Science.gov

Sample records for wheat d-genome progenitor

  1. Dissecting miRNAs in Wheat D Genome Progenitor, Aegilops tauschii

    PubMed Central

    Akpinar, Bala A.; Budak, Hikmet

    2016-01-01

    As the post-transcriptional regulators of gene expression, microRNAs or miRNAs comprise an integral part of understanding how genomes function. Although miRNAs have been a major focus of recent efforts, miRNA research is still in its infancy in most plant species. Aegilops tauschii, the D genome progenitor of bread wheat, is a wild diploid grass exhibiting remarkable population diversity. Due to the direct ancestry and the diverse gene pool, A. tauschii is a promising source for bread wheat improvement. In this study, a total of 87 Aegilops miRNA families, including 51 previously unknown, were computationally identified both at the subgenomic level, using flow-sorted A. tauschii 5D chromosome, and at the whole genome level. Predictions at the genomic and subgenomic levels suggested A. tauschii 5D chromosome as rich in pre-miRNAs that are highly associated with Class II DNA transposons. In order to gain insights into miRNA evolution, putative 5D chromosome miRNAs were compared to its modern ortholog, Triticum aestivum 5D chromosome, revealing that 48 of the 58 A. tauschii 5D miRNAs were conserved in orthologous T. aestivum 5D chromosome. The expression profiles of selected miRNAs (miR167, miR5205, miR5175, miR5523) provided the first experimental evidence for miR5175, miR5205 and miR5523, and revealed differential expressional changes in response to drought in different genetic backgrounds for miR167 and miR5175. Interestingly, while miR5523 coding regions were present and expressed as pre-miR5523 in both T. aestivum and A. tauschii, the expression of mature miR5523 was observed only in A. tauschii under normal conditions, pointing out to an interference at the downstream processing of pre-miR5523 in T. aestivum. Overall, this study expands our knowledge on the miRNA catalog of A. tauschii, locating a subset specifically to the 5D chromosome, with ample functional and comparative insight which should contribute to and complement efforts to develop drought tolerant

  2. Physical mapping resources for large plant genomes: radiation hybrids for wheat D-genome progenitor Aegilops tauschii

    PubMed Central

    2012-01-01

    Background Development of a high quality reference sequence is a daunting task in crops like wheat with large (~17Gb), highly repetitive (>80%) and polyploid genome. To achieve complete sequence assembly of such genomes, development of a high quality physical map is a necessary first step. However, due to the lack of recombination in certain regions of the chromosomes, genetic mapping, which uses recombination frequency to map marker loci, alone is not sufficient to develop high quality marker scaffolds for a sequence ready physical map. Radiation hybrid (RH) mapping, which uses radiation induced chromosomal breaks, has proven to be a successful approach for developing marker scaffolds for sequence assembly in animal systems. Here, the development and characterization of a RH panel for the mapping of D-genome of wheat progenitor Aegilops tauschii is reported. Results Radiation dosages of 350 and 450 Gy were optimized for seed irradiation of a synthetic hexaploid (AABBDD) wheat with the D-genome of Ae. tauschii accession AL8/78. The surviving plants after irradiation were crossed to durum wheat (AABB), to produce pentaploid RH1s (AABBD), which allows the simultaneous mapping of the whole D-genome. A panel of 1,510 RH1 plants was obtained, of which 592 plants were generated from the mature RH1 seeds, and 918 plants were rescued through embryo culture due to poor germination (<3%) of mature RH1 seeds. This panel showed a homogenous marker loss (2.1%) after screening with SSR markers uniformly covering all the D-genome chromosomes. Different marker systems mostly detected different lines with deletions. Using markers covering known distances, the mapping resolution of this RH panel was estimated to be <140kb. Analysis of only 16 RH lines carrying deletions on chromosome 2D resulted in a physical map with cM/cR ratio of 1:5.2 and 15 distinct bins. Additionally, with this small set of lines, almost all the tested ESTs could be mapped. A set of 399 most informative RH

  3. A 4-gigabase physical map unlocks the structure and evolution of the complex genome of Aegilops tauschii, the wheat D-genome progenitor

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The current limitations in genome sequencing technology require the construction of physical maps for high-quality draft sequences of large plant genomes, such as that of Aegilops tauschii, the wheat D-genome progenitor. To construct a physical map of the Ae. tauschii genome, we fingerprinted 461,70...

  4. A 4-gigbase physical map unlocks the structure and evolution of the complex genome of Aegilop tauschii, the wheat D-genome progenitor

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The genomes of wheat and its relatives in the tribe Triticeae are large, containing nearly 90% repetitive DNA, and some are polyploid. These genomes can currently be completely sequenced only by the ordered-clone genome sequencing approach, which reduces the complexity of sequence assembly from th...

  5. [Influence of D genome of wheat on expression of novel type spike branching in hybrid populations of 171ACS line].

    PubMed

    Alieva, A J; Aminov, N Kh

    2013-11-01

    A 171ACS line (AABBDD, 2n = 6x = 42) has been crossed with the tetra- (AABB and AAGG, 2n = 4x = 28) and octoploid (AAAABBGG, 2n = 8x = 56) wheat species without the D genome, as well as with hexaploid (AABBDD and AAGGDD, 2n = 6x = 42) wheat species and tetra- (AADD, 2n = 4x = 28) and hexaploid (AADDSS, 2n = 6x = 42) amphidiploids that have the D genome. The inheritance of a novel type of spike branching in these obtained hybrid populations F1-F3 was studied. According to the results of a morphogenetic analysis of hybrid populations derived from crossings between 171ACS and wheat species without the D genome, the novel type of branching was found to be controlled by a single recessive gene (although a phenotype of the 171ACS line gives a handle for a doubt about occurrence of the second gene) and the 171ACS line is a source of gene of the novel type branching. However, not a single branched spike plant was observed in hybrid populations that were produced by crosses of the 171ACS line with wheat species, as well as with amphidiploids that have the D genome. This result also experimentally confirmed the inhibitor effect of chromosomes of the D genome on the expression of the spike-branching trait. The appearance of branched spike forms, together with normal spiked plants in hybrid populations of the 171ACS line and T. araraticum Jakubz. (AAGG) or T. fungicidum Zhuk. (AAAABBGG) confirmed that, as opposed to the D genome, neither genome G nor genome B demonstrated the inhibition of the expression of the spike-branching trait. In conclusion, keeping in mind that branching is exhibited in hybrid progenies obtained from crosses between the 171ACS line and wheat species with AABB and AAGG genomes, it can be said that this gene belongs to the A genome.

  6. Draft genome of the wheat A-genome progenitor Triticum urartu.

    PubMed

    Ling, Hong-Qing; Zhao, Shancen; Liu, Dongcheng; Wang, Junyi; Sun, Hua; Zhang, Chi; Fan, Huajie; Li, Dong; Dong, Lingli; Tao, Yong; Gao, Chuan; Wu, Huilan; Li, Yiwen; Cui, Yan; Guo, Xiaosen; Zheng, Shusong; Wang, Biao; Yu, Kang; Liang, Qinsi; Yang, Wenlong; Lou, Xueyuan; Chen, Jie; Feng, Mingji; Jian, Jianbo; Zhang, Xiaofei; Luo, Guangbin; Jiang, Ying; Liu, Junjie; Wang, Zhaobao; Sha, Yuhui; Zhang, Bairu; Wu, Huajun; Tang, Dingzhong; Shen, Qianhua; Xue, Pengya; Zou, Shenhao; Wang, Xiujie; Liu, Xin; Wang, Famin; Yang, Yanping; An, Xueli; Dong, Zhenying; Zhang, Kunpu; Zhang, Xiangqi; Luo, Ming-Cheng; Dvorak, Jan; Tong, Yiping; Wang, Jian; Yang, Huanming; Li, Zhensheng; Wang, Daowen; Zhang, Aimin; Wang, Jun

    2013-04-04

    Bread wheat (Triticum aestivum, AABBDD) is one of the most widely cultivated and consumed food crops in the world. However, the complex polyploid nature of its genome makes genetic and functional analyses extremely challenging. The A genome, as a basic genome of bread wheat and other polyploid wheats, for example, T. turgidum (AABB), T. timopheevii (AAGG) and T. zhukovskyi (AAGGA(m)A(m)), is central to wheat evolution, domestication and genetic improvement. The progenitor species of the A genome is the diploid wild einkorn wheat T. urartu, which resembles cultivated wheat more extensively than do Aegilops speltoides (the ancestor of the B genome) and Ae. tauschii (the donor of the D genome), especially in the morphology and development of spike and seed. Here we present the generation, assembly and analysis of a whole-genome shotgun draft sequence of the T. urartu genome. We identified protein-coding gene models, performed genome structure analyses and assessed its utility for analysing agronomically important genes and for developing molecular markers. Our T. urartu genome assembly provides a diploid reference for analysis of polyploid wheat genomes and is a valuable resource for the genetic improvement of wheat.

  7. Introgression of wheat DNA markers from A, B and D genomes in early generation progeny of Aegilops cylindrica Host x Triticum aestivum L. hybrids.

