulate gene expression in different manners like translational repression, mRNA cleavage and epigenetic modification. Computational predictions have raised the number of miRNAs in wheat significantly using an EST based approach. Hence, a combinatorial approach which is amalgamation of bioinformatics software and perl script was used to identify new miRNA to add to the growing database of wheat miRNA. Identification of miRNAs was initiated by mining the EST (Expressed Sequence Tags) database available at National Center for Biotechnology Information. In this investigation, 4677 mature microRNA sequences belonging to 50 miRNA families from different plant species were used to predict miRNA in wheat. A total of five abiotic stress-responsive new miRNAs were predicted and named Ta-miR5653, Ta-miR855, Ta-miR819k, Ta-miR3708 and Ta-miR5156. In addition, four previously identified miRNA, i.e., Ta-miR1122, miR1117, Ta-miR1134 and Ta-miR1133 were predicted in newly identified EST sequence and 14 potential target genes were subsequently predicted, most of which seems to encode ubiquitin carrier protein, serine/threonine protein kinase, 40S ribosomal protein, F-box/kelch-repeat protein, BTB/POZ domain-containing protein, transcription factors which are involved in growth, development, metabolism and stress response. Our result has increased the number of miRNAs in wheat, which should be useful for further investigation into the biological functions and evolution of miRNAs in wheat and other plant species.

  4. Flanking sequence determination and specific PCR identification of transgenic wheat B102-1-2.

    PubMed

    Cao, Jijuan; Xu, Junyi; Zhao, Tongtong; Cao, Dongmei; Huang, Xin; Zhang, Piqiao; Luan, Fengxia

    2014-01-01

    The exogenous fragment sequence and flanking sequence between the exogenous fragment and recombinant chromosome of transgenic wheat B102-1-2 were successfully acquired using genome walking technology. The newly acquired exogenous fragment encoded the full-length sequence of transformed genes with transformed plasmid and corresponding functional genes including ubi, vector pBANF-bar, vector pUbiGUSPlus, vector HSP, reporter vector pUbiGUSPlus, promoter ubiquitin, and coli DH1. A specific polymerase chain reaction (PCR) identification method for transgenic wheat B102-1-2 was established on the basis of designed primers according to flanking sequence. This established specific PCR strategy was validated by using transgenic wheat, transgenic corn, transgenic soybean, transgenic rice, and non-transgenic wheat. A specifically amplified target band was observed only in transgenic wheat B102-1-2. Therefore, this method is characterized by high specificity, high reproducibility, rapid identification, and excellent accuracy for the identification of transgenic wheat B102-1-2.

  5. Quality characteristics of U.S. soft white and club wheat

    USDA-ARS?s Scientific Manuscript database

    U.S. soft white wheat from the Pacific Northwest states of Washington, Oregon and Idaho is a premium quality, versatile soft wheat. Soft White wheat (SWW) is comprised of winter and spring-sown varieties; spike morphology further delineates the class into ‘common’ (lax) and club sub-classes. The reg...

  6. Starch digestibility and apparent metabolizable energy of western Canadian wheat market classes in broiler chickens.

    PubMed

    Karunaratne, N D; Abbott, D A; Hucl, P J; Chibbar, R N; Pozniak, C J; Classen, H L

    2018-05-16

    Wheat is the primary grain fed to poultry in western Canada, but its nutritional quality, including the nature of its starch digestibility, may be affected by wheat market class. The objectives of this study were to determine the rate and extent of starch digestibility of wheat market classes in broiler chickens, and to determine the relationship between starch digestibility and wheat apparent metabolizable energy (AME). In vitro starch digestion was assessed using gastric and small intestinal phases mimicking the chicken digestive tract, while in vivo evaluation used 468 male broiler chickens randomly assigned to dietary treatments from 0 to 21 d of age. The study evaluated 2 wheat cultivars from each of 6 western Canadian wheat classes: Canadian Prairie Spring (CPS), Canadian Western Amber Durum (CWAD), CW General Purpose (CWGP), CW Hard White Spring (CWHWS), CW Red Spring (CWRS), and CW Soft White Spring (CWSWS). All samples were analyzed for relevant grain characteristics. Data were analyzed as a randomized complete block design and cultivars were nested within market class. Pearson correlation was used to determine relationships between measured characteristics. Significance level was P ≤ 0.05. The starch digestibility range and wheat class rankings were: proximal jejunum - 23.7 to 50.6% (CWHWSc, CPSbc, CWSWSbc, CWRSab, CWGPa, CWADa); distal jejunum - 63.5 to 76.4% (CWHWSc, CPSbc, CWSWSbc, CWRSab, CWGPa, CWADa); proximal ileum - 88.7 to 96.9% (CWSWSc, CPSbc, CWHWSbc, CWRSb, CWGPb, CWADa); distal ileum - 94.4 to 98.5% (CWSWSb, CWHWSb, CPSb, CWRSab, CWGPab, CWADa); excreta - 98.4 to 99.3% (CPSb, CWRSb, CWHWSb, CWSWSab, CWGPab, CWADa). Wheat class affected wheat AMEn with levels ranging from 3,203 to 3,411 kcal/kg at 90% DM (CWRSc, CWSWSc, CPSb, CWGPb, CWADa, CWHWSa). Significant and moderately strong positive correlations were observed between in vitro and in vivo starch digestibility, but no correlations were found between AME and starch digestibility. In conclusion, rate and extent of starch digestibility and AME were affected by western Canadian wheat class, but starch digestibility did not predict AME.

  7. Identification of milling and baking quality QTL in multiple soft wheat mapping populations

    USDA-ARS?s Scientific Manuscript database

    Wheat derived food products require a range of characteristics. Identification and understanding of the genetic components controlling end-use quality of wheat is important for crop improvement. We assessed the underlying genetics controlling specific milling and baking quality parameters of soft wh...

  8. 19 CFR 19.32 - Wheat manipulation; reconditioning.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 19 Customs Duties 1 2010-04-01 2010-04-01 false Wheat manipulation; reconditioning. 19.32 Section... Bonded for the Storage of Wheat § 19.32 Wheat manipulation; reconditioning. (a) The mixing, blending, or commingling of imported wheat and domestic wheat, or of imported wheat of different classes and grades, as an...

  9. Mapping quantitative trait loci for a unique 'super soft' kernel trait in soft white wheat

    USDA-ARS?s Scientific Manuscript database

    Wheat (Triticum sp.) kernel texture is an important factor affecting milling, flour functionality, and end-use quality. Kernel texture is normally characterized as either hard or soft, the two major classes of texture. However, further variation is typically encountered in each class. Soft wheat var...

  10. Identification of winter wheat from ERTS-1 imagery

    NASA Technical Reports Server (NTRS)

    Williams, D. L.; Morain, S. A.; Barker, B.; Coiner, J. C.

    1973-01-01

    Continuing interpretation of the test area in Finney County, Kansas, has revealed that winter wheat can be successfully identified. This successful identification is based on human recognition of tonal signatures on MSS images. Several different but highly successful interpretation strategies have been employed. These strategies involve the use of both spectral and temporal inputs. Good results have been obtained from a single MSS-5 image acquired at a critical time in the crop cycle (planting). On a test sample of 54,612 acres, 89 percent of the acreage was correctly classified as wheat or non-wheat and the estimated wheat acreage (19,516 acres) was 99 percent of the actual acreage of wheat in the sample area.

  11. Flanking sequence determination and event-specific detection of genetically modified wheat B73-6-1.

    PubMed

    Xu, Junyi; Cao, Jijuan; Cao, Dongmei; Zhao, Tongtong; Huang, Xin; Zhang, Piqiao; Luan, Fengxia

    2013-05-01

    In order to establish a specific identification method for genetically modified (GM) wheat, exogenous insert DNA and flanking sequence between exogenous fragment and recombinant chromosome of GM wheat B73-6-1 were successfully acquired by means of conventional polymerase chain reaction (PCR) and thermal asymmetric interlaced (TAIL)-PCR strategies. Newly acquired exogenous fragment covered the full-length sequence of transformed genes such as transformed plasmid and corresponding functional genes including marker uidA, herbicide-resistant bar, ubiquitin promoter, and high-molecular-weight gluten subunit. The flanking sequence between insert DNA revealed high similarity with Triticum turgidum A gene (GenBank: AY494981.1). A specific PCR detection method for GM wheat B73-6-1 was established on the basis of primers designed according to the flanking sequence. This specific PCR method was validated by GM wheat, GM corn, GM soybean, GM rice, and non-GM wheat. The specifically amplified target band was observed only in GM wheat B73-6-1. This method is of high specificity, high reproducibility, rapid identification, and excellent accuracy for the identification of GM wheat B73-6-1.

  12. 7 CFR 810.2203 - Basis of determination.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... GRAIN United States Standards for Wheat Principles Governing the Application of Standards § 810.2203..., wheat of other classes, contrasting classes, and subclasses is made on the basis of the grain when free...

  13. Genetic analysis of grain attributes, milling performance, and end-use quality traits in hard red spring wheat (Triticum aestivum L.)

    USDA-ARS?s Scientific Manuscript database

    Wheat kernel texture dictates U.S. wheat market class and culinary end-uses. Of interest to wheat breeders is to identify quantitative trait loci (QTL) for wheat kernel texture, milling performance, or end-use quality because it is imperative for wheat breeders to ascertain the genetic architecture ...

  14. Effect of dark, hard, and vitreous kernel content on protein molecular weight distribution and on milling and breadmaking quality characteristics for hard spring wheat samples from diverse growing regions

    USDA-ARS?s Scientific Manuscript database

    Kernel vitreousness is an important grading characteristic for segregation of sub-classes of hard red spring (HRS) wheat in the U.S. This research investigated the protein molecular weight distribution (MWD), and flour and baking quality characteristics of different HRS wheat market sub-classes. T...

  15. Combination of near infrared spectroscopy and chemometrics for authentication of taro flour from wheat and sago flour

    NASA Astrophysics Data System (ADS)

    Rachmawati; Rohaeti, E.; Rafi, M.

    2017-05-01

    Taro flour on the market is usually sold at higher price than wheat and sago flour. This situation could be a cause for adulteration of taro flour from wheat and sago flour. For this reason, we will need an identification and authentication. Combination of near infrared (NIR) spectrum with multivariate analysis was used in this study to identify and authenticate taro flour from wheat and sago flour. The authentication model of taro flour was developed by using a mixture of 5%, 25%, and 50% of adulterated taro flour from wheat and sago flour. Before subjected to multivariate analysis, an initial preprocessing signal was used namely normalization and standard normal variate to the NIR spectrum. We used principal component analysis followed by discriminant analysis to make an identification and authentication model of taro flour. From the result obtained, about 90.48% of the taro flour mixed with wheat flour and 85% of taro flour mixed with sago flour were successfully classified into their groups. So the combination of NIR spectrum with chemometrics could be used for identification and authentication of taro flour from wheat and sago flour.

  16. Genetic and epigenetic alteration among three homoeologous genes of a class E MADS box gene in hexaploid wheat.

    PubMed

    Shitsukawa, Naoki; Tahira, Chikako; Kassai, Ken-Ichiro; Hirabayashi, Chizuru; Shimizu, Tomoaki; Takumi, Shigeo; Mochida, Keiichi; Kawaura, Kanako; Ogihara, Yasunari; Murai, Koji

    2007-06-01

    Bread wheat (Triticum aestivum) is a hexaploid species with A, B, and D ancestral genomes. Most bread wheat genes are present in the genome as triplicated homoeologous genes (homoeologs) derived from the ancestral species. Here, we report that both genetic and epigenetic alterations have occurred in the homoeologs of a wheat class E MADS box gene. Two class E genes are identified in wheat, wheat SEPALLATA (WSEP) and wheat LEAFY HULL STERILE1 (WLHS1), which are homologs of Os MADS45 and Os MADS1 in rice (Oryza sativa), respectively. The three wheat homoeologs of WSEP showed similar genomic structures and expression profiles. By contrast, the three homoeologs of WLHS1 showed genetic and epigenetic alterations. The A genome WLHS1 homoeolog (WLHS1-A) had a structural alteration that contained a large novel sequence in place of the K domain sequence. A yeast two-hybrid analysis and a transgenic experiment indicated that the WLHS1-A protein had no apparent function. The B and D genome homoeologs, WLHS1-B and WLHS1-D, respectively, had an intact MADS box gene structure, but WLHS1-B was predominantly silenced by cytosine methylation. Consequently, of the three WLHS1 homoeologs, only WLHS1-D functions in hexaploid wheat. This is a situation where three homoeologs are differentially regulated by genetic and epigenetic mechanisms.

  17. Genome-wide identification and characterization of Glyceraldehyde-3-phosphate dehydrogenase genes family in wheat (Triticum aestivum).

    PubMed

    Zeng, Lingfeng; Deng, Rong; Guo, Ziping; Yang, Shushen; Deng, Xiping

    2016-03-16

    Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a central enzyme in glycolysi, we performed genome-wide identification of GAPDH genes in wheat and analyzed their structural characteristics and expression patterns under abiotic stress in wheat. A total of 22 GAPDH genes were identified in wheat cv. Chinese spring; the phylogenetic and structure analysis showed that these GAPDH genes could be divided into four distinct subfamilies. The expression profiles of GAPDH genes showed tissue specificity all over plant development stages. The qRT-PCR results revealed that wheat GAPDHs were involved in several abiotic stress response. Wheat carried 22 GAPDH genes, representing four types of plant GAPDHs (gapA/B, gapC, gapCp and gapN). Whole genome duplication and segmental duplication might account for the expansion of wheat GAPDHs. Expression analysis implied that GAPDHs play roles in plants abiotic stress tolerance.

  18. End-use quality of CIMMYT-derived soft kernel durum wheat germplasm: I. Grain, milling, and soft wheat quality

    USDA-ARS?s Scientific Manuscript database

    Wheat kernel texture is used in part to define U.S. wheat market class due to its importance in end-use quality and utilization. Durum wheat (Triticum turgidum subsp. durum) has lower demand and fewer culinary end-uses compared to bread wheat because of its extremely hard kernel texture, which precl...

  19. Evaluation of hard red spring wheat quality using four different roller mills

    USDA-ARS?s Scientific Manuscript database

    Domestic and overseas buyers pay premium price for hard red spring (HRS) wheat due to high protein content and excellent milling and baking performances. For efficient quality identification of wheat samples, a wheat quality laboratory needs an objective and simple experimental milling procedure and...

  20. Registration of 'UI Stone' spring wheat

    USDA-ARS?s Scientific Manuscript database

    Soft white spring wheat (Triticum aestivumL.) is an important wheat class being used in domestic and international markets, especially in Idaho and Pacific Northwest (PNW). The objective of this study was to develop a SWS wheat cultivar with high grain yield, desirable end-use quality, and resistanc...

  1. Identification of novel QTL for sawfly resistance in wheat

    Treesearch

    J. D. Sherman; D. K. Weaver; M. L. Hofland; S. E. Sing; M. Buteler; S. P. Lanning; Y. Naruoka; F. Crutcher; N. K. Blake; J. M. Martin; P. F. Lamb; G. R. Carlson; L. E. Talbert

    2010-01-01

    The wheat stem sawfly (WSS) (Cephus cinctus Nort.) is an important pest of wheat (Triticum aestivum L. em. Thell.) in the Northern Great Plains. This paper reports the genetic analysis of antixenosis for egg-laying WSS females in recombinant inbred lines (RIL) of hard red spring wheat. Female WSS preferentially choose certain wheat genotypes for egg-laying, with the...

  2. New durum wheat with soft kernel texture: end-use quality analysis of the Hardness locus in Triticum turgidum ssp. durum

    USDA-ARS?s Scientific Manuscript database

    Wheat kernel texture dictates U.S. wheat market class. Durum wheat has limited demand and culinary end-uses compared to bread wheat because of its extremely hard kernel texture which precludes conventional milling. ‘Soft Svevo’, a new durum cultivar with soft kernel texture comparable to a soft whit...

  3. The use of ERTS-1 multispectral imagery for crop identification in a semi-arid climate

    NASA Technical Reports Server (NTRS)

    Stockton, J. G.; Bauer, M. E.; Blair, B. O.; Baumgardner, M. F.

    1975-01-01

    Crop identification using multispectral satellite imagery and multivariate pattern recognition was used to identify wheat accurately in Greeley County, Kansas. A classification accuracy of 97 percent was found for wheat and the wheat estimate in hectares was within 5 percent of the USDA's Statistical Reporting Service estimate for 1973. The multispectral response of cotton and sorghum in Texas was not unique enough to distinguish between them nor to separate them from other cultivated crops.

  4. Identification of the VERNALIZATION 4 gene reveals the origin of spring growth habit in ancient wheats from South Asia

    USDA-ARS?s Scientific Manuscript database

    Wheat varieties with a winter growth habit require long exposures to low temperatures (vernalization) to accelerate flowering. Natural variation in the vernalization genes regulating this requirement has favored wheat adaptation to different environments. The main wheat vernalization genes VRN1, V...

  5. 7 CFR 782.10 - Identification of commodities subject to end-use certificate regulations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... certificate regulations. (a) The regulations in this part are applicable to wheat and barley, respectively... wheat or barley. (b) Because Canada is the only country with such requirements on wheat, and no country has an end-use certificate requirement for barley, only wheat originating in Canada is affected by the...

  6. New durum wheat with soft kernel texture: milling performance and end-use quality analysis of the Hardness locus in Triticum turgidum ssp. durum

    USDA-ARS?s Scientific Manuscript database

    Wheat kernel texture dictates U.S. wheat market class. Durum wheat has limited demand and culinary end-uses compared to bread wheat because of its extremely hard kernel texture which preclude conventional milling. ‘Soft Svevo’, a new durum cultivar with soft kernel texture comparable to a soft white...

  7. Bayes estimation on parameters of the single-class classifier. [for remotely sensed crop data

    NASA Technical Reports Server (NTRS)

    Lin, G. C.; Minter, T. C.

    1976-01-01

    Normal procedures used for designing a Bayes classifier to classify wheat as the major crop of interest require not only training samples of wheat but also those of nonwheat. Therefore, ground truth must be available for the class of interest plus all confusion classes. The single-class Bayes classifier classifies data into the class of interest or the class 'other' but requires training samples only from the class of interest. This paper will present a procedure for Bayes estimation on the mean vector, covariance matrix, and a priori probability of the single-class classifier using labeled samples from the class of interest and unlabeled samples drawn from the mixture density function.

  8. A Review of Conventional PCR Assays for the Detection of Selected Phytopathogens of Wheat.

    PubMed

    Kuzdraliński, Adam; Kot, Anna; Szczerba, Hubert; Nowak, Michał; Muszyńska, Marta

    2017-01-01

    Infection of phyllosphere (stems, leaves, husks, and grains) by pathogenic fungi reduces the wheat yield and grain quality. Detection of the main wheat pathogenic fungi provides information about species composition and allows effective and targeted plant treatment. Since conventional procedures for the detection of these organisms are unreliable and time consuming, diagnostic DNA-based methods are required. Nucleic acid amplification technologies are independent of the morphological and biochemical characteristics of fungi. Microorganisms do not need to be cultured. Therefore, a number of PCR-based methodologies have been developed for the identification of key pathogenic fungi, such as Fusarium spp., Puccinia spp., Zymoseptoria tritici, Parastagonospora nodorum, Blumeria graminis f. sp. tritici, and Pyrenophora tritici-repentis. This article reviews frequently used DNA regions for fungus identification and discusses already known PCR assays for detection of the aforementioned wheat pathogens. We demonstrate that PCR-based wheat pathogen identification assays require further research. In particular, the number of diagnostic tests for Fusarium graminearum, Puccinia spp., and P. tritici-repentis are insufficient. © 2017 S. Karger AG, Basel.

  9. Identification and validation of single nucleotide polymorphic markers linked to Ug99 stem rust resistance in spring wheat

    USDA-ARS?s Scientific Manuscript database

    Wheat stem rust (Puccinia graminis f. sp. tritici Eriks. and E. Henn.) is one of the most destructive diseases world-wide. Races belonging to Ug99 (or TTKSK) continue to cause crop losses in East Africa and threaten global wheat production. Developing and deploying wheat varieties with multiple race...

  10. Improved method for reliable HMW-GS identification by RP-HPLC and SDS-PAGE in common wheat cultivars

    USDA-ARS?s Scientific Manuscript database

    The accurate identification of alleles for high-molecular weight glutenins (HMW-GS) is critical for wheat breeding programs targeting end-use quality. RP-HPLC methods were optimized for separation of HMW-GS, resulting in enhanced resolution of 1By and 1Dx subunits. Statistically significant differe...

  11. Identification of wheat sensitization using an in-house wheat extract in Coca-10% alcohol solution in children with wheat anaphylaxis.

    PubMed

    Pacharn, Punchama; Kumjim, Sasaros; Tattiyapong, Puntanat; Jirapongsananuruk, Orathai; Piboonpocanun, Surapon

    2016-06-01

    Identification of wheat sensitization by a skin prick test (SPT) is essential for children with wheat-induced anaphylaxis, since oral food challenge can cause serious adverse effects. Wheat allergens are both water/salt and alcohol soluble. The preparation of wheat extract for SPT containing both water/salt and alcohol soluble allergen is needed. To determine if a wheat extract using Coca's solution containing 10% alcohol (Coca-10% EtOH), prepared in-house, contians both water/salt and alcohol soluble allergens. Serum of children with a history of anaphylaxis after wheat ingestion was used. Wheat flour was extracted in Coca-10% alcohol solution. An SPT with both commercial and in-house wheat extracts was performed as well as specific IgE (sIgE) for wheat and omega-5 gliadin. Direct and IgE inhibition immunoblots were performed to determine serum sIgE levels against water/salt as well as alcohol soluble (gliadins and glutenins) allergens in the extracts. Six children with history of wheat anaphylaxis had positive SPT to both commercial and in-house extracts. They also had different levels of sIgE against wheat and omega-5 gliadin allergens. The results of direct immunoblotting showed all tested sera had sIgE bound to ~35 kDa wheat protein. Further IgE inhibition immunoblotting identified the ~35 kDa wheat protein as gliadin but not gluten allergen. The in-house prepared Coca-10% EtOH solution could extract both water/salt and alcohol soluble allergens. The ~35 kDa gliadin appears to be a major wheat allergen among tested individuals.

  12. Identification of Ppd-B1 alleles in common wheat cultivars by CAPS marker.

    PubMed

    Okoń, S; Kowalczyk, K; Miazga, D

    2012-05-01

    Photoperiod response is a major determinant of the duration of growth stages in common wheat. In common wheat, many genes play a role in determining flowering time, but the Ppd genes located on the homoeologous group 2 play a major role. Of these Ppd-B1 is located on the short arm of 2B. In 107 common wheat cultivars grown in Poland and neighboring countries, the identification of Ppd-B1 alleles using in-del analysis by using a CAPS markers was investigated. 87 cultivars were shown to carry dominant Ppd-B1 alleles. This shows that Ppd-B1 alleles is have been widely used in common wheat breeding programme in these countries. Recessive ppd-B1 alleles were found only in 20 cultivars (12 Polish, 5 former Soviet Union, 2 German, 1 Swedish).

  13. Registration of 'Bolles' hard red spring wheat with high grain protein concentration and superior baking quality

    USDA-ARS?s Scientific Manuscript database

    The hard red spring wheat market class in the U.S. commands the highest prices on the worldwide wheat markets because of its high protein content, strong gluten, and good baking properties. ‘Bolles’ (PI 678430), a hard red spring wheat cultivar, was released by the University of Minnesota Agricultu...

  14. Compendium of Wheat Diseases and Pests, Third Edition

    USDA-ARS?s Scientific Manuscript database

    The Compendium of Wheat Diseases and Pests, Third Edition, is a practical guidebook for the identification and management of over 150 important diseases, insects, and other disorders of wheat. Over 70 expert authors contributed diagnostic photographs and authoritative chapters to this edition. For e...

  15. Identification of Novel Tan Spot Resistance QTLs Using an SSR-Based Linkage Map of Tetraploid Wheat

    USDA-ARS?s Scientific Manuscript database

    Durum wheat (Triticum turgidum L. subsp. durum, 2n = 4x = 28, AABB) is an important cereal used for making pasta products. Whole genome genetic maps are powerful tools for the identification of important genes and provide useful information for crop improvement. In this research, a tetraploid whea...

  16. Identification and evaluation of bioremediation potential of laccase isoforms produced by Cyathus bulleri on wheat bran.

    PubMed

    Vats, Arpita; Mishra, Saroj

    2018-02-15

    Multiplicity in laccases among lignin degrading fungal species is of interest as it confers the ability to degrade several types of lignocellulosics. The combination of laccases produced on such substrates could be beneficial for treatment of complex aromatics, including dyes. In this study, we report on production of high units (679.6Ug -1 substrate) of laccase on solid wheat bran (WB) by Cyathus bulleri. Laccase, purified from the culture filtrates of WB grown fungus, was effective for oxidation of veratryl alcohol, Reactive blue 21 and textile effluent without assistance of externally added mediators. De novo sequencing of the 'purified' laccase lead to identification of several peptides that originated from different laccase genes. Transcriptome analysis of the fungus, cultivated on WB, confirmed presence of 8 isozymes, that were re-amplified and sequenced from the cDNA prepared from WB grown fungus. The 8 isozymes were grouped into 3 classes, based on their sequence relationship with other basidiomycete laccases. The isoforms produced on WB decolorized (by ∼57%) and degraded textile effluent far more effectively, compared to laccase obtained from Basal salt cultivated fungus. The decolorization and degradation was also accompanied by more than 95% reduction in phytotoxicity. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. LACIE: Wheat yield models for the USSR

    NASA Technical Reports Server (NTRS)

    Sakamoto, C. M.; Leduc, S. K.

    1977-01-01

    A quantitative model determining the relationship between weather conditions and wheat yield in the U.S.S.R. was studied to provide early reliable forecasts on the size of the U.S.S.R. wheat harvest. Separate models are developed for spring wheat and for winter. Differences in yield potential and responses to stress conditions and cultural improvements necessitate models for each class.

  18. Identification and characterization of wheat long non-protein coding RNAs responsive to powdery mildew infection and heat stress by using microarray analysis and SBS sequencing

    PubMed Central

    2011-01-01

    Background Biotic and abiotic stresses, such as powdery mildew infection and high temperature, are important limiting factors for yield and grain quality in wheat production. Emerging evidences suggest that long non-protein coding RNAs (npcRNAs) are developmentally regulated and play roles in development and stress responses of plants. However, identification of long npcRNAs is limited to a few plant species, such as Arabidopsis, rice and maize, no systematic identification of long npcRNAs and their responses to abiotic and biotic stresses is reported in wheat. Results In this study, by using computational analysis and experimental approach we identified 125 putative wheat stress responsive long npcRNAs, which are not conserved among plant species. Among them, some were precursors of small RNAs such as microRNAs and siRNAs, two long npcRNAs were identified as signal recognition particle (SRP) 7S RNA variants, and three were characterized as U3 snoRNAs. We found that wheat long npcRNAs showed tissue dependent expression patterns and were responsive to powdery mildew infection and heat stress. Conclusion Our results indicated that diverse sets of wheat long npcRNAs were responsive to powdery mildew infection and heat stress, and could function in wheat responses to both biotic and abiotic stresses, which provided a starting point to understand their functions and regulatory mechanisms in the future. PMID:21473757

  19. Identification and characterization of Sr13, a tetraploid wheat gene that confers resistance to the Ug99 stem rust race group

    USDA-ARS?s Scientific Manuscript database

    The Puccinia graminis f. sp. tritici (Pgt) Ug99 race group is virulent to most stem rust resistance genes currently deployed in wheat and poses a serious threat to global wheat production. The durum wheat (Triticum turgidum ssp. durum) gene Sr13 confers resistance to Ug99 in addition to virulent rac...

  20. Large-scale identification of wheat genes resistant to cereal cyst nematode Heterodera avenae using comparative transcriptomic analysis.

    PubMed

    Kong, Ling-An; Wu, Du-Qing; Huang, Wen-Kun; Peng, Huan; Wang, Gao-Feng; Cui, Jiang-Kuan; Liu, Shi-Ming; Li, Zhi-Gang; Yang, Jun; Peng, De-Liang

    2015-10-16

    Cereal cyst nematode Heterodera avenae, an important soil-borne pathogen in wheat, causes numerous annual yield losses worldwide, and use of resistant cultivars is the best strategy for control. However, target genes are not readily available for breeding resistant cultivars. Therefore, comparative transcriptomic analyses were performed to identify more applicable resistance genes for cultivar breeding. The developing nematodes within roots were stained with acid fuchsin solution. Transcriptome assemblies and redundancy filteration were obtained by Trinity, TGI Clustering Tool and BLASTN, respectively. Gene Ontology annotation was yielded by Blast2GO program, and metabolic pathways of transcripts were analyzed by Path_finder. The ROS levels were determined by luminol-chemiluminescence assay. The transcriptional gene expression profiles were obtained by quantitative RT-PCR. The RNA-sequencing was performed using an incompatible wheat cultivar VP1620 and a compatible control cultivar WEN19 infected with H. avenae at 24 h, 3 d and 8 d. Infection assays showed that VP1620 failed to block penetration of H. avenae but disturbed the transition of developmental stages, leading to a significant reduction in cyst formation. Two types of expression profiles were established to predict candidate resistance genes after developing a novel strategy to generate clean RNA-seq data by removing the transcripts of H. avenae within the raw data before assembly. Using the uncoordinated expression profiles with transcript abundance as a standard, 424 candidate resistance genes were identified, including 302 overlapping genes and 122 VP1620-specific genes. Genes with similar expression patterns were further classified according to the scales of changed transcript abundances, and 182 genes were rescued as supplementary candidate resistance genes. Functional characterizations revealed that diverse defense-related pathways were responsible for wheat resistance against H. avenae. Moreover, phospholipase was involved in many defense-related pathways and localized in the connection position. Furthermore, strong bursts of reactive oxygen species (ROS) within VP1620 roots infected with H. avenae were induced at 24 h and 3 d, and eight ROS-producing genes were significantly upregulated, including three class III peroxidase and five lipoxygenase genes. Large-scale identification of wheat resistance genes were processed by comparative transcriptomic analysis. Functional characterization showed that phospholipases associated with ROS production played vital roles in early defense responses to H. avenae via involvement in diverse defense-related pathways as a hub switch. This study is the first to investigate the early defense responses of wheat against H. avenae, not only provides applicable candidate resistance genes for breeding novel wheat cultivars, but also enables a better understanding of the defense mechanisms of wheat against H. avenae.

  1. A proteinaceous fraction of wheat bran may interfere in the attachment of enterotoxigenic E. coli K88 (F4+) to porcine epithelial cells.

    PubMed

    González-Ortiz, Gemma; Bronsoms, Sílvia; Quarles Van Ufford, H C; Halkes, S Bart A; Virkola, Ritva; Liskamp, Rob M J; Beukelman, Cees J; Pieters, Roland J; Pérez, José Francisco; Martín-Orúe, Susana María

    2014-01-01

    Wheat bran (WB) from Triticum aestivum has many beneficial effects on human health. To the best of our knowledge, very little has been published about its ability to prevent pathogenic bacterial adhesion in the intestine. Here, a WB extract was fractionated using different strategies, and the obtained fractions were tested in different in vitro methodologies to evaluate their interference in the attachment of enterotoxigenic Escherichia coli (ETEC) K88 to intestinal porcine epithelial cells (IPEC-J2) with the aim of identifying the putative anti-adhesive molecules. It was found that a proteinaceous compound in the >300-kDa fraction mediates the recognition of ETEC K88 to IPEC-J2. Further fractionation of the >300-kDa sample by size-exclusion chromatography showed several proteins below 90 kDa, suggesting that the target protein belongs to a high-molecular-weight (MW) multi-component protein complex. The identification of some relevant excised bands was performed by mass spectrometry (MS) and mostly revealed the presence of various protease inhibitors (PIs) of low MW: Serpin-Z2B, Class II chitinase, endogenous alpha-amylase/subtilisin inhibitor and alpha-amylase/trypsin inhibitor CM3. Furthermore, an incubation of the WB extract with ETEC K88 allowed for the identification of a 7S storage protein globulin of wheat, Globulin 3 of 66 kDa, which may be one of the most firmly attached WB proteins to ETEC K88 cells. Further studies should be performed to gain an understanding of the molecular recognition of the blocking process that takes place. All gathered information can eventually pave the way for the development of novel anti-adhesion therapeutic agents to prevent bacterial pathogenesis.

  2. Identification of wheat varieties with a parallel-plate capacitance sensor using fisher linear discriminant analysis

    USDA-ARS?s Scientific Manuscript database

    Fisher’s linear discriminant (FLD) models for wheat variety classification were developed and validated. The inputs to the FLD models were the capacitance (C), impedance (Z), and phase angle ('), measured at two frequencies. Classification of wheat varieties was obtained as output of the FLD mod...

  3. Identification of SNPs, QTLs, and dominant markers associated with wheat flavor using genotyping-by-sequencing

    USDA-ARS?s Scientific Manuscript database

    Whole grain foods are well known to provide important nutrients in the human diet; however, consumer acceptance can be hindered by the flavor, aroma, and texture of whole wheat products. Flavor differences among wheat varieties have been observed, but are still little understood. A lab mouse model s...

  4. Development of Durum Wwheat Germplasm with Enhanced Resistance to Fusarium Head Blight Derived from Emmer Wheat

    USDA-ARS?s Scientific Manuscript database

    Durum wheat (Triticum turgidum L. subsp. durum) is a unique class of commercial wheat specifically for making pasta products. Durum production has been seriously challenged by the Fusarium head blight (FHB) disease in the United States in the past decade. Although utilization of resistant cultivar...

  5. 7 CFR 1421.304 - Payment amount.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 2012 Crop of Wheat, Barley, Oats, and Triticale § 1421.304 Payment amount. (a) The grazing payment rate... payment rate in effect for the predominant class of wheat in the county where the farm is located as of... three (3) similar farms. For triticale, the payment yield shall be the yield for wheat from three (3...

  6. Characterization of high molecular weight glutenin subunits in Thinopyrum intermedium, Th. bessarabicum, Lophopyrum elongatum, Aegilops markgrafii, and their addition lines in wheat

    USDA-ARS?s Scientific Manuscript database

    High molecular weight (HMW) glutenin subunits (GSs) play an important role in determining dough viscoelastic properties and end-use quality in cultivated wheat, and they are also excellent protein markers for genotype identification. The HMW-GSs in wheat species (Triticum ssp.) and Aegilops tauschii...

  7. Identification of Yr59 conferring high-temperature adult-plant resistance to stripe rust in wheat germplasm PI 178759

    USDA-ARS?s Scientific Manuscript database

    Stripe rust, caused by Puccinia striiformis f. sp. tritici, is one of the most widespread and destructive wheat diseases worldwide. Resistant cultivars are the preferred means of control. The spring wheat germplasm ‘PI 178759’ originating from Iraq showed effective resistance to stripe rust in fie...

  8. Identification of wheat gene Sr35 that confers resistance to Ug99 stem rust race group

    USDA-ARS?s Scientific Manuscript database

    Wheat stem rust, caused by Puccinia graminis f. sp. tritici (Pgt) is a devastating disease that can cause severe yield losses. A new Pgt race designated Ug99 has overcome most of the widely used resistance genes and is spreading through Africa and Asia threatening major wheat production areas. We re...

  9. Identification of genotyping-by-sequencing sequence tags associated with milling performance and end-use quality traits in hard red spring wheat (Triticum aestivum L.)

    USDA-ARS?s Scientific Manuscript database

    Wheat quality is defined by culinary end-uses and processing characteristics. Wheat breeders are interested to identify quantitative trait loci for grain, milling, and end-use quality traits because it is imperative to understand the genetic complexity underlying quantitatively inherited traits to ...

  10. Identification, mapping, and marker development of stem rust resistance genes in durum wheat 'Lebsock'

    USDA-ARS?s Scientific Manuscript database

    Wheat production in many wheat-growing regions is vulnerable to stem rust, caused by Puccinia graminis f. sp. tritici (Pgt). Several previous studies showed that most of the durum cultivars adapted to the upper Great Plains in the U.S. have good resistance to the major Pgt pathotypes, including the...

  11. Proteomics of Durum Wheat Grain during Transition to Conservation Agriculture

    PubMed Central

    Galieni, Angelica; Stagnari, Fabio; Bonas, Urbana; Speca, Stefano; Faccini, Andrea; Pisante, Michele; Marmiroli, Nelson

    2016-01-01

    Nitrogen management in combination with sustainable agronomic techniques can have a great impact on the wheat grain proteome influencing its technological quality. In this study, proteomic analyses were used to document changes in the proportion of prolamins in mature grains of the newly released Italian durum wheat cv Achille. Such an approach was applied to wheat fertilized with urea (UREA) and calcium nitrate (NITRATE), during the transition to no-till Conservation Agriculture (CA) practice in a Mediterranean environment. Results obtained in a two-years field experiment study suggest low molecular weight glutenins (LMW-GS) as the fraction particularly inducible regardless of the N-form. Quantitative analyses of LMW-GS by 2D-GE followed by protein identification by LC-ESI-MS/MS showed that the stable increase was principally due to C-type LMW-GS. The highest accumulation resulted from a physiologically healthier state of plants treated with UREA and NITRATE. Proteomic analysis on the total protein fraction during the active phase of grain filling was also performed. For both N treatments, but at different extent, an up-regulation of different classes of proteins was observed: i) enzymes involved in glycolysis and citric acid cycles which contribute to an enhanced source of energy and carbohydrates, ii) stress proteins like heat shock proteins (HSPs) and antioxidant enzymes, such as peroxidases and superoxide dismutase which protect the grain from abiotic stress during starch and storage protein synthesis. In conclusion N inputs, which combined rate with N form gave high yield and improved quality traits in the selected durum wheat cultivar. The specific up-regulation of some HSPs, antioxidant enzymes and defense proteins in the early stages of grain development and physiological indicators related to fitness traits, could be useful bio-indicators, for wheat genotype screening under more sustainable agronomic conditions, like transition phase to no-till CA in Mediterranean environments. PMID:27281174

  12. Detection of alien chromatin introgression from Thinopyrum into wheat using S genomic DNA as a probe--a landmark approach for Thinopyrum genome research.

    PubMed

    Chen, Q

    2005-01-01

    The introduction of alien genetic variation from the genus Thinopyrum through chromosome engineering into wheat is a valuable and proven technique for wheat improvement. A number of economically important traits have been transferred into wheat as single genes, chromosome arms or entire chromosomes. Successful transfers can be greatly assisted by the precise identification of alien chromatin in the recipient progenies. Chromosome identification and characterization are useful for genetic manipulation and transfer in wheat breeding following chromosome engineering. Genomic in situ hybridization (GISH) using an S genomic DNA probe from the diploid species Pseudoroegneria has proven to be a powerful diagnostic cytogenetic tool for monitoring the transfer of many promising agronomic traits from Thinopyrum. This specific S genomic probe not only allows the direct determination of the chromosome composition in wheat-Thinopyrum hybrids, but also can separate the Th. intermedium chromosomes into the J, J(S) and S genomes. The J(S) genome, which consists of a modified J genome chromosome distinguished by S genomic sequences of Pseudoroegneria near the centromere and telomere, carries many disease and mite resistance genes. Utilization of this S genomic probe leads to a better understanding of genomic affinities between Thinopyrum and wheat, and provides a molecular cytogenetic marker for monitoring the transfer of alien Thinopyrum agronomic traits into wheat recipient lines. Copyright 2005 S. Karger AG, Basel.

  13. Evidence of intralocus recombination at the Glu-3 loci in bread wheat (Triticum aestivum L.)

    USDA-ARS?s Scientific Manuscript database

    The low-molecular weight glutenin subunits (LMW-GSs) are one of the major components of wheat seed storage proteins and play a critical role in the determination of wheat flour bread-making quality. The genes encoding for this class of proteins are mainly located at the orthologous Glu-3 loci (Glu-A...

  14. 75 FR 38072 - Notice of a Request for Extension of a Currently Approved Information Collection

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-01

    .... wheat and corn by the Soviet Union in 1972. To make sure that all parties involved in the production and.... The designated commodities for these daily reports are wheat (by class), barley, corn, grain sorghum... the size of the sales transaction, for all of these commodities, as well as wheat products, rye...

  15. Identification of new pathogenic races of common bunt and dwarf bunt fungi, and evaluation of known races using an expanded set of differential cultivars

    USDA-ARS?s Scientific Manuscript database

    Pathogenic races of Tilletia caries and T. foetida, which cause common bunt of wheat (Triticum aestivum), and T. contraversa, which causes dwarf bunt of wheat, have been identified previously by their reaction to ten monogenic differential wheat lines, each containing single bunt resistance genes Bt...

  16. Genetic analysis of kernel texture (grain hardness) in a hard red spring wheat (Triticum aestivum L.) bi-parental population

    USDA-ARS?s Scientific Manuscript database

    Grain hardness is a very important trait in determining wheat market class and also influences milling and baking traits. At the grain Hardness (Ha) locus on chromosome 5DS, there are two primary mutations responsible for conveying a harder kernel texture among U.S. hard red spring wheats: (1) the P...

  17. Influence of low-molecular-weight glutenin subunit haplotypes on dough rheology in elite common wheat varieties

    USDA-ARS?s Scientific Manuscript database

    The low molecular weight glutenin subunits (LMW-GSs) are a class of wheat seed storage proteins. They are encoded by a multigene family located at the Glu-3 loci, and their allelic variation strongly influences wheat end-use quality. Due to ambiguities in the LMW-GS allele nomenclature and to the co...

  18. Evidence of intralocus recombination at the Glu-3 loci in bread wheat (Triticum aestivum L.)

    USDA-ARS?s Scientific Manuscript database

    The low-molecular weight glutenin subunits (LMW-GSs) are a class of wheat seed storage proteins that play a critical role in the determination of wheat flour bread-making quality. These proteins are encoded by multigene families located at the orthologous Glu-3 loci (Glu-A3, Glu-B3 and Glu-D3), on t...

  19. Detection of sunn pest-damaged wheat samples using visible/near-infrared spectroscopy based on pattern recognition.

    PubMed

    Basati, Zahra; Jamshidi, Bahareh; Rasekh, Mansour; Abbaspour-Gilandeh, Yousef

    2018-05-30

    The presence of sunn pest-damaged grains in wheat mass reduces the quality of flour and bread produced from it. Therefore, it is essential to assess the quality of the samples in collecting and storage centers of wheat and flour mills. In this research, the capability of visible/near-infrared (Vis/NIR) spectroscopy combined with pattern recognition methods was investigated for discrimination of wheat samples with different percentages of sunn pest-damaged. To this end, various samples belonging to five classes (healthy and 5%, 10%, 15% and 20% unhealthy) were analyzed using Vis/NIR spectroscopy (wavelength range of 350-1000 nm) based on both supervised and unsupervised pattern recognition methods. Principal component analysis (PCA) and hierarchical cluster analysis (HCA) as the unsupervised techniques and soft independent modeling of class analogies (SIMCA) and partial least squares-discriminant analysis (PLS-DA) as supervised methods were used. The results showed that Vis/NIR spectra of healthy samples were correctly clustered using both PCA and HCA. Due to the high overlapping between the four unhealthy classes (5%, 10%, 15% and 20%), it was not possible to discriminate all the unhealthy samples in individual classes. However, when considering only the two main categories of healthy and unhealthy, an acceptable degree of separation between the classes can be obtained after classification with supervised pattern recognition methods of SIMCA and PLS-DA. SIMCA based on PCA modeling correctly classified samples in two classes of healthy and unhealthy with classification accuracy of 100%. Moreover, the power of the wavelengths of 839 nm, 918 nm and 995 nm were more than other wavelengths to discriminate two classes of healthy and unhealthy. It was also concluded that PLS-DA provides excellent classification results of healthy and unhealthy samples (R 2  = 0.973 and RMSECV = 0.057). Therefore, Vis/NIR spectroscopy based on pattern recognition techniques can be useful for rapid distinguishing the healthy wheat samples from those damaged by sunn pest in the maintenance and processing centers. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Evaluation of several schemes for classification of remotely sensed data: Their parameters and performance. [Foster County, North Dakota; Grant County, Kansas; Iroquois County, Illinois, Tippecanoe County, Indiana; and Pottawattamie and Shelby Counties, Iowa

    NASA Technical Reports Server (NTRS)

    Scholz, D.; Fuhs, N.; Hixson, M.; Akiyama, T. (Principal Investigator)

    1979-01-01

    The author has identified the following significant results. Data sets for corn, soybeans, winter wheat, and spring wheat were used to evaluate the following schemes for crop identification: (1) per point Gaussian maximum classifier; (2) per point sum of normal densities classifiers; (3) per point linear classifier; (4) per point Gaussian maximum likelihood decision tree classifiers; and (5) texture sensitive per field Gaussian maximum likelihood classifier. Test site location and classifier both had significant effects on classification accuracy of small grains; classifiers did not differ significantly in overall accuracy, with the majority of the difference among classifiers being attributed to training method rather than to the classification algorithm applied. The complexity of use and computer costs for the classifiers varied significantly. A linear classification rule which assigns each pixel to the class whose mean is closest in Euclidean distance was the easiest for the analyst and cost the least per classification.

  1. Genome-wide identification and characterization of NB-ARC resistant genes in wheat (Triticum aestivum L.) and their expression during leaf rust infection.

    PubMed

    Chandra, Saket; Kazmi, Andaleeb Z; Ahmed, Zainab; Roychowdhury, Gargi; Kumari, Veena; Kumar, Manish; Mukhopadhyay, Kunal

    2017-07-01

    NB-ARC domain-containing resistance genes from the wheat genome were identified, characterized and localized on chromosome arms that displayed differential yet positive response during incompatible and compatible leaf rust interactions. Wheat (Triticum aestivum L.) is an important cereal crop; however, its production is affected severely by numerous diseases including rusts. An efficient, cost-effective and ecologically viable approach to control pathogens is through host resistance. In wheat, high numbers of resistance loci are present but only few have been identified and cloned. A comprehensive analysis of the NB-ARC-containing genes in complete wheat genome was accomplished in this study. Complete NB-ARC encoding genes were mined from the Ensembl Plants database to predict 604 NB-ARC containing sequences using the HMM approach. Genome-wide analysis of orthologous clusters in the NB-ARC-containing sequences of wheat and other members of the Poaceae family revealed maximum homology with Oryza sativa indica and Brachypodium distachyon. The identification of overlap between orthologous clusters enabled the elucidation of the function and evolution of resistance proteins. The distributions of the NB-ARC domain-containing sequences were found to be balanced among the three wheat sub-genomes. Wheat chromosome arms 4AL and 7BL had the most NB-ARC domain-containing contigs. The spatio-temporal expression profiling studies exemplified the positive role of these genes in resistant and susceptible wheat plants during incompatible and compatible interaction in response to the leaf rust pathogen Puccinia triticina. Two NB-ARC domain-containing sequences were modelled in silico, cloned and sequenced to analyze their fine structures. The data obtained in this study will augment isolation, characterization and application NB-ARC resistance genes in marker-assisted selection based breeding programs for improving rust resistance in wheat.

  2. Fine mapping and characterization of Sr21, a temperature-sensitive diploid wheat resistance gene effective against the Puccinia graminis f.sp. tritici Ug99 race group

    USDA-ARS?s Scientific Manuscript database

    A new race of Puccinia graminis f. sp. tritici, the causal pathogen of stem rust of wheat, designated TTKSK (also known as Ug99) and its variants are virulent to most of the stem rust resistance genes currently deployed in wheat cultivars worldwide. Therefore, identification, mapping and deployment ...

  3. Genome-wide analysis of family-1 UDP glycosyltransferases (UGT) and identification of UGT genes for FHB resistance in wheat (Triticum aestivum L.).

    PubMed

    He, Yi; Ahmad, Dawood; Zhang, Xu; Zhang, Yu; Wu, Lei; Jiang, Peng; Ma, Hongxiang

    2018-04-19

    Fusarium head blight (FHB), a devastating disease in wheat worldwide, results in yield loses and mycotoxin, such as deoxynivalenol (DON), accumulation in infected grains. DON also facilitates the pathogen colonization and spread of FHB symptoms during disease development. UDP-glycosyltransferase enzymes (UGTs) are known to contribute to detoxification and enhance FHB resistance by glycosylating DON into DON-3-glucoside (D3G) in wheat. However, a comprehensive investigation of wheat (Triticum aestivum) UGT genes is still lacking. In this study, we carried out a genome-wide analysis of family-1 UDP glycosyltransferases in wheat based on the PSPG conserved box that resulted in the identification of 179 putative UGT genes. The identified genes were clustered into 16 major phylogenetic groups with a lack of phylogenetic group K. The UGT genes were invariably distributed among all the chromosomes of the 3 genomes. At least 10 intron insertion events were found in the UGT sequences, where intron 4 was observed as the most conserved intron. The expression analysis of the wheat UGT genes using both online microarray data and quantitative real-time PCR verification suggested the distinct role of UGT genes in different tissues and developmental stages. The expression of many UGT genes was up-regulated after Fusarium graminearum inoculation, and six of the genes were further verified by RT-qPCR. We identified 179 UGT genes from wheat using the available sequenced wheat genome. This study provides useful insight into the phylogenetic structure, distribution, and expression patterns of family-1 UDP glycosyltransferases in wheat. The results also offer a foundation for future work aimed at elucidating the molecular mechanisms underlying the resistance to FHB and DON accumulation.

  4. Identification of intact high molecular weight glutenin subunits from the wheat proteome using combined liquid chromatography-electrospray ionization mass spectrometry.

    PubMed

    Lagrain, Bert; Brunnbauer, Markus; Rombouts, Ine; Koehler, Peter

    2013-01-01

    The present paper describes a method for the identification of intact high molecular weight glutenin subunits (HMW-GS), the quality determining proteins from the wheat storage proteome. The method includes isolation of HMW-GS from wheat flour, further separation of HMW-GS by reversed-phase high-performance liquid chromatography (RP-HPLC), and their subsequent molecular identification with electrospray ionization mass spectrometry using a quadrupole-time-of-flight mass analyzer. For HMW-GS isolation, wheat proteins were reduced and extracted from flour with 50% 1-propanol containing 1% dithiothreitol. HMW-GS were then selectively precipitated from the protein mixture by adjusting the 1-propanol concentration to 60%. The composition of the precipitated proteins was first evaluated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis with Coomassie staining and RP-HPLC with ultraviolet detection. Besides HMW-GS (≥65%), the isolated proteins mainly contained ω5-gliadins. Secondly, the isolated protein fraction was analyzed by liquid chromatography-mass spectrometry. Optimal chromatographic separation of HMW-GS from the other proteins in the isolated fraction was obtained when the mobile phase contained 0.1% trifluoroacetic acid as ion-pairing agent. Individual HMW-GS were then identified by determining their molecular masses from the high-resolution mass spectra and comparing these with theoretical masses calculated from amino acid sequences. Using formic acid instead of trifluoroacetic acid in the mobile phase increased protein peak intensities in the base peak mass chromatogram. This allowed the detection of even traces of other wheat proteins than HMW-GS in the isolated fraction, but the chromatographic separation was inferior with a major overlap between the elution ranges of HMW-GS and ω-gliadins. Overall, the described method allows a rapid assessment of wheat quality through the direct determination of the HMW-GS composition and offers a basis for further top-down proteomics of individual HMW-GS and the entire wheat glutenin fraction.

  5. Identification of Intact High Molecular Weight Glutenin Subunits from the Wheat Proteome Using Combined Liquid Chromatography-Electrospray Ionization Mass Spectrometry

    PubMed Central

    Lagrain, Bert; Brunnbauer, Markus; Rombouts, Ine; Koehler, Peter

    2013-01-01

    The present paper describes a method for the identification of intact high molecular weight glutenin subunits (HMW-GS), the quality determining proteins from the wheat storage proteome. The method includes isolation of HMW-GS from wheat flour, further separation of HMW-GS by reversed-phase high-performance liquid chromatography (RP-HPLC), and their subsequent molecular identification with electrospray ionization mass spectrometry using a quadrupole-time-of-flight mass analyzer. For HMW-GS isolation, wheat proteins were reduced and extracted from flour with 50% 1-propanol containing 1% dithiothreitol. HMW-GS were then selectively precipitated from the protein mixture by adjusting the 1-propanol concentration to 60%. The composition of the precipitated proteins was first evaluated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis with Coomassie staining and RP-HPLC with ultraviolet detection. Besides HMW-GS (≥65%), the isolated proteins mainly contained ω5-gliadins. Secondly, the isolated protein fraction was analyzed by liquid chromatography-mass spectrometry. Optimal chromatographic separation of HMW-GS from the other proteins in the isolated fraction was obtained when the mobile phase contained 0.1% trifluoroacetic acid as ion-pairing agent. Individual HMW-GS were then identified by determining their molecular masses from the high-resolution mass spectra and comparing these with theoretical masses calculated from amino acid sequences. Using formic acid instead of trifluoroacetic acid in the mobile phase increased protein peak intensities in the base peak mass chromatogram. This allowed the detection of even traces of other wheat proteins than HMW-GS in the isolated fraction, but the chromatographic separation was inferior with a major overlap between the elution ranges of HMW-GS and ω-gliadins. Overall, the described method allows a rapid assessment of wheat quality through the direct determination of the HMW-GS composition and offers a basis for further top-down proteomics of individual HMW-GS and the entire wheat glutenin fraction. PMID:23520527

  6. Identification of PmTA1662 from Aegilops tauschii

    USDA-ARS?s Scientific Manuscript database

    Powdery mildew remains a significant threat to wheat (Triticum aestivum L.) production, and the rapid breakdown of race-specific resistance to Blumeria graminis (DC.) f. sp. tritici (Bgt) reinforces the need to identify novel sources of resistance. The D-genome progenitor species of hexaploid wheat,...

  7. [Low-temperature response and cold tolerance at spike differentiation stage of winter wheat varieties sowed in spring].

    PubMed

    Xu, Lan; Gao, Zhi-fiang; An, Wei; Yuan, Ya-qi; Li, Yan-liang

    2015-06-01

    A total of 10 winter wheat varieties were imported from the middle and lower reaches of the Yangtze River region in China. Those varieties were sowed in spring in Xinding basin area of Shanxi Province, and the field trials were performed for two years (2013-2014). The traits and physiological characteristics under low temperature stress including grain yield, total content of chlorophyll, osmotic adjustment, membrane system, ion leakage rate, contents of soluble sugar and soluble protein were investigated, and the cold tolerance levels of the wheat varieties were assessed. The results showed that low temperature stress led to increases in wheat leaf ion leakage rate, soluble sugar and protein contents, but obvious reduction of chlorophyll content. According to principal component analysis and cold tolerance (D value) , Yumai 10, Yangmai 20, and Yunmai 42 were classed as cold sensitive wheat varieties. Yangmai 13, Yumai 12, and Ningmai 13 were classed as stronger cold-resistant wheat genotypes, and showed stability through two-year field trials, with the D values being 0.665-0.659, 0.493-0.495, and 0.471-0.583, respectively, while the D values for the controls Ning 2038 and Xinchun 30 were 0.368-0.397, and 0.328-0.330, respectively. The grain yields of the cold resistant wheat varieties were significantly higher than that of the other varieties tested. Therefore, Yangmai 13, Yumai 12 and Ningmai 13 could be imported and used as the cold tolerant wheat varieties for North Plain of China.

  8. Drought Tolerance in Modern and Wild Wheat

    PubMed Central

    Budak, Hikmet; Kantar, Melda; Yucebilgili Kurtoglu, Kuaybe

    2013-01-01

    The genus Triticum includes bread (Triticum aestivum) and durum wheat (Triticum durum) and constitutes a major source for human food consumption. Drought is currently the leading threat on world's food supply, limiting crop yield, and is complicated since drought tolerance is a quantitative trait with a complex phenotype affected by the plant's developmental stage. Drought tolerance is crucial to stabilize and increase food production since domestication has limited the genetic diversity of crops including wild wheat, leading to cultivated species, adapted to artificial environments, and lost tolerance to drought stress. Improvement for drought tolerance can be achieved by the introduction of drought-grelated genes and QTLs to modern wheat cultivars. Therefore, identification of candidate molecules or loci involved in drought tolerance is necessary, which is undertaken by “omics” studies and QTL mapping. In this sense, wild counterparts of modern varieties, specifically wild emmer wheat (T. dicoccoides), which are highly tolerant to drought, hold a great potential. Prior to their introgression to modern wheat cultivars, drought related candidate genes are first characterized at the molecular level, and their function is confirmed via transgenic studies. After integration of the tolerance loci, specific environment targeted field trials are performed coupled with extensive analysis of morphological and physiological characteristics of developed cultivars, to assess their performance under drought conditions and their possible contributions to yield in certain regions. This paper focuses on recent advances on drought related gene/QTL identification, studies on drought related molecular pathways, and current efforts on improvement of wheat cultivars for drought tolerance. PMID:23766697

  9. Molecular Characterization, Gene Evolution, and Expression Analysis of the Fructose-1, 6-bisphosphate Aldolase (FBA) Gene Family in Wheat (Triticum aestivum L.)

    PubMed Central

    Lv, Geng-Yin; Guo, Xiao-Guang; Xie, Li-Ping; Xie, Chang-Gen; Zhang, Xiao-Hong; Yang, Yuan; Xiao, Lei; Tang, Yu-Ying; Pan, Xing-Lai; Guo, Ai-Guang; Xu, Hong

    2017-01-01

    Fructose-1, 6-bisphosphate aldolase (FBA) is a key plant enzyme that is involved in glycolysis, gluconeogenesis, and the Calvin cycle. It plays significant roles in biotic and abiotic stress responses, as well as in regulating growth and development processes. In the present paper, 21 genes encoding TaFBA isoenzymes were identified, characterized, and categorized into three groups: class I chloroplast/plastid FBA (CpFBA), class I cytosol FBA (cFBA), and class II chloroplast/plastid FBA. By using a prediction online database and genomic PCR analysis of Chinese Spring nulli-tetrasomic lines, we have confirmed the chromosomal location of these genes in 12 chromosomes of four homologous groups. Sequence and genomic structure analysis revealed the high identity of the allelic TaFBA genes and the origin of different TaFBA genes. Numerous putative environment stimulus-responsive cis-elements have been identified in 1,500-bp regions of TaFBA gene promoters, of which the most abundant are the light-regulated elements (LREs). Phylogenetic reconstruction using the deduced protein sequence of 245 FBA genes indicated an independent evolutionary pathway for the class I and class II groups. Although, earlier studies have indicated that class II FBA only occurs in prokaryote and fungi, our results have demonstrated that a few class II CpFBAs exist in wheat and other closely related species. Class I TaFBA was predicted to be tetramers and class II to be dimers. Gene expression analysis based on microarray and transcriptome databases suggested the distinct role of TaFBAs in different tissues and developmental stages. The TaFBA 4–9 genes were highly expressed in leaves and might play important roles in wheat development. The differential expression patterns of the TaFBA genes in light/dark and a few abiotic stress conditions were also analyzed. The results suggested that LRE cis-elements of TaFBA gene promoters were not directly related to light responses. Most TaFBA genes had higher expression levels in the roots than in the shoots when under various stresses. Class I cytosol TaFBA genes, particularly TaFBA10/12/18 and TaFBA13/16, and three class II TaFBA genes are involved in responses to various abiotic stresses. Class I CpFBA genes in wheat are apparently sensitive to different stress conditions. PMID:28659962

  10. Genome-wide association mapping of resistance to eyespot disease (Pseudocercosporella herpotrichoides) in European winter wheat (Triticum aestivum L.) and fine-mapping of Pch1.

    PubMed

    Zanke, Christine D; Rodemann, Bernd; Ling, Jie; Muqaddasi, Quddoos H; Plieske, Jörg; Polley, Andreas; Kollers, Sonja; Ebmeyer, Erhard; Korzun, Viktor; Argillier, Odile; Stiewe, Gunther; Zschäckel, Thomas; Ganal, Martin W; Röder, Marion S

    2017-03-01

    Genotypes with recombination events in the Triticum ventricosum introgression on chromosome 7D allowed to fine-map resistance gene Pch1, the main source of eyespot resistance in European winter wheat cultivars. Eyespot (also called Strawbreaker) is a common and serious fungal disease of winter wheat caused by the necrotrophic fungi Oculimacula yallundae and Oculimacula acuformis (former name Pseudocercosporella herpotrichoides). A genome-wide association study (GWAS) for eyespot was performed with 732 microsatellite markers (SSR) and 7761 mapped SNP markers derived from the 90 K iSELECT wheat array using a panel of 168 European winter wheat varieties as well as three spring wheat varieties and phenotypic evaluation of eyespot in field tests in three environments. Best linear unbiased estimations (BLUEs) were calculated across all trials and ranged from 1.20 (most resistant) to 5.73 (most susceptible) with an average value of 4.24 and a heritability of H 2  = 0.91. A total of 108 SSR and 235 SNP marker-trait associations (MTAs) were identified by considering associations with a -log 10 (P value) ≥3.0. Significant MTAs for eyespot-score BLUEs were found on chromosomes 1D, 2A, 2D, 3D, 5A, 5D, 6A, 7A and 7D for the SSR markers and chromosomes 1B, 2A, 2B, 2D, 3B and 7D for the SNP markers. For 18 varieties (10.5%), a highly resistant phenotype was detected that was linked to the presence of the resistance gene Pch1 on chromosome 7D. The identification of genotypes with recombination events in the introgressed genomic segment from Triticum ventricosum harboring the Pch1 resistance gene on chromosome 7DL allowed the fine-mapping of this gene using additional SNP markers and a potential candidate gene Traes_7DL_973A33763 coding for a CC-NBS-LRR class protein was identified.

  11. Screening and Characterization of Potentially Suppressive Soils against Gaeumannomyces graminis under Extensive Wheat Cropping by Chilean Indigenous Communities.

    PubMed

    Durán, Paola; Jorquera, Milko; Viscardi, Sharon; Carrion, Victor J; Mora, María de la Luz; Pozo, María J

    2017-01-01

    Wheat production around the world is severely compromised by the occurrence of "take-all" disease, which is caused by the soil-borne pathogen Gaeumannomyces graminis var. tritici (Ggt). In this context, suppressive soils are those environments in which plants comparatively suffer less soil-borne pathogen diseases than expected, owing to native soil microorganism activities. In southern Chile, where 85% of the national cereal production takes place, several studies have suggested the existence of suppressive soils under extensive wheat cropping. Thus, this study aimed to screen Ggt-suppressive soil occurrence in 16 locations managed by indigenous "Mapuche" communities, using extensive wheat cropping for more than 10 years. Ggt growth inhibition in vitro screenings allowed the identification of nine putative suppressive soils. Six of these soils, including Andisols and Ultisols, were confirmed to be suppressive, since they reduced take-all disease in wheat plants growing under greenhouse conditions. Suppressiveness was lost upon soil sterilization, and recovered by adding 1% of the natural soil, hence confirming that suppressiveness was closely associated to the soil microbiome community composition. Our results demonstrate that long-term extensive wheat cropping, established by small Mapuche communities, can generate suppressive soils that can be used as effective microorganism sources for take-all disease biocontrol. Accordingly, suppressive soil identification and characterization are key steps for the development of environmentally-friendly and efficient biotechnological applications for soil-borne disease control.

  12. Identification of novel powdery mildew resistance sources in wheat

    USDA-ARS?s Scientific Manuscript database

    Powdery mildew is a globally dominating disease of wheat with a high occurrence frequency, and genetic resistance plays an important role in managing this devastating disease. The objectives of this study were to evaluate leaf rust resistance and the underlying genes of breeding lines in the USA, a...

  13. Invertebrate communities in spring wheat and the identification of cereal aphid predators through molecular gut content analysis

    USDA-ARS?s Scientific Manuscript database

    Cereal aphid complexes are responsible for reducing wheat production worldwide; however, management against these species is rare in North America. Generalist predators may contribute to reducing cereal aphid numbers and preventing significant damage to crops. A two-year survey identifying the arth...

  14. Association of Satellites with a Mastrevirus in Natural Infection: Complexity of Wheat Dwarf India Virus Disease

    PubMed Central

    Kumar, Jitendra; Kumar, Jitesh; Singh, Sudhir P.

    2014-01-01

    ABSTRACT In contrast to begomoviruses, mastreviruses have not previously been shown to interact with satellites. This study reports the first identification of the association of satellites with a mastrevirus in field-grown plants. Two alphasatellite species were detected in different field samples of wheat infected with Wheat Dwarf India Virus (WDIV), a Cotton leaf curl Multan alphasatellite (CLCuMA) and a Guar leaf curl alphasatellite (GLCuA). In addition to the alphasatellites, a betasatellite, Ageratum yellow leaf curl betasatellite (AYLCB), was also identified in the wheat samples. No begomovirus was detected in the wheat samples, thus establishing association of the above-named satellites with WDIV. Agrobacterium-mediated inoculation of WDIV in wheat, in the presence of either of the alphasatellites or the betasatellite, resulted in infections inducing more severe symptoms. WDIV efficiently maintained each of the alphasatellites and the betasatellite in wheat. The satellites enhanced the level of WDIV DNA in wheat. Inoculation of the satellites isolated from wheat with various begomoviruses into Nicotiana tabacum demonstrated that these remain capable of interacting with the viruses with which they were first identified. Virus-specific small RNAs accumulated in wheat upon infection with WDIV but were lower in abundance in plants coinfected with the satellites, suggesting that both the alphasatellites and the betasatellite suppress RNA silencing. These results suggest that the selective advantage for the maintenance of the alphasatellites and the betasatellite by WDIV in the field is in overcoming RNA silencing-mediated host defense. IMPORTANCE Wheat is the most widely cultivated cereal crop in the world. A number of viruses are important pathogens of wheat, including the viruses of the genus Mastrevirus, family Geminiviridae. This study reports the association of subgenomic components, called satellites (alpha- and betasatellites), with a mastrevirus, Wheat Dwarf India Virus (WDIV), isolated from two distant locations in India. This study reports the first identification of the satellites in a monocot plant. The satellites enhanced accumulation of WDIV and severity of disease symptoms. The satellites lowered the concentration of virus-specific small RNAs in wheat plants, indicating their silencing suppressor activity. The involvement of the satellites in symptom severity of the mastrevirus can have implications in the form of economic impact of the virus on crop yield. Understanding the role of the satellites in disease severity is important for developing disease management strategies. PMID:24719407

  15. 77 FR 25375 - United States Standards for Wheat

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-30

    ...: Defects: Damaged kernels Heat (part of total) 0.2 0.2 0.5 1.0 .3.0 Total 2.0 4.0 7.0 10.0 15.0 Foreign material 0.4 0.7 1.3 3.0 5.0 Shrunken and broken kernels 2.0 4.0 8.0 12.0 20.0 Total \\1\\ 3.0 5.0 8.0 12.0 20.0 Wheat of other classes: \\2\\ Contrasting classes 1.0 2.0 3.0 10.0 10.0 Total \\3\\ 3.0 5.0 10.0 10...

  16. Wheat-specific gene, ribosomal protein l21, used as the endogenous reference gene for qualitative and real-time quantitative polymerase chain reaction detection of transgenes.

    PubMed

    Liu, Yi-Ke; Li, He-Ping; Huang, Tao; Cheng, Wei; Gao, Chun-Sheng; Zuo, Dong-Yun; Zhao, Zheng-Xi; Liao, Yu-Cai

    2014-10-29

    Wheat-specific ribosomal protein L21 (RPL21) is an endogenous reference gene suitable for genetically modified (GM) wheat identification. This taxon-specific RPL21 sequence displayed high homogeneity in different wheat varieties. Southern blots revealed 1 or 3 copies, and sequence analyses showed one amplicon in common wheat. Combined analyses with sequences from common wheat (AABBDD) and three diploid ancestral species, Triticum urartu (AA), Aegilops speltoides (BB), and Aegilops tauschii (DD), demonstrated the presence of this amplicon in the AA genome. Using conventional qualitative polymerase chain reaction (PCR), the limit of detection was 2 copies of wheat haploid genome per reaction. In the quantitative real-time PCR assay, limits of detection and quantification were about 2 and 8 haploid genome copies, respectively, the latter of which is 2.5-4-fold lower than other reported wheat endogenous reference genes. Construct-specific PCR assays were developed using RPL21 as an endogenous reference gene, and as little as 0.5% of GM wheat contents containing Arabidopsis NPR1 were properly quantified.

  17. Winter wheat mapping combining variations before and after estimated heading dates

    NASA Astrophysics Data System (ADS)

    Qiu, Bingwen; Luo, Yuhan; Tang, Zhenghong; Chen, Chongcheng; Lu, Difei; Huang, Hongyu; Chen, Yunzhi; Chen, Nan; Xu, Weiming

    2017-01-01

    Accurate and updated information on winter wheat distribution is vital for food security. The intra-class variability of the temporal profiles of vegetation indices presents substantial challenges to current time series-based approaches. This study developed a new method to identify winter wheat over large regions through a transformation and metric-based approach. First, the trend surfaces were established to identify key phenological parameters of winter wheat based on altitude and latitude with references to crop calendar data from the agro-meteorological stations. Second, two phenology-based indicators were developed based on the EVI2 differences between estimated heading and seedling/harvesting dates and the change amplitudes. These two phenology-based indicators revealed variations during the estimated early and late growth stages. Finally, winter wheat data were extracted based on these two metrics. The winter wheat mapping method was applied to China based on the 250 m 8-day composite Moderate Resolution Imaging Spectroradiometer (MODIS) 2-band Enhanced Vegetation Index (EVI2) time series datasets. Accuracy was validated with field survey data, agricultural census data, and Landsat-interpreted results in test regions. When evaluated with 653 field survey sites and Landsat image interpreted data, the overall accuracy of MODIS-derived images in 2012-2013 was 92.19% and 88.86%, respectively. The MODIS-derived winter wheat areas accounted for over 82% of the variability at the municipal level when compared with agricultural census data. The winter wheat mapping method developed in this study demonstrates great adaptability to intra-class variability of the vegetation temporal profiles and has great potential for further applications to broader regions and other types of agricultural crop mapping.

  18. Polymorphic Homoeolog of Key Gene of RdDM Pathway, ARGONAUTE4_9 class Is Associated with Pre-Harvest Sprouting in Wheat (Triticum aestivum L.)

    PubMed Central

    Singh, Manjit; Singh, Surinder; Randhawa, Harpinder; Singh, Jaswinder

    2013-01-01

    Resistance to pre-harvest sprouting (PHS) is an important objective for the genetic improvement of many cereal crops, including wheat. Resistance, or susceptibility, to PHS is mainly influenced by seed dormancy, a complex trait. Reduced seed dormancy is the most important aspect of seed germination on a spike prior to harvesting, but it is influenced by various environmental factors including light, temperature and abiotic stresses. The basic genetic framework of seed dormancy depends on the antagonistic action of abscisic acid (ABA) and gibberellic acid (GA) to promote dormancy and germination. Recent studies have revealed a role for epigenetic changes, predominantly histone modifications, in controlling seed dormancy. To investigate the role of DNA methylation in seed dormancy, we explored the role of ARGONAUTE4_9 class genes in seed development and dormancy in wheat. Our results indicate that the two wheat AGO4_9 class genes i.e. AGO802 and AGO804 map to chromosomes 3S and 1S are preferentially expressed in the embryos of developing seeds. Differential expressions of AGO802-B in the embryos of PHS resistant and susceptible varieties also relates with DNA polymorphism in various wheat varieties due to an insertion of a SINE-like element into this gene. DNA methylation patterns of the embryonic tissue from six PHS resistant and susceptible varieties demonstrate a correlation with this polymorphism. These results suggest a possible role for AGO802-B in seed dormancy and PHS resistance through the modulation of DNA methylation. PMID:24130825

  19. Genome-wide identification and analysis of the MADS-box gene family in bread wheat (Triticum aestivum L.)

    PubMed Central

    Yang, Congcong; Ding, Puyang; Liu, Yaxi; Qiao, Linyi; Chang, Zhijian; Geng, Hongwei; Wang, Penghao; Jiang, Qiantao; Wang, Jirui; Chen, Guoyue; Wei, Yuming; Zheng, Youliang; Lan, Xiujin

    2017-01-01

    The MADS-box genes encode transcription factors with key roles in plant growth and development. A comprehensive analysis of the MADS-box gene family in bread wheat (Triticum aestivum) has not yet been conducted, and our understanding of their roles in stress is rather limited. Here, we report the identification and characterization of the MADS-box gene family in wheat. A total of 180 MADS-box genes classified as 32 Mα, 5 Mγ, 5 Mδ, and 138 MIKC types were identified. Evolutionary analysis of the orthologs among T. urartu, Aegilops tauschii and wheat as well as homeologous sequences analysis among the three sub-genomes in wheat revealed that gene loss and chromosomal rearrangements occurred during and/or after the origin of bread wheat. Forty wheat MADS-box genes that were expressed throughout the investigated tissues and development stages were identified. The genes that were regulated in response to both abiotic stresses (i.e., phosphorus deficiency, drought, heat, and combined drought and heat) and biotic stresses (i.e., Fusarium graminearum, Septoria tritici, stripe rust and powdery mildew) were detected as well. A few notable MADS-box genes were specifically expressed in a single tissue and those showed relatively higher expression differences between the stress and control treatment. The expression patterns of considerable MADS-box genes differed from those of their orthologs in Brachypodium, rice, and Arabidopsis. Collectively, the present study provides new insights into the possible roles of MADS-box genes in response to stresses and will be valuable for further functional studies of important candidate MADS-box genes. PMID:28742823

  20. Genome-wide identification and analysis of the MADS-box gene family in bread wheat (Triticum aestivum L.).

    PubMed

    Ma, Jian; Yang, Yujie; Luo, Wei; Yang, Congcong; Ding, Puyang; Liu, Yaxi; Qiao, Linyi; Chang, Zhijian; Geng, Hongwei; Wang, Penghao; Jiang, Qiantao; Wang, Jirui; Chen, Guoyue; Wei, Yuming; Zheng, Youliang; Lan, Xiujin

    2017-01-01

    The MADS-box genes encode transcription factors with key roles in plant growth and development. A comprehensive analysis of the MADS-box gene family in bread wheat (Triticum aestivum) has not yet been conducted, and our understanding of their roles in stress is rather limited. Here, we report the identification and characterization of the MADS-box gene family in wheat. A total of 180 MADS-box genes classified as 32 Mα, 5 Mγ, 5 Mδ, and 138 MIKC types were identified. Evolutionary analysis of the orthologs among T. urartu, Aegilops tauschii and wheat as well as homeologous sequences analysis among the three sub-genomes in wheat revealed that gene loss and chromosomal rearrangements occurred during and/or after the origin of bread wheat. Forty wheat MADS-box genes that were expressed throughout the investigated tissues and development stages were identified. The genes that were regulated in response to both abiotic stresses (i.e., phosphorus deficiency, drought, heat, and combined drought and heat) and biotic stresses (i.e., Fusarium graminearum, Septoria tritici, stripe rust and powdery mildew) were detected as well. A few notable MADS-box genes were specifically expressed in a single tissue and those showed relatively higher expression differences between the stress and control treatment. The expression patterns of considerable MADS-box genes differed from those of their orthologs in Brachypodium, rice, and Arabidopsis. Collectively, the present study provides new insights into the possible roles of MADS-box genes in response to stresses and will be valuable for further functional studies of important candidate MADS-box genes.

  1. Supercritical fluid extraction and direct fluid injection mass spectrometry for the determination of trichothecene mycotoxins in wheat samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalinoski, H.T.; Udseth, H.R.; Wright, B.W.

    1986-10-01

    The application of on-line supercritical fluid extraction with chemical ionization mass spectrometry and collision induced dissociation tandem mass spectrometry for the rapid identification of parts-per-million levels of several trichothecene mycotoxins is demonstrated. Supercritical carbon dioxide is shown to allow identification of mycotoxins with minimum sample handling in complex natural matrices (e.g., wheat). Tandem mass spectrometry techniques are employed for unambiguous identification of compounds of varying polarity, and false positives from isobaric compounds are avoided. Capillary column supercritical fluid chromatography-mass spectrometry of a supercritical fluid extract of the same sample was also performed and detection limits in the parts-per-billion range appearmore » feasible.« less

  2. Identification of Berberis spp. as alternate hosts of Puccinia striiformis f. sp. tritici in China

    USDA-ARS?s Scientific Manuscript database

    Wheat stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), is an important disease on wheat in China because of high virulence diversity. Since the discovery of sexual stage of P. striiformis on Berberis spp., especially B. chinesensis, our interests focused on identifying Berberis spec...

  3. Glutamine synthetase in durum wheat: Genotypic variation and relationship with grain protein content

    USDA-ARS?s Scientific Manuscript database

    Nitrogen Use Efficiency (NUE), one of the most valuable indicators for nitrogen use in crops, both in terms of yield and final grain protein content (GPC), is a very complex trait. The identification of wheat varieties with high NUE, as well as the characterization of central enzymes involved in th...

  4. Identification of dual-resistance to Pratylenchus neglectus and P. thornei in Iranian landrace accessions of wheat

    USDA-ARS?s Scientific Manuscript database

    The pathogenic nematode species Pratylenchus neglectus and P. thornieii cause severe yeid losses in wheat (Triticum aestivum). Our objectives were to assay a collection of Iranian landrace accessions collected from 12 provinces in Iran to identify novel sources of resistance to both species and to ...

  5. Identification and functional expression of ZIP1 transporter protein in Triticum dicoccoides

    USDA-ARS?s Scientific Manuscript database

    Zinc (Zn) deficiency is a common problem, especially in cereal-growing areas, leading to severe decreases in grain yield and nutritional quality. Among the cereal species, durum wheat is the most sensitive crop to Zn deficiency. One major reason for this high sensitivity of durum wheat is its poor ...

  6. Identification of Damaged Wheat Kernels and Cracked-Shell Hazelnuts with Impact Acoustics Time-Frequency Patterns

    USDA-ARS?s Scientific Manuscript database

    A new adaptive time-frequency (t-f) analysis and classification procedure is applied to impact acoustic signals for detecting hazelnuts with cracked shells and three types of damaged wheat kernels. Kernels were dropped onto a steel plate, and the resulting impact acoustic signals were recorded with ...

  7. Integrated proteomics, genomics, metabolomics approaches reveal oxalic acid as pathogenicity factor in Tilletia indica inciting Karnal bunt disease of wheat.

    PubMed

    Pandey, Vishakha; Singh, Manoj; Pandey, Dinesh; Kumar, Anil

    2018-05-18

    Tilletia indica incites Karnal bunt (KB) disease in wheat. To date, no KB resistant wheat cultivar could be developed due to non-availability of potential biomarkers related to pathogenicity/virulence for screening of resistant wheat genotypes. The present study was carried out to compare the proteomes of T. indica highly (TiK) and low (TiP) virulent isolates. Twenty one protein spots consistently observed as up-regulated/differential in the TiK proteome were selected for identification by MALDI-TOF/TOF. Identified sequences showed homology with fungal proteins playing essential role in plant infection and pathogen survival, including stress response, adhesion, fungal penetration, invasion, colonization, degradation of host cell wall, signal transduction pathway. These results were integrated with T. indica genome sequence for identification of homologs of candidate pathogenicity/virulence related proteins. Protein identified in TiK isolate as malate dehydrogenase that converts malate to oxaloacetate which is precursor of oxalic acid. Oxalic acid is key pathogenicity factor in phytopathogenic fungi. These results were validated by GC-MS based metabolic profiling of T. indica isolates indicating that oxalic acid was exclusively identified in TiK isolate. Thus, integrated omics approaches leads to identification of pathogenicity/virulence factor(s) that would provide insights into pathogenic mechanisms of fungi and aid in devising effective disease management strategies.

  8. Wheat cultivation: Identification and estimation of areas using LANDSAT data

    NASA Technical Reports Server (NTRS)

    Dejesusparada, N. (Principal Investigator); Mendonca, F. J.; Cottrell, D. A.; Tardin, A. T.; Lee, D. C. L.; Shimabukuro, Y. E.; Moreira, M. A.; Delimaefernandocelsosoaresmaia, A. M.

    1981-01-01

    The feasibility of using automatically processed multispectral data obtained from LANDSAT to identify wheat and estimate the areas planted with this grain was investigated. Three 20 km by 40 km segments in a wheat growing region of Rio Grande do Sul were aerially photographed using type 2443 Aerochrome film. Three maps corresponding to each segment were obtained from the analysis of the photographs which identified wheat, barley, fallow land, prepared soil, forests, and reforested land. Using basic information about the fields and maps made from the photographed areas, an automatic classification of wheat was made using MSS data from two different periods: July to September and July to October 1979. Results show that orbital data is not only useful in characterizing the growth of wheat, but also provides information of the intensity and extent of adverse climate which affects cultivation. The temporal and spatial characteristics of LANDSAR data are also demonstrated.

