Sample records for wheat classes

  1. 19 CFR 19.31 - Bulk wheat of different classes and grades not to be commingled in storage.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 19 Customs Duties 1 2010-04-01 2010-04-01 false Bulk wheat of different classes and grades not to... CONTROL OF MERCHANDISE THEREIN Space Bonded for the Storage of Wheat § 19.31 Bulk wheat of different classes and grades not to be commingled in storage. All wheat shall be stored by class and grade according...

  2. Fourier Transform Infrared Spectroscopic Studies Of Wheat In The Mid Infrared

    NASA Astrophysics Data System (ADS)

    Olinger, Jill M.; Griffiths, Peter R.

    1989-12-01

    Official grain standards of the United States state that wheat may be divided into seven classes which are: Durum, Red Durum, Hard Red Spring, Hard Red Winter, Soft Red Winter, White, and Mixed.1 Most end uses of wheat involve converting the grain into flour through one of a variety of grinding methods. The quality of wheat-based products is often very dependent upon the type or class of wheat which was used to make the flour. Pasta products, for example, are made almost exclusively from the flour of durum wheats, which are the hardest of the wheats listed above. The highest quality breads are produced using flour from wheats classed as hard, whereas cakes, cookies and pastries are considered best when flour from wheats classed as soft are used. It is obvious then that the capability of determining the class of a particular wheat, especially with respect to hardness, is of economic importance to growers, processors, and merchants of wheat and wheat products. Hardness has been measured in many different ways 2-5 but, as of yet, no one method has become the method of choice. This paper reports on the use of principal components analysis (PCA) of mid infrared diffuse reflectance (DR) spectra of diluted ground wheats to aid in the classification of those wheats with respect to their hardness. The theory and mathematics involved in a principal component analysis have been described elsewhere.9

  3. Quality characteristics of U.S. soft white and club wheat

    USDA-ARS?s Scientific Manuscript database

    U.S. soft white wheat from the Pacific Northwest states of Washington, Oregon and Idaho is a premium quality, versatile soft wheat. Soft White wheat (SWW) is comprised of winter and spring-sown varieties; spike morphology further delineates the class into ‘common’ (lax) and club sub-classes. The reg...

  4. Starch digestibility and apparent metabolizable energy of western Canadian wheat market classes in broiler chickens.

    PubMed

    Karunaratne, N D; Abbott, D A; Hucl, P J; Chibbar, R N; Pozniak, C J; Classen, H L

    2018-05-16

    Wheat is the primary grain fed to poultry in western Canada, but its nutritional quality, including the nature of its starch digestibility, may be affected by wheat market class. The objectives of this study were to determine the rate and extent of starch digestibility of wheat market classes in broiler chickens, and to determine the relationship between starch digestibility and wheat apparent metabolizable energy (AME). In vitro starch digestion was assessed using gastric and small intestinal phases mimicking the chicken digestive tract, while in vivo evaluation used 468 male broiler chickens randomly assigned to dietary treatments from 0 to 21 d of age. The study evaluated 2 wheat cultivars from each of 6 western Canadian wheat classes: Canadian Prairie Spring (CPS), Canadian Western Amber Durum (CWAD), CW General Purpose (CWGP), CW Hard White Spring (CWHWS), CW Red Spring (CWRS), and CW Soft White Spring (CWSWS). All samples were analyzed for relevant grain characteristics. Data were analyzed as a randomized complete block design and cultivars were nested within market class. Pearson correlation was used to determine relationships between measured characteristics. Significance level was P ≤ 0.05. The starch digestibility range and wheat class rankings were: proximal jejunum - 23.7 to 50.6% (CWHWSc, CPSbc, CWSWSbc, CWRSab, CWGPa, CWADa); distal jejunum - 63.5 to 76.4% (CWHWSc, CPSbc, CWSWSbc, CWRSab, CWGPa, CWADa); proximal ileum - 88.7 to 96.9% (CWSWSc, CPSbc, CWHWSbc, CWRSb, CWGPb, CWADa); distal ileum - 94.4 to 98.5% (CWSWSb, CWHWSb, CPSb, CWRSab, CWGPab, CWADa); excreta - 98.4 to 99.3% (CPSb, CWRSb, CWHWSb, CWSWSab, CWGPab, CWADa). Wheat class affected wheat AMEn with levels ranging from 3,203 to 3,411 kcal/kg at 90% DM (CWRSc, CWSWSc, CPSb, CWGPb, CWADa, CWHWSa). Significant and moderately strong positive correlations were observed between in vitro and in vivo starch digestibility, but no correlations were found between AME and starch digestibility. In conclusion, rate and extent of starch digestibility and AME were affected by western Canadian wheat class, but starch digestibility did not predict AME.

  5. 19 CFR 19.32 - Wheat manipulation; reconditioning.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 19 Customs Duties 1 2010-04-01 2010-04-01 false Wheat manipulation; reconditioning. 19.32 Section... Bonded for the Storage of Wheat § 19.32 Wheat manipulation; reconditioning. (a) The mixing, blending, or commingling of imported wheat and domestic wheat, or of imported wheat of different classes and grades, as an...

  6. Mapping quantitative trait loci for a unique 'super soft' kernel trait in soft white wheat

    USDA-ARS?s Scientific Manuscript database

    Wheat (Triticum sp.) kernel texture is an important factor affecting milling, flour functionality, and end-use quality. Kernel texture is normally characterized as either hard or soft, the two major classes of texture. However, further variation is typically encountered in each class. Soft wheat var...

  7. 7 CFR 810.2203 - Basis of determination.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... GRAIN United States Standards for Wheat Principles Governing the Application of Standards § 810.2203..., wheat of other classes, contrasting classes, and subclasses is made on the basis of the grain when free...

  8. Genetic analysis of grain attributes, milling performance, and end-use quality traits in hard red spring wheat (Triticum aestivum L.)

    USDA-ARS?s Scientific Manuscript database

    Wheat kernel texture dictates U.S. wheat market class and culinary end-uses. Of interest to wheat breeders is to identify quantitative trait loci (QTL) for wheat kernel texture, milling performance, or end-use quality because it is imperative for wheat breeders to ascertain the genetic architecture ...

  9. Effect of dark, hard, and vitreous kernel content on protein molecular weight distribution and on milling and breadmaking quality characteristics for hard spring wheat samples from diverse growing regions

    USDA-ARS?s Scientific Manuscript database

    Kernel vitreousness is an important grading characteristic for segregation of sub-classes of hard red spring (HRS) wheat in the U.S. This research investigated the protein molecular weight distribution (MWD), and flour and baking quality characteristics of different HRS wheat market sub-classes. T...

  10. Genetic and epigenetic alteration among three homoeologous genes of a class E MADS box gene in hexaploid wheat.

    PubMed

    Shitsukawa, Naoki; Tahira, Chikako; Kassai, Ken-Ichiro; Hirabayashi, Chizuru; Shimizu, Tomoaki; Takumi, Shigeo; Mochida, Keiichi; Kawaura, Kanako; Ogihara, Yasunari; Murai, Koji

    2007-06-01

    Bread wheat (Triticum aestivum) is a hexaploid species with A, B, and D ancestral genomes. Most bread wheat genes are present in the genome as triplicated homoeologous genes (homoeologs) derived from the ancestral species. Here, we report that both genetic and epigenetic alterations have occurred in the homoeologs of a wheat class E MADS box gene. Two class E genes are identified in wheat, wheat SEPALLATA (WSEP) and wheat LEAFY HULL STERILE1 (WLHS1), which are homologs of Os MADS45 and Os MADS1 in rice (Oryza sativa), respectively. The three wheat homoeologs of WSEP showed similar genomic structures and expression profiles. By contrast, the three homoeologs of WLHS1 showed genetic and epigenetic alterations. The A genome WLHS1 homoeolog (WLHS1-A) had a structural alteration that contained a large novel sequence in place of the K domain sequence. A yeast two-hybrid analysis and a transgenic experiment indicated that the WLHS1-A protein had no apparent function. The B and D genome homoeologs, WLHS1-B and WLHS1-D, respectively, had an intact MADS box gene structure, but WLHS1-B was predominantly silenced by cytosine methylation. Consequently, of the three WLHS1 homoeologs, only WLHS1-D functions in hexaploid wheat. This is a situation where three homoeologs are differentially regulated by genetic and epigenetic mechanisms.

  11. End-use quality of CIMMYT-derived soft kernel durum wheat germplasm: I. Grain, milling, and soft wheat quality

    USDA-ARS?s Scientific Manuscript database

    Wheat kernel texture is used in part to define U.S. wheat market class due to its importance in end-use quality and utilization. Durum wheat (Triticum turgidum subsp. durum) has lower demand and fewer culinary end-uses compared to bread wheat because of its extremely hard kernel texture, which precl...

  12. Registration of 'UI Stone' spring wheat

    USDA-ARS?s Scientific Manuscript database

    Soft white spring wheat (Triticum aestivumL.) is an important wheat class being used in domestic and international markets, especially in Idaho and Pacific Northwest (PNW). The objective of this study was to develop a SWS wheat cultivar with high grain yield, desirable end-use quality, and resistanc...

  13. New durum wheat with soft kernel texture: end-use quality analysis of the Hardness locus in Triticum turgidum ssp. durum

    USDA-ARS?s Scientific Manuscript database

    Wheat kernel texture dictates U.S. wheat market class. Durum wheat has limited demand and culinary end-uses compared to bread wheat because of its extremely hard kernel texture which precludes conventional milling. ‘Soft Svevo’, a new durum cultivar with soft kernel texture comparable to a soft whit...

  14. New durum wheat with soft kernel texture: milling performance and end-use quality analysis of the Hardness locus in Triticum turgidum ssp. durum

    USDA-ARS?s Scientific Manuscript database

    Wheat kernel texture dictates U.S. wheat market class. Durum wheat has limited demand and culinary end-uses compared to bread wheat because of its extremely hard kernel texture which preclude conventional milling. ‘Soft Svevo’, a new durum cultivar with soft kernel texture comparable to a soft white...

  15. Bayes estimation on parameters of the single-class classifier. [for remotely sensed crop data

    NASA Technical Reports Server (NTRS)

    Lin, G. C.; Minter, T. C.

    1976-01-01

    Normal procedures used for designing a Bayes classifier to classify wheat as the major crop of interest require not only training samples of wheat but also those of nonwheat. Therefore, ground truth must be available for the class of interest plus all confusion classes. The single-class Bayes classifier classifies data into the class of interest or the class 'other' but requires training samples only from the class of interest. This paper will present a procedure for Bayes estimation on the mean vector, covariance matrix, and a priori probability of the single-class classifier using labeled samples from the class of interest and unlabeled samples drawn from the mixture density function.

  16. Registration of 'Bolles' hard red spring wheat with high grain protein concentration and superior baking quality

    USDA-ARS?s Scientific Manuscript database

    The hard red spring wheat market class in the U.S. commands the highest prices on the worldwide wheat markets because of its high protein content, strong gluten, and good baking properties. ‘Bolles’ (PI 678430), a hard red spring wheat cultivar, was released by the University of Minnesota Agricultu...

  17. LACIE: Wheat yield models for the USSR

    NASA Technical Reports Server (NTRS)

    Sakamoto, C. M.; Leduc, S. K.

    1977-01-01

    A quantitative model determining the relationship between weather conditions and wheat yield in the U.S.S.R. was studied to provide early reliable forecasts on the size of the U.S.S.R. wheat harvest. Separate models are developed for spring wheat and for winter. Differences in yield potential and responses to stress conditions and cultural improvements necessitate models for each class.

  18. Development of Durum Wwheat Germplasm with Enhanced Resistance to Fusarium Head Blight Derived from Emmer Wheat

    USDA-ARS?s Scientific Manuscript database

    Durum wheat (Triticum turgidum L. subsp. durum) is a unique class of commercial wheat specifically for making pasta products. Durum production has been seriously challenged by the Fusarium head blight (FHB) disease in the United States in the past decade. Although utilization of resistant cultivar...

  19. 7 CFR 1421.304 - Payment amount.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 2012 Crop of Wheat, Barley, Oats, and Triticale § 1421.304 Payment amount. (a) The grazing payment rate... payment rate in effect for the predominant class of wheat in the county where the farm is located as of... three (3) similar farms. For triticale, the payment yield shall be the yield for wheat from three (3...

  20. Evidence of intralocus recombination at the Glu-3 loci in bread wheat (Triticum aestivum L.)

    USDA-ARS?s Scientific Manuscript database

    The low-molecular weight glutenin subunits (LMW-GSs) are one of the major components of wheat seed storage proteins and play a critical role in the determination of wheat flour bread-making quality. The genes encoding for this class of proteins are mainly located at the orthologous Glu-3 loci (Glu-A...

  1. 75 FR 38072 - Notice of a Request for Extension of a Currently Approved Information Collection

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-01

    .... wheat and corn by the Soviet Union in 1972. To make sure that all parties involved in the production and.... The designated commodities for these daily reports are wheat (by class), barley, corn, grain sorghum... the size of the sales transaction, for all of these commodities, as well as wheat products, rye...

  2. Genetic analysis of kernel texture (grain hardness) in a hard red spring wheat (Triticum aestivum L.) bi-parental population

    USDA-ARS?s Scientific Manuscript database

    Grain hardness is a very important trait in determining wheat market class and also influences milling and baking traits. At the grain Hardness (Ha) locus on chromosome 5DS, there are two primary mutations responsible for conveying a harder kernel texture among U.S. hard red spring wheats: (1) the P...

  3. Influence of low-molecular-weight glutenin subunit haplotypes on dough rheology in elite common wheat varieties

    USDA-ARS?s Scientific Manuscript database

    The low molecular weight glutenin subunits (LMW-GSs) are a class of wheat seed storage proteins. They are encoded by a multigene family located at the Glu-3 loci, and their allelic variation strongly influences wheat end-use quality. Due to ambiguities in the LMW-GS allele nomenclature and to the co...

  4. Evidence of intralocus recombination at the Glu-3 loci in bread wheat (Triticum aestivum L.)

    USDA-ARS?s Scientific Manuscript database

    The low-molecular weight glutenin subunits (LMW-GSs) are a class of wheat seed storage proteins that play a critical role in the determination of wheat flour bread-making quality. These proteins are encoded by multigene families located at the orthologous Glu-3 loci (Glu-A3, Glu-B3 and Glu-D3), on t...

  5. Detection of sunn pest-damaged wheat samples using visible/near-infrared spectroscopy based on pattern recognition.

    PubMed

    Basati, Zahra; Jamshidi, Bahareh; Rasekh, Mansour; Abbaspour-Gilandeh, Yousef

    2018-05-30

    The presence of sunn pest-damaged grains in wheat mass reduces the quality of flour and bread produced from it. Therefore, it is essential to assess the quality of the samples in collecting and storage centers of wheat and flour mills. In this research, the capability of visible/near-infrared (Vis/NIR) spectroscopy combined with pattern recognition methods was investigated for discrimination of wheat samples with different percentages of sunn pest-damaged. To this end, various samples belonging to five classes (healthy and 5%, 10%, 15% and 20% unhealthy) were analyzed using Vis/NIR spectroscopy (wavelength range of 350-1000 nm) based on both supervised and unsupervised pattern recognition methods. Principal component analysis (PCA) and hierarchical cluster analysis (HCA) as the unsupervised techniques and soft independent modeling of class analogies (SIMCA) and partial least squares-discriminant analysis (PLS-DA) as supervised methods were used. The results showed that Vis/NIR spectra of healthy samples were correctly clustered using both PCA and HCA. Due to the high overlapping between the four unhealthy classes (5%, 10%, 15% and 20%), it was not possible to discriminate all the unhealthy samples in individual classes. However, when considering only the two main categories of healthy and unhealthy, an acceptable degree of separation between the classes can be obtained after classification with supervised pattern recognition methods of SIMCA and PLS-DA. SIMCA based on PCA modeling correctly classified samples in two classes of healthy and unhealthy with classification accuracy of 100%. Moreover, the power of the wavelengths of 839 nm, 918 nm and 995 nm were more than other wavelengths to discriminate two classes of healthy and unhealthy. It was also concluded that PLS-DA provides excellent classification results of healthy and unhealthy samples (R 2  = 0.973 and RMSECV = 0.057). Therefore, Vis/NIR spectroscopy based on pattern recognition techniques can be useful for rapid distinguishing the healthy wheat samples from those damaged by sunn pest in the maintenance and processing centers. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. [Low-temperature response and cold tolerance at spike differentiation stage of winter wheat varieties sowed in spring].

    PubMed

    Xu, Lan; Gao, Zhi-fiang; An, Wei; Yuan, Ya-qi; Li, Yan-liang

    2015-06-01

    A total of 10 winter wheat varieties were imported from the middle and lower reaches of the Yangtze River region in China. Those varieties were sowed in spring in Xinding basin area of Shanxi Province, and the field trials were performed for two years (2013-2014). The traits and physiological characteristics under low temperature stress including grain yield, total content of chlorophyll, osmotic adjustment, membrane system, ion leakage rate, contents of soluble sugar and soluble protein were investigated, and the cold tolerance levels of the wheat varieties were assessed. The results showed that low temperature stress led to increases in wheat leaf ion leakage rate, soluble sugar and protein contents, but obvious reduction of chlorophyll content. According to principal component analysis and cold tolerance (D value) , Yumai 10, Yangmai 20, and Yunmai 42 were classed as cold sensitive wheat varieties. Yangmai 13, Yumai 12, and Ningmai 13 were classed as stronger cold-resistant wheat genotypes, and showed stability through two-year field trials, with the D values being 0.665-0.659, 0.493-0.495, and 0.471-0.583, respectively, while the D values for the controls Ning 2038 and Xinchun 30 were 0.368-0.397, and 0.328-0.330, respectively. The grain yields of the cold resistant wheat varieties were significantly higher than that of the other varieties tested. Therefore, Yangmai 13, Yumai 12 and Ningmai 13 could be imported and used as the cold tolerant wheat varieties for North Plain of China.

  7. Molecular Characterization, Gene Evolution, and Expression Analysis of the Fructose-1, 6-bisphosphate Aldolase (FBA) Gene Family in Wheat (Triticum aestivum L.)

    PubMed Central

    Lv, Geng-Yin; Guo, Xiao-Guang; Xie, Li-Ping; Xie, Chang-Gen; Zhang, Xiao-Hong; Yang, Yuan; Xiao, Lei; Tang, Yu-Ying; Pan, Xing-Lai; Guo, Ai-Guang; Xu, Hong

    2017-01-01

    Fructose-1, 6-bisphosphate aldolase (FBA) is a key plant enzyme that is involved in glycolysis, gluconeogenesis, and the Calvin cycle. It plays significant roles in biotic and abiotic stress responses, as well as in regulating growth and development processes. In the present paper, 21 genes encoding TaFBA isoenzymes were identified, characterized, and categorized into three groups: class I chloroplast/plastid FBA (CpFBA), class I cytosol FBA (cFBA), and class II chloroplast/plastid FBA. By using a prediction online database and genomic PCR analysis of Chinese Spring nulli-tetrasomic lines, we have confirmed the chromosomal location of these genes in 12 chromosomes of four homologous groups. Sequence and genomic structure analysis revealed the high identity of the allelic TaFBA genes and the origin of different TaFBA genes. Numerous putative environment stimulus-responsive cis-elements have been identified in 1,500-bp regions of TaFBA gene promoters, of which the most abundant are the light-regulated elements (LREs). Phylogenetic reconstruction using the deduced protein sequence of 245 FBA genes indicated an independent evolutionary pathway for the class I and class II groups. Although, earlier studies have indicated that class II FBA only occurs in prokaryote and fungi, our results have demonstrated that a few class II CpFBAs exist in wheat and other closely related species. Class I TaFBA was predicted to be tetramers and class II to be dimers. Gene expression analysis based on microarray and transcriptome databases suggested the distinct role of TaFBAs in different tissues and developmental stages. The TaFBA 4–9 genes were highly expressed in leaves and might play important roles in wheat development. The differential expression patterns of the TaFBA genes in light/dark and a few abiotic stress conditions were also analyzed. The results suggested that LRE cis-elements of TaFBA gene promoters were not directly related to light responses. Most TaFBA genes had higher expression levels in the roots than in the shoots when under various stresses. Class I cytosol TaFBA genes, particularly TaFBA10/12/18 and TaFBA13/16, and three class II TaFBA genes are involved in responses to various abiotic stresses. Class I CpFBA genes in wheat are apparently sensitive to different stress conditions. PMID:28659962

  8. 77 FR 25375 - United States Standards for Wheat

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-30

    ...: Defects: Damaged kernels Heat (part of total) 0.2 0.2 0.5 1.0 .3.0 Total 2.0 4.0 7.0 10.0 15.0 Foreign material 0.4 0.7 1.3 3.0 5.0 Shrunken and broken kernels 2.0 4.0 8.0 12.0 20.0 Total \\1\\ 3.0 5.0 8.0 12.0 20.0 Wheat of other classes: \\2\\ Contrasting classes 1.0 2.0 3.0 10.0 10.0 Total \\3\\ 3.0 5.0 10.0 10...

  9. Winter wheat mapping combining variations before and after estimated heading dates

    NASA Astrophysics Data System (ADS)

    Qiu, Bingwen; Luo, Yuhan; Tang, Zhenghong; Chen, Chongcheng; Lu, Difei; Huang, Hongyu; Chen, Yunzhi; Chen, Nan; Xu, Weiming

    2017-01-01

    Accurate and updated information on winter wheat distribution is vital for food security. The intra-class variability of the temporal profiles of vegetation indices presents substantial challenges to current time series-based approaches. This study developed a new method to identify winter wheat over large regions through a transformation and metric-based approach. First, the trend surfaces were established to identify key phenological parameters of winter wheat based on altitude and latitude with references to crop calendar data from the agro-meteorological stations. Second, two phenology-based indicators were developed based on the EVI2 differences between estimated heading and seedling/harvesting dates and the change amplitudes. These two phenology-based indicators revealed variations during the estimated early and late growth stages. Finally, winter wheat data were extracted based on these two metrics. The winter wheat mapping method was applied to China based on the 250 m 8-day composite Moderate Resolution Imaging Spectroradiometer (MODIS) 2-band Enhanced Vegetation Index (EVI2) time series datasets. Accuracy was validated with field survey data, agricultural census data, and Landsat-interpreted results in test regions. When evaluated with 653 field survey sites and Landsat image interpreted data, the overall accuracy of MODIS-derived images in 2012-2013 was 92.19% and 88.86%, respectively. The MODIS-derived winter wheat areas accounted for over 82% of the variability at the municipal level when compared with agricultural census data. The winter wheat mapping method developed in this study demonstrates great adaptability to intra-class variability of the vegetation temporal profiles and has great potential for further applications to broader regions and other types of agricultural crop mapping.

  10. Polymorphic Homoeolog of Key Gene of RdDM Pathway, ARGONAUTE4_9 class Is Associated with Pre-Harvest Sprouting in Wheat (Triticum aestivum L.)

    PubMed Central

    Singh, Manjit; Singh, Surinder; Randhawa, Harpinder; Singh, Jaswinder

    2013-01-01

    Resistance to pre-harvest sprouting (PHS) is an important objective for the genetic improvement of many cereal crops, including wheat. Resistance, or susceptibility, to PHS is mainly influenced by seed dormancy, a complex trait. Reduced seed dormancy is the most important aspect of seed germination on a spike prior to harvesting, but it is influenced by various environmental factors including light, temperature and abiotic stresses. The basic genetic framework of seed dormancy depends on the antagonistic action of abscisic acid (ABA) and gibberellic acid (GA) to promote dormancy and germination. Recent studies have revealed a role for epigenetic changes, predominantly histone modifications, in controlling seed dormancy. To investigate the role of DNA methylation in seed dormancy, we explored the role of ARGONAUTE4_9 class genes in seed development and dormancy in wheat. Our results indicate that the two wheat AGO4_9 class genes i.e. AGO802 and AGO804 map to chromosomes 3S and 1S are preferentially expressed in the embryos of developing seeds. Differential expressions of AGO802-B in the embryos of PHS resistant and susceptible varieties also relates with DNA polymorphism in various wheat varieties due to an insertion of a SINE-like element into this gene. DNA methylation patterns of the embryonic tissue from six PHS resistant and susceptible varieties demonstrate a correlation with this polymorphism. These results suggest a possible role for AGO802-B in seed dormancy and PHS resistance through the modulation of DNA methylation. PMID:24130825

  11. The hijacking of a receptor kinase-driven pathway by a wheat fungal pathogen leads to disease

    USDA-ARS?s Scientific Manuscript database

    Necrotrophic pathogens live and feed on dying tissue, but their interactions with plants are not well understood compared to biotrophic and hemibiotrophic pathogens. Here, we report the positional cloning of the wheat gene, Snn1, a member of the wall-associated kinase class of receptors, which are ...

  12. Multiple view image analysis of freefalling U.S. wheat grains for damage assessment

    USDA-ARS?s Scientific Manuscript database

    Currently, inspection of wheat in the United States for grade and class is performed by human visual analysis. This is a time consuming operation typically taking several minutes for each sample. Digital imaging research has addressed this issue over the past two decades, with success in recognition...

  13. Dynamics and Differential Proliferation of Transposable Elements During the Evolution of the B and A Genomes of Wheat

    PubMed Central

    Charles, Mathieu; Belcram, Harry; Just, Jérémy; Huneau, Cécile; Viollet, Agnès; Couloux, Arnaud; Segurens, Béatrice; Carter, Meredith; Huteau, Virginie; Coriton, Olivier; Appels, Rudi; Samain, Sylvie; Chalhoub, Boulos

    2008-01-01

    Transposable elements (TEs) constitute >80% of the wheat genome but their dynamics and contribution to size variation and evolution of wheat genomes (Triticum and Aegilops species) remain unexplored. In this study, 10 genomic regions have been sequenced from wheat chromosome 3B and used to constitute, along with all publicly available genomic sequences of wheat, 1.98 Mb of sequence (from 13 BAC clones) of the wheat B genome and 3.63 Mb of sequence (from 19 BAC clones) of the wheat A genome. Analysis of TE sequence proportions (as percentages), ratios of complete to truncated copies, and estimation of insertion dates of class I retrotransposons showed that specific types of TEs have undergone waves of differential proliferation in the B and A genomes of wheat. While both genomes show similar rates and relatively ancient proliferation periods for the Athila retrotransposons, the Copia retrotransposons proliferated more recently in the A genome whereas Gypsy retrotransposon proliferation is more recent in the B genome. It was possible to estimate for the first time the proliferation periods of the abundant CACTA class II DNA transposons, relative to that of the three main retrotransposon superfamilies. Proliferation of these TEs started prior to and overlapped with that of the Athila retrotransposons in both genomes. However, they also proliferated during the same periods as Gypsy and Copia retrotransposons in the A genome, but not in the B genome. As estimated from their insertion dates and confirmed by PCR-based tracing analysis, the majority of differential proliferation of TEs in B and A genomes of wheat (87 and 83%, respectively), leading to rapid sequence divergence, occurred prior to the allotetraploidization event that brought them together in Triticum turgidum and Triticum aestivum, <0.5 million years ago. More importantly, the allotetraploidization event appears to have neither enhanced nor repressed retrotranspositions. We discuss the apparent proliferation of TEs as resulting from their insertion, removal, and/or combinations of both evolutionary forces. PMID:18780739

  14. 'Billings' wheat combines early maturity, disease resistance, and desirable grain quality for the Southern Great Plains of the USA

    USDA-ARS?s Scientific Manuscript database

    Selection pressure for earliness, resistance to multiple pathogens, and quality attributes consistent with the hard red winter (HRW) wheat (Triticum aestivum L.) market class is tantamount to, or can obscure, selection for yield potential in lower elevations of the U.S. southern Great Plains. The de...

  15. [Analysis of diversity of Russian and Ukrainian bread wheat (Triticum aestivum L.) cultivars for high-molecular-weight glutenin subunits].

    PubMed

    Dobrotvorskaia, T V; Martynov, S P

    2011-07-01

    The allelic diversity of high-moleculat-weght glutenin subunits (H WIGS) in Russian and Ukrainian bread wheat cultivars was analyzed. The diversity of spring wheat cultivars for alleles of the Glu-1 loci is characterized by medium values of the polymorphism index (polymorphism information content, PlC), and in winter wheats it varies from high at the Glu-A1 locus to low at the Glu-D1 locus. The spring and winter cultivars differ significantly in the frequencies of alleles of the glutenin loci. The combination of the Glu-A1b, Glu-B1c, and Glu-D1a alleles prevails among the spring cultivars, and the combination of the Glu-A1a, Glu-B1c, and Glu-D1d alleles prevails among the winter cultivars. The distribution of the Glu-1 alleles significantly depends on the moisture and heat supply in the region of origin of the cultivars. Drought resistance is associated with the Glu-D1a allele in the spring wheat and with the Glu-B1b allele in the winter wheat. The sources of the Glu-1 alleles were identified in the spring and wheat cultivars. The analysis of independence of the distribution of the spring and winter cultivars by the market classes and by the alleles of the HMWGS loci showed a highly significant association of the alleles of three Glu-1 loci with the market classes in foreign cultivars and independence or a weak association in the Russian and Ukrainian cultivars. This seems to be due to the absence of a statistically substantiated system of classification of the domestic cultivars on the basis of their quality.

  16. Transcriptome-wide analysis of WRKY transcription factors in wheat and their leaf rust responsive expression profiling.

    PubMed

    Satapathy, Lopamudra; Singh, Dharmendra; Ranjan, Prashant; Kumar, Dhananjay; Kumar, Manish; Prabhu, Kumble Vinod; Mukhopadhyay, Kunal

    2014-12-01

    WRKY, a plant-specific transcription factor family, has important roles in pathogen defense, abiotic cues and phytohormone signaling, yet little is known about their roles and molecular mechanism of function in response to rust diseases in wheat. We identified 100 TaWRKY sequences using wheat Expressed Sequence Tag database of which 22 WRKY sequences were novel. Identified proteins were characterized based on their zinc finger motifs and phylogenetic analysis clustered them into six clades consisting of class IIc and class III WRKY proteins. Functional annotation revealed major functions in metabolic and cellular processes in control plants; whereas response to stimuli, signaling and defense in pathogen inoculated plants, their major molecular function being binding to DNA. Tag-based expression analysis of the identified genes revealed differential expression between mock and Puccinia triticina inoculated wheat near isogenic lines. Gene expression was also performed with six rust-related microarray experiments at Gene Expression Omnibus database. TaWRKY10, 15, 17 and 56 were common in both tag-based and microarray-based differential expression analysis and could be representing rust specific WRKY genes. The obtained results will bestow insight into the functional characterization of WRKY transcription factors responsive to leaf rust pathogenesis that can be used as candidate genes in molecular breeding programs to improve biotic stress tolerance in wheat.

  17. Degradation of the benzoxazolinone class of phytoalexins is important for virulence of Fusarium pseudograminearum towards wheat.

    PubMed

    Kettle, Andrew J; Batley, Jacqueline; Benfield, Aurelie H; Manners, John M; Kazan, Kemal; Gardiner, Donald M

    2015-12-01

    Wheat, maize, rye and certain other agriculturally important species in the Poaceae family produce the benzoxazolinone class of phytoalexins on pest and pathogen attack. Benzoxazolinones can inhibit the growth of pathogens. However, certain fungi can actively detoxify these compounds. Despite this, a clear link between the ability to detoxify benzoxazolinones and pathogen virulence has not been shown. Here, through comparative genome analysis of several Fusarium species, we have identified a conserved genomic region around the FDB2 gene encoding an N-malonyltransferase enzyme known to be involved in benzoxazolinone degradation in the maize pathogen Fusarium verticillioides. Expression analyses demonstrated that a cluster of nine genes was responsive to exogenous benzoxazolinone in the important wheat pathogen Fusarium pseudograminearum. The analysis of independent F. pseudograminearum FDB2 knockouts and complementation of the knockout with FDB2 homologues from F. graminearum and F. verticillioides confirmed that the N-malonyltransferase enzyme encoded by this gene is central to the detoxification of benzoxazolinones, and that Fdb2 contributes quantitatively to virulence towards wheat in head blight inoculation assays. This contrasts with previous observations in F. verticillioides, where no effect of FDB2 mutations on pathogen virulence towards maize was observed. Overall, our results demonstrate that the detoxification of benzoxazolinones is a strategy adopted by wheat-infecting F. pseudograminearum to overcome host-derived chemical defences. © 2015 BSPP AND JOHN WILEY & SONS LTD.

  18. The molecular diversity of α-gliadin genes in the tribe Triticeae.

    PubMed

    Qi, Peng-Fei; Chen, Qing; Ouellet, Thérèse; Wang, Zhao; Le, Cheng-Xing; Wei, Yu-Ming; Lan, Xiu-Jin; Zheng, You-Liang

    2013-09-01

    Many of the unique properties of wheat flour are derived from seed storage proteins such as the α-gliadins. In this study these α-gliadin genes from diploid Triticeae species were systemically characterized, and divided into 3 classes according to the distinct organization of their protein domains. Our analyses indicated that these α-gliadins varied in the number of cysteine residues they contained. Most of the α-gliadin genes were grouped according to their genomic origins within the phylogenetic tree. As expected, sequence alignments suggested that the repetitive domain and the two polyglutamine regions were responsible for length variations of α-gliadins as were the insertion/deletion of structural domains within the three different classes (I, II, and III) of α-gliadins. A screening of celiac disease toxic epitopes indicated that the α-gliadins of the class II, derived from the Ns genome, contain no epitope, and that some other genomes contain much fewer epitopes than the A, S(B) and D genomes of wheat. Our results suggest that the observed genetic differences in α-gliadins of Triticeae might indicate their use as a fertile ground for the breeding of less CD-toxic wheat varieties.

  19. Introducing Students to Protein Analysis Techniques: Separation and Comparative Analysis of Gluten Proteins in Various Wheat Strains

    ERIC Educational Resources Information Center

    Pirinelli, Alyssa L.; Trinidad, Jonathan C.; Pohl, Nicola L. B.

    2016-01-01

    Polyacrylamide gel electrophoresis (PAGE) is commonly taught in undergraduate laboratory classes as a traditional method to analyze proteins. An experiment has been developed to teach these basic protein gel skills in the context of gluten protein isolation from various types of wheat flour. A further goal is to relate this technique to current…

  20. Influence of low-molecular-weight glutenin subunit haplotypes on dough rheology and baking quality in elite common wheat varieties

    USDA-ARS?s Scientific Manuscript database

    The low molecular weight glutenin subunits (LMW-GSs) are a class of wheat seed storage proteins directly involved in the formation of gluten. Depending on the first amino acid residue of the mature proteins, the LMW-GSs are divided into methionine, serine or isoleucine type. These proteins are encod...

  1. Fourteen Years of Diverse Annual No-Till Cropping in Washington’s Winter Wheat – Summer Fallow Region

    USDA-ARS?s Scientific Manuscript database

    We have completed the 14th year of a cropping systems experiment to evaluate diverse annual (i.e., no summer fallow) cropping systems using no-till as an alternative to tillage-intensive winter wheat (Triticum aestivum L.) – summer fallow (WW-SF). Soft white and hard white classes of winter and spri...

  2. Active sensing: An innovative tool for evaluating grain yield and nitrogen use efficiency of multiple wheat genotypes

    NASA Astrophysics Data System (ADS)

    Naser, Mohammed Abdulridha

    Precision agricultural practices have significantly contributed to the improvement of crop productivity and profitability. Remote sensing based indices, such as Normalized Difference Vegetative Index (NDVI) have been used to obtain crop information. It is used to monitor crop development and to provide rapid and nondestructive estimates of plant biomass, nitrogen (N) content and grain yield. Remote sensing tools are helping improve nitrogen use efficiency (NUE) through nitrogen management and could also be useful for high NUE genotype selection. The objectives of this study were: (i) to determine if active sensor based NDVI readings can differentiate wheat genotypes, (ii) to determine if NDVI readings can be used to classify wheat genotypes into grain yield productivity classes, (iii) to identify and quantify the main sources of variation in NUE across wheat genotypes, and (iv) to determine if normalized difference vegetation index (NDVI) could characterize variability in NUE across wheat genotypes. This study was conducted in north eastern Colorado for two years, 2010 and 2011. The NDVI readings were taken weekly during the winter wheat growing season from March to late June, in 2010 and 2011 and NUE were calculated as partial factor productivity and as partial nitrogen balance at the end of the season. For objectives i and ii, the correlation between NDVI and grain yield was determined using Pearson's product-moment correlation coefficient (r) and linear regression analysis was used to explain the relationship between NDVI and grain yield. The K-means clustering algorithm was used to classify mean NDVI and mean grain yield into three classes. For objectives iii and iv, the parameters related to NUE were also calculated to measure their relative importance in genotypic variation of NUE and power regression analysis between NDVI and NUE was used to characterize the relationship between NDVI and NUE. The results indicate more consistent association between grain yield and NDVI and between NDVI and NUE later in the season, after anthesis and during mid-grain filling stage under dryland and a poor association in wheat grown in irrigated conditions. The results suggest that below saturation of NDVI values (about 0.9), (i.e. prior to full canopy closure and after the beginning of senescence or most of the season under dryland conditions) NDVI could assess grain yield and NUE. The results also indicate that nitrogen uptake efficiency was the main source of variation of NUE among genotypes grown in site-years with lower yield. Overall, results from this study demonstrate that NDVI readings successfully classified wheat genotypes into grain yield classes across dryland and irrigated conditions and characterized variability in NUE across wheat genotypes.

  3. Definition of the low molecular weight glutenin subunit gene family members in a set of standard bread wheat (Triticum aestivum L.) varieties

    USDA-ARS?s Scientific Manuscript database

    Low-molecular-weight glutenin subunits (LMW-GS) are a class of seed storage proteins that play a major role in the determination of the viscoelastic properties of wheat dough. Most of the LMW-GSs are encoded by a multi-gene family located on the short arms of the homoeologous group 1 chromosomes, at...

  4. Isolation, Chromosomal Localization, and Differential Expression of Mitochondrial Manganese Superoxide Dismutase and Chloroplastic Copper/Zinc Superoxide Dismutase Genes in Wheat1

    PubMed Central

    Wu, Guohai; Wilen, Ronald W.; Robertson, Albert J.; Gusta, Lawrence V.

    1999-01-01

    Superoxide dismutase (SOD) gene expression was investigated to elucidate its role in drought and freezing tolerance in spring and winter wheat (Triticum aestivum). cDNAs encoding chloroplastic Cu/ZnSODs and mitochondrial MnSODs were isolated from wheat. MnSOD and Cu/ZnSOD genes were mapped to the long arms of the homologous group-2 and -7 chromosomes, respectively. Northern blots indicated that MnSOD genes were drought inducible and decreased after rehydration. In contrast, Cu/ZnSOD mRNA was not drought inducible but increased after rehydration. In both spring and winter wheat seedlings exposed to 2°C, MnSOD transcripts attained maximum levels between 7 and 49 d. Transcripts of Cu/ZnSOD mRNA were detected sooner in winter than in spring wheat; however, they disappeared after 21 d of acclimation. Transcripts of both classes of SOD genes increased during natural acclimation in both spring and winter types. Exposure of fully hardened plants to three nonlethal freeze-thaw cycles resulted in Cu/Zn mRNA accumulation; however, MnSOD mRNA levels declined in spring wheat but remained unchanged in winter wheat. The results of the dehydration and freeze-thaw-cycle experiments suggest that winter wheat has evolved a more effective stress-repair mechanism than spring wheat. PMID:10364402

  5. Diverse set of microRNAs are responsive to powdery mildew infection and heat stress in wheat (Triticum aestivum L.)

    PubMed Central

    2010-01-01

    Background MicroRNAs (miRNAs) are a class of small non-coding regulatory RNAs that regulate gene expression by guiding target mRNA cleavage or translational inhibition. MiRNAs can have large-scale regulatory effects on development and stress response in plants. Results To test whether miRNAs play roles in regulating response to powdery mildew infection and heat stress in wheat, by using Solexa high-throughput sequencing we cloned the small RNA from wheat leaves infected by preponderant physiological strain Erysiphe graminis f. sp. tritici (Egt) or by heat stress treatment. A total of 153 miRNAs were identified, which belong to 51 known and 81 novel miRNA families. We found that 24 and 12 miRNAs were responsive to powdery mildew infection and heat stress, respectively. We further predicted that 149 target genes were potentially regulated by the novel wheat miRNA. Conclusions Our results indicated that diverse set of wheat miRNAs were responsive to powdery mildew infection and heat stress and could function in wheat responses to both biotic and abiotic stresses. PMID:20573268

  6. Enhanced resistance to stripe rust disease in transgenic wheat expressing the rice chitinase gene RC24.

    PubMed

    Huang, Xuan; Wang, Jian; Du, Zhen; Zhang, Chen; Li, Lan; Xu, Ziqin

    2013-10-01

    Stripe rust is a devastating fungal disease of wheat worldwide which is primarily caused by Puccinia striiformis f. sp tritici. Transgenic wheat (Triticum aestivum L.) expressing rice class chitinase gene RC24 were developed by particle bombardment of immature embryos and tested for resistance to Puccinia striiformis f.sp tritici. under greenhouse and field conditions. Putative transformants were selected on kanamycin-containing media. Polymease chain reaction indicated that RC24 was transferred into 17 transformants obtained from bombardment of 1,684 immature embryos. Integration of RC24 was confirmed by Southern blot with a RC24-labeled probe and expression of RC24 was verified by RT-PCR. Nine transgenic T1 lines exhibited enhanced resistance to stripe rust infection with lines XN8 and BF4 showing the highest level of resistance. Southern blot hybridization confirmed the stable inheritance of RC24 in transgenic T1 plants. Resistance to stripe rust in transgenic T2 and T3 XN8 and BF4 plants was confirmed over two consecutive years in the field. Increased yield (27-36 %) was recorded for transgenic T2 and T3 XN8 and BF4 plants compared to controls. These results suggest that rice class I chitinase RC24 can be used to engineer stripe rust resistance in wheat.

  7. Overexpression of the class I homeodomain transcription factor TaHDZipI-5 increases drought and frost tolerance in transgenic wheat.

    PubMed

    Yang, Yunfei; Luang, Sukanya; Harris, John; Riboni, Matteo; Li, Yuan; Bazanova, Natalia; Hrmova, Maria; Haefele, Stephan; Kovalchuk, Nataliya; Lopato, Sergiy

    2018-06-01

    Characterization of the function of stress-related genes helps to understand the mechanisms of plant responses to environmental conditions. The findings of this work defined the role of the wheat TaHDZipI-5 gene, encoding a stress-responsive homeodomain-leucine zipper class I (HD-Zip I) transcription factor, during the development of plant tolerance to frost and drought. Strong induction of TaHDZipI-5 expression by low temperatures, and the elevated TaHDZipI-5 levels of expression in flowers and early developing grains in the absence of stress, suggests that TaHDZipI-5 is involved in the regulation of frost tolerance at flowering. The TaHDZipI-5 protein behaved as an activator in a yeast transactivation assay, and the TaHDZipI-5 activation domain was localized to its C-terminus. The TaHDZipI-5 protein homo- and hetero-dimerizes with related TaHDZipI-3, and differences between DNA interactions in both dimers were specified at 3D molecular levels. The constitutive overexpression of TaHDZipI-5 in bread wheat significantly enhanced frost and drought tolerance of transgenic wheat lines with the appearance of undesired phenotypic features, which included a reduced plant size and biomass, delayed flowering and a grain yield decrease. An attempt to improve the phenotype of transgenic wheat by the application of stress-inducible promoters with contrasting properties did not lead to the elimination of undesired phenotype, apparently due to strict spatial requirements for TaHDZipI-5 overexpression. © 2017 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  8. Rapid Analysis of Deoxynivalenol in Durum Wheat by FT-NIR Spectroscopy

    PubMed Central

    De Girolamo, Annalisa; Cervellieri, Salvatore; Visconti, Angelo; Pascale, Michelangelo

    2014-01-01

    Fourier-transform-near infrared (FT-NIR) spectroscopy has been used to develop quantitative and classification models for the prediction of deoxynivalenol (DON) levels in durum wheat samples. Partial least-squares (PLS) regression analysis was used to determine DON in wheat samples in the range of <50–16,000 µg/kg DON. The model displayed a large root mean square error of prediction value (1,977 µg/kg) as compared to the EU maximum limit for DON in unprocessed durum wheat (i.e., 1,750 µg/kg), thus making the PLS approach unsuitable for quantitative prediction of DON in durum wheat. Linear discriminant analysis (LDA) was successfully used to differentiate wheat samples based on their DON content. A first approach used LDA to group wheat samples into three classes: A (DON ≤ 1,000 µg/kg), B (1,000 < DON ≤ 2,500 µg/kg), and C (DON > 2,500 µg/kg) (LDA I). A second approach was used to discriminate highly contaminated wheat samples based on three different cut-off limits, namely 1,000 (LDA II), 1,200 (LDA III) and 1,400 µg/kg DON (LDA IV). The overall classification and false compliant rates for the three models were 75%–90% and 3%–7%, respectively, with model LDA IV using a cut-off of 1,400 µg/kg fulfilling the requirement of the European official guidelines for screening methods. These findings confirmed the suitability of FT-NIR to screen a large number of wheat samples for DON contamination and to verify the compliance with EU regulation. PMID:25384107

  9. Rapid analysis of deoxynivalenol in durum wheat by FT-NIR spectroscopy.

    PubMed

    De Girolamo, Annalisa; Cervellieri, Salvatore; Visconti, Angelo; Pascale, Michelangelo

    2014-11-06

    Fourier-transform-near infrared (FT-NIR) spectroscopy has been used to develop quantitative and classification models for the prediction of deoxynivalenol (DON) levels in durum wheat samples. Partial least-squares (PLS) regression analysis was used to determine DON in wheat samples in the range of <50-16,000 µg/kg DON. The model displayed a large root mean square error of prediction value (1,977 µg/kg) as compared to the EU maximum limit for DON in unprocessed durum wheat (i.e., 1,750 µg/kg), thus making the PLS approach unsuitable for quantitative prediction of DON in durum wheat. Linear discriminant analysis (LDA) was successfully used to differentiate wheat samples based on their DON content. A first approach used LDA to group wheat samples into three classes: A (DON ≤ 1,000 µg/kg), B (1,000 < DON ≤ 2,500 µg/kg), and C (DON > 2,500 µg/kg) (LDA I). A second approach was used to discriminate highly contaminated wheat samples based on three different cut-off limits, namely 1,000 (LDA II), 1,200 (LDA III) and 1,400 µg/kg DON (LDA IV). The overall classification and false compliant rates for the three models were 75%-90% and 3%-7%, respectively, with model LDA IV using a cut-off of 1,400 µg/kg fulfilling the requirement of the European official guidelines for screening methods. These findings confirmed the suitability of FT-NIR to screen a large number of wheat samples for DON contamination and to verify the compliance with EU regulation.

  10. Characterization of the Endoproteases Appearing during Wheat Grain Development.

    PubMed Central

    Dominguez, F.; Cejudo, F. J.

    1996-01-01

    The pattern of endoproteolytic activities occurring during wheat (Triticum aestivum, cultivar Chinese Spring) grain development was investigated. Total endoprotease activity, assayed in solution with azocasein as a substrate, increased during the early stages of grain development to reach a maximum at 15 d postanthesis that was maintained until the grain was mature. Endoprotease activity was also assayed in gradient polyacrylamide gels co-polymerized with gelatin. The increase in endoproteolytic activity was due to the appearance of up to 18 endoproteolytic bands that were arbitrarily classified into five groups (A, B, C, D, and E). The presence of serine, aspartic, metallo, and, to a lesser extent, thiol proteases in developing wheat grains was demonstrated by the use of class-specific protease inhibitors. The appearance of the different classes of endoproteases during seed development was subject to temporal control; serine proteases were more abundant at early stages and aspartic and metallo proteases were more abundant at later stages. At intermediate stages of development (15-20 d postanthesis), most of the endoproteases were localized in the aleurone, testa, and embryo. The content of acidic thiol proteases was low in the developing starchy endosperm. PMID:12226440

  11. Soft and Hard Textured Wheat Differ in Starch Properties as Indicated by Trimodal Distribution, Morphology, Thermal and Crystalline Properties

    PubMed Central

    Kumar, Rohit; Kumar, Aman; Sharma, Nand Kishor; Kaur, Navneet; Chunduri, Venkatesh; Chawla, Meenakshi; Sharma, Saloni; Singh, Kashmir; Garg, Monika

    2016-01-01

    Starch and proteins are major components in the wheat endosperm that affect its end product quality. Between the two textural classes of wheat i.e. hard and soft, starch granules are loosely bound with the lipids and proteins in soft wheat due to higher expression of interfering grain softness proteins. It might have impact on starch granules properties. In this work for the first time the physiochemical and structural properties of different sized starch granules (A-, B- and C-granules) were studied to understand the differences in starches with respect to soft and hard wheat. A-, B- and C-type granules were separated with >95% purity. Average number and proportion of A-, B-, and C-type granules was 18%, 56%, 26% and 76%, 19%, 5% respectively. All had symmetrical birefringence pattern with varied intensity. All displayed typical A-type crystallites. A-type granules also showed V-type crystallinity that is indicative of starch complexes with lipids and proteins. Granules differing in gelatinization temperature (ΔH) and transition temperature (ΔT), showed different enthalpy changes during heating. Substitution analysis indicated differences in relative substitution pattern of different starch granules. Birefringence, percentage crystallinity, transmittance, gelatinization enthalpy and substitution decreased in order of A>B>C being higher in hard wheat than soft wheat. Amylose content decreased in order of A>B>C being higher in soft wheat than hard wheat. Reconstitution experiment showed that starch properties could be manipulated by changing the composition of starch granules. Addition of A-granules to total starch significantly affected its thermal properties. Effect of A-granule addition was higher than B- and C-granules. Transmittance of the starch granules paste showed that starch granules of hard wheat formed clear paste. These results suggested that in addition to differences in protein concentration, hard and soft wheat lines have differences in starch composition also. PMID:26824830

  12. Soft and Hard Textured Wheat Differ in Starch Properties as Indicated by Trimodal Distribution, Morphology, Thermal and Crystalline Properties.

    PubMed

    Kumar, Rohit; Kumar, Aman; Sharma, Nand Kishor; Kaur, Navneet; Chunduri, Venkatesh; Chawla, Meenakshi; Sharma, Saloni; Singh, Kashmir; Garg, Monika

    2016-01-01

    Starch and proteins are major components in the wheat endosperm that affect its end product quality. Between the two textural classes of wheat i.e. hard and soft, starch granules are loosely bound with the lipids and proteins in soft wheat due to higher expression of interfering grain softness proteins. It might have impact on starch granules properties. In this work for the first time the physiochemical and structural properties of different sized starch granules (A-, B- and C-granules) were studied to understand the differences in starches with respect to soft and hard wheat. A-, B- and C-type granules were separated with >95% purity. Average number and proportion of A-, B-, and C-type granules was 18%, 56%, 26% and 76%, 19%, 5% respectively. All had symmetrical birefringence pattern with varied intensity. All displayed typical A-type crystallites. A-type granules also showed V-type crystallinity that is indicative of starch complexes with lipids and proteins. Granules differing in gelatinization temperature (ΔH) and transition temperature (ΔT), showed different enthalpy changes during heating. Substitution analysis indicated differences in relative substitution pattern of different starch granules. Birefringence, percentage crystallinity, transmittance, gelatinization enthalpy and substitution decreased in order of A>B>C being higher in hard wheat than soft wheat. Amylose content decreased in order of A>B>C being higher in soft wheat than hard wheat. Reconstitution experiment showed that starch properties could be manipulated by changing the composition of starch granules. Addition of A-granules to total starch significantly affected its thermal properties. Effect of A-granule addition was higher than B- and C-granules. Transmittance of the starch granules paste showed that starch granules of hard wheat formed clear paste. These results suggested that in addition to differences in protein concentration, hard and soft wheat lines have differences in starch composition also.

  13. The use of thermostable bacterial hemicellulases improves the conversion of lignocellulosic biomass to valuable molecules.

    PubMed

    Rakotoarivonina, Harivony; Revol, Pierre-Vincent; Aubry, Nathalie; Rémond, Caroline

    2016-09-01

    The hydrolysis of xylans, one of the main classes of carbohydrates that constitute lignocellulosic biomass, requires the synergistic action of several enzymes. The development of efficient enzymatic strategies for hydrolysis remains a challenge in the pursuit of viable biorefineries, particularly with respect to the valorisation of pentoses. The approach developed in this work is based on obtaining and characterising hemicellulasic cocktails from Thermobacillus xylanilyticus after culturing this bacterium on the hemicellulose-rich substrates wheat bran and wheat straw, which differ in their chemistries. The two obtained cocktails (WSC and WBC, for cocktails obtained from wheat straw and wheat bran, respectively) were resistant to a broad range of temperature and pH conditions. At 60 °C, both cocktails efficiently liberated pentoses and phenolic acids from wheat bran (liberating more than 60, 30 and 40 % of the total xylose, arabinose and ferulic acid in wheat bran, respectively). They acted to a lesser extent on the more recalcitrant wheat straw, with hydrolytic yields of more than 30 % of the total arabinose and xylose content and 22 % of the ferulic acid content. Hydrolysis is associated with a high rate of sugar monomerisation. When associated with cellulases, high quantities of glucose were also obtained. On wheat bran, total glucose yields were improved by 70 % compared to the action of cellulases alone. This improvement was obtained by cellulase complementation either with WSC or with WBC. On wheat straw, similar levels of total glucose were obtained for cellulases alone or complemented with WSC or WBC. Interestingly, the complementation of cellulases with WSC or WBC induced an increase in the monomeric glucose yield of more than 20 % compared to cellulases alone.

  14. Mass Spectrometric Characterization of Benzoxazinoid Glycosides from Rhizopus-Elicited Wheat (Triticum aestivum) Seedlings.

    PubMed

    de Bruijn, Wouter J C; Vincken, Jean-Paul; Duran, Katharina; Gruppen, Harry

    2016-08-17

    Benzoxazinoids function as defense compounds and have been suggested to possess health-promoting effects. In this work, the mass spectrometric behavior of benzoxazinoids from the classes benzoxazin-3-ones (with subclasses lactams, hydroxamic acids, and methyl derivatives) and benzoxazolinones was studied. Wheat seeds were germinated with simultaneous elicitation by Rhizopus. The seedling extract was screened for the presence of benzoxazinoid (glycosides) using reversed-phase ultra-high-performance liquid chromatography with photodiode array detection coupled in line to multiple-stage mass spectrometry (RP-UHPLC-PDA-MS(n)). Benzoxazin-3-ones from the different subclasses showed distinctly different ionization and fragmentation behaviors. These features were incorporated into a newly proposed decision guideline to aid the classification of benzoxazinoids. Glycosides of the methyl derivative 2-hydroxy-4-methoxy-1,4-benzoxazin-3-one were tentatively identified for the first time in wheat. We conclude that wheat seedlings germinated with simultaneous fungal elicitation contain a diverse array of benzoxazinoids, mainly constituted by benzoxazin-3-one glycosides.

  15. Biological control of fusarium seedling blight disease of wheat and barley.

    PubMed

    Khan, Mojibur R; Fischer, Sven; Egan, Damian; Doohan, Fiona M

    2006-04-01

    ABSTRACT Fusarium fungi, including F. culmorum, cause seedling blight, foot rot, and head blight diseases of cereals, resulting in yield loss. In a screen for potential disease control organisms and agents, Pseudomonas fluorescens strains MKB 100 and MKB 249, P. frederiksbergensis strain 202, Pseudomonas sp. strain MKB 158, and chitosan all significantly reduced the extent of both wheat coleoptile growth retardation and wheat and barley seedling blight caused by F. culmorum (by 53 to 91%). Trichodiene synthase is a Fusarium enzyme necessary for trichothecene mycotoxin biosynthesis; expression of the gene encoding this enzyme in wheat was 33% lower in stem base tissue coinoculated with Pseudomonas sp. strain MKB 158 and F. culmorum than in wheat treated with bacterial culture medium and F. culmorum. When wheat and barley were grown in soil amended with either chitosan, P. fluorescens strain MKB 249, Pseudomonas sp. strain MKB 158, or culture filtrates of these bacteria, the level of disease symptoms on F. culmorum-inoculated stem base tissue (at 12 days post- F. culmorum inoculation) was >/=31% less than the level on F. culmorum-inoculated plants grown in culture medium-amended soil. It seems likely that at least part of the biocontrol activity of these bacteria and chitosan may be due to the induction of systemic disease resistance in host plants. Also, in coinoculation studies, Pseudomonas sp. strain MKB 158 induced the expression of a wheat class III plant peroxidase gene (a pathogenesis-related gene).

  16. Variable selection based near infrared spectroscopy quantitative and qualitative analysis on wheat wet gluten

    NASA Astrophysics Data System (ADS)

    Lü, Chengxu; Jiang, Xunpeng; Zhou, Xingfan; Zhang, Yinqiao; Zhang, Naiqian; Wei, Chongfeng; Mao, Wenhua

    2017-10-01

    Wet gluten is a useful quality indicator for wheat, and short wave near infrared spectroscopy (NIRS) is a high performance technique with the advantage of economic rapid and nondestructive test. To study the feasibility of short wave NIRS analyzing wet gluten directly from wheat seed, 54 representative wheat seed samples were collected and scanned by spectrometer. 8 spectral pretreatment method and genetic algorithm (GA) variable selection method were used to optimize analysis. Both quantitative and qualitative model of wet gluten were built by partial least squares regression and discriminate analysis. For quantitative analysis, normalization is the optimized pretreatment method, 17 wet gluten sensitive variables are selected by GA, and GA model performs a better result than that of all variable model, with R2V=0.88, and RMSEV=1.47. For qualitative analysis, automatic weighted least squares baseline is the optimized pretreatment method, all variable models perform better results than those of GA models. The correct classification rates of 3 class of <24%, 24-30%, >30% wet gluten content are 95.45, 84.52, and 90.00%, respectively. The short wave NIRS technique shows potential for both quantitative and qualitative analysis of wet gluten for wheat seed.

  17. Gametocidal genes of Aegilops: segregation distorters in wheat-Aegilops wide hybridization.

    PubMed

    Niranjana, M

    2017-08-01

    Aegilops is a genus belonging to the family Poaceace, which have played an indispensible role in the evolution of bread wheat and continues to do so by transferring genes by wide hybridization. Being the secondary gene pool of wheat, gene transfer from Aegilops poses difficulties and segregation distortion is common. Gametocidal genes are the most well characterized class of segregation distorters reported in interspecific crosses of wheat with Aegilops. These "selfish" genetic elements ensure their preferential transmission to progeny at the cost of gametes lacking them without providing any phenotypic benefits to the plant, thereby causing a proportional reduction in fertility. Gametocidal genes (Gc) have been reported in different species of Aegilops belonging to the sections Aegilops (Ae. geniculata and Ae. triuncialis), Cylindropyrum (Ae. caudata and Ae. cylindrica), and Sitopsis (Ae. longissima, Ae. sharonensis, and Ae. speltoides). Gametocidal activity is mostly confined to 2, 3, and 4 homeologous groups of C, S, S 1 , S sh , and M g genomes. Removal of such genes is necessary for successful alien gene introgression and can be achieved by mutagenesis or allosyndetic pairing. However, there are some instances where Gc genes are constructively utilized for development of deletion stocks in wheat, improving genetic variability and chromosome engineering.

  18. Benchmark levels for the consumptive water footprint of crop production for different environmental conditions: a case study for winter wheat in China

    NASA Astrophysics Data System (ADS)

    Zhuo, La; Mekonnen, Mesfin M.; Hoekstra, Arjen Y.

    2016-11-01

    Meeting growing food demands while simultaneously shrinking the water footprint (WF) of agricultural production is one of the greatest societal challenges. Benchmarks for the WF of crop production can serve as a reference and be helpful in setting WF reduction targets. The consumptive WF of crops, the consumption of rainwater stored in the soil (green WF), and the consumption of irrigation water (blue WF) over the crop growing period varies spatially and temporally depending on environmental factors like climate and soil. The study explores which environmental factors should be distinguished when determining benchmark levels for the consumptive WF of crops. Hereto we determine benchmark levels for the consumptive WF of winter wheat production in China for all separate years in the period 1961-2008, for rain-fed vs. irrigated croplands, for wet vs. dry years, for warm vs. cold years, for four different soil classes, and for two different climate zones. We simulate consumptive WFs of winter wheat production with the crop water productivity model AquaCrop at a 5 by 5 arcmin resolution, accounting for water stress only. The results show that (i) benchmark levels determined for individual years for the country as a whole remain within a range of ±20 % around long-term mean levels over 1961-2008, (ii) the WF benchmarks for irrigated winter wheat are 8-10 % larger than those for rain-fed winter wheat, (iii) WF benchmarks for wet years are 1-3 % smaller than for dry years, (iv) WF benchmarks for warm years are 7-8 % smaller than for cold years, (v) WF benchmarks differ by about 10-12 % across different soil texture classes, and (vi) WF benchmarks for the humid zone are 26-31 % smaller than for the arid zone, which has relatively higher reference evapotranspiration in general and lower yields in rain-fed fields. We conclude that when determining benchmark levels for the consumptive WF of a crop, it is useful to primarily distinguish between different climate zones. If actual consumptive WFs of winter wheat throughout China were reduced to the benchmark levels set by the best 25 % of Chinese winter wheat production (1224 m3 t-1 for arid areas and 841 m3 t-1 for humid areas), the water saving in an average year would be 53 % of the current water consumption at winter wheat fields in China. The majority of the yield increase and associated improvement in water productivity can be achieved in southern China.

  19. Support Vector Data Description Model to Map Specific Land Cover with Optimal Parameters Determined from a Window-Based Validation Set.

    PubMed

    Zhang, Jinshui; Yuan, Zhoumiqi; Shuai, Guanyuan; Pan, Yaozhong; Zhu, Xiufang

    2017-04-26

    This paper developed an approach, the window-based validation set for support vector data description (WVS-SVDD), to determine optimal parameters for support vector data description (SVDD) model to map specific land cover by integrating training and window-based validation sets. Compared to the conventional approach where the validation set included target and outlier pixels selected visually and randomly, the validation set derived from WVS-SVDD constructed a tightened hypersphere because of the compact constraint by the outlier pixels which were located neighboring to the target class in the spectral feature space. The overall accuracies for wheat and bare land achieved were as high as 89.25% and 83.65%, respectively. However, target class was underestimated because the validation set covers only a small fraction of the heterogeneous spectra of the target class. The different window sizes were then tested to acquire more wheat pixels for validation set. The results showed that classification accuracy increased with the increasing window size and the overall accuracies were higher than 88% at all window size scales. Moreover, WVS-SVDD showed much less sensitivity to the untrained classes than the multi-class support vector machine (SVM) method. Therefore, the developed method showed its merits using the optimal parameters, tradeoff coefficient ( C ) and kernel width ( s ), in mapping homogeneous specific land cover.

  20. Rapid and non-invasive analysis of deoxynivalenol in durum and common wheat by Fourier-Transform Near Infrared (FT-NIR) spectroscopy.

    PubMed

    De Girolamo, A; Lippolis, V; Nordkvist, E; Visconti, A

    2009-06-01

    Fourier transform near-infrared spectroscopy (FT-NIR) was used for rapid and non-invasive analysis of deoxynivalenol (DON) in durum and common wheat. The relevance of using ground wheat samples with a homogeneous particle size distribution to minimize measurement variations and avoid DON segregation among particles of different sizes was established. Calibration models for durum wheat, common wheat and durum + common wheat samples, with particle size <500 microm, were obtained by using partial least squares (PLS) regression with an external validation technique. Values of root mean square error of prediction (RMSEP, 306-379 microg kg(-1)) were comparable and not too far from values of root mean square error of cross-validation (RMSECV, 470-555 microg kg(-1)). Coefficients of determination (r(2)) indicated an "approximate to good" level of prediction of the DON content by FT-NIR spectroscopy in the PLS calibration models (r(2) = 0.71-0.83), and a "good" discrimination between low and high DON contents in the PLS validation models (r(2) = 0.58-0.63). A "limited to good" practical utility of the models was ascertained by range error ratio (RER) values higher than 6. A qualitative model, based on 197 calibration samples, was developed to discriminate between blank and naturally contaminated wheat samples by setting a cut-off at 300 microg kg(-1) DON to separate the two classes. The model correctly classified 69% of the 65 validation samples with most misclassified samples (16 of 20) showing DON contamination levels quite close to the cut-off level. These findings suggest that FT-NIR analysis is suitable for the determination of DON in unprocessed wheat at levels far below the maximum permitted limits set by the European Commission.

  1. Variability of Root Traits in Spring Wheat Germplasm

    PubMed Central

    Narayanan, Sruthi; Mohan, Amita; Gill, Kulvinder S.; Prasad, P. V. Vara

    2014-01-01

    Root traits influence the amount of water and nutrient absorption, and are important for maintaining crop yield under drought conditions. The objectives of this research were to characterize variability of root traits among spring wheat genotypes and determine whether root traits are related to shoot traits (plant height, tiller number per plant, shoot dry weight, and coleoptile length), regions of origin, and market classes. Plants were grown in 150-cm columns for 61 days in a greenhouse under optimal growth conditions. Rooting depth, root dry weight, root: shoot ratio, and shoot traits were determined for 297 genotypes of the germplasm, Cultivated Wheat Collection (CWC). The remaining root traits such as total root length and surface area were measured for a subset of 30 genotypes selected based on rooting depth. Significant genetic variability was observed for root traits among spring wheat genotypes in CWC germplasm or its subset. Genotypes Sonora and Currawa were ranked high, and genotype Vandal was ranked low for most root traits. A positive relationship (R2≥0.35) was found between root and shoot dry weights within the CWC germplasm and between total root surface area and tiller number; total root surface area and shoot dry weight; and total root length and coleoptile length within the subset. No correlations were found between plant height and most root traits within the CWC germplasm or its subset. Region of origin had significant impact on rooting depth in the CWC germplasm. Wheat genotypes collected from Australia, Mediterranean, and west Asia had greater rooting depth than those from south Asia, Latin America, Mexico, and Canada. Soft wheat had greater rooting depth than hard wheat in the CWC germplasm. The genetic variability identified in this research for root traits can be exploited to improve drought tolerance and/or resource capture in wheat. PMID:24945438

  2. Functional and structural insights into novel DREB1A transcription factors in common wheat (Triticum aestivum L.): A molecular modeling approach.