    PubMed

    Schoenenberger, N; Felber, F; Savova-Bianchi, D; Guadagnuolo, R

    2005-11-01

    Introgression from allohexaploid wheat (Triticum aestivum L., AABBDD) to allotetraploid jointed goatgrass (Aegilops cylindrica Host, CCDD) can take place in areas where the two species grow in sympatry and hybridize. Wheat and Ae. cylindrica share the D genome, issued from the common diploid ancestor Aegilops tauschii Coss. It has been proposed that the A and B genome of bread wheat are secure places to insert transgenes to avoid their introgression into Ae. cylindrica because during meiosis in pentaploid hybrids, A and B genome chromosomes form univalents and tend to be eliminated whereas recombination takes place only in D genome chromosomes. Wheat random amplified polymorphic DNA (RAPD) fragments, detected in intergeneric hybrids and introgressed to the first backcross generation with Ae. cylindrica as the recurrent parent and having a euploid Ae. cylindrica chromosome number or one supernumerary chromosome, were assigned to wheat chromosomes using Chinese Spring nulli-tetrasomic wheat lines. Introgressed fragments were not limited to the D genome of wheat, but specific fragments of A and B genomes were also present in the BC1. Their presence indicates that DNA from any of the wheat genomes can introgress into Ae. cylindrica. Successfully located RAPD fragments were then converted into highly specific and easy-to-use sequence characterised amplified regions (SCARs) through sequencing and primer design. Subsequently these markers were used to characterise introgression of wheat DNA into a BC1S1 family. Implications for risk assessment of genetically modified wheat are discussed.

  8. Introgression of stem rust resistance genes SrTA10187 and SrTA10171 from Aegilops tauschii to wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The diploid progenitor of the wheat D genome, Aegilops tauschii, has provided a wealth of genes for resistance to many diseases and insect pests of wheat. Ae. tauschii is a readily accessible pool of genes for wheat breeding as genes can be transferred to elite wheat cultivars though direct hybridi...

  9. Fine mapping and genetic association analysis of Net2, the causative D-genome locus of low temperature-induced hybrid necrosis in interspecific crosses between tetraploid wheat and Aegilops tauschii.

    PubMed

    Sakaguchi, Kouhei; Nishijima, Ryo; Iehisa, Julio Cesar Masaru; Takumi, Shigeo

    2016-10-01

    Hybrid necrosis has been observed in many interspecific hybrids from crosses between tetraploid wheat and the wheat D-genome donor Aegilops tauschii. Type II necrosis is a kind of hybrid incompatibility that is specifically characterized by low-temperature induction and growth suppression. Two complementary genes, Net1 on the AB genome and Net2 on the D genome, putatively control type II necrosis in ABD triploids and synthetic hexaploid wheat. Toward map-based cloning of Net2, a fine map around the Net2 region on 2DS was constructed in this study. Using the draft genome sequence of Ae. tauschii and the physical map of the barley genome, the Net2 locus was mapped within a 0.6 cM interval between two closely linked markers. Although local chromosomal rearrangements were observed in the Net2-corresponding region between the barley/Brachypodium and Ae. tauschii genomes, the two closely linked markers were significantly associated with type II necrosis in Ae. tauschii. These results suggest that these markers will aid efficient selection of Net2 non-carrier individuals from the Ae. tauschii population and intraspecific progeny, and could help with introgression of agriculturally important genes from Ae. tauschii to common wheat.

  10. Impact of the D genome and quantitative trait loci on quantitative traits in a spring durum by spring bread wheat cross

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Desirable agronomic traits are similar for common hexaploid (6X) bread wheat (Triticum aestivum, 2n = 6x = 42, genome, AABBDD) and tetraploid (4X) durum wheat (Triticum turgidum durum, 2n = 4x = 28, genome, AABB). However, they are genetically isolated from each other due to an unequal number of ge...

  11. Quantitative trait locus analysis for spikelet shape-related traits in wild wheat progenitor Aegilops tauschii: Implications for intraspecific diversification and subspecies differentiation

    PubMed Central

    Hatano, Hitoshi; Takumi, Shigeo

    2017-01-01

    Wild diploid wheat Aegilops tauschii, the D-genome progenitor of common wheat, carries large genetic variation in spikelet and grain morphology. Two differentiated subspecies of Ae. tauschii, subspecies tauschii and strangulata, have been traditionally defined based on differences in spikelet morphology. Here, we first assessed six spikelet shape-related traits among 199 Ae. tauschii accessions, and found that the accessions belonging to TauL1major lineage produced significantly longer spikes, higher spikelet density, and shorter, narrower spikelets than another major lineage, TauL2, in which the strangulata accessions are included. Next, we performed quantitative trait locus (QTL) analysis of the spikelet and grain shape using three mapping populations derived from interlineage crosses between TauL1 and TauL2 to identify the genetic loci for the morphological variations of the spikelet and grain shape in Ae. tauschii. Three major QTL regions for the examined traits were detected on chromosomes 3D, 4D and 7D. The 3D and 4D QTL regions for several spikelet shape-related traits were conserved in the three mapping populations, which indicated that the 3D and 4D QTLs contribute to divergence of the two major lineages. The 7D QTLs were found only in a mapping population from a cross of the two subspecies, suggesting that these 7D QTLs may be closely related to subspecies differentiation in Ae. tauschii. Thus, QTL analysis for spikelet and grain morphology may provide useful information to elucidate the evolutionary processes of intraspecific differentiation. PMID:28264068

  12. Map-based analysis of the tenacious glume gene Tg-B1 of wild emmer and its role in wheat domestication

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The domestication of wheat was instrumental in spawning the civilization of humankind, and it occurred through genetic mutations that gave rise to types with non-fragile rachises, soft glumes, and free-threshing seed. The Tg-D1 gene on chromosome 2D of Aegilops tauschii, the D-genome progenitor of ...

  13. Physical mapping resources for large plant genomes: radiation hybrids for wheat D-genome progenitor aegilops tauschii accession AL8/78

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: A high quality reference sequence can provide a complete catalog of genes of a species, the regulatory elements that control their structure and function provide the basis for understanding the role of genes in evolution and development. However, development of a high quality referenc...

  14. Genetic Fingerprinting of Wheat and Its Progenitors by Mitochondrial Gene orf256

    PubMed Central

    El-Shehawi, Ahmed M.; Fahmi, Abdelmeguid I.; Sayed, Samy M.; Elseehy, Mona M.

    2012-01-01

    orf256 is a wheat mitochondrial gene associated with cytoplasmic male sterility (CMS) that has different organization in various species. This study exploited the orf256 gene as a mitochondrial DNA marker to study the genetic fingerprint of Triticum and Aegilops species. PCR followed by sequencing of common parts of the orf256 gene were employed to determine the fingerprint and molecular evolution of Triticum and Aegilops species. Although many primer pairs were used, two pairs of orf256 specific primers (5:-94/C: 482, 5:253/C: 482), amplified DNA fragments of 576 bp and 230 bp respectively in all species were tested. A common 500 bp of nine species of Triticum and Aegilops were aligned and showed consistent results with that obtained from other similar chloroplast or nuclear genes. Base alignment showed that there were various numbers of base substitutions in all species compared to S. cereal (Sc) (the outgroup species). Phylogenetic relationship revealed similar locations and proximity on phylogenetic trees established using plastid and nuclear genes. The results of this study open a good route to use unknown function genes of mitochondria in studying the molecular relationships and evolution of wheat and complex plant genomes. PMID:24970134

  15. Exploring the origin of the D genome of oat by fluorescence in situ hybridization.

    PubMed

    Luo, Xiaomei; Zhang, Haiqin; Kang, Houyang; Fan, Xing; Wang, Yi; Sha, Lina; Zhou, Yonghong

    2014-09-01

    Further understanding of the origin of cultivated oat would accelerate its genetic improvement. In particular, it would be useful to clarify which diploid progenitor contributed the D genome of this allohexaploid species. In this study, we demonstrate that the landmarks produced by fluorescence in situ hybridization (FISH) of species of Avena using probes derived from Avena sativa can be used to explore the origin of the D genome. Selected sets of probes were hybridized in several sequential experiments performed on exactly the same chromosome spreads, with multiple probes of cytological preparations. Probes pITS and A3-19 showed there might be a similar distribution of pITS between the Ac and D genomes. These results indicated that the Ac genome is closely related to the D genome, and that Avena canariensis (AcAc) could be the D-genome donor of cultivated oat.

  16. [Comparative genetic analysis of diploid naked wheat Triticum sinskajae and the progenitor T. monococcum accession].

    PubMed

    Goncharov, N P; Kondratenko, E Ia; Bannikova, S V; Konovalov, A A; Golovnina, K A

    2007-11-01

    The inheritance of several morphological and biochemical traits was studied in diploid (2n = 2x = 14) naked wheat Triticum sinskajae. The electrophoretic pattern of storage proteins (gliadins) of T. sinskajae differed only in two components from the pattern of T. monococcum accession k-20970, in a population of which T. sinskajae had been discovered. Analysis of biochemical polymorphisms revealed a difference between T. monococcum k-20970 and T. sinskajae in a slow 6-phosphogluconate dehydrogenase region but not in the other eight enzyme systems examined. Nucleotide sequence analysis of the nuclear Acc-1 (acetyl-CoA carboxylase) gene revealed a 46-bp deletion from intron 11 in T. monococcum k-20970 but not in T. sinskajae. This difference was not regarded as species-specific in view of the intraspecific polymorphism of the Acc-1 locus in T. monococcum. A monogenic control was demonstrated for the spring growth habit of T. sinskajae, and the monogenic control of the specific T. sinskajae ear shape was verified. The T. sinskajae ear shape is controlled by a recessive gene, while the T. monococcum ear shape is controlled by a dominant gene. The T. sinskajae ear shape, nakedness, soft glume, aristate glume, and the oblique brachium of the outer glume proved to be linked. The set of E. sin-skajae diagnostic characters is determined by a single (possibly, regulatory) gene or a set of closely linked genes. The two other genes specific to T. sinskajae-awnS, determining the awnlessness, and fig, determining the nonfissile inner (flower) glume--are, respectively, 1.35 +/- 0.98 and 3.34 +/- 1.54% of crossing over away from the mom gene, which determines the T. sinskajae ear shape.