  9. The hijacking of a receptor kinase-driven pathway by a wheat fungal pathogen leads to disease

    USDA-ARS?s Scientific Manuscript database

    Necrotrophic pathogens live and feed on dying tissue, but their interactions with plants are not well understood compared to biotrophic and hemibiotrophic pathogens. Here, we report the positional cloning of the wheat gene, Snn1, a member of the wall-associated kinase class of receptors, which are ...

  10. Multiple view image analysis of freefalling U.S. wheat grains for damage assessment

    USDA-ARS?s Scientific Manuscript database

    Currently, inspection of wheat in the United States for grade and class is performed by human visual analysis. This is a time consuming operation typically taking several minutes for each sample. Digital imaging research has addressed this issue over the past two decades, with success in recognition...

  11. Screening and Characterization of Potentially Suppressive Soils against Gaeumannomyces graminis under Extensive Wheat Cropping by Chilean Indigenous Communities

    PubMed Central

    Durán, Paola; Jorquera, Milko; Viscardi, Sharon; Carrion, Victor J.; Mora, María de la Luz; Pozo, María J.

    2017-01-01

    Wheat production around the world is severely compromised by the occurrence of “take-all” disease, which is caused by the soil-borne pathogen Gaeumannomyces graminis var. tritici (Ggt). In this context, suppressive soils are those environments in which plants comparatively suffer less soil-borne pathogen diseases than expected, owing to native soil microorganism activities. In southern Chile, where 85% of the national cereal production takes place, several studies have suggested the existence of suppressive soils under extensive wheat cropping. Thus, this study aimed to screen Ggt-suppressive soil occurrence in 16 locations managed by indigenous “Mapuche” communities, using extensive wheat cropping for more than 10 years. Ggt growth inhibition in vitro screenings allowed the identification of nine putative suppressive soils. Six of these soils, including Andisols and Ultisols, were confirmed to be suppressive, since they reduced take-all disease in wheat plants growing under greenhouse conditions. Suppressiveness was lost upon soil sterilization, and recovered by adding 1% of the natural soil, hence confirming that suppressiveness was closely associated to the soil microbiome community composition. Our results demonstrate that long-term extensive wheat cropping, established by small Mapuche communities, can generate suppressive soils that can be used as effective microorganism sources for take-all disease biocontrol. Accordingly, suppressive soil identification and characterization are key steps for the development of environmentally-friendly and efficient biotechnological applications for soil-borne disease control. PMID:28861064

  12. A system for diagnosis of wheat leaf diseases based on Android smartphone

    NASA Astrophysics Data System (ADS)

    Xie, Xinhua; Zhang, Xiangqian; He, Bing; Liang, Dong; Zhang, Dongyang; Huang, Linsheng

    2016-10-01

    Owing to the shortages of inconvenience, expensive and high professional requirements etc. for conventional recognition devices of wheat leaf diseases, it does not satisfy the requirements of uploading and releasing timely investigation data in the large-scale field, which may influence the effectiveness of prevention and control for wheat diseases. In this study, a fast, accurate, and robust diagnose system of wheat leaf diseases based on android smartphone was developed, which comprises of two parts—the client and the server. The functions of the client include image acquisition, GPS positioning, corresponding, and knowledge base of disease prevention and control. The server includes image processing, feature extraction, and selection, and classifier establishing. The recognition process of the system goes as follow: when disease images were collected in fields and sent to the server by android smartphone, and then image processing of disease spots was carried out by the server. Eighteen larger weight features were selected by algorithm relief-F and as the input of Relevance Vector Machine (RVM), and the automatic identification of wheat stripe rust and powdery mildew was realized. The experimental results showed that the average recognition rate and predicted speed of RVM model were 5.56% and 7.41 times higher than that of Support Vector Machine (SVM). And application discovered that it needs about 1 minute to get the identification result. Therefore, it can be concluded that the system could be used to recognize wheat diseases and real-time investigate in fields.

  13. Dynamics and Differential Proliferation of Transposable Elements During the Evolution of the B and A Genomes of Wheat

    PubMed Central

    Charles, Mathieu; Belcram, Harry; Just, Jérémy; Huneau, Cécile; Viollet, Agnès; Couloux, Arnaud; Segurens, Béatrice; Carter, Meredith; Huteau, Virginie; Coriton, Olivier; Appels, Rudi; Samain, Sylvie; Chalhoub, Boulos

    2008-01-01

    Transposable elements (TEs) constitute >80% of the wheat genome but their dynamics and contribution to size variation and evolution of wheat genomes (Triticum and Aegilops species) remain unexplored. In this study, 10 genomic regions have been sequenced from wheat chromosome 3B and used to constitute, along with all publicly available genomic sequences of wheat, 1.98 Mb of sequence (from 13 BAC clones) of the wheat B genome and 3.63 Mb of sequence (from 19 BAC clones) of the wheat A genome. Analysis of TE sequence proportions (as percentages), ratios of complete to truncated copies, and estimation of insertion dates of class I retrotransposons showed that specific types of TEs have undergone waves of differential proliferation in the B and A genomes of wheat. While both genomes show similar rates and relatively ancient proliferation periods for the Athila retrotransposons, the Copia retrotransposons proliferated more recently in the A genome whereas Gypsy retrotransposon proliferation is more recent in the B genome. It was possible to estimate for the first time the proliferation periods of the abundant CACTA class II DNA transposons, relative to that of the three main retrotransposon superfamilies. Proliferation of these TEs started prior to and overlapped with that of the Athila retrotransposons in both genomes. However, they also proliferated during the same periods as Gypsy and Copia retrotransposons in the A genome, but not in the B genome. As estimated from their insertion dates and confirmed by PCR-based tracing analysis, the majority of differential proliferation of TEs in B and A genomes of wheat (87 and 83%, respectively), leading to rapid sequence divergence, occurred prior to the allotetraploidization event that brought them together in Triticum turgidum and Triticum aestivum, <0.5 million years ago. More importantly, the allotetraploidization event appears to have neither enhanced nor repressed retrotranspositions. We discuss the apparent proliferation of TEs as resulting from their insertion, removal, and/or combinations of both evolutionary forces. PMID:18780739

  14. Identification of USSR Indicator Regions

    NASA Technical Reports Server (NTRS)

    Disler, J.; Breigh, H. (Principal Investigator)

    1980-01-01

    Potential indicator regions were determined by comparing the statistics for barley and wheat at the lowest administrative levels for which published statistics were available. Fourteen were selected for review based on their relative abundances of wheat and barely. These potential indicator regions were grouped according to three conditions that could affect labeling and classification accuracies: (1) high-barley content; (2) presence of barley and spring wheat; and (3) presence of barley and winter wheat. Each region was further evaluated based on the availability of crop calendars, LANDSAT acquisitions, and ancillary data. Based on the relative abundance of wheat and barley and the availability of data, three indicator regions were recommended. Within each region, individual oblasts and/or krays were selected according to segment availability and segment acquisition histories for potential barley separation.

  15. Genome-wide microarray analysis leads to identification of genes in response to herbicide, metribuzin in wheat leaves.

    PubMed

    Pilcher, Whitney; Zandkamiri, Hana; Arceneaux, Kelly; Harrison, Stephen; Baisakh, Niranjan

    2017-01-01

    Herbicides are an important component of weed management in wheat, particularly in the southeastern US where weeds actively compete with wheat throughout the winter for nutrients and reduce tillering and ultimately the yield of the crop. Some wheat varieties are sensitive to metribuzin, a low-cost non-selective herbicide, leading to leaf chlorosis, stand loss, and decreased yield. Knowledge of the genetics of herbicide tolerance in wheat is very limited and most new varieties have not been screened for metribuzin tolerance. The identification of genes associated with metribuzin tolerance will lead to the development of molecular markers for use in screening breeding lines for metribuzin tolerance. AGS 2035 and AGS 2060 were identified as resistant and sensitive to metribuzin in several previous field screening experiments as well as controlled condition screening of nine varieties in the present study. Genome-wide transcriptome profiling of the genes in AGS 2035 and AGS 2060 through microarray analysis identified 169 and 127 genes to be significantly (2-fold, P>0.01) up- and down-regulated, respectively in response to metribuzin. Functional annotation revealed that genes involved in cell wall biosynthesis, photosynthesis and sucrose metabolism were highly responsive to metribuzin application. (Semi)quantitative RT-PCR of seven selected differentially expressed genes (DEGs) indicated that a gene coding for alkaline alpha-galactosidase 2 (AAG2) was specifically expressed in resistant varieties only after one and two weeks of metribuzin application. Integration of the DEGs into our ongoing mapping effort and identification of the genes within the QTL region showing significant association with resistance in future will aid in development of functional markers for metribuzin resistance.

  16. Association of satellites with a mastrevirus in natural infection: complexity of Wheat dwarf India virus disease.

    PubMed

    Kumar, Jitendra; Kumar, Jitesh; Singh, Sudhir P; Tuli, Rakesh

    2014-06-01

    In contrast to begomoviruses, mastreviruses have not previously been shown to interact with satellites. This study reports the first identification of the association of satellites with a mastrevirus in field-grown plants. Two alphasatellite species were detected in different field samples of wheat infected with Wheat Dwarf India Virus (WDIV), a Cotton leaf curl Multan alphasatellite (CLCuMA) and a Guar leaf curl alphasatellite (GLCuA). In addition to the alphasatellites, a betasatellite, Ageratum yellow leaf curl betasatellite (AYLCB), was also identified in the wheat samples. No begomovirus was detected in the wheat samples, thus establishing association of the above-named satellites with WDIV. Agrobacterium-mediated inoculation of WDIV in wheat, in the presence of either of the alphasatellites or the betasatellite, resulted in infections inducing more severe symptoms. WDIV efficiently maintained each of the alphasatellites and the betasatellite in wheat. The satellites enhanced the level of WDIV DNA in wheat. Inoculation of the satellites isolated from wheat with various begomoviruses into Nicotiana tabacum demonstrated that these remain capable of interacting with the viruses with which they were first identified. Virus-specific small RNAs accumulated in wheat upon infection with WDIV but were lower in abundance in plants coinfected with the satellites, suggesting that both the alphasatellites and the betasatellite suppress RNA silencing. These results suggest that the selective advantage for the maintenance of the alphasatellites and the betasatellite by WDIV in the field is in overcoming RNA silencing-mediated host defense. Wheat is the most widely cultivated cereal crop in the world. A number of viruses are important pathogens of wheat, including the viruses of the genus Mastrevirus, family Geminiviridae. This study reports the association of subgenomic components, called satellites (alpha- and betasatellites), with a mastrevirus, Wheat Dwarf India Virus (WDIV), isolated from two distant locations in India. This study reports the first identification of the satellites in a monocot plant. The satellites enhanced accumulation of WDIV and severity of disease symptoms. The satellites lowered the concentration of virus-specific small RNAs in wheat plants, indicating their silencing suppressor activity. The involvement of the satellites in symptom severity of the mastrevirus can have implications in the form of economic impact of the virus on crop yield. Understanding the role of the satellites in disease severity is important for developing disease management strategies. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  17. Identification and validation of a new source of low grain cadmium accumulation in durum wheat

    USDA-ARS?s Scientific Manuscript database

    Cadmium (Cd) is a heavy metal that has no known biological function and is toxic for many living organisms. The maximum level of Cd concentration allowed in the international market for wheat grain is 0.2 mg kg-1. Because phenotyping for Cd uptake is expensive and time consuming, molecular markers a...

  18. Population genetic structure and mycotoxin potential of the wheat crown rot and head blight pathogen Fusarium culmorum in Algeria

    USDA-ARS?s Scientific Manuscript database

    Surveys for crown rot (FCR) and head blight (FHB) of Algerian wheat conducted during 2014 and 2015 revealed that Fusarium culmorum strains producing 3-acetyl-deoxynivalenol (3ADON) or nivalenol (NIV) were the primary causal agents of these important diseases. Morphological identification of the isol...

  19. 'Billings' wheat combines early maturity, disease resistance, and desirable grain quality for the Southern Great Plains of the USA

    USDA-ARS?s Scientific Manuscript database

    Selection pressure for earliness, resistance to multiple pathogens, and quality attributes consistent with the hard red winter (HRW) wheat (Triticum aestivum L.) market class is tantamount to, or can obscure, selection for yield potential in lower elevations of the U.S. southern Great Plains. The de...

  20. [Analysis of diversity of Russian and Ukrainian bread wheat (Triticum aestivum L.) cultivars for high-molecular-weight glutenin subunits].

    PubMed

    Dobrotvorskaia, T V; Martynov, S P

    2011-07-01

    The allelic diversity of high-moleculat-weght glutenin subunits (H WIGS) in Russian and Ukrainian bread wheat cultivars was analyzed. The diversity of spring wheat cultivars for alleles of the Glu-1 loci is characterized by medium values of the polymorphism index (polymorphism information content, PlC), and in winter wheats it varies from high at the Glu-A1 locus to low at the Glu-D1 locus. The spring and winter cultivars differ significantly in the frequencies of alleles of the glutenin loci. The combination of the Glu-A1b, Glu-B1c, and Glu-D1a alleles prevails among the spring cultivars, and the combination of the Glu-A1a, Glu-B1c, and Glu-D1d alleles prevails among the winter cultivars. The distribution of the Glu-1 alleles significantly depends on the moisture and heat supply in the region of origin of the cultivars. Drought resistance is associated with the Glu-D1a allele in the spring wheat and with the Glu-B1b allele in the winter wheat. The sources of the Glu-1 alleles were identified in the spring and wheat cultivars. The analysis of independence of the distribution of the spring and winter cultivars by the market classes and by the alleles of the HMWGS loci showed a highly significant association of the alleles of three Glu-1 loci with the market classes in foreign cultivars and independence or a weak association in the Russian and Ukrainian cultivars. This seems to be due to the absence of a statistically substantiated system of classification of the domestic cultivars on the basis of their quality.

  1. Distribution and diversity of Russian wheat aphid (Hemiptera: Aphididae) biotypes in South Africa and Lesotho.

    PubMed

    Jankielsohn, Astrid

    2011-10-01

    Russian wheat aphid, Diuraphis noxia (Kurdjumov) (Hemiptera: Aphididae) was recorded for the first time in South Africa in 1978. In 2005, a second biotype, RWASA2, emerged, and here we report on the emergence of yet another biotype, found for the first time in 2009. The discovery of new Russian wheat aphid biotypes is a significant challenge to the wheat, Triticum aestivum L., industry in South Africa. Russian wheat aphid resistance in wheat, that offered wheat producers a long-term solution to Russian wheat aphid control, may no longer be effective in areas where the new biotypes occur. It is therefore critical to determine the diversity and extent of distribution of biotypes in South Africa to successfully deploy Russian wheat aphid resistance in wheat. Screening of 96 Russian wheat aphid clones resulted in identification of three Russian wheat aphid biotypes. Infestations of RWASA1 caused susceptible damage symptoms only in wheat entries containing the Dn3 gene. Infestations of RWASA2 caused susceptible damage symptoms in wheat entries containing Dn1, Dn2, Dn3, and Dn9 resistant genes. Based on the damage-rating scores for the seven resistance sources, a new biotype, which caused damage rating scores different from those for RWASA1 and RWASA2, was evident among the Russian wheat aphid populations tested. This new biotype is virulent to the same resistance sources as RWASA2 (Dn1, Dn2, Dn3, and Dn9), but it also has added virulence to Dn4, whereas RWASA2 is avirulent to this resistance source.

  2. Genome Wide Association Study of Seedling and Adult Plant Leaf Rust Resistance in Elite Spring Wheat Breeding Lines.

    PubMed

    Gao, Liangliang; Turner, M Kathryn; Chao, Shiaoman; Kolmer, James; Anderson, James A

    2016-01-01

    Leaf rust is an important disease, threatening wheat production annually. Identification of resistance genes or QTLs for effective field resistance could greatly enhance our ability to breed durably resistant varieties. We applied a genome wide association study (GWAS) approach to identify resistance genes or QTLs in 338 spring wheat breeding lines from public and private sectors that were predominately developed in the Americas. A total of 46 QTLs were identified for field and seedling traits and approximately 20-30 confer field resistance in varying degrees. The 10 QTLs accounting for the most variation in field resistance explained 26-30% of the total variation (depending on traits: percent severity, coefficient of infection or response type). Similarly, the 10 QTLs accounting for most of the variation in seedling resistance to different races explained 24-34% of the variation, after correcting for population structure. Two potentially novel QTLs (QLr.umn-1AL, QLr.umn-4AS) were identified. Identification of novel genes or QTLs and validation of previously identified genes or QTLs for seedling and especially adult plant resistance will enhance understanding of leaf rust resistance and assist breeding for resistant wheat varieties. We also developed computer programs to automate field and seedling rust phenotype data conversions. This is the first GWAS study of leaf rust resistance in elite wheat breeding lines genotyped with high density 90K SNP arrays.

  3. Uncovering leaf rust responsive miRNAs in wheat (Triticum aestivum L.) using high-throughput sequencing and prediction of their targets through degradome analysis.

    PubMed

    Kumar, Dhananjay; Dutta, Summi; Singh, Dharmendra; Prabhu, Kumble Vinod; Kumar, Manish; Mukhopadhyay, Kunal

    2017-01-01

    Deep sequencing identified 497 conserved and 559 novel miRNAs in wheat, while degradome analysis revealed 701 targets genes. QRT-PCR demonstrated differential expression of miRNAs during stages of leaf rust progression. Bread wheat (Triticum aestivum L.) is an important cereal food crop feeding 30 % of the world population. Major threat to wheat production is the rust epidemics. This study was targeted towards identification and functional characterizations of micro(mi)RNAs and their target genes in wheat in response to leaf rust ingression. High-throughput sequencing was used for transcriptome-wide identification of miRNAs and their expression profiling in retort to leaf rust using mock and pathogen-inoculated resistant and susceptible near-isogenic wheat plants. A total of 1056 mature miRNAs were identified, of which 497 miRNAs were conserved and 559 miRNAs were novel. The pathogen-inoculated resistant plants manifested more miRNAs compared with the pathogen infected susceptible plants. The miRNA counts increased in susceptible isoline due to leaf rust, conversely, the counts decreased in the resistant isoline in response to pathogenesis illustrating precise spatial tuning of miRNAs during compatible and incompatible interaction. Stem-loop quantitative real-time PCR was used to profile 10 highly differentially expressed miRNAs obtained from high-throughput sequencing data. The spatio-temporal profiling validated the differential expression of miRNAs between the isolines as well as in retort to pathogen infection. Degradome analysis provided 701 predicted target genes associated with defense response, signal transduction, development, metabolism, and transcriptional regulation. The obtained results indicate that wheat isolines employ diverse arrays of miRNAs that modulate their target genes during compatible and incompatible interaction. Our findings contribute to increase knowledge on roles of microRNA in wheat-leaf rust interactions and could help in rust resistance breeding programs.

  4. Genome-wide association study for Identification and validation of novel SNP markers for Sr6 stem rust resistance gene in bread wheat

    USDA-ARS?s Scientific Manuscript database

    Stem rust (caused by Puccinia graminis f. sp. tritici Erikss. & E. Henn.), is a major disease in wheat (Triticum aestivium L.). However, in recent years it occurs rarely in Nebraska due to weather and the effective selection and gene pyramiding of resistance genes. To understand the genetic basis of...

  5. Identification and mapping of adult plant stripe rust resistance in soft red winter wheat VA00W-38, Pioneer brand 26R46, and Coker 9553

    USDA-ARS?s Scientific Manuscript database

    Since 2000, many of the previously effective wheat (Triticum aestivum L.) seedling stripe rust (pathogen Puccinia striiformis Westend. f.sp. tritici Eriks) resistance genes have become ineffective to the new more aggressive races of the pathogen. Because seedling resistance genes work on a gene for...

  6. Genome-wide identification of QTLs conferring high-temperature adult-plant (HTAP) resistance to stripe rust (Puccinia striiformis f. sp. tritici) in wheat

    USDA-ARS?s Scientific Manuscript database

    High-temperature adult-plant (HTAP) resistance to stripe rust (caused by Puccinia striiformis f. sp. tritici) is a durable type of resistance in wheat. The objective of this study was to identify quantitative trait loci (QTL) conferring HTAP resistance to stripe rust in a population consisting of 16...

  7. Identification and validation of a major cadmium accumulation locus and closely associated SNP markers in North Dakota durum wheat cultivars

    USDA-ARS?s Scientific Manuscript database

    Durum wheat has the tendency of accumulating more cadmium (Cd), a biotoxic heavy metal, in seeds than other commonly grown cereals, thus posing a serious food safety/public health concern. This could have serious negative impact on the national pasta industry and the international export market of d...

  8. Wheat cultivation: Identifying and estimating area by means of LANDSAT data

    NASA Technical Reports Server (NTRS)

    Dejesusparada, N. (Principal Investigator); Mendonca, F. J.; Cottrell, D. A.; Tardin, A. T.; Lee, D. C. L.; Shimabukuro, Y. E.; Moreira, M. A.; Delima, A. M.; Maia, F. C. S.

    1981-01-01

    Automatic classification of LANDSAT data supported by aerial photography for identification and estimation of wheat growing areas was evaluated. Data covering three regions in the State of Rio Grande do Sul, Brazil were analyzed. The average correct classification of IMAGE-100 data was 51.02% and 63.30%, respectively, for the periods of July and of September/October, 1979.

  9. Genome-wide identification and analysis of biotic and abiotic stress regulation of small heat shock protein (HSP20) family genes in bread wheat.

    PubMed

    Muthusamy, Senthilkumar K; Dalal, Monika; Chinnusamy, Viswanathan; Bansal, Kailash C

    2017-04-01

    Small Heat Shock Proteins (sHSPs)/HSP20 are molecular chaperones that protect plants by preventing protein aggregation during abiotic stress conditions, especially heat stress. Due to global climate change, high temperature is emerging as a major threat to wheat productivity. Thus, the identification of HSP20 and analysis of HSP transcriptional regulation under different abiotic stresses in wheat would help in understanding the role of these proteins in abiotic stress tolerance. We used sequences of known rice and Arabidopsis HSP20 HMM profiles as queries against publicly available wheat genome and wheat full length cDNA databases (TriFLDB) to identify the respective orthologues from wheat. 163 TaHSP20 (including 109 sHSP and 54 ACD) genes were identified and classified according to the sub-cellular localization and phylogenetic relationship with sequenced grass genomes (Oryza sativa, Sorghum bicolor, Zea mays, Brachypodium distachyon and Setaria italica). Spatio-temporal, biotic and abiotic stress-specific expression patterns in normalized RNA seq and wheat array datasets revealed constitutive as well as inductive responses of HSP20 in different tissues and developmental stages of wheat. Promoter analysis of TaHSP20 genes showed the presence of tissue-specific, biotic, abiotic, light-responsive, circadian and cell cycle-responsive cis-regulatory elements. 14 TaHSP20 family genes were under the regulation of 8 TamiRNA genes. The expression levels of twelve HSP20 genes were studied under abiotic stress conditions in the drought- and heat-tolerant wheat genotype C306. Of the 13 TaHSP20 genes, TaHSP16.9H-CI showed high constitutive expression with upregulation only under salt stress. Both heat and salt stresses upregulated the expression of TaHSP17.4-CI, TaHSP17.7A-CI, TaHSP19.1-CIII, TaACD20.0B-CII and TaACD20.6C-CIV, while TaHSP23.7-MTI was specifically induced only under heat stress. Our results showed that the identified TaHSP20 genes play an important role under different abiotic stress conditions. Thus, the results illustrate the complexity of the TaHSP20 gene family and its stress regulation in wheat, and suggest that sHSPs as attractive breeding targets for improvement of the heat tolerance of wheat. Copyright © 2017 Elsevier GmbH. All rights reserved.

  10. New molecular markers and cytogenetic probes enable chromosome identification of wheat-Thinopyrum intermedium introgression lines for improving protein and gluten contents.

    PubMed

    Li, Guangrong; Wang, Hongjin; Lang, Tao; Li, Jianbo; La, Shixiao; Yang, Ennian; Yang, Zujun

    2016-10-01

    New molecular markers were developed for targeting Thinopyrum intermedium 1St#2 chromosome, and novel FISH probe representing the terminal repeats was produced for identification of Thinopyrum chromosomes. Thinopyrum intermedium has been used as a valuable resource for improving the disease resistance and yield potential of wheat. A wheat-Th. intermedium ssp. trichophorum chromosome 1St#2 substitution and translocation has displayed superior grain protein and wet gluten content. With the aim to develop a number of chromosome 1St#2 specific molecular and cytogenetic markers, a high throughput, low-cost specific-locus amplified fragment sequencing (SLAF-seq) technology was used to compare the sequences between a wheat-Thinopyrum 1St#2 (1D) substitution and the related species Pseudoroegneria spicata (St genome, 2n = 14). A total of 5142 polymorphic fragments were analyzed and 359 different SLAF markers for 1St#2 were predicted. Thirty-seven specific molecular markers were validated by PCR from 50 randomly selected SLAFs. Meanwhile, the distribution of transposable elements (TEs) at the family level between wheat and St genomes was compared using the SLAFs. A new oligo-nucleotide probe named Oligo-pSt122 from high SLAF reads was produced for fluorescence in situ hybridization (FISH), and was observed to hybridize to the terminal region of 1St#L and also onto the terminal heterochromatic region of Th. intermedium genomes. The genome-wide markers and repetitive based probe Oligo-pSt122 will be valuable for identifying Thinopyrum chromosome segments in wheat backgrounds.

  11. Transcriptome-wide analysis of WRKY transcription factors in wheat and their leaf rust responsive expression profiling.

    PubMed

    Satapathy, Lopamudra; Singh, Dharmendra; Ranjan, Prashant; Kumar, Dhananjay; Kumar, Manish; Prabhu, Kumble Vinod; Mukhopadhyay, Kunal

    2014-12-01

    WRKY, a plant-specific transcription factor family, has important roles in pathogen defense, abiotic cues and phytohormone signaling, yet little is known about their roles and molecular mechanism of function in response to rust diseases in wheat. We identified 100 TaWRKY sequences using wheat Expressed Sequence Tag database of which 22 WRKY sequences were novel. Identified proteins were characterized based on their zinc finger motifs and phylogenetic analysis clustered them into six clades consisting of class IIc and class III WRKY proteins. Functional annotation revealed major functions in metabolic and cellular processes in control plants; whereas response to stimuli, signaling and defense in pathogen inoculated plants, their major molecular function being binding to DNA. Tag-based expression analysis of the identified genes revealed differential expression between mock and Puccinia triticina inoculated wheat near isogenic lines. Gene expression was also performed with six rust-related microarray experiments at Gene Expression Omnibus database. TaWRKY10, 15, 17 and 56 were common in both tag-based and microarray-based differential expression analysis and could be representing rust specific WRKY genes. The obtained results will bestow insight into the functional characterization of WRKY transcription factors responsive to leaf rust pathogenesis that can be used as candidate genes in molecular breeding programs to improve biotic stress tolerance in wheat.

  12. Degradation of the benzoxazolinone class of phytoalexins is important for virulence of Fusarium pseudograminearum towards wheat.

    PubMed

    Kettle, Andrew J; Batley, Jacqueline; Benfield, Aurelie H; Manners, John M; Kazan, Kemal; Gardiner, Donald M

    2015-12-01

    Wheat, maize, rye and certain other agriculturally important species in the Poaceae family produce the benzoxazolinone class of phytoalexins on pest and pathogen attack. Benzoxazolinones can inhibit the growth of pathogens. However, certain fungi can actively detoxify these compounds. Despite this, a clear link between the ability to detoxify benzoxazolinones and pathogen virulence has not been shown. Here, through comparative genome analysis of several Fusarium species, we have identified a conserved genomic region around the FDB2 gene encoding an N-malonyltransferase enzyme known to be involved in benzoxazolinone degradation in the maize pathogen Fusarium verticillioides. Expression analyses demonstrated that a cluster of nine genes was responsive to exogenous benzoxazolinone in the important wheat pathogen Fusarium pseudograminearum. The analysis of independent F. pseudograminearum FDB2 knockouts and complementation of the knockout with FDB2 homologues from F. graminearum and F. verticillioides confirmed that the N-malonyltransferase enzyme encoded by this gene is central to the detoxification of benzoxazolinones, and that Fdb2 contributes quantitatively to virulence towards wheat in head blight inoculation assays. This contrasts with previous observations in F. verticillioides, where no effect of FDB2 mutations on pathogen virulence towards maize was observed. Overall, our results demonstrate that the detoxification of benzoxazolinones is a strategy adopted by wheat-infecting F. pseudograminearum to overcome host-derived chemical defences. © 2015 BSPP AND JOHN WILEY & SONS LTD.

  13. Identification of the TaBTF3 gene in wheat (Triticum aestivum L.) and the effect of its silencing on wheat chloroplast, mitochondria and mesophyll cell development.

    PubMed

    Ma, Hong-Zhen; Liu, Guo-Qin; Li, Cheng-Wei; Kang, Guo-Zhang; Guo, Tian-Cai

    2012-10-05

    The full-length cDNA (882bp) and DNA (1742bp) sequences encoding a basic transcription factor 3, designated as TaBTF3, were first isolated from common wheat (Triticum aestivum L.). Subcellular localization studies revealed that the TaBTF3 protein was mainly located in the cytoplasm and nucleus. In TaBTF3-silenced transgenic wheat seedlings obtained using the Virus-induced gene silencing (VIGS) method, the chlorophyll pigment content was markedly reduced. However, the malonaldehyde (MDA) and H(2)O(2) contents were enhanced, and the structure of the wheat mesophyll cell was seriously damaged. Furthermore, transcripts of the chloroplast- and mitochondrial-encoded genes were significantly reduced in TaBTF3-silenced transgenic wheat plants. These results suggest that the TaBTF3 gene might function in the development of the wheat chloroplast, mitochondria and mesophyll cell. This paper is the first report to describe the involvement of TaBTF3 in maintaining the normal plant mesophyll cell structure. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Identification and characterization of wheat stem rust resistance gene Sr21 effective against the Ug99 race group at high temperature

    PubMed Central

    Chen, Shisheng; Zhang, Wenjun; Bolus, Stephen; Rouse, Matthew N.

    2018-01-01

    Wheat stem rust, caused by Puccinia graminis f. sp. tritici (Pgt), is a devastating foliar disease. The Ug99 race group has combined virulence to most stem rust (Sr) resistance genes deployed in wheat and is a threat to global wheat production. Here we identified a coiled-coil, nucleotide-binding leucine-rich repeat protein (NLR) completely linked to the Ug99 resistance gene Sr21 from Triticum monococcum. Loss-of-function mutations and transgenic complementation confirmed that this gene is Sr21. Sr21 transcripts were significantly higher at high temperatures, and this was associated with significant upregulation of pathogenesis related (PR) genes and increased levels of resistance at those temperatures. Introgression of Sr21 into hexaploid wheat resulted in lower levels of resistance than in diploid wheat, but transgenic hexaploid wheat lines with high levels of Sr21 expression showed high levels of resistance. Sr21 can be a valuable component of transgenic cassettes or gene pyramids combining multiple resistance genes against Ug99. PMID:29614079

  15. The molecular diversity of α-gliadin genes in the tribe Triticeae.

    PubMed

    Qi, Peng-Fei; Chen, Qing; Ouellet, Thérèse; Wang, Zhao; Le, Cheng-Xing; Wei, Yu-Ming; Lan, Xiu-Jin; Zheng, You-Liang

    2013-09-01

    Many of the unique properties of wheat flour are derived from seed storage proteins such as the α-gliadins. In this study these α-gliadin genes from diploid Triticeae species were systemically characterized, and divided into 3 classes according to the distinct organization of their protein domains. Our analyses indicated that these α-gliadins varied in the number of cysteine residues they contained. Most of the α-gliadin genes were grouped according to their genomic origins within the phylogenetic tree. As expected, sequence alignments suggested that the repetitive domain and the two polyglutamine regions were responsible for length variations of α-gliadins as were the insertion/deletion of structural domains within the three different classes (I, II, and III) of α-gliadins. A screening of celiac disease toxic epitopes indicated that the α-gliadins of the class II, derived from the Ns genome, contain no epitope, and that some other genomes contain much fewer epitopes than the A, S(B) and D genomes of wheat. Our results suggest that the observed genetic differences in α-gliadins of Triticeae might indicate their use as a fertile ground for the breeding of less CD-toxic wheat varieties.

  16. Introducing Students to Protein Analysis Techniques: Separation and Comparative Analysis of Gluten Proteins in Various Wheat Strains

    ERIC Educational Resources Information Center

    Pirinelli, Alyssa L.; Trinidad, Jonathan C.; Pohl, Nicola L. B.

    2016-01-01

    Polyacrylamide gel electrophoresis (PAGE) is commonly taught in undergraduate laboratory classes as a traditional method to analyze proteins. An experiment has been developed to teach these basic protein gel skills in the context of gluten protein isolation from various types of wheat flour. A further goal is to relate this technique to current…

  17. Influence of low-molecular-weight glutenin subunit haplotypes on dough rheology and baking quality in elite common wheat varieties

    USDA-ARS?s Scientific Manuscript database

    The low molecular weight glutenin subunits (LMW-GSs) are a class of wheat seed storage proteins directly involved in the formation of gluten. Depending on the first amino acid residue of the mature proteins, the LMW-GSs are divided into methionine, serine or isoleucine type. These proteins are encod...

  18. Fourteen Years of Diverse Annual No-Till Cropping in Washington’s Winter Wheat – Summer Fallow Region

    USDA-ARS?s Scientific Manuscript database

    We have completed the 14th year of a cropping systems experiment to evaluate diverse annual (i.e., no summer fallow) cropping systems using no-till as an alternative to tillage-intensive winter wheat (Triticum aestivum L.) – summer fallow (WW-SF). Soft white and hard white classes of winter and spri...

  19. Identification of stem rust resistance genes in wheat cultivars in China using molecular markers.

    PubMed

    Xu, Xiaofeng; Yuan, Depeng; Li, Dandan; Gao, Yue; Wang, Ziyuan; Liu, Yang; Wang, Siting; Xuan, Yuanhu; Zhao, Hui; Li, Tianya; Wu, Yuanhua

    2018-01-01

    Wheat stem rust caused by Puccinia graminis f. sp. tritici Eriks. & E. Henn. ( Pgt ), is a major disease that has been effectively controlled using resistance genes. The appearance and spread of Pgt races such as Ug99, TKTTF, and TTTTF, which are virulent to most stem rust-resistant genes currently deployed in wheat breeding programs, renewed the interest in breeding cultivars resistant to wheat stem rust. It is therefore important to investigate the levels of resistance or vulnerability of wheat cultivars to Pgt races. Resistance to Pgt races 21C3CTHQM, 34MKGQM, and 34C3RTGQM was evaluated in 136 Chinese wheat cultivars at the seedling stage. A total of 124 cultivars (91.2%) were resistant to the three races. Resistance genes Sr2 , Sr24 , Sr25 , Sr26 , Sr31 , and Sr38 were analyzed using molecular markers closely linked to them, and 63 of the 136 wheat cultivars carried at least one of these genes: 21, 25, and 28 wheat cultivars likely carried Sr2 , Sr31 , and Sr38 , respectively. Cultivars "Kehan 3" and "Jimai 22" likely carried Sr25 . None of the cultivars carried Sr24 or Sr26 . These cultivars with known stem rust resistance genes provide valuable genetic material for breeding resistant wheat cultivars.

  20. Food security: the challenge of increasing wheat yield and the importance of not compromising food safety

    PubMed Central

    Curtis, T; Halford, N G

    2014-01-01

    Current wheat yield and consumption is considered in the context of the historical development of wheat, from early domestication through to modern plant breeding, the Green Revolution and wheat’s place as one of the world’s most productive and important crops in the 21st Century. The need for further improvement in the yield potential of wheat in order to meet current and impending challenges is discussed, including rising consumption and the demand for grain for fuel as well as food. Research on the complex genetics underlying wheat yield is described, including the identification of quantitative trait loci and individual genes, and the prospects of biotechnology playing a role in wheat improvement in the future are discussed. The challenge of preparing wheat to meet the problems of drought, high temperature and increasing carbon dioxide concentration that are anticipated to come about as a result of climate change is also reviewed. Wheat yield must be increased while not compromising food safety, and the emerging problem of processing contaminants is reviewed, focussing in particular on acrylamide, a contaminant that forms from free asparagine and reducing sugars during high temperature cooking and processing. Wheat breeders are strongly encouraged to consider the contaminant issue when breeding for yield. PMID:25540461

  1. Two pathogenic species of Pythium: P. aphanidermatum and P. diclinum from a wheat field.

    PubMed

    Al-Sheikh, Hashem

    2010-10-01

    During a survey of pathogenic and non-pathogenic Pythium spp. in different localities in Egypt, several isolates of Pythia were obtained and maintained on corn meal agar. Among these isolates, Pythium aphanidermatum and Pythium diclinum were obtained from rhizosphere of wheat plants grown in Dear Attia village, Minia, Egypt. Identification was made using morphological and molecular analyses. P. aphanidermatum and P. diclinum were able to cause reductions in emergence and adulating in wheat in laboratory scale. P. aphanidermatum appeared to be the most aggressive parasite under agar and pot experimental conditions.

  2. Two pathogenic species of Pythium: P. aphanidermatum and P. diclinum from a wheat field

    PubMed Central

    Al-Sheikh, Hashem

    2010-01-01

    During a survey of pathogenic and non-pathogenic Pythium spp. in different localities in Egypt, several isolates of Pythia were obtained and maintained on corn meal agar. Among these isolates, Pythium aphanidermatum and Pythium diclinum were obtained from rhizosphere of wheat plants grown in Dear Attia village, Minia, Egypt. Identification was made using morphological and molecular analyses. P. aphanidermatum and P. diclinum were able to cause reductions in emergence and adulating in wheat in laboratory scale. P. aphanidermatum appeared to be the most aggressive parasite under agar and pot experimental conditions. PMID:23961096

  3. Active sensing: An innovative tool for evaluating grain yield and nitrogen use efficiency of multiple wheat genotypes

    NASA Astrophysics Data System (ADS)

    Naser, Mohammed Abdulridha

    Precision agricultural practices have significantly contributed to the improvement of crop productivity and profitability. Remote sensing based indices, such as Normalized Difference Vegetative Index (NDVI) have been used to obtain crop information. It is used to monitor crop development and to provide rapid and nondestructive estimates of plant biomass, nitrogen (N) content and grain yield. Remote sensing tools are helping improve nitrogen use efficiency (NUE) through nitrogen management and could also be useful for high NUE genotype selection. The objectives of this study were: (i) to determine if active sensor based NDVI readings can differentiate wheat genotypes, (ii) to determine if NDVI readings can be used to classify wheat genotypes into grain yield productivity classes, (iii) to identify and quantify the main sources of variation in NUE across wheat genotypes, and (iv) to determine if normalized difference vegetation index (NDVI) could characterize variability in NUE across wheat genotypes. This study was conducted in north eastern Colorado for two years, 2010 and 2011. The NDVI readings were taken weekly during the winter wheat growing season from March to late June, in 2010 and 2011 and NUE were calculated as partial factor productivity and as partial nitrogen balance at the end of the season. For objectives i and ii, the correlation between NDVI and grain yield was determined using Pearson's product-moment correlation coefficient (r) and linear regression analysis was used to explain the relationship between NDVI and grain yield. The K-means clustering algorithm was used to classify mean NDVI and mean grain yield into three classes. For objectives iii and iv, the parameters related to NUE were also calculated to measure their relative importance in genotypic variation of NUE and power regression analysis between NDVI and NUE was used to characterize the relationship between NDVI and NUE. The results indicate more consistent association between grain yield and NDVI and between NDVI and NUE later in the season, after anthesis and during mid-grain filling stage under dryland and a poor association in wheat grown in irrigated conditions. The results suggest that below saturation of NDVI values (about 0.9), (i.e. prior to full canopy closure and after the beginning of senescence or most of the season under dryland conditions) NDVI could assess grain yield and NUE. The results also indicate that nitrogen uptake efficiency was the main source of variation of NUE among genotypes grown in site-years with lower yield. Overall, results from this study demonstrate that NDVI readings successfully classified wheat genotypes into grain yield classes across dryland and irrigated conditions and characterized variability in NUE across wheat genotypes.

  4. Definition of the low molecular weight glutenin subunit gene family members in a set of standard bread wheat (Triticum aestivum L.) varieties

    USDA-ARS?s Scientific Manuscript database

    Low-molecular-weight glutenin subunits (LMW-GS) are a class of seed storage proteins that play a major role in the determination of the viscoelastic properties of wheat dough. Most of the LMW-GSs are encoded by a multi-gene family located on the short arms of the homoeologous group 1 chromosomes, at...

  5. Identification of changes in wheat (Triticum aestivum L.) seeds proteome in response to anti-trx s gene.

    PubMed

    Guo, Hongxiang; Zhang, Huizhen; Li, Yongchun; Ren, Jiangping; Wang, Xiang; Niu, Hongbin; Yin, Jun

    2011-01-01

    Thioredoxin h (trx h) is closely related to germination of cereal seeds. The cDNA sequences of the thioredoxin s (trx s) gene from Phalaris coerulescens and the thioredoxin h (trx h) gene from wheat are highly homologous, and their expression products have similar biological functions. Transgenic wheat had been formed after the antisense trx s was transferred into wheat, and it had been certified that the expression of trx h decreased in transgenic wheat, and transgenic wheat has high resistance to pre-harvest sprouting. Through analyzing the differential proteome of wheat seeds between transgenic wheat and wild type wheat, the mechanism of transgenic wheat seeds having high resistance to pre-harvest sprouting was studied in the present work. There were 36 differential proteins which had been identified by matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF-MS). All these differential proteins are involved in regulation of carbohydrates, esters, nucleic acid, proteins and energy metabolism, and biological stress. The quantitative real time PCR results of some differential proteins, such as trx h, heat shock protein 70, α-amylase, β-amylase, glucose-6-phosphate isomerase, 14-3-3 protein, S3-RNase, glyceraldehyde-3-phosphate dehydrogenase, and WRKY transcription factor 6, represented good correlation between transcripts and proteins. The biological functions of many differential proteins are consistent with the proposed role of trx h in wheat seeds. A possible model for the role of trx h in wheat seeds germination was proposed in this paper. These results will not only play an important role in clarifying the mechanism that transgenic wheat has high resistance to pre-harvest sprouting, but also provide further evidence for the role of trx h in germination of wheat seeds.

  6. Genome Wide Association Study of Seedling and Adult Plant Leaf Rust Resistance in Elite Spring Wheat Breeding Lines

    PubMed Central

    Gao, Liangliang; Turner, M. Kathryn; Chao, Shiaoman; Kolmer, James; Anderson, James A.

    2016-01-01

    Leaf rust is an important disease, threatening wheat production annually. Identification of resistance genes or QTLs for effective field resistance could greatly enhance our ability to breed durably resistant varieties. We applied a genome wide association study (GWAS) approach to identify resistance genes or QTLs in 338 spring wheat breeding lines from public and private sectors that were predominately developed in the Americas. A total of 46 QTLs were identified for field and seedling traits and approximately 20–30 confer field resistance in varying degrees. The 10 QTLs accounting for the most variation in field resistance explained 26–30% of the total variation (depending on traits: percent severity, coefficient of infection or response type). Similarly, the 10 QTLs accounting for most of the variation in seedling resistance to different races explained 24–34% of the variation, after correcting for population structure. Two potentially novel QTLs (QLr.umn-1AL, QLr.umn-4AS) were identified. Identification of novel genes or QTLs and validation of previously identified genes or QTLs for seedling and especially adult plant resistance will enhance understanding of leaf rust resistance and assist breeding for resistant wheat varieties. We also developed computer programs to automate field and seedling rust phenotype data conversions. This is the first GWAS study of leaf rust resistance in elite wheat breeding lines genotyped with high density 90K SNP arrays. PMID:26849364

  7. An Efficient Approach for the Development of Locus Specific Primers in Bread Wheat (Triticum aestivum L.) and Its Application to Re-Sequencing of Genes Involved in Frost Tolerance

    PubMed Central

    Babben, Steve; Perovic, Dragan; Koch, Michael; Ordon, Frank

    2015-01-01

    Recent declines in costs accelerated sequencing of many species with large genomes, including hexaploid wheat (Triticum aestivum L.). Although the draft sequence of bread wheat is known, it is still one of the major challenges to developlocus specific primers suitable to be used in marker assisted selection procedures, due to the high homology of the three genomes. In this study we describe an efficient approach for the development of locus specific primers comprising four steps, i.e. (i) identification of genomic and coding sequences (CDS) of candidate genes, (ii) intron- and exon-structure reconstruction, (iii) identification of wheat A, B and D sub-genome sequences and primer development based on sequence differences between the three sub-genomes, and (iv); testing of primers for functionality, correct size and localisation. This approach was applied to single, low and high copy genes involved in frost tolerance in wheat. In summary for 27 of these genes for which sequences were derived from Triticum aestivum, Triticum monococcum and Hordeum vulgare, a set of 119 primer pairs was developed and after testing on Nulli-tetrasomic (NT) lines, a set of 65 primer pairs (54.6%), corresponding to 19 candidate genes, turned out to be specific. Out of these a set of 35 fragments was selected for validation via Sanger's amplicon re-sequencing. All fragments, with the exception of one, could be assigned to the original reference sequence. The approach presented here showed a much higher specificity in primer development in comparison to techniques used so far in bread wheat and can be applied to other polyploid species with a known draft sequence. PMID:26565976

  8. Genome-wide identification and functional prediction of novel and fungi-responsive lincRNAs in Triticum aestivum.

    PubMed

    Zhang, Hong; Hu, Weiguo; Hao, Jilei; Lv, Shikai; Wang, Changyou; Tong, Wei; Wang, Yajuan; Wang, Yanzhen; Liu, Xinlun; Ji, Wanquan

    2016-03-15

    Stripe rust (Puccinia striiformis f. sp. tritici; Pst) and powdery mildew (Blumeria graminis f. sp. tritici; Bgt) are important diseases of wheat (Triticum aestivum) worldwide. Increasingly evidences suggest that long intergenic ncRNAs (lincRNAs) are developmentally regulated and play important roles in development and stress responses of plants. However, identification of lincRNAs in wheat is still limited comparing with functional gene expression. The transcriptome of the hexaploid wheat line N9134 inoculated with the Chinese Pst race CYR31 and Bgt race E09 at 1, 2, and 3 days post-inoculation was recapitulated to detect the lincRNAs. Here, 283 differential expressed lincRNAs were identified from 58218 putative lincRNAs, which account for 31.2% of transcriptome. Of which, 254 DE-LincRNAs responded to the Bgt stress, and 52 lincRNAs in Pst. Among them, 1328 SnRNP motifs (sm sites) were detected and showed RRU4-11RR sm site element and consensus RRU1-9VU1-7RR SnRNP motifs, where the total number of uridine was more than 3 but less than 11. Additionally, 101 DE-lincRNAs were predicted as targets of miRNA by psRNATarget, while 5 target mimics were identified using target mimicry search in TAPIR. Taken together, our findings indicate that the lincRNA of wheat responded to Bgt and Pst stress and played important roles in splicesome and inter-regulating with miRNA. The sm site of wheat showed a more complex construction than that in mammal and model plant. The mass sequence data generated in this study provide a cue for future functional and molecular research on wheat-fungus interactions.

  9. The Design and Development of Test Platform for Wheat Precision Seeding Based on Image Processing Techniques

    NASA Astrophysics Data System (ADS)

    Li, Qing; Lin, Haibo; Xiu, Yu-Feng; Wang, Ruixue; Yi, Chuijie

    The test platform of wheat precision seeding based on image processing techniques is designed to develop the wheat precision seed metering device with high efficiency and precision. Using image processing techniques, this platform gathers images of seeds (wheat) on the conveyer belt which are falling from seed metering device. Then these data are processed and analyzed to calculate the qualified rate, reseeding rate and leakage sowing rate, etc. This paper introduces the whole structure, design parameters of the platform and hardware & software of the image acquisition system were introduced, as well as the method of seed identification and seed-space measurement using image's threshold and counting the seed's center. By analyzing the experimental result, the measurement error is less than ± 1mm.

  10. Identification of three wheat globulin genes by screening a Triticum aestivum BAC genomic library with cDNA from a diabetes-associated globulin

    PubMed Central

    Loit, Evelin; Melnyk, Charles W; MacFarlane, Amanda J; Scott, Fraser W; Altosaar, Illimar

    2009-01-01

    Background Exposure to dietary wheat proteins in genetically susceptible individuals has been associated with increased risk for the development of Type 1 diabetes (T1D). Recently, a wheat protein encoded by cDNA WP5212 has been shown to be antigenic in mice, rats and humans with autoimmune T1D. To investigate the genomic origin of the identified wheat protein cDNA, a hexaploid wheat genomic library from Glenlea cultivar was screened. Results Three unique wheat globulin genes, Glo-3A, Glo3-B and Glo-3C, were identified. We describe the genomic structure of these genes and their expression pattern in wheat seeds. The Glo-3A gene shared 99% identity with the cDNA of WP5212 at the nucleotide and deduced amino acid level, indicating that we have identified the gene(s) encoding wheat protein WP5212. Southern analysis revealed the presence of multiple copies of Glo-3-like sequences in all wheat samples, including hexaploid, tetraploid and diploid species wheat seed. Aleurone and embryo tissue specificity of WP5212 gene expression, suggested by promoter region analysis, which demonstrated an absence of endosperm specific cis elements, was confirmed by immunofluorescence microscopy using anti-WP5212 antibodies. Conclusion Taken together, the results indicate that a diverse group of globulins exists in wheat, some of which could be associated with the pathogenesis of T1D in some susceptible individuals. These data expand our knowledge of specific wheat globulins and will enable further elucidation of their role in wheat biology and human health. PMID:19615078

  11. Genome-wide identification of wheat (Triticum aestivum) expansins and expansin expression analysis in cold-tolerant and cold-sensitive wheat cultivars

    PubMed Central

    Zhang, Jun-Feng; Xu, Yong-Qing; Dong, Jia-Min; Peng, Li-Na; Feng, Xu; Wang, Xu; Li, Fei; Miao, Yu; Yao, Shu-Kuan; Zhao, Qiao-Qin; Feng, Shan-Shan; Hu, Bao-Zhong

    2018-01-01

    Plant expansins are proteins involved in cell wall loosening, plant growth, and development, as well as in response to plant diseases and other stresses. In this study, we identified 128 expansin coding sequences from the wheat (Triticum aestivum) genome. These sequences belong to 45 homoeologous copies of TaEXPs, including 26 TaEXPAs, 15 TaEXPBs and four TaEXLAs. No TaEXLB was identified. Gene expression and sub-expression profiles revealed that most of the TaEXPs were expressed either only in root tissues or in multiple organs. Real-time qPCR analysis showed that many TaEXPs were differentially expressed in four different tissues of the two wheat cultivars—the cold-sensitive ‘Chinese Spring (CS)’ and the cold-tolerant ‘Dongnongdongmai 1 (D1)’ cultivars. Our results suggest that the differential expression of TaEXPs could be related to low-temperature tolerance or sensitivity of different wheat cultivars. Our study expands our knowledge on wheat expansins and sheds new light on the functions of expansins in plant development and stress response. PMID:29596529

  12. Characterization of a Wheat Breeders' Array suitable for high-throughput SNP genotyping of global accessions of hexaploid bread wheat (Triticum aestivum).

    PubMed

    Allen, Alexandra M; Winfield, Mark O; Burridge, Amanda J; Downie, Rowena C; Benbow, Harriet R; Barker, Gary L A; Wilkinson, Paul A; Coghill, Jane; Waterfall, Christy; Davassi, Alessandro; Scopes, Geoff; Pirani, Ali; Webster, Teresa; Brew, Fiona; Bloor, Claire; Griffiths, Simon; Bentley, Alison R; Alda, Mark; Jack, Peter; Phillips, Andrew L; Edwards, Keith J

    2017-03-01

    Targeted selection and inbreeding have resulted in a lack of genetic diversity in elite hexaploid bread wheat accessions. Reduced diversity can be a limiting factor in the breeding of high yielding varieties and crucially can mean reduced resilience in the face of changing climate and resource pressures. Recent technological advances have enabled the development of molecular markers for use in the assessment and utilization of genetic diversity in hexaploid wheat. Starting with a large collection of 819 571 previously characterized wheat markers, here we describe the identification of 35 143 single nucleotide polymorphism-based markers, which are highly suited to the genotyping of elite hexaploid wheat accessions. To assess their suitability, the markers have been validated using a commercial high-density Affymetrix Axiom ® genotyping array (the Wheat Breeders' Array), in a high-throughput 384 microplate configuration, to characterize a diverse global collection of wheat accessions including landraces and elite lines derived from commercial breeding communities. We demonstrate that the Wheat Breeders' Array is also suitable for generating high-density genetic maps of previously uncharacterized populations and for characterizing novel genetic diversity produced by mutagenesis. To facilitate the use of the array by the wheat community, the markers, the associated sequence and the genotype information have been made available through the interactive web site 'CerealsDB'. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  13. Isolation, Chromosomal Localization, and Differential Expression of Mitochondrial Manganese Superoxide Dismutase and Chloroplastic Copper/Zinc Superoxide Dismutase Genes in Wheat1

    PubMed Central

    Wu, Guohai; Wilen, Ronald W.; Robertson, Albert J.; Gusta, Lawrence V.

    1999-01-01

    Superoxide dismutase (SOD) gene expression was investigated to elucidate its role in drought and freezing tolerance in spring and winter wheat (Triticum aestivum). cDNAs encoding chloroplastic Cu/ZnSODs and mitochondrial MnSODs were isolated from wheat. MnSOD and Cu/ZnSOD genes were mapped to the long arms of the homologous group-2 and -7 chromosomes, respectively. Northern blots indicated that MnSOD genes were drought inducible and decreased after rehydration. In contrast, Cu/ZnSOD mRNA was not drought inducible but increased after rehydration. In both spring and winter wheat seedlings exposed to 2°C, MnSOD transcripts attained maximum levels between 7 and 49 d. Transcripts of Cu/ZnSOD mRNA were detected sooner in winter than in spring wheat; however, they disappeared after 21 d of acclimation. Transcripts of both classes of SOD genes increased during natural acclimation in both spring and winter types. Exposure of fully hardened plants to three nonlethal freeze-thaw cycles resulted in Cu/Zn mRNA accumulation; however, MnSOD mRNA levels declined in spring wheat but remained unchanged in winter wheat. The results of the dehydration and freeze-thaw-cycle experiments suggest that winter wheat has evolved a more effective stress-repair mechanism than spring wheat. PMID:10364402

  14. Diverse set of microRNAs are responsive to powdery mildew infection and heat stress in wheat (Triticum aestivum L.)

    PubMed Central

    2010-01-01

    Background MicroRNAs (miRNAs) are a class of small non-coding regulatory RNAs that regulate gene expression by guiding target mRNA cleavage or translational inhibition. MiRNAs can have large-scale regulatory effects on development and stress response in plants. Results To test whether miRNAs play roles in regulating response to powdery mildew infection and heat stress in wheat, by using Solexa high-throughput sequencing we cloned the small RNA from wheat leaves infected by preponderant physiological strain Erysiphe graminis f. sp. tritici (Egt) or by heat stress treatment. A total of 153 miRNAs were identified, which belong to 51 known and 81 novel miRNA families. We found that 24 and 12 miRNAs were responsive to powdery mildew infection and heat stress, respectively. We further predicted that 149 target genes were potentially regulated by the novel wheat miRNA. Conclusions Our results indicated that diverse set of wheat miRNAs were responsive to powdery mildew infection and heat stress and could function in wheat responses to both biotic and abiotic stresses. PMID:20573268

  15. Production and Identification of Wheat-Agropyron cristatum 2P Translocation Lines

    PubMed Central

    Li, Huanhuan; Lv, Mingjie; Song, Liqiang; Zhang, Jinpeng; Gao, Ainong; Li, Lihui; Liu, Weihua

    2016-01-01

    Agropyron cristatum (L.) Gaertn. (2n = 28, PPPP), a wild relative of common wheat, possesses many potentially valuable traits that can be transferred to common wheat through breeding programs. The wheat-A. cristatum disomic addition and translocation lines can be used as bridge materials to introduce alien chromosomal segments to wheat. Wheat-A. cristatum 2P disomic addition line II-9-3 was highly resistant to powdery mildew and leaf rust, which was reported in our previous study. However, some translocation lines induced from II-9-3 have not been reported. In this study, some translocation lines were induced from II-9-3 by 60Co-γ irradiation and gametocidal chromosome 2C and then identified by cytological methods. Forty-nine wheat-A. cristatum translocation lines were obtained and various translcoation types were identified by GISH (genomic in situ hybridization), such as whole-arm, segmental and intercalary translocations. Dual-color FISH (fluorescent in situ hybridization) was applied to identify the wheat chromosomes involved in the translocations, and the results showed that A. cristatum 2P chromosome segments were translocated to the different wheat chromosomes, including 1A, 2A, 3A, 4A, 5A, 6A, 7A, 3B, 5B, 7B, 1D, 4D and 6D. Many different types of wheat-A. cristatum alien translocation lines would be valuable for not only identifying and cloning A. cristatum 2P-related genes and understanding the genetics and breeding effects of the translocation between A. cristatum chromosome 2P and wheat chromosomes, but also providing new germplasm resources for the wheat genetic improvement. PMID:26731742

  16. GWAS for plant growth stages and yield components in spring wheat (Triticum aestivum L.) harvested in three regions of Kazakhstan.

    PubMed

    Turuspekov, Yerlan; Baibulatova, Aida; Yermekbayev, Kanat; Tokhetova, Laura; Chudinov, Vladimir; Sereda, Grigoriy; Ganal, Martin; Griffiths, Simon; Abugalieva, Saule

    2017-11-14

    Spring wheat is the largest agricultural crop grown in Kazakhstan with an annual sowing area of 12 million hectares in 2016. Annually, the country harvests around 15 million tons of high quality grain. Despite environmental stress factors it is predicted that the use of new technologies may lead to increases in productivity from current levels of 1.5 to up to 3 tons per hectare. One way of improving wheat productivity is by the application of new genomic oriented approaches in plant breeding projects. Genome wide association studies (GWAS) are emerging as powerful tools for the understanding of the inheritance of complex traits via utilization of high throughput genotyping technologies and phenotypic assessments of plant collections. In this study, phenotyping and genotyping data on 194 spring wheat accessions from Kazakhstan, Russia, Europe, and CIMMYT were assessed for the identification of marker-trait associations (MTA) of agronomic traits by using GWAS. Field trials in Northern, Central and Southern regions of Kazakhstan using 194 spring wheat accessions revealed strong correlations of yield with booting date, plant height, biomass, number of spikes per plant, and number of kernels per spike. The accessions from Europe and CIMMYT showed high breeding potential for Southern and Central regions of the country in comparison with the performance of the local varieties. The GGE biplot method, using average yield per plant, suggested a clear separation of accessions into their three breeding origins in relationship to the three environments in which they were evaluated. The genetic variation in the three groups of accessions was further studied using 3245 polymorphic SNP (single nucleotide polymorphism) markers. The application of Principal Coordinate analysis clearly grouped the 194 accessions into three clades according to their breeding origins. GWAS on data from nine field trials allowed the identification of 114 MTAs for 12 different agronomic traits. Field evaluation of foreign germplasm revealed its poor yield performance in Northern Kazakhstan, which is the main wheat growing region in the country. However, it was found that EU and CIMMYT germplasm has high breeding potential to improve yield performance in Central and Southern regions. The use of Principal Coordinate analysis clearly separated the panel into three distinct groups according to their breeding origin. GWAS based on use of the TASSEL 5.0 package allowed the identification of 114 MTAs for twelve agronomic traits. The study identifies a network of key genes for improvement of yield productivity in wheat growing regions of Kazakhstan.

  17. Identification of Candidate Genes Responsible for Stem Pith Production Using Expression Analysis in Solid-Stemmed Wheat.

    PubMed

    Oiestad, A J; Martin, J M; Cook, J; Varella, A C; Giroux, M J

    2017-07-01

    The wheat stem sawfly (WSS) is an economically important pest of wheat in the Northern Great Plains. The primary means of WSS control is resistance associated with the single quantitative trait locus (QTL) , which controls most stem solidness variation. The goal of this study was to identify stem solidness candidate genes via RNA-seq. This study made use of 28 single nucleotide polymorphism (SNP) makers derived from expressed sequence tags (ESTs) linked to contained within a 5.13 cM region. Allele specific expression of EST markers was examined in stem tissue for solid and hollow-stemmed pairs of two spring wheat near isogenic lines (NILs) differing for the QTL. Of the 28 ESTs, 13 were located within annotated genes and 10 had detectable stem expression. Annotated genes corresponding to four of the ESTs were differentially expressed between solid and hollow-stemmed NILs and represent possible stem solidness gene candidates. Further examination of the 5.13 cM region containing the 28 EST markers identified 260 annotated genes. Twenty of the 260 linked genes were up-regulated in hollow NIL stems, while only seven genes were up-regulated in solid NIL stems. An -methyltransferase within the region of interest was identified as a candidate based on differential expression between solid and hollow-stemmed NILs and putative function. Further study of these candidate genes may lead to the identification of the gene(s) controlling stem solidness and an increased ability to select for wheat stem solidness and manage WSS. Copyright © 2017 Crop Science Society of America.

  18. Identification of milling and baking quality QTL in multiple soft wheat mapping populations.

    PubMed

    Cabrera, Antonio; Guttieri, Mary; Smith, Nathan; Souza, Edward; Sturbaum, Anne; Hua, Duc; Griffey, Carl; Barnett, Marla; Murphy, Paul; Ohm, Herb; Uphaus, Jim; Sorrells, Mark; Heffner, Elliot; Brown-Guedira, Gina; Van Sanford, David; Sneller, Clay

    2015-11-01

    Two mapping approaches were use to identify and validate milling and baking quality QTL in soft wheat. Two LG were consistently found important for multiple traits and we recommend the use marker-assisted selection on specific markers reported here. Wheat-derived food products require a range of characteristics. Identification and understanding of the genetic components controlling end-use quality of wheat is important for crop improvement. We assessed the underlying genetics controlling specific milling and baking quality parameters of soft wheat including flour yield, softness equivalent, flour protein, sucrose, sodium carbonate, water absorption and lactic acid, solvent retention capacities in a diversity panel and five bi-parental mapping populations. The populations were genotyped with SSR and DArT markers, with markers specific for the 1BL.1RS translocation and sucrose synthase gene. Association analysis and composite interval mapping were performed to identify quantitative trait loci (QTL). High heritability was observed for each of the traits evaluated, trait correlations were consistent over populations, and transgressive segregants were common in all bi-parental populations. A total of 26 regions were identified as potential QTL in the diversity panel and 74 QTL were identified across all five bi-parental mapping populations. Collinearity of QTL from chromosomes 1B and 2B was observed across mapping populations and was consistent with results from the association analysis in the diversity panel. Multiple regression analysis showed the importance of the two 1B and 2B regions and marker-assisted selection for the favorable alleles at these regions should improve quality.

  19. Identification and Severity Determination of Wheat Stripe Rust and Wheat Leaf Rust Based on Hyperspectral Data Acquired Using a Black-Paper-Based Measuring Method.

    PubMed

    Wang, Hui; Qin, Feng; Ruan, Liu; Wang, Rui; Liu, Qi; Ma, Zhanhong; Li, Xiaolong; Cheng, Pei; Wang, Haiguang

    2016-01-01

    It is important to implement detection and assessment of plant diseases based on remotely sensed data for disease monitoring and control. Hyperspectral data of healthy leaves, leaves in incubation period and leaves in diseased period of wheat stripe rust and wheat leaf rust were collected under in-field conditions using a black-paper-based measuring method developed in this study. After data preprocessing, the models to identify the diseases were built using distinguished partial least squares (DPLS) and support vector machine (SVM), and the disease severity inversion models of stripe rust and the disease severity inversion models of leaf rust were built using quantitative partial least squares (QPLS) and support vector regression (SVR). All the models were validated by using leave-one-out cross validation and external validation. The diseases could be discriminated using both distinguished partial least squares and support vector machine with the accuracies of more than 99%. For each wheat rust, disease severity levels were accurately retrieved using both the optimal QPLS models and the optimal SVR models with the coefficients of determination (R2) of more than 0.90 and the root mean square errors (RMSE) of less than 0.15. The results demonstrated that identification and severity evaluation of stripe rust and leaf rust at the leaf level could be implemented based on the hyperspectral data acquired using the developed method. A scientific basis was provided for implementing disease monitoring by using aerial and space remote sensing technologies.

  20. Identification and Severity Determination of Wheat Stripe Rust and Wheat Leaf Rust Based on Hyperspectral Data Acquired Using a Black-Paper-Based Measuring Method

    PubMed Central

    Ruan, Liu; Wang, Rui; Liu, Qi; Ma, Zhanhong; Li, Xiaolong; Cheng, Pei; Wang, Haiguang

    2016-01-01

    It is important to implement detection and assessment of plant diseases based on remotely sensed data for disease monitoring and control. Hyperspectral data of healthy leaves, leaves in incubation period and leaves in diseased period of wheat stripe rust and wheat leaf rust were collected under in-field conditions using a black-paper-based measuring method developed in this study. After data preprocessing, the models to identify the diseases were built using distinguished partial least squares (DPLS) and support vector machine (SVM), and the disease severity inversion models of stripe rust and the disease severity inversion models of leaf rust were built using quantitative partial least squares (QPLS) and support vector regression (SVR). All the models were validated by using leave-one-out cross validation and external validation. The diseases could be discriminated using both distinguished partial least squares and support vector machine with the accuracies of more than 99%. For each wheat rust, disease severity levels were accurately retrieved using both the optimal QPLS models and the optimal SVR models with the coefficients of determination (R2) of more than 0.90 and the root mean square errors (RMSE) of less than 0.15. The results demonstrated that identification and severity evaluation of stripe rust and leaf rust at the leaf level could be implemented based on the hyperspectral data acquired using the developed method. A scientific basis was provided for implementing disease monitoring by using aerial and space remote sensing technologies. PMID:27128464

  1. The landscape of transposable elements in the finished genome of the fungal wheat pathogen Mycosphaerella graminicola

    USDA-ARS?s Scientific Manuscript database

    Repetitive sequence analysis has become an integral part of genome sequencing projects in addition to gene identification and annotation. Identification of repeats is important not only because it improves gene prediction, but also because of the role that repetitive sequences play in determining th...

  2. New criteria for the molecular identification of cereal grains associated with archaeological artefacts.

    PubMed

    Colonese, Andre Carlo; Hendy, Jessica; Lucquin, Alexandre; Speller, Camilla F; Collins, Matthew J; Carrer, Francesco; Gubler, Regula; Kühn, Marlu; Fischer, Roman; Craig, Oliver E

    2017-07-26

    The domestication and transmission of cereals is one of the most fundamental components of early farming, but direct evidence of their use in early culinary practices and economies has remained frustratingly elusive. Using analysis of a well-preserved Early Bronze Age wooden container from Switzerland, we propose novel criteria for the identification of cereal residues. Using gas chromatography mass spectrometry (GC-MS), we identified compounds typically associated with plant products, including a series of phenolic lipids (alkylresorcinols) found only at appreciable concentration in wheat and rye bran. The value of these lipids as cereal grain biomarkers were independently corroborated by the presence of macrobotanical remains embedded in the deposit, and wheat and rye endosperm peptides extracted from residue. These findings demonstrate the utility of a lipid-based biomarker for wheat and rye bran and offer a methodological template for future investigations of wider range of archaeological contexts. Alkylresorcinols provide a new tool for residue analysis which can help explore the spread and exploitation of cereal grains, a fundamental component of the advent and spread of farming.

  3. Metabolomics to Decipher the Chemical Defense of Cereals against Fusarium graminearum and Deoxynivalenol Accumulation

    PubMed Central

    Gauthier, Léa; Atanasova-Penichon, Vessela; Chéreau, Sylvain; Richard-Forget, Florence

    2015-01-01

    Fusarium graminearum is the causal agent of Fusarium head blight (FHB) and Gibberella ear rot (GER), two devastating diseases of wheat, barley, and maize. Furthermore, F. graminearum species can produce type B trichothecene mycotoxins that accumulate in grains. Use of FHB and GER resistant cultivars is one of the most promising strategies to reduce damage induced by F. graminearum. Combined with genetic approaches, metabolomic ones can provide powerful opportunities for plant breeding through the identification of resistant biomarker metabolites which have the advantage of integrating the genetic background and the influence of the environment. In the past decade, several metabolomics attempts have been made to decipher the chemical defense that cereals employ to counteract F. graminearum. By covering the major classes of metabolites that have been highlighted and addressing their potential role, this review demonstrates the complex and integrated network of events that cereals can orchestrate to resist to F. graminearum. PMID:26492237

  4. Identification of Changes in Wheat (Triticum aestivum L.) Seeds Proteome in Response to Anti–trx s Gene

    PubMed Central

    Guo, Hongxiang; Zhang, Huizhen; Li, Yongchun; Ren, Jiangping; Wang, Xiang; Niu, Hongbin; Yin, Jun

    2011-01-01

    Background Thioredoxin h (trx h) is closely related to germination of cereal seeds. The cDNA sequences of the thioredoxin s (trx s) gene from Phalaris coerulescens and the thioredoxin h (trx h) gene from wheat are highly homologous, and their expression products have similar biological functions. Transgenic wheat had been formed after the antisense trx s was transferred into wheat, and it had been certified that the expression of trx h decreased in transgenic wheat, and transgenic wheat has high resistance to pre-harvest sprouting. Methodology/Principal Findings Through analyzing the differential proteome of wheat seeds between transgenic wheat and wild type wheat, the mechanism of transgenic wheat seeds having high resistance to pre-harvest sprouting was studied in the present work. There were 36 differential proteins which had been identified by matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF-MS). All these differential proteins are involved in regulation of carbohydrates, esters, nucleic acid, proteins and energy metabolism, and biological stress. The quantitative real time PCR results of some differential proteins, such as trx h, heat shock protein 70, α-amylase, β-amylase, glucose-6-phosphate isomerase, 14-3-3 protein, S3-RNase, glyceraldehyde-3-phosphate dehydrogenase, and WRKY transcription factor 6, represented good correlation between transcripts and proteins. The biological functions of many differential proteins are consistent with the proposed role of trx h in wheat seeds. Conclusions/Significance A possible model for the role of trx h in wheat seeds germination was proposed in this paper. These results will not only play an important role in clarifying the mechanism that transgenic wheat has high resistance to pre-harvest sprouting, but also provide further evidence for the role of trx h in germination of wheat seeds. PMID:21811579

  5. Separating homeologs by phasing in the tetraploid wheat transcriptome.

    PubMed

    Krasileva, Ksenia V; Buffalo, Vince; Bailey, Paul; Pearce, Stephen; Ayling, Sarah; Tabbita, Facundo; Soria, Marcelo; Wang, Shichen; Akhunov, Eduard; Uauy, Cristobal; Dubcovsky, Jorge

    2013-06-25

    The high level of identity among duplicated homoeologous genomes in tetraploid pasta wheat presents substantial challenges for de novo transcriptome assembly. To solve this problem, we develop a specialized bioinformatics workflow that optimizes transcriptome assembly and separation of merged homoeologs. To evaluate our strategy, we sequence and assemble the transcriptome of one of the diploid ancestors of pasta wheat, and compare both assemblies with a benchmark set of 13,472 full-length, non-redundant bread wheat cDNAs. A total of 489 million 100 bp paired-end reads from tetraploid wheat assemble in 140,118 contigs, including 96% of the benchmark cDNAs. We used a comparative genomics approach to annotate 66,633 open reading frames. The multiple k-mer assembly strategy increases the proportion of cDNAs assembled full-length in a single contig by 22% relative to the best single k-mer size. Homoeologs are separated using a post-assembly pipeline that includes polymorphism identification, phasing of SNPs, read sorting, and re-assembly of phased reads. Using a reference set of genes, we determine that 98.7% of SNPs analyzed are correctly separated by phasing. Our study shows that de novo transcriptome assembly of tetraploid wheat benefit from multiple k-mer assembly strategies more than diploid wheat. Our results also demonstrate that phasing approaches originally designed for heterozygous diploid organisms can be used to separate the close homoeologous genomes of tetraploid wheat. The predicted tetraploid wheat proteome and gene models provide a valuable tool for the wheat research community and for those interested in comparative genomic studies.

  6. Separating homeologs by phasing in the tetraploid wheat transcriptome

    PubMed Central

    2013-01-01

    Background The high level of identity among duplicated homoeologous genomes in tetraploid pasta wheat presents substantial challenges for de novo transcriptome assembly. To solve this problem, we develop a specialized bioinformatics workflow that optimizes transcriptome assembly and separation of merged homoeologs. To evaluate our strategy, we sequence and assemble the transcriptome of one of the diploid ancestors of pasta wheat, and compare both assemblies with a benchmark set of 13,472 full-length, non-redundant bread wheat cDNAs. Results A total of 489 million 100 bp paired-end reads from tetraploid wheat assemble in 140,118 contigs, including 96% of the benchmark cDNAs. We used a comparative genomics approach to annotate 66,633 open reading frames. The multiple k-mer assembly strategy increases the proportion of cDNAs assembled full-length in a single contig by 22% relative to the best single k-mer size. Homoeologs are separated using a post-assembly pipeline that includes polymorphism identification, phasing of SNPs, read sorting, and re-assembly of phased reads. Using a reference set of genes, we determine that 98.7% of SNPs analyzed are correctly separated by phasing. Conclusions Our study shows that de novo transcriptome assembly of tetraploid wheat benefit from multiple k-mer assembly strategies more than diploid wheat. Our results also demonstrate that phasing approaches originally designed for heterozygous diploid organisms can be used to separate the close homoeologous genomes of tetraploid wheat. The predicted tetraploid wheat proteome and gene models provide a valuable tool for the wheat research community and for those interested in comparative genomic studies. PMID:23800085

  7. [POLYMORPHISM OF ALFA-AMYLASE AND CONJUGATION IN COMMON WHEAT ENZYME TYPES WITH QUANTITATIVE TRAITS OF PLANTS].

    PubMed

    Netsvetaev, V P; Bondarenko, L S; Motorina, I P

    2015-01-01

    Using polymorphism of alpha-amylase in the winter common wheat studied inheritance isoenzymes and its conjugation enzyme types with germinating grain on the "vine", grain productivity, plant height and time of ear formation. It is shown that the polymorphism isoenzyme of alpha-amylase wheat is limited by the presence of different loci whose products are similar in electrophoretic parameters. In this regard, one component of the enzyme can be controlling at one or two or three genes. Identification of a locus controlling alpha-amylase isoenzyme in the fast moving part of the electrophoretogram, designated as α-Amy-B7. Determine the distance of the locus to factor α-Amy-B6.

  8. Isolation of two new retrotransposon sequences and development of molecular and cytological markers for Dasypyrum villosum (L.).

    PubMed

    Zhang, Jie; Jiang, Yun; Xuan, Pu; Guo, Yuanlin; Deng, Guangbing; Yu, Maoqun; Long, Hai

    2017-10-01

    Dasypyrum villosum is a valuable genetic resource for wheat improvement. With the aim to efficiently monitor the D. villosum chromatin introduced into common wheat, two novel retrotransposon sequences were isolated by RAPD, and were successfully converted to D. villosum-specific SCAR markers. In addition, we constructed a chromosomal karyotype of D. villosum. Our results revealed that different accessions of D. villosum showed slightly different signal patterns, indicating that distribution of repeats did not diverge significantly among D. villosum accessions. The two SCAR markers and FISH karyotype of D. villosum could be used for efficient and precise identification of D. villosum chromatin in wheat breeding.

  9. High-density SNP genotyping array for hexaploid wheat and its secondary and tertiary gene pool.

    PubMed

    Winfield, Mark O; Allen, Alexandra M; Burridge, Amanda J; Barker, Gary L A; Benbow, Harriet R; Wilkinson, Paul A; Coghill, Jane; Waterfall, Christy; Davassi, Alessandro; Scopes, Geoff; Pirani, Ali; Webster, Teresa; Brew, Fiona; Bloor, Claire; King, Julie; West, Claire; Griffiths, Simon; King, Ian; Bentley, Alison R; Edwards, Keith J

    2016-05-01

    In wheat, a lack of genetic diversity between breeding lines has been recognized as a significant block to future yield increases. Species belonging to bread wheat's secondary and tertiary gene pools harbour a much greater level of genetic variability, and are an important source of genes to broaden its genetic base. Introgression of novel genes from progenitors and related species has been widely employed to improve the agronomic characteristics of hexaploid wheat, but this approach has been hampered by a lack of markers that can be used to track introduced chromosome segments. Here, we describe the identification of a large number of single nucleotide polymorphisms that can be used to genotype hexaploid wheat and to identify and track introgressions from a variety of sources. We have validated these markers using an ultra-high-density Axiom(®) genotyping array to characterize a range of diploid, tetraploid and hexaploid wheat accessions and wheat relatives. To facilitate the use of these, both the markers and the associated sequence and genotype information have been made available through an interactive web site. © 2015 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  10. Kansas environmental and resource study: A Great Plains model. [land use, image enhancement, winter wheat, agriculture, water resources, and pattern recognition

    NASA Technical Reports Server (NTRS)

    Haralick, R. M.; Kanemasu, E. T.; Morain, S. A.; Yarger, H. L.; Ulaby, F. T.; Davis, J. C. (Principal Investigator); Bosley, R. J.; Williams, D. L.; Mccauley, J. R.; Mcnaughton, J. L.

    1973-01-01

    The author has identified the following significant results. Improvement in the land use classification accuracy of ERTS-1 MSS multi-images over Kansas can be made using two distances between neighboring grey tone N-tuples instead of one distance. Much more information is contained texturally than spectrally on the Kansas image. Ground truth measurements indicate that reflectance ratios of the 545 and 655 nm wavebands provide an index of plant development and possibly physiological stress. Preliminary analysis of MSS 4 and 5 channels substantiate the ground truth interpretation. Results of the land use mapping experiment indicate that ERTS-1 imagery has major potential in regionalization. The ways in which land is utilized within these regions may then be studied more effectively than if no adequate regionalization is available. A model for estimating wheat yield per acre has been applied to acreage estimates derived from ERTS-1 imagery to project the 1973 wheat yields for a ten county area in southwest Kansas. The results are within 3% of the preharvest estimates for the same area prepared by the USDA. Visual identification of winter wheat is readily achieved by using a temporal sequence of images. Identification can be improve by stratifying the project area into subregions having more or less homogeneous agricultural practices and crop mixes.

  11. Molecular basis of adaptation to high soil boron in wheat landraces and elite cultivars.

    PubMed

    Pallotta, Margaret; Schnurbusch, Thorsten; Hayes, Julie; Hay, Alison; Baumann, Ute; Paull, Jeff; Langridge, Peter; Sutton, Tim

    2014-10-02

    Environmental constraints severely restrict crop yields in most production environments, and expanding the use of variation will underpin future progress in breeding. In semi-arid environments boron toxicity constrains productivity, and genetic improvement is the only effective strategy for addressing the problem. Wheat breeders have sought and used available genetic diversity from landraces to maintain yield in these environments; however, the identity of the genes at the major tolerance loci was unknown. Here we describe the identification of near-identical, root-specific boron transporter genes underlying the two major-effect quantitative trait loci for boron tolerance in wheat, Bo1 and Bo4 (ref. 2). We show that tolerance to a high concentration of boron is associated with multiple genomic changes including tetraploid introgression, dispersed gene duplication, and variation in gene structure and transcript level. An allelic series was identified from a panel of bread and durum wheat cultivars and landraces originating from diverse agronomic zones. Our results demonstrate that, during selection, breeders have matched functionally different boron tolerance alleles to specific environments. The characterization of boron tolerance in wheat illustrates the power of the new wheat genomic resources to define key adaptive processes that have underpinned crop improvement.