    PubMed

    Kumar, Anuj; Kumar, Sanjay; Kumar, Upendra; Suravajhala, Prashanth; Gajula, M N V Prasad

    2016-10-01

    Triticum aestivum L. known as common wheat is one of the most important cereal crops feeding a large and growing population. Various environmental stress factors including drought, high salinity and heat etc. adversely affect wheat production in a significant manner. Dehydration-responsive element-binding (DREB1A) factors, a class of transcription factors (TF) play an important role in combating drought stress. It is known that DREB1A specifically interacts with the dehydration responsive elements (DRE/CRT) inducing expression of genes involved in environmental stress tolerance in plants. Despite its critical interplay in plants, the structural and functional aspects of DREB1A TF in wheat remain unresolved. Previous studies showed that wheat DREBs (DREB1 and DREB2) were isolated using various methods including yeast two-hybrid screens but no extensive structural models were reported. In this study, we made an extensive in silico study to gain insight into DREB1A TF and reported the location of novel DREB1A in wheat chromosomes. We inferred the three-dimensional structural model of DREB1A using homology modelling and further evaluated them using molecular dynamics(MD) simulations yielding refined modelled structures. Our biochemical function predictions suggested that the wheat DREB1A orthologs have similar biochemical functions and pathways to that of AtDREB1A. In conclusion, the current study presents a structural perspective of wheat DREB1A and helps in understanding the molecular basis for the mechanism of DREB1A in response to environmental stress. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Wheat Landrace Genome Diversity

    PubMed Central

    Wingen, Luzie U.; West, Claire; Leverington-Waite, Michelle; Collier, Sarah; Orford, Simon; Goram, Richard; Yang, Cai-Yun; King, Julie; Allen, Alexandra M.; Burridge, Amanda; Edwards, Keith J.; Griffiths, Simon

    2017-01-01

    Understanding the genomic complexity of bread wheat (Triticum aestivum L.) is a cornerstone in the quest to unravel the processes of domestication and the following adaptation of domesticated wheat to a wide variety of environments across the globe. Additionally, it is of importance for future improvement of the crop, particularly in the light of climate change. Focusing on the adaptation after domestication, a nested association mapping (NAM) panel of 60 segregating biparental populations was developed, mainly involving landrace accessions from the core set of the Watkins hexaploid wheat collection optimized for genetic diversity. A modern spring elite variety, “Paragon,” was used as common reference parent. Genetic maps were constructed following identical rules to make them comparable. In total, 1611 linkage groups were identified, based on recombination from an estimated 126,300 crossover events over the whole NAM panel. A consensus map, named landrace consensus map (LRC), was constructed and contained 2498 genetic loci. These newly developed genetics tools were used to investigate the rules underlying genome fluidity or rigidity, e.g., by comparing marker distances and marker orders. In general, marker order was highly correlated, which provides support for strong synteny between bread wheat accessions. However, many exceptional cases of incongruent linkage groups and increased marker distances were also found. Segregation distortion was detected for many markers, sometimes as hot spots present in different populations. Furthermore, evidence for translocations in at least 36 of the maps was found. These translocations fell, in general, into many different translocation classes, but a few translocation classes were found in several accessions, the most frequent one being the well-known T5B:7B translocation. Loci involved in recombination rate, which is an interesting trait for plant breeding, were identified by QTL analyses using the crossover counts as a trait. In total, 114 significant QTL were detected, nearly half of them with increasing effect from the nonreference parents. PMID:28213475

  4. Classifying Multi-Model Wheat Yield Impact Response Surfaces Showing Sensitivity to Temperature and Precipitation Change

    NASA Technical Reports Server (NTRS)

    Fronzek, Stefan; Pirttioja, Nina; Carter, Timothy R.; Bindi, Marco; Hoffmann, Holger; Palosuo, Taru; Ruiz-Ramos, Margarita; Tao, Fulu; Trnka, Miroslav; Acutis, Marco; hide

    2017-01-01

    Crop growth simulation models can differ greatly in their treatment of key processes and hence in their response to environmental conditions. Here, we used an ensemble of 26 process-based wheat models applied at sites across a European transect to compare their sensitivity to changes in temperature (minus 2 to plus 9 degrees Centigrade) and precipitation (minus 50 to plus 50 percent). Model results were analysed by plotting them as impact response surfaces (IRSs), classifying the IRS patterns of individual model simulations, describing these classes and analysing factors that may explain the major differences in model responses. The model ensemble was used to simulate yields of winter and spring wheat at four sites in Finland, Germany and Spain. Results were plotted as IRSs that show changes in yields relative to the baseline with respect to temperature and precipitation. IRSs of 30-year means and selected extreme years were classified using two approaches describing their pattern. The expert diagnostic approach (EDA) combines two aspects of IRS patterns: location of the maximum yield (nine classes) and strength of the yield response with respect to climate (four classes), resulting in a total of 36 combined classes defined using criteria pre-specified by experts. The statistical diagnostic approach (SDA) groups IRSs by comparing their pattern and magnitude, without attempting to interpret these features. It applies a hierarchical clustering method, grouping response patterns using a distance metric that combines the spatial correlation and Euclidian distance between IRS pairs. The two approaches were used to investigate whether different patterns of yield response could be related to different properties of the crop models, specifically their genealogy, calibration and process description. Although no single model property across a large model ensemble was found to explain the integrated yield response to temperature and precipitation perturbations, the application of the EDA and SDA approaches revealed their capability to distinguish: (i) stronger yield responses to precipitation for winter wheat than spring wheat; (ii) differing strengths of response to climate changes for years with anomalous weather conditions compared to period-average conditions; (iii) the influence of site conditions on yield patterns; (iv) similarities in IRS patterns among models with related genealogy; (v) similarities in IRS patterns for models with simpler process descriptions of root growth and water uptake compared to those with more complex descriptions; and (vi) a closer correspondence of IRS patterns in models using partitioning schemes to represent yield formation than in those using a harvest index. Such results can inform future crop modelling studies that seek to exploit the diversity of multi-model ensembles, by distinguishing ensemble members that span a wide range of responses as well as those that display implausible behaviour or strong mutual similarities.

  5. Triticale powdery mildew: population characterization and wheat gene efficiency.

    PubMed

    Bouguennec, Annaig; Trottet, Maxime; du Cheyron, Philippe; Lonnet, Philippe

    2014-01-01

    Powdery mildew has emerged on triticale in the early 2000s in many locations, probably due to a host range expansion of the wheat formae speciales, Blumeria graminis f.sp. tritici. Many triticale cultivars are highly susceptible to powdery mildew, mainly in seedling stage, revealing a probably narrow genetic basis for powdery mildew resistance genes (Pm). Moreover, as Blumeria graminis is an obligate biotrophic fungus, it is very time consuming and difficult to maintain powdery mildew isolates for a non-specialized laboratory and populations can evolve. In order to identify wheat Pm genes efficient against natural populations of powdery mildew, wheat differential hosts and triticale seedlings were inoculated below susceptible triticale crop naturally contaminated by mildew, in several locations and several years. Symptoms on seedlings were measured after approximately two weeks of incubation in favorable fungus growth conditions. According to these data, we classified the Pm genes presents in our wheat differential hosts set in 3 classes: Pm already overcame by triticale powdery mildew, Pm having variable effects and Pm still efficient against triticale mildew. Data on triticale seedlings allowed us to identify some few triticale cultivars resistant to Blumeria graminis in seedling stage. We will try to identify Pm genes present in those cultivars next year by testing them with the characterized isolates of powdery mildew from Gent University. Nevertheless, interspecific crossing of wheat, resistant to powdery mildew in seedling stage, and rye have been initiated to introduce potentially interesting genes for resistance in triticale.

  6. Industrial noise level study in a wheat processing factory in ilorin, nigeria

    NASA Astrophysics Data System (ADS)

    Ibrahim, I.; Ajao, K. R.; Aremu, S. A.

    2016-05-01

    An industrial process such as wheat processing generates significant noise which can cause adverse effects on workers and the general public. This study assessed the noise level at a wheat processing mill in Ilorin, Nigeria. A portable digital sound level meter HD600 manufactured by Extech Inc., USA was used to determine the noise level around various machines, sections and offices in the factory at pre-determined distances. Subjective assessment was also mode using a World Health Organization (WHO) standard questionnaire to obtain information regarding noise ratings, effect of noise on personnel and noise preventive measures. The result of the study shows that the highest noise of 99.4 dBA was recorded at a pressure blower when compared to other machines. WHO Class-4 hearing protector is recommended for workers on the shop floor and room acoustics should be upgraded to absorb some sounds transmitted to offices.

  7. Soil organic carbon and land use in Veneto and Friuli Venezia Giulia (Northern Italy)

    NASA Astrophysics Data System (ADS)

    Francaviglia, Rosa; Renzi, Gianluca; Benedetti, Anna

    2014-05-01

    The Italian Ministry of Agricultural Food and Forestry Policies (MiPAAF) has set up a statistical survey aimed to provide the national forecast of yields and areas related to the main Italian agricultural crops (AGRIT). The methodology is based on field surveys and remote-sensed data, covers yearly the whole national territory, and is based on 100,000 observations which are statistically selected from a predefined grid made up of about 1,200,000 georeferenced points. In 2011-2012 we determined the soil organic carbon content (SOC) of 1,160 sampling points situated in Northern Italy in the plains and hills of Veneto (VEN) and Friuli Venezia Giulia (FVG), for which the land use in the period 2008-2010 was known. Samples have been subdivided in three main classes: arable crops, orchards and fodder crops. SOC was higher in FVG samples (2.48%, n=266) than in VEN samples (1.90%, n=894). The average value (2.03%) is clearly affected by the higher number of VEN samples. FVG data have been aggregated in continuous crops (maize, soybean, wheat), 2-yr rotations (maize-wheat, soybean wheat, maize-soybean), 3-yr rotations, vineyards (totally, partially and no-grassed), alfalfa, and permanent fodder crops. No significant differences were detected among the land uses due to the low number of samples in some classes, but some important findings do exist from the agronomic point of view. Fodder crops (5.65%), alfalfa (3.41%) and vineyards (2.72%) showed the higher SOC content. SOC was 2.94% and 1.39 % in the grassed and no-grassed vineyards respectively. In the arable crops the average SOC was 2.18%, ranging from 2.32% (soybean-wheat rotation) to 2.03% (continuous soybean). SOC was 2.19% in the continuous maize, with 2.23% in corn and 1.87% in silage maize. The lower values were in the maize-wheat rotation (1.53%) and the continuous wheat (1.47%). VEN data have been aggregated in continuous crops (maize, soybean and wheat), 2-yr rotations (maize-wheat, soybean-wheat, maize-soybean, soybean-alfalfa, wheat-alfalfa, maize-alfalfa), 3-yr rotations, orchards (mulched, totally, partially and no-grassed), alfalfa, permanent fodder crops, and land use change (from arable to fodder crops and vice versa). The mean value was 1.57% in arable crops, 2.46% in orchards (including vineyards, olive groves, and fruit crops), 3.13% in fodder crops. SOC in orchards was 1.82% (no grassed), 2.46% (grassed), 2.69% (mulched); 2.10 and 2.08% in the 2-yr rotations soybean-wheat and soybean-alfalfa respectively. SOC in the other arable crops was between 1.79% (land use change) and 1.37% (continuous soybean). A higher SOC was shown in VEN samples also when comparing continuous corn (1.69%) and continuous silage maize (1.43%). Data, even limited to two Regions, have clearly shown the positive contribution to SOC storage of orchards (mainly in grassed and mulched systems) and fodder crops, which are more conservative systems due to the lower soil disturbance from tillage operations; and to a lower extent of cropping systems with alfalfa or other legume crops.

  8. Nudging children towards whole wheat bread: a field experiment on the influence of fun bread roll shape on breakfast consumption.

    PubMed

    van Kleef, Ellen; Vrijhof, Milou; Polet, Ilse A; Vingerhoeds, Monique H; de Wijk, René A

    2014-09-02

    Many children do not eat enough whole grains, which may have negative health consequences. Intervention research is increasingly focusing on nudging as a way to influence food choices by affecting unconscious behavioural processes. The aim of this field study was to examine whether the shape of bread rolls is able to shift children's bread choices from white to whole wheat during breakfast to increase whole grain intake. In a between-subjects experiment conducted at twelve primary schools in the Netherlands, with school as the unit of condition assignment, children were exposed to an assortment of white and whole wheat bread rolls, both varying in shape (regular versus fun). Children were free to choose the type and number of bread rolls and toppings to eat during breakfast. Consumption of bread rolls was measured at class level via the number of bread rolls before and after breakfast. In addition, children (N = 1113) responded to a survey including questions about the breakfast. Results of the field experiment showed that about 76% of bread consumption consisted of white bread rolls. Consumption of white bread rolls did not differ according to shape (all P-values > 0.18). However, presenting fun-shaped whole wheat bread rolls almost doubled consumption of whole wheat bread (P = 0.001), particularly when the simultaneously presented white bread rolls had a regular shape (interaction P = 0.02). Survey results suggest that slight increases in perceived pleasure and taste are associated with these effects. Overall, presenting whole wheat bread in fun shapes may be helpful in increasing consumption of whole wheat bread in children. Future research could examine how improving the visual appeal of healthy foods may lead to sustained behaviour changes.

  9. Analysis of grain quality at receival

    USDA-ARS?s Scientific Manuscript database

    With an emphasis on wheat and to a lesser extent, barley, we describe the series of post harvest transfer stages of grain between the first point of sale and the export terminal. At each transfer point, a document accompanies a grain consignment that pertains to its quality (class, purity, sanitatio...

  10. Repellent and Contact Toxicity of Alpinia officinarum Rhizome Extract against Lasioderma serricorne Adults.

    PubMed

    Lü, Jianhua; Ma, Dan

    2015-01-01

    The repellent and contact toxicities of Alpinia officinarum rhizome extract on Lasioderma serricorne adults, and its ability to protect stored wheat flour from L. serricorne adults infestation were investigated. The A. officinarum extract exhibited strong repellent and contact toxicities against L. serricorne adults. The toxicities enhanced significantly with the increasing treatment time and treatment dose. The mean percentage repellency value reached 91.3% at class V at the dose of 0.20 μL/cm2 after 48 h of exposure. The corrected mortality reached over 80.0% at the dose of 0.16 μL/cm2 after 48 h of exposure. The A. officinarum extract could significantly reduce L. serricorne infestation level against stored wheat flour. Particularly, the insect infestation was nil in wheat flour packaged with kraft paper bags coated with the A. officinarum extract at the dose of above 0.05 μL/cm2. The naturally occurring A. officinarum extract could be useful for integrated management of L. serricorne.

  11. Repellent and Contact Toxicity of Alpinia officinarum Rhizome Extract against Lasioderma serricorne Adults

    PubMed Central

    Lü, Jianhua; Ma, Dan

    2015-01-01

    The repellent and contact toxicities of Alpinia officinarum rhizome extract on Lasioderma serricorne adults, and its ability to protect stored wheat flour from L. serricorne adults infestation were investigated. The A. officinarum extract exhibited strong repellent and contact toxicities against L. serricorne adults. The toxicities enhanced significantly with the increasing treatment time and treatment dose. The mean percentage repellency value reached 91.3% at class V at the dose of 0.20 μL/cm2 after 48 h of exposure. The corrected mortality reached over 80.0% at the dose of 0.16 μL/cm2 after 48 h of exposure. The A. officinarum extract could significantly reduce L. serricorne infestation level against stored wheat flour. Particularly, the insect infestation was nil in wheat flour packaged with kraft paper bags coated with the A. officinarum extract at the dose of above 0.05 μL/cm2. The naturally occurring A. officinarum extract could be useful for integrated management of L. serricorne. PMID:26292097

  12. Identification of new stress-induced microRNA and their targets in wheat using computational approach.

    PubMed

    Pandey, Bharati; Gupta, Om Prakash; Pandey, Dev Mani; Sharma, Indu; Sharma, Pradeep

    2013-05-01

    MicroRNAs (miRNAs) are a class of short endogenous non-coding small RNA molecules of about 18-22 nucleotides in length. Their main function is to downregulate gene expression in different manners like translational repression, mRNA cleavage and epigenetic modification. Computational predictions have raised the number of miRNAs in wheat significantly using an EST based approach. Hence, a combinatorial approach which is amalgamation of bioinformatics software and perl script was used to identify new miRNA to add to the growing database of wheat miRNA. Identification of miRNAs was initiated by mining the EST (Expressed Sequence Tags) database available at National Center for Biotechnology Information. In this investigation, 4677 mature microRNA sequences belonging to 50 miRNA families from different plant species were used to predict miRNA in wheat. A total of five abiotic stress-responsive new miRNAs were predicted and named Ta-miR5653, Ta-miR855, Ta-miR819k, Ta-miR3708 and Ta-miR5156. In addition, four previously identified miRNA, i.e., Ta-miR1122, miR1117, Ta-miR1134 and Ta-miR1133 were predicted in newly identified EST sequence and 14 potential target genes were subsequently predicted, most of which seems to encode ubiquitin carrier protein, serine/threonine protein kinase, 40S ribosomal protein, F-box/kelch-repeat protein, BTB/POZ domain-containing protein, transcription factors which are involved in growth, development, metabolism and stress response. Our result has increased the number of miRNAs in wheat, which should be useful for further investigation into the biological functions and evolution of miRNAs in wheat and other plant species.

  13. Wheat grain hardness results from highly conserved mutations in the friabilin components puroindoline a and b

    PubMed Central

    Giroux, Michael J.; Morris, Craig F.

    1998-01-01

    “Soft” and “hard” are the two main market classes of wheat (Triticum aestivum L.) and are distinguished by expression of the Hardness gene. Friabilin, a marker protein for grain softness (Ha), consists of two proteins, puroindoline a and b (pinA and pinB, respectively). We previously demonstrated that a glycine to serine mutation in pinB is linked inseparably to grain hardness. Here, we report that the pinB serine mutation is present in 9 of 13 additional randomly selected hard wheats and in none of 10 soft wheats. The four exceptional hard wheats not containing the serine mutation in pinB express no pinA, the remaining component of the marker protein friabilin. The absence of pinA protein was linked inseparably to grain hardness among 44 near-isogenic lines created between the soft variety Heron and the hard variety Falcon. Both pinA and pinB apparently are required for the expression of grain softness. The absence of pinA protein and transcript and a glycine-to-serine mutation in pinB are two highly conserved mutations associated with grain hardness, and these friabilin genes are the suggested tightly linked components of the Hardness gene. A previously described grain hardness related gene termed “GSP-1” (grain softness protein) is not controlled by chromosome 5D and is apparently not involved in grain hardness. The association of grain hardness with mutations in both pinA or pinB indicates that these two proteins alone may function together to effect grain softness. Elucidation of the molecular basis for grain hardness opens the way to understanding and eventually manipulating this wheat endosperm property. PMID:9600953

  14. Functional and DNA-protein binding studies of WRKY transcription factors and their expression analysis in response to biotic and abiotic stress in wheat (Triticum aestivum L.).

    PubMed

    Satapathy, Lopamudra; Kumar, Dhananjay; Kumar, Manish; Mukhopadhyay, Kunal

    2018-01-01

    WRKY, a plant-specific transcription factor family, plays vital roles in pathogen defense, abiotic stress, and phytohormone signalling. Little is known about the roles and function of WRKY transcription factors in response to rust diseases in wheat. In the present study, three TaWRKY genes encoding complete protein sequences were cloned. They belonged to class II and III WRKY based on the number of WRKY domains and the pattern of zinc finger structures. Twenty-two DNA-protein binding docking complexes predicted stable interactions of WRKY domain with W-box. Quantitative real-time-PCR using wheat near-isogenic lines with or without Lr28 gene revealed differential up- or down-regulation in response to biotic and abiotic stress treatments which could be responsible for their functional divergence in wheat. TaWRKY62 was found to be induced upon treatment with JA, MJ, and SA and reduced after ABA treatments. Maximum induction of six out of seven genes occurred at 48 h post inoculation due to pathogen inoculation. Hence, TaWRKY (49, 50 , 52 , 55 , 57, and 62 ) can be considered as potential candidate genes for further functional validation as well as for crop improvement programs for stress resistance. The results of the present study will enhance knowledge towards understanding the molecular basis of mode of action of WRKY transcription factor genes in wheat and their role during leaf rust pathogenesis in particular.

  15. Genetics of resistance to Zymoseptoria tritici and applications to wheat breeding.

    PubMed

    Brown, James K M; Chartrain, Laëtitia; Lasserre-Zuber, Pauline; Saintenac, Cyrille

    2015-06-01

    This paper reviews current knowledge about genes for resistance to Septoria tritici blotch (STB) of wheat, caused by Zymoseptoria tritici (formerly Mycosphaerella graminicola). These genes can be placed into two classes, although a few may have characteristics of both classes. Qualitative resistance is controlled by genes which control large fractions of genetic variation, 21 of which have been discovered and mapped so far. Most of them have been shown to be genotype-specific, being effective against the minority of Z. tritici isolates which are avirulent, and Stb6 has been shown to control a gene-for-gene relationship. Most qualitative resistances are unlikely to be durable and some formerly effective genes have been overcome by the evolution of pathogen virulence. Quantitative resistance is generally controlled by genes with small-to-moderate effects on STB. They have generally weaker specificity than qualitative genes and have provided more durable resistance. 89 genome regions carrying quantitative trait loci (QTL) or meta-QTL have been identified to date. Some QTL have been mapped at or near loci of qualitative genes, especially Stb6, which is present in several sources of resistance. Another gene of particular interest is Stb16q, which has been effective against all Z. tritici isolates tested so far. In addition to resistance, the susceptibility of wheat cultivars to STB can also be reduced by disease escape traits, some of which may be undesirable in breeding. The fundamental requirements for breeding for STB-resistance are genetic diversity for resistance in wheat germplasm and a field trial site at which STB epidemics occur regularly and effective selection can be conducted for resistance combined with other desirable traits. If these are in place, knowledge of resistance genes can be applied to improving control of STB. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  16. It's All Wheat to Me

    ERIC Educational Resources Information Center

    Wegner, Claas; Weber, Phillip; Ohlberger, Stephanie

    2015-01-01

    In this article, Claas Wegner, Phillip Weber, and Stephanie Ohlberger share how they have been teaching about variation and staple food crops in the teaching unit they tested with 8- to 10-year-old children. They started by showing some products made from crop plants and asking the class to carry out a simple comparison of similarities and…

  17. Short-term storage evaluation of quality and antioxidant capacity in chestnut-wheat bread.

    PubMed

    Rinaldi, Massimiliano; Paciulli, Maria; Dall'Asta, Chiara; Cirlini, Martina; Chiavaro, Emma

    2015-01-01

    Bread traditionally made from wheat is now often supplemented with alternative functional ingredients as chestnut flours; no data have been previously published about the staling of chestnut-containing bread. Thus short-term storage (3 days) for chestnut flour-supplemented soft wheat bread is evaluated by means of selected physicochemical properties (i.e. water dynamics, texture, colour, crumb grain characteristic, total antioxidant capacity). Bread prepared with a 20:80 ratio of chestnut:soft wheat flours maintained its moisture content in both crust and crumb. Crumb hardness, after baking, was found to be significantly higher than that of the soft wheat bread; it did not change during storage, whereas it significantly increased in the control bread until the end of the shelf life. The supplemented bread presented a heterogeneous crumb structure, with a significant decrease in the largest pores during shelf life, relative to the shrinkage of crumb grain. The control exhibited a significant redistribution of crumb holes, with a decrease in the smallest grain classes and an increase in the intermediate ones, most likely caused by cell wall thickening. The colour of the crumb remained unaltered in both breads. The crust of the control presented a significant decrease of a* (redness) and that of the supplemented bread exhibited a decrease of b* (yellowness). The antioxidant capacity was detected after day 1 of storage in the chestnut flour bread only. Chestnut flour supplementation could represent a feasible way of producing bread with improved characteristics, not only just after baking but also during shelf life. © 2014 Society of Chemical Industry.

  18. The fatty acid profile in different wheat cultivars depending on the level of contamination with microscopic fungi.

    PubMed

    Stuper-Szablewska, Kinga; Buśko, Maciej; Góral, Tomasz; Perkowski, Juliusz

    2014-06-15

    Analyses were conducted on 30 winter wheat samples growing under controlled conditions and following inoculation with fungi Fusarium culmorum. In inoculated samples the mean concentration of 30 analysed fatty acids was significantly higher in relation to the control and amounted to 1,396 mg/kg vs. 1,046 mg/kg in the control kernels. Recorded concentrations for individual cultivars were significantly correlated with the concentration of fungal biomass. Higher concentration in the control was recorded only for the acid trans C18:2n-6. It was also found that the acid profiles are characteristic of individual cultivars. Statistical analysis showed that trans C18:2n-6, C18:1, C18:3n-3 and C18:3n-6 were the acids with the greatest discriminatory power in distinguishing inoculated samples from the control. Discriminatory analysis separated individual cultivars into quality classes of winter wheat cultivars depending on the presence of a specific fatty acid profile. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Wheat glutenin: the "tail" of the 1By protein subunits.

    PubMed

    Nunes-Miranda, Júlio D; Bancel, Emmanuelle; Viala, Didier; Chambon, Christophe; Capelo, José L; Branlard, Gérard; Ravel, Catherine; Igrejas, Gilberto

    2017-10-03

    Gluten-forming storage proteins play a major role in the viscoelastic properties of wheat dough through the formation of a continuous proteinaceous network. The high-molecular-weight glutenin subunits represent a functionally important subgroup of gluten proteins by promoting the formation of large glutenin polymers through interchain disulphide bonds between glutenin subunits. Here, we present evidences that y-type glutenin subunits encoded at the Glu-B1 locus are prone to proteolytic processing at the C-terminus tail, leading to the loss of the unique cysteine residue present at the C-terminal domain. Results obtained by intact mass measurement and immunochemistry for each proteoform indicate that the proteolytic cleavage appears to occur at the carboxyl-side of two conserved asparagine residues at the C-terminal domain start. Hence, we hypothesize that the responsible enzymes are a class of cysteine endopeptidases - asparaginyl endopeptidases - described in post-translational processing of other storage proteins in wheat. Biological significance The reported study provides new insights into wheat storage protein maturation. In view of the importance of gluten proteins on dough viscoelastic properties and end-product quality, the reported C-terminal domain cleavage of high-molecular-weight glutenin subunits is of particular interest, since this domain possesses a unique conserved cysteine residue which is assumed to participate in gluten polymerization. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Proteomics of Durum Wheat Grain during Transition to Conservation Agriculture

    PubMed Central

    Galieni, Angelica; Stagnari, Fabio; Bonas, Urbana; Speca, Stefano; Faccini, Andrea; Pisante, Michele; Marmiroli, Nelson

    2016-01-01

    Nitrogen management in combination with sustainable agronomic techniques can have a great impact on the wheat grain proteome influencing its technological quality. In this study, proteomic analyses were used to document changes in the proportion of prolamins in mature grains of the newly released Italian durum wheat cv Achille. Such an approach was applied to wheat fertilized with urea (UREA) and calcium nitrate (NITRATE), during the transition to no-till Conservation Agriculture (CA) practice in a Mediterranean environment. Results obtained in a two-years field experiment study suggest low molecular weight glutenins (LMW-GS) as the fraction particularly inducible regardless of the N-form. Quantitative analyses of LMW-GS by 2D-GE followed by protein identification by LC-ESI-MS/MS showed that the stable increase was principally due to C-type LMW-GS. The highest accumulation resulted from a physiologically healthier state of plants treated with UREA and NITRATE. Proteomic analysis on the total protein fraction during the active phase of grain filling was also performed. For both N treatments, but at different extent, an up-regulation of different classes of proteins was observed: i) enzymes involved in glycolysis and citric acid cycles which contribute to an enhanced source of energy and carbohydrates, ii) stress proteins like heat shock proteins (HSPs) and antioxidant enzymes, such as peroxidases and superoxide dismutase which protect the grain from abiotic stress during starch and storage protein synthesis. In conclusion N inputs, which combined rate with N form gave high yield and improved quality traits in the selected durum wheat cultivar. The specific up-regulation of some HSPs, antioxidant enzymes and defense proteins in the early stages of grain development and physiological indicators related to fitness traits, could be useful bio-indicators, for wheat genotype screening under more sustainable agronomic conditions, like transition phase to no-till CA in Mediterranean environments. PMID:27281174

  1. Molecular diversity of α-gliadin expressed genes in genetically contrasted spelt (Triticum aestivum ssp. spelta) accessions and comparison with bread wheat (T. aestivum ssp. aestivum) and related diploid Triticum and Aegilops species.

    PubMed

    Dubois, Benjamin; Bertin, Pierre; Mingeot, Dominique

    2016-01-01

    The gluten proteins of cereals such as bread wheat ( Triticum aestivum ssp. aestivum ) and spelt ( T. aestivum ssp. spelta ) are responsible for celiac disease (CD). The α-gliadins constitute the most immunogenic class of gluten proteins as they include four main T-cell stimulatory epitopes that affect CD patients. Spelt has been less studied than bread wheat and could constitute a source of valuable diversity. The objective of this work was to study the genetic diversity of spelt α-gliadin transcripts and to compare it with those of bread wheat. Genotyping data from 85 spelt accessions obtained with 19 simple sequence repeat (SSR) markers were used to select 11 contrasted accessions, from which 446 full open reading frame α-gliadin genes were cloned and sequenced, which revealed a high allelic diversity. High variations among the accessions were highlighted, in terms of the proportion of α-gliadin sequences from each of the three genomes (A, B and D), and their composition in the four T-cell stimulatory epitopes. An accession from Tajikistan stood out, having a particularly high proportion of α-gliadins from the B genome and a low immunogenic content. Even if no clear separation between spelt and bread wheat sequences was shown, spelt α-gliadins displayed specific features concerning e.g. the frequencies of some amino acid substitutions. Given this observation and the variations in toxicity revealed in the spelt accessions in this study, the high genetic diversity held in spelt germplasm collections could be a valuable resource in the development of safer varieties for CD patients.

  2. Effects of starch synthase IIa gene dosage on grain, protein and starch in endosperm of wheat.

    PubMed

    Konik-Rose, Christine; Thistleton, Jenny; Chanvrier, Helene; Tan, Ihwa; Halley, Peter; Gidley, Michael; Kosar-Hashemi, Behjat; Wang, Hong; Larroque, Oscar; Ikea, Joseph; McMaugh, Steve; Regina, Ahmed; Rahman, Sadequr; Morell, Matthew; Li, Zhongyi

    2007-11-01

    Starch synthases (SS) are responsible for elongating the alpha-1,4 glucan chains of starch. A doubled haploid population was generated by crossing a line of wheat, which lacks functional ssIIa genes on each genome (abd), and an Australian wheat cultivar, Sunco, with wild type ssIIa alleles on each genome (ABD). Evidence has been presented previously indicating that the SGP-1 (starch granule protein-1) proteins present in the starch granule in wheat are products of the ssIIa genes. Analysis of 100 progeny lines demonstrated co-segregation of the ssIIa alleles from the three genomes with the SGP-1 proteins, providing further evidence that the SGP-1 proteins are the products of the ssIIa genes. From the progeny lines, 40 doubled haploid lines representing the eight possible genotypes for SSIIa (ABD, aBD, AbD, ABd, abD, aBd, Abd, abd) were characterized for their grain weight, protein content, total starch content and starch properties. For some properties (chain length distribution, pasting properties, swelling power, and gelatinization properties), a progressive change was observed across the four classes of genotypes (wild type, single nulls, double nulls and triple nulls). However, for other grain properties (seed weight and protein content) and starch properties (total starch content, granule morphology and crystallinity, granule size distribution, amylose content, amylose-lipid dissociation properties), a statistically significant change only occurred for the triple nulls, indicating that all three genes had to be missing or inactive for a change to occur. These results illustrate the importance of SSIIa in controlling grain and starch properties and the importance of amylopectin fine structure in controlling starch granule properties in wheat.

  3. Independent assessment and improvement of wheat genome sequence assemblies using Fosill jumping libraries.

    PubMed

    Lu, Fu-Hao; McKenzie, Neil; Kettleborough, George; Heavens, Darren; Clark, Matthew D; Bevan, Michael W

    2018-05-01

    The accurate sequencing and assembly of very large, often polyploid, genomes remains a challenging task, limiting long-range sequence information and phased sequence variation for applications such as plant breeding. The 15-Gb hexaploid bread wheat (Triticum aestivum) genome has been particularly challenging to sequence, and several different approaches have recently generated long-range assemblies. Mapping and understanding the types of assembly errors are important for optimising future sequencing and assembly approaches and for comparative genomics. Here we use a Fosill 38-kb jumping library to assess medium and longer-range order of different publicly available wheat genome assemblies. Modifications to the Fosill protocol generated longer Illumina sequences and enabled comprehensive genome coverage. Analyses of two independent Bacterial Artificial Chromosome (BAC)-based chromosome-scale assemblies, two independent Illumina whole genome shotgun assemblies, and a hybrid Single Molecule Real Time (SMRT-PacBio) and short read (Illumina) assembly were carried out. We revealed a surprising scale and variety of discrepancies using Fosill mate-pair mapping and validated several of each class. In addition, Fosill mate-pairs were used to scaffold a whole genome Illumina assembly, leading to a 3-fold increase in N50 values. Our analyses, using an independent means to validate different wheat genome assemblies, show that whole genome shotgun assemblies based solely on Illumina sequences are significantly more accurate by all measures compared to BAC-based chromosome-scale assemblies and hybrid SMRT-Illumina approaches. Although current whole genome assemblies are reasonably accurate and useful, additional improvements will be needed to generate complete assemblies of wheat genomes using open-source, computationally efficient, and cost-effective methods.

  4. Characterization of the low-molecular-weight glutenin subunit gene family members using a PCR-based marker approach

    USDA-ARS?s Scientific Manuscript database

    Low-molecular-weight glutenin subunits (LMW-GS) are a class of seed storage proteins that play a major role in the determination of the processing quality of wheat flour. The LMW-GS are encoded by multi-gene families located on the short arms of the homoeologous group 1 chromosomes, at the Glu-A3, G...

  5. Terrestrial Biological Inventory Hartwell Drainage and Levee District Greene County, Illinois.

    DTIC Science & Technology

    1982-01-01

    Office) IS. SECURITY CLASS. (of this rePOrt) ISa. DECLASSIFICATION/DOWNGRADING SCHEDULE Ś. DISTRIBUTION STATEMENT (of oile R po) Approved for release...trees are less than 25 cm dbh; cottonwood, pin oak. Understory - 65% cover. Hackberry, flowering dogwood, smooth sumac, poison ivy, trumpet creeper...30% cover; slippery elm, smooth sumac, hackberry, hawthorn, flowering dogwood. Groundcover - 40% cover; violet, white avens, heal-all, wheat

  6. [Polychlorinated biphenyls in fractions of wheat grains and in selected bakery products].

    PubMed

    Brandt, Elzbieta; Pietrzak-Fiećko, Renata; Smoczyński, S S

    2012-01-01

    Polychlorinated biphenyls (PCBs) form a group of synthetic aromatic chemical compounds, commonly occurring in the environment as a result of industrialisation. Despite the ban on PCBs production, their wide application in the past resulted in their common occurrence in all elements of the environment. The lipophilic nature of the compounds resulting in their accumulation in live organisms and in the human body may trigger many harmful effects. The aim of this study was to determine the PCBs content in the selected species of wheat and in bakery products. The studies aiming at confirming possible correlation between the size of the grain of the selected species of wheat and the content of polychlorinated biphenyls were presented in this paper. Moreover, PCBs concentration in cereals' grains and in bread was compared. The PCBs content was defined in different sizes of grains species of wheat i.e. Opatka, Zyta, Elena and Almari. The study included also two kinds of wheat bread. PCBs were determined after the extraction with n-hexane followed by sulphuric acid hydrolysis. Gas chromatography analysis was conducted on a PU 4600 Unicam apparatus with an electron capture detector. The large variations in PCBs content depending on the grain size were confirmed. In the Opatka species the increase in the content of all determined congeners and the size of grain was confirmed. The lowest PCBs concentrations were in smallest grains (0,0090 mg/kg of fat), and the highest in the largest grains (0,0264 mg/kg of fat). In Zyta species PCBs content was also lowest in the smallest grains, however these results were not statistically significant. In the Elena species the increase in the PCBs content together with the increase in the grain size was confirmed. Basing on the determination coefficient it was found that the concentration of PCBs depends on the size of grains in 24%. The highest concentration of PCBs (0,0366 mg/kg of fat) was found in the largest grains, however differences between the examined fractions were not statistically significant. Similar tendencies were observed in Almari species. PCBs content in wheat bread was on lower level than in all of the examined species. It was confirmed that fraction 2,8 x 25 mm of all species of wheat grain had the highest PCBs content. The tendency to decrease of PCBs content with the decrease of the grain in size was observed. The relation between qualitative class of species and PCBs content was not confirmed. There were statistically significant differences in the PCBs concentrations between the wheat species within one size fraction. The results of PCBs content in wheat bread were lower than in all examined species of wheat. One can assume that for the production of bread collected for the study, the wheat originating from areas with low PCBs contamination was used. Somewhat higher PCBs content was observed in the wheat bread with bran added, probably due to higher PCBs accumulation in the bran, which contain higher fat and contribute therefore to the overall PCBs in the bran containing bread.

  7. Differential expression of candidate salivary effector proteins in field collections of Hessian fly, Mayetiola destructor

    PubMed Central

    Johnson, A J; Shukle, R H; Chen, M-S; Srivastava, S; Subramanyam, S; Schemerhorn, B J; Weintraub, P G; Abdel Moniem, H E M; Flanders, K L; Buntin, G D; Williams, C E

    2015-01-01

    Evidence is emerging that some proteins secreted by gall-forming parasites of plants act as effectors responsible for systemic changes in the host plant, such as galling and nutrient tissue formation. A large number of secreted salivary gland proteins (SSGPs) that are the putative effectors responsible for the physiological changes elicited in susceptible seedling wheat by Hessian fly, Mayetiola destructor (Say), larvae have been documented. However, how the genes encoding these candidate effectors might respond under field conditions is unknown. The goal of this study was to use microarray analysis to investigate variation in SSGP transcript abundance amongst field collections from different geographical regions (southeastern USA, central USA, and the Middle East). Results revealed significant variation in SSGP transcript abundance amongst the field collections studied. The field collections separated into three distinct groups that corresponded to the wheat classes grown in the different geographical regions as well as to recently described Hessian fly populations. These data support previous reports correlating Hessian fly population structure with micropopulation differences owing to agro-ecosystem parameters such as cultivation of regionally adapted wheat varieties, deployment of resistance genes and variation in climatic conditions. PMID:25528896

  8. Vegetation classification and soil moisture calculation using land surface temperature (LST) and vegetation index (VI)

    NASA Astrophysics Data System (ADS)

    Liu, Liangyun; Zhang, Bing; Xu, Genxing; Zheng, Lanfen; Tong, Qingxi

    2002-03-01

    In this paper, the temperature-missivity separating (TES) method and normalized difference vegetation index (NDVI) are introduced, and the hyperspectral image data are analyzed using land surface temperature (LST) and NDVI channels which are acquired by Operative Module Imaging Spectral (OMIS) in Beijing Precision Agriculture Demonstration Base in Xiaotangshan town, Beijing in 26 Apr, 2001. Firstly, the 6 kinds of ground targets, which are winter wheat in booting stage and jointing stage, bare soil, water in ponds, sullage in dry ponds, aquatic grass, are well classified using LST and NDVI channels. Secondly, the triangle-like scatter-plot is built and analyzed using LST and NDVI channels, which is convenient to extract the information of vegetation growth and soil's moisture. Compared with the scatter-plot built by red and near-infrared bands, the spectral distance between different classes are larger, and the samples in the same class are more convergent. Finally, we design a logarithm VIT model to extract the surface soil water content (SWC) using LST and NDVI channel, which works well, and the coefficient of determination, R2, between the measured surface SWC and the estimated is 0.634. The mapping of surface SWC in the wheat area are calculated and illustrated, which is important for scientific irrigation and precise agriculture.

  9. Heterologous expression and transcript analysis of gibberellin biosynthetic genes of grasses reveals novel functionality in the GA3ox family.

    PubMed

    Pearce, Stephen; Huttly, Alison K; Prosser, Ian M; Li, Yi-dan; Vaughan, Simon P; Gallova, Barbora; Patil, Archana; Coghill, Jane A; Dubcovsky, Jorge; Hedden, Peter; Phillips, Andrew L

    2015-06-05

    The gibberellin (GA) pathway plays a central role in the regulation of plant development, with the 2-oxoglutarate-dependent dioxygenases (2-ODDs: GA20ox, GA3ox, GA2ox) that catalyse the later steps in the biosynthetic pathway of particularly importance in regulating bioactive GA levels. Although GA has important impacts on crop yield and quality, our understanding of the regulation of GA biosynthesis during wheat and barley development remains limited. In this study we identified or assembled genes encoding the GA 2-ODDs of wheat, barley and Brachypodium distachyon and characterised the wheat genes by heterologous expression and transcript analysis. The wheat, barley and Brachypodium genomes each contain orthologous copies of the GA20ox, GA3ox and GA2ox genes identified in rice, with the exception of OsGA3ox1 and OsGA2ox5 which are absent in these species. Some additional paralogs of 2-ODD genes were identified: notably, a novel gene in the wheat B genome related to GA3ox2 was shown to encode a GA 1-oxidase, named as TaGA1ox-B1. This enzyme is likely to be responsible for the abundant 1β-hydroxylated GAs present in developing wheat grains. We also identified a related gene in barley, located in a syntenic position to TaGA1ox-B1, that encodes a GA 3,18-dihydroxylase which similarly accounts for the accumulation of unusual GAs in barley grains. Transcript analysis showed that some paralogs of the different classes of 2-ODD were expressed mainly in a single tissue or at specific developmental stages. In particular, TaGA20ox3, TaGA1ox1, TaGA3ox3 and TaGA2ox7 were predominantly expressed in developing grain. More detailed analysis of grain-specific gene expression showed that while the transcripts of biosynthetic genes were most abundant in the endosperm, genes encoding inactivation and signalling components were more highly expressed in the seed coat and pericarp. The comprehensive expression and functional characterisation of the multigene families encoding the 2-ODD enzymes of the GA pathway in wheat and barley will provide the basis for a better understanding of GA-regulated development in these species. This analysis revealed the existence of a novel, endosperm-specific GA 1-oxidase in wheat and a related GA 3,18-dihydroxylase enzyme in barley that may play important roles during grain expansion and development.

  10. Toxic influence of key organic soil pollutants on the total flavonoid content in wheat leaves

    PubMed Central

    Copaciu, Florina; Opriş, Ocsana; Niinemets, Ülo; Copolovici, Lucian

    2018-01-01

    Textile dyes and antibiotics are two main classes of environmental pollutants which could be found in soil and water. Those persistent pollutants can have a negative influence on plant growth and development and affect the level of secondary metabolites. In the present work we studied the effect of textile dyes and antibiotics on total leaf flavonoid contents in wheat (Triticum aestivum L.). Contaminant solutions were applied daily using concentrations of 0.5 mg L–1 (lower) and 1.5 mg L–1 (higher dose) for either one or two weeks. We observed that exposure to the higher concentration of textile dyes resulted in a reduction in flavonoid content while antibiotics enhanced flavonoid contents at lower doses of exposure, and reduced at higher doses of exposure. These results suggest that diffuse chronic pollution by artificial organic contaminants can importantly alter antioxidative capacity of plants. PMID:29386693

  11. Toxic influence of key organic soil pollutants on the total flavonoid content in wheat leaves.

    PubMed

    Copaciu, Florina; Opriş, Ocsana; Niinemets, Ülo; Copolovici, Lucian

    2016-06-01

    Textile dyes and antibiotics are two main classes of environmental pollutants which could be found in soil and water. Those persistent pollutants can have a negative influence on plant growth and development and affect the level of secondary metabolites. In the present work we studied the effect of textile dyes and antibiotics on total leaf flavonoid contents in wheat ( Triticum aestivum L.). Contaminant solutions were applied daily using concentrations of 0.5 mg L -1 (lower) and 1.5 mg L -1 (higher dose) for either one or two weeks. We observed that exposure to the higher concentration of textile dyes resulted in a reduction in flavonoid content while antibiotics enhanced flavonoid contents at lower doses of exposure, and reduced at higher doses of exposure. These results suggest that diffuse chronic pollution by artificial organic contaminants can importantly alter antioxidative capacity of plants.

  12. Genome-wide association mapping of resistance to eyespot disease (Pseudocercosporella herpotrichoides) in European winter wheat (Triticum aestivum L.) and fine-mapping of Pch1.

    PubMed

    Zanke, Christine D; Rodemann, Bernd; Ling, Jie; Muqaddasi, Quddoos H; Plieske, Jörg; Polley, Andreas; Kollers, Sonja; Ebmeyer, Erhard; Korzun, Viktor; Argillier, Odile; Stiewe, Gunther; Zschäckel, Thomas; Ganal, Martin W; Röder, Marion S

    2017-03-01

    Genotypes with recombination events in the Triticum ventricosum introgression on chromosome 7D allowed to fine-map resistance gene Pch1, the main source of eyespot resistance in European winter wheat cultivars. Eyespot (also called Strawbreaker) is a common and serious fungal disease of winter wheat caused by the necrotrophic fungi Oculimacula yallundae and Oculimacula acuformis (former name Pseudocercosporella herpotrichoides). A genome-wide association study (GWAS) for eyespot was performed with 732 microsatellite markers (SSR) and 7761 mapped SNP markers derived from the 90 K iSELECT wheat array using a panel of 168 European winter wheat varieties as well as three spring wheat varieties and phenotypic evaluation of eyespot in field tests in three environments. Best linear unbiased estimations (BLUEs) were calculated across all trials and ranged from 1.20 (most resistant) to 5.73 (most susceptible) with an average value of 4.24 and a heritability of H 2  = 0.91. A total of 108 SSR and 235 SNP marker-trait associations (MTAs) were identified by considering associations with a -log 10 (P value) ≥3.0. Significant MTAs for eyespot-score BLUEs were found on chromosomes 1D, 2A, 2D, 3D, 5A, 5D, 6A, 7A and 7D for the SSR markers and chromosomes 1B, 2A, 2B, 2D, 3B and 7D for the SNP markers. For 18 varieties (10.5%), a highly resistant phenotype was detected that was linked to the presence of the resistance gene Pch1 on chromosome 7D. The identification of genotypes with recombination events in the introgressed genomic segment from Triticum ventricosum harboring the Pch1 resistance gene on chromosome 7DL allowed the fine-mapping of this gene using additional SNP markers and a potential candidate gene Traes_7DL_973A33763 coding for a CC-NBS-LRR class protein was identified.

  13. Mass spectrometry-based analysis of whole-grain phytochemicals.

    PubMed

    Koistinen, Ville Mikael; Hanhineva, Kati

    2017-05-24

    Whole grains are a rich source of several classes of phytochemicals, such as alkylresorcinols, benzoxazinoids, flavonoids, lignans, and phytosterols. A high intake of whole grains has been linked to a reduced risk of some major noncommunicable diseases, and it has been postulated that a complex mixture of phytochemicals works in synergy to generate beneficial health effects. Mass spectrometry, especially when coupled with liquid chromatography, is a widely used method for the analysis of phytochemicals owing to its high sensitivity and dynamic range. In this review, the current knowledge of the mass spectral properties of the most important classes of phytochemicals found in cereals of common wheat, barley, oats, and rye is discussed.

  14. Protein Adsorption and Its Role in Bacterial Film Development

    DTIC Science & Technology

    1989-06-27

    only the secondary antibody conjugated to alkaline phosphatase was used. Combined Amino Acids as Measured by HPLC We are interested in a simple, direct...specific assay for chitin that relies on the lectin, wheat germ agglutinin (WGA). Lectins are a general class of proteins that bind to carbohydrates. The...protein; 2) a new method for measuring combined amino acids (includes proteins) in seawater was shown to measure higher concentration than the old

  15. A wheat salinity-induced WRKY transcription factor TaWRKY93 confers multiple abiotic stress tolerance in Arabidopsis thaliana.

    PubMed

    Qin, Yuxiang; Tian, Yanchen; Liu, Xiuzhi

    2015-08-21

    Wheat is an important crop in the world. But most of the cultivars are salt sensitive, and often adversely affected by salt stress. WRKY transcription factors play a major role in plant responses to salt stress, but the effective salinity regulatory WRKYs identified in bread wheat are limited and the mechanism of salt stress tolerance is also not well explored. Here, we identified a salt (NaCl) induced class II WRKY transcription factor TaWRKY93. Its transcript level was strongly induced by salt (NaCl) and exogenous abscisic acid (ABA). Over-expression of TaWRKY93 in Arabidopsis thaliana enhanced salt (NaCl), drought, low temperature and osmotic (mannitol) stress tolerance, mainly demonstrated by transgenic plants forming longer primary roots or more lateral roots on MS plates supplemented with NaCl and mannitol individually, higher survival rate under drought and low temperature stress. Further, transgenic plants maintained a more proline content, higher relative water content and less electrolyte leakage than the wild type plants. The transcript abundance of a series of abiotic stress-related genes was up-regulated in the TaWRKY93 transgenic plants. In summary, TaWRKY93 is a new positive regulator of abiotic stress, it may increase salinity, drought and low temperature stress tolerance through enhancing osmotic adjustment, maintaining membrane stability and increasing transcription of stress related genes, and contribute to the superior agricultural traits of SR3 through promoting root development. It can be used as a candidate gene for wheat transgenic engineering breeding against abiotic stress. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Roles for stress-inducible lambda glutathione transferases in flavonoid metabolism in plants as identified by ligand fishing.

    PubMed

    Dixon, David P; Edwards, Robert

    2010-11-19

    The glutathione transferases (GSTs) of plants are a superfamily of abundant enzymes whose roles in endogenous metabolism are largely unknown. For example, the lambda class of GSTs (GSTLs) have members that are selectively induced by chemical stress treatments and based on their enzyme chemistry are predicted to have roles in redox homeostasis. However, using conventional approaches these functions have yet to be determined. To address this, recombinant GSTLs from wheat and Arabidopsis were tagged with a Strep tag and after affinity-immobilization, incubated with extracts from Arabidopsis, tobacco, and wheat. Bound ligands were then recovered by solvent extraction and identified by mass spectrometry (MS). With the wheat enzyme TaGSTL1, the ligand profiles obtained with in vitro extracts from tobacco closely matched those observed after the protein had been expressed in planta, demonstrating that these associations were physiologically representative. The stress-inducible TaGSTL1 was found to selectively recognize flavonols (e.g. taxifolin; K(d) = 25 nM), with this binding being dependent upon S-glutathionylation of an active site cysteine. In the case of the wheat extracts, this selectivity in ligand recognitions lead to the detection of flavonols that had not been previously described in this cereal. Subsequent in vitro assays showed that the co-binding of flavonols, such as quercetin, to the thiolated TaGSTL1 represented an intermediate step in the reduction of the respective S-glutathionylated quinone derivatives to yield free flavonols. These results suggest a novel role for GSTLs in maintaining the flavonoid pool under stress conditions.

  17. Towards an understanding of wheat chloroplasts: a methodical investigation of thylakoid proteome.

    PubMed

    Kamal, Abu Hena Mostafa; Cho, Kun; Komatsu, Setsuko; Uozumi, Nobuyuki; Choi, Jong-Soon; Woo, Sun Hee

    2012-05-01

    We utilized Percoll density gradient centrifugation to isolate and fractionate chloroplasts of Korean winter wheat cultivar cv. Kumgang (Triticum aestivum L.). The resulting protein fractions were separated by one dimensional polyacrylamide gel electrophoresis (1D-PAGE) coupled with LTQ-FTICR mass spectrometry. This enabled us to detect and identify 767 unique proteins. Our findings represent the most comprehensive exploration of a proteome to date. Based on annotation information from the UniProtKB/Swiss-Prot database and our analyses via WoLF PSORT and PSORT, these proteins are localized in the chloroplast (607 proteins), chloroplast stroma (145), thylakoid membrane (342), lumens (163), and integral membranes (166). In all, 67% were confirmed as chloroplast thylakoid proteins. Although nearly complete protein coverage (89% proteins) has been accomplished for the key chloroplast pathways in wheat, such as for photosynthesis, many other proteins are involved in regulating carbon metabolism. The identified proteins were assigned to 103 functional categories according to a classification system developed by the iProClass database and provided through Protein Information Resources. Those functions include electron transport, energy, cellular organization and biogenesis, transport, stress responses, and other metabolic processes. Whereas most of these proteins are associated with known complexes and metabolic pathways, about 13% of the proteins have unknown functions. The chloroplast proteome contains many proteins that are localized to the thylakoids but as yet have no known function. We propose that some of these familiar proteins participate in the photosynthetic pathway. Thus, our new and comprehensive protein profile may provide clues for better understanding that photosynthetic process in wheat.

  18. Ranking Quantitative Resistance to Septoria tritici Blotch in Elite Wheat Cultivars Using Automated Image Analysis.

    PubMed

    Karisto, Petteri; Hund, Andreas; Yu, Kang; Anderegg, Jonas; Walter, Achim; Mascher, Fabio; McDonald, Bruce A; Mikaberidze, Alexey

    2018-05-01

    Quantitative resistance is likely to be more durable than major gene resistance for controlling Septoria tritici blotch (STB) on wheat. Earlier studies hypothesized that resistance affecting the degree of host damage, as measured by the percentage of leaf area covered by STB lesions, is distinct from resistance that affects pathogen reproduction, as measured by the density of pycnidia produced within lesions. We tested this hypothesis using a collection of 335 elite European winter wheat cultivars that was naturally infected by a diverse population of Zymoseptoria tritici in a replicated field experiment. We used automated image analysis of 21,420 scanned wheat leaves to obtain quantitative measures of conditional STB intensity that were precise, objective, and reproducible. These measures allowed us to explicitly separate resistance affecting host damage from resistance affecting pathogen reproduction, enabling us to confirm that these resistance traits are largely independent. The cultivar rankings based on host damage were different from the rankings based on pathogen reproduction, indicating that the two forms of resistance should be considered separately in breeding programs aiming to increase STB resistance. We hypothesize that these different forms of resistance are under separate genetic control, enabling them to be recombined to form new cultivars that are highly resistant to STB. We found a significant correlation between rankings based on automated image analysis and rankings based on traditional visual scoring, suggesting that image analysis can complement conventional measurements of STB resistance, based largely on host damage, while enabling a much more precise measure of pathogen reproduction. We showed that measures of pathogen reproduction early in the growing season were the best predictors of host damage late in the growing season, illustrating the importance of breeding for resistance that reduces pathogen reproduction in order to minimize yield losses caused by STB. These data can already be used by breeding programs to choose wheat cultivars that are broadly resistant to naturally diverse Z. tritici populations according to the different classes of resistance.

  19. Response of microRNAs to cold treatment in the young spikes of common wheat.

    PubMed

    Song, Guoqi; Zhang, Rongzhi; Zhang, Shujuan; Li, Yulian; Gao, Jie; Han, Xiaodong; Chen, Mingli; Wang, Jiao; Li, Wei; Li, Genying

    2017-02-28

    MicroRNAs (miRNAs) are a class of small non-coding RNAs that play important roles in biotic and abiotic stresses by regulating their target genes. For common wheat, spring frost damage frequently occurs, especially when low temperature coincides with plants at early floral organ differentiation, which may result in significant yield loss. Up to date, the role of miRNAs in wheat response to frost stress is not well understood. We report here the sequencing of small RNA transcriptomes from the young spikes that were treated with cold stress and the comparative analysis with those of the control. A total of 192 conserved miRNAs from 105 families and nine novel miRNAs were identified. Among them, 34 conserved and five novel miRNAs were differentially expressed between the cold-stressed samples and the controls. The expression patterns of 18 miRNAs were further validated by quantitative real time polymerase chain reaction (qRT-PCR). Moreover, nearly half of the miRNAs were cross inducible by biotic and abiotic stresses when compared with previously published work. Target genes were predicted and validated by degradome sequencing. Gene Ontology (GO) enrichment analysis showed that the target genes of differentially expressed miRNAs were enriched for response to the stimulus, regulation of transcription, and ion transport functions. Since many targets of differentially expressed miRNAs were transcription factors that are associated with floral development such as ARF, SPB (Squamosa Promoter Binding like protein), MADS-box (MCM1, AG, DEFA and SRF), MYB, SPX (SYG1, Pho81 and XPR1), TCP (TEOSINTE BRANCHED, Cycloidea and PCF), and PPR (PentatricoPeptide Repeat) genes, cold-altered miRNA expression may cause abnormal reproductive organ development. Analysis of small RNA transcriptomes and their target genes provide new insight into miRNA regulation in developing wheat inflorescences under cold stress. MiRNAs provide another layer of gene regulation in cold stress response that can be genetically manipulated to reduce yield loss in wheat.

  20. Molecular characterization of two y-type high molecular weight glutenin subunit alleles 1Ay12 and 1Ay8 from cultivated einkorn wheat (Triticum monococcum ssp. monococcum).

    PubMed

    Guo, Xiao-Hui; Wu, Bi-Hua; Hu, Xi-Gui; Bi, Zhe-Guang; Wang, Zhen-Zhen; Liu, Deng-Cai; Zheng, You-Liang

    2013-03-01

    Two y-type high molecular weight glutenin subunits (HMW-GSs) 1Ay12 and 1Ay8 from the two accessions PI560720 and PI345186 of cultivated einkorn wheat (Triticum monococcum ssp. monococcum, AA, 2n=2x=14), were identified by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). The mobility of 1Ay12 and 1Ay8 was similar to that of 1Dy12 and 1By8 from common wheat Chinese Spring, respectively. Their ORFs respectively consisted of 1812bp and 1935bp, encoding 602 and 643 amino acid residues with the four typical structural domains of HMW-GS including signal peptide, conserved N-, and C-terminal and central repetitive domains. Compared with the most similar active 1Ay alleles previous published, there were a total of 15 SNPs and 2 InDels in them. Their encoding functions were confirmed by successful heterogeneous expression. The two novel 1Ay alleles were named as 1Ay12 and 1Ay8 with the accession No. JQ318694 and JQ318695 in GenBank, respectively. The two alleles were classed into the two distinct groups, Phe-type and Cys-type, which might be relevant to the differentiation of Glu-A1-2 alleles. Of which, 1Ay8 belonged to Cys-type group, and its protein possessed an additional conserved cysteine residue in central repetitive region besides the six common ones in N- and C-terminal regions of Phe-type group, and was the second longest in all the known active 1Ay alleles. These results suggested that the subunit 1Ay8 of cultivated einkorn wheat accession PI345186 might have a potential ability to strengthen the gluten polymer interactions and be a valuable genetic resource for wheat quality improvement. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. microRNAs differentially modulated in response to heat and drought stress in durum wheat cultivars with contrasting water use efficiency.

    PubMed

    Giusti, Lorenzo; Mica, Erica; Bertolini, Edoardo; De Leonardis, Anna Maria; Faccioli, Primetta; Cattivelli, Luigi; Crosatti, Cristina

    2017-05-01

    Plant stress response is a complex molecular process based on transcriptional and posttranscriptional regulation of many stress-related genes. microRNAs are the best-studied class of small RNAs known to play key regulatory roles in plant response to stress, besides being involved in plant development and organogenesis. We analyzed the leaf miRNAome of two durum wheat cultivars (Cappelli and Ofanto) characterized by a contrasting water use efficiency, exposed to heat stress, and mild and severe drought stress. On the whole, we identified 98 miRNA highly similar to previously known miRNAs and grouped in 47 MIR families, as well as 85 novel candidate miRNA, putatively wheat specific. A total of 80 known and novel miRNA precursors were found differentially expressed between the two cultivars or modulated by stress and many of them showed a cultivar-specific expression profile. Interestingly, most in silico predicted targets of the miRNAs coming from the differentially expressed precursors have been experimentally linked in other species to mechanisms controlling stomatal movement, a finding in agreement with previous results showing that Cappelli has a lower stomatal conductance than Ofanto. Selected miRNAs were validated through a standardized and reliable stem-loop qRT-PCR procedure.

  2. Glycolipid class profiling by packed-column subcritical fluid chromatography.

    PubMed

    Deschamps, Frantz S; Lesellier, Eric; Bleton, Jean; Baillet, Arlette; Tchapla, Alain; Chaminade, Pierre

    2004-06-18

    The potential of packed-column subcritical fluid chromatography (SubFC) for the separation of lipid classes has been assessed in this study. Three polar stationary phases were checked: silica, diol, and poly(vinyl alcohol). Carbon dioxide (CO2) with methanol as modifier was used as mobile phase and detection performed by evaporative light scattering detection. The influence of methanol content, temperature, and pressure on the chromatographic behavior of sphingolipids and glycolipids were investigated. A complete separation of lipid classes from a crude wheat lipid extract was achieved using a modifier gradient from 10 to 40% methanol in carbon dioxide. Solute selectivity was improved using coupled silica and diol columns in series. Because the variation of eluotropic strength depending on the fluid density changes, a normalized separation factor product (NSP) was used to select the nature, the number and the order of the columns to reach the optimum glycolipid separation.

  3. Impacts of Cropping Systems on Aggregates Associated Organic Carbon and Nitrogen in a Semiarid Highland Agroecosystem

    PubMed Central

    Chu, Jiashu; Zhang, Tianzhe; Chang, Weidong; Zhang, Dan; Zulfiqar, Saman; Fu, Aigen; Hao, Yaqi

    2016-01-01

    The effect of cropping system on the distribution of organic carbon (OC) and nitrogen (N) in soil aggregates has not been well addressed, which is important for understanding the sequestration of OC and N in agricultural soils. We analyzed the distribution of OC and N associated with soil aggregates in three unfertilized cropping systems in a 27-year field experiment: continuously cropped alfalfa, continuously cropped wheat and a legume-grain rotation. The objectives were to understand the effect of cropping system on the distribution of OC and N in aggregates and to examine the relationships between the changes in OC and N stocks in total soils and in aggregates. The cropping systems increased the stocks of OC and N in total soils (0–40 cm) at mean rates of 15.6 g OC m-2 yr-1 and 1.2 g N m-2 yr-1 relative to a fallow control. The continuous cropping of alfalfa produced the largest increases at the 0–20 cm depth. The OC and N stocks in total soils were significantly correlated with the changes in the >0.053 mm aggregates. 27-year of cropping increased OC stocks in the >0.053 mm size class of aggregates and N stocks in the >0.25 mm size class but decreased OC stocks in the <0.053 mm size class and N stocks in the <0.25 mm size class. The increases in OC and N stocks in these aggregates accounted for 99.5 and 98.7% of the total increases, respectively, in the continuous alfalfa system. The increases in the OC and N stocks associated with the >0.25 mm aggregate size class accounted for more than 97% of the total increases in the continuous wheat and the legume-grain rotation systems. These results suggested that long-term cropping has the potential to sequester OC and N in soils and that the increases in soil OC and N stocks were mainly due to increases associated with aggregates >0.053 mm. PMID:27764209

  4. Assessing Wheat Traits by Spectral Reflectance: Do We Really Need to Focus on Predicted Trait-Values or Directly Identify the Elite Genotypes Group?

    PubMed Central

    Garriga, Miguel; Romero-Bravo, Sebastián; Estrada, Félix; Escobar, Alejandro; Matus, Iván A.; del Pozo, Alejandro; Astudillo, Cesar A.; Lobos, Gustavo A.

    2017-01-01

    Phenotyping, via remote and proximal sensing techniques, of the agronomic and physiological traits associated with yield potential and drought adaptation could contribute to improvements in breeding programs. In the present study, 384 genotypes of wheat (Triticum aestivum L.) were tested under fully irrigated (FI) and water stress (WS) conditions. The following traits were evaluated and assessed via spectral reflectance: Grain yield (GY), spikes per square meter (SM2), kernels per spike (KPS), thousand-kernel weight (TKW), chlorophyll content (SPAD), stem water soluble carbohydrate concentration and content (WSC and WSCC, respectively), carbon isotope discrimination (Δ13C), and leaf area index (LAI). The performances of spectral reflectance indices (SRIs), four regression algorithms (PCR, PLSR, ridge regression RR, and SVR), and three classification methods (PCA-LDA, PLS-DA, and kNN) were evaluated for the prediction of each trait. For the classification approaches, two classes were established for each trait: The lower 80% of the trait variability range (Class 1) and the remaining 20% (Class 2 or elite genotypes). Both the SRIs and regression methods performed better when data from FI and WS were combined. The traits that were best estimated by SRIs and regression methods were GY and Δ13C. For most traits and conditions, the estimations provided by RR and SVR were the same, or better than, those provided by the SRIs. PLS-DA showed the best performance among the categorical methods and, unlike the SRI and regression models, most traits were relatively well-classified within a specific hydric condition (FI or WS), proving that classification approach is an effective tool to be explored in future studies related to genotype selection. PMID:28337210

  5. Assessing Wheat Traits by Spectral Reflectance: Do We Really Need to Focus on Predicted Trait-Values or Directly Identify the Elite Genotypes Group?

    PubMed

    Garriga, Miguel; Romero-Bravo, Sebastián; Estrada, Félix; Escobar, Alejandro; Matus, Iván A; Del Pozo, Alejandro; Astudillo, Cesar A; Lobos, Gustavo A

    2017-01-01

    Phenotyping, via remote and proximal sensing techniques, of the agronomic and physiological traits associated with yield potential and drought adaptation could contribute to improvements in breeding programs. In the present study, 384 genotypes of wheat ( Triticum aestivum L.) were tested under fully irrigated (FI) and water stress (WS) conditions. The following traits were evaluated and assessed via spectral reflectance: Grain yield (GY), spikes per square meter (SM2), kernels per spike (KPS), thousand-kernel weight (TKW), chlorophyll content (SPAD), stem water soluble carbohydrate concentration and content (WSC and WSCC, respectively), carbon isotope discrimination (Δ 13 C), and leaf area index (LAI). The performances of spectral reflectance indices (SRIs), four regression algorithms (PCR, PLSR, ridge regression RR, and SVR), and three classification methods (PCA-LDA, PLS-DA, and k NN) were evaluated for the prediction of each trait. For the classification approaches, two classes were established for each trait: The lower 80% of the trait variability range (Class 1) and the remaining 20% (Class 2 or elite genotypes). Both the SRIs and regression methods performed better when data from FI and WS were combined. The traits that were best estimated by SRIs and regression methods were GY and Δ 13 C. For most traits and conditions, the estimations provided by RR and SVR were the same, or better than, those provided by the SRIs. PLS-DA showed the best performance among the categorical methods and, unlike the SRI and regression models, most traits were relatively well-classified within a specific hydric condition (FI or WS), proving that classification approach is an effective tool to be explored in future studies related to genotype selection.

  6. Instruction at the Hopkins Marine Station

    DTIC Science & Technology

    1992-07-29

    foI homtadcodnaio.. caronavirus nucleocapsid protein. wheat germ bial ~ ~ %~H2A (5), mussel sperm nuclear protein 03 [6), and man chromofsome...wvpi,~Tninev PM"p Johne HiWA~aa Unuw~rsaty &Dio of Medicine, Balw,,.vv, Manh land 21205 The two germ -line- specific Sp histione classes Treatment of...composit conical morphology of the male pronucleus- Mal, pro- serine-proline adjacent to two basic amino acids (lyo hucl*I inhibite’d with I nsMGDMAP

  7. Large-scale identification of wheat genes resistant to cereal cyst nematode Heterodera avenae using comparative transcriptomic analysis.

    PubMed

    Kong, Ling-An; Wu, Du-Qing; Huang, Wen-Kun; Peng, Huan; Wang, Gao-Feng; Cui, Jiang-Kuan; Liu, Shi-Ming; Li, Zhi-Gang; Yang, Jun; Peng, De-Liang

    2015-10-16

    Cereal cyst nematode Heterodera avenae, an important soil-borne pathogen in wheat, causes numerous annual yield losses worldwide, and use of resistant cultivars is the best strategy for control. However, target genes are not readily available for breeding resistant cultivars. Therefore, comparative transcriptomic analyses were performed to identify more applicable resistance genes for cultivar breeding. The developing nematodes within roots were stained with acid fuchsin solution. Transcriptome assemblies and redundancy filteration were obtained by Trinity, TGI Clustering Tool and BLASTN, respectively. Gene Ontology annotation was yielded by Blast2GO program, and metabolic pathways of transcripts were analyzed by Path_finder. The ROS levels were determined by luminol-chemiluminescence assay. The transcriptional gene expression profiles were obtained by quantitative RT-PCR. The RNA-sequencing was performed using an incompatible wheat cultivar VP1620 and a compatible control cultivar WEN19 infected with H. avenae at 24 h, 3 d and 8 d. Infection assays showed that VP1620 failed to block penetration of H. avenae but disturbed the transition of developmental stages, leading to a significant reduction in cyst formation. Two types of expression profiles were established to predict candidate resistance genes after developing a novel strategy to generate clean RNA-seq data by removing the transcripts of H. avenae within the raw data before assembly. Using the uncoordinated expression profiles with transcript abundance as a standard, 424 candidate resistance genes were identified, including 302 overlapping genes and 122 VP1620-specific genes. Genes with similar expression patterns were further classified according to the scales of changed transcript abundances, and 182 genes were rescued as supplementary candidate resistance genes. Functional characterizations revealed that diverse defense-related pathways were responsible for wheat resistance against H. avenae. Moreover, phospholipase was involved in many defense-related pathways and localized in the connection position. Furthermore, strong bursts of reactive oxygen species (ROS) within VP1620 roots infected with H. avenae were induced at 24 h and 3 d, and eight ROS-producing genes were significantly upregulated, including three class III peroxidase and five lipoxygenase genes. Large-scale identification of wheat resistance genes were processed by comparative transcriptomic analysis. Functional characterization showed that phospholipases associated with ROS production played vital roles in early defense responses to H. avenae via involvement in diverse defense-related pathways as a hub switch. This study is the first to investigate the early defense responses of wheat against H. avenae, not only provides applicable candidate resistance genes for breeding novel wheat cultivars, but also enables a better understanding of the defense mechanisms of wheat against H. avenae.