  17. HMW and LMW glutenin alleles among putative tetraploid and hexaploid European spelt wheat (Triticum spelta L.) progenitors.

    PubMed

    Yan, Y; Hsam, S L K; Yu, J Z; Jiang, Y; Ohtsuka, I; Zeller, F J

    2003-11-01

    The allelic compositions of high- and low-molecular-weight subunits of glutenins (HMW-GS and LMW-GS) among European spelt ( Triticum spelta L.) and related hexaploid and tetraploid Triticum species were investigated by one- and two-dimensional polyacrylamide-gel electrophoresis (PAGE) and capillary electrophoresis (CE). A total of seven novel glutenin alleles (designated A1a*, B1d*, B1g*, B1f*, B1j*, D1a* at Glu-1 and A3h at the Glu-3 loci, respectively) in European spelt wheat were detected by SDS-PAGE, which were confirmed further by employing A-PAGE and CE methods. Particularly, two HMW-GS alleles, Glu-B1d* coding the subunits 6.1 and 22.1, and Glu-B1f* coding the subunits 13 and 22*, were found to occur in European spelt with frequencies of 32.34% and 5.11%, respectively. These two alleles were present in cultivated emmer (Triticum dicoccum), but they were not observed in bread wheat (Triticum aestivum L.). The allele Glu-B1g* coding for 13* and 19* subunits found in spelt wheat was also detected in club wheat (Triticum compactum L.). Additionally, two alleles coding for LMW-GS, Glu-A3h and Glu-B3d, occurred with high frequencies in spelt, club and cultivated emmer wheat, whereas these were not found or present with very low frequencies in bread wheat. Our results strongly support the secondary origin hypothesis, namely European spelt wheat originated from hybridization between cultivated emmer and club wheat. This is also confirmed experimentally by the artificial synthesis of spelt through crossing between old European emmer wheat, T. dicoccum and club wheat, T. compactum.

  18. [Phylogenetic relationships and intraspecific variation of D-genome Aegilops L. as revealed by RAPD analysis].

    PubMed

    Goriunova, S V; Kochieva, E Z; Chikida, N N; Pukhal'skiĭ, V A

    2004-05-01

    RAPD analysis was carried out to study the genetic variation and phylogenetic relationships of polyploid Aegilops species, which contain the D genome as a component of the alloploid genome, and diploid Aegilops tauschii, which is a putative donor of the D genome for common wheat. In total, 74 accessions of six D-genome Aegilops species were examined. The highest intraspecific variation (0.03-0.21) was observed for Ae. tauschii. Intraspecific distances between accessions ranged 0.007-0.067 in Ae. cylindrica, 0.017-0.047 in Ae. vavilovii, and 0.00-0.053 in Ae. juvenalis. Likewise, Ae. ventricosa and Ae. crassa showed low intraspecific polymorphism. The among-accession difference in alloploid Ae. ventricosa (genome DvNv) was similar to that of one parental species, Ae. uniaristata (N), and substantially lower than in the other parent, Ae. tauschii (D). The among-accession difference in Ae. cylindrica (CcDc) was considerably lower than in either parent, Ae. tauschii (D) or Ae. caudata (C). With the exception of Ae. cylindrica, all D-genome species--Ae. tauschii (D), Ae. ventricosa (DvNv), Ae. crassa (XcrDcrl and XcrDcrlDcr2), Ae. juvenalis (XjDjUj), and Ae. vavilovii (XvaDvaSva)--formed a single polymorphic cluster, which was distinct from clusters of other species. The only exception, Ae. cylindrica, did not group with the other D-genome species, but clustered with Ae. caudata (C), a donor of the C genome. The cluster of these two species was clearly distinct from the cluster of the other D-genome species and close to a cluster of Ae. umbellulata (genome U) and Ae. ovata (genome UgMg). Thus, RAPD analysis for the first time was used to estimate and to compare the interpopulation polymorphism and to establish the phylogenetic relationships of all diploid and alloploid D-genome Aegilops species.

  19. Wheat - Aegilops introgressions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aegilops is the most closely related genus to Triticum in the tribe Triticeae. Aegilops speltoides Tausch (B genome donor) and Ae. tauschii Coss. (D genome donor) contributed two of the three genomes present in common wheat (Triticum aestivum L., 2n = 6x = 42, AABBDD genomes). The Aegilops genus c...

  20. Genes encoding plastid acetyl-CoA carboxylase and 3-phosphoglycerate kinase of the Triticum/Aegilops complex and the evolutionary history of polyploid wheat

    PubMed Central

    Huang, Shaoxing; Sirikhachornkit, Anchalee; Su, Xiujuan; Faris, Justin; Gill, Bikram; Haselkorn, Robert; Gornicki, Piotr

    2002-01-01

    The classic wheat evolutionary history is one of adaptive radiation of the diploid Triticum/Aegilops species (A, S, D), genome convergence and divergence of the tetraploid (Triticum turgidum AABB, and Triticum timopheevii AAGG) and hexaploid (Triticum aestivum, AABBDD) species. We analyzed Acc-1 (plastid acetyl-CoA carboxylase) and Pgk-1 (plastid 3-phosphoglycerate kinase) genes to determine phylogenetic relationships among Triticum and Aegilops species of the wheat lineage and to establish the timeline of wheat evolution based on gene sequence comparisons. Triticum urartu was confirmed as the A genome donor of tetraploid and hexaploid wheat. The A genome of polyploid wheat diverged from T. urartu less than half a million years ago (MYA), indicating a relatively recent origin of polyploid wheat. The D genome sequences of T. aestivum and Aegilops tauschii are identical, confirming that T. aestivum arose from hybridization of T. turgidum and Ae. tauschii only 8,000 years ago. The diploid Triticum and Aegilops progenitors of the A, B, D, G, and S genomes all radiated 2.5–4.5 MYA. Our data suggest that the Acc-1 and Pgk-1 loci have different histories in different lineages, indicating genome mosaicity and significant intraspecific differentiation. Some loci of the S genome of Aegilops speltoides and the G genome of T. timophevii are closely related, suggesting the same origin of some parts of their genomes. None of the Aegilops genomes analyzed is a close relative of the B genome, so the diploid progenitor of the B genome remains unknown. PMID:12060759

  1. Tandemly Duplicated Safener-Induced Glutathione S-Transferase Genes from Triticum tauschii Contribute to Genome- and Organ-Specific Expression in Hexaploid Wheat1

    PubMed Central

    Xu, Fangxiu; Lagudah, Evans S.; Moose, Stephen P.; Riechers, Dean E.

    2002-01-01

    Glutathione S-transferase (GST) gene expression was examined in several Triticum species, differing in genome constitution and ploidy level, to determine genome contribution to GST expression in cultivated, hexaploid bread wheat (Triticum aestivum). Two tandemly duplicated tau class GST genes (TtGSTU1 and TtGSTU2) were isolated from a single bacterial artificial chromosome clone in a library constructed from the diploid wheat and D genome progenitor to cultivated wheat, Triticum tauschii. The genes are very similar in genomic structure and their encoded proteins are 95% identical. Gene-specific reverse transcriptase-polymerase chain reaction analysis revealed differential transcript accumulation of TtGSTU1 and TtGSTU2 in roots and shoots. Expression of both genes was induced by herbicide safeners, 2,4-dichlorophenoxyacetic acid and abscisic acid, in the shoots of T. tauschii; however, expression of TtGSTU1 was always higher than TtGSTU2. In untreated seedlings, TtGSTU1 was expressed in both shoots and roots, whereas TtGSTU2 expression was only detected in roots. RNA gel-blot analysis of ditelosomic, aneuploid lines that are deficient for 6AS, 6BS, or 6DS chromosome arms of cultivated, hexaploid bread wheat showed differential genome contribution to safener-induced GST expression in shoots compared with roots. The GST genes from the D genome of hexaploid wheat contribute most to safener-induced expression in the shoots, whereas GSTs from the B and D genomes contribute to safener-induced expression in the roots. PMID:12226515

  2. Tandemly duplicated Safener-induced glutathione S-transferase genes from Triticum tauschii contribute to genome- and organ-specific expression in hexaploid wheat.

    PubMed

    Xu, Fangxiu; Lagudah, Evans S; Moose, Stephen P; Riechers, Dean E

    2002-09-01

    Glutathione S-transferase (GST) gene expression was examined in several Triticum species, differing in genome constitution and ploidy level, to determine genome contribution to GST expression in cultivated, hexaploid bread wheat (Triticum aestivum). Two tandemly duplicated tau class GST genes (TtGSTU1 and TtGSTU2) were isolated from a single bacterial artificial chromosome clone in a library constructed from the diploid wheat and D genome progenitor to cultivated wheat, Triticum tauschii. The genes are very similar in genomic structure and their encoded proteins are 95% identical. Gene-specific reverse transcriptase-polymerase chain reaction analysis revealed differential transcript accumulation of TtGSTU1 and TtGSTU2 in roots and shoots. Expression of both genes was induced by herbicide safeners, 2,4-dichlorophenoxyacetic acid and abscisic acid, in the shoots of T. tauschii; however, expression of TtGSTU1 was always higher than TtGSTU2. In untreated seedlings, TtGSTU1 was expressed in both shoots and roots, whereas TtGSTU2 expression was only detected in roots. RNA gel-blot analysis of ditelosomic, aneuploid lines that are deficient for 6AS, 6BS, or 6DS chromosome arms of cultivated, hexaploid bread wheat showed differential genome contribution to safener-induced GST expression in shoots compared with roots. The GST genes from the D genome of hexaploid wheat contribute most to safener-induced expression in the shoots, whereas GSTs from the B and D genomes contribute to safener-induced expression in the roots.