  12. Analysis of grain elements and identification of best genotypes for Fe and P in Afghan wheat landraces

    PubMed Central

    Kondou, Youichi; Manickavelu, Alagu; Komatsu, Kenji; Arifi, Mujiburahman; Kawashima, Mika; Ishii, Takayoshi; Hattori, Tomohiro; Iwata, Hiroyoshi; Tsujimoto, Hisashi; Ban, Tomohiro; Matsui, Minami

    2016-01-01

    This study was carried out with the aim of developing the methodology to determine elemental composition in wheat and identify the best germplasm for further research. Orphan and genetically diverse Afghan wheat landraces were chosen and EDXRF was used to measure the content of some of the elements to establish elemental composition in grains of 266 landraces using 10 reference lines. Four elements, K, Mg, P, and Fe, were measured by standardizing sample preparation. The results of hierarchical cluster analysis using elemental composition data sets indicated that the Fe content has an opposite pattern to the other elements, especially that of K. By systematic analysis the best wheat germplasms for P content and Fe content were identified. In order to compare the sensitivity of EDXRF, the ICP method was also used and the similar results obtained confirmed the EDXRF methodology. The sampling method for measurement using EDXRF was optimized resulting in high-throughput profiling of elemental composition in wheat grains at low cost. Using this method, we have characterized the Afghan wheat landraces and isolated the best genotypes that have high-elemental content and have the potential to be used in crop improvement. PMID:28163583

  13. Influence of Gene Expression on Hardness in Wheat.

    PubMed

    Nirmal, Ravi C; Furtado, Agnelo; Wrigley, Colin; Henry, Robert J

    2016-01-01

    Puroindoline (Pina and Pinb) genes control grain texture or hardness in wheat. Wild-type/soft alleles lead to softer grain while a mutation in one or both of these genes results in a hard grain. Variation in hardness in genotypes with identical Pin alleles (wild-type or mutant) is known but the molecular basis of this is not known. We now report the identification of wheat genotypes with hard grain texture and wild-type/soft Pin alleles indicating that hardness in wheat may be controlled by factors other than mutations in the coding region of the Pin genes. RNA-Seq analysis was used to determine the variation in the transcriptome of developing grains of thirty three diverse wheat genotypes including hard (mutant Pin) and soft (wild type) and those that were hard without having Pin mutations. This defined the role of pin gene expression and identified other candidate genes associated with hardness. Pina was not expressed in hard wheat with a mutation in the Pina gene. The ratio of Pina to Pinb expression was generally lower in the hard non mutant genotypes. Hardness may be associated with differences in Pin expression and other factors and is not simply associated with mutations in the PIN protein coding sequences.

  14. Enhanced resistance to stripe rust disease in transgenic wheat expressing the rice chitinase gene RC24.

    PubMed

    Huang, Xuan; Wang, Jian; Du, Zhen; Zhang, Chen; Li, Lan; Xu, Ziqin

    2013-10-01

    Stripe rust is a devastating fungal disease of wheat worldwide which is primarily caused by Puccinia striiformis f. sp tritici. Transgenic wheat (Triticum aestivum L.) expressing rice class chitinase gene RC24 were developed by particle bombardment of immature embryos and tested for resistance to Puccinia striiformis f.sp tritici. under greenhouse and field conditions. Putative transformants were selected on kanamycin-containing media. Polymease chain reaction indicated that RC24 was transferred into 17 transformants obtained from bombardment of 1,684 immature embryos. Integration of RC24 was confirmed by Southern blot with a RC24-labeled probe and expression of RC24 was verified by RT-PCR. Nine transgenic T1 lines exhibited enhanced resistance to stripe rust infection with lines XN8 and BF4 showing the highest level of resistance. Southern blot hybridization confirmed the stable inheritance of RC24 in transgenic T1 plants. Resistance to stripe rust in transgenic T2 and T3 XN8 and BF4 plants was confirmed over two consecutive years in the field. Increased yield (27-36 %) was recorded for transgenic T2 and T3 XN8 and BF4 plants compared to controls. These results suggest that rice class I chitinase RC24 can be used to engineer stripe rust resistance in wheat.

  15. Mass Spectrometric Identification of the Arginine and Lysine deficient Proline Rich Glutamine Rich Wheat Storage Proteins

    USDA-ARS?s Scientific Manuscript database

    Tandem mass spectrometry (MS/MS) of enzymatic digest has made possible identification of a wide variety of proteins and complex samples prepared by such techniques as RP-HPLC or 2-D gel electrophoresis. Success requires peptide fragmentation to be indicative of the peptide amino acid sequence. The f...

  16. FISH-Based Markers Enable Identification of Chromosomes Derived From Tetraploid Thinopyrum elongatum in Hybrid Lines.

    PubMed

    Li, Daiyan; Li, Tinghui; Wu, Yanli; Zhang, Xiaohui; Zhu, Wei; Wang, Yi; Zeng, Jian; Xu, Lili; Fan, Xing; Sha, Lina; Zhang, Haiqin; Zhou, Yonghong; Kang, Houyang

    2018-01-01

    Tetraploid Thinopyrum elongatum , which has superior abiotic stress tolerance characteristics, and exhibits resistance to stripe rust, powdery mildew, and Fusarium head blight, is a wild relative of wheat and a promising source of novel genes for wheat improvement. Currently, a high-resolution Fluorescence in situ hybridization (FISH) karyotype of tetraploid Th. elongatum is not available. To develop chromosome-specific FISH-based markers, the hexaploid Trititrigia 8801 and two accessions of tetraploid Th. elongatum were characterized by different repetitive sequences probes. We found that all E-genome chromosomes could be unambiguously identified using a combination of pSc119.2, pTa535, pTa71, and pTa713 repeats, and the E-genome chromosomes of the wild accessions and the partial amphiploid failed to exhibit any significant variation in the probe hybridization patterns. To verify the validation of these markers, the chromosome constitution of eight wheat- Th. elongatum hybrid derivatives were analyzed. We revealed that these probes could quickly detect wheat and tetraploid Th. elongatum chromosomes in hybrid lines. K16-712-1-2 was a 1E (1D) chromosome substitution line, K16-681-4 was a 2E disomic chromosome addition line, K16-562-3 was a 3E, 4E (3D, 4D) chromosome substitution line, K15-1033-8-2 contained one 4E, two 5E, and one 4ES⋅1DL Robertsonian translocation chromosome, and four other lines carried monosomic 4E, 5E, 6E, and 7E chromosome, respectively. Furthermore, the E-genome specific molecular markers analysis corresponded perfectly with the FISH results. The developed FISH markers will facilitate rapid identification of tetraploid Th. elongatum chromosomes in wheat improvement programs and allow appropriate alien chromosome transfer.

  17. Application of Fourier transform infrared (FTIR) spectroscopy for the identification of wheat varieties.

    PubMed

    Amir, Rai Muhammad; Anjum, Faqir Muhammad; Khan, Muhammad Issa; Khan, Moazzam Rafiq; Pasha, Imran; Nadeem, Muhammad

    2013-10-01

    Quality characteristics of wheat are determined by different physiochemical and rheological analysis by using different AACC methods. AACC methods are expensive, time consuming and cause destruction of samples. Fourier transforms infrared (FTIR) spectroscopy is one of the most important and emerging tool used for analyzing wheat for different quality parameters. This technique is rapid and sensitive with a great variety of sampling techniques. In the present study different wheat varieties were analyzed for quality assessment and were also characterized by using AACC methods and FTIR technique. The straight grade flour was analyzed for physical, chemical and rheological properties by standard methods and results were obtained. FTIR works on the basis of functional groups and provide information in the form of peaks. On basis of peaks the value of moisture, protein, fat, ash, carbohydrates and hardness of grain were determined. Peaks for water were observed in the range 1,640 cm(-1) and 3,300 cm(-1) on the basis of functional group H and OH. Protein was observed in the range from 1,600 cm(-1) to 1,700 cm(-1) and 1,550 cm(-1) to 1,570 cm(-1) on the basis of bond amide I and amide II respectively. Fat was also observed within these ranges but on the basis of C-H bond and also starch was observed in the range from 2,800 and 3,000 cm(-1) (C-H stretch region) and in the range 3,000 and 3,600 cm(-1) (O-H stretch region). As FTIR is a fast tool it can be easily emplyed for wheat varieties identification according to a set criterion.

  18. Overexpression of the class I homeodomain transcription factor TaHDZipI-5 increases drought and frost tolerance in transgenic wheat.

    PubMed

    Yang, Yunfei; Luang, Sukanya; Harris, John; Riboni, Matteo; Li, Yuan; Bazanova, Natalia; Hrmova, Maria; Haefele, Stephan; Kovalchuk, Nataliya; Lopato, Sergiy

    2018-06-01

    Characterization of the function of stress-related genes helps to understand the mechanisms of plant responses to environmental conditions. The findings of this work defined the role of the wheat TaHDZipI-5 gene, encoding a stress-responsive homeodomain-leucine zipper class I (HD-Zip I) transcription factor, during the development of plant tolerance to frost and drought. Strong induction of TaHDZipI-5 expression by low temperatures, and the elevated TaHDZipI-5 levels of expression in flowers and early developing grains in the absence of stress, suggests that TaHDZipI-5 is involved in the regulation of frost tolerance at flowering. The TaHDZipI-5 protein behaved as an activator in a yeast transactivation assay, and the TaHDZipI-5 activation domain was localized to its C-terminus. The TaHDZipI-5 protein homo- and hetero-dimerizes with related TaHDZipI-3, and differences between DNA interactions in both dimers were specified at 3D molecular levels. The constitutive overexpression of TaHDZipI-5 in bread wheat significantly enhanced frost and drought tolerance of transgenic wheat lines with the appearance of undesired phenotypic features, which included a reduced plant size and biomass, delayed flowering and a grain yield decrease. An attempt to improve the phenotype of transgenic wheat by the application of stress-inducible promoters with contrasting properties did not lead to the elimination of undesired phenotype, apparently due to strict spatial requirements for TaHDZipI-5 overexpression. © 2017 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  19. Production and identification of wheat - Agropyron cristatum (1.4P) alien translocation lines.

    PubMed

    Liu, Wei-Hua; Luan, Yang; Wang, Jing-Chang; Wang, Xiao-Guang; Su, Jun-Ji; Zhang, Jin-Peng; Yang, Xin-Ming; Gao, Ai-Nong; Li, Li-Hui

    2010-06-01

    The P genome of Agropyron Gaertn., a wild relative of wheat, contains an abundance of desirable genes that can be utilized as genetic resources to improve wheat. In this study, wheat - Aegilops cylindrica Host gametocidal chromosome 2C addition lines were crossed with wheat - Agropyron cristatum (L.) Gaertn. disomic addition line accession II-21 with alien recombinant chromosome (1.4)P. We successfully induced wheat - A. cristatum alien chromosomal translocations for the first time. The frequency of translocation in the progeny was 3.75%, which was detected by molecular markers and genomic in situ hybridization (GISH). The translocation chromosomes were identified by dual-color GISH /fluorescence in situ hybridization (FISH). The P genomic DNA was used as probe to detect the (1.4)P chromosome fragment, and pHvG39, pAs1, or pSc119.2 repeated sequences were used as probes to identify wheat translocated chromosomes. The results showed that six types of translocations were identified in the three wheat - A. cristatum alien translocation lines, including the whole arm or terminal portion of a (1.4)P chromosome. The (1.4)P chromosome fragments were translocated to wheat chromosomes 1B, 2B, 5B, and 3D. The breakpoints were located at the centromeres of 1B and 2B, the pericentric locations of 5BS, and the terminals of 5BL and 3DS. In addition, we obtained 12 addition-deletion lines that contained alien A. cristatum chromosome (1.4)P in wheat background. All of these wheat - A. cristatum alien translocation lines and addition-deletion lines would be valuable for identifying A. cristatum chromosome (1.4)P-related genes and providing genetic resources and new germplasm accessions for the genetic improvement of wheat. The specific molecular markers of A. cristatum (1.4)P chromosome have been developed and used to track the (1.4)P chromatin.

  20. Rapid Analysis of Deoxynivalenol in Durum Wheat by FT-NIR Spectroscopy

    PubMed Central

    De Girolamo, Annalisa; Cervellieri, Salvatore; Visconti, Angelo; Pascale, Michelangelo

    2014-01-01

    Fourier-transform-near infrared (FT-NIR) spectroscopy has been used to develop quantitative and classification models for the prediction of deoxynivalenol (DON) levels in durum wheat samples. Partial least-squares (PLS) regression analysis was used to determine DON in wheat samples in the range of <50–16,000 µg/kg DON. The model displayed a large root mean square error of prediction value (1,977 µg/kg) as compared to the EU maximum limit for DON in unprocessed durum wheat (i.e., 1,750 µg/kg), thus making the PLS approach unsuitable for quantitative prediction of DON in durum wheat. Linear discriminant analysis (LDA) was successfully used to differentiate wheat samples based on their DON content. A first approach used LDA to group wheat samples into three classes: A (DON ≤ 1,000 µg/kg), B (1,000 < DON ≤ 2,500 µg/kg), and C (DON > 2,500 µg/kg) (LDA I). A second approach was used to discriminate highly contaminated wheat samples based on three different cut-off limits, namely 1,000 (LDA II), 1,200 (LDA III) and 1,400 µg/kg DON (LDA IV). The overall classification and false compliant rates for the three models were 75%–90% and 3%–7%, respectively, with model LDA IV using a cut-off of 1,400 µg/kg fulfilling the requirement of the European official guidelines for screening methods. These findings confirmed the suitability of FT-NIR to screen a large number of wheat samples for DON contamination and to verify the compliance with EU regulation. PMID:25384107

  1. Rapid analysis of deoxynivalenol in durum wheat by FT-NIR spectroscopy.

    PubMed

    De Girolamo, Annalisa; Cervellieri, Salvatore; Visconti, Angelo; Pascale, Michelangelo

    2014-11-06

    Fourier-transform-near infrared (FT-NIR) spectroscopy has been used to develop quantitative and classification models for the prediction of deoxynivalenol (DON) levels in durum wheat samples. Partial least-squares (PLS) regression analysis was used to determine DON in wheat samples in the range of <50-16,000 µg/kg DON. The model displayed a large root mean square error of prediction value (1,977 µg/kg) as compared to the EU maximum limit for DON in unprocessed durum wheat (i.e., 1,750 µg/kg), thus making the PLS approach unsuitable for quantitative prediction of DON in durum wheat. Linear discriminant analysis (LDA) was successfully used to differentiate wheat samples based on their DON content. A first approach used LDA to group wheat samples into three classes: A (DON ≤ 1,000 µg/kg), B (1,000 < DON ≤ 2,500 µg/kg), and C (DON > 2,500 µg/kg) (LDA I). A second approach was used to discriminate highly contaminated wheat samples based on three different cut-off limits, namely 1,000 (LDA II), 1,200 (LDA III) and 1,400 µg/kg DON (LDA IV). The overall classification and false compliant rates for the three models were 75%-90% and 3%-7%, respectively, with model LDA IV using a cut-off of 1,400 µg/kg fulfilling the requirement of the European official guidelines for screening methods. These findings confirmed the suitability of FT-NIR to screen a large number of wheat samples for DON contamination and to verify the compliance with EU regulation.

  2. Characterization of polyploid wheat genomic diversity using a high-density 90 000 single nucleotide polymorphism array

    PubMed Central

    Wang, Shichen; Wong, Debbie; Forrest, Kerrie; Allen, Alexandra; Chao, Shiaoman; Huang, Bevan E; Maccaferri, Marco; Salvi, Silvio; Milner, Sara G; Cattivelli, Luigi; Mastrangelo, Anna M; Whan, Alex; Stephen, Stuart; Barker, Gary; Wieseke, Ralf; Plieske, Joerg; International Wheat Genome Sequencing Consortium; Lillemo, Morten; Mather, Diane; Appels, Rudi; Dolferus, Rudy; Brown-Guedira, Gina; Korol, Abraham; Akhunova, Alina R; Feuillet, Catherine; Salse, Jerome; Morgante, Michele; Pozniak, Curtis; Luo, Ming-Cheng; Dvorak, Jan; Morell, Matthew; Dubcovsky, Jorge; Ganal, Martin; Tuberosa, Roberto; Lawley, Cindy; Mikoulitch, Ivan; Cavanagh, Colin; Edwards, Keith J; Hayden, Matthew; Akhunov, Eduard

    2014-01-01

    High-density single nucleotide polymorphism (SNP) genotyping arrays are a powerful tool for studying genomic patterns of diversity, inferring ancestral relationships between individuals in populations and studying marker–trait associations in mapping experiments. We developed a genotyping array including about 90 000 gene-associated SNPs and used it to characterize genetic variation in allohexaploid and allotetraploid wheat populations. The array includes a significant fraction of common genome-wide distributed SNPs that are represented in populations of diverse geographical origin. We used density-based spatial clustering algorithms to enable high-throughput genotype calling in complex data sets obtained for polyploid wheat. We show that these model-free clustering algorithms provide accurate genotype calling in the presence of multiple clusters including clusters with low signal intensity resulting from significant sequence divergence at the target SNP site or gene deletions. Assays that detect low-intensity clusters can provide insight into the distribution of presence–absence variation (PAV) in wheat populations. A total of 46 977 SNPs from the wheat 90K array were genetically mapped using a combination of eight mapping populations. The developed array and cluster identification algorithms provide an opportunity to infer detailed haplotype structure in polyploid wheat and will serve as an invaluable resource for diversity studies and investigating the genetic basis of trait variation in wheat. PMID:24646323

  3. The NB-LRR gene Pm60 confers powdery mildew resistance in wheat.

    PubMed

    Zou, Shenghao; Wang, Huan; Li, Yiwen; Kong, Zhaosheng; Tang, Dingzhong

    2018-04-01

    Powdery mildew is one of the most devastating diseases of wheat. To date, few powdery mildew resistance genes have been cloned from wheat due to the size and complexity of the wheat genome. Triticum urartu is the progenitor of the A genome of wheat and is an important source for powdery mildew resistance genes. Using molecular markers designed from scaffolds of the sequenced T. urartu accession and standard map-based cloning, a powdery mildew resistance locus was mapped to a 356-kb region, which contains two nucleotide-binding and leucine-rich repeat domain (NB-LRR) protein-encoding genes. Virus-induced gene silencing, single-cell transient expression, and stable transformation assays demonstrated that one of these two genes, designated Pm60, confers resistance to powdery mildew. Overexpression of full-length Pm60 and two allelic variants in Nicotiana benthamiana leaves induced hypersensitive cell death response, but expression of the coiled-coil domain alone was insufficient to induce hypersensitive response. Yeast two-hybrid, bimolecular fluorescence complementation and luciferase complementation imaging assays showed that Pm60 protein interacts with its neighboring NB-containing protein, suggesting that they might be functionally related. The identification and cloning of this novel wheat powdery mildew resistance gene will facilitate breeding for disease resistance in wheat. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  4. Identification of proteolytic bacteria from thai traditional fermented foods and their allergenic reducing potentials.

    PubMed

    Phromraksa, P; Nagano, H; Boonmars, T; Kamboonruang, C

    2008-05-01

    This study aimed to identify proteolytic bacteria from Thai traditional fermented foods and investigate their allergenic reducing potentials to wheat and milk allergens. Nine bacteria were isolated from fermented foods as follows: fermented soybean seeds (Thua Nao), fermented soybean paste (Thua Nao), wheat flour dough of steamed stuffed bun (Sa La Pao), and soaked rice from Thai fermented rice-noodle (Kha Nhom Jeen) processing. Both phenotypic and genotypic identifications were used in this study. It was found that all isolates were Gram-positive rods. Seven isolates were matched and identified as Bacillus subtilis by both techniques, and the remaining 2 isolates were phenotypically and genotypically identified as B. licheniformis and B. subtilis, respectively. The concentrated crude enzyme of B. subtilis DB and SR could reduce allergenicity of gliadin by hydrolyzing the allergenic gliadin fragments detected by immunoblotting. Furthermore, the enzyme of B. subtilis DB could also reduce allergenicity of beta-lactoglobulin (beta-LG) detected by hydrolyzing the major allergenic epitope of beta-LG at Gln(35)-Ser(36) position. B. subtilis DB and SR can be applied for the production of hypoallergenic wheat flour or milk food products.

  5. Identification of irradiated wheat by germination test, DNA comet assay and electron spin resonance

    NASA Astrophysics Data System (ADS)

    Barros, Adilson C.; Freund, Maria Teresa L.; Villavicencio, Ana Lúcia C. H.; Delincée, Henry; Arthur, Valter

    2002-03-01

    In several countries, there has been an increase in the use of radiation for food processing thus improving the quality and sanitary conditions, inhibiting pathogenic microorganisms, delaying the natural aging process and so extending product lifetime. The need to develop analytical methods to detect these irradiated products is also increasing. The goal of this research was to identify wheat irradiated using different radiation doses. Seeds were irradiated with a gamma 60Co source (Gammacell 220 GC) in the Centro de Energia Nuclear na Agricultura and the Instituto de Pesquisas Energéticas e Nucleares. Dose rate used were 1.6 and 5.8kGy/h. Applied doses were 0.0, 0.10, 0.25, 0.50, 0.75, 1.0, and 2.0kGy. After irradiation, seeds were analysed over a 6 month period. Three different detection methods were employed to determine how irradiation had modified the samples. Screening methods consisted of a germination test measuring the inhibition of shooting and rooting and analysis of DNA fragmentation. The method of electron spin resonance spectroscopy allowed a better dosimetric evaluation. These techniques make the identification of irradiated wheat with different doses possible.

  6. The in silico identification and characterization of a bread wheat/Triticum militinae introgression line.

    PubMed

    Abrouk, Michael; Balcárková, Barbora; Šimková, Hana; Komínkova, Eva; Martis, Mihaela M; Jakobson, Irena; Timofejeva, Ljudmilla; Rey, Elodie; Vrána, Jan; Kilian, Andrzej; Järve, Kadri; Doležel, Jaroslav; Valárik, Miroslav

    2017-02-01

    The capacity of the bread wheat (Triticum aestivum) genome to tolerate introgression from related genomes can be exploited for wheat improvement. A resistance to powdery mildew expressed by a derivative of the cross-bread wheat cv. Tähti × T. militinae (Tm) is known to be due to the incorporation of a Tm segment into the long arm of chromosome 4A. Here, a newly developed in silico method termed rearrangement identification and characterization (RICh) has been applied to characterize the introgression. A virtual gene order, assembled using the GenomeZipper approach, was obtained for the native copy of chromosome 4A; it incorporated 570 4A DArTseq markers to produce a zipper comprising 2132 loci. A comparison between the native and introgressed forms of the 4AL chromosome arm showed that the introgressed region is located at the distal part of the arm. The Tm segment, derived from chromosome 7G, harbours 131 homoeologs of the 357 genes present on the corresponding region of Chinese Spring 4AL. The estimated number of Tm genes transferred along with the disease resistance gene was 169. Characterizing the introgression's position, gene content and internal gene order should not only facilitate gene isolation, but may also be informative with respect to chromatin structure and behaviour studies. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  7. Influence of Gene Expression on Hardness in Wheat

    PubMed Central

    Nirmal, Ravi C.; Wrigley, Colin

    2016-01-01

    Puroindoline (Pina and Pinb) genes control grain texture or hardness in wheat. Wild-type/soft alleles lead to softer grain while a mutation in one or both of these genes results in a hard grain. Variation in hardness in genotypes with identical Pin alleles (wild-type or mutant) is known but the molecular basis of this is not known. We now report the identification of wheat genotypes with hard grain texture and wild-type/soft Pin alleles indicating that hardness in wheat may be controlled by factors other than mutations in the coding region of the Pin genes. RNA-Seq analysis was used to determine the variation in the transcriptome of developing grains of thirty three diverse wheat genotypes including hard (mutant Pin) and soft (wild type) and those that were hard without having Pin mutations. This defined the role of pin gene expression and identified other candidate genes associated with hardness. Pina was not expressed in hard wheat with a mutation in the Pina gene. The ratio of Pina to Pinb expression was generally lower in the hard non mutant genotypes. Hardness may be associated with differences in Pin expression and other factors and is not simply associated with mutations in the PIN protein coding sequences. PMID:27741295

  8. Metabolite profiling on wheat grain to enable a distinction of samples from organic and conventional farming systems.

    PubMed

    Bonte, Anja; Neuweger, Heiko; Goesmann, Alexander; Thonar, Cécile; Mäder, Paul; Langenkämper, Georg; Niehaus, Karsten

    2014-10-01

    Identification of biomarkers capable of distinguishing organic and conventional products would be highly welcome to improve the strength of food quality assurance. Metabolite profiling was used for biomarker search in organic and conventional wheat grain (Triticum aestivum L.) of 11 different old and new bread wheat cultivars grown in the DOK system comparison trial. Metabolites were extracted using methanol and analysed by gas chromatography-mass spectrometry. Altogether 48 metabolites and 245 non-identified metabolites (TAGs) were detected in the cultivar Runal. Principal component analysis showed a sample clustering according to farming systems and significant differences in peak areas between the farming systems for 10 Runal metabolites. Results obtained from all 11 cultivars indicated a greater influence of the cultivar than the farming system on metabolite concentrations. Nevertheless, a t-test on data of all cultivars still detected 5 metabolites and 11 TAGs with significant differences between the farming systems. Based on individual cultivars, metabolite profiling showed promising results for the categorization of organic and conventional wheat. Further investigations are necessary with wheat from more growing seasons and locations before definite conclusions can be drawn concerning the feasibility to evolve a combined set of biomarkers for organically grown wheat using metabolite profiles. © 2014 Society of Chemical Industry.

  9. Development of Thinopyrum ponticum-specific molecular markers and FISH probes based on SLAF-seq technology.

    PubMed

    Liu, Liqin; Luo, Qiaoling; Teng, Wan; Li, Bin; Li, Hongwei; Li, Yiwen; Li, Zhensheng; Zheng, Qi

    2018-05-01

    Based on SLAF-seq, 67 Thinopyrum ponticum-specific markers and eight Th. ponticum-specific FISH probes were developed, and these markers and probes could be used for detection of alien chromatin in a wheat background. Decaploid Thinopyrum ponticum (2n = 10x = 70) is a valuable gene reservoir for wheat improvement. Identification of Th. ponticum introgression would facilitate its transfer into diverse wheat genetic backgrounds and its practical utilization in wheat improvement. Based on specific-locus-amplified fragment sequencing (SLAF-seq) technology, 67 new Th. ponticum-specific molecular markers and eight Th. ponticum-specific fluorescence in situ hybridization (FISH) probes have been developed from a tiny wheat-Th. ponticum translocation line. These newly developed molecular markers allowed the detection of Th. ponticum DNA in a variety of materials specifically and steadily at high throughput. According to the hybridization signal pattern, the eight Th. ponticum-specific probes could be divided into two groups. The first group including five dispersed repetitive sequence probes could identify Th. ponticum chromatin more sensitively and accurately than genomic in situ hybridization (GISH). Whereas the second group having three tandem repetitive sequence probes enabled the discrimination of Th. ponticum chromosomes together with another clone pAs1 in wheat-Th. ponticum partial amphiploid Xiaoyan 68.

  10. Non-coeliac gluten or wheat sensitivity: emerging disease or misdiagnosis?

    PubMed

    Potter, Michael DE; Walker, Marjorie M; Talley, Nicholas J

    2017-08-04

    Non-coeliac gluten or wheat sensitivity (NCG/WS) is a condition characterised by adverse gastrointestinal and/or extra-intestinal symptoms associated with the ingestion of gluten- or wheat-containing foods, in the absence of coeliac disease or wheat allergy. Up to one in 100 people in Australia may have coeliac disease but many more report adverse gastrointestinal and/or extra-intestinal symptoms after eating wheat products. In the absence of validated biomarkers, a diagnosis of NCG/WS can only be made by a double-blind, placebo-controlled, dietary crossover challenge with gluten, which is difficult to apply in clinical practice. Of people self-reporting gluten or wheat sensitivity, only a small proportion (16%) will have reproducible symptoms after a blinded gluten challenge of gluten versus placebo in a crossover dietary trial and fulfil the current consensus criteria for a diagnosis of NCG/WS. A wide range of symptoms are associated with NCG/WS, including gastrointestinal, neurological, psychiatric, rheumatological and dermatological complaints. The pathogenesis of NCG/WS is not well understood, but the innate immune system has been implicated, and there is overlap with coeliac disease and the functional gastrointestinal disorders (irritable bowel syndrome and functional dyspepsia). Identification of NCG/WS is important as gluten-free diets carry risks, are socially restricting and are costlier than regular diets.

  11. McGISH identification and phenotypic description of leaf rust and yellow rust resistant partial amphiploids originating from a wheat × Thinopyrum synthetic hybrid cross.

    PubMed

    Kruppa, Klaudia; Türkösi, Edina; Mayer, Marianna; Tóth, Viola; Vida, Gyula; Szakács, Éva; Molnár-Láng, Márta

    2016-11-01

    A Thinopyrum intermedium × Thinopyrum ponticum synthetic hybrid wheatgrass is an excellent source of leaf and stem rust resistance produced by N.V.Tsitsin. Wheat line Mv9kr1 was crossed with this hybrid (Agropyron glael) in Hungary in order to transfer its advantageous agronomic traits into wheat. As the wheat parent was susceptible to leaf rust, the transfer of resistance was easily recognizable in the progenies. Three different partial amphiploid lines with leaf rust resistance were selected from the wheat/Thinopyrum hybrid derivatives by multicolour genomic in situ hybridization. Chromosome counting on the partial amphiploids revealed 58 chromosomes (18 wheatgrass) in line 194, 56 (14 wheatgrass) in line 195 and 54 (12 wheatgrass) in line 196. The wheat chromosomes present in these lines were identified and the wheatgrass chromosomes were characterized by fluorescence in situ hybridization using the repetitive DNA probes Afa-family, pSc119.2 and pTa71. The 3D wheat chromosome was missing from the lines. Molecular marker analysis showed the presence of the Lr24 leaf rust resistance gene in lines 195 and 196. The morphological traits were evaluated in the field during two consecutive seasons in two different locations.

  12. Characterization of the Endoproteases Appearing during Wheat Grain Development.

    PubMed Central

    Dominguez, F.; Cejudo, F. J.

    1996-01-01

    The pattern of endoproteolytic activities occurring during wheat (Triticum aestivum, cultivar Chinese Spring) grain development was investigated. Total endoprotease activity, assayed in solution with azocasein as a substrate, increased during the early stages of grain development to reach a maximum at 15 d postanthesis that was maintained until the grain was mature. Endoprotease activity was also assayed in gradient polyacrylamide gels co-polymerized with gelatin. The increase in endoproteolytic activity was due to the appearance of up to 18 endoproteolytic bands that were arbitrarily classified into five groups (A, B, C, D, and E). The presence of serine, aspartic, metallo, and, to a lesser extent, thiol proteases in developing wheat grains was demonstrated by the use of class-specific protease inhibitors. The appearance of the different classes of endoproteases during seed development was subject to temporal control; serine proteases were more abundant at early stages and aspartic and metallo proteases were more abundant at later stages. At intermediate stages of development (15-20 d postanthesis), most of the endoproteases were localized in the aleurone, testa, and embryo. The content of acidic thiol proteases was low in the developing starchy endosperm. PMID:12226440

  13. Molecular cytogenetic identification of a novel wheat-Agropyron elongatum chromosome translocation line with powdery mildew resistance.

    PubMed

    Li, Xiaojun; Jiang, Xiaoling; Chen, Xiangdong; Song, Jie; Ren, Cuicui; Xiao, Yajuan; Gao, Xiaohui; Ru, Zhengang

    2017-01-01

    Agropyron elongatum (Host.) Neviski (synonym, Thinopyrum ponticum Podp., 2n = 70) has been used extensively as a valuable source for wheat breeding. Numerous chromosome fragments containing valuable genes have been successfully translocated into wheat from A. elongatum. However, reports on the transfer of powdery mildew resistance from A. elongatum to wheat are rare. In this study, a novel wheat-A. elongatum translocation line, 11-20-1, developed and selected from the progenies of a sequential cross between wheat varieties (Lankaoaizaoba, Keyu 818 and BainongAK 58) and A. elongatum, was evaluated for disease resistance and characterized using molecular cytogenetic methods. Cytological observations indicated that 11-20-1 had 42 chromosomes and formed 21 bivalents at meiotic metaphase I. Genomic in situ hybridization analysis using whole genomic DNA from A. elongatum as a probe showed that the short arms of a pair of wheat chromosomes were replaced by a pair of A. elongatum chromosome arms. Fluorescence in situ hybridization, using wheat D chromosome specific sequence pAs1 as a probe, suggested that the replaced chromosome arms of 11-20-1 were 5DS. This was further confirmed by wheat SSR markers specific for 5DS. EST-SSR and EST-STS multiple loci markers confirmed that the introduced A. elongatum chromosome arms belonged to homoeologous group 5. Therefore, it was deduced that 11-20-1 was a wheat-A. elongatum T5DL∙5AgS translocation line. Both resistance observation and molecular marker analyses using two specific markers (BE443538 and CD452608) of A. elongatum in a F2 population from a cross between line 11-20-1 and a susceptible cultivar Yannong 19 verified that the A. elongatum chromosomes were responsible for the powdery mildew resistance. This work suggests that 11-20-1 likely contains a novel resistance gene against powdery mildew. We expect this line to be useful for the genetic improvement of wheat.

  14. Molecular cytogenetic identification of a novel wheat-Agropyron elongatum chromosome translocation line with powdery mildew resistance

    PubMed Central

    Jiang, Xiaoling; Chen, Xiangdong; Song, Jie; Ren, Cuicui; Xiao, Yajuan; Gao, Xiaohui; Ru, Zhengang

    2017-01-01

    Agropyron elongatum (Host.) Neviski (synonym, Thinopyrum ponticum Podp., 2n = 70) has been used extensively as a valuable source for wheat breeding. Numerous chromosome fragments containing valuable genes have been successfully translocated into wheat from A. elongatum. However, reports on the transfer of powdery mildew resistance from A. elongatum to wheat are rare. In this study, a novel wheat-A. elongatum translocation line, 11-20-1, developed and selected from the progenies of a sequential cross between wheat varieties (Lankaoaizaoba, Keyu 818 and BainongAK 58) and A. elongatum, was evaluated for disease resistance and characterized using molecular cytogenetic methods. Cytological observations indicated that 11-20-1 had 42 chromosomes and formed 21 bivalents at meiotic metaphase I. Genomic in situ hybridization analysis using whole genomic DNA from A. elongatum as a probe showed that the short arms of a pair of wheat chromosomes were replaced by a pair of A. elongatum chromosome arms. Fluorescence in situ hybridization, using wheat D chromosome specific sequence pAs1 as a probe, suggested that the replaced chromosome arms of 11-20-1 were 5DS. This was further confirmed by wheat SSR markers specific for 5DS. EST-SSR and EST-STS multiple loci markers confirmed that the introduced A. elongatum chromosome arms belonged to homoeologous group 5. Therefore, it was deduced that 11-20-1 was a wheat-A. elongatum T5DL∙5AgS translocation line. Both resistance observation and molecular marker analyses using two specific markers (BE443538 and CD452608) of A. elongatum in a F2 population from a cross between line 11-20-1 and a susceptible cultivar Yannong 19 verified that the A. elongatum chromosomes were responsible for the powdery mildew resistance. This work suggests that 11-20-1 likely contains a novel resistance gene against powdery mildew. We expect this line to be useful for the genetic improvement of wheat. PMID:28886152

  15. Soft and Hard Textured Wheat Differ in Starch Properties as Indicated by Trimodal Distribution, Morphology, Thermal and Crystalline Properties

    PubMed Central

    Kumar, Rohit; Kumar, Aman; Sharma, Nand Kishor; Kaur, Navneet; Chunduri, Venkatesh; Chawla, Meenakshi; Sharma, Saloni; Singh, Kashmir; Garg, Monika

    2016-01-01

    Starch and proteins are major components in the wheat endosperm that affect its end product quality. Between the two textural classes of wheat i.e. hard and soft, starch granules are loosely bound with the lipids and proteins in soft wheat due to higher expression of interfering grain softness proteins. It might have impact on starch granules properties. In this work for the first time the physiochemical and structural properties of different sized starch granules (A-, B- and C-granules) were studied to understand the differences in starches with respect to soft and hard wheat. A-, B- and C-type granules were separated with >95% purity. Average number and proportion of A-, B-, and C-type granules was 18%, 56%, 26% and 76%, 19%, 5% respectively. All had symmetrical birefringence pattern with varied intensity. All displayed typical A-type crystallites. A-type granules also showed V-type crystallinity that is indicative of starch complexes with lipids and proteins. Granules differing in gelatinization temperature (ΔH) and transition temperature (ΔT), showed different enthalpy changes during heating. Substitution analysis indicated differences in relative substitution pattern of different starch granules. Birefringence, percentage crystallinity, transmittance, gelatinization enthalpy and substitution decreased in order of A>B>C being higher in hard wheat than soft wheat. Amylose content decreased in order of A>B>C being higher in soft wheat than hard wheat. Reconstitution experiment showed that starch properties could be manipulated by changing the composition of starch granules. Addition of A-granules to total starch significantly affected its thermal properties. Effect of A-granule addition was higher than B- and C-granules. Transmittance of the starch granules paste showed that starch granules of hard wheat formed clear paste. These results suggested that in addition to differences in protein concentration, hard and soft wheat lines have differences in starch composition also. PMID:26824830

  16. Soft and Hard Textured Wheat Differ in Starch Properties as Indicated by Trimodal Distribution, Morphology, Thermal and Crystalline Properties.

    PubMed

    Kumar, Rohit; Kumar, Aman; Sharma, Nand Kishor; Kaur, Navneet; Chunduri, Venkatesh; Chawla, Meenakshi; Sharma, Saloni; Singh, Kashmir; Garg, Monika

    2016-01-01

    Starch and proteins are major components in the wheat endosperm that affect its end product quality. Between the two textural classes of wheat i.e. hard and soft, starch granules are loosely bound with the lipids and proteins in soft wheat due to higher expression of interfering grain softness proteins. It might have impact on starch granules properties. In this work for the first time the physiochemical and structural properties of different sized starch granules (A-, B- and C-granules) were studied to understand the differences in starches with respect to soft and hard wheat. A-, B- and C-type granules were separated with >95% purity. Average number and proportion of A-, B-, and C-type granules was 18%, 56%, 26% and 76%, 19%, 5% respectively. All had symmetrical birefringence pattern with varied intensity. All displayed typical A-type crystallites. A-type granules also showed V-type crystallinity that is indicative of starch complexes with lipids and proteins. Granules differing in gelatinization temperature (ΔH) and transition temperature (ΔT), showed different enthalpy changes during heating. Substitution analysis indicated differences in relative substitution pattern of different starch granules. Birefringence, percentage crystallinity, transmittance, gelatinization enthalpy and substitution decreased in order of A>B>C being higher in hard wheat than soft wheat. Amylose content decreased in order of A>B>C being higher in soft wheat than hard wheat. Reconstitution experiment showed that starch properties could be manipulated by changing the composition of starch granules. Addition of A-granules to total starch significantly affected its thermal properties. Effect of A-granule addition was higher than B- and C-granules. Transmittance of the starch granules paste showed that starch granules of hard wheat formed clear paste. These results suggested that in addition to differences in protein concentration, hard and soft wheat lines have differences in starch composition also.

  17. Crop Identification Technolgy Assessment for Remote Sensing (CITARS). Volume 1: Task design plan

    NASA Technical Reports Server (NTRS)

    Hall, F. G.; Bizzell, R. M.

    1975-01-01

    A plan for quantifying the crop identification performances resulting from the remote identification of corn, soybeans, and wheat is described. Steps for the conversion of multispectral data tapes to classification results are specified. The crop identification performances resulting from the use of several basic types of automatic data processing techniques are compared and examined for significant differences. The techniques are evaluated also for changes in geographic location, time of the year, management practices, and other physical factors. The results of the Crop Identification Technology Assessment for Remote Sensing task will be applied extensively in the Large Area Crop Inventory Experiment.

  18. Genome-wide identification and expression characterization of ABCC-MRP transporters in hexaploid wheat.

    PubMed

    Bhati, Kaushal K; Sharma, Shivani; Aggarwal, Sipla; Kaur, Mandeep; Shukla, Vishnu; Kaur, Jagdeep; Mantri, Shrikant; Pandey, Ajay K

    2015-01-01

    The ABCC multidrug resistance associated proteins (ABCC-MRP), a subclass of ABC transporters are involved in multiple physiological processes that include cellular homeostasis, metal detoxification, and transport of glutathione-conjugates. Although they are well-studied in humans, yeast, and Arabidopsis, limited efforts have been made to address their possible role in crop like wheat. In the present work, 18 wheat ABCC-MRP proteins were identified that showed the uniform distribution with sub-families from rice and Arabidopsis. Organ-specific quantitative expression analysis of wheat ABCC genes indicated significantly higher accumulation in roots (TaABCC2, TaABCC3, and TaABCC11 and TaABCC12), stem (TaABCC1), leaves (TaABCC16 and TaABCC17), flag leaf (TaABCC14 and TaABCC15), and seeds (TaABCC6, TaABCC8, TaABCC12, TaABCC13, and TaABCC17) implicating their role in the respective tissues. Differential transcript expression patterns were observed for TaABCC genes during grain maturation speculating their role during seed development. Hormone treatment experiments indicated that some of the ABCC genes could be transcriptionally regulated during seed development. In the presence of Cd or hydrogen peroxide, distinct molecular expression of wheat ABCC genes was observed in the wheat seedlings, suggesting their possible role during heavy metal generated oxidative stress. Functional characterization of the wheat transporter, TaABCC13 a homolog of maize LPA1 confirms its role in glutathione-mediated detoxification pathway and is able to utilize adenine biosynthetic intermediates as a substrate. This is the first comprehensive inventory of wheat ABCC-MRP gene subfamily.

  19. Genome-wide identification, phylogeny and expressional profiles of mitogen activated protein kinase kinase kinase (MAPKKK) gene family in bread wheat (Triticum aestivum L.).

    PubMed

    Wang, Meng; Yue, Hong; Feng, Kewei; Deng, Pingchuan; Song, Weining; Nie, Xiaojun

    2016-08-22

    Mitogen-activated protein kinase kinase kinases (MAPKKKs) are the important components of MAPK cascades, which play the crucial role in plant growth and development as well as in response to diverse stresses. Although this family has been systematically studied in many plant species, little is known about MAPKKK genes in wheat (Triticum aestivum L.), especially those involved in the regulatory network of stress processes. In this study, we identified 155 wheat MAPKKK genes through a genome-wide search method based on the latest available wheat genome information, of which 29 belonged to MEKK, 11 to ZIK and 115 to Raf subfamily, respectively. Then, chromosome localization, gene structure and conserved protein motifs and phylogenetic relationship as well as regulatory network of these TaMAPKKKs were systematically investigated and results supported the prediction. Furthermore, a total of 11 homologous groups between A, B and D sub-genome and 24 duplication pairs among them were detected, which contributed to the expansion of wheat MAPKKK gene family. Finally, the expression profiles of these MAPKKKs during development and under different abiotic stresses were investigated using the RNA-seq data. Additionally, 10 tissue-specific and 4 salt-responsive TaMAPKKK genes were selected to validate their expression level through qRT-PCR analysis. This study for the first time reported the genome organization, evolutionary features and expression profiles of the wheat MAPKKK gene family, which laid the foundation for further functional analysis of wheat MAPKKK genes, and contributed to better understanding the roles and regulatory mechanism of MAPKKKs in wheat.

  20. Gliadin Detection in Food by Immunoassay

    NASA Astrophysics Data System (ADS)

    Grant, Gordon; Sporns, Peter; Hsieh, Y.-H. Peggy

    Immunoassays are very sensitive and efficient tests that are commonly used to identify a specific protein. Examples of applications in the food industry include identification of proteins expressed in genetically modified foods, allergens, or proteins associated with a disease, including celiac disease. This genetic disease is associated with Europeans and affects about one in every 200 people in North America. These individuals react immunologically to wheat proteins, and consequently their own immune systems attack and damage their intestines. This disease can be managed if wheat proteins, specifically "gliadins," are avoided in foods.

  1. Identification of rat serum alkaline phosphatase isoenzyme by means of wheat germ agglutinin.

    PubMed

    Wada, H; Niwa, N; Hayakawa, T; Tsuge, H

    1997-01-01

    Wheat germ agglutinin (WGA) precipitates bone type serum alkaline phosphatase (sALP) isoenzyme specifically. The precipitates are composed of the macromolecules of WGA and "bone type sALP" (WGA-ALP complex). In order to use bone type sALP as a marker in polyacrylamide gel electrophoresis (PAGE), a method to separate "bone type sALP" from the "WGA-ALP complex" was established by using N-acetyl-D-glucosamine (GlcNAc)-Sepharose 6E column chromatography. It was concluded that this method is useful for clinical examination in the rat.

  2. Structural and functional partitioning of bread wheat chromosome 3B.

    PubMed

    Choulet, Frédéric; Alberti, Adriana; Theil, Sébastien; Glover, Natasha; Barbe, Valérie; Daron, Josquin; Pingault, Lise; Sourdille, Pierre; Couloux, Arnaud; Paux, Etienne; Leroy, Philippe; Mangenot, Sophie; Guilhot, Nicolas; Le Gouis, Jacques; Balfourier, Francois; Alaux, Michael; Jamilloux, Véronique; Poulain, Julie; Durand, Céline; Bellec, Arnaud; Gaspin, Christine; Safar, Jan; Dolezel, Jaroslav; Rogers, Jane; Vandepoele, Klaas; Aury, Jean-Marc; Mayer, Klaus; Berges, Hélène; Quesneville, Hadi; Wincker, Patrick; Feuillet, Catherine

    2014-07-18

    We produced a reference sequence of the 1-gigabase chromosome 3B of hexaploid bread wheat. By sequencing 8452 bacterial artificial chromosomes in pools, we assembled a sequence of 774 megabases carrying 5326 protein-coding genes, 1938 pseudogenes, and 85% of transposable elements. The distribution of structural and functional features along the chromosome revealed partitioning correlated with meiotic recombination. Comparative analyses indicated high wheat-specific inter- and intrachromosomal gene duplication activities that are potential sources of variability for adaption. In addition to providing a better understanding of the organization, function, and evolution of a large and polyploid genome, the availability of a high-quality sequence anchored to genetic maps will accelerate the identification of genes underlying important agronomic traits. Copyright © 2014, American Association for the Advancement of Science.

  3. The use of thermostable bacterial hemicellulases improves the conversion of lignocellulosic biomass to valuable molecules.

    PubMed

    Rakotoarivonina, Harivony; Revol, Pierre-Vincent; Aubry, Nathalie; Rémond, Caroline

    2016-09-01

    The hydrolysis of xylans, one of the main classes of carbohydrates that constitute lignocellulosic biomass, requires the synergistic action of several enzymes. The development of efficient enzymatic strategies for hydrolysis remains a challenge in the pursuit of viable biorefineries, particularly with respect to the valorisation of pentoses. The approach developed in this work is based on obtaining and characterising hemicellulasic cocktails from Thermobacillus xylanilyticus after culturing this bacterium on the hemicellulose-rich substrates wheat bran and wheat straw, which differ in their chemistries. The two obtained cocktails (WSC and WBC, for cocktails obtained from wheat straw and wheat bran, respectively) were resistant to a broad range of temperature and pH conditions. At 60 °C, both cocktails efficiently liberated pentoses and phenolic acids from wheat bran (liberating more than 60, 30 and 40 % of the total xylose, arabinose and ferulic acid in wheat bran, respectively). They acted to a lesser extent on the more recalcitrant wheat straw, with hydrolytic yields of more than 30 % of the total arabinose and xylose content and 22 % of the ferulic acid content. Hydrolysis is associated with a high rate of sugar monomerisation. When associated with cellulases, high quantities of glucose were also obtained. On wheat bran, total glucose yields were improved by 70 % compared to the action of cellulases alone. This improvement was obtained by cellulase complementation either with WSC or with WBC. On wheat straw, similar levels of total glucose were obtained for cellulases alone or complemented with WSC or WBC. Interestingly, the complementation of cellulases with WSC or WBC induced an increase in the monomeric glucose yield of more than 20 % compared to cellulases alone.

  4. Mass Spectrometric Characterization of Benzoxazinoid Glycosides from Rhizopus-Elicited Wheat (Triticum aestivum) Seedlings.

    PubMed

    de Bruijn, Wouter J C; Vincken, Jean-Paul; Duran, Katharina; Gruppen, Harry

    2016-08-17

    Benzoxazinoids function as defense compounds and have been suggested to possess health-promoting effects. In this work, the mass spectrometric behavior of benzoxazinoids from the classes benzoxazin-3-ones (with subclasses lactams, hydroxamic acids, and methyl derivatives) and benzoxazolinones was studied. Wheat seeds were germinated with simultaneous elicitation by Rhizopus. The seedling extract was screened for the presence of benzoxazinoid (glycosides) using reversed-phase ultra-high-performance liquid chromatography with photodiode array detection coupled in line to multiple-stage mass spectrometry (RP-UHPLC-PDA-MS(n)). Benzoxazin-3-ones from the different subclasses showed distinctly different ionization and fragmentation behaviors. These features were incorporated into a newly proposed decision guideline to aid the classification of benzoxazinoids. Glycosides of the methyl derivative 2-hydroxy-4-methoxy-1,4-benzoxazin-3-one were tentatively identified for the first time in wheat. We conclude that wheat seedlings germinated with simultaneous fungal elicitation contain a diverse array of benzoxazinoids, mainly constituted by benzoxazin-3-one glycosides.

  5. Study of quantitative changes of cereal allergenic proteins after food processing.

    PubMed

    Flodrová, Dana; Benkovská, Dagmar; Laštovičková, Markéta

    2015-03-30

    Within last few years, the occurrence of food allergens and corresponding food allergies has been increasing, therefore research into the individual allergens is required. In the present work, the effect of cereal processing on the amounts of allergenic proteins is studied by modern proteomic-based approaches. The most important wheat and barley allergens are low-molecular-weight (LMW) proteins. Therefore we investigated the relative quantitative changes of these proteins after food technological processing, namely wheat couscous production and barley malting. A comparative study using mass spectrometry in connection with the technique of isobaric tag for relative and absolute quantification (iTRAQ) revealed that the amount of wheat allergenic LMW proteins decreased significantly during couscous production (approximately to 5-26% of their initial content in wheat flour). After barley malting, the amounts of the majority of LMW proteins decreased as well, although to a lesser extent than in the case of wheat/couscous. The level of two allergens even slightly increased. Suggested proteomic strategy proved as universal and sensitive method for fast and reliable identification of various cereal allergens and monitoring of their quantitative changes during food processing. Such information is important for consumers who suffer from allergies. © 2014 Society of Chemical Industry.

  6. An In Planta-Expressed Polyketide Synthase Produces (R)-Mellein in the Wheat Pathogen Parastagonospora nodorum

    PubMed Central

    Krill, Christian; Barrow, Russell A.; Chen, Shasha; Trengove, Robert; Oliver, Richard P.; Solomon, Peter S.

    2014-01-01

    Parastagonospora nodorum is a pathogen of wheat that affects yields globally. Previous transcriptional analysis identified a partially reducing polyketide synthase (PR-PKS) gene, SNOG_00477 (SN477), in P. nodorum that is highly upregulated during infection of wheat leaves. Disruption of the corresponding SN477 gene resulted in the loss of production of two compounds, which we identified as (R)-mellein and (R)-O-methylmellein. Using a Saccharomyces cerevisiae yeast heterologous expression system, we successfully demonstrated that SN477 is the only enzyme required for the production of (R)-mellein. This is the first identification of a fungal PKS that is responsible for the synthesis of (R)-mellein. The P. nodorum ΔSN477 mutant did not show any significant difference from the wild-type strain in its virulence against wheat. However, (R)-mellein at 200 μg/ml inhibited the germination of wheat (Triticum aestivum) and barrel medic (Medicago truncatula) seeds. Comparative sequence analysis identified the presence of mellein synthase (MLNS) homologues in several Dothideomycetes and two sodariomycete genera. Phylogenetic analysis suggests that the MLNSs in fungi and bacteria evolved convergently from fungal and bacterial 6-methylsalicylic acid synthases. PMID:25326302

  7. Identification of a hybridization window that facilitates sizeable reductions of pollen-mediated gene flow in spring wheat.

    PubMed

    Willenborg, Christian J; Brûlé-Babel, Anita L; Van Acker, Rene C

    2010-06-01

    Transgenic wheat (Triticum aestivum L.) with improved agronomic traits is currently being field-tested. Gene flow in space is well-documented, but isolation in time has not received comparable attention. Here, we report the results of a field experiment that investigated reductions in intraspecific gene flow associated with temporal isolation of flowering between T. aestivum conspecifics. Pollen-mediated gene flow (PMGF) between an imazamox-resistant (IR) volunteer wheat population and a non-IR spring wheat crop was assessed over a range of volunteer emergence timings and plant population densities that collectively promoted flowering asynchrony. Natural hybridization events between the two populations were detected by phenotypically scoring plants in F(1) populations followed by verification with Mendelian segregation ratios in the F(1:2) lines. Based on the examination of >545,000 seedlings, we identified a hybridization window in spring wheat approximately 125 growing degree-days (GDD) in length. We found a sizeable reduction (two- to four-fold) in gene flow frequencies when flowering occurred outside of this window. The hybridization window identified in this research also will serve to temporally isolate neighboring wheat crops. However, strict control of volunteer populations or spatial isolation of neighbouring crops emerging within a 125 GDD hybridization window will be necessary to maintain low frequencies of PMGF in spring wheat fields. The model developed herein also is likely to be applicable to other wind-pollinated species.

  8. Identification of Proteins Using iTRAQ and Virus-Induced Gene Silencing Reveals Three Bread Wheat Proteins Involved in the Response to Combined Osmotic-Cold Stress.

    PubMed

    Zhang, Ning; Zhang, Lingran; Shi, Chaonan; Zhao, Lei; Cui, Dangqun; Chen, Feng

    2018-05-25

    Crops are often subjected to a combination of stresses in the field. To date, studies on the physiological and molecular responses of common wheat to a combination of osmotic and cold stresses, however, remain unknown. In this study, wheat seedlings exposed to osmotic-cold stress for 24 h showed inhibited growth, as well as increased lipid peroxidation, relative electrolyte leakage, and soluble sugar contents. iTRAQ-based quantitative proteome method was employed to determine the proteomic profiles of the roots and leaves of wheat seedlings exposed to osmotic-cold stress conditions. A total of 250 and 258 proteins with significantly altered abundance in the roots and leaves were identified, respectively, and the majority of these proteins displayed differential abundance, thereby revealing organ-specific differences in adaptation to osmotic-cold stress. Yeast two hybrid assay examined five pairs of stress/defense-related protein-protein interactions in the predicted protein interaction network. Furthermore, quantitative real-time PCR analysis indicated that abiotic stresses increased the expression of three candidate protein genes, i.e., TaGRP2, CDCP, and Wcor410c in wheat leaves. Virus-induced gene silencing indicated that three genes TaGRP2, CDCP, and Wcor410c were involved in modulating osmotic-cold stress in common wheat. Our study provides useful information for the elucidation of molecular and genetics bases of osmotic-cold combined stress in bread wheat.

  9. Wheat beta-expansin (EXPB11) genes: Identification of the expressed gene on chromosome 3BS carrying a pollen allergen domain

    PubMed Central

    2010-01-01

    Background Expansins form a large multi-gene family found in wheat and other cereal genomes that are involved in the expansion of cell walls as a tissue grows. The expansin family can be divided up into two main groups, namely, alpha-expansin (EXPA) and beta-expansin proteins (EXPB), with the EXPB group being of particular interest as group 1-pollen allergens. Results In this study, three beta-expansin genes were identified and characterized from a newly sequenced region of the Triticum aestivum cv. Chinese Spring chromosome 3B physical map at the Sr2 locus (FPC contig ctg11). The analysis of a 357 kb sub-sequence of FPC contig ctg11 identified one beta-expansin genes to be TaEXPB11, originally identified as a cDNA from the wheat cv Wyuna. Through the analysis of intron sequences of the three wheat cv. Chinese Spring genes, we propose that two of these beta-expansin genes are duplications of the TaEXPB11 gene. Comparative sequence analysis with two other wheat cultivars (cv. Westonia and cv. Hope) and a Triticum aestivum var. spelta line validated the identification of the Chinese Spring variant of TaEXPB11. The expression in maternal and grain tissues was confirmed by examining EST databases and carrying out RT-PCR experiments. Detailed examination of the position of TaEXPB11 relative to the locus encoding Sr2 disease resistance ruled out the possibility of this gene directly contributing to the resistance phenotype. Conclusions Through 3-D structural protein comparisons with Zea mays EXPB1, we proposed that variations within the coding sequence of TaEXPB11 in wheats may produce a functional change within features such as domain 1 related to possible involvement in cell wall structure and domain 2 defining the pollen allergen domain and binding to IgE protein. The variation established in this gene suggests it is a clearly identifiable member of a gene family and reflects the dynamic features of the wheat genome as it adapted to a range of different environments and uses. Accession Numbers: ctg11 =FN564426 Survey sequences of TaEXPB11ws and TsEXPB11 are provided request. PMID:20507562

  10. Comparative Temporal Transcriptome Profiling of Wheat near Isogenic Line Carrying Lr57 under Compatible and Incompatible Interactions

    PubMed Central

    Yadav, Inderjit S.; Sharma, Amandeep; Kaur, Satinder; Nahar, Natasha; Bhardwaj, Subhash C.; Sharma, Tilak R.; Chhuneja, Parveen

    2016-01-01

    Leaf rust caused by Puccinia triticina (Pt) is one of the most important diseases of bread wheat globally. Recent advances in sequencing technologies have provided opportunities to analyse the complete transcriptomes of the host as well as pathogen for studying differential gene expression during infection. Pathogen induced differential gene expression was characterized in a near isogenic line carrying leaf rust resistance gene Lr57 and susceptible recipient genotype WL711. RNA samples were collected at five different time points 0, 12, 24, 48, and 72 h post inoculation (HPI) with Pt 77-5. A total of 3020 transcripts were differentially expressed with 1458 and 2692 transcripts in WL711 and WL711+Lr57, respectively. The highest number of differentially expressed transcripts was detected at 12 HPI. Functional categorization using Blast2GO classified the genes into biological processes, molecular function and cellular components. WL711+Lr57 showed much higher number of differentially expressed nucleotide binding and leucine rich repeat genes and expressed more protein kinases and pathogenesis related proteins such as chitinases, glucanases and other PR proteins as compared to susceptible genotype. Pathway annotation with KEGG categorized genes into 13 major classes with carbohydrate metabolism being the most prominent followed by amino acid, secondary metabolites, and nucleotide metabolism. Gene co-expression network analysis identified four and eight clusters of highly correlated genes in WL711 and WL711+Lr57, respectively. Comparative analysis of the differentially expressed transcripts led to the identification of some transcripts which were specifically expressed only in WL711+Lr57. It was apparent from the whole transcriptome sequencing that the resistance gene Lr57 directed the expression of different genes involved in building the resistance response in the host to combat invading pathogen. The RNAseq data and differentially expressed transcripts identified in present study is a genomic resource which can be used for further studying the host pathogen interaction for Lr57 and wheat transcriptome in general. PMID:28066494

  11. Biological control of fusarium seedling blight disease of wheat and barley.

    PubMed

    Khan, Mojibur R; Fischer, Sven; Egan, Damian; Doohan, Fiona M

    2006-04-01

    ABSTRACT Fusarium fungi, including F. culmorum, cause seedling blight, foot rot, and head blight diseases of cereals, resulting in yield loss. In a screen for potential disease control organisms and agents, Pseudomonas fluorescens strains MKB 100 and MKB 249, P. frederiksbergensis strain 202, Pseudomonas sp. strain MKB 158, and chitosan all significantly reduced the extent of both wheat coleoptile growth retardation and wheat and barley seedling blight caused by F. culmorum (by 53 to 91%). Trichodiene synthase is a Fusarium enzyme necessary for trichothecene mycotoxin biosynthesis; expression of the gene encoding this enzyme in wheat was 33% lower in stem base tissue coinoculated with Pseudomonas sp. strain MKB 158 and F. culmorum than in wheat treated with bacterial culture medium and F. culmorum. When wheat and barley were grown in soil amended with either chitosan, P. fluorescens strain MKB 249, Pseudomonas sp. strain MKB 158, or culture filtrates of these bacteria, the level of disease symptoms on F. culmorum-inoculated stem base tissue (at 12 days post- F. culmorum inoculation) was >/=31% less than the level on F. culmorum-inoculated plants grown in culture medium-amended soil. It seems likely that at least part of the biocontrol activity of these bacteria and chitosan may be due to the induction of systemic disease resistance in host plants. Also, in coinoculation studies, Pseudomonas sp. strain MKB 158 induced the expression of a wheat class III plant peroxidase gene (a pathogenesis-related gene).

  12. Variable selection based near infrared spectroscopy quantitative and qualitative analysis on wheat wet gluten

    NASA Astrophysics Data System (ADS)

    Lü, Chengxu; Jiang, Xunpeng; Zhou, Xingfan; Zhang, Yinqiao; Zhang, Naiqian; Wei, Chongfeng; Mao, Wenhua

    2017-10-01

    Wet gluten is a useful quality indicator for wheat, and short wave near infrared spectroscopy (NIRS) is a high performance technique with the advantage of economic rapid and nondestructive test. To study the feasibility of short wave NIRS analyzing wet gluten directly from wheat seed, 54 representative wheat seed samples were collected and scanned by spectrometer. 8 spectral pretreatment method and genetic algorithm (GA) variable selection method were used to optimize analysis. Both quantitative and qualitative model of wet gluten were built by partial least squares regression and discriminate analysis. For quantitative analysis, normalization is the optimized pretreatment method, 17 wet gluten sensitive variables are selected by GA, and GA model performs a better result than that of all variable model, with R2V=0.88, and RMSEV=1.47. For qualitative analysis, automatic weighted least squares baseline is the optimized pretreatment method, all variable models perform better results than those of GA models. The correct classification rates of 3 class of <24%, 24-30%, >30% wet gluten content are 95.45, 84.52, and 90.00%, respectively. The short wave NIRS technique shows potential for both quantitative and qualitative analysis of wet gluten for wheat seed.

  13. Gametocidal genes of Aegilops: segregation distorters in wheat-Aegilops wide hybridization.

    PubMed

    Niranjana, M

    2017-08-01

    Aegilops is a genus belonging to the family Poaceace, which have played an indispensible role in the evolution of bread wheat and continues to do so by transferring genes by wide hybridization. Being the secondary gene pool of wheat, gene transfer from Aegilops poses difficulties and segregation distortion is common. Gametocidal genes are the most well characterized class of segregation distorters reported in interspecific crosses of wheat with Aegilops. These "selfish" genetic elements ensure their preferential transmission to progeny at the cost of gametes lacking them without providing any phenotypic benefits to the plant, thereby causing a proportional reduction in fertility. Gametocidal genes (Gc) have been reported in different species of Aegilops belonging to the sections Aegilops (Ae. geniculata and Ae. triuncialis), Cylindropyrum (Ae. caudata and Ae. cylindrica), and Sitopsis (Ae. longissima, Ae. sharonensis, and Ae. speltoides). Gametocidal activity is mostly confined to 2, 3, and 4 homeologous groups of C, S, S 1 , S sh , and M g genomes. Removal of such genes is necessary for successful alien gene introgression and can be achieved by mutagenesis or allosyndetic pairing. However, there are some instances where Gc genes are constructively utilized for development of deletion stocks in wheat, improving genetic variability and chromosome engineering.

  14. A protocol for the simultaneous identification of chitin-containing particles and their associated bacteria.

    PubMed

    Biancalana, Florencia; Kopprio, Germán A; Lara, Rubén J; Alonso, Cecilia

    2017-07-01

    Chitin is the second most abundant polymer on Earth, playing a crucial role in the biogeochemical cycles. A core issue for studying its processing in aquatic systems is the identification and enumeration of chitin-containing particles and organisms, ideally in a manner that can be directly linked to bulk chitin quantification. The aim of this study was the development of such a technique. We successfully combined the methodology of bulk chitin determination using wheat germ agglutinin (FITC-WGA) for staining chitin-containing particles and organisms along with CARD-FISH staining of either chitin-containing eukaryotic cells or bacteria associated with them. Environmental chitin staining was successfully applied to natural water samples. Fungal hyphae, diatoms, and dinoflagellates, sestonic aggregates and chitin-containing structures derived from metazoa were observed. Also, hybridized bacteria attached to chitinaceous debris were clearly visualized. Finally, as proof of principle, cultured yeast cells were simultaneously-targeted by FITC-WGA and the EUK516 probe without exhibiting any interference between both stains. The presented approach appears as a powerful tool to evaluate the contribution of different size classes and organisms to chitin production and consumption, opening the possibility for application of single-cell approaches targeting the ecophysiology of chitin transformations in aquatic systems. Copyright © 2017 Elsevier GmbH. All rights reserved.

  15. Benchmark levels for the consumptive water footprint of crop production for different environmental conditions: a case study for winter wheat in China

    NASA Astrophysics Data System (ADS)

    Zhuo, La; Mekonnen, Mesfin M.; Hoekstra, Arjen Y.

    2016-11-01

    Meeting growing food demands while simultaneously shrinking the water footprint (WF) of agricultural production is one of the greatest societal challenges. Benchmarks for the WF of crop production can serve as a reference and be helpful in setting WF reduction targets. The consumptive WF of crops, the consumption of rainwater stored in the soil (green WF), and the consumption of irrigation water (blue WF) over the crop growing period varies spatially and temporally depending on environmental factors like climate and soil. The study explores which environmental factors should be distinguished when determining benchmark levels for the consumptive WF of crops. Hereto we determine benchmark levels for the consumptive WF of winter wheat production in China for all separate years in the period 1961-2008, for rain-fed vs. irrigated croplands, for wet vs. dry years, for warm vs. cold years, for four different soil classes, and for two different climate zones. We simulate consumptive WFs of winter wheat production with the crop water productivity model AquaCrop at a 5 by 5 arcmin resolution, accounting for water stress only. The results show that (i) benchmark levels determined for individual years for the country as a whole remain within a range of ±20 % around long-term mean levels over 1961-2008, (ii) the WF benchmarks for irrigated winter wheat are 8-10 % larger than those for rain-fed winter wheat, (iii) WF benchmarks for wet years are 1-3 % smaller than for dry years, (iv) WF benchmarks for warm years are 7-8 % smaller than for cold years, (v) WF benchmarks differ by about 10-12 % across different soil texture classes, and (vi) WF benchmarks for the humid zone are 26-31 % smaller than for the arid zone, which has relatively higher reference evapotranspiration in general and lower yields in rain-fed fields. We conclude that when determining benchmark levels for the consumptive WF of a crop, it is useful to primarily distinguish between different climate zones. If actual consumptive WFs of winter wheat throughout China were reduced to the benchmark levels set by the best 25 % of Chinese winter wheat production (1224 m3 t-1 for arid areas and 841 m3 t-1 for humid areas), the water saving in an average year would be 53 % of the current water consumption at winter wheat fields in China. The majority of the yield increase and associated improvement in water productivity can be achieved in southern China.

  16. Putative Microsatellite DNA Marker-Based Wheat Genomic Resource for Varietal Improvement and Management.

    PubMed

    Jaiswal, Sarika; Sheoran, Sonia; Arora, Vasu; Angadi, Ulavappa B; Iquebal, Mir A; Raghav, Nishu; Aneja, Bharti; Kumar, Deepender; Singh, Rajender; Sharma, Pradeep; Singh, G P; Rai, Anil; Tiwari, Ratan; Kumar, Dinesh

    2017-01-01

    Wheat fulfills 20% of global caloric requirement. World needs 60% more wheat for 9 billion population by 2050 but climate change with increasing temperature is projected to affect wheat productivity adversely. Trait improvement and management of wheat germplasm requires genomic resource. Simple Sequence Repeats (SSRs) being highly polymorphic and ubiquitously distributed in the genome, can be a marker of choice but there is no structured marker database with options to generate primer pairs for genotyping on desired chromosome/physical location. Previously associated markers with different wheat trait are also not available in any database. Limitations of in vitro SSR discovery can be overcome by genome-wide in silico mining of SSR. Triticum aestivum SSR database ( TaSSRDb ) is an integrated online database with three-tier architecture, developed using PHP and MySQL and accessible at http://webtom.cabgrid.res.in/wheatssr/. For genotyping, Primer3 standalone code computes primers on user request. Chromosome-wise SSR calling for all the three sub genomes along with choice of motif types is provided in addition to the primer generation for desired marker. We report here a database of highest number of SSRs (476,169) from complex, hexaploid wheat genome (~17 GB) along with previously reported 268 SSR markers associated with 11 traits. Highest (116.93 SSRs/Mb) and lowest (74.57 SSRs/Mb) SSR densities were found on 2D and 3A chromosome, respectively. To obtain homozygous locus, e-PCR was done. Such 30 loci were randomly selected for PCR validation in panel of 18 wheat Advance Varietal Trial (AVT) lines. TaSSRDb can be a valuable genomic resource tool for linkage mapping, gene/QTL (Quantitative trait locus) discovery, diversity analysis, traceability and variety identification. Varietal specific profiling and differentiation can supplement DUS (Distinctiveness, Uniformity, and Stability) testing, EDV (Essentially Derived Variety)/IV (Initial Variety) disputes, seed purity and hybrid wheat testing. All these are required in germplasm management as well as also in the endeavor of wheat productivity.

  17. Putative Microsatellite DNA Marker-Based Wheat Genomic Resource for Varietal Improvement and Management

    PubMed Central

    Jaiswal, Sarika; Sheoran, Sonia; Arora, Vasu; Angadi, Ulavappa B.; Iquebal, Mir A.; Raghav, Nishu; Aneja, Bharti; Kumar, Deepender; Singh, Rajender; Sharma, Pradeep; Singh, G. P.; Rai, Anil; Tiwari, Ratan; Kumar, Dinesh

    2017-01-01

    Wheat fulfills 20% of global caloric requirement. World needs 60% more wheat for 9 billion population by 2050 but climate change with increasing temperature is projected to affect wheat productivity adversely. Trait improvement and management of wheat germplasm requires genomic resource. Simple Sequence Repeats (SSRs) being highly polymorphic and ubiquitously distributed in the genome, can be a marker of choice but there is no structured marker database with options to generate primer pairs for genotyping on desired chromosome/physical location. Previously associated markers with different wheat trait are also not available in any database. Limitations of in vitro SSR discovery can be overcome by genome-wide in silico mining of SSR. Triticum aestivum SSR database (TaSSRDb) is an integrated online database with three-tier architecture, developed using PHP and MySQL and accessible at http://webtom.cabgrid.res.in/wheatssr/. For genotyping, Primer3 standalone code computes primers on user request. Chromosome-wise SSR calling for all the three sub genomes along with choice of motif types is provided in addition to the primer generation for desired marker. We report here a database of highest number of SSRs (476,169) from complex, hexaploid wheat genome (~17 GB) along with previously reported 268 SSR markers associated with 11 traits. Highest (116.93 SSRs/Mb) and lowest (74.57 SSRs/Mb) SSR densities were found on 2D and 3A chromosome, respectively. To obtain homozygous locus, e-PCR was done. Such 30 loci were randomly selected for PCR validation in panel of 18 wheat Advance Varietal Trial (AVT) lines. TaSSRDb can be a valuable genomic resource tool for linkage mapping, gene/QTL (Quantitative trait locus) discovery, diversity analysis, traceability and variety identification. Varietal specific profiling and differentiation can supplement DUS (Distinctiveness, Uniformity, and Stability) testing, EDV (Essentially Derived Variety)/IV (Initial Variety) disputes, seed purity and hybrid wheat testing. All these are required in germplasm management as well as also in the endeavor of wheat productivity. PMID:29234333

  18. Identification of Kernel Proteins Associated with the Resistance to Fusarium Head Blight in Winter Wheat (Triticum aestivum L.)

    PubMed Central

    Góral, Tomasz; Kwiatek, Michał; Majka, Maciej; Kosmala, Arkadiusz

    2014-01-01

    Numerous potential components involved in the resistance to Fusarium head blight (FHB) in cereals have been indicated, however, our knowledge regarding this process is still limited and further work is required. Two winter wheat (Triticum aestivum L.) lines differing in their levels of resistance to FHB were analyzed to identify the most crucial proteins associated with resistance in this species. The presented work involved analysis of protein abundance in the kernel bulks of more resistant and more susceptible wheat lines using two-dimensional gel electrophoresis and mass spectrometry identification of proteins, which were differentially accumulated between the analyzed lines, after inoculation with F. culmorum under field conditions. All the obtained two-dimensional patterns were demonstrated to be well-resolved protein maps of kernel proteomes. Although, 11 proteins were shown to have significantly different abundance between these two groups of plants, only two are likely to be crucial and have a potential role in resistance to FHB. Monomeric alpha-amylase and dimeric alpha-amylase inhibitors, both highly accumulated in the more resistant line, after inoculation and in the control conditions. Fusarium pathogens can use hydrolytic enzymes, including amylases to colonize kernels and acquire nitrogen and carbon from the endosperm and we suggest that the inhibition of pathogen amylase activity could be one of the most crucial mechanisms to prevent infection progress in the analyzed wheat line with a higher resistance. Alpha-amylase activity assays confirmed this suggestion as it revealed the highest level of enzyme activity, after F. culmorum infection, in the line more susceptible to FHB. PMID:25340555

  19. Identification of kernel proteins associated with the resistance to fusarium head blight in winter wheat (Triticum aestivum L.).

    PubMed

    Perlikowski, Dawid; Wiśniewska, Halina; Góral, Tomasz; Kwiatek, Michał; Majka, Maciej; Kosmala, Arkadiusz

    2014-01-01

    Numerous potential components involved in the resistance to Fusarium head blight (FHB) in cereals have been indicated, however, our knowledge regarding this process is still limited and further work is required. Two winter wheat (Triticum aestivum L.) lines differing in their levels of resistance to FHB were analyzed to identify the most crucial proteins associated with resistance in this species. The presented work involved analysis of protein abundance in the kernel bulks of more resistant and more susceptible wheat lines using two-dimensional gel electrophoresis and mass spectrometry identification of proteins, which were differentially accumulated between the analyzed lines, after inoculation with F. culmorum under field conditions. All the obtained two-dimensional patterns were demonstrated to be well-resolved protein maps of kernel proteomes. Although, 11 proteins were shown to have significantly different abundance between these two groups of plants, only two are likely to be crucial and have a potential role in resistance to FHB. Monomeric alpha-amylase and dimeric alpha-amylase inhibitors, both highly accumulated in the more resistant line, after inoculation and in the control conditions. Fusarium pathogens can use hydrolytic enzymes, including amylases to colonize kernels and acquire nitrogen and carbon from the endosperm and we suggest that the inhibition of pathogen amylase activity could be one of the most crucial mechanisms to prevent infection progress in the analyzed wheat line with a higher resistance. Alpha-amylase activity assays confirmed this suggestion as it revealed the highest level of enzyme activity, after F. culmorum infection, in the line more susceptible to FHB.

  20. Support Vector Data Description Model to Map Specific Land Cover with Optimal Parameters Determined from a Window-Based Validation Set.

    PubMed

    Zhang, Jinshui; Yuan, Zhoumiqi; Shuai, Guanyuan; Pan, Yaozhong; Zhu, Xiufang

    2017-04-26

    This paper developed an approach, the window-based validation set for support vector data description (WVS-SVDD), to determine optimal parameters for support vector data description (SVDD) model to map specific land cover by integrating training and window-based validation sets. Compared to the conventional approach where the validation set included target and outlier pixels selected visually and randomly, the validation set derived from WVS-SVDD constructed a tightened hypersphere because of the compact constraint by the outlier pixels which were located neighboring to the target class in the spectral feature space. The overall accuracies for wheat and bare land achieved were as high as 89.25% and 83.65%, respectively. However, target class was underestimated because the validation set covers only a small fraction of the heterogeneous spectra of the target class. The different window sizes were then tested to acquire more wheat pixels for validation set. The results showed that classification accuracy increased with the increasing window size and the overall accuracies were higher than 88% at all window size scales. Moreover, WVS-SVDD showed much less sensitivity to the untrained classes than the multi-class support vector machine (SVM) method. Therefore, the developed method showed its merits using the optimal parameters, tradeoff coefficient ( C ) and kernel width ( s ), in mapping homogeneous specific land cover.

  1. Uncovering hidden variation in polyploid wheat.

    PubMed

    Krasileva, Ksenia V; Vasquez-Gross, Hans A; Howell, Tyson; Bailey, Paul; Paraiso, Francine; Clissold, Leah; Simmonds, James; Ramirez-Gonzalez, Ricardo H; Wang, Xiaodong; Borrill, Philippa; Fosker, Christine; Ayling, Sarah; Phillips, Andrew L; Uauy, Cristobal; Dubcovsky, Jorge

    2017-02-07

    Comprehensive reverse genetic resources, which have been key to understanding gene function in diploid model organisms, are missing in many polyploid crops. Young polyploid species such as wheat, which was domesticated less than 10,000 y ago, have high levels of sequence identity among subgenomes that mask the effects of recessive alleles. Such redundancy reduces the probability of selection of favorable mutations during natural or human selection, but also allows wheat to tolerate high densities of induced mutations. Here we exploited this property to sequence and catalog more than 10 million mutations in the protein-coding regions of 2,735 mutant lines of tetraploid and hexaploid wheat. We detected, on average, 2,705 and 5,351 mutations per tetraploid and hexaploid line, respectively, which resulted in 35-40 mutations per kb in each population. With these mutation densities, we identified an average of 23-24 missense and truncation alleles per gene, with at least one truncation or deleterious missense mutation in more than 90% of the captured wheat genes per population. This public collection of mutant seed stocks and sequence data enables rapid identification of mutations in the different copies of the wheat genes, which can be combined to uncover previously hidden variation. Polyploidy is a central phenomenon in plant evolution, and many crop species have undergone recent genome duplication events. Therefore, the general strategy and methods developed herein can benefit other polyploid crops.

  2. Identification, Characterization and Full-Length Sequence Analysis of a Novel Polerovirus Associated with Wheat Leaf Yellowing Disease

    PubMed Central

    Zhang, Peipei; Liu, Yan; Liu, Wenwen; Cao, Mengji; Massart, Sebastien; Wang, Xifeng

    2017-01-01

    To identify the pathogens responsible for leaf yellowing symptoms on wheat samples collected from Jinan, China, we tested for the presence of three known barley/wheat yellow dwarf viruses (BYDV-GAV, -PAV, WYDV-GPV) (most likely pathogens) using RT-PCR. A sample that tested negative for the three viruses was selected for small RNA sequencing. Twenty-five million sequences were generated, among which 5% were of viral origin. A novel polerovirus was discovered and temporarily named wheat leaf yellowing-associated virus (WLYaV). The full genome of WLYaV corresponds to 5,772 nucleotides (nt), with six AUG-initiated open reading frames, one non-AUG-initiated open reading frame, and three untranslated regions, showing typical features of the family Luteoviridae. Sequence comparison and phylogenetic analyses suggested that WLYaV had the closest relationship with sugarcane yellow leaf virus (ScYLV), but the identities of full genomic nucleotides and deduced amino acid sequence of coat protein (CP) were 64.9 and 86.2%, respectively, below the species demarcation thresholds (90%) in the family Luteoviridae. Furthermore, agroinoculation of Nicotiana benthamiana leaves with a cDNA clone of WLYaV caused yellowing symptoms on the plant. Our study adds a new polerovirus that is associated with wheat leaf yellowing disease, which would help to identify and control pathogens of wheat. PMID:28932215

  3. Identification, Characterization and Full-Length Sequence Analysis of a Novel Polerovirus Associated with Wheat Leaf Yellowing Disease.

    PubMed

    Zhang, Peipei; Liu, Yan; Liu, Wenwen; Cao, Mengji; Massart, Sebastien; Wang, Xifeng

    2017-01-01

    To identify the pathogens responsible for leaf yellowing symptoms on wheat samples collected from Jinan, China, we tested for the presence of three known barley/wheat yellow dwarf viruses (BYDV-GAV, -PAV, WYDV-GPV) (most likely pathogens) using RT-PCR. A sample that tested negative for the three viruses was selected for small RNA sequencing. Twenty-five million sequences were generated, among which 5% were of viral origin. A novel polerovirus was discovered and temporarily named wheat leaf yellowing-associated virus (WLYaV). The full genome of WLYaV corresponds to 5,772 nucleotides (nt), with six AUG-initiated open reading frames, one non-AUG-initiated open reading frame, and three untranslated regions, showing typical features of the family Luteoviridae . Sequence comparison and phylogenetic analyses suggested that WLYaV had the closest relationship with sugarcane yellow leaf virus (ScYLV), but the identities of full genomic nucleotides and deduced amino acid sequence of coat protein (CP) were 64.9 and 86.2%, respectively, below the species demarcation thresholds (90%) in the family Luteoviridae . Furthermore, agroinoculation of Nicotiana benthamiana leaves with a cDNA clone of WLYaV caused yellowing symptoms on the plant. Our study adds a new polerovirus that is associated with wheat leaf yellowing disease, which would help to identify and control pathogens of wheat.