  8. Characterization of agricultural land using singular value decomposition

    NASA Astrophysics Data System (ADS)

    Herries, Graham M.; Danaher, Sean; Selige, Thomas

    1995-11-01

    A method is defined and tested for the characterization of agricultural land from multi-spectral imagery, based on singular value decomposition (SVD) and key vector analysis. The SVD technique, which bears a close resemblance to multivariate statistic techniques, has previously been successfully applied to problems of signal extraction for marine data and forestry species classification. In this study the SVD technique is used as a classifier for agricultural regions, using airborne Daedalus ATM data, with 1 m resolution. The specific region chosen is an experimental research farm in Bavaria, Germany. This farm has a large number of crops, within a very small region and hence is not amenable to existing techniques. There are a number of other significant factors which render existing techniques such as the maximum likelihood algorithm less suitable for this area. These include a very dynamic terrain and tessellated pattern soil differences, which together cause large variations in the growth characteristics of the crops. The SVD technique is applied to this data set using a multi-stage classification approach, removing unwanted land-cover classes one step at a time. Typical classification accuracy's for SVD are of the order of 85-100%. Preliminary results indicate that it is a fast and efficient classifier with the ability to differentiate between crop types such as wheat, rye, potatoes and clover. The results of characterizing 3 sub-classes of Winter Wheat are also shown.

  9. Single and Combined Effects of Pesticide Seed Dressings and Herbicides on Earthworms, Soil Microorganisms, and Litter Decomposition.

    PubMed

    Van Hoesel, Willem; Tiefenbacher, Alexandra; König, Nina; Dorn, Verena M; Hagenguth, Julia F; Prah, Urša; Widhalm, Theresia; Wiklicky, Viktoria; Koller, Robert; Bonkowski, Michael; Lagerlöf, Jan; Ratzenböck, Andreas; Zaller, Johann G

    2017-01-01

    Seed dressing, i.e., the treatment of crop seeds with insecticides and/or fungicides, aiming to protect seeds from pests and diseases, is widely used in conventional agriculture. During the growing season, those crop fields often receive additional broadband herbicide applications. However, despite this broad utilization, very little is known on potential side effects or interactions between these different pesticide classes on soil organisms. In a greenhouse pot experiment, we studied single and interactive effects of seed dressing of winter wheat ( Triticum aestivum L. var. Capo ) with neonicotinoid insecticides and/or strobilurin and triazolinthione fungicides and an additional one-time application of a glyphosate-based herbicide on the activity of earthworms, soil microorganisms, litter decomposition, and crop growth. To further address food-web interactions, earthworms were introduced to half of the experimental units as an additional experimental factor. Seed dressings significantly reduced the surface activity of earthworms with no difference whether insecticides or fungicides were used. Moreover, seed dressing effects on earthworm activity were intensified by herbicides (significant herbicide × seed dressing interaction). Neither seed dressings nor herbicide application affected litter decomposition, soil basal respiration, microbial biomass, or specific respiration. Seed dressing did also not affect wheat growth. We conclude that interactive effects on soil biota and processes of different pesticide classes should receive more attention in ecotoxicological research.

  10. Role of Bacterial Communities in the Natural Suppression of Rhizoctonia solani Bare Patch Disease of Wheat (Triticum aestivum L.)

    PubMed Central

    Yin, Chuntao; Hulbert, Scot H.; Schroeder, Kurtis L.; Mavrodi, Olga; Mavrodi, Dmitri; Dhingra, Amit; Schillinger, William F.

    2013-01-01

    Rhizoctonia bare patch and root rot disease of wheat, caused by Rhizoctonia solani AG-8, develops as distinct patches of stunted plants and limits the yield of direct-seeded (no-till) wheat in the Pacific Northwest of the United States. At the site of a long-term cropping systems study near Ritzville, WA, a decline in Rhizoctonia patch disease was observed over an 11-year period. Bacterial communities from bulk and rhizosphere soil of plants from inside the patches, outside the patches, and recovered patches were analyzed by using pyrosequencing with primers designed for 16S rRNA. Taxa in the class Acidobacteria and the genus Gemmatimonas were found at higher frequencies in the rhizosphere of healthy plants outside the patches than in that of diseased plants from inside the patches. Dyella and Acidobacteria subgroup Gp7 were found at higher frequencies in recovered patches. Chitinophaga, Pedobacter, Oxalobacteriaceae (Duganella and Massilia), and Chyseobacterium were found at higher frequencies in the rhizosphere of diseased plants from inside the patches. For selected taxa, trends were validated by quantitative PCR (qPCR), and observed shifts of frequencies in the rhizosphere over time were duplicated in cycling experiments in the greenhouse that involved successive plantings of wheat in Rhizoctonia-inoculated soil. Chryseobacterium soldanellicola was isolated from the rhizosphere inside the patches and exhibited significant antagonism against R. solani AG-8 in vitro and in greenhouse tests. In conclusion, we identified novel bacterial taxa that respond to conditions affecting bare patch disease symptoms and that may be involved in suppression of Rhizoctonia root rot and bare batch disease. PMID:24056471

  11. Genetic analyses using GGE model and a mixed linear model approach, and stability analyses using AMMI bi-plot for late-maturity alpha-amylase activity in bread wheat genotypes.

    PubMed

    Rasul, Golam; Glover, Karl D; Krishnan, Padmanaban G; Wu, Jixiang; Berzonsky, William A; Fofana, Bourlaye

    2017-06-01

    Low falling number and discounting grain when it is downgraded in class are the consequences of excessive late-maturity α-amylase activity (LMAA) in bread wheat (Triticum aestivum L.). Grain expressing high LMAA produces poorer quality bread products. To effectively breed for low LMAA, it is necessary to understand what genes control it and how they are expressed, particularly when genotypes are grown in different environments. In this study, an International Collection (IC) of 18 spring wheat genotypes and another set of 15 spring wheat cultivars adapted to South Dakota (SD), USA were assessed to characterize the genetic component of LMAA over 5 and 13 environments, respectively. The data were analysed using a GGE model with a mixed linear model approach and stability analysis was presented using an AMMI bi-plot on R software. All estimated variance components and their proportions to the total phenotypic variance were highly significant for both sets of genotypes, which were validated by the AMMI model analysis. Broad-sense heritability for LMAA was higher in SD adapted cultivars (53%) compared to that in IC (49%). Significant genetic effects and stability analyses showed some genotypes, e.g. 'Lancer', 'Chester' and 'LoSprout' from IC, and 'Alsen', 'Traverse' and 'Forefront' from SD cultivars could be used as parents to develop new cultivars expressing low levels of LMAA. Stability analysis using an AMMI bi-plot revealed that 'Chester', 'Lancer' and 'Advance' were the most stable across environments, while in contrast, 'Kinsman', 'Lerma52' and 'Traverse' exhibited the lowest stability for LMAA across environments.

  12. Isolation of Bioactive Compounds from Sunflower Leaves (Helianthus annuus L.) Extracted with Supercritical Carbon Dioxide.

    PubMed

    El Marsni, Zouhir; Torres, Ascension; Varela, Rosa M; Molinillo, José M G; Casas, Lourdes; Mantell, Casimiro; Martinez de la Ossa, Enrique J; Macias, Francisco A

    2015-07-22

    The work described herein is a continuation of our initial studies on the supercritical fluid extraction (SFE) with CO2 of bioactive substances from Helianthus annuus L. var. Arianna. The selected SFE extract showed high activity in the wheat coleoptile bioassay, in Petri dish phytotoxicity bioassays, and in the hydroponic culture of tomato seeds. Chromatographic fractionations of the extracts and a spectroscopic analysis of the isolated compounds showed 52 substances belonging to 10 different chemical classes, which were mainly sesquiterpene lactones, diterpenes, and flavonoids. Heliannuol M (31), helivypolides K and L (36, 37), and helieudesmanolide B (38) are described for the first time in the literature. Metabolites have been tested in the etiolated wheat coleoptile bioassay with good results in a noteworthy effect on germination. The most active compounds were also tested on tomato seeds, heliannuol A (30) and leptocarpin (45) being the most active, with values similar to those of the commercial herbicide.

  13. Treatment with the herbicide TOPIK induces oxidative stress in cereal leaves.

    PubMed

    Lukatkin, Alexander S; Gar'kova, Albina N; Bochkarjova, Anna S; Nushtaeva, Olga V; Teixeira da Silva, Jaime A

    2013-01-01

    Leaf disks as well as intact 7-day-old plants of winter wheat (Triticum aestivum L., cv. Mironovskaya 808), winter rye (Secale cereale L., cv. Estafeta Tatarstana), and maize (Zea mays L., cv. Kollektivnyi 172MV), were treated with the aryloxyphenoxypropionate class herbicide TOPIK, concentrate-emulsion (active ingredient is clodinafop-propargyl (CP), 8-800μg/L), and the effects of short-term action (up to 3h) and long-term aftereffect (up to 3days) on physiological and biochemical indices related to oxidative stress development were studied. The herbicide induced changes, predominantly increases in lipid peroxidation (LPO) intensity, superoxide anion O2(-) generation, total antioxidant activity (AOA), and catalase (CAT) and ascorbate peroxidase (APOX) activity, although the response by plants was nonlinear and depended on the herbicide concentration and duration of treatment. The highest level of generation of O2(-) was observed in the leaves of maize and winter wheat treated by 800μg/L CP, both in the short- and long-term. As TOPIK concentration increased, so too did LPO and AOA in leaves, confirming the presence of oxidative stress in the cells of all three cereals. Antioxidant enzymes were most active in winter rye and wheat, and least active in maize indicating a protective antioxidant mechanism in the first two cereals. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Coeliac disease: review of diagnosis and management.

    PubMed

    Walker, Marjorie M; Ludvigsson, Jonas F; Sanders, David S

    2017-08-21

    Coeliac disease is an immune-mediated systemic disease triggered by exposure to gluten, and manifested by small intestinal enteropathy and gastrointestinal and extra-intestinal symptoms. Recent guidelines recommend a concerted use of clear definitions of the disease. In Australia, the most recent estimated prevalence is 1.2% in adult men (1:86) and 1.9% in adult women (1:52). Active case finding is appropriate to diagnose coeliac disease in high risk groups. Diagnosis of coeliac disease is important to prevent nutritional deficiency and long term risk of gastrointestinal malignancy. The diagnosis of coeliac disease depends on clinico-pathological correlation: history, presence of antitransglutaminase antibodies, and characteristic histological features on duodenal biopsy (when the patient is on a gluten-containing diet). Human leucocyte antigen class II haplotypes DQ2 or DQ8 are found in nearly all patients with coeliac disease, but are highly prevalent in the general population at large (56% in Australia) and testing can only exclude coeliac disease for individuals with non-permissive haplotypes. Adhering to a gluten free diet allows duodenal mucosal healing and alleviates symptoms. Patients should be followed up with a yearly review of dietary adherence and a health check. Non-coeliac gluten or wheat protein sensitivity is a syndrome characterised by both gastrointestinal and extra-intestinal symptoms related to the ingestion of gluten and possibly other wheat proteins in people who do not have coeliac disease or wheat allergy recognised by diagnostic tests.

  15. 40 CFR 180.560 - Cloquintocet-mexyl; tolerances for residues.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...-sodium (wheat only), pinoxaden (wheat or barley), clodinafop-propargyl (wheat only), or pyroxsulum (wheat..., hay 0.1 Barley, straw 0.1 Wheat, forage 0.2 Wheat, grain 0.1 Wheat, hay 0.5 Wheat, straw 0.1 (b...

  16. WheatGenome.info: an integrated database and portal for wheat genome information.

    PubMed

    Lai, Kaitao; Berkman, Paul J; Lorenc, Michal Tadeusz; Duran, Chris; Smits, Lars; Manoli, Sahana; Stiller, Jiri; Edwards, David

    2012-02-01

    Bread wheat (Triticum aestivum) is one of the most important crop plants, globally providing staple food for a large proportion of the human population. However, improvement of this crop has been limited due to its large and complex genome. Advances in genomics are supporting wheat crop improvement. We provide a variety of web-based systems hosting wheat genome and genomic data to support wheat research and crop improvement. WheatGenome.info is an integrated database resource which includes multiple web-based applications. These include a GBrowse2-based wheat genome viewer with BLAST search portal, TAGdb for searching wheat second-generation genome sequence data, wheat autoSNPdb, links to wheat genetic maps using CMap and CMap3D, and a wheat genome Wiki to allow interaction between diverse wheat genome sequencing activities. This system includes links to a variety of wheat genome resources hosted at other research organizations. This integrated database aims to accelerate wheat genome research and is freely accessible via the web interface at http://www.wheatgenome.info/.

  17. 21 CFR 136.180 - Whole wheat bread, rolls, and buns.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Whole wheat bread, rolls, and buns. 136.180... § 136.180 Whole wheat bread, rolls, and buns. (a) Each of the foods whole wheat bread, graham bread, entire wheat bread, whole wheat rolls, graham rolls, entire wheat rolls, whole wheat buns, graham buns...

  18. WheatGenome.info: A Resource for Wheat Genomics Resource.

    PubMed

    Lai, Kaitao

    2016-01-01

    An integrated database with a variety of Web-based systems named WheatGenome.info hosting wheat genome and genomic data has been developed to support wheat research and crop improvement. The resource includes multiple Web-based applications, which are implemented as a variety of Web-based systems. These include a GBrowse2-based wheat genome viewer with BLAST search portal, TAGdb for searching wheat second generation genome sequence data, wheat autoSNPdb, links to wheat genetic maps using CMap and CMap3D, and a wheat genome Wiki to allow interaction between diverse wheat genome sequencing activities. This portal provides links to a variety of wheat genome resources hosted at other research organizations. This integrated database aims to accelerate wheat genome research and is freely accessible via the web interface at http://www.wheatgenome.info/ .

  19. 40 CFR 180.559 - Clodinafop-propargyl; tolerances for residues.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...-pyridinyl)oxy]phenoxy]-, (2R)-), in or on wheat, grain at 0.1 ppm ; wheat, forage at 0.1 ppm; wheat, hay at 0.1 ppm; and wheat, straw at 0.50 ppm. Commodity Parts per million Wheat, forage 0.1 Wheat, grain 0.1 Wheat, hay 0.1 Wheat, straw 0.5 (b) Section 18 emergency exemptions. [Reserved] (c) Tolerances...

  20. Wheat for Kids! [and] Teacher's Guide.

    ERIC Educational Resources Information Center

    Idaho Wheat Commission, Boise.

    "Wheat for Kids" contains information at the elementary school level about: the structure of the wheat kernel; varieties of wheat and their uses; growing wheat; making wheat dough; the U.S. Department of Agriculture Food Guide Pyramid and nutrition; Idaho's part of the international wheat market; recipes; and word games based on the…

  1. 76 FR 34883 - Pesticide Tolerances; Technical Amendments

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-15

    ... the table, remove the commodities Wheat, aspirated grain fractions; Wheat, bran; Wheat, flour; Wheat, germ; Wheat, middlings and Wheat, shorts. Sec. 180.379 [Removed] 0 19. Remove Sec. 180.379. 0 20...

  2. Changes in the Russian Wheat Aphid (Hemiptera: Aphididae) Biotype Complex in South Africa.

    PubMed

    Jankielsohn, Astrid

    2016-04-01

    Russian wheat aphid Diuraphis noxia (Kurdjumov) has spread from its native area in central Asia to all the major wheat-producing countries in the world to become an international wheat pest. Because the Russian wheat aphid is a serious threat to the wheat industry in South Africa, it is important to investigate the key factors involved in the distribution of Russian wheat aphid biotypes and in the changes of the Russian wheat aphid biotype complex in South Africa. There are currently four known Russian wheat aphid biotypes occurring in South Africa. Russian wheat aphid samples were collected from 2011 to 2014 during the wheat-growing season in spring and summer and these samples were screened to determine the biotype status. RWASA1 occurred predominantly in the Western Cape, while RWASA2 and RWASA3 occurred predominantly in the Eastern Free State. Following the first record of RWASA4 in 2011, this biotype was restricted to the Eastern Free State. The surveys suggest that the Russian wheat aphid bioype complex was more diverse in the Eastern Free State than in the other wheat production areas. There was also a shift in Russian wheat aphid biotype composition over time. The Russian wheat aphid biotype complex is dynamic, influenced by environmental factors such as host plants, altitude, and climate, and it can change and diversify over time causing fluctuation in populations over sites and years. This dynamic nature of the Russian wheat aphid will continue to challenge the development of Russian wheat aphid-resistant wheat cultivars in South Africa, and the continued monitoring of the biotypic and genetic structure, to determine genetic relatedness and variation in different biotypes, of Russian wheat aphid populations is important for protecting wheat.

  3. [Effects of water stress on red-edge parameters and yield in wheat cropping].

    PubMed

    He, Ke-Xun; Zaho, Shu-He; Lai, Jian-Bin; Luo, Yun-Xiao; Qin, Zhi-Hao

    2013-08-01

    The objective of the present paper is to study the influence of water stress on wheat spectrum red edge parameters by using field wheat spectrum data obtained from water stress experiment. Firstly, the authors analyzed the influence of water stress on wheat spectrum reflectance. Then the authors got the wheat red edge position and red edge peak through calculating wheat spectrum first-order differential and analyzed the influence of water stress on wheat red edge parameters. Finally the authors discussed the relationship between red peak and wheat yield. The results showed that the wheat red edge position shows "red shift" at the beginning of the wheat growth period and "blue shift" at the later period of the wheat growth period under the water stress experiment. Also, the red edge peak of the wheat showed that red edge peak increased with the water stress sharpening at the beginning of the wheat growth period, and then the red edge peak reduced with the water stress sharpening. The wheat red edge peak presented positive correlation with the wheat yield before the elongation period, and exhibited negative correlation after that period.

  4. [Enhancement of functional expression of wheat peroxidase WP1 in prokaryotic system by co-transforming with hemA and hemL of Esherichia coli].

    PubMed

    Zhang, Chao; Shan, Liwei; Su, Shuaikun; Nan, Yanni; Guo, Zhongyu; Fan, Sanhong

    2012-07-01

    Wheat grain peroxidase 1 (WP1) belonged to class III plant peroxidase with cofactor heme, which not only has antifungal activity, but also influences the processing quality of flour. In order to enhance functional expression of WP1 in prokaryotic system by increasing endogenous heme synthesis, we constructed a recombinant plasmid pACYC-A-L containing hemA and hemL of Esherichia coli. Then, we co-transformed it into host strain T7 Express with secretive expression vector (pMAL-p4x-WP1) or non-secretive expression vector (pET21a-MBP-WP1), respectively. The MBP-WP1 fusion protein was further purified by amylose affinity chromatography and its peroxidase activity was assayed using 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonate) (ABTS) as substrate. At 12 h after induction at 28 degree, the extracellular 5-aminolevulinic acid (5-ALA) production of T7 Express/pACYC-A-L was up to 146.73 mg/L, simultaneously the extracellular porphrins also increased dramatically. The peroxidase activity of functional MBP-WP1 obtained from T7 Express/ (pACYC-A-L + pMAL-p4x-WP1) was 14.6-folds of that purified from T7 Express/ pET21a-MBP-WP1. This study not only successfully enhanced functional expression of wheat peroxidase 1 in Esherichia coli, but also provided beneficial references for other important proteins with cofactor heme.

  5. The homeodomain transcription factor TaHDZipI-2 from wheat regulates frost tolerance, flowering time and spike development in transgenic barley.

    PubMed

    Kovalchuk, Nataliya; Chew, William; Sornaraj, Pradeep; Borisjuk, Nikolai; Yang, Nannan; Singh, Rohan; Bazanova, Natalia; Shavrukov, Yuri; Guendel, Andre; Munz, Eberhard; Borisjuk, Ljudmilla; Langridge, Peter; Hrmova, Maria; Lopato, Sergiy

    2016-07-01

    Homeodomain leucine zipper class I (HD-Zip I) transcription factors (TFs) play key roles in the regulation of plant growth and development under stresses. Functions of the TaHDZipI-2 gene isolated from the endosperm of developing wheat grain were revealed. Molecular characterization of TaHDZipI-2 protein included studies of its dimerisation, protein-DNA interactions and gene activation properties using pull-down assays, in-yeast methods and transient expression assays in wheat cells. The analysis of TaHDZipI-2 gene functions was performed using transgenic barley plants. It included comparison of developmental phenotypes, yield components, grain quality, frost tolerance and the levels of expression of potential target genes in transgenic and control plants. Transgenic TaHDZipI-2 lines showed characteristic phenotypic features that included reduced growth rates, reduced biomass, early flowering, light-coloured leaves and narrowly elongated spikes. Transgenic lines produced 25-40% more seeds per spike than control plants, but with 50-60% smaller grain size. In vivo lipid imaging exposed changes in the distribution of lipids between the embryo and endosperm in transgenic seeds. Transgenic lines were significantly more tolerant to frost than control plants. Our data suggest the role of TaHDZipI-2 in controlling several key processes underlying frost tolerance, transition to flowering and spike development. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  6. Effects of protein in wheat flour on retrogradation of wheat starch.

    PubMed

    Xijun, Lian; Junjie, Guo; Danli, Wang; Lin, Li; Jiaran, Zhu

    2014-08-01

    Albumins, globulins, gliadins, and glutenins were isolated from wheat flour and the effects of those proteins on retrogradation of wheat starch were investigated. The results showed that only glutenins retarded retrogradation of wheat starch and other 3 proteins promoted it. The results of IR spectra proved that no S-S linkage formed during retrogradation of wheat starch blended with wheat proteins. Combination of wheat starch and globulins or gliadins through glucosidic bonds hindered the hydrolysis of wheat starch by α-amylase. The melting peak temperatures of retrograded wheat starch attached to different proteins were 128.46, 126.14, 132.03, 121.65, and 134.84 °C for the control with no protein, albumins, glutenins, globulins, gliadins groups, respectively, and there was no second melting temperature for albumins group. Interaction of wheat proteins and starch in retrograded wheat starch greatly decreased the endothermic enthalpy (△H) of retrograded wheat starch. Retrograded wheat starch bound to gliadins might be a new kind of resistant starch based on glycosidic bond between starch and protein. © 2014 Institute of Food Technologists®

  7. DNA microsatellite region for a reliable quantification of soft wheat adulteration in durum wheat-based foodstuffs by real-time PCR.

    PubMed

    Sonnante, Gabriella; Montemurro, Cinzia; Morgese, Anita; Sabetta, Wilma; Blanco, Antonio; Pasqualone, Antonella

    2009-11-11

    Italian industrial pasta and durum wheat typical breads must be prepared using exclusively durum wheat semolina. Previously, a microsatellite sequence specific of the wheat D-genome had been chosen for traceability of soft wheat in semolina and bread samples, using qualitative and quantitative Sybr green-based real-time experiments. In this work, we describe an improved method based on the same soft wheat genomic region by means of a quantitative real-time PCR using a dual-labeled probe. Standard curves based on dilutions of 100% soft wheat flour, pasta, or bread were constructed. Durum wheat semolina, pasta, and bread samples were prepared with increasing amounts of soft wheat to verify the accuracy of the method. Results show that reliable quantifications were obtained especially for the samples containing a lower amount of soft wheat DNA, fulfilling the need to verify labeling of pasta and typical durum wheat breads.

  8. Wheat: The Whole Story.

    ERIC Educational Resources Information Center

    Oklahoma State Dept. of Education, Oklahoma City.

    This publication presents information on wheat. Wheat was originally a wild grass and not native to the United States. Wheat was not planted there until 1777 (and then only as a hobby crop). Wheat is grown on more acres than any other grain in this country. Soft wheats are grown east of the Mississippi River, and hard wheats are grown west of the…

  9. Reinforcement Effect of Alkali-Hydrolyzed Wheat Gluten and Shear-Degraded Wheat Starch in Carboxylated Styrene-Butadiene Composites

    USDA-ARS?s Scientific Manuscript database

    Wheat gluten (WG) and wheat starch (WS) are the protein and carbohydrate obtained from wheat flours. Wheat gluten is not water soluble or dispersible due to its hydrophobic nature. To prepare wheat gluten dispersions, an alkali hydrolysis reaction was carried out to produce a stable aqueous disper...

  10. Effects of imidacloprid and clothianidin seed treatments on wheat aphids and their natural enemies on winter wheat.

    PubMed

    Zhang, Peng; Zhang, Xuefeng; Zhao, Yunhe; Wei, Yan; Mu, Wei; Liu, Feng

    2016-06-01

    Wheat aphid (Hemiptera: Aphididae) is one of the major pests of winter wheat and has posed a significant threat to winter wheat production in China. Although neonicotinoid insecticidal seed treatments have been suggested to be a control method, the season-long efficacy on pests and the impact on their natural enemies are still uncertain. Experiments were conducted to determine the efficacy of imidacloprid and clothianidin on the control of aphids, the number of their natural enemies and the emergence rate and yield of wheat during 2011-2014. Imidacloprid and clothianidin seed treatments had no effect on the emergence rate of winter wheat and could prevent yield losses and wheat aphid infestations throughout the winter wheat growing season. Furthermore, their active ingredients were detected in winter wheat leaves up to 200 days after sowing. Imidacloprid and clothianidin seed treatments had no adverse effects on ladybirds, hoverflies or parasitoids, and instead increased the spider-aphid ratios. Wheat seeds treated with imidacloprid and clothianidin were effective against wheat aphids throughout the winter wheat growing season and reduced the yield loss under field conditions. Imidacloprid and clothianidin seed treatments may be an important component of the integrated management of wheat aphids on winter wheat. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  11. Effects on performance of ground wheat with or without insoluble fiber or whole wheat in sequential feeding for laying hens.

    PubMed

    Traineau, M; Bouvarel, I; Mulsant, C; Roffidal, L; Launay, C; Lescoat, P

    2013-09-01

    Sequential feeding (SF) is an innovative system for laying hens consisting of nutrients separating energy, protein, and calcium supplies to fulfill nutrient requirements at the relevant time of day. In previous studies, hens received whole wheat in the morning and a balancer diet (rich in protein and calcium) in the afternoon. To improve SF utilization, the aim was to substitute whole wheat in the morning by an alternative energy supply: ground wheat and ground corn, with or without a proportion of whole wheat and insoluble fiber. The goal was to obtain the advantages observed in previous experiments with whole wheat [bigger gizzard, thinner hens, reduced feed conversion ratio (FCR)]. Four hundred thirty-two ISA Brown hens were housed in collective cages from 20 to 35 wk of age divided into 8 different treatments: a continuous control diet, a sequential diet with whole wheat in the morning, 3 wheat-based diets (ground wheat, ground wheat and 20% whole wheat, and ground wheat with 5% insoluble fiber) and 3 ground corn-based (ground corn, ground corn and 20% whole wheat, and ground corn with 5% insoluble fiber) provided in the morning. All sequential regimens received the same balancer diet rich in protein and calcium in the afternoon. Whole wheat SF gave the best results with an improved FCR compared with continuous control and all other SF diets. Wheat- and corn-based diets showed intermediate results between whole wheat SF and continuous feeding. Gizzard weight was higher and hens were lighter than with conventional continuous feeding, leading to an average FCR improvement of 3.2% compared with a continuous control. Thus, it is possible in SF diets to substitute, at least partially, whole wheat by ground wheat or ground corn with added insoluble fiber or some whole wheat, allowing more flexibility and economic optimization.

  12. Growth of Pleurotus ostreatus on wheat straw and wheat-grain-based media: Biochemical aspects and preparation of mushroom inoculum.

    PubMed

    Sainos, E; Díaz-Godínez, G; Loera, O; Montiel-González, A M; Sánchez, C

    2006-10-01

    Mycelial growth, intracellular activity of proteases, laccases and beta-1,3-glucanases, and cytoplasmic protein were evaluated in the vegetative phase of Pleurotus ostreatus grown on wheat straw and in wheat-grain-based media in Petri dishes and in bottles. The productivity of the wheat straw and wheat-grain-based spawn in cylindrical polyethylene bags containing 5 kg of chopped straw was also determined. We observed high activity of proteases and high content of intracellular protein in cultures grown on wheat straw. This suggests that the proteases are not secreted into the medium and that the protein is an important cellular reserve. On the contrary, cultures grown on wheat straw secreted laccases into the medium, which could be induced by this substrate. P. ostreatus grown on media prepared with a combination of wheat straw and wheat grain showed a high radial growth rate in Petri dishes and a high level of mycelial growth in bottles. The productivities of wheat straw and wheat-grain-based spawn were similar. Our results show that cheaper and more productive mushroom spawn can be prepared by developing the mycelium on wheat straw and wheat-grain-based substrates.

  13. Overview of the Wheat Genetic Transformation and Breeding Status in China.

    PubMed

    Han, Jiapeng; Yu, Xiaofen; Chang, Junli; Yang, Guangxiao; He, Guangyuan

    2017-01-01

    In the past two decades, Chinese scientists have achieved significant progress on three aspects of wheat genetic transformation. First, the wheat transformation platform has been established and optimized to improve the transformation efficiency, shorten the time required from starting of transformation procedure to the fertile transgenic wheat plants obtained as well as to overcome the problem of genotype-dependent for wheat genetic transformation in wide range of wheat elite varieties. Second, with the help of many emerging techniques such as CRISPR/cas9 function of over 100 wheat genes has been investigated. Finally, modern technology has been combined with the traditional breeding technique such as crossing to accelerate the application of wheat transformation. Overall, the wheat end-use quality and the characteristics of wheat stress tolerance have been improved by wheat genetic engineering technique. So far, wheat transgenic lines integrated with quality-improved genes and stress tolerant genes have been on the way of Production Test stage in the field. The debates and the future studies on wheat transformation have been discussed, and the brief summary of Chinese wheat breeding research history has also been provided in this review.

  14. Evaluation of several schemes for classification of remotely sensed data: Their parameters and performance. [Foster County, North Dakota; Grant County, Kansas; Iroquois County, Illinois, Tippecanoe County, Indiana; and Pottawattamie and Shelby Counties, Iowa

    NASA Technical Reports Server (NTRS)

    Scholz, D.; Fuhs, N.; Hixson, M.; Akiyama, T. (Principal Investigator)

    1979-01-01

    The author has identified the following significant results. Data sets for corn, soybeans, winter wheat, and spring wheat were used to evaluate the following schemes for crop identification: (1) per point Gaussian maximum classifier; (2) per point sum of normal densities classifiers; (3) per point linear classifier; (4) per point Gaussian maximum likelihood decision tree classifiers; and (5) texture sensitive per field Gaussian maximum likelihood classifier. Test site location and classifier both had significant effects on classification accuracy of small grains; classifiers did not differ significantly in overall accuracy, with the majority of the difference among classifiers being attributed to training method rather than to the classification algorithm applied. The complexity of use and computer costs for the classifiers varied significantly. A linear classification rule which assigns each pixel to the class whose mean is closest in Euclidean distance was the easiest for the analyst and cost the least per classification.

  15. Pentahydroxyscirpene—Producing Strains, Formation In Planta, and Natural Occurrence

    PubMed Central

    Varga, Elisabeth; Wiesenberger, Gerlinde; Fruhmann, Philipp; Malachová, Alexandra; Svoboda, Thomas; Lemmens, Marc; Adam, Gerhard; Berthiller, Franz

    2016-01-01

    Trichothecenes are a class of structurally diverse mycotoxins with more than 200 naturally occurring compounds. Previously, a new compound, pentahydroxyscirpene (PHS), was reported as a byproduct of a nivalenol producing Fusarium strain, IFA189. PHS contains a hydroxy group at C-8 instead of the keto group of type B trichothecenes. In this work, we demonstrate that IFA189 belongs to the species Fusarium kyushuense using molecular tools. Production of PHS in vitro was also observed for several isolates of other Fusarium species producing nivalenol. Furthermore, we report the formation of 4-acetyl-PHS by F. kyushuense on inoculated rice. Wheat ears of the variety Remus were infected with IFA189 and the in planta production of PHS was confirmed. Natural occurrence of PHS was verified in barley samples from the Czech Republic using a liquid chromatographic-tandem mass spectrometric method validated for this purpose. Toxicity of PHS to wheat ribosomes was evaluated with a coupled in vitro transcription and translation assay, which showed that PHS inhibits protein biosynthesis slightly less than nivalenol and deoxynivalenol. PMID:27754401

  16. Australian wheat production expected to decrease by the late 21st century.

    PubMed

    Wang, Bin; Liu, De L; O'Leary, Garry J; Asseng, Senthold; Macadam, Ian; Lines-Kelly, Rebecca; Yang, Xihua; Clark, Anthony; Crean, Jason; Sides, Timothy; Xing, Hongtao; Mi, Chunrong; Yu, Qiang

    2018-06-01

    Climate change threatens global wheat production and food security, including the wheat industry in Australia. Many studies have examined the impacts of changes in local climate on wheat yield per hectare, but there has been no assessment of changes in land area available for production due to changing climate. It is also unclear how total wheat production would change under future climate when autonomous adaptation options are adopted. We applied species distribution models to investigate future changes in areas climatically suitable for growing wheat in Australia. A crop model was used to assess wheat yield per hectare in these areas. Our results show that there is an overall tendency for a decrease in the areas suitable for growing wheat and a decline in the yield of the northeast Australian wheat belt. This results in reduced national wheat production although future climate change may benefit South Australia and Victoria. These projected outcomes infer that similar wheat-growing regions of the globe might also experience decreases in wheat production. Some cropping adaptation measures increase wheat yield per hectare and provide significant mitigation of the negative effects of climate change on national wheat production by 2041-2060. However, any positive effects will be insufficient to prevent a likely decline in production under a high CO 2 emission scenario by 2081-2100 due to increasing losses in suitable wheat-growing areas. Therefore, additional adaptation strategies along with investment in wheat production are needed to maintain Australian agricultural production and enhance global food security. This scenario analysis provides a foundation towards understanding changes in Australia's wheat cropping systems, which will assist in developing adaptation strategies to mitigate climate change impacts on global wheat production. © 2017 John Wiley & Sons Ltd.

  17. Response of Russian wheat aphid resistance in wheat and barley to four Diuraphis (Hemiptera: Aphididae) species.

    PubMed

    Puterka, Gary J; Scott, J Nicholson; Brown, Michael J; Hammon, R W

    2013-04-01

    Three Diuraphis species, Diuraphis frequens (Walker), Diuraphis mexicana (McVicar Baker), and Diuraphis tritici (Gillette), were known to exist in the United States before the 1986 appearance of the Russian wheat aphid, Diuraphis noxia Kurdjumov. The Russian wheat aphid soon became a significant pest of wheat although other endemic Diuraphis species were known to infest wheat. Wheat and barley entries resistant and susceptible to Russian wheat aphid biotype 2 were evaluated against all four Diuraphis species to determine their host interrelationships. Leaf chlorosis, leaf roll, leaf number, plant height, and infestation levels were assessed 21 d after the plants were infested by aphids in a no-choice caged environment. D. mexicana was unable to survive on wheat by 21 d after infestation and effects on the plant damage variables were negligible. D. frequens survived at low levels on resistant and susceptible plant entries and had a low impact on plant damage and growth. Russian wheat aphid biotype 2 and D. tritici were damaged most wheat and barley lines except the Russian wheat aphid biotype 2-resistant wheat lines containing genes from Dn7, STARS 2414-11, and CI2401; and resistant barley containing genes from STARS 9577B and 9301B. Russian wheat aphid biotype 2 and D. tritici reduced the growth of resistant plants by 25-50% and susceptible entries by 65-75%. Reductions at this level are typical under no-choice studies but resistant cultivars do not have these reductions under field conditions. The Russian wheat aphid biotype 2 resistant wheat lines would be effective in managing both wheat pest species.

  18. Economic assessment of conventional and conservation tillage practices in different wheat-based cropping systems of Punjab, Pakistan.

    PubMed

    Shahzad, Muhammad; Hussain, Mubshar; Farooq, Muhammad; Farooq, Shahid; Jabran, Khawar; Nawaz, Ahmad

    2017-11-01

    Wheat productivity and profitability is low under conventional tillage systems as they increase the production cost, soil compaction, and the weed infestation. Conservation tillage could be a pragmatic option to sustain the wheat productivity and enhance the profitability on long term basis. This study was aimed to evaluate the economics of different wheat-based cropping systems viz. fallow-wheat, rice-wheat, cotton-wheat, mung bean-wheat, and sorghum-wheat, with zero tillage, conventional tillage, deep tillage, bed sowing (60/30 cm beds and four rows), and bed sowing (90/45 cm beds and six rows). Results indicated that the bed sown wheat had the maximum production cost than other tillage systems. Although both bed sowing treatments incurred the highest production cost, they generated the highest net benefits and benefit: cost ratio (BCR). Rice-wheat cropping system with bed sown wheat (90/45 cm beds with six rows) had the highest net income (4129.7 US$ ha -1 ), BCR (2.87), and marginal rate of return compared with rest of the cropping systems. In contrast, fallow-wheat cropping system incurred the lowest input cost, but had the least economic return. In crux, rice-wheat cropping system with bed sown wheat (90/45 cm beds with six rows) was the best option for getting the higher economic returns. Moreover, double cropping systems within a year are more profitable than sole planting of wheat under all tillage practices.

  19. Diseases Which Challenge Global Wheat Production - The Cereal Rusts

    USDA-ARS?s Scientific Manuscript database

    The rusts of wheat are common and widespread diseases in the US and throughout the world. Wheat rusts have been important throughout the history of wheat cultivation and are currently important diseases that are responsible for regularly occurring yield losses in wheat. The wheat rust fungi are obli...

  20. 7 CFR 810.2201 - Definition of wheat.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 7 2010-01-01 2010-01-01 false Definition of wheat. 810.2201 Section 810.2201... GRAIN United States Standards for Wheat Terms Defined § 810.2201 Definition of wheat. Grain that, before the removal of dockage, consists of 50 percent or more common wheat (Triticum aestivum L.), club wheat...

  1. Improved wheat for baking.

    PubMed

    Faridi, H; Finley, J W

    1989-01-01

    To bakers, wheat quality means the performance characteristics of the flour milled from the wheat when used in specific wheat products. The tremendous increase in the number of wheat cultivars grown in the U.S. in recent years, along with the unusual climate, new advances in milling technology, and increased automation of baking lines, have resulted in bakery production problems partly attributed to wheat flour quality. In this review various factors affecting wheat quality are explained. Concerns of bread and cookie/cracker manufacturers on deterioration of the wheat quality are discussed, and, finally, some solutions are proposed.

  2. Identification of wheat sensitization using an in-house wheat extract in Coca-10% alcohol solution in children with wheat anaphylaxis.

    PubMed

    Pacharn, Punchama; Kumjim, Sasaros; Tattiyapong, Puntanat; Jirapongsananuruk, Orathai; Piboonpocanun, Surapon

    2016-06-01

    Identification of wheat sensitization by a skin prick test (SPT) is essential for children with wheat-induced anaphylaxis, since oral food challenge can cause serious adverse effects. Wheat allergens are both water/salt and alcohol soluble. The preparation of wheat extract for SPT containing both water/salt and alcohol soluble allergen is needed. To determine if a wheat extract using Coca's solution containing 10% alcohol (Coca-10% EtOH), prepared in-house, contians both water/salt and alcohol soluble allergens. Serum of children with a history of anaphylaxis after wheat ingestion was used. Wheat flour was extracted in Coca-10% alcohol solution. An SPT with both commercial and in-house wheat extracts was performed as well as specific IgE (sIgE) for wheat and omega-5 gliadin. Direct and IgE inhibition immunoblots were performed to determine serum sIgE levels against water/salt as well as alcohol soluble (gliadins and glutenins) allergens in the extracts. Six children with history of wheat anaphylaxis had positive SPT to both commercial and in-house extracts. They also had different levels of sIgE against wheat and omega-5 gliadin allergens. The results of direct immunoblotting showed all tested sera had sIgE bound to ~35 kDa wheat protein. Further IgE inhibition immunoblotting identified the ~35 kDa wheat protein as gliadin but not gluten allergen. The in-house prepared Coca-10% EtOH solution could extract both water/salt and alcohol soluble allergens. The ~35 kDa gliadin appears to be a major wheat allergen among tested individuals.

  3. Presence of Enniatins and Beauvericin in Romanian Wheat Samples: From Raw Material to Products for Direct Human Consumption

    PubMed Central

    Stanciu, Oana; Juan, Cristina; Miere, Doina; Loghin, Felicia; Mañes, Jordi

    2017-01-01

    In this study, a total of 244 wheat and wheat-based products collected from Romania were analyzed by liquid chromatography tandem mass spectrometry (LC-MS/MS) in order to evaluate the presence of four enniatins (ENs; i.e., ENA, ENA1, ENB, and ENB1) and beauvericin (BEA). For the wheat samples, the influence of agricultural practices was assessed, whereas the results for the wheat-based products were used to calculate the estimated daily intake of emerging mycotoxins through wheat consumption for the Romanian population. ENB presented the highest incidence (41% in wheat and 32% in wheat-based products), with its maximum levels of 815 μg kg−1 and 170 μg kg−1 in wheat and wheat-based products, respectively. The correlation between the concentrations of ENB and ENB1 in wheat grain samples and farm practices (organic or conventional) was confirmed statistically (p < 0.05). This is the first study that provides comprehensive information about the influence of agricultural practice on emerging Fusarium mycotoxin presence in Romanian wheat samples and the estimated daily intake of ENs and BEA present in wheat-based products for human consumption commercialized in Romania. PMID:28604626

  4. 21 CFR 137.190 - Cracked wheat.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Cracked wheat. 137.190 Section 137.190 Food and... Related Products § 137.190 Cracked wheat. Cracked wheat is the food prepared by so cracking or cutting... such wheat, other than moisture, remain unaltered. Cracked wheat contains not more than 15 percent of...

  5. Reinforcement Effect of Alkali Hydrolyzed Wheat Gluten and Starch in Carboxylated Styrene-Butadiene Composites

    USDA-ARS?s Scientific Manuscript database

    Wheat gluten (WG) and wheat starch (WS) are the protein and carbohydrate obtained from wheat flours. Wheat gluten is not water soluble or dispersible due to its hydrophobic nature. To prepare wheat gluten dispersions, an alkali hydrolysis reaction was carried out to produce a stable aqueous disper...

  6. Wheat Rusts in the United States in 2007

    USDA-ARS?s Scientific Manuscript database

    In 2007 90% of wheat stem rust races were QFC and 10% were RCRS Both races are relatively avirulent to wheat cultiars grown in the U.S. Wheat stem rust occurred in scattered locations on research plots of susceptible wheat cultivars in 2007, and did not cause yield loss. Wheat leaf rust was widespr...

  7. 21 CFR 137.225 - Whole durum flour.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Flours and Related Products § 137.225 Whole durum flour. Whole durum wheat flour conforms to the..., prescribed for whole wheat flour by § 137.200, except that cleaned durum wheat, instead of cleaned wheat other than durum wheat and red durum wheat, is used in its preparation. [58 FR 2877, Jan. 6, 1993] ...

  8. Study of wheat protein based materials

    NASA Astrophysics Data System (ADS)

    Ye, Peng

    Wheat gluten is a naturally occurring protein polymer. It is produced in abundance by the agricultural industry, is biodegradable and very inexpensive (less than $0.50/lb). It has unique viscoelastic properties, which makes it a promising alternative to synthetic plastics. The unplasticized wheat gluten is, however, brittle. Plasticizers such as glycerol are commonly used to give flexibility to the articles made of wheat gluten but with the penalty of greatly reduced stiffness. Former work showed that the brittleness of wheat gluten can also be improved by modifying it with a tri-thiol additive with no penalty of reduced stiffness. However, the cost of the customer designed tri-thiol additive was very high and it was unlikely to make a cost effective material from such an expensive additive. Here we designed a new, inexpensive thiol additive called SHPVA. It was synthesized from polyvinyl alcohol (PVA) through a simple esterification reaction. The mechanical data of the molded wheat gluten/SHPVA material indicated that wheat gluten was toughened by SHPVA. As a control, the wheat gluten/PVA material showed no improvement compared with wheat gluten itself. Several techniques have been used to characterize this novel protein/polymer blend. Differential scanning calorimetric (DSC) study showed two phases in both wheat gluten/PVA and wheat gluten/SHPVA material. However, scanning electron microscope (SEM) pictures indicated that PVA was macroscopically separated from wheat gluten, while wheat gluten/SHPVA had a homogeneous look. The phase image from the atomic force microscope (AFM) gave interesting contrast based on the difference in the mechanical properties of these two phases. The biodegradation behavior of these protein/polymer blends was examined in soil. SHPVA was not degraded in the time period of the experiment. Wheat gluten/SHPVA degraded slower than wheat gluten. We also developed some other interesting material systems based on wheat gluten, including the wheat gluten/basalt composite and wheat gluten/clay composite materials. Their mechanical properties and biodegradation behaviors were determined.

  9. Immunotoxicological evaluation of wheat genetically modified with TaDREB4 gene on BALB/c mice.

    PubMed

    Liang, Chun Lai; Zhang, Xiao Peng; Song, Yan; Jia, Xu Dong

    2013-08-01

    To evaluate the immunotoxicological effects of genetically modified wheat with TaDREB4 gene in female BALB/c mice. Female mice weighing 18-22 g were divided into five groups (10 mice/group), which were set as negative control group, common wheat group, parental wheat group, genetically modified wheat group and cyclophosphamide positive control group, respectively. Mice in negative control group and positive control group were fed with AIN93G diet, mice in common wheat group, non-genetically modified parental wheat group and genetically modified wheat group were fed with feedstuffs added corresponding wheat (the proportion is 76%) for 30 days, then body weight, absolute and relative weight of spleen and thymus, white blood cell count, histological examination of immune organ, peripheral blood lymphocytes phenotyping, serum cytokine, serum immunoglobulin, antibody plaque-forming cell, serum half hemolysis value, mitogen-induced splenocyte proliferation, delayed-type hypersensitivity reaction and phagocytic activities of phagocytes were detected. No immunotoxicological effects related to the consumption of the genetically modified wheat were observed in BALB/c mice when compared with parental wheat group, common wheat group and negative control group. From the immunotoxicological point of view, results from this study demonstrate that genetically modified wheat with TaDREB4 gene is as safe as the parental wheat. Copyright © 2013 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.

  10. Using multispectral imagery to compare the spatial pattern of injury to wheat caused by Russian wheat aphid and greenbug

    USDA-ARS?s Scientific Manuscript database

    The Russian wheat aphid, Diuraphis noxia (Mordvilko), and greenbug, Schizaphis graminum (Rondani), are important aphid pests of wheat. Outbreaks of both pests in commercial wheat fields occur almost every year in the Great Plains of the United States. Infestations of both pests in wheat fields are...

  11. 'Prosper': A high-yielding hard red spring wheat cultivar adapted to the North Central Plains of the USA

    USDA-ARS?s Scientific Manuscript database

    Providing wheat (Triticum aestivum L.) growers and industry with adapted wheat cultivars with high-quality attributes is essential for maintaining wheat as a competitive crop in the spring-wheat growing region of the USA. Therefore, our breeding program aims to develop modern wheat cultivars using b...

  12. 21 CFR 139.138 - Whole wheat macaroni products.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Whole wheat macaroni products. 139.138 Section 139... and Noodle Products § 139.138 Whole wheat macaroni products. (a) Whole wheat macaroni products are the...)(3), and (g), except that: (1) Whole wheat flour or whole durum wheat flour or both are used as the...

  13. A diploid wheat TILLING resource for wheat functional genomics

    PubMed Central

    2012-01-01

    Background Triticum monococcum L., an A genome diploid einkorn wheat, was the first domesticated crop. As a diploid, it is attractive genetic model for the study of gene structure and function of wheat-specific traits. Diploid wheat is currently not amenable to reverse genetics approaches such as insertion mutagenesis and post-transcriptional gene silencing strategies. However, TILLING offers a powerful functional genetics approach for wheat gene analysis. Results We developed a TILLING population of 1,532 M2 families using EMS as a mutagen. A total of 67 mutants were obtained for the four genes studied. Waxy gene mutation frequencies are known to be 1/17.6 - 34.4 kb DNA in polyploid wheat TILLING populations. The T. monococcum diploid wheat TILLING population had a mutation frequency of 1/90 kb for the same gene. Lignin biosynthesis pathway genes- COMT1, HCT2, and 4CL1 had mutation frequencies of 1/86 kb, 1/92 kb and 1/100 kb, respectively. The overall mutation frequency of the diploid wheat TILLING population was 1/92 kb. Conclusion The mutation frequency of a diploid wheat TILLING population was found to be higher than that reported for other diploid grasses. The rate, however, is lower than tetraploid and hexaploid wheat TILLING populations because of the higher tolerance of polyploids to mutations. Unlike polyploid wheat, most mutants in diploid wheat have a phenotype amenable to forward and reverse genetic analysis and establish diploid wheat as an attractive model to study gene function in wheat. We estimate that a TILLING population of 5, 520 will be needed to get a non-sense mutation for every wheat gene of interest with 95% probability. PMID:23134614

  14. 7 CFR 201.51a - Special procedures for purity analysis.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Percent of single units of each kind Chewings fescue Red fescue Orchard-grass Crested wheat-grassb Pubes-cent wheat-grass Intermediate wheat-grass Tall wheat-grass c Western wheat-grassc Smooth brome 50 or...

  15. 7 CFR 201.51a - Special procedures for purity analysis.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Percent of single units of each kind Chewings fescue Red fescue Orchard-grass Crested wheat-grassb Pubes-cent wheat-grass Intermediate wheat-grass Tall wheat-grass c Western wheat-grassc Smooth brome 50 or...

  16. Incorporating Yearly Derived Winter Wheat Maps Into Winter Wheat Yield Forecasting Model

    NASA Technical Reports Server (NTRS)

    Skakun, S.; Franch, B.; Roger, J.-C.; Vermote, E.; Becker-Reshef, I.; Justice, C.; Santamaría-Artigas, A.

    2016-01-01

    Wheat is one of the most important cereal crops in the world. Timely and accurate forecast of wheat yield and production at global scale is vital in implementing food security policy. Becker-Reshef et al. (2010) developed a generalized empirical model for forecasting winter wheat production using remote sensing data and official statistics. This model was implemented using static wheat maps. In this paper, we analyze the impact of incorporating yearly wheat masks into the forecasting model. We propose a new approach of producing in season winter wheat maps exploiting satellite data and official statistics on crop area only. Validation on independent data showed that the proposed approach reached 6% to 23% of omission error and 10% to 16% of commission error when mapping winter wheat 2-3 months before harvest. In general, we found a limited impact of using yearly winter wheat masks over a static mask for the study regions.

  17. Distribution and diversity of Russian wheat aphid (Hemiptera: Aphididae) biotypes in South Africa and Lesotho.

    PubMed

    Jankielsohn, Astrid

    2011-10-01

    Russian wheat aphid, Diuraphis noxia (Kurdjumov) (Hemiptera: Aphididae) was recorded for the first time in South Africa in 1978. In 2005, a second biotype, RWASA2, emerged, and here we report on the emergence of yet another biotype, found for the first time in 2009. The discovery of new Russian wheat aphid biotypes is a significant challenge to the wheat, Triticum aestivum L., industry in South Africa. Russian wheat aphid resistance in wheat, that offered wheat producers a long-term solution to Russian wheat aphid control, may no longer be effective in areas where the new biotypes occur. It is therefore critical to determine the diversity and extent of distribution of biotypes in South Africa to successfully deploy Russian wheat aphid resistance in wheat. Screening of 96 Russian wheat aphid clones resulted in identification of three Russian wheat aphid biotypes. Infestations of RWASA1 caused susceptible damage symptoms only in wheat entries containing the Dn3 gene. Infestations of RWASA2 caused susceptible damage symptoms in wheat entries containing Dn1, Dn2, Dn3, and Dn9 resistant genes. Based on the damage-rating scores for the seven resistance sources, a new biotype, which caused damage rating scores different from those for RWASA1 and RWASA2, was evident among the Russian wheat aphid populations tested. This new biotype is virulent to the same resistance sources as RWASA2 (Dn1, Dn2, Dn3, and Dn9), but it also has added virulence to Dn4, whereas RWASA2 is avirulent to this resistance source.

  18. Evaluations on the potential productivity of winter wheat based on agro-ecological zone in the world

    NASA Astrophysics Data System (ADS)

    Wang, H.; Li, Q.; Du, X.; Zhao, L.; Lu, Y.; Li, D.; Liu, J.

    2015-04-01

    Wheat is the most widely grown crop globally and an essential source of calories in human diets. Maintaining and increasing global wheat production is therefore strongly linked to food security. In this paper, the evaluation model of winter wheat potential productivity was proposed based on agro-ecological zone and the historical winter wheat yield data in recent 30 years (1983-2011) obtained from FAO. And the potential productions of winter wheat in the world were investigated. The results showed that the realistic potential productivity of winter wheat in Western Europe was highest and it was more than 7500 kg/hm2. The realistic potential productivity of winter wheat in North China Plain were also higher, which was about 6000 kg/hm2. However, the realistic potential productivity of winter wheat in the United States which is the main winter wheat producing country were not high, only about 3000 kg/hm2. In addition to these regions which were the main winter wheat producing areas, the realistic potential productivity in other regions of the world were very low and mainly less than 1500 kg/hm2, like in southwest region of Russia. The gaps between potential productivity and realistic productivity of winter wheat in Kazakhstan and India were biggest, and the percentages of the gap in realistic productivity of winter wheat in Kazakhstan and India were more than 40%. In Russia, the gap between potential productivity and realistic productivity of winter wheat was lowest and the percentage of the gap in realistic productivity of winter wheat in Russia was only 10%.

  19. Evolutionary Genomics of Wheat

    USDA-ARS?s Scientific Manuscript database

    Wheat is the world’s largest and most important food crop for direct human consumption, therefore, continued wheat improvement is paramount for feeding an ever-increasing human population. Wheat improvement is tightly associated with the characterization and understanding of wheat evolution and gene...

  20. The International Heat Stress Genotype Experiment for modeling wheat response to heat: field experiments and AgMIP-Wheat multi-model simulations

    USDA-ARS?s Scientific Manuscript database

    The data set contains a portion of the International Heat Stress Genotype Experiment (IHSGE) data used in the AgMIP-Wheat project to analyze the uncertainty of 30 wheat crop models and quantify the impact of heat on global wheat yield productivity. It includes two spring wheat cultivars grown during...

  1. 19 CFR 19.30 - Domestic wheat not to be allowed in bonded space.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 19 Customs Duties 1 2010-04-01 2010-04-01 false Domestic wheat not to be allowed in bonded space... THEREIN Space Bonded for the Storage of Wheat § 19.30 Domestic wheat not to be allowed in bonded space. The presence of domestic wheat in space bonded for the storage of imported wheat shall not be...

  2. Effect of partially hydrolyzed guar gum on pasting, thermo-mechanical and rheological properties of wheat dough.

    PubMed

    Mudgil, Deepak; Barak, Sheweta; Khatkar, B S

    2016-12-01

    Partially hydrolyzed guar gum was prepared using enzymatic hydrolysis of native guar gum that can be utilized as soluble fiber source. The effect of partially hydrolyzed guar gum (PHGG) on pasting, thermo-mechanical and rheological properties of wheat flour was investigated using rapid visco-analyzer, Mixolab and Microdoughlab. Wheat flour was replaced with 1-5g PHGG per 100g of wheat flour on weight basis. PHGG addition decreased the peak, trough, breakdown, setback and final viscosity of wheat flour. Water absorption and amylase activity of wheat dough were increased whereas starch gelatinization and protein weakening of wheat dough were reduced as a result of PHGG addition to wheat flour. PHGG addition also increased the peak dough height, arrival time, dough development time, dough stability and peak energy of wheat dough system. However, dough softening was decreased after PHGG addition to wheat flour dough. Overall, it can be assumed that PHGG has influenced the properties of wheat flour dough system by decreasing the RVA viscosities and increasing the water absorption and starch gelatinization of wheat dough system. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Ancient DNA from 8400 Year-Old Çatalhöyük Wheat: Implications for the Origin of Neolithic Agriculture

    PubMed Central

    Bilgic, Hatice; Hakki, Erdogan E.; Akkaya, Mahinur S.

    2016-01-01

    Human history was transformed with the advent of agriculture in the Fertile Crescent with wheat as one of the founding crops. Although the Fertile Crescent is renowned as the center of wheat domestication, archaeological studies have shown the crucial involvement of Çatalhöyük in this process. This site first gained attention during the 1961–65 excavations due to the recovery of primitive hexaploid wheat. However, despite the seeds being well preserved, a detailed archaeobotanical description of the samples is missing. In this article, we report on the DNA isolation, amplification and sequencing of ancient DNA of charred wheat grains from Çatalhöyük and other Turkish archaeological sites and the comparison of these wheat grains with contemporary wheat species including T. monococcum, T. dicoccum, T. dicoccoides, T. durum and T. aestivum at HMW glutenin protein loci. These ancient samples represent the oldest wheat sample sequenced to date and the first ancient wheat sample from the Middle East. Remarkably, the sequence analysis of the short DNA fragments preserved in seeds that are approximately 8400 years old showed that the Çatalhöyük wheat stock contained hexaploid wheat, which is similar to contemporary hexaploid wheat species including both naked (T. aestivum) and hulled (T. spelta) wheat. This suggests an early transitory state of hexaploid wheat agriculture from the Fertile Crescent towards Europe spanning present-day Turkey. PMID:26998604

  4. [Population dynamics of ground carabid beetles and spiders in a wheat field along the wheat-alfalfa interface and their response to alfalfa mowing].

    PubMed

    Liu, Wen-Hui; Hu, Yi-Jun; Hu, Wen-Chao; Hong, Bo; Guan, Xiao-Qing; Ma, Shi-Yu; He, Da-Han

    2014-09-01

    Taking the wheat-alfalfa and wheat-wheat interfaces as model systems, sampling points were set by the method of pitfall trapping in the wheat field at the distances of 3 m, 6 m, 9 m, 12 m, 15 m, 18 m, 21 m, 24 m, and 27 m from the interface. The species composition and abundance of ground carabid beetles and spiders captured in pitfalls were investigated. The results showed that, to some extent there was an edge effect on species diversity and abundance of ground carabid beetles and spiders along the two interfaces. A marked edge effect was observed between 15 m and 18 m along the alfalfa-wheat interface, while no edge effect was found at a distance over 20 m. The edge effect along the wheat-wheat interface was weaker in comparison to the alfalfa-wheat interface. Alfalfa mowing resulted in the migration of a large number of ground carabid beetles and spiders to the adjacent wheat filed. During ten days since mowing, both species and abundance of ground carabid beetles and spiders increased in wheat filed within the distance of 20 m along the alfalfa-wheat interface. The spatial distribution of species diversity of ground beetles and spiders, together with the population abundance of the dominant Chlaenius pallipes and Pardosa astrigera, were depicted, which could directly indicate the migrating process of natural enemy from alfalfa to wheat field.

  5. Use of a multifunctional column for the determination of deoxynivalenol in grains, grain products, and processed foods.

    PubMed

    Bao, Lei; Oles, Carolyn J; White, Kevin D; Sapp, Chelsea; Trucksess, Mary W

    2011-01-01

    Deoxynivalenol (DON), also known as vomitoxin, belongs to a class of naturally occurring mycotoxins produced by Fusarium spp. DON, 12, 13-epoxy-3,7 trihydroxytrichothec-9-en-8-one, is one of the most frequently detected mycotoxins in agricultural commodities worldwide. A method consisting of extraction, filtration, column cleanup, and RP-HPLC-UV separation and quantitation was validated for the determination of DON in grains (rice and barley), grain products (whole wheat flour, white flour, wheat germ, and wheat bran), and processed foods (bread, breakfast cereals, and pretzels). A 25 g test portion was extracted with 100 mL acetonitrile-water (84 + 16, v/v). After blending for 3 min, the supernatant was applied to a multifunctional column (MycoSep 225). The purified filtrate (2 mL) was evaporated to dryness and redissolved in the mobile phase. The toxins were then subjected to RP-HPLC-UV analysis. The accuracy and repeatability characteristics of the method were determined. Recoveries of DON added at levels ranging from 0.5 to 1.5 microg/g for all test matrixes were from 75 to 98%. SD and RSD(r) ranged from 0.7 to 11.6% and 0.9 to 12.7%, respectively. Within-laboratory HorRat values were from 0.1 to 0.7 for all matrixes analyzed. The method was found to meet AOAC method performance criteria for grains, grain products, and processed foods. The identity of DON in naturally contaminated test sample extracts was confirmed by HPLC/MS/MS analysis.

  6. Imaging and automated detection of Sitophilus oryzae (Coleoptera: Curculionidae) pupae in hard red winter wheat.

    PubMed

    Toews, Michael D; Pearson, Tom C; Campbell, James F

    2006-04-01

    Computed tomography, an imaging technique commonly used for diagnosing internal human health ailments, uses multiple x-rays and sophisticated software to recreate a cross-sectional representation of a subject. The use of this technique to image hard red winter wheat, Triticum aestivm L., samples infested with pupae of Sitophilus oryzae (L.) was investigated. A software program was developed to rapidly recognize and quantify the infested kernels. Samples were imaged in a 7.6-cm (o.d.) plastic tube containing 0, 50, or 100 infested kernels per kg of wheat. Interkernel spaces were filled with corn oil so as to increase the contrast between voids inside kernels and voids among kernels. Automated image processing, using a custom C language software program, was conducted separately on each 100 g portion of the prepared samples. The average detection accuracy in the five infested kernels per 100-g samples was 94.4 +/- 7.3% (mean +/- SD, n = 10), whereas the average detection accuracy in the 10 infested kernels per 100-g sample was 87.3 +/- 7.9% (n = 10). Detection accuracy in the 10 infested kernels per 100-g samples was slightly less than the five infested kernels per 100-g samples because of some infested kernels overlapping with each other or air bubbles in the oil. A mean of 1.2 +/- 0.9 (n = 10) bubbles (per tube) was incorrectly classed as infested kernels in replicates containing no infested kernels. In light of these positive results, future studies should be conducted using additional grains, insect species, and life stages.

  7. Additive-dominance genetic model analyses for late-maturity alpha-amylase activity in a bread wheat factorial crossing population.

    PubMed

    Rasul, Golam; Glover, Karl D; Krishnan, Padmanaban G; Wu, Jixiang; Berzonsky, William A; Ibrahim, Amir M H

    2015-12-01

    Elevated level of late maturity α-amylase activity (LMAA) can result in low falling number scores, reduced grain quality, and downgrade of wheat (Triticum aestivum L.) class. A mating population was developed by crossing parents with different levels of LMAA. The F2 and F3 hybrids and their parents were evaluated for LMAA, and data were analyzed using the R software package 'qgtools' integrated with an additive-dominance genetic model and a mixed linear model approach. Simulated results showed high testing powers for additive and additive × environment variances, and comparatively low powers for dominance and dominance × environment variances. All variance components and their proportions to the phenotypic variance for the parents and hybrids were significant except for the dominance × environment variance. The estimated narrow-sense heritability and broad-sense heritability for LMAA were 14 and 54%, respectively. High significant negative additive effects for parents suggest that spring wheat cultivars 'Lancer' and 'Chester' can serve as good general combiners, and that 'Kinsman' and 'Seri-82' had negative specific combining ability in some hybrids despite of their own significant positive additive effects, suggesting they can be used as parents to reduce LMAA levels. Seri-82 showed very good general combining ability effect when used as a male parent, indicating the importance of reciprocal effects. High significant negative dominance effects and high-parent heterosis for hybrids demonstrated that the specific hybrid combinations; Chester × Kinsman, 'Lerma52' × Lancer, Lerma52 × 'LoSprout' and 'Janz' × Seri-82 could be generated to produce cultivars with significantly reduced LMAA level.

  8. Detection of ochratoxin A contamination in stored wheat using near-infrared hyperspectral imaging

    NASA Astrophysics Data System (ADS)

    Senthilkumar, T.; Jayas, D. S.; White, N. D. G.; Fields, P. G.; Gräfenhan, T.

    2017-03-01

    Near-infrared (NIR) hyperspectral imaging system was used to detect five concentration levels of ochratoxin A (OTA) in contaminated wheat kernels. The wheat kernels artificially inoculated with two different OTA producing Penicillium verrucosum strains, two different non-toxigenic P. verrucosum strains, and sterile control wheat kernels were subjected to NIR hyperspectral imaging. The acquired three-dimensional data were reshaped into readable two-dimensional data. Principal Component Analysis (PCA) was applied to the two dimensional data to identify the key wavelengths which had greater significance in detecting OTA contamination in wheat. Statistical and histogram features extracted at the key wavelengths were used in the linear, quadratic and Mahalanobis statistical discriminant models to differentiate between sterile control, five concentration levels of OTA contamination in wheat kernels, and five infection levels of non-OTA producing P. verrucosum inoculated wheat kernels. The classification models differentiated sterile control samples from OTA contaminated wheat kernels and non-OTA producing P. verrucosum inoculated wheat kernels with a 100% accuracy. The classification models also differentiated between five concentration levels of OTA contaminated wheat kernels and between five infection levels of non-OTA producing P. verrucosum inoculated wheat kernels with a correct classification of more than 98%. The non-OTA producing P. verrucosum inoculated wheat kernels and OTA contaminated wheat kernels subjected to hyperspectral imaging provided different spectral patterns.

  9. Testing and validating the CERES-wheat (Crop Estimation through Resource and Environment Synthesis-wheat) model in diverse environments

    NASA Technical Reports Server (NTRS)

    Otter-Nacke, S.; Godwin, D. C.; Ritchie, J. T.

    1986-01-01

    CERES-Wheat is a computer simulation model of the growth, development, and yield of spring and winter wheat. It was designed to be used in any location throughout the world where wheat can be grown. The model is written in Fortran 77, operates on a daily time stop, and runs on a range of computer systems from microcomputers to mainframes. Two versions of the model were developed: one, CERES-Wheat, assumes nitrogen to be nonlimiting; in the other, CERES-Wheat-N, the effects of nitrogen deficiency are simulated. The report provides the comparisons of simulations and measurements of about 350 wheat data sets collected from throughout the world.

  10. [The high-molecular glutenins of the soft winter wheats from European countries and their relationship to the glutenin composition of the ancient and modern wheat varieties of Ukraine].

    PubMed

    Rabinovich, S V; Fedak, G; Lukov, O

    2000-01-01

    The sources of high-quality components of HMW glutenines determining grain quality, as initial material for breeding in the conditions of Ukraine were revealed on the base of analysis of 75 literature sources data about composition of high-molecular weight (HMW) glutenin and pedigrees of 598 European wheats from 12 countries, bred in 1923-1997, including, 449 cultivars from West and 149 East Europe. Origin of these components was observed in varieties of Great Britain, France and Germany from ancient Ukrainian wheat Red Fife and it derivative spring wheats of Canada--Marquis, Garnet, Regent, Saunders, Selkirk and of USA--spring wheat Thatcher and winter wheats--Kanred and Oro--as directly as via cultivars of European countries and Australia; in wheats of East European countries from winter wheats Myronivs'ka 808 and Bezostaya 1 (derivative of Ukrainian cultivars Ukrainka and Krymka) and their descendants; in wheats of Austria and Italy--from the both genetical sources.

  11. Comparison of Enzyme-Linked Immunosorbent Assay, Surface Plasmon Resonance and Biolayer Interferometry for Screening of Deoxynivalenol in Wheat and Wheat Dust.