  3. A draft physical map of a D-genome cotton species (Gossypium raimondii)

    PubMed Central

    2010-01-01

    Background Genetically anchored physical maps of large eukaryotic genomes have proven useful both for their intrinsic merit and as an adjunct to genome sequencing. Cultivated tetraploid cottons, Gossypium hirsutum and G. barbadense, share a common ancestor formed by a merger of the A and D genomes about 1-2 million years ago. Toward the long-term goal of characterizing the spectrum of diversity among cotton genomes, the worldwide cotton community has prioritized the D genome progenitor Gossypium raimondii for complete sequencing. Results A whole genome physical map of G. raimondii, the putative D genome ancestral species of tetraploid cottons was assembled, integrating genetically-anchored overgo hybridization probes, agarose based fingerprints and 'high information content fingerprinting' (HICF). A total of 13,662 BAC-end sequences and 2,828 DNA probes were used in genetically anchoring 1585 contigs to a cotton consensus genetic map, and 370 and 438 contigs, respectively to Arabidopsis thaliana (AT) and Vitis vinifera (VV) whole genome sequences. Conclusion Several lines of evidence suggest that the G. raimondii genome is comprised of two qualitatively different components. Much of the gene rich component is aligned to the Arabidopsis and Vitis vinifera genomes and shows promise for utilizing translational genomic approaches in understanding this important genome and its resident genes. The integrated genetic-physical map is of value both in assembling and validating a planned reference sequence. PMID:20569427

  4. Molecular evolution of Wcor15 gene enhanced our understanding of the origin of A, B and D genomes in Triticum aestivum

    PubMed Central

    Liu, Fangfang; Si, Hongqi; Wang, Chengcheng; Sun, Genlou; Zhou, Erting; Chen, Can; Ma, Chuanxi

    2016-01-01

    The allohexaploid bread wheat originally derived from three closely related species with A, B and D genome. Although numerous studies were performed to elucidate its origin and phylogeny, no consensus conclusion has reached. In this study, we cloned and sequenced the genes Wcor15-2A, Wcor15-2B and Wcor15-2D in 23 diploid, 10 tetraploid and 106 hexaploid wheat varieties and analyzed their molecular evolution to reveal the origin of the A, B and D genome in Triticum aestivum. Comparative analyses of sequences in diploid, tetraploid and hexaploid wheats suggest that T. urartu, Ae. speltoides and Ae. tauschii subsp. strangulata are most likely the donors of the Wcor15-2A, Wcor15-2B and Wcor15-2D locus in common wheat, respectively. The Wcor15 genes from subgenomes A and D were very conservative without insertion and deletion of bases during evolution of diploid, tetraploid and hexaploid. Non-coding region of Wcor15-2B gene from B genome might mutate during the first polyploidization from Ae. speltoides to tetraploid wheat, however, no change has occurred for this gene during the second allopolyploidization from tetraploid to hexaploid. Comparison of the Wcor15 gene shed light on understanding of the origin of the A, B and D genome of common wheat. PMID:27526862

  5. Map-based analysis of the tenacious glume gene Tg-B1 of wild emmer and its role in wheat domestication.

    PubMed

    Faris, Justin D; Zhang, Zengcui; Chao, Shiaoman

    2014-06-01

    The domestication of wheat was instrumental in spawning the civilization of humankind, and it occurred through genetic mutations that gave rise to types with non-fragile rachises, soft glumes, and free-threshing seed. Wild emmer (Triticum turgidum ssp. dicoccoides), the tetraploid AB-genome progenitor of domesticated wheat has genes that confer tenacious glumes (Tg) that underwent genetic mutations to give rise to free-threshing wheat. Here, we evaluated disomic substitution lines involving chromosomes 2A and 2B of wild emmer accessions substituted for homologous chromosomes in tetraploid and hexaploid backgrounds. The results suggested that both chromosomes 2A and 2B of wild emmer possess genes that inhibit threshability. A population of recombinant inbred lines derived from the tetraploid durum wheat variety Langdon crossed with a Langdon - T. turgidum ssp. dicoccoides accession PI 481521 chromosome 2B disomic substitution line was used to develop a genetic linkage map of 2B, evaluate the genetics of threshability, and map the gene derived from PI 481521 that inhibited threshability. A 2BS linkage map comprised of 58 markers was developed, and markers delineated the gene to a 2.3 cM interval. Comparative analysis with maps containing the tenacious glume gene Tg-D1 on chromosome arm 2 DS from Aegilops tauschii, the D genome progenitor of hexaploid wheat, revealed that the gene inhibiting threshability in wild emmer was homoeologous to Tg-D1 and therefore designated Tg-B1. Comparative analysis with rice and Brachypodium distachyon indicated a high level of divergence and poorly conserved colinearity, particularly near the Tg-B1 locus. These results provide a foundation for further studies involving Tg-B1, which, together with Tg-D1, had profound influences on wheat domestication.

  6. Molecular characterization and chromosome-specific TRAP-marker development for Langdon durum D-genome disomic substitution lines.

    PubMed

    Li, J; Klindworth, D L; Shireen, F; Cai, X; Hu, J; Xu, S S

    2006-12-01

    The aneuploid stocks of durum wheat (Triticum turgidum L. subsp. durum (Desf.) Husnot) and common wheat (T. aestivum L.) have been developed mainly in 'Langdon' (LDN) and 'Chinese Spring' (CS) cultivars, respectively. The LDN-CS D-genome chromosome disomic substitution (LDN-DS) lines, where a pair of CS D-genome chromosomes substitute for a corresponding homoeologous A- or B-genome chromosome pair of LDN, have been widely used to determine the chromosomal locations of genes in tetraploid wheat. The LDN-DS lines were originally developed by crossing CS nulli-tetrasomics with LDN, followed by 6 backcrosses with LDN. They have subsequently been improved with 5 additional backcrosses with LDN. The objectives of this study were to characterize a set of the 14 most recent LDN-DS lines and to develop chromosome-specific markers, using the newly developed TRAP (target region amplification polymorphism)-marker technique. A total of 307 polymorphic DNA fragments were amplified from LDN and CS, and 302 of them were assigned to individual chromosomes. Most of the markers (95.5%) were present on a single chromosome as chromosome-specific markers, but 4.5% of the markers mapped to 2 or more chromosomes. The number of markers per chromosome varied, from a low of 10 (chromosomes 1A and 6D) to a high of 24 (chromosome 3A). There was an average of 16.6, 16.6, and 15.9 markers per chromosome assigned to the A-, B-, and D-genome chromosomes, respectively, suggesting that TRAP markers were detected at a nearly equal frequency on the 3 genomes. A comparison of the source of the expressed sequence tags (ESTs), used to derive the fixed primers, with the chromosomal location of markers revealed that 15.5% of the TRAP markers were located on the same chromosomes as the ESTs used to generate the fixed primers. A fixed primer designed from an EST mapped on a chromosome or a homoeologous group amplified at least 1 fragment specific to that chromosome or group, suggesting that the fixed primers

  7. Hulled wheats: Origin, nutritional value and future prospects

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wild and domesticated hulled (or non-free threshing) wheat species are among the most ancient cereals of the Fertile Crescent and the Mediterranean Region. They include wild emmer, the progenitor of most cultivated wheat species; wild and domesticated einkorn; and domesticated emmer and spelt wheat....

  8. Wheat Allergy

    MedlinePlus

    ... Wheat (bran, durum, germ, gluten, grass, malt, sprouts, starch) Wheat bran hydrolysate Wheat germ oil Wheat grass ... in the following: Glucose syrup Surimi Soy sauce Starch (gelatinized starch, modified starch, modified food starch, vegetable ...

  9. Synthetic hexaploids: Harnessing species of the primary gene pool for wheat improvement

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Incorporation of genetic diversity into elite wheat cultivars has long been recognized as a means of improving wheat productivity and securing the global wheat supply. Synthetic hexaploid wheat (SHW) recreated from its two progenitor species, the tetraploid, Triticum turgidum and its diploid wild r...

  10. Evolution of New Disease Specificity at a Single Resistance Locus in a Crop-Weed Complex: Reconstitution of the Lr21 Gene in Wheat.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Leaf-rust resistance gene Lr21, present in modern varieties of hexaploid wheat, originated in goatgrass Aegilops tauschii Coss., the D genome donor of wheat. The goatgrass donor was collected in Iran where it grows as a weed in wheat fields as part of the native agricultural ecosystem. In order to ...

  11. Genetic diversity among synthetic hexaploid wheat accessions with resistance to several fungal diseases

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Synthetic hexaploid wheat (SHW) is known to be an excellent vehicle for transferring large genetic variations especially the many useful traits present in the D genome of Aegilops tauschii Coss (2n=2x=14, DD) for improvement of cultivated wheat (Triticum aestivum L., 2n=6x=42, AABBDD). The objectiv...

  12. Ecogeography, genetic diversity, and breeding value of wild emmer wheat (Triticum dicoccoides Korn ex Asch. & Graebn.) Thell.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wild emmer wheat (Triticum dicoccoides Körn ex Asch. & Graebn.) Thell. is the allotetraploid (2n=4x=28; genome BBAA) progenitor of cultivated wheat. It is fully compatible with the tetraploid (BBAA) durum wheat (Triticum durum), and can be crossed with the hexaploid (2n=6x=42; BBAADD) wheat (Triticu...

  13. Development of a D genome specific marker resource for diploid and hexaploid wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mapping and map-based cloning of genes that control agriculturally and economically important traits remain great challenges for plants with complex highly repetitive genomes such as those of the grass tribe, Triticeae. Mapping limitations in the Triticeae are primarily due to low frequencies of po...