  4. The PDI genes of wheat and their syntenic relationship to the esp2 locus of rice.

    PubMed

    Johnson, Joshua C; Appels, Rudi; Bhave, Mrinal

    2006-04-01

    The storage protein polymers in the endosperm, stabilised by disulphide bonds, determine a number of processing qualities of wheat dough. The enzyme protein disulphide isomerase (PDI), involved in the formation of disulphide bonds, is strongly suggested to play a role in the formation of wheat storage protein bodies. Reports of the rice mutant esp2 exhibiting aberrant storage protein deposition in conjunction with a lack of PDI expression provided strong indications of a direct role for PDI in storage protein deposition. The potential significance of wheat PDI prompted the present studies into exploring any orthology between wheat PDI genes and rice PDI and esp2 loci. By designing allele-specific (AS)-polymerase chain reaction (PCR) markers, two of the three wheat PDI genes could be genetically mapped to group 4 chromosomes and showed close association with GERMIN genes. Physical mapping led to localisation of wheat PDI genes to chromosomal "bins" on the proximal section of chromosome 4AL and distal sections of 4BS and 4DS. Identification of the putative PDI gene of rice and its comparison to the esp2 locus revealed that they were present at similar positions on the short arm of chromosome 11. Analysis of a large section of the PDI-containing section of rice chromosome 11S revealed a number of putative orthologues from The Institute for Genomic Research Triticum aestivum Gene Index database, of which five had been mapped, each localising to group 4 chromosomes, many in good agreement with our mapping results. The results strongly suggest a close linkage between the esp2 marker and the PDI gene of rice and an orthology between the PDI loci of rice and wheat and predict quantitative-trait loci involved in storage protein deposition at the PDI loci.

  5. Genome-wide identification and expression characterization of ABCC-MRP transporters in hexaploid wheat

    PubMed Central

    Bhati, Kaushal K.; Sharma, Shivani; Aggarwal, Sipla; Kaur, Mandeep; Shukla, Vishnu; Kaur, Jagdeep; Mantri, Shrikant; Pandey, Ajay K.

    2015-01-01

    The ABCC multidrug resistance associated proteins (ABCC-MRP), a subclass of ABC transporters are involved in multiple physiological processes that include cellular homeostasis, metal detoxification, and transport of glutathione-conjugates. Although they are well-studied in humans, yeast, and Arabidopsis, limited efforts have been made to address their possible role in crop like wheat. In the present work, 18 wheat ABCC-MRP proteins were identified that showed the uniform distribution with sub-families from rice and Arabidopsis. Organ-specific quantitative expression analysis of wheat ABCC genes indicated significantly higher accumulation in roots (TaABCC2, TaABCC3, and TaABCC11 and TaABCC12), stem (TaABCC1), leaves (TaABCC16 and TaABCC17), flag leaf (TaABCC14 and TaABCC15), and seeds (TaABCC6, TaABCC8, TaABCC12, TaABCC13, and TaABCC17) implicating their role in the respective tissues. Differential transcript expression patterns were observed for TaABCC genes during grain maturation speculating their role during seed development. Hormone treatment experiments indicated that some of the ABCC genes could be transcriptionally regulated during seed development. In the presence of Cd or hydrogen peroxide, distinct molecular expression of wheat ABCC genes was observed in the wheat seedlings, suggesting their possible role during heavy metal generated oxidative stress. Functional characterization of the wheat transporter, TaABCC13 a homolog of maize LPA1 confirms its role in glutathione-mediated detoxification pathway and is able to utilize adenine biosynthetic intermediates as a substrate. This is the first comprehensive inventory of wheat ABCC-MRP gene subfamily. PMID:26191068

  6. Statistical theory and methodology for remote sensing data analysis

    NASA Technical Reports Server (NTRS)

    Odell, P. L.

    1974-01-01

    A model is developed for the evaluation of acreages (proportions) of different crop-types over a geographical area using a classification approach and methods for estimating the crop acreages are given. In estimating the acreages of a specific croptype such as wheat, it is suggested to treat the problem as a two-crop problem: wheat vs. nonwheat, since this simplifies the estimation problem considerably. The error analysis and the sample size problem is investigated for the two-crop approach. Certain numerical results for sample sizes are given for a JSC-ERTS-1 data example on wheat identification performance in Hill County, Montana and Burke County, North Dakota. Lastly, for a large area crop acreages inventory a sampling scheme is suggested for acquiring sample data and the problem of crop acreage estimation and the error analysis is discussed.

  7. 47 CFR 80.231 - Technical Requirements for Class B Automatic Identification System (AIS) equipment.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Identification System (AIS) equipment. 80.231 Section 80.231 Telecommunication FEDERAL COMMUNICATIONS COMMISSION... § 80.231 Technical Requirements for Class B Automatic Identification System (AIS) equipment. (a) Class B Automatic Identification System (AIS) equipment must meet the technical requirements of IEC 62287...

  8. 47 CFR 80.231 - Technical Requirements for Class B Automatic Identification System (AIS) equipment.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Identification System (AIS) equipment. 80.231 Section 80.231 Telecommunication FEDERAL COMMUNICATIONS COMMISSION... § 80.231 Technical Requirements for Class B Automatic Identification System (AIS) equipment. (a) Class B Automatic Identification System (AIS) equipment must meet the technical requirements of IEC 62287...

  9. 47 CFR 80.231 - Technical Requirements for Class B Automatic Identification System (AIS) equipment.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Identification System (AIS) equipment. 80.231 Section 80.231 Telecommunication FEDERAL COMMUNICATIONS COMMISSION... § 80.231 Technical Requirements for Class B Automatic Identification System (AIS) equipment. (a) Class B Automatic Identification System (AIS) equipment must meet the technical requirements of IEC 62287...

  10. Rapid and non-invasive analysis of deoxynivalenol in durum and common wheat by Fourier-Transform Near Infrared (FT-NIR) spectroscopy.

    PubMed

    De Girolamo, A; Lippolis, V; Nordkvist, E; Visconti, A

    2009-06-01

    Fourier transform near-infrared spectroscopy (FT-NIR) was used for rapid and non-invasive analysis of deoxynivalenol (DON) in durum and common wheat. The relevance of using ground wheat samples with a homogeneous particle size distribution to minimize measurement variations and avoid DON segregation among particles of different sizes was established. Calibration models for durum wheat, common wheat and durum + common wheat samples, with particle size <500 microm, were obtained by using partial least squares (PLS) regression with an external validation technique. Values of root mean square error of prediction (RMSEP, 306-379 microg kg(-1)) were comparable and not too far from values of root mean square error of cross-validation (RMSECV, 470-555 microg kg(-1)). Coefficients of determination (r(2)) indicated an "approximate to good" level of prediction of the DON content by FT-NIR spectroscopy in the PLS calibration models (r(2) = 0.71-0.83), and a "good" discrimination between low and high DON contents in the PLS validation models (r(2) = 0.58-0.63). A "limited to good" practical utility of the models was ascertained by range error ratio (RER) values higher than 6. A qualitative model, based on 197 calibration samples, was developed to discriminate between blank and naturally contaminated wheat samples by setting a cut-off at 300 microg kg(-1) DON to separate the two classes. The model correctly classified 69% of the 65 validation samples with most misclassified samples (16 of 20) showing DON contamination levels quite close to the cut-off level. These findings suggest that FT-NIR analysis is suitable for the determination of DON in unprocessed wheat at levels far below the maximum permitted limits set by the European Commission.

  11. Variability of Root Traits in Spring Wheat Germplasm

    PubMed Central

    Narayanan, Sruthi; Mohan, Amita; Gill, Kulvinder S.; Prasad, P. V. Vara

    2014-01-01

    Root traits influence the amount of water and nutrient absorption, and are important for maintaining crop yield under drought conditions. The objectives of this research were to characterize variability of root traits among spring wheat genotypes and determine whether root traits are related to shoot traits (plant height, tiller number per plant, shoot dry weight, and coleoptile length), regions of origin, and market classes. Plants were grown in 150-cm columns for 61 days in a greenhouse under optimal growth conditions. Rooting depth, root dry weight, root: shoot ratio, and shoot traits were determined for 297 genotypes of the germplasm, Cultivated Wheat Collection (CWC). The remaining root traits such as total root length and surface area were measured for a subset of 30 genotypes selected based on rooting depth. Significant genetic variability was observed for root traits among spring wheat genotypes in CWC germplasm or its subset. Genotypes Sonora and Currawa were ranked high, and genotype Vandal was ranked low for most root traits. A positive relationship (R2≥0.35) was found between root and shoot dry weights within the CWC germplasm and between total root surface area and tiller number; total root surface area and shoot dry weight; and total root length and coleoptile length within the subset. No correlations were found between plant height and most root traits within the CWC germplasm or its subset. Region of origin had significant impact on rooting depth in the CWC germplasm. Wheat genotypes collected from Australia, Mediterranean, and west Asia had greater rooting depth than those from south Asia, Latin America, Mexico, and Canada. Soft wheat had greater rooting depth than hard wheat in the CWC germplasm. The genetic variability identified in this research for root traits can be exploited to improve drought tolerance and/or resource capture in wheat. PMID:24945438

  12. Functional and structural insights into novel DREB1A transcription factors in common wheat (Triticum aestivum L.): A molecular modeling approach.

    PubMed

    Kumar, Anuj; Kumar, Sanjay; Kumar, Upendra; Suravajhala, Prashanth; Gajula, M N V Prasad

    2016-10-01

    Triticum aestivum L. known as common wheat is one of the most important cereal crops feeding a large and growing population. Various environmental stress factors including drought, high salinity and heat etc. adversely affect wheat production in a significant manner. Dehydration-responsive element-binding (DREB1A) factors, a class of transcription factors (TF) play an important role in combating drought stress. It is known that DREB1A specifically interacts with the dehydration responsive elements (DRE/CRT) inducing expression of genes involved in environmental stress tolerance in plants. Despite its critical interplay in plants, the structural and functional aspects of DREB1A TF in wheat remain unresolved. Previous studies showed that wheat DREBs (DREB1 and DREB2) were isolated using various methods including yeast two-hybrid screens but no extensive structural models were reported. In this study, we made an extensive in silico study to gain insight into DREB1A TF and reported the location of novel DREB1A in wheat chromosomes. We inferred the three-dimensional structural model of DREB1A using homology modelling and further evaluated them using molecular dynamics(MD) simulations yielding refined modelled structures. Our biochemical function predictions suggested that the wheat DREB1A orthologs have similar biochemical functions and pathways to that of AtDREB1A. In conclusion, the current study presents a structural perspective of wheat DREB1A and helps in understanding the molecular basis for the mechanism of DREB1A in response to environmental stress. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Wheat Landrace Genome Diversity

    PubMed Central

    Wingen, Luzie U.; West, Claire; Leverington-Waite, Michelle; Collier, Sarah; Orford, Simon; Goram, Richard; Yang, Cai-Yun; King, Julie; Allen, Alexandra M.; Burridge, Amanda; Edwards, Keith J.; Griffiths, Simon

    2017-01-01

    Understanding the genomic complexity of bread wheat (Triticum aestivum L.) is a cornerstone in the quest to unravel the processes of domestication and the following adaptation of domesticated wheat to a wide variety of environments across the globe. Additionally, it is of importance for future improvement of the crop, particularly in the light of climate change. Focusing on the adaptation after domestication, a nested association mapping (NAM) panel of 60 segregating biparental populations was developed, mainly involving landrace accessions from the core set of the Watkins hexaploid wheat collection optimized for genetic diversity. A modern spring elite variety, “Paragon,” was used as common reference parent. Genetic maps were constructed following identical rules to make them comparable. In total, 1611 linkage groups were identified, based on recombination from an estimated 126,300 crossover events over the whole NAM panel. A consensus map, named landrace consensus map (LRC), was constructed and contained 2498 genetic loci. These newly developed genetics tools were used to investigate the rules underlying genome fluidity or rigidity, e.g., by comparing marker distances and marker orders. In general, marker order was highly correlated, which provides support for strong synteny between bread wheat accessions. However, many exceptional cases of incongruent linkage groups and increased marker distances were also found. Segregation distortion was detected for many markers, sometimes as hot spots present in different populations. Furthermore, evidence for translocations in at least 36 of the maps was found. These translocations fell, in general, into many different translocation classes, but a few translocation classes were found in several accessions, the most frequent one being the well-known T5B:7B translocation. Loci involved in recombination rate, which is an interesting trait for plant breeding, were identified by QTL analyses using the crossover counts as a trait. In total, 114 significant QTL were detected, nearly half of them with increasing effect from the nonreference parents. PMID:28213475

  14. Classifying Multi-Model Wheat Yield Impact Response Surfaces Showing Sensitivity to Temperature and Precipitation Change

    NASA Technical Reports Server (NTRS)

    Fronzek, Stefan; Pirttioja, Nina; Carter, Timothy R.; Bindi, Marco; Hoffmann, Holger; Palosuo, Taru; Ruiz-Ramos, Margarita; Tao, Fulu; Trnka, Miroslav; Acutis, Marco; hide

    2017-01-01

    Crop growth simulation models can differ greatly in their treatment of key processes and hence in their response to environmental conditions. Here, we used an ensemble of 26 process-based wheat models applied at sites across a European transect to compare their sensitivity to changes in temperature (minus 2 to plus 9 degrees Centigrade) and precipitation (minus 50 to plus 50 percent). Model results were analysed by plotting them as impact response surfaces (IRSs), classifying the IRS patterns of individual model simulations, describing these classes and analysing factors that may explain the major differences in model responses. The model ensemble was used to simulate yields of winter and spring wheat at four sites in Finland, Germany and Spain. Results were plotted as IRSs that show changes in yields relative to the baseline with respect to temperature and precipitation. IRSs of 30-year means and selected extreme years were classified using two approaches describing their pattern. The expert diagnostic approach (EDA) combines two aspects of IRS patterns: location of the maximum yield (nine classes) and strength of the yield response with respect to climate (four classes), resulting in a total of 36 combined classes defined using criteria pre-specified by experts. The statistical diagnostic approach (SDA) groups IRSs by comparing their pattern and magnitude, without attempting to interpret these features. It applies a hierarchical clustering method, grouping response patterns using a distance metric that combines the spatial correlation and Euclidian distance between IRS pairs. The two approaches were used to investigate whether different patterns of yield response could be related to different properties of the crop models, specifically their genealogy, calibration and process description. Although no single model property across a large model ensemble was found to explain the integrated yield response to temperature and precipitation perturbations, the application of the EDA and SDA approaches revealed their capability to distinguish: (i) stronger yield responses to precipitation for winter wheat than spring wheat; (ii) differing strengths of response to climate changes for years with anomalous weather conditions compared to period-average conditions; (iii) the influence of site conditions on yield patterns; (iv) similarities in IRS patterns among models with related genealogy; (v) similarities in IRS patterns for models with simpler process descriptions of root growth and water uptake compared to those with more complex descriptions; and (vi) a closer correspondence of IRS patterns in models using partitioning schemes to represent yield formation than in those using a harvest index. Such results can inform future crop modelling studies that seek to exploit the diversity of multi-model ensembles, by distinguishing ensemble members that span a wide range of responses as well as those that display implausible behaviour or strong mutual similarities.

  15. Genome-wide analysis of wheat calcium ATPases and potential role of selected ACAs and ECAs in calcium stress.

    PubMed

    Aslam, Roohi; Williams, Lorraine E; Bhatti, Muhammad Faraz; Virk, Nasar

    2017-10-27

    P 2 - type calcium ATPases (ACAs-auto inhibited calcium ATPases and ECAs-endoplasmic reticulum calcium ATPases) belong to the P- type ATPase family of active membrane transporters and are significantly involved in maintaining accurate levels of Ca 2+ , Mn 2+ and Zn 2+ in the cytosol as well as playing a very important role in stress signaling, stomatal opening and closing and pollen tube growth. Here we report the identification and possible role of some of these ATPases from wheat. In this study, ACA and ECA sequences of six species (belonging to Poaceae) were retrieved from different databases and a phylogenetic tree was constructed. A high degree of evolutionary relatedness was observed among P 2 sequences characterized in this study. Members of the respective groups from different plant species were observed to fall under the same clade. This pattern highlights the common ancestry of P 2- type calcium ATPases. Furthermore, qRT-PCR was used to analyse the expression of selected ACAs and ECAs from Triticum aestivum (wheat) under calcium toxicity and calcium deficiency. The data indicated that expression of ECAs is enhanced under calcium stress, suggesting possible roles of these ATPases in calcium homeostasis in wheat. Similarly, the expression of ACAs was significantly different in plants grown under calcium stress as compared to plants grown under control conditions. This gives clues to the role of ACAs in signal transduction during calcium stress in wheat. Here we concluded that wheat genome consists of nine P 2B and three P 2A -type calcium ATPases. Moreover, gene loss events in wheat ancestors lead to the loss of a particular homoeolog of a gene in wheat. To elaborate the role of these wheat ATPases, qRT-PCR was performed. The results indicated that when plants are exposed to calcium stress, both P 2A and P 2B gene expression get enhanced. This further gives clues about the possible role of these ATPases in wheat in calcium management. These findings can be useful in future for genetic manipulations as well as in wheat genome annotation process.

  16. Molecular Cytogenetic Identification of a New Wheat-Rye 6R Chromosome Disomic Addition Line with Powdery Mildew Resistance

    PubMed Central

    An, Diaoguo; Zheng, Qi; Luo, Qiaoling; Ma, Pengtao; Zhang, Hongxia; Li, Lihui; Han, Fangpu; Xu, Hongxing; Xu, Yunfeng; Zhang, Xiaotian; Zhou, Yilin

    2015-01-01

    Rye (Secale cereale L.) possesses many valuable genes that can be used for improving disease resistance, yield and environment adaptation of wheat (Triticum aestivum L.). However, the documented resistance stocks derived from rye is faced severe challenge due to the variation of virulent isolates in the pathogen populations. Therefore, it is necessary to develop desirable germplasm and search for novel resistance gene sources against constantly accumulated variation of the virulent isolates. In the present study, a new wheat-rye line designated as WR49-1 was produced through distant hybridization and chromosome engineering protocols between common wheat cultivar Xiaoyan 6 and rye cultivar German White. Using sequential GISH (genomic in situ hybridization), mc-FISH (multicolor fluorescence in situ hybridization), mc-GISH (multicolor GISH) and EST (expressed sequence tag)-based marker analysis, WR49-1 was proved to be a new wheat-rye 6R disomic addition line. As expected, WR49-1 showed high levels of resistance to wheat powdery mildew (Blumeria graminis f. sp. tritici, Bgt) pathogens prevalent in China at the adult growth stage and 19 of 23 Bgt isolates tested at the seedling stage. According to its reaction pattern to different Bgt isolates, WR49-1 may possess new resistance gene(s) for powdery mildew, which differed from the documented powdery mildew gene, including Pm20 on chromosome arm 6RL of rye. Additionally, WR49-1 was cytologically stable, had improved agronomic characteristics and therefore could serve as an important bridge for wheat breeding and chromosome engineering. PMID:26237413

  17. Molecular cytogenetic identification of three rust-resistant wheat-Thinopyrum ponticum partial amphiploids.

    PubMed

    Pei, Yanru; Cui, Yu; Zhang, Yanping; Wang, Honggang; Bao, Yinguang; Li, Xingfeng

    2018-01-01

    Thinopyrum ponticum (2n = 10× = 70, J S J S J S J S JJJJJJ) is an important wild perennial Triticeae species that has a unique gene pool with many desirable traits for common wheat. The partial amphiploids derived from wheat- Th. ponticum set up a bridge for transferring valuable genes from Th. ponticum into common wheat. In this study, genomic in situ hybridization (GISH), multicolor GISH (mcGISH) and fluorescence in situ hybridization (FISH) were used to analyze the genomic constitution of SN0389, SN0398 and SN0406, three octoploid accessions with good resistance to rust. The results demonstrated that the three octoploids possessed 42 wheat chromosomes, while SN0389 contained 12 Th. ponticum chromosomes and SN0398 and SN0406 contained 14 Th. ponticum chromosomes. The genomic constitution of SN0389 was 42 W + 12J S , and for SN0398 and SN0406 it was 42 W + 12J S  + 2 J. Chromosomal variation was found in chromosomes 1A, 3A, 6A, 2B, 5B, 6B, 7B, 1D and 5D of SN0389, SN0398 and SN0406 based on the FISH and McGISH pattern. A resistance evaluation showed that SN0389, SN0398 and SN0406 possessed good resistance to stripe and leaf rust at the seedling stage and adult-plant stage. The results indicated that these wheat- Th. ponticum partial amphiploids are new resistant germplasms for wheat improvement.

  18. Fingerprinting and characterization of anthocyanins in 94 colored wheat varieties and blue aleurone and purple pericarp wheat crosses.

    PubMed

    Krüger, Stephanie; Morlock, Gertrud E

    2018-02-23

    Colored wheat varieties and crosses were analyzed to figure out their anthocyanin profiles, and thus, their potential as health-related food. After method development, the obtained 94 anthocyanin fingerprints allowed the clear differentiation of the blue aleurone and purple pericarp genotypes as well as their breeding lines. The method was trimmed so that the complete analysis of the whole grain flour including sample preparation of up to 20 samples on one plate took less than 3 h (<9 min per sample) and total costs including sample preparation were <1.0 Euro/sample. Sample preparation of the complex wheat matrix was reduced to a minimum (only acidified methanol extraction of the ground whole wheat grain). Separation was well achieved on amino phases with a mixture of ethyl acetate, 2-butanone, water and formic acid. It was superior to the separation on either normal or reversed phases and more robust with regard to intrinsic pH variances of the sample extracts. Pattern recognition of anthocyanins was simply performed by visual detection (the image), a key feature of high-performance thin-layer chromatography. Wheat varieties and crosses with higher anthocyanin contents were easily selectable, and thus, successfully made out. Prominent anthocyanin zones were characterized by electrospray ionization mass spectrometry. Their sugar moiety was characterized via methanolysis and compared with the sugars available freely in the whole wheat grain. The developed profiling is a fast and efficient screening tool with option for quantification or identification on the same HPTLC plate. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Cross-genome map based dissection of a nitrogen use efficiency ortho-metaQTL in bread wheat unravels concerted cereal genome evolution.

    PubMed

    Quraishi, Umar Masood; Abrouk, Michael; Murat, Florent; Pont, Caroline; Foucrier, Séverine; Desmaizieres, Gregory; Confolent, Carole; Rivière, Nathalie; Charmet, Gilles; Paux, Etienne; Murigneux, Alain; Guerreiro, Laurent; Lafarge, Stéphane; Le Gouis, Jacques; Feuillet, Catherine; Salse, Jerome

    2011-03-01

    Monitoring nitrogen use efficiency (NUE) in plants is becoming essential to maintain yield while reducing fertilizer usage. Optimized NUE application in major crops is essential for long-term sustainability of agriculture production. Here, we report the precise identification of 11 major chromosomal regions controlling NUE in wheat that co-localise with key developmental genes such as Ppd (photoperiod sensitivity), Vrn (vernalization requirement), Rht (reduced height) and can be considered as robust markers from a molecular breeding perspective. Physical mapping, sequencing, annotation and candidate gene validation of an NUE metaQTL on wheat chromosome 3B allowed us to propose that a glutamate synthase (GoGAT) gene that is conserved structurally and functionally at orthologous positions in rice, sorghum and maize genomes may contribute to NUE in wheat and other cereals. We propose an evolutionary model for the NUE locus in cereals from a common ancestral region, involving species specific shuffling events such as gene deletion, inversion, transposition and the invasion of repetitive elements. © 2011 The Authors. The Plant Journal © 2011 Blackwell Publishing Ltd.

  20. Combined meta-genomics analyses unravel candidate genes for the grain dietary fiber content in bread wheat (Triticum aestivum L.).

    PubMed

    Quraishi, Umar Masood; Murat, Florent; Abrouk, Mickael; Pont, Caroline; Confolent, Carole; Oury, François Xavier; Ward, Jane; Boros, Danuta; Gebruers, Kurt; Delcour, Jan A; Courtin, Christophe M; Bedo, Zoltan; Saulnier, Luc; Guillon, Fabienne; Balzergue, Sandrine; Shewry, Peter R; Feuillet, Catherine; Charmet, Gilles; Salse, Jerome

    2011-03-01

    Grain dietary fiber content in wheat not only affects its end use and technological properties including milling, baking and animal feed but is also of great importance for health benefits. In this study, integration of association genetics (seven detected loci on chromosomes 1B, 3A, 3D, 5B, 6B, 7A, 7B) and meta-QTL (three consensus QTL on chromosomes 1B, 3D and 6B) analyses allowed the identification of seven chromosomal regions underlying grain dietary fiber content in bread wheat. Based either on a diversity panel or on bi-parental populations, we clearly demonstrate that this trait is mainly driven by a major locus located on chromosome 1B associated with a log of p value >13 and a LOD score >8, respectively. In parallel, we identified 73 genes differentially expressed during the grain development and between genotypes with contrasting grain fiber contents. Integration of quantitative genetics and transcriptomic data allowed us to propose a short list of candidate genes that are conserved in the rice, sorghum and Brachypodium chromosome regions orthologous to the seven wheat grain fiber content QTL and that can be considered as major candidate genes for future improvement of the grain dietary fiber content in bread wheat breeding programs.

  1. Abscisic acid metabolic genes of wheat (Triticum aestivum L.): identification and insights into their functionality in seed dormancy and dehydration tolerance.

    PubMed

    Son, SeungHyun; Chitnis, Vijaya R; Liu, Aihua; Gao, Feng; Nguyen, Tran-Nguyen; Ayele, Belay T

    2016-08-01

    The three homeologues of wheat NCED2 were identified; the wheat NCED2A and CYP707A1B affect seed ABA level and dormancy but not leaf ABA level and transpirational water loss in Arabidopsis. Biosynthesis and catabolism of abscisic acid (ABA) in plants are primarily regulated by 9-cis-epoxycarotenoid dioxygenases (NCEDs) and ABA 8'-hydroxylase (ABA8'OH), respectively. The present study identified the complete coding sequences of a second NCED gene, designated as TaNCED2, and its homeologues (TaNCED2A, TaNCED2B and TaNCED2D) in hexaploid wheat, and characterized its functionality in seed dormancy and leaf dehydration tolerance using the TaNCED2A homeologue. The study also investigated the role of the B genome copy of the cytochrome P450 monooxygenase 707A1 (CYP707A1) gene of hexaploid wheat (TaCYP707A1B), which encodes ABA8'OH, in regulating the two traits as this has not been studied before. Ectopic expression of TaNCED2A and TaCYP707A1B in Arabidopsis resulted in altered seed ABA level and dormancy with no effect on leaf ABA content and transpirational water loss. To gain insights into the physiological roles of TaNCED2 and TaCYP707A1 in wheat, the study examined their spatiotemporal expression patterns and determined the genomic contributions of transcripts to their total expression.

  2. Triticale powdery mildew: population characterization and wheat gene efficiency.

    PubMed

    Bouguennec, Annaig; Trottet, Maxime; du Cheyron, Philippe; Lonnet, Philippe

    2014-01-01

    Powdery mildew has emerged on triticale in the early 2000s in many locations, probably due to a host range expansion of the wheat formae speciales, Blumeria graminis f.sp. tritici. Many triticale cultivars are highly susceptible to powdery mildew, mainly in seedling stage, revealing a probably narrow genetic basis for powdery mildew resistance genes (Pm). Moreover, as Blumeria graminis is an obligate biotrophic fungus, it is very time consuming and difficult to maintain powdery mildew isolates for a non-specialized laboratory and populations can evolve. In order to identify wheat Pm genes efficient against natural populations of powdery mildew, wheat differential hosts and triticale seedlings were inoculated below susceptible triticale crop naturally contaminated by mildew, in several locations and several years. Symptoms on seedlings were measured after approximately two weeks of incubation in favorable fungus growth conditions. According to these data, we classified the Pm genes presents in our wheat differential hosts set in 3 classes: Pm already overcame by triticale powdery mildew, Pm having variable effects and Pm still efficient against triticale mildew. Data on triticale seedlings allowed us to identify some few triticale cultivars resistant to Blumeria graminis in seedling stage. We will try to identify Pm genes present in those cultivars next year by testing them with the characterized isolates of powdery mildew from Gent University. Nevertheless, interspecific crossing of wheat, resistant to powdery mildew in seedling stage, and rye have been initiated to introduce potentially interesting genes for resistance in triticale.

  3. Industrial noise level study in a wheat processing factory in ilorin, nigeria

    NASA Astrophysics Data System (ADS)

    Ibrahim, I.; Ajao, K. R.; Aremu, S. A.

    2016-05-01

    An industrial process such as wheat processing generates significant noise which can cause adverse effects on workers and the general public. This study assessed the noise level at a wheat processing mill in Ilorin, Nigeria. A portable digital sound level meter HD600 manufactured by Extech Inc., USA was used to determine the noise level around various machines, sections and offices in the factory at pre-determined distances. Subjective assessment was also mode using a World Health Organization (WHO) standard questionnaire to obtain information regarding noise ratings, effect of noise on personnel and noise preventive measures. The result of the study shows that the highest noise of 99.4 dBA was recorded at a pressure blower when compared to other machines. WHO Class-4 hearing protector is recommended for workers on the shop floor and room acoustics should be upgraded to absorb some sounds transmitted to offices.

  4. Soil organic carbon and land use in Veneto and Friuli Venezia Giulia (Northern Italy)

    NASA Astrophysics Data System (ADS)

    Francaviglia, Rosa; Renzi, Gianluca; Benedetti, Anna

    2014-05-01

    The Italian Ministry of Agricultural Food and Forestry Policies (MiPAAF) has set up a statistical survey aimed to provide the national forecast of yields and areas related to the main Italian agricultural crops (AGRIT). The methodology is based on field surveys and remote-sensed data, covers yearly the whole national territory, and is based on 100,000 observations which are statistically selected from a predefined grid made up of about 1,200,000 georeferenced points. In 2011-2012 we determined the soil organic carbon content (SOC) of 1,160 sampling points situated in Northern Italy in the plains and hills of Veneto (VEN) and Friuli Venezia Giulia (FVG), for which the land use in the period 2008-2010 was known. Samples have been subdivided in three main classes: arable crops, orchards and fodder crops. SOC was higher in FVG samples (2.48%, n=266) than in VEN samples (1.90%, n=894). The average value (2.03%) is clearly affected by the higher number of VEN samples. FVG data have been aggregated in continuous crops (maize, soybean, wheat), 2-yr rotations (maize-wheat, soybean wheat, maize-soybean), 3-yr rotations, vineyards (totally, partially and no-grassed), alfalfa, and permanent fodder crops. No significant differences were detected among the land uses due to the low number of samples in some classes, but some important findings do exist from the agronomic point of view. Fodder crops (5.65%), alfalfa (3.41%) and vineyards (2.72%) showed the higher SOC content. SOC was 2.94% and 1.39 % in the grassed and no-grassed vineyards respectively. In the arable crops the average SOC was 2.18%, ranging from 2.32% (soybean-wheat rotation) to 2.03% (continuous soybean). SOC was 2.19% in the continuous maize, with 2.23% in corn and 1.87% in silage maize. The lower values were in the maize-wheat rotation (1.53%) and the continuous wheat (1.47%). VEN data have been aggregated in continuous crops (maize, soybean and wheat), 2-yr rotations (maize-wheat, soybean-wheat, maize-soybean, soybean-alfalfa, wheat-alfalfa, maize-alfalfa), 3-yr rotations, orchards (mulched, totally, partially and no-grassed), alfalfa, permanent fodder crops, and land use change (from arable to fodder crops and vice versa). The mean value was 1.57% in arable crops, 2.46% in orchards (including vineyards, olive groves, and fruit crops), 3.13% in fodder crops. SOC in orchards was 1.82% (no grassed), 2.46% (grassed), 2.69% (mulched); 2.10 and 2.08% in the 2-yr rotations soybean-wheat and soybean-alfalfa respectively. SOC in the other arable crops was between 1.79% (land use change) and 1.37% (continuous soybean). A higher SOC was shown in VEN samples also when comparing continuous corn (1.69%) and continuous silage maize (1.43%). Data, even limited to two Regions, have clearly shown the positive contribution to SOC storage of orchards (mainly in grassed and mulched systems) and fodder crops, which are more conservative systems due to the lower soil disturbance from tillage operations; and to a lower extent of cropping systems with alfalfa or other legume crops.

  5. Detection of wheat powdery mildew by differentiating background factors using hyperspectral imaging

    USDA-ARS?s Scientific Manuscript database

    Accurate assessment of crop disease severities is the key for precision application of pesticides to prevent disease infestation. In-situ hyperspectral imaging technology can provide high-resolution imagery with spectra for rapid identification of crop disease and determining disease infestation pat...

  6. Identification of gamma-irradiated foodstuffs by chemiluminescence measurements in Taiwan

    NASA Astrophysics Data System (ADS)

    Ma, Ming-Shia Chang; Chen, Li-Hsiang; Tsai, Zei-Tsan; Fu, Ying-Kai

    In order to establish chemiluminescence (CL) measurements as an identification method for γ-irradiated foodstuffs in Taiwan, ten agricultural products including wheat flour, rice, ginger, potatoes, garlic, onions, red beans, mung beans, soy beans, xanthoxylon seeds and Japanese star anises have been tested to compare CL intensities between untreated samples and samples subject to a 10 kGy γ-irradiation dose. Amongst them, wheat flour is the most eligible product to be identified by CL measurements. The CL intensities of un-irradiated and irradiated flour have shown large differences associated with a significant dose-effect relationship. Effects of three different protein contents of flour, unsieved and sieved (100-200 mesh), the reproducibility and the storage experiment on CL intensities at various doses were investigated in this study. In addition, the white bulb part of onions has shown some CL in irradiated samples. The CL data obtained from the other eight agricultural products have shown large fluctuations and cannot be used to differentiate between irradiated and un-irradiated samples.

  7. Wheat EST resources for functional genomics of abiotic stress

    PubMed Central

    Houde, Mario; Belcaid, Mahdi; Ouellet, François; Danyluk, Jean; Monroy, Antonio F; Dryanova, Ani; Gulick, Patrick; Bergeron, Anne; Laroche, André; Links, Matthew G; MacCarthy, Luke; Crosby, William L; Sarhan, Fathey

    2006-01-01

    Background Wheat is an excellent species to study freezing tolerance and other abiotic stresses. However, the sequence of the wheat genome has not been completely characterized due to its complexity and large size. To circumvent this obstacle and identify genes involved in cold acclimation and associated stresses, a large scale EST sequencing approach was undertaken by the Functional Genomics of Abiotic Stress (FGAS) project. Results We generated 73,521 quality-filtered ESTs from eleven cDNA libraries constructed from wheat plants exposed to various abiotic stresses and at different developmental stages. In addition, 196,041 ESTs for which tracefiles were available from the National Science Foundation wheat EST sequencing program and DuPont were also quality-filtered and used in the analysis. Clustering of the combined ESTs with d2_cluster and TGICL yielded a few large clusters containing several thousand ESTs that were refractory to routine clustering techniques. To resolve this problem, the sequence proximity and "bridges" were identified by an e-value distance graph to manually break clusters into smaller groups. Assembly of the resolved ESTs generated a 75,488 unique sequence set (31,580 contigs and 43,908 singletons/singlets). Digital expression analyses indicated that the FGAS dataset is enriched in stress-regulated genes compared to the other public datasets. Over 43% of the unique sequence set was annotated and classified into functional categories according to Gene Ontology. Conclusion We have annotated 29,556 different sequences, an almost 5-fold increase in annotated sequences compared to the available wheat public databases. Digital expression analysis combined with gene annotation helped in the identification of several pathways associated with abiotic stress. The genomic resources and knowledge developed by this project will contribute to a better understanding of the different mechanisms that govern stress tolerance in wheat and other cereals. PMID:16772040

  8. Transcriptome Profiling of Wheat Inflorescence Development from Spikelet Initiation to Floral Patterning Identified Stage-Specific Regulatory Genes1[OPEN

    PubMed Central

    Feng, Nan; Song, Gaoyuan; Guan, Jiantao; Chen, Kai; Jia, Meiling; Huang, Dehua; Wu, Jiajie; Zhang, Lichao; Kong, Xiuying; Geng, Shuaifeng

    2017-01-01

    Early reproductive development in cereals is crucial for final grain number per spike and hence the yield potential of the crop. To date, however, no systematic analyses of gene expression profiles during this important process have been conducted for common wheat (Triticum aestivum). Here, we studied the transcriptome profiles at four stages of early wheat reproductive development, from spikelet initiation to floral organ differentiation. K-means clustering and stage-specific transcript identification detected dynamically expressed homeologs of important transcription regulators in spikelet and floral meristems that may be involved in spikelet initiation, floret meristem specification, and floral organ patterning, as inferred from their homologs in model plants. Small RNA transcriptome sequencing discovered key microRNAs that were differentially expressed during wheat inflorescence development alongside their target genes, suggesting that miRNA-mediated regulatory mechanisms for floral development may be conserved in cereals and Arabidopsis. Our analysis was further substantiated by the functional characterization of the ARGONAUTE1d (AGO1d) gene, which was initially expressed in stamen primordia and later in the tapetum during anther maturation. In agreement with its stage-specific expression pattern, the loss of function of the predominantly expressed B homeolog of AGO1d in a tetraploid durum wheat mutant resulted in smaller anthers with more infertile pollens than the wild type and a reduced grain number per spike. Together, our work provides a first glimpse of the gene regulatory networks in wheat inflorescence development that may be pivotal for floral and grain development, highlighting potential targets for genetic manipulation to improve future wheat yields. PMID:28515146

  9. 47 CFR 80.275 - Technical Requirements for Class A Automatic Identification System (AIS) equipment.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Compulsory Ships § 80.275 Technical Requirements for Class A Automatic Identification System (AIS) equipment. (a) Prior to submitting a certification application for a Class A AIS device, the following... Identification System (AIS) equipment. 80.275 Section 80.275 Telecommunication FEDERAL COMMUNICATIONS COMMISSION...

  10. 47 CFR 80.275 - Technical Requirements for Class A Automatic Identification System (AIS) equipment.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Compulsory Ships § 80.275 Technical Requirements for Class A Automatic Identification System (AIS) equipment. (a) Prior to submitting a certification application for a Class A AIS device, the following... Identification System (AIS) equipment. 80.275 Section 80.275 Telecommunication FEDERAL COMMUNICATIONS COMMISSION...

  11. 47 CFR 80.275 - Technical Requirements for Class A Automatic Identification System (AIS) equipment.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Compulsory Ships § 80.275 Technical Requirements for Class A Automatic Identification System (AIS) equipment. (a) Prior to submitting a certification application for a Class A AIS device, the following... Identification System (AIS) equipment. 80.275 Section 80.275 Telecommunication FEDERAL COMMUNICATIONS COMMISSION...

  12. 47 CFR 80.275 - Technical Requirements for Class A Automatic Identification System (AIS) equipment.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Compulsory Ships § 80.275 Technical Requirements for Class A Automatic Identification System (AIS) equipment. (a) Prior to submitting a certification application for a Class A AIS device, the following... Identification System (AIS) equipment. 80.275 Section 80.275 Telecommunication FEDERAL COMMUNICATIONS COMMISSION...

  13. Nudging children towards whole wheat bread: a field experiment on the influence of fun bread roll shape on breakfast consumption.

    PubMed

    van Kleef, Ellen; Vrijhof, Milou; Polet, Ilse A; Vingerhoeds, Monique H; de Wijk, René A

    2014-09-02

    Many children do not eat enough whole grains, which may have negative health consequences. Intervention research is increasingly focusing on nudging as a way to influence food choices by affecting unconscious behavioural processes. The aim of this field study was to examine whether the shape of bread rolls is able to shift children's bread choices from white to whole wheat during breakfast to increase whole grain intake. In a between-subjects experiment conducted at twelve primary schools in the Netherlands, with school as the unit of condition assignment, children were exposed to an assortment of white and whole wheat bread rolls, both varying in shape (regular versus fun). Children were free to choose the type and number of bread rolls and toppings to eat during breakfast. Consumption of bread rolls was measured at class level via the number of bread rolls before and after breakfast. In addition, children (N = 1113) responded to a survey including questions about the breakfast. Results of the field experiment showed that about 76% of bread consumption consisted of white bread rolls. Consumption of white bread rolls did not differ according to shape (all P-values > 0.18). However, presenting fun-shaped whole wheat bread rolls almost doubled consumption of whole wheat bread (P = 0.001), particularly when the simultaneously presented white bread rolls had a regular shape (interaction P = 0.02). Survey results suggest that slight increases in perceived pleasure and taste are associated with these effects. Overall, presenting whole wheat bread in fun shapes may be helpful in increasing consumption of whole wheat bread in children. Future research could examine how improving the visual appeal of healthy foods may lead to sustained behaviour changes.

  14. The wheat chloroplastic proteome.

    PubMed

    Kamal, Abu Hena Mostafa; Cho, Kun; Choi, Jong-Soon; Bae, Kwang-Hee; Komatsu, Setsuko; Uozumi, Nobuyuki; Woo, Sun Hee

    2013-11-20

    With the availability of plant genome sequencing, analysis of plant proteins with mass spectrometry has become promising and admired. Determining the proteome of a cell is still a challenging assignment, which is convoluted by proteome dynamics and convolution. Chloroplast is fastidious curiosity for plant biologists due to their intricate biochemical pathways for indispensable metabolite functions. In this review, an overview on proteomic studies conducted in wheat with a special focus on subcellular proteomics of chloroplast, salt and water stress. In recent years, we and other groups have attempted to understand the photosynthesis in wheat and abiotic stress under salt imposed and water deficit during vegetative stage. Those studies provide interesting results leading to better understanding of the photosynthesis and identifying the stress-responsive proteins. Indeed, recent studies aimed at resolving the photosynthesis pathway in wheat. Proteomic analysis combining two complementary approaches such as 2-DE and shotgun methods couple to high through put mass spectrometry (LTQ-FTICR and MALDI-TOF/TOF) in order to better understand the responsible proteins in photosynthesis and abiotic stress (salt and water) in wheat chloroplast will be focused. In this review we discussed the identification of the most abundant protein in wheat chloroplast and stress-responsive under salt and water stress in chloroplast of wheat seedlings, thus providing the proteomic view of the events during the development of this seedling under stress conditions. Chloroplast is fastidious curiosity for plant biologists due to their intricate biochemical pathways for indispensable metabolite functions. An overview on proteomic studies conducted in wheat with a special focus on subcellular proteomics of chloroplast, salt and water stress. We have attempted to understand the photosynthesis in wheat and abiotic stress under salt imposed and water deficit during seedling stage. Those studies provide interesting results leading to a better understanding of the photosynthesis and identifying the stress-responsive proteins. In reality, our studies aspired at resolving the photosynthesis pathway in wheat. Proteomic analysis united two complementary approaches such as Tricine SDS-PAGE and 2-DE methods couple to high through put mass spectrometry (LTQ-FTICR and MALDI-TOF/TOF) in order to better understand the responsible proteins in photosynthesis and abiotic stress (salt and water) in wheat chloroplast will be highlighted. This article is part of a Special Issue entitled: Translational Plant Proteomics. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.

  15. Discovery, distribution and diversity of Puroindoline-D1 genes in bread wheat from five countries (Triticum aestivum L.)

    PubMed Central

    2013-01-01

    Background Grain texture is one of the most important characteristics in bread wheat (Triticum aestivum L.). Puroindoline-D1 genes play the main role in controlling grain texture and are intimately associated with the milling and processing qualities in bread wheat. Results A series of diagnostic molecular markers and dCAPS markers were used to characterize Pina-D1 and Pinb-D1 in 493 wheat cultivars from diverse geographic locations. A primer walking strategy was used to characterize PINA-null alleles at the DNA level. Results indicated that Chinese landraces encompassing 12 different Puroindoline-D1 allelic combinations showed the highest diversity, while CIMMYT wheat cultivars containing 3 different Puroindoline-D1 allelic combinations showed the lowest diversity amongst wheat cultivars from the five countries surveyed. Two novel Pina-D1 alleles, designated Pina-D1s with a 4,422-bp deletion and Pina-D1u with a 6,460-bp deletion in the Ha (Hardness) locus, were characterized at the DNA level by a primer walking strategy, and corresponding molecular markers Pina-N3 and Pina-N4 were developed for straightforward identification of the Pina-D1s and Pina-D1u alleles. Analysis of the association of Puroindoline-D1 alleles with grain texture indicated that wheat cultivars with Pina-null/Pinb-null allele, possessing an approximate 33-kb deletion in the Ha locus, have the highest SKCS hardness index amongst the different genotypes used in this study. Moreover, wheat cultivars with the PINA-null allele have significantly higher SKCS hardness index than those of Pinb-D1b and Pinb-D1p alleles. Conclusions Molecular characterization of the Puroindoline-D1 allele was investigated in bread wheat cultivars from five geographic regions, resulting in the discovery of two new alleles - Pina-D1s and Pina-D1u. Molecular markers were developed for both alleles. Analysis of the association of the Puroindoline-D1 alleles with grain texture showed that cultivars with PINA-null allele possessed relatively high SKCS hardness index. This study can provide useful information for the improvement of wheat quality, as well as give a deeper understanding of the molecular and genetic processes controlling grain texture in bread wheat. PMID:24011219

  16. Identification and molecular characterization of a trans-acting small interfering RNA producing locus regulating leaf rust responsive gene expression in wheat (Triticum aestivum L.).

    PubMed

    Dutta, Summi; Kumar, Dhananjay; Jha, Shailendra; Prabhu, Kumble Vinod; Kumar, Manish; Mukhopadhyay, Kunal

    2017-11-01

    A novel leaf rust responsive ta-siRNA-producing locus was identified in wheat showing similarity to 28S rRNA and generated four differentially expressing ta-siRNAs by phasing which targeted stress responsive genes. Trans-acting-small interfering RNAs (Ta-siRNAs) are plant specific molecules generally involved in development and are also stress responsive. Ta-siRNAs identified in wheat till date are all responsive to abiotic stress only. Wheat cultivation is severely affected by rusts and leaf rust particularly affects grain filling. This study reports a novel ta-siRNA producing locus (TAS) in wheat which is a segment of 28S ribosomal RNA but shows differential expression during leaf rust infestation. Four small RNA libraries prepared from wheat Near Isogenic Lines were treated with leaf rust pathogen and compared with untreated controls. A TAS with the ability to generate four ta-siRNAs by phasing events was identified along with the microRNA TamiR16 as the phase initiator. The targets of the ta-siRNAs included α-gliadin, leucine rich repeat, trans-membrane proteins, glutathione-S-transferase, and fatty acid desaturase among others, which are either stress responsive genes or are essential for normal growth and development of plants. Expression of the TAS, its generated ta-siRNAs, and their target genes were profiled at five different time points after pathogen inoculation of susceptible and resistant wheat isolines and compared with mock-inoculated controls. Comparative analysis of expression unveiled differential and reciprocal relationship as well as discrete patterns between susceptible and resistant isolines. The expression profiles of the target genes of the identified ta-siRNAs advocate more towards effector triggered susceptibility favouring pathogenesis. The study helps in discerning the functions of wheat genes regulated by ta-siRNAs in response to leaf rust.

  17. Identification of Proteins Involved in Carbohydrate Metabolism and Energy Metabolism Pathways and Their Regulation of Cytoplasmic Male Sterility in Wheat.

    PubMed

    Geng, Xingxia; Ye, Jiali; Yang, Xuetong; Li, Sha; Zhang, Lingli; Song, Xiyue

    2018-01-23

    Cytoplasmic male sterility (CMS) where no functional pollen is produced has important roles in wheat breeding. The anther is a unique organ for male gametogenesis and its abnormal development can cause male sterility. However, the mechanisms and regulatory networks related to plant male sterility are poorly understood. In this study, we conducted comparative analyses using isobaric tags for relative and absolute quantification (iTRAQ) of the pollen proteins in a CMS line and its wheat maintainer. Differentially abundant proteins (DAPs) were analyzed based on Gene Ontology classifications, metabolic pathways and transcriptional regulation networks using Blast2GO. We identified 5570 proteins based on 23,277 peptides, which matched with 73,688 spectra, including proteins in key pathways such as glyceraldehyde-3-phosphate dehydrogenase, pyruvate kinase and 6-phosphofructokinase 1 in the glycolysis pathway, isocitrate dehydrogenase and citrate synthase in the tricarboxylic acid cycle and nicotinamide adenine dinucleotide (NADH)-dehydrogenase and adenosine-triphosphate (ATP) synthases in the oxidative phosphorylation pathway. These proteins may comprise a network that regulates male sterility in wheat. Quantitative real time polymerase chain reaction (qRT-PCR) analysis, ATP assays and total sugar assays validated the iTRAQ results. These DAPs could be associated with abnormal pollen grain formation and male sterility. Our findings provide insights into the molecular mechanism related to male sterility in wheat.

  18. Expert study to select indicators of the occurrence of emerging mycotoxin hazards.

    PubMed

    Kandhai, M C; Booij, C J H; Van der Fels-Klerx, H J

    2011-01-01

    This article describes a Delphi-based expert judgment study aimed at the selection of indicators to identify the occurrence of emerging mycotoxin hazards related to Fusarium spp. in wheat supply chains. A panel of 29 experts from 12 European countries followed a holistic approach to evaluate the most important indicators for different chain stages (growth, transport and storage, and processing) and their relative importance. After three e-mailing rounds, the experts reached consensus on the most important indicators for each of the three stages: wheat growth, transport and storage, and processing. For wheat growth, these indicators include: relative humidity/rainfall, crop rotation, temperature, tillage practice, water activity of the kernels, and crop variety/cultivar. For the transport and storage stage, they include water activity in the kernels, relative humidity, ventilation, temperature, storage capacity, and logistics. For wheat processing, indicators include quality data, fraction of the cereal used, water activity in the kernels, quality management and traceability systems, and carryover of contamination. The indicators selected in this study can be used in an identification system for the occurrence of emerging mycotoxin hazards in wheat supply chains. Such a system can be used by risk managers within governmental (related) organizations and/or the food and feed industry in order to react proactively to the occurrence of these emerging mycotoxins. © 2010 Society for Risk Analysis.

  19. Imagining class: A study into material social class position, subjective identification, and voting behavior across Europe.

    PubMed

    D'Hooge, Lorenzo; Achterberg, Peter; Reeskens, Tim

    2018-02-01

    The traditional approach to class voting has largely ignored the question whether material class positions coincide with subjective class identification. Following Sosnaud et al. (2013), this study evaluates party preferences when Europeans' material and subjective social class do not coincide. Seminal studies on voting behavior have suggested that members of lower classes are more likely to vote for the economic left and cultural right and that higher classes demonstrate the opposite pattern. Yet, these studies have on the one hand overlooked the possibility that there is a mismatch between the material class people can be classified in and the class they think they are part of, and on the other hand the consequences of this discordant class identification on voting behavior. Analyzing the 2009 wave of the European Elections Study, we find that the majority of the Europeans discordantly identify with the middle class, whereas only a minority of the lower and higher classes concordantly identify with their material social class. Further, material class only seems to predict economic voting behavior when it coincides with subjective class; for instance, individuals who have an inflated class identification are more likely to vote for the economic left, even when they materially can be classified as middle or high class. We conclude this paper with a discussion on scholarly debates concerning class and politics. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Characterization of Triticum aestivum Abscisic Acid Receptors and a Possible Role for These in Mediating Fusairum Head Blight Susceptibility in Wheat

    PubMed Central

    Gordon, Cameron S.; Rajagopalan, Nandhakishore; Risseeuw, Eddy P.; Surpin, Marci; Ball, Fraser J.; Barber, Carla J.; Buhrow, Leann M.; Clark, Shawn M.; Page, Jonathan E.; Todd, Chris D.; Abrams, Suzanne R.; Loewen, Michele C.

    2016-01-01

    Abscisic acid (ABA) is a well-characterized plant hormone, known to mediate developmental aspects as well as both abiotic and biotic stress responses. Notably, the exogenous application of ABA has recently been shown to increase susceptibility to the fungal pathogen Fusarium graminearum, the causative agent of Fusarium head blight (FHB) in wheat and other cereals. However roles and mechanisms associated with ABA’s modulation of pathogen responses remain enigmatic. Here the identification of putative ABA receptors from available genomic databases for Triticum aestivum (bread wheat) and Brachypodium distachyon (a model cereal) are reported. A number of these were cloned for recombinant expression and their functionality as ABA receptors confirmed by in vitro assays against protein phosphatases Type 2Cs. Ligand selectivity profiling of one of the wheat receptors (Ta_PYL2DS_FL) highlighted unique activities compared to Arabidopsis AtPYL5. Mutagenic analysis showed Ta_PYL2DS_FL amino acid D180 as being a critical contributor to this selectivity. Subsequently, a virus induced gene silencing (VIGS) approach was used to knockdown wheat Ta_PYL4AS_A (and similar) in planta, yielding plants with increased early stage resistance to FHB progression and decreased mycotoxin accumulation. Together these results confirm the existence of a family of ABA receptors in wheat and Brachypodium and present insight into factors modulating receptor function at the molecular level. That knockdown of Ta_PYL4AS_A (and similar) leads to early stage FHB resistance highlights novel targets for investigation in the future development of disease resistant crops. PMID:27755583

  1. A modern Green Revolution gene for reduced height in wheat.

    PubMed

    Würschum, Tobias; Langer, Simon M; Longin, C Friedrich H; Tucker, Matthew R; Leiser, Willmar L

    2017-12-01

    Increases in the yield of wheat during the Green Revolution of the late 20 th century were achieved through the introduction of Reduced height (Rht) dwarfing genes. The Rht-B1 and Rht-D1 loci ensured short stature by limiting the response to the growth-promoting hormone gibberellin, and are now widespread through international breeding programs. Despite this advantage, interference with the plant's response to gibberellin also triggers adverse effects for a range of important agronomic traits, and consequently modern Green Revolution genes are urgently required. In this study, we revisited the genetic control of wheat height using an association mapping approach and a large panel of 1110 worldwide winter wheat cultivars. This led to the identification of a major Rht locus on chromosome 6A, Rht24, which substantially reduces plant height alone as well as in combination with Rht-1b alleles. Remarkably, behind Rht-D1, Rht24 was the second most important locus for reduced height, explaining 15.0% of the genotypic variance and exerting an allele substitution effect of -8.8 cm. Unlike the two Rht-1b alleles, plants carrying Rht24 remain sensitive to gibberellic acid treatment. Rht24 appears in breeding programs from all countries of origin investigated, with increased frequency over the last decades, indicating that wheat breeders have actively selected for this locus. Taken together, this study reveals Rht24 as an important Rht gene of commercial relevance in worldwide wheat breeding. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  2. Characterization of Triticum aestivum Abscisic Acid Receptors and a Possible Role for These in Mediating Fusairum Head Blight Susceptibility in Wheat.

    PubMed

    Gordon, Cameron S; Rajagopalan, Nandhakishore; Risseeuw, Eddy P; Surpin, Marci; Ball, Fraser J; Barber, Carla J; Buhrow, Leann M; Clark, Shawn M; Page, Jonathan E; Todd, Chris D; Abrams, Suzanne R; Loewen, Michele C

    2016-01-01

    Abscisic acid (ABA) is a well-characterized plant hormone, known to mediate developmental aspects as well as both abiotic and biotic stress responses. Notably, the exogenous application of ABA has recently been shown to increase susceptibility to the fungal pathogen Fusarium graminearum, the causative agent of Fusarium head blight (FHB) in wheat and other cereals. However roles and mechanisms associated with ABA's modulation of pathogen responses remain enigmatic. Here the identification of putative ABA receptors from available genomic databases for Triticum aestivum (bread wheat) and Brachypodium distachyon (a model cereal) are reported. A number of these were cloned for recombinant expression and their functionality as ABA receptors confirmed by in vitro assays against protein phosphatases Type 2Cs. Ligand selectivity profiling of one of the wheat receptors (Ta_PYL2DS_FL) highlighted unique activities compared to Arabidopsis AtPYL5. Mutagenic analysis showed Ta_PYL2DS_FL amino acid D180 as being a critical contributor to this selectivity. Subsequently, a virus induced gene silencing (VIGS) approach was used to knockdown wheat Ta_PYL4AS_A (and similar) in planta, yielding plants with increased early stage resistance to FHB progression and decreased mycotoxin accumulation. Together these results confirm the existence of a family of ABA receptors in wheat and Brachypodium and present insight into factors modulating receptor function at the molecular level. That knockdown of Ta_PYL4AS_A (and similar) leads to early stage FHB resistance highlights novel targets for investigation in the future development of disease resistant crops.

  3. Cytogenetic and molecular identification of a wheat-Leymus mollis alien multiple substitution line from octoploid Tritileymus x Triticum durum.

    PubMed

    Pang, Y H; Zhao, J X; Du, W L; Li, Y L; Wang, J; Wang, L M; Wu, J; Cheng, X N; Yang, Q H; Chen, X H

    2014-05-23

    Leymus mollis (Trin.) Pilger (NsNsXmXm, 2n = 28), a wild relative of common wheat, possesses many traits that are potentially valuable for wheat improvement. In order to exploit and utilize the useful genes of L. mollis, we developed a multiple alien substitution line, 10DM50, from the progenies of octoploid Tritileymus M842-16 x Triticum durum cv. D4286. Genomic in situ hybridization analysis of mitosis and meiosis (metaphase I), using labeled total DNA of Psathyrostachys huashanica as probe, showed that the substitution line 10DM50 was a cytogenetically stable alien substitution line with 36 chromosomes from wheat and three pairs of Ns genome chromosomes from L. mollis. Simple sequence repeat analysis showed that the chromosomes 3D, 6D, and 7D were absent in 10DM50. Expressed sequence tag-sequence tagged sites analysis showed that new chromatin from 3Ns, 6Ns, and 7Ns of L. mollis were detected in 10DM50. We deduced that the substitution line 10DM50 was a multiple alien substitution line with the 3D, 6D, and 7D chromosomes replaced by 3Ns, 6Ns, and 7Ns from L. mollis. 10DM50 showed high resistance to leaf rust and significantly improved spike length, spikes per plant, and kernels per spike, which are correlated with higher wheat yield. These results suggest that line 10DM50 could be used as intermediate material for transferring desirable traits from L. mollis into common wheat in breeding programs.

  4. Detection and validation of genomic regions associated with resistance to rust diseases in a worldwide hexaploid wheat landrace collection using BayesR and mixed linear model approaches.

    PubMed

    Pasam, Raj K; Bansal, Urmil; Daetwyler, Hans D; Forrest, Kerrie L; Wong, Debbie; Petkowski, Joanna; Willey, Nicholas; Randhawa, Mandeep; Chhetri, Mumta; Miah, Hanif; Tibbits, Josquin; Bariana, Harbans; Hayden, Matthew J

    2017-04-01

    BayesR and MLM association mapping approaches in common wheat landraces were used to identify genomic regions conferring resistance to Yr, Lr, and Sr diseases. Deployment of rust resistant cultivars is the most economically effective and environmentally friendly strategy to control rust diseases in wheat. However, the highly evolving nature of wheat rust pathogens demands continued identification, characterization, and transfer of new resistance alleles into new varieties to achieve durable rust control. In this study, we undertook genome-wide association studies (GWAS) using a mixed linear model (MLM) and the Bayesian multilocus method (BayesR) to identify QTL contributing to leaf rust (Lr), stem rust (Sr), and stripe rust (Yr) resistance. Our study included 676 pre-Green Revolution common wheat landrace accessions collected in the 1920-1930s by A.E. Watkins. We show that both methods produce similar results, although BayesR had reduced background signals, enabling clearer definition of QTL positions. For the three rust diseases, we found 5 (Lr), 14 (Yr), and 11 (Sr) SNPs significant in both methods above stringent false-discovery rate thresholds. Validation of marker-trait associations with known rust QTL from the literature and additional genotypic and phenotypic characterisation of biparental populations showed that the landraces harbour both previously mapped and potentially new genes for resistance to rust diseases. Our results demonstrate that pre-Green Revolution landraces provide a rich source of genes to increase genetic diversity for rust resistance to facilitate the development of wheat varieties with more durable rust resistance.

  5. Finding the Bio in Biobased Products: Electrophoretic Identification of Wheat Proteins in Processed Products

    USDA-ARS?s Scientific Manuscript database

    Verification of the bio-content in bio-based or green products identifies genuine products, exposes counterfeit copies, supports or refutes content claims and ensures consumer confidence. When the bio-content includes protein, elemental nitrogen analysis is insufficient for verification since non-pr...

  6. A description of the reformatted spring small grains labeling procedure used in test 2, part 2 of the US/Canada wheat and barley exploratory experiment

    NASA Technical Reports Server (NTRS)

    Palmer, W. F.; Magness, E. R. (Principal Investigator)

    1981-01-01

    The reformatted spring small grains labeling procedure is designed to be used for assigning crop identification labels to a predetermined and selected number of dots. The development and description of this procedure is presented.

  7. Analysis of grain quality at receival

    USDA-ARS?s Scientific Manuscript database

    With an emphasis on wheat and to a lesser extent, barley, we describe the series of post harvest transfer stages of grain between the first point of sale and the export terminal. At each transfer point, a document accompanies a grain consignment that pertains to its quality (class, purity, sanitatio...

  8. Wheat gliadin: digital imaging and database construction using a 4-band reference system of agarose isoelectric focusing patterns.

    PubMed

    Black, J A; Waggamon, K A

    1992-01-01

    An isoelectric focusing method using thin-layer agarose gel has been developed for wheat gliadin. Using flat-bed units with a third electrode, up to 72 samples per gel may be analyzed. Advantages over traditional acid polyacrylamide gel electrophoresis methodology include: faster run times, nontoxic media, and greater sample capacity. The method is suitable for fingerprinting or purity testing of wheat varieties. Using digital images captured by a flat-bed scanner, a 4-band reference system using isoelectric points was devised. Software enables separated bands to be assigned pI values based upon reference tracks. Precision of assigned isoelectric points is shown to be on the order of 0.02 pH units. Captured images may be stored in a computer database and compared to unknown patterns to enable an identification. Parameters for a match with a stored pattern may be adjusted for pI interval required for a match, and number of best matches.

  9. Virus induced gene silencing (VIGS) for functional analysis of wheat genes involved in Zymoseptoria tritici susceptibility and resistance.

    PubMed

    Lee, Wing-Sham; Rudd, Jason J; Kanyuka, Kostya

    2015-06-01

    Virus-induced gene silencing (VIGS) has emerged as a powerful reverse genetic technology in plants supplementary to stable transgenic RNAi and, in certain species, as a viable alternative approach for gene functional analysis. The RNA virus Barley stripe mosaic virus (BSMV) was developed as a VIGS vector in the early 2000s and since then it has been used to study the function of wheat genes. Several variants of BSMV vectors are available, with some requiring in vitro transcription of infectious viral RNA, while others rely on in planta production of viral RNA from DNA-based vectors delivered to plant cells either by particle bombardment or Agrobacterium tumefaciens. We adapted the latest generation of binary BSMV VIGS vectors for the identification and study of wheat genes of interest involved in interactions with Zymoseptoria tritici and here present detailed and the most up-to-date protocols. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  10. Remote sensing to detect the movement of wheat curl mites through the spatial spread of virus symptoms, and identification of thrips as predators of wheat curl mites

    NASA Astrophysics Data System (ADS)

    Stilwell, Abby R.

    The wheat curl mite (WCM), Aceria tosichella Keifer, transmits three viruses to winter wheat: wheat streak mosaic virus, High Plains virus, and Triticum mosaic virus. This virus complex causes yellowing of the foliage and stunting of plants. WCMs disperse by wind, and an increased understanding of mite movement and subsequent virus spread is necessary in determining the risk of serious virus infections in winter wheat. These risk parameters will help growers make better decisions regarding WCM management. The objectives of this study were to evaluate the capabilities of remote sensing to identify virus infected plants and to establish the potential of using remote sensing to track virus spread and consequently, mite movement. Although the WCM is small and very hard to track, the viruses it vectors produce symptoms that can be detected with remote sensing. Field plots of simulated volunteer wheat were established between 2006 and 2009, infested with WCMs, and spread mites and virus into adjacent winter wheat. The virus gradients created by WCM movement allowed for the measurement of mite movement potential with both proximal and aerial remote sensing instruments. The ability to detect WCM-vectored viruses with remote sensing was investigated by comparing vegetation indices calculated from proximal remote sensing data to ground truth data obtained in the field. Of the ten vegetation indices tested, the red edge position (REP) index had the best relationship with ground truth data. The spatial spread of virus from WCM source plots was modeled with cokriging. Virus symptoms predicted by cokriging occurred in an oval pattern displaced to the southeast. Data from the spatial spread in small plots of this study were used to estimate the potential sphere of influence for volunteer wheat fields. The impact of thrips on WCM populations was investigated by a series of greenhouse, field, and observational studies. WCM populations in winter wheat increased more slowly when thrips populations were higher, both in the field and in the greenhouse. Two species of thrips, Thrips tabaci Lindeman and Frankliniella occidentalis (Pergande) were observed to feed directly on WCMs. The collective results from this study identify thrips as a regulating factor for WCM populations.

  11. Repellent and Contact Toxicity of Alpinia officinarum Rhizome Extract against Lasioderma serricorne Adults.

    PubMed

    Lü, Jianhua; Ma, Dan

    2015-01-01

    The repellent and contact toxicities of Alpinia officinarum rhizome extract on Lasioderma serricorne adults, and its ability to protect stored wheat flour from L. serricorne adults infestation were investigated. The A. officinarum extract exhibited strong repellent and contact toxicities against L. serricorne adults. The toxicities enhanced significantly with the increasing treatment time and treatment dose. The mean percentage repellency value reached 91.3% at class V at the dose of 0.20 μL/cm2 after 48 h of exposure. The corrected mortality reached over 80.0% at the dose of 0.16 μL/cm2 after 48 h of exposure. The A. officinarum extract could significantly reduce L. serricorne infestation level against stored wheat flour. Particularly, the insect infestation was nil in wheat flour packaged with kraft paper bags coated with the A. officinarum extract at the dose of above 0.05 μL/cm2. The naturally occurring A. officinarum extract could be useful for integrated management of L. serricorne.

  12. Repellent and Contact Toxicity of Alpinia officinarum Rhizome Extract against Lasioderma serricorne Adults

    PubMed Central

    Lü, Jianhua; Ma, Dan

    2015-01-01

    The repellent and contact toxicities of Alpinia officinarum rhizome extract on Lasioderma serricorne adults, and its ability to protect stored wheat flour from L. serricorne adults infestation were investigated. The A. officinarum extract exhibited strong repellent and contact toxicities against L. serricorne adults. The toxicities enhanced significantly with the increasing treatment time and treatment dose. The mean percentage repellency value reached 91.3% at class V at the dose of 0.20 μL/cm2 after 48 h of exposure. The corrected mortality reached over 80.0% at the dose of 0.16 μL/cm2 after 48 h of exposure. The A. officinarum extract could significantly reduce L. serricorne infestation level against stored wheat flour. Particularly, the insect infestation was nil in wheat flour packaged with kraft paper bags coated with the A. officinarum extract at the dose of above 0.05 μL/cm2. The naturally occurring A. officinarum extract could be useful for integrated management of L. serricorne. PMID:26292097

  13. Postulation of rust resistance genes in Nordic spring wheat genotypes and identification of widely effective sources of resistance against the Australian rust flora.

    PubMed

    Randhawa, Mandeep; Bansal, Urmil; Lillemo, Morten; Miah, Hanif; Bariana, Harbans

    2016-11-01

    Wild relatives, landraces and cultivars from different geographical regions have been demonstrated as the sources of genetic variation for resistance to rust diseases. This study involved assessment of diversity for resistance to three rust diseases among a set of Nordic spring wheat cultivars. These cultivars were tested at the seedling stage against several pathotypes of three rust pathogens in the greenhouse. All stage stem rust resistance genes Sr7b, Sr8a, Sr12, Sr15, Sr17, Sr23 and Sr30, and leaf rust resistance genes Lr1, Lr3a, Lr13, Lr14a, Lr16 and Lr20 were postulated either singly or in different combinations among these cultivars. A high proportion of cultivars were identified to carry linked rust resistance genes Sr15 and Lr20. Although 51 cultivars showed variation against Puccinia striiformis f. sp. tritici (Pst) pathotypes used in this study, results were not clearly contrasting to enable postulation of stripe rust resistance genes in these genotypes. Stripe rust resistance gene Yr27 was postulated in four cultivars and Yr1 was present in cultivar Zebra. Cultivar Tjalve produced low stripe rust response against all Pst pathotypes indicating the presence either of a widely effective resistance gene or combination of genes with compensating pathogenic specificities. Several cultivars carried moderate to high level of APR to leaf rust and stripe rust. Seedling stem rust susceptible cultivar Aston exhibited moderately resistant to moderately susceptible response, whereas other cultivars belonging to this class were rated moderately susceptible or higher. Molecular markers linked with APR genes Yr48, Lr34/Yr18/Sr57, Lr68 and Sr2 detected the presence of these genes in some genotypes.

  14. Identification of promising host-induced silencing targets among genes preferentially transcribed in haustoria of Puccinia

    USDA-ARS?s Scientific Manuscript database

    Expression of dsRNA fragments of rust pathogen genes in wheat seedlings through the barley stripe mosaic virus (BSMV) based host-induced gene silencing (HIGS) system can reduce the expression of the corresponding genes in the rust fungus. The highest levels of suppression have generally been observe...

  15. Use of PCR analysis for identification of species and genus of Septoria on grain crops

    USDA-ARS?s Scientific Manuscript database

    Research on methods for molecular-genetic testing of the Septoria pathogens of wheat was initiated. Two species of septoria were studied: Septoria tritici Rob. et Desm., and Stagonospora nodorum [Berk] Castellani and E.G. Germano. Different protocols for extraction of DNA were applied; the best meth...

  16. Molecular markers for identification of Hessian fly males caught on pheromone traps

    USDA-ARS?s Scientific Manuscript database

    Pheromone traps have been widely used to monitor insect populations in nature. However, pheromone traps for the Hessian fly (Mayetiola destructor), one of the most destructive insect pests of wheat, have been used only in recent years. Because Hessian fly male adults are small and fragile, it is d...

  17. Identification of acetylated derivatives of zearalenone as novel plant metabolites by high-resolution mass spectrometry.

    PubMed

    Righetti, Laura; Dellafiora, Luca; Cavanna, Daniele; Rolli, Enrico; Galaverna, Gianni; Bruni, Renato; Suman, Michele; Dall'Asta, Chiara

    2018-04-30

    Zearalenone (ZEN) major biotransformation pathways described so far are based on glycosylation and sulfation, although acetylation of trichothecenes has been reported as well. We investigated herein the ZEN acetylation metabolism route in micropropagated durum wheat leaf, artificially contaminated with ZEN. We report the first experimental evidence of the formation of novel ZEN acetylated forms in wheat, attached both to the aglycone backbone as well as on the glucose moiety. Thanks to the advantages provided by high-resolution mass spectrometry, identification and structure annotation of 20 metabolites was achieved. In addition, a preliminary assessment of the toxicity of the annotated metabolites was performed in silico focusing on the toxicodynamic of ZEN group toxicity. All the metabolites showed a worse fitting within the estrogen receptor pocket in comparison with ZEN. Nevertheless, possible hydrolysis to the respective parent compounds (i.e., ZEN) may raise concern from the health perspective because these are well-known xenoestrogens. These results further enrich the biotransformation profile of ZEN, providing a helpful reference for assessing the risks to animals and humans. Graphical abstract ᅟ.

  18. [Gluten--mechanisms of intolerance, symptoms and treatment possibilities of IgE-related allergy for gluten in the light of actual clinical and immunological studies].

    PubMed

    Obtułowicz, Krystyna; Waga, Jacek; Dyga, Wojciech

    2015-01-01

    Gluten is the product of a chemical bond of wheat prolamin proteins (glia- dins and glutenins) in an aqueous me- dium. IgE mediated gluten allergy can be induced either by gluten as an in- gredient in foods or wheat prolamines present in the air. The aim of the study was clinical analysis of 13 patients, who demonstrated elevated levels of gluten specific IgE and identification of the most allergenic protein fractions from several samples of wheat using serum of examined subjects. Clinical analysis showed the occupational allergy to gluten in the form of rhinitis, asthma and airborne dermatistis in 9 subjects, whose symptoms disappeared during isolation from occupational exposure despite the use of a normal diet. In case of 4 patients with severe forms of chronic urticaria and atopic dermatitis, who are also allergic to grass pollen at the same time, the introduction of a gluten-free diet resulted in improvement of health conditions. The study of wheat protein fractions revealed a significant polymorphism dependent on the wheat sample. In the protein fractions, low and high molecular glutenin fractions, and alpha, beta, gamma, and omega-gliadins were separated. It has been shown that the strongest immunogenic effect causes omega-5 gliadin fraction. The removal of this fraction resulted in reduction of skin reactivity evaluated by skin prick test in the studied patients.

  19. Novel mutant alleles of the starch synthesis gene TaSSIVb-D result in the reduction of starch granule number per chloroplast in wheat.

    PubMed

    Guo, Huijun; Liu, Yunchuan; Li, Xiao; Yan, Zhihui; Xie, Yongdun; Xiong, Hongchun; Zhao, Linshu; Gu, Jiayu; Zhao, Shirong; Liu, Luxiang

    2017-05-08

    Transient starch provides carbon and energy for plant growth, and its synthesis is regulated by the joint action of a series of enzymes. Starch synthesis IV (SSIV) is one of the important starch synthase isoforms, but its impact on wheat starch synthesis has not yet been reported due to the lack of mutant lines. Using the TILLING approach, we identified 54 mutations in the wheat gene TaSSIVb-D, with a mutation density of 1/165 Kb. Among these, three missense mutations and one nonsense mutation were predicted to have severe impacts on protein function. In the mutants, TaSSIVb-D was significantly down-regulated without compensatory increases in the homoeologous genes TaSSIVb-A and TaSSIVb-B. Altered expression of TaSSIVb-D affected granule number per chloroplast; compared with wild type, the number of chloroplasts containing 0-2 granules was significantly increased, while the number containing 3-4 granules was decreased. Photosynthesis was affected accordingly; the maximum quantum yield and yield of PSII were significantly reduced in the nonsense mutant at the heading stage. These results indicate that TaSSIVb-D plays an important role in the formation of transient starch granules in wheat, which in turn impact the efficiency of photosynthesis. The mutagenized population created in this study allows the efficient identification of novel alleles of target genes and could be used as a resource for wheat functional genomics.

  20. Genetic diversity, population structure and marker-trait associations for agronomic and grain traits in wild diploid wheat Triticum urartu.

    PubMed

    Wang, Xin; Luo, Guangbin; Yang, Wenlong; Li, Yiwen; Sun, Jiazhu; Zhan, Kehui; Liu, Dongcheng; Zhang, Aimin

    2017-07-01

    Wild diploid wheat, Triticum urartu (T. urartu) is the progenitor of bread wheat, and understanding its genetic diversity and genome function will provide considerable reference for dissecting genomic information of common wheat. In this study, we investigated the morphological and genetic diversity and population structure of 238 T. urartu accessions collected from different geographic regions. This collection had 19.37 alleles per SSR locus and its polymorphic information content (PIC) value was 0.76, and the PIC and Nei's gene diversity (GD) of high-molecular-weight glutenin subunits (HMW-GSs) were 0.86 and 0.88, respectively. UPGMA clustering analysis indicated that the 238 T. urartu accessions could be classified into two subpopulations, of which Cluster I contained accessions from Eastern Mediterranean coast and those from Mesopotamia and Transcaucasia belonged to Cluster II. The wide range of genetic diversity along with the manageable number of accessions makes it one of the best collections for mining valuable genes based on marker-trait association. Significant associations were observed between simple sequence repeats (SSR) or HMW-GSs and six morphological traits: heading date (HD), plant height (PH), spike length (SPL), spikelet number per spike (SPLN), tiller angle (TA) and grain length (GL). Our data demonstrated that SSRs and HMW-GSs were useful markers for identification of beneficial genes controlling important traits in T. urartu, and subsequently for their conservation and future utilization, which may be useful for genetic improvement of the cultivated hexaploid wheat.

  1. Identification and comprehensive analyses of the CBL and CIPK gene families in wheat (Triticum aestivum L.).

    PubMed

    Sun, Tao; Wang, Yan; Wang, Meng; Li, Tingting; Zhou, Yi; Wang, Xiatian; Wei, Shuya; He, Guangyuan; Yang, Guangxiao

    2015-11-04

    Calcineurin B-like (CBL) proteins belong to a unique group of calcium sensors in plant that decode the Ca(2+) signature by interacting with CBL-interacting protein kinases (CIPKs). Although CBL-CIPK complexes have been shown to play important roles in the responses to various stresses in plants, little is known about their functions in wheat. A total of seven TaCBL and 20 TaCIPK genes were amplified from bread wheat, Triticum aestivum cv. Chinese Spring. Reverse-transcriptase-polymerase chain reaction (RT-PCR) and in silico expression analyses showed that TaCBL and TaCIPK genes were expressed at different levels in different tissues, or maintained at nearly constant expression levels during the whole life cycle of the wheat plant. Some TaCBL and TaCIPK genes showed up- or down-regulated expressions during seed germination. Preferential interactions between TaCBLs and TaCIPKs were observed in yeast two-hybrid and bimolecular fluorescence complementation experiments. Analyses of a deletion series of TaCIPK proteins with amino acid variations at the C-terminus provided new insights into the specificity of the interactions between TaCIPKs and TaCBLs, and indicated that the TaCBL-TaCIPK signaling pathway is very complex in wheat because of its hexaploid genome. The expressions of many TaCBLs and TaCIPKs were responsive to abiotic stresses (salt, cold, and simulated drought) and abscisic acid treatment. Transgenic Arabidopsis plants overexpressing TaCIPK24 exhibited improved salt tolerance through increased Na(+) efflux and an enhanced reactive oxygen species scavenging capacity. These results contribute to our understanding of the functions of CBL-CIPK complexes and provide the basis for selecting appropriate genes for in-depth functional studies of CBL-CIPK in wheat.

  2. De Novo Transcriptome Assembly and Analyses of Gene Expression during Photomorphogenesis in Diploid Wheat Triticum monococcum

    PubMed Central

    Naithani, Sushma; Sullivan, Chris; Preece, Justin; Tiwari, Vijay K.; Elser, Justin; Leonard, Jeffrey M.; Sage, Abigail; Gresham, Cathy; Kerhornou, Arnaud; Bolser, Dan; McCarthy, Fiona; Kersey, Paul; Lazo, Gerard R.; Jaiswal, Pankaj

    2014-01-01

    Background Triticum monococcum (2n) is a close ancestor of T. urartu, the A-genome progenitor of cultivated hexaploid wheat, and is therefore a useful model for the study of components regulating photomorphogenesis in diploid wheat. In order to develop genetic and genomic resources for such a study, we constructed genome-wide transcriptomes of two Triticum monococcum subspecies, the wild winter wheat T. monococcum ssp. aegilopoides (accession G3116) and the domesticated spring wheat T. monococcum ssp. monococcum (accession DV92) by generating de novo assemblies of RNA-Seq data derived from both etiolated and green seedlings. Principal Findings The de novo transcriptome assemblies of DV92 and G3116 represent 120,911 and 117,969 transcripts, respectively. We successfully mapped ∼90% of these transcripts from each accession to barley and ∼95% of the transcripts to T. urartu genomes. However, only ∼77% transcripts mapped to the annotated barley genes and ∼85% transcripts mapped to the annotated T. urartu genes. Differential gene expression analyses revealed 22% more light up-regulated and 35% more light down-regulated transcripts in the G3116 transcriptome compared to DV92. The DV92 and G3116 mRNA sequence reads aligned against the reference barley genome led to the identification of ∼500,000 single nucleotide polymorphism (SNP) and ∼22,000 simple sequence repeat (SSR) sites. Conclusions De novo transcriptome assemblies of two accessions of the diploid wheat T. monococcum provide new empirical transcriptome references for improving Triticeae genome annotations, and insights into transcriptional programming during photomorphogenesis. The SNP and SSR sites identified in our analysis provide additional resources for the development of molecular markers. PMID:24821410

  3. Identification and validation of QTL for grain yield and plant water status under contrasting water treatments in fall-sown spring wheats.