    PubMed

    Sanders, Melanie; McPartlin, Daniel; Moran, Kara; Guo, Yirong; Eeckhout, Mia; O'Kennedy, Richard; De Saeger, Sarah; Maragos, Chris

    2016-04-11

    A sample preparation method was developed for the screening of deoxynivalenol (DON) in wheat and wheat dust. Extraction was carried out with water and was successful due to the polar character of DON. For detection, an enzyme-linked immunosorbent assay (ELISA) was compared to the sensor-based techniques of surface plasmon resonance (SPR) and biolayer interferometry (BLI) in terms of sensitivity, affinity and matrix effect. The matrix effects from wheat and wheat dust using SPR were too high to further use this screenings method. The preferred ELISA and BLI methods were validated according to the criteria established in Commission Regulation 519/2014/EC and Commission Decision 2002/657/EC. A small survey was executed on 16 wheat lots and their corresponding dust samples using the validated ELISA method. A linear correlation (r = 0.889) was found for the DON concentration in dust versus the DON concentration in wheat (LOD wheat: 233 μg/kg, LOD wheat dust: 458 μg/kg).

  12. Overexpression of wheat lipid transfer protein gene TaLTP5 increases resistances to Cochliobolus sativus and Fusarium graminearum in transgenic wheat.

    PubMed

    Zhu, Xiuliang; Li, Zhao; Xu, Huijun; Zhou, Miaoping; Du, Lipu; Zhang, Zengyan

    2012-08-01

    The fungus Cochliobolus sativus is the main pathogen of common root rot, a serious soil-borne disease of wheat (Triticum aestivum L.). The fungus Fusarium graminearum is the primary pathogen of Fusarium head blight, a devastating disease of wheat worldwide. In this study, the wheat lipid transfer protein gene, TaLTP5, was cloned and evaluated for its ability to suppress disease development in transgenic wheat. TaLTP5 expression was induced after C. sativus infection. The TaLTP5 expression vector, pA25-TaLTP5, was constructed and bombarded into Chinese wheat variety Yangmai 18. Six TaLTP5 transgenic wheat lines were established and characterized. PCR and Southern blot analyses indicated that the introduced TaLTP5 gene was integrated into the genomes of six transgenic wheat lines by distinct patterns, and heritable. RT-PCR and real-time quantitative RT-PCR revealed that the TaLTP5 gene was over-expressed in the transgenic wheat lines compared to segregants lacking the transgene and wild-type wheat plants. Following challenge with C. sativus or F. graminearum, all six transgenic lines overexpressing TaLTP5 exhibited significantly enhanced resistance to both common root rot and Fusarium head blight compared to the untransformed wheat Yangmai 18.

  13. [Wheat anaphylaxis or wheat-dependent exercise-induced anaphylaxis caused by use of a soap product which contains hydrolyzed wheat proteins. -a report of 12 cases-].

    PubMed

    Sugiyama, Akiko; Kishikawa, Reiko; Nishie, Haruko; Takeuchi, Satoshi; Shimoda, Terufumi; Iwanaga, Tomoaki; Nishima, Sankei; Furue, Masutaka

    2011-11-01

    Recently, it has become a social problem that hydrolyzed wheat protein in facial soap can induce wheat allergy including wheat-dependent exercise-induced anaphylaxis (WDEIA). We described the clinical characteristics of the patients related. We collected 12 cases who had had a medical examination from January to October in 2010. All the patients were female and mean age was 36.0± 9.9 years. All of them had had no prior symptoms history of wheat allergy, they gradually developed wheat anaphylaxis or WDEIA in an average of 2 years after they started to use a soap product in question which contains hydrolyzed wheat proteins. Most patients suffered immediate contact allergic reactions after or at the time of washing their face with the soap product. 10 of 12 patients showed a low level of IgE to CAP-recombinant ω-5-gliadin. Episodes of anaphylaxis were prevented by avoiding both intake of wheat-containing foods and usage of the soap product. We concluded that their wheat anaphylaxis is likely to be caused by epicutaneous sensitization of the hydrolyzed wheat proteins in the soap product. It was important that physicians should know the possibility of sensitization from non-dietary antigen.

  14. 40 CFR 180.438 - Lambda-cyhalothrin and an isomer gamma-cyhalothrin; tolerances for residues.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Vegetable, legume, edible podded, subgroup 6A 0.20 Vegetable, tuberous and corm, subgroup 1C 0.02 Wheat... Vegetable, legume, edible podded, subgroup 6A 0.20 Wheat, bran 2.0 Wheat, forage 2.0 Wheat, grain 0.05 Wheat...

  15. 40 CFR 180.438 - Lambda-cyhalothrin and an isomer gamma-cyhalothrin; tolerances for residues.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Vegetable, legume, edible podded, subgroup 6A 0.20 Vegetable, tuberous and corm, subgroup 1C 0.02 Wheat... Vegetable, legume, edible podded, subgroup 6A 0.20 Wheat, bran 2.0 Wheat, forage 2.0 Wheat, grain 0.05 Wheat...

  16. Breeding value of primary synthetic wheat genotypes for grain yield

    USDA-ARS?s Scientific Manuscript database

    To introduce new genetic diversity into the bread wheat gene pool from its progenitor, Aegilops tauschii (Coss.) Schmalh, 33 primary synthetic hexaploid wheat genotypes (SYN) were crossed to 20 spring bread wheat (BW) cultivars at the International Wheat and Maize Improvement Center. Modified single...

  17. Registration of ‘NE06545’ (husker genetics brand freeman) hard red winter wheat

    USDA-ARS?s Scientific Manuscript database

    Providing more productive wheat (Triticum aestivum L.) cultivars with broad adaptation in their target regions to wheat producers is a major goal of wheat breeding programs. 'NE06545' ( PI 667038) hard red winter wheat was developed cooperatively by the Nebraska Agricultural Experiment Station and ...

  18. Binary mixtures of waxy wheat and conventional wheat as measured by nir reflectance

    USDA-ARS?s Scientific Manuscript database

    Waxy wheat contains very low concentration (generally <2%) of amylose in endosperm starch, in contrast to conventional wheat whose starch is typically 20% amylose, with the balance being the branched macromolecule, amylopectin. With the release of a commercial hard winter waxy wheat cultivar in the ...

  19. Resistance to Wheat streak mosaic virus identified in synthetic wheat lines

    USDA-ARS?s Scientific Manuscript database

    Wheat streak mosaic virus (WSMV) is a significant pathogen in wheat that causes economic loss each year. WSMV is typically controlled using cultural practices such as the removal of volunteer wheat. Genetic resistance is limited. Until recently, no varieties have been available with major resista...

  20. 40 CFR 406.100 - Applicability; description of the wheat starch and gluten subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... wheat starch and gluten subcategory. 406.100 Section 406.100 Protection of Environment ENVIRONMENTAL... Starch and Gluten Subcategory § 406.100 Applicability; description of the wheat starch and gluten... operations utilizing wheat flour as a raw material for production of wheat starch and gluten (protein...

  1. Behavioural responses of wheat stem sawflies to wheat volatiles

    Treesearch

    D. Piesik; D. K. Weaver; J. B. Runyon; M. Buteler; G. E. Peck; W. L. Morrill

    2008-01-01

    1) Adult wheat stem sawflies Cephus cinctus, pests of cultivated cereals that also infests wild grasses, migrate into wheat fields where they oviposit in elongating, succulent stems. 2) Volatiles released by wheat plants at susceptible stages were analyzed to determine potential semiochemical compounds. Seven major compounds were identified and...

  2. Relationship between Russian wheat aphid abundance and edaphic and topographic characteristics of wheat fields

    USDA-ARS?s Scientific Manuscript database

    This study explores the spatial relationship between Russian wheat aphid population density and variation in edaphic or topographic factors within wheat fields. Multiple regression analysis was applied to data collected from six wheat fields located in three States, Colorado, Wyoming, and Nebraska....

  3. Synthetic hexaploids: Harnessing species of the primary gene pool for wheat improvement

    USDA-ARS?s Scientific Manuscript database

    Incorporation of genetic diversity into elite wheat cultivars has long been recognized as a means of improving wheat productivity and securing the global wheat supply. Synthetic hexaploid wheat (SHW) recreated from its two progenitor species, the tetraploid, Triticum turgidum and its diploid wild r...

  4. A latent-period duration model for wheat stem rust

    USDA-ARS?s Scientific Manuscript database

    Wheat stem rust caused by Puccinia graminis subsp. graminis (Pgg) is a highly destructive disease of wheat and other small grains. The discovery of a Pgg race (Ug99) that overcomes durable resistance in wheat raises concerns for global wheat production and food security. There is currently no mat...

  5. End-use quality of soft kernel durum wheat

    USDA-ARS?s Scientific Manuscript database

    Kernel texture is a major determinant of end-use quality of wheat. Durum wheat has very hard kernels. We developed soft kernel durum wheat via Ph1b-mediated homoeologous recombination. The Hardness locus was transferred from Chinese Spring to Svevo durum wheat via back-crossing. ‘Soft Svevo’ had SKC...

  6. An endogenous reference gene of common and durum wheat for detection of genetically modified wheat.

    PubMed

    Imai, Shinjiro; Tanaka, Keiko; Nishitsuji, Yasuyuki; Kikuchi, Yosuke; Matsuoka, Yasuyuki; Arami, Shin-Ichiro; Sato, Megumi; Haraguchi, Hiroyuki; Kurimoto, Youichi; Mano, Junichi; Furui, Satoshi; Kitta, Kazumi

    2012-01-01

    To develop a method for detecting GM wheat that may be marketed in the near future, we evaluated the proline-rich protein (PRP) gene as an endogenous reference gene of common wheat (Triticum aestivum L.) and durum wheat (Triticum durum L.). Real-time PCR analysis showed that only DNA of wheat was amplified and no amplification product was observed for phylogenetically related cereals, indicating that the PRP detection system is specific to wheat. The intensities of the amplification products and Ct values among all wheat samples used in this study were very similar, with no nonspecific or additional amplification, indicating that the PRP detection system has high sequence stability. The limit of detection was estimated at 5 haploid genome copies. The PRP region was demonstrated to be present as a single or double copy in the common wheat haploid genome. Furthermore, the PRP detection system showed a highly linear relationship between Ct values and the amount of plasmid DNA, indicating that an appropriate calibration curve could be constructed for quantitative detection of GM wheat. All these results indicate that the PRP gene is a suitable endogenous reference gene for PCR-based detection of GM wheat.

  7. Xylanase and β-xylosidase production by Aspergillus ochraceus: new perspectives for the application of wheat straw autohydrolysis liquor.

    PubMed

    Michelin, Michele; Polizeli, Maria de Lourdes T M; Ruzene, Denise S; Silva, Daniel P; Vicente, António A; Jorge, João A; Terenzi, Héctor F; Teixeira, José A

    2012-01-01

    The xylanase biosynthesis is induced by its substrate-xylan. The high xylan content in some wastes such as wheat residues (wheat bran and wheat straw) makes them accessible and cheap sources of inducers to be mainly applied in great volumes of fermentation, such as those of industrial bioreactors. Thus, in this work, the main proposal was incorporated in the nutrient medium wheat straw particles decomposed to soluble compounds (liquor) through treatment of lignocellulosic materials in autohydrolysis process, as a strategy to increase and undervalue xylanase production by Aspergillus ochraceus. The wheat straw autohydrolysis liquor produced in several conditions was used as a sole carbon source or with wheat bran. The best conditions for xylanase and β-xylosidase production were observed when A. ochraceus was cultivated with 1% wheat bran added of 10% wheat straw liquor (produced after 15 min of hydrothermal treatment) as carbon source. This substrate was more favorable when compared with xylan, wheat bran, and wheat straw autohydrolysis liquor used separately. The application of this substrate mixture in a stirred tank bioreactor indicated the possibility of scaling up the process to commercial production.

  8. [Three-dimensional morphological modeling and visualization of wheat root system].

    PubMed

    Tan, Feng; Tang, Liang; Hu, Jun-Cheng; Jiang, Hai-Yan; Cao, Wei-Xing; Zhu, Yan

    2011-01-01

    Crop three-dimensional (3D) morphological modeling and visualization is an important part of digital plant study. This paper aimed to develop a 3D morphological model of wheat root system based on the parameters of wheat root morphological features, and to realize the visualization of wheat root growth. According to the framework of visualization technology for wheat root growth, a 3D visualization model of wheat root axis, including root axis growth model, branch geometric model, and root axis curve model, was developed firstly. Then, by integrating root topology, the corresponding pixel was determined, and the whole wheat root system was three-dimensionally re-constructed by using the morphological feature parameters in the root morphological model. Finally, based on the platform of OpenGL, and by integrating the technologies of texture mapping, lighting rendering, and collision detection, the 3D visualization of wheat root growth was realized. The 3D output of wheat root system from the model was vivid, which could realize the 3D root system visualization of different wheat cultivars under different water regimes and nitrogen application rates. This study could lay a technical foundation for further development of an integral visualization system of wheat plant.

  9. Development of transgenic wheat (Triticum aestivum L.) expressing avidin gene conferring resistance to stored product insects.

    PubMed

    Abouseadaa, Heba H; Osman, Gamal H; Ramadan, Ahmed M; Hassanein, Sameh E; Abdelsattar, Mohamed T; Morsy, Yasser B; Alameldin, Hussien F; El-Ghareeb, Doaa K; Nour-Eldin, Hanan A; Salem, Reda; Gad, Adel A; Elkhodary, Soheir E; Shehata, Maher M; Mahfouz, Hala M; Eissa, Hala F; Bahieldin, Ahmed

    2015-07-22

    Wheat is considered the most important cereal crop all over the world. The wheat weevil Sitophilus granarius is a serious insect pests in much of the wheat growing area worldwide and is responsible for significant loss of yield. Avidin proteins has been proposed to function as plant defense agents against insect pests. A synthetic avidin gene was introduced into spring wheat (Triticum aestivum L.) cv. Giza 168 using a biolistic bombardment protocol. The presence and expression of the transgene in six selected T0 transgenic wheat lines were confirmed at the molecular level. Accumulation of avidin protein was detected in transgenic plants compared to non-transgenic plants. Avidin transgene was stably integrated, transcribed and translated as indicated by Southern blot, ELISA, and dot blot analyses, with a high level of expression in transgenic wheat seeds. However, no expression was detected in untransformed wheat seeds. Functional integrity of avidin was confirmed by insect bioassay. The results of bioassay using transgenic wheat plants challenged with wheat weevil revealed 100 % mortality of the insects reared on transgenic plants after 21 days. Transgenic wheat plants had improved resistance to Sitophilus granarius.

  10. [Freezing resistance and injury indices for different cultivars of winter-spring wheat in Huang-Huai-Hai Plain. I . Comparison of freezing resistance for different cultivars of winter-spring wheat during mid-winter period].

    PubMed

    Mu, Cheng-ying; Yang, Xiao-guang; Yang, Jie; Li, Ke-nan; Zheng, Dong-xiao

    2015-10-01

    The relationships between mortality rate and low temperature for different cultivars of winter-spring wheat during mid-winter period were identified through two-year outdoor potting experiments and indoor manually controlled freezing experiments. We defined the lethally critical temperature and the density of antifreeze capability when the mortality rate reached 10%, 20% and 50% for different cultivars of winter-spring wheat during mid-winter period. The strong-winterness wheat (Yanda 1817 and Jing 411) showed the best freezing resistance and the 50%-lethal temperatures (LT50) of these two cultivars were -21.5 °C and -21.2 °C, respectively. The freezing resistance of winterness wheat and weak-winternes wheat were worse than that of strong-winterness wheat. The LT50 of winterness wheat cultivars Nongda 211 and Nongda 5363 were -21.1 °C and -20.3 °C, while that of weak-winterness wheat cultivars Zheng 366 and Ping' an 8 were -18.5 °C and -18.4 °C , respectively. Springness wheat (Zheng 9023 and Yanzhan 4110) showed the worst freezing resistance, and the LT50 were -15.4 °C and -14.7 °C, respectively. When temperature declined to freezing injury occurred, mortality rate increment for weak-winterness wheat was the highest for each 1 °C decrease. The mortality rates of weak-winterness wheat cultivars Zheng 366 and Ping' an 8 increased by 16.8% and 25.8%, and that of winterness wheat cultivars Nongda 211 and Nongda 5363 increased by 14.7% and 18.9%. The mortality rate of strong-winterness wheat cultivars Yanda 1817 and Jing 411 increased by 15.4% and 13.1%, and that of springiness wheat cultivas Zheng 9023 and Yanzhan 4110 increased by 13.8% and 15.1%. Comparatively, if temperature decreased continuously after the occurrence of freezing injury, the weak-winterness wheat would suffer greater risk.

  11. Identification of changes in wheat (Triticum aestivum L.) seeds proteome in response to anti-trx s gene.

    PubMed

    Guo, Hongxiang; Zhang, Huizhen; Li, Yongchun; Ren, Jiangping; Wang, Xiang; Niu, Hongbin; Yin, Jun

    2011-01-01

    Thioredoxin h (trx h) is closely related to germination of cereal seeds. The cDNA sequences of the thioredoxin s (trx s) gene from Phalaris coerulescens and the thioredoxin h (trx h) gene from wheat are highly homologous, and their expression products have similar biological functions. Transgenic wheat had been formed after the antisense trx s was transferred into wheat, and it had been certified that the expression of trx h decreased in transgenic wheat, and transgenic wheat has high resistance to pre-harvest sprouting. Through analyzing the differential proteome of wheat seeds between transgenic wheat and wild type wheat, the mechanism of transgenic wheat seeds having high resistance to pre-harvest sprouting was studied in the present work. There were 36 differential proteins which had been identified by matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF-MS). All these differential proteins are involved in regulation of carbohydrates, esters, nucleic acid, proteins and energy metabolism, and biological stress. The quantitative real time PCR results of some differential proteins, such as trx h, heat shock protein 70, α-amylase, β-amylase, glucose-6-phosphate isomerase, 14-3-3 protein, S3-RNase, glyceraldehyde-3-phosphate dehydrogenase, and WRKY transcription factor 6, represented good correlation between transcripts and proteins. The biological functions of many differential proteins are consistent with the proposed role of trx h in wheat seeds. A possible model for the role of trx h in wheat seeds germination was proposed in this paper. These results will not only play an important role in clarifying the mechanism that transgenic wheat has high resistance to pre-harvest sprouting, but also provide further evidence for the role of trx h in germination of wheat seeds.

  12. Global wheat production potentials and management flexibility under the representative concentration pathways

    NASA Astrophysics Data System (ADS)

    Balkovič, Juraj; van der Velde, Marijn; Skalský, Rastislav; Xiong, Wei; Folberth, Christian; Khabarov, Nikolay; Smirnov, Alexey; Mueller, Nathaniel D.; Obersteiner, Michael

    2014-11-01

    Wheat is the third largest crop globally and an essential source of calories in human diets. Maintaining and increasing global wheat production is therefore strongly linked to food security. A large geographic variation in wheat yields across similar climates points to sizeable yield gaps in many nations, and indicates a regionally variable flexibility to increase wheat production. Wheat is particularly sensitive to a changing climate thus limiting management opportunities to enable (sustainable) intensification with potentially significant implications for future wheat production. We present a comprehensive global evaluation of future wheat yields and production under distinct Representative Concentration Pathways (RCPs) using the Environmental Policy Integrated Climate (EPIC) agro-ecosystem model. We project, in a geographically explicit manner, future wheat production pathways for rainfed and irrigated wheat systems. We explore agricultural management flexibility by quantifying the development of wheat yield potentials under current, rainfed, exploitable (given current irrigation infrastructure), and irrigated intensification levels. Globally, because of climate change, wheat production under conventional management (around the year 2000) would decrease across all RCPs by 37 to 52 and 54 to 103 Mt in the 2050s and 2090s, respectively. However, the exploitable and potential production gap will stay above 350 and 580 Mt, respectively, for all RCPs and time horizons, indicating that negative impacts of climate change can globally be offset by adequate intensification using currently existing irrigation infrastructure and nutrient additions. Future world wheat production on cropland already under cultivation can be increased by ~ 35% through intensified fertilization and ~ 50% through increased fertilization and extended irrigation, if sufficient water would be available. Significant potential can still be exploited, especially in rainfed wheat systems in Russia, Eastern Europe and North America.

  13. Exceptionally High Levels of Genetic Diversity in Wheat Curl Mite (Acari: Eriophyidae) Populations from Turkey.

    PubMed

    Szydło, W; Hein, G; Denizhan, E; Skoracka, A

    2015-08-01

    Recent research on the wheat curl mite species complex has revealed extensive genetic diversity that has distinguished several genetic lineages infesting bread wheat (Triticum aestivum L.) and other cereals worldwide. Turkey is the historical region of wheat and barley (Hordeum vulgare L.) domestication and diversification. The close relationship between these grasses and the wheat curl mite provoked the question of the genetic diversity of the wheat curl mite in this region. The scope of the study was to investigate genetic differentiation within the wheat curl mite species complex on grasses in Turkey. Twenty-one wheat curl mite populations from 16 grass species from nine genera (Agropyron sp., Aegilops sp., Bromus sp., Elymus sp., Eremopyrum sp., Hordeum sp., Poa sp., Secale sp., and Triticum sp.) were sampled in eastern and southeastern Turkey for genetic analyses. Two molecular markers were amplified: the cytochrome oxidase subunit I coding region of mtDNA (COI) and the D2 region of 28S rDNA. Phylogenetic analyses revealed high genetic variation of the wheat curl mite in Turkey, primarily on Bromus and Hordeum spp., and exceptionally high diversity of populations associated with bread wheat. Three wheat-infesting wheat curl mite lineages known to occur on other continents of the world, including North and South America, Australia and Europe, were found in Turkey, and at least two new genetic lineages were discovered. These regions of Turkey exhibit rich wheat curl mite diversity on native grass species. The possible implications for further studies on the wheat curl mite are discussed. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. Constitutive expression of a salinity-induced wheat WRKY transcription factor enhances salinity and ionic stress tolerance in transgenic Arabidopsis thaliana

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qin, Yuxiang, E-mail: yuxiangqin@126.com; Tian, Yanchen; Han, Lu

    Highlights: •A class II WRKY transcription factor, TaWRKY79 was isolated and characterized. •TaWRKY79 was induced by NaCl or abscisic acid. •843 bp regulatory segment was sufficient to respond to ABA or NaCl treatment. •TaWRKY79 enhanced salinity and ionic tolerance while reduced sensitivity to ABA. •TaWRKY79 increased salinity and ionic tolerance in an ABA-dependent pathway. -- Abstract: The isolation and characterization of TaWRKY79, a wheat class II WRKY transcription factor, is described. Its 1297 bp coding region includes a 987 bp long open reading frame. TaWRKY79 was induced by stressing seedlings with either NaCl or abscisic acid (ABA). When a fusionmore » between an 843 bp segment upstream of the TaWRKY79 coding sequence and GUS was introduced into Arabidopsis thaliana, GUS staining indicated that this upstream segment captured the sequence(s) required to respond to ABA or NaCl treatment. When TaWRKY79 was constitutively expressed as a transgene in A. thaliana, the transgenic plants showed an improved capacity to extend their primary root in the presence of either 100 mM NaCl, 10 mM LiCl or 2 μM ABA. The inference was that TaWRKY79 enhanced the level of tolerance to both salinity and ionic stress, while reducing the level of sensitivity to ABA. The ABA-related genes ABA1, ABA2 ABI1 and ABI5 were all up-regulated in the TaWRKY79 transgenic plants, suggesting that the transcription factor operates in an ABA-dependent pathway.« less

  15. Mineral Composition of Organically Grown Wheat Genotypes: Contribution to Daily Minerals Intake

    PubMed Central

    Hussain, Abrar; Larsson, Hans; Kuktaite, Ramune; Johansson, Eva

    2010-01-01

    In this study, 321 winter and spring wheat genotypes were analysed for twelve nutritionally important minerals (B, Cu, Fe, Se, Mg, Zn, Ca, Mn, Mo, P, S and K). Some of the genotypes used were from multiple locations and years, resulting in a total number of 493 samples. Investigated genotypes were divided into six genotype groups i.e., selections, old landraces, primitive wheat, spelt, old cultivars and cultivars. For some of the investigated minerals higher concentrations were observed in selections, primitive wheat, and old cultivars as compared to more modern wheat material, e.g., cultivars and spelt wheat. Location was found to have a significant effect on mineral concentration for all genotype groups, although for primitive wheat, genotype had a higher impact than location. Spring wheat was observed to have significantly higher values for B, Cu, Fe, Zn, Ca, S and K as compared to winter wheat. Higher levels of several minerals were observed in the present study, as compared to previous studies carried out in inorganic systems, indicating that organic conditions with suitable genotypes may enhance mineral concentration in wheat grain. This study also showed that a very high mineral concentration, close to daily requirements, can be produced by growing specific primitive wheat genotypes in an organic farming system. Thus, by selecting genotypes for further breeding, nutritional value of the wheat flour for human consumption can be improved. PMID:20948934

  16. 21 CFR 137.195 - Crushed wheat.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Crushed wheat. 137.195 Section 137.195 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Related Products § 137.195 Crushed wheat. Crushed wheat, coarse ground wheat, is the food prepared by so...

  17. Wheat streak mosaic virus resistance in eight wheat germplasm lines

    USDA-ARS?s Scientific Manuscript database

    Wheat Streak Mosaic Virus (WSMV) disease is an important disease in wheat. Use of resistant cultivars is the most effective approach to reduce the yield losses caused by the disease. To identify new sources of resistance to WSMV, eight resistant wheat lines that were selected based on the results fr...

  18. Weather, disease, and wheat breeding effects on Kansas wheat varietal yields, 1985 to 2011

    USDA-ARS?s Scientific Manuscript database

    Wheat (Triticum aestivum L.) yields in Kansas have increased due to wheat breeding and improved agronomic practices, but are subject to climate and disease challenges. The objective of this research is to quantify the impact of weather, disease, and genetic improvement on wheat yields of varieties g...

  19. Spatially discriminating Russian wheat aphid induced plant stress from other wheat stressing factors

    USDA-ARS?s Scientific Manuscript database

    The Russian wheat aphid (RWA) Diuraphis noxia (Mordvilko) is a major pest of winter wheat and barley in the United States. RWA induces stress to the wheat crop by damaging plant foliage, lowering the greenness of plants, and affecting productivity. Multispectral remote sensing is effective at dete...

  20. Wheat streak mosaic virus coat protein is a determinant for vector transmission by the wheat curl mite

    USDA-ARS?s Scientific Manuscript database

    Wheat streak mosaic virus (WSMV; genus Tritimovirus; family Potyviridae), is transmitted by the wheat curl mite (Aceria tosichella Keifer). The requirement of coat protein (CP) for WSMV transmission by the wheat curl mite was examined using a series of viable deletion and point mutations. Mite trans...

  1. Inheritance and genetic mapping of Russian Wheat Aphid Resistance in Iranian wheat landrace accession PI 626580

    USDA-ARS?s Scientific Manuscript database

    Russian wheat aphid (RWA), Diuraphis noxia (Kurdjumov), is a significant insect pest of wheat (Triticum aestivum L.) and has had a major economic impact worldwide, especially on winter wheat in the western United States. Development of resistant cultivars remains the most viable method for RWA contr...

  2. Wheat Quality Council, Hard Spring Wheat Technical Committee, 2015 Crop

    USDA-ARS?s Scientific Manuscript database

    Nine experimental lines of hard spring wheat were grown at up to five locations in 2015 and evaluated for kernel, milling, and bread baking quality against the check variety Glenn. Wheat samples were submitted through the Wheat Quality Council and processed and milled at the USDA-ARS Hard Red Sprin...

  3. Wheat Quality Council, Hard Spring Wheat Technical Committee, 2017 Crop

    USDA-ARS?s Scientific Manuscript database

    Nine experimental lines of hard spring wheat were grown at up to six locations in 2017 and evaluated for kernel, milling, and bread baking quality against the check variety Glenn. Wheat samples were submitted through the Wheat Quality Council and processed and milled at the USDA-ARS Hard Red Spring...

  4. Wheat Quality Council, Hard Spring Wheat Technical Committee, 2014 Crop

    USDA-ARS?s Scientific Manuscript database

    Eleven experimental lines of hard spring wheat were grown at up to five locations in 2014 and evaluated for kernel, milling, and bread baking quality against the check variety Glenn. Wheat samples were submitted through the Wheat Quality Council and processed and milled at the USDA-ARS Hard Red Spr...

  5. Registration of “Pritchett” soft white winter club wheat

    USDA-ARS?s Scientific Manuscript database

    Soft white club winter wheat (Triticium aestivum L. ssp. compactum) is a unique component of the wheat production in the PNW, comprising 6-10% of the wheat crop. It is valued for milling and baking functionality and marketed for export in a 20-30% blend with soft white wheat as Western White. Our g...

  6. 77 FR 21685 - United States Standards for Wheat

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-11

    ... will help to facilitate the marketing of wheat. DATES: Comments must be received on or before June 11... marketing of wheat and define U.S. wheat quality and commonly used industry terms in the domestic and global marketplace; contain basic principles governing the application of the wheat standards, such as the type of...

  7. Effect of Protein Molecular Weight Distribution on Kernel and Baking Characteristics and Intra-varietal Variation in Hard Spring Wheats

    USDA-ARS?s Scientific Manuscript database

    Specific wheat protein fractions are known to have distinct associations with wheat quality traits. Research was conducted on 10 hard spring wheat cultivars grown at two North Dakota locations to identify protein fractions that affected wheat kernel characteristics and breadmaking quality. SDS ext...

  8. 21 CFR 137.205 - Bromated whole wheat flour.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Bromated whole wheat flour. 137.205 Section 137... Cereal Flours and Related Products § 137.205 Bromated whole wheat flour. Bromated whole wheat flour... of ingredients, prescribed for whole wheat flour by § 137.200, except that potassium bromate is added...

  9. 7 CFR 782.17 - Wheat purchased for resale.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 7 2010-01-01 2010-01-01 false Wheat purchased for resale. 782.17 Section 782.17... § 782.17 Wheat purchased for resale. (a) This section applies to an importer or subsequent buyer who imports or purchases Canadian-produced wheat for the purpose of reselling the wheat. (b) The importer or...

  10. 77 FR 39962 - Difenzoquat; Proposed Data Call-in Order for Pesticide Tolerance

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-06

    ... wheat (40 CFR 180.369). Since there are currently no domestic registrations for difenzoquat, these...; residue data for wheat hay, wheat forage, and barley hay; and an immunotoxicity study. These data [[Page... Field Trials (860.1500)--(wheat hay, wheat forage, and barley hay) Rationale. EPA does not have crop...

  11. Evaluation and reselection of wheat resistance to Russian wheat aphid biotype 2

    USDA-ARS?s Scientific Manuscript database

    Russian wheat aphid (RWA, Diuraphis noxia, Mordvilko) biotype 2 (RWA2) is virulent to most known RWA resistance genes and severely threatens wheat production in the hard winter wheat area of the US western Great Plains. We determined RWA2 reactions of 386 cultivars from China, 227 advanced breeding...

  12. Defatted wheat germ application: Influence on cookies' properties with regard to its particle size and dough moisture content.

    PubMed

    Petrović, Jovana; Rakić, Dušan; Fišteš, Aleksandar; Pajin, Biljana; Lončarević, Ivana; Tomović, Vladimir; Zarić, Danica

    2017-10-01

    The introduction of agro-food industry by-products rich in bioactive compounds represents major challenge in food industry sector. The influence of wheat germ particle size (<150 µm, 150-1000 µm, and 800-2000 µm), wheat germ content (5, 10, and 15%), and dough moisture content (20, 22, and 24%) on chemical, textural, and sensory characteristics of cookies was investigated using the Box-Behnken experimental design. The substitution of wheat flour with wheat germ increased the protein, fat, mineral, and fiber content of the cookies. The particle size of wheat germ affected the textural properties of cookies. As the particle size of wheat germ increased, the hardness of cookies decreased. The color of the cookie was most influenced by the interaction of dough moisture content and wheat germ particle size. Wheat germ level up to 15% had no significant effect on the sensory characteristics of cookies. A suitable combination of defatted wheat germ level, its particle size, and dough moisture content can improve the nutritional value of cookies, without causing a negative effect on the cookies' sensory characteristics.

  13. Comparison of Enzyme-Linked Immunosorbent Assay, Surface Plasmon Resonance and Biolayer Interferometry for Screening of Deoxynivalenol in Wheat and Wheat Dust

    PubMed Central

    Sanders, Melanie; McPartlin, Daniel; Moran, Kara; Guo, Yirong; Eeckhout, Mia; O’Kennedy, Richard; De Saeger, Sarah; Maragos, Chris

    2016-01-01

    A sample preparation method was developed for the screening of deoxynivalenol (DON) in wheat and wheat dust. Extraction was carried out with water and was successful due to the polar character of DON. For detection, an enzyme-linked immunosorbent assay (ELISA) was compared to the sensor-based techniques of surface plasmon resonance (SPR) and biolayer interferometry (BLI) in terms of sensitivity, affinity and matrix effect. The matrix effects from wheat and wheat dust using SPR were too high to further use this screenings method. The preferred ELISA and BLI methods were validated according to the criteria established in Commission Regulation 519/2014/EC and Commission Decision 2002/657/EC. A small survey was executed on 16 wheat lots and their corresponding dust samples using the validated ELISA method. A linear correlation (r = 0.889) was found for the DON concentration in dust versus the DON concentration in wheat (LOD wheat: 233 μg/kg, LOD wheat dust: 458 μg/kg). PMID:27077883

  14. Effects of wheat source and particle size in meal and pelleted diets on finishing pig growth performance, carcass characteristics, and nutrient digestibility.

    PubMed

    De Jong, J A; DeRouchey, J M; Tokach, M D; Dritz, S S; Goodband, R D; Paulk, C B; Woodworth, J C; Jones, C K; Stark, C R

    2016-08-01

    Two experiments were conducted to test the effects of wheat source and particle size in meal and pelleted diets on finishing pig performance, carcass characteristics, and diet digestibility. In Exp. 1, pigs (PIC 327 × 1050; = 288; initially 43.8 kg BW) were balanced by initial BW and randomly allotted to 1 of 3 treatments with 8 pigs per pen (4 barrows and 4 gilts) and 12 pens per treatment. The 3 dietary treatments were hard red winter wheat ground with a hammer mill to 728, 579, or 326 μm, respectively. From d 0 to 40, decreasing wheat particle size decreased (linear, < 0.033) ADFI but improved (quadratic, < 0.014) G:F. From d 40 to 83, decreasing wheat particle size increased (quadratic, < 0.018) ADG and improved (linear, < 0.002) G:F. Overall from d 0 to 83, reducing wheat particle size improved (linear, < 0.002) G:F. In Exp. 2, pigs (PIC 327 × 1050; = 576; initially 43.4 ± 0.02 kg BW) were used to determine the effects of wheat source and particle size of pelleted diets on finishing pig growth performance and carcass characteristics. Pigs were randomly allotted to pens, and pens of pigs were balanced by initial BW and randomly allotted to 1 of 6 dietary treatments with 12 replications per treatment and 8 pigs/pen. The experimental diets used the same wheat-soybean meal formulation, with the 6 treatments using hard red winter or soft white winter wheat that were processed to 245, 465, and 693 μm and 258, 402, and 710 μm, respectively. All diets were pelleted. Overall, feeding hard red winter wheat increased ( < 0.05) ADG and ADFI when compared with soft white winter wheat. There was a tendency ( < 0.10) for a quadratic particle size × wheat source interaction for ADG, ADFI, and both DM and GE digestibility, as they were decreased for pigs fed 465-μm hard red winter wheat and were greatest for pigs fed 402-μm soft white winter wheat. There were no main or interactive effects of particle size or wheat source on carcass characteristics. In summary, fine grinding hard red winter wheat fed in meal form improved G:F and nutrient digestibility, whereas reducing particle size of wheat from approximately 700 to 250 μm in pelleted diets did not influence growth or carcass traits. Finally, feeding hard red winter wheat improved ADG and ADFI compared with feeding soft white winter wheat.

  15. Phytate: impact on environment and human nutrition. A challenge for molecular breeding*

    PubMed Central

    Bohn, Lisbeth; Meyer, Anne S.; Rasmussen, Søren K.

    2008-01-01

    Phytic acid (PA) is the primary storage compound of phosphorus in seeds accounting for up to 80% of the total seed phosphorus and contributing as much as 1.5% to the seed dry weight. The negatively charged phosphate in PA strongly binds to metallic cations of Ca, Fe, K, Mg, Mn and Zn making them insoluble and thus unavailable as nutritional factors. Phytate mainly accumulates in protein storage vacuoles as globoids, predominantly located in the aleurone layer (wheat, barley and rice) or in the embryo (maize). During germination, phytate is hydrolysed by endogenous phytase(s) and other phosphatases to release phosphate, inositol and micronutrients to support the emerging seedling. PA and its derivatives are also implicated in RNA export, DNA repair, signalling, endocytosis and cell vesicular trafficking. Our recent studies on purification of phytate globoids, their mineral composition and dephytinization by wheat phytase will be discussed. Biochemical data for purified and characterized phytases isolated from more than 23 plant species are presented, the dephosphorylation pathways of phytic acid by different classes of phytases are compared, and the application of phytase in food and feed is discussed. PMID:18357620

  16. Texture analysis with statistical methods for wheat ear extraction

    NASA Astrophysics Data System (ADS)

    Bakhouche, M.; Cointault, F.; Gouton, P.

    2007-01-01

    In agronomic domain, the simplification of crop counting, necessary for yield prediction and agronomic studies, is an important project for technical institutes such as Arvalis. Although the main objective of our global project is to conceive a mobile robot for natural image acquisition directly in a field, Arvalis has proposed us first to detect by image processing the number of wheat ears in images before to count them, which will allow to obtain the first component of the yield. In this paper we compare different texture image segmentation techniques based on feature extraction by first and higher order statistical methods which have been applied on our images. The extracted features are used for unsupervised pixel classification to obtain the different classes in the image. So, the K-means algorithm is implemented before the choice of a threshold to highlight the ears. Three methods have been tested in this feasibility study with very average error of 6%. Although the evaluation of the quality of the detection is visually done, automatic evaluation algorithms are currently implementing. Moreover, other statistical methods of higher order will be implemented in the future jointly with methods based on spatio-frequential transforms and specific filtering.

  17. Inhibition of Efflux Transporter-Mediated Fungicide Resistance in Pyrenophora tritici-repentis by a Derivative of 4′-Hydroxyflavone and Enhancement of Fungicide Activity

    PubMed Central

    Reimann, Sven; Deising, Holger B.

    2005-01-01

    Populations of the causal agent of wheat tan spot, Pyrenophora tritici-repentis, that are collected from fields frequently treated with reduced fungicide concentrations have reduced sensitivity to strobilurin fungicides and azole fungicides (C14-demethylase inhibitors). Energy-dependent efflux transporter activity can be induced under field conditions and after in vitro application of sublethal amounts of fungicides. Efflux transporters can mediate cross-resistance to a number of fungicides that belong to different chemical classes and have different modes of action. Resistant isolates can grow on substrata amended with fungicides and can infect plants treated with fungicides at levels above recommended field concentrations. We identified the hydroxyflavone derivative 2-(4-ethoxy-phenyl)-chromen-4-one as a potent inhibitor of energy-dependent fungicide efflux transporters in P. tritici-repentis. Application of this compound in combination with fungicides shifted fungicide-resistant P. tritici-repentis isolates back to normal sensitivity levels and prevented infection of wheat leaves. These results highlight the role of energy-dependent efflux transporters in fungicide resistance and could enable a novel disease management strategy based on the inhibition of fungicide efflux to be developed. PMID:15933029

  18. Physico-chemical characteristics, nutrient composition and consumer acceptability of wheat varieties grown under organic and inorganic farming conditions.

    PubMed

    Nitika; Punia, Darshan; Khetarpaul, N

    2008-05-01

    The aim of the investigation was to analyse physico-chemical characteristics, nutrient composition and consumer acceptability of wheat varieties grown under organic and inorganic farming conditions. The seeds of five varieties of wheat (C-306, WH-283, WH-711, WH-896 and WH-912) grown under organic and inorganic farming conditions were ground in a Junior Mill to pass through 60-mesh sieves and were stored in air-tight containers until use. Standard methods were used to estimate the physico-chemical characteristics and nutrient composition. Consumer acceptability was studied by carrying out the organoleptic evaluation of wheat chapatis, a common item in diets of the Indian population. The results of study revealed that inorganically grown wheat varieties had significantly higher 1,000-grain weight and more grain hardness as compared with organically grown wheat varieties, and a non-significant difference was observed in their gluten content, water absorption capacity and hydration capacity. On average, wheat varieties grown under inorganic conditions contained significantly higher protein and crude fibre content as compared with varieties grown under organic conditions. WH-711 variety had maximum protein content. Protein fractions (i.e. albumin, globulin, prolamin and glutelin) were significantly higher in varieties grown under inorganic conditions than those of varieties grown under organic conditions. The variety WH-711 had the highest total soluble sugars and variety WH-912 had the highest starch content. Phytic acid and polyphenol contents were significantly higher in inorganically grown wheat varieties as compared with organically grown wheat varieties. The wheat varieties grown under organic conditions had significantly higher protein and starch digestibility than the wheat grown under inorganic conditions. The data revealed that there were significant differences in total calcium and phosphorus contents of wheat varieties grown under organic and inorganic conditions. The extractability of phosphorus and magnesium was significantly higher in wheat varieties grown under inorganic conditions as compared with grown under organic conditions. A significant difference was observed for the total zinc content of wheat varieties grown under organic and inorganic conditions. The total copper and manganese contents were significantly higher in inorganically grown wheat varieties as compared with organically grown wheat varieties. The organoleptic evaluation of chapatti prepared from varieties WH-711 and WH-912 both grown under organic and inorganic conditions showed no significant difference in their sensory attributes for colour, appearance, flavour, texture, taste and overall acceptability. The nutrient composition of both organic and inorganic wheat varieties is comparable and protein digestibility is higher in wheat varieties grown under organic conditions. The people of North India, where wheat is a staple cereal, can therefore be encouraged to use organically grown wheat varieties as they are free from hazardous effects of synthetic pesticides/fertilizers.

  19. Expression of a potato antimicrobial peptide SN1 increases resistance to take-all pathogen Gaeumannomyces graminis var. tritici in transgenic wheat.

    PubMed

    Rong, Wei; Qi, Lin; Wang, Jingfen; Du, Lipu; Xu, Huijun; Wang, Aiyun; Zhang, Zengyan

    2013-08-01

    Take-all, caused by soil-borne fungus Gaeumannomyces graminis var. tritici (Ggt), is a devastating root disease of wheat (Triticum aestivum) worldwide. Breeding resistant wheat cultivars is the most promising and reliable approach to protect wheat from take-all. Currently, no resistant wheat germplasm is available to breed cultivars using traditional methods. In this study, gene transformation was carried out using Snakin-1 (SN1) gene isolated from potato (Solanum tuberosum) because the peptide shows broad-spectrum antimicrobial activity in vitro. Purified SN1 peptide also inhibits in vitro the growth of Ggt mycelia. By bombardment-mediated method, the gene SN1 was transformed into Chinese wheat cultivar Yangmai 18 to generate SN1 transgenic wheat lines, which were used to assess the effectiveness of the SN1 peptide in protecting wheat from Ggt. Genomic PCR and Southern blot analyses indicated that the alien gene SN1 was integrated into the genomes of five transgenic wheat lines and heritable from T₀ to T₄ progeny. Reverse transcription-PCR and Western blot analyses showed that the introduced SN1 gene was transcribed and highly expressed in the five transgenic wheat lines. Following challenging with Ggt, disease test results showed that compared to segregants lacking the transgene and untransformed wheat plants, these five transgenic wheat lines expressing SN1 displayed significantly enhanced resistance to take-all. These results suggest that SN1 may be a potentially transgenic tool for improving the take-all resistance of wheat.

  20. Use of a post-production fractionation process improves the nutritional value of wheat distillers grains with solubles for young broiler chicks

    PubMed Central

    2013-01-01

    Background Post-production fractionation of wheat distillers grains with solubles (DDGS) increases their crude protein content and reduces their fiber content. This experiment was conducted to determine the effects of fractionation of wheat DDGS on apparent total tract digestibility (ATTD) and performance when fed to broiler chicks (0–21 d). Methods A total of 150, day-old, male broiler chicks (Ross-308 line; Lilydale Hatchery, Wynyard, Saskatchewan) weighing an average of 49.6 ± 0.8 g were assigned to one of five dietary treatments in a completely randomized design. The control diet was based on wheat and soybean meal and contained 20% regular wheat DDGS. The experimental diets contained 5, 10, 15 or 20% fractionated wheat DDGS added at the expense of regular wheat DDGS. Results The ATTD of dry matter and gross energy were linearly increased (P < 0.01) as the level of fractionated wheat DDGS in the diet increased. Nitrogen retention was unaffected by level of fractionated wheat DDGS (P > 0.05). Weight gain increased linearly (P = 0.05) as the level of fractionated wheat DDGS in the diet increased. Feed intake, feed conversion and mortality were unaffected by level of fractionated wheat DDGS in the diet (P > 0.05). Conclusions Post-production fractionation of wheat DDGS improves their nutritional value by lowering their fiber content and increasing their content of crude protein and energy. These changes in chemical composition supported increased weight gain of broilers fed wheat DDGS. PMID:23607764

  1. Patterns of homoeologous gene expression shown by RNA sequencing in hexaploid bread wheat

    PubMed Central

    2014-01-01

    Background Bread wheat (Triticum aestivum) has a large, complex and hexaploid genome consisting of A, B and D homoeologous chromosome sets. Therefore each wheat gene potentially exists as a trio of A, B and D homoeoloci, each of which may contribute differentially to wheat phenotypes. We describe a novel approach combining wheat cytogenetic resources (chromosome substitution ‘nullisomic-tetrasomic’ lines) with next generation deep sequencing of gene transcripts (RNA-Seq), to directly and accurately identify homoeologue-specific single nucleotide variants and quantify the relative contribution of individual homoeoloci to gene expression. Results We discover, based on a sample comprising ~5-10% of the total wheat gene content, that at least 45% of wheat genes are expressed from all three distinct homoeoloci. Most of these genes show strikingly biased expression patterns in which expression is dominated by a single homoeolocus. The remaining ~55% of wheat genes are expressed from either one or two homoeoloci only, through a combination of extensive transcriptional silencing and homoeolocus loss. Conclusions We conclude that wheat is tending towards functional diploidy, through a variety of mechanisms causing single homoeoloci to become the predominant source of gene transcripts. This discovery has profound consequences for wheat breeding and our understanding of wheat evolution. PMID:24726045

  2. Influence of stripe rust infection on the photosynthetic characteristics and antioxidant system of susceptible and resistant wheat cultivars at the adult plant stage

    PubMed Central

    Chen, Yang-Er; Cui, Jun-Mei; Su, Yan-Qiu; Yuan, Shu; Yuan, Ming; Zhang, Huai-Yu

    2015-01-01

    Wheat stripe rust (Puccinia striiformis f. sp. tritici, Pst), is one of the most serious diseases of wheat (Triticum aestivum L.) worldwide. To gain a better understanding of the protective mechanism against stripe rust at the adult plant stage, the differences in photosystem II and antioxidant enzymatic systems between susceptible and resistant wheat in response to stripe rust disease (P. striiformis) were investigated. We found that chlorophyll fluorescence and the activities of the antioxidant enzymes were higher in resistant wheat than in susceptible wheat after stripe rust infection. Compared with the susceptible wheat, the resistant wheat accumulated a higher level of D1 protein and a lower level of reactive oxygen species after infection. Furthermore, our results demonstrate that D1 and light-harvesting complex II (LHCII) phosphorylation are involved in the resistance to stripe rust in wheat. The CP29 protein was phosphorylated under stripe rust infection, like its phosphorylation in other monocots under environmental stresses. More extensive damages occur on the thylakoid membranes in the susceptible wheat compared with the resistant wheat. The findings provide evidence that thylakoid protein phosphorylation and antioxidant enzyme systems play important roles in plant responses and defense to biotic stress. PMID:26442087

  3. Influence of stripe rust infection on the photosynthetic characteristics and antioxidant system of susceptible and resistant wheat cultivars at the adult plant stage.

    PubMed

    Chen, Yang-Er; Cui, Jun-Mei; Su, Yan-Qiu; Yuan, Shu; Yuan, Ming; Zhang, Huai-Yu

    2015-01-01

    Wheat stripe rust (Puccinia striiformis f. sp. tritici, Pst), is one of the most serious diseases of wheat (Triticum aestivum L.) worldwide. To gain a better understanding of the protective mechanism against stripe rust at the adult plant stage, the differences in photosystem II and antioxidant enzymatic systems between susceptible and resistant wheat in response to stripe rust disease (P. striiformis) were investigated. We found that chlorophyll fluorescence and the activities of the antioxidant enzymes were higher in resistant wheat than in susceptible wheat after stripe rust infection. Compared with the susceptible wheat, the resistant wheat accumulated a higher level of D1 protein and a lower level of reactive oxygen species after infection. Furthermore, our results demonstrate that D1 and light-harvesting complex II (LHCII) phosphorylation are involved in the resistance to stripe rust in wheat. The CP29 protein was phosphorylated under stripe rust infection, like its phosphorylation in other monocots under environmental stresses. More extensive damages occur on the thylakoid membranes in the susceptible wheat compared with the resistant wheat. The findings provide evidence that thylakoid protein phosphorylation and antioxidant enzyme systems play important roles in plant responses and defense to biotic stress.

  4. Diabetes and Celiac Disease

    MedlinePlus

    ... the ingestion of gluten (a protein found in wheat, rye and barley) in susceptible individuals. This response ... Malt and Malt Extract Rye Semolina Spelt Triticale Wheat Wheat Germ Wheat Starch Gluten Intolerance Group (GIG) ...

  5. Association study of resistance to soil-borne wheat mosaic virus (SBWMV) in U.S. winter wheat

    USDA-ARS?s Scientific Manuscript database

    Soil-borne wheat mosaic virus (SBWMV) is one of the most important winter wheat pathogens worldwide. To identify genes for resistance to the virus in U.S. winter wheat, association study was conducted using a selected panel of 205 elite experimental lines and cultivars from U.S. hard and soft winter...

  6. Genome-wide association study reveals genetic architecture of coleoptile length in wheat

    USDA-ARS?s Scientific Manuscript database

    Wheat cultivars with long coleoptiles are preferred in wheat growing regions where deep planting is practiced, whereas the wide use in wheat cultivars of GA-insensitive dwarfing genes, Rht-B1b and Rht-D1b, makes it a challenging task to breed dwarf wheat cultivars with long coleoptiles. To understa...

  7. Mapping QTL for resistance to stripe rust in spring wheat PI 192252 and winter wheat Druchamp

    USDA-ARS?s Scientific Manuscript database

    Stripe rust, caused by Puccinia striiformis f. sp. tritici, is an important disease of wheat worldwide. High-temperature adult-plant (HTAP) resistance has proven to be durable, but may not be adequate. Spring wheat PI 192252 and winter wheat Druchamp have high-levels of HTAP resistance. To elucidate...

  8. A novel retrotransposon inserted in the dominant Vm-B1 allele confers spring growth habit in tetraploid wheat (Triticum turgidum L.)

    USDA-ARS?s Scientific Manuscript database

    Wheat is traditionally divided into winter and spring wheat that either has or lacks a vernalization requirement. In this study, a doubled haploid (DH) population derived from a cross between two spring tetraploid wheat (Triticum turgidum L.) genotypes, durum ‘Lebsock’ and Persian wheat accession PI...

  9. The influence of soft kernel texture on the flour, water absorption, rheology, and baking quality of durum wheat

    USDA-ARS?s Scientific Manuscript database

    Durum (T. turgidum subsp. durum) wheat production worldwide is substantially less than that of common wheat (Triticum aestivum). Durum kernels are extremely hard; leading to most durum wheat being milled into semolina. Durum wheat production is limited in part due to the relatively limited end-user ...

  10. Safeguarding world wheat and barley production against Russian wheat aphid: An international pre-breeding initiative

    USDA-ARS?s Scientific Manuscript database

    The Russian wheat aphid (RWA), Diuraphis noxia, is one of the most damaging insect pests of wheat and barley throughout the World. This aphid, although is not yet present in Australia, is extremely damaging with up to 70% yield loses in wheat and barley producing lands, causing significant financia...

  11. Dissection of the multigenic wheat stem rust resistance present in the Montenegrin spring wheat accession PI 362698

    USDA-ARS?s Scientific Manuscript database

    Research to identify and characterize stem rust resistance genes in common wheat, Triticum aestivum, has been stimulated by the emergence of Ug99-lineage races of the wheat stem rust pathogen, Puccinia graminis f. sp. tritici (Pgt), in Eastern Africa. The Montenegrin spring wheat landrace PI 362698 ...

  12. Genetically divergent types of the wheat leaf fungus Puccinia triticina in Ethiopia, a center of tetraploid wheat diversity

    USDA-ARS?s Scientific Manuscript database

    Collections of Puccinia triticina, the wheat leaf rust fungus, were obtained from tetraploid and hexaploid wheat in the central highlands of Ethiopia, and a smaller number from Kenya from 2011 to 2013, in order to determine the genetic diversity of this wheat pathogen in a center of host diversity. ...

  13. Resistance among U.S. wheat Triticum aestivum cultivars to the wheat pathotype of Magnaporthe oryzae

    USDA-ARS?s Scientific Manuscript database

    Magnaporthe oryzae is the causal agent of blast on several graminaceous plants. The M. oryzae population causing wheat blast has not been found outside South America. U.S. wheat production is at risk to this pathogen if introduced and established. Proactive testing of US wheat cultivars for their re...

  14. Enriching and understanding the wheat B genome by meiotic homoeologous recombination

    USDA-ARS?s Scientific Manuscript database

    Wheat, including common wheat (Triticum aestivum, 2n=6x=42, AABBDD) and durum wheat (T. turgidum ssp. durum, 2n=4x=28, AABB), contains three homoeologous subgenomes (A, B, and D) originated from three diploid ancestors. The wild einkorn wheat T. urartu (2n=2x=14, AA) contributed subgenome A and wild...

  15. Molecular markers linked to genes important for Hard Winter Wheat production and marketing in the U.S. Great Plains

    USDA-ARS?s Scientific Manuscript database

    Biotic stresses including diseases [leaf, stem and stripe rusts, and wheat streak mosaic virus (WSMV)] and insects [greenbug (GB), Hessian fly (Hf), Russian wheat aphid (RWA) and wheat curl mite (WCM)] significantly affect grain yield and end-use quality of hard winter wheat (HWW, Triticum aestivum ...

  16. 'Velva' spring wheat: An adapted cultivar to north-central plains of the United States with high agronomic and quality performance

    USDA-ARS?s Scientific Manuscript database

    Spring wheat (Triticum aestivum L.) growers and industry value adapted wheat cultivars with high quality attributes, essential criteria for maintaining wheat as a competitive crop in the spring wheat growing region of the United States. To address this goal, the breeding program at North Dakota Sta...

  17. 21 CFR 139.140 - Wheat and soy macaroni products.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Wheat and soy macaroni products. 139.140 Section... Macaroni and Noodle Products § 139.140 Wheat and soy macaroni products. (a) Wheat and soy macaroni products... percent of the combined weight of the wheat and soy ingredients used (the soy flour used is made from heat...

  18. 21 CFR 139.180 - Wheat and soy noodle products.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Wheat and soy noodle products. 139.180 Section 139... and Noodle Products § 139.180 Wheat and soy noodle products. (a) Wheat and soy noodle products are the... wheat and soy ingredients used (the soy flour used is made from heat-processed, dehulled soybeans, with...

  19. Total phenolics, flavonoids, antioxidant activity, crude fibre and digestibility in non-traditional wheat flakes and muesli.

    PubMed

    Sumczynski, Daniela; Bubelova, Zuzana; Sneyd, Jan; Erb-Weber, Susanne; Mlcek, Jiri

    2015-05-01

    The five different types of muesli composed of non-traditional wheat flakes were prepared and analysed. Dickkopf wheat, red wheat, kamut and spelt were compared with commercial wheat flakes. Wheat flakes and muesli were assessed for basic analyses (dry matter, ash, protein, starch and fat content), total phenolic and flavonoid content, antioxidant activity (ABTS and DPPH assays), crude fibre content and in vitro digestibility. Furthermore, sensory evaluation of muesli involving scale and ranking preference tests was provided. Flakes and muesli made from Dickkopf wheat and red wheat showed the highest total phenolic and flavonoid content and, consequently, the highest antioxidant activity. Moreover, these cereals were high in crude fibre and thus were less digestible. On the other hand, the lowest total phenolic and flavonoid contents and antioxidant activity were determined in commercial flakes and muesli produced from these flakes. The flakes made from non-traditional wheat were sensorially comparable to commercial products. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Coproduction of xylose, lignosulfonate and ethanol from wheat straw.

    PubMed

    Zhu, Shengdong; Huang, Wangxiang; Huang, Wenjing; Wang, Ke; Chen, Qiming; Wu, Yuanxin

    2015-06-01

    A novel integrated process to coproduce xylose, lignosulfonate and ethanol from wheat straw was investigated. Firstly, wheat straw was treated by dilute sulfuric acid and xylose was recovered from its hydrolyzate. Its optimal conditions were 1.0wt% sulfuric acid, 10% (w/v) wheat straw loading, 100°C, and 2h. Then the acid treated wheat straw was treated by sulfomethylation reagent and its hydrolyzate containing lignosulfonate was directly recovered. Its optimal conditions were 150°C, 15% (w/v) acid treated wheat straw loading, and 5h. Finally, the two-step treated wheat straw was converted to ethanol through enzymatic hydrolysis and microbial fermentation. Under optimal conditions, 1kg wheat straw could produce 0.225kg xylose with 95% purity, 4.16kg hydrolyzate of sulfomethylation treatment containing 5.5% lignosulfonate, 0.183kg ethanol and 0.05kg lignin residue. Compared to present technology, this process is a potential economically profitable wheat straw biorefinery. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Abiotic Stress Signaling in Wheat – An Inclusive Overview of Hormonal Interactions During Abiotic Stress Responses in Wheat

    PubMed Central

    Abhinandan, Kumar; Skori, Logan; Stanic, Matija; Hickerson, Neil M. N.; Jamshed, Muhammad; Samuel, Marcus A.

    2018-01-01

    Rapid global warming directly impacts agricultural productivity and poses a major challenge to the present-day agriculture. Recent climate change models predict severe losses in crop production worldwide due to the changing environment, and in wheat, this can be as large as 42 Mt/°C rise in temperature. Although wheat occupies the largest total harvested area (38.8%) among the cereals including rice and maize, its total productivity remains the lowest. The major production losses in wheat are caused more by abiotic stresses such as drought, salinity, and high temperature than by biotic insults. Thus, understanding the effects of these stresses becomes indispensable for wheat improvement programs which have depended mainly on the genetic variations present in the wheat genome through conventional breeding. Notably, recent biotechnological breakthroughs in the understanding of gene functions and access to whole genome sequences have opened new avenues for crop improvement. Despite the availability of such resources in wheat, progress is still limited to the understanding of the stress signaling mechanisms using model plants such as Arabidopsis, rice and Brachypodium and not directly using wheat as the model organism. This review presents an inclusive overview of the phenotypic and physiological changes in wheat due to various abiotic stresses followed by the current state of knowledge on the identified mechanisms of perception and signal transduction in wheat. Specifically, this review provides an in-depth analysis of different hormonal interactions and signaling observed during abiotic stress signaling in wheat. PMID:29942321

  2. Substituting Normal and Waxy-Type Whole Wheat Flour on Dough and Baking Properties

    PubMed Central

    Choi, Induck; Kang, Chun-Sik; Cheong, Young-Keun; Hyun, Jong-Nae; Kim, Kee-Jong

    2012-01-01

    Normal (cv. Keumkang, KK) and waxy-type (cv. Shinmichal, SMC) whole wheat flour was substituted at 20 and 40% for white wheat flour (WF) during bread dough formulation. The flour blends were subjected to dough and baking property measurement in terms of particle size distribution, dough mixing, bread loaf volume and crumb firmness. The particle size of white wheat flour was the finest, with increasing coarseness as the level of whole wheat flour increased. Substitution of whole wheat flour decreased pasting viscosity, showing all RVA parameters were the lowest in SMC40 composite flour. Water absorption was slightly higher with 40% whole wheat flour regardless of whether the wheat was normal or waxy. An increased mixing time was observed when higher levels of KK flour were substituted, but the opposite reaction occurred when SMC flour was substituted at the same levels. Bread loaf volume was lower in breads containing a whole wheat flour substitution compared to bread containing only white wheat flour. No significant difference in bread loaf volume was observed between normal and waxy whole flour, but the bread crumb firmness was significantly lower in breads containing waxy flour. The results of these studies indicate that up to 40% whole wheat flour substitution could be considered a practical option with respect to functional qualities. Also, replacing waxy whole flour has a positive effect on bread formulation over normal whole wheat flour in terms of improving softness and glutinous texture. PMID:24471084

  3. Exploiting trait correlations for next-generation grain yield and end-use quality improvement of U.S. hard winter wheat

    USDA-ARS?s Scientific Manuscript database

    Since the early 1980s, the land area planted to U.S. hard winter wheat and the share of U.S. wheat in global export markets have both declined dramatically. Improved profitability of other crops relative to wheat, declining or static domestic wheat flour consumption, and an increasingly competitive ...

  4. Identification of novel QTL for sawfly resistance in wheat

    Treesearch

    J. D. Sherman; D. K. Weaver; M. L. Hofland; S. E. Sing; M. Buteler; S. P. Lanning; Y. Naruoka; F. Crutcher; N. K. Blake; J. M. Martin; P. F. Lamb; G. R. Carlson; L. E. Talbert

    2010-01-01

    The wheat stem sawfly (WSS) (Cephus cinctus Nort.) is an important pest of wheat (Triticum aestivum L. em. Thell.) in the Northern Great Plains. This paper reports the genetic analysis of antixenosis for egg-laying WSS females in recombinant inbred lines (RIL) of hard red spring wheat. Female WSS preferentially choose certain wheat genotypes for egg-laying, with the...

  5. Population Density and Distribution of Wheat Bugs Infesting Durum Wheat in Sardinia, Italy

    PubMed Central

    Salis, Luigi; Goula, Marta; Izquierdo, Jordi; Gordún, Elena

    2013-01-01

    Wheat is a very important crop in Italy, and is infested by wheat bugs belonging to the genera Eurygaster (Hemiptera: Scutellaridae) and Aelia (Hemiptera: Pentatomidae). Many wheat bug infestations have been reported in the north, south, and center of Italy, both in the past as well as recently. The present study was carried out in Sardinia, Italy, during two years (2007 and 2008). The objective of this study was to determine the species and distribution of wheat bugs in durum wheat fields in Sardinia, and to estimate their population density in order to know the incidence of the pest on the island. Sampling took place twice a year (May and June) in three zones, representative of durum wheat cropping in the island. Four species of wheat bugs were found; the predominant species was Eurygaster austriaca (Schrank), followed by Aelia germari (Kuster), Eurygaster maura L., and Aelia acuminata L. The average density of wheat bugs was low (1.1 individuals/m2), but in certain areas it was above the damage threshold (4 individuals/m2). For this reason, the conclusion of the study is that this pest should be monitored in order to control outbreaks and prevent their further spread. PMID:23906035

  6. The Response of Durum Wheat to the Preceding Crop in a Mediterranean Environment

    PubMed Central

    Ercoli, Laura; Masoni, Alessandro; Pampana, Silvia; Mariotti, Marco; Arduini, Iduna

    2014-01-01

    Crop sequence is an important management practice that may affect durum wheat (Triticum durum Desf.) production. Field research was conducted in 2007-2008 and 2008-2009 seasons in a rain-fed cold Mediterranean environment to examine the impact of the preceding crops alfalfa (Medicago sativa L.), maize (Zea mays L.), sunflower (Helianthus annuus L.), and bread wheat (Triticum aestivum L.) on yield and N uptake of four durum wheat varieties. The response of grain yield of durum wheat to the preceding crop was high in 2007-2008 and was absent in the 2008-2009 season, because of the heavy rainfall that negatively impacted establishment, vegetative growth, and grain yield of durum wheat due to waterlogging. In the first season, durum wheat grain yield was highest following alfalfa, and was 33% lower following wheat. The yield increase of durum wheat following alfalfa was mainly due to an increased number of spikes per unit area and number of kernels per spike, while the yield decrease following wheat was mainly due to a reduction of spike number per unit area. Variety growth habit and performance did not affect the response to preceding crop and varieties ranked in the order Levante > Saragolla = Svevo > Normanno. PMID:25401153

  7. Population density and distribution of wheat bugs infesting durum wheat in Sardinia, Italy.

    PubMed

    Salis, Luigi; Goula, Marta; Izquierdo, Jordi; Gordún, Elena

    2013-01-01

    Wheat is a very important crop in Italy, and is infested by wheat bugs belonging to the genera Eurygaster (Hemiptera: Scutellaridae) and Aelia (Hemiptera: Pentatomidae). Many wheat bug infestations have been reported in the north, south, and center of Italy, both in the past as well as recently. The present study was carried out in Sardinia, Italy, during two years (2007 and 2008). The objective of this study was to determine the species and distribution of wheat bugs in durum wheat fields in Sardinia, and to estimate their population density in order to know the incidence of the pest on the island. Sampling took place twice a year (May and June) in three zones, representative of durum wheat cropping in the island. Four species of wheat bugs were found; the predominant species was Eurygaster austriaca (Schrank), followed by Aelia germari (Kuster), Eurygaster maura L., and Aelia acuminata L. The average density of wheat bugs was low (1.1 individuals/m²), but in certain areas it was above the damage threshold (4 individuals/m²). For this reason, the conclusion of the study is that this pest should be monitored in order to control outbreaks and prevent their further spread.

  8. Diets of differentially processed wheat alter ruminal fermentation parameters and microbial populations in beef cattle.

    PubMed

    Jiang, S Z; Yang, Z B; Yang, W R; Li, Z; Zhang, C Y; Liu, X M; Wan, F C

    2015-11-01

    The influences of differently processed wheat products on rumen fermentation, microbial populations, and serum biochemistry profiles in beef cattle were studied. Four ruminally cannulated Limousin × Luxi beef cattle (400 ± 10 kg) were used in the experiment with a 4 × 4 Latin square design. The experimental diets contained (on a DM basis) 60% corn silage as a forage source and 40% concentrate with 4 differently processed wheat products (extruded, pulverized, crushed, and rolled wheat). Concentrations of ruminal NH-N and microbial protein (MCP) in cattle fed crushed and rolled wheat were greater ( < 0.05) than the corresponding values in cattle fed pulverized and extruded wheat. Ruminal concentrations of total VFA and acetate and the ratio of acetate to propionate decreased ( < 0.05) with increased geometric mean particle size (geometric mean diameter) of processed wheat, except for extruded wheat; cattle fed extruded wheat had the lowest concentrations of total VFA and acetate among all treatments. The relative abundance of , , ciliated protozoa, and was lower in cattle fed the pulverized wheat diet than in the other 3 diets ( < 0.05), whereas the relative abundance of was decreased in cattle fed extruded wheat compared with cattle fed crushed and rolled wheat ( < 0.05). No treatment effect was obtained for serum enzyme activity and protein concentration ( > 0.05). Our findings suggest that the method of wheat processing could have a significant effect on ruminal fermentation parameters and microbial populations in beef cattle and that crushed and rolled processing is better in terms of ruminal NH-N and MCP content, acetate-to-propionate ratio, and relative abundance of rumen microorganisms.

  9. Evaluation of alternative planting strategies to reduce wheat stem sawfly (Hymenoptera: Cephidae) damage to spring wheat in the northern Great Plains.