  14. Quantification of genetic relationships among A genomes of wheats.

    PubMed

    Brandolini, A; Vaccino, P; Boggini, G; Ozkan, H; Kilian, B; Salamini, F

    2006-04-01

    The genetic relationships of A genomes of Triticum urartu (Au) and Triticum monococcum (Am) in polyploid wheats are explored and quantified by AFLP fingerprinting. Forty-one accessions of A-genome diploid wheats, 3 of AG-genome wheats, 19 of AB-genome wheats, 15 of ABD-genome wheats, and 1 of the D-genome donor Ae. tauschii have been analysed. Based on 7 AFLP primer combinations, 423 bands were identified as potentially A genome specific. The bands were reduced to 239 by eliminating those present in autoradiograms of Ae. tauschii, bands interpreted as common to all wheat genomes. Neighbour-joining analysis separates T. urartu from T. monococcum. Triticum urartu has the closest relationship to polyploid wheats. Triticum turgidum subsp. dicoccum and T. turgidum subsp. durum lines are included in tightly linked clusters. The hexaploid spelts occupy positions in the phylogenetic tree intermediate between bread wheats and T. turgidum. The AG-genome accessions cluster in a position quite distant from both diploid and other polyploid wheats. The estimates of similarity between A genomes of diploid and polyploid wheats indicate that, compared with Am, Au has around 20% higher similarity to the genomes of polyploid wheats. Triticum timo pheevii AG genome is molecularly equidistant from those of Au and Am wheats.

  15. De Novo Transcriptome Assembly and Analyses of Gene Expression during Photomorphogenesis in Diploid Wheat Triticum monococcum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Triticum monococcum (2n), a close ancestor of the A-genome progenitor of cultivated hexaploid wheat, was used as a model to study components regulating photomorphogenesis in diploid wheat. Constructed were genome-wide transcriptomes of two Triticum monococcum subspecies, the wild winter wheat T. mo...

  16. 3D genome structure modeling by Lorentzian objective function.

    PubMed

    Trieu, Tuan; Cheng, Jianlin

    2016-11-29

    The 3D structure of the genome plays a vital role in biological processes such as gene interaction, gene regulation, DNA replication and genome methylation. Advanced chromosomal conformation capture techniques, such as Hi-C and tethered conformation capture, can generate chromosomal contact data that can be used to computationally reconstruct 3D structures of the genome. We developed a novel restraint-based method that is capable of reconstructing 3D genome structures utilizing both intra-and inter-chromosomal contact data. Our method was robust to noise and performed well in comparison with a panel of existing methods on a controlled simulated data set. On a real Hi-C data set of the human genome, our method produced chromosome and genome structures that are consistent with 3D FISH data and known knowledge about the human chromosome and genome, such as, chromosome territories and the cluster of small chromosomes in the nucleus center with the exception of the chromosome 18. The tool and experimental data are available at https://missouri.box.com/v/LorDG.

  17. Physical mapping of a large plant genome using global high-information content fingerprinting: a distal region of wheat chromosome 3DS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Physical maps employing libraries of bacterial artificial chromosome (BAC) clones are essential for comparative genomics and sequencing of large and repetitive genomes such as those of wheat. We report the use of the Ae. tauschii, the diploid ancestor of the wheat D genome, for the construction of t...

  18. Simultaneous transfer, introgression and genomic localization of genes for resistance to stem rust race TTKSK Ug99 from Aegilops tauschii to wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wheat production is currently threatened by widely virulent races of the wheat stem rust fungus, Puccinia graminis f. sp. tritici, that are part of the TTKSK (also known as ‘Ug99’) race group. The diploid D genome donor species Aegilops tauschii (2n=2x=14, DD) is a readily accessible source of resis...

  19. Analysis of the Lr34/Yr18 rust resistance region in wheat germplasm

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An insertion/deletion size variant located at the csLV34 locus on chromosome 7D within an intron sequence of a sulphate transporter-like gene tightly linked to the Lr34/Yr18 dual rust resistance was used to examine a global collection of wheat cultivars, landraces and D genome containing diploid and...

  20. Salt tolerance during germination and seedling growth of wild wheat Aegilops tauschii and its impact on the species range expansion

    PubMed Central

    Saisho, Daisuke; Takumi, Shigeo; Matsuoka, Yoshihiro

    2016-01-01

    Adaptation to edaphic stress may have a key role in plant species range expansion. Aegilops tauschii Coss., the common wheat’s D-genome progenitor native to the Transcaucasus-Middle East region, is a good model to study the relationships between soil salinity and plant distributions: one of its intraspecific sublineages, TauL1b, drove the long-distance eastward expansion of this species range reaching semi-arid-central Asia. Salt tolerance during germination and seedling growth was evaluated in 206 Ae. tauschii accessions by treating seeds with NaCl solutions differing in concentrations. Differences in natural variation patterns were analyzed between sublineages and associated with natural edaphic condition variables, and then compared with reproductive trait variation patterns. The natural variations observed in NaCl-induced-stress tolerance had clear geographic and genetic structure. Seedling growth significantly increased in the TauL1b accessions that were collected from salt-affected soil habitats, whereas germinability did not. Principal component analysis suggested that the NaCl-induced-stress tolerances and reproductive traits might have had a similar degree of influence on Ae. tauschii’s eastward range expansion. Adaptation to salt-affected soils through increased seedling growth was an important factor for the species’ successful colonization of the semi-arid central Asian habitats. TauL1b accessions might provide useful genetic resources for salt-tolerant wheat breeds. PMID:27929044

  1. Ancient hybridizations among the ancestral genomes of bread wheat.

    PubMed

    Marcussen, Thomas; Sandve, Simen R; Heier, Lise; Spannagl, Manuel; Pfeifer, Matthias; Jakobsen, Kjetill S; Wulff, Brande B H; Steuernagel, Burkhard; Mayer, Klaus F X; Olsen, Odd-Arne

    2014-07-18

    The allohexaploid bread wheat genome consists of three closely related subgenomes (A, B, and D), but a clear understanding of their phylogenetic history has been lacking. We used genome assemblies of bread wheat and five diploid relatives to analyze genome-wide samples of gene trees, as well as to estimate evolutionary relatedness and divergence times. We show that the A and B genomes diverged from a common ancestor ~7 million years ago and that these genomes gave rise to the D genome through homoploid hybrid speciation 1 to 2 million years later. Our findings imply that the present-day bread wheat genome is a product of multiple rounds of hybrid speciation (homoploid and polyploid) and lay the foundation for a new framework for understanding the wheat genome as a multilevel phylogenetic mosaic.

  2. Wheat Newsletter

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This review was written for readers of the Annual Wheat Newsletter, Volume 53. It summarizes activities on wheat research during 2006 at the U.S. Grain Marketing Research Laboratory (USGMRL). The article includes technical abstracts of research accomplishments from the Grain Quality and Structure ...

  3. Eat Wheat!

    ERIC Educational Resources Information Center

    Idaho Wheat Commission, Boise.

    This pamphlet contains puzzles, games, and a recipe designed to teach elementary school pupils about wheat. It includes word games based on the U.S. Department of Agriculture Food Guide Pyramid and on foods made from wheat. The Food Guide Pyramid can be cut out of the pamphlet and assembled as a three-dimensional information source and food guide.…

  4. The origin of spelt and free-threshing hexaploid wheat.

    PubMed

    Dvorak, Jan; Deal, Karin R; Luo, Ming-Cheng; You, Frank M; von Borstel, Keith; Dehghani, Hamid

    2012-01-01

    It is widely believed that hexaploid wheat originated via hybridization of hulled tetraploid emmer with Aegilops tauschii (genomes DD) and that the nascent hexaploid was spelt, from which free-threshing wheat evolved by mutations. To reassess the role of spelt in the evolution of Triticum aestivum, 4 disomic substitution lines of Ae. tauschii chromosome 2D in Chinese Spring wheat were developed and one of them was used to map the Tg locus, which controls glume tenacity in Ae. tauschii, relative to simple sequence repeat (SSR) and expressed sequence tag loci on wheat chromosome 2D. The segregation of SSR markers was used to assess the presence of Tg alleles in 11 accessions of spelt, both from Europe and from Asia. Ten of them had an inactive tg allele in the D genome and most had an active Tg allele in the B genome. This is consistent with spelt being derived from free-threshing hexaploid wheat by hybridization of free-threshing wheat with hulled emmer. It is proposed that the tetraploid parent of hexaploid wheat was not hulled emmer but a free-threshing form of tetraploid wheat.

  5. Variation in Susceptibility to Wheat dwarf virus among Wild and Domesticated Wheat

    PubMed Central

    Nygren, Jim; Shad, Nadeem; Kvarnheden, Anders; Westerbergh, Anna

    2015-01-01

    We investigated the variation in plant response in host-pathogen interactions between wild (Aegilops spp., Triticum spp.) and domesticated wheat (Triticum spp.) and Wheat dwarf virus (WDV). The distribution of WDV and its wild host species overlaps in Western Asia in the Fertile Crescent, suggesting a coevolutionary relationship. Bread wheat originates from a natural hybridization between wild emmer wheat (carrying the A and B genomes) and the wild D genome donor Aegilops tauschii, followed by polyploidization and domestication. We studied whether the strong selection during these evolutionary processes, leading to genetic bottlenecks, may have resulted in a loss of resistance in domesticated wheat. In addition, we investigated whether putative fluctuations in intensity of selection imposed on the host-pathogen interactions have resulted in a variation in susceptibility to WDV. To test our hypotheses we evaluated eighteen wild and domesticated wheat taxa, directly or indirectly involved in wheat evolution, for traits associated with WDV disease such as leaf chlorosis, different growth traits and WDV content. The plants were exposed to viruliferous leafhoppers (Psammotettix alienus) in a greenhouse trial and evaluated at two time points. We found three different plant response patterns: i) continuous reduction in growth over time, ii) weak response at an early stage of plant development but a much stronger response at a later stage, and iii) remission of symptoms over time. Variation in susceptibility may be explained by differences in the intensity of natural selection, shaping the coevolutionary interaction between WDV and the wild relatives. However, genetic bottlenecks during wheat evolution have not had a strong impact on WDV resistance. Further, this study indicates that the variation in susceptibility may be associated with the genome type and that the ancestor Ae. tauschii may be useful as genetic resource for the improvement of WDV resistance in wheat. PMID

  6. The diploid D genome cottons (Gossypium spp.) of the new world

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The diploid D genome cottons (Gossypium spp.) of the New World are part of a great reservoir of important genes for improving fiber quality, pest and disease resistance, and drought and salt tolerance in the modern cultivated Upland/Acala (G. hirsutum) and Pima [also known as Sea Island or Egyptian ...