    PubMed

    Zhang, Junli; Gizaw, Shiferaw Abate; Bossolini, Eligio; Hegarty, Joshua; Howell, Tyson; Carter, Arron H; Akhunov, Eduard; Dubcovsky, Jorge

    2018-05-16

    Chromosome regions affecting grain yield, grain yield components and plant water status were identified and validated in fall-sown spring wheats grown under full and limited irrigation. Increases in wheat production are required to feed a growing human population. To understand the genetic basis of grain yield in fall-sown spring wheats, we performed a genome-wide association study (GWAS) including 262 photoperiod-insensitive spring wheat accessions grown under full and limited irrigation treatments. Analysis of molecular variance showed that 4.1% of the total variation in the panel was partitioned among accessions originally developed under fall-sowing or spring-sowing conditions, 11.7% among breeding programs within sowing times and 84.2% among accessions within breeding programs. We first identified QTL for grain yield, yield components and plant water status that were significant in at least three environments in the GWAS, and then selected those that were also significant in at least two environments in a panel of eight biparental mapping populations. We identified and validated 14 QTL for grain yield, 15 for number of spikelets per spike, one for kernel number per spike, 11 for kernel weight and 9 for water status, which were not associated with differences in plant height or heading date. We detected significant correlations among traits and colocated QTL that were consistent with those correlations. Among those, grain yield and plant water status were negatively correlated in all environments, and six QTL for these traits were colocated or tightly linked (< 1 cM). QTL identified and validated in this study provide useful information for the improvement of fall-sown spring wheats under full and limited irrigation.

  4. Transcriptome Analysis Provides Insights into the Mechanisms Underlying Wheat Plant Resistance to Stripe Rust at the Adult Plant Stage

    PubMed Central

    Hao, Yingbin; Wang, Ting; Wang, Kang; Wang, Xiaojie; Fu, Yanping; Huang, Lili; Kang, Zhensheng

    2016-01-01

    Stripe rust (or yellow rust), which is caused by Puccinia striiformis f. sp. tritici (Pst), is one of the most devastating wheat diseases worldwide. The wheat cultivar Xingzi 9104 (XZ) is an elite wheat germplasm that possesses adult plant resistance (APR), which is non–race-specific and durable. Thus, to better understand the mechanism underlying APR, we performed transcriptome sequencing of wheat seedlings and adult plants without Pst infection, and a total of 157,689 unigenes were obtained as a reference. In total, 2,666, 783 and 2,587 differentially expressed genes (DEGs) were found to be up- or down-regulated after Pst infection at 24, 48 and 120 hours post-inoculation (hpi), respectively, based on a comparison of Pst- and mock-infected plants. Among these unigenes, the temporal pattern of the up-regulated unigenes exhibited transient expression patterns during Pst infection, as determined through a Gene Ontology (GO) enrichment analysis. In addition, a Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed that many biological processes, including phenylpropanoid biosynthesis, reactive oxygen species, photosynthesis and thiamine metabolism, which mainly control the mechanisms of lignification, reactive oxygen species and sugar, respectively, are involved in APR. In particular, the continuous accumulation of reactive oxygen species may potentially contribute to the ability of the adult plant to inhibit fungal growth and development. To validate the bioinformatics results, 6 candidate genes were selected for further functional identification using the virus-induced gene silencing (VIGS) system, and 4 candidate genes likely contribute to plant resistance against Pst infection. Our study provides new information concerning the transcriptional changes that occur during the Pst-wheat interaction at the adult stage and will help further our understanding of the detailed mechanisms underlying APR to Pst. PMID:26991894

  5. Characterisation of the nicotianamine aminotransferase and deoxymugineic acid synthase genes essential to Strategy II iron uptake in bread wheat (Triticum aestivum L.)

    PubMed Central

    Johnson, Alexander A. T.

    2017-01-01

    Iron (Fe) uptake in graminaceous plant species occurs via the release and uptake of Fe-chelating compounds known as mugineic acid family phytosiderophores (MAs). In the MAs biosynthetic pathway, nicotianamine aminotransferase (NAAT) and deoxymugineic acid synthase (DMAS) enzymes catalyse the formation of 2’-deoxymugineic acid (DMA) from nicotianamine (NA). Here we describe the identification and characterisation of six TaNAAT and three TaDMAS1 genes in bread wheat (Triticum aestivum L.). The coding sequences of all six TaNAAT homeologs consist of seven exons with ≥88.0% nucleotide sequence identity and most sequence variation present in the first exon. The coding sequences of the three TaDMAS1 homeologs consist of three exons with ≥97.8% nucleotide sequence identity. Phylogenetic analysis revealed that the TaNAAT and TaDMAS1 proteins are most closely related to the HvNAAT and HvDMAS1 proteins of barley and that there are two distinct groups of TaNAAT proteins—TaNAAT1 and TaNAAT2 –that correspond to the HvNAATA and HvNAATB proteins, respectively. Quantitative reverse transcription-PCR analysis revealed that the TaNAAT2 genes are expressed at highest levels in anther tissues whilst the TaNAAT1 and TaDMAS1 genes are expressed at highest levels in root tissues of bread wheat. Furthermore, the TaNAAT1, TaNAAT2 and TaDMAS1 genes were differentially regulated by plant Fe status and their expression was significantly upregulated in root tissues from day five onwards during a seven-day Fe deficiency treatment. The identification and characterization of the TaNAAT1, TaNAAT2 and TaDMAS1 genes provides a valuable genetic resource for improving bread wheat growth on Fe deficient soils and enhancing grain Fe nutrition. PMID:28475636

  6. Variation of Bacterial Community Diversity in Rhizosphere Soil of Sole-Cropped versus Intercropped Wheat Field after Harvest.

    PubMed

    Yang, Zhenping; Yang, Wenping; Li, Shengcai; Hao, Jiaomin; Su, Zhifeng; Sun, Min; Gao, Zhiqiang; Zhang, Chunlai

    2016-01-01

    As the major crops in north China, spring crops are usually planted from April through May every spring and harvested in fall. Wheat is also a very common crop traditionally planted in fall or spring and harvested in summer year by year. This continuous cropping system exhibited the disadvantages of reducing the fertility of soil through decreasing microbial diversity. Thus, management of microbial diversity in the rhizosphere plays a vital role in sustainable crop production. In this study, ten common spring crops in north China were chosen sole-cropped and four were chosen intercropped with peanut in wheat fields after harvest. Denaturing gradient gel electrophoresis (DGGE) and DNA sequencing of one 16S rDNA fragment were used to analyze the bacterial diversity and species identification. DGGE profiles showed the bacterial community diversity in rhizosphere soil samples varied among various crops under different cropping systems, more diverse under intercropping system than under sole-cropping. Some intercropping-specific bands in DGGE profiles suggested that several bacterial species were stimulated by intercropping systems specifically. Furthermore, the identification of these dominant and functional bacteria by DNA sequencing indicated that intercropping systems are more beneficial to improve soil fertility. Compared to intercropping systems, we also observed changes in microbial community of rhizosphere soil under sole-crops. The rhizosphere bacterial community structure in spring crops showed a strong crop species-specific pattern. More importantly, Empedobacter brevis, a typical plant pathogen, was only found in the carrot rhizosphere, suggesting carrot should be sown prudently. In conclusion, our study demonstrated that crop species and cropping systems had significant effects on bacterial community diversity in the rhizosphere soils. We strongly suggest sorghum, glutinous millet and buckwheat could be taken into account as intercropping crops with peanut; while hulled oat, mung bean or foxtail millet could be considered for sowing in wheat fields after harvest in North China.

  7. Identification and mapping of Sr46 from Aegilops tauschii accession CIae 25 conferring resistance to race TTKSK (Ug99) of wheat stem rust pathogen.

    PubMed

    Yu, Guotai; Zhang, Qijun; Friesen, Timothy L; Rouse, Matthew N; Jin, Yue; Zhong, Shaobin; Rasmussen, Jack B; Lagudah, Evans S; Xu, Steven S

    2015-03-01

    Mapping studies confirm that resistance to Ug99 race of stem rust pathogen in Aegilops tauschii accession Clae 25 is conditioned by Sr46 and markers linked to the gene were developed for marker-assisted selection. The race TTKSK (Ug99) of Puccinia graminis f. sp. tritici, the causal pathogen for wheat stem rust, is considered as a major threat to global wheat production. To address this threat, researchers across the world have been devoted to identifying TTKSK-resistant genes. Here, we report the identification and mapping of a stem rust resistance gene in Aegilops tauschii accession CIae 25 that confers resistance to TTKSK and the development of molecular markers for the gene. An F2 population of 710 plants from an Ae. tauschii cross CIae 25 × AL8/78 were first evaluated against race TPMKC. A set of 14 resistant and 116 susceptible F2:3 families from the F2 plants were then evaluated for their reactions to TTKSK. Based on the tests, 179 homozygous susceptible F2 plants were selected as the mapping population to identify the simple sequence repeat (SSR) and sequence tagged site (STS) markers linked to the gene by bulk segregant analysis. A dominant stem rust resistance gene was identified and mapped with 16 SSR and five new STS markers to the deletion bin 2DS5-0.47-1.00 of chromosome arm 2DS in which Sr46 was located. Molecular marker and stem rust tests on CIae 25 and two Ae. tauschii accessions carrying Sr46 confirmed that the gene in CIae 25 is Sr46. This study also demonstrated that Sr46 is temperature-sensitive being less effective at low temperatures. The marker validation indicated that two closely linked markers Xgwm210 and Xwmc111 can be used for marker-assisted selection of Sr46 in wheat breeding programs.

  8. Mapping of powdery mildew resistance gene Pm53 introgressed from Aegilops speltoides into soft red winter wheat.

    PubMed

    Petersen, Stine; Lyerly, Jeanette H; Worthington, Margaret L; Parks, Wesley R; Cowger, Christina; Marshall, David S; Brown-Guedira, Gina; Murphy, J Paul

    2015-02-01

    A powdery mildew resistance gene was introgressed from Aegilops speltoides into winter wheat and mapped to chromosome 5BL. Closely linked markers will permit marker-assisted selection for the resistance gene. Powdery mildew of wheat (Triticum aestivum L.) is a major fungal disease in many areas of the world, caused by Blumeria graminis f. sp. tritici (Bgt). Host plant resistance is the preferred form of disease prevention because it is both economical and environmentally sound. Identification of new resistance sources and closely linked markers enable breeders to utilize these new sources in marker-assisted selection as well as in gene pyramiding. Aegilops speltoides (2n = 2x = 14, genome SS), has been a valuable disease resistance donor. The powdery mildew resistant wheat germplasm line NC09BGTS16 (NC-S16) was developed by backcrossing an Ae. speltoides accession, TAU829, to the susceptible soft red winter wheat cultivar 'Saluda'. NC-S16 was crossed to the susceptible cultivar 'Coker 68-15' to develop F2:3 families for gene mapping. Greenhouse and field evaluations of these F2:3 families indicated that a single gene, designated Pm53, conferred resistance to powdery mildew. Bulked segregant analysis showed that multiple simple sequence repeat (SSR) and single nucleotide polymorphism (SNP) markers specific to chromosome 5BL segregated with the resistance gene. The gene was flanked by markers Xgwm499, Xwmc759, IWA6024 (0.7 cM proximal) and IWA2454 (1.8 cM distal). Pm36, derived from a different wild wheat relative (T. turgidum var. dicoccoides), had previously been mapped to chromosome 5BL in a durum wheat line. Detached leaf tests revealed that NC-S16 and a genotype carrying Pm36 differed in their responses to each of three Bgt isolates. Pm53 therefore appears to be a new source of powdery mildew resistance.

  9. Identification of an attenuated barley stripe mosaic virus for the virus-induced gene silencing of pathogenesis-related wheat genes.

    PubMed

    Buhrow, Leann M; Clark, Shawn M; Loewen, Michele C

    2016-01-01

    Virus-induced gene silencing (VIGS) has become an emerging technology for the rapid, efficient functional genomic screening of monocot and dicot species. The barley stripe mosaic virus (BSMV) has been described as an effective VIGS vehicle for the evaluation of genes involved in wheat and barley phytopathogenesis; however, these studies have been obscured by BSMV-induced phenotypes and defense responses. The utility of BSMV VIGS may be improved using a BSMV genetic background which is more tolerable to the host plant especially upon secondary infection of highly aggressive, necrotrophic pathogens such as Fusarium graminearum. BSMV-induced VIGS in Triticum aestivum (bread wheat) cv. 'Fielder' was assessed for the study of wheat genes putatively related to Fusarium Head Blight (FHB), the necrotrophism of wheat and other cereals by F. graminearum. Due to the lack of 'Fielder' spike viability and increased accumulation of Fusarium-derived deoxynivalenol contamination upon co-infection of BSMV and FHB, an attenuated BSMV construct was generated by the addition of a glycine-rich, C-terminal peptide to the BSMV γ b protein. This attenuated BSMV effectively silenced target wheat genes while limiting disease severity, deoxynivalenol contamination, and yield loss upon Fusarium co-infection compared to the original BSMV construct. The attenuated BSMV-infected tissue exhibited reduced abscisic, jasmonic, and salicylic acid defense phytohormone accumulation upon secondary Fusarium infection. Finally, the attenuated BSMV was used to investigate the role of the salicylic acid-responsive pathogenesis-related 1 in response to FHB. The use of an attenuated BSMV may be advantageous in characterizing wheat genes involved in phytopathogenesis, including Fusarium necrotrophism, where minimal viral background effects on defense are required. Additionally, the attenuated BSMV elicits reduced defense hormone accumulation, suggesting that this genotype may have applications for the investigation of phytohormone-related signaling, developmental responses, and pathogen defense.

  10. Genome-wide linkage mapping of yield-related traits in three Chinese bread wheat populations using high-density SNP markers.

    PubMed

    Li, Faji; Wen, Weie; He, Zhonghu; Liu, Jindong; Jin, Hui; Cao, Shuanghe; Geng, Hongwei; Yan, Jun; Zhang, Pingzhi; Wan, Yingxiu; Xia, Xianchun

    2018-06-01

    We identified 21 new and stable QTL, and 11 QTL clusters for yield-related traits in three bread wheat populations using the wheat 90 K SNP assay. Identification of quantitative trait loci (QTL) for yield-related traits and closely linked molecular markers is important in order to identify gene/QTL for marker-assisted selection (MAS) in wheat breeding. The objectives of the present study were to identify QTL for yield-related traits and dissect the relationships among different traits in three wheat recombinant inbred line (RIL) populations derived from crosses Doumai × Shi 4185 (D × S), Gaocheng 8901 × Zhoumai 16 (G × Z) and Linmai 2 × Zhong 892 (L × Z). Using the available high-density linkage maps previously constructed with the wheat 90 K iSelect single nucleotide polymorphism (SNP) array, 65, 46 and 53 QTL for 12 traits were identified in the three RIL populations, respectively. Among them, 34, 23 and 27 were likely to be new QTL. Eighteen common QTL were detected across two or three populations. Eleven QTL clusters harboring multiple QTL were detected in different populations, and the interval 15.5-32.3 cM around the Rht-B1 locus on chromosome 4BS harboring 20 QTL is an important region determining grain yield (GY). Thousand-kernel weight (TKW) is significantly affected by kernel width and plant height (PH), whereas flag leaf width can be used to select lines with large kernel number per spike. Eleven candidate genes were identified, including eight cloned genes for kernel, heading date (HD) and PH-related traits as well as predicted genes for TKW, spike length and HD. The closest SNP markers of stable QTL or QTL clusters can be used for MAS in wheat breeding using kompetitive allele-specific PCR or semi-thermal asymmetric reverse PCR assays for improvement of GY.

  11. Genetic Diversity and Population Structure of Tetraploid Wheats (Triticum turgidum L.) Estimated by SSR, DArT and Pedigree Data

    PubMed Central

    Laidò, Giovanni; Mangini, Giacomo; Taranto, Francesca; Gadaleta, Agata; Blanco, Antonio; Cattivelli, Luigi; Marone, Daniela; Mastrangelo, Anna M.; Papa, Roberto; De Vita, Pasquale

    2013-01-01

    Levels of genetic diversity and population genetic structure of a collection of 230 accessions of seven tetraploid Triticum turgidum L. subspecies were investigated using six morphological, nine seed storage protein loci, 26 SSRs and 970 DArT markers. The genetic diversity of the morphological traits and seed storage proteins was always lower in the durum wheat compared to the wild and domesticated emmer. Using Bayesian clustering (K = 2), both of the sets of molecular markers distinguished the durum wheat cultivars from the other tetraploid subspecies, and two distinct subgroups were detected within the durum wheat subspecies, which is in agreement with their origin and year of release. The genetic diversity of morphological traits and seed storage proteins was always lower in the improved durum cultivars registered after 1990, than in the intermediate and older ones. This marked effect on diversity was not observed for molecular markers, where there was only a weak reduction. At K >2, the SSR markers showed a greater degree of resolution than for DArT, with their identification of a greater number of groups within each subspecies. Analysis of DArT marker differentiation between the wheat subspecies indicated outlier loci that are potentially linked to genes controlling some important agronomic traits. Among the 211 loci identified under selection, 109 markers were recently mapped, and some of these markers were clustered into specific regions on chromosome arms 2BL, 3BS and 4AL, where several genes/quantitative trait loci (QTLs) are involved in the domestication of tetraploid wheats, such as the tenacious glumes (Tg) and brittle rachis (Br) characteristics. On the basis of these results, it can be assumed that the population structure of the tetraploid wheat collection partially reflects the evolutionary history of Triticum turgidum L. subspecies and the genetic potential of landraces and wild accessions for the detection of unexplored alleles. PMID:23826256

  12. Molecular cytogenetic identification of a wheat (Triticum aestivum)-American dune grass (Leymus mollis) translocation line resistant to stripe rust.

    PubMed

    Bao, Y; Wang, J; He, F; Ma, H; Wang, H

    2012-05-22

    Leymus mollis, a perennial allotetraploid (2n = 4x = 28), known as American dune grass, is a wild relative of wheat that could be useful for cultivar improvement. Shannong0096, developed from interspecific hybridization between common wheat cv. Yannong15 and L. mollis, was analyzed with cytological procedures, genomic in situ hybridization, stripe-rust resistance screening and molecular marker analysis. We found that Shannong0096 has 42 chromosomes in the root-tip cells at mitotic metaphase and 21 bivalents in the pollen mother cells at meiotic metaphase I, demonstrating cytogenetic stability. Genomic in situ hybridization probed with total genomic DNA from L. mollis gave strong hybridization signals in the distal region of two wheat chromosome arms. A single dominant Yr gene, derived from L. mollis and temporarily designated as YrSn0096, was found on the long arm of chromosome 4A of Shannong0096. YrSn0096 should be a novel Yr gene because none of the previously reported Yr genes on chromosome 4A are related to L. mollis. This gene was found to be closely linked to the loci Xbarc236 and Xksum134 with genetic distances of 5.0 and 4.8 cM, respectively. Based on data from 267 F(2) plants of Yannong15/Huixianhong, the linkage map of YrSn0096, using the two molecular markers, was established in the order Xbarc236-YrSn0096-Xksum134. Shannong0096 appeared to be a unique wheat-L. mollis translocation with cryptic alien introgression. Cytogenetic stability, a high level of stripe-rust resistance, the common wheat background, and other positive agronomic traits make it a desirable donor for introducing novel alien resistance genes in wheat breeding programs, with the advantage of molecular markers that can be used to confirm introgression.

  13. Wheat grain hardness results from highly conserved mutations in the friabilin components puroindoline a and b

    PubMed Central

    Giroux, Michael J.; Morris, Craig F.

    1998-01-01

    “Soft” and “hard” are the two main market classes of wheat (Triticum aestivum L.) and are distinguished by expression of the Hardness gene. Friabilin, a marker protein for grain softness (Ha), consists of two proteins, puroindoline a and b (pinA and pinB, respectively). We previously demonstrated that a glycine to serine mutation in pinB is linked inseparably to grain hardness. Here, we report that the pinB serine mutation is present in 9 of 13 additional randomly selected hard wheats and in none of 10 soft wheats. The four exceptional hard wheats not containing the serine mutation in pinB express no pinA, the remaining component of the marker protein friabilin. The absence of pinA protein was linked inseparably to grain hardness among 44 near-isogenic lines created between the soft variety Heron and the hard variety Falcon. Both pinA and pinB apparently are required for the expression of grain softness. The absence of pinA protein and transcript and a glycine-to-serine mutation in pinB are two highly conserved mutations associated with grain hardness, and these friabilin genes are the suggested tightly linked components of the Hardness gene. A previously described grain hardness related gene termed “GSP-1” (grain softness protein) is not controlled by chromosome 5D and is apparently not involved in grain hardness. The association of grain hardness with mutations in both pinA or pinB indicates that these two proteins alone may function together to effect grain softness. Elucidation of the molecular basis for grain hardness opens the way to understanding and eventually manipulating this wheat endosperm property. PMID:9600953

  14. Functional and DNA-protein binding studies of WRKY transcription factors and their expression analysis in response to biotic and abiotic stress in wheat (Triticum aestivum L.).

    PubMed

    Satapathy, Lopamudra; Kumar, Dhananjay; Kumar, Manish; Mukhopadhyay, Kunal

    2018-01-01

    WRKY, a plant-specific transcription factor family, plays vital roles in pathogen defense, abiotic stress, and phytohormone signalling. Little is known about the roles and function of WRKY transcription factors in response to rust diseases in wheat. In the present study, three TaWRKY genes encoding complete protein sequences were cloned. They belonged to class II and III WRKY based on the number of WRKY domains and the pattern of zinc finger structures. Twenty-two DNA-protein binding docking complexes predicted stable interactions of WRKY domain with W-box. Quantitative real-time-PCR using wheat near-isogenic lines with or without Lr28 gene revealed differential up- or down-regulation in response to biotic and abiotic stress treatments which could be responsible for their functional divergence in wheat. TaWRKY62 was found to be induced upon treatment with JA, MJ, and SA and reduced after ABA treatments. Maximum induction of six out of seven genes occurred at 48 h post inoculation due to pathogen inoculation. Hence, TaWRKY (49, 50 , 52 , 55 , 57, and 62 ) can be considered as potential candidate genes for further functional validation as well as for crop improvement programs for stress resistance. The results of the present study will enhance knowledge towards understanding the molecular basis of mode of action of WRKY transcription factor genes in wheat and their role during leaf rust pathogenesis in particular.

  15. Effective Identification of Low-Gliadin Wheat Lines by Near Infrared Spectroscopy (NIRS): Implications for the Development and Analysis of Foodstuffs Suitable for Celiac Patients.

    PubMed

    García-Molina, María Dolores; García-Olmo, Juan; Barro, Francisco

    2016-01-01

    The aim of this work was to assess the ability of Near Infrared Spectroscopy (NIRS) to distinguish wheat lines with low gliadin content, obtained by RNA interference (RNAi), from non-transgenic wheat lines. The discriminant analysis was performed using both whole grain and flour. The transgenic sample set included 409 samples for whole grain sorting and 414 samples for flour experiments, while the non-transgenic set consisted of 126 and 156 samples for whole grain and flour, respectively. Samples were scanned using a Foss-NIR Systems 6500 System II instrument. Discrimination models were developed using the entire spectral range (400-2500 nm) and ranges of 400-780 nm, 800-1098 nm and 1100-2500 nm, followed by analysis of means of partial least square (PLS). Two external validations were made, using samples from the years 2013 and 2014 and a minimum of 99% of the flour samples and 96% of the whole grain samples were classified correctly. The results demonstrate the ability of NIRS to successfully discriminate between wheat samples with low-gliadin content and wild types. These findings are important for the development and analysis of foodstuff for celiac disease (CD) patients to achieve better dietary composition and a reduction in disease incidence.

  16. Improvement of a headspace solid phase microextraction-gas chromatography/mass spectrometry method for the analysis of wheat bread volatile compounds.

    PubMed

    Raffo, Antonio; Carcea, Marina; Castagna, Claudia; Magrì, Andrea

    2015-08-07

    An improved method based on headspace solid phase microextraction combined with gas chromatography-mass spectrometry (HS-SPME/GC-MS) was proposed for the semi-quantitative determination of wheat bread volatile compounds isolated from both whole slice and crust samples. A DVB/CAR/PDMS fibre was used to extract volatiles from the headspace of a bread powdered sample dispersed in a sodium chloride (20%) aqueous solution and kept for 60min at 50°C under controlled stirring. Thirty-nine out of all the extracted volatiles were fully identified, whereas for 95 other volatiles a tentative identification was proposed, to give a complete as possible profile of wheat bread volatile compounds. The use of an array of ten structurally and physicochemically similar internal standards allowed to markedly improve method precision with respect to previous HS-SPME/GC-MS methods for bread volatiles. Good linearity of the method was verified for a selection of volatiles from several chemical groups by calibration with matrix-matched extraction solutions. This simple, rapid, precise and sensitive method could represent a valuable tool to obtain semi-quantitative information when investigating the influence of technological factors on volatiles formation in wheat bread and other bakery products. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Extraction of High Molecular Weight DNA from Fungal Rust Spores for Long Read Sequencing.

    PubMed

    Schwessinger, Benjamin; Rathjen, John P

    2017-01-01

    Wheat rust fungi are complex organisms with a complete life cycle that involves two different host plants and five different spore types. During the asexual infection cycle on wheat, rusts produce massive amounts of dikaryotic urediniospores. These spores are dikaryotic (two nuclei) with each nucleus containing one haploid genome. This dikaryotic state is likely to contribute to their evolutionary success, making them some of the major wheat pathogens globally. Despite this, most published wheat rust genomes are highly fragmented and contain very little haplotype-specific sequence information. Current long-read sequencing technologies hold great promise to provide more contiguous and haplotype-phased genome assemblies. Long reads are able to span repetitive regions and phase structural differences between the haplomes. This increased genome resolution enables the identification of complex loci and the study of genome evolution beyond simple nucleotide polymorphisms. Long-read technologies require pure high molecular weight DNA as an input for sequencing. Here, we describe a DNA extraction protocol for rust spores that yields pure double-stranded DNA molecules with molecular weight of >50 kilo-base pairs (kbp). The isolated DNA is of sufficient purity for PacBio long-read sequencing, but may require additional purification for other sequencing technologies such as Nanopore and 10× Genomics.

  18. Genetics of resistance to Zymoseptoria tritici and applications to wheat breeding.

    PubMed

    Brown, James K M; Chartrain, Laëtitia; Lasserre-Zuber, Pauline; Saintenac, Cyrille

    2015-06-01

    This paper reviews current knowledge about genes for resistance to Septoria tritici blotch (STB) of wheat, caused by Zymoseptoria tritici (formerly Mycosphaerella graminicola). These genes can be placed into two classes, although a few may have characteristics of both classes. Qualitative resistance is controlled by genes which control large fractions of genetic variation, 21 of which have been discovered and mapped so far. Most of them have been shown to be genotype-specific, being effective against the minority of Z. tritici isolates which are avirulent, and Stb6 has been shown to control a gene-for-gene relationship. Most qualitative resistances are unlikely to be durable and some formerly effective genes have been overcome by the evolution of pathogen virulence. Quantitative resistance is generally controlled by genes with small-to-moderate effects on STB. They have generally weaker specificity than qualitative genes and have provided more durable resistance. 89 genome regions carrying quantitative trait loci (QTL) or meta-QTL have been identified to date. Some QTL have been mapped at or near loci of qualitative genes, especially Stb6, which is present in several sources of resistance. Another gene of particular interest is Stb16q, which has been effective against all Z. tritici isolates tested so far. In addition to resistance, the susceptibility of wheat cultivars to STB can also be reduced by disease escape traits, some of which may be undesirable in breeding. The fundamental requirements for breeding for STB-resistance are genetic diversity for resistance in wheat germplasm and a field trial site at which STB epidemics occur regularly and effective selection can be conducted for resistance combined with other desirable traits. If these are in place, knowledge of resistance genes can be applied to improving control of STB. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  19. Identification and validation of single nucleotide polymorphic markers linked to Ug99 stem rust resistance in spring wheat

    PubMed Central

    Chao, Shiaoman; Singh, Ravi P.; Sorrells, Mark E.

    2017-01-01

    Wheat stem rust (Puccinia graminis f. sp. tritici Eriks. and E. Henn.) is one of the most destructive diseases world-wide. Races belonging to Ug99 (or TTKSK) continue to cause crop losses in East Africa and threaten global wheat production. Developing and deploying wheat varieties with multiple race-specific genes or complex adult plant resistance is necessary to achieve durability. In the present study, we applied genome-wide association studies (GWAS) for identifying loci associated with the Ug99 stem rust resistance (SR) in a panel of wheat lines developed at the International Maize and Wheat Improvement Center (CIMMYT). Genotyping was carried out using the wheat 9K iSelect single nucleotide polymorphism (SNP) chip. Phenotyping was done in the field in Kenya by infection of Puccinia graminis f. sp. tritici race TTKST, the Sr24-virulent variant of Ug99. Marker-trait association identified 12 SNP markers significantly associated with resistance. Among them, 7 were mapped on five chromosomes. Markers located on chromosomes 4A and 4B overlapped with the location of the Ug99 resistance genes SrND643 and Sr37, respectively. Markers identified on 7DL were collocated with Sr25. Additional significant markers were located in the regions where no Sr gene has been reported. The chromosome location for five of the SNP markers was unknown. A BLASTN search of the NCBI database using the flanking sequences of the SNPs associated with Ug99 resistance revealed that several markers were linked to plant disease resistance analogues, while others were linked to regulatory factors or metabolic enzymes. A KASP (Kompetitive Allele Specific PCR) assay was used for validating six marker loci linked to genes with resistance to Ug99. Of those, four co-segregated with the Sr25-pathotypes while the rest identified unknown resistance genes. With further investigation, these markers can be used for marker-assisted selection in breeding for Ug99 stem rust resistance in wheat. PMID:28241006

  20. Rapid analysis and quantification of fluorescent brighteners in wheat flour by Tri-step infrared spectroscopy and computer vision technology

    NASA Astrophysics Data System (ADS)

    Guo, Xiao-Xi; Hu, Wei; Liu, Yuan; Gu, Dong-Chen; Sun, Su-Qin; Xu, Chang-Hua; Wang, Xi-Chang

    2015-11-01

    Fluorescent brightener, industrial whitening agent, has been illegally used to whitening wheat flour. In this article, computer vision technology (E-eyes) and colorimetry were employed to investigate color difference among different concentrations of fluorescent brightener in wheat flour using DMS as an example. Tri-step infrared spectroscopy (Fourier transform-infrared spectroscopy coupled with second derivative infrared spectroscopy (SD-IR) and two dimensional correlation infrared spectroscopy (2DCOS-IR)) was used to identify and quantitate DMS in wheat flour. According to color analysis, the whitening effect was significant when added with less than 30 mg/g DMS but when more than 100 mg/g, the flour began greenish. Thus it was speculated that the concentration of DMS should be below 100 mg/g in real flour adulterant with DMS. With the increase of the concentration, the spectral similarity of wheat flour with DMS to DMS standard was increasing. SD-IR peaks at 1153 cm-1, 1141 cm-1, 1112 cm-1, 1085 cm-1 and 1025 cm-1 attributed to DMS were regularly enhanced. Furthermore, it could be differentiated by 2DOS-IR between DMS standard and wheat flour added with DMS low to 0.05 mg/g and the bands in the range of 1000-1500 cm-1 could be an exclusive range to identify whether wheat flour contained DMS. Finally, a quantitative prediction model based on IR spectra was established successfully by Partial least squares (PLS) with a concentration range from 1 mg/g to 100 mg/g. The calibration set gave a determination coefficient of 0.9884 with a standard error (RMSEC) of 5.56 and the validation set presented a determination coefficient of 0.9881 with a standard error of 5.73. It was demonstrated that computer vision technology and colorimetry were effective to estimate the content of DMS in wheat flour and the Tri-step infrared macro-fingerprinting combined with PLS was applicable for rapid and nondestructive fluorescent brightener identification and quantitation.

  1. How much does transgenesis affect wheat allergenicity?: Assessment in two GM lines over-expressing endogenous genes.

    PubMed

    Lupi, R; Denery-Papini, S; Rogniaux, H; Lafiandra, D; Rizzi, C; De Carli, M; Moneret-Vautrin, D A; Masci, S; Larré, C

    2013-03-27

    Wheat kernel albumins/globulins (A/G) and gluten proteins are responsible for baker's asthma and food allergy in atopic subjects. Although no commercial genetically modified wheats are currently being grown, they are under study and the allergenicity of GM products is a major concern. In order to establish the expected and unexpected effects of genetic transformation on allergenicity and also to carry out a safety assessment of genetic transformation, two GM wheat lines (bread and pasta wheat) transformed with endogenous genes were compared to their untransformed counterparts (wt), first by an allergenomic approach, and second, using ELISA with sera from patients suffering from food allergy to wheat and baker's asthma. The 2D immunoblots performed on sera from patients suffering from food allergy and baker's asthma on the A/G fraction of the four lines (two GM and two wt) revealed comparable IgE-binding profiles. A total of 109 IgE-binding spots were analyzed by mass spectrometry, and most of the proteins identified had already been described as allergens or potential allergens. Only two IgE-binding proteins were specific to one GM line. The concentration of specific IgE against the A/G fractions of GM wheat lines and their wt genotypes differed for some sera. The originality of our paper is to relate the transformation of wheat lines with their potential allergenicity using patient sera, such focus has never been done before in wheat and should be of interest to the researches working in this field. Another interesting point of this paper is the study of two types of allergies (respiratory and food) on two wheat genotypes and their GM which reveals that some allergens already known in respiratory allergy could be involved in children suffering from wheat food allergy. In this paper we used a classical 2D proteomic analysis and the protein identifications were performed by mass spectrometry after spot picking and in gel trypsin hydrolysis. Concerning the LC-MS/MS analyses classical software and parameters were used as described in Material and methods. We worked on wheat which is actually not fully sequenced that was a difficulty; we therefore searched against two databanks (proteins and ESTs) in order to compare the results. Moreover all proteins reported in our paper were identified with at least three unique peptides. The identified proteins were checked for their potential allergenicity. In order to have a best interpretation of protein identified in terms of potential allergens, BLAST alignments were performed by using an allergen databank (SDAP). This allows the determination of the cross-reactivity of these identified proteins with known allergens of other species and also the prediction of a potential allergenicity. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Identification of ABC Transporter Genes of Fusarium graminearum with Roles in Azole Tolerance and/or Virulence

    PubMed Central

    Döll, Katharina; Karlovsky, Petr; Deising, Holger B.; Wirsel, Stefan G. R.

    2013-01-01

    Fusarium graminearum is a plant pathogen infecting several important cereals, resulting in substantial yield losses and mycotoxin contamination of the grain. Triazole fungicides are used to control diseases caused by this fungus on a worldwide scale. Our previous microarray study indicated that 15 ABC transporter genes were transcriptionally upregulated in response to tebuconazole treatment. Here, we deleted four ABC transporter genes in two genetic backgrounds of F. graminearum representing the DON (deoxynivalenol) and the NIV (nivalenol) trichothecene chemotypes. Deletion of FgABC3 and FgABC4 belonging to group I of ABC-G and to group V of ABC-C subfamilies of ABC transporters, respectively, considerably increased the sensitivity to the class I sterol biosynthesis inhibitors triazoles and fenarimol. Such effects were specific since they did not occur with any other fungicide class tested. Assessing the contribution of the four ABC transporters to virulence of F. graminearum revealed that, irrespective of their chemotypes, deletion mutants of FgABC1 (ABC-C subfamily group V) and FgABC3 were impeded in virulence on wheat, barley and maize. Phylogenetic context and analyses of mycotoxin production suggests that FgABC3 may encode a transporter protecting the fungus from host-derived antifungal molecules. In contrast, FgABC1 may encode a transporter responsible for the secretion of fungal secondary metabolites alleviating defence of the host. Our results show that ABC transporters play important and diverse roles in both fungicide resistance and pathogenesis of F. graminearum. PMID:24244413

  3. Secretome Analysis Identifies Potential Pathogenicity/Virulence Factors of Tilletia indica, a Quarantined Fungal Pathogen Inciting Karnal Bunt Disease in Wheat.

    PubMed

    Pandey, Vishakha; Singh, Manoj; Pandey, Dinesh; Marla, Soma; Kumar, Anil

    2018-04-01

    Tilletia indica is a smut fungus that incites Karnal bunt in wheat. It has been considered as quarantine pest in more than 70 countries. Despite its quarantine significance, there is meager knowledge regarding the molecular mechanisms of disease pathogenesis. Moreover, various disease management strategies have proven futile. Development of effective disease management strategy requires identification of pathogenicity/virulence factors. With this aim, the present study was conducted to compare the secretomes of T. indica isolates, that is, highly (TiK) and low (TiP) virulent isolates. About 120 and 95 protein spots were detected reproducibly in TiK and TiP secretome gel images. Nineteen protein spots, which were consistently observed as upregulated/differential in the secretome of TiK isolate, were selected for their identification by MALDI-TOF/TOF. Identified proteins exhibited homology with fungal proteins playing important role in fungal adhesion, penetration, invasion, protection against host-derived reactive oxygen species, production of virulence factors, cellular signaling, and degradation of host cell wall proteins and antifungal proteins. These results were complemented with T. indica genome sequence leading to identification of candidate pathogenicity/virulence factors homologs that were further subjected to sequence- and structure-based functional annotation. Thus, present study reports the first comparative secretome analysis of T. indica for identification of pathogenicity/virulence factors. This would provide insights into pathogenic mechanisms of T. indica and aid in devising effective disease management strategies. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Identification and Development of Simple Acceptance Tests for MRE Film Pouch Materials

    DTIC Science & Technology

    2006-01-26

    retort applications, such as wheat snack bread, shortbread cookies, and beef jerky. Film #2 (48 GA PET/10#PE/.00035F/2 mil sealant) was chosen as the...for polymers) is the melt flow direction and its relation to the direction of the scratch test. It is known that, when polymers are molded or extruded

  5. Is Sambo Dead? Exaggerated Reports on the Demise of a Stereotype.

    ERIC Educational Resources Information Center

    Boskin, Joseph

    This paper provides a brief survey of white racial attitudes as depicted in the various facets of the mass media such as cartoons, movies, advertisements and television and in product identification symbols such as Aunt Jemima's pancake mix and Cream of Wheat. The paper indicates that negative stereotypes that depict blacks as minstrels, cooks,…

  6. It's All Wheat to Me

    ERIC Educational Resources Information Center

    Wegner, Claas; Weber, Phillip; Ohlberger, Stephanie

    2015-01-01

    In this article, Claas Wegner, Phillip Weber, and Stephanie Ohlberger share how they have been teaching about variation and staple food crops in the teaching unit they tested with 8- to 10-year-old children. They started by showing some products made from crop plants and asking the class to carry out a simple comparison of similarities and…

  7. Gender, social class, and women's employment.

    PubMed

    McGinn, Kathleen L; Oh, Eunsil

    2017-12-01

    People in low-power positions, whether due to gender or class, tend to exhibit other-oriented rather than self-oriented behavior. Women's experiences at work and at home are shaped by social class, heightening identification with gender for relatively upper class women and identification with class for relatively lower class women, potentially mitigating, or even reversing, class-based differences documented in past research. Gender-class differences are reflected in women's employment beliefs and behaviors. Research integrating social class with gendered experiences in homes and workplaces deepens our understanding of the complex interplay between sources of power and status in society. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Characterization of Resistance to Cephus cinctus (Hymenoptera: Cephidae) in Barley Germplasm.

    PubMed

    Varella, Andrea C; Talbert, Luther E; Achhami, Buddhi B; Blake, Nancy K; Hofland, Megan L; Sherman, Jamie D; Lamb, Peggy F; Reddy, Gadi V P; Weaver, David K

    2018-04-02

    Most barley cultivars have some degree of resistance to the wheat stem sawfly (WSS), Cephus cinctus Norton (Hymenoptera: Cephidae). Damage caused by WSS is currently observed in fields of barley grown in the Northern Great Plains, but the impact of WSS damage among cultivars due to genetic differences within the barley germplasm is not known. Specifically, little is known about the mechanisms underlying WSS resistance in barley. We characterized WSS resistance in a subset of the spring barley CAP (Coordinated Agricultural Project) germplasm panel containing 193 current and historically important breeding lines from six North American breeding programs. Panel lines were grown in WSS infested fields for two consecutive years. Lines were characterized for stem solidness, stem cutting, WSS infestation (antixenosis), larval mortality (antibiosis), and parasitism (indirect plant defense). Variation in resistance to WSS in barley was compared to observations made for solid-stemmed resistant and hollow-stemmed susceptible wheat lines. Results indicate that both antibiosis and antixenosis are involved in the resistance of barley to the WSS, but antibiosis seems to be more prevalent. Almost all of the barley lines had greater larval mortality than the hollow-stemmed wheat lines, and only a few barley lines had mortality as low as that observed in the solid-stemmed wheat line. Since barley lines lack solid stems, it is apparent that barley has a different form of antibiosis. Our results provide information for use of barley in rotation to control the WSS and may provide a basis for identification of new approaches for improving WSS resistance in wheat.

  9. Identification of interacting proteins of the TaFVE protein involved in spike development in bread wheat.

    PubMed

    Zheng, Yong-Sheng; Lu, Yu-Qing; Meng, Ying-Ying; Zhang, Rong-Zhi; Zhang, Han; Sun, Jia-Mei; Wang, Mu-Mu; Li, Li-Hui; Li, Ru-Yu

    2017-05-01

    WD-40 repeat-containing protein MSI4 (FVE)/MSI4 plays important roles in determining flowering time in Arabidopsis. However, its function is unexplored in wheat. In the present study, coimmunoprecipitation and nanoscale liquid chromatography coupled to MS/MS were used to identify FVE in wheat (TaFVE)-interacting or associated proteins. Altogether 89 differentially expressed proteins showed the same downregulated expression trends as TaFVE in wheat line 5660M. Among them, 62 proteins were further predicted to be involved in the interaction network of TaFVE and 11 proteins have been shown to be potential TaFVE interactors based on curated databases and experimentally determined in other species by the STRING. Both yeast two-hybrid assay and bimolecular fluorescence complementation assay showed that histone deacetylase 6 and histone deacetylase 15 directly interacted with TaFVE. Multiple chromatin-remodelling proteins and polycomb group proteins were also identified and predicted to interact with TaFVE. These results showed that TaFVE directly interacted with multiple proteins to form multiple complexes to regulate spike developmental process, e.g. histone deacetylate, chromatin-remodelling and polycomb repressive complex 2 complexes. In addition, multiple flower development regulation factors (e.g. flowering locus K homology domain, flowering time control protein FPA, FY, flowering time control protein FCA, APETALA 1) involved in floral transition were also identified in the present study. Taken together, these results further elucidate the regulatory functions of TaFVE and help reveal the genetic mechanisms underlying wheat spike differentiation. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Identification and Analysis of RNA Editing Sites in the Chloroplast Transcripts of Aegilops tauschii L.

    PubMed Central

    Wang, Mengxing; Liu, Hui; Ge, Lingqiao; Xing, Guangwei; Wang, Meng; Weining, Song; Nie, Xiaojun

    2016-01-01

    RNA editing is an important way to convert cytidine (C) to uridine (U) at specific sites within RNA molecules at a post-transcriptional level in the chloroplasts of higher plants. Although it has been systematically studied in many plants, little is known about RNA editing in the wheat D genome donor Aegilops tauschii L. Here, we investigated the chloroplast RNA editing of Ae. tauschii and compared it with other wheat relatives to trace the evolution of wheat. Through bioinformatics prediction, a total of 34 C-to-U editing sites were identified, 17 of which were validated using RT-PCR product sequencing. Furthermore, 60 sites were found by the RNA-Seq read mapping approach, 24 of which agreed with the prediction and six were validated experimentally. The editing sites were biased toward tCn or nCa trinucleotides and 5′-pyrimidines, which were consistent with the flanking bases of editing sites of other seed plants. Furthermore, the editing events could result in the alteration of the secondary structures and topologies of the corresponding proteins, suggesting that RNA editing might impact the function of target genes. Finally, comparative analysis found some evolutionarily conserved editing sites in wheat and two species-specific sites were also obtained. This study is the first to report on RNA editing in Aegilops tauschii L, which not only sheds light on the evolution of wheat from the point of view of RNA editing, but also lays a foundation for further studies to identify the mechanisms of C-to-U alterations. PMID:28042823

  11. Agronomic Traits and Molecular Marker Identification of Wheat–Aegilops caudata Addition Lines

    PubMed Central

    Gong, Wenping; Han, Ran; Li, Haosheng; Song, Jianmin; Yan, Hongfei; Li, Genying; Liu, Aifeng; Cao, Xinyou; Guo, Jun; Zhai, Shengnan; Cheng, Dungong; Zhao, Zhendong; Liu, Cheng; Liu, Jianjun

    2017-01-01

    Aegilops caudata is an important gene source for wheat breeding. Intensive evaluation of its utilization value is an essential first step prior to its application in breeding. In this research, the agronomical and quality traits of Triticum aestivum-Ae. caudata additions B–G (homoeologous groups not identified) were analyzed and evaluated. Disease resistance tests showed that chromosome D of Ae. caudata might possess leaf rust resistance, and chromosome E might carry stem rust and powdery mildew resistance genes. Investigations into agronomical traits suggested that the introduction of the Ae. caudata chromosome in addition line F could reduce plant height. Grain quality tests showed that the introduction of chromosomes E or F into wheat could increase its protein and wet gluten content. Therefore, wheat-Ae. caudata additions D–F are all potentially useful candidates for chromosome engineering activities to create useful wheat-alien chromosome introgressions. A total of 55 EST-based molecular markers were developed and then used to identify the chromosome homoeologous group of each of the Ae. caudata B–G chromosomes. Marker analysis indicated that the Ae. caudata chromosomes in addition lines B to G were structurally altered, therefore, a large population combined with intensive screening pressure should be taken into consideration when inducing and screening for wheat-Ae. caudata compensating translocations. Marker data also indicated that the Ae. caudata chromosomes in addition lines C–F were 5C, 6C, 7C, and 3C, respectively, while the homoeologous group of chromosomes B and G of Ae. caudata are as yet undetermined and need further research. PMID:29075275

  12. Genetic Architecture of Resistance to Stripe Rust in a Global Winter Wheat Germplasm Collection

    PubMed Central

    Bulli, Peter; Zhang, Junli; Chao, Shiaoman; Chen, Xianming; Pumphrey, Michael

    2016-01-01

    Virulence shifts in populations of Puccinia striiformis f. sp. tritici (Pst), the causal pathogen of wheat stripe rust, are a major challenge to resistance breeding. The majority of known resistance genes are already ineffective against current races of Pst, necessitating the identification and introgression of new sources of resistance. Germplasm core collections that reflect the range of genetic and phenotypic diversity of crop species are ideal platforms for examining the genetic architecture of complex traits such as resistance to stripe rust. We report the results of genetic characterization and genome-wide association analysis (GWAS) for resistance to stripe rust in a core subset of 1175 accessions in the National Small Grains Collection (NSGC) winter wheat germplasm collection, based on genotyping with the wheat 9K single nucleotide polymorphism (SNP) iSelect assay and phenotyping of seedling and adult plants under natural disease epidemics in four environments. High correlations among the field data translated into high heritability values within and across locations. Population structure was evident when accessions were grouped by stripe rust reaction. GWAS identified 127 resistance loci that were effective across at least two environments, including 20 with significant genome-wide adjusted P-values. Based on relative map positions of previously reported genes and QTL, five of the QTL with significant genome-wide adjusted P-values in this study represent potentially new loci. This study provides an overview of the diversity of Pst resistance in the NSGC winter wheat germplasm core collection, which can be exploited for diversification of stripe rust resistance in breeding programs. PMID:27226168

  13. Genetic Architecture of Resistance to Stripe Rust in a Global Winter Wheat Germplasm Collection.

    PubMed

    Bulli, Peter; Zhang, Junli; Chao, Shiaoman; Chen, Xianming; Pumphrey, Michael

    2016-08-09

    Virulence shifts in populations of Puccinia striiformis f. sp. tritici (Pst), the causal pathogen of wheat stripe rust, are a major challenge to resistance breeding. The majority of known resistance genes are already ineffective against current races of Pst, necessitating the identification and introgression of new sources of resistance. Germplasm core collections that reflect the range of genetic and phenotypic diversity of crop species are ideal platforms for examining the genetic architecture of complex traits such as resistance to stripe rust. We report the results of genetic characterization and genome-wide association analysis (GWAS) for resistance to stripe rust in a core subset of 1175 accessions in the National Small Grains Collection (NSGC) winter wheat germplasm collection, based on genotyping with the wheat 9K single nucleotide polymorphism (SNP) iSelect assay and phenotyping of seedling and adult plants under natural disease epidemics in four environments. High correlations among the field data translated into high heritability values within and across locations. Population structure was evident when accessions were grouped by stripe rust reaction. GWAS identified 127 resistance loci that were effective across at least two environments, including 20 with significant genome-wide adjusted P-values. Based on relative map positions of previously reported genes and QTL, five of the QTL with significant genome-wide adjusted P-values in this study represent potentially new loci. This study provides an overview of the diversity of Pst resistance in the NSGC winter wheat germplasm core collection, which can be exploited for diversification of stripe rust resistance in breeding programs. Copyright © 2016 Bulli et al.

  14. Differential gene expression of wheat progeny with contrasting levels of transpiration efficiency.

    PubMed

    Xue, Gang-Ping; McIntyre, C Lynne; Chapman, Scott; Bower, Neil I; Way, Heather; Reverter, Antonio; Clarke, Bryan; Shorter, Ray

    2006-08-01

    High water use efficiency or transpiration efficiency (TE) in wheat is a desirable physiological trait for increasing grain yield under water-limited environments. The identification of genes associated with this trait would facilitate the selection for genotypes with higher TE using molecular markers. We performed an expression profiling (microarray) analysis of approximately 16,000 unique wheat ESTs to identify genes that were differentially expressed between wheat progeny lines with contrasting TE levels from a cross between Quarrion (high TE) and Genaro 81 (low TE). We also conducted a second microarray analysis to identify genes responsive to drought stress in wheat leaves. Ninety-three genes that were differentially expressed between high and low TE progeny lines were identified. One fifth of these genes were markedly responsive to drought stress. Several potential growth-related regulatory genes, which were down-regulated by drought, were expressed at a higher level in the high TE lines than the low TE lines and are potentially associated with a biomass production component of the Quarrion-derived high TE trait. Eighteen of the TE differentially expressed genes were further analysed using quantitative RT-PCR on a separate set of plant samples from those used for microarray analysis. The expression levels of 11 of the 18 genes were positively correlated with the high TE trait, measured as carbon isotope discrimination (Delta(13)C). These data indicate that some of these TE differentially expressed genes are candidates for investigating processes that underlie the high TE trait or for use as expression quantitative trait loci (eQTLs) for TE.

  15. Fusarium culmorum: causal agent of foot and root rot and head blight on wheat.

    PubMed

    Scherm, Barbara; Balmas, Virgilio; Spanu, Francesca; Pani, Giovanna; Delogu, Giovanna; Pasquali, Matias; Migheli, Quirico

    2013-05-01

    Fusarium culmorum is a ubiquitous soil-borne fungus able to cause foot and root rot and Fusarium head blight on different small-grain cereals, in particular wheat and barley. It causes significant yield and quality losses and results in contamination of the grain with mycotoxins. This review summarizes recent research activities related to F. culmorum, including studies into its population diversity, mycotoxin biosynthesis, mechanisms of pathogenesis and resistance, the development of diagnostic tools and preliminary genome sequence surveys. We also propose potential research areas that may expand our basic understanding of the wheat-F. culmorum interaction and assist in the management of the disease caused by this pathogen. Fusarium culmorum (W.G. Smith) Sacc. Kingdom Fungi; Phylum Ascomycota; Subphylum Pezizomycotina; Class Sordariomycetes; Subclass Hypocreomycetidae; Order Hypocreales; Family Nectriaceae; Genus Fusarium. Foot and root rot (also known as Fusarium crown rot): seedling blight with death of the plant before or after emergence; brown discoloration on roots and coleoptiles of the infected seedlings; brown discoloration on subcrown internodes and on the first two/three internodes of the main stem; tiller abortion; formation of whiteheads with shrivelled white grains; Fusarium head blight: prematurely bleached spikelets or blighting of the entire head, which remains empty or contains shrunken dark kernels. IDENTIFICATION AND DETECTION: Morphological identification is based on the shape of the macroconidia formed on sporodochia on carnation leaf agar. The conidiophores are branched monophialides, short and wide. The macroconidia are relatively short and stout with an apical cell blunt or slightly papillate; the basal cell is foot-shaped or just notched. Macroconidia are thick-walled and curved, usually 3-5 septate, and mostly measuring 30-50 × 5.0-7.5 μm. Microconidia are absent. Oval to globose chlamydospores are formed, intercalary in the hyphae, solitary, in chains or in clumps; they are also formed from macroconidia. The colony grows very rapidly (1.6-2.2 cm/day) on potato dextrose agar (PDA) at the optimum temperature of 25 °C. The mycelium on PDA is floccose, whitish, light yellow or red. The pigment on the reverse plate on PDA varies from greyish-rose, carmine red or burgundy. A wide array of polymerase chain reaction (PCR) and real-time PCR tools, as well as complementary methods, which are summarised in the first two tables, have been developed for the detection and/or quantification of F. culmorum in culture and in naturally infected plant tissue. Fusarium culmorum has a wide range of host plants, mainly cereals, such as wheat, barley, oats, rye, corn, sorghum and various grasses. In addition, it has been isolated from sugar beet, flax, carnation, bean, pea, asparagus, red clover, hop, leeks, Norway spruce, strawberry and potato tuber. Fusarium culmorum has also been associated with dermatitis on marram grass planters in the Netherlands, although its role as a causal agent of skin lesions appears questionable. It is also isolated as a symbiont able to confer resistance to abiotic stress, and has been proposed as a potential biocontrol agent to control the aquatic weed Hydrilla spp. http://isolate.fusariumdb.org/; http://sppadbase.ipp.cnr.it/; http://www.broad.mit.edu/annotation/genome/fusarium_group/MultiHome.html; http://www.fgsc.net/Fusarium/fushome.htm; http://plantpath.psu.edu/facilities/fusarium-research-center; http://www.phi-base.org/; http://www.uniprot.org/; http://www.cabi.org/; http://www.indexfungorum.org/ © 2012 BSPP AND BLACKWELL PUBLISHING LTD.

  16. Crop identification and area estimation over large geographic areas using LANDSAT MSS data

    NASA Technical Reports Server (NTRS)

    Bauer, M. E. (Principal Investigator)

    1977-01-01

    The author has identified the following significant results. LANDSAT MSS data was adequate to accurately identify wheat in Kansas; corn and soybean estimates in Indiana were less accurate. Computer-aided analysis techniques were effectively used to extract crop identification information from LANDSAT data. Systematic sampling of entire counties made possible by computer classification methods resulted in very precise area estimates at county, district, and state levels. Training statistics were successfully extended from one county to other counties having similar crops and soils if the training areas sampled the total variation of the area to be classified.

  17. Short-term storage evaluation of quality and antioxidant capacity in chestnut-wheat bread.

    PubMed

    Rinaldi, Massimiliano; Paciulli, Maria; Dall'Asta, Chiara; Cirlini, Martina; Chiavaro, Emma

    2015-01-01

    Bread traditionally made from wheat is now often supplemented with alternative functional ingredients as chestnut flours; no data have been previously published about the staling of chestnut-containing bread. Thus short-term storage (3 days) for chestnut flour-supplemented soft wheat bread is evaluated by means of selected physicochemical properties (i.e. water dynamics, texture, colour, crumb grain characteristic, total antioxidant capacity). Bread prepared with a 20:80 ratio of chestnut:soft wheat flours maintained its moisture content in both crust and crumb. Crumb hardness, after baking, was found to be significantly higher than that of the soft wheat bread; it did not change during storage, whereas it significantly increased in the control bread until the end of the shelf life. The supplemented bread presented a heterogeneous crumb structure, with a significant decrease in the largest pores during shelf life, relative to the shrinkage of crumb grain. The control exhibited a significant redistribution of crumb holes, with a decrease in the smallest grain classes and an increase in the intermediate ones, most likely caused by cell wall thickening. The colour of the crumb remained unaltered in both breads. The crust of the control presented a significant decrease of a* (redness) and that of the supplemented bread exhibited a decrease of b* (yellowness). The antioxidant capacity was detected after day 1 of storage in the chestnut flour bread only. Chestnut flour supplementation could represent a feasible way of producing bread with improved characteristics, not only just after baking but also during shelf life. © 2014 Society of Chemical Industry.

  18. Identification of a Class of Filtered Poisson Processes.

    DTIC Science & Technology

    1981-01-01

    LD-A135 371 IDENTIFICATION OF A CLASS OF FILERED POISSON PROCESSES I AU) NORTH CAROLINA UNIV AT CHAPEL HIL DEPT 0F STATISTICS D DE RRUC ET AL 1981...STNO&IO$ !tt ~ 4.s " . , ".7" -L N ~ TITLE :IDENTIFICATION OF A CLASS OF FILTERED POISSON PROCESSES Authors : DE BRUCQ Denis - GUALTIEROTTI Antonio...filtered Poisson processes is intro- duced : the amplitude has a law which is spherically invariant and the filter is real, linear and causal. It is shown

  19. The fatty acid profile in different wheat cultivars depending on the level of contamination with microscopic fungi.

    PubMed

    Stuper-Szablewska, Kinga; Buśko, Maciej; Góral, Tomasz; Perkowski, Juliusz

    2014-06-15

    Analyses were conducted on 30 winter wheat samples growing under controlled conditions and following inoculation with fungi Fusarium culmorum. In inoculated samples the mean concentration of 30 analysed fatty acids was significantly higher in relation to the control and amounted to 1,396 mg/kg vs. 1,046 mg/kg in the control kernels. Recorded concentrations for individual cultivars were significantly correlated with the concentration of fungal biomass. Higher concentration in the control was recorded only for the acid trans C18:2n-6. It was also found that the acid profiles are characteristic of individual cultivars. Statistical analysis showed that trans C18:2n-6, C18:1, C18:3n-3 and C18:3n-6 were the acids with the greatest discriminatory power in distinguishing inoculated samples from the control. Discriminatory analysis separated individual cultivars into quality classes of winter wheat cultivars depending on the presence of a specific fatty acid profile. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Two new species of Paurodontella Husain and Khan, 1968 (Nematoda: Sphaerulariidae) associated with wheat and a diagnostic compendium to the genus

    USDA-ARS?s Scientific Manuscript database

    An identification key to 10 valid species of Paurodontella is given. A compendium of the most important diagnostic characters with illustrations of each species is included as a practical alternative and supplement to the key. The diagnosis of Paurodontella is emended and a list of all valid specie...

  1. Plant growth promotion properties of bacterial strains isolated from the rhizosphere of the Jerusalem artichoke (Helianthus tuberosus L.) adapted to saline-alkaline soils and their effect on wheat growth.

    PubMed

    Liu, Xiaolin; Li, Xiangyue; Li, Yan; Li, Runzhi; Xie, Zhihong

    2017-03-01

    The Jerusalem artichoke (JA; Helianthus tuberosus), known to be tolerant to saline-alkaline soil conditions, has been cultivated for many years in the Yellow River delta, Shandong Province coastal zone, in China. The aim of our study was to isolate nitrogen-fixing bacteria colonizing the rhizosphere of JA and to characterize other plant growth promotion properties. The ultimate goal was to identify isolates that could be used as inoculants benefiting an economic crop, in particular for improving wheat growth production in the Yellow River delta. Bacterial strains were isolated from the rhizosphere soil of JA on the basis of growth on nitrogen-free Ashby medium. Identification and phylogenetic analysis was performed after nucleotide sequencing of 16S rRNA gene. Plant-growth-promoting traits, such as nitrogen fixation activity, phosphate solubilization activity, indole-3-acetic acid production, were determined using conventional methods. Eleven strains were isolated and 6 of them were further examined for their level of salt tolerance and their effect on plant growth promotion. Inoculation of Enterobacter sp. strain N10 on JA and wheat led to significant increases in both root and shoot dry mass and shoot height. Enterobacter sp. strain N10 appeared to be the best plant-growth-promoting rhizobacteria to increase wheat productivity in future field applications.

  2. A Reliable Methodology for Determining Seed Viability by Using Hyperspectral Data from Two Sides of Wheat Seeds.

    PubMed

    Zhang, Tingting; Wei, Wensong; Zhao, Bin; Wang, Ranran; Li, Mingliu; Yang, Liming; Wang, Jianhua; Sun, Qun

    2018-03-08

    This study investigated the possibility of using visible and near-infrared (VIS/NIR) hyperspectral imaging techniques to discriminate viable and non-viable wheat seeds. Both sides of individual seeds were subjected to hyperspectral imaging (400-1000 nm) to acquire reflectance spectral data. Four spectral datasets, including the ventral groove side, reverse side, mean (the mean of two sides' spectra of every seed), and mixture datasets (two sides' spectra of every seed), were used to construct the models. Classification models, partial least squares discriminant analysis (PLS-DA), and support vector machines (SVM), coupled with some pre-processing methods and successive projections algorithm (SPA), were built for the identification of viable and non-viable seeds. Our results showed that the standard normal variate (SNV)-SPA-PLS-DA model had high classification accuracy for whole seeds (>85.2%) and for viable seeds (>89.5%), and that the prediction set was based on a mixed spectral dataset by only using 16 wavebands. After screening with this model, the final germination of the seed lot could be higher than 89.5%. Here, we develop a reliable methodology for predicting the viability of wheat seeds, showing that the VIS/NIR hyperspectral imaging is an accurate technique for the classification of viable and non-viable wheat seeds in a non-destructive manner.

  3. A Reliable Methodology for Determining Seed Viability by Using Hyperspectral Data from Two Sides of Wheat Seeds

    PubMed Central

    Zhang, Tingting; Wei, Wensong; Zhao, Bin; Wang, Ranran; Li, Mingliu; Yang, Liming; Wang, Jianhua; Sun, Qun

    2018-01-01

    This study investigated the possibility of using visible and near-infrared (VIS/NIR) hyperspectral imaging techniques to discriminate viable and non-viable wheat seeds. Both sides of individual seeds were subjected to hyperspectral imaging (400–1000 nm) to acquire reflectance spectral data. Four spectral datasets, including the ventral groove side, reverse side, mean (the mean of two sides’ spectra of every seed), and mixture datasets (two sides’ spectra of every seed), were used to construct the models. Classification models, partial least squares discriminant analysis (PLS-DA), and support vector machines (SVM), coupled with some pre-processing methods and successive projections algorithm (SPA), were built for the identification of viable and non-viable seeds. Our results showed that the standard normal variate (SNV)-SPA-PLS-DA model had high classification accuracy for whole seeds (>85.2%) and for viable seeds (>89.5%), and that the prediction set was based on a mixed spectral dataset by only using 16 wavebands. After screening with this model, the final germination of the seed lot could be higher than 89.5%. Here, we develop a reliable methodology for predicting the viability of wheat seeds, showing that the VIS/NIR hyperspectral imaging is an accurate technique for the classification of viable and non-viable wheat seeds in a non-destructive manner. PMID:29517991

  4. Effective Identification of Low-Gliadin Wheat Lines by Near Infrared Spectroscopy (NIRS): Implications for the Development and Analysis of Foodstuffs Suitable for Celiac Patients

    PubMed Central

    García-Molina, María Dolores; García-Olmo, Juan; Barro, Francisco

    2016-01-01

    Scope The aim of this work was to assess the ability of Near Infrared Spectroscopy (NIRS) to distinguish wheat lines with low gliadin content, obtained by RNA interference (RNAi), from non-transgenic wheat lines. The discriminant analysis was performed using both whole grain and flour. The transgenic sample set included 409 samples for whole grain sorting and 414 samples for flour experiments, while the non-transgenic set consisted of 126 and 156 samples for whole grain and flour, respectively. Methods and Results Samples were scanned using a Foss-NIR Systems 6500 System II instrument. Discrimination models were developed using the entire spectral range (400–2500 nm) and ranges of 400–780 nm, 800–1098 nm and 1100–2500 nm, followed by analysis of means of partial least square (PLS). Two external validations were made, using samples from the years 2013 and 2014 and a minimum of 99% of the flour samples and 96% of the whole grain samples were classified correctly. Conclusions The results demonstrate the ability of NIRS to successfully discriminate between wheat samples with low-gliadin content and wild types. These findings are important for the development and analysis of foodstuff for celiac disease (CD) patients to achieve better dietary composition and a reduction in disease incidence. PMID:27018786

  5. Genome-wide identification of the SWEET gene family in wheat.

    PubMed

    Gao, Yue; Wang, Zi Yuan; Kumar, Vikranth; Xu, Xiao Feng; Yuan, De Peng; Zhu, Xiao Feng; Li, Tian Ya; Jia, Baolei; Xuan, Yuan Hu

    2018-02-05

    The SWEET (sugars will eventually be exported transporter) family is a newly characterized group of sugar transporters. In plants, the key roles of SWEETs in phloem transport, nectar secretion, pollen nutrition, stress tolerance, and plant-pathogen interactions have been identified. SWEET family genes have been characterized in many plant species, but a comprehensive analysis of SWEET members has not yet been performed in wheat. Here, 59 wheat SWEETs (hereafter TaSWEETs) were identified through homology searches. Analyses of phylogenetic relationships, numbers of transmembrane helices (TMHs), gene structures, and motifs showed that TaSWEETs carrying 3-7 TMHs could be classified into four clades with 10 different types of motifs. Examination of the expression patterns of 18 SWEET genes revealed that a few are tissue-specific while most are ubiquitously expressed. In addition, the stem rust-mediated expression patterns of SWEET genes were monitored using a stem rust-susceptible cultivar, 'Little Club' (LC). The resulting data showed that the expression of five out of the 18 SWEETs tested was induced following inoculation. In conclusion, we provide the first comprehensive analysis of the wheat SWEET gene family. Information regarding the phylogenetic relationships, gene structures, and expression profiles of SWEET genes in different tissues and following stem rust disease inoculation will be useful in identifying the potential roles of SWEETs in specific developmental and pathogenic processes. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Accuracy assessment: The statistical approach to performance evaluation in LACIE. [Great Plains corridor, United States

    NASA Technical Reports Server (NTRS)

    Houston, A. G.; Feiveson, A. H.; Chhikara, R. S.; Hsu, E. M. (Principal Investigator)

    1979-01-01

    A statistical methodology was developed to check the accuracy of the products of the experimental operations throughout crop growth and to determine whether the procedures are adequate to accomplish the desired accuracy and reliability goals. It has allowed the identification and isolation of key problems in wheat area yield estimation, some of which have been corrected and some of which remain to be resolved. The major unresolved problem in accuracy assessment is that of precisely estimating the bias of the LACIE production estimator. Topics covered include: (1) evaluation techniques; (2) variance and bias estimation for the wheat production estimate; (3) the 90/90 evaluation; (4) comparison of the LACIE estimate with reference standards; and (5) first and second order error source investigations.

  7. Wheat glutenin: the "tail" of the 1By protein subunits.

    PubMed

    Nunes-Miranda, Júlio D; Bancel, Emmanuelle; Viala, Didier; Chambon, Christophe; Capelo, José L; Branlard, Gérard; Ravel, Catherine; Igrejas, Gilberto

    2017-10-03

    Gluten-forming storage proteins play a major role in the viscoelastic properties of wheat dough through the formation of a continuous proteinaceous network. The high-molecular-weight glutenin subunits represent a functionally important subgroup of gluten proteins by promoting the formation of large glutenin polymers through interchain disulphide bonds between glutenin subunits. Here, we present evidences that y-type glutenin subunits encoded at the Glu-B1 locus are prone to proteolytic processing at the C-terminus tail, leading to the loss of the unique cysteine residue present at the C-terminal domain. Results obtained by intact mass measurement and immunochemistry for each proteoform indicate that the proteolytic cleavage appears to occur at the carboxyl-side of two conserved asparagine residues at the C-terminal domain start. Hence, we hypothesize that the responsible enzymes are a class of cysteine endopeptidases - asparaginyl endopeptidases - described in post-translational processing of other storage proteins in wheat. Biological significance The reported study provides new insights into wheat storage protein maturation. In view of the importance of gluten proteins on dough viscoelastic properties and end-product quality, the reported C-terminal domain cleavage of high-molecular-weight glutenin subunits is of particular interest, since this domain possesses a unique conserved cysteine residue which is assumed to participate in gluten polymerization. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Fusarium crown rot caused by Fusarium pseudograminearum in cereal crops: recent progress and future prospects.

    PubMed

    Kazan, Kemal; Gardiner, Donald M

    2017-11-04

    Diseases caused by Fusarium pathogens inflict major yield and quality losses on many economically important plant species worldwide, including cereals. Fusarium crown rot (FCR), caused by Fusarium pseudograminearum, is a cereal disease that occurs in many arid and semi-arid cropping regions of the world. In recent years, this disease has become more prevalent, in part as a result of the adoption of moisture-preserving cultural practices, such as minimum tillage and stubble retention. In this pathogen profile, we present a brief overview of recent research efforts that have not only advanced our understanding of the interactions between F. pseudograminearum and cereal hosts, but have also provided new disease management options. For instance, significant progress has been made in the genetic characterization of pathogen populations, the development of new tools for disease prediction, and the identification and pyramiding of loci that confer quantitative resistance to FCR in wheat and barley. In addition, transcriptome analyses have revealed new insights into the processes involved in host defence. Significant progress has also been made in understanding the mechanistic details of the F. pseudograminearum infection process. The sequencing and comparative analyses of the F. pseudograminearum genome have revealed novel virulence factors, possibly acquired through horizontal gene transfer. In addition, a conserved pathogen gene cluster involved in the degradation of wheat defence compounds has been identified, and a role for the trichothecene toxin deoxynivalenol (DON) in pathogen virulence has been reported. Overall, a better understanding of cereal host-F. pseudograminearum interactions will lead to the development of new control options for this increasingly important disease problem. Taxonomy: Fusarium pseudograminearum O'Donnell & Aoki; Kingdom Fungi; Phylum Ascomycota; Subphylum Pezizomycotina; Class Sordariomycetes; Subclass Hypocreomycetidae; Order Hypocreales; Family Nectriaceae; Genus Fusarium. Disease symptoms: Fusarium crown rot caused by F. pseudograminearum is also known as crown rot, foot rot and root rot. Infected seedlings can die before or after emergence. If infected seedlings survive, typical disease symptoms are browning of the coleoptile, subcrown internode, lower leaf sheaths and adjacent stems and nodal tissues; this browning can become evident within a few weeks after planting or throughout plant development. Infected plants may develop white heads with no or shrivelled grains. Disease symptoms are exacerbated under water limitation. Identification and detection: Fusarium pseudograminearum macroconidia usually contain three to five septa (22-60.5 × 2.5-5.5 μm). On potato dextrose agar (PDA), aerial mycelia appear floccose and reddish white, with red or reddish-brown reverse pigmentation. Diagnostic polymerase chain reaction (PCR) tests based on the amplification of the gene encoding translation elongation factor-1a (TEF-1a) have been developed for molecular identification. Host range: All major winter cereals can be colonized by F. pseudograminearum. However, the main impact of this pathogen is on bread (Triticum aestivum L.) and durum (Triticum turgidum L. spp. durum (Dest.)) wheat and barley (Hordeum vulgare L.). Oats (Avena sativa L.) can be infected, but show little or no disease symptoms. In addition, the pathogen has been isolated from various other grass genera, such as Phalaris, Agropyron and Bromus, which may occur as common weeds. Useful websites: https://nt.ars-grin.gov/fungaldatabases/; http://plantpath.psu.edu/facilities/fusarium-research-center; https://nt.ars-grin.gov/fungaldatabases/; http://www.speciesfungorum.org/Names/Names.asp. © 2017 BSPP AND JOHN WILEY & SONS LTD.

  9. Comprehensive Identification and Bread-Making Quality Evaluation of Common Wheat Somatic Variation Line AS208 on Glutenin Composition

    PubMed Central

    Du, Lipu; Cao, Xinyou; Zhang, Xiaoxiang; Zhou, Yang; Yan, Yueming; Ye, Xingguo

    2016-01-01

    High molecular weight glutenin subunits (HMW-GSs) are important seed storage proteins in wheat (Triticum aestivum) that determine wheat dough elasticity and processing quality. Clarification of the defined effectiveness of HMW-GSs is very important to breeding efforts aimed at improving wheat quality. To date, there have no report on the expression silencing and quality effects of 1Bx20 and 1By20 at the Glu-B1 locus in wheat. A wheat somatic variation line, AS208, in which both 1Bx20 and 1By20 at Glu-B1 locus were silenced, was developed recently in our laboratory. Evaluation of agronomic traits and seed storage proteins by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and reversed-phase high performance liquid chromatography (RP-HPLC) indicated that AS208 was highly similar to its parental cultivar Lunxuan987 (LX987), with the exception that the composition and expression of HMW-GSs was altered. The 1Bx20 and 1By20 in AS208 were further identified to be missing by polymerase chain reaction (PCR) and quantitative real-time RT-PCR (qRT-PCR) assays. Based on the PCR results for HMW-GS genes and their promoters in AS208 compared with LX987, 1Bx20 and 1By20 were speculated to be deleted in AS208 during in vitro culture. Quality analysis of this line with Mixograph, Farinograph, and Extensograph instruments, as well as analysis of bread-making quality traits, demonstrated that the lack of the genes encoding 1Bx20 and 1By20 caused various negative effects on dough processing and bread-making quality traits, including falling number, dough stability time, mixing tolerance index, crude protein values, wet gluten content, bread size, and internal cell structure. AS208 can potentially be used in the functional dissection of other HMW-GSs as a plant material with desirable genetic background, and in biscuit making industry as a high-quality weak gluten wheat source. PMID:26765256

  10. A wheat (Triticum aestivum) protein phosphatase 2A catalytic subunit gene provides enhanced drought tolerance in tobacco.

    PubMed

    Xu, Chongyi; Jing, Ruilian; Mao, Xinguo; Jia, Xiaoyun; Chang, Xiaoping

    2007-03-01

    Multiple copies of genes encoding the catalytic subunit (c) of protein phosphatase 2A (PP2A) are commonly found in plants. For some of these genes, expression is up-regulated under water stress. The aim of this study was to investigate expression and characterization of TaPP2Ac-1 from Triticum aestivum, and to evaluate the effects of TaPP2Ac-1 on Nicotiana benthamiana in response to water stress. TaPP2Ac-1 cDNA was isolated from wheat by in silico identification and RT-PCR amplification. Transcript levels of TaPP2Ac-1 were examined in wheat responding to water deficit. Copy numbers of TaPP2Ac-1 in wheat genomes and subcellular localization in onion epidermal cells were studied. Enzyme properties of the recombinant TaPP2Ac-1 protein were determined. In addition, studies were carried out in tobacco plants with pCAPE2-TaPP2Ac-1 under water-deficit conditions. TaPP2Ac-1 cDNA was cloned from wheat. Transcript levels of TaPP2Ac-1 in wheat seedlings were up-regulated under drought condition. One copy for this TaPP2Ac-1 was present in each of the three wheat genomes. TaPP2Ac-1 fused with GFP was located in the nucleus and cytoplasm of onion epidermis cells. The recombinant TaPP2Ac-1 gene was over-expressed in Escherichia coli and encoded a functional serine/threonine phosphatase. Transgenic tobacco plants over-expressing TaPP2Ac-1 exhibited stronger drought tolerance than non-transgenic tobacco plants. Tobacco plants with pCAPE2-TaPP2Ac-1 appeared to be resistant to water deficit, as shown by their higher capacity to maintain leaf relative water content, leaf cell-membrane stability index, water-retention ability and water use efficiency under water stress. The results suggest that the physiological role of TaPP2Ac-1 is related to drought stress response, possibly through its involvement in drought-responding signal transduction pathways.

  11. Flow sorting of C-genome chromosomes from wild relatives of wheat Aegilops markgrafii, Ae. triuncialis and Ae. cylindrica, and their molecular organization.

    PubMed

    Molnár, István; Vrána, Jan; Farkas, András; Kubaláková, Marie; Cseh, András; Molnár-Láng, Márta; Doležel, Jaroslav

    2015-08-01

    Aegilops markgrafii (CC) and its natural hybrids Ae. triuncialis (U(t)U(t)C(t)C(t)) and Ae. cylindrica (D(c)D(c)C(c)C(c)) represent a rich reservoir of useful genes for improvement of bread wheat (Triticum aestivum), but the limited information available on their genome structure and the shortage of molecular (cyto-) genetic tools hamper the utilization of the extant genetic diversity. This study provides the complete karyotypes in the three species obtained after fluorescent in situ hybridization (FISH) with repetitive DNA probes, and evaluates the potential of flow cytometric chromosome sorting. The flow karyotypes obtained after the analysis of 4',6-diamidino-2-phenylindole (DAPI)-stained chromosomes were characterized and the chromosome content of the peaks on the flow karyotypes was determined by FISH. Twenty-nine conserved orthologous set (COS) markers covering all seven wheat homoeologous chromosome groups were used for PCR with DNA amplified from flow-sorted chromosomes and genomic DNA. FISH with repetitive DNA probes revealed that chromosomes 4C, 5C, 7C(t), T6U(t)S.6U(t)L-5C(t)L, 1C(c) and 5D(c) could be sorted with purities ranging from 66 to 91 %, while the remaining chromosomes could be sorted in groups of 2-5. This identified a partial wheat-C-genome homology for group 4 and 5 chromosomes. In addition, 1C chromosomes were homologous with group 1 of wheat; a small segment from group 2 indicated 1C-2C rearrangement. An extensively rearranged structure of chromosome 7C relative to wheat was also detected. The possibility of purifying Aegilops chromosomes provides an attractive opportunity to investigate the structure and evolution of the Aegilops C genome and to develop molecular tools to facilitate the identification of alien chromatin and support alien introgression breeding in bread wheat. © The Author 2015. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. Mapping and validation of a new QTL for adult-plant resistance to powdery mildew in Chinese elite bread wheat line Zhou8425B.

    PubMed

    Jia, Aolin; Ren, Yan; Gao, Fengmei; Yin, Guihong; Liu, Jindong; Guo, Lu; Zheng, Jizhou; He, Zhonghu; Xia, Xianchun

    2018-05-01

    Four QTLs for adult-plant resistance to powdery mildew were mapped in the Zhou8425B/Chinese Spring population, and a new QTL on chromosome 3B was validated in 103 wheat cultivars derived from Zhou8425B. Zhou8425B is an elite wheat (Triticum aestivum L.) line widely used as a parent in Chinese wheat breeding programs. Identification of genes for adult-plant resistance (APR) to powdery mildew in Zhou8425B is of high importance for continued controlling the disease. In the current study, the high-density Illumina iSelect 90K single-nucleotide polymorphism (SNP) array was used to map quantitative trait loci (QTL) for APR to powdery mildew in 244 recombinant inbred lines derived from the cross Zhou8425B/Chinese Spring. Inclusive composite interval mapping identified QTL on chromosomes 1B, 3B, 4B, and 7D, designated as QPm.caas-1BL.1, QPm.caas-3BS, QPm.caas-4BL.2, and QPm.caas-7DS, respectively. Resistance alleles at the QPm.caas-1BL.1, QPm.caas-3BS, and QPm.caas-4BL.2 loci were contributed by Zhou8425B, whereas that at QPm.caas-7DS was from Chinese Spring. QPm.caas-3BS, likely to be a new APR gene for powdery mildew resistance, was detected in all four environments. One SNP marker closely linked to QPm.caas-3BS was transferred into a semi-thermal asymmetric reverse PCR (STARP) marker and tested on 103 commercial wheat cultivars derived from Zhou8425B. Cultivars with the resistance allele at the QPm.caas-3BS locus had averaged maximum disease severity reduced by 5.3%. This STARP marker can be used for marker-assisted selection in improvement of the level of powdery mildew resistance in wheat breeding.