    PubMed

    Beres, B L; Cárcamo, H A; Bremer, E

    2009-12-01

    Wheat, Triticum aestivum L., producers are often reluctant to use solid-stemmed wheat cultivars resistant to wheat stem sawfly, Cephus cinctus Norton (Hymenoptera: Cephidae), due to concerns regarding yield, efficacy or market opportunities. We evaluated the impact of several planting strategies on wheat yield and quality and wheat stem sawfly infestation at two locations over a three-year period. Experimental units consisted of large plots (50 by 200 m) located on commercial farms adjacent to wheat stem sawfly-infested fields. Compared with a monoculture of a hollow-stemmed cultivar ('AC Barrie'), planting a monoculture of a solid-stemmed cultivar ('AC Eatonia') increased yield by an average of 16% (0.4 mg ha(-1)) and increased the grade of wheat by one unit at the two most heavily infested site-years. Planting a 1:1 blend of AC Eatonia and AC Barrie increased yield by an average of 11%, whereas planting 20- or 40-m plot margins to AC Eatonia increased yield by an average of 8%. High wheat stem sawfly pressure limited the effectiveness of using resistant cultivars in field margins because plants were often infested beyond the plot margin, with uniform infestation down the length of the plots at the two most heavily infested site-years. The effectiveness of AC Eatonia to reduce wheat stem sawfly survivorship was modest in this study, probably due to weather-related factors influencing pith expression and to the high abundance of wheat stem sawfly. Greater benefits from planting field margins to resistant cultivars or planting a blend of resistant and susceptible cultivars might be achievable under lower wheat stem sawfly pressure.

  10. Identification of three wheat globulin genes by screening a Triticum aestivum BAC genomic library with cDNA from a diabetes-associated globulin

    PubMed Central

    Loit, Evelin; Melnyk, Charles W; MacFarlane, Amanda J; Scott, Fraser W; Altosaar, Illimar

    2009-01-01

    Background Exposure to dietary wheat proteins in genetically susceptible individuals has been associated with increased risk for the development of Type 1 diabetes (T1D). Recently, a wheat protein encoded by cDNA WP5212 has been shown to be antigenic in mice, rats and humans with autoimmune T1D. To investigate the genomic origin of the identified wheat protein cDNA, a hexaploid wheat genomic library from Glenlea cultivar was screened. Results Three unique wheat globulin genes, Glo-3A, Glo3-B and Glo-3C, were identified. We describe the genomic structure of these genes and their expression pattern in wheat seeds. The Glo-3A gene shared 99% identity with the cDNA of WP5212 at the nucleotide and deduced amino acid level, indicating that we have identified the gene(s) encoding wheat protein WP5212. Southern analysis revealed the presence of multiple copies of Glo-3-like sequences in all wheat samples, including hexaploid, tetraploid and diploid species wheat seed. Aleurone and embryo tissue specificity of WP5212 gene expression, suggested by promoter region analysis, which demonstrated an absence of endosperm specific cis elements, was confirmed by immunofluorescence microscopy using anti-WP5212 antibodies. Conclusion Taken together, the results indicate that a diverse group of globulins exists in wheat, some of which could be associated with the pathogenesis of T1D in some susceptible individuals. These data expand our knowledge of specific wheat globulins and will enable further elucidation of their role in wheat biology and human health. PMID:19615078

  11. Unique and conserved microRNAs in wheat chromosome 5D revealed by next-generation sequencing.

    PubMed

    Kurtoglu, Kuaybe Yucebilgili; Kantar, Melda; Lucas, Stuart J; Budak, Hikmet

    2013-01-01

    MicroRNAs are a class of short, non-coding, single-stranded RNAs that act as post-transcriptional regulators in gene expression. miRNA analysis of Triticum aestivum chromosome 5D was performed on 454 GS FLX Titanium sequences of flow-sorted chromosome 5D with a total of 3,208,630 good quality reads representing 1.34x and 1.61x coverage of the short (5DS) and long (5DL) arms of the chromosome respectively. In silico and structural analyses revealed a total of 55 miRNAs; 48 and 42 miRNAs were found to be present on 5DL and 5DS respectively, of which 35 were common to both chromosome arms, while 13 miRNAs were specific to 5DL and 7 miRNAs were specific to 5DS. In total, 14 of the predicted miRNAs were identified in wheat for the first time. Representation (the copy number of each miRNA) was also found to be higher in 5DL (1,949) compared to 5DS (1,191). Targets were predicted for each miRNA, while expression analysis gave evidence of expression for 6 out of 55 miRNAs. Occurrences of the same miRNAs were also found in Brachypodium distachyon and Oryza sativa genome sequences to identify syntenic miRNA coding sequences. Based on this analysis, two other miRNAs: miR1133 and miR167 were detected in B. distachyon syntenic region of wheat 5DS. Five of the predicted miRNA coding regions (miR6220, miR5070, miR169, miR5085, miR2118) were experimentally verified to be located to the 5D chromosome and three of them : miR2118, miR169 and miR5085, were shown to be 5D specific. Furthermore miR2118 was shown to be expressed in Chinese Spring adult leaves. miRNA genes identified in this study will expand our understanding of gene regulation in bread wheat.

  12. Pricing behavior of USA exporter in wheat international market

    NASA Astrophysics Data System (ADS)

    Wibowo, R. P.; Sumono; Iddrisu, Y.; Darus, M.; Sihombing, L. P.; Jufri

    2018-02-01

    The number of wheat producing countries is changing over time. It is expected the change in wheat supply will lead world wheat market become more competitive and reduce market power of major exporter country. This paper tries to identify and examined the degree of market power on wheat international market for USA by using the Pricing to Market (PTM) method. USA is the biggest producer and exporter in wheat market. The PTM method found that USA impose noncompetitive strategy by applying price discrimination and apply market power to their importer country.

  13. Change in Biotypic Diversity of Russian Wheat Aphid (Hemiptera: Aphididae) Populations in the United States.

    PubMed

    Puterka, G J; Giles, K L; Brown, M J; Nicholson, S J; Hammon, R W; Peairs, F B; Randolph, T L; Michaels, G J; Bynum, E D; Springer, T L; Armstrong, J S; Mornhinweg, D W

    2015-04-01

    A key component of Russian wheat aphid, Diuraphis noxia (Kurdjumov), management has been through planting resistant wheat cultivars. A new biotype, RWA2, appeared in 2003 which caused widespread damage to wheat cultivars containing the Dn4 gene. Biotypic diversity in Russian wheat aphid populations has not been addressed since 2005 when RWA2 dominated the biotype complex. Our objectives were to determine the biotypic diversity in the Central Great Plains and Colorado Plateau at regional (2010, 2011, 2013) and local (2012) levels and detect the presence of new Russian wheat aphid biotypes. Regional and within-field aphid collections were screened against Russian wheat aphid-resistant wheat genotypes containing genes Dn3, Dn4, Dn6, Dn7, Dn9, CI2401; and resistant barley STARS 9301B. In 2010, all aphid collections from Texas were avirulent to the Dn4 resistance gene in wheat. Regional results revealed Dn4 avirulent RWA6 was widespread (55-84%) in populations infesting wheat in both regions. Biotypes RWA1, 2, and 3/7 were equally represented with percentages<20% each while RWA8 was rarely detected. Combining percentages of RWA1, 6, and 8 across regions to estimate avirulence to Dn4 gene revealed high percentages for both 2011 (64-80%) and 2013 (69-90%). In contrast, the biotype structure at the local level differed where biotype percentages varied up to ≥2-fold between fields. No new biotypes were detected; therefore, Dn7, CI2401, and STARS9301B remained resistant to all known Russian wheat aphid biotypes. This study documents a shift to Dn4 avirulent biotypes and serves as a valuable baseline for biotypic diversity in Russian wheat aphid populations prior to the deployment of new Russian wheat aphid-resistant wheat cultivars. Published by Oxford University Press on behalf of Entomological Society of America 2015. This work is written by US Government employees and is in the public domain in the US.

  14. Identification of Changes in Wheat (Triticum aestivum L.) Seeds Proteome in Response to Anti–trx s Gene

    PubMed Central

    Guo, Hongxiang; Zhang, Huizhen; Li, Yongchun; Ren, Jiangping; Wang, Xiang; Niu, Hongbin; Yin, Jun

    2011-01-01

    Background Thioredoxin h (trx h) is closely related to germination of cereal seeds. The cDNA sequences of the thioredoxin s (trx s) gene from Phalaris coerulescens and the thioredoxin h (trx h) gene from wheat are highly homologous, and their expression products have similar biological functions. Transgenic wheat had been formed after the antisense trx s was transferred into wheat, and it had been certified that the expression of trx h decreased in transgenic wheat, and transgenic wheat has high resistance to pre-harvest sprouting. Methodology/Principal Findings Through analyzing the differential proteome of wheat seeds between transgenic wheat and wild type wheat, the mechanism of transgenic wheat seeds having high resistance to pre-harvest sprouting was studied in the present work. There were 36 differential proteins which had been identified by matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF-MS). All these differential proteins are involved in regulation of carbohydrates, esters, nucleic acid, proteins and energy metabolism, and biological stress. The quantitative real time PCR results of some differential proteins, such as trx h, heat shock protein 70, α-amylase, β-amylase, glucose-6-phosphate isomerase, 14-3-3 protein, S3-RNase, glyceraldehyde-3-phosphate dehydrogenase, and WRKY transcription factor 6, represented good correlation between transcripts and proteins. The biological functions of many differential proteins are consistent with the proposed role of trx h in wheat seeds. Conclusions/Significance A possible model for the role of trx h in wheat seeds germination was proposed in this paper. These results will not only play an important role in clarifying the mechanism that transgenic wheat has high resistance to pre-harvest sprouting, but also provide further evidence for the role of trx h in germination of wheat seeds. PMID:21811579

  15. Domestication and Crop Physiology: Roots of Green-Revolution Wheat

    PubMed Central

    Waines, J. Giles; Ehdaie, Bahman

    2007-01-01

    Background and Aims Most plant scientists, in contrast to animal scientists, study only half the organism, namely above-ground stems, leaves, flowers and fruits, and neglect below-ground roots. Yet all acknowledge roots are important for anchorage, water and nutrient uptake, and presumably components of yield. This paper investigates the relationship between domestication, and the root systems of landraces, and the parents of early, mid- and late green-revolution bread wheat cultivars. It compares the root system of bread wheat and ‘Veery’-type wheat containing the 1RS translocation from rye. Methods Wheat germplasm was grown in large pots in sand culture in replicated experiments. This allowed roots to be washed free to study root characters. Key Results The three bread wheat parents of early green-revolution wheats have root biomass less than two-thirds the mean of some landrace wheats. Crossing early green-revolution wheat to an F2 of ‘Norin 10’ and ‘Brevor’, further reduced root biomass in mid-generation semi-dwarf and dwarf wheats. Later-generation semi-dwarf wheats show genetic variation for root biomass, but some exhibit further reduction in root size. This is so for some California and UK wheats. The wheat–rye translocation in ‘Kavkaz’ for the short arm of chromosome 1 (1RS) increased root biomass and branching in cultivars that contained it. Conclusions Root size of modern cultivars is small compared with that of landraces. Their root system may be too small for optimum uptake of water and nutrients and maximum grain yield. Optimum root size for grain yield has not been investigated in wheat or most crop plants. Use of 1RS and similar alien translocations may increase root biomass and grain yield significantly in irrigated and rain-fed conditions. Root characters may be integrated into components of yield analysis in wheat. Plant breeders may need to select directly for root characters. PMID:17940075

  16. Substitution of Wheat for Corn in Beef Cattle Diets: Digestibility, Digestive Enzyme Activities, Serum Metabolite Contents and Ruminal Fermentation.

    PubMed

    Liu, Y F; Zhao, H B; Liu, X M; You, W; Cheng, H J; Wan, F C; Liu, G F; Tan, X W; Song, E L; Zhang, X L

    2016-10-01

    The objective of this study was to evaluate the effect of diets containing different amounts of wheat, as a partial or whole substitute for corn, on digestibility, digestive enzyme activities, serum metabolite contents and ruminal fermentation in beef cattle. Four Limousin×LuXi crossbred cattle with a body weight (400±10 kg), fitted with permanent ruminal, proximal duodenal and terminal ileal cannulas, were used in a 4×4 Latin square design with four treatments: Control (100% corn), 33% wheat (33% substitution for corn), 67% wheat (67% substitution for corn), and 100% wheat (100% substitution for corn) on a dry matter basis. The results showed that replacing corn with increasing amounts of wheat increased the apparent digestibility values of dry matter, organic matter, and crude protein (p<0.05). While the apparent digestibility of acid detergent fiber and neutral detergent fiber were lower with increasing amounts of wheat. Digestive enzyme activities of lipase, protease and amylase in the duodenum were higher with increasing wheat amounts (p<0.05), and showed similar results to those for the enzymes in the ileum except for amylase. Increased substitution of wheat for corn increased the serum alanine aminotransferase concentration (p<0.05). Ruminal pH was not different between those given only corn and those given 33% wheat. Increasing the substitution of wheat for corn increased the molar proportion of acetate and tended to increase the acetate-to-propionate ratio. Cattle fed 100% wheat tended to have the lowest ruminal NH3-N concentration compared with control (p<0.05), whereas no differences were observed among the cattle fed 33% and 67% wheat. These findings indicate that wheat can be effectively used to replace corn in moderate amounts to meet the energy and fiber requirements of beef cattle.

  17. Emergence of wheat blast in Bangladesh was caused by a South American lineage of Magnaporthe oryzae.

    PubMed

    Islam, M Tofazzal; Croll, Daniel; Gladieux, Pierre; Soanes, Darren M; Persoons, Antoine; Bhattacharjee, Pallab; Hossain, Md Shaid; Gupta, Dipali Rani; Rahman, Md Mahbubur; Mahboob, M Golam; Cook, Nicola; Salam, Moin U; Surovy, Musrat Zahan; Sancho, Vanessa Bueno; Maciel, João Leodato Nunes; NhaniJúnior, Antonio; Castroagudín, Vanina Lilián; Reges, Juliana T de Assis; Ceresini, Paulo Cezar; Ravel, Sebastien; Kellner, Ronny; Fournier, Elisabeth; Tharreau, Didier; Lebrun, Marc-Henri; McDonald, Bruce A; Stitt, Timothy; Swan, Daniel; Talbot, Nicholas J; Saunders, Diane G O; Win, Joe; Kamoun, Sophien

    2016-10-03

    In February 2016, a new fungal disease was spotted in wheat fields across eight districts in Bangladesh. The epidemic spread to an estimated 15,000 hectares, about 16 % of the cultivated wheat area in Bangladesh, with yield losses reaching up to 100 %. Within weeks of the onset of the epidemic, we performed transcriptome sequencing of symptomatic leaf samples collected directly from Bangladeshi fields. Reinoculation of seedlings with strains isolated from infected wheat grains showed wheat blast symptoms on leaves of wheat but not rice. Our phylogenomic and population genomic analyses revealed that the wheat blast outbreak in Bangladesh was most likely caused by a wheat-infecting South American lineage of the blast fungus Magnaporthe oryzae. Our findings suggest that genomic surveillance can be rapidly applied to monitor plant disease outbreaks and provide valuable information regarding the identity and origin of the infectious agent.

  18. Overview of biomarkers for diagnosis and monitoring of celiac disease.

    PubMed

    Brusca, Ignazio

    2015-01-01

    Among the adverse reactions caused by wheat, celiac disease (CD) is the longest studied and best-known pathology. The more recently defined non-celiac gluten sensitivity (NCGS) presents with symptoms which are often indistinguishable from CD. Diagnosis of CD is based on serologic, molecular, and bioptic testing. The IgA anti-transglutaminase (tTG) test is considered highly important, as it shows high sensitivity and specificity and its levels correlate to the degree of intestinal damage. Small bowel biopsy can be avoided in symptomatic patients with IgA anti-tTG levels above 10× the manufacturer's cut-off. Recently, tests of anti-deamidated peptides of gliadin (DGP) have replaced classic anti-native gliadin (AGA) tests. DGP assays have a considerably higher diagnostic accuracy than AGA assays, especially in the IgG class, and can replace anti-tTG tests in patients with selective IgA deficiency. The combination of IgG anti-DGP plus IgA anti-tTG assays show greater sensitivity than a single test, with very high specificity. EMA tests have great diagnostic accuracy but are not recommended by all the latest guidelines because they are observer dependent. Biopsy must still be considered the gold standard for CD diagnosis. HLA-DQ genotyping can be used to screen asymptomatic children and in cases of histology/serology disagreement. About half of NCGS patients are DQ2 positive and have IgG AGA. To diagnose NCGS, first CD and wheat allergy must be excluded; then the wheat dependence of symptoms must be verified by a gluten-free diet and subsequent gluten challenge. © 2015 Elsevier Inc. All rights reserved.

  19. A proteinaceous fraction of wheat bran may interfere in the attachment of enterotoxigenic E. coli K88 (F4+) to porcine epithelial cells.

    PubMed

    González-Ortiz, Gemma; Bronsoms, Sílvia; Quarles Van Ufford, H C; Halkes, S Bart A; Virkola, Ritva; Liskamp, Rob M J; Beukelman, Cees J; Pieters, Roland J; Pérez, José Francisco; Martín-Orúe, Susana María

    2014-01-01

    Wheat bran (WB) from Triticum aestivum has many beneficial effects on human health. To the best of our knowledge, very little has been published about its ability to prevent pathogenic bacterial adhesion in the intestine. Here, a WB extract was fractionated using different strategies, and the obtained fractions were tested in different in vitro methodologies to evaluate their interference in the attachment of enterotoxigenic Escherichia coli (ETEC) K88 to intestinal porcine epithelial cells (IPEC-J2) with the aim of identifying the putative anti-adhesive molecules. It was found that a proteinaceous compound in the >300-kDa fraction mediates the recognition of ETEC K88 to IPEC-J2. Further fractionation of the >300-kDa sample by size-exclusion chromatography showed several proteins below 90 kDa, suggesting that the target protein belongs to a high-molecular-weight (MW) multi-component protein complex. The identification of some relevant excised bands was performed by mass spectrometry (MS) and mostly revealed the presence of various protease inhibitors (PIs) of low MW: Serpin-Z2B, Class II chitinase, endogenous alpha-amylase/subtilisin inhibitor and alpha-amylase/trypsin inhibitor CM3. Furthermore, an incubation of the WB extract with ETEC K88 allowed for the identification of a 7S storage protein globulin of wheat, Globulin 3 of 66 kDa, which may be one of the most firmly attached WB proteins to ETEC K88 cells. Further studies should be performed to gain an understanding of the molecular recognition of the blocking process that takes place. All gathered information can eventually pave the way for the development of novel anti-adhesion therapeutic agents to prevent bacterial pathogenesis.

  20. orf260cra, a novel mitochondrial gene, is associated with the homeotic transformation of stamens into pistil-like structures (pistillody) in alloplasmic wheat.

    PubMed

    Zhu, Ye; Saraike, Tatsunori; Yamamoto, Yuko; Hagita, Hiroko; Takumi, Shigeo; Murai, Koji

    2008-11-01

    Homeotic transformation of stamens into pistil-like structures (pistillody) can occur in cytoplasmic substitution (alloplasmic) lines of bread wheat (Triticum aestivum) that have the cytoplasm of the related species, Aegilops crassa. Previously we showed that pistillody results from altered patterns of expression of class B MADS-box genes mediated by mitochondrial gene(s) in the Ae. crassa cytoplasm. The wheat cultivar Chinese Spring does not show pistillody when Ae. crassa cytoplasm is introduced. The absence of an effect is due to a single dominant gene (designated Rfd1) located on the long arm of chromosome 7B. To identify the mitochondrial gene involved in pistillody induction, we performed a subtraction analysis using cDNAs derived from young spikes of a pistillody line and a normal line. We found that mitochondrial cDNA clone R04 was abundant in the young spikes of the pistillody line but was down-regulated in the normal line that carried nuclear Rfd1. Sequencing of the full-length cDNA corresponding to clone R04 showed that two genes were present, cox I (cytochrome c oxidase subunit I) and orf260(cra). orf260(cra) shows high sequence similarity to orf256, the T. timopheevii mitochondrial gene responsible for cytoplasmic male sterility (CMS). orf260(cra) was also present in the cytoplasms of Ae. juvenalis and Ae. vavilovii, which induce pistillody, but not in the cytoplasms of other species not associated with pistillody. Furthermore, Western blot analysis revealed that the ORF260cra protein was more abundant in the pistillody line than in the normal line. We suggest therefore that orf260(cra) is associated with pistillody induction.

  1. Molecular cloning and comparative analysis of a PR-1-RK hybrid gene from Triticum urartu, the A-genome progenitor of hexaploid wheat

    USDA-ARS?s Scientific Manuscript database

    Wheat genomes encode pathogenesis-related protein 1 (PR-1)/receptor-like kinase (RK) hybrid proteins as first reported for hexaploid wheat. To date, no PR-1-RK-like proteins have been identified in the diploid wild wheat Triticum urartu, the A-genome progenitor of hexaploid wheat. Here we report the...

  2. Enrichment of provitamin A content in wheat (Triticum aestivum L.) by introduction of the bacterial carotenoid biosynthetic genes CrtB and CrtI

    PubMed Central

    Wang, Cheng; Zeng, Jian; Li, Yin; Yang, Guangxiao; He, Guangyuan

    2014-01-01

    Carotenoid content is a primary determinant of wheat nutritional value and affects its end-use quality. Wheat grains contain very low carotenoid levels and trace amounts of provitamin A content. In order to enrich the carotenoid content in wheat grains, the bacterial phytoene synthase gene (CrtB) and carotene desaturase gene (CrtI) were transformed into the common wheat cultivar Bobwhite. Expression of CrtB or CrtI alone slightly increased the carotenoid content in the grains of transgenic wheat, while co-expression of both genes resulted in a darker red/yellow grain phenotype, accompanied by a total carotenoid content increase of approximately 8-fold achieving 4.76 μg g–1 of seed dry weight, a β-carotene increase of 65-fold to 3.21 μg g–1 of seed dry weight, and a provitamin A content (sum of α-carotene, β-carotene, and β-cryptoxanthin) increase of 76-fold to 3.82 μg g–1 of seed dry weight. The high provitamin A content in the transgenic wheat was stably inherited over four generations. Quantitative PCR analysis revealed that enhancement of provitamin A content in transgenic wheat was also a result of the highly coordinated regulation of endogenous carotenoid biosynthetic genes, suggesting a metabolic feedback regulation in the wheat carotenoid biosynthetic pathway. These transgenic wheat lines are not only valuable for breeding wheat varieties with nutritional benefits for human health but also for understanding the mechanism regulating carotenoid biosynthesis in wheat endosperm. PMID:24692648

  3. Host and Cropping System Shape the Fusarium Population: 3ADON-Producers Are Ubiquitous in Wheat Whereas NIV-Producers Are More Prevalent in Rice.

    PubMed

    Yang, Meixin; Zhang, Hao; Kong, Xiangjiu; van der Lee, Theo; Waalwijk, Cees; van Diepeningen, Anne; Xu, Jin; Xu, Jingsheng; Chen, Wanquan; Feng, Jie

    2018-03-08

    In recent years, Fusarium head blight (FHB) outbreaks have occurred much more frequently in China. The reduction of burning of the preceding crop residues is suggested to contribute to more severe epidemics as it may increase the initial inoculum. In this study, a large number of Fusarium isolates was collected from blighted wheat spikes as well as from rice stubble with perithecia originating from nine sampling sites in five provinces in Southern China. Fusarium asiaticum dominated both wheat and rice populations, although rice populations showed a higher species diversity. Chemotype analysis showed that rice is the preferred niche for NIV mycotoxin producers that were shown to be less virulent on wheat. In contrast, 3ADON producers are more prevalent on wheat and in wheat producing areas. The 3ADON producers were shown to be more virulent on wheat, revealing the selection pressure of wheat on 3ADON producers. For the first time, members of the Incarnatum -clade of Fusarium Incarnatum - Equiseti Species Complex (FIESC) were found to reproduce sexually on rice stubble. The pathogenicity of FIESC isolates on wheat proved very low and this may cause the apparent absence of this species in the main wheat producing provinces. This is the first report of the Fusarium population structure including rice stubble as well as a direct comparison with the population on wheat heads in the same fields. Our results confirm that the perithecia on rice stubble are the primary inoculum of FHB on wheat and that cropping systems affect the local Fusarium population.

  4. Molecular cytogenetic and genomic analyses reveal new insights into the origin of the wheat B genome.

    PubMed

    Zhang, Wei; Zhang, Mingyi; Zhu, Xianwen; Cao, Yaping; Sun, Qing; Ma, Guojia; Chao, Shiaoman; Yan, Changhui; Xu, Steven S; Cai, Xiwen

    2018-02-01

    This work pinpointed the goatgrass chromosomal segment in the wheat B genome using modern cytogenetic and genomic technologies, and provided novel insights into the origin of the wheat B genome. Wheat is a typical allopolyploid with three homoeologous subgenomes (A, B, and D). The donors of the subgenomes A and D had been identified, but not for the subgenome B. The goatgrass Aegilops speltoides (genome SS) has been controversially considered a possible candidate for the donor of the wheat B genome. However, the relationship of the Ae. speltoides S genome with the wheat B genome remains largely obscure. The present study assessed the homology of the B and S genomes using an integrative cytogenetic and genomic approach, and revealed the contribution of Ae. speltoides to the origin of the wheat B genome. We discovered noticeable homology between wheat chromosome 1B and Ae. speltoides chromosome 1S, but not between other chromosomes in the B and S genomes. An Ae. speltoides-originated segment spanning a genomic region of approximately 10.46 Mb was detected on the long arm of wheat chromosome 1B (1BL). The Ae. speltoides-originated segment on 1BL was found to co-evolve with the rest of the B genome. Evidently, Ae. speltoides had been involved in the origin of the wheat B genome, but should not be considered an exclusive donor of this genome. The wheat B genome might have a polyphyletic origin with multiple ancestors involved, including Ae. speltoides. These novel findings will facilitate genome studies in wheat and other polyploids.

  5. Allelopathy in agroecosystems: Wheat phytotoxicity and its possible roles in crop rotation.

    PubMed

    Lodhi, M A; Bilal, R; Malik, K A

    1987-08-01

    The germination rates of cotton and wheat seeds were significantly affected by various extracts of wheat mulch and soils collected from the wheat field. This toxicity was even more pronounced against seedling growth. Five allelochemics: ferulic,p-coumaric,p-OH benzoic, syringic, and vanillic acids, were identified from the wheat mulch and its associated soil. Quantitatively, ferulic acid was found at higher concentrations thanp-coumaric acid in the soil. Various concentrations of ferulic andp-coumaric acids were toxic to the growth of radish in a bioassay. The functional aspects of allelochemic transfer from decaying residue to soil and the subsequent microbial degradation within agroecosystems are discussed, particularly as they relate to wheat crop rotation, with wheat and cotton, in Pakistan.

  6. The impact exploration of agricultural drought on winter wheat yield in the North China Plain

    NASA Astrophysics Data System (ADS)

    Yang, Jianhua; Wu, Jianjun; Han, Xinyi; Zhou, Hongkui

    2017-04-01

    Drought is one of the most serious agro-climatic disasters in the North China Plain, which has a great influence on winter wheat yield. Global warming exacerbates the drought trend of this region, so it is important to study the effect of drought on winter wheat yield. In order to assess the drought-induced winter wheat yield losses, SPEI (standardized precipitation evapotranspiration index), the widely used drought index, was selected to quantify the drought from 1981 to 2013. Additionally, the EPIC (Environmental Policy Integrated Climate) crop model was used to simulate winter wheat yield at 47 stations in this region from 1981 to 2013. We analyzed the relationship between winter wheat yield and the SPEI at different time scales in each month during the growing season. The trends of the SPEI and the trends of winter wheat yield at 47 stations over the past 32 years were compared with each other. To further quantify the effect of drought on winter wheat yield, we defined the year that SPEI varied from -0.5 to 0.5 as the normal year, and calculated the average winter wheat yield of the normal years as a reference yield, then calculated the reduction ratios of winter wheat based on the yields mentioned above in severe drought years. As a reference, we compared the results with the reduction ratios calculated from the statistical yield data. The results showed that the 9 to 12-month scales' SPEI in April, May and June had a high correlation with winter wheat yield. The trends of the SPEI and the trends of winter wheat yield over the past 32 years showed a positive correlation (p<0.01) and have similar spatial distributions. The proportion of the stations with the same change trend between the SPEI and winter wheat yield was 70%, indicating that drought was the main factor leading to a decline in winter wheat yield in this region. The reduction ratios based on the simulated yield and the reduction ratios calculated from the statistical yield data have a high positive correlation (p<0.01), which may provide a way to quantitatively evaluate the winter wheat yield losses caused by drought. Key words: drought, winter wheat yield, SPEI, EPIC, the North China Plain

  7. Genomics as the key to unlocking the polyploid potential of wheat.

    PubMed

    Borrill, Philippa; Adamski, Nikolai; Uauy, Cristobal

    2015-12-01

    Polyploidy has played a central role in plant genome evolution and in the formation of new species such as tetraploid pasta wheat and hexaploid bread wheat. Until recently, the high sequence conservation between homoeologous genes, together with the large genome size of polyploid wheat, had hindered genomic analyses in this important crop species. In the past 5 yr, however, the advent of next-generation sequencing has radically changed the wheat genomics landscape. Here, we review a series of advances in genomic resources and tools for functional genomics that are shifting the paradigm of what is possible in wheat molecular genetics and breeding. We discuss how understanding the relationship between homoeologues can inform approaches to modulate the response of quantitative traits in polyploid wheat; we also argue that functional redundancy has 'locked up' a wide range of phenotypic variation in wheat. We explore how genomics provides key tools to inform targeted manipulation of multiple homoeologues, thereby allowing researchers and plant breeders to unlock the full polyploid potential of wheat. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  8. Wheat-specific gene, ribosomal protein l21, used as the endogenous reference gene for qualitative and real-time quantitative polymerase chain reaction detection of transgenes.

    PubMed

    Liu, Yi-Ke; Li, He-Ping; Huang, Tao; Cheng, Wei; Gao, Chun-Sheng; Zuo, Dong-Yun; Zhao, Zheng-Xi; Liao, Yu-Cai

    2014-10-29

    Wheat-specific ribosomal protein L21 (RPL21) is an endogenous reference gene suitable for genetically modified (GM) wheat identification. This taxon-specific RPL21 sequence displayed high homogeneity in different wheat varieties. Southern blots revealed 1 or 3 copies, and sequence analyses showed one amplicon in common wheat. Combined analyses with sequences from common wheat (AABBDD) and three diploid ancestral species, Triticum urartu (AA), Aegilops speltoides (BB), and Aegilops tauschii (DD), demonstrated the presence of this amplicon in the AA genome. Using conventional qualitative polymerase chain reaction (PCR), the limit of detection was 2 copies of wheat haploid genome per reaction. In the quantitative real-time PCR assay, limits of detection and quantification were about 2 and 8 haploid genome copies, respectively, the latter of which is 2.5-4-fold lower than other reported wheat endogenous reference genes. Construct-specific PCR assays were developed using RPL21 as an endogenous reference gene, and as little as 0.5% of GM wheat contents containing Arabidopsis NPR1 were properly quantified.

  9. A modelling approach to evaluate the long-term effect of soil texture on spring wheat productivity under a rain-fed condition.

    PubMed

    He, Yong; Hou, Lingling; Wang, Hong; Hu, Kelin; McConkey, Brian

    2014-07-30

    Soil surface texture is an important environmental factor that influences crop productivity because of its direct effect on soil water and complex interactions with other environmental factors. Using 30-year data, an agricultural system model (DSSAT-CERES-Wheat) was calibrated and validated. After validation, the modelled yield and water use (WU) of spring wheat (Triticum aestivum L.) from two soil textures (silt loam and clay) under rain-fed condition were analyzed. Regression analysis showed that wheat grown in silt loam soil is more sensitive to WU than wheat grown in clay soil, indicating that the wheat grown in clay soil has higher drought tolerance than that grown in silt loam. Yield variation can be explained by WU other than by precipitation use (PU). These results demonstrated that the DSSAT-CERES-Wheat model can be used to evaluate the WU of different soil textures and assess the feasibility of wheat production under various conditions. These outcomes can improve our understanding of the long-term effect of soil texture on spring wheat productivity in rain-fed condition.

  10. Neural network classification technique and machine vision for bread crumb grain evaluation

    NASA Astrophysics Data System (ADS)

    Zayas, Inna Y.; Chung, O. K.; Caley, M.

    1995-10-01

    Bread crumb grain was studied to develop a model for pattern recognition of bread baked at Hard Winter Wheat Quality Laboratory (HWWQL), Grain Marketing and Production Research Center (GMPRC). Images of bread slices were acquired with a scanner in a 512 multiplied by 512 format. Subimages in the central part of the slices were evaluated by several features such as mean, determinant, eigen values, shape of a slice and other crumb features. Derived features were used to describe slices and loaves. Neural network programs of MATLAB package were used for data analysis. Learning vector quantization method and multivariate discriminant analysis were applied to bread slices from what of different sources. A training and test sets of different bread crumb texture classes were obtained. The ranking of subimages was well correlated with visual judgement. The performance of different models on slice recognition rate was studied to choose the best model. The recognition of classes created according to human judgement with image features was low. Recognition of arbitrarily created classes, according to porosity patterns, with several feature patterns was approximately 90%. Correlation coefficient was approximately 0.7 between slice shape features and loaf volume.

  11. Effect of gluten free diet on immune response to gliadin in patients with non-celiac gluten sensitivity.

    PubMed

    Caio, Giacomo; Volta, Umberto; Tovoli, Francesco; De Giorgio, Roberto

    2014-02-13

    Non-celiac gluten sensitivity is a syndrome characterized by gastrointestinal and extra-intestinal symptoms occurring in a few hours/days after gluten and/or other wheat protein ingestion and rapidly improving after exclusion of potential dietary triggers. There are no established laboratory markers for non-celiac gluten sensitivity, although a high prevalence of first generation anti-gliadin antibodies of IgG class has been reported in this condition. This study was designed to characterize the effect of the gluten-free diet on anti-gliadin antibodies of IgG class in patients with non-celiac gluten sensitivity. Anti-gliadin antibodies of both IgG and IgA classes were assayed by ELISA in 44 non-celiac gluten sensitivity and 40 celiac disease patients after 6 months of gluten-free diet. The majority of non-celiac gluten sensitivity patients (93.2%) showed the disappearance of anti-gliadin antibodies of IgG class after 6 months of gluten-free diet; in contrast, 16/40 (40%) of celiac patients displayed the persistence of these antibodies after gluten withdrawal. In non-celiac gluten sensitivity patients anti-gliadin antibodies IgG persistence after gluten withdrawal was significantly correlated with the low compliance to gluten-free diet and a mild clinical response. Anti-gliadin antibodies of the IgG class disappear in patients with non-celiac gluten sensitivity reflecting a strict compliance to the gluten-free diet and a good clinical response to gluten withdrawal.

  12. Chemical characterization, energy values, protein and carbohydrate fractions, degradation kinetics of frost damaged wheat (with severely overall weight loss) in ruminants.

    PubMed

    Yu, Peiqiang; Racz, Vern

    2009-04-01

    In Canada, frost damage can result in millions of tonnes of wheat that is not suitable for human consumption (such wheat is referred to as 'frozen') each year. There is a need to systematically evaluate the nutritive value of frozen wheat for ruminants. So far, little research has been conducted to determine the magnitude of the differences in nutritive value between frozen and normal wheat. The objectives of this study were to compare frozen wheat and normal wheat (AC Barrie) in terms of (i) chemical characteristics; (ii) protein and carbohydrate fractions; (iii) energy value; and (iv) rumen degradation kinetics. The results showed that the overall yield losses of the frozen wheat were around 24%. The frozen wheat was significantly lower (P < 0.05) in starch (47 vs. 62%DM), non-structural carbohydrates (60 vs. 70%DM), and non-protein N (63 vs. 93%SCP); and higher (P < 0.05) in crude fat (3 vs. 2%DM), acid (6 vs. 2%DM), neutral detergent fiber (22 vs. 10%DM), lignin (2 vs. 1%DM), acid (3 vs. 1%CP) and neutral detergent insoluble CP (19 vs. 14%CP). The frozen wheat was also lower in (P < 0.05) energy (TDN, DE(3X), ME(3X,) NEL(3X), DE(4X), ME(4X,) NEL(4X) for dairy; ME, NE(m), and NE(g) beef cattle). After partitioning of protein and carbohydrate (CHO) subfractions, the results showed that the frozen wheat was lower (P < 0.05) in the intermediately degradable CP (PB2: 47 vs. 59%CP); and higher in rapidly degradable CP (PB1: 12 vs. 2%CP) and unavailable CP (PC: 3 vs. 1%CP). The frozen wheat was also lower (P < 0.05) in intermediately degradable CHO (CB1: 60 vs. 77%CHO); and higher (P < 0.05) in slowly degradable CHO (CB2: 20 vs. 8%CHO) and unavailable CHO (CC: 5 vs. 2%CHO). The in situ results showed that the frozen wheat had different patterns in rumen degradation kinetics of protein and starch. The extent of the changes varied according to the specific nutrient examined. In conclusion, the frozen wheat differed in chemical characteristics, TDN and energy values, protein and carbohydrate fractions and in situ degradation behavior from normal wheat. The chemical and nutritional characterization of wheat was highly associated with climate condition (frost damage). The frost damage to the wheat reduced nutrient content and availability and thus reduced nutrient supply to ruminants.

  13. Relay cropping of wheat (Triticum aestivum L.) in cotton (Gossypium hirsutum L.) improves the profitability of cotton-wheat cropping system in Punjab, Pakistan.

    PubMed

    Sajjad, Aamer; Anjum, Shakeel Ahmad; Ahmad, Riaz; Waraich, Ejaz Ahmad

    2018-01-01

    Delayed sowing of wheat (Triticum aestivum L.) in cotton-based system reduces the productivity and profitability of the cotton-wheat cropping system. In this scenario, relay cropping of wheat in standing cotton might be a viable option to ensure the timely wheat sowing with simultaneous improvement in wheat yields and system profitability. This 2-year study (2012-2013 and 2013-2014) aimed to evaluate the influence of sowing dates and relay cropping combined with different management techniques of cotton sticks on the wheat yield, soil physical properties, and the profitability of the cotton-wheat system. The experiment consisted of five treatments viz. (S1) sowing of wheat at the 7th of November by conventional tillage (two disc harrows + one rotavator + two plankings) after the removal of cotton sticks, (S2) sowing of wheat at the 7th of November by conventional tillage (two disc harrows + two plankings) after the incorporation of cotton sticks in the field with a rotavator, (S3) sowing of wheat at the 7th of November as relay crop in standing cotton with broadcast method, (S4) sowing of wheat at the 15th of December by conventional tillage (two disc harrows + one rotavator + two plankings) after the removal of cotton sticks, and (S5) sowing of wheat at the 15th of December by conventional tillage (two disc harrows + two plankings) after the incorporation of cotton sticks in the field with a rotavator. The highest seed cotton yield was observed in the S5 treatment which was statistically similar with the S3 and S4 treatments; seed cotton yield in the S1 and S2 treatments has been the lowest in both years of experimentation. However, the S2 treatment produced substantially higher root length, biological yield, and grain yield of wheat than the other treatments. The lower soil bulk density at 0-10-cm depth was recorded in the S2 treatment which was statistically similar with the S5 treatment during both years of experimentation. The volumetric water contents, net benefit, and benefit-cost ratio were the highest in the S3 treatment during both years of experimentation. Thus, relay cropping of wheat in standing cotton might be a viable option to improve the soil physical environment and profitability of the cotton-wheat cropping system.

  14. 40 CFR 180.580 - Iodosulfuron-Methyl-Sodium; tolerances for residues.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Parts per million Corn, field, forage 0.05 Corn, field, grain 0.03 Corn, field, stover 0.05 Wheat, forage 0.10 Wheat, grain 0.02 Wheat, hay 0.05 Wheat, straw 0.05 (b) Section 18 emergency exemptions...

  15. Temperature-dependent Wsm1 and Wsm2 gene-specific blockage of viral long-distance transport provides resistance to Wheat streak mosaic virus and Triticum mosaic virus in wheat

    USDA-ARS?s Scientific Manuscript database

    Wheat streak mosaic virus (WSMV) and Triticum mosaic virus (TriMV) are economically important viral pathogens of wheat. Wheat cultivars Mace with the resistance gene Wsm1 and Snowmass with the resistance gene Wsm2 are resistant to WSMV and TriMV, and WSMV, respectively. Viral resistance in both cult...

  16. Suits reflectance models for wheat and cotton - Theoretical and experimental tests

    NASA Technical Reports Server (NTRS)

    Chance, J. E.; Lemaster, E. W.

    1977-01-01

    Plant canopy reflectance models developed by Suits are tested for cotton and Penjamo winter wheat. Properties of the models are discussed, and the concept of model depth is developed. The models' predicted exchange symmetry for specular irradiance with respect to sun polar angle and observer polar angle agreed with field data for cotton and wheat. Model calculations and experimental data for wheat reflectance vs sun angle disagreed. Specular reflectance from 0.50 to 1.10 micron shows fair agreement between the model and wheat measurements. An Appendix includes the physical and optical parameters for wheat necessary to apply Suits' models.

  17. Wheat signature modeling and analysis for improved training statistics: Supplement. Simulated LANDSAT wheat radiances and radiance components

    NASA Technical Reports Server (NTRS)

    Malila, W. A.; Cicone, R. C.; Gleason, J. M.

    1976-01-01

    Simulated scanner system data values generated in support of LACIE (Large Area Crop Inventory Experiment) research and development efforts are presented. Synthetic inband (LANDSAT) wheat radiances and radiance components were computed and are presented for various wheat canopy and atmospheric conditions and scanner view geometries. Values include: (1) inband bidirectional reflectances for seven stages of wheat crop growth; (2) inband atmospheric features; and (3) inband radiances corresponding to the various combinations of wheat canopy and atmospheric conditions. Analyses of these data values are presented in the main report.

  18. Biolistic- and Agrobacterium-mediated transformation protocols for wheat.

    PubMed

    Tamás-Nyitrai, Cecília; Jones, Huw D; Tamás, László

    2012-01-01

    After rice, wheat is considered to be the most important world food crop, and the demand for high-quality wheat flour is increasing. Although there are no GM varieties currently grown, wheat is an important target for biotechnology, and we anticipate that GM wheat will be commercially available in 10-15 years. In this chapter, we summarize the main features and challenges of wheat transformation and then describe detailed protocols for the production of transgenic wheat plants both by biolistic and Agrobacterium-mediated DNA-delivery. Although these methods are used mainly for bread wheat (Triticum aestivum L.), they can also be successfully applied, with slight modifications, to tetraploid durum wheat (T. turgidum L. var. durum). The appropriate size and developmental stage of explants (immature embryo-derived scutella), the conditions to produce embryogenic callus tissues, and the methods to regenerate transgenic plants under increasing selection pressure are provided in the protocol. To illustrate the application of herbicide selection system, we have chosen to describe the use of the plasmid pAHC25 for biolistic transformation, while for Agrobacterium-mediated transformation the binary vector pAL156 (incorporating both the bar gene and the uidA gene) has been chosen. Beside the step-by-step methodology for obtaining stably transformed and normal fertile plants, procedures for screening and testing transgenic wheat plants are also discussed.

  19. Water dynamics and retrogradation of ultrahigh pressurized wheat starch.

    PubMed

    Doona, Christopher J; Feeherry, Florence E; Baik, Moo-Yeol

    2006-09-06

    The water dynamics and retrogradation kinetics behavior of gelatinized wheat starch by either ultrahigh pressure (UHP) processing or heat are investigated. Wheat starch completely gelatinized in the condition of 90, 000 psi at 25 degrees C for 30 min (pressurized gel) or 100 degrees C for 30 min (heated gel). The physical properties of the wheat starches were characterized in terms of proton relaxation times (T2 times) measured using time-domain nuclear magnetic resonance spectroscopy and evaluated using commercially available continuous distribution modeling software. Different T2 distributions in both micro- and millisecond ranges between pressurized and heated wheat starch gels suggest distinctively different water dynamics between pressurized and heated wheat starch gels. Smaller water self-diffusion coefficients were observed for pressurized wheat starch gels and are indicative of more restricted translational proton mobility than is observed with heated wheat starch gels. The physical characteristics associated with changes taking place during retrogradation were evaluated using melting curves obtained with differential scanning calorimetry. Less retrogradation was observed in pressurized wheat starch, and it may be related to a smaller quantity of freezable water in pressurized wheat starch. Starches comprise a major constituent of many foods proposed for commercial potential using UHP, and the present results furnish insight into the effect of UHP on starch gelatinization and the mechanism of retrogradation during storage.

  20. Interference of allelopathic wheat with different weeds.

    PubMed

    Zhang, Song-Zhu; Li, Yong-Hua; Kong, Chui-Hua; Xu, Xiao-Hua

    2016-01-01

    Interference of allelopathic wheat with weeds involves a broad spectrum of species either independently or synergistically with competitive factors. This study examined the interference of allelopathic wheat with 38 weeds in relation to the production of allelochemical 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one (DIMBOA) in wheat with and without root-root interactions. There were substantial differences in weed biomass and DIMBOA concentration in wheat-weed coexisting systems. Among 38 weeds, nine weeds were inhibited significantly by allelopathic wheat but the other 29 weeds were not. DIMBOA levels in wheat varied greatly with weed species. There was no significant relationship between DIMBOA levels and weed suppression effects. Root segregation led to great changes in weed inhibition and DIMBOA level. Compared with root contact, the inhibition of eight weeds was lowered significantly, while significantly increased inhibition occurred in 11 weeds with an increased DIMBOA concentration under root segregation. Furthermore, the production of DIMBOA in wheat was induced by the root exudates from weeds. Interference of allelopathic wheat with weeds not only is determined by the specificity of the weeds but also depends on root-root interactions. In particular, allelopathic wheat may detect certain weeds through the root exudates and respond by increasing the allelochemical, resulting in weed identity recognition. © 2015 Society of Chemical Industry.

  1. Higher Fusarium Toxin Accumulation in Grain of Winter Triticale Lines Inoculated with Fusarium culmorum as Compared with Wheat.

    PubMed

    Góral, Tomasz; Wiśniewska, Halina; Ochodzki, Piotr; Walentyn-Góral, Dorota

    2016-10-18

    Resistance to Fusarium head blight in 32 winter triticale and 34 winter wheat accessions was evaluated. Triticale and wheat were sown in field experiments in two locations. At the time of flowering, heads were inoculated with three Fusarium culmorum isolates. Fusarium head blight index was scored and after the harvest percentage of Fusarium damaged kernels was assessed. Grain was analysed for type B trichothecenes (deoxynivalenol and derivatives, nivalenol) and zearalenone (ZEN) content. The average Fusarium head blight indexes were 28.0% for wheat and 19.2% for triticale accessions. The percentage of Fusarium damaged kernels was also higher for wheat and came to 55.6%, while for triticale this figure was 40.2%. The average content of deoxynivalenol (DON) for wheat amounted to 11.65 mg/kg and was lower than the result for triticale which was 14.12 mg/kg. The average contents of nivalenol were similar in both cereals: 4.13 mg/kg and 5.19 mg/kg for wheat and triticale respectively. Considerable amounts of DON derivatives in the cereals were also detected. The ZEN content in the grain was 0.60 mg/kg for wheat and 0.66 mg/kg for triticale. Relationships between Fusarium head blight index, Fusarium damaged kernels and mycotoxin contents were statistically significant for wheat and mostly insignificant for triticale. Triticale proved to have less infected heads and kernels than wheat. However, the content of type B trichothecenes was higher in triticale grain than in wheat grain.

  2. Eighteen cases of wheat allergy and wheat-dependent exercise-induced urticaria/anaphylaxis sensitized by hydrolyzed wheat protein in soap.

    PubMed

    Kobayashi, Tomoko; Ito, Tomonobu; Kawakami, Hiroshi; Fuzishiro, Kanzan; Hirano, Hirofumi; Okubo, Yukari; Tsuboi, Ryoji

    2015-08-01

    Glupearl 19S, an acid-hydrolyzed wheat protein (HWP), is used widely in Japan as a moisturizing ingredient in facial soaps. Since 2010, there has been an increasing number of reports of contact urticaria and wheat allergy resulting from the use of products containing this substance. Sixty-one patients who had used HWP-containing facial soap visited our hospital. Thirty-five of these experienced urticaria or anaphylaxis after consuming wheat-containing food. Eighteen of the 35 patients tested positive to 0.01% Glupearl 19S solution. Wheat-specific IgE and serum gluten-specific IgE were higher in the patients with HWP allergy than in non-HWP allergy patients. Among the patients who tested positive to Glupearl 19S on the skin prick test, nine experienced HWP-wheat-dependent exercise-induced anaphylaxis, and four experienced food-dependent anaphylaxis. Moreover, four of these patients not only experienced food-dependent anaphylaxis but also a worsening of the symptoms during exercise. The clinical symptomology was so variable that the patients were classified into six groups. We found that patients with HWP allergy tended to manifest symptoms of both HWP-wheat-dependent exercise-induced anaphylaxis and contact urticaria. The etiology of hydrolyzed wheat protein allergy is unknown. Patients with a history of these symptoms need to be informed about the risk of consuming wheat-containing foods and the importance of excluding such items from their diet. © 2015 The International Society of Dermatology.

  3. A Phenology-based Method For Identifying the Planting Fraction of Winter Wheat Using Moderate-resolution Satellite Data

    NASA Astrophysics Data System (ADS)

    Dong, J.; Liu, W.; Han, W.; Lei, T.; Xia, J.; Yuan, W.

    2017-12-01

    Winter wheat is a staple food crop for most of the world's population, and the area and spatial distribution of winter wheat are key elements in estimating crop production and ensuring food security. However, winter wheat planting areas contain substantial spatial heterogeneity with mixed pixels for coarse- and moderate-resolution satellite data, leading to significant errors in crop acreage estimation. This study has developed a phenology-based approach using moderate-resolution satellite data to estimate sub-pixel planting fractions of winter wheat. Based on unmanned aerial vehicle (UAV) observations, the unique characteristics of winter wheat with high vegetation index values at the heading stage (May) and low values at the harvest stage (June) were investigated. The differences in vegetation index between heading and harvest stages increased with the planting fraction of winter wheat, and therefore the planting fractions were estimated by comparing the NDVI differences of a given pixel with those of predetermined pure winter wheat and non-winter wheat pixels. This approach was evaluated using aerial images and agricultural statistical data in an intensive agricultural region, Shandong Province in North China. The method explained 60% and 85% of the spatial variation in county- and municipal-level statistical data, respectively. More importantly, the predetermined pure winter wheat and non-winter wheat pixels can be automatically identified using MODIS data according to their NDVI differences, which strengthens the potential to use this method at regional and global scales without any field observations as references.

  4. Effects of instant controlled pressure drop process on physical and sensory properties of puffed wheat snack.

    PubMed

    Yağcı, Sibel

    2017-04-01

    In this study, research on the development of a puffed wheat snack using the instant controlled pressure drop (DIC) process was carried out. Snack products were produced by expanding moistened wheat under various DIC processing conditions in order to obtain adequate puffing, followed by drying in a hot air dryer. The effects of operational variables such as wheat initial moisture content (11-23% w/w, wet basis), processing pressure (3-5 × 10 2 kPa) and processing time (3-11 min) on the physical (density, color and textural characteristics) and sensory properties of the product were investigated. The physical properties of the wheat snack were most affected by changes in processing pressure, followed by processing time and wheat moisture content. Increasing processing pressure and time often improved expansion and textural properties but led to darkening of the raw wheat color. The most acceptable snack in terms of physical properties was obtained at the lowest wheat moisture content. Sensory analysis suggested that consumer acceptability was optimal for wheat snacks produced at higher processing pressure, medium processing time and lower moisture content. The most desirable conditions for puffed wheat snack production using the DIC process were determined as 11% (w/w) of wheat moisture content, 5 × 10 2 kPa of processing pressure and 7 min of processing time. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  5. Variation in asparagine concentration in Nebraska wheat

    USDA-ARS?s Scientific Manuscript database

    The concentration of asparagine in wheat grain depends on both genetics and environmental factors, therefore study of different wheat cultivars, growing locations and crops years is needed for proper evaluation of potential risks of acrylamide formation in baked products made from Nebraska wheats. T...

  6. 19 CFR 19.34 - Customs supervision.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Wheat § 19.34 Customs supervision. Port directors shall exercise such supervision and control over the... imported wheat and no unauthorized mixing, blending, or commingling of such imported wheat. Importers... wheat in continuous Customs custody shall maintain such records as will enable Customs officers to...

  7. Non-starch polysaccharide-degrading enzymes increase the performance of broiler chickens fed wheat of low apparent metabolizable energy.

    PubMed

    Choct, M; Hughes, R J; Trimble, R P; Angkanaporn, K; Annison, G

    1995-03-01

    The effect of a commercial glycanase product (Avizyme TX) on the performance of 4-wk-old broiler chickens fed wheats with low and normal apparent metabolizable energy values was studied. Controls were fed a corn-based diet. Supplementation with the enzyme product significantly (P < 0.01) increased the apparent metabolizable energy of the low metabolizable energy wheat from 12.02 to 14.94 MJ/kg dry matter. The apparent metabolizable energy value of the normal wheat was increased from 14.52 to 14.83 MJ/kg dry matter; this was, however, not significant. Birds fed the low metabolizable energy wheat diet had significantly (P < 0.01) higher digesta viscosity and lower small intestinal starch and protein digestibilities than birds fed the normal wheat diet. Chickens fed the low metabolizable energy wheat tended to grow less than those fed the normal wheat diet. When the low metabolizable energy wheat+enzyme diet was fed, digesta viscosity was significantly (P < 0.01) lower (20.28 vs. 10.36 mPa.s), and small intestinal digestibility coefficient of starch was significantly (P < 0.01) greater (0.584 vs. 0.861) relative to values in birds fed the low metabolizable energy wheat diet alone. Although the protein digestibility coefficient also increased from 0.689 to 0.745, the difference was not significant. Weight gain and feed efficiency of birds fed the low metabolizable energy wheat+enzyme equaled those of controls. The enzyme product significantly (P < 0.01) increased the solubilization of non-starch polysaccharides within the gastrointestinal tract of birds fed both types of wheat diets.(ABSTRACT TRUNCATED AT 250 WORDS)

  8. Enrichment of provitamin A content in wheat (Triticum aestivum L.) by introduction of the bacterial carotenoid biosynthetic genes CrtB and CrtI.

    PubMed

    Wang, Cheng; Zeng, Jian; Li, Yin; Hu, Wei; Chen, Ling; Miao, Yingjie; Deng, Pengyi; Yuan, Cuihong; Ma, Cheng; Chen, Xi; Zang, Mingli; Wang, Qiong; Li, Kexiu; Chang, Junli; Wang, Yuesheng; Yang, Guangxiao; He, Guangyuan

    2014-06-01

    Carotenoid content is a primary determinant of wheat nutritional value and affects its end-use quality. Wheat grains contain very low carotenoid levels and trace amounts of provitamin A content. In order to enrich the carotenoid content in wheat grains, the bacterial phytoene synthase gene (CrtB) and carotene desaturase gene (CrtI) were transformed into the common wheat cultivar Bobwhite. Expression of CrtB or CrtI alone slightly increased the carotenoid content in the grains of transgenic wheat, while co-expression of both genes resulted in a darker red/yellow grain phenotype, accompanied by a total carotenoid content increase of approximately 8-fold achieving 4.76 μg g(-1) of seed dry weight, a β-carotene increase of 65-fold to 3.21 μg g(-1) of seed dry weight, and a provitamin A content (sum of α-carotene, β-carotene, and β-cryptoxanthin) increase of 76-fold to 3.82 μg g(-1) of seed dry weight. The high provitamin A content in the transgenic wheat was stably inherited over four generations. Quantitative PCR analysis revealed that enhancement of provitamin A content in transgenic wheat was also a result of the highly coordinated regulation of endogenous carotenoid biosynthetic genes, suggesting a metabolic feedback regulation in the wheat carotenoid biosynthetic pathway. These transgenic wheat lines are not only valuable for breeding wheat varieties with nutritional benefits for human health but also for understanding the mechanism regulating carotenoid biosynthesis in wheat endosperm. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  9. Production and Identification of Wheat-Agropyron cristatum 2P Translocation Lines

    PubMed Central

    Li, Huanhuan; Lv, Mingjie; Song, Liqiang; Zhang, Jinpeng; Gao, Ainong; Li, Lihui; Liu, Weihua

    2016-01-01

    Agropyron cristatum (L.) Gaertn. (2n = 28, PPPP), a wild relative of common wheat, possesses many potentially valuable traits that can be transferred to common wheat through breeding programs. The wheat-A. cristatum disomic addition and translocation lines can be used as bridge materials to introduce alien chromosomal segments to wheat. Wheat-A. cristatum 2P disomic addition line II-9-3 was highly resistant to powdery mildew and leaf rust, which was reported in our previous study. However, some translocation lines induced from II-9-3 have not been reported. In this study, some translocation lines were induced from II-9-3 by 60Co-γ irradiation and gametocidal chromosome 2C and then identified by cytological methods. Forty-nine wheat-A. cristatum translocation lines were obtained and various translcoation types were identified by GISH (genomic in situ hybridization), such as whole-arm, segmental and intercalary translocations. Dual-color FISH (fluorescent in situ hybridization) was applied to identify the wheat chromosomes involved in the translocations, and the results showed that A. cristatum 2P chromosome segments were translocated to the different wheat chromosomes, including 1A, 2A, 3A, 4A, 5A, 6A, 7A, 3B, 5B, 7B, 1D, 4D and 6D. Many different types of wheat-A. cristatum alien translocation lines would be valuable for not only identifying and cloning A. cristatum 2P-related genes and understanding the genetics and breeding effects of the translocation between A. cristatum chromosome 2P and wheat chromosomes, but also providing new germplasm resources for the wheat genetic improvement. PMID:26731742

  10. Impact of Solid and Hollow Varieties of Winter and Spring Wheat on Severity of Wheat Stem Sawfly (Hymenoptera: Cephidae) Infestations and Yield and Quality of Grain.

    PubMed

    Szczepaniec, Adrianna; Glover, Karl D; Berzonsky, William

    2015-10-01

    Wheat stem sawfly (WSS), Cephus cinctus Norton (Hymenoptera: Cephidae), has recently emerged as a key pest of wheat (Triticum aestivum L.) in the Great Plains and Canadian provinces. The expanding impact of WSS has caused considerable economic losses to wheat production. Solid-stem varieties of wheat remain the only effective measure of suppression of WSS, and the goal of this research was to test whether five solid- and hollow-stem varieties of winter and spring wheat reduce survival of WSS in South Dakota. We reported that solid-stem varieties had significantly lower numbers of WSS larvae, and this effect was especially evident when WSS infestation rates exceeded 15%. We also observed that the yield of solid-stem varieties was significantly lower than hollow-stem varieties when the abundance of WSS was low, but not when populations of WSS were relatively high. We did not observe consistent differences in grain quality between solid- and hollow-stem varieties, however, and in case of protein levels of grain, solid-stem wheat varieties performed better than hollow-stem wheat. We conclude that solid-stem varieties of wheat appear to effectively suppress WSS survival, and reduced yield of these varieties is less apparent when populations of C. cinctus are high enough to affect the yield of hollow-stem wheat. This is the first report to describe the effectiveness of solid-stem varieties of wheat on WSS in South Dakota. More research in the state is necessary before more robust conclusions can be drawn. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. Elucidating the impact of temperature variability and extremes on cereal croplands through remote sensing.

    PubMed

    Duncan, John M A; Dash, Jadunandan; Atkinson, Peter M

    2015-04-01

    Remote sensing-derived wheat crop yield-climate models were developed to highlight the impact of temperature variation during thermo-sensitive periods (anthesis and grain-filling; TSP) of wheat crop development. Specific questions addressed are: can the impact of temperature variation occurring during the TSP on wheat crop yield be detected using remote sensing data and what is the impact? Do crop critical temperature thresholds during TSP exist in real world cropping landscapes? These questions are tested in one of the world's major wheat breadbaskets of Punjab and Haryana, north-west India. Warming average minimum temperatures during the TSP had a greater negative impact on wheat crop yield than warming maximum temperatures. Warming minimum and maximum temperatures during the TSP explain a greater amount of variation in wheat crop yield than average growing season temperature. In complex real world cereal croplands there was a variable yield response to critical temperature threshold exceedance, specifically a more pronounced negative impact on wheat yield with increased warming events above 35 °C. The negative impact of warming increases with a later start-of-season suggesting earlier sowing can reduce wheat crop exposure harmful temperatures. However, even earlier sown wheat experienced temperature-induced yield losses, which, when viewed in the context of projected warming up to 2100 indicates adaptive responses should focus on increasing wheat tolerance to heat. This study shows it is possible to capture the impacts of temperature variation during the TSP on wheat crop yield in real world cropping landscapes using remote sensing data; this has important implications for monitoring the impact of climate change, variation and heat extremes on wheat croplands. © 2014 John Wiley & Sons Ltd.

  12. A systematic review of rye (Secale cereale L.) as a source of resistance to pathogens and pests in wheat (Triticum aestivum L.).

    PubMed

    Crespo-Herrera, Leonardo A; Garkava-Gustavsson, Larisa; Åhman, Inger

    2017-01-01

    Wheat is globally one of the most important crops. With the current human population growth rate, there is an increasing need to raise wheat productivity by means of plant breeding, along with development of more efficient and sustainable agricultural systems. Damage by pathogens and pests, in combination with adverse climate effects, need to be counteracted by incorporating new germplasm that makes wheat more resistant/tolerant to such stress factors. Rye has been used as a source for improved resistance to pathogens and pests in wheat during more than 50 years. With new devastating stem and yellow rust pathotypes invading wheat at large acreage globally, along with new biotypes of pest insects, there is renewed interest in using rye as a source of resistance. Currently the proportion of wheat cultivars with rye chromatin varies between countries, with examples of up to 34%. There is mainly one rye source, Petkus, that has been widely exploited and that has contributed considerably to raise yields and increase disease resistance in wheat. Successively, the multiple disease resistances conferred by this source has been overcome by new pathotypes of leaf rust, yellow rust, stem rust and powdery mildew. However, there are several other rye sources reported to make wheat more resistant to various biotic constraints when their rye chromatin has been transferred to wheat. There is also development of knowledge on how to produce new rye translocation, substitution and addition lines. Here we compile information that may facilitate decision making for wheat breeders aiming to transfer resistance to biotic constraints from rye to elite wheat germplasm.

  13. Modeling the impacts of climate change and technical progress on the wheat yield in inland China: An autoregressive distributed lag approach.

    PubMed

    Zhai, Shiyan; Song, Genxin; Qin, Yaochen; Ye, Xinyue; Lee, Jay

    2017-01-01

    This study aims to evaluate the impacts of climate change and technical progress on the wheat yield per unit area from 1970 to 2014 in Henan, the largest agricultural province in China, using an autoregressive distributed lag approach. The bounded F-test for cointegration among the model variables yielded evidence of a long-run relationship among climate change, technical progress, and the wheat yield per unit area. In the long run, agricultural machinery and fertilizer use both had significantly positive impacts on the per unit area wheat yield. A 1% increase in the aggregate quantity of fertilizer use increased the wheat yield by 0.19%. Additionally, a 1% increase in machine use increased the wheat yield by 0.21%. In contrast, precipitation during the wheat growth period (from emergence to maturity, consisting of the period from last October to June) led to a decrease in the wheat yield per unit area. In the short run, the coefficient of the aggregate quantity of fertilizer used was negative. Land size had a significantly positive impact on the per unit area wheat yield in the short run. There was no significant short-run or long-run impact of temperature on the wheat yield per unit area in Henan Province. The results of our analysis suggest that climate change had a weak impact on the wheat yield, while technical progress played an important role in increasing the wheat yield per unit area. The results of this study have implications for national and local agriculture policies under climate change. To design well-targeted agriculture adaptation policies for the future and to reduce the adverse effects of climate change on the wheat yield, climate change and technical progress factors should be considered simultaneously. In addition, adaptive measures associated with technical progress should be given more attention.

  14. Mapping QTLs of yield-related traits using RIL population derived from common wheat and Tibetan semi-wild wheat.

    PubMed

    Liu, Gang; Jia, Lijia; Lu, Lahu; Qin, Dandan; Zhang, Jinping; Guan, Panfeng; Ni, Zhongfu; Yao, Yingyin; Sun, Qixin; Peng, Huiru

    2014-11-01

    QTLs controlling yield-related traits were mapped using a population derived from common wheat and Tibetan semi-wild wheat and they provided valuable information for using Tibetan semi-wild wheat in future wheat molecular breeding. Tibetan semi-wild wheat (Triticum aestivum ssp tibetanum Shao) is a kind of primitive hexaploid wheat and harbors several beneficial traits, such as tolerance to biotic and abiotic stresses. And as a wild relative of common wheat, heterosis of yield of the progeny between them was significant. This study focused on mapping QTLs controlling yield-related traits using a recombined inbred lines (RILs) population derived from a hybrid between a common wheat line NongDa3331 (ND3331) and the Tibetan semi-wild wheat accession Zang 1817. In nine location-year environments, a total of 148 putative QTLs controlling nine traits were detected, distributed on 19 chromosomes except for 1A and 2D. Single QTL explained the phenotypic variation ranging from 3.12 to 49.95%. Of these QTLs, 56 were contributed by Zang 1817. Some stable QTLs contributed by Zang 1817 were also detected in more than four environments, such as QPh-3A1, QPh-4B1 and QPh-4D for plant height, QSl-7A1 for spike length, QEp-4B2 for ears per plant, QGws-4D for grain weight per spike, and QTgw-4D for thousand grain weight. Several QTL-rich Regions were also identified, especially on the homoeologous group 4. The TaANT gene involved in floral organ development was mapped on chromosome 4A between Xksm71 and Xcfd6 with 0.8 cM interval, and co-segregated with the QTLs controlling floret number per spikelet, explaining 4.96-11.84% of the phenotypic variation. The current study broadens our understanding of the genetic characterization of Tibetan semi-wild wheat, which will enlarge the genetic diversity of yield-related traits in modern wheat breeding program.

  15. Modeling the impacts of climate change and technical progress on the wheat yield in inland China: An autoregressive distributed lag approach

    PubMed Central

    Qin, Yaochen; Lee, Jay

    2017-01-01

    This study aims to evaluate the impacts of climate change and technical progress on the wheat yield per unit area from 1970 to 2014 in Henan, the largest agricultural province in China, using an autoregressive distributed lag approach. The bounded F-test for cointegration among the model variables yielded evidence of a long-run relationship among climate change, technical progress, and the wheat yield per unit area. In the long run, agricultural machinery and fertilizer use both had significantly positive impacts on the per unit area wheat yield. A 1% increase in the aggregate quantity of fertilizer use increased the wheat yield by 0.19%. Additionally, a 1% increase in machine use increased the wheat yield by 0.21%. In contrast, precipitation during the wheat growth period (from emergence to maturity, consisting of the period from last October to June) led to a decrease in the wheat yield per unit area. In the short run, the coefficient of the aggregate quantity of fertilizer used was negative. Land size had a significantly positive impact on the per unit area wheat yield in the short run. There was no significant short-run or long-run impact of temperature on the wheat yield per unit area in Henan Province. The results of our analysis suggest that climate change had a weak impact on the wheat yield, while technical progress played an important role in increasing the wheat yield per unit area. The results of this study have implications for national and local agriculture policies under climate change. To design well-targeted agriculture adaptation policies for the future and to reduce the adverse effects of climate change on the wheat yield, climate change and technical progress factors should be considered simultaneously. In addition, adaptive measures associated with technical progress should be given more attention. PMID:28950027

  16. Wheat rusts in the United States in 2011

    USDA-ARS?s Scientific Manuscript database

    Wheat stem rust (Puccinia graminis tritici) was found in Texas, Louisiana, Oklahoma, Kansas, Nebraska, North Dakota, Minnesota, Arkansas, Missouri, Kentucky, Illinois, Indiana, Wisconsin and Michigan in 2011. Nationally, wheat only incurred a trace loss due to wheat stem rust. Race QFCS was the most...

  17. 40 CFR 180.314 - Triallate; tolerances for residues.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., tops 0.5 Pea, dry 0.2 Pea, field, hay 1.0 Pea, field, vines 0.5 Pea, succulent 0.2 Wheat, forage 0.5 Wheat, grain 0.05 Wheat, hay 1.0 Wheat, straw 1.0 (d) Indirect or inadvertent residues. [Reserved] [72...