  7. Wheat: The Whole Story.

    ERIC Educational Resources Information Center

    Oklahoma State Dept. of Education, Oklahoma City.

    This publication presents information on wheat. Wheat was originally a wild grass and not native to the United States. Wheat was not planted there until 1777 (and then only as a hobby crop). Wheat is grown on more acres than any other grain in this country. Soft wheats are grown east of the Mississippi River, and hard wheats are grown west of the…

  8. Resident vascular progenitor cells.

    PubMed

    Torsney, Evelyn; Xu, Qingbo

    2011-02-01

    Homeostasis of the vessel wall is essential for maintaining its function, including blood pressure and patency of the lumen. In physiological conditions, the turnover rate of vascular cells, i.e. endothelial and smooth muscle cells, is low, but markedly increased in diseased situations, e.g. vascular injury after angioplasty. It is believed that mature vascular cells have an ability to proliferate to replace lost cells normally. On the other hand, recent evidence indicates stem/progenitor cells may participate in vascular repair and the formation of neointimal lesions in severely damaged vessels. It was found that all three layers of the vessels, the intima, media and adventitia, contain resident progenitor cells, including endothelial progenitor cells, mesenchymal stromal cells, Sca-1+ and CD34+ cells. Data also demonstrated that these resident progenitor cells could differentiate into a variety of cell types in response to different culture conditions. However, collective data were obtained mostly from in vitro culture assays and phenotypic marker studies. There are many unanswered questions concerning the mechanism of cell differentiation and the functional role of these cells in vascular repair and the pathogenesis of vascular disease. In the present review, we aim to summarize the data showing the presence of the resident progenitor cells, to highlight possible signal pathways orchestrating cell differentiation toward endothelial and smooth muscle cells, and to discuss the data limitations, challenges and controversial issues related to the role of progenitors. This article is part of a special issue entitled, "Cardiovascular Stem Cells Revisited".

  9. Wheat Mitochondria

    PubMed Central

    Raison, John K.; Chapman, Elza A.; White, P. Y.

    1977-01-01

    Mitochondrial oxidative activity and membrane lipid structure of two wheat (Triticum aestivum L.) cultivars were measured as a function of temperature. The Arrhenius activation energy for the oxidation of both succinate and α-ketoglutarate was constant over the temperature range of 3 to 27 C. The activation energy for succinate-cytochrome c oxidoreductase activity was also constant over the same temperature range. The concentration of mitochondria in the reaction, the degree of initial inhibition of state 3 respiration, and the time after isolation of mitochondria were each shown to be capable of causing a disproportionate decrease in the rate of oxidation at low temperatures which resulted in an apparent increase in the activation energy of oxidative activity. Using three spin-labeling techniques, wheat membrane lipids were shown to undergo phase changes at about 0 C and 30 C. It is concluded that the membrane lipids of wheat, a chillingresistant plant, undergo a phase transition similar to the transition observed in the membrane lipids of chilling-sensitive plants. For wheat, however, the transition is initiated at a lower temperature and extends over a wider temperature range. PMID:16659906

  10. CTCF-Mediated Human 3D Genome Architecture Reveals Chromatin Topology for Transcription

    PubMed Central

    Tang, Zhonghui; Luo, Oscar Junhong; Li, Xingwang; Zheng, Meizhen; Zhu, Jacqueline Jufen; Szalaj, Przemyslaw; Trzaskoma, Pawel; Magalska, Adriana; Wlodarczyk, Jakub; Ruszczycki, Blazej; Michalski, Paul; Piecuch, Emaly; Wang, Ping; Wang, Danjuan; Tian, Simon Zhongyuan; Penrad-Mobayed, May; Sachs, Laurent M.; Ruan, Xiaoan; Wei, Chia-Lin; Liu, Edison T.; Wilczynski, Grzegorz M.; Plewczynski, Dariusz; Li, Guoliang; Ruan, Yijun

    2015-01-01

    Summary Spatial genome organization and its effect on transcription remains a fundamental question. We applied an advanced ChIA-PET strategy to comprehensively map higher-order chromosome folding and specific chromatin interactions mediated by CTCF and RNAPII with haplotype specificity and nucleotide resolution in different human cell lineages. We find that CTCF/cohesin-mediated interaction anchors serve as structural foci for spatial organization of constitutive genes concordant with CTCF-motif orientation, whereas RNAPII interacts within these structures by selectively drawing cell-type-specific genes towards CTCF-foci for coordinated transcription. Furthermore, we show that haplotype-variants and allelic-interactions have differential effects on chromosome configuration influencing gene expression and may provide mechanistic insights into functions associated with disease susceptibility. 3D-genome simulation suggests a model of chromatin folding around chromosomal axes, where CTCF is involved in defining the interface between condensed and open compartments for structural regulation. Our 3D-genome strategy thus provides unique insights in the topological mechanism of human variations and diseases. PMID:26686651

  11. Inheritance of dense spike in diploid wheat and Aegilops squarrosa.

    PubMed

    Goncharov, N P; Kondratenko, E Ya; Kawahara, T

    2002-01-01

    The individuals of diploid wheat Triticum boeoticum, T. monococcum and T. sinskajae and goatgrass Aegilops squarrosa were picked out with screening the dense spike characteristics. The dense-spike accessions were discovered in diploid wheat (T. sinskajae) and Ae. squarrosa. Inheritance of the dense spike was studied. The trait was found to be controlled by a recessive gene in T. sinskajae and by an incomplete dominant gene in Ae. squarrosa. The dosage effect of dominant gene C was detected in interspecific pentaploid F1 hybrid plants T. compactum x T. palmovae (2n =35, A(u)A(b)BDD genome). The spike of pentaploid hybrid was not so dense as compared to hexaploid wheat T. compactum. This is the first report showing similarity of the expression of dominant gene C on D genome of the hexaploid wheat to that of dense spike gene in Ae. squarrosa. The existence of dense-spike accessions of Ae. squarrosa allows us to hypothesize that the origin of T. compactum is independent from that of common wheat.

  12. Spring Wheat Breeding

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Common wheat, known as bread wheat, is one of major crops for human food consumption. It is further classified into spring and winter wheat based on the distinct growing seasons. Spring wheat is grown worldwide and usually planted in the spring and harvested in late summer or early fall. In this c...

  13. Structural organization of the barley D-hordein locus in comparison with its orthologous regions of wheat genomes.

    PubMed

    Gu, Yong Qiang; Anderson, Olin D; Londeorë, Cynthia F; Kong, Xiuying; Chibbar, Ravindra N; Lazo, Gerard R

    2003-12-01

    D hordein, a prolamin storage protein of barley endosperms, is highly homologous to the high molecular weight (HWM) glutenin subunits, which are the major determinants of bread-making quality in wheat flour. In hexaploid wheat (AABBDD), each genome contains two paralogous copies of HMW-glutenin genes that encode the x- and y-type HMW-glutenin subunits. Previously, we reported the sequence analysis of a 102-kb genomic region that contains the HMW-glutenin locus of the D genome from Aegilops tauschii, the donor of the D genome of hexaploid wheat. Here, we present the sequence analysis of a 120-kb D-hordein region of the barley genome, a more distantly related member of the Triticeae grass tribe. Comparative sequence analysis revealed that gene content and order are generally conserved. Genes included in both of these orthologous regions are arranged in the following order: a Xa21-like receptor kinase, an endosperm globulin, an HMW prolamin, and a serine (threonine) protein kinase. However, in the wheat D genome, a region containing both the globulin and HMW-glutenin gene was duplicated, indicating that this duplication event occurred after the separation of the wheat and barley genomes. The intergenic regions are divergent with regard to the sequence and structural organization. It was found that different types of retroelements are responsible for the intergenic structure divergence in the wheat and barley genomes. In the barley region, we identified 16 long terminal repeat (LTR) retrotransposons in three distinct nested clusters. These retroelements account for 63% of the contig sequence. In addition, barley D hordein was compared with wheat HMW glutenins in terms of cysteine residue conservation and repeat domain organization.

  14. Unraveling the 3D genome: genomics tools for multi-scale exploration

    PubMed Central

    Risca, Viviana I.; Greenleaf, William J.