  13. Characterization of Lr75: a partial, broad-spectrum leaf rust resistance gene in wheat.

    PubMed

    Singla, Jyoti; Lüthi, Linda; Wicker, Thomas; Bansal, Urmil; Krattinger, Simon G; Keller, Beat

    2017-01-01

    Here, we describe a strategy to improve broad-spectrum leaf rust resistance by marker-assisted combination of two partial resistance genes. One of them represents a novel partial adult plant resistance gene, named Lr75. Leaf rust caused by the fungal pathogen Puccinia triticina is a damaging disease of wheat (Triticum aestivum L.). The combination of several, additively-acting partial disease resistance genes has been proposed as a suitable strategy to breed wheat cultivars with high levels of durable field resistance. The Swiss winter wheat cultivar 'Forno' continues to show near-immunity to leaf rust since its release in the 1980s. This resistance is conferred by the presence of at least six quantitative trait loci (QTL), one of which is associated with the morphological trait leaf tip necrosis. Here, we used a marker-informed strategy to introgress two 'Forno' QTLs into the leaf rust-susceptible Swiss winter wheat cultivar 'Arina'. The resulting backcross line 'ArinaLrFor' showed markedly increased leaf rust resistance in multiple locations over several years. One of the introgressed QTLs, QLr.sfr-1BS, is located on chromosome 1BS. We developed chromosome 1B-specific microsatellite markers by exploiting the Illumina survey sequences of wheat cv. 'Chinese Spring' and mapped QLr.sfr-1BS to a 4.3 cM interval flanked by the SSR markers gwm604 and swm271. QLr.sfr-1BS does not share a genetic location with any of the described leaf rust resistance genes present on chromosome 1B. Therefore, QLr.sfr-1BS is novel and was designated as Lr75. We conclude that marker-assisted combination of partial resistance genes is a feasible strategy to increase broad-spectrum leaf rust resistance. The identification of Lr75 adds a novel and highly useful gene to the small set of known partial, adult plant leaf rust resistance genes.

  14. Characterization of a small GTP-binding protein gene TaRab18 from wheat involved in the stripe rust resistance.

    PubMed

    Jiang, Zhengning; Wang, Hui; Zhang, Guoqin; Zhao, Renhui; Bie, Tongde; Zhang, Ruiqi; Gao, Derong; Xing, Liping; Cao, Aizhong

    2017-04-01

    The stripe rust resistance gene, Yr26, is commonly used in wheat production. Identification of Yr26 resistance related genes is important for better understanding of the resistance mechanism. TaRab18, a putative small GTP-binding protein, was screened as a resistance regulated gene as it showed differential expression between the Yr26-containing resistant wheat and the susceptible wheat at different time points after Pst inoculation. TaRab18 contains four typical domains (GI to GIV) of the small GTP-binding proteins superfamily and five domains (RabF1 to RabF5) specific to the Rab subfamily. From the phylogenetic tree that TaRab18 was identified as belonging to the RABC1 subfamily. Chromosome location analysis indicated that TaRab18 and its homeoalles were on the homeologous group 7 chromosomes, and the Pst induced TaRab18 was on the 7 B chromosome. Functional analysis by virus induced gene silencing (VIGS) indicated that TaRab18 was positively involved in the stripe rust resistance through regulating the hypersensitive response, and Pst can develop on the leaves of TaRab18 silenced 92R137. However, over-expression of TaRab18 in susceptible Yangmai158 did not enhance its resistance dramatically, only from 9 grade in Yangmai158 to 8 grade in the transgenic plant. However, histological observation indicated that the transgenic plants with over-expressed TaRab18 showed a strong hypersensitive response at the early infection stage. The research herein, will improve our understanding of the roles of Rab in wheat resistance. Copyright © 2017. Published by Elsevier Masson SAS.

  15. Identification and characterization of wheat drought-responsive MYB transcription factors involved in the regulation of cuticle biosynthesis

    PubMed Central

    Bi, Huihui; Luang, Sukanya; Li, Yuan; Bazanova, Natalia; Morran, Sarah; Song, Zhihong; Perera, M. Ann; Hrmova, Maria; Borisjuk, Nikolai; Lopato, Sergiy

    2016-01-01

    A plant cuticle forms a hydrophobic layer covering plant organs, and plays an important role in plant development and protection from environmental stresses. We examined epicuticular structure, composition, and a MYB-based regulatory network in two Australian wheat cultivars, RAC875 and Kukri, with contrasting cuticle appearance (glaucousness) and drought tolerance. Metabolomics and microscopic analyses of epicuticular waxes revealed that the content of β-diketones was the major compositional and structural difference between RAC875 and Kukri. The content of β-diketones remained the same while those of alkanes and primary alcohols were increased by drought in both cultivars, suggesting that the interplay of all components rather than a single one defines the difference in drought tolerance between cultivars. Six wheat genes encoding MYB transcription factors (TFs) were cloned; four of them were regulated in flag leaves of both cultivars by rapid dehydration and/or slowly developing cyclic drought. The involvement of selected MYB TFs in the regulation of cuticle biosynthesis was confirmed by a transient expression assay in wheat cell culture, using the promoters of wheat genes encoding cuticle biosynthesis-related enzymes and the SHINE1 (SHN1) TF. Two functional MYB-responsive elements, specifically recognized by TaMYB74 but not by other MYB TFs, were localized in the TdSHN1 promoter. Protein structural determinants underlying the binding specificity of TaMYB74 for functional DNA cis-elements were defined, using 3D protein molecular modelling. A scheme, linking drought-induced expression of the investigated TFs with downstream genes that participate in the synthesis of cuticle components, is proposed. PMID:27489236

  16. Taxonomic structure and monitoring of the dominant population of lactic acid bacteria during wheat flour sourdough type I propagation using Lactobacillus sanfranciscensis starters.

    PubMed

    Siragusa, Sonya; Di Cagno, Raffaella; Ercolini, Danilo; Minervini, Fabio; Gobbetti, Marco; De Angelis, Maria

    2009-02-01

    The structure and stability of the dominant lactic acid bacterium population were assessed during wheat flour sourdough type I propagation by using singly nine strains of Lactobacillus sanfranciscensis. Under back-slopping propagation with wheat flour type 0 F114, cell numbers of presumptive lactic acid bacteria varied slightly between and within starters. As determined by randomly amplified polymorphic DNA-PCR and restriction endonuclease analysis-pulsed-field gel electrophoresis analyses, only three (LS8, LS14, and LS44) starters dominated throughout 10 days of propagation. The others progressively decreased to less than 3 log CFU g(-1). Partial sequence analysis of the 16S rRNA and recA genes and PCR-denaturating gradient gel electrophoresis analysis using the rpoB gene allowed identification of Weissella confusa, Lactobacillus sanfranciscensis, Lactobacillus plantarum, Lactobacillus rossiae, Lactobacillus brevis, Lactococcus lactis subsp. lactis, Pediococcus pentosaceus, and Lactobacillus spp. as the dominant species of the raw wheat flour. At the end of propagation, one autochthonous strain of L. sanfranciscensis was found in all the sourdoughs. Except for L. brevis, strains of the above species were variously found in the mature sourdoughs. Persistent starters were found in association with other biotypes of L. sanfranciscensis and with W. confusa or L. plantarum. Sourdoughs were characterized for acidification, quotient of fermentation, free amino acids, and community-level catabolic profiles by USING Biolog 96-well Eco microplates. In particular, catabolic profiles of sourdoughs containing persistent starters behaved similarly and were clearly differentiated from the others. The three persistent starters were further used for the production of sourdoughs and propagated by using another wheat flour whose lactic acid bacterium population in part differed from the previous one. Also, in this case all three starter strains persisted during propagation.

  17. Association between allelic variation at the Phytoene synthase 1 gene and yellow pigment content in the wheat grain.

    PubMed

    Zhang, W; Dubcovsky, J

    2008-03-01

    A better understanding of the genetic factors controlling grain yellow pigment content (GYPC) is important for both pasta (high GYPC) and bread wheat (low GYPC) quality improvement. Quantitative trait loci (QTL) for GYPC have been mapped repeatedly on the distal regions of chromosome arms 7AL and 7BL in wheat, and the Phytoene synthase 1 (PSY-1) gene located in this region has been proposed as a candidate gene. We show here that PSY-E1, the tall wheatgrass orthologue, is completely linked to differences in GYPC, and that selection for white endosperm mutants in recombinant lines carrying this gene resulted in the identification of a mutation in a conserved amino acid of PSY-E1. These results, together with the association between GYPC and allelic differences in PSY-1 in hexaploid wheat, suggest that this gene plays an important role in the determination of GYPC. However, a second white endosperm mutant previously mapped to chromosome arm 7EL showed no mutations in PSY-E1 suggesting the existence of additional gene(s) affecting GYPC in this chromosome region. This hypothesis was further supported by the mapping of QTL for GYPC on 7AL proximal to PSY-1 in a cross between pasta wheat varieties UC1113 and Kofa. Interestingly, the Kofa PSY-B1 allele showed unusually high levels of polymorphisms as a result of a conversion event involving the PSY-A1 allele. In summary, our results support the hypothesis that allelic differences in PSY-1 and at least one additional gene in the distal region of the long arm of homoeologous group 7L are associated with differences in GYPC.

  18. Identification of eighteen Berberis species as alternate hosts of Puccinia striiformis f. sp. tritici and virulence variation in the pathogen isolates from natural infection of barberry plants in China

    USDA-ARS?s Scientific Manuscript database

    The wheat stripe rust pathogen (Puccinia striiformis f. sp. tritici, Pst) population in China has been reported to be a distinct genetic group with higher diversity than those in many other countries. Genetic recombination in the Pst population has been identified with molecular markers, but whethe...

  19. Application of Comparative Genomics for the Identification and Monitoring of the Highly Virulent African Race, Ug99, of Puccinia graminis

    USDA-ARS?s Scientific Manuscript database

    Throughout human history, wheat stem rust caused by Puccinia graminis f.sp. tritici (Pgt) has been one of the most destructive diseases of cereal crops. Stem rust has been well controlled in the U.S. for nearly a half a century, but with the appearance of a new, highly virulent race of Pgt in Uganda...

  20. Development of techniques for producing static strata maps and development of photointerpretive methods based on multitemporal LANDSAT data

    NASA Technical Reports Server (NTRS)

    Colwell, R. N. (Principal Investigator); Hay, C. M.; Thomas, R. W.; Benson, A. S.

    1977-01-01

    Progress in the evaluation of the static stratification procedure and the development of alternative photointerpretive techniques to the present LACIE procedure for the identification of training fields is reported. Statistically significant signature controlling variables were defined for use in refining the stratification procedure. A subset of the 1973-74 Kansas LACIE segments for wheat was analyzed.

  1. Molecular diversity of α-gliadin expressed genes in genetically contrasted spelt (Triticum aestivum ssp. spelta) accessions and comparison with bread wheat (T. aestivum ssp. aestivum) and related diploid Triticum and Aegilops species.

    PubMed

    Dubois, Benjamin; Bertin, Pierre; Mingeot, Dominique

    2016-01-01

    The gluten proteins of cereals such as bread wheat ( Triticum aestivum ssp. aestivum ) and spelt ( T. aestivum ssp. spelta ) are responsible for celiac disease (CD). The α-gliadins constitute the most immunogenic class of gluten proteins as they include four main T-cell stimulatory epitopes that affect CD patients. Spelt has been less studied than bread wheat and could constitute a source of valuable diversity. The objective of this work was to study the genetic diversity of spelt α-gliadin transcripts and to compare it with those of bread wheat. Genotyping data from 85 spelt accessions obtained with 19 simple sequence repeat (SSR) markers were used to select 11 contrasted accessions, from which 446 full open reading frame α-gliadin genes were cloned and sequenced, which revealed a high allelic diversity. High variations among the accessions were highlighted, in terms of the proportion of α-gliadin sequences from each of the three genomes (A, B and D), and their composition in the four T-cell stimulatory epitopes. An accession from Tajikistan stood out, having a particularly high proportion of α-gliadins from the B genome and a low immunogenic content. Even if no clear separation between spelt and bread wheat sequences was shown, spelt α-gliadins displayed specific features concerning e.g. the frequencies of some amino acid substitutions. Given this observation and the variations in toxicity revealed in the spelt accessions in this study, the high genetic diversity held in spelt germplasm collections could be a valuable resource in the development of safer varieties for CD patients.

  2. Effects of starch synthase IIa gene dosage on grain, protein and starch in endosperm of wheat.

    PubMed

    Konik-Rose, Christine; Thistleton, Jenny; Chanvrier, Helene; Tan, Ihwa; Halley, Peter; Gidley, Michael; Kosar-Hashemi, Behjat; Wang, Hong; Larroque, Oscar; Ikea, Joseph; McMaugh, Steve; Regina, Ahmed; Rahman, Sadequr; Morell, Matthew; Li, Zhongyi

    2007-11-01

    Starch synthases (SS) are responsible for elongating the alpha-1,4 glucan chains of starch. A doubled haploid population was generated by crossing a line of wheat, which lacks functional ssIIa genes on each genome (abd), and an Australian wheat cultivar, Sunco, with wild type ssIIa alleles on each genome (ABD). Evidence has been presented previously indicating that the SGP-1 (starch granule protein-1) proteins present in the starch granule in wheat are products of the ssIIa genes. Analysis of 100 progeny lines demonstrated co-segregation of the ssIIa alleles from the three genomes with the SGP-1 proteins, providing further evidence that the SGP-1 proteins are the products of the ssIIa genes. From the progeny lines, 40 doubled haploid lines representing the eight possible genotypes for SSIIa (ABD, aBD, AbD, ABd, abD, aBd, Abd, abd) were characterized for their grain weight, protein content, total starch content and starch properties. For some properties (chain length distribution, pasting properties, swelling power, and gelatinization properties), a progressive change was observed across the four classes of genotypes (wild type, single nulls, double nulls and triple nulls). However, for other grain properties (seed weight and protein content) and starch properties (total starch content, granule morphology and crystallinity, granule size distribution, amylose content, amylose-lipid dissociation properties), a statistically significant change only occurred for the triple nulls, indicating that all three genes had to be missing or inactive for a change to occur. These results illustrate the importance of SSIIa in controlling grain and starch properties and the importance of amylopectin fine structure in controlling starch granule properties in wheat.

  3. Independent assessment and improvement of wheat genome sequence assemblies using Fosill jumping libraries.

    PubMed

    Lu, Fu-Hao; McKenzie, Neil; Kettleborough, George; Heavens, Darren; Clark, Matthew D; Bevan, Michael W

    2018-05-01

    The accurate sequencing and assembly of very large, often polyploid, genomes remains a challenging task, limiting long-range sequence information and phased sequence variation for applications such as plant breeding. The 15-Gb hexaploid bread wheat (Triticum aestivum) genome has been particularly challenging to sequence, and several different approaches have recently generated long-range assemblies. Mapping and understanding the types of assembly errors are important for optimising future sequencing and assembly approaches and for comparative genomics. Here we use a Fosill 38-kb jumping library to assess medium and longer-range order of different publicly available wheat genome assemblies. Modifications to the Fosill protocol generated longer Illumina sequences and enabled comprehensive genome coverage. Analyses of two independent Bacterial Artificial Chromosome (BAC)-based chromosome-scale assemblies, two independent Illumina whole genome shotgun assemblies, and a hybrid Single Molecule Real Time (SMRT-PacBio) and short read (Illumina) assembly were carried out. We revealed a surprising scale and variety of discrepancies using Fosill mate-pair mapping and validated several of each class. In addition, Fosill mate-pairs were used to scaffold a whole genome Illumina assembly, leading to a 3-fold increase in N50 values. Our analyses, using an independent means to validate different wheat genome assemblies, show that whole genome shotgun assemblies based solely on Illumina sequences are significantly more accurate by all measures compared to BAC-based chromosome-scale assemblies and hybrid SMRT-Illumina approaches. Although current whole genome assemblies are reasonably accurate and useful, additional improvements will be needed to generate complete assemblies of wheat genomes using open-source, computationally efficient, and cost-effective methods.

  4. Identifying Pre-High School Students' Science Class Motivation Profiles to Increase Their Science Identification and Persistence

    ERIC Educational Resources Information Center

    Chittum, Jessica R.; Jones, Brett D.

    2017-01-01

    One purpose of this study was to determine whether patterns existed in pre-high school students' motivation-related perceptions of their science classes. Another purpose was to examine the extent to which these patterns were related to their science identification, gender, grade level, class effort, and intentions to persist in science. We…

  5. Identification of corn fields using multidate radar data

    NASA Technical Reports Server (NTRS)

    Shanmugan, K. S.; Ulaby, F. T.; Narayanan, V.; Dobson, C.

    1983-01-01

    Airborne C- and L-band radar data acquired over a test site in western kansas were analyzed to determine corn-field identification accuracies obtainable using single-channel, multichannel, and multidate radar data. An automated pattern-recognition procedure was used to classify 144 fields into three categories: corn, pasture land, and bare soil (including wheat stubble and fallow). Corn fields were identified with accuracies ranging from 85 percent for single channel, single-date data to 100 percent for single-channel, multidate data. The effects of radar parameters such as frequency, polarization, and look angle as well as the effects of soil moisture on the classification accuracy are also presented.

  6. Separate class true discovery rate degree of association sets for biomarker identification.

    PubMed

    Crager, Michael R; Ahmed, Murat

    2014-01-01

    In 2008, Efron showed that biological features in a high-dimensional study can be divided into classes and a separate false discovery rate (FDR) analysis can be conducted in each class using information from the entire set of features to assess the FDR within each class. We apply this separate class approach to true discovery rate degree of association (TDRDA) set analysis, which is used in clinical-genomic studies to identify sets of biomarkers having strong association with clinical outcome or state while controlling the FDR. Careful choice of classes based on prior information can increase the identification power of the separate class analysis relative to the overall analysis.

  7. Characterization of the low-molecular-weight glutenin subunit gene family members using a PCR-based marker approach

    USDA-ARS?s Scientific Manuscript database

    Low-molecular-weight glutenin subunits (LMW-GS) are a class of seed storage proteins that play a major role in the determination of the processing quality of wheat flour. The LMW-GS are encoded by multi-gene families located on the short arms of the homoeologous group 1 chromosomes, at the Glu-A3, G...

  8. Terrestrial Biological Inventory Hartwell Drainage and Levee District Greene County, Illinois.

    DTIC Science & Technology

    1982-01-01

    Office) IS. SECURITY CLASS. (of this rePOrt) ISa. DECLASSIFICATION/DOWNGRADING SCHEDULE Ś. DISTRIBUTION STATEMENT (of oile R po) Approved for release...trees are less than 25 cm dbh; cottonwood, pin oak. Understory - 65% cover. Hackberry, flowering dogwood, smooth sumac, poison ivy, trumpet creeper...30% cover; slippery elm, smooth sumac, hackberry, hawthorn, flowering dogwood. Groundcover - 40% cover; violet, white avens, heal-all, wheat

  9. Research of Face Recognition with Fisher Linear Discriminant

    NASA Astrophysics Data System (ADS)

    Rahim, R.; Afriliansyah, T.; Winata, H.; Nofriansyah, D.; Ratnadewi; Aryza, S.

    2018-01-01

    Face identification systems are developing rapidly, and these developments drive the advancement of biometric-based identification systems that have high accuracy. However, to develop a good face recognition system and to have high accuracy is something that’s hard to find. Human faces have diverse expressions and attribute changes such as eyeglasses, mustache, beard and others. Fisher Linear Discriminant (FLD) is a class-specific method that distinguishes facial image images into classes and also creates distance between classes and intra classes so as to produce better classification.

  10. Multiresidue analysis of 47 pesticides in cooked wheat flour and polished rice by liquid chromatography with tandem mass spectrometry.

    PubMed

    Lee, Sung Jung; Park, Hyeong Jin; Kim, Wooseong; Jin, Jong Sung; Abd El-Aty, A M; Shim, Jae-Han; Shin, Sung Chul

    2009-04-01

    Liquid chromatography in conjunction with tandem mass spectrometry was used to directly quantify of 47 pesticide residues from cooked wheat flour and polished rice, which are the most widely consumed cereals in the Republic of Korea. The sample clean-up was carried out according to the method established by the Korea Food and Drug Administration. The mobile phase for liquid chromatography separation consisted of water and 5 mm methanolic ammonium formate. Tandem mass spectroscopy experiments were performed in electrospray ionization positive mode and the multiple reaction monitoring mode. The matrix effects estimated for the 47 pesticides had a mean value of 99% and ranged from 45 to 147%. High recoveries (70-140%) and relative standard deviations (< or = 20%) were achieved for most of the pesticides tested. The method used in this study allowed for rapid quantification and identification of low levels of pesticides in cooked wheat flour and polished rice samples. Of the screened pesticide residues, only tricyclazole and fenobucarb were found in polished rice samples. However, no samples contained residues above the MRL established by the Korea Food and Drug Administration.

  11. [Polychlorinated biphenyls in fractions of wheat grains and in selected bakery products].

    PubMed

    Brandt, Elzbieta; Pietrzak-Fiećko, Renata; Smoczyński, S S

    2012-01-01

    Polychlorinated biphenyls (PCBs) form a group of synthetic aromatic chemical compounds, commonly occurring in the environment as a result of industrialisation. Despite the ban on PCBs production, their wide application in the past resulted in their common occurrence in all elements of the environment. The lipophilic nature of the compounds resulting in their accumulation in live organisms and in the human body may trigger many harmful effects. The aim of this study was to determine the PCBs content in the selected species of wheat and in bakery products. The studies aiming at confirming possible correlation between the size of the grain of the selected species of wheat and the content of polychlorinated biphenyls were presented in this paper. Moreover, PCBs concentration in cereals' grains and in bread was compared. The PCBs content was defined in different sizes of grains species of wheat i.e. Opatka, Zyta, Elena and Almari. The study included also two kinds of wheat bread. PCBs were determined after the extraction with n-hexane followed by sulphuric acid hydrolysis. Gas chromatography analysis was conducted on a PU 4600 Unicam apparatus with an electron capture detector. The large variations in PCBs content depending on the grain size were confirmed. In the Opatka species the increase in the content of all determined congeners and the size of grain was confirmed. The lowest PCBs concentrations were in smallest grains (0,0090 mg/kg of fat), and the highest in the largest grains (0,0264 mg/kg of fat). In Zyta species PCBs content was also lowest in the smallest grains, however these results were not statistically significant. In the Elena species the increase in the PCBs content together with the increase in the grain size was confirmed. Basing on the determination coefficient it was found that the concentration of PCBs depends on the size of grains in 24%. The highest concentration of PCBs (0,0366 mg/kg of fat) was found in the largest grains, however differences between the examined fractions were not statistically significant. Similar tendencies were observed in Almari species. PCBs content in wheat bread was on lower level than in all of the examined species. It was confirmed that fraction 2,8 x 25 mm of all species of wheat grain had the highest PCBs content. The tendency to decrease of PCBs content with the decrease of the grain in size was observed. The relation between qualitative class of species and PCBs content was not confirmed. There were statistically significant differences in the PCBs concentrations between the wheat species within one size fraction. The results of PCBs content in wheat bread were lower than in all examined species of wheat. One can assume that for the production of bread collected for the study, the wheat originating from areas with low PCBs contamination was used. Somewhat higher PCBs content was observed in the wheat bread with bran added, probably due to higher PCBs accumulation in the bran, which contain higher fat and contribute therefore to the overall PCBs in the bran containing bread.

  12. Identification and positional distribution analysis of transcription factor binding sites for genes from the wheat fl-cDNA sequences.

    PubMed

    Chen, Zhen-Yong; Guo, Xiao-Jiang; Chen, Zhong-Xu; Chen, Wei-Ying; Wang, Ji-Rui

    2017-06-01

    The binding sites of transcription factors (TFs) in upstream DNA regions are called transcription factor binding sites (TFBSs). TFBSs are important elements for regulating gene expression. To date, there have been few studies on the profiles of TFBSs in plants. In total, 4,873 sequences with 5' upstream regions from 8530 wheat fl-cDNA sequences were used to predict TFBSs. We found 4572 TFBSs for the MADS TF family, which was twice as many as for bHLH (1951), B3 (1951), HB superfamily (1914), ERF (1820), and AP2/ERF (1725) TFs, and was approximately four times higher than the remaining TFBS types. The percentage of TFBSs and TF members showed a distinct distribution in different tissues. Overall, the distribution of TFBSs in the upstream regions of wheat fl-cDNA sequences had significant difference. Meanwhile, high frequencies of some types of TFBSs were found in specific regions in the upstream sequences. Both TFs and fl-cDNA with TFBSs predicted in the same tissues exhibited specific distribution preferences for regulating gene expression. The tissue-specific analysis of TFs and fl-cDNA with TFBSs provides useful information for functional research, and can be used to identify relationships between tissue-specific TFs and fl-cDNA with TFBSs. Moreover, the positional distribution of TFBSs indicates that some types of wheat TFBS have different positional distribution preferences in the upstream regions of genes.

  13. Wheat CBF gene family: identification of polymorphisms in the CBF coding sequence.

    PubMed

    Mohseni, Sara; Che, Hua; Djillali, Zakia; Dumont, Estelle; Nankeu, Joseph; Danyluk, Jean

    2012-12-01

    Expression of cold-regulated genes needed for protection against freezing stress is mediated, in part, by the CBF transcription factor family. Previous studies with temperate cereals suggested that the CBF gene family in wheat was large, and that CBF genes were at the base of an important low temperature tolerance trait. Therefore, the goal of our study was to identify the CBF repertoire in the freezing-tolerant hexaploid wheat cultivar Norstar, and then to examine if the coding region of CBF genes in two spring cultivars contain polymorphisms that could affect the protein sequence and structure. Our analyses reveal that hexaploid wheat contains a complex CBF family consisting of at least 65 CBF genes of which 60 are known to be expressed in the cultivar Norstar. They represent 27 paralogous genes with 1-3 homeologous copies for the A, B, and D genomes. The cultivar Norstar contains two pseudogenes and at least 24 additional proteins having sequences and (or) structures that deviate from the consensus in the conserved AP2 DNA-binding and (or) C-terminal activation-domains. This suggests that in cultivars such as Norstar, low temperature tolerance may be increased through breeding of additional optimal alleles. The examination of the CBF repertoire present in the two spring cultivars, Chinese Spring and Manitou, reveals that they have additional polymorphisms affecting conserved positions in these domains. Understanding the effects of these polymorphisms will provide additional information for the selection of optimum CBF alleles in Triticeae breeding programs.

  14. Differential expression of candidate salivary effector proteins in field collections of Hessian fly, Mayetiola destructor

    PubMed Central

    Johnson, A J; Shukle, R H; Chen, M-S; Srivastava, S; Subramanyam, S; Schemerhorn, B J; Weintraub, P G; Abdel Moniem, H E M; Flanders, K L; Buntin, G D; Williams, C E

    2015-01-01

    Evidence is emerging that some proteins secreted by gall-forming parasites of plants act as effectors responsible for systemic changes in the host plant, such as galling and nutrient tissue formation. A large number of secreted salivary gland proteins (SSGPs) that are the putative effectors responsible for the physiological changes elicited in susceptible seedling wheat by Hessian fly, Mayetiola destructor (Say), larvae have been documented. However, how the genes encoding these candidate effectors might respond under field conditions is unknown. The goal of this study was to use microarray analysis to investigate variation in SSGP transcript abundance amongst field collections from different geographical regions (southeastern USA, central USA, and the Middle East). Results revealed significant variation in SSGP transcript abundance amongst the field collections studied. The field collections separated into three distinct groups that corresponded to the wheat classes grown in the different geographical regions as well as to recently described Hessian fly populations. These data support previous reports correlating Hessian fly population structure with micropopulation differences owing to agro-ecosystem parameters such as cultivation of regionally adapted wheat varieties, deployment of resistance genes and variation in climatic conditions. PMID:25528896

  15. Distinguishing Heterodera filipjevi and H. avenae using polymerase chain reaction-restriction fragment length polymorphism and cyst morphology.

    PubMed

    Yan, Guiping; Smiley, Richard W

    2010-03-01

    The cereal cyst nematodes Heterodera filipjevi and H. avenae impede wheat production in the Pacific Northwest (PNW). Accurate identification of cyst nematode species and awareness of high population density in affected fields are essential for designing effective control measures. Morphological methods for differentiating these species are laborious. These species were differentiated using polymerase chain reaction restriction fragment length polymorphism (PCR-RFLP) of internal transcribed spacer (ITS)-ribosomal (r)DNA with up to six restriction endonucleases (TaqI, HinfI, PstI, HaeIII, RsaI, and AluI). The method was validated by inspecting underbridge structures of cyst vulval cones. Grid soil sampling of an Oregon field infested by both species revealed that H. filipjevi was present at most of the infested grid sites but mixtures of H. avenae and H. filipjevi also occurred. These procedures also detected and differentiated H. filipjevi and H. avenae in soil samples from nearby fields in Oregon and H. avenae in samples from Idaho and Washington. Intraspecific polymorphism was not observed within H. filipjevi or PNW H. avenae populations based on the ITS-rDNA. However, intraspecific variation was observed between H. avenae populations occurring in the PNW and France. Methods described here will improve detection and identification efficiencies for cereal cyst nematodes in wheat fields.

  16. Identification d’une Classe de Processus de Poisson Filtres (Identification of a Class of Filtered Poisson Processes).

    DTIC Science & Technology

    1983-05-20

    Poisson processes is introduced: the amplitude has a law which is spherically invariant and the filter is real, linear and causal. It is shown how such a model can be identified from experimental data. (Author)

  17. Chromosome arm-specific BAC end sequences permit comparative analysis of homoeologous chromosomes and genomes of polyploid wheat

    PubMed Central

    2012-01-01

    Background Bread wheat, one of the world’s staple food crops, has the largest, highly repetitive and polyploid genome among the cereal crops. The wheat genome holds the key to crop genetic improvement against challenges such as climate change, environmental degradation, and water scarcity. To unravel the complex wheat genome, the International Wheat Genome Sequencing Consortium (IWGSC) is pursuing a chromosome- and chromosome arm-based approach to physical mapping and sequencing. Here we report on the use of a BAC library made from flow-sorted telosomic chromosome 3A short arm (t3AS) for marker development and analysis of sequence composition and comparative evolution of homoeologous genomes of hexaploid wheat. Results The end-sequencing of 9,984 random BACs from a chromosome arm 3AS-specific library (TaaCsp3AShA) generated 11,014,359 bp of high quality sequence from 17,591 BAC-ends with an average length of 626 bp. The sequence represents 3.2% of t3AS with an average DNA sequence read every 19 kb. Overall, 79% of the sequence consisted of repetitive elements, 1.38% as coding regions (estimated 2,850 genes) and another 19% of unknown origin. Comparative sequence analysis suggested that 70-77% of the genes present in both 3A and 3B were syntenic with model species. Among the transposable elements, gypsy/sabrina (12.4%) was the most abundant repeat and was significantly more frequent in 3A compared to homoeologous chromosome 3B. Twenty novel repetitive sequences were also identified using de novo repeat identification. BESs were screened to identify simple sequence repeats (SSR) and transposable element junctions. A total of 1,057 SSRs were identified with a density of one per 10.4 kb, and 7,928 junctions between transposable elements (TE) and other sequences were identified with a density of one per 1.39 kb. With the objective of enhancing the marker density of chromosome 3AS, oligonucleotide primers were successfully designed from 758 SSRs and 695 Insertion Site Based Polymorphisms (ISBPs). Of the 96 ISBP primer pairs tested, 28 (29%) were 3A-specific and compared to 17 (18%) for 96 SSRs. Conclusion This work reports on the use of wheat chromosome arm 3AS-specific BAC library for the targeted generation of sequence data from a particular region of the huge genome of wheat. A large quantity of sequences were generated from the A genome of hexaploid wheat for comparative genome analysis with homoeologous B and D genomes and other model grass genomes. Hundreds of molecular markers were developed from the 3AS arm-specific sequences; these and other sequences will be useful in gene discovery and physical mapping. PMID:22559868

  18. SNP Discovery for mapping alien introgressions in wheat

    PubMed Central

    2014-01-01

    Background Monitoring alien introgressions in crop plants is difficult due to the lack of genetic and molecular mapping information on the wild crop relatives. The tertiary gene pool of wheat is a very important source of genetic variability for wheat improvement against biotic and abiotic stresses. By exploring the 5Mg short arm (5MgS) of Aegilops geniculata, we can apply chromosome genomics for the discovery of SNP markers and their use for monitoring alien introgressions in wheat (Triticum aestivum L). Results The short arm of chromosome 5Mg of Ae. geniculata Roth (syn. Ae. ovata L.; 2n = 4x = 28, UgUgMgMg) was flow-sorted from a wheat line in which it is maintained as a telocentric chromosome. DNA of the sorted arm was amplified and sequenced using an Illumina Hiseq 2000 with ~45x coverage. The sequence data was used for SNP discovery against wheat homoeologous group-5 assemblies. A total of 2,178 unique, 5MgS-specific SNPs were discovered. Randomly selected samples of 59 5MgS-specific SNPs were tested (44 by KASPar assay and 15 by Sanger sequencing) and 84% were validated. Of the selected SNPs, 97% mapped to a chromosome 5Mg addition to wheat (the source of t5MgS), and 94% to 5Mg introgressed from a different accession of Ae. geniculata substituting for chromosome 5D of wheat. The validated SNPs also identified chromosome segments of 5MgS origin in a set of T5D-5Mg translocation lines; eight SNPs (25%) mapped to TA5601 [T5DL · 5DS-5MgS(0.75)] and three (8%) to TA5602 [T5DL · 5DS-5MgS (0.95)]. SNPs (gsnp_5ms83 and gsnp_5ms94), tagging chromosome T5DL · 5DS-5MgS(0.95) with the smallest introgression carrying resistance to leaf rust (Lr57) and stripe rust (Yr40), were validated in two released germplasm lines with Lr57 and Yr40 genes. Conclusion This approach should be widely applicable for the identification of species/genome-specific SNPs. The development of a large number of SNP markers will facilitate the precise introgression and monitoring of alien segments in crop breeding programs and further enable mapping and cloning novel genes from the wild relatives of crop plants. PMID:24716476

  19. Vegetation classification and soil moisture calculation using land surface temperature (LST) and vegetation index (VI)

    NASA Astrophysics Data System (ADS)

    Liu, Liangyun; Zhang, Bing; Xu, Genxing; Zheng, Lanfen; Tong, Qingxi

    2002-03-01

    In this paper, the temperature-missivity separating (TES) method and normalized difference vegetation index (NDVI) are introduced, and the hyperspectral image data are analyzed using land surface temperature (LST) and NDVI channels which are acquired by Operative Module Imaging Spectral (OMIS) in Beijing Precision Agriculture Demonstration Base in Xiaotangshan town, Beijing in 26 Apr, 2001. Firstly, the 6 kinds of ground targets, which are winter wheat in booting stage and jointing stage, bare soil, water in ponds, sullage in dry ponds, aquatic grass, are well classified using LST and NDVI channels. Secondly, the triangle-like scatter-plot is built and analyzed using LST and NDVI channels, which is convenient to extract the information of vegetation growth and soil's moisture. Compared with the scatter-plot built by red and near-infrared bands, the spectral distance between different classes are larger, and the samples in the same class are more convergent. Finally, we design a logarithm VIT model to extract the surface soil water content (SWC) using LST and NDVI channel, which works well, and the coefficient of determination, R2, between the measured surface SWC and the estimated is 0.634. The mapping of surface SWC in the wheat area are calculated and illustrated, which is important for scientific irrigation and precise agriculture.

  20. Prebiotic Content of Bread Prepared with Flour from Immature Wheat Grain and Selected Dextran-Producing Lactic Acid Bacteria

    PubMed Central

    Ventorino, Valeria; Cavella, Silvana; Fagnano, Massimo; Brugno, Rachele

    2013-01-01

    In the last few years the need to produce food with added value has fueled the search for new ingredients and health-promoting compounds. In particular, to improve the quality of bakery products with distinct nutritional properties, the identification of new raw materials, appropriate technologies, and specific microbial strains is necessary. In this study, different doughs were prepared, with 10% and 20% flour from immature wheat grain blended with type “0 America” wheat flour. Immature flour was obtained from durum wheat grains harvested 1 to 2 weeks after anthesis. Doughs were obtained by both the straight-dough and sourdough processes. Two selected exopolysaccharide-producing strains of lactic acid bacteria (LAB), Leuconostoc lactis A95 and Lactobacillus curvatus 69B2, were used as starters. Immature flour contained 2.21 g/100 g (dry weight) of fructo-oligosaccharides. Twenty percent immature flour in dough resulted in a shorter leavening time (4.23 ± 0.03 h) than with the control and dough with 10% immature flour. The total titratable acidity of sourdough with 20% immature flour was higher (12.75 ± 0.15 ml 0.1 N NaOH) than in the control and sourdough with 10% immature wheat flour (9.20 ml 0.1 N NaOH). Molecular analysis showed that all samples contained three LAB species identified as L. lactis, L. curvatus, and Pediococcus acidilactici. A larger amount of exopolysaccharide was found in sourdough obtained with 20% immature flour (5.33 ± 0.032 g/kg), positively influencing the exopolysaccharide content of the bread prepared by the sourdough process (1.70 ± 0.03 g/kg). The addition of 20% immature flour also led to a greater presence of fructo-oligosaccharides in the bread (900 mg/100 g dry weight), which improved its nutritional characteristics. While bread volume decreased as the concentration of immature wheat flour increased, its mechanical characteristics (stress at a strain of 30%) were the same in all samples obtained with different percentages of fructo-oligosaccharides. These data support the use of immature wheat grain flour, and exopolysaccaride-producing lactic acid bacteria in formulating functional prebiotic baked goods whose nutritional value can be suitably improved. PMID:23584774

  1. Heterologous expression and transcript analysis of gibberellin biosynthetic genes of grasses reveals novel functionality in the GA3ox family.

    PubMed

    Pearce, Stephen; Huttly, Alison K; Prosser, Ian M; Li, Yi-dan; Vaughan, Simon P; Gallova, Barbora; Patil, Archana; Coghill, Jane A; Dubcovsky, Jorge; Hedden, Peter; Phillips, Andrew L

    2015-06-05

    The gibberellin (GA) pathway plays a central role in the regulation of plant development, with the 2-oxoglutarate-dependent dioxygenases (2-ODDs: GA20ox, GA3ox, GA2ox) that catalyse the later steps in the biosynthetic pathway of particularly importance in regulating bioactive GA levels. Although GA has important impacts on crop yield and quality, our understanding of the regulation of GA biosynthesis during wheat and barley development remains limited. In this study we identified or assembled genes encoding the GA 2-ODDs of wheat, barley and Brachypodium distachyon and characterised the wheat genes by heterologous expression and transcript analysis. The wheat, barley and Brachypodium genomes each contain orthologous copies of the GA20ox, GA3ox and GA2ox genes identified in rice, with the exception of OsGA3ox1 and OsGA2ox5 which are absent in these species. Some additional paralogs of 2-ODD genes were identified: notably, a novel gene in the wheat B genome related to GA3ox2 was shown to encode a GA 1-oxidase, named as TaGA1ox-B1. This enzyme is likely to be responsible for the abundant 1β-hydroxylated GAs present in developing wheat grains. We also identified a related gene in barley, located in a syntenic position to TaGA1ox-B1, that encodes a GA 3,18-dihydroxylase which similarly accounts for the accumulation of unusual GAs in barley grains. Transcript analysis showed that some paralogs of the different classes of 2-ODD were expressed mainly in a single tissue or at specific developmental stages. In particular, TaGA20ox3, TaGA1ox1, TaGA3ox3 and TaGA2ox7 were predominantly expressed in developing grain. More detailed analysis of grain-specific gene expression showed that while the transcripts of biosynthetic genes were most abundant in the endosperm, genes encoding inactivation and signalling components were more highly expressed in the seed coat and pericarp. The comprehensive expression and functional characterisation of the multigene families encoding the 2-ODD enzymes of the GA pathway in wheat and barley will provide the basis for a better understanding of GA-regulated development in these species. This analysis revealed the existence of a novel, endosperm-specific GA 1-oxidase in wheat and a related GA 3,18-dihydroxylase enzyme in barley that may play important roles during grain expansion and development.

  2. Identification of Low Molecular Weight Glutenin Alleles by Matrix-Assisted Laser Desorption/Ionization Time-Of-Flight Mass Spectrometry (MALDI-TOF-MS) in Common Wheat (Triticum aestivum L.).

    PubMed

    Wang, Aili; Liu, Li; Peng, Yanchun; Islam, Shahidul; Applebee, Marie; Appels, Rudi; Yan, Yueming; Ma, Wujun

    2015-01-01

    Low molecular weight glutenin subunits (LMW-GS) play an important role in determining dough properties and breadmaking quality. However, resolution of the currently used methodologies for analyzing LMW-GS is rather low which prevents an efficient use of genetic variations associated with these alleles in wheat breeding. The aim of the current study is to evaluate and develop a rapid, simple, and accurate method to differentiate LMW-GS alleles using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. A set of standard single LMW-GS allele lines as well as a suite of well documented wheat cultivars were collected from France, CIMMYT, and Canada. Method development and optimization were focused on protein extraction procedures and MALDI-TOF instrument settings to generate reproducible diagnostic spectrum peak profiles for each of the known wheat LMW-GS allele. Results revealed a total of 48 unique allele combinations among the studied genotypes. Characteristic MALDI-TOF peak patterns were obtained for 17 common LMW-GS alleles, including 5 (b, a or c, d, e, f), 7 (a, b, c, d or i, f, g, h) and 5 (a, b, c, d, f) patterns or alleles for the Glu-A3, Glu-B3, and Glu-D3 loci, respectively. In addition, some reproducible MALDI-TOF peak patterns were also obtained that did not match with any known alleles. The results demonstrated a high resolution and throughput nature of MALDI-TOF technology in analyzing LMW-GS alleles, which is suitable for application in wheat breeding programs in processing a large number of wheat lines with high accuracy in limited time. It also suggested that the variation of LMW-GS alleles is more abundant than what has been defined by the current nomenclature system that is mainly based on SDS-PAGE system. The MALDI-TOF technology is useful to differentiate these variations. An international joint effort may be needed to assign allele symbols to these newly identified alleles and determine their effects on end-product quality attributes.

  3. Identification of a member of the catalase multigene family on wheat chromosome 7A associated with flour b* colour and biological significance of allelic variation.

    PubMed

    Li, Dora A; Walker, Esther; Francki, Michael G

    2015-12-01

    Carotenoids (especially lutein) are known to be the pigment source for flour b* colour in bread wheat. Flour b* colour variation is controlled by a quantitative trait locus (QTL) on wheat chromosome 7AL and one gene from the carotenoid pathway, phytoene synthase, was functionally associated with the QTL on 7AL in some, but not all, wheat genotypes. A SNP marker within a sequence similar to catalase (Cat3-A1snp) derived from full-length (FL) cDNA (AK332460), however, was consistently associated with the QTL on 7AL and implicated in regulating hydrogen peroxide (H2O2) to control carotenoid accumulation affecting flour b* colour. The number of catalase genes on chromosome 7AL was investigated in this study to identify which gene may be implicated in flour b* variation and two were identified through interrogation of the draft wheat genome survey sequence consisting of five exons and a further two members having eight exons identified through comparative analysis with the single catalase gene on rice chromosome 6, PCR amplification and sequencing. It was evident that the catalase genes on chromosome 7A had duplicated and diverged during evolution relative to its counterpart on rice chromosome 6. The detection of transcripts in seeds, the co-location with Cat3-A1snp marker and maximised alignment of FL-cDNA (AK332460) with cognate genomic sequence indicated that TaCat3-A1 was the member of the catalase gene family associated with flour b* colour variation. Re-sequencing identified three alleles from three wheat varieties, TaCat3-A1a, TaCat3-A1b and TaCat3-A1c, and their predicted protein identified differences in peroxisomal targeting signal tri-peptide domain in the carboxyl terminal end providing new insights into their potential role in regulating cellular H2O2 that contribute to flour b* colour variation.

  4. Identification of Low Molecular Weight Glutenin Alleles by Matrix-Assisted Laser Desorption/Ionization Time-Of-Flight Mass Spectrometry (MALDI-TOF-MS) in Common Wheat (Triticum aestivum L.)

    PubMed Central

    Islam, Shahidul; Applebee, Marie; Appels, Rudi; Yan, Yueming; Ma, Wujun

    2015-01-01

    Low molecular weight glutenin subunits (LMW-GS) play an important role in determining dough properties and breadmaking quality. However, resolution of the currently used methodologies for analyzing LMW-GS is rather low which prevents an efficient use of genetic variations associated with these alleles in wheat breeding. The aim of the current study is to evaluate and develop a rapid, simple, and accurate method to differentiate LMW-GS alleles using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. A set of standard single LMW-GS allele lines as well as a suite of well documented wheat cultivars were collected from France, CIMMYT, and Canada. Method development and optimization were focused on protein extraction procedures and MALDI-TOF instrument settings to generate reproducible diagnostic spectrum peak profiles for each of the known wheat LMW-GS allele. Results revealed a total of 48 unique allele combinations among the studied genotypes. Characteristic MALDI-TOF peak patterns were obtained for 17 common LMW-GS alleles, including 5 (b, a or c, d, e, f), 7 (a, b, c, d or i, f, g, h) and 5 (a, b, c, d, f) patterns or alleles for the Glu-A3, Glu-B3, and Glu-D3 loci, respectively. In addition, some reproducible MALDI-TOF peak patterns were also obtained that did not match with any known alleles. The results demonstrated a high resolution and throughput nature of MALDI-TOF technology in analyzing LMW-GS alleles, which is suitable for application in wheat breeding programs in processing a large number of wheat lines with high accuracy in limited time. It also suggested that the variation of LMW-GS alleles is more abundant than what has been defined by the current nomenclature system that is mainly based on SDS-PAGE system. The MALDI-TOF technology is useful to differentiate these variations. An international joint effort may be needed to assign allele symbols to these newly identified alleles and determine their effects on end-product quality attributes. PMID:26407296

  5. Elucidation of the genetic basis of variation for stem strength characteristics in bread wheat by Associative Transcriptomics.

    PubMed

    Miller, Charlotte N; Harper, Andrea L; Trick, Martin; Werner, Peter; Waldron, Keith; Bancroft, Ian

    2016-07-16

    The current approach to reducing the tendency for wheat grown under high fertilizer conditions to collapse (lodge) under the weight of its grain is based on reducing stem height via the introduction of Rht genes. However, these reduce the yield of straw (itself an important commodity) and introduce other undesirable characteristics. Identification of alternative height-control loci is therefore of key interest. In addition, the improvement of stem mechanical strength provides a further way through which lodging can be reduced. To investigate the prospects for genetic alternatives to Rht, we assessed variation for plant height and stem strength properties in a training genetic diversity panel of 100 wheat accessions fixed for Rht. Using mRNAseq data derived from RNA purified from leaves, functional genotypes were developed for the panel comprising 42,066 Single Nucleotide Polymorphism (SNP) markers and 94,060 Gene Expression Markers (GEMs). In the first application in wheat of the recently-developed method of Associative Transcriptomics, we identified associations between trait variation and both SNPs and GEMs. Analysis of marker-trait associations revealed candidates for the causative genes underlying the trait variation, implicating xylan acetylation and the COP9 signalosome as contributing to stem strength and auxin in the control of the observed variation for plant height. Predictive capabilities of key markers for stem strength were validated using a test genetic diversity panel of 30 further wheat accessions. This work illustrates the power of Associative Transcriptomics for the exploration of complex traits of high agronomic importance in wheat. The careful selection of genotypes included in the analysis, allowed for high resolution mapping of novel trait-controlling loci in this staple crop. The use of Gene Expression markers coupled with the more traditional sequence-based markers, provides the power required to understand the biological context of the marker-trait associations observed. This not only adds to the wealth of knowledge that we strive to accumulate regarding gene function and plant adaptation, but also provides breeders with the information required to make more informed decisions regarding the potential consequences of incorporating the use of particular markers into future breeding programmes.

  6. [Concentrations and Component Profiles PAHs in Surface Soils and Wheat Grains from the Cornfields Close to the Steel Smelting Industry in Handan, Hebei Province].

    PubMed

    Wu, Di; Wang, Yi-long; Liu, Wei-jian; Chen, Yuan-chen; Fu, Xiao-fang; Tao, Shu; Liu, Wen-xin

    2016-02-15

    In this study, paired surface soil and mature wheat grain samples were collected in the cornfields near the large Handan Steel Manufacturer; and the total concentrations and compositional profiles of the parent PAHs were measured, then the spatial distribution characteristics and correlation with total organic carbon fractions in soil were determined. Accordingly, a preliminary source identification was performed, and the association between PAHs in surface soil and wheat grain was briefly discussed. The median concentration of total PAHs in surface soils from the cornfields of Handan was 398.9 ng x g(-1) (ranged from 123.4 ng x g(-1) to 1626.4 ng x g(-1), where around 18% and 10% of all the studied soil samples were over the corresponding quality criteria for total PAHs and B [a] P in soils, respectively. The MMW and HMW species were the main components in the compositional profiles of surface soils. Based on the specific isomeric ratios of PAHs species, coal/biomass combustion and transportation fuel (tail gas) were the dominant mixed sources for the local PAHs emission. The fractions of surface soil TOC had significant positive correlations with the total PAHs and also with the individual components with different rings. In addition, the median concentration of total PAHs in wheat grains collected in the cornfields near the Handan Steel Manufacture was 27.0 ng x g(-1) (ranged from 19.0-34.0 ng x g(-1)). The levels in wheat grains were not high, and lower than the related hygienic standards of food proposed by EU and China. The LMW and MMW PAHs with 2 to 4 rings occupied a larger proportion, more than 84% of the total PAHs, which was largely different from the component profiles in surface soils. This situation suggested that the local sources of PAHs in wheat grains may originate not only from surface soil via root absorption and internal transportation, but also from ambient air through dry and wet deposition on the leaf surface (stoma).

  7. Toxic influence of key organic soil pollutants on the total flavonoid content in wheat leaves

    PubMed Central

    Copaciu, Florina; Opriş, Ocsana; Niinemets, Ülo; Copolovici, Lucian

    2018-01-01

    Textile dyes and antibiotics are two main classes of environmental pollutants which could be found in soil and water. Those persistent pollutants can have a negative influence on plant growth and development and affect the level of secondary metabolites. In the present work we studied the effect of textile dyes and antibiotics on total leaf flavonoid contents in wheat (Triticum aestivum L.). Contaminant solutions were applied daily using concentrations of 0.5 mg L–1 (lower) and 1.5 mg L–1 (higher dose) for either one or two weeks. We observed that exposure to the higher concentration of textile dyes resulted in a reduction in flavonoid content while antibiotics enhanced flavonoid contents at lower doses of exposure, and reduced at higher doses of exposure. These results suggest that diffuse chronic pollution by artificial organic contaminants can importantly alter antioxidative capacity of plants. PMID:29386693

  8. Toxic influence of key organic soil pollutants on the total flavonoid content in wheat leaves.

    PubMed

    Copaciu, Florina; Opriş, Ocsana; Niinemets, Ülo; Copolovici, Lucian

    2016-06-01

    Textile dyes and antibiotics are two main classes of environmental pollutants which could be found in soil and water. Those persistent pollutants can have a negative influence on plant growth and development and affect the level of secondary metabolites. In the present work we studied the effect of textile dyes and antibiotics on total leaf flavonoid contents in wheat ( Triticum aestivum L.). Contaminant solutions were applied daily using concentrations of 0.5 mg L -1 (lower) and 1.5 mg L -1 (higher dose) for either one or two weeks. We observed that exposure to the higher concentration of textile dyes resulted in a reduction in flavonoid content while antibiotics enhanced flavonoid contents at lower doses of exposure, and reduced at higher doses of exposure. These results suggest that diffuse chronic pollution by artificial organic contaminants can importantly alter antioxidative capacity of plants.

  9. The status of parametric studies in radar agriculture

    NASA Technical Reports Server (NTRS)

    Morain, S. A.

    1972-01-01

    Outlined is an information system based on the use of remote sensor data and the design, testing, and implementation of interpretation keys for agriculture. The task of crop identification from radar imagery emphasizes dichotomous keys and the effects of frequency, angular and other microwave dependencies of crops for use in discrimination. A mosaic is formulated from imagery and used to study acres in wheat for spread of circular irrigation, spread of crops, and other phenomena.

  10. Class and ideological orientations revisited: an exploration of class-based mechanisms.

    PubMed

    Bengtsson, Mattias; Berglund, Tomas; Oskarson, Maria

    2013-12-01

    Studies of the relationship between class position and political outlooks still only have a limited understanding of the class-related mechanisms that matter for ideological orientations. This article presents a comprehensive analysis of the mechanisms that link class position and left/right and authoritarian/libertarian orientations. Besides main factors such as income, career prospects, job security, education, class origin and class identification, the significance of work-related factors such as work autonomy, working in a team, a physically demanding job and a mentally demanding job is studied. The findings are based on a survey specifically designed for this purpose and collected in Sweden in 2008/2009. A great deal of the association between class position and left/right orientations is explained by socio-economic conditions; different classes sympathize with policies that will benefit them economically. Another important factor is class identification. Work-related factors also have relevance, but the effect of class position on left/right orientations works mainly through the remuneration system. Class position is also related to authoritarian/libertarian orientations. However, this relationship is less explained by socio-economic position per se, but is rather an effect of the educational system and its allocation of the workforce into different class positions. It also turns out that work-related factors do not explain the class effects; however, a physically demanding job shows a unique effect. Overall, our findings suggest that besides factors such as class position, income, education and class identification, we need to consider work-related aspects to derive a more complete understanding of the distribution of ideological orientations in Western societies. © London School of Economics and Political Science 2013.

  11. Mass spectrometry-based analysis of whole-grain phytochemicals.

    PubMed

    Koistinen, Ville Mikael; Hanhineva, Kati

    2017-05-24

    Whole grains are a rich source of several classes of phytochemicals, such as alkylresorcinols, benzoxazinoids, flavonoids, lignans, and phytosterols. A high intake of whole grains has been linked to a reduced risk of some major noncommunicable diseases, and it has been postulated that a complex mixture of phytochemicals works in synergy to generate beneficial health effects. Mass spectrometry, especially when coupled with liquid chromatography, is a widely used method for the analysis of phytochemicals owing to its high sensitivity and dynamic range. In this review, the current knowledge of the mass spectral properties of the most important classes of phytochemicals found in cereals of common wheat, barley, oats, and rye is discussed.

  12. Preliminary evidence for associations between molecular markers and quantitative traits in a set of bread wheat (Triticum aestivum L.) cultivars and breeding lines.

    PubMed

    Abdollahi Mandoulakani, Babak; Nasri, Shilan; Dashchi, Sahar; Arzhang, Sorour; Bernousi, Iraj; Abbasi Holasou, Hossein

    The identification of polymorphic markers associated with various quantitative traits allows us to test their performance for the exploitation of the extensive quantitative variation maintained in gene banks. In the current study, a set of 97 wheat germplasm accessions including 48 cultivars and 49 breeding lines were evaluated for 18 agronomic traits. The accessions were also genotyped with 23 ISSR, nine IRAP and 20 REMAP markers, generating a total of 658 clear and scorable bands, 86% of which were polymorphic. Both neighbor-joining dendrogram and Bayesian analysis of clustering of individuals revealed that the accessions could be divided into four genetically distinct groups, indicating the presence of a population structure in current wheat germplasm. Associations between molecular markers and 18 agronomic traits were analyzed using the mixed linear model (MLM) approach. A total of 94 loci were found to be significantly associated with agronomic traits (P≤0.01). The highest number of bands significantly associated with the 18 traits varied from 11 for number of spikelets spike -1 (NSS) to two for grain yield in row (GRY). Loci ISSR16-9 and REMAP13-10 were associated with three different traits. The results of the current study provide useful information about the performance of retrotransposon-based and ISSR molecular markers that could be helpful in selecting potentially elite gene bank samples for wheat-breeding programs. Copyright © 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

  13. Identification of a Kinase in Wheat Germ that Phosphorylates the Large Subunit of Initiation Factor 4F 1

    PubMed Central

    Humphreys, Jean; Browning, Karen S.; Ravel, Joanne M.

    1988-01-01

    A kinase has been isolated from wheat (Triticum aestivum) germ that phosphorylates the 220 kilodaltons (kD) subunit of wheat germ initiation factor (eIF) 4F, the 80 kD subunit of eIF-4B (an isozyme form of eIF-4F) and eIF-4G (the functional equivalent to mammalian eIF-4B). The kinase elutes from Sephacryl S-200 slightly in front of ovalbumin. The kinase phosphorylates casein and histone IIA to a small extent, but does not phosphorylate phosvitin. Of the wheat germ initiation factors, elongation factors, and small and large ribosomal subunits, only eIF-4F, eIF-4B, and eIF-4G are phosphorylated to a significant extent. The kinase phosphorylates eIF-4F to the extent of two phosphates per mole of the 220 kD subunit and phosphorylates eIF-4B to the extent of one phosphate per mole of the 80 kD subunit. The 26 kD subunit of eIF-4F and the 28 kD subunit of eIF-4B are not phosphorylated by the kinase. The kinase phosphorylates the 59 kD component of eIF-4G to the extent of 0.25 phosphate per mole of eIF-4G. Phosphorylation of eIF-4F and eIF-4B does not affect their ability to support the binding of mRNA to small ribosomal subunits in vitro. Images Fig. 2 Fig. 3 PMID:16666331

  14. Identification of saline soils with multi-year remote sensing of crop yields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lobell, D; Ortiz-Monasterio, I; Gurrola, F C

    2006-10-17

    Soil salinity is an important constraint to agricultural sustainability, but accurate information on its variation across agricultural regions or its impact on regional crop productivity remains sparse. We evaluated the relationships between remotely sensed wheat yields and salinity in an irrigation district in the Colorado River Delta Region. The goals of this study were to (1) document the relative importance of salinity as a constraint to regional wheat production and (2) develop techniques to accurately identify saline fields. Estimates of wheat yield from six years of Landsat data agreed well with ground-based records on individual fields (R{sup 2} = 0.65).more » Salinity measurements on 122 randomly selected fields revealed that average 0-60 cm salinity levels > 4 dS m{sup -1} reduced wheat yields, but the relative scarcity of such fields resulted in less than 1% regional yield loss attributable to salinity. Moreover, low yield was not a reliable indicator of high salinity, because many other factors contributed to yield variability in individual years. However, temporal analysis of yield images showed a significant fraction of fields exhibited consistently low yields over the six year period. A subsequent survey of 60 additional fields, half of which were consistently low yielding, revealed that this targeted subset had significantly higher salinity at 30-60 cm depth than the control group (p = 0.02). These results suggest that high subsurface salinity is associated with consistently low yields in this region, and that multi-year yield maps derived from remote sensing therefore provide an opportunity to map salinity across agricultural regions.« less

  15. Teacher Justice and Students’ Class Identification: Belief in a Just World and Teacher–Student Relationship as Mediators

    PubMed Central

    Jiang, Ronghuan; Liu, Ru-De; Ding, Yi; Zhen, Rui; Sun, Yan; Fu, Xinchen

    2018-01-01

    For school-age adolescents, teacher justice plays an important role in their learning and social outcomes. The present study examined the relation between teacher justice and students’ class identification in 1735 Chinese school-age adolescents by considering belief in a just world (BJW) and teacher–student relationship as mediators. Structure equation modeling (SEM) was used to reveal the direct and indirect effects. The analyses showed that all the direct and indirect effects were significant. These findings indicated that teacher justice had a positive effect on students’ class identification. In addition, teacher justice impacted students’ class identification through students’ just-world belief and teacher–student relationships. These results suggested that for adolescents, teacher justice played an important role in shaping their just-world belief system and their interpersonal relationships with teachers, which in turn affected their sense of belonging and values in relation to their class. Thus, it is important for teachers to be aware that their injustice may negatively impact their relationships with students, students’ belief systems, and their psychological engagement at school. There is a need to develop teacher-training programs to help teachers to establish classroom reward-punishment systems with the consideration of social justice, to communicate with students through an unbiased approach, and to increase student participation in the important decision making of the whole class. PMID:29875726

  16. Teacher Justice and Students' Class Identification: Belief in a Just World and Teacher-Student Relationship as Mediators.

    PubMed

    Jiang, Ronghuan; Liu, Ru-De; Ding, Yi; Zhen, Rui; Sun, Yan; Fu, Xinchen

    2018-01-01

    For school-age adolescents, teacher justice plays an important role in their learning and social outcomes. The present study examined the relation between teacher justice and students' class identification in 1735 Chinese school-age adolescents by considering belief in a just world (BJW) and teacher-student relationship as mediators. Structure equation modeling (SEM) was used to reveal the direct and indirect effects. The analyses showed that all the direct and indirect effects were significant. These findings indicated that teacher justice had a positive effect on students' class identification. In addition, teacher justice impacted students' class identification through students' just-world belief and teacher-student relationships. These results suggested that for adolescents, teacher justice played an important role in shaping their just-world belief system and their interpersonal relationships with teachers, which in turn affected their sense of belonging and values in relation to their class. Thus, it is important for teachers to be aware that their injustice may negatively impact their relationships with students, students' belief systems, and their psychological engagement at school. There is a need to develop teacher-training programs to help teachers to establish classroom reward-punishment systems with the consideration of social justice, to communicate with students through an unbiased approach, and to increase student participation in the important decision making of the whole class.

  17. Protein Adsorption and Its Role in Bacterial Film Development

    DTIC Science & Technology

    1989-06-27

    only the secondary antibody conjugated to alkaline phosphatase was used. Combined Amino Acids as Measured by HPLC We are interested in a simple, direct...specific assay for chitin that relies on the lectin, wheat germ agglutinin (WGA). Lectins are a general class of proteins that bind to carbohydrates. The...protein; 2) a new method for measuring combined amino acids (includes proteins) in seawater was shown to measure higher concentration than the old

  18. Genome editing of bread wheat using biolistic delivery of CRISPR/Cas9 in vitro transcripts or ribonucleoproteins.

    PubMed

    Liang, Zhen; Chen, Kunling; Zhang, Yi; Liu, Jinxing; Yin, Kangquan; Qiu, Jin-Long; Gao, Caixia

    2018-03-01

    This protocol is an extension to: Nat. Protoc. 9, 2395-2410 (2014); doi:10.1038/nprot.2014.157; published online 18 September 2014In recent years, CRISPR/Cas9 has emerged as a powerful tool for improving crop traits. Conventional plant genome editing mainly relies on plasmid-carrying cassettes delivered by Agrobacterium or particle bombardment. Here, we describe DNA-free editing of bread wheat by delivering in vitro transcripts (IVTs) or ribonucleoprotein complexes (RNPs) of CRISPR/Cas9 by particle bombardment. This protocol serves as an extension of our previously published protocol on genome editing in bread wheat using CRISPR/Cas9 plasmids delivered by particle bombardment. The methods we describe not only eliminate random integration of CRISPR/Cas9 into genomic DNA, but also reduce off-target effects. In this protocol extension article, we present detailed protocols for preparation of IVTs and RNPs; validation by PCR/restriction enzyme (RE) and next-generation sequencing; delivery by biolistics; and recovery of mutants and identification of mutants by pooling methods and Sanger sequencing. To use these protocols, researchers should have basic skills and experience in molecular biology and biolistic transformation. By using these protocols, plants edited without the use of any foreign DNA can be generated and identified within 9-11 weeks.

  19. A wheat salinity-induced WRKY transcription factor TaWRKY93 confers multiple abiotic stress tolerance in Arabidopsis thaliana.

    PubMed

    Qin, Yuxiang; Tian, Yanchen; Liu, Xiuzhi

    2015-08-21

    Wheat is an important crop in the world. But most of the cultivars are salt sensitive, and often adversely affected by salt stress. WRKY transcription factors play a major role in plant responses to salt stress, but the effective salinity regulatory WRKYs identified in bread wheat are limited and the mechanism of salt stress tolerance is also not well explored. Here, we identified a salt (NaCl) induced class II WRKY transcription factor TaWRKY93. Its transcript level was strongly induced by salt (NaCl) and exogenous abscisic acid (ABA). Over-expression of TaWRKY93 in Arabidopsis thaliana enhanced salt (NaCl), drought, low temperature and osmotic (mannitol) stress tolerance, mainly demonstrated by transgenic plants forming longer primary roots or more lateral roots on MS plates supplemented with NaCl and mannitol individually, higher survival rate under drought and low temperature stress. Further, transgenic plants maintained a more proline content, higher relative water content and less electrolyte leakage than the wild type plants. The transcript abundance of a series of abiotic stress-related genes was up-regulated in the TaWRKY93 transgenic plants. In summary, TaWRKY93 is a new positive regulator of abiotic stress, it may increase salinity, drought and low temperature stress tolerance through enhancing osmotic adjustment, maintaining membrane stability and increasing transcription of stress related genes, and contribute to the superior agricultural traits of SR3 through promoting root development. It can be used as a candidate gene for wheat transgenic engineering breeding against abiotic stress. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Roles for stress-inducible lambda glutathione transferases in flavonoid metabolism in plants as identified by ligand fishing.

    PubMed

    Dixon, David P; Edwards, Robert

    2010-11-19

    The glutathione transferases (GSTs) of plants are a superfamily of abundant enzymes whose roles in endogenous metabolism are largely unknown. For example, the lambda class of GSTs (GSTLs) have members that are selectively induced by chemical stress treatments and based on their enzyme chemistry are predicted to have roles in redox homeostasis. However, using conventional approaches these functions have yet to be determined. To address this, recombinant GSTLs from wheat and Arabidopsis were tagged with a Strep tag and after affinity-immobilization, incubated with extracts from Arabidopsis, tobacco, and wheat. Bound ligands were then recovered by solvent extraction and identified by mass spectrometry (MS). With the wheat enzyme TaGSTL1, the ligand profiles obtained with in vitro extracts from tobacco closely matched those observed after the protein had been expressed in planta, demonstrating that these associations were physiologically representative. The stress-inducible TaGSTL1 was found to selectively recognize flavonols (e.g. taxifolin; K(d) = 25 nM), with this binding being dependent upon S-glutathionylation of an active site cysteine. In the case of the wheat extracts, this selectivity in ligand recognitions lead to the detection of flavonols that had not been previously described in this cereal. Subsequent in vitro assays showed that the co-binding of flavonols, such as quercetin, to the thiolated TaGSTL1 represented an intermediate step in the reduction of the respective S-glutathionylated quinone derivatives to yield free flavonols. These results suggest a novel role for GSTLs in maintaining the flavonoid pool under stress conditions.

  1. Towards an understanding of wheat chloroplasts: a methodical investigation of thylakoid proteome.

    PubMed

    Kamal, Abu Hena Mostafa; Cho, Kun; Komatsu, Setsuko; Uozumi, Nobuyuki; Choi, Jong-Soon; Woo, Sun Hee

    2012-05-01

    We utilized Percoll density gradient centrifugation to isolate and fractionate chloroplasts of Korean winter wheat cultivar cv. Kumgang (Triticum aestivum L.). The resulting protein fractions were separated by one dimensional polyacrylamide gel electrophoresis (1D-PAGE) coupled with LTQ-FTICR mass spectrometry. This enabled us to detect and identify 767 unique proteins. Our findings represent the most comprehensive exploration of a proteome to date. Based on annotation information from the UniProtKB/Swiss-Prot database and our analyses via WoLF PSORT and PSORT, these proteins are localized in the chloroplast (607 proteins), chloroplast stroma (145), thylakoid membrane (342), lumens (163), and integral membranes (166). In all, 67% were confirmed as chloroplast thylakoid proteins. Although nearly complete protein coverage (89% proteins) has been accomplished for the key chloroplast pathways in wheat, such as for photosynthesis, many other proteins are involved in regulating carbon metabolism. The identified proteins were assigned to 103 functional categories according to a classification system developed by the iProClass database and provided through Protein Information Resources. Those functions include electron transport, energy, cellular organization and biogenesis, transport, stress responses, and other metabolic processes. Whereas most of these proteins are associated with known complexes and metabolic pathways, about 13% of the proteins have unknown functions. The chloroplast proteome contains many proteins that are localized to the thylakoids but as yet have no known function. We propose that some of these familiar proteins participate in the photosynthetic pathway. Thus, our new and comprehensive protein profile may provide clues for better understanding that photosynthetic process in wheat.

  2. 47 CFR 80.275 - Technical Requirements for Class A Automatic Identification System (AIS) equipment.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Technical Requirements for Class A Automatic Identification System (AIS) equipment. 80.275 Section 80.275 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES STATIONS IN THE MARITIME SERVICES Equipment Authorization for Compulsory Ships § 80.275...

  3. Change Agent Research for Windsor Aquatic Club (CAR/WAC).

    ERIC Educational Resources Information Center

    Moriarty, Dick; Olafson, Gord

    This study of the Windsor Aquatic Club (WAC) was undertaken to investigate the following problems and questions: (a) identification of goals; (b) conflict in the interface of age class and school class swimming, as well as the interface of municipal, regional, provincial, federal, and international organizations; (c) identification of task,…

  4. Homographs: Classification and Identification.

    ERIC Educational Resources Information Center

    Pacak, M.; Henisz, Bozena

    1968-01-01

    Homographs are defined in this study as sets of word forms which are spelled alike but which have entirely or partially different meanings and which may have different syntactic functions (that is, they belong to more than one form class or to more than one subclass of a form class). This report deals with the classification and identification of…

  5. A Mixture Rasch Model-Based Computerized Adaptive Test for Latent Class Identification

    ERIC Educational Resources Information Center

    Jiao, Hong; Macready, George; Liu, Junhui; Cho, Youngmi

    2012-01-01

    This study explored a computerized adaptive test delivery algorithm for latent class identification based on the mixture Rasch model. Four item selection methods based on the Kullback-Leibler (KL) information were proposed and compared with the reversed and the adaptive KL information under simulated testing conditions. When item separation was…

  6. Managing the risk of extreme climate events in Australian major wheat production systems

    NASA Astrophysics Data System (ADS)

    Luo, Qunying; Trethowan, Richard; Tan, Daniel K. Y.

    2018-06-01

    Extreme climate events (ECEs) such as drought, frost risk and heat stress cause significant economic losses in Australia. The risk posed by ECEs in the wheat production systems of Australia could be better managed through the identification of safe flowering (SFW) and optimal time of sowing (TOS) windows. To address this issue, three locations (Narrabri, Roseworthy and Merredin), three cultivars (Suntop and Gregory for Narrabri, Mace for both Roseworthy and Merredin) and 20 TOS at 1-week intervals between 1 April and 12 August for the period from 1957 to 2007 were evaluated using the Agricultural Production System sIMulator (APSIM)-Wheat model. Simulation results show that (1) the average frequency of frost events decreased with TOS from 8 to 0 days (d) across the four cases (the combination of locations and cultivars), (2) the average frequency of heat stress events increased with TOS across all cases from 0 to 10 d, (3) soil moisture stress (SMS) increased with earlier TOS before reaching a plateau and then slightly decreasing for Suntop and Gregory at Narrabri and Mace at Roseworthy while SMS increased with TOS for Mace at Merredin from 0.1 to 0.8, (4) Mace at Merredin had the earliest and widest SFW (216-260) while Mace at Roseworthy had latest SFW (257-280), (5) frost risk and heat stress determine SFW at wetter sites (i.e. Narrabri and Roseworthy) while frost risk and SMS determine SFW at drier site (i.e. Merredin) and (6) the optimal TOS (window) to maximise wheat yield are 6-20 May, 13-27 May and 15 April at Narrabri, Roseworthy and Merredin, respectively. These findings provide important and specific information for wheat growers about the management of ECE risk on farm. Furthermore, the coupling of the APSIM crop models with state-of-the-art seasonal and intra-seasonal climate forecast information provides an important tool for improved management of the risk of ECEs in economically important cropping industries in the foreseeable future.

  7. Taxonomic Structure and Monitoring of the Dominant Population of Lactic Acid Bacteria during Wheat Flour Sourdough Type I Propagation Using Lactobacillus sanfranciscensis Starters▿

    PubMed Central

    Siragusa, Sonya; Di Cagno, Raffaella; Ercolini, Danilo; Minervini, Fabio; Gobbetti, Marco; De Angelis, Maria

    2009-01-01

    The structure and stability of the dominant lactic acid bacterium population were assessed during wheat flour sourdough type I propagation by using singly nine strains of Lactobacillus sanfranciscensis. Under back-slopping propagation with wheat flour type 0 F114, cell numbers of presumptive lactic acid bacteria varied slightly between and within starters. As determined by randomly amplified polymorphic DNA-PCR and restriction endonuclease analysis-pulsed-field gel electrophoresis analyses, only three (LS8, LS14, and LS44) starters dominated throughout 10 days of propagation. The others progressively decreased to less than 3 log CFU g−1. Partial sequence analysis of the 16S rRNA and recA genes and PCR-denaturating gradient gel electrophoresis analysis using the rpoB gene allowed identification of Weissella confusa, Lactobacillus sanfranciscensis, Lactobacillus plantarum, Lactobacillus rossiae, Lactobacillus brevis, Lactococcus lactis subsp. lactis, Pediococcus pentosaceus, and Lactobacillus spp. as the dominant species of the raw wheat flour. At the end of propagation, one autochthonous strain of L. sanfranciscensis was found in all the sourdoughs. Except for L. brevis, strains of the above species were variously found in the mature sourdoughs. Persistent starters were found in association with other biotypes of L. sanfranciscensis and with W. confusa or L. plantarum. Sourdoughs were characterized for acidification, quotient of fermentation, free amino acids, and community-level catabolic profiles by USING Biolog 96-well Eco microplates. In particular, catabolic profiles of sourdoughs containing persistent starters behaved similarly and were clearly differentiated from the others. The three persistent starters were further used for the production of sourdoughs and propagated by using another wheat flour whose lactic acid bacterium population in part differed from the previous one. Also, in this case all three starter strains persisted during propagation. PMID:19088320

  8. Characterisation and mapping of adult plant stripe rust resistance in wheat accession Aus27284.

    PubMed

    Nsabiyera, Vallence; Bariana, Harbans S; Qureshi, Naeela; Wong, Debbie; Hayden, Matthew J; Bansal, Urmil K

    2018-07-01

    A new adult plant stripe rust resistance gene, Yr80, was identified in a common wheat landrace Aus27284. Linked markers were developed and validated for their utility in marker-assisted selection. Stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), is among the most important constraints to global wheat production. The identification and characterisation of new sources of host plant resistance enrich the gene pool and underpin deployment of resistance gene pyramids in new cultivars. Aus27284 exhibited resistance at the adult plant stage against predominant Pst pathotypes and was crossed with a susceptible genotype Avocet S. A recombinant inbred line (RIL) population comprising 121 lines was developed and tested in the field at three locations in 2016 and two in 2017 crop seasons. Monogenic segregation for adult plant stripe rust response was observed among the Aus27284/Avocet S RIL population and the underlying locus was temporarily designated YrAW11. Bulked-segregant analysis using the Infinium iSelect 90K SNP wheat array placed YrAW11 in chromosome 3B. Kompetitive allele specific PCR (KASP) primers were designed for the linked SNPs and YrAW11 was flanked by KASP_65624 and KASP_53292 (3 cM) proximally and KASP_53113 (4.9 cM) distally. A partial linkage map of the genomic region carrying YrAW11 comprised nine KASP and two SSR markers. The physical position of KASP markers in the pseudomolecule of chromosome 3B placed YrAW11 in the long arm and the location of markers gwm108 and gwm376 in the deletion bin 3BL2-0.22 supported this conclusion. As no other stripe rust resistance locus has been reported in chromosome 3BL, YrAW11 was formally designated Yr80. Marker KASP_ 53113 was polymorphic among 94% of 81 Australian wheat cultivars used for validation.

  9. Genome-Wide Association Study for Identification and Validation of Novel SNP Markers for Sr6 Stem Rust Resistance Gene in Bread Wheat.

    PubMed

    Mourad, Amira M I; Sallam, Ahmed; Belamkar, Vikas; Wegulo, Stephen; Bowden, Robert; Jin, Yue; Mahdy, Ezzat; Bakheit, Bahy; El-Wafaa, Atif A; Poland, Jesse; Baenziger, Peter S

    2018-01-01

    Stem rust (caused by Puccinia graminis f. sp. tritici Erikss. & E. Henn.), is a major disease in wheat ( Triticum aestivium L.). However, in recent years it occurs rarely in Nebraska due to weather and the effective selection and gene pyramiding of resistance genes. To understand the genetic basis of stem rust resistance in Nebraska winter wheat, we applied genome-wide association study (GWAS) on a set of 270 winter wheat genotypes (A-set). Genotyping was carried out using genotyping-by-sequencing and ∼35,000 high-quality SNPs were identified. The tested genotypes were evaluated for their resistance to the common stem rust race in Nebraska (QFCSC) in two replications. Marker-trait association identified 32 SNP markers, which were significantly (Bonferroni corrected P < 0.05) associated with the resistance on chromosome 2D. The chromosomal location of the significant SNPs (chromosome 2D) matched the location of Sr6 gene which was expected in these genotypes based on pedigree information. A highly significant linkage disequilibrium (LD, r 2 ) was found between the significant SNPs and the specific SSR marker for the Sr6 gene ( Xcfd43 ). This suggests the significant SNP markers are tagging Sr6 gene. Out of the 32 significant SNPs, eight SNPs were in six genes that are annotated as being linked to disease resistance in the IWGSC RefSeq v1.0. The 32 significant SNP markers were located in nine haplotype blocks. All the 32 significant SNPs were validated in a set of 60 different genotypes (V-set) using single marker analysis. SNP markers identified in this study can be used in marker-assisted selection, genomic selection, and to develop KASP (Kompetitive Allele Specific PCR) marker for the Sr6 gene. Novel SNPs for Sr6 gene, an important stem rust resistant gene, were identified and validated in this study. These SNPs can be used to improve stem rust resistance in wheat.

  10. Identification and genetic mapping of PmAF7DS a powdery mildew resistance gene in bread wheat (Triticum aestivum L.).

    PubMed

    Bheema Lingeswara Reddy, I N; Chandrasekhar, K; Zewdu, Y; Dinoor, A; Keller, B; Ben-David, R

    2016-06-01

    Gene PmAF7DS confers resistance to wheat powdery mildew (isolate Bgt#211 ); it was mapped to a 14.6-cM interval ( Xgwm350 a- Xbarc184 ) on chromosome 7DS. The flanking markers could be applied in MAS breeding. Wheat powdery mildew (Pm) is caused by the biotrophic pathogen Blumeria graminis tritici (DC.) (Bgt). An ongoing threat of breakdown of race-specific resistance to Pm requires a continuous effort to discover new alleles in the wheat gene pool. Developing new cultivars with improved disease resistance is an economically and environmentally safe approach to reduce yield losses. To identify and characterize genes for resistance against Pm in bread wheat we used the (Arina × Forno) RILs population. Initially, the two parental lines were screened with a collection of 61 isolates of Bgt from Israel. Three Pm isolates Bgt#210 , Bgt#211 and Bgt#213 showed differential reactions in the parents: Arina was resistant (IT = 0), whereas Forno was moderately susceptible (IT = -3). Isolate Bgt#211 was then used to inoculate the RIL population. The segregation pattern of plant reactions among the RILs indicates that a single dominant gene controls the conferred resistance. A genetic map of the region containing this gene was assembled with DNA markers and assigned to the 7D physical bin map. The gene, temporarily designated PmAF7DS, was located in the distal region of chromosome arm 7DS. The RILs were also inoculated with Bgt#210 and Bgt#213. The plant reactions to these isolates showed high identity with the reaction to Bgt#211, indicating the involvement of the same gene or closely linked, but distinct single genes. The genomic location of PmAF7DS, in light of other Pm genes on 7DS is discussed.

  11. Ranking Quantitative Resistance to Septoria tritici Blotch in Elite Wheat Cultivars Using Automated Image Analysis.

    PubMed

    Karisto, Petteri; Hund, Andreas; Yu, Kang; Anderegg, Jonas; Walter, Achim; Mascher, Fabio; McDonald, Bruce A; Mikaberidze, Alexey

    2018-05-01

    Quantitative resistance is likely to be more durable than major gene resistance for controlling Septoria tritici blotch (STB) on wheat. Earlier studies hypothesized that resistance affecting the degree of host damage, as measured by the percentage of leaf area covered by STB lesions, is distinct from resistance that affects pathogen reproduction, as measured by the density of pycnidia produced within lesions. We tested this hypothesis using a collection of 335 elite European winter wheat cultivars that was naturally infected by a diverse population of Zymoseptoria tritici in a replicated field experiment. We used automated image analysis of 21,420 scanned wheat leaves to obtain quantitative measures of conditional STB intensity that were precise, objective, and reproducible. These measures allowed us to explicitly separate resistance affecting host damage from resistance affecting pathogen reproduction, enabling us to confirm that these resistance traits are largely independent. The cultivar rankings based on host damage were different from the rankings based on pathogen reproduction, indicating that the two forms of resistance should be considered separately in breeding programs aiming to increase STB resistance. We hypothesize that these different forms of resistance are under separate genetic control, enabling them to be recombined to form new cultivars that are highly resistant to STB. We found a significant correlation between rankings based on automated image analysis and rankings based on traditional visual scoring, suggesting that image analysis can complement conventional measurements of STB resistance, based largely on host damage, while enabling a much more precise measure of pathogen reproduction. We showed that measures of pathogen reproduction early in the growing season were the best predictors of host damage late in the growing season, illustrating the importance of breeding for resistance that reduces pathogen reproduction in order to minimize yield losses caused by STB. These data can already be used by breeding programs to choose wheat cultivars that are broadly resistant to naturally diverse Z. tritici populations according to the different classes of resistance.