  18. Soft durum wheat - a paradigm shift

    USDA-ARS?s Scientific Manuscript database

    Two traits define most aspects of wheat quality and utilization: kernel texture (hardness) and gluten. The former is far simpler genetically and is controlled by two genes, Puroindoline a and Puroindoline b. Durum wheat lacks puroindolines and has very hard kernels. As such, durum wheat when milled ...

  19. [Cytoembryologic studies of super dwarf wheat grown in "Svet" greenhouse in the ground-based experiments

    NASA Technical Reports Server (NTRS)

    Levinskikh, M. A.; Veselova, T. D.; Il'ina, G. M.; Dzhalilova, Kh Kh; Sychev, V. N.; Derendiaeva, T. A.; Salisbury, F.; Cambell, W.; Bubenheim, D.; Campbell, W. (Principal Investigator)

    1998-01-01

    The Project of scientific programs MIR/SHUTTLE and MIR/NASA was allowed for studying the productional, cytoembryological, morphological, biomechanical and other characteristics of superclub wheat on cultivation in the Svet greenhouse on-board orbital complex. This work was aimed at studying the duration of the complete cycle of ontogenesis of wheat and its individual stages, the peculiarities of forming the reproductive organs, processes, fertilization and formation of the seed production while cultivating in the Svet greenhouse under terrestrial conditions. Superclub wheat has been the object of experimentation. On cultivation of superclub wheat in the Svet greenhouse at designated conditions it was found that the cycle duration "from seed to seed" was 90-97 days. The number of granules in the wheat-ears studied was quite low and ranged from 15 to 30%. Performed studies with applying the light microscopy have indicated that in superclub wheat the embryological processes occur in compliance with those regularities which are described for the other forms of soft wheat.

  20. [Adaptability of APSIM model in Southwestern China: A case study of winter wheat in Chongqing City].

    PubMed

    Dai, Tong; Wang, Jing; He, Di; Zhang, Jian-ping; Wang, Na

    2015-04-01

    Field experimental data of winter wheat and parallel daily meteorological data at four typical stations in Chongqing City were used to calibrate and validate APSIM-wheat model and determine the genetic parameters for 12 varieties of winter wheat. The results showed that there was a good agreement between the simulated and observed growth periods from sowing to emergence, flowering and maturity of wheat. Root mean squared errors (RMSEs) between simulated and observed emergence, flowering and maturity were 0-3, 1-8, and 0-8 d, respectively. Normalized root mean squared errors (NRMSEs) between simulated and observed above-ground biomass for 12 study varieties were less than 30%. NRMSE between simulated and observed yields for 10 varieties out of 12 study varieties were less than 30%. APSIM-wheat model performed well in simulating phenology, aboveground biomass and yield of winter wheat in Chongqing City, which could provide a foundational support for assessing the impact of climate change on wheat production in the study area based on the model.

  1. A comparative assessment of antioxidant properties, total phenolic content of einkorn, wheat, barley and their malts.

    PubMed

    Fogarasi, Attila-Levente; Kun, Szilárd; Tankó, Gabriella; Stefanovits-Bányai, Eva; Hegyesné-Vecseri, Beáta

    2015-01-15

    Two einkorn wheat, one barley, three optional winter cultivation wheat and five winter cultivation wheat samples harvested in Hungary in 2011, and their malts were evaluated for their DPPH radical and ABTS radical cation scavenging activity, ferric reduction capacity (FRAP) and total phenolic content (TPC). All einkorn and barley samples exhibited significant antioxidant activities determined by DPPH and ABTS radical scavenging activities. The einkorn samples show higher polyphenol content than the other wheat samples. In all cases the barley sample had the highest antioxidant potential and polyphenol content. The einkorn malts had high DPPH and ABTS radical cation scavenging activities, but the phenolic content was lower against wheat samples. There was significant difference between the antioxidant potential of optional and winter cultivation wheat samples except on ABTS scavenging activities. Einkorn wheat is potentially a new raw material to produce organic beer that might have beneficial effects with its increased antioxidant potential. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. [Cytoembryologic studies of super dwarf wheat grown in "Svet" greenhouse in the ground-based experiments].

    PubMed

    Levinskikh, M A; Veselova, T D; Il'ina, G M; Dzhalilova, Kh Kh; Sychev, V N; Derendiaeva, T A; Salisbury, F; Cambell, W; Bubenheim, D

    1998-01-01

    The Project of scientific programs MIR/SHUTTLE and MIR/NASA was allowed for studying the productional, cytoembryological, morphological, biomechanical and other characteristics of superclub wheat on cultivation in the Svet greenhouse on-board orbital complex. This work was aimed at studying the duration of the complete cycle of ontogenesis of wheat and its individual stages, the peculiarities of forming the reproductive organs, processes, fertilization and formation of the seed production while cultivating in the Svet greenhouse under terrestrial conditions. Superclub wheat has been the object of experimentation. On cultivation of superclub wheat in the Svet greenhouse at designated conditions it was found that the cycle duration "from seed to seed" was 90-97 days. The number of granules in the wheat-ears studied was quite low and ranged from 15 to 30%. Performed studies with applying the light microscopy have indicated that in superclub wheat the embryological processes occur in compliance with those regularities which are described for the other forms of soft wheat.

  3. Introgression of leaf rust and stripe rust resistance from Sharon goatgrass (Aegilops sharonensis Eig) into bread wheat (Triticum aestivum L.).

    PubMed

    Millet, E; Manisterski, J; Ben-Yehuda, P; Distelfeld, A; Deek, J; Wan, A; Chen, X; Steffenson, B J

    2014-06-01

    Leaf rust and stripe rust are devastating wheat diseases, causing significant yield losses in many regions of the world. The use of resistant varieties is the most efficient way to protect wheat crops from these diseases. Sharon goatgrass (Aegilops sharonensis or AES), which is a diploid wild relative of wheat, exhibits a high frequency of leaf and stripe rust resistance. We used the resistant AES accession TH548 and induced homoeologous recombination by the ph1b allele to obtain resistant wheat recombinant lines carrying AES chromosome segments in the genetic background of the spring wheat cultivar Galil. The gametocidal effect from AES was overcome by using an "anti-gametocidal" wheat mutant. These recombinant lines were found resistant to highly virulent races of the leaf and stripe rust pathogens in Israel and the United States. Molecular DArT analysis of the different recombinant lines revealed different lengths of AES segments on wheat chromosome 6B, which indicates the location of both resistance genes.

  4. [Effects of N application on wheat powdery mildew occurrence, nitrogen accumulation and allocation in intercropping system].

    PubMed

    Zhu, Jin Hui; Dong, Yan; Xiao, Jing Xiu; Zheng, Yi; Tang, Li

    2017-12-01

    The main objective of this field experiment was to study the effects of wheat and faba bean intercropping on occurrence of wheat powdery mildew, nitrogen content, accumulation and allocation of wheat plant at 4 nitrogen levels of N 0 (0 kg·hm -2 ), N 1 (112.5 kg·hm -2 ), N 2 (225 kg·hm -2 ), N 3 (337.5 kg·hm -2 ), and to explore the relationship between N content, accumulation, allocation and the occurrence of wheat powdery mildew. The results showed that both monocropped and intercropped wheat yields increased with nitrogen application, with the highest yields of monocropped and intercropped wheat being 4146 kg·hm -2 and 4679 kg·hm -2 at N 2 le-vel, respectively. The occurrence and development of wheat powdery mildew become more severe with the increase of N application and area under disease progression curve (AUDPC) were averagely increased by 39.6%-55.6%(calculated with disease incidence, DI) and 92.5%-217.0% (calculated with disease severity index, DSI) with N 1 , N 2 and N 3 treatments. The disease severity index was more affected by nitrogen regulation than by disease incidence. The nitrogen content and accumulation of wheat plant were significantly increased by 8.4%-51.6% and 19.7%-133.7% with nitrogen application, but there was no significant effect on N allocation ratio. Compared with monocropped wheat, yield of intercropped wheat was averagely increased by 12%, whereas, the AUDPC(DI) and AUDPC(DSI) of intercropped wheat were averagely decreased by 11.5% and 30.7%, respectively. The control effect of the disease severity index by intercropping was better than disease incidence. The nitrogen content, accumulation and nitrogen allocation ratio in intercropped wheat leaves were significantly decreased by 6.6%-12.5%, 1.4%-6.9% and 9.0%-15.5% respectively at the peak infection stage of powdery mildew. Overall findings showed that the maximum rate of nitrogen application for wheat should not exceed 225 kg·hm -2 when taking into account both disease control and yield effect.

  5. Injury Profile SIMulator, a Qualitative Aggregative Modelling Framework to Predict Injury Profile as a Function of Cropping Practices, and Abiotic and Biotic Environment. II. Proof of Concept: Design of IPSIM-Wheat-Eyespot

    PubMed Central

    Robin, Marie-Hélène; Colbach, Nathalie; Lucas, Philippe; Montfort, Françoise; Cholez, Célia; Debaeke, Philippe; Aubertot, Jean-Noël

    2013-01-01

    IPSIM (Injury Profile SIMulator) is a generic modelling framework presented in a companion paper. It aims at predicting a crop injury profile as a function of cropping practices and abiotic and biotic environment. IPSIM's modelling approach consists of designing a model with an aggregative hierarchical tree of attributes. In order to provide a proof of concept, a model, named IPSIM-Wheat-Eyespot, has been developed with the software DEXi according to the conceptual framework of IPSIM to represent final incidence of eyespot on wheat. This paper briefly presents the pathosystem, the method used to develop IPSIM-Wheat-Eyespot using IPSIM's modelling framework, simulation examples, an evaluation of the predictive quality of the model with a large dataset (526 observed site-years) and a discussion on the benefits and limitations of the approach. IPSIM-Wheat-Eyespot proved to successfully represent the annual variability of the disease, as well as the effects of cropping practices (Efficiency = 0.51, Root Mean Square Error of Prediction = 24%; bias = 5.0%). IPSIM-Wheat-Eyespot does not aim to precisely predict the incidence of eyespot on wheat. It rather aims to rank cropping systems with regard to the risk of eyespot on wheat in a given production situation through ex ante evaluations. IPSIM-Wheat-Eyespot can also help perform diagnoses of commercial fields. Its structure is simple and permits to combine available knowledge in the scientific literature (data, models) and expertise. IPSIM-Wheat-Eyespot is now available to help design cropping systems with a low risk of eyespot on wheat in a wide range of production situations, and can help perform diagnoses of commercial fields. In addition, it provides a proof of concept with regard to the modelling approach of IPSIM. IPSIM-Wheat-Eyespot will be a sub-model of IPSIM-Wheat, a model that will predict injury profile on wheat as a function of cropping practices and the production situation. PMID:24146783

  6. Development of groundwater pesticide exposure modeling scenarios for vulnerable spring and winter wheat-growing areas.

    PubMed

    Padilla, Lauren; Winchell, Michael; Peranginangin, Natalia; Grant, Shanique

    2017-11-01

    Wheat crops and the major wheat-growing regions of the United States are not included in the 6 crop- and region-specific scenarios developed by the US Environmental Protection Agency (USEPA) for exposure modeling with the Pesticide Root Zone Model conceptualized for groundwater (PRZM-GW). The present work augments the current scenarios by defining appropriately vulnerable PRZM-GW scenarios for high-producing spring and winter wheat-growing regions that are appropriate for use in refined pesticide exposure assessments. Initial screening-level modeling was conducted for all wheat areas across the conterminous United States as defined by multiple years of the Cropland Data Layer land-use data set. Soil, weather, groundwater temperature, evaporation depth, and crop growth and management practices were characterized for each wheat area from publicly and nationally available data sets and converted to input parameters for PRZM. Approximately 150 000 unique combinations of weather, soil, and input parameters were simulated with PRZM for an herbicide applied for postemergence weed control in wheat. The resulting postbreakthrough average herbicide concentrations in a theoretical shallow aquifer were ranked to identify states with the largest regions of relatively vulnerable wheat areas. For these states, input parameters resulting in near 90 th percentile postbreakthrough average concentrations corresponding to significant wheat areas with shallow depth to groundwater formed the basis for 4 new spring wheat scenarios and 4 new winter wheat scenarios to be used in PRZM-GW simulations. Spring wheat scenarios were identified in North Dakota, Montana, Washington, and Texas. Winter wheat scenarios were identified in Oklahoma, Texas, Kansas, and Colorado. Compared to the USEPA's original 6 scenarios, postbreakthrough average herbicide concentrations in the new scenarios were lower than all but Florida Potato and Georgia Coastal Peanuts of the original scenarios and better represented regions dominated by wheat crops. Integr Environ Assess Manag 2017;13:992-1006. © 2017 The Authors. Integrated Environmental Assessment and Management Published by Wiley Periodicals, Inc. on behalf of Society of Environmental Toxicology & Chemistry (SETAC). © 2017 The Authors. Integrated Environmental Assessment and Management Published by Wiley Periodicals, Inc. on behalf of Society of Environmental Toxicology & Chemistry (SETAC).

  7. Injury profile SIMulator, a Qualitative aggregative modelling framework to predict injury profile as a function of cropping practices, and abiotic and biotic environment. II. Proof of concept: design of IPSIM-wheat-eyespot.

    PubMed

    Robin, Marie-Hélène; Colbach, Nathalie; Lucas, Philippe; Montfort, Françoise; Cholez, Célia; Debaeke, Philippe; Aubertot, Jean-Noël

    2013-01-01

    IPSIM (Injury Profile SIMulator) is a generic modelling framework presented in a companion paper. It aims at predicting a crop injury profile as a function of cropping practices and abiotic and biotic environment. IPSIM's modelling approach consists of designing a model with an aggregative hierarchical tree of attributes. In order to provide a proof of concept, a model, named IPSIM-Wheat-Eyespot, has been developed with the software DEXi according to the conceptual framework of IPSIM to represent final incidence of eyespot on wheat. This paper briefly presents the pathosystem, the method used to develop IPSIM-Wheat-Eyespot using IPSIM's modelling framework, simulation examples, an evaluation of the predictive quality of the model with a large dataset (526 observed site-years) and a discussion on the benefits and limitations of the approach. IPSIM-Wheat-Eyespot proved to successfully represent the annual variability of the disease, as well as the effects of cropping practices (Efficiency = 0.51, Root Mean Square Error of Prediction = 24%; bias = 5.0%). IPSIM-Wheat-Eyespot does not aim to precisely predict the incidence of eyespot on wheat. It rather aims to rank cropping systems with regard to the risk of eyespot on wheat in a given production situation through ex ante evaluations. IPSIM-Wheat-Eyespot can also help perform diagnoses of commercial fields. Its structure is simple and permits to combine available knowledge in the scientific literature (data, models) and expertise. IPSIM-Wheat-Eyespot is now available to help design cropping systems with a low risk of eyespot on wheat in a wide range of production situations, and can help perform diagnoses of commercial fields. In addition, it provides a proof of concept with regard to the modelling approach of IPSIM. IPSIM-Wheat-Eyespot will be a sub-model of IPSIM-Wheat, a model that will predict injury profile on wheat as a function of cropping practices and the production situation.

  8. Maternal effects of the English grain aphids feeding on the wheat varieties with different resistance traits.

    PubMed

    Hu, Xiang-Shun; Zhang, Zhan-Feng; Zhu, Tong-Yi; Song, Yue; Wu, Li-Juan; Liu, Xiao-Feng; Zhao, Hui-Yan; Liu, Tong-Xian

    2018-05-09

    The maternal effects of the English grain aphid, Sitobion avenae on offspring phenotypes and performance on wheat varieties with different resistance traits were examined. We found that both conditioning wheat varieties(the host plant for over 3 months) and transition wheat varieties affected the biological parameters of aphid offspring after they were transferred between wheat varieties with different resistance traits. The conditioning varieties affected weight gain, development time (DT), and the intrinsic rate of natural increase (r m ), whereas transition varieties affected the fecundity, r m , net reproductive rate, and fitness index. The conditioning and transition wheat varieties had significant interaction effects on the aphid offspring's DT, mean relative growth rate, and fecundity. Our results showed that there was obvious maternal effects on offspring when S. avenae transferred bwteen wheat varieties with different resistance level, and the resistance traits of wheat varieties could induce an interaction between the conditioning and transition wheat varieties to influence the growth, development, reproduction, and even population dynamics of S. avenae. The conditioning varieties affected life-history traits related to individual growth and development to a greater extent, whereas transition varieties affected fecundity and population parameters more.

  9. Reactive Oxygen Species Play a Role in the Infection of the Necrotrophic Fungi, Rhizoctonia solani in Wheat

    PubMed Central

    Foley, Rhonda C.; Kidd, Brendan N.; Hane, James K.; Anderson, Jonathan P.; Singh, Karam B.

    2016-01-01

    Rhizoctonia solani is a nectrotrophic fungal pathogen that causes billions of dollars of damage to agriculture worldwide and infects a broad host range including wheat, rice, potato and legumes. In this study we identify wheat genes that are differentially expressed in response to the R. solani isolate, AG8, using microarray technology. A significant number of wheat genes identified in this screen were involved in reactive oxygen species (ROS) production and redox regulation. Levels of ROS species were increased in wheat root tissue following R. solani infection as determined by Nitro Blue Tetrazolium (NBT), 3,3'-diaminobenzidine (DAB) and titanium sulphate measurements. Pathogen/ROS related genes from R. solani were also tested for expression patterns upon wheat infection. TmpL, a R. solani gene homologous to a gene associated with ROS regulation in Alternaria brassicicola, and OAH, a R. solani gene homologous to oxaloacetate acetylhydrolase which has been shown to produce oxalic acid in Sclerotinia sclerotiorum, were highly induced in R. solani when infecting wheat. We speculate that the interplay between the wheat and R. solani ROS generating proteins may be important for determining the outcome of the wheat/R. solani interaction. PMID:27031952

  10. Pentaploid Wheat Hybrids: Applications, Characterisation, and Challenges

    PubMed Central

    Padmanaban, Sriram; Zhang, Peng; Hare, Ray A.; Sutherland, Mark W.; Martin, Anke

    2017-01-01

    Interspecific hybridisation between hexaploid and tetraploid wheat species leads to the development of F1 pentaploid hybrids with unique chromosomal constitutions. Pentaploid hybrids derived from bread wheat (Triticum aestivum L.) and durum wheat (Triticum turgidum spp. durum Desf.) crosses can improve the genetic background of either parent by transferring traits of interest. The genetic variability derived from bread and durum wheat and transferred into pentaploid hybrids has the potential to improve disease resistance, abiotic tolerance, and grain quality, and to enhance agronomic characters. Nonetheless, pentaploid wheat hybrids have not been fully exploited in breeding programs aimed at improving crops. There are several potential barriers for efficient pentaploid wheat production, such as low pollen compatibility, poor seed set, failed seedling establishment, and frequent sterility in F1 hybrids. However, most of the barriers can be overcome by careful selection of the parental genotypes and by employing the higher ploidy level genotype as the maternal parent. In this review, we summarize the current research on pentaploid wheat hybrids and analyze the advantages and pitfalls of current methods used to assess pentaploid-derived lines. Furthermore, we discuss current and potential applications in commercial breeding programs and future directions for research into pentaploid wheat. PMID:28367153

  11. Reactive Oxygen Species Play a Role in the Infection of the Necrotrophic Fungi, Rhizoctonia solani in Wheat.

    PubMed

    Foley, Rhonda C; Kidd, Brendan N; Hane, James K; Anderson, Jonathan P; Singh, Karam B

    2016-01-01

    Rhizoctonia solani is a nectrotrophic fungal pathogen that causes billions of dollars of damage to agriculture worldwide and infects a broad host range including wheat, rice, potato and legumes. In this study we identify wheat genes that are differentially expressed in response to the R. solani isolate, AG8, using microarray technology. A significant number of wheat genes identified in this screen were involved in reactive oxygen species (ROS) production and redox regulation. Levels of ROS species were increased in wheat root tissue following R. solani infection as determined by Nitro Blue Tetrazolium (NBT), 3,3'-diaminobenzidine (DAB) and titanium sulphate measurements. Pathogen/ROS related genes from R. solani were also tested for expression patterns upon wheat infection. TmpL, a R. solani gene homologous to a gene associated with ROS regulation in Alternaria brassicicola, and OAH, a R. solani gene homologous to oxaloacetate acetylhydrolase which has been shown to produce oxalic acid in Sclerotinia sclerotiorum, were highly induced in R. solani when infecting wheat. We speculate that the interplay between the wheat and R. solani ROS generating proteins may be important for determining the outcome of the wheat/R. solani interaction.

  12. Direct and regression methods do not give different estimates of digestible and metabolizable energy of wheat for pigs.

    PubMed

    Bolarinwa, O A; Adeola, O

    2012-12-01

    Digestible and metabolizable energy contents of feed ingredients for pigs can be determined by direct or indirect methods. There are situations when only the indirect approach is suitable and the regression method is a robust indirect approach. This study was conducted to compare the direct and regression methods for determining the energy value of wheat for pigs. Twenty-four barrows with an average initial BW of 31 kg were assigned to 4 diets in a randomized complete block design. The 4 diets consisted of 969 g wheat/kg plus minerals and vitamins (sole wheat) for the direct method, corn (Zea mays)-soybean (Glycine max) meal reference diet (RD), RD + 300 g wheat/kg, and RD + 600 g wheat/kg. The 3 corn-soybean meal diets were used for the regression method and wheat replaced the energy-yielding ingredients, corn and soybean meal, so that the same ratio of corn and soybean meal across the experimental diets was maintained. The wheat used was analyzed to contain 883 g DM, 15.2 g N, and 3.94 Mcal GE/kg. Each diet was fed to 6 barrows in individual metabolism crates for a 5-d acclimation followed by a 5-d total but separate collection of feces and urine. The DE and ME for the sole wheat diet were 3.83 and 3.77 Mcal/kg DM, respectively. Because the sole wheat diet contained 969 g wheat/kg, these translate to 3.95 Mcal DE/kg DM and 3.89 Mcal ME/kg DM. The RD used for the regression approach yielded 4.00 Mcal DE and 3.91 Mcal ME/kg DM diet. Increasing levels of wheat in the RD linearly reduced (P < 0.05) DE and ME to 3.88 and 3.79 Mcal/kg DM diet, respectively. The regressions of wheat contribution to DE and ME in megacalories against the quantity of wheat DM intake in kilograms generated 3.96 Mcal DE and 3.88 Mcal ME/kg DM. In conclusion, values obtained for the DE and ME of wheat using the direct method (3.95 and 3.89 Mcal/kg DM) did not differ (0.78 < P < 0.89) from those obtained using the regression method (3.96 and 3.88 Mcal/kg DM).

  13. Genome-wide characterization of JASMONATE-ZIM DOMAIN transcription repressors in wheat (Triticum aestivum L.).

    PubMed

    Wang, Yukun; Qiao, Linyi; Bai, Jianfang; Wang, Peng; Duan, Wenjing; Yuan, Shaohua; Yuan, Guoliang; Zhang, Fengting; Zhang, Liping; Zhao, Changping

    2017-02-13

    The JASMONATE-ZIM DOMAIN (JAZ) repressor family proteins are jasmonate co-receptors and transcriptional repressor in jasmonic acid (JA) signaling pathway, and they play important roles in regulating the growth and development of plants. Recently, more and more researches on JAZ gene family are reported in many plants. Although the genome sequencing of common wheat (Triticum aestivum L.) and its relatives is complete, our knowledge about this gene family remains vacant. Fourteen JAZ genes were identified in the wheat genome. Structural analysis revealed that the TaJAZ proteins in wheat were as conserved as those in other plants, but had structural characteristics. By phylogenetic analysis, all JAZ proteins from wheat and other plants were clustered into 11 sub-groups (G1-G11), and TaJAZ proteins shared a high degree of similarity with some JAZ proteins from Aegliops tauschii, Brachypodium distachyon and Oryza sativa. The Ka/Ks ratios of TaJAZ genes ranged from 0.0016 to 0.6973, suggesting that the TaJAZ family had undergone purifying selection in wheat. Gene expression patterns obtained by quantitative real-time PCR (qRT-PCR) revealed differential temporal and spatial regulation of TaJAZ genes under multifarious abiotic stress treatments of high salinity, drought, cold and phytohormone. Among these, TaJAZ7, 8 and 12 were specifically expressed in the anther tissues of the thermosensitive genic male sterile (TGMS) wheat line BS366 and normal control wheat line Jing411. Compared with the gene expression patterns in the normal wheat line Jing411, TaJAZ7, 8 and 12 had different expression patterns in abnormally dehiscent anthers of BS366 at the heading stage 6, suggesting that specific up- or down-regulation of these genes might be associated with the abnormal anther dehiscence in TGMS wheat line. This study analyzed the size and composition of the JAZ gene family in wheat, and investigated stress responsive and differential tissue-specific expression profiles of each TaJAZ gene in TGMS wheat line BS366. In addition, we isolated 3 TaJAZ genes that would be more likely to be involved in the regulation of abnormal anther dehiscence in TGMS wheat line. In conclusion, the results of this study contributed some novel and detailed information about JAZ gene family in wheat, and also provided 3 potential candidate genes for improving the TGMS wheat line.

  14. Microwave fixation enhances gluten fibril formation in wheat endosperm

    USDA-ARS?s Scientific Manuscript database

    The wheat storage proteins, primarily glutenin and gliadin, contribute unique functional properties in food products and play a critical role in determining the end-use quality of wheat. In the wheat endosperm these proteins form a proteinaceous matrix deposited among starch granules only to be brou...

  15. 75 FR 41963 - Wheat and Oilseed Programs; Durum Wheat Quality Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-20

    ... Programs; Durum Wheat Quality Program AGENCY: Farm Service Agency and Commodity Credit Corporation, USDA. ACTION: Final rule. SUMMARY: This rule implements specific requirements for the Durum Wheat Quality... of the Council on Environmental Quality (40 CFR parts 1500-1508), and FSA regulations for compliance...

  16. Avoiding Low Falling Numbers Problems in Wheat

    USDA-ARS?s Scientific Manuscript database

    The Hagberg-Perten Falling Number (FN) method is used to detect starch degradation due to ''-amylase enzyme activity in wheat meal. Wheat can be severely discounted when the FN is below 300 seconds. Farmers in the northwest wheat-growing states suffered serious economic losses due to widespread pro...

  17. High speed sorting of Fusarium-damaged wheat kernels

    USDA-ARS?s Scientific Manuscript database

    Recent studies have found that resistance to Fusarium fungal infection can be inherited in wheat from one generation to another. However, there is not yet available a cost effective method to separate Fusarium-damaged wheat kernels from undamaged kernels so that wheat breeders can take advantage of...

  18. Competitive Expression of Endogenous Wheat CENH3 May Lead to Suppression of Alien ZmCENH3 in Transgenic Wheat × Maize Hybrids.

    PubMed

    Chen, Wei; Zhu, Qilin; Wang, Haiyan; Xiao, Jin; Xing, Liping; Chen, Peidu; Jin, Weiwei; Wang, Xiu-E

    2015-11-20

    Uniparental chromosome elimination in wheat × maize hybrid embryos is widely used in double haploid production of wheat. Several explanations have been proposed for this phenomenon, one of which is that the lack of cross-species CENH3 incorporation may act as a barrier to interspecies hybridization. However, it is unknown if this mechanism applies universally. To study the role of CENH3 in maize chromosome elimination of wheat × maize hybrid embryos, maize ZmCENH3 and wheat αTaCENH3-B driven by the constitutive CaMV35S promoter were transformed into wheat variety Yangmai 158. Five transgenic lines for ZmCENH3 and six transgenic lines for αTaCENH3-B were identified. RT-PCR analysis showed that the transgene could be transcribed at a low level in all ZmCENH3 transgenic lines, whereas transcription of endogenous wheat CENH3 was significantly up-regulated. Interestingly, the expression levels of both wheat CENH3 and ZmCENH3 in the ZmCENH3 transgenic wheat × maize hybrid embryos were higher than those in the non-transformed Yangmai 158 × maize hybrid embryos. This indicates that the alien ZmCENH3 in wheat may induce competitive expression of endogenous wheat CENH3, leading to suppression of ZmCENH3 over-expression. Eliminations of maize chromosomes in hybrid embryos of ZmCENH3 transgenic wheat × maize and Yangmai 158 × maize were compared by observations on micronuclei presence, by marker analysis using maize SSRs (simple sequence repeats), and by FISH (fluorescence in situ hybridization) using 45S rDNA as a probe. The results indicate that maize chromosome elimination events in the two crosses are not significantly different. Fusion protein ZmCENH3-YFP could not be detected in ZmCENH3 transgenic wheat by either Western blotting or immnunostaining, whereas accumulation and loading of the αTaCENH3-B-GFP fusion protein was normal in αTaCENH3-B transgenic lines. As ZmCENH3-YFP did not accumulate after AM114 treatment, we speculate that low levels of ZmCENH3 protein in transgenic wheat may be one of the factors that lead to failure of suppression of maize chromatin elimination in ZmCENH3 transgenic wheat × maize hybrids. Copyright © 2015 Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, and Genetics Society of China. Published by Elsevier Ltd. All rights reserved.

  19. Impact of hard vs. soft wheat and monensin level on rumen acidosis in feedlot heifers.

    PubMed

    Yang, W Z; Xu, L; Zhao, Y L; Chen, L Y; McAllister, T A

    2014-11-01

    Many feedlot finishing diets include wheat when the relative wheat prices are low. This study was conducted to examine the responses in ruminal pH and fermentation as well as site and extent of digestion from substituting soft or hard wheat for barley grain and to determine whether an elevated monensin concentration might decrease indicators of ruminal acidosis in feedlot heifers. Five ruminally cannulated beef heifers were used in a 5 × 5 Latin square with 2 × 2 + 1 factorial arrangement. Treatments included barley (10% barley silage, 86% barley, 4% supplement, with 28 mg monensin/kg DM) and diets where barley was substituted by either soft or hard wheat with either 28 or 44 mg monensin/kg diet DM. Intake of DM was not affected by grain source, whereas increasing monensin with wheat diets reduced (P < 0.02) DMI. Mean ruminal pH was lower (P < 0.04) and durations of pH < 5.8 and pH < 5.5 greater (P < 0.03) for wheat than for barley diets. However, ruminal pH was not affected by wheat type or monensin level. Total VFA concentrations were greater (P < 0.03) for wheat than barley diets with no effect of wheat type. The molar proportion of propionate was greater (P < 0.04), whereas butyrate (P < 0.01) and ratio of acetate to propionate tended to be lower (P < 0.09), with the high as compared to low level of monensin. Replacing barley with wheat in finishing diets did not affect the duodenal flow or the digestibility of OM, likely as a result of greater (P < 0.01) NDF digestion from barley offsetting the increased (P < 0.03) supply of digested starch from wheat. Feeding soft vs. hard wheat delivered a greater (P < 0.03) duodenal supply of OM and nonammonia N with no differences in total tract nutrient digestion. The increased monensin concentration decreased the flow of OM (P < 0.01), total N (P < 0.05), and microbial protein (P < 0.05) to the small intestine due to decreased DMI. These results indicated that hard and soft wheat exhibited digestive characteristics similar to barley, but ruminal pH measurements indicate that compared with barley, wheat increased the risk of ruminal acidosis. Although an increased level of monensin had limited impact on ruminal indicators of acidosis, an increase in propionate would be expected to improve efficiency of feed use by heifers fed wheat-based finishing diets.

  20. Yield prediction by analysis of multispectral scanner data

    NASA Technical Reports Server (NTRS)

    Colwell, J. E.; Suits, G. H.

    1975-01-01

    A preliminary model describing the growth and grain yield of wheat was developed. The modeled growth characteristics of the wheat crop were used to compute wheat canopy reflectance using a model of vegetation canopy reflectance. The modeled reflectance characteristics were compared with the corresponding growth characteristics and grain yield in order to infer their relationships. It appears that periodic wheat canopy reflectance characteristics potentially derivable from earth satellites will be useful in forecasting wheat grain yield.

  1. Effects of diurnal temperature range and drought on wheat yield in Spain

    NASA Astrophysics Data System (ADS)

    Hernandez-Barrera, S.; Rodriguez-Puebla, C.; Challinor, A. J.

    2017-07-01

    This study aims to provide new insight on the wheat yield historical response to climate processes throughout Spain by using statistical methods. Our data includes observed wheat yield, pseudo-observations E-OBS for the period 1979 to 2014, and outputs of general circulation models in phase 5 of the Coupled Models Inter-comparison Project (CMIP5) for the period 1901 to 2099. In investigating the relationship between climate and wheat variability, we have applied the approach known as the partial least-square regression, which captures the relevant climate drivers accounting for variations in wheat yield. We found that drought occurring in autumn and spring and the diurnal range of temperature experienced during the winter are major processes to characterize the wheat yield variability in Spain. These observable climate processes are used for an empirical model that is utilized in assessing the wheat yield trends in Spain under different climate conditions. To isolate the trend within the wheat time series, we implemented the adaptive approach known as Ensemble Empirical Mode Decomposition. Wheat yields in the twenty-first century are experiencing a downward trend that we claim is a consequence of widespread drought over the Iberian Peninsula and an increase in the diurnal range of temperature. These results are important to inform about the wheat vulnerability in this region to coming changes and to develop adaptation strategies.

  2. Transgenic expression of lactoferrin imparts enhanced resistance to head blight of wheat caused by Fusarium graminearum.

    PubMed

    Han, Jigang; Lakshman, Dilip K; Galvez, Leny C; Mitra, Sharmila; Baenziger, Peter Stephen; Mitra, Amitava

    2012-03-09

    The development of plant gene transfer systems has allowed for the introgression of alien genes into plant genomes for novel disease control strategies, thus providing a mechanism for broadening the genetic resources available to plant breeders. Using the tools of plant genetic engineering, a broad-spectrum antimicrobial gene was tested for resistance against head blight caused by Fusarium graminearum Schwabe, a devastating disease of wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.) that reduces both grain yield and quality. A construct containing a bovine lactoferrin cDNA was used to transform wheat using an Agrobacterium-mediated DNA transfer system to express this antimicrobial protein in transgenic wheat. Transformants were analyzed by Northern and Western blots to determine lactoferrin gene expression levels and were inoculated with the head blight disease fungus F. graminearum. Transgenic wheat showed a significant reduction of disease incidence caused by F. graminearum compared to control wheat plants. The level of resistance in the highly susceptible wheat cultivar Bobwhite was significantly higher in transgenic plants compared to control Bobwhite and two untransformed commercial wheat cultivars, susceptible Wheaton and tolerant ND 2710. Quantification of the expressed lactoferrin protein by ELISA in transgenic wheat indicated a positive correlation between the lactoferrin gene expression levels and the levels of disease resistance. Introgression of the lactoferrin gene into elite commercial wheat, barley and other susceptible cereals may enhance resistance to F. graminearum.

  3. The role of thioredoxin h in protein metabolism during wheat (Triticum aestivum L.) seed germination.

    PubMed

    Guo, Hongxiang; Wang, Shaoxin; Xu, Fangfang; Li, Yongchun; Ren, Jiangping; Wang, Xiang; Niu, Hongbin; Yin, Jun

    2013-06-01

    Thioredoxin h can regulate the redox environment in the cell and play an important role in the germination of cereals. In the present study, the thioredoxin s antisense transgenic wheat with down-regulation of thioredoxin h was used to study the role of thioredoxin h in protein metabolism during germination of wheat seeds, and to explore the mechanism of the thioredoxin s antisense transgenic wheat seeds having high resistance to pre-harvest sprouting. The qRT-PCR results showed that the expression of protein disulfide isomerase in the thioredoxin s antisense transgenic wheat was up-regulated, which induced easily forming glutenin macropolymers and the resistance of storage proteins to degradation. The expression of serine protease inhibitor was also up-regulated in transgenic wheat, which might be responsible for the decreased activity of thiocalsin during the germination. The expression of WRKY6 in transgenic wheat was down-regulated, which was consistent with the decreased activity of glutamine oxoglutarate aminotransferase. In transgenic wheat, the activities of glutamate dehydrogenase, glutamic pyruvic transaminase and glutamic oxaloacetic transaminase were down-regulated, indicating that the metabolism of amino acid was lower than that in wild-type wheat during seed germination. A putative model for the role of thioredoxin h in protein metabolism during wheat seed germination was proposed and discussed. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  4. Evolution of the BBAA Component of Bread Wheat during Its History at the Allohexaploid Level[C][W][OPEN

    PubMed Central

    Zhang, Huakun; Zhu, Bo; Qi, Bao; Gou, Xiaowan; Dong, Yuzhu; Xu, Chunming; Zhang, Bangjiao; Huang, Wei; Liu, Chang; Wang, Xutong; Yang, Chunwu; Zhou, Hao; Kashkush, Khalil; Feldman, Moshe; Wendel, Jonathan F.; Liu, Bao

    2014-01-01

    Subgenome integrity in bread wheat (Triticum aestivum; BBAADD) makes possible the extraction of its BBAA component to restitute a novel plant type. The availability of such a ploidy-reversed wheat (extracted tetraploid wheat [ETW]) provides a unique opportunity to address whether and to what extent the BBAA component of bread wheat has been modified in phenotype, karyotype, and gene expression during its evolutionary history at the allohexaploid level. We report here that ETW was anomalous in multiple phenotypic traits but maintained a stable karyotype. Microarray-based transcriptome profiling identified a large number of differentially expressed genes between ETW and natural tetraploid wheat (Triticum turgidum), and the ETW-downregulated genes were enriched for distinct Gene Ontology categories. Quantitative RT-PCR analysis showed that gene expression differences between ETW and a set of diverse durum wheat (T. turgidum subsp durum) cultivars were distinct from those characterizing tetraploid cultivars per se. Pyrosequencing revealed that the expression alterations may occur to either only one or both of the B and A homoeolog transcripts in ETW. A majority of the genes showed additive expression in a resynthesized allohexaploid wheat. Analysis of a synthetic allohexaploid wheat and diverse bread wheat cultivars revealed the rapid occurrence of expression changes to the BBAA subgenomes subsequent to allohexaploidization and their evolutionary persistence. PMID:24989045

  5. Comparative physical mapping between wheat chromosome arm 2BL and rice chromosome 4.

    PubMed

    Lee, Tong Geon; Lee, Yong Jin; Kim, Dae Yeon; Seo, Yong Weon

    2010-12-01

    Physical maps of chromosomes provide a framework for organizing and integrating diverse genetic information. DNA microarrays are a valuable technique for physical mapping and can also be used to facilitate the discovery of single feature polymorphisms (SFPs). Wheat chromosome arm 2BL was physically mapped using a Wheat Genome Array onto near-isogenic lines (NILs) with the aid of wheat-rice synteny and mapped wheat EST information. Using high variance probe set (HVP) analysis, 314 HVPs constituting genes present on 2BL were identified. The 314 HVPs were grouped into 3 categories: HVPs that match only rice chromosome 4 (298 HVPs), those that match only wheat ESTs mapped on 2BL (1), and those that match both rice chromosome 4 and wheat ESTs mapped on 2BL (15). All HVPs were converted into gene sets, which represented either unique rice gene models or mapped wheat ESTs that matched identified HVPs. Comparative physical maps were constructed for 16 wheat gene sets and 271 rice gene sets. Of the 271 rice gene sets, 257 were mapped to the 18-35 Mb regions on rice chromosome 4. Based on HVP analysis and sequence similarity between the gene models in the rice chromosomes and mapped wheat ESTs, the outermost rice gene model that limits the translocation breakpoint to orthologous regions was identified.

  6. Effect of Pleurotus eryngii Mushroom β-Glucan on Quality Characteristics of Common Wheat Pasta.

    PubMed

    Kim, SunHee; Lee, Jo-Won; Heo, Yena; Moon, BoKyung

    2016-04-01

    The objective of this study was to evaluate the effect of β-glucan-rich fractions (BGRFs) from Pleurotus eryngii mushroom powder on the quality, textural properties, and sensory evaluation of common wheat pasta. Pasta was prepared from semolina flour and common wheat flour by replacing common wheat flour at 2%, 4%, and 6% with BGRFs. Semolina flour showed significantly higher viscosities than common wheat flour samples. However, all viscosities, except the breakdown viscosity, were reduced with increasing percentages of BGRFs. Replacement of the common wheat flour with BGRFs resulted in a reddish brown colored pasta with a lower L* value and a higher a* value. The common wheat pastas containing up to 4% BGRFs were not significantly different from semolina pasta with regard to cooking loss. Addition of up to 2% BGRFs had no significant impact on swelling index and water absorption. The addition of BGRFs in common wheat flour had a positive effect on the quality of common wheat pasta and resulted in hardness values similar to those of semolina pasta. In a sensory evaluation, cooked pasta with 2% BGRFs had the highest overall acceptability score. In summary, the results showed that common wheat flour containing 4% BGRFs could be used to produce pasta with an improved quality and texture properties similar to semolina pasta. © 2016 Institute of Food Technologists®

  7. In Vitro Transcripts of Wild-Type and Fluorescent Protein-Tagged Triticum mosaic virus (Family Potyviridae) are Biologically Active in Wheat.

    PubMed

    Tatineni, Satyanarayana; McMechan, Anthony J; Bartels, Melissa; Hein, Gary L; Graybosch, Robert A

    2015-11-01

    Triticum mosaic virus (TriMV) (genus Poacevirus, family Potyviridae) is a recently described eriophyid mite-transmitted wheat virus. In vitro RNA transcripts generated from full-length cDNA clones of TriMV proved infectious on wheat. Wheat seedlings inoculated with in vitro transcripts elicited mosaic and mottling symptoms similar to the wild-type virus, and the progeny virus was efficiently transmitted by wheat curl mites, indicating that the cloned virus retained pathogenicity, movement, and wheat curl mite transmission characteristics. A series of TriMV-based expression vectors was constructed by engineering a green fluorescent protein (GFP) or red fluorescent protein (RFP) open reading frame with homologous NIa-Pro cleavage peptides between the P1 and HC-Pro cistrons. We found that GFP-tagged TriMV with seven or nine amino acid cleavage peptides efficiently processed GFP from HC-Pro. TriMV-GFP vectors were stable in wheat for more than 120 days and for six serial passages at 14-day intervals by mechanical inoculation and were transmitted by wheat curl mites similarly to the wild-type virus. Fluorescent protein-tagged TriMV was observed in wheat leaves, stems, and crowns. The availability of fluorescent protein-tagged TriMV will facilitate the examination of virus movement and distribution in cereal hosts and the mechanisms of cross protection and synergistic interactions between TriMV and Wheat streak mosaic virus.

  8. Farming system and wheat cultivar affect infestation of, and parasitism on, Cephus cinctus in the Northern Great Plains.

    PubMed

    Adhikari, Subodh; Seipel, Tim; Menalled, Fabian D; Weaver, David K

    2018-03-26

    Cephus cinctus infestation causes $350 million in annual losses in the Northern Great Plains. We compared infestation and parasitism of C. cinctus in spring (including Kamut; Triticum turgidum ssp. turanicum) and winter wheat cultivars grown in organic and conventional fields in Montana, USA. In the greenhouse, we compared C. cinctus preference and survival in Kamut, Gunnison, and Reeder spring wheat cultivars. Stems cut by C. cinctus varied by farming system and the seasonality of the wheat crop. No stems of Kamut in organic fields were cut by C. cinctus, but 1.5% [±0.35% standard error (SE)] of stems in conventional spring wheat, 5% (±0.70% SE) of stems in organic winter wheat, and 20% (±0.93% SE) of stems in conventional winter wheat fields were cut by C. cinctus. More larvae of C. cinctus were parasitized in organic (27 ± 0.03% SE) compared with conventional (5 ± 0.01% SE) winter wheat fields. Cephus cinctus oviposition, survival, and the number of stems cut were lowest in Kamut compared with Gunnison and Reeder. Cephus cinctus infestation was more common in winter wheat than in spring wheat. Organic fields with fewer cut stems also supported more parasitoids. Kamut is a genetic resource for developing C. cinctus-resistant cultivars. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.

  9. United States benefits of improved worldwide wheat crop information from a LANDSAT system

    NASA Technical Reports Server (NTRS)

    Heiss, K. P.; Sand, F.; Seidel, A.; Warner, D.; Sheflin, N.; Bhattacharyya, R.; Andrews, J.

    1975-01-01

    The value of worldwide information improvements on wheat crops, promised by LANDSAT, is measured in the context of world wheat markets. These benefits are based on current LANDSAT technical goals and assume that information is made available to all (United States and other countries) at the same time. A detailed empirical sample demonstration of the effect of improved information is given; the history of wheat commodity prices for 1971-72 is reconstructed and the price changes from improved vs. historical information are compared. The improved crop forecasting from a LANDSAT system assumed include wheat crop estimates of 90 percent accuracy for each major wheat producing region. Accurate, objective worldwide wheat crop information using space systems may have a very stabilizing influence on world commodity markets, in part making possible the establishment of long-term, stable trade relationships.

  10. Higher Fusarium Toxin Accumulation in Grain of Winter Triticale Lines Inoculated with Fusarium culmorum as Compared with Wheat †

    PubMed Central

    Góral, Tomasz; Wiśniewska, Halina; Ochodzki, Piotr; Walentyn-Góral, Dorota

    2016-01-01

    Resistance to Fusarium head blight in 32 winter triticale and 34 winter wheat accessions was evaluated. Triticale and wheat were sown in field experiments in two locations. At the time of flowering, heads were inoculated with three Fusarium culmorum isolates. Fusarium head blight index was scored and after the harvest percentage of Fusarium damaged kernels was assessed. Grain was analysed for type B trichothecenes (deoxynivalenol and derivatives, nivalenol) and zearalenone (ZEN) content. The average Fusarium head blight indexes were 28.0% for wheat and 19.2% for triticale accessions. The percentage of Fusarium damaged kernels was also higher for wheat and came to 55.6%, while for triticale this figure was 40.2%. The average content of deoxynivalenol (DON) for wheat amounted to 11.65 mg/kg and was lower than the result for triticale which was 14.12 mg/kg. The average contents of nivalenol were similar in both cereals: 4.13 mg/kg and 5.19 mg/kg for wheat and triticale respectively. Considerable amounts of DON derivatives in the cereals were also detected. The ZEN content in the grain was 0.60 mg/kg for wheat and 0.66 mg/kg for triticale. Relationships between Fusarium head blight index, Fusarium damaged kernels and mycotoxin contents were statistically significant for wheat and mostly insignificant for triticale. Triticale proved to have less infected heads and kernels than wheat. However, the content of type B trichothecenes was higher in triticale grain than in wheat grain. PMID:27763547

  11. Introgression of wheat DNA markers from A, B and D genomes in early generation progeny of Aegilops cylindrica Host x Triticum aestivum L. hybrids.

    PubMed

    Schoenenberger, N; Felber, F; Savova-Bianchi, D; Guadagnuolo, R

    2005-11-01

    Introgression from allohexaploid wheat (Triticum aestivum L., AABBDD) to allotetraploid jointed goatgrass (Aegilops cylindrica Host, CCDD) can take place in areas where the two species grow in sympatry and hybridize. Wheat and Ae. cylindrica share the D genome, issued from the common diploid ancestor Aegilops tauschii Coss. It has been proposed that the A and B genome of bread wheat are secure places to insert transgenes to avoid their introgression into Ae. cylindrica because during meiosis in pentaploid hybrids, A and B genome chromosomes form univalents and tend to be eliminated whereas recombination takes place only in D genome chromosomes. Wheat random amplified polymorphic DNA (RAPD) fragments, detected in intergeneric hybrids and introgressed to the first backcross generation with Ae. cylindrica as the recurrent parent and having a euploid Ae. cylindrica chromosome number or one supernumerary chromosome, were assigned to wheat chromosomes using Chinese Spring nulli-tetrasomic wheat lines. Introgressed fragments were not limited to the D genome of wheat, but specific fragments of A and B genomes were also present in the BC1. Their presence indicates that DNA from any of the wheat genomes can introgress into Ae. cylindrica. Successfully located RAPD fragments were then converted into highly specific and easy-to-use sequence characterised amplified regions (SCARs) through sequencing and primer design. Subsequently these markers were used to characterise introgression of wheat DNA into a BC1S1 family. Implications for risk assessment of genetically modified wheat are discussed.

  12. Genetic evidence for differential selection of grain and embryo weight during wheat evolution under domestication

    PubMed Central

    Golan, Guy; Oksenberg, Adi; Peleg, Zvi

    2015-01-01

    Wheat is one of the Neolithic founder crops domesticated ~10 500 years ago. Following the domestication episode, its evolution under domestication has resulted in various genetic modifications. Grain weight, embryo weight, and the interaction between those factors were examined among domesticated durum wheat and its direct progenitor, wild emmer wheat. Experimental data show that grain weight has increased over the course of wheat evolution without any parallel change in embryo weight, resulting in a significantly reduced (30%) embryo weight/grain weight ratio in domesticated wheat. The genetic factors associated with these modifications were further investigated using a population of recombinant inbred substitution lines that segregated for chromosome 2A. A cluster of loci affecting grain weight and shape was identified on the long arm of chromosome 2AL. Interestingly, a novel locus controlling embryo weight was mapped on chromosome 2AS, on which the wild emmer allele promotes heavier embryos and greater seedling vigour. To the best of our knowledge, this is the first report of a QTL for embryo weight in wheat. The results suggest a differential selection of grain and embryo weight during the evolution of domesticated wheat. It is argued that conscious selection by early farmers favouring larger grains and smaller embryos appears to have resulted in a significant change in endosperm weight/embryo weight ratio in the domesticated wheat. Exposing the genetic factors associated with endosperm and embryo size improves our understanding of the evolutionary dynamics of wheat under domestication and is likely to be useful for future wheat-breeding efforts. PMID:26019253

  13. Sequence diversity of wheat mosaic virus isolates

    USDA-ARS?s Scientific Manuscript database

    High Plains disease of wheat and maize emerged in the United States in 1993 and its distribution has expanded in subsequent years. Wheat mosaic virus (WMoV), transmitted by eriophyid wheat curl mites (Aceria tosichella) is the causal agent of disease. WMoV and other members of the genus Emaravirus...

  14. Wheat pests: Rodents, nematodes, insects and mites

    USDA-ARS?s Scientific Manuscript database

    Wheat is one of the most important cereal crops in the world and its production is constantly under threat from various pests and diseases. While wheat diseases were overviewed in other chapter of this book, the major wheat pests, which differ from diseases and weeds in being animals, were reviewed ...

  15. RE-evolution of durum wheat by restoring the hardness locus

    USDA-ARS?s Scientific Manuscript database

    Durum wheat is an important crop worldwide. In many areas, durum wheat appears to have competitive yield and biotic and abiotic advantages over bread wheat. What limits durum production? In one respect, the comparatively more limited processing and food functionality. Two traits directly relate to t...

  16. Hard Spring Wheat Technical Committee 2016 Crop

    USDA-ARS?s Scientific Manuscript database

    Seven experimental lines of hard spring wheat were grown at up to five locations in 2016 and evaluated for kernel, milling, and bread baking quality against the check variety Glenn. Wheat samples were submitted through the Wheat Quality Council and processed and milled at the USDA-ARS Hard Red Spri...

  17. Influence of soft kernel texture on the flour and baking quality of durum wheat

    USDA-ARS?s Scientific Manuscript database

    Durum wheat is predominantly grown in semi-arid to arid environments where common wheat does not flourish, especially in the Middle East, North Africa, Mediterranean Basin, and portions of North America. Durum kernels are extraordinarily hard when compared to their common wheat counterparts. Due to ...

  18. Evaluation of hard red spring wheat quality using four different roller mills

    USDA-ARS?s Scientific Manuscript database

    Domestic and overseas buyers pay premium price for hard red spring (HRS) wheat due to high protein content and excellent milling and baking performances. For efficient quality identification of wheat samples, a wheat quality laboratory needs an objective and simple experimental milling procedure and...

  19. Significance of starch properties and quantity on sponge cake volume

    USDA-ARS?s Scientific Manuscript database

    We evaluated the qualitative and quantitative effects of wheat starch on sponge cake (SC) baking quality. Twenty wheat flours, including soft white and club wheat of normal, partial waxy and waxy endosperm, and hard wheat, were tested for amylose content, pasting properties, and SC baking quality. S...

  20. Breeding FHB-resistant soft winter wheat: progress and prospects

    USDA-ARS?s Scientific Manuscript database

    Soft winter wheat (Triticum aestivum L.) breeding programs in the US have used two general approaches to developing FHB-resistant cultivars: 1) incorporation of Fhb1 plus other minor QTL from Asian wheat cultivars and their derivatives and 2) reliance on resistance native to the soft winter wheat ge...

  1. MicroRNA172 plays a critical role in wheat spike morphogenesis and grain threshability

    USDA-ARS?s Scientific Manuscript database

    Wheat domestication from wild species involved mutations in the Q gene. The q allele (wild wheats) is associated with elongated spikes and hulled grains, whereas the mutant Q allele (domesticated wheats) confers subcompact spikes and free-threshing grains. Previous studies showed that Q encodes an ...

  2. Wheat mill stream properties for discrete element method modeling

    USDA-ARS?s Scientific Manuscript database

    A discrete phase approach based on individual wheat kernel characteristics is needed to overcome the limitations of previous statistical models and accurately predict the milling behavior of wheat. As a first step to develop a discrete element method (DEM) model for the wheat milling process, this s...

  3. Virus-induced gene silencing of WRKY53 and an inducible phenylalanine ammonia-lyase in wheat reduces aphid resistance

    USDA-ARS?s Scientific Manuscript database

    Although several wheat genes differentially expressed during the Russian wheat aphid resistance response have recently been identified, their requirement for and specific role in resistance remain unclear. Progress in wheat-aphid interaction research is hampered by inadequate collections of mutant g...

  4. Genome-wide genetic dissection of supernumerary spikelet and related traits in common wheat

    USDA-ARS?s Scientific Manuscript database

    Branched spike or supernumerary spikelet (SS) is a naturally occurring variant in wheat and holds great potential for increasing the number of grains per spike, and ultimately, increasing wheat yield. However, detailed knowledge of the molecular basis of spike branching in common wheat is lacking. I...

  5. Storage conditions affecting increase in falling number of soft red winter wheat grain

    USDA-ARS?s Scientific Manuscript database

    Falling number (FN) of wheat grain, a measure of preharvest sprouting, tends to increase during storage; however, grain and storage conditions that impact FN changes are poorly understood. Wheat grain samples of varying FN from several cultivars were obtained by malting, by incubating wheat stalks,...

  6. 75 FR 16017 - Cloquintocet-mexyl; Pesticide Tolerances

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-31

    ...-quinolinoxyacetic acid) on wheat forage, wheat grain, wheat hay, and wheat straw. Arysta LifeScience North America...-5805. II. Petition for Tolerance EPA has received a petition from Arysta LifeScience North America, LLC... filing of the above-referenced pesticide petition (PP 9E7592) by Arysta LifeScience North America, LLC...

  7. Effect of temperature on wheat streak mosaic disease development in winter wheat

    USDA-ARS?s Scientific Manuscript database

    Temperature is one of the key factors that influence viral disease development in plants. In this study, temperature effect on Wheat streak mosaic virus (WSMV) replication and in planta movement was determined using a green fluorescent protein (GFP)-tagged virus in two winter wheat cultivars. Virus-...

  8. Agrobacterium-Mediated Transformation of Bread and Durum Wheat Using Freshly Isolated Immature Embryos

    NASA Astrophysics Data System (ADS)

    Huixia, Wu; Angela, Doherty; Jones, Huw D.

    Agrobacterium-mediated transformation of wheat is becoming a viable alternative to the more established biolistic protocols. It offers advantages in terms of simple, low-copy-number integrations and can be applied with similar efficiencies to specific durum wheat and spring and winter bread wheat types varieties.

  9. Influence of gelatinization on the extraction of phenolic acids from wheat fractions

    USDA-ARS?s Scientific Manuscript database

    The effect of gelatinization on the analysis of phenolic acids from wheat bran, whole-wheat, and refined flour samples was investigated using two extraction procedures, namely, ultrasonic (UAE) and microwave (MAE). The total phenolic acid (TPA) concentration quantity in wheat bran (2711-2913 µg/g) w...

  10. Molecular cytogenetic characterization and stem rust resistance of five wheat-thinopyrum ponticum partial amphiploids

    USDA-ARS?s Scientific Manuscript database

    Partial amphiploids created by crossing common wheat (Triticum aestivum L.) and Thinopyrum ponticum (Podp.), Barkworth & D. R. Dewey may be resistant to major wheat diseases and are an important intermediate material in wheat breeding. In this study, we examined chromosome composition of five Xiaoy...

  11. Functional and nutritional characteristics of soft wheat grown in no-till and conventional cropping systems

    USDA-ARS?s Scientific Manuscript database

    The effects of no-till vs. conventional farming practices were evaluated on soft wheat functional and nutritional characteristics, including kernel physical properties, whole wheat composition, antioxidant activity and end-product quality. Soft white winter wheat cv. ORCF 102 was evaluated over a tw...

  12. Functional and nutritional characteristics of wheat grown in organic and conventional cropping systems

    USDA-ARS?s Scientific Manuscript database

    The effects of organic vs. conventional farming practices on wheat functional and nutritional characteristics were compared. Soft white winter wheat and hard red spring wheat were obtained from long-term replicated field plots near Pullman, Washington and Bozeman, Montana. Test weight, kernel weight...

  13. 7 CFR 457.102 - Wheat or barley winter coverage endorsement.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Wheat or barley winter coverage endorsement. 457.102... INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.102 Wheat or barley... Wheat or Barley Winter Coverage Endorsement (This is a continuous endorsement) 1. In return for payment...

  14. 40 CFR 406.100 - Applicability; description of the wheat starch and gluten subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 28 2010-07-01 2010-07-01 true Applicability; description of the wheat... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS GRAIN MILLS POINT SOURCE CATEGORY Wheat Starch and Gluten Subcategory § 406.100 Applicability; description of the wheat starch and gluten subcategory. The...

  15. The value of wheat landraces (Editorial)

    USDA-ARS?s Scientific Manuscript database

    Whether man was domesticated by wheat, or wheat was domesticated by man is but two faces of the same coin; both incidents marked a turning point in human history and led to the emergence of human civilization in the Fertile Crescent of the Old World. The complex history of wheat domestication from i...

  16. Identification of winter wheat from ERTS-1 imagery

    NASA Technical Reports Server (NTRS)

    Williams, D. L.; Morain, S. A.; Barker, B.; Coiner, J. C.

    1973-01-01

    Continuing interpretation of the test area in Finney County, Kansas, has revealed that winter wheat can be successfully identified. This successful identification is based on human recognition of tonal signatures on MSS images. Several different but highly successful interpretation strategies have been employed. These strategies involve the use of both spectral and temporal inputs. Good results have been obtained from a single MSS-5 image acquired at a critical time in the crop cycle (planting). On a test sample of 54,612 acres, 89 percent of the acreage was correctly classified as wheat or non-wheat and the estimated wheat acreage (19,516 acres) was 99 percent of the actual acreage of wheat in the sample area.

  17. The International Heat Stress Genotype Experiment for Modeling Wheat Response to Heat: Field Experiments and AgMIP-Wheat Multi-Model Simulations

    NASA Technical Reports Server (NTRS)

    Martre, Pierre; Reynolds, Matthew P.; Asseng, Senthold; Ewert, Frank; Alderman, Phillip D.; Cammarano, Davide; Maiorano, Andrea; Ruane, Alexander C.; Aggarwal, Pramod K.; Anothai, Jakarat; hide

    2017-01-01

    The data set contains a portion of the International Heat Stress Genotype Experiment (IHSGE) data used in the AgMIP-Wheat project to analyze the uncertainty of 30 wheat crop models and quantify the impact of heat on global wheat yield productivity. It includes two spring wheat cultivars grown during two consecutive winter cropping cycles at hot, irrigated, and low latitude sites in Mexico (Ciudad Obregon and Tlaltizapan), Egypt (Aswan), India (Dharwar), the Sudan (Wad Medani), and Bangladesh (Dinajpur). Experiments in Mexico included normal (November-December) and late (January-March) sowing dates. Data include local daily weather data, soil characteristics and initial soil conditions, crop measurements (anthesis and maturity dates, anthesis and final total above ground biomass, final grain yields and yields components), and cultivar information. Simulations include both daily in-season and end-of-season results from 30 wheat models.

  18. Finite Element Analysis of Single Wheat Mechanical Response to Wind and Rain Loads

    NASA Astrophysics Data System (ADS)

    Liang, Li; Guo, Yuming

    One variety of wheat in the breeding process was chosen to determine the wheat morphological traits and biomechanical properties. ANSYS was used to build the mechanical model of wheat to wind load and the dynamic response of wheat to wind load was simulated. The maximum Von Mises stress is obtained by the powerful calculation function of ANSYS. And the changing stress and displacement of each node and finite element in the process of simulation can be output through displacement nephogram and stress nephogram. The load support capability can be evaluated and to predict the wheat lodging. It is concluded that computer simulation technology has unique advantages such as convenient and efficient in simulating mechanical response of wheat stalk under wind and rain load. Especially it is possible to apply various load types on model and the deformation process can be observed simultaneously.

  19. Relationship of deoxynivalenol content in grain, chaff, and straw with Fusarium head blight severity in wheat varieties with various levels of resistance.

    PubMed

    Ji, Fang; Wu, Jirong; Zhao, Hongyan; Xu, Jianhong; Shi, Jianrong

    2015-03-05

    A total of 122 wheat varieties obtained from the Nordic Genetic Resource Center were infected artificially with an aggressive Fusariumasiaticum strain in a field experiment. We calculated the severity of Fusarium head blight (FHB) and determined the deoxynivalenol (DON) content of wheat grain, straw and glumes. We found DON contamination levels to be highest in the glumes, intermediate in the straw, and lowest in the grain in most samples. The DON contamination levels did not increase consistently with increased FHB incidence. The DON levels in the wheat varieties with high FHB resistance were not necessarily low, and those in the wheat varieties with high FHB sensitivity were not necessarily high. We selected 50 wheat genotypes with reduced DON content for future research. This study will be helpful in breeding new wheat varieties with low levels of DON accumulation.

  20. [Effects of sowing times on the spike differentiation of different wheat varieties under the climate of warm winter].

    PubMed

    Gao, Qinglu; Xue, Xiang; Wu, Yu; Ru, Zhengang

    2003-10-01

    Spike differentiation processes and freezing damage of three wheat varieties were studied by sowing in different stages. The results showed that under the condition of weather changing warm, the time of entering each stage of spike differentiation of wheat of strong spring variety was earlier than that of wheat of spring variety and semi-winter variety. Sowing times had more effects on durative time of the elongation stage, single-prism stage and two-prism stage of the spike differentiation. Under sowing early, the stronger the springness of wheat was, the quicker it developed, the higher spike differentiation phases it reached before winter, and the more serious freezing damage it suffered in wintering. According to this, the semi-winter varieties of wheat should be adopted first and arranged in pairs with spring varieties in wheat production, and the sowing times should not be too early as the weather becoming warm.

  1. Determination of climatic potential of Qom province for rain fed wheat using RS and GIS

    NASA Astrophysics Data System (ADS)

    Yazdan Panah, H.; Soleimani Tabar, M.

    2010-09-01

    This investigation was done to determine climatic potential of Qom province for wheat culture using RS and GIS. After collecting meteorological and wheat phonological data of available stations in Qom and its adjacent provinces we analyzed the data to obtain agrometeorological indices which affects on growth and yield of wheat. In the next step for these indices (the maximum and minimum temperature, sunshine hours, relative humidity, slope, elevation, GDD,rainfall,wind.land use and thermal stresses) we prepared separate maps using GIS and RS. Finally the above mentioned layers were overlaid to obtain agroclimatic map of wheat in Qom province. Results showed that about 30.2 percent of province is very suitable,53.5 percent is suitable,15.2 percent is moderate and 1.1 percent is not suitable for wheat culturing. Key words: Agrometeorology, GIS, RS, Wheat

  2. The gametocidal chromosome as a tool for chromosome manipulation in wheat.

    PubMed

    Endo, T R

    2007-01-01

    Many alien chromosomes have been introduced into common wheat (the genus Triticum) from related wild species (the genus Aegilops). Some alien chromosomes have unique genes that secure their existence in the host by causing chromosome breakage in the gametes lacking them. Such chromosomes or genes, called gametocidal (Gc) chromosomes or Gc genes, are derived from different genomes (C, S, S(l) and M(g)) and belong to three different homoeologous groups 2, 3 and 4. The Gc genes of the C and M(g) genomes induce mild, or semi-lethal, chromosome mutations in euploid and alien addition lines of common wheat. Thus, induced chromosomal rearrangements have been identified and established in wheat stocks carrying deletions of wheat and alien (rye and barley) chromosomes or wheat-alien translocations. The gametocidal chromosomes isolated in wheat to date are reviewed here, focusing on their feature as a tool for chromosome manipulation.

  3. Interspecific and intergeneric hybridization as a source of variation for wheat grain quality improvement.

    PubMed

    Alvarez, Juan B; Guzmán, Carlos

    2018-02-01

    The hybridization events with wild relatives and old varieties are an alternative source for enlarging the wheat quality variability. This review describes these process and their effects on the technological and nutritional quality. Wheat quality and its end-uses are mainly based on variation in three traits: grain hardness, gluten quality and starch. In recent times, the importance of nutritional quality and health-related aspects has increased the range of these traits with the inclusion of other grain components such as vitamins, fibre and micronutrients. One option to enlarge the genetic variability in wheat for all these components has been the use of wild relatives, together with underutilised or neglected wheat varieties or species. In the current review, we summarise the role of each grain component in relation to grain quality, their variation in modern wheat and the alternative sources in which wheat breeders have found novel variation.

  4. Wheat yield dynamics: a structural econometric analysis.

    PubMed

    Sahin, Afsin; Akdi, Yilmaz; Arslan, Fahrettin

    2007-10-15

    In this study we initially have tried to explore the wheat situation in Turkey, which has a small-open economy and in the member countries of European Union (EU). We have observed that increasing the wheat yield is fundamental to obtain comparative advantage among countries by depressing domestic prices. Also the changing structure of supporting schemes in Turkey makes it necessary to increase its wheat yield level. For this purpose, we have used available data to determine the dynamics of wheat yield by Ordinary Least Square Regression methods. In order to find out whether there is a linear relationship among these series we have checked each series whether they are integrated at the same order or not. Consequently, we have pointed out that fertilizer usage and precipitation level are substantial inputs for producing high wheat yield. Furthermore, in respect for our model, fertilizer usage affects wheat yield more than precipitation level.

  5. Genome-wide identification and characterization of Glyceraldehyde-3-phosphate dehydrogenase genes family in wheat (Triticum aestivum).

    PubMed

    Zeng, Lingfeng; Deng, Rong; Guo, Ziping; Yang, Shushen; Deng, Xiping

    2016-03-16

    Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a central enzyme in glycolysi, we performed genome-wide identification of GAPDH genes in wheat and analyzed their structural characteristics and expression patterns under abiotic stress in wheat. A total of 22 GAPDH genes were identified in wheat cv. Chinese spring; the phylogenetic and structure analysis showed that these GAPDH genes could be divided into four distinct subfamilies. The expression profiles of GAPDH genes showed tissue specificity all over plant development stages. The qRT-PCR results revealed that wheat GAPDHs were involved in several abiotic stress response. Wheat carried 22 GAPDH genes, representing four types of plant GAPDHs (gapA/B, gapC, gapCp and gapN). Whole genome duplication and segmental duplication might account for the expansion of wheat GAPDHs. Expression analysis implied that GAPDHs play roles in plants abiotic stress tolerance.

  6. Characterization of stem rust resistance in wheat cultivar 'Gage'

    USDA-ARS?s Scientific Manuscript database

    Wheat (Triticum spp.) stem rust, caused by Puccinia graminis f. sp. tritici Eriks. & E. Henn. (Pgt), re-emerged as a devastating disease of wheat because of virulent race Ug99 (TTKSK). Many bread wheat (T. aestivum L.) cultivars grown in North America are susceptible to Ug99 or its derivative races ...