    2015-01-01

    A decade of rapid method development has begun to yield exciting insights into the three-dimensional architecture of the metazoan genome and the roles it may play in regulating transcription. We review here core methods and new tools in the modern genomicist’s toolbox at three length scales, ranging from single base pair to megabase scale chromosomal domains, and discuss the emerging picture of the 3D genome that these tools have revealed. Blind spots remain, especially at intermediate length scales spanning a few nucleosomes, but thanks in part to new technologies that permit targeted alteration of chromatin states and time-resolved studies, the next decade holds great promise for hypothesis-driven research into the mechanisms that drive genome architecture and transcriptional regulation. PMID:25887733

  15. Architectural proteins: regulators of 3D genome organization in cell fate.

    PubMed

    Gómez-Díaz, Elena; Corces, Victor G

    2014-11-01

    The relation between alterations in chromatin structure and changes in gene expression during cell differentiation has served as a paradigm to understand the link between genome organization and function. Yet, the factors involved and the mechanisms by which the 3D organization of the nucleus is established remain poorly understood. The use of Chromosome Conformation-Capture (3C)-based approaches has resulted in a new appreciation of the role of architectural proteins in the establishment of 3D genome organization. Architectural proteins orchestrate higher-order chromatin organization through the establishment of interactions between regulatory elements across multiple spatial scales. The regulation of these proteins, their interaction with DNA, and their co-occurrence in the genome, may be responsible for the plasticity of 3D chromatin architecture that dictates cell and time-specific blueprints of gene expression.

  16. Architectural proteins: Regulators of 3D genome organization in cell fate

    PubMed Central

    Gómez-Díaz, Elena; Corces, Victor G.

    2014-01-01

    The relationship between alterations in chromatin structure and changes in gene expression during cell differentiation has served as a paradigm to understand the link between genome organization and function. Yet the factors involved and the mechanisms by which the three-dimensional organization of the nucleus is established remain poorly understood. The use of Chromosome Conformation-Capture (3C) based approaches has resulted in a new appreciation of the role of architectural proteins in the establishment of 3D genome organization. Architectural proteins orchestrate higher-order chromatin organization through the establishment of interactions between regulatory elements across multiple spatial scales. The regulation of these proteins, their interaction with DNA, and their co occurrence in the genome, may be responsible for the plasticity of 3D-chromatin architecture that dictates cell and time-specific blueprints of gene expression. PMID:25218583

  17. Photoperiod insensitive Ppd-A1a mutations in tetraploid wheat (Triticum durum Desf.).

    PubMed

    Wilhelm, Edward P; Turner, Adrian S; Laurie, David A

    2009-01-01

    Variation in photoperiod response plays an important role in adapting crops to agricultural environments. In hexaploid wheat, mutations conferring photoperiod insensitivity (flowering after a similar time in short or long days) have been mapped on the 2B (Ppd-B1) and 2D (Ppd-D1) chromosomes in colinear positions to the 2H Ppd-H1 gene of barley. No A genome mutation is known. On the D genome, photoperiod insensitivity is likely to be caused by deletion of a regulatory region that causes misexpression of a member of the pseudo-response regulator (PRR) gene family and activation of the photoperiod pathway irrespective of day length. Photoperiod insensitivity in tetraploid (durum) wheat is less characterized. We compared pairs of near-isogenic lines that differ in photoperiod response and showed that photoperiod insensitivity is associated with two independent deletions of the A genome PRR gene that cause altered expression. This is associated with induction of the floral regulator FT. The A genome deletions and the previously described D genome deletion of hexaploid wheat remove a common region, suggesting a shared mechanism for photoperiod insensitivity. The identification of the A genome mutations will allow characterization of durum wheat germplasm and the construction of genotypes with novel combinations of photoperiod insensitive alleles.

  18. Generation of amphidiploids from hybrids of wheat and related species from the genera Aegilops, Secale, Thinopyrum, and Triticum as a source of genetic variation for wheat improvement.

    PubMed

    Nemeth, Csilla; Yang, Cai-yun; Kasprzak, Paul; Hubbart, Stella; Scholefield, Duncan; Mehra, Surbhi; Skipper, Emma; King, Ian; King, Julie

    2015-02-01

    We aim to improve diversity of domesticated wheat by transferring genetic variation for important target traits from related wild and cultivated grass species. The present study describes the development of F1 hybrids between wheat and related species from the genera Aegilops, Secale, Thinopyrum, and Triticum and production of new amphidiploids. Amphidiploid lines were produced from 20 different distant relatives. Both colchicine and caffeine were successfully used to double the chromosome numbers. The genomic constitution of the newly formed amphidiploids derived from seven distant relatives was determined using genomic in situ hybridization (GISH). Altogether, 42 different plants were analysed, 19 using multicolour GISH separating the chromosomes from the A, B, and D genomes of wheat, as well as the distant relative, and 23 using single colour GISH. Restructuring of the allopolyploid genome, both chromosome losses and aneuploidy, was detected in all the genomes contained by the amphidiploids. From the observed chromosome numbers there is an indication that in amphidiploids the B genome of wheat suffers chromosome losses less frequently than the other wheat genomes. Phenotyping to realize the full potential of the wheat-related grass germplasm is underway, linking the analyzed genotypes to agronomically important target traits.

  19. Proteomics of Wheat Flour

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wheat is a major food crop grown on more than 215 million hectares of land throughout the world. Wheat flour provides an important source of protein for human nutrition and is used as a principal ingredient in a wide range of food products, largely because wheat flour, when mixed with water, has un...

  20. Circulating Progenitor Cells and Scleroderma

    PubMed Central

    2010-01-01

    Scleroderma (systemic sclerosis) is a disease of unknown origins that involves tissue ischemia and fibrosis in the skin and internal organs such as the lungs. The tissue ischemia is due to a lack of functional blood vessels and an inability to form new blood vessels. Bone marrow–derived circulating endothelial progenitor cells play a key role in blood vessel repair and neovascularization. Scleroderma patients appear to have defects in the number and function of circulating endothelial progenitor cells. Scleroderma patients also develop fibrotic lesions, possibly as the result of tissue ischemia. Fibroblast-like cells called fibrocytes that differentiate from a different pool of bone marrow–derived circulating progenitor cells seem to be involved in this process. Manipulating the production, function, and differentiation of circulating progenitor cells represents an exciting new possibility for treating scleroderma. PMID:18638425

  1. Mining 3D genome structure populations identifies major factors governing the stability of regulatory communities

    PubMed Central

    Dai, Chao; Li, Wenyuan; Tjong, Harianto; Hao, Shengli; Zhou, Yonggang; Li, Qingjiao; Chen, Lin; Zhu, Bing; Alber, Frank; Jasmine Zhou, Xianghong

    2016-01-01

    Three-dimensional (3D) genome structures vary from cell to cell even in an isogenic sample. Unlike protein structures, genome structures are highly plastic, posing a significant challenge for structure-function mapping. Here we report an approach to comprehensively identify 3D chromatin clusters that each occurs frequently across a population of genome structures, either deconvoluted from ensemble-averaged Hi-C data or from a collection of single-cell Hi-C data. Applying our method to a population of genome structures (at the macrodomain resolution) of lymphoblastoid cells, we identify an atlas of stable inter-chromosomal chromatin clusters. A large number of these clusters are enriched in binding of specific regulatory factors and are therefore defined as ‘Regulatory Communities.' We reveal two major factors, centromere clustering and transcription factor binding, which significantly stabilize such communities. Finally, we show that the regulatory communities differ substantially from cell to cell, indicating that expression variability could be impacted by genome structures. PMID:27240697

  2. 3D-GNOME: an integrated web service for structural modeling of the 3D genome.

    PubMed

    Szalaj, Przemyslaw; Michalski, Paul J; Wróblewski, Przemysław; Tang, Zhonghui; Kadlof, Michal; Mazzocco, Giovanni; Ruan, Yijun; Plewczynski, Dariusz

    2016-07-08

    Recent advances in high-throughput chromosome conformation capture (3C) technology, such as Hi-C and ChIA-PET, have demonstrated the importance of 3D genome organization in development, cell differentiation and transcriptional regulation. There is now a widespread need for computational tools to generate and analyze 3D structural models from 3C data. Here we introduce our 3D GeNOme Modeling Engine (3D-GNOME), a web service which generates 3D structures from 3C data and provides tools to visually inspect and annotate the resulting structures, in addition to a variety of statistical plots and heatmaps which characterize the selected genomic region. Users submit a bedpe (paired-end BED format) file containing the locations and strengths of long range contact points, and 3D-GNOME simulates the structure and provides a convenient user interface for further analysis. Alternatively, a user may generate structures using published ChIA-PET data for the GM12878 cell line by simply specifying a genomic region of interest. 3D-GNOME is freely available at http://3dgnome.cent.uw.edu.pl/.

  3. 3D-GNOME: an integrated web service for structural modeling of the 3D genome

    PubMed Central

    Szalaj, Przemyslaw; Michalski, Paul J.; Wróblewski, Przemysław; Tang, Zhonghui; Kadlof, Michal; Mazzocco, Giovanni; Ruan, Yijun; Plewczynski, Dariusz

    2016-01-01

    Recent advances in high-throughput chromosome conformation capture (3C) technology, such as Hi-C and ChIA-PET, have demonstrated the importance of 3D genome organization in development, cell differentiation and transcriptional regulation. There is now a widespread need for computational tools to generate and analyze 3D structural models from 3C data. Here we introduce our 3D GeNOme Modeling Engine (3D-GNOME), a web service which generates 3D structures from 3C data and provides tools to visually inspect and annotate the resulting structures, in addition to a variety of statistical plots and heatmaps which characterize the selected genomic region. Users submit a bedpe (paired-end BED format) file containing the locations and strengths of long range contact points, and 3D-GNOME simulates the structure and provides a convenient user interface for further analysis. Alternatively, a user may generate structures using published ChIA-PET data for the GM12878 cell line by simply specifying a genomic region of interest. 3D-GNOME is freely available at http://3dgnome.cent.uw.edu.pl/. PMID:27185892

  4. Population-based 3D genome structure analysis reveals driving forces in spatial genome organization

    PubMed Central

    Li, Wenyuan; Kalhor, Reza; Dai, Chao; Hao, Shengli; Gong, Ke; Zhou, Yonggang; Li, Haochen; Zhou, Xianghong Jasmine; Le Gros, Mark A.; Larabell, Carolyn A.; Chen, Lin; Alber, Frank