  12. Response of microRNAs to cold treatment in the young spikes of common wheat.

    PubMed

    Song, Guoqi; Zhang, Rongzhi; Zhang, Shujuan; Li, Yulian; Gao, Jie; Han, Xiaodong; Chen, Mingli; Wang, Jiao; Li, Wei; Li, Genying

    2017-02-28

    MicroRNAs (miRNAs) are a class of small non-coding RNAs that play important roles in biotic and abiotic stresses by regulating their target genes. For common wheat, spring frost damage frequently occurs, especially when low temperature coincides with plants at early floral organ differentiation, which may result in significant yield loss. Up to date, the role of miRNAs in wheat response to frost stress is not well understood. We report here the sequencing of small RNA transcriptomes from the young spikes that were treated with cold stress and the comparative analysis with those of the control. A total of 192 conserved miRNAs from 105 families and nine novel miRNAs were identified. Among them, 34 conserved and five novel miRNAs were differentially expressed between the cold-stressed samples and the controls. The expression patterns of 18 miRNAs were further validated by quantitative real time polymerase chain reaction (qRT-PCR). Moreover, nearly half of the miRNAs were cross inducible by biotic and abiotic stresses when compared with previously published work. Target genes were predicted and validated by degradome sequencing. Gene Ontology (GO) enrichment analysis showed that the target genes of differentially expressed miRNAs were enriched for response to the stimulus, regulation of transcription, and ion transport functions. Since many targets of differentially expressed miRNAs were transcription factors that are associated with floral development such as ARF, SPB (Squamosa Promoter Binding like protein), MADS-box (MCM1, AG, DEFA and SRF), MYB, SPX (SYG1, Pho81 and XPR1), TCP (TEOSINTE BRANCHED, Cycloidea and PCF), and PPR (PentatricoPeptide Repeat) genes, cold-altered miRNA expression may cause abnormal reproductive organ development. Analysis of small RNA transcriptomes and their target genes provide new insight into miRNA regulation in developing wheat inflorescences under cold stress. MiRNAs provide another layer of gene regulation in cold stress response that can be genetically manipulated to reduce yield loss in wheat.

  13. Molecular characterization of two y-type high molecular weight glutenin subunit alleles 1Ay12 and 1Ay8 from cultivated einkorn wheat (Triticum monococcum ssp. monococcum).

    PubMed

    Guo, Xiao-Hui; Wu, Bi-Hua; Hu, Xi-Gui; Bi, Zhe-Guang; Wang, Zhen-Zhen; Liu, Deng-Cai; Zheng, You-Liang

    2013-03-01

    Two y-type high molecular weight glutenin subunits (HMW-GSs) 1Ay12 and 1Ay8 from the two accessions PI560720 and PI345186 of cultivated einkorn wheat (Triticum monococcum ssp. monococcum, AA, 2n=2x=14), were identified by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). The mobility of 1Ay12 and 1Ay8 was similar to that of 1Dy12 and 1By8 from common wheat Chinese Spring, respectively. Their ORFs respectively consisted of 1812bp and 1935bp, encoding 602 and 643 amino acid residues with the four typical structural domains of HMW-GS including signal peptide, conserved N-, and C-terminal and central repetitive domains. Compared with the most similar active 1Ay alleles previous published, there were a total of 15 SNPs and 2 InDels in them. Their encoding functions were confirmed by successful heterogeneous expression. The two novel 1Ay alleles were named as 1Ay12 and 1Ay8 with the accession No. JQ318694 and JQ318695 in GenBank, respectively. The two alleles were classed into the two distinct groups, Phe-type and Cys-type, which might be relevant to the differentiation of Glu-A1-2 alleles. Of which, 1Ay8 belonged to Cys-type group, and its protein possessed an additional conserved cysteine residue in central repetitive region besides the six common ones in N- and C-terminal regions of Phe-type group, and was the second longest in all the known active 1Ay alleles. These results suggested that the subunit 1Ay8 of cultivated einkorn wheat accession PI345186 might have a potential ability to strengthen the gluten polymer interactions and be a valuable genetic resource for wheat quality improvement. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. microRNAs differentially modulated in response to heat and drought stress in durum wheat cultivars with contrasting water use efficiency.

    PubMed

    Giusti, Lorenzo; Mica, Erica; Bertolini, Edoardo; De Leonardis, Anna Maria; Faccioli, Primetta; Cattivelli, Luigi; Crosatti, Cristina

    2017-05-01

    Plant stress response is a complex molecular process based on transcriptional and posttranscriptional regulation of many stress-related genes. microRNAs are the best-studied class of small RNAs known to play key regulatory roles in plant response to stress, besides being involved in plant development and organogenesis. We analyzed the leaf miRNAome of two durum wheat cultivars (Cappelli and Ofanto) characterized by a contrasting water use efficiency, exposed to heat stress, and mild and severe drought stress. On the whole, we identified 98 miRNA highly similar to previously known miRNAs and grouped in 47 MIR families, as well as 85 novel candidate miRNA, putatively wheat specific. A total of 80 known and novel miRNA precursors were found differentially expressed between the two cultivars or modulated by stress and many of them showed a cultivar-specific expression profile. Interestingly, most in silico predicted targets of the miRNAs coming from the differentially expressed precursors have been experimentally linked in other species to mechanisms controlling stomatal movement, a finding in agreement with previous results showing that Cappelli has a lower stomatal conductance than Ofanto. Selected miRNAs were validated through a standardized and reliable stem-loop qRT-PCR procedure.

  15. Glycolipid class profiling by packed-column subcritical fluid chromatography.

    PubMed

    Deschamps, Frantz S; Lesellier, Eric; Bleton, Jean; Baillet, Arlette; Tchapla, Alain; Chaminade, Pierre

    2004-06-18

    The potential of packed-column subcritical fluid chromatography (SubFC) for the separation of lipid classes has been assessed in this study. Three polar stationary phases were checked: silica, diol, and poly(vinyl alcohol). Carbon dioxide (CO2) with methanol as modifier was used as mobile phase and detection performed by evaporative light scattering detection. The influence of methanol content, temperature, and pressure on the chromatographic behavior of sphingolipids and glycolipids were investigated. A complete separation of lipid classes from a crude wheat lipid extract was achieved using a modifier gradient from 10 to 40% methanol in carbon dioxide. Solute selectivity was improved using coupled silica and diol columns in series. Because the variation of eluotropic strength depending on the fluid density changes, a normalized separation factor product (NSP) was used to select the nature, the number and the order of the columns to reach the optimum glycolipid separation.

  16. The Use of Image-Spectroscopy Technology as a Diagnostic Method for Seed Health Testing and Variety Identification

    PubMed Central

    Vrešak, Martina; Halkjaer Olesen, Merete; Gislum, René; Bavec, Franc; Ravn Jørgensen, Johannes

    2016-01-01

    Application of rapid and time-efficient health diagnostic and identification technology in the seed industry chain could accelerate required analysis, characteristic description and also ultimately availability of new desired varieties. The aim of the study was to evaluate the potential of multispectral imaging and single kernel near-infrared spectroscopy (SKNIR) for determination of seed health and variety separation of winter wheat (Triticum aestivum L.) and winter triticale (Triticosecale Wittm. & Camus). The analysis, carried out in autumn 2013 at AU-Flakkebjerg, Denmark, included nine winter triticale varieties and 27 wheat varieties provided by the Faculty of Agriculture and Life Sciences Maribor, Slovenia. Fusarium sp. and black point disease-infected parts of the seed surface could successfully be distinguished from uninfected parts with use of a multispectral imaging device (405–970 nm wavelengths). SKNIR was applied in this research to differentiate all 36 involved varieties based on spectral differences due to variation in the chemical composition. The study produced an interesting result of successful distinguishing between the infected and uninfected parts of the seed surface. Furthermore, the study was able to distinguish between varieties. Together these components could be used in further studies for the development of a sorting model by combining data from multispectral imaging and SKNIR for identifying disease(s) and varieties. PMID:27010656

  17. Impacts of Cropping Systems on Aggregates Associated Organic Carbon and Nitrogen in a Semiarid Highland Agroecosystem

    PubMed Central

    Chu, Jiashu; Zhang, Tianzhe; Chang, Weidong; Zhang, Dan; Zulfiqar, Saman; Fu, Aigen; Hao, Yaqi

    2016-01-01

    The effect of cropping system on the distribution of organic carbon (OC) and nitrogen (N) in soil aggregates has not been well addressed, which is important for understanding the sequestration of OC and N in agricultural soils. We analyzed the distribution of OC and N associated with soil aggregates in three unfertilized cropping systems in a 27-year field experiment: continuously cropped alfalfa, continuously cropped wheat and a legume-grain rotation. The objectives were to understand the effect of cropping system on the distribution of OC and N in aggregates and to examine the relationships between the changes in OC and N stocks in total soils and in aggregates. The cropping systems increased the stocks of OC and N in total soils (0–40 cm) at mean rates of 15.6 g OC m-2 yr-1 and 1.2 g N m-2 yr-1 relative to a fallow control. The continuous cropping of alfalfa produced the largest increases at the 0–20 cm depth. The OC and N stocks in total soils were significantly correlated with the changes in the >0.053 mm aggregates. 27-year of cropping increased OC stocks in the >0.053 mm size class of aggregates and N stocks in the >0.25 mm size class but decreased OC stocks in the <0.053 mm size class and N stocks in the <0.25 mm size class. The increases in OC and N stocks in these aggregates accounted for 99.5 and 98.7% of the total increases, respectively, in the continuous alfalfa system. The increases in the OC and N stocks associated with the >0.25 mm aggregate size class accounted for more than 97% of the total increases in the continuous wheat and the legume-grain rotation systems. These results suggested that long-term cropping has the potential to sequester OC and N in soils and that the increases in soil OC and N stocks were mainly due to increases associated with aggregates >0.053 mm. PMID:27764209

  18. Assessing Wheat Traits by Spectral Reflectance: Do We Really Need to Focus on Predicted Trait-Values or Directly Identify the Elite Genotypes Group?

    PubMed Central

    Garriga, Miguel; Romero-Bravo, Sebastián; Estrada, Félix; Escobar, Alejandro; Matus, Iván A.; del Pozo, Alejandro; Astudillo, Cesar A.; Lobos, Gustavo A.

    2017-01-01

    Phenotyping, via remote and proximal sensing techniques, of the agronomic and physiological traits associated with yield potential and drought adaptation could contribute to improvements in breeding programs. In the present study, 384 genotypes of wheat (Triticum aestivum L.) were tested under fully irrigated (FI) and water stress (WS) conditions. The following traits were evaluated and assessed via spectral reflectance: Grain yield (GY), spikes per square meter (SM2), kernels per spike (KPS), thousand-kernel weight (TKW), chlorophyll content (SPAD), stem water soluble carbohydrate concentration and content (WSC and WSCC, respectively), carbon isotope discrimination (Δ13C), and leaf area index (LAI). The performances of spectral reflectance indices (SRIs), four regression algorithms (PCR, PLSR, ridge regression RR, and SVR), and three classification methods (PCA-LDA, PLS-DA, and kNN) were evaluated for the prediction of each trait. For the classification approaches, two classes were established for each trait: The lower 80% of the trait variability range (Class 1) and the remaining 20% (Class 2 or elite genotypes). Both the SRIs and regression methods performed better when data from FI and WS were combined. The traits that were best estimated by SRIs and regression methods were GY and Δ13C. For most traits and conditions, the estimations provided by RR and SVR were the same, or better than, those provided by the SRIs. PLS-DA showed the best performance among the categorical methods and, unlike the SRI and regression models, most traits were relatively well-classified within a specific hydric condition (FI or WS), proving that classification approach is an effective tool to be explored in future studies related to genotype selection. PMID:28337210

  19. Assessing Wheat Traits by Spectral Reflectance: Do We Really Need to Focus on Predicted Trait-Values or Directly Identify the Elite Genotypes Group?

    PubMed

    Garriga, Miguel; Romero-Bravo, Sebastián; Estrada, Félix; Escobar, Alejandro; Matus, Iván A; Del Pozo, Alejandro; Astudillo, Cesar A; Lobos, Gustavo A

    2017-01-01

    Phenotyping, via remote and proximal sensing techniques, of the agronomic and physiological traits associated with yield potential and drought adaptation could contribute to improvements in breeding programs. In the present study, 384 genotypes of wheat ( Triticum aestivum L.) were tested under fully irrigated (FI) and water stress (WS) conditions. The following traits were evaluated and assessed via spectral reflectance: Grain yield (GY), spikes per square meter (SM2), kernels per spike (KPS), thousand-kernel weight (TKW), chlorophyll content (SPAD), stem water soluble carbohydrate concentration and content (WSC and WSCC, respectively), carbon isotope discrimination (Δ 13 C), and leaf area index (LAI). The performances of spectral reflectance indices (SRIs), four regression algorithms (PCR, PLSR, ridge regression RR, and SVR), and three classification methods (PCA-LDA, PLS-DA, and k NN) were evaluated for the prediction of each trait. For the classification approaches, two classes were established for each trait: The lower 80% of the trait variability range (Class 1) and the remaining 20% (Class 2 or elite genotypes). Both the SRIs and regression methods performed better when data from FI and WS were combined. The traits that were best estimated by SRIs and regression methods were GY and Δ 13 C. For most traits and conditions, the estimations provided by RR and SVR were the same, or better than, those provided by the SRIs. PLS-DA showed the best performance among the categorical methods and, unlike the SRI and regression models, most traits were relatively well-classified within a specific hydric condition (FI or WS), proving that classification approach is an effective tool to be explored in future studies related to genotype selection.

  20. Instruction at the Hopkins Marine Station

    DTIC Science & Technology

    1992-07-29

    foI homtadcodnaio.. caronavirus nucleocapsid protein. wheat germ bial ~ ~ %~H2A (5), mussel sperm nuclear protein 03 [6), and man chromofsome...wvpi,~Tninev PM"p Johne HiWA~aa Unuw~rsaty &Dio of Medicine, Balw,,.vv, Manh land 21205 The two germ -line- specific Sp histione classes Treatment of...composit conical morphology of the male pronucleus- Mal, pro- serine-proline adjacent to two basic amino acids (lyo hucl*I inhibite’d with I nsMGDMAP

  1. Characterization of agricultural land using singular value decomposition

    NASA Astrophysics Data System (ADS)

    Herries, Graham M.; Danaher, Sean; Selige, Thomas

    1995-11-01

    A method is defined and tested for the characterization of agricultural land from multi-spectral imagery, based on singular value decomposition (SVD) and key vector analysis. The SVD technique, which bears a close resemblance to multivariate statistic techniques, has previously been successfully applied to problems of signal extraction for marine data and forestry species classification. In this study the SVD technique is used as a classifier for agricultural regions, using airborne Daedalus ATM data, with 1 m resolution. The specific region chosen is an experimental research farm in Bavaria, Germany. This farm has a large number of crops, within a very small region and hence is not amenable to existing techniques. There are a number of other significant factors which render existing techniques such as the maximum likelihood algorithm less suitable for this area. These include a very dynamic terrain and tessellated pattern soil differences, which together cause large variations in the growth characteristics of the crops. The SVD technique is applied to this data set using a multi-stage classification approach, removing unwanted land-cover classes one step at a time. Typical classification accuracy's for SVD are of the order of 85-100%. Preliminary results indicate that it is a fast and efficient classifier with the ability to differentiate between crop types such as wheat, rye, potatoes and clover. The results of characterizing 3 sub-classes of Winter Wheat are also shown.

  2. Single and Combined Effects of Pesticide Seed Dressings and Herbicides on Earthworms, Soil Microorganisms, and Litter Decomposition.

    PubMed

    Van Hoesel, Willem; Tiefenbacher, Alexandra; König, Nina; Dorn, Verena M; Hagenguth, Julia F; Prah, Urša; Widhalm, Theresia; Wiklicky, Viktoria; Koller, Robert; Bonkowski, Michael; Lagerlöf, Jan; Ratzenböck, Andreas; Zaller, Johann G

    2017-01-01

    Seed dressing, i.e., the treatment of crop seeds with insecticides and/or fungicides, aiming to protect seeds from pests and diseases, is widely used in conventional agriculture. During the growing season, those crop fields often receive additional broadband herbicide applications. However, despite this broad utilization, very little is known on potential side effects or interactions between these different pesticide classes on soil organisms. In a greenhouse pot experiment, we studied single and interactive effects of seed dressing of winter wheat ( Triticum aestivum L. var. Capo ) with neonicotinoid insecticides and/or strobilurin and triazolinthione fungicides and an additional one-time application of a glyphosate-based herbicide on the activity of earthworms, soil microorganisms, litter decomposition, and crop growth. To further address food-web interactions, earthworms were introduced to half of the experimental units as an additional experimental factor. Seed dressings significantly reduced the surface activity of earthworms with no difference whether insecticides or fungicides were used. Moreover, seed dressing effects on earthworm activity were intensified by herbicides (significant herbicide × seed dressing interaction). Neither seed dressings nor herbicide application affected litter decomposition, soil basal respiration, microbial biomass, or specific respiration. Seed dressing did also not affect wheat growth. We conclude that interactive effects on soil biota and processes of different pesticide classes should receive more attention in ecotoxicological research.

  3. Bioinformatic Analyses of Subgroup-A Members of the Wheat bZIP Transcription Factor Family and Functional Identification of TabZIP174 Involved in Drought Stress Response

    PubMed Central

    Li, Xueyin; Feng, Biane; Zhang, Fengjie; Tang, Yimiao; Zhang, Liping; Ma, Lingjian; Zhao, Changping; Gao, Shiqing

    2016-01-01

    Extensive studies in Arabidopsis and rice have demonstrated that Subgroup-A members of the bZIP transcription factor family play important roles in plant responses to multiple abiotic stresses. Although common wheat (Triticum aestivum) is one of the most widely cultivated and consumed food crops in the world, there are limited investigations into Subgroup A of the bZIP family in wheat. In this study, we performed bioinformatic analyses of the 41 Subgroup-A members of the wheat bZIP family. Phylogenetic and conserved motif analyses showed that most of the Subgroup-A bZIP proteins involved in abiotic stress responses of wheat, Arabidopsis, and rice clustered in Clade A1 of the phylogenetic tree, and shared a majority of conserved motifs, suggesting the potential importance of Clade-A1 members in abiotic stress responses. Gene structure analysis showed that TabZIP genes with close phylogenetic relationships tended to possess similar exon–intron compositions, and the positions of introns in the hinge regions of the bZIP domains were highly conserved, whereas introns in the leucine zipper regions were at variable positions. Additionally, eleven groups of homologs and two groups of tandem paralogs were also identified in Subgroup A of the wheat bZIP family. Expression profiling analysis indicated that most Subgroup-A TabZIP genes were responsive to abscisic acid and various abiotic stress treatments. TabZIP27, TabZIP74, TabZIP138, and TabZIP174 proteins were localized in the nucleus of wheat protoplasts, whereas TabZIP9-GFP fusion protein was simultaneously present in the nucleus, cytoplasm, and cell membrane. Transgenic Arabidopsis overexpressing TabZIP174 displayed increased seed germination rates and primary root lengths under drought treatments. Overexpression of TabZIP174 in transgenic Arabidopsis conferred enhanced drought tolerance, and transgenic plants exhibited lower water loss rates, higher survival rates, higher proline, soluble sugar, and leaf chlorophyll contents, as well as more stable osmotic potential under drought conditions. Additionally, overexpression of TabZIP174 increased the expression of stress-responsive genes (RD29A, RD29B, RAB18, DREB2A, COR15A, and COR47). The improved drought resistance might be attributed to the increased osmotic adjustment capacity. Our results indicate that TabZIP174 may participate in regulating plant response to drought stress and holds great potential for genetic improvement of abiotic stress tolerance in crops. PMID:27899926

  4. Safety assessment of plant varieties using transcriptomics profiling and a one-class classifier.

    PubMed

    van Dijk, Jeroen P; de Mello, Carla Souza; Voorhuijzen, Marleen M; Hutten, Ronald C B; Arisi, Ana Carolina Maisonnave; Jansen, Jeroen J; Buydens, Lutgarde M C; van der Voet, Hilko; Kok, Esther J

    2014-10-01

    An important part of the current hazard identification of novel plant varieties is comparative targeted analysis of the novel and reference varieties. Comparative analysis will become much more informative with unbiased analytical approaches, e.g. omics profiling. Data analysis estimating the similarity of new varieties to a reference baseline class of known safe varieties would subsequently greatly facilitate hazard identification. Further biological and eventually toxicological analysis would then only be necessary for varieties that fall outside this reference class. For this purpose, a one-class classifier tool was explored to assess and classify transcriptome profiles of potato (Solanum tuberosum) varieties in a model study. Profiles of six different varieties, two locations of growth, two year of harvest and including biological and technical replication were used to build the model. Two scenarios were applied representing evaluation of a 'different' variety and a 'similar' variety. Within the model higher class distances resulted for the 'different' test set compared with the 'similar' test set. The present study may contribute to a more global hazard identification of novel plant varieties. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Model to Determine the Optimal Dietary Elimination Strategy for Treatment of Eosinophilic Esophagitis.

    PubMed

    Zhan, Tiannan; Ali, Ayman; Choi, Jin G; Lee, Minyi; Leung, John; Dellon, Evan S; Garber, John J; Hur, Chin

    2018-05-03

    Elimination diets are effective treatments for eosinophilic esophagitis (EoE), but foods that activate esophagitis are identified empirically, via a process that involves multiple esophagogastroduodenoscopies (EGDs). No optimized approach has been developed to identify foods that activate EoE. We aimed to compare clinical strategies to provide data to guide treatment. We developed a computer-based simulation model to determine the optimal empiric elimination strategy based on reported prevalence values for foods that activate EoE. These were identified in a systematic review, searching PubMed through October 1, 2017 for prospective and retrospective studies of EoE and diet. Each patient in our virtual cohort was assigned profile comprising as many as 12 foods known to induce EoE, including dairy, wheat, eggs, soy, nuts, seafood, beef, corn, chicken, potato, pork, and/or rice. To balance the strategy success rate with the number of EGDs required for food identification, we applied an efficiency frontier approach. Strategies on the frontier were the most efficient, requiring fewer EGDs for higher or equivalent success rates relative to their comparable, neighboring strategies. In all simulations, we found the 1,4,8-food and 1,3-food strategies to be the most efficient in identifying foods that induce EoE, resulting in the highest rate of the correct identification of food triggers balanced by the number of EGDs required to complete the food elimination strategy. Both strategies begin with elimination of dairy; if EoE remission is not achieved, the 1,3 diet proceeds to eliminate wheat and eggs in addition to dairy, and the 1,4,8 strategy removes wheat, eggs, dairy, and soy. In the case of persistent EoE after the second round of food elimination, the 1,3-food strategy terminates, whereas the 1,4,8-food diet eliminates corn, chicken, beef, and pork. The 1,4,8-food resulted in correct identification of foods that activated esophagitis in 76.68% of patients, with a mean 4.13 EGDs and a median 6 EGDs. The 1,3-food strategy identified foods that activated esophagitis in 42.76% of patients, with a mean of 3.36 EGDs and a median 2 EGDs required. In a modeling analysis, we found the 1,4,8-food and 1,3-food elimination strategies to be the most efficient in detection of foods that induce EoE in patients, the 1,4,8-food strategy was optimal, requiring a mean of only 4.13 EGDs for food identification. However, the ideal elimination strategy will vary based on clinical priorities. Additional research on specific foods that induce EoE are needed to confirm the predictions of this model. Copyright © 2018 AGA Institute. Published by Elsevier Inc. All rights reserved.

  6. Isolation, identification, and the growth promoting effects of two antagonistic actinomycete strains from the rhizosphere of Mikania micrantha Kunth.

    PubMed

    Han, Dandan; Wang, Lanying; Luo, Yanping

    2018-03-01

    Actinomycetes are an important group of gram-positive bacteria that play an essential role in the rhizosphere ecosystem. The confrontation culture and Oxford cup method were used to evaluate the antagonistic activities of strains, which were isolated from the rhizosphere soil of Mikania micrantha. The two isolates were identified using morphological and physiological tests combined with 16S rRNA-based molecular analysis, respectively. The type I polyketone synthase (PKS-I) was amplified. The constituents of fermentation metabolites were analyzed by gas chromatography mass spectrometry. The plant growth promoting effect was determined. Finally, the growth of wheat seedlings was assessed using the Petri dish method. Overall, of the isolated twelve strains, WZS1-1 and WZS2-1 could significantly inhibit target fungi. Isolate WZS1-1 was identified as Streptomyces rochei, and WZS2-1 was identified as Streptomyces sundarbansensis. In particular, Fusarium graminearum (FG) from wheat was inhibited by more than 80%, and the inhibitory bandwidths against FG were 31 ± 0.3 mm and 19 ± 0.5 mm, respectively. The genes PKS-I were successfully amplified, confirming that these strains are capable of producing biosynthetic secondary metabolites. Major component analysis revealed aliphatic ketones, carboxylic acids, and esters, with n-hexadecanoic acid being the most abundant compound. Plant growth promoting test indicated that both strains produced IAA, presented with orange loops on CAS plates, dissolved phosphorus and potassium, fixed nitrogen, but did not generate organic acids; both strains colonized in soil, while only WZS1-1 colonized in wheat roots. Additionally, the fermentation broth significantly promoted the growth of wheat. Copyright © 2018 Elsevier GmbH. All rights reserved.

  7. Proteomic analysis of S-nitrosylated and S-glutathionylated proteins in wheat seedlings with different dehydration tolerances.

    PubMed

    Gietler, Marta; Nykiel, Małgorzata; Orzechowski, Sławomir; Fettke, Joerg; Zagdańska, Barbara

    2016-11-01

    A loss of dehydration tolerance in wheat seedlings on the fifth day following imbibition is associated with a disturbance in cellular redox homeostasis, as documented by a shift of the reduced/oxidized glutathione ratio to a more oxidized state and a significant increase in the ratio of protein thiols to the total thiol group content. Therefore, the identification and characterization of redox-sensitive proteins are important steps toward understanding the molecular mechanisms of the loss of dehydration tolerance. In the present study, proteins that were differentially expressed between fully turgid (control), dehydrated tolerant (four-day-old) and dehydrated sensitive (six-day-old) wheat seedlings were analysed. Protein spots having at least a significant (p < 0.05) two-fold change in protein abundance were selected by Delta2D as differentially expressed, identified by MALDI-TOF and LC-MS/MS, and classified according to their function. The observed changes in the proteomic patterns of the differentially S-nitrosylated and S-glutathionylated proteins were highly specific in dehydration-tolerant and -sensitive wheat seedlings. The metabolic function of these proteins indicates that dehydration tolerance is mainly related to nucleic acids, protein metabolism, and energy metabolism. It has been proven that leaf-specific thionins BTH6 and DB4, chloroplastic 50S ribosomal protein L16, phospholipase A1-II delta, and chloroplastic thioredoxin M2 are both S-nitrosylated and S-glutathionylated upon water deficiency. Our results revealed the existence of interplay between S-nitrosylation and S-glutathionylation, two redox-regulated protein posttranslational modifications that could enhance plant defence mechanisms and/or facilitate the acclimation of plants to unfavourable environmental conditions. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  8. Characterization of new allele influencing flowering time in bread wheat introgressed from Triticum militinae.

    PubMed

    Ivaničová, Zuzana; Jakobson, Irena; Reis, Diana; Šafář, Jan; Milec, Zbyněk; Abrouk, Michael; Doležel, Jaroslav; Järve, Kadri; Valárik, Miroslav

    2016-09-25

    Flowering time variation was identified within a mapping population of doubled haploid lines developed from a cross between the introgressive line 8.1 and spring bread wheat cv. Tähti. The line 8.1 carried introgressions from tetraploid Triticum militinae in the cv. Tähti genetic background on chromosomes 1A, 2A, 4A, 5A, 7A, 1B and 5B. The most significant QTL for the flowering time variation was identified within the introgressed region on chromosome 5A and its largest effect was associated with the VRN-A1 locus, accounting for up to 70% of phenotypic variance. The allele of T. militinae origin was designated as VRN-A1f-like. The effect of the VRN-A1f-like allele was verified in two other mapping populations. QTL analysis identified that in cv. Tähti and cv. Mooni genetic background, VRN-A1f-like allele incurred a delay of 1.9-18.6 days in flowering time, depending on growing conditions. Sequence comparison of the VRN-A1f-like and VRN-A1a alleles from the parental lines of the mapping populations revealed major mutations in the promoter region as well as in the first intron, including insertion of a MITE element and a large deletion. The sequence variation allowed construction of specific diagnostic PCR markers for VRN-A1f-like allele determination. Identification and quantification of the effect of the VRN-A1f-like allele offers a useful tool for wheat breeding and for studying fine-scale regulation of flowering pathways in wheat. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Sorption Studies and Characterization of As (III) Adsorption over Developed Iron-Biochar Composites from Water.

    NASA Astrophysics Data System (ADS)

    Singh, P.; Mohan, D.

    2016-12-01

    Problem related to arsenic occurrence in groundwater has caused severe threat to human health in worldwide. Thus there is an increasing demand to find the chemistry and plausible mechanism of arsenic adsorption while remediating it from water. In present study iron-biochar composites are synthesised using agricultural waste materials. The rice husk iron-biochar composite (RIBC) and wheat husk iron-biochar composite (WIBC) were characterised and utilised for As (III) remediation from aqueous solution. The rice husk (RIBC) and wheat husk (WIBC) iron biochar composites were characterised. XPS, FT-IR, and XRD, were studied to analyse their elemental composition and functional group identification. While SEM, TEM, SEM-EDX were conducted to study their surface chemistry, mineralogy, porosity and crystallinity etc. Batch sorption studies were conducted for both rice husk (RIBC) and wheat husk (WIBC) iron-biochar composites to find sorption efficiency. Maximum As (III) adsorption was achieved in pH range 6-8 for both iron-biochar composites. Kinetic studies were conducted to establish the mechanism of As (III) adsorption at different dose and time. Optimum dose of 2g/L and 1g/L were reported for rice husk (RIBC) and wheat husk (WIBC) iron-biochar composites respectively. Electrostatic forces developed between arsenites and iron hydroxyl surface developed over the surface may have caused the removal of As (III). Significant amount of oxygen containing groups have been revealed through studies. Higher As (III) adsorption capacities were obtained for both iron-biochar composites to measure the amount of surface sites. Furthermore, various adsorption models are used to find the monolayer adsorption capacity. These findings suggest that developed iron-biochar composites may be used to remediate As (III) from contaminated water.

  10. Dissemination of the highly expressed Bx7 glutenin subunit (Glu-B1al allele) in wheat as revealed by novel PCR markers and RP-HPLC.

    PubMed

    Butow, B J; Gale, K R; Ikea, J; Juhász, A; Bedö, Z; Tamás, L; Gianibelli, M C

    2004-11-01

    Increased expression of the high molecular weight glutenin subunit (HMW-GS) Bx7 is associated with improved dough strength of wheat (Triticum aestivum L.) flour. Several cultivars and landraces of widely different genetic backgrounds from around the world have now been found to contain this so-called 'over-expressing' allelic form of the Bx7 subunit encoded by Glu-B1al. Using three methods of identification, SDS-PAGE, RP-HPLC and PCR marker analysis, as well as pedigree information, we have traced the distribution and source of this allele from a Uruguayan landrace, Americano 44D, in the mid-nineteenth century. Results are supported by knowledge of the movement of wheat lines with migrants. All cultivars possessing the Glu-B1al allele can be identified by the following attributes: (1) the elution of the By sub-unit peak before the Dx sub-unit peak by RP-HPLC, (2) high expression levels of Bx7 (>39% Mol% Bx), (3) a 43 bp insertion in the matrix-attachment region (MAR) upstream of the gene promoter relative to Bx7 and an 18 bp nucleotide duplication in the coding region of the gene. Evidence is presented indicating that these 18 and 43 bp sequence insertions are not causal for the high expression levels of Bx7 as they were also found to be present in a small number of hexaploid species, including Chinese Spring, and species expressing Glu-B1ak and Glu-B1a alleles. In addition, these sequence inserts were found in different isolates of the tetraploid wheat, T. turgidum, indicating that these insertion/deletion events occurred prior to hexaploidization.

  11. Mapping QTLs controlling kernel dimensions in a wheat inter-varietal RIL mapping population.

    PubMed

    Cheng, Ruiru; Kong, Zhongxin; Zhang, Liwei; Xie, Quan; Jia, Haiyan; Yu, Dong; Huang, Yulong; Ma, Zhengqiang

    2017-07-01

    Seven kernel dimension QTLs were identified in wheat, and kernel thickness was found to be the most important dimension for grain weight improvement. Kernel morphology and weight of wheat (Triticum aestivum L.) affect both yield and quality; however, the genetic basis of these traits and their interactions has not been fully understood. In this study, to investigate the genetic factors affecting kernel morphology and the association of kernel morphology traits with kernel weight, kernel length (KL), width (KW) and thickness (KT) were evaluated, together with hundred-grain weight (HGW), in a recombinant inbred line population derived from Nanda2419 × Wangshuibai, with data from five trials (two different locations over 3 years). The results showed that HGW was more closely correlated with KT and KW than with KL. A whole genome scan revealed four QTLs for KL, one for KW and two for KT, distributed on five different chromosomes. Of them, QKl.nau-2D for KL, and QKt.nau-4B and QKt.nau-5A for KT were newly identified major QTLs for the respective traits, explaining up to 32.6 and 41.5% of the phenotypic variations, respectively. Increase of KW and KT and reduction of KL/KT and KW/KT ratios always resulted in significant higher grain weight. Lines combining the Nanda 2419 alleles of the 4B and 5A intervals had wider, thicker, rounder kernels and a 14% higher grain weight in the genotype-based analysis. A strong, negative linear relationship of the KW/KT ratio with grain weight was observed. It thus appears that kernel thickness is the most important kernel dimension factor in wheat improvement for higher yield. Mapping and marker identification of the kernel dimension-related QTLs definitely help realize the breeding goals.

  12. TriAnnot: A Versatile and High Performance Pipeline for the Automated Annotation of Plant Genomes

    PubMed Central

    Leroy, Philippe; Guilhot, Nicolas; Sakai, Hiroaki; Bernard, Aurélien; Choulet, Frédéric; Theil, Sébastien; Reboux, Sébastien; Amano, Naoki; Flutre, Timothée; Pelegrin, Céline; Ohyanagi, Hajime; Seidel, Michael; Giacomoni, Franck; Reichstadt, Mathieu; Alaux, Michael; Gicquello, Emmanuelle; Legeai, Fabrice; Cerutti, Lorenzo; Numa, Hisataka; Tanaka, Tsuyoshi; Mayer, Klaus; Itoh, Takeshi; Quesneville, Hadi; Feuillet, Catherine

    2012-01-01

    In support of the international effort to obtain a reference sequence of the bread wheat genome and to provide plant communities dealing with large and complex genomes with a versatile, easy-to-use online automated tool for annotation, we have developed the TriAnnot pipeline. Its modular architecture allows for the annotation and masking of transposable elements, the structural, and functional annotation of protein-coding genes with an evidence-based quality indexing, and the identification of conserved non-coding sequences and molecular markers. The TriAnnot pipeline is parallelized on a 712 CPU computing cluster that can run a 1-Gb sequence annotation in less than 5 days. It is accessible through a web interface for small scale analyses or through a server for large scale annotations. The performance of TriAnnot was evaluated in terms of sensitivity, specificity, and general fitness using curated reference sequence sets from rice and wheat. In less than 8 h, TriAnnot was able to predict more than 83% of the 3,748 CDS from rice chromosome 1 with a fitness of 67.4%. On a set of 12 reference Mb-sized contigs from wheat chromosome 3B, TriAnnot predicted and annotated 93.3% of the genes among which 54% were perfectly identified in accordance with the reference annotation. It also allowed the curation of 12 genes based on new biological evidences, increasing the percentage of perfect gene prediction to 63%. TriAnnot systematically showed a higher fitness than other annotation pipelines that are not improved for wheat. As it is easily adaptable to the annotation of other plant genomes, TriAnnot should become a useful resource for the annotation of large and complex genomes in the future. PMID:22645565

  13. Isolation and molecular characterization of a novel WIN1/SHN1 ethylene-responsive transcription factor TdSHN1 from durum wheat (Triticum turgidum. L. subsp. durum).

    PubMed

    Djemal, Rania; Khoudi, Habib

    2015-11-01

    Over the last decade, APETALA2/Ethylene Responsive Factor (AP2/ERF) proteins have become the subject of intensive research activity due to their involvement in a variety of biological processes. This research led to the identification of AP2/ERF genes in many species; however, little is known about these genes in durum wheat, one of the most important cereal crops in the world. In this study, a new member of the AP2/ERF transcription factor family, designated TdSHN1, was isolated from durum wheat using thermal asymetric interlaced PCR (TAIL-PCR) method. Protein sequence analysis showed that TdSHN1 contained an AP2/ERF domain of 63 amino acids and a putative nuclear localization signal (NLS). Phylogenetic analysis showed that TdSHN1 belongs to a group Va protein in the ERF subfamily which contains the Arabidopsis ERF proteins (SHN1, SHN2, and SHN3). Expression of TdSHN1 was strongly induced by salt, drought, abscisic acid (ABA), and cold. In planta, TdSHN1 protein was able to activate the transcription of GUS reporter gene driven by the GCC box and DRE element sequences. In addition, TdSHN1 was targeted to the nucleus when transiently expressed in tobacco epidermal cells. In transgenic yeast, overexpression of TdSHN1 increased tolerance to multiple abiotic stresses. Taken together, the results showed that TdSHN1 encodes an abiotic stress-inducible, transcription factor which confers abiotic stress tolerance in yeast. TdSHN1 is therefore a promising candidate for improvement of biotic and abiotic stress tolerance in wheat as well as other crops.

  14. The CITARS effort by the environmental research institute of Michigan

    NASA Technical Reports Server (NTRS)

    Malila, W. A.; Rice, D. P.; Cicone, R. C.

    1975-01-01

    The objectives of the research task for crop identification technology assessment for remote sensing are outlined. Data gathered by the Landsat 1 multispectral scanner over the U.S. Corn Belt during 1973 is described, and procedures for recognition processing of the data is discussed in detail. The major crops of prime interest were corn and soybeans; they were recognized with different levels of accuracy throughout the growing season, but particularly during late August. Wheat was the major crop of interest in early June.

  15. Analytical techniques for the study of some parameters of multispectral scanner systems for remote sensing

    NASA Technical Reports Server (NTRS)

    Wiswell, E. R.; Cooper, G. R. (Principal Investigator)

    1978-01-01

    The author has identified the following significant results. The concept of average mutual information in the received spectral random process about the spectral scene was developed. Techniques amenable to implementation on a digital computer were also developed to make the required average mutual information calculations. These techniques required identification of models for the spectral response process of scenes. Stochastic modeling techniques were adapted for use. These techniques were demonstrated on empirical data from wheat and vegetation scenes.

  16. Role of Bacterial Communities in the Natural Suppression of Rhizoctonia solani Bare Patch Disease of Wheat (Triticum aestivum L.)

    PubMed Central

    Yin, Chuntao; Hulbert, Scot H.; Schroeder, Kurtis L.; Mavrodi, Olga; Mavrodi, Dmitri; Dhingra, Amit; Schillinger, William F.

    2013-01-01

    Rhizoctonia bare patch and root rot disease of wheat, caused by Rhizoctonia solani AG-8, develops as distinct patches of stunted plants and limits the yield of direct-seeded (no-till) wheat in the Pacific Northwest of the United States. At the site of a long-term cropping systems study near Ritzville, WA, a decline in Rhizoctonia patch disease was observed over an 11-year period. Bacterial communities from bulk and rhizosphere soil of plants from inside the patches, outside the patches, and recovered patches were analyzed by using pyrosequencing with primers designed for 16S rRNA. Taxa in the class Acidobacteria and the genus Gemmatimonas were found at higher frequencies in the rhizosphere of healthy plants outside the patches than in that of diseased plants from inside the patches. Dyella and Acidobacteria subgroup Gp7 were found at higher frequencies in recovered patches. Chitinophaga, Pedobacter, Oxalobacteriaceae (Duganella and Massilia), and Chyseobacterium were found at higher frequencies in the rhizosphere of diseased plants from inside the patches. For selected taxa, trends were validated by quantitative PCR (qPCR), and observed shifts of frequencies in the rhizosphere over time were duplicated in cycling experiments in the greenhouse that involved successive plantings of wheat in Rhizoctonia-inoculated soil. Chryseobacterium soldanellicola was isolated from the rhizosphere inside the patches and exhibited significant antagonism against R. solani AG-8 in vitro and in greenhouse tests. In conclusion, we identified novel bacterial taxa that respond to conditions affecting bare patch disease symptoms and that may be involved in suppression of Rhizoctonia root rot and bare batch disease. PMID:24056471

  17. Genetic analyses using GGE model and a mixed linear model approach, and stability analyses using AMMI bi-plot for late-maturity alpha-amylase activity in bread wheat genotypes.

    PubMed

    Rasul, Golam; Glover, Karl D; Krishnan, Padmanaban G; Wu, Jixiang; Berzonsky, William A; Fofana, Bourlaye

    2017-06-01

    Low falling number and discounting grain when it is downgraded in class are the consequences of excessive late-maturity α-amylase activity (LMAA) in bread wheat (Triticum aestivum L.). Grain expressing high LMAA produces poorer quality bread products. To effectively breed for low LMAA, it is necessary to understand what genes control it and how they are expressed, particularly when genotypes are grown in different environments. In this study, an International Collection (IC) of 18 spring wheat genotypes and another set of 15 spring wheat cultivars adapted to South Dakota (SD), USA were assessed to characterize the genetic component of LMAA over 5 and 13 environments, respectively. The data were analysed using a GGE model with a mixed linear model approach and stability analysis was presented using an AMMI bi-plot on R software. All estimated variance components and their proportions to the total phenotypic variance were highly significant for both sets of genotypes, which were validated by the AMMI model analysis. Broad-sense heritability for LMAA was higher in SD adapted cultivars (53%) compared to that in IC (49%). Significant genetic effects and stability analyses showed some genotypes, e.g. 'Lancer', 'Chester' and 'LoSprout' from IC, and 'Alsen', 'Traverse' and 'Forefront' from SD cultivars could be used as parents to develop new cultivars expressing low levels of LMAA. Stability analysis using an AMMI bi-plot revealed that 'Chester', 'Lancer' and 'Advance' were the most stable across environments, while in contrast, 'Kinsman', 'Lerma52' and 'Traverse' exhibited the lowest stability for LMAA across environments.

  18. Rapid detection of Puccinia triticina causing leaf rust of wheat by PCR and loop mediated isothermal amplification

    PubMed Central

    Kulshreshtha, Deepika; Gupta, Sangeeta; Singh, Kartar; Bhardwaj, Subhash C.

    2018-01-01

    Leaf rust of wheat caused by Puccinia triticina has significant impact on wheat production worldwide. Effective and quick detection methodologies are required to mitigate yield loss and time constraints associated with monitoring and management of leaf rust of wheat. In the present study, detection of P. triticina has been simplified by developing a rapid, reliable, efficient and visual colorimetric method i.e., loop mediated isothermal amplification of DNA (LAMP). Based on in silico analysis of P. triticina genome, PTS68, a simple sequence repeat was found highly specific to leaf rust fungus. A marker (PtRA68) was developed and its specificity was validated through PCR technique which gave a unique and sharp band of 919 bp in P. triticina pathotypes only. A novel gene amplification method LAMP which enables visual detection of pathogen by naked eye was developed for leaf rust pathogen. A set of six primers was designed from specific region of P. triticina and conditions were optimised to complete the observation process in 60 minutes at 65o C. The assay developed in the study could detect presence of P. triticina on wheat at 24 hpi (pre-symptomatic stage) which was much earlier than PCR without requiring thermal cycler. Sensitivity of LAMP assay developed in the study was 100 fg which was more sensitive than conventional PCR (50 pg) and equivalent to qPCR (100 fg). The protocol developed in the study was utilized for detection of leaf rust infected samples collected from different wheat fields. LAMP based colorimetric detection assay showed sky blue color in positive reaction and violet color in negative reaction after addition of 120 μM hydroxyl napthol blue (HNB) solution to reaction mixture. Similarly, 0.6 mg Ethidium bromide/ml was added to LAMP products, placed on transilluminator to witness full brightness in positive reaction and no such brightness could be seen in negative reaction mixture. Further, LAMP products spread in a ladder like banding pattern in gel electrophoresis. Our assay is significantly faster than the conventional methods used in the identification of P. triticina. The assay developed in the study shall be very much useful in the development of diagnostic kit for monitoring disease, creation of prediction model and efficient management of disease. PMID:29698484

  19. Rapid detection of Puccinia triticina causing leaf rust of wheat by PCR and loop mediated isothermal amplification.

    PubMed

    Manjunatha, C; Sharma, Sapna; Kulshreshtha, Deepika; Gupta, Sangeeta; Singh, Kartar; Bhardwaj, Subhash C; Aggarwal, Rashmi

    2018-01-01

    Leaf rust of wheat caused by Puccinia triticina has significant impact on wheat production worldwide. Effective and quick detection methodologies are required to mitigate yield loss and time constraints associated with monitoring and management of leaf rust of wheat. In the present study, detection of P. triticina has been simplified by developing a rapid, reliable, efficient and visual colorimetric method i.e., loop mediated isothermal amplification of DNA (LAMP). Based on in silico analysis of P. triticina genome, PTS68, a simple sequence repeat was found highly specific to leaf rust fungus. A marker (PtRA68) was developed and its specificity was validated through PCR technique which gave a unique and sharp band of 919 bp in P. triticina pathotypes only. A novel gene amplification method LAMP which enables visual detection of pathogen by naked eye was developed for leaf rust pathogen. A set of six primers was designed from specific region of P. triticina and conditions were optimised to complete the observation process in 60 minutes at 65o C. The assay developed in the study could detect presence of P. triticina on wheat at 24 hpi (pre-symptomatic stage) which was much earlier than PCR without requiring thermal cycler. Sensitivity of LAMP assay developed in the study was 100 fg which was more sensitive than conventional PCR (50 pg) and equivalent to qPCR (100 fg). The protocol developed in the study was utilized for detection of leaf rust infected samples collected from different wheat fields. LAMP based colorimetric detection assay showed sky blue color in positive reaction and violet color in negative reaction after addition of 120 μM hydroxyl napthol blue (HNB) solution to reaction mixture. Similarly, 0.6 mg Ethidium bromide/ml was added to LAMP products, placed on transilluminator to witness full brightness in positive reaction and no such brightness could be seen in negative reaction mixture. Further, LAMP products spread in a ladder like banding pattern in gel electrophoresis. Our assay is significantly faster than the conventional methods used in the identification of P. triticina. The assay developed in the study shall be very much useful in the development of diagnostic kit for monitoring disease, creation of prediction model and efficient management of disease.

  20. The 1980 US/Canada wheat and barley exploratory experiment, volume 1

    NASA Technical Reports Server (NTRS)

    Bizzell, R. M.; Prior, H. L.; Payne, R. W.; Disler, J. M.

    1983-01-01

    The results from the U.S./Canada Wheat and Barley Exploratory Experiment which was completed during FY 1980 are presented. The results indicate that the new crop identification procedures performed well for spring small grains and that they are conductive to automation. The performance of the machine processing techniques shows a significant improvement over previously evaluated technology. However, the crop calendars will require additional development and refinements prior to integration into automated area estimation technology. The evaluation showed the integrated technology to be capable of producing accurate and consistent spring small grains proportion estimates. However, barley proportion estimation technology was not satisfactorily evaluated. The low-density segments examined were judged not to give indicative or unequivocal results. It is concluded that, generally, the spring small grains technology is ready for evaluation in a pilot experiment focusing on sensitivity analyses to a variety of agricultural and meteorological conditions representative of the global environment. It is further concluded that a strong potential exists for establishing a highly efficient technology or spring small grains.

  1. Evaluation of spatial filtering on the accuracy of wheat area estimate

    NASA Technical Reports Server (NTRS)

    Dejesusparada, N. (Principal Investigator); Moreira, M. A.; Chen, S. C.; Delima, A. M.

    1982-01-01

    A 3 x 3 pixel spatial filter for postclassification was used for wheat classification to evaluate the effects of this procedure on the accuracy of area estimation using LANDSAT digital data obtained from a single pass. Quantitative analyses were carried out in five test sites (approx 40 sq km each) and t tests showed that filtering with threshold values significantly decreased errors of commission and omission. In area estimation filtering improved the overestimate of 4.5% to 2.7% and the root-mean-square error decreased from 126.18 ha to 107.02 ha. Extrapolating the same procedure of automatic classification using spatial filtering for postclassification to the whole study area, the accuracy in area estimate was improved from the overestimate of 10.9% to 9.7%. It is concluded that when single pass LANDSAT data is used for crop identification and area estimation the postclassification procedure using a spatial filter provides a more accurate area estimate by reducing classification errors.

  2. Epiphytic pink-pigmented methylotrophic bacteria enhance germination and seedling growth of wheat (Triticum aestivum) by producing phytohormone.

    PubMed

    Meena, Kamlesh K; Kumar, Manish; Kalyuzhnaya, Marina G; Yandigeri, Mahesh S; Singh, Dhananjaya P; Saxena, Anil K; Arora, Dilip K

    2012-05-01

    Methylotrophic bacteria were isolated from the phyllosphere of different crop plants such as sugarcane, pigeonpea, mustard, potato and radish. The methylotrophic isolates were differentiated based on growth characteristics and colony morphology on methanol supplemented ammonium mineral salts medium. Amplification of the mxaF gene helped in the identification of the methylotrophic isolates as belonging to the genus Methylobacterium. Cell-free culture filtrates of these strains enhanced seed germination of wheat (Triticum aestivum) with highest values of 98.3% observed using Methylobacterium sp. (NC4). Highest values of seedling length and vigour were recorded with Methylobacterium sp. (NC28). HPLC analysis of production by bacterial strains ranged from 1.09 to 9.89 μg ml(-1) of cytokinins in the culture filtrate. Such cytokinin producing beneficial methylotrophs can be useful in developing bio-inoculants through co-inoculation of pink-pigmented facultative methylotrophs with other compatible bacterial strains, for improving plant growth and productivity, in an environment-friendly manner.

  3. Isolation of Bioactive Compounds from Sunflower Leaves (Helianthus annuus L.) Extracted with Supercritical Carbon Dioxide.

    PubMed

    El Marsni, Zouhir; Torres, Ascension; Varela, Rosa M; Molinillo, José M G; Casas, Lourdes; Mantell, Casimiro; Martinez de la Ossa, Enrique J; Macias, Francisco A

    2015-07-22

    The work described herein is a continuation of our initial studies on the supercritical fluid extraction (SFE) with CO2 of bioactive substances from Helianthus annuus L. var. Arianna. The selected SFE extract showed high activity in the wheat coleoptile bioassay, in Petri dish phytotoxicity bioassays, and in the hydroponic culture of tomato seeds. Chromatographic fractionations of the extracts and a spectroscopic analysis of the isolated compounds showed 52 substances belonging to 10 different chemical classes, which were mainly sesquiterpene lactones, diterpenes, and flavonoids. Heliannuol M (31), helivypolides K and L (36, 37), and helieudesmanolide B (38) are described for the first time in the literature. Metabolites have been tested in the etiolated wheat coleoptile bioassay with good results in a noteworthy effect on germination. The most active compounds were also tested on tomato seeds, heliannuol A (30) and leptocarpin (45) being the most active, with values similar to those of the commercial herbicide.

  4. 33 CFR 164.03 - Incorporation by reference.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... radiocommunication equipment and systems—Automatic identification systems (AIS)—part 2: Class A shipborne equipment of the universal automatic identification system (AIS)—Operational and performance requirements..., Recommendation on Performance Standards for a Universal Shipborne Automatic Identification System (AIS), adopted...

  5. 33 CFR 164.03 - Incorporation by reference.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... radiocommunication equipment and systems—Automatic identification systems (AIS)—part 2: Class A shipborne equipment of the universal automatic identification system (AIS)—Operational and performance requirements..., Recommendation on Performance Standards for a Universal Shipborne Automatic Identification System (AIS), adopted...

  6. 33 CFR 164.03 - Incorporation by reference.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... radiocommunication equipment and systems—Automatic identification systems (AIS)—part 2: Class A shipborne equipment of the universal automatic identification system (AIS)—Operational and performance requirements..., Recommendation on Performance Standards for a Universal Shipborne Automatic Identification System (AIS), adopted...

  7. Treatment with the herbicide TOPIK induces oxidative stress in cereal leaves.

    PubMed

    Lukatkin, Alexander S; Gar'kova, Albina N; Bochkarjova, Anna S; Nushtaeva, Olga V; Teixeira da Silva, Jaime A

    2013-01-01

    Leaf disks as well as intact 7-day-old plants of winter wheat (Triticum aestivum L., cv. Mironovskaya 808), winter rye (Secale cereale L., cv. Estafeta Tatarstana), and maize (Zea mays L., cv. Kollektivnyi 172MV), were treated with the aryloxyphenoxypropionate class herbicide TOPIK, concentrate-emulsion (active ingredient is clodinafop-propargyl (CP), 8-800μg/L), and the effects of short-term action (up to 3h) and long-term aftereffect (up to 3days) on physiological and biochemical indices related to oxidative stress development were studied. The herbicide induced changes, predominantly increases in lipid peroxidation (LPO) intensity, superoxide anion O2(-) generation, total antioxidant activity (AOA), and catalase (CAT) and ascorbate peroxidase (APOX) activity, although the response by plants was nonlinear and depended on the herbicide concentration and duration of treatment. The highest level of generation of O2(-) was observed in the leaves of maize and winter wheat treated by 800μg/L CP, both in the short- and long-term. As TOPIK concentration increased, so too did LPO and AOA in leaves, confirming the presence of oxidative stress in the cells of all three cereals. Antioxidant enzymes were most active in winter rye and wheat, and least active in maize indicating a protective antioxidant mechanism in the first two cereals. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. Coeliac disease: review of diagnosis and management.

    PubMed

    Walker, Marjorie M; Ludvigsson, Jonas F; Sanders, David S

    2017-08-21

    Coeliac disease is an immune-mediated systemic disease triggered by exposure to gluten, and manifested by small intestinal enteropathy and gastrointestinal and extra-intestinal symptoms. Recent guidelines recommend a concerted use of clear definitions of the disease. In Australia, the most recent estimated prevalence is 1.2% in adult men (1:86) and 1.9% in adult women (1:52). Active case finding is appropriate to diagnose coeliac disease in high risk groups. Diagnosis of coeliac disease is important to prevent nutritional deficiency and long term risk of gastrointestinal malignancy. The diagnosis of coeliac disease depends on clinico-pathological correlation: history, presence of antitransglutaminase antibodies, and characteristic histological features on duodenal biopsy (when the patient is on a gluten-containing diet). Human leucocyte antigen class II haplotypes DQ2 or DQ8 are found in nearly all patients with coeliac disease, but are highly prevalent in the general population at large (56% in Australia) and testing can only exclude coeliac disease for individuals with non-permissive haplotypes. Adhering to a gluten free diet allows duodenal mucosal healing and alleviates symptoms. Patients should be followed up with a yearly review of dietary adherence and a health check. Non-coeliac gluten or wheat protein sensitivity is a syndrome characterised by both gastrointestinal and extra-intestinal symptoms related to the ingestion of gluten and possibly other wheat proteins in people who do not have coeliac disease or wheat allergy recognised by diagnostic tests.

  9. Area estimation of crops by digital analysis of Landsat data

    NASA Technical Reports Server (NTRS)

    Bauer, M. E.; Hixson, M. M.; Davis, B. J.

    1978-01-01

    The study for which the results are presented had these objectives: (1) to use Landsat data and computer-implemented pattern recognition to classify the major crops from regions encompassing different climates, soils, and crops; (2) to estimate crop areas for counties and states by using crop identification data obtained from the Landsat identifications; and (3) to evaluate the accuracy, precision, and timeliness of crop area estimates obtained from Landsat data. The paper describes the method of developing the training statistics and evaluating the classification accuracy. Landsat MSS data were adequate to accurately identify wheat in Kansas; corn and soybean estimates for Indiana were less accurate. Systematic sampling of entire counties made possible by computer classification methods resulted in very precise area estimates at county, district, and state levels.

  10. Separation and identification of neutral cereal lipids by normal phase high-performance liquid chromatography, using evaporative light-scattering and electrospray mass spectrometry for detection.

    PubMed

    Rocha, João M; Kalo, Paavo J; Ollilainen, Velimatti; Malcata, F Xavier

    2010-04-30

    A novel method was developed for the analysis of molecular species in neutral lipid classes, using separation by normal phase high-performance liquid chromatography, followed by detection by evaporative light-scattering and electrospray ionization tandem mass spectrometry. Monoacid standards, i.e. sterol esters, triacylglycerols, fatty acids, diacylglycerols, free sterols and monoacylglycerols, were separated to baseline on microbore 3 microm-silica gel columns. Complete or partial separation of molecular species in each lipid class permitted identification by automatic tandem mass spectrometry of ammonium adducts, produced via positive electrospray ionization. After optimization of the method, separation and identification of molecular species of various lipid classes was comprehensively tested by analysis of neutral lipids from the free lipid extract of maize flour. 2010 Elsevier B.V. All rights reserved.

  11. Single classifier, OvO, OvA and RCC multiclass classification method in handheld based smartphone gait identification

    NASA Astrophysics Data System (ADS)

    Raziff, Abdul Rafiez Abdul; Sulaiman, Md Nasir; Mustapha, Norwati; Perumal, Thinagaran

    2017-10-01

    Gait recognition is widely used in many applications. In the application of the gait identification especially in people, the number of classes (people) is many which may comprise to more than 20. Due to the large amount of classes, the usage of single classification mapping (direct classification) may not be suitable as most of the existing algorithms are mostly designed for the binary classification. Furthermore, having many classes in a dataset may result in the possibility of having a high degree of overlapped class boundary. This paper discusses the application of multiclass classifier mappings such as one-vs-all (OvA), one-vs-one (OvO) and random correction code (RCC) on handheld based smartphone gait signal for person identification. The results is then compared with a single J48 decision tree for benchmark. From the result, it can be said that using multiclass classification mapping method thus partially improved the overall accuracy especially on OvO and RCC with width factor more than 4. For OvA, the accuracy result is worse than a single J48 due to a high number of classes.

  12. 40 CFR 180.560 - Cloquintocet-mexyl; tolerances for residues.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...-sodium (wheat only), pinoxaden (wheat or barley), clodinafop-propargyl (wheat only), or pyroxsulum (wheat..., hay 0.1 Barley, straw 0.1 Wheat, forage 0.2 Wheat, grain 0.1 Wheat, hay 0.5 Wheat, straw 0.1 (b...

  13. Differentiation of Lactobacillus brevis strains using Matrix-Assisted-Laser-Desorption-Ionization-Time-of-Flight Mass Spectrometry with respect to their beer spoilage potential.

    PubMed

    Kern, Carola C; Vogel, Rudi F; Behr, Jürgen

    2014-06-01

    Lactobacillus (L.) brevis is one of the most frequently encountered bacteria in beer-spoilage incidents. As the species Lactobacillus brevis comprises strains showing varying ability to grow in beer, ranging from growth in low hopped wheat to highly hopped pilsner beer, differentiation and classification of L. brevis with regard to their beer-spoiling ability is of vital interest for the brewing industry. Matrix-Assisted-Laser-Desorption-Ionization-Time-Of-Flight Mass Spectrometry (MALDI-TOF MS) has been shown as a powerful tool for species and sub-species differentiation of bacterial isolates and is increasingly used for strain-level differentiation. Seventeen L. brevis strains, representative of different spoilage types, were characterized according to their tolerance to iso-alpha-acids and their growth in wheat-, lager- and pilsner beer. MALDI-TOF MS spectra were acquired to perform strain-level identification, cluster analysis and biomarker detection. Strain-level identification was achieved in 90% out of 204 spectra. Misidentification occurred nearly exclusively among strains belonging to the same spoilage type. Though spectra of strongly beer-spoiling strains showed remarkable similarity, no decisive single markers were detected to be present in all strains of one group. However, MALDI-TOF MS spectra can be reliably assigned to the corresponding strain and thus allow to track single strains and connect them to their physiological properties. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. A comprehensive data processing plan for crop calendar MSS signature development from satellite imagery: Crop identification using vegetation phenology

    NASA Technical Reports Server (NTRS)

    Hlavka, C. A. (Principal Investigator); Carlyle, S. M.; Haralick, R. M.; Yokoyama, R.

    1978-01-01

    The author has identified the following significant results. The phenological method of crop identification involves the creation of crop signatures which characterize multispectral observations as phenological growth states. The phenological signature models spectral reflectance explicitly as a function of crop maturity rather than as a function of date. A correspondence of time to growth state is established which minimizes the smallest difference between the given multispectral multitemporal vector and a category mean vector. The application of the method to the identification of winter wheat and corn shows (1) the method is capable of discriminating crop type with about the same degree of accuracy as more traditional classifiers; (2) the use of LANDSAT observations on two or more dates yields better results than the use of a single observation; and (3) some potential is demonstrated for labeling the degree of maturity of the crop, as well as the crop type.

  15. Using psychological constructs from the MUSIC Model of Motivation to predict students' science identification and career goals: results from the U.S. and Iceland

    NASA Astrophysics Data System (ADS)

    Jones, Brett D.; Sahbaz, Sumeyra; Schram, Asta B.; Chittum, Jessica R.

    2017-05-01

    We investigated students' perceptions related to psychological constructs in their science classes and the influence of these perceptions on their science identification and science career goals. Participants included 575 middle school students from two countries (334 students in the U.S. and 241 students in Iceland). Students completed a self-report questionnaire that included items from several measures. We conducted correlational analyses, confirmatory factor analyses, and structural equation modelling to test our hypotheses. Students' class perceptions (i.e. empowerment, usefulness, success, interest, and caring) were significantly correlated with their science identification, which was correlated positively with their science career goals. Combining students' science class perceptions, science identification, and career goals into one model, we documented that the U.S. and Icelandic samples fit the data reasonably well. However, not all of the hypothesised paths were statistically significant. For example, only students' perceptions of usefulness (for the U.S. and Icelandic students) and success (for the U.S. students only) significantly predicted students' career goals in the full model. Theoretically, our findings are consistent with results from samples of university engineering students, yet different in some ways. Our results provide evidence for the theoretical relationships between students' perceptions of science classes and their career goals.

  16. Managing the risk of extreme climate events in Australian major wheat production systems.

    PubMed

    Luo, Qunying; Trethowan, Richard; Tan, Daniel K Y

    2018-06-04

    Extreme climate events (ECEs) such as drought, frost risk and heat stress cause significant economic losses in Australia. The risk posed by ECEs in the wheat production systems of Australia could be better managed through the identification of safe flowering (SFW) and optimal time of sowing (TOS) windows. To address this issue, three locations (Narrabri, Roseworthy and Merredin), three cultivars (Suntop and Gregory for Narrabri, Mace for both Roseworthy and Merredin) and 20 TOS at 1-week intervals between 1 April and 12 August for the period from 1957 to 2007 were evaluated using the Agricultural Production System sIMulator (APSIM)-Wheat model. Simulation results show that (1) the average frequency of frost events decreased with TOS from 8 to 0 days (d) across the four cases (the combination of locations and cultivars), (2) the average frequency of heat stress events increased with TOS across all cases from 0 to 10 d, (3) soil moisture stress (SMS) increased with earlier TOS before reaching a plateau and then slightly decreasing for Suntop and Gregory at Narrabri and Mace at Roseworthy while SMS increased with TOS for Mace at Merredin from 0.1 to 0.8, (4) Mace at Merredin had the earliest and widest SFW (216-260) while Mace at Roseworthy had latest SFW (257-280), (5) frost risk and heat stress determine SFW at wetter sites (i.e. Narrabri and Roseworthy) while frost risk and SMS determine SFW at drier site (i.e. Merredin) and (6) the optimal TOS (window) to maximise wheat yield are 6-20 May, 13-27 May and 15 April at Narrabri, Roseworthy and Merredin, respectively. These findings provide important and specific information for wheat growers about the management of ECE risk on farm. Furthermore, the coupling of the APSIM crop models with state-of-the-art seasonal and intra-seasonal climate forecast information provides an important tool for improved management of the risk of ECEs in economically important cropping industries in the foreseeable future.

  17. Screening and production study of microbial xylanase producers from Brazilian Cerrado.

    PubMed

    Alves-Prado, Heloiza Ferreira; Pavezzi, Fabiana Carina; Leite, Rodrigo Simões Ribeiro; de Oliveira, Valéria Maia; Sette, Lara Durães; Dasilva, Roberto

    2010-05-01

    Hemicelluloses are polysaccharides of low molecular weight containing 100 to 200 glycosidic residues. In plants, the xylans or the hemicelluloses are situated between the lignin and the collection of cellulose fibers underneath. The xylan is the most common hemicellulosic polysaccharide in cell walls of land plants, comprising a backbone of xylose residues linked by beta-1,4-glycosidic bonds. So, xylanolytic enzymes from microorganism have attracted a great deal of attention in the last decade, particularly because of their biotechnological characteristics in various industrial processes, related to food, feed, ethanol, pulp, and paper industries. A microbial screening of xylanase producer was carried out in Brazilian Cerrado area in Selviria city, Mato Grosso do Sul State, Brazil. About 50 bacterial strains and 15 fungal strains were isolated from soil sample at 35 degrees C. Between these isolated microorganisms, a bacterium Lysinibacillus sp. and a fungus Neosartorya spinosa as good xylanase producers were identified. Based on identification processes, Lysinibacillus sp. is a new species and the xylanase production by this bacterial genus was not reported yet. Similarly, it has not reported about xylanase production from N. spinosa. The bacterial strain P5B1 identified as Lysinibacillus sp. was cultivated on submerged fermentation using as substrate xylan, wheat bran, corn straw, corncob, and sugar cane bagasse. Corn straw and wheat bran show a good xylanase activity after 72 h of fermentation. A fungus identified as N. spinosa (strain P2D16) was cultivated on solid-state fermentation using as substrate source wheat bran, wheat bran plus sawdust, corn straw, corncob, cassava bran, and sugar cane bagasse. Wheat bran and corncobs show the better xylanase production after 72 h of fermentation. Both crude xylanases were characterized and a bacterial xylanase shows optimum pH for enzyme activity at 6.0, whereas a fungal xylanase has optimum pH at 5.0-5.5. They were stable in the pH range 5.0-10.0 and 5.5-8.5 for bacterial and fungal xylanase, respectively. The optimum temperatures were 55 and 60 degrees C for bacterial and fungal xylanase, respectively, and they were thermally stable up to 50 degrees C.

  18. Identification of New Resistance Loci to African Stem Rust Race TTKSK in Tetraploid Wheats Based on Linkage and Genome-Wide Association Mapping.

    PubMed

    Laidò, Giovanni; Panio, Giosuè; Marone, Daniela; Russo, Maria A; Ficco, Donatella B M; Giovanniello, Valentina; Cattivelli, Luigi; Steffenson, Brian; de Vita, Pasquale; Mastrangelo, Anna M

    2015-01-01

    Stem rust, caused by Puccinia graminis Pers. f. sp. tritici Eriks. and E. Henn. (Pgt), is one of the most destructive diseases of wheat. Races of the pathogen in the "Ug99 lineage" are of international concern due to their virulence for widely used stem rust resistance genes and their spread throughout Africa. Disease resistant cultivars provide one of the best means for controlling stem rust. To identify quantitative trait loci (QTL) conferring resistance to African stem rust race TTKSK at the seedling stage, we evaluated an association mapping (AM) panel consisting of 230 tetraploid wheat accessions under greenhouse conditions. A high level of phenotypic variation was observed in response to race TTKSK in the AM panel, allowing for genome-wide association mapping of resistance QTL in wild, landrace, and cultivated tetraploid wheats. Thirty-five resistance QTL were identified on all chromosomes, and seventeen are of particular interest as identified by multiple associations. Many of the identified resistance loci were coincident with previously identified rust resistance genes; however, nine on chromosomes 1AL, 2AL, 4AL, 5BL, and 7BS may be novel. To validate AM results, a biparental population of 146 recombinant inbred lines was also considered, which derived from a cross between the resistant cultivar "Cirillo" and susceptible "Neodur." The stem rust resistance of Cirillo was conferred by a single gene on the distal region of chromosome arm 6AL in an interval map coincident with the resistance gene Sr13, and confirmed one of the resistance loci identified by AM. A search for candidate resistance genes was carried out in the regions where QTL were identified, and many of them corresponded to NBS-LRR genes and protein kinases with LRR domains. The results obtained in the present study are of great interest as a high level of genetic variability for resistance to race TTKSK was described in a germplasm panel comprising most of the tetraploid wheat sub-species.

  19. Do Class Size Effects Differ across Grades?

    ERIC Educational Resources Information Center

    Nandrup, Anne Brink

    2016-01-01

    This paper contributes to the class size literature by analysing whether short-run class size effects are constant across grade levels in compulsory school. Results are based on administrative data on all pupils enrolled in Danish public schools. Identification is based on a government-imposed class size cap that creates exogenous variation in…

  20. 17 CFR 232.313 - Identification of investment company type and series and/or class (or contract).

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... company type and series and/or class (or contract). 232.313 Section 232.313 Commodity and Securities... series and/or class (or contract). (a) Registered investment companies and business development companies... keep current, information concerning their existing and new series and/or classes (or contracts, in the...

  1. 17 CFR 232.313 - Identification of investment company type and series and/or class (or contract).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... company type and series and/or class (or contract). 232.313 Section 232.313 Commodity and Securities... series and/or class (or contract). (a) Registered investment companies and business development companies... keep current, information concerning their existing and new series and/or classes (or contracts, in the...

  2. Identification of Polymers in University Class Experiments.

    ERIC Educational Resources Information Center

    Bowen, Humphry J. M.

    1990-01-01

    The apparatus, reagents, preliminary classification, nomenclature, acquisition, and procedures used in the identification of synthetic polymers are described. Specific tests for the identification of the presence of hydrocarbons, chlorine, fluorine, sulfur, and nitrogen and the absence of halogens and sulfur are discussed. (CW)

  3. Comparison of low molecular weight glutenin subunits identified by SDS-PAGE, 2-DE, MALDI-TOF-MS and PCR in common wheat.

    PubMed

    Liu, Li; Ikeda, Tatsuya M; Branlard, Gerard; Peña, Roberto J; Rogers, William J; Lerner, Silvia E; Kolman, María A; Xia, Xianchun; Wang, Linhai; Ma, Wujun; Appels, Rudi; Yoshida, Hisashi; Wang, Aili; Yan, Yueming; He, Zhonghu

    2010-06-24

    Low-molecular-weight glutenin subunits (LMW-GS) play a crucial role in determining end-use quality of common wheat by influencing the viscoelastic properties of dough. Four different methods - sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), two-dimensional gel electrophoresis (2-DE, IEF x SDS-PAGE), matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) and polymerase chain reaction (PCR), were used to characterize the LMW-GS composition in 103 cultivars from 12 countries. At the Glu-A3 locus, all seven alleles could be reliably identified by 2-DE and PCR. However, the alleles Glu-A3e and Glu-A3d could not be routinely distinguished from Glu-A3f and Glu-A3g, respectively, based on SDS-PAGE, and the allele Glu-A3a could not be differentiated from Glu-A3c by MALDI-TOF-MS. At the Glu-B3 locus, alleles Glu-B3a, Glu-B3b, Glu-B3c, Glu-B3g, Glu-B3h and Glu-B3j could be clearly identified by all four methods, whereas Glu-B3ab, Glu-B3ac, Glu-B3ad could only be identified by the 2-DE method. At the Glu-D3 locus, allelic identification was problematic for the electrophoresis based methods and PCR. MALDI-TOF-MS has the potential to reliably identify the Glu-D3 alleles. PCR is the simplest, most accurate, lowest cost, and therefore recommended method for identification of Glu-A3 and Glu-B3 alleles in breeding programs. A combination of methods was required to identify certain alleles, and would be especially useful when characterizing new alleles. A standard set of 30 cultivars for use in future studies was chosen to represent all LMW-GS allelic variants in the collection. Among them, Chinese Spring, Opata 85, Seri 82 and Pavon 76 were recommended as a core set for use in SDS-PAGE gels. Glu-D3c and Glu-D3e are the same allele. Two new alleles, namely, Glu-D3m in cultivar Darius, and Glu-D3n in Fengmai 27, were identified by 2-DE. Utilization of the suggested standard cultivar set, seed of which is available from the CIMMYT and INRA Clermont-Ferrand germplasm collections, should also promote information sharing in the identification of individual LMW-GS and thus provide useful information for quality improvement in common wheat.

  4. WheatGenome.info: an integrated database and portal for wheat genome information.

    PubMed

    Lai, Kaitao; Berkman, Paul J; Lorenc, Michal Tadeusz; Duran, Chris; Smits, Lars; Manoli, Sahana; Stiller, Jiri; Edwards, David

    2012-02-01

    Bread wheat (Triticum aestivum) is one of the most important crop plants, globally providing staple food for a large proportion of the human population. However, improvement of this crop has been limited due to its large and complex genome. Advances in genomics are supporting wheat crop improvement. We provide a variety of web-based systems hosting wheat genome and genomic data to support wheat research and crop improvement. WheatGenome.info is an integrated database resource which includes multiple web-based applications. These include a GBrowse2-based wheat genome viewer with BLAST search portal, TAGdb for searching wheat second-generation genome sequence data, wheat autoSNPdb, links to wheat genetic maps using CMap and CMap3D, and a wheat genome Wiki to allow interaction between diverse wheat genome sequencing activities. This system includes links to a variety of wheat genome resources hosted at other research organizations. This integrated database aims to accelerate wheat genome research and is freely accessible via the web interface at http://www.wheatgenome.info/.

  5. IDENTIFICATION AND EVALUATION OF STRESSORS IN TOXIC SEDIMENTS AND DREDGED MATERIALS

    EPA Science Inventory

    Identification of stressors in aquatic systems is critical to sound assessment and management of our nation's waterways for a number of reasons. Identification of specific classes of toxicants (or stressors) can be useful in designing effective sediment remediation methods and re...

  6. Comparison of Group Cohesion, Class Participation, and Exam Performance in Live and Online Classes

    ERIC Educational Resources Information Center

    Galyon, Charles E.; Heaton, Eleanore C. T.; Best, Tiffany L.; Williams, Robert L.

    2016-01-01

    Though class participation and group cohesion have shown some potential to promote student performance in conventional classrooms, their efficacy has not yet been demonstrated in an online-class setting. Group cohesion, defined as member attraction to and self-identification with a group, is thought to promote positive interdependence and the…

  7. 21 CFR 136.180 - Whole wheat bread, rolls, and buns.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Whole wheat bread, rolls, and buns. 136.180... § 136.180 Whole wheat bread, rolls, and buns. (a) Each of the foods whole wheat bread, graham bread, entire wheat bread, whole wheat rolls, graham rolls, entire wheat rolls, whole wheat buns, graham buns...

  8. WheatGenome.info: A Resource for Wheat Genomics Resource.

    PubMed

    Lai, Kaitao

    2016-01-01

    An integrated database with a variety of Web-based systems named WheatGenome.info hosting wheat genome and genomic data has been developed to support wheat research and crop improvement. The resource includes multiple Web-based applications, which are implemented as a variety of Web-based systems. These include a GBrowse2-based wheat genome viewer with BLAST search portal, TAGdb for searching wheat second generation genome sequence data, wheat autoSNPdb, links to wheat genetic maps using CMap and CMap3D, and a wheat genome Wiki to allow interaction between diverse wheat genome sequencing activities. This portal provides links to a variety of wheat genome resources hosted at other research organizations. This integrated database aims to accelerate wheat genome research and is freely accessible via the web interface at http://www.wheatgenome.info/ .

  9. 40 CFR 180.559 - Clodinafop-propargyl; tolerances for residues.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...-pyridinyl)oxy]phenoxy]-, (2R)-), in or on wheat, grain at 0.1 ppm ; wheat, forage at 0.1 ppm; wheat, hay at 0.1 ppm; and wheat, straw at 0.50 ppm. Commodity Parts per million Wheat, forage 0.1 Wheat, grain 0.1 Wheat, hay 0.1 Wheat, straw 0.5 (b) Section 18 emergency exemptions. [Reserved] (c) Tolerances...

  10. 7 CFR 985.55 - Identification.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... HANDLING OF SPEARMINT OIL PRODUCED IN THE FAR WEST Order Regulating Handling Volume Limitations § 985.55 Identification. (a) Each producer shall, under supervision of the Committee, identify each class of oil within 15... approval of the Secretary. Identification of oil shall be accomplished before its delivery either to a...

  11. Segments and segmental properties in cross-language perception: Korean perception of English obstruents in various prosodic locations

    NASA Astrophysics Data System (ADS)

    de Jong, Kenneth; Silbert, Noah; Park, Hanyong

    2004-05-01

    Experimental models of cross-language perception and second-language acquisition (such as PAM and SLM) typically treat language differences in terms of whether the two languages share phonological segmental categories. Linguistic models, by contrast, generally examine properties which cross classify segments, such as features, rules, or prosodic constraints. Such models predict that perceptual patterns found for one segment will generalize to other segments of the same class. This paper presents perceptual identifications of Korean listeners to a set of voiced and voiceless English stops and fricatives in various prosodic locations to determine the extent to which such generality occurs. Results show some class-general effects; for example, voicing identification patterns generalize from stops, which occur in Korean, to nonsibilant fricatives, which are new to Korean listeners. However, when identification is poor, there are clear differences between segments within the same class. For example, in identifying stops and fricatives, both point of articulation and prosodic position bias perceptions; coronals are more often labeled fricatives, and syllable initial obstruents are more often labeled stops. These results suggest that class-general perceptual patterns are not a simple consequence of the structure of the perceptual system, but need to be acquired by factoring out within-class differences.