  7. Global spread of wheat curl mite by the most polyphagous and pestiferous lineages

    USDA-ARS?s Scientific Manuscript database

    The wheat curl mite (WCM), Aceria tosichella, is an important pest of wheat and other cereal crops that transmits wheat streak mosaic virus and several other plant viruses. WCM has long been considered a single polyphagous species, but recent studies in Poland revealed a complex of genetically disti...

  8. 21 CFR 184.1322 - Wheat gluten.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Wheat gluten. 184.1322 Section 184.1322 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Substances Affirmed as GRAS § 184.1322 Wheat gluten. (a) Wheat gluten (CAS Reg. No. 8002-80-0) is the...

  9. 21 CFR 184.1322 - Wheat gluten.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Wheat gluten. 184.1322 Section 184.1322 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Substances Affirmed as GRAS § 184.1322 Wheat gluten. (a) Wheat gluten (CAS Reg. No. 8002-80-0) is the...

  10. 21 CFR 137.190 - Cracked wheat.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Cracked wheat. 137.190 Section 137.190 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Related Products § 137.190 Cracked wheat. Cracked wheat is the food prepared by so cracking or cutting...

  11. Agropyron mosaic virus detected in Ohio wheat (Triticum aestivum)

    USDA-ARS?s Scientific Manuscript database

    Agropyron mosaic virus (AgMV) was identified in Ohio wheat during a 2016 field survey by RNA-Seq. AgMV was confirmed in 3 counties by reverse transcription-polymerase chain reaction, and transmitted to wheat. Isolated Ohio AgMV infected wheat, ryegrass, and rye, but not oat, maize, sorghum, or orcha...

  12. Pathogenicity of three isolates of Rhizoctonia sp. from wheat and peanut on hard red winter wheat

    USDA-ARS?s Scientific Manuscript database

    Rhizoctonia-induced root diseases can significantly affect wheat and peanut production where these two field crops are grown in rotation. Hence, this study characterized two isolates of Rhizoctonia spp. from wheat [R. cerealis (RC) and R. solani (RSW)] and one from peanut [R. solani (RSP) ] for cul...

  13. Whole wheat bread: Effect of bran fractions on dough and end-product quality

    USDA-ARS?s Scientific Manuscript database

    Consumption of whole-wheat based products is encouraged due to its important nutritional elements that beneficial to human health. However, processing of whole-wheat based products, such as whole-wheat bread, results in poor end-product quality. Bran was postulated as the major problem. In this stud...

  14. 40 CFR 180.1071 - Peanuts, Tree Nuts, Milk, Soybeans, Eggs, Fish, Crustacea, and Wheat; exemption from the...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., Eggs, Fish, Crustacea, and Wheat; exemption from the requirement of a tolerance. 180.1071 Section 180... Peanuts, Tree Nuts, Milk, Soybeans, Eggs, Fish, Crustacea, and Wheat; exemption from the requirement of a..., tree nuts, milk, soybeans, eggs (including putrescent eggs), fish, crustacea, and wheat are exempted...

  15. Quantification of disease expression conferred by three host gene-necrotrophic effector interactions in the wheat-Parastagonospora nodorum pathosystem

    USDA-ARS?s Scientific Manuscript database

    Septoria nodorum blotch (SNB), which is a major foliar disease on wheat is caused by the necrotrophic fungus Parastagonospora nodorum. The wheat-P. nodorum pathosystem involves the recognition of necrotrophic effectors (NEs) secreted by P. nodorum by corresponding wheat NE sensitivity genes. Recogni...

  16. Identification of the VERNALIZATION 4 gene reveals the origin of spring growth habit in ancient wheats from South Asia

    USDA-ARS?s Scientific Manuscript database

    Wheat varieties with a winter growth habit require long exposures to low temperatures (vernalization) to accelerate flowering. Natural variation in the vernalization genes regulating this requirement has favored wheat adaptation to different environments. The main wheat vernalization genes VRN1, V...

  17. Specific detection of the wheat blast pathogen (Magnaporthe oryzae Triticum) by loop-mediated isothermal amplification

    USDA-ARS?s Scientific Manuscript database

    Wheat blast, caused by Magnaporthe oryzae Triticum (MoT) pathotype, is an economically important fungal disease of wheat. Wheat blast symptoms are similar to Fusarium head scab and can cause confusion in the field. Currently, no in-field diagnostic exists for MoT. Loop-mediated isothermal amplificat...

  18. Characterization of the surface properties of wheat spikelet components grown under different regimes and the biocontrol yeast Cryptococcus flavescens

    USDA-ARS?s Scientific Manuscript database

    The physicochemical surfaces properties of wheat (Triticum aestivum L) spikelet components have been characterized under different environmental growing regimes. Wheat samples grown in a greenhouse environment were compared with samples produced in the field for two wheat cultivars (Freedom and Pion...

  19. A spontaneous segmental deletion from chromosome arm 3DL enhances Fusarium head blight resistance in wheat

    USDA-ARS?s Scientific Manuscript database

    Much effort has been directed at identifying sources of resistance to Fusarium head blight (FHB) in wheat. We sought to identify molecular markers for what we hypothesized was a new major FHB resistance locus originating from the wheat cultivar 'Freedom' and introgressed into the susceptible wheat c...

  20. Introgression of chromosome segments from multiple alien species in wheat breeding lines with wheat streak mosaic virus resistance

    USDA-ARS?s Scientific Manuscript database

    Pyramiding of alien-derived Wheat streak mosaic virus (WSMV) resistance and resistance enhancing genes in wheat is a costeffective and environmentally safe strategy for disease control. PCR-based markers and cytogenetic analysis with genomic in situ hybridisation were applied to identify alien chrom...

  1. Quantifying the effects of wheat residue on severity of Stagonospora nodorum blotch and yield in winter wheat

    USDA-ARS?s Scientific Manuscript database

    Stagonospora nodorum blotch (SNB), caused by the ascomycete fungus Stagonospora nodorum, is a major disease of wheat. Wheat residue can be an important source of inoculum, but the effect of different densities of infected debris on disease severity has not been previously determined. Experiments wer...

  2. Effect of levels of wheat residue on the severity of stagonospora nodorum blotch in winter wheat

    USDA-ARS?s Scientific Manuscript database

    Stagonospora nodorum blotch (SNB), caused by the ascomycete fungus Stagonospora nodorum, is a major disease of wheat. Wheat residue can be an important source of inoculum, but the effect of different densities of infected debris on disease severity has not been previously determined. Experiments wer...

  3. 7 CFR 782.18 - Wheat purchased for export.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 7 2010-01-01 2010-01-01 false Wheat purchased for export. 782.18 Section 782.18... § 782.18 Wheat purchased for export. (a) This section applies to an importer or subsequent buyer who imports or purchases Canadian-produced wheat for the purpose of export to a foreign country or...

  4. Growing Wheat. People on the Farm.

    ERIC Educational Resources Information Center

    Department of Agriculture, Washington, DC. Office of Governmental and Public Affairs.

    This booklet, one in a series about life on modern farms, describes the daily life of the Don Riffel family, wheat farmers in Kansas. Beginning with early morning, the booklet traces the family's activities through a typical harvesting day in July, while explaining how a wheat farm is run. The booklet also briefly describes the wheat growing…

  5. Change in biotypic diversity of Russian wheat aphid (Hemiptera: Aphididae) populations in the United States

    USDA-ARS?s Scientific Manuscript database

    A key component of Russian wheat aphid (RWA), Diuraphis noxia (Kurdjumov), management has been through planting resistant wheat cultivars. A new biotype, RWA2, appeared in 2003 which caused widespread damage to wheat cultivars containing Dn4 gene. Biotypic diversity in RWA populations has not been...

  6. A high-density, SNP-based consensus map of tetraploid wheat as a bridge to integrate durum and bread wheat genomics and breeding

    USDA-ARS?s Scientific Manuscript database

    Consensus linkage maps are important tools in crop genomics. We have assembled a high-density tetraploid wheat consensus map by integrating 13 datasets from independent biparental populations involving durum wheat cultivars (Triticum turgidum ssp. durum), cultivated emmer (T. turgidum ssp. dicoccum...

  7. Row width influences wheat yield, but has little effect on wheat quality

    USDA-ARS?s Scientific Manuscript database

    Growers are interested in wide-row wheat production due to reductions in equipment inventory (lack of grain drill) and to allow intercropping of soybean into wheat. A trial was established during the 2012-2013 and 2013-2014 growing seasons in Wayne County and Wood County, Ohio to evaluate the effec...

  8. Registration of ‘NE05548’ (husker genetics brand panhandle) hard red winter wheat

    USDA-ARS?s Scientific Manuscript database

    Western Nebraska wheat producers and those in adjacent areas want taller wheat (Triticum aestivum L.) cultivars that retain their height under drought for better harvestability. ‘NE05548’ (Reg. No. CV-1117, PI 670462) hard red winter wheat was developed cooperatively by the Nebraska Agricultural Exp...

  9. Visible and near-infrared instruments for detection and quantification of individual sprouted wheat kernels

    USDA-ARS?s Scientific Manuscript database

    Pre-harvest sprouting of wheat kernels within the grain head presents serious problems as it can greatly affect end use quality. Functional properties of wheat flour made from sprouted wheat result in poor dough and bread-making quality. This research examined the ability of two instruments to estim...

  10. End-use quality of soft kernel durum wheat

    USDA-ARS?s Scientific Manuscript database

    Kernel texture is a major determinant of end-use quality of wheat. Durum wheat is known for its very hard texture, which influences how it is milled and for what products it is well suited. We developed soft kernel durum wheat lines via Ph1b-mediated homoeologous recombination with Dr. Leonard Joppa...

  11. Sources of stem rust resistance in wheat-alien introgression lines

    USDA-ARS?s Scientific Manuscript database

    Stem rust, caused by Puccinia graminis f. sp. tritici, is one of the most devastating diseases of wheat and the novel highly virulent race of TTKSK and its lineage are threatening wheat production worldwide. The objective of the study was to identify new sources of resistance in wheat-alien introgre...

  12. 75 FR 68942 - Karnal Bunt; Regulated Areas in Arizona, California, and Texas

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-10

    ... bunt, a fungal disease of wheat. We are adding the Buckeye/Pretoria area of Maricopa County, AZ, to the... INFORMATION: Background Karnal bunt is a fungal disease of wheat (Triticum aestivum), durum wheat (Triticum durum), and triticale (Triticum aestivum X Secale cereale), a hybrid of wheat and rye. Karnal bunt is...

  13. 7 CFR 782.10 - Identification of commodities subject to end-use certificate regulations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... certificate regulations. (a) The regulations in this part are applicable to wheat and barley, respectively... wheat or barley. (b) Because Canada is the only country with such requirements on wheat, and no country has an end-use certificate requirement for barley, only wheat originating in Canada is affected by the...

  14. 76 FR 44454 - Karnal Bunt; Regulated Areas in Arizona, California, and Texas

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-26

    ... fields regulated because of Karnal bunt, a fungal disease of wheat. Specifically, the interim rule added... disease of wheat (Triticum aestivum), durum wheat (Triticum durum), and triticale (Triticum aestivum X Secale cereale), a hybrid of wheat and rye. Karnal bunt is caused by the fungus Tilletia indica (Mitra...

  15. Spatial distributions of Cephus cinctus Norton (Hymenoptera: Cephidae) and its braconid parasitoids in Montana wheat fields

    Treesearch

    David K. Weaver; Christian Nansen; Justin B. Runyon; Sharlene E. Sing; Wendell L. Morrill

    2005-01-01

    Bracon cephi and Bracon lissogaster are native parasitoids of the wheat stem sawfly, Cephus cinctus, an important pest of dryland wheat production. This spatial distribution study, using survey data from seven dryland wheat fields at four locations in north-central Montana over two years, examined: (1) the...

  16. Investigating the role of ABA signaling in wheat drought tolerance

    USDA-ARS?s Scientific Manuscript database

    Allohexaploid wheat (Triticum aestivum L.) is one of the three major cereal crops supporting human nutrition. Because wheat is often grown under dryland conditions, it is subject to losses as a result of drought stress. This study examines the role of the plant hormone ABA is wheat responses to wate...

  17. 40 CFR 180.1071 - Peanuts, Tree Nuts, Milk, Soybeans, Eggs, Fish, Crustacea, and Wheat; exemption from the...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., Eggs, Fish, Crustacea, and Wheat; exemption from the requirement of a tolerance. 180.1071 Section 180... Peanuts, Tree Nuts, Milk, Soybeans, Eggs, Fish, Crustacea, and Wheat; exemption from the requirement of a..., tree nuts, milk, soybeans, eggs (including putrescent eggs), fish, crustacea, and wheat are exempted...

  18. Separability study of wheat and small grains

    NASA Technical Reports Server (NTRS)

    Lennington, R. K.; Marquina, N. E. (Principal Investigator)

    1978-01-01

    The author has identified the following significant results. Barley showed significant separability from spring wheat, both multitemporally and on a single date chosen near the turning time for barley. Oats showed occasional multitemporal separability from barley and spring wheat; however, the cause of this separability was not well understood. Oats showed no significant separability from spring wheat on any single date during the growing season. By pooling data from segments having an acquisition near the turning time for barley, a fixed unitemporal projection for aiding in the labeling of barley versus spring wheat and oats was constructed. This projection has about the same separability of barley from spring wheat and oats as the unitemporal greeness versus brightness plot. The new fixed projection has the advantage that barley occurs consistently in the same general location on the plot with respect to spring wheat and oats. Attempts to construct a fixed multitemporal or a segment-dependent multitemporal projection for aiding in the labeling of spring wheat versus other small grains were unsuccessful due to segment availability and the fact that each segment has a unique acquisition history.

  19. A solid state fungal fermentation-based strategy for the hydrolysis of wheat straw.

    PubMed

    Pensupa, Nattha; Jin, Meng; Kokolski, Matt; Archer, David B; Du, Chenyu

    2013-12-01

    This paper reports a solid-state fungal fermentation-based pre-treatment strategy to convert wheat straw into a fermentable hydrolysate. Aspergillus niger was firstly cultured on wheat straw for production of cellulolytic enzymes and then the wheat straw was hydrolyzed by the enzyme solution into a fermentable hydrolysate. The optimum moisture content and three wheat straw modification methods were explored to improve cellulase production. At a moisture content of 89.5%, 10.2 ± 0.13 U/g cellulase activity was obtained using dilute acid modified wheat straw. The addition of yeast extract (0.5% w/v) and minerals significantly improved the cellulase production, to 24.0 ± 1.76 U/g. The hydrolysis of the fermented wheat straw using the fungal culture filtrate or commercial cellulase Ctec2 was performed, resulting in 4.34 and 3.13 g/L glucose respectively. It indicated that the fungal filtrate harvested from the fungal fermentation of wheat straw contained a more suitable enzyme mixture than the commercial cellulase. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  20. [Pollution investigation of deoxynivalenol in wheat flour of China in 2013].

    PubMed

    Lu, Jingjing; Yang, Dajin

    2015-07-01

    To study the deoxynivalenol (DON) contamination status in wheat flour of China in 2013. Stereotypes packaged or bulk wheat flour samples sold in 28 provinces were collected in a random sampling way. The concentration of DON in each flour wheat sample was measured by high performance liquid chromatography. The results were statistically analyzed and evaluated. A total of 5678 wheat flour was detected. The detection rate of DON was 58.74%. The excessive rate of the standard of DON was 4.60%. The average content of DON was 317 µg/kg. The content range of DON was 0-56.1 mg/kg. DON pollution is relatively common in wheat flour of China in 2013, but the excessive rate is not high. The degree of pollution in each area is different. The excessive rate of DON, which was associated with the local temperature and humidity conditions, in wheat flour sold in east, southwest and northwest area is relatively high. Pollution level of DON in wheat flour in 2013 is consistent with those in 2010 and 2011, but lower than the monitoring results in 2012.

  1. Wheat flour confectionery products as a source of inorganic nutrients: iron and manganese contents in hard biscuits.

    PubMed

    Sebecić, Blazenka; Dragojević, I Vedrina; Horvatić, M

    2002-06-01

    To evaluate some wheat flour based hard biscuits produced in Croatia with regard to their Fe and Mn contents and thereby their functionality, Fe and Mn are determined by cold-vapor atomic absorption spectrometry (CVAAS) in seven biscuits: classic white wheat flour biscuits and in dietetic biscuits enriched with whole wheat grain flour or whole wheat grain grits, soya flour and milk. Presented data show that Fe contents in seven analyzed biscuits range from 9.32 up to 24.80 mg/kg while Mn contents range from 3.76-16.37 mg/kg depending on type and share of cereal milling products and mineral content of other raw materials used. Thus, enriched biscuits produced from wheat flour type 850 and whole wheat grain flour, having the highest concentrations of Fe and Mn, were about 150% and 250%, respectively, richer in those elements in comparison with classic white flour biscuits of Petit Beurre type. Data show that wheat flour based hard biscuits, particularly enriched biscuits, can be considered as a good additional source of Fe and Mn in diets.

  2. Unlocking the genetic diversity of Creole wheats.

    PubMed

    Vikram, Prashant; Franco, Jorge; Burgueño-Ferreira, Juan; Li, Huihui; Sehgal, Deepmala; Saint Pierre, Carolina; Ortiz, Cynthia; Sneller, Clay; Tattaris, Maria; Guzman, Carlos; Sansaloni, Carolina Paola; Ellis, Mark; Fuentes-Davila, Guillermo; Reynolds, Matthew; Sonders, Kai; Singh, Pawan; Payne, Thomas; Wenzl, Peter; Sharma, Achla; Bains, Navtej Singh; Singh, Gyanendra Pratap; Crossa, José; Singh, Sukhwinder

    2016-03-15

    Climate change and slow yield gains pose a major threat to global wheat production. Underutilized genetic resources including landraces and wild relatives are key elements for developing high-yielding and climate-resilient wheat varieties. Landraces introduced into Mexico from Europe, also known as Creole wheats, are adapted to a wide range of climatic regimes and represent a unique genetic resource. Eight thousand four hundred and sixteen wheat landraces representing all dimensions of Mexico were characterized through genotyping-by-sequencing technology. Results revealed sub-groups adapted to specific environments of Mexico. Broadly, accessions from north and south of Mexico showed considerable genetic differentiation. However, a large percentage of landrace accessions were genetically very close, although belonged to different regions most likely due to the recent (nearly five centuries before) introduction of wheat in Mexico. Some of the groups adapted to extreme environments and accumulated high number of rare alleles. Core reference sets were assembled simultaneously using multiple variables, capturing 89% of the rare alleles present in the complete set. Genetic information about Mexican wheat landraces and core reference set can be effectively utilized in next generation wheat varietal improvement.

  3. Predicting bioavailability of PAHs in soils to wheat roots with triolein-embedded cellulose acetate membranes and comparison with chemical extraction.

    PubMed

    Tao, Yuqiang; Zhang, Shuzhen; Wang, Zijian; Christie, Peter

    2008-11-26

    Triolein-embedded cellulose acetate membrane (TECAM) was buried in 15 field-contaminated soils in parallel with the cultivation of wheat to predict bioavailability of naphthalene, phenanthrene, pyrene, and benzo[a]pyrene to wheat roots, and the method was compared with chemical extraction methods. Although a good linear relationship was found between PAH concentrations in chemical extractants and wheat roots, the percentage of PAH in soil removed by chemical extraction was much higher than the corresponding percentage removed by wheat roots. In contrast to chemical extraction, a nearly 1:1 relationship was found between the amount of each PAH taken up by TECAMs and wheat roots (r(2) = 0.798-0.925, P < 0.01). Furthermore, the uptake of PAHs by TECAMs and wheat roots had the same pathway of passive transport via the soil solution. Moreover, TECAM caused minimal disturbance to the soil and was easy to deploy. Therefore, TECAM is believed to be a useful tool to predict bioavailability of PAHs to wheat roots grown in contaminated soils.

  4. Cloning and Characterization of a Critical Regulator for Preharvest Sprouting in Wheat

    PubMed Central

    Liu, Shubing; Sehgal, Sunish K.; Li, Jiarui; Lin, Meng; Trick, Harold N.; Yu, Jianming; Gill, Bikram S.; Bai, Guihua

    2013-01-01

    Sprouting of grains in mature spikes before harvest is a major problem in wheat (Triticum aestivum) production worldwide. We cloned and characterized a gene underlying a wheat quantitative trait locus (QTL) on the short arm of chromosome 3A for preharvest sprouting (PHS) resistance in white wheat using comparative mapping and map-based cloning. This gene, designated TaPHS1, is a wheat homolog of a MOTHER OF FLOWERING TIME (TaMFT)-like gene. RNA interference-mediated knockdown of the gene confirmed that TaPHS1 positively regulates PHS resistance. We discovered two causal mutations in TaPHS1 that jointly altered PHS resistance in wheat. One GT-to-AT mutation generates a mis-splicing site, and the other A-to-T mutation creates a premature stop codon that results in a truncated nonfunctional transcript. Association analysis of a set of wheat cultivars validated the role of the two mutations on PHS resistance. The molecular characterization of TaPHS1 is significant for expediting breeding for PHS resistance to protect grain yield and quality in wheat production. PMID:23821595

  5. A solid state fungal fermentation-based strategy for the hydrolysis of wheat straw☆

    PubMed Central

    Pensupa, Nattha; Jin, Meng; Kokolski, Matt; Archer, David B.; Du, Chenyu

    2013-01-01

    This paper reports a solid-state fungal fermentation-based pre-treatment strategy to convert wheat straw into a fermentable hydrolysate. Aspergillus niger was firstly cultured on wheat straw for production of cellulolytic enzymes and then the wheat straw was hydrolyzed by the enzyme solution into a fermentable hydrolysate. The optimum moisture content and three wheat straw modification methods were explored to improve cellulase production. At a moisture content of 89.5%, 10.2 ± 0.13 U/g cellulase activity was obtained using dilute acid modified wheat straw. The addition of yeast extract (0.5% w/v) and minerals significantly improved the cellulase production, to 24.0 ± 1.76 U/g. The hydrolysis of the fermented wheat straw using the fungal culture filtrate or commercial cellulase Ctec2 was performed, resulting in 4.34 and 3.13 g/L glucose respectively. It indicated that the fungal filtrate harvested from the fungal fermentation of wheat straw contained a more suitable enzyme mixture than the commercial cellulase. PMID:24121367

  6. [Bread from the bioactivated wheat grain with the raised nutrition value].

    PubMed

    Ponomareva, E I; Alekhina, N N; Bakaeva, I A

    2016-01-01

    Bread from the bioactivated grain of wheat differs in high content of dietary fibers, minerals and vitamins compared to traditional types of bread, but, despite this, it has low protein and lysine content. The aim of the study was the development of bread with the raised nutritional value from the bioactivated wheat grain by use of flour from cake of wheat germ (6.5%). It has been established that the flour from wheat germ has protein biological value (77.4%) and the amino acid score according to lysine (100.3%) above 12 and 40.5%, respectively, compared with those from bioactivated wheat. During calculation of nutritive, biological and energy value of products from the bioactivated wheat grain it is revealed that the biological value of bread from wheat germ flour slightly exceeded the biological value of the bread without its addition and amounted to 70.80%, due to a high protein content and a balanced amino acid composition. The protein content in the test sample of bakery products was 19.0% higher than the control, phosphorus - 13.0%, zinc - 50.0%.

  7. [Transgenic wheat (Triticum aestivum L.) with increased resistance to the storage pest obtained by Agrobacterium tumefaciens--mediated].

    PubMed

    Bi, Rui-Ming; Jia, Hai-Yan; Feng, De-Shun; Wang, Hong-Gang

    2006-05-01

    The transgenic wheat of improved resistance to the storage pest was production. We have introduced the cowpea trypsin inhibitor gene (CpTI) into cultured embryonic callus cells of immature embryos of wheat elite line by Agrobacterium-mediated method. Independent plantlets were obtained from the kanamycin-resistant calli after screening. PCR and real time PCR analysis, PCR-Southern and Southern blot hybridization indicated that there were 3 transgenic plants viz. transformed- I, II and III (T- I, T-II and T-III). The transformation frequencies were obviously affected by Agrobacterium concentration, the infection duration and transformation treatment. The segregations of CpTI in the transgenic wheat progenies were not easily to be elucidated, and some transgenic wheat lines (T- I and T-III) showed Mendelian segregations. The determinations of insect resistance to the stored grain insect of wheat viz. the grain moth (Sitotroga cerealella Olivier) indicated that the 3 transgenic wheat progeny seeds moth-resistance was improved significantly. The seed moth-eaten ratio of T- I, T-II, T-III and nontransformed control was 19.8%, 21.9%, 32.9% and 58.3% respectively. 3 transgenic wheat T1 PCR-positive plants revealed that the 3 transgenic lines had excellent agronomic traits. They supplied good germplasm resource of insect-resistance for wheat genetic improvement.

  8. Transfer of useful variability of high grain iron and zinc from Aegilops kotschyi into wheat through seed irradiation approach.

    PubMed

    Verma, Shailender Kumar; Kumar, Satish; Sheikh, Imran; Malik, Sachin; Mathpal, Priyanka; Chugh, Vishal; Kumar, Sundip; Prasad, Ramasare; Dhaliwal, Harcharan Singh

    2016-01-01

    To transfer the 2S chromosomal fragment(s) of Aegilops kotschyi (2S(k)) into the bread wheat genome which could lead to the biofortification of wheat with high grain iron and zinc content. Wheat-Ae. kotschyi 2A/2S(k) substitution lines with high grain iron and zinc content were used to transfer the gene/loci for high grain Fe and Zn content into wheat using seed irradiation approach. Bread wheat plants derived from 40 krad-irradiated seeds showed the presence of univalents and multivalents during meiotic metaphase-I. Genomic in situ hybridization analysis of seed irradiation hybrid F2 seedlings showed several terminal and interstitial signals indicated the introgression of Ae. kotschyi chromosome segments. This proves the efficacy of seed radiation hybrid approach in gene transfer experiments. All the radiation-treated hybrid plants with high grain Fe and Zn content were analyzed with wheat group 2 chromosome-specific polymorphic simple sequence repeat markers to identify the introgression of small alien chromosome fragment(s). Radiation-induced hybrids showed more than 65% increase in grain iron and 54% increase in Zn contents with better harvest index than the elite wheat cultivar WL711 indicating effective and compensating translocations of 2S(k) fragments into wheat genome.

  9. Novel Field Data on Phytoextraction: Pre-Cultivation With Salix Reduces Cadmium in Wheat Grains.

    PubMed

    Greger, Maria; Landberg, Tommy

    2015-01-01

    Cadmium (Cd) is a health hazard, and up to 43% of human Cd intake comes from wheat products, since Cd accumulates in wheat grains. Salix spp. are high-accumulators of Cd and is suggested for Cd phytoextraction from agricultural soils. We demonstrate, in field, that Salix viminalis can remove Cd from agricultural soils and thereby reduce Cd accumulation in grains of wheat subsequently grown in a Salix-treated field. Four years of Salix cultivation reduce Cd concentration in the soil by up to 27% and in grains of the post-cultivated wheat by up to 33%. The higher the plant density of the Salix, the greater the Cd removal from the soil and the lower the Cd concentration in the grains of post-cultivated wheat, the Cd reduction remaining stable several years after Salix cultivation. The effect occurred in both sandy and clayey soil and in winter and spring bread wheat cultivars. Already one year of Salix cultivation significantly decrease Cd in post grown wheat grains. With this field experiment we have demonstrated that phytoextraction can reduce accumulation of a pollutant in post-cultivated wheat and that phytoextraction has no other observed effect on post-cultivated crops than reduced uptake of the removed pollutant.

  10. Modeling cumulative effects in life cycle assessment: the case of fertilizer in wheat production contributing to the global warming potential.

    PubMed

    Laratte, Bertrand; Guillaume, Bertrand; Kim, Junbeum; Birregah, Babiga

    2014-05-15

    This paper aims at presenting a dynamic indicator for life cycle assessment (LCA) measuring cumulative impacts over time of greenhouse gas (GHG) emissions from fertilizers used for wheat cultivation and production. Our approach offers a dynamic indicator of global warming potential (GWP), one of the most used indicator of environmental impacts (e.g. in the Kyoto Protocol). For a case study, the wheat production in France was selected and considered by using data from official sources about fertilizer consumption and production of wheat. We propose to assess GWP environmental impact based on LCA method. The system boundary is limited to the fertilizer production for 1 ton of wheat produced (functional unit) from 1910 to 2010. As applied to wheat production in France, traditional LCA shows a maximum GWP impact of 500 kg CO2-eq for 1 ton of wheat production, whereas the GWP impact of wheat production over time with our approach to dynamic LCA and its cumulative effects increases to 18,000 kg CO2-eq for 1 ton of wheat production. In this paper, only one substance and one impact assessment indicator are presented. However, the methodology can be generalized and improved by using different substances and indicators. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Investigations of spectral separability of small grains, early season wheat detection, and multicrop inventory planning. [North Dakota and Kansas

    NASA Technical Reports Server (NTRS)

    Nalepka, R. F. (Principal Investigator); Malila, W. A.; Gleason, J. M.

    1977-01-01

    The author has identified the following significant results. LANDSAT data from seven 5 by 6 segments having crop type information were analyzed to determine the potential for spectral separation of spring wheat from other small grains as an alternative to the primary LACIE procedure for estimating spring wheat acreage. Within segment field-center, classification accuracies for spring wheat vs. barley tended to be best in mid-July when crop color changes were in progress. When correlations were made for differences in atmospheric haze, data from several segments could be aggregated, and results that approached within segment accuracies were obtained for selected dates. LACIE field measurement spectral reflectance data provided information on both wheat development patterns and the importance of various agronomic factors on wheat reflectance, the most important being availability of soil moisture. To investigate early season detection for winter wheat, reflectance of developing wheat patterns was simulated through reflectance modeling and was analyzed along with field measured reflectance from a Kansas site. The green component development of the wheat field was analyzed as a function of data throughout the season. A selected threshold was not crossed by all fields until mid-April. These reflectance data were shown to be consistent actual LANDSAT data.

  12. High spectral and spatial resolution hyperspectral imagery for quantifying Russian wheat aphid infestation in wheat using the constrained energy minimization classifier

    NASA Astrophysics Data System (ADS)

    Mirik, Mustafa; Ansley, R. James; Steddom, Karl; Rush, Charles M.; Michels, Gerald J.; Workneh, Fekede; Cui, Song; Elliott, Norman C.

    2014-01-01

    The effects of insect infestation in agricultural crops are of major ecological and economic interest because of reduced yield, increased cost of pest control and increased risk of environmental contamination from insecticide application. The Russian wheat aphid (RWA, Diuraphis noxia) is an insect pest that causes damage to wheat (Triticum aestivum L.). We proposed that concentrated RWA feeding areas, referred to as "hot spots," could be identified and isolated from uninfested areas within a field for site specific aphid management using remotely sensed data. Our objectives were to (1) investigate the reflectance characteristics of infested and uninfested wheat by RWA and (2) evaluate utility of airborne hyperspectral imagery with 1-m spatial resolution for detecting, quantifying, and mapping RWA infested areas in commercial winter wheat fields using the constrained energy minimization classifier. Percent surface reflectance from uninfested wheat was lower in the visible and higher in the near infrared portions of the spectrum when compared with RWA-infested wheat. The overall classification accuracies of >89% for damage detection were achieved. These results indicate that hyperspectral imagery can be effectively used for accurate detection and quantification of RWA infestation in wheat for site-specific aphid management.

  13. Winter wheat response to irrigation, nitrogen fertilization, and cold hazards in the Community Land Model 5

    NASA Astrophysics Data System (ADS)

    Lu, Y.

    2017-12-01

    Winter wheat is a staple crop for global food security, and is the dominant vegetation cover for a significant fraction of earth's croplands. As such, it plays an important role in soil carbon balance, and land-atmosphere interactions in these key regions. Accurate simulation of winter wheat growth is not only crucial for future yield prediction under changing climate, but also for understanding the energy and water cycles for winter wheat dominated regions. A winter wheat growth model has been developed in the Community Land Model 4.5 (CLM4.5), but its responses to irrigation and nitrogen fertilization have not been validated. In this study, I will validate winter wheat growth response to irrigation and nitrogen fertilization at five winter wheat field sites (TXLU, KSMA, NESA, NDMA, and ABLE) in North America, which were originally designed to understand winter wheat response to nitrogen fertilization and water treatments (4 nitrogen levels and 3 irrigation regimes). I also plan to further update the linkages between winter wheat yield and cold hazards. The previous cold damage function only indirectly affects yield through reduction on leaf area index (LAI) and hence photosynthesis, such approach could sometimes produce an unwanted higher yield when the reduced LAI saved more nutrient in the grain fill stage.

  14. Identification of stem rust resistance genes in wheat cultivars in China using molecular markers.

    PubMed

    Xu, Xiaofeng; Yuan, Depeng; Li, Dandan; Gao, Yue; Wang, Ziyuan; Liu, Yang; Wang, Siting; Xuan, Yuanhu; Zhao, Hui; Li, Tianya; Wu, Yuanhua

    2018-01-01

    Wheat stem rust caused by Puccinia graminis f. sp. tritici Eriks. & E. Henn. ( Pgt ), is a major disease that has been effectively controlled using resistance genes. The appearance and spread of Pgt races such as Ug99, TKTTF, and TTTTF, which are virulent to most stem rust-resistant genes currently deployed in wheat breeding programs, renewed the interest in breeding cultivars resistant to wheat stem rust. It is therefore important to investigate the levels of resistance or vulnerability of wheat cultivars to Pgt races. Resistance to Pgt races 21C3CTHQM, 34MKGQM, and 34C3RTGQM was evaluated in 136 Chinese wheat cultivars at the seedling stage. A total of 124 cultivars (91.2%) were resistant to the three races. Resistance genes Sr2 , Sr24 , Sr25 , Sr26 , Sr31 , and Sr38 were analyzed using molecular markers closely linked to them, and 63 of the 136 wheat cultivars carried at least one of these genes: 21, 25, and 28 wheat cultivars likely carried Sr2 , Sr31 , and Sr38 , respectively. Cultivars "Kehan 3" and "Jimai 22" likely carried Sr25 . None of the cultivars carried Sr24 or Sr26 . These cultivars with known stem rust resistance genes provide valuable genetic material for breeding resistant wheat cultivars.

  15. New isotopic evidence of lead contamination in wheat grain from atmospheric fallout.

    PubMed

    Yang, Jun; Chen, Tongbin; Lei, Mei; Zhou, Xiaoyong; Huang, Qifei; Ma, Chuang; Gu, Runyao; Guo, Guanghui

    2015-10-01

    Crops could accumulate trace metals by soil-root transfer and foliar uptake from atmospheric fallout, and an accurate assessment of pollution sources is a prerequisite for preventing heavy metal pollution in agricultural products. In this study, we examined Pb isotope rates to trace the sources of Pb in wheat grain grown in suburbs. Results showed that, even in zones with scarcely any air pollution spots, atmospheric fallout was still a considerable source of Pb accumulation in wheat. The concentration of Pb in wheat grain has poor correlation with that in farm soil. The Pb concentration in wheat grains with dust in bran coat was significantly higher than that in wheat grains, which indicates that Pb may accumulate by foliar uptake. The Pb isotope rate has obvious differences between the soil and atmospheric fallout, and scatter ratio is significantly closer between the wheat grain and atmospheric fallout. Atmospheric fallout is a more significant source of Pb concentration in wheat grains than in soil. As far as we know, this is the first study on the main sources of lead in grain crop (wheat) samples with isotope. This study aims to improve our understanding of the translocation of foliar-absorbed metals to nonexposed parts of plants.

  16. Food security: the challenge of increasing wheat yield and the importance of not compromising food safety

    PubMed Central

    Curtis, T; Halford, N G

    2014-01-01

    Current wheat yield and consumption is considered in the context of the historical development of wheat, from early domestication through to modern plant breeding, the Green Revolution and wheat’s place as one of the world’s most productive and important crops in the 21st Century. The need for further improvement in the yield potential of wheat in order to meet current and impending challenges is discussed, including rising consumption and the demand for grain for fuel as well as food. Research on the complex genetics underlying wheat yield is described, including the identification of quantitative trait loci and individual genes, and the prospects of biotechnology playing a role in wheat improvement in the future are discussed. The challenge of preparing wheat to meet the problems of drought, high temperature and increasing carbon dioxide concentration that are anticipated to come about as a result of climate change is also reviewed. Wheat yield must be increased while not compromising food safety, and the emerging problem of processing contaminants is reviewed, focussing in particular on acrylamide, a contaminant that forms from free asparagine and reducing sugars during high temperature cooking and processing. Wheat breeders are strongly encouraged to consider the contaminant issue when breeding for yield. PMID:25540461

  17. Validation on wheat response to irrigation, CO2 and nitrogen fertilization in the Community Land Model

    NASA Astrophysics Data System (ADS)

    Lu, Y.

    2016-12-01

    Wheat is a staple crop for global food security, and is the dominant vegetation cover for a significant fraction of earth's croplands. As such, it plays an important role in soil carbon balance, and land-atmosphere interactions in these key regions. Understanding whether the Community Land Model (CLM) appropriate response to elevated CO2 and different levels of nitrogen fertilization and irrigation is a crucial question. We participated the AgMIP-wheat project and run 72 simulations at Maricopa spring wheat FACE sites and five winter wheat sites in North America forcing with site observed meteorology data. After calibration on the phenology, carbon allocation, and soil hydrology parameters, wheat in CLM45 has reasonable response to irrigation and elevated CO2. However, wheat in CLM45 has no response to low or high N fertilization because the low amount of N fertilization is sufficient for wheat growth in CLM45. We plan to further extend the same simulations for CLM5 (will release in Fall 2016), which has substantial improvements on soil hydrology (improved soil evaporation and plant hydraulic parameterization) and nitrogen dynamics (flexible leaf CN ratio and Vcmax25, plant pays for carbon to get nitrogen). We will evaluate the uncertainties of wheat response to nitrogen fertilization, irrigation, CO2 due to model improvements.

  18. Inoculation of a phenanthrene-degrading endophytic bacterium reduces the phenanthrene level and alters the bacterial community structure in wheat.

    PubMed

    Liu, Juan; Xiang, Yanbing; Zhang, Zhiming; Ling, Wanting; Gao, Yanzheng

    2017-06-01

    Colonization by polycyclic aromatic hydrocarbon (PAH)-degrading endophytic bacteria (PAHDEB) can reduce the PAH contamination risk in plant. However, little information is available on the impact of PAHDEB colonization on the endophytic bacterial community of inner plant tissues. A phenanthrene-degrading endophytic bacterium (PDEB), Massilia sp. Pn2, was inoculated onto the roots of wheat and subjected to greenhouse container experiments. The endophytic bacterial community structure in wheat was investigated using high-throughput sequencing technology. The majority of endophytic bacteria in wheat were Proteobacteria, and the dominant genus was Pseudomonas. Phenanthrene contamination clearly increased the diversity of endophytic bacteria in wheat. The cultivable endophytic bacteria counts in wheat decreased with increasing the level of phenanthrene contamination; the endophytic bacterial community structure changed correspondingly, and the bacterial richness first increased and then decreased. Inoculation of strain Pn2 reduced the phenanthrene contamination in wheat, enlarged the biomass of wheat roots, changed the bacterial community structure and enhanced the cell counts, diversity and richness of endophytic bacteria in phenanthrene-contaminated wheat in a contamination level-dependent manner. The findings of this investigation provide insight into the responses of endophytic bacterial community in plant to external PAH contamination and PAHDEB colonization.

  19. [Contribution of soil water at various depths to water consumption of rainfed winter wheat in the Loess tableland, China].

    PubMed

    Cheng, Li Ping; Liu, Wen Zhao

    2017-07-18

    Soil water and stem water were collected in jointing and heading stages of the rainfed winter wheat in the Changwu Loess tableland, and the stable isotopic compositions of hydrogen and oxygen in water samples were measured to analyze the contribution of soil water at various depths to water consumption of winter wheat. The results showed that the isotopes were enriched in soil and wheat stem water in comparison with that in precipitation. Under the condition of no dry layer in soil profile, the contributions to wheat water consumption in jointing and heading stages were 5.4% and 2.6% from soil water at 0-30 cm depth, 73.4% and 67.3% at 60-90 cm depth (the main water source for winter wheat), and 7.9% and 13.5% below 120 cm depth, respectively. With the wheat growth, the contribution of soil water below the depth of 90 cm increased. It was concluded that soil evaporation mainly consumed soil water in 0-30 cm depth and wheat transpiration mainly consumed soil water below 60 cm depth in the experimental period. In the production practice, it is necessary to increase rainwater storage ratio during the summer fallow period, and apply reasonable combination of nitrogen and phosphorus fertilizers in order to increase soil moisture before wheat sowing, promote the wheat root developing deep downwards and raise the deep soil water utilization ratio.

  20. Transgenic expression of lactoferrin imparts enhanced resistance to head blight of wheat caused by Fusarium graminearum

    PubMed Central

    2012-01-01

    Background The development of plant gene transfer systems has allowed for the introgression of alien genes into plant genomes for novel disease control strategies, thus providing a mechanism for broadening the genetic resources available to plant breeders. Using the tools of plant genetic engineering, a broad-spectrum antimicrobial gene was tested for resistance against head blight caused by Fusarium graminearum Schwabe, a devastating disease of wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.) that reduces both grain yield and quality. Results A construct containing a bovine lactoferrin cDNA was used to transform wheat using an Agrobacterium-mediated DNA transfer system to express this antimicrobial protein in transgenic wheat. Transformants were analyzed by Northern and Western blots to determine lactoferrin gene expression levels and were inoculated with the head blight disease fungus F. graminearum. Transgenic wheat showed a significant reduction of disease incidence caused by F. graminearum compared to control wheat plants. The level of resistance in the highly susceptible wheat cultivar Bobwhite was significantly higher in transgenic plants compared to control Bobwhite and two untransformed commercial wheat cultivars, susceptible Wheaton and tolerant ND 2710. Quantification of the expressed lactoferrin protein by ELISA in transgenic wheat indicated a positive correlation between the lactoferrin gene expression levels and the levels of disease resistance. Conclusions Introgression of the lactoferrin gene into elite commercial wheat, barley and other susceptible cereals may enhance resistance to F. graminearum. PMID:22405032

  1. Characteristics of bread prepared from wheat flours blended with various kinds of newly developed rice flours.

    PubMed

    Nakamura, S; Suzuki, K; Ohtsubo, K

    2009-04-01

    Characteristics of the bread prepared from wheat flour blended with the flour of various kinds of newly developed rice cultivars were investigated. Qualities of the bread made from wheat flour blended with rice flour have been reported to be inferior to those from 100% wheat flour bread. To improve its qualities, we searched for the new-characteristic rice flours among the various kinds of newly developed rice cultivars to blend with the wheat flour for the bread preparation. The most suitable new characteristic rices are combination of purple waxy rice, high-amylose rice, and sugary rice. Specific volume of the bread from the combination of wheat and these 3 kinds of rice flours showed higher specific volume (3.93) compared with the traditional wheat/rice bread (3.58). We adopted the novel method, continuous progressive compression test, to measure the physical properties of the dough and the bread in addition to the sensory evaluation. As a result of the selection of the most suitable rice cultivars and blending ratio with the wheat flour, we could develop the novel wheat/rice bread, of which loaf volume, physical properties, and tastes are acceptable and resistant to firming on even 4 d after the bread preparation. To increase the ratio of rice to wheat, we tried to add a part of rice as cooked rice grains. The specific volume and qualities of the bread were maintained well although the rice content of total flour increased from 30% to 40%.

  2. Descriptive modelling to predict deoxynivalenol in winter wheat in the Netherlands.

    PubMed

    Van Der Fels-Klerx, H J; Burgers, S L G E; Booij, C J H

    2010-05-01

    Predictions of deoxynivalenol (DON) content in wheat at harvest can be useful for decision-making by stakeholders of the wheat feed and food supply chain. The objective of the current research was to develop quantitative predictive models for DON in mature winter wheat in the Netherlands for two specific groups of end-users. One model was developed for use by farmers in underpinning Fusarium spp. disease management, specifically the application of fungicides around wheat flowering (model A). The second model was developed for industry and food safety authorities, and considered the entire wheat cultivation period (model B). Model development was based on observational data collected from 425 fields throughout the Netherlands between 2001 and 2008. For each field, agronomical information, climatic data and DON levels in mature wheat were collected. Using multiple regression analyses, the set of biological relevant variables that provided the highest statistical performance was selected. The two final models include the following variables: region, wheat resistance level, spraying, flowering date, several climatic variables in the different stages of wheat growing, and length of the period between flowering and harvesting (model B only). The percentages of variance accounted for were 64.4% and 65.6% for models A and B, respectively. Model validation showed high correlation between the predicted and observed DON levels. The two models may be applied by various groups of end-users to reduce DON contamination in wheat-derived feed and food products and, ultimately, reduce animal and consumer health risks.

  3. Characterization of a Wheat Breeders' Array suitable for high-throughput SNP genotyping of global accessions of hexaploid bread wheat (Triticum aestivum).

    PubMed

    Allen, Alexandra M; Winfield, Mark O; Burridge, Amanda J; Downie, Rowena C; Benbow, Harriet R; Barker, Gary L A; Wilkinson, Paul A; Coghill, Jane; Waterfall, Christy; Davassi, Alessandro; Scopes, Geoff; Pirani, Ali; Webster, Teresa; Brew, Fiona; Bloor, Claire; Griffiths, Simon; Bentley, Alison R; Alda, Mark; Jack, Peter; Phillips, Andrew L; Edwards, Keith J

    2017-03-01

    Targeted selection and inbreeding have resulted in a lack of genetic diversity in elite hexaploid bread wheat accessions. Reduced diversity can be a limiting factor in the breeding of high yielding varieties and crucially can mean reduced resilience in the face of changing climate and resource pressures. Recent technological advances have enabled the development of molecular markers for use in the assessment and utilization of genetic diversity in hexaploid wheat. Starting with a large collection of 819 571 previously characterized wheat markers, here we describe the identification of 35 143 single nucleotide polymorphism-based markers, which are highly suited to the genotyping of elite hexaploid wheat accessions. To assess their suitability, the markers have been validated using a commercial high-density Affymetrix Axiom ® genotyping array (the Wheat Breeders' Array), in a high-throughput 384 microplate configuration, to characterize a diverse global collection of wheat accessions including landraces and elite lines derived from commercial breeding communities. We demonstrate that the Wheat Breeders' Array is also suitable for generating high-density genetic maps of previously uncharacterized populations and for characterizing novel genetic diversity produced by mutagenesis. To facilitate the use of the array by the wheat community, the markers, the associated sequence and the genotype information have been made available through the interactive web site 'CerealsDB'. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  4. Characterization of eight Russian wheat aphid (Hemiptera: Aphididae) biotypes using two-category resistant-susceptible plant responses.

    PubMed

    Puterka, G J; Nicholson, S J; Brown, M J; Cooper, W R; Peairs, F B; Randolph, T L

    2014-06-01

    Eight biotypes of the Russian wheat aphid, Diuraphis noxia (Kurdjumov), have been discovered in the United States since 2003. Biotypes are identified by the distinct feeding damage responses they produce on wheat carrying different Russian wheat aphid resistance genes, namely, from Dn1 to Dn9. Each Russian wheat aphid biotype has been named using plant damage criteria and virulence categories that have varied between studies. The study was initiated to compare the plant damage caused by all the eight known Russian wheat aphid biotypes, and analyze the results to determine how Russian wheat aphid virulence should be classified. Each Russian wheat aphid biotype was evaluated on 16 resistant or susceptible cereal genotypes. Plant damage criteria included leaf roll, leaf chlorosis, and plant height. The distribution of chlorosis ratings followed a bimodal pattern indicating two categories of plant responses, resistant or susceptible. Correlations were significant between chlorosis ratings and leaf roll (r(2) = 0.72) and between chlorosis ratings and plant height (r(2) = 0.48). The response of 16 cereal genotypes to feeding by eight Russian wheat aphid biotypes found RWA1, RWA2, RWA6, and RWA8 to differ in virulence, while Russian wheat aphid biotypes RWA3, RWA4, RWA5, and RWA7 produced similar virulence profiles. These biotypes have accordingly been consolidated to what is hereafter referred to as RWA3/7. Our results indicated that the five main biotypes RWA1, RWA2, RWA3/7, RWA6, and RWA8 can be identified using only four wheat genotypes containing Dn3, Dn4, Dn6, and Dn9.

  5. Comparison of winter wheat yield sensitivity to climate variables under irrigated and rain-fed conditions

    NASA Astrophysics Data System (ADS)

    Xiao, Dengpan; Shen, Yanjun; Zhang, He; Moiwo, Juana P.; Qi, Yongqing; Wang, Rende; Pei, Hongwei; Zhang, Yucui; Shen, Huitao

    2016-09-01

    Crop simulation models provide alternative, less time-consuming, and cost-effective means of determining the sensitivity of crop yield to climate change. In this study, two dynamic mechanistic models, CERES (Crop Environment Resource Synthesis) and APSIM (Agricultural Production Systems Simulator), were used to simulate the yield of wheat ( Triticum aestivum L.) under well irrigated (CFG) and rain-fed (YY) conditions in relation to different climate variables in the North China Plain (NCP). The study tested winter wheat yield sensitivity to different levels of temperature, radiation, precipitation, and atmospheric carbon dioxide (CO2) concentration under CFG and YY conditions at Luancheng Agro-ecosystem Experimental Stations in the NCP. The results from the CERES and APSIM wheat crop models were largely consistent and suggested that changes in climate variables influenced wheat grain yield in the NCP. There was also significant variation in the sensitivity of winter wheat yield to climate variables under different water (CFG and YY) conditions. While a temperature increase of 2°C was the threshold beyond which temperature negatively influenced wheat yield under CFG, a temperature rise exceeding 1°C decreased winter wheat grain yield under YY. A decrease in solar radiation decreased wheat grain yield under both CFG and YY conditions. Although the sensitivity of winter wheat yield to precipitation was small under the CFG, yield decreased significantly with decreasing precipitation under the rainfed YY treatment. The results also suggest that wheat yield under CFG linearly increased by ≈3.5% per 60 ppm (parts per million) increase in CO2 concentration from 380 to 560 ppm, and yield under YY increased linearly by ≈7.0% for the same increase in CO2 concentration.

  6. Low crop plant population densities promote pollen-mediated gene flow in spring wheat (Triticum aestivum L.).

    PubMed

    Willenborg, Christian J; Brûlé-Babel, Anita L; Van Acker, Rene C

    2009-12-01

    Transgenic wheat is currently being field tested with the intent of eventual commercialization. The development of wheat genotypes with novel traits has raised concerns regarding the presence of volunteer wheat populations and the role they may play in facilitating transgene movement. Here, we report the results of a field experiment that investigated the potential of spring wheat plant population density and crop height to minimize gene flow from a herbicide-resistant (HR) volunteer population to a non-HR crop. Pollen-mediated gene flow (PMGF) between the HR volunteer wheat population and four conventional spring wheat genotypes varying in height was assessed over a range of plant population densities. Natural hybridization events between the two cultivars were detected by phenotypically scoring plants in F(1) populations followed by verification with Mendelian segregation ratios in the F(1:2) families. PMGF was strongly associated with crop yield components, but showed no association with flowering synchrony. Maximum observed PMGF was always less than 0.6%, regardless of crop height and density. The frequency of PMGF in spring wheat decreased exponentially with increasing plant population density, but showed no dependence on either crop genotype or height. However, increasing plant densities beyond the recommended planting rate of 300 cropped wheat plants m(-2) provided no obvious benefit to reducing PMGF. Nevertheless, our results demonstrate a critical plant density of 175-200 cropped wheat plants m(-2) below which PMGF frequencies rise exponentially with decreasing plant density. These results will be useful in the development of mechanistic models and best management practices that collectively facilitate the coexistence of transgenic and nontransgenic wheat crops.

  7. Predictors of Persistent Wheat Allergy in Children: A Retrospective Cohort Study.

    PubMed

    Koike, Yumi; Yanagida, Noriyuki; Sato, Sakura; Asaumi, Tomoyuki; Ogura, Kiyotake; Ohtani, Kiyotaka; Imai, Takanori; Ebisawa, Motohiro

    2018-06-05

    Wheat allergy is the third most common food allergy that develops during infancy in Japan. To identify factors associated with persistent wheat allergy, we assessed the rate of tolerance acquisition among Japanese children aged less than 6 years with an immediate-type wheat allergy using the oral food challenge (OFC) method. This retrospective cohort study included 83 children (born in 2005-2006) who had a history of immediate-type allergic reaction to wheat and were followed until 6 years of age. The subjects were divided to form "tolerant" (n = 55; tolerance acquired by 6 years of age) and "allergic" (n = 28; tolerance not acquired by 6 years of age) groups based on their OFC results. The rates of tolerance acquisition to 200 g of udon noodles at 3, 5, and 6 years of age were 20.5% (17/83), 54.2% (45/83), and 66.3% (55/83), respectively. The total number of anaphylactic reactions experienced prior to 3 years of age in response to all foods (p < 0.01) and to wheat (p = 0.043) was significantly higher in the allergic than in the tolerant group. Wheat- and ω-5 gliadin-specific immunoglobulin E (IgE) levels were significantly higher in the allergic group than in the tolerant group (p < 0.01), and wheat-specific IgE levels were more likely to increase after infancy in the allergic group. A history of anaphylaxis to all foods including wheat and/or a high level of wheat- or ω-5 gliadin-specific IgE antibodies were identified as risk factors for persistent wheat allergy. © 2018 S. Karger AG, Basel.

  8. De Novo Assembly and Transcriptome Analysis of Wheat with Male Sterility Induced by the Chemical Hybridizing Agent SQ-1

    PubMed Central

    Zhang, Gaisheng; Ju, Lan; Zhang, Jiao; Yu, Yongang; Niu, Na; Wang, Junwei; Ma, Shoucai

    2015-01-01

    Wheat (Triticum aestivum L.), one of the world’s most important food crops, is a strictly autogamous (self-pollinating) species with exclusively perfect flowers. Male sterility induced by chemical hybridizing agents has increasingly attracted attention as a tool for hybrid seed production in wheat; however, the molecular mechanisms of male sterility induced by the agent SQ-1 remain poorly understood due to limited whole transcriptome data. Therefore, a comparative analysis of wheat anther transcriptomes for male fertile wheat and SQ-1–induced male sterile wheat was carried out using next-generation sequencing technology. In all, 42,634,123 sequence reads were generated and were assembled into 82,356 high-quality unigenes with an average length of 724 bp. Of these, 1,088 unigenes were significantly differentially expressed in the fertile and sterile wheat anthers, including 643 up-regulated unigenes and 445 down-regulated unigenes. The differentially expressed unigenes with functional annotations were mapped onto 60 pathways using the Kyoto Encyclopedia of Genes and Genomes database. They were mainly involved in coding for the components of ribosomes, photosynthesis, respiration, purine and pyrimidine metabolism, amino acid metabolism, glutathione metabolism, RNA transport and signal transduction, reactive oxygen species metabolism, mRNA surveillance pathways, protein processing in the endoplasmic reticulum, protein export, and ubiquitin-mediated proteolysis. This study is the first to provide a systematic overview comparing wheat anther transcriptomes of male fertile wheat with those of SQ-1–induced male sterile wheat and is a valuable source of data for future research in SQ-1–induced wheat male sterility. PMID:25898130

  9. Homoeologous recombination-based transfer and molecular cytogenetic mapping of a wheat streak mosaic virus and Triticum mosaic virus resistance gene Wsm3 from Thinopyrum intermedium to wheat.

    PubMed

    Danilova, Tatiana V; Zhang, Guorong; Liu, Wenxuan; Friebe, Bernd; Gill, Bikram S

    2017-03-01

    Here, we report the production of a wheat- Thinopyrum intermedium recombinant stock conferring resistance to wheat streak mosaic virus and Triticum mosaic virus. Wheat streak mosaic caused by the wheat streak mosaic virus (WSMV) is an important disease of bread wheat (Triticum aestivum) worldwide. To date, only three genes conferring resistance to WSMV have been named and two, Wsm1 and Wsm3, were derived from the distantly related wild relative Thinopyrum intermedium. Wsm3 is only available in the form of a compensating wheat-Th. intermedium whole-arm Robertsonian translocation T7BS·7S#3L. Whole-arm alien transfers usually suffer from linkage drag, which prevents their use in cultivar improvement. Here, we report ph1b-induced homoeologous recombination to shorten the Th. intermedium segment and recover a recombinant chromosome consisting of the short arm of wheat chromosome 7B, part of the long arm of 7B, and the distal 43% of the long arm derived from the Th. intermedium chromosome arm 7S#3L. The recombinant chromosome T7BS·7BL-7S#3L confers resistance to WSMV at 18 and 24 °C and also confers resistance to Triticum mosaic virus, but only at 18 °C. Wsm3 is the only gene conferring resistance to WSMV at a high temperature level of 24 °C. We also developed a user-friendly molecular marker that will allow to monitor the transfer of Wsm3 in breeding programs. Wsm3 is presently being transferred to adapted hard red winter wheat cultivars and can be used directly in wheat improvement.

  10. The wheat AGC kinase TaAGC1 is a positive contributor to host resistance to the necrotrophic pathogen Rhizoctonia cerealis

    PubMed Central

    Zhu, Xiuliang; Yang, Kun; Wei, Xuening; Zhang, Qiaofeng; Rong, Wei; Du, Lipu; Ye, Xingguo; Qi, Lin; Zhang, Zengyan

    2015-01-01

    Considerable progress has been made in understanding the roles of AGC kinases in mammalian systems. However, very little is known about the roles of AGC kinases in wheat (Triticum aestivum). The necrotrophic fungus Rhizoctonia cerealis is the major pathogen of the destructive disease sharp eyespot of wheat. In this study, the wheat AGC kinase gene TaAGC1, responding to R. cerealis infection, was isolated, and its properties and role in wheat defence were characterized. R. cerealis-resistant wheat lines expressed TaAGC1 at higher levels than susceptible wheat lines. Sequence and phylogenetic analyses showed that the TaAGC1 protein is a serine/threonine kinase belonging to the NDR (nuclear Dbf2-related) subgroup of AGC kinases. Kinase activity assays proved that TaAGC1 is a functional kinase and the Asp-239 residue located in the conserved serine/threonine kinase domain of TaAGC1 is required for the kinase activity. Subcellular localization assays indicated that TaAGC1 localized in the cytoplasm and nucleus. Virus-induced TaAGC1 silencing revealed that the down-regulation of TaAGC1 transcripts significantly impaired wheat resistance to R. cerealis. The molecular characterization and responses of TaAGC1 overexpressing transgenic wheat plants indicated that TaAGC1 overexpression significantly enhanced resistance to sharp eyespot and reduced the accumulation of reactive oxygen species (ROS) in wheat plants challenged with R. cerealis. Furthermore, ROS-scavenging and certain defence-associated genes were up-regulated in resistant plants overexpressing TaAGC1 but down-regulated in susceptible knock-down plants. These results suggested that the kinase TaAGC1 positively contributes to wheat immunity to R. cerealis through regulating expression of ROS-related and defence-associated genes. PMID:26220083

  11. Integrating remote sensing and GIS for prediction of winter wheat (Triticum aestivum) protein contents in Linfen (Shanxi), China.

    PubMed

    Feng, Mei-chen; Xiao, Lu-jie; Zhang, Mei-jun; Yang, Wu-de; Ding, Guang-wei

    2014-01-01

    In this study, relationships between normalized difference vegetation index (NDVI) and plant (winter wheat) nitrogen content (PNC) and between PNC and grain protein content (GPC) were investigated using multi-temporal moderate-resolution imaging spectroradiometer (MODIS) data at the different stages of winter wheat in Linfen (Shanxi, P. R. China). The anticipating model for GPC of winter wheat was also established by the approach of NDVI at the different stages of winter wheat. The results showed that the spectrum models of PNC passed F test. The NDVI4.14 regression effect of PNC model of irrigated winter wheat was the best, and that in dry land was NDVI4.30. The PNC of irrigated and dry land winter wheat were significantly (P<0.01) and positively correlated to GPC. Both of protein spectral anticipating model of irrigated and dry land winter wheat passed a significance test (P<0.01). Multiple anticipating models (MAM) were established by NDVI from two periods of irrigated and dry land winter wheat and PNC to link GPC anticipating model. The coefficient of determination R(2) (R) of MAM was greater than that of the other two single-factor models. The relative root mean square error (RRMSE) and relative error (RE) of MAM were lower than those of the other two single-factor models. Therefore, test effects of multiple proteins anticipating model were better than those of single-factor models. The application of multiple anticipating models for predication of protein content (PC) of irrigated and dry land winter wheat was more accurate and reliable. The regionalization analysis of GPC was performed using inverse distance weighted function of GIS, which is likely to provide the scientific basis for the reasonable winter wheat planting in Linfen city, China.

  12. Integrating Remote Sensing and GIS for Prediction of Winter Wheat (Triticum aestivum) Protein Contents in Linfen (Shanxi), China

    PubMed Central

    Feng, Mei-chen; Xiao, Lu-jie; Zhang, Mei-jun; Yang, Wu-de; Ding, Guang-wei

    2014-01-01

    In this study, relationships between normalized difference vegetation index (NDVI) and plant (winter wheat) nitrogen content (PNC) and between PNC and grain protein content (GPC) were investigated using multi-temporal moderate-resolution imaging spectroradiometer (MODIS) data at the different stages of winter wheat in Linfen (Shanxi, P. R. China). The anticipating model for GPC of winter wheat was also established by the approach of NDVI at the different stages of winter wheat. The results showed that the spectrum models of PNC passed F test. The NDVI4.14 regression effect of PNC model of irrigated winter wheat was the best, and that in dry land was NDVI4.30. The PNC of irrigated and dry land winter wheat were significantly (P<0.01) and positively correlated to GPC. Both of protein spectral anticipating model of irrigated and dry land winter wheat passed a significance test (P<0.01). Multiple anticipating models (MAM) were established by NDVI from two periods of irrigated and dry land winter wheat and PNC to link GPC anticipating model. The coefficient of determination R2 (R) of MAM was greater than that of the other two single-factor models. The relative root mean square error (RRMSE) and relative error (RE) of MAM were lower than those of the other two single-factor models. Therefore, test effects of multiple proteins anticipating model were better than those of single-factor models. The application of multiple anticipating models for predication of protein content (PC) of irrigated and dry land winter wheat was more accurate and reliable. The regionalization analysis of GPC was performed using inverse distance weighted function of GIS, which is likely to provide the scientific basis for the reasonable winter wheat planting in Linfen city, China. PMID:24404124

  13. Genetic evidence for differential selection of grain and embryo weight during wheat evolution under domestication.

    PubMed

    Golan, Guy; Oksenberg, Adi; Peleg, Zvi

    2015-09-01

    Wheat is one of the Neolithic founder crops domesticated ~10 500 years ago. Following the domestication episode, its evolution under domestication has resulted in various genetic modifications. Grain weight, embryo weight, and the interaction between those factors were examined among domesticated durum wheat and its direct progenitor, wild emmer wheat. Experimental data show that grain weight has increased over the course of wheat evolution without any parallel change in embryo weight, resulting in a significantly reduced (30%) embryo weight/grain weight ratio in domesticated wheat. The genetic factors associated with these modifications were further investigated using a population of recombinant inbred substitution lines that segregated for chromosome 2A. A cluster of loci affecting grain weight and shape was identified on the long arm of chromosome 2AL. Interestingly, a novel locus controlling embryo weight was mapped on chromosome 2AS, on which the wild emmer allele promotes heavier embryos and greater seedling vigour. To the best of our knowledge, this is the first report of a QTL for embryo weight in wheat. The results suggest a differential selection of grain and embryo weight during the evolution of domesticated wheat. It is argued that conscious selection by early farmers favouring larger grains and smaller embryos appears to have resulted in a significant change in endosperm weight/embryo weight ratio in the domesticated wheat. Exposing the genetic factors associated with endosperm and embryo size improves our understanding of the evolutionary dynamics of wheat under domestication and is likely to be useful for future wheat-breeding efforts. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  14. A Multiple Decrement Life Table Reveals That Host Plant Resistance and Parasitism Are Major Causes of Mortality for the Wheat Stem Sawfly.

    PubMed

    Buteler, Micaela; Peterson, Robert K D; Hofland, Megan L; Weaver, David K

    2015-12-01

    This study investigated the dynamics of parasitism, host plant resistance, pathogens, and predation on the demography of wheat stem sawfly, Cephus cinctus Norton (Hymenoptera: Cephidae), developing in susceptible (hollow stem) and resistant (solid stem) wheat hosts. This study is also the first to investigate the prevalence and impact of cannibalism on wheat stem sawfly mortality. Wheat stem sawflies were sampled in two commercial wheat fields over 4 yr from the egg stage through adult emergence, and multiple decrement life tables were constructed and analyzed. Cannibalism, host plant resistance, or unknown factors were the most prevalent factors causing egg mortality. Summer mortality of prediapause larvae ranged from 28 to 84%, mainly due to parasitism by Bracon cephi (Gahan) and Bracon lissogaster Muesebeck, cannibalism, and host plant resistance. Winter mortality ranged from 6 to 54% of the overwintering larvae, mainly due to unknown factors or pathogens. Cannibalism is a major cause of irreplaceable mortality because it is absolute, with only a single survivor in every multiple infested stem. Subsequent to obligate cannibalism, mortality of feeding larvae due to host plant resistance was lower in hollow stem wheat than in solid stem wheat. Mortality from host plant resistance was largely irreplaceable. Irreplaceable mortality due to parasitoids was greater in hollow stem wheat than in solid stem wheat. Host plant resistance due to stem solidness and parasitism in hollow stems cause substantial mortality in populations of actively feeding larvae responsible for all crop losses. Therefore, enhancing these mortality factors is vital to effective integrated pest management of wheat stem sawfly. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. Using Synchrotron Radiation-Based Infrared Microspectroscopy to Reveal Microchemical Structure Characterization: Frost Damaged Wheat vs. Normal Wheat

    PubMed Central

    Xin, Hangshu; Zhang, Xuewei; Yu, Peiqiang

    2013-01-01

    This study was conducted to compare: (1) protein chemical characteristics, including the amide I and II region, as well as protein secondary structure; and (2) carbohydrate internal structure and functional groups spectral intensities between the frost damaged wheat and normal wheat using synchrotron radiation-based Fourier transform infrared microspectroscopy (SR-FTIRM). Fingerprint regions of specific interest in our study involved protein and carbohydrate functional group band assignments, including protein amide I and II (ca. 1774–1475 cm−1), structural carbohydrates (SCHO, ca. 1498–1176 cm−1), cellulosic compounds (CELC, ca. 1295–1176 cm−1), total carbohydrates (CHO, ca. 1191–906 cm−1) and non-structural carbohydrates (NSCHO, ca. 954–809 cm−1). The results showed that frost did cause variations in spectral profiles in wheat grains. Compared with healthy wheat grains, frost damaged wheat had significantly lower (p < 0.05) spectral intensities in height and area ratios of amide I to II and almost all the spectral parameters of carbohydrate-related functional groups, including SCHO, CHO and NSCHO. Furthermore, the height ratio of protein amide I to the third peak of CHO and the area ratios of protein amide (amide I + II) to carbohydrate compounds (CHO and SCHO) were also changed (p < 0.05) in damaged wheat grains. It was concluded that the SR-FTIR microspectroscopic technique was able to examine inherent molecular structure features at an ultra-spatial resolution (10 × 10 μm) between different wheat grains samples. The structural characterization of wheat was influenced by climate conditions, such as frost damage, and these structural variations might be a major reason for the decreases in nutritive values, nutrients availability and milling and baking quality in wheat grains. PMID:23949633

  16. Changes in Metallothionein Level in Rat Hepatic Tissue after Administration of Natural Mouldy Wheat

    PubMed Central

    Vasatkova, Anna; Krizova, Sarka; Adam, Vojtech; Zeman, Ladislav; Kizek, Rene

    2009-01-01

    Mycotoxins are secondary metabolites produced by microfungi that are capable of causing disease and death in humans and other animals. This work was aimed at investigation of influence of mouldy wheat contaminated by pathogenic fungi producing mycotoxins on metallothionein levels in hepatic tissue of rats. The rats were administrating feed mixtures with different contents of vitamins or naturally mouldy wheat for 28 days. It was found that the wheat contained deoxynivalenol (80 ± 5 μg per kg of mouldy wheat), zearalenone (56 ± 3 μg/kg), T2-toxin (20 ± 2 μg/kg) and aflatoxins as a sum of B1, B2, G1 and G2 (3.9 ± 0.2 μg/kg). Rats were fed diets containing 0, 33, 66 and 100% naturally moulded wheat. Control group 0, 33, 66 and 100% contained vitamins according to Nutrient Requirements of Rats (NRC). Other four groups (control group with vitamins, vit33, vit66 and vit100%) were fed on the same levels of mouldy wheat, also vitamins at levels 100% higher than the previous mixtures. We determined weight, feed conversion and performed dissection to observe pathological processes. Changes between control group and experimental groups exposed to influence of mouldy wheat and experimental groups supplemented by higher concentration of vitamins and mouldy wheat were not observed. Livers were sampled and did not demonstrate significant changes in morphology compared to control either. In the following experiments the levels of metallothionein as a marker of oxidative stress was determined. We observed a quite surprising trend in metallothionein levels in animals supplemented with increased concentration of vitamins. Its level enhanced with increasing content of mouldy wheat. It was possible to determine a statistically significant decline (p<0.05) between control group and groups of animals fed with 33, 66 and 100% mouldy wheat. It is likely that some mycotoxins presented in mouldy wheat are able to block the mechanism of metallothionein synthesis. PMID:19399242

  17. The Wheat Mediator Subunit TaMED25 Interacts with the Transcription Factor TaEIL1 to Negatively Regulate Disease Resistance against Powdery Mildew.