    2016-01-01

    Conformation capture technologies (e.g., Hi-C) chart physical interactions between chromatin regions on a genome-wide scale. However, the structural variability of the genome between cells poses a great challenge to interpreting ensemble-averaged Hi-C data, particularly for long-range and interchromosomal interactions. Here, we present a probabilistic approach for deconvoluting Hi-C data into a model population of distinct diploid 3D genome structures, which facilitates the detection of chromatin interactions likely to co-occur in individual cells. Our approach incorporates the stochastic nature of chromosome conformations and allows a detailed analysis of alternative chromatin structure states. For example, we predict and experimentally confirm the presence of large centromere clusters with distinct chromosome compositions varying between individual cells. The stability of these clusters varies greatly with their chromosome identities. We show that these chromosome-specific clusters can play a key role in the overall chromosome positioning in the nucleus and stabilizing specific chromatin interactions. By explicitly considering genome structural variability, our population-based method provides an important tool for revealing novel insights into the key factors shaping the spatial genome organization. PMID:26951677

  5. Genetic analysis of wheat domestication and evolution under domestication.

    PubMed

    Peleg, Zvi; Fahima, Tzion; Korol, Abraham B; Abbo, Shahal; Saranga, Yehoshua

    2011-10-01

    Wheat is undoubtedly one of the world's major food sources since the dawn of Near Eastern agriculture and up to the present day. Morphological, physiological, and genetic modifications involved in domestication and subsequent evolution under domestication were investigated in a tetraploid recombinant inbred line population, derived from a cross between durum wheat and its immediate progenitor wild emmer wheat. Experimental data were used to test previous assumptions regarding a protracted domestication process. The brittle rachis (Br) spike, thought to be a primary characteristic of domestication, was mapped to chromosome 2A as a single gene, suggesting, in light of previously reported Br loci (homoeologous group 3), a complex genetic model involved in spike brittleness. Twenty-seven quantitative trait loci (QTLs) conferring threshability and yield components (kernel size and number of kernels per spike) were mapped. The large number of QTLs detected in this and other studies suggests that following domestication, wheat evolutionary processes involved many genomic changes. The Br gene did not show either genetic (co-localization with QTLs) or phenotypic association with threshability or yield components, suggesting independence of the respective loci. It is argued here that changes in spike threshability and agronomic traits (e.g. yield and its components) are the outcome of plant evolution under domestication, rather than the result of a protracted domestication process. Revealing the genomic basis of wheat domestication and evolution under domestication, and clarifying their inter-relationships, will improve our understanding of wheat biology and contribute to further crop improvement.

  6. Mesenchymal progenitor cells for the osteogenic lineage.

    PubMed

    Ono, Noriaki; Kronenberg, Henry M

    2015-09-01

    Mesenchymal progenitors of the osteogenic lineage provide the flexibility for bone to grow, maintain its function and homeostasis. Traditionally, colony-forming-unit fibroblasts (CFU-Fs) have been regarded as surrogates for mesenchymal progenitors; however, this definition cannot address the function of these progenitors in their native setting. Transgenic murine models including lineage-tracing technologies based on the cre-lox system have proven to be useful in delineating mesenchymal progenitors in their native environment. Although heterogeneity of cell populations of interest marked by a promoter-based approach complicates overall interpretation, an emerging complexity of mesenchymal progenitors has been revealed. Current literatures suggest two distinct types of bone progenitor cells; growth-associated mesenchymal progenitors contribute to explosive growth of bone in early life, whereas bone marrow mesenchymal progenitors contribute to the much slower remodeling process and response to injury that occurs mainly in adulthood. More detailed relationships of these progenitors need to be studied through further experimentation.

  7. Genome constraint through sexual reproduction: application of 4D-Genomics in reproductive biology.

    PubMed

    Horne, Steven D; Abdallah, Batoul Y; Stevens, Joshua B; Liu, Guo; Ye, Karen J; Bremer, Steven W; Heng, Henry H Q

    2013-06-01

    Assisted reproductive technologies have been used to achieve pregnancies since the first successful test tube baby was born in 1978. Infertile couples are at an increased risk for multiple miscarriages and the application of current protocols are associated with high first-trimester miscarriage rates. Among the contributing factors of these higher rates is a high incidence of fetal aneuploidy. Numerous studies support that protocols including ovulation-induction, sperm cryostorage, density-gradient centrifugation, and embryo culture can induce genome instability, but the general mechanism is less clear. Application of the genome theory and 4D-Genomics recently led to the establishment of a new paradigm for sexual reproduction; sex primarily constrains genome integrity that defines the biological system rather than just providing genetic diversity at the gene level. We therefore propose that application of assisted reproductive technologies can bypass this sexual reproduction filter as well as potentially induce additional system instability. We have previously demonstrated that a single-cell resolution genomic approach, such as spectral karyotyping to trace stochastic genome level alterations, is effective for pre- and post-natal analysis. We propose that monitoring overall genome alteration at the karyotype level alongside the application of assisted reproductive technologies will improve the efficacy of the techniques while limiting stress-induced genome instability. The development of more single-cell based cytogenomic technologies are needed in order to better understand the system dynamics associated with infertility and the potential impact that assisted reproductive technologies have on genome instability. Importantly, this approach will be useful in studying the potential for diseases to arise as a result of bypassing the filter of sexual reproduction.

  8. Asymmetric Epigenetic Modification and Elimination of rDNA Sequences by Polyploidization in Wheat[W

    PubMed Central

    Guo, Xiang

    2014-01-01

    rRNA genes consist of long tandem repeats clustered on chromosomes, and their products are important functional components of the ribosome. In common wheat (Triticum aestivum), rDNA loci from the A and D genomes were largely lost during the evolutionary process. This biased DNA elimination may be related to asymmetric transcription and epigenetic modifications caused by the polyploid formation. Here, we observed both sets of parental nucleolus organizing regions (NORs) were expressed after hybridization, but asymmetric silencing of one parental NOR was immediately induced by chromosome doubling, and reversing the ploidy status could not reactivate silenced NORs. Furthermore, increased CHG and CHH DNA methylation on promoters was accompanied by asymmetric silencing of NORs. Enrichment of H3K27me3 and H3K9me2 modifications was also observed to be a direct response to increased DNA methylation and transcriptional inactivation of NOR loci. Both A and D genome NOR loci with these modifications started to disappear in the S4 generation and were completely eliminated by the S7 generation in synthetic tetraploid wheat. Our results indicated that asymmetric epigenetic modification and elimination of rDNA sequences between different donor genomes may lead to stable allopolyploid wheat with increased differentiation and diversity. PMID:25415973

  9. Short, natural, and extended photoperiod response in BC2F4 lines of bread wheat with different photoperiod-1 (Ppd-1) alleles.

    PubMed

    Bentley, A R; Horsnell, R; Werner, C P; Turner, A S; Rose, G A; Bedard, C; Howell, P; Wilhelm, E P; Mackay, I J; Howells, R M; Greenland, A; Laurie, D A; Gosman, N

    2013-04-01

    Flowering is a critical period in the life cycle of flowering plant species, resulting in an irreversible commitment of significant resources. Wheat is photoperiod sensitive, flowering only when daylength surpasses a critical length; however, photoperiod insensitivity (PI) has been selected by plant breeders for >40 years to enhance yield in certain environments. Control of flowering time has been greatly facilitated by the development of molecular markers for the Photoperiod-1 (Ppd-1) homeoloci, on the group 2 chromosomes. In the current study, an allelic series of BC2F4 lines in the winter wheat cultivars 'Robigus' and 'Alchemy' was developed to elucidate the influence on flowering of eight gene variants from the B- and D-genomes of bread wheat and the A-genome of durum wheat. Allele effects were tested in short, natural, and extended photoperiods in the field and controlled environments. Across genetic background and treatment, the D-genome PI allele, Ppd-D1a, had a more potent effect on reducing flowering time than Ppd-B1a. However, there was significant donor allele effect for both Ppd-D1a and Ppd-B1a, suggesting the presence of linked modifier genes and/or additional sources of latent sensitivity. Development of Ppd-A1a BC2F4 lines derived from synthetic hexaploid wheat provided an opportunity to compare directly the flowering time effect of the A-genome allele from durum with the B- and D-genome variants from bread wheat for the first time. Analyses indicated that the reducing effect of Ppd-A1a is comparable with that of Ppd-D1a, confirming it as a useful alternative source of PI.

  10. In vitro culture of stress erythroid progenitors identifies distinct progenitor populations and analogous human progenitors

    PubMed Central

    Xiang, Jie; Wu, Dai-Chen; Chen, Yuanting

    2015-01-01

    Tissue hypoxia induces a systemic response designed to increase oxygen delivery to tissues. One component of this response is increased erythropoiesis. Steady-state erythropoiesis is primarily homeostatic, producing new erythrocytes to replace old erythrocytes removed from circulation by the spleen. In response to anemia, the situation is different. New erythrocytes must be rapidly made to increase hemoglobin levels. At these times, stress erythropoiesis predominates. Stress erythropoiesis is best characterized in the mouse, where it is extramedullary and utilizes progenitors and signals that are distinct from steady-state erythropoiesis. In this report, we use an in vitro culture system that recapitulates the in vivo development of stress erythroid progenitors. We identify cell-surface markers that delineate a series of stress erythroid progenitors with increasing maturity. In addition, we use this in vitro culture system to expand human stress erythroid progenitor cells that express analogous cell-surface markers. Consistent with previous suggestions that human stress erythropoiesis is similar to fetal erythropoiesis, we demonstrate that human stress erythroid progenitors express fetal hemoglobin upon differentiation. These data demonstrate