  12. Identification of ecogeographical gaps in the Spanish Aegilops collections with potential tolerance to drought and salinity

    PubMed Central

    Parra-Quijano, Mauricio; Iriondo, Jose María

    2017-01-01

    Drought, one of the most important abiotic stress factors limiting biomass, significantly reduces crop productivity. Salinization also affects the productivity of both irrigated and rain-fed wheat crops. Species of genus Aegilops can be considered crop wild relatives (CWR) of wheat and have been widely used as gene sources in wheat breeding, especially in providing resistance to pests and diseases. Five species (Ae. biuncialis, Ae. geniculata, Ae. neglecta, Ae. triuncialis and Ae. ventricosa) are included in the Spanish National Inventory of CWRs. This study aimed to identify ecogeographic gaps in the Spanish Network on Plant Genetic Resources for Food and Agriculture (PGRFA) with potential tolerance to drought and salinity. Data on the Spanish populations of the target species collected and conserved in genebanks of the Spanish Network on PGRFA and data on other population occurrences in Spain were compiled and assessed for their geo-referencing quality. The records with the best geo-referencing quality values were used to identify the ecogeographical variables that might be important for Aegilops distribution in Spain. These variables were then used to produce ecogeographic land characterization maps for each species, allowing us to identify populations from low and non-represented ecogeographical categories in ex situ collections. Predictive characterization strategy was used to identify 45 Aegilops populations in these ecogeographical gaps with potential tolerance to drought and salinity conditions. Further efforts are being made to collect and evaluate these populations. PMID:28761779

  13. The Metabolic Fate of Deoxynivalenol and Its Acetylated Derivatives in a Wheat Suspension Culture: Identification and Detection of DON-15-O-Glucoside, 15-Acetyl-DON-3-O-Glucoside and 15-Acetyl-DON-3-Sulfate

    PubMed Central

    Schmeitzl, Clemens; Warth, Benedikt; Fruhmann, Philipp; Michlmayr, Herbert; Malachová, Alexandra; Berthiller, Franz; Schuhmacher, Rainer; Krska, Rudolf; Adam, Gerhard

    2015-01-01

    Deoxynivalenol (DON) is a protein synthesis inhibitor produced by the Fusarium species, which frequently contaminates grains used for human or animal consumption. We treated a wheat suspension culture with DON or one of its acetylated derivatives, 3-acetyl-DON (3-ADON), 15-acetyl-DON (15-ADON) and 3,15-diacetyl-DON (3,15-diADON), and monitored the metabolization over a course of 96 h. Supernatant and cell extract samples were analyzed using a tailored LC-MS/MS method for the quantification of DON metabolites. We report the formation of tentatively identified DON-15-O-β-D-glucoside (D15G) and of 15-acetyl-DON-3-sulfate (15-ADON3S) as novel deoxynivalenol metabolites in wheat. Furthermore, we found that the recently identified 15-acetyl-DON-3-O-β-D-glucoside (15-ADON3G) is the major metabolite produced after 15-ADON challenge. 3-ADON treatment led to a higher intracellular content of toxic metabolites after six hours compared to all other treatments. 3-ADON was exclusively metabolized into DON before phase II reactions occurred. In contrast, we found that 15-ADON was directly converted into 15-ADON3G and 15-ADON3S in addition to metabolization into deoxynivalenol-3-O-β-D-glucoside (D3G). This study highlights significant differences in the metabolization of DON and its acetylated derivatives. PMID:26274975

  14. Characterization of a Novel Dye-Decolorizing Peroxidase (DyP)-Type Enzyme from Irpex lacteus and Its Application in Enzymatic Hydrolysis of Wheat Straw

    PubMed Central

    Salvachúa, Davinia; Prieto, Alicia

    2013-01-01

    Irpex lacteus is a white rot basidiomycete proposed for a wide spectrum of biotechnological applications which presents an interesting, but still scarcely known, enzymatic oxidative system. Among these enzymes, the production, purification, and identification of a new dye-decolorizing peroxidase (DyP)-type enzyme, as well as its physico-chemical, spectroscopic, and catalytic properties, are described in the current work. According to its N-terminal sequence and peptide mass fingerprinting analyses, I. lacteus DyP showed high homology (>95%) with the hypothetical (not isolated or characterized) protein cpop21 from an unidentified species of the family Polyporaceae. The enzyme had a low optimal pH, was very stable to acid pH and temperature, and showed improved activity and stability at high H2O2 concentrations compared to other peroxidases. Other attractive features of I. lacteus DyP were its high catalytic efficiency oxidizing the recalcitrant anthraquinone and azo dyes assayed (kcat/Km of 1.6 × 106 s-1 M-1) and its ability to oxidize nonphenolic aromatic compounds like veratryl alcohol. In addition, the effect of this DyP during the enzymatic hydrolysis of wheat straw was checked. The results suggest that I. lacteus DyP displayed a synergistic action with cellulases during the hydrolysis of wheat straw, increasing significantly the fermentable glucose recoveries from this substrate. These data show a promising biotechnological potential for this enzyme. PMID:23666335

  15. Production of wheat gluten hydrolysates with reduced antigenicity employing enzymatic hydrolysis combined with downstream unit operations.

    PubMed

    Merz, Michael; Kettner, Lucas; Langolf, Emma; Appel, Daniel; Blank, Imre; Stressler, Timo; Fischer, Lutz

    2016-08-01

    Due to allergies or other health disorders a certain segment of the population is not able to safely consume some plant proteins, which are the main protein support in human nutrition. Coeliac disease is a prominent autoimmune disorder and requires a strict adherence to a gluten-free diet. The aim of this study was to identify suitable combinations of enzymatic hydrolysis and common unit operations in food processing (centrifugation, ultra-filtration) to produce gluten-free wheat gluten hydrolysates for food application. To analyse the hydrolysates, a simple and cheap competitive ELISA protocol was designed and validated in this study as well. The competitive ELISA was validated using gliadin spiked skim milk protein hydrolysates, due to the latter application of the assay. The limit of quantification was 4.19 mg kg(-1) , which allowed the identification of gluten-free (<20 mg kg(-1) ) hydrolysates. Enzymatic hydrolysis, including the type of peptidase, and the downstream processing greatly affected the antigenicity of the hydrolysates. Enzymatic hydrolysis and downstream processing operations, such as centrifugation and ultra-filtration, reduced the antigenicity of wheat gluten hydrolysates. Gluten-free hydrolysates were obtained with Flavourzyme after centrifugation (25 g L(-1) substrate) and after 1 kDa ultra-filtration (100 g L(-1) substrate). A multiple peptidase complex, such as Flavourzyme, seems to be required for the production of gluten-free hydrolysates. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  16. Wheat for Kids! [and] Teacher's Guide.

    ERIC Educational Resources Information Center

    Idaho Wheat Commission, Boise.

    "Wheat for Kids" contains information at the elementary school level about: the structure of the wheat kernel; varieties of wheat and their uses; growing wheat; making wheat dough; the U.S. Department of Agriculture Food Guide Pyramid and nutrition; Idaho's part of the international wheat market; recipes; and word games based on the…

  17. 76 FR 34883 - Pesticide Tolerances; Technical Amendments

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-15

    ... the table, remove the commodities Wheat, aspirated grain fractions; Wheat, bran; Wheat, flour; Wheat, germ; Wheat, middlings and Wheat, shorts. Sec. 180.379 [Removed] 0 19. Remove Sec. 180.379. 0 20...

  18. Changes in the Russian Wheat Aphid (Hemiptera: Aphididae) Biotype Complex in South Africa.

    PubMed

    Jankielsohn, Astrid

    2016-04-01

    Russian wheat aphid Diuraphis noxia (Kurdjumov) has spread from its native area in central Asia to all the major wheat-producing countries in the world to become an international wheat pest. Because the Russian wheat aphid is a serious threat to the wheat industry in South Africa, it is important to investigate the key factors involved in the distribution of Russian wheat aphid biotypes and in the changes of the Russian wheat aphid biotype complex in South Africa. There are currently four known Russian wheat aphid biotypes occurring in South Africa. Russian wheat aphid samples were collected from 2011 to 2014 during the wheat-growing season in spring and summer and these samples were screened to determine the biotype status. RWASA1 occurred predominantly in the Western Cape, while RWASA2 and RWASA3 occurred predominantly in the Eastern Free State. Following the first record of RWASA4 in 2011, this biotype was restricted to the Eastern Free State. The surveys suggest that the Russian wheat aphid bioype complex was more diverse in the Eastern Free State than in the other wheat production areas. There was also a shift in Russian wheat aphid biotype composition over time. The Russian wheat aphid biotype complex is dynamic, influenced by environmental factors such as host plants, altitude, and climate, and it can change and diversify over time causing fluctuation in populations over sites and years. This dynamic nature of the Russian wheat aphid will continue to challenge the development of Russian wheat aphid-resistant wheat cultivars in South Africa, and the continued monitoring of the biotypic and genetic structure, to determine genetic relatedness and variation in different biotypes, of Russian wheat aphid populations is important for protecting wheat.

  19. Accurate pan-specific prediction of peptide-MHC class II binding affinity with improved binding core identification.

    PubMed

    Andreatta, Massimo; Karosiene, Edita; Rasmussen, Michael; Stryhn, Anette; Buus, Søren; Nielsen, Morten

    2015-11-01

    A key event in the generation of a cellular response against malicious organisms through the endocytic pathway is binding of peptidic antigens by major histocompatibility complex class II (MHC class II) molecules. The bound peptide is then presented on the cell surface where it can be recognized by T helper lymphocytes. NetMHCIIpan is a state-of-the-art method for the quantitative prediction of peptide binding to any human or mouse MHC class II molecule of known sequence. In this paper, we describe an updated version of the method with improved peptide binding register identification. Binding register prediction is concerned with determining the minimal core region of nine residues directly in contact with the MHC binding cleft, a crucial piece of information both for the identification and design of CD4(+) T cell antigens. When applied to a set of 51 crystal structures of peptide-MHC complexes with known binding registers, the new method NetMHCIIpan-3.1 significantly outperformed the earlier 3.0 version. We illustrate the impact of accurate binding core identification for the interpretation of T cell cross-reactivity using tetramer double staining with a CMV epitope and its variants mapped to the epitope binding core. NetMHCIIpan is publicly available at http://www.cbs.dtu.dk/services/NetMHCIIpan-3.1 .

  20. LipidFrag: Improving reliability of in silico fragmentation of lipids and application to the Caenorhabditis elegans lipidome

    PubMed Central

    Neumann, Steffen; Schmitt-Kopplin, Philippe

    2017-01-01

    Lipid identification is a major bottleneck in high-throughput lipidomics studies. However, tools for the analysis of lipid tandem MS spectra are rather limited. While the comparison against spectra in reference libraries is one of the preferred methods, these libraries are far from being complete. In order to improve identification rates, the in silico fragmentation tool MetFrag was combined with Lipid Maps and lipid-class specific classifiers which calculate probabilities for lipid class assignments. The resulting LipidFrag workflow was trained and evaluated on different commercially available lipid standard materials, measured with data dependent UPLC-Q-ToF-MS/MS acquisition. The automatic analysis was compared against manual MS/MS spectra interpretation. With the lipid class specific models, identification of the true positives was improved especially for cases where candidate lipids from different lipid classes had similar MetFrag scores by removing up to 56% of false positive results. This LipidFrag approach was then applied to MS/MS spectra of lipid extracts of the nematode Caenorhabditis elegans. Fragments explained by LipidFrag match known fragmentation pathways, e.g., neutral losses of lipid headgroups and fatty acid side chain fragments. Based on prediction models trained on standard lipid materials, high probabilities for correct annotations were achieved, which makes LipidFrag a good choice for automated lipid data analysis and reliability testing of lipid identifications. PMID:28278196

  1. [Effects of water stress on red-edge parameters and yield in wheat cropping].

    PubMed

    He, Ke-Xun; Zaho, Shu-He; Lai, Jian-Bin; Luo, Yun-Xiao; Qin, Zhi-Hao

    2013-08-01

    The objective of the present paper is to study the influence of water stress on wheat spectrum red edge parameters by using field wheat spectrum data obtained from water stress experiment. Firstly, the authors analyzed the influence of water stress on wheat spectrum reflectance. Then the authors got the wheat red edge position and red edge peak through calculating wheat spectrum first-order differential and analyzed the influence of water stress on wheat red edge parameters. Finally the authors discussed the relationship between red peak and wheat yield. The results showed that the wheat red edge position shows "red shift" at the beginning of the wheat growth period and "blue shift" at the later period of the wheat growth period under the water stress experiment. Also, the red edge peak of the wheat showed that red edge peak increased with the water stress sharpening at the beginning of the wheat growth period, and then the red edge peak reduced with the water stress sharpening. The wheat red edge peak presented positive correlation with the wheat yield before the elongation period, and exhibited negative correlation after that period.

  2. [Enhancement of functional expression of wheat peroxidase WP1 in prokaryotic system by co-transforming with hemA and hemL of Esherichia coli].

    PubMed

    Zhang, Chao; Shan, Liwei; Su, Shuaikun; Nan, Yanni; Guo, Zhongyu; Fan, Sanhong

    2012-07-01

    Wheat grain peroxidase 1 (WP1) belonged to class III plant peroxidase with cofactor heme, which not only has antifungal activity, but also influences the processing quality of flour. In order to enhance functional expression of WP1 in prokaryotic system by increasing endogenous heme synthesis, we constructed a recombinant plasmid pACYC-A-L containing hemA and hemL of Esherichia coli. Then, we co-transformed it into host strain T7 Express with secretive expression vector (pMAL-p4x-WP1) or non-secretive expression vector (pET21a-MBP-WP1), respectively. The MBP-WP1 fusion protein was further purified by amylose affinity chromatography and its peroxidase activity was assayed using 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonate) (ABTS) as substrate. At 12 h after induction at 28 degree, the extracellular 5-aminolevulinic acid (5-ALA) production of T7 Express/pACYC-A-L was up to 146.73 mg/L, simultaneously the extracellular porphrins also increased dramatically. The peroxidase activity of functional MBP-WP1 obtained from T7 Express/ (pACYC-A-L + pMAL-p4x-WP1) was 14.6-folds of that purified from T7 Express/ pET21a-MBP-WP1. This study not only successfully enhanced functional expression of wheat peroxidase 1 in Esherichia coli, but also provided beneficial references for other important proteins with cofactor heme.

  3. The homeodomain transcription factor TaHDZipI-2 from wheat regulates frost tolerance, flowering time and spike development in transgenic barley.

    PubMed

    Kovalchuk, Nataliya; Chew, William; Sornaraj, Pradeep; Borisjuk, Nikolai; Yang, Nannan; Singh, Rohan; Bazanova, Natalia; Shavrukov, Yuri; Guendel, Andre; Munz, Eberhard; Borisjuk, Ljudmilla; Langridge, Peter; Hrmova, Maria; Lopato, Sergiy

    2016-07-01

    Homeodomain leucine zipper class I (HD-Zip I) transcription factors (TFs) play key roles in the regulation of plant growth and development under stresses. Functions of the TaHDZipI-2 gene isolated from the endosperm of developing wheat grain were revealed. Molecular characterization of TaHDZipI-2 protein included studies of its dimerisation, protein-DNA interactions and gene activation properties using pull-down assays, in-yeast methods and transient expression assays in wheat cells. The analysis of TaHDZipI-2 gene functions was performed using transgenic barley plants. It included comparison of developmental phenotypes, yield components, grain quality, frost tolerance and the levels of expression of potential target genes in transgenic and control plants. Transgenic TaHDZipI-2 lines showed characteristic phenotypic features that included reduced growth rates, reduced biomass, early flowering, light-coloured leaves and narrowly elongated spikes. Transgenic lines produced 25-40% more seeds per spike than control plants, but with 50-60% smaller grain size. In vivo lipid imaging exposed changes in the distribution of lipids between the embryo and endosperm in transgenic seeds. Transgenic lines were significantly more tolerant to frost than control plants. Our data suggest the role of TaHDZipI-2 in controlling several key processes underlying frost tolerance, transition to flowering and spike development. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  4. Effects of protein in wheat flour on retrogradation of wheat starch.

    PubMed

    Xijun, Lian; Junjie, Guo; Danli, Wang; Lin, Li; Jiaran, Zhu

    2014-08-01

    Albumins, globulins, gliadins, and glutenins were isolated from wheat flour and the effects of those proteins on retrogradation of wheat starch were investigated. The results showed that only glutenins retarded retrogradation of wheat starch and other 3 proteins promoted it. The results of IR spectra proved that no S-S linkage formed during retrogradation of wheat starch blended with wheat proteins. Combination of wheat starch and globulins or gliadins through glucosidic bonds hindered the hydrolysis of wheat starch by α-amylase. The melting peak temperatures of retrograded wheat starch attached to different proteins were 128.46, 126.14, 132.03, 121.65, and 134.84 °C for the control with no protein, albumins, glutenins, globulins, gliadins groups, respectively, and there was no second melting temperature for albumins group. Interaction of wheat proteins and starch in retrograded wheat starch greatly decreased the endothermic enthalpy (△H) of retrograded wheat starch. Retrograded wheat starch bound to gliadins might be a new kind of resistant starch based on glycosidic bond between starch and protein. © 2014 Institute of Food Technologists®

  5. DNA microsatellite region for a reliable quantification of soft wheat adulteration in durum wheat-based foodstuffs by real-time PCR.

    PubMed

    Sonnante, Gabriella; Montemurro, Cinzia; Morgese, Anita; Sabetta, Wilma; Blanco, Antonio; Pasqualone, Antonella

    2009-11-11

    Italian industrial pasta and durum wheat typical breads must be prepared using exclusively durum wheat semolina. Previously, a microsatellite sequence specific of the wheat D-genome had been chosen for traceability of soft wheat in semolina and bread samples, using qualitative and quantitative Sybr green-based real-time experiments. In this work, we describe an improved method based on the same soft wheat genomic region by means of a quantitative real-time PCR using a dual-labeled probe. Standard curves based on dilutions of 100% soft wheat flour, pasta, or bread were constructed. Durum wheat semolina, pasta, and bread samples were prepared with increasing amounts of soft wheat to verify the accuracy of the method. Results show that reliable quantifications were obtained especially for the samples containing a lower amount of soft wheat DNA, fulfilling the need to verify labeling of pasta and typical durum wheat breads.

  6. Identification of a hepatoprotective peptide in wheat gluten hydrolysate against D-galactosamine-induced acute hepatitis in rats.

    PubMed

    Sato, Kenji; Egashira, Yukari; Ono, Shin; Mochizuki, Satoshi; Shimmura, Yuki; Suzuki, Yoshio; Nagata, Megumi; Hashimoto, Kaori; Kiyono, Tamami; Park, Eun Young; Nakamura, Yasushi; Itabashi, Mariko; Sakata, Yuka; Furuta, Seigo; Sanada, Hiroo

    2013-07-03

    A hepatoprotective peptide, pyroglutamyl leucine (pyroGlu-Leu), was identified in wheat gluten hydrolysate through an in vivo activity-guided fractionation approach based on D-galactosamine-induced acute hepatitis in rats and fractionation of peptides with large-scale preparative ampholine-free isoelectric focusing. The active acidic fraction predominantly consisted of pyroglutamyl peptides and free pyroglutamic acid. Pyroglutamyl peptides were derivatized with phenyl isothiocyanate after removal of a pyroglutamyl residue by pyroglutamate aminopeptidase. The derivatives were purified by reversed-phase HPLC and subjected to sequence analysis. The active fraction contained pyroGlu-Ile, pyroGlu-Leu, pyroGlu-Gln, pyroGlu-Gln-Gln, and free pyroGlu. Ingestion of pyroGlu-Leu at 20 mg/kg body weight significantly decreased serum aspartate and alanine aminotransferases to approximately 30% and 20% of those values of the vehicle group, respectively, which were near the normal levels. Thirty minutes after ingestion of pyroGlu-Leu at 20 mg/kg, the concentration of pyroGlu-Leu in portal blood plasma increased to approximately 2 μM.

  7. Wheat: The Whole Story.

    ERIC Educational Resources Information Center

    Oklahoma State Dept. of Education, Oklahoma City.

    This publication presents information on wheat. Wheat was originally a wild grass and not native to the United States. Wheat was not planted there until 1777 (and then only as a hobby crop). Wheat is grown on more acres than any other grain in this country. Soft wheats are grown east of the Mississippi River, and hard wheats are grown west of the…

  8. Reinforcement Effect of Alkali-Hydrolyzed Wheat Gluten and Shear-Degraded Wheat Starch in Carboxylated Styrene-Butadiene Composites

    USDA-ARS?s Scientific Manuscript database

    Wheat gluten (WG) and wheat starch (WS) are the protein and carbohydrate obtained from wheat flours. Wheat gluten is not water soluble or dispersible due to its hydrophobic nature. To prepare wheat gluten dispersions, an alkali hydrolysis reaction was carried out to produce a stable aqueous disper...

  9. [Genealogical Analysis of the Use of Two Wheatgrass (Agropyron) Species in Common Wheat (Triticum aestivum L.) Breeding for Disease Resistance].

    PubMed

    Martynova, S P; Dobrotvorskaya, T V; Krupnov, V A

    2016-02-01

    During the last 80 years, in order to increase the genetic variability of wheat, translocations containing nine elongated wheatgrass (Agropyron elongatum) and eight intermediate wheatgrass (Agropyron intermedium) genes, which control resistance to pathogens, were transferred to this crop culture. Genealogical and statistical analysis of 1500 varieties developed using the wheatgrass gave evidence of the continuing increase in the proportion of such varieties in the total number of wheat varieties over the last half-century. Translocations from Ag. elongatum most commonly occur in the pedigrees of the varieties from the United States, less frequently they can be found in Australian and Chinese varieties, and they are extremely rare--in European and African ones. Ag. intermedium most frequently occurs in the pedigrees of the Eastern European varieties, mainly in those from Russia, as well as in the varieties from China. The observed uneven distribution of such varieties may be associated with either the effectiveness of the translocation in the development of resistance to the local populations of pathogens or with the effect of the translocation on the adaptive traits of plants. By computer tracking of pedigrees, we performed an inventory of the translocation donors from A. elongatum and A. intermedium used in the breeding programs in the United States, Russia, Australia, India, and China. The most widely occurring combinations of the gene complex Lr24/Sr24 of Ag. elongatum with other resistance genes were revealed. In Russia there were developed varieties in which the 6D chromosome was substituted by the 6Ai chromosome of Ag. intermedium, which controls disease resistance and the adaptivity of plants. The identification and introgression of new translocations indicates that the possibilities of using wheatgrass species for broadening of genetic variability of wheat are far from being exhausted.

  10. Assessing the effects of architectural variations on light partitioning within virtual wheat–pea mixtures

    PubMed Central

    Barillot, Romain; Escobar-Gutiérrez, Abraham J.; Fournier, Christian; Huynh, Pierre; Combes, Didier

    2014-01-01

    Background and Aims Predicting light partitioning in crop mixtures is a critical step in improving the productivity of such complex systems, and light interception has been shown to be closely linked to plant architecture. The aim of the present work was to analyse the relationships between plant architecture and light partitioning within wheat–pea (Triticum aestivum–Pisum sativum) mixtures. An existing model for wheat was utilized and a new model for pea morphogenesis was developed. Both models were then used to assess the effects of architectural variations in light partitioning. Methods First, a deterministic model (L-Pea) was developed in order to obtain dynamic reconstructions of pea architecture. The L-Pea model is based on L-systems formalism and consists of modules for ‘vegetative development’ and ‘organ extension’. A tripartite simulator was then built up from pea and wheat models interfaced with a radiative transfer model. Architectural parameters from both plant models, selected on the basis of their contribution to leaf area index (LAI), height and leaf geometry, were then modified in order to generate contrasting architectures of wheat and pea. Key results By scaling down the analysis to the organ level, it could be shown that the number of branches/tillers and length of internodes significantly determined the partitioning of light within mixtures. Temporal relationships between light partitioning and the LAI and height of the different species showed that light capture was mainly related to the architectural traits involved in plant LAI during the early stages of development, and in plant height during the onset of interspecific competition. Conclusions In silico experiments enabled the study of the intrinsic effects of architectural parameters on the partitioning of light in crop mixtures of wheat and pea. The findings show that plant architecture is an important criterion for the identification/breeding of plant ideotypes, particularly with respect to light partitioning. PMID:24907314

  11. Discovery and molecular mapping of a new gene conferring resistance to stem rust, Sr53, derived from Aegilops geniculata and characterization of spontaneous translocation stocks with reduced alien chromatin.

    PubMed

    Liu, Wenxuan; Rouse, Matthew; Friebe, Bernd; Jin, Yue; Gill, Bikram; Pumphrey, Michael O

    2011-07-01

    This study reports the discovery and molecular mapping of a resistance gene effective against stem rust races RKQQC and TTKSK (Ug99) derived from Aegilops geniculata (2n = 4x = 28, U(g)U(g)M(g)M(g)). Two populations from the crosses TA5599 (T5DL-5M(g)L·5M(g)S)/TA3809 (ph1b mutant in Chinese Spring background) and TA5599/Lakin were developed and used for genetic mapping to identify markers linked to the resistance gene. Further molecular and cytogenetic characterization resulted in the identification of nine spontaneous recombinants with shortened Ae. geniculata segments. Three of the wheat-Ae. geniculata recombinants (U6154-124, U6154-128, and U6200-113) are interstitial translocations (T5DS·5DL-5M(g)L-5DL), with 20-30% proximal segments of 5M(g)L translocated to 5DL; the other six are recombinants (T5DL-5M(g)L·5M(g)S) have shortened segments of 5M(g)L with fraction lengths (FL) of 0.32-0.45 compared with FL 0.55 for the 5M(g)L segment in the original translocation donor, TA5599. Recombinants U6200-64, U6200-117, and U6154-124 carry the stem rust resistance gene Sr53 with the same infection type as TA5599, the resistance gene donor. All recombinants were confirmed to be genetically compensating on the basis of genomic in situ hybridization and molecular marker analysis with chromosome 5D- and 5M(g)-specific SSR/STS-PCR markers. These recombinants between wheat and Ae. geniculata will provide another source for wheat stem rust resistance breeding and for physical mapping of the resistance locus and crossover hot spots between wheat chromosome 5D and chromosome 5M(g)L of Ae. geniculata.

  12. Comparative Analysis of Phenolic Compound Characterization and Their Biosynthesis Genes between Two Diverse Bread Wheat (Triticum aestivum) Varieties Differing for Chapatti (Unleavened Flat Bread) Quality.

    PubMed

    Sharma, Monica; Sandhir, Rajat; Singh, Anuradha; Kumar, Pankaj; Mishra, Ankita; Jachak, Sanjay; Singh, Sukhvinder P; Singh, Jagdeep; Roy, Joy

    2016-01-01

    Phenolic compounds (PCs) affect the bread quality and can also affect the other types of end-use food products such as chapatti (unleavened flat bread), now globally recognized wheat-based food product. The detailed analysis of PCs and their biosynthesis genes in diverse bread wheat ( Triticum aestivum ) varieties differing for chapatti quality have not been studied. In this study, the identification and quantification of PCs using UPLC-QTOF-MS and/or MS/MS and functional genomics techniques such as microarrays and qRT-PCR of their biosynthesis genes have been studied in a good chapatti variety, "C 306" and a poor chapatti variety, "Sonalika." About 80% (69/87) of plant phenolic compounds were tentatively identified in these varieties. Nine PCs (hinokinin, coutaric acid, fertaric acid, p-coumaroylqunic acid, kaempferide, isorhamnetin, epigallocatechin gallate, methyl isoorientin-2'-O-rhamnoside, and cyanidin-3-rutinoside) were identified only in the good chapatti variety and four PCs (tricin, apigenindin, quercetin-3-O-glucuronide, and myricetin-3-glucoside) in the poor chapatti variety. Therefore, about 20% of the identified PCs are unique to each other and may be "variety or genotype" specific PCs. Fourteen PCs used for quantification showed high variation between the varieties. The microarray data of 44 phenolic compound biosynthesis genes and 17 of them on qRT-PCR showed variation in expression level during seed development and majority of them showed low expression in the good chapatti variety. The expression pattern in the good chapatti variety was largely in agreement with that of phenolic compounds. The level of variation of 12 genes was high between the good and poor chapatti quality varieties and has potential in development of markers. The information generated in this study can be extended onto a larger germplasm set for development of molecular markers using QTL and/or association mapping approaches for their application in wheat breeding.

  13. Comparative Analysis of Phenolic Compound Characterization and Their Biosynthesis Genes between Two Diverse Bread Wheat (Triticum aestivum) Varieties Differing for Chapatti (Unleavened Flat Bread) Quality

    PubMed Central

    Sharma, Monica; Sandhir, Rajat; Singh, Anuradha; Kumar, Pankaj; Mishra, Ankita; Jachak, Sanjay; Singh, Sukhvinder P.; Singh, Jagdeep; Roy, Joy

    2016-01-01

    Phenolic compounds (PCs) affect the bread quality and can also affect the other types of end-use food products such as chapatti (unleavened flat bread), now globally recognized wheat-based food product. The detailed analysis of PCs and their biosynthesis genes in diverse bread wheat (Triticum aestivum) varieties differing for chapatti quality have not been studied. In this study, the identification and quantification of PCs using UPLC-QTOF-MS and/or MS/MS and functional genomics techniques such as microarrays and qRT-PCR of their biosynthesis genes have been studied in a good chapatti variety, “C 306” and a poor chapatti variety, “Sonalika.” About 80% (69/87) of plant phenolic compounds were tentatively identified in these varieties. Nine PCs (hinokinin, coutaric acid, fertaric acid, p-coumaroylqunic acid, kaempferide, isorhamnetin, epigallocatechin gallate, methyl isoorientin-2′-O-rhamnoside, and cyanidin-3-rutinoside) were identified only in the good chapatti variety and four PCs (tricin, apigenindin, quercetin-3-O-glucuronide, and myricetin-3-glucoside) in the poor chapatti variety. Therefore, about 20% of the identified PCs are unique to each other and may be “variety or genotype” specific PCs. Fourteen PCs used for quantification showed high variation between the varieties. The microarray data of 44 phenolic compound biosynthesis genes and 17 of them on qRT-PCR showed variation in expression level during seed development and majority of them showed low expression in the good chapatti variety. The expression pattern in the good chapatti variety was largely in agreement with that of phenolic compounds. The level of variation of 12 genes was high between the good and poor chapatti quality varieties and has potential in development of markers. The information generated in this study can be extended onto a larger germplasm set for development of molecular markers using QTL and/or association mapping approaches for their application in wheat breeding. PMID:28018403

  14. Short periods of high temperature during meiosis prevent normal meiotic progression and reduce grain number in hexaploid wheat (Triticum aestivum L.).

    PubMed

    Draeger, Tracie; Moore, Graham

    2017-09-01

    Exposure of wheat to high temperatures during male meiosis prevents normal meiotic progression and reduces grain number. We define a temperature-sensitive period and link heat tolerance to chromosome 5D. This study assesses the effects of heat on meiotic progression and grain number in hexaploid wheat (Triticum aestivum L. var. Chinese Spring), defines a heat-sensitive stage and evaluates the role of chromosome 5D in heat tolerance. Plants were exposed to high temperatures (30 or 35 °C) in a controlled environment room for 20-h periods during meiosis and the premeiotic interphase just prior to meiosis. Examination of pollen mother cells (PMCs) from immature anthers immediately before and after heat treatment enabled precise identification of the developmental phases being exposed to heat. A temperature-sensitive period was defined, lasting from premeiotic interphase to late leptotene, during which heat can prevent PMCs from progressing through meiosis. PMCs exposed to 35 °C were less likely to progress than those exposed to 30 °C. Grain number per spike was reduced at 30 °C, and reduced even further at 35 °C. Chinese Spring nullisomic 5D-tetrasomic 5B (N5DT5B) plants, which lack chromosome 5D, were more susceptible to heat during premeiosis-leptotene than Chinese Spring plants with the normal (euploid) chromosome complement. The proportion of plants with PMCs progressing through meiosis after heat treatment was lower for N5DT5B plants than for euploids, but the difference was not significant. However, following exposure to 30 °C, in euploid plants grain number was reduced (though not significantly), whereas in N5DT5B plants the reduction was highly significant. After exposure to 35 °C, the reduction in grain number was highly significant for both genotypes. Implications of these findings for the breeding of thermotolerant wheat are discussed.

  15. Relation between IgG antibodies to foods and IgE antibodies to milk, egg, cat, dog and/or mite in a cross-sectional study.

    PubMed

    Eysink, P E; De Jong, M H; Bindels, P J; Scharp-Van Der Linden, V T; De Groot, C J; Stapel, S O; Aalberse, R C

    1999-05-01

    Because IgG antibodies to foods can be detected before IgE antibodies to inhalants, increased levels of IgG antibodies to foods might be used as a predictor of IgE-mediated allergy in initially nonatopic children. To examine the cross-sectional relation between IgG to foods (i.e. mixture of wheat and rice, mixture of soybean and peanut, egg white, cow's milk, meat, orange and potato) and specific IgE to cat, dog, mite, milk and egg white in 1-year-old children. All atopic children (n = 120; 58 with and 62 without eczema) and a random sample of the nonatopic children (n = 144) of the Bokaal study were tested on their IgG response to foods. The IgG results of the food assays were dichotomized high or low using the 66th centile as a cut-off value. Atopic children more often had high IgG levels to foods than nonatopic children. IgG to egg white (OR = 7.50) and mixture of wheat and rice (OR = 4.79) were most strongly associated with positive specific IgE. In a stepwise logistic regression analysis egg white, mixture of wheat and rice, and orange were selected (OR = 3.76, OR = 2.43, and OR = 2.11, respectively). In children without eczema higher levels of IgG to foods were still significantly associated with atopy, which was most prominent for egg white, orange and cow's milk. An increased IgG antibody level to foods, especially to egg white, orange, and mixture of wheat and rice, indicates an increased risk of having IgE to cat, dog, mite, egg and/or milk allergens, even in the noneczematous group. Therefore, in another prospective study we are currently investigating the usefulness of IgG in early identification, i.e. before IgE antibodies can be detected, of children with an increased risk of developing allergic diseases in the future.

  16. Identification of Putative RuBisCo Activase (TaRca1)-The Catalytic Chaperone Regulating Carbon Assimilatory Pathway in Wheat (Triticum aestivum) under the Heat Stress.

    PubMed

    Kumar, Ranjeet R; Goswami, Suneha; Singh, Khushboo; Dubey, Kavita; Singh, Shweta; Sharma, Renu; Verma, Neeraj; Kala, Yugal K; Rai, Gyanendra K; Grover, Monendra; Mishra, Dwijesh C; Singh, Bhupinder; Pathak, Himanshu; Chinnusamy, Viswanathan; Rai, Anil; Praveen, Shelly

    2016-01-01

    RuBisCo activase (Rca) is a catalytic chaperone involved in modulating the activity of RuBisCo (key enzyme of photosynthetic pathway). Here, we identified eight novel transcripts from wheat through data mining predicted to be Rca and cloned a transcript of 1.4 kb from cv. HD2985, named as TaRca1 (GenBank acc. no. KC776912). Single copy number of TaRca1 was observed in wheat genome. Expression analysis in diverse wheat genotypes (HD2985, Halna, PBW621, and HD2329) showed very high relative expression of TaRca1 in Halna under control and HS-treated, as compared to other cultivars at different stages of growth. TaRca1 protein was predicted to be chloroplast-localized with numerous potential phosphorylation sites. Northern blot analysis showed maximum accumulation of TaRca1 transcript in thermotolerant cv. during mealy-ripe stage, as compared to thermosusceptible. Decrease in the photosynthetic parameters was observed in all the cultivars, except PBW621 in response to HS. We observed significant increase in the Rca activity in all the cultivars under HS at different stages of growth. HS causes decrease in the RuBisCo activity; maximum reduction was observed during pollination stage in thermosusceptible cvs. as validated through immunoblotting. We observed uniform carbon distribution in different tissues of thermotolerant cvs., as compared to thermosusceptible. Similarly, tolerance level of leaf was observed maximum in Halna having high Rca activity under HS. A positive correlation was observed between the transcript and activity of TaRca1 in HS-treated Halna. Similarly, TaRca1 enzyme showed positive correlation with the activity of RuBisCo. There is, however, need to manipulate the thermal stability of TaRca1 enzyme through protein engineering for sustaining the photosynthetic rate under HS-a novel approach toward development of "climate-smart" crop.

  17. Effects of imidacloprid and clothianidin seed treatments on wheat aphids and their natural enemies on winter wheat.

    PubMed

    Zhang, Peng; Zhang, Xuefeng; Zhao, Yunhe; Wei, Yan; Mu, Wei; Liu, Feng

    2016-06-01

    Wheat aphid (Hemiptera: Aphididae) is one of the major pests of winter wheat and has posed a significant threat to winter wheat production in China. Although neonicotinoid insecticidal seed treatments have been suggested to be a control method, the season-long efficacy on pests and the impact on their natural enemies are still uncertain. Experiments were conducted to determine the efficacy of imidacloprid and clothianidin on the control of aphids, the number of their natural enemies and the emergence rate and yield of wheat during 2011-2014. Imidacloprid and clothianidin seed treatments had no effect on the emergence rate of winter wheat and could prevent yield losses and wheat aphid infestations throughout the winter wheat growing season. Furthermore, their active ingredients were detected in winter wheat leaves up to 200 days after sowing. Imidacloprid and clothianidin seed treatments had no adverse effects on ladybirds, hoverflies or parasitoids, and instead increased the spider-aphid ratios. Wheat seeds treated with imidacloprid and clothianidin were effective against wheat aphids throughout the winter wheat growing season and reduced the yield loss under field conditions. Imidacloprid and clothianidin seed treatments may be an important component of the integrated management of wheat aphids on winter wheat. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  18. Effects on performance of ground wheat with or without insoluble fiber or whole wheat in sequential feeding for laying hens.

    PubMed

    Traineau, M; Bouvarel, I; Mulsant, C; Roffidal, L; Launay, C; Lescoat, P

    2013-09-01

    Sequential feeding (SF) is an innovative system for laying hens consisting of nutrients separating energy, protein, and calcium supplies to fulfill nutrient requirements at the relevant time of day. In previous studies, hens received whole wheat in the morning and a balancer diet (rich in protein and calcium) in the afternoon. To improve SF utilization, the aim was to substitute whole wheat in the morning by an alternative energy supply: ground wheat and ground corn, with or without a proportion of whole wheat and insoluble fiber. The goal was to obtain the advantages observed in previous experiments with whole wheat [bigger gizzard, thinner hens, reduced feed conversion ratio (FCR)]. Four hundred thirty-two ISA Brown hens were housed in collective cages from 20 to 35 wk of age divided into 8 different treatments: a continuous control diet, a sequential diet with whole wheat in the morning, 3 wheat-based diets (ground wheat, ground wheat and 20% whole wheat, and ground wheat with 5% insoluble fiber) and 3 ground corn-based (ground corn, ground corn and 20% whole wheat, and ground corn with 5% insoluble fiber) provided in the morning. All sequential regimens received the same balancer diet rich in protein and calcium in the afternoon. Whole wheat SF gave the best results with an improved FCR compared with continuous control and all other SF diets. Wheat- and corn-based diets showed intermediate results between whole wheat SF and continuous feeding. Gizzard weight was higher and hens were lighter than with conventional continuous feeding, leading to an average FCR improvement of 3.2% compared with a continuous control. Thus, it is possible in SF diets to substitute, at least partially, whole wheat by ground wheat or ground corn with added insoluble fiber or some whole wheat, allowing more flexibility and economic optimization.

  19. Growth of Pleurotus ostreatus on wheat straw and wheat-grain-based media: Biochemical aspects and preparation of mushroom inoculum.

    PubMed

    Sainos, E; Díaz-Godínez, G; Loera, O; Montiel-González, A M; Sánchez, C

    2006-10-01

    Mycelial growth, intracellular activity of proteases, laccases and beta-1,3-glucanases, and cytoplasmic protein were evaluated in the vegetative phase of Pleurotus ostreatus grown on wheat straw and in wheat-grain-based media in Petri dishes and in bottles. The productivity of the wheat straw and wheat-grain-based spawn in cylindrical polyethylene bags containing 5 kg of chopped straw was also determined. We observed high activity of proteases and high content of intracellular protein in cultures grown on wheat straw. This suggests that the proteases are not secreted into the medium and that the protein is an important cellular reserve. On the contrary, cultures grown on wheat straw secreted laccases into the medium, which could be induced by this substrate. P. ostreatus grown on media prepared with a combination of wheat straw and wheat grain showed a high radial growth rate in Petri dishes and a high level of mycelial growth in bottles. The productivities of wheat straw and wheat-grain-based spawn were similar. Our results show that cheaper and more productive mushroom spawn can be prepared by developing the mycelium on wheat straw and wheat-grain-based substrates.

  20. Overview of the Wheat Genetic Transformation and Breeding Status in China.

    PubMed

    Han, Jiapeng; Yu, Xiaofen; Chang, Junli; Yang, Guangxiao; He, Guangyuan

    2017-01-01

    In the past two decades, Chinese scientists have achieved significant progress on three aspects of wheat genetic transformation. First, the wheat transformation platform has been established and optimized to improve the transformation efficiency, shorten the time required from starting of transformation procedure to the fertile transgenic wheat plants obtained as well as to overcome the problem of genotype-dependent for wheat genetic transformation in wide range of wheat elite varieties. Second, with the help of many emerging techniques such as CRISPR/cas9 function of over 100 wheat genes has been investigated. Finally, modern technology has been combined with the traditional breeding technique such as crossing to accelerate the application of wheat transformation. Overall, the wheat end-use quality and the characteristics of wheat stress tolerance have been improved by wheat genetic engineering technique. So far, wheat transgenic lines integrated with quality-improved genes and stress tolerant genes have been on the way of Production Test stage in the field. The debates and the future studies on wheat transformation have been discussed, and the brief summary of Chinese wheat breeding research history has also been provided in this review.

  1. Pentahydroxyscirpene—Producing Strains, Formation In Planta, and Natural Occurrence

    PubMed Central

    Varga, Elisabeth; Wiesenberger, Gerlinde; Fruhmann, Philipp; Malachová, Alexandra; Svoboda, Thomas; Lemmens, Marc; Adam, Gerhard; Berthiller, Franz

    2016-01-01

    Trichothecenes are a class of structurally diverse mycotoxins with more than 200 naturally occurring compounds. Previously, a new compound, pentahydroxyscirpene (PHS), was reported as a byproduct of a nivalenol producing Fusarium strain, IFA189. PHS contains a hydroxy group at C-8 instead of the keto group of type B trichothecenes. In this work, we demonstrate that IFA189 belongs to the species Fusarium kyushuense using molecular tools. Production of PHS in vitro was also observed for several isolates of other Fusarium species producing nivalenol. Furthermore, we report the formation of 4-acetyl-PHS by F. kyushuense on inoculated rice. Wheat ears of the variety Remus were infected with IFA189 and the in planta production of PHS was confirmed. Natural occurrence of PHS was verified in barley samples from the Czech Republic using a liquid chromatographic-tandem mass spectrometric method validated for this purpose. Toxicity of PHS to wheat ribosomes was evaluated with a coupled in vitro transcription and translation assay, which showed that PHS inhibits protein biosynthesis slightly less than nivalenol and deoxynivalenol. PMID:27754401

  2. Australian wheat production expected to decrease by the late 21st century.

    PubMed

    Wang, Bin; Liu, De L; O'Leary, Garry J; Asseng, Senthold; Macadam, Ian; Lines-Kelly, Rebecca; Yang, Xihua; Clark, Anthony; Crean, Jason; Sides, Timothy; Xing, Hongtao; Mi, Chunrong; Yu, Qiang

    2018-06-01

    Climate change threatens global wheat production and food security, including the wheat industry in Australia. Many studies have examined the impacts of changes in local climate on wheat yield per hectare, but there has been no assessment of changes in land area available for production due to changing climate. It is also unclear how total wheat production would change under future climate when autonomous adaptation options are adopted. We applied species distribution models to investigate future changes in areas climatically suitable for growing wheat in Australia. A crop model was used to assess wheat yield per hectare in these areas. Our results show that there is an overall tendency for a decrease in the areas suitable for growing wheat and a decline in the yield of the northeast Australian wheat belt. This results in reduced national wheat production although future climate change may benefit South Australia and Victoria. These projected outcomes infer that similar wheat-growing regions of the globe might also experience decreases in wheat production. Some cropping adaptation measures increase wheat yield per hectare and provide significant mitigation of the negative effects of climate change on national wheat production by 2041-2060. However, any positive effects will be insufficient to prevent a likely decline in production under a high CO 2 emission scenario by 2081-2100 due to increasing losses in suitable wheat-growing areas. Therefore, additional adaptation strategies along with investment in wheat production are needed to maintain Australian agricultural production and enhance global food security. This scenario analysis provides a foundation towards understanding changes in Australia's wheat cropping systems, which will assist in developing adaptation strategies to mitigate climate change impacts on global wheat production. © 2017 John Wiley & Sons Ltd.

  3. In vitro evaluation of a passive radio frequency identification microchip implanted in human molars subjected to compression forces, for forensic purposes of human identification

    PubMed Central

    Moreno, Freddy; Vallejo, Diego; Garzón, Herney; Moreno, Sandra

    2013-01-01

    Objective: To evaluate the in vitro behavior of a passive Radio Frequency Identification (RFID) microchip implanted in human molars subjected to compression forces to determine its technical and clinical viability. Materials and Methods: In vitro experimental study to evaluate the physical behavior of a passive RFID microchip (VeriChip™) implanted in human molars through resin restoration (Filtek P90™ Silorane 3M-ESPE®) to determine the clinical and technical possibilities of the implant and the viability to withstand compression forces exerted by the stomatognathic system during mastication. Results: Through the ANOVA test, it was found that the teeth on which a microchip was implanted show great resistance to compressive forces. It was also evident that teeth with microchips implanted in Class V cavities are more resistant than those implanted in Class I cavities. Conclusions: Although microchip dimensions are big, requiring a sufficiently large cavity, from the biomechanical point of view it is plausible to implant a microchip in a Class V cavity employing restoration material based on resin for forensic purposes of human identification. PMID:24255554

  4. Response of Russian wheat aphid resistance in wheat and barley to four Diuraphis (Hemiptera: Aphididae) species.

    PubMed

    Puterka, Gary J; Scott, J Nicholson; Brown, Michael J; Hammon, R W

    2013-04-01

    Three Diuraphis species, Diuraphis frequens (Walker), Diuraphis mexicana (McVicar Baker), and Diuraphis tritici (Gillette), were known to exist in the United States before the 1986 appearance of the Russian wheat aphid, Diuraphis noxia Kurdjumov. The Russian wheat aphid soon became a significant pest of wheat although other endemic Diuraphis species were known to infest wheat. Wheat and barley entries resistant and susceptible to Russian wheat aphid biotype 2 were evaluated against all four Diuraphis species to determine their host interrelationships. Leaf chlorosis, leaf roll, leaf number, plant height, and infestation levels were assessed 21 d after the plants were infested by aphids in a no-choice caged environment. D. mexicana was unable to survive on wheat by 21 d after infestation and effects on the plant damage variables were negligible. D. frequens survived at low levels on resistant and susceptible plant entries and had a low impact on plant damage and growth. Russian wheat aphid biotype 2 and D. tritici were damaged most wheat and barley lines except the Russian wheat aphid biotype 2-resistant wheat lines containing genes from Dn7, STARS 2414-11, and CI2401; and resistant barley containing genes from STARS 9577B and 9301B. Russian wheat aphid biotype 2 and D. tritici reduced the growth of resistant plants by 25-50% and susceptible entries by 65-75%. Reductions at this level are typical under no-choice studies but resistant cultivars do not have these reductions under field conditions. The Russian wheat aphid biotype 2 resistant wheat lines would be effective in managing both wheat pest species.

  5. Economic assessment of conventional and conservation tillage practices in different wheat-based cropping systems of Punjab, Pakistan.

    PubMed

    Shahzad, Muhammad; Hussain, Mubshar; Farooq, Muhammad; Farooq, Shahid; Jabran, Khawar; Nawaz, Ahmad

    2017-11-01

    Wheat productivity and profitability is low under conventional tillage systems as they increase the production cost, soil compaction, and the weed infestation. Conservation tillage could be a pragmatic option to sustain the wheat productivity and enhance the profitability on long term basis. This study was aimed to evaluate the economics of different wheat-based cropping systems viz. fallow-wheat, rice-wheat, cotton-wheat, mung bean-wheat, and sorghum-wheat, with zero tillage, conventional tillage, deep tillage, bed sowing (60/30 cm beds and four rows), and bed sowing (90/45 cm beds and six rows). Results indicated that the bed sown wheat had the maximum production cost than other tillage systems. Although both bed sowing treatments incurred the highest production cost, they generated the highest net benefits and benefit: cost ratio (BCR). Rice-wheat cropping system with bed sown wheat (90/45 cm beds with six rows) had the highest net income (4129.7 US$ ha -1 ), BCR (2.87), and marginal rate of return compared with rest of the cropping systems. In contrast, fallow-wheat cropping system incurred the lowest input cost, but had the least economic return. In crux, rice-wheat cropping system with bed sown wheat (90/45 cm beds with six rows) was the best option for getting the higher economic returns. Moreover, double cropping systems within a year are more profitable than sole planting of wheat under all tillage practices.

  6. Multiple Intelligences-Based Planning of EFL Classes

    ERIC Educational Resources Information Center

    Zebari, Sanan Shero Malo; Allo, Hussein Ali Ahmed; Mohammedzadeh, Behbood

    2018-01-01

    The present study aimed to set a plan for teaching EFL classes based on the identification of university students' dominant multiple intelligences in EFL classes, and the differences in the types of intelligence between female and male students in terms of their gender. The problem the present study aimed to address is that the traditional concept…

  7. Elementary School Children's Reasoning about Social Class: A Mixed-Methods Study

    ERIC Educational Resources Information Center

    Mistry, Rashmita S.; Brown, Christia S.; White, Elizabeth S.; Chow, Kirby A.; Gillen-O'Neel, Cari

    2015-01-01

    The current study examined children's identification and reasoning about their subjective social status (SSS), their beliefs about social class groups (i.e., the poor, middle class, and rich), and the associations between the two. Study participants were 117 10- to 12-year-old children of diverse racial, ethnic, and socioeconomic backgrounds…

  8. Meat Cutting Classes--Popular with Adults

    ERIC Educational Resources Information Center

    Mostad, James; Carpentier, Dale

    1976-01-01

    Presents a session by session description of a "meats" class, which is offered to high school students (9-week period) and adults (8-week period). The classes cover identification of cuts (beef, sheep, hogs, and veal; grades and grading of live animals and carcasses; economics of butchering and cutting your own meat; actual slaughtering; and the…

  9. Diseases Which Challenge Global Wheat Production - The Cereal Rusts

    USDA-ARS?s Scientific Manuscript database

    The rusts of wheat are common and widespread diseases in the US and throughout the world. Wheat rusts have been important throughout the history of wheat cultivation and are currently important diseases that are responsible for regularly occurring yield losses in wheat. The wheat rust fungi are obli...

  10. 7 CFR 810.2201 - Definition of wheat.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 7 2010-01-01 2010-01-01 false Definition of wheat. 810.2201 Section 810.2201... GRAIN United States Standards for Wheat Terms Defined § 810.2201 Definition of wheat. Grain that, before the removal of dockage, consists of 50 percent or more common wheat (Triticum aestivum L.), club wheat...

  11. Improved wheat for baking.

    PubMed

    Faridi, H; Finley, J W

    1989-01-01

    To bakers, wheat quality means the performance characteristics of the flour milled from the wheat when used in specific wheat products. The tremendous increase in the number of wheat cultivars grown in the U.S. in recent years, along with the unusual climate, new advances in milling technology, and increased automation of baking lines, have resulted in bakery production problems partly attributed to wheat flour quality. In this review various factors affecting wheat quality are explained. Concerns of bread and cookie/cracker manufacturers on deterioration of the wheat quality are discussed, and, finally, some solutions are proposed.

  12. [Crop geometry identification based on inversion of semiempirical BRDF models].

    PubMed

    Huang, Wen-jiang; Wang, Jin-di; Mu, Xi-han; Wang, Ji-hua; Liu, Liang-yun; Liu, Qiang; Niu, Zheng

    2007-10-01

    Investigations have been made on identification of erective and horizontal varieties by bidirectional canopy reflected spectrum and semi-empirical bidirectional reflectance distribution function (BRDF) models. The qualitative effect of leaf area index (LAI) and average leaf angle (ALA) on crop canopy reflected spectrum was studied. The structure parameter sensitive index (SPEI) based on the weight for the volumetric kernel (fvol), the weight for the geometric kernel (fgeo), and the weight for constant corresponding to isotropic reflectance (fiso), was defined in the present study for crop geometry identification. However, the weights associated with the kernels of semi-empirical BRDF model do not have a direct relationship with measurable biophysical parameters. Therefore, efforts have focused on trying to find the relation between these semi-empirical BRDF kernel weights and various vegetation structures. SPEI was proved to be more sensitive to identify crop geometry structures than structural scattering index (SSI) and normalized difference f-index (NDFI), SPEI could be used to distinguish erective and horizontal geometry varieties. So, it is feasible to identify horizontal and erective varieties of wheat by bidirectional canopy reflected spectrum.

  13. Presence of Enniatins and Beauvericin in Romanian Wheat Samples: From Raw Material to Products for Direct Human Consumption

    PubMed Central

    Stanciu, Oana; Juan, Cristina; Miere, Doina; Loghin, Felicia; Mañes, Jordi

    2017-01-01

    In this study, a total of 244 wheat and wheat-based products collected from Romania were analyzed by liquid chromatography tandem mass spectrometry (LC-MS/MS) in order to evaluate the presence of four enniatins (ENs; i.e., ENA, ENA1, ENB, and ENB1) and beauvericin (BEA). For the wheat samples, the influence of agricultural practices was assessed, whereas the results for the wheat-based products were used to calculate the estimated daily intake of emerging mycotoxins through wheat consumption for the Romanian population. ENB presented the highest incidence (41% in wheat and 32% in wheat-based products), with its maximum levels of 815 μg kg−1 and 170 μg kg−1 in wheat and wheat-based products, respectively. The correlation between the concentrations of ENB and ENB1 in wheat grain samples and farm practices (organic or conventional) was confirmed statistically (p < 0.05). This is the first study that provides comprehensive information about the influence of agricultural practice on emerging Fusarium mycotoxin presence in Romanian wheat samples and the estimated daily intake of ENs and BEA present in wheat-based products for human consumption commercialized in Romania. PMID:28604626

  14. The identification of QTL controlling ergot sclerotia size in hexaploid wheat implicates a role for the Rht dwarfing alleles.

    PubMed

    Gordon, Anna; Basler, Ryan; Bansept-Basler, Pauline; Fanstone, Vicky; Harinarayan, Lakshmi; Grant, Paul K; Birchmore, Richard; Bayles, Rosemary A; Boyd, Lesley A; O'Sullivan, Donal M

    2015-12-01

    Four QTL conferring resistance to ergot were identified in the UK winter wheat varieties 'Robigus' and 'Solstice'. Two QTL co-located with semi-dwarfing alleles at the Rht loci Rht - 1B and Rht - 1D implicating a role of these DELLA proteins in infection success of Claviceps purpurea. The fungal pathogen Claviceps purpurea infects ovaries of a broad range of temperate grasses and cereals, including hexaploid wheat, causing a disease commonly known as ergot. Sclerotia produced in place of seed carry a cocktail of harmful alkaloid compounds that result in a range of symptoms in humans and animals, causing ergotism. Following a field assessment of C. purpurea infection in winter wheat, two varieties 'Robigus' and 'Solstice' were selected which consistently produced the largest differential effect on ergot sclerotia weights. They were crossed to produce a doubled haploid mapping population, and a marker map, consisting of 714 genetic loci and a total length of 2895 cM was produced. Four ergot reducing QTL were identified using both sclerotia weight and size as phenotypic parameters; QCp.niab.2A and QCp.niab.4B being detected in the wheat variety 'Robigus', and QCp.niab.6A and QCp.niab.4D in the variety 'Solstice'. The ergot resistance QTL QCp.niab.4B and QCp.niab.4D peaks mapped to the same markers as the known reduced height (Rht) loci on chromosomes 4B and 4D, Rht-B1 and Rht-D1, respectively. In both cases, the reduction in sclerotia weight and size was associated with the semi-dwarfing alleles, Rht-B1b from 'Robigus' and Rht-D1b from 'Solstice'. Two-dimensional, two-QTL scans identified significant additive interactions between QTL QCp.niab.4B and QCp.niab.4D, and between QCp.niab.2A and QCp.niab.4B when looking at sclerotia size, but not between QCp.niab.2A and QCp.niab.4D. The two plant height QTL, QPh.niab.4B and QPh.niab.4D, which mapped to the same locations as QCp.niab.4B and QCp.niab.4D, also displayed significant genetic interactions.

  15. 21 CFR 137.190 - Cracked wheat.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Cracked wheat. 137.190 Section 137.190 Food and... Related Products § 137.190 Cracked wheat. Cracked wheat is the food prepared by so cracking or cutting... such wheat, other than moisture, remain unaltered. Cracked wheat contains not more than 15 percent of...

  16. Reinforcement Effect of Alkali Hydrolyzed Wheat Gluten and Starch in Carboxylated Styrene-Butadiene Composites

    USDA-ARS?s Scientific Manuscript database

    Wheat gluten (WG) and wheat starch (WS) are the protein and carbohydrate obtained from wheat flours. Wheat gluten is not water soluble or dispersible due to its hydrophobic nature. To prepare wheat gluten dispersions, an alkali hydrolysis reaction was carried out to produce a stable aqueous disper...

  17. Wheat Rusts in the United States in 2007

    USDA-ARS?s Scientific Manuscript database

    In 2007 90% of wheat stem rust races were QFC and 10% were RCRS Both races are relatively avirulent to wheat cultiars grown in the U.S. Wheat stem rust occurred in scattered locations on research plots of susceptible wheat cultivars in 2007, and did not cause yield loss. Wheat leaf rust was widespr...

  18. 21 CFR 137.225 - Whole durum flour.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Flours and Related Products § 137.225 Whole durum flour. Whole durum wheat flour conforms to the..., prescribed for whole wheat flour by § 137.200, except that cleaned durum wheat, instead of cleaned wheat other than durum wheat and red durum wheat, is used in its preparation. [58 FR 2877, Jan. 6, 1993] ...

  19. Secure Integration of Radio Frequency Identification (RFID) Technology into a Supply Chain

    DTIC Science & Technology

    2005-09-01

    serves as the rough equivalent of a license plate on an automobile . Figure 1 (below) illustrates the typical construction of an RFID tag. An antenna...writable passive tags (RW) Reprogrammable Class 3 Semi-active tags Reprogrammable Class 4 Active tags Reprogrammable Class 5 Readers... Reprogrammable Table 1. EPC Tag Classes[3]. Table 2 summarizes the advantages, disadvantages and applications of each type of tag. Tag Type Advantages

  20. Study of wheat protein based materials

    NASA Astrophysics Data System (ADS)

    Ye, Peng

    Wheat gluten is a naturally occurring protein polymer. It is produced in abundance by the agricultural industry, is biodegradable and very inexpensive (less than $0.50/lb). It has unique viscoelastic properties, which makes it a promising alternative to synthetic plastics. The unplasticized wheat gluten is, however, brittle. Plasticizers such as glycerol are commonly used to give flexibility to the articles made of wheat gluten but with the penalty of greatly reduced stiffness. Former work showed that the brittleness of wheat gluten can also be improved by modifying it with a tri-thiol additive with no penalty of reduced stiffness. However, the cost of the customer designed tri-thiol additive was very high and it was unlikely to make a cost effective material from such an expensive additive. Here we designed a new, inexpensive thiol additive called SHPVA. It was synthesized from polyvinyl alcohol (PVA) through a simple esterification reaction. The mechanical data of the molded wheat gluten/SHPVA material indicated that wheat gluten was toughened by SHPVA. As a control, the wheat gluten/PVA material showed no improvement compared with wheat gluten itself. Several techniques have been used to characterize this novel protein/polymer blend. Differential scanning calorimetric (DSC) study showed two phases in both wheat gluten/PVA and wheat gluten/SHPVA material. However, scanning electron microscope (SEM) pictures indicated that PVA was macroscopically separated from wheat gluten, while wheat gluten/SHPVA had a homogeneous look. The phase image from the atomic force microscope (AFM) gave interesting contrast based on the difference in the mechanical properties of these two phases. The biodegradation behavior of these protein/polymer blends was examined in soil. SHPVA was not degraded in the time period of the experiment. Wheat gluten/SHPVA degraded slower than wheat gluten. We also developed some other interesting material systems based on wheat gluten, including the wheat gluten/basalt composite and wheat gluten/clay composite materials. Their mechanical properties and biodegradation behaviors were determined.

  1. Inventory of forest and rangeland and detection of forest stress. [Black Hills, Manitou, Colorado, and Atlanta, Georgia test sites

    NASA Technical Reports Server (NTRS)

    Heller, R. C.; Aldrich, R. C.; Driscoll, R. S.; Weber, F. P. (Principal Investigator)

    1974-01-01

    The author has identified the following significant results. Controlled visual interpretation of one ERTS-1 scene taken at the peak of the growing season has indicated that classification to the ECOCLASS Series level is not entirely satisfactory. For five forest classes, aspen, Douglas-fir, lodgepole pine, ponderosa pine, and Spruce/fir, correct identification ranged from 60 to 70 percent. With the exception of shortgrass and wet shrubby meadow classes in the nonforest categories (81 and 100 percent correct, respectively), correct identification of the nonforest classes is so far unacceptable. The low accuracies are believed due to: (1) edge effects due to ecotones between plant community classes with apparent similar image characteristics; (2) confounding effects of amount of plant crown cover and ground surface material in the scene; and (3) variable land slope degree and aspect as it affects the image signature.

  2. Immunotoxicological evaluation of wheat genetically modified with TaDREB4 gene on BALB/c mice.

    PubMed

    Liang, Chun Lai; Zhang, Xiao Peng; Song, Yan; Jia, Xu Dong

    2013-08-01

    To evaluate the immunotoxicological effects of genetically modified wheat with TaDREB4 gene in female BALB/c mice. Female mice weighing 18-22 g were divided into five groups (10 mice/group), which were set as negative control group, common wheat group, parental wheat group, genetically modified wheat group and cyclophosphamide positive control group, respectively. Mice in negative control group and positive control group were fed with AIN93G diet, mice in common wheat group, non-genetically modified parental wheat group and genetically modified wheat group were fed with feedstuffs added corresponding wheat (the proportion is 76%) for 30 days, then body weight, absolute and relative weight of spleen and thymus, white blood cell count, histological examination of immune organ, peripheral blood lymphocytes phenotyping, serum cytokine, serum immunoglobulin, antibody plaque-forming cell, serum half hemolysis value, mitogen-induced splenocyte proliferation, delayed-type hypersensitivity reaction and phagocytic activities of phagocytes were detected. No immunotoxicological effects related to the consumption of the genetically modified wheat were observed in BALB/c mice when compared with parental wheat group, common wheat group and negative control group. From the immunotoxicological point of view, results from this study demonstrate that genetically modified wheat with TaDREB4 gene is as safe as the parental wheat. Copyright © 2013 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.

  3. Identification of Heterotrophic Zinc Mobilization Processes among Bacterial Strains Isolated from Wheat Rhizosphere (Triticum aestivum L.).

    PubMed

    Costerousse, Benjamin; Schönholzer-Mauclaire, Laurie; Frossard, Emmanuel; Thonar, Cécile

    2018-01-01

    Soil and plant inoculation with heterotrophic zinc-solubilizing bacteria (ZSB) is considered a promising approach for increasing zinc (Zn) phytoavailability and enhancing crop growth and nutritional quality. Nevertheless, it is necessary to understand the underlying bacterial solubilization processes to predict their repeatability in inoculation strategies. Acidification via gluconic acid production remains the most reported process. In this study, wheat rhizosphere soil serial dilutions were plated on several solid microbiological media supplemented with scarcely soluble Zn oxide (ZnO), and 115 putative Zn-solubilizing isolates were directly detected based on the formation of solubilization halos around the colonies. Eight strains were selected based on their Zn solubilization efficiency and siderophore production capacity. These included one strain of Curtobacterium , two of Plantibacter , three strains of Pseudomonas , one of Stenotrophomonas , and one strain of Streptomyces In ZnO liquid solubilization assays, the presence of glucose clearly stimulated organic acid production, leading to medium acidification and ZnO solubilization. While solubilization by Streptomyces and Curtobacterium was attributed to the accumulated production of six and seven different organic acids, respectively, the other strains solubilized Zn via gluconic, malonic, and oxalic acids exclusively. In contrast, in the absence of glucose, ZnO dissolution resulted from proton extrusion (e.g., via ammonia consumption by Plantibacter strains) and complexation processes (i.e., complexation with glutamic acid in cultures of Curtobacterium ). Therefore, while gluconic acid production was described as a major Zn solubilization mechanism in the literature, this study goes beyond and shows that solubilization mechanisms vary among ZSB and are strongly affected by growth conditions. IMPORTANCE Barriers toward a better understanding of the mechanisms underlying zinc (Zn) solubilization by bacteria include the lack of methodological tools for isolation, discrimination, and identification of such organisms. Our study proposes a direct bacterial isolation procedure, which prevents the need to screen numerous bacterial candidates (for which the ability to solubilize Zn is unknown) for recovering Zn-solubilizing bacteria (ZSB). Moreover, we confirm the potential of matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) as a quick and accurate tool for the identification and discrimination of environmental bacterial isolates. This work also describes various Zn solubilization processes used by wheat rhizosphere bacteria, including proton extrusion and the production of different organic acids among bacterial strains. These processes were also clearly affected by growth conditions (i.e., solid versus liquid cultures and the presence and absence of glucose). Although highlighted mechanisms may have significant effects at the soil-plant interface, these should only be transposed cautiously to real ecological situations. Copyright © 2017 American Society for Microbiology.

  4. Using multispectral imagery to compare the spatial pattern of injury to wheat caused by Russian wheat aphid and greenbug

    USDA-ARS?s Scientific Manuscript database

    The Russian wheat aphid, Diuraphis noxia (Mordvilko), and greenbug, Schizaphis graminum (Rondani), are important aphid pests of wheat. Outbreaks of both pests in commercial wheat fields occur almost every year in the Great Plains of the United States. Infestations of both pests in wheat fields are...

  5. 'Prosper': A high-yielding hard red spring wheat cultivar adapted to the North Central Plains of the USA

    USDA-ARS?s Scientific Manuscript database

    Providing wheat (Triticum aestivum L.) growers and industry with adapted wheat cultivars with high-quality attributes is essential for maintaining wheat as a competitive crop in the spring-wheat growing region of the USA. Therefore, our breeding program aims to develop modern wheat cultivars using b...

  6. 21 CFR 139.138 - Whole wheat macaroni products.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Whole wheat macaroni products. 139.138 Section 139... and Noodle Products § 139.138 Whole wheat macaroni products. (a) Whole wheat macaroni products are the...)(3), and (g), except that: (1) Whole wheat flour or whole durum wheat flour or both are used as the...

  7. Mapping of Rill Erosion of Arable Soils Based on Unmanned Aerial Vehicles Survey

    NASA Astrophysics Data System (ADS)

    Kashtanov, A. N.; Vernyuk, Yu. I.; Savin, I. Yu.; Shchepot'ev, V. V.; Dokukin, P. A.; Sharychev, D. V.; Li, K. A.

    2018-04-01

    Possibilities of using data obtained from unmanned aerial vehicles for detection and mapping of rill erosion on arable lands are analyzed. Identification and mapping of rill erosion was performed on a key plot with a predominance of arable gray forest soils (Greyzemic Phaeozems) under winter wheat in Tula oblast. This plot was surveyed from different heights and in different periods to determine the reliability of identification of rill erosion on the basis of automated procedures in a GIS. It was found that, despite changes in the pattern of rills during the warm season, only one survey during this season is sufficient for adequate assessment of the area of eroded soils. According to our data, the most reliable identification of rill erosion is based on the aerial survey from the height of 50 m above the soil surface. When the height of the flight is more than 200 m, erosional rills virtually escape identification. The efficiency of identification depends on the type of crops, their status, and time of the survey. The surveys of bare soil surface in periods with maximum possible interval from the previous rain or snowmelt season are most efficient. The results of our study can be used in the systems of remote sensing monitoring of erosional processes on arable fields. Application of multiand hyperspectral cameras can improve the efficiency of monitoring.

  8. A diploid wheat TILLING resource for wheat functional genomics

    PubMed Central

    2012-01-01

    Background Triticum monococcum L., an A genome diploid einkorn wheat, was the first domesticated crop. As a diploid, it is attractive genetic model for the study of gene structure and function of wheat-specific traits. Diploid wheat is currently not amenable to reverse genetics approaches such as insertion mutagenesis and post-transcriptional gene silencing strategies. However, TILLING offers a powerful functional genetics approach for wheat gene analysis. Results We developed a TILLING population of 1,532 M2 families using EMS as a mutagen. A total of 67 mutants were obtained for the four genes studied. Waxy gene mutation frequencies are known to be 1/17.6 - 34.4 kb DNA in polyploid wheat TILLING populations. The T. monococcum diploid wheat TILLING population had a mutation frequency of 1/90 kb for the same gene. Lignin biosynthesis pathway genes- COMT1, HCT2, and 4CL1 had mutation frequencies of 1/86 kb, 1/92 kb and 1/100 kb, respectively. The overall mutation frequency of the diploid wheat TILLING population was 1/92 kb. Conclusion The mutation frequency of a diploid wheat TILLING population was found to be higher than that reported for other diploid grasses. The rate, however, is lower than tetraploid and hexaploid wheat TILLING populations because of the higher tolerance of polyploids to mutations. Unlike polyploid wheat, most mutants in diploid wheat have a phenotype amenable to forward and reverse genetic analysis and establish diploid wheat as an attractive model to study gene function in wheat. We estimate that a TILLING population of 5, 520 will be needed to get a non-sense mutation for every wheat gene of interest with 95% probability. PMID:23134614

  9. Enhancing On-Line Teaching with Verbal Immediacy through Self-Determination Theory

    ERIC Educational Resources Information Center

    Furlich, Stephen A.

    2013-01-01

    This paper explores the use of instructor verbal immediacy behaviors for on-line classes. Specifically, it demonstrates how instructor verbal immediacy behaviors found in face-to-face classes can also be displayed for on-line classes. It is argued that self-determination theory describes identification of the student as an important role in the…

  10. Supportive Services for Socially Maladjusted Children in Regular Schools. Evaluation of New York City Title I Educational Projects, 1966-67.

    ERIC Educational Resources Information Center

    Williams, Thelma M.

    Evaluated are several programs for socially maladjusted public school children. These supportive services are an Early Identification Program, Junior Guidance classes, Special Guidance classes, and Career Guidance classes. Assessment focused on implementation of the Board of Education's plan to augment special services in these programs, and on…

  11. A modern approach for epitope prediction: identification of foot-and-mouth disease virus peptides binding bovine leukocyte antigen (BoLA) class I molecules

    USDA-ARS?s Scientific Manuscript database

    Major histocompatibility complex (MHC) class I molecules regulate adaptive immune responses through the presentation of antigenic peptides to CD8positive T-cells. Polymorphisms in the peptide binding region of class I molecules determine peptide binding affinity and stability during antigen presenta...

  12. 7 CFR 201.51a - Special procedures for purity analysis.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Percent of single units of each kind Chewings fescue Red fescue Orchard-grass Crested wheat-grassb Pubes-cent wheat-grass Intermediate wheat-grass Tall wheat-grass c Western wheat-grassc Smooth brome 50 or...

  13. 7 CFR 201.51a - Special procedures for purity analysis.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Percent of single units of each kind Chewings fescue Red fescue Orchard-grass Crested wheat-grassb Pubes-cent wheat-grass Intermediate wheat-grass Tall wheat-grass c Western wheat-grassc Smooth brome 50 or...

  14. Incorporating Yearly Derived Winter Wheat Maps Into Winter Wheat Yield Forecasting Model

    NASA Technical Reports Server (NTRS)

    Skakun, S.; Franch, B.; Roger, J.-C.; Vermote, E.; Becker-Reshef, I.; Justice, C.; Santamaría-Artigas, A.

    2016-01-01

    Wheat is one of the most important cereal crops in the world. Timely and accurate forecast of wheat yield and production at global scale is vital in implementing food security policy. Becker-Reshef et al. (2010) developed a generalized empirical model for forecasting winter wheat production using remote sensing data and official statistics. This model was implemented using static wheat maps. In this paper, we analyze the impact of incorporating yearly wheat masks into the forecasting model. We propose a new approach of producing in season winter wheat maps exploiting satellite data and official statistics on crop area only. Validation on independent data showed that the proposed approach reached 6% to 23% of omission error and 10% to 16% of commission error when mapping winter wheat 2-3 months before harvest. In general, we found a limited impact of using yearly winter wheat masks over a static mask for the study regions.

  15. Mapping and proteomic analysis of albumin and globulin proteins in hexaploid wheat kernels (Triticum aestivum L.).

    PubMed

    Merlino, Marielle; Leroy, Philippe; Chambon, Christophe; Branlard, Gérard

    2009-05-01

    Albumins and globulins of wheat endosperm represent 20% of total kernel protein. They are soluble proteins, mainly enzymes and proteins involved in cell functions. Two-dimensional gel immobiline electrophoresis (2DE) (pH 4-7) x SDS-Page revealed around 2,250 spots. Ninety percent of the spots were common between the very distantly related cultivars 'Opata 85' and 'Synthetic W7984', the two parents of the International Triticeae Mapping Initiative (ITMI) progeny. 'Opata' had 130 specific spots while 'Synthetic' had 96. 2DE and image analysis of the soluble proteins present in 112 recombinant inbred lines of the F9-mapped ITMI progeny enabled 120 unbiased segregating spots to be mapped on 21 wheat (Triticum aestivum L. em. Thell) chromosomes. After trypsic digestion, mapped spots were subjected to MALDI-Tof or tandem mass spectrometry for protein identification by database mining. Among the 'Opata' and 'Synthetic' spots identified, many enzymes have already been mapped in the barley and rice genomes. Multigene families of Heat Shock Proteins, beta-amylases, UDP-glucose pyrophosphorylases, peroxydases and thioredoxins were successfully identified. Although other proteins remain to be identified, some differences were found in the number of segregating proteins involved in response to stress: 11 proteins found in the modern selected cultivar 'Opata 85' as compared to 4 in the new hexaploid ;Synthetic W7984'. In addition, 'Opata' and 'Synthetic' differed in the number of proteins involved in protein folding (2 and 10, respectively). The usefulness of the mapped enzymes for future research on seed composition and characteristics is discussed.

  16. Mobilization of lipids and fortification of cell wall and cuticle are important in host defense against Hessian fly

    PubMed Central

    2013-01-01

    Background Wheat – Hessian fly interaction follows a typical gene-for-gene model. Hessian fly larvae die in wheat plants carrying an effective resistance gene, or thrive in susceptible plants that carry no effective resistance gene. Results Gene sets affected by Hessian fly attack in resistant plants were found to be very different from those in susceptible plants. Differential expression of gene sets was associated with differential accumulation of intermediates in defense pathways. Our results indicated that resources were rapidly mobilized in resistant plants for defense, including extensive membrane remodeling and release of lipids, sugar catabolism, and amino acid transport and degradation. These resources were likely rapidly converted into defense molecules such as oxylipins; toxic proteins including cysteine proteases, inhibitors of digestive enzymes, and lectins; phenolics; and cell wall components. However, toxicity alone does not cause immediate lethality to Hessian fly larvae. Toxic defenses might slow down Hessian fly development and therefore give plants more time for other types of defense to become effective. Conclusion Our gene expression and metabolic profiling results suggested that remodeling and fortification of cell wall and cuticle by increased deposition of phenolics and enhanced cross-linking were likely to be crucial for insect mortality by depriving Hessian fly larvae of nutrients from host cells. The identification of a large number of genes that were differentially expressed at different time points during compatible and incompatible interactions also provided a foundation for further research on the molecular pathways that lead to wheat resistance and susceptibility to Hessian fly infestation. PMID:23800119

  17. Increased genomic prediction accuracy in wheat breeding through spatial adjustment of field trial data.

    PubMed

    Lado, Bettina; Matus, Ivan; Rodríguez, Alejandra; Inostroza, Luis; Poland, Jesse; Belzile, François; del Pozo, Alejandro; Quincke, Martín; Castro, Marina; von Zitzewitz, Jarislav

    2013-12-09

    In crop breeding, the interest of predicting the performance of candidate cultivars in the field has increased due to recent advances in molecular breeding technologies. However, the complexity of the wheat genome presents some challenges for applying new technologies in molecular marker identification with next-generation sequencing. We applied genotyping-by-sequencing, a recently developed method to identify single-nucleotide polymorphisms, in the genomes of 384 wheat (Triticum aestivum) genotypes that were field tested under three different water regimes in Mediterranean climatic conditions: rain-fed only, mild water stress, and fully irrigated. We identified 102,324 single-nucleotide polymorphisms in these genotypes, and the phenotypic data were used to train and test genomic selection models intended to predict yield, thousand-kernel weight, number of kernels per spike, and heading date. Phenotypic data showed marked spatial variation. Therefore, different models were tested to correct the trends observed in the field. A mixed-model using moving-means as a covariate was found to best fit the data. When we applied the genomic selection models, the accuracy of predicted traits increased with spatial adjustment. Multiple genomic selection models were tested, and a Gaussian kernel model was determined to give the highest accuracy. The best predictions between environments were obtained when data from different years were used to train the model. Our results confirm that genotyping-by-sequencing is an effective tool to obtain genome-wide information for crops with complex genomes, that these data are efficient for predicting traits, and that correction of spatial variation is a crucial ingredient to increase prediction accuracy in genomic selection models.

  18. Multitemporal spectroscopy for crop stress detection using band selection methods

    NASA Astrophysics Data System (ADS)

    Mewes, Thorsten; Franke, Jonas; Menz, Gunter

    2008-08-01

    A fast and precise sensor-based identification of pathogen infestations in wheat stands is essential for the implementation of site-specific fungicide applications. Several works have shown possibilities and limitations for the detection of plant stress using spectral sensor data. Hyperspectral data provide the opportunity to collect spectral reflectance in contiguous bands over a broad range of the electromagnetic spectrum. Individual phenomena like the light absorption of leaf pigments can be examined in detail. The precise knowledge of stress-dependent shifting in certain spectral wavelengths provides great advantages in detecting fungal infections. This study focuses on band selection techniques for hyperspectral data to identify relevant and redundant information in spectra regarding a detection of plant stress caused by pathogens. In a laboratory experiment, five 1 sqm boxes with wheat were multitemporarily measured by a ASD Fieldspec® 3 FR spectroradiometer. Two stands were inoculated with Blumeria graminis - the pathogen causing powdery mildew - and one stand was used to simulate the effect of water deficiency. Two stands were kept healthy as control stands. Daily measurements of the spectral reflectance were taken over a 14-day period. Three ASD Pro Lamps were used to illuminate the plots with constant light. By applying band selection techniques, the three types of different wheat vitality could be accurately differentiated at certain stages. Hyperspectral data can provide precise information about pathogen infestations. The reduction of the spectral dimension of sensor data by means of band selection procedures is an appropriate method to speed up the data supply for precision agriculture.

  19. Proteome approaches to characterize seed storage proteins related to ditelocentric chromosomes in common wheat (Triticum aestivum L.).

    PubMed

    Islam, Nazrul; Woo, Sun-Hee; Tsujimoto, Hisashi; Kawasaki, Hiroshi; Hirano, Hisashi

    2002-09-01

    Changes in protein composition of wheat endosperm proteome were investigated in 39 ditelocentric chromosome lines of common wheat (Triticum aestivum L.) cv. Chinese Spring. Two-dimensional gel electrophoresis followed by Coomassie Brilliant Blue staining has resolved a total of 105 protein spots in a gel. Quantitative image analysis of protein spots was performed by PDQuest. Variations in protein spots between the euploid and the 39 ditelocentric lines were evaluated by spot number, appearance, disappearance and intensity. A specific spot present in all gels was taken as an internal standard, and the intensity of all other spots was calculated as the ratio of the internal standard. Out of the 1755 major spots detected in 39 ditelocentric lines, 1372 (78%) spots were found variable in different spot parameters: 147 (11%) disappeared, 978 (71%) up-regulated and 247 (18%) down-regulated. Correlation studies in changes in protein intensities among 24 protein spots across the ditelocentric lines were performed. High correlations in changes of protein intensities were observed among the proteins encoded by genes located in the homoeologous arms. Locations of structural genes controlling 26 spots were identified in 10 chromosomal arms. Multiple regulators of the same protein located at various chromosomal arms were also noticed. Identification of structural genes for most of the proteins was found difficult due to multiple regulators encoding the same protein. Two novel subunits (1B(Z,) 1BDz), the structure of which are very similar to the high molecular weight glutenin subunit 12, were identified, and the chromosome arm locations of these subunits were assigned.

  20. Avirulence Effector Discovery in a Plant Galling and Plant Parasitic Arthropod, the Hessian Fly (Mayetiola destructor)

    PubMed Central

    Aggarwal, Rajat; Subramanyam, Subhashree; Zhao, Chaoyang; Chen, Ming-Shun; Harris, Marion O.; Stuart, Jeff J.

    2014-01-01

    Highly specialized obligate plant-parasites exist within several groups of arthropods (insects and mites). Many of these are important pests, but the molecular basis of their parasitism and its evolution are poorly understood. One hypothesis is that plant parasitic arthropods use effector proteins to defeat basal plant immunity and modulate plant growth. Because avirulence (Avr) gene discovery is a reliable method of effector identification, we tested this hypothesis using high-resolution molecular genetic mapping of an Avr gene (vH13) in the Hessian fly (HF, Mayetiola destructor), an important gall midge pest of wheat (Triticum spp.). Chromosome walking resolved the position of vH13, and revealed alleles that determine whether HF larvae are virulent (survive) or avirulent (die) on wheat seedlings carrying the wheat H13 resistance gene. Association mapping found three independent insertions in vH13 that appear to be responsible for H13-virulence in field populations. We observed vH13 transcription in H13-avirulent larvae and the salivary glands of H13-avirulent larvae, but not in H13-virulent larvae. RNA-interference-knockdown of vH13 transcripts allowed some H13-avirulent larvae to escape H13-directed resistance. vH13 is the first Avr gene identified in an arthropod. It encodes a small modular protein with no sequence similarities to other proteins in GenBank. These data clearly support the hypothesis that an effector-based strategy has evolved in multiple lineages of plant parasites, including arthropods. PMID:24964065

Top