    PubMed

    Liu, Jie; Zhang, Tianren; Jia, Jizeng; Sun, Jiaqiang

    2016-03-01

    Powdery mildew, caused by the biotrophic fungal pathogen Blumeria graminis f. sp. tritici, is a major limitation for the production of bread wheat (Triticum aestivum). However, to date, the transcriptional regulation of bread wheat defense against powdery mildew remains largely unknown. Here, we report the function and molecular mechanism of the bread wheat Mediator subunit 25 (TaMED25) in regulating the bread wheat immune response signaling pathway. Three homoalleles of TaMED25 from bread wheat were identified and mapped to chromosomes 5A, 5B, and 5D, respectively. We show that knockdown of TaMED25 by barley stripe mosaic virus-induced gene silencing reduced bread wheat susceptibility to the powdery mildew fungus during the compatible plant-pathogen interaction. Moreover, our results indicate that MED25 may play a conserved role in regulating bread wheat and barley (Hordeum vulgare) susceptibility to powdery mildew. Similarly, bread wheat ETHYLENE INSENSITIVE3-LIKE1 (TaEIL1), an ortholog of Arabidopsis (Arabidopsis thaliana) ETHYLENE INSENSITIVE3, negatively regulates bread wheat resistance against powdery mildew. Using various approaches, we demonstrate that the conserved activator-interacting domain of TaMED25 interacts physically with the separate amino- and carboxyl-terminal regions of TaEIL1, contributing to the transcriptional activation activity of TaEIL1. Furthermore, we show that TaMED25 and TaEIL1 synergistically activate ETHYLENE RESPONSE FACTOR1 (TaERF1) transcription to modulate bread wheat basal disease resistance to B. graminis f. sp. tritici by repressing the expression of pathogenesis-related genes and deterring the accumulation of reactive oxygen species. Collectively, we identify the TaMED25-TaEIL1-TaERF1 signaling module as a negative regulator of bread wheat resistance to powdery mildew. © 2016 American Society of Plant Biologists. All Rights Reserved.

  18. Rapid determination and chemical change tracking of benzoyl peroxide in wheat flour by multi-step IR macro-fingerprinting.

    PubMed

    Guo, Xiao-Xi; Hu, Wei; Liu, Yuan; Sun, Su-Qin; Gu, Dong-Chen; He, Helen; Xu, Chang-Hua; Wang, Xi-Chang

    2016-02-05

    BPO is often added to wheat flour as flour improver, but its excessive use and edibility are receiving increasing concern. A multi-step IR macro-fingerprinting was employed to identify BPO in wheat flour and unveil its changes during storage. BPO contained in wheat flour (<3.0 mg/kg) was difficult to be identified by infrared spectra with correlation coefficients between wheat flour and wheat flour samples contained BPO all close to 0.98. By applying second derivative spectroscopy, obvious differences among wheat flour and wheat flour contained BPO before and after storage in the range of 1500-1400 cm(-1) were disclosed. The peak of 1450 cm(-1) which belonged to BPO was blue shifted to 1453 cm(-1) (1455) which belonged to benzoic acid after one week of storage, indicating that BPO changed into benzoic acid after storage. Moreover, when using two-dimensional correlation infrared spectroscopy (2DCOS-IR) to track changes of BPO in wheat flour (0.05 mg/g) within one week, intensities of auto-peaks at 1781 cm(-1) and 669 cm(-1) which belonged to BPO and benzoic acid, respectively, were changing inversely, indicating that BPO was decomposed into benzoic acid. Moreover, another autopeak at 1767 cm(-1) which does not belong to benzoic acid was also rising simultaneously. By heating perturbation treatment of BPO in wheat flour based on 2DCOS-IR and spectral subtraction analysis, it was found that BPO in wheat flour not only decomposed into benzoic acid and benzoate, but also produced other deleterious substances, e.g., benzene. This study offers a promising method with minimum pretreatment and time-saving to identify BPO in wheat flour and its chemical products during storage in a holistic manner. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Production and identification of wheat - Agropyron cristatum (1.4P) alien translocation lines.

    PubMed

    Liu, Wei-Hua; Luan, Yang; Wang, Jing-Chang; Wang, Xiao-Guang; Su, Jun-Ji; Zhang, Jin-Peng; Yang, Xin-Ming; Gao, Ai-Nong; Li, Li-Hui

    2010-06-01

    The P genome of Agropyron Gaertn., a wild relative of wheat, contains an abundance of desirable genes that can be utilized as genetic resources to improve wheat. In this study, wheat - Aegilops cylindrica Host gametocidal chromosome 2C addition lines were crossed with wheat - Agropyron cristatum (L.) Gaertn. disomic addition line accession II-21 with alien recombinant chromosome (1.4)P. We successfully induced wheat - A. cristatum alien chromosomal translocations for the first time. The frequency of translocation in the progeny was 3.75%, which was detected by molecular markers and genomic in situ hybridization (GISH). The translocation chromosomes were identified by dual-color GISH /fluorescence in situ hybridization (FISH). The P genomic DNA was used as probe to detect the (1.4)P chromosome fragment, and pHvG39, pAs1, or pSc119.2 repeated sequences were used as probes to identify wheat translocated chromosomes. The results showed that six types of translocations were identified in the three wheat - A. cristatum alien translocation lines, including the whole arm or terminal portion of a (1.4)P chromosome. The (1.4)P chromosome fragments were translocated to wheat chromosomes 1B, 2B, 5B, and 3D. The breakpoints were located at the centromeres of 1B and 2B, the pericentric locations of 5BS, and the terminals of 5BL and 3DS. In addition, we obtained 12 addition-deletion lines that contained alien A. cristatum chromosome (1.4)P in wheat background. All of these wheat - A. cristatum alien translocation lines and addition-deletion lines would be valuable for identifying A. cristatum chromosome (1.4)P-related genes and providing genetic resources and new germplasm accessions for the genetic improvement of wheat. The specific molecular markers of A. cristatum (1.4)P chromosome have been developed and used to track the (1.4)P chromatin.

  20. Influence of solar activity on the state of the wheat market in medieval England

    NASA Astrophysics Data System (ADS)

    Pustil'Nik, Lev A.; Din, Gregory Yom

    2004-09-01

    The database of professor Rogers (1887), which includes wheat prices in England in the Middle Ages, was used to search for a possible influence of solar activity on the wheat market. Our approach was based on the following: (1) Existence of the correlation between cosmic ray flux entering the terrestrial atmosphere and cloudiness of the atmosphere. (2) Cosmic ray intensity in the solar system changes with solar activity, (3) Wheat production depends on weather conditions as a nonlinear function with threshold transitions. (4) A wheat market with a limited supply (as it was in medieval England) has a highly nonlinear sensitivity to variations in wheat production with boundary states, where small changes in wheat supply could lead to bursts of prices or to prices falling. We present a conceptual model of possible modes for sensitivity of wheat prices to weather conditions, caused by solar cycle variations, and compare expected price fluctuations with price variations recorded in medieval England. We compared statistical properties of the intervals between wheat price bursts during the years 1249-1703 with statistical properties of the intervals between the minima of solar cycles during the years 1700-2000. We show that statistical properties of these two samples are similar, both for characteristics of the distributions and for histograms of the distributions. We analyze a direct link between wheat prices and solar activity in the 17th century, for which wheat prices and solar activity data (derived from 10Be isotope) are available. We show that for all 10 time moments of the solar activity minima the observed prices were higher than prices for the corresponding time moments of maximal solar activity (100% sign correlation, on a significance level < 0.2%). We consider these results a direct evidence of the causal connection between wheat prices bursts and solar activity.

  1. The Wheat Mediator Subunit TaMED25 Interacts with the Transcription Factor TaEIL1 to Negatively Regulate Disease Resistance against Powdery Mildew1

    PubMed Central

    Zhang, Tianren; Jia, Jizeng; Sun, Jiaqiang

    2016-01-01

    Powdery mildew, caused by the biotrophic fungal pathogen Blumeria graminis f. sp. tritici, is a major limitation for the production of bread wheat (Triticum aestivum). However, to date, the transcriptional regulation of bread wheat defense against powdery mildew remains largely unknown. Here, we report the function and molecular mechanism of the bread wheat Mediator subunit 25 (TaMED25) in regulating the bread wheat immune response signaling pathway. Three homoalleles of TaMED25 from bread wheat were identified and mapped to chromosomes 5A, 5B, and 5D, respectively. We show that knockdown of TaMED25 by barley stripe mosaic virus-induced gene silencing reduced bread wheat susceptibility to the powdery mildew fungus during the compatible plant-pathogen interaction. Moreover, our results indicate that MED25 may play a conserved role in regulating bread wheat and barley (Hordeum vulgare) susceptibility to powdery mildew. Similarly, bread wheat ETHYLENE INSENSITIVE3-LIKE1 (TaEIL1), an ortholog of Arabidopsis (Arabidopsis thaliana) ETHYLENE INSENSITIVE3, negatively regulates bread wheat resistance against powdery mildew. Using various approaches, we demonstrate that the conserved activator-interacting domain of TaMED25 interacts physically with the separate amino- and carboxyl-terminal regions of TaEIL1, contributing to the transcriptional activation activity of TaEIL1. Furthermore, we show that TaMED25 and TaEIL1 synergistically activate ETHYLENE RESPONSE FACTOR1 (TaERF1) transcription to modulate bread wheat basal disease resistance to B. graminis f. sp. tritici by repressing the expression of pathogenesis-related genes and deterring the accumulation of reactive oxygen species. Collectively, we identify the TaMED25-TaEIL1-TaERF1 signaling module as a negative regulator of bread wheat resistance to powdery mildew. PMID:26813794

  2. Molecular and agro-morphological characterization of ancient wheat landraces of turkey.

    PubMed

    Gurcan, Kahraman; Demirel, Fatih; Tekin, Mehmet; Demirel, Serap; Akar, Taner

    2017-11-14

    Turkey is one of the important gene centers for many crop species. In this research, some ancient wheats such as tetraploid and diploid hulled wheats together with hexaploid tir wheats (Triticum aestivum ssp. leucospermum Korn.) landraces mainly adapted to harsh winter conditions of Eastern Anatolian region of Turkey were characterized at agro-morphological and molecular level. Totally 50 hulled wheat population from Kastamonu, Konya and Kayseri provinces and 15 tir wheats from Kars provinces of Turkey were in-situ collected for characterization in 2013. Some quantitative and qualitative traits of each population were determined. Twenty three hulled wheat population collected from Kastamonu province were distinguished into nine emmer and 14 einkorn wheats at morphological level. Additionally, Konya, Kayseri and Kars population were characterized as einkorn, emmer and tir wheat, respectively. Among the evaluated traits, protein ratios of hulled wheats were strikingly higher than registered cultivars. All the populations were also examined by molecular level by using fluorescently labelled 11 polymorphic SSRs primers. The primers exhibited 104 bands, ranging from 6 to 16 with a mean value 9.45 per loci. The clustering analysis separated the germplasm into two clusters which were also divided into two subclusters based on genetic similarity coefficient. Sixty-five population and five checks were analyzed to estimate mean number of alleles (N), expected and observed heterozygoties (He and Ho), polymorphism information content (PIC), Wright fix index (F), genetic deviation from Hardy-Weinberg expectation (Fit-Fis) and genetic variation (Fst) were determined as 9.45, 0.71, 0.07, 0.67, 0.90, 0.39, 0.87 and 0.39, respectively. A clear genetic deviation from Hardy - Weinberg expectation was observed among population in particular. These results showed considerable genetic variation among landraces rather than within population. These molecular information has revealed genetically diverse einkorn, emmer wheat and tir wheat population could be used as parents for further breeding studies in both Turkey and abroad. Furthermore, the molecular analysis has also generally discriminated the germplasm into ploidy level.

  3. Catering Gluten-Free When Simultaneously Using Wheat Flour.

    PubMed

    Miller, Kathryn; McGough, Norma; Urwin, Heidi

    2016-02-01

    A European law on gluten-free (GF) labeling came into force in 2012, covering foods sold prepacked and in food service establishments, and a similar U.S. Food and Drug Administration (FDA) regulation covers GF labeling from August 2014. Gluten is found in the grains wheat, rye, and barley. A common source of gluten in the kitchen is wheat flour. This research aimed to determine variables that have a significant effect on gluten contamination in commercial kitchens when wheat flour is in use and to establish controls necessary to assure GF production. A pilot study was used to test the following hypotheses: (i) increasing duration of exposure to wheat flour would increase gluten contamination, (ii) increasing distance between the site of preparation and the site of wheat flour would reduce gluten contamination, (iii) the use of a ventilation hood would decrease gluten contamination, and (iv) the use of a barrier segregating the site of preparation of a GF meal and the use of wheat flour would decrease gluten contamination. Petri dishes containing GF rice pudding were placed in three directions at increasing distances (0.5 to 2 m) from a site of wheat flour use. A barrier was in place between a third of samples and the site of wheat flour. After wheat flour was handled for 0.5 and 4.0 h, petri dishes were sealed and the contents were analyzed for gluten. The experiment was duplicated with the ventilation hood on and off. The pilot study revealed that a distance of 2 m from the use of wheat flour was required to control gluten contamination at ≤20 ppm if wheat flour had been in use for 4.0 h. The identified control of distance was tested in five different study sites. In each of the study sites, a test meal was prepared a minimum of 2 m away from the site of wheat flour use. Although kitchens vary and must be considered individually, the established control of a minimum 2 m distance, along with good hygiene practices, was found to be effective in preparing GF meals at all five study sites.

  4. Influence of method of whole wheat inclusion and xylanase supplementation on the performance, apparent metabolisable energy, digestive tract measurements and gut morphology of broilers.

    PubMed

    Wu, Y B; Ravindran, V; Thomas, D G; Birtles, M J; Hendriks, W H

    2004-06-01

    1. The aim of the present study was to examine the influence of whole wheat inclusion and xylanase supplementation on the performance, apparent metabolisable energy (AME), digesta viscosity, and digestive tract measurements of broilers fed on wheat-based diets. The influence of the method of whole wheat inclusion (pre- or post-pelleting) was also compared. A 3 x 2 factorial arrangement of treatments was used with three diet forms (648 g/kg ground wheat [GW], GW replaced by 200 g/kg of whole wheat before [WW1] or after cold-pelleting [WW2]) and two xylanase levels (0 and 1000 XU/kg diet). 2. Birds given diets containing whole wheat had improved weight gains, feed efficiency and AME compared to those fed on diets containing ground wheat. The relative gizzard weight of birds fed WW2 diets was higher than in those fed GW and WW1 diets. Pre-pelleting inclusion of whole wheat had no effect on relative gizzard weight. Post-pelleting inclusion of whole wheat resulted in greater improvements in feed efficiency and AME than the pre-pelleting treatment. 3. Xylanase supplementation significantly improved weight gain, feed efficiency and AME, irrespective of the wheat form used. Viscosity of the digesta in the duodenum, jejunum and ileum were reduced by xylanase addition. Xylanase supplementation reduced the relative weight of the pancreas. 4. Neither xylanase supplementation nor whole wheat inclusion influenced the relative weight and length of the small intestine. 5. Xylanase supplementation increased ileal villus height. A significant interaction between diet form and xylanase was observed for ileal crypt depth. Xylanase supplementation had no effect on crypt depth in birds fed on diets containing GW, but increased the crypt depth in WW2 diets. No significant effects of diet form and xylanase supplementation were observed for the thickness of the tunica muscularis layer of gizzard or villus height, crypt depth, goblet cell numbers or epithelial thickness in the ileum. 6. Improved performance observed with post-pelleting inclusion of whole wheat was associated with increased size of the gizzard and improved AME. The gizzard development hypothesis, however, will not explain the improvements observed with pre-pelleting inclusion of whole wheat, suggesting the involvement of other factors.

  5. Comparative analysis of protein-protein interactions in the defense response of rice and wheat.

    PubMed

    Cantu, Dario; Yang, Baoju; Ruan, Randy; Li, Kun; Menzo, Virginia; Fu, Daolin; Chern, Mawsheng; Ronald, Pamela C; Dubcovsky, Jorge

    2013-03-12

    Despite the importance of wheat as a major staple crop and the negative impact of diseases on its production worldwide, the genetic mechanisms and gene interactions involved in the resistance response in wheat are still poorly understood. The complete sequence of the rice genome has provided an extremely useful parallel road map for genetic and genomics studies in wheat. The recent construction of a defense response interactome in rice has the potential to further enhance the translation of advances in rice to wheat and other grasses. The objective of this study was to determine the degree of conservation in the protein-protein interactions in the rice and wheat defense response interactomes. As entry points we selected proteins that serve as key regulators of the rice defense response: the RAR1/SGT1/HSP90 protein complex, NPR1, XA21, and XB12 (XA21 interacting protein 12). Using available wheat sequence databases and phylogenetic analyses we identified and cloned the wheat orthologs of these four rice proteins, including recently duplicated paralogs, and their known direct interactors and tested 86 binary protein interactions using yeast-two-hybrid (Y2H) assays. All interactions between wheat proteins were further tested using in planta bimolecular fluorescence complementation (BiFC). Eighty three percent of the known rice interactions were confirmed when wheat proteins were tested with rice interactors and 76% were confirmed using wheat protein pairs. All interactions in the RAR1/SGT1/ HSP90, NPR1 and XB12 nodes were confirmed for the identified orthologous wheat proteins, whereas only forty four percent of the interactions were confirmed in the interactome node centered on XA21. We hypothesize that this reduction may be associated with a different sub-functionalization history of the multiple duplications that occurred in this gene family after the divergence of the wheat and rice lineages. The observed high conservation of interactions between proteins that serve as key regulators of the rice defense response suggests that the existing rice interactome can be used to predict interactions in wheat. Such predictions are less reliable for nodes that have undergone a different history of duplications and sub-functionalization in the two lineages.

  6. Cultivation-Based and Molecular Assessment of Bacterial Diversity in the Rhizosheath of Wheat under Different Crop Rotations

    PubMed Central

    Tahir, Muhammad; Mirza, M. Sajjad; Hameed, Sohail; Dimitrov, Mauricio R.; Smidt, Hauke

    2015-01-01

    A field study was conducted to compare the formationand bacterial communities of rhizosheaths of wheat grown under wheat-cotton and wheat-rice rotation and to study the effects of bacterial inoculation on plant growth. Inoculation of Azospirillum sp. WS-1 and Bacillus sp. T-34 to wheat plants increased root length, root and shoot dry weight and dry weight of rhizosheathsoil when compared to non-inoculated control plants, and under both crop rotations. Comparing both crop rotations, root length, root and shoot dry weight and dry weight of soil attached with roots were higher under wheat-cotton rotation. Organic acids (citric acid, malic acid, acetic acid and oxalic acid) were detected in rhizosheaths from both rotations, with malic acid being most abundant with 24.8±2 and 21.3±1.5 μg g-1 dry soil in wheat-cotton and wheat-rice rotation, respectively. Two sugars (sucrose, glucose) were detected in wheat rhizosheath under both rotations, with highest concentrations of sucrose (4.08±0.5 μg g-1and 7.36±1.0 μg g-1) and glucose (3.12±0.5 μg g-1 and 3.01± μg g-1) being detected in rhizosheaths of non-inoculated control plants under both rotations. Diversity of rhizosheath-associated bacteria was evaluated by cultivation, as well as by 454-pyrosequencing of PCR-tagged 16S rRNA gene amplicons. A total of 14 and 12 bacterial isolates predominantly belonging to the genera Arthrobacter, Azospirillum, Bacillus, Enterobacter and Pseudomonaswere obtained from the rhizosheath of wheat grown under wheat-cotton and wheat-rice rotation, respectively. Analysis of pyrosequencing data revealed Proteobacteria, Bacteriodetes and Verrucomicrobia as the most abundant phyla in wheat-rice rotation, whereas Actinobacteria, Firmicutes, Chloroflexi, Acidobacteria, Planctomycetes and Cyanobacteria were predominant in wheat-cotton rotation. From a total of 46,971 sequences, 10.9% showed ≥97% similarity with 16S rRNA genes of 32 genera previously shown to include isolates with plant growth promoting activity (nitrogen fixation, phosphate-solubilization, IAA production). Among these, the most predominant genera were Arthrobacter, Azoarcus, Azospirillum, Bacillus, Cyanobacterium, Paenibacillus, Pseudomonas and Rhizobium. PMID:26121588

  7. Association of Satellites with a Mastrevirus in Natural Infection: Complexity of Wheat Dwarf India Virus Disease

    PubMed Central

    Kumar, Jitendra; Kumar, Jitesh; Singh, Sudhir P.

    2014-01-01

    ABSTRACT In contrast to begomoviruses, mastreviruses have not previously been shown to interact with satellites. This study reports the first identification of the association of satellites with a mastrevirus in field-grown plants. Two alphasatellite species were detected in different field samples of wheat infected with Wheat Dwarf India Virus (WDIV), a Cotton leaf curl Multan alphasatellite (CLCuMA) and a Guar leaf curl alphasatellite (GLCuA). In addition to the alphasatellites, a betasatellite, Ageratum yellow leaf curl betasatellite (AYLCB), was also identified in the wheat samples. No begomovirus was detected in the wheat samples, thus establishing association of the above-named satellites with WDIV. Agrobacterium-mediated inoculation of WDIV in wheat, in the presence of either of the alphasatellites or the betasatellite, resulted in infections inducing more severe symptoms. WDIV efficiently maintained each of the alphasatellites and the betasatellite in wheat. The satellites enhanced the level of WDIV DNA in wheat. Inoculation of the satellites isolated from wheat with various begomoviruses into Nicotiana tabacum demonstrated that these remain capable of interacting with the viruses with which they were first identified. Virus-specific small RNAs accumulated in wheat upon infection with WDIV but were lower in abundance in plants coinfected with the satellites, suggesting that both the alphasatellites and the betasatellite suppress RNA silencing. These results suggest that the selective advantage for the maintenance of the alphasatellites and the betasatellite by WDIV in the field is in overcoming RNA silencing-mediated host defense. IMPORTANCE Wheat is the most widely cultivated cereal crop in the world. A number of viruses are important pathogens of wheat, including the viruses of the genus Mastrevirus, family Geminiviridae. This study reports the association of subgenomic components, called satellites (alpha- and betasatellites), with a mastrevirus, Wheat Dwarf India Virus (WDIV), isolated from two distant locations in India. This study reports the first identification of the satellites in a monocot plant. The satellites enhanced accumulation of WDIV and severity of disease symptoms. The satellites lowered the concentration of virus-specific small RNAs in wheat plants, indicating their silencing suppressor activity. The involvement of the satellites in symptom severity of the mastrevirus can have implications in the form of economic impact of the virus on crop yield. Understanding the role of the satellites in disease severity is important for developing disease management strategies. PMID:24719407

  8. Constitutive expression of a salinity-induced wheat WRKY transcription factor enhances salinity and ionic stress tolerance in transgenic Arabidopsis thaliana.

    PubMed

    Qin, Yuxiang; Tian, Yanchen; Han, Lu; Yang, Xinchao

    2013-10-25

    The isolation and characterization of TaWRKY79, a wheat class II WRKY transcription factor, is described. Its 1297 bp coding region includes a 987 bp long open reading frame. TaWRKY79 was induced by stressing seedlings with either NaCl or abscisic acid (ABA). When a fusion between an 843 bp segment upstream of the TaWRKY79 coding sequence and GUS was introduced into Arabidopsis thaliana, GUS staining indicated that this upstream segment captured the sequence(s) required to respond to ABA or NaCl treatment. When TaWRKY79 was constitutively expressed as a transgene in A. thaliana, the transgenic plants showed an improved capacity to extend their primary root in the presence of either 100 mM NaCl, 10 mM LiCl or 2 μM ABA. The inference was that TaWRKY79 enhanced the level of tolerance to both salinity and ionic stress, while reducing the level of sensitivity to ABA. The ABA-related genes ABA1, ABA2 ABI1 and ABI5 were all up-regulated in the TaWRKY79 transgenic plants, suggesting that the transcription factor operates in an ABA-dependent pathway. Copyright © 2013. Published by Elsevier Inc.

  9. Identification and evaluation of bioremediation potential of laccase isoforms produced by Cyathus bulleri on wheat bran.

    PubMed

    Vats, Arpita; Mishra, Saroj

    2018-02-15

    Multiplicity in laccases among lignin degrading fungal species is of interest as it confers the ability to degrade several types of lignocellulosics. The combination of laccases produced on such substrates could be beneficial for treatment of complex aromatics, including dyes. In this study, we report on production of high units (679.6Ug -1 substrate) of laccase on solid wheat bran (WB) by Cyathus bulleri. Laccase, purified from the culture filtrates of WB grown fungus, was effective for oxidation of veratryl alcohol, Reactive blue 21 and textile effluent without assistance of externally added mediators. De novo sequencing of the 'purified' laccase lead to identification of several peptides that originated from different laccase genes. Transcriptome analysis of the fungus, cultivated on WB, confirmed presence of 8 isozymes, that were re-amplified and sequenced from the cDNA prepared from WB grown fungus. The 8 isozymes were grouped into 3 classes, based on their sequence relationship with other basidiomycete laccases. The isoforms produced on WB decolorized (by ∼57%) and degraded textile effluent far more effectively, compared to laccase obtained from Basal salt cultivated fungus. The decolorization and degradation was also accompanied by more than 95% reduction in phytotoxicity. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. [A study of food-dependent exercise-induced anaphylaxis by analyzing the Japanese cases reported in the literature].

    PubMed

    Harada, S; Horikawa, T; Icihashi, M

    2000-11-01

    We surveyed and analyzed cases of food-dependent exercise-induced anaphylaxis (FDEIA) in the Japanese literature. We found 167 cases which were reported as FDEIA since 1983. Analyzing these case, following characteristic features were revealed: 1) Recent upward trend in the number of reports of FDEIA was noted. 2) Male cases were more frequent than female cases, while about half of the cases were teenager. 3) More than half of the cases were proved to be induced by wheat followed by shrimp. In those under 20, shrimp was the most popular cause rather than wheat. 4) Skin test and/or IgE RAST showed positive results in most cases, suggesting that the response itself is linked to type I allergic reaction. 5) About 40% of the patients had history of atopic disease, indicating that atopic condition may play some role in FDEIA. 6) All cases who performed provocation test with aspirin responded to food challenge and/or exercise in combination with aspirin. This indicates that aspirin plays a key provoking factor in FDEIA. 7) In 17 cases FDEIA attacks were observed during noon recess or physical education class after lunch at school. We stress here the importance of a nation-wide education to school teachers the potential danger of this disorder.

  11. Unbalanced Activation of Glutathione Metabolic Pathways Suggests Potential Involvement in Plant Defense against the Gall Midge Mayetiola destructor in Wheat

    PubMed Central

    Liu, Xuming; Zhang, Shize; Whitworth, R. Jeff; Stuart, Jeffrey J.; Chen, Ming-Shun

    2015-01-01

    Glutathione, γ-glutamylcysteinylglycine, exists abundantly in nearly all organisms. Glutathione participates in various physiological processes involved in redox reactions by serving as an electron donor/acceptor. We found that the abundance of total glutathione increased up to 60% in resistant wheat plants within 72 hours following attack by the gall midge Mayetiola destructor, the Hessian fly. The increase in total glutathione abundance, however, is coupled with an unbalanced activation of glutathione metabolic pathways. The activity and transcript abundance of glutathione peroxidases, which convert reduced glutathione (GSH) to oxidized glutathione (GSSG), increased in infested resistant plants. However, the enzymatic activity and transcript abundance of glutathione reductases, which convert GSSG back to GSH, did not change. This unbalanced regulation of the glutathione oxidation/reduction cycle indicates the existence of an alternative pathway to regenerate GSH from GSSG to maintain a stable GSSG/GSH ratio. Our data suggest the possibility that GSSG is transported from cytosol to apoplast to serve as an oxidant for class III peroxidases to generate reactive oxygen species for plant defense against Hessian fly larvae. Our results provide a foundation for elucidating the molecular processes involved in glutathione-mediated plant resistance to Hessian fly and potentially other pests as well. PMID:25627558

  12. Assessing the combined effects of climatic factors on spring wheat phenophase and grain yield in Inner Mongolia, China

    PubMed Central

    Pu, Feiyu; Li, Yunpeng; Xu, Jingwen; Li, Ning; Zhang, Yi; Guo, Jianping; Pan, Zhihua

    2017-01-01

    Understanding the regional relationships between climate change and crop production will benefit strategic decisions for future agricultural adaptation in China. In this study, the combined effects of climatic factors on spring wheat phenophase and grain yield over the past three decades in Inner Mongolia, China, were explored based on the daily climate variables from 1981–2014 and detailed observed data of spring wheat from 1981–2014. Inner Mongolia was divided into three different climate type regions, the eastern, central and western regions. The data were gathered from 10 representative agricultural meteorological experimental stations in Inner Mongolia and analysed with the Agricultural Production Systems Simulator (APSIM) model. First, the performance of the APSIM model in the spring wheat planting areas of Inner Mongolia was tested. Then, the key climatic factors limiting the phenophases and yield of spring wheat were identified. Finally, the responses of spring wheat phenophases and yield to climate change were further explored regionally. Our results revealed a general yield reduction of spring wheat in response to the pronounced climate warming from 1981 to 2014, with an average of 3564 kg·ha-1. The regional differences in yields were significant. The maximum potential yield of spring wheat was found in the western region. However, the minimum potential yield was found in the middle region. The air temperature and soil surface temperature were the optimum climatic factors that affected the key phenophases of spring wheat in Inner Mongolia. The influence of the average maximum temperature on the key phenophases of spring wheat was greater than the average minimum temperature, followed by the relative humidity and solar radiation. The most insensitive climatic factors were precipitation, wind speed and reference crop evapotranspiration. As for the yield of spring wheat, temperature, solar radiation and air relative humidity were major meteorological factors that affected in the eastern and western Inner Mongolia. Furthermore, the effect of the average minimum temperature on yield was greater than that of the average maximum temperature. The increase of temperature in the western and middle regions would reduce the spring wheat yield, while in the eastern region due to the rising temperature, the spring wheat yield increased. The increase of solar radiation in the eastern and central regions would increase the yield of spring wheat. The increased air relative humidity would make the western spring wheat yield increased and the eastern spring wheat yield decreased. Finally, the models describing combined effects of these dominant climatic factors on the maturity and yield in different regions of Inner Mongolia were used to establish geographical differences. Our findings have important implications for improving climate change impact studies and for local agricultural production to cope with ongoing climate change. PMID:29099842

  13. Assessing the combined effects of climatic factors on spring wheat phenophase and grain yield in Inner Mongolia, China.

    PubMed

    Zhao, Junfang; Pu, Feiyu; Li, Yunpeng; Xu, Jingwen; Li, Ning; Zhang, Yi; Guo, Jianping; Pan, Zhihua

    2017-01-01

    Understanding the regional relationships between climate change and crop production will benefit strategic decisions for future agricultural adaptation in China. In this study, the combined effects of climatic factors on spring wheat phenophase and grain yield over the past three decades in Inner Mongolia, China, were explored based on the daily climate variables from 1981-2014 and detailed observed data of spring wheat from 1981-2014. Inner Mongolia was divided into three different climate type regions, the eastern, central and western regions. The data were gathered from 10 representative agricultural meteorological experimental stations in Inner Mongolia and analysed with the Agricultural Production Systems Simulator (APSIM) model. First, the performance of the APSIM model in the spring wheat planting areas of Inner Mongolia was tested. Then, the key climatic factors limiting the phenophases and yield of spring wheat were identified. Finally, the responses of spring wheat phenophases and yield to climate change were further explored regionally. Our results revealed a general yield reduction of spring wheat in response to the pronounced climate warming from 1981 to 2014, with an average of 3564 kg·ha-1. The regional differences in yields were significant. The maximum potential yield of spring wheat was found in the western region. However, the minimum potential yield was found in the middle region. The air temperature and soil surface temperature were the optimum climatic factors that affected the key phenophases of spring wheat in Inner Mongolia. The influence of the average maximum temperature on the key phenophases of spring wheat was greater than the average minimum temperature, followed by the relative humidity and solar radiation. The most insensitive climatic factors were precipitation, wind speed and reference crop evapotranspiration. As for the yield of spring wheat, temperature, solar radiation and air relative humidity were major meteorological factors that affected in the eastern and western Inner Mongolia. Furthermore, the effect of the average minimum temperature on yield was greater than that of the average maximum temperature. The increase of temperature in the western and middle regions would reduce the spring wheat yield, while in the eastern region due to the rising temperature, the spring wheat yield increased. The increase of solar radiation in the eastern and central regions would increase the yield of spring wheat. The increased air relative humidity would make the western spring wheat yield increased and the eastern spring wheat yield decreased. Finally, the models describing combined effects of these dominant climatic factors on the maturity and yield in different regions of Inner Mongolia were used to establish geographical differences. Our findings have important implications for improving climate change impact studies and for local agricultural production to cope with ongoing climate change.

  14. Changes in the phenolic composition of pancake fractions made from refined and whole-wheat flour of two wheat varieties

    USDA-ARS?s Scientific Manuscript database

    In this study, we investigated the changes in the levels of phenolic acids during pancake preparation from refined and whole-wheat flours of two wheat varieties. Comparison of the efficacy of two commonly used methods for hydrolysis and extraction of phenolic acids, namely ultrasonic-assisted extrac...

  15. Wheat transcription factor TaWRKY70 is positively involved in high-temperature seedling-plant resistance to Puccinia striiformis f. sp. tritici

    USDA-ARS?s Scientific Manuscript database

    Wheat stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), is a devastating disease of wheat (Triticum aestivum) worldwide. Wheat high-temperature seedling-plant (HTSP) resistance to Pst is non-race-specific and durable. WRKY transcription factors have proven to play important roles in ...

  16. Expression of high-temperature adult-plant (HTAP) resistance against stripe rust (Puccinia striiformis f. sp. tritici) in wheat landraces

    USDA-ARS?s Scientific Manuscript database

    Stripe rust (Puccinia striiformis f. sp. tritici, Pst) is an important disease of wheat in the United States and Pakistan. Genetic resistance in wheat is a cost-effective and convenient control measure. In the present study, resistance testing of 115 wheat landraces from Pakistan was carried out ini...

  17. Extraction and demulsification of oil from wheat germ, barley germ, and rice bran using an aqueous enzymatic method

    USDA-ARS?s Scientific Manuscript database

    An aqueous enzymatic method was developed to extract oil from wheat germ. The parameters that influence oil yield were investigated, including wheat germ pretreatment, comparison of various industrial enzymes, pH, ratio of wheat germ to water, reaction time and demulsification. Pretreatment at 180ºC...

  18. Registration of OK05312, a high-yielding hard winter wheat donor of Cmc4 for wheat curl mite resistance

    USDA-ARS?s Scientific Manuscript database

    Wheat streak mosaic (WSM) is a devastating disease in the High Plains region that is advancing eastward toward lower elevations. Its control is best achieved by combining known disease resistance genes with resistance to the insect vector. A hard red winter (HRW) wheat (Triticum aestivum L.) germpla...

  19. RNA interference targeting rye secalins alters flour protein composition in a wheat variety carrying a 1Bl.1RS translocation

    USDA-ARS?s Scientific Manuscript database

    Wheat varieties carrying chromosome translocations from rye are part of the international wheat breeding pool, despite being associated with defects in dough processing quality. Among the proposed causes for the quality defects of flours from such wheats is the presence of the secalins, encoded by ...

  20. A new 2DS·2RL Robertsonian translocation transfers Sr59 resistance to stem rust into wheat

    USDA-ARS?s Scientific Manuscript database

    Emerging new races of the wheat stem rust pathogen Puccinia graminis f. sp. tritici Eriks. & E. Henn, especially the Ug99 race group threaten global wheat, Triticum aestivum L., production. Screening of a collection of wheat-rye, Secale cereale L., chromosome substitution lines developed at the Swed...

  1. Development of wheat-Aegilops speltoides recombinants and simple PCR-based markers for stem rust resistance genes on the 2S#1 chromosome

    USDA-ARS?s Scientific Manuscript database

    Wild relatives of wheat are important but underutilized resources for new rust resistance genes because linked negative traits often hinder deployment of these genes in commercial wheats. Here we report reduced alien chromatin recombinants derived from E.R. Sears wheat-Aegilops speltoides translocat...

  2. Development of wheat-Aegilops speltoides recombinants and simple PCR-based markers for stem rust resistance genes on the 2S#1 chromosome

    USDA-ARS?s Scientific Manuscript database

    Wild relatives of wheat are important but underutilized resources for new rust resistance genes because linked negative traits often hinder deployment of these genes in commercial wheats. Here we report reduced alien chromatin recombinants derived from E.R. Sears' wheat-Aegilops speltoides transloca...

  3. In vitro transcripts of wild-type and fluorescent protein-tagged triticum mosaic virus (family potyviridae) are biologically active in wheat

    USDA-ARS?s Scientific Manuscript database

    Triticum mosaic virus (TriMV) (genus Poacevirus, family Potyviridae) is a recently described eriophyid mite-transmitted wheat virus. In vitro RNA transcripts generated from full-length cDNA clones of TriMV proved infectious on wheat, and the progeny virus was efficiently transmitted by wheat curl m...

  4. Re-engineering of the Pm21 transfer from Haynaldia villosa to bread wheat by induced homoeologous recombination

    USDA-ARS?s Scientific Manuscript database

    Blumeria graminis f. sp. tritici, the cause of powdery mildew, can generate serious grain yield losses in wheat. To expand the range of resistance genes freely available to wheat breeders, a Haynaldia villosa derived resistance gene Pm21 was transferred to chromosome 6AS of wheat by homoeologous rec...

  5. AmeriFlux US-Pon Ponca City

    DOE Data Explorer

    Verma, Shashi [University of Nebraska - Lincoln

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-Pon Ponca City. Site Description - The Ponca Winter Wheat site is a 65 ha rainfed wheat field in north central Oklahoma. Planting of winter wheat takes place annually in mid-fall. By late May, most of the wheat reaches maturity, allowing for mid-summer harvest.

  6. Relationships between early spring wheat streak mosaic severity levels and grain yield: Implications for management decisions

    USDA-ARS?s Scientific Manuscript database

    Wheat streak mosaic (WSM) caused by Wheat streak mosaic virus, which is transmitted by the wheat curl mite (Aceria tosichella), is a major yield-limiting disease in the Texas High Plains. In addition to its impact on grain production, the disease reduces water-use efficiency by affecting root develo...

  7. Identification and validation of single nucleotide polymorphic markers linked to Ug99 stem rust resistance in spring wheat

    USDA-ARS?s Scientific Manuscript database

    Wheat stem rust (Puccinia graminis f. sp. tritici Eriks. and E. Henn.) is one of the most destructive diseases world-wide. Races belonging to Ug99 (or TTKSK) continue to cause crop losses in East Africa and threaten global wheat production. Developing and deploying wheat varieties with multiple race...

  8. Discovery of a novel stem rust resistance allele in durum wheat that exhibits differential reactions to Ug99 isolates

    USDA-ARS?s Scientific Manuscript database

    Wheat stem rust, caused by Puccinia graminis f. sp. tritici Erikss. & E. Henn, can incur yield losses on susceptible cultivars of durum wheat, Triticum turgidum ssp. durum (Desf.) Husnot. Though several durum cultivars possess the stem rust resistance gene Sr13, additional genes in durum wheat effec...

  9. Genetic characterization of North American populations of the wheat curl mite (Aceria tosichella) and dry bulb mite (Aceria tulipae)

    USDA-ARS?s Scientific Manuscript database

    The wheat curl mite, Aceria tosichella Keifer, transmits at least three harmful viruses, wheat streak mosaic virus (WSMV), high plains virus (HPV), and Triticum mosaic virus (TriMV) to wheat (Triticum aestivum L.) throughout the Great Plains. This virus complex is considered to be the most serious d...

  10. Foraging by Hippodamia convergens for the aphid Sitobion avenae on wheat plants growing in greenhouse plots

    USDA-ARS?s Scientific Manuscript database

    We investigated predation by adult convergent lady beetle, Hippodamia convergens Guerin-Meneville, on English grain aphid, Sitobion avenae L., on wheat, Triticum aestivum L., growing in 1.8 x 1.8 m plantings in a greenhouse with a soil floor. The wheat was planted to simulate wheat in a typical pro...

  11. Effectiveness of an image-based sorter to select for kernel color within early segregating hard winter wheat (Triticum aestivum L.) populations

    USDA-ARS?s Scientific Manuscript database

    Effective mass selection tools are needed to enrich hard winter wheat breeding populations from red wheat × white wheat crosses while maintaining large population sizes in early breeding generations. Tools also are needed to select for white-seeded genotypes or to eliminate white-seeded genotypes wh...

  12. 'Elgin-ND' spring wheat: A newly adapted cultivar to the north-central plains of the United States with high agronomic quality performance

    USDA-ARS?s Scientific Manuscript database

    The spring wheat (Triticum aestivum L.) industry and growers usually value adapted wheat cultivars with high quality attributes, an essential criteria for maintaining wheat as a competitive commodity at the national and international levels. Therefore, the goal of the breeding program is to develop ...

  13. The viscoelastic properties of the protein-rich materials from the fermented hard wheat, soft wheat and barley flours

    USDA-ARS?s Scientific Manuscript database

    The linear and non-linear rheological properties of the suspensions for the hard red spring wheat (HRS) flour, soft wheat (Pastry) flour, barley flour, as well as the remain residues of HRS flour, Pastry flour, and barley flour after fermentation were investigated. The linear and non-linear rheologi...

  14. Quality characteristics of northern-style Chinese steamed bread prepared from soft red winter wheat flours with waxy wheat flour substitution

    USDA-ARS?s Scientific Manuscript database

    Quality characteristics of Chinese steamed bread (CSB) prepared from two soft red winter (SRW) wheat flours blended with 0-30% waxy wheat flour (WWF) were determined to estimate the influence of starch amylose content. The increased proportion of WWF in blends raised mixograph absorption with insign...

  15. 7 CFR 407.17 - Group risk plan for wheat.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Group risk plan for wheat. 407.17 Section 407.17..., DEPARTMENT OF AGRICULTURE GROUP RISK PLAN OF INSURANCE REGULATIONS § 407.17 Group risk plan for wheat. The provisions of the Group Risk Plan for Wheat for the 2000 and succeeding crop years are as follows: 1...

  16. [Nebraska 4-H Wheat Science School Enrichment Project, Teacher/Leader Guides 213-222 and 227.

    ERIC Educational Resources Information Center

    Nebraska Univ., Lincoln. Inst. of Agriculture and Natural Resources.

    Through the 4-H Wheat Science project, students learn the importance of wheat from the complete process of growing wheat to the final product of bread. The curriculum is designed to include hands-on experiences in science, consumer education, nutrition, production economics, vocabulary, and applied mathematics. Teachers can select those units out…

  17. 7 CFR 782.20 - Importer records and reports.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... reports. (a) The importer shall retain a copy of each form: (1) FSA-750, End-Use Certificate for Wheat, that is submitted to KCCO in accordance with § 782.12(a); and (2) FSA-751, Wheat Consumption and Resale... records to verify that the wheat was identity preserved until such time as the wheat was: (1) Loaded onto...

  18. Physical, textural, and antioxidant properties of extruded waxy wheat flour snack supplemented with several varieties of bran

    USDA-ARS?s Scientific Manuscript database

    Wheat represents a ubiquitous commodity and while industries valorize 10% of wheat bran, most of this antioxidant-rich byproduct gets discarded. The objective of this study was to incorporate wheat bran into an extruded snack. Bran varieties from hard red spring, white club Bruehl, and purple whea...

  19. 21 CFR 184.1322 - Wheat gluten.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Wheat gluten. 184.1322 Section 184.1322 Food and....1322 Wheat gluten. (a) Wheat gluten (CAS Reg. No. 8002-80-0) is the principal protein component of... purity suitable for its intended use. (c) In accordance with § 184.1(b)(1), the ingredient is used in...

  20. Viscoelastic Properties of Rubber Composites Reinforced by Wheat Gluten and Wheat Starch Co-filler

    USDA-ARS?s Scientific Manuscript database

    Due to different abilities of wheat gluten (WG) and wheat starch (WS) to increase the modulus of rubber composites, the composite properties can be adjusted by varying the ratio of WG to WS as a co-filler. This study shows that the co-filler composites became more temperature dependent as the WG co...

  1. U.S. Competitiveness in the World Wheat Market. Proceedings of a Research Conference (Washington, D.C., June 17-18, 1986).

    ERIC Educational Resources Information Center

    Economic Research Service (USDA), Washington, DC.

    These proceedings contain presentations and summaries of papers presented at a Wheat Competitiveness Conference. They begin with two presentations--"The Wheat Prototype Study within an Overall Conceptual Framework of Competitiveness" (James Langley) and "U.S. Competitiveness in the World Wheat Market: A Prototype Study" (Jerry…

  2. Biolistic Transformation of Wheat.

    PubMed

    Tassy, Caroline; Barret, Pierre

    2017-01-01

    The wheat genome encodes some 100,000 genes. To understand how the expression of these genes is regulated it will be necessary to carry out many genetic transformation experiments. Robust protocols that allow scientists to transform a wide range of wheat genotypes are therefore required. In this chapter, we describe a protocol for biolistic transformation of wheat that uses immature embryos and small quantities of DNA cassettes. An original method for DNA cassette purification is also described. This protocol can be used to transform a wide range of wheat genotypes and other related species.

  3. Potential for the use of germinated wheat and soybeans to enhance human nutrition.

    PubMed

    Finney, P L

    1978-01-01

    Wheat and soybeans are the major agricultural exports of the United States. The U.S. sells more of each crop than any other nation. Soybeans are the main staple in China, but the U.S. sells more soybeans than China grows. For hundreds of millions of other people, wheat is the main staple. And yet, most Americans eat whole grains of neither wheat nor soybeans. In the United States, many nutrients of wheat and soybeans are lost in processing or are fed to animals. A highly significant share of the wheat nutrients are lost from the main foodstream when the germ and bran (with aleurone) portions are separated. Whole soybeans are carefully processed for food by only a handful of Americans.

  4. Rmg8 and Rmg7, wheat genes for resistance to the wheat blast fungus, recognize the same avirulence gene AVR-Rmg8.

    PubMed

    Anh, Vu Lan; Inoue, Yoshihiro; Asuke, Soichiro; Vy, Trinh Thi Phuong; Anh, Nguyen Tuan; Wang, Shizhen; Chuma, Izumi; Tosa, Yukio

    2018-05-01

    Rmg8 and Rmg7 are genes for resistance to the wheat blast fungus (Pyricularia oryzae), located on chromosome 2B in hexaploid wheat and chromosome 2A in tetraploid wheat, respectively. AVR-Rmg8, an avirulence gene corresponding to Rmg8, was isolated from a wheat blast isolate through a map-based strategy. The cloned fragment encoded a small protein containing a putative signal peptide. AVR-Rmg8 was recognized not only by Rmg8, but also by Rmg7, suggesting that these two resistance genes are equivalent to a single gene from the viewpoint of resistance breeding. © 2017 BSPP AND JOHN WILEY & SONS LTD.

  5. Discrimination of winter wheat on irrigated land in southern Finney County, Kansas

    NASA Technical Reports Server (NTRS)

    Morain, S. A. (Principal Investigator); Williams, D. L.; Barker, B.; Coiner, J. C.

    1973-01-01

    The author has identified the following significant results. Winter wheat in the large field irrigated landscape of southern Finney County, Kansas was successfully discriminated by use of 4 ERTS-1 images. These images were acquired 16 August 1972, 21 September 1972, and 2 December 1972. MSS-5 images from each date and the MSS-7 image from 2 December 1972 were used. Human interpretation of the four images resulted in a classification scheme which produced 98% correct estimation of the number of wheat fields in the training sample and 100% correct estimation in the test sample. Overall correct separation of wheat from non-wheat fields was 93% and 86%, respectively. Offsetting errors resulted in the estimation accuracy for wheat.

  6. Distribution of Cytokinin-active Ribonucleosides in Wheat Germ tRNA Species 1

    PubMed Central

    Struxness, Leslie A.; Armstrong, Donald J.; Gillam, Ian; Tener, Gordon M.; Burrows, William J.; Skoog, Folke

    1979-01-01

    The distribution of cytokinin activity in wheat (Triticum aestivum) germ tRNA fractionated by BD-cellulose and RPC-5 chromatography has been examined. As in other organisms, the cytokinin moieties in wheat germ tRNA appear to be restricted to tRNA species that would be expected to respond to codons beginning with U. Only a few of the wheat germ tRNA species in this coding group actually contain cytokinin modifications. Cytokinin activity was associated with isoaccepting tRNASer species and with a minor tRNALeu species from wheat germ. All other wheat germ tRNA species corresponding to codons beginning with U were devoid of cytokinin activity in the tobacco callus bioassay. PMID:16660688

  7. From yellow rain to green wheat: 25 years of trichothecene biosynthesis research.

    PubMed

    Desjardins, Anne E

    2009-06-10

    Trichothecene biosynthesis research at the U.S. Department of Agriculture in Peoria, IL, began in 1984 in response to concerns about the use of trichothecenes in biological warfare, but continued as a long-term research program on the intractable problem of trichothecene contamination of human foods and animal feeds. Over 25 years, the trichothecene biosynthesis research group integrated natural product chemistry with fungal genetics and plant pathology in the laboratory and in the field to understand how and why Fusarium species make these complex and highly toxic metabolites. This interdisciplinary research placed trichothecenes in the unique class of fungal metabolites that not only cause mycotoxicoses in animals but also are virulence factors in plant disease.

  8. 7 CFR 810.602 - Definition of other terms.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...-less barley, nongrain sorghum, oats, Polish wheat, popcorn, poulard wheat, rice, rye, safflower, sorghum, soybeans, spelt, sunflower seed, sweet corn, triticale, wheat, and wild oats. Principles...

  9. 7 CFR 810.602 - Definition of other terms.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...-less barley, nongrain sorghum, oats, Polish wheat, popcorn, poulard wheat, rice, rye, safflower, sorghum, soybeans, spelt, sunflower seed, sweet corn, triticale, wheat, and wild oats. Principles...

  10. 7 CFR 810.602 - Definition of other terms.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...-less barley, nongrain sorghum, oats, Polish wheat, popcorn, poulard wheat, rice, rye, safflower, sorghum, soybeans, spelt, sunflower seed, sweet corn, triticale, wheat, and wild oats. Principles...

  11. Seedling Resistance to Stem Rust and Molecular Marker Analysis of Resistance Genes in Wheat Cultivars of Yunnan, China

    PubMed Central

    Li, Tian Ya; Cao, Yuan Yin; Wu, Xian Xin; Xu, Xiao Feng; Wang, Wan Lin

    2016-01-01

    Stem rust is one of the most potentially harmful wheat diseases, but has been effectively controlled in China since 1970s. However, the interest in breeding wheat with durable resistance to stem rust has been renewed with the emergence of Ug99 (TTKSK) virulent to the widely used resistance gene Sr31, and by which the wheat stem rust was controlled for 40 years in wheat production area worldwide. Yunnan Province, located on the Southwest border of China, is one of the main wheat growing regions, playing a pivotal role in the wheat stem rust epidemic in China. This study investigated the levels of resistance in key wheat cultivars (lines) of Yunnan Province. In addition, the existence of Sr25, Sr26, Sr28, Sr31, Sr32, and Sr38 genes in 119 wheat cultivars was assessed using specific DNA markers. The results indicated that 77 (64.7%) tested wheat varieties showed different levels of resistance to all the tested races of Puccinia graminis f. sp. tritici. Using molecular markers, we identified the resistance gene Sr31 in 43 samples; Sr38 in 10 samples; Sr28 in 12 samples, and one sample which was resistant against Ug99 (avirulent to Sr32). No Sr25 or Sr26 (effective against Ug99) was identified in any cultivars tested. Furthermore, 5 out of 119 cultivars tested carried both Sr31 and Sr38 and eight contained both Sr31 and Sr28. The results enable the development of appropriate strategies to breed varieties resistant to stem rust. PMID:27792757

  12. Effectiveness of time of sowing and cultivar choice for managing climate change: wheat crop phenology and water use efficiency.

    PubMed

    Luo, Qunying; O'Leary, Garry; Cleverly, James; Eamus, Derek

    2018-06-01

    Climate change (CC) presents a challenge for the sustainable development of wheat production systems in Australia. This study aimed to (1) quantify the impact of future CC on wheat grain yield for the period centred on 2030 from the perspectives of wheat phenology, water use and water use efficiency (WUE) and (2) evaluate the effectiveness of changing sowing times and cultivars in response to the expected impacts of future CC on wheat grain yield. The daily outputs of CSIRO Conformal-Cubic Atmospheric Model for baseline and future periods were used by a stochastic weather generator to derive changes in mean climate and in climate variability and to construct local climate scenarios, which were then coupled with a wheat crop model to achieve the two research aims. We considered three locations in New South Wales, Australia, six times of sowing (TOS) and three bread wheat (Triticum aestivum L.) cultivars in this study. Simulation results show that in 2030 (1) for impact analysis, wheat phenological events are expected to occur earlier and crop water use is expected to decrease across all cases (the combination of three locations, six TOS and three cultivars), wheat grain yield would increase or decrease depending on locations and TOS; and WUE would increase in most of the cases; (2) for adaptation considerations, the combination of TOS and cultivars with the highest yield varied across locations. Wheat growers at different locations will require different strategies in managing the negative impacts or taking the opportunities of future CC.

  13. Instant noodles made with fortified wheat flour to improve micronutrient intake in Asia: a review of simulation, nutrient retention and sensory studies.

    PubMed

    Bronder, Kayla L; Zimmerman, Sarah L; van den Wijngaart, Annoek; Codling, Karen; Johns, Kirsten Ag; Pachón, Helena

    2017-03-01

    Consumption of foods made with wheat flour, particularly instant noodles, is increasing in Asia. Given this trend, fortifying wheat flour with vitamins and minerals may improve micronutrient intake in the region. The objective of this review was to understand what is known about fortifying wheat flour used to make instant noodles. A literature review of seven databases was performed using the search terms "noodle" and ("Asian" or "instant"). Grey literature was requested through a food fortification listserv. Articles were title screened first for relevance and duplicity, with exclusion criteria applied during the second round of abstract-level screening. This review considered studies examining simulation, retention, sensory, bioavailability, efficacy, and effectiveness of instant noodles made with fortified wheat flour. Fourteen relevant documents were reviewed for simulation (n=1), retention (n=11), and sensory studies (n=3). The documents revealed that instant noodles produced from fortified wheat flour have potential to improve nutrient intakes, have high retention of most nutrients, and provoke no or minimal changes in sensory characteristics. The available literature indicates that using fortified wheat flour for instant noodle production results in retention of the added nutrients, except thiamin, with no significant sensory change to the final product. Given the rising consumption of instant noodles, production of this item with fortified wheat flour has potential to improve nutrient intakes in Asia. This review provides a resource for the design of a wheat flour fortification program in countries where a large proportion of wheat flour is consumed as instant noodles.

  14. Effectiveness of time of sowing and cultivar choice for managing climate change: wheat crop phenology and water use efficiency

    NASA Astrophysics Data System (ADS)

    Luo, Qunying; O'Leary, Garry; Cleverly, James; Eamus, Derek

    2018-06-01

    Climate change (CC) presents a challenge for the sustainable development of wheat production systems in Australia. This study aimed to (1) quantify the impact of future CC on wheat grain yield for the period centred on 2030 from the perspectives of wheat phenology, water use and water use efficiency (WUE) and (2) evaluate the effectiveness of changing sowing times and cultivars in response to the expected impacts of future CC on wheat grain yield. The daily outputs of CSIRO Conformal-Cubic Atmospheric Model for baseline and future periods were used by a stochastic weather generator to derive changes in mean climate and in climate variability and to construct local climate scenarios, which were then coupled with a wheat crop model to achieve the two research aims. We considered three locations in New South Wales, Australia, six times of sowing (TOS) and three bread wheat ( Triticum aestivum L .) cultivars in this study. Simulation results show that in 2030 (1) for impact analysis, wheat phenological events are expected to occur earlier and crop water use is expected to decrease across all cases (the combination of three locations, six TOS and three cultivars), wheat grain yield would increase or decrease depending on locations and TOS; and WUE would increase in most of the cases; (2) for adaptation considerations, the combination of TOS and cultivars with the highest yield varied across locations. Wheat growers at different locations will require different strategies in managing the negative impacts or taking the opportunities of future CC.

  15. Separating homeologs by phasing in the tetraploid wheat transcriptome.

    PubMed

    Krasileva, Ksenia V; Buffalo, Vince; Bailey, Paul; Pearce, Stephen; Ayling, Sarah; Tabbita, Facundo; Soria, Marcelo; Wang, Shichen; Akhunov, Eduard; Uauy, Cristobal; Dubcovsky, Jorge

    2013-06-25

    The high level of identity among duplicated homoeologous genomes in tetraploid pasta wheat presents substantial challenges for de novo transcriptome assembly. To solve this problem, we develop a specialized bioinformatics workflow that optimizes transcriptome assembly and separation of merged homoeologs. To evaluate our strategy, we sequence and assemble the transcriptome of one of the diploid ancestors of pasta wheat, and compare both assemblies with a benchmark set of 13,472 full-length, non-redundant bread wheat cDNAs. A total of 489 million 100 bp paired-end reads from tetraploid wheat assemble in 140,118 contigs, including 96% of the benchmark cDNAs. We used a comparative genomics approach to annotate 66,633 open reading frames. The multiple k-mer assembly strategy increases the proportion of cDNAs assembled full-length in a single contig by 22% relative to the best single k-mer size. Homoeologs are separated using a post-assembly pipeline that includes polymorphism identification, phasing of SNPs, read sorting, and re-assembly of phased reads. Using a reference set of genes, we determine that 98.7% of SNPs analyzed are correctly separated by phasing. Our study shows that de novo transcriptome assembly of tetraploid wheat benefit from multiple k-mer assembly strategies more than diploid wheat. Our results also demonstrate that phasing approaches originally designed for heterozygous diploid organisms can be used to separate the close homoeologous genomes of tetraploid wheat. The predicted tetraploid wheat proteome and gene models provide a valuable tool for the wheat research community and for those interested in comparative genomic studies.

  16. Separating homeologs by phasing in the tetraploid wheat transcriptome

    PubMed Central

    2013-01-01

    Background The high level of identity among duplicated homoeologous genomes in tetraploid pasta wheat presents substantial challenges for de novo transcriptome assembly. To solve this problem, we develop a specialized bioinformatics workflow that optimizes transcriptome assembly and separation of merged homoeologs. To evaluate our strategy, we sequence and assemble the transcriptome of one of the diploid ancestors of pasta wheat, and compare both assemblies with a benchmark set of 13,472 full-length, non-redundant bread wheat cDNAs. Results A total of 489 million 100 bp paired-end reads from tetraploid wheat assemble in 140,118 contigs, including 96% of the benchmark cDNAs. We used a comparative genomics approach to annotate 66,633 open reading frames. The multiple k-mer assembly strategy increases the proportion of cDNAs assembled full-length in a single contig by 22% relative to the best single k-mer size. Homoeologs are separated using a post-assembly pipeline that includes polymorphism identification, phasing of SNPs, read sorting, and re-assembly of phased reads. Using a reference set of genes, we determine that 98.7% of SNPs analyzed are correctly separated by phasing. Conclusions Our study shows that de novo transcriptome assembly of tetraploid wheat benefit from multiple k-mer assembly strategies more than diploid wheat. Our results also demonstrate that phasing approaches originally designed for heterozygous diploid organisms can be used to separate the close homoeologous genomes of tetraploid wheat. The predicted tetraploid wheat proteome and gene models provide a valuable tool for the wheat research community and for those interested in comparative genomic studies. PMID:23800085

  17. Accumulation of Phenolic Compounds and Expression Profiles of Phenolic Acid Biosynthesis-Related Genes in Developing Grains of White, Purple, and Red Wheat.

    PubMed

    Ma, Dongyun; Li, Yaoguang; Zhang, Jian; Wang, Chenyang; Qin, Haixia; Ding, Huina; Xie, Yingxin; Guo, Tiancai

    2016-01-01

    Polyphenols in whole grain wheat have potential health benefits, but little is known about the expression patterns of phenolic acid biosynthesis genes and the accumulation of phenolic acid compounds in different-colored wheat grains. We found that purple wheat varieties had the highest total phenolic content (TPC) and antioxidant activity. Among phenolic acid compounds, bound ferulic acid, vanillic, and caffeic acid levels were significantly higher in purple wheat than in white and red wheat, while total soluble phenolic acid, soluble ferulic acid, and vanillic acid levels were significantly higher in purple and red wheat than in white wheat. Ferulic acid and syringic acid levels peaked at 14 days after anthesis (DAA), whereas p-coumaric acid and caffeic acid levels peaked at 7 DAA, and vanillic acid levels gradually increased during grain filling and peaked near ripeness (35 DAA). Nine phenolic acid biosynthesis pathway genes (TaPAL1, TaPAL2, TaC3H1, TaC3H2, TaC4H, Ta4CL1, Ta4CL2, TaCOMT1, and TaCOMT2) exhibited three distinct expression patterns during grain filling, which may be related to the different phenolic acids levels. White wheat had higher phenolic acid contents and relatively high gene expression at the early stage, while purple wheat had the highest phenolic acid contents and gene expression levels at later stages. These results suggest that the expression of phenolic acid biosynthesis genes may be closely related to phenolic acids accumulation.

  18. Accumulation of Phenolic Compounds and Expression Profiles of Phenolic Acid Biosynthesis-Related Genes in Developing Grains of White, Purple, and Red Wheat

    PubMed Central

    Ma, Dongyun; Li, Yaoguang; Zhang, Jian; Wang, Chenyang; Qin, Haixia; Ding, Huina; Xie, Yingxin; Guo, Tiancai

    2016-01-01

    Polyphenols in whole grain wheat have potential health benefits, but little is known about the expression patterns of phenolic acid biosynthesis genes and the accumulation of phenolic acid compounds in different-colored wheat grains. We found that purple wheat varieties had the highest total phenolic content (TPC) and antioxidant activity. Among phenolic acid compounds, bound ferulic acid, vanillic, and caffeic acid levels were significantly higher in purple wheat than in white and red wheat, while total soluble phenolic acid, soluble ferulic acid, and vanillic acid levels were significantly higher in purple and red wheat than in white wheat. Ferulic acid and syringic acid levels peaked at 14 days after anthesis (DAA), whereas p-coumaric acid and caffeic acid levels peaked at 7 DAA, and vanillic acid levels gradually increased during grain filling and peaked near ripeness (35 DAA). Nine phenolic acid biosynthesis pathway genes (TaPAL1, TaPAL2, TaC3H1, TaC3H2, TaC4H, Ta4CL1, Ta4CL2, TaCOMT1, and TaCOMT2) exhibited three distinct expression patterns during grain filling, which may be related to the different phenolic acids levels. White wheat had higher phenolic acid contents and relatively high gene expression at the early stage, while purple wheat had the highest phenolic acid contents and gene expression levels at later stages. These results suggest that the expression of phenolic acid biosynthesis genes may be closely related to phenolic acids accumulation. PMID:27148345

  19. Effectiveness of time of sowing and cultivar choice for managing climate change: wheat crop phenology and water use efficiency

    NASA Astrophysics Data System (ADS)

    Luo, Qunying; O'Leary, Garry; Cleverly, James; Eamus, Derek

    2018-02-01

    Climate change (CC) presents a challenge for the sustainable development of wheat production systems in Australia. This study aimed to (1) quantify the impact of future CC on wheat grain yield for the period centred on 2030 from the perspectives of wheat phenology, water use and water use efficiency (WUE) and (2) evaluate the effectiveness of changing sowing times and cultivars in response to the expected impacts of future CC on wheat grain yield. The daily outputs of CSIRO Conformal-Cubic Atmospheric Model for baseline and future periods were used by a stochastic weather generator to derive changes in mean climate and in climate variability and to construct local climate scenarios, which were then coupled with a wheat crop model to achieve the two research aims. We considered three locations in New South Wales, Australia, six times of sowing (TOS) and three bread wheat (Triticum aestivum L.) cultivars in this study. Simulation results show that in 2030 (1) for impact analysis, wheat phenological events are expected to occur earlier and crop water use is expected to decrease across all cases (the combination of three locations, six TOS and three cultivars), wheat grain yield would increase or decrease depending on locations and TOS; and WUE would increase in most of the cases; (2) for adaptation considerations, the combination of TOS and cultivars with the highest yield varied across locations. Wheat growers at different locations will require different strategies in managing the negative impacts or taking the opportunities of future CC.

  20. Exposure to field vs. storage wheat dust: different consequences on respiratory symptoms and immune response among grain workers.

    PubMed

    Barrera, Coralie; Wild, Pascal; Dorribo, Victor; Savova-Bianchi, Dessislava; Laboissière, Audrey; Pralong, Jacques A; Danuser, Brigitta; Krief, Peggy; Millon, Laurence; Reboux, Gabriel; Niculita-Hirzel, Hélène

    2018-05-26

    The aim of this study was to understand the differential acute effects of two distinct wheat-related dusts, such as field or stored wheat dust handling, on workers' health and how those effects evolved at 6 month intervals. Exposure, work-related symptoms, changes in lung function, and blood samples of 81 workers handling wheat and 61 controls were collected during the high exposure season and 6 months after. Specific IgG, IgE, and precipitins against 12 fungi isolated from wheat dust were titrated by enzyme-linked immunosorbent assay, dissociation-enhanced lanthanide fluorescence immunoassay, and electrosyneresis. The level of fungi was determined in the workers' environment. Levels of exhaled fraction of nitrogen monoxide (F E NO) and total IgE were obtained. Exposure response associations were investigated by mixed logistic and linear regression models. The recent exposure to field wheat dust was associated with a higher prevalence for five of six self-reported airway symptoms and with a lower F E NO than those in the control population. Exposure to stored wheat dust was only associated with cough. No acute impact of exposure on respiratory function was observed. Exposure to field wheat dust led to workers' sensitization against the three field fungi Aureobasidum, Cryptococcus, and Phoma, although exposure to storage wheat dust was associated with tolerance. The level of Ig remained stable 6 months after exposure. The clinical picture of workers exposed to field or storage wheat dust differed. The systematic characterization of the aerosol microbial profile may help to understand the reasons for those differences.

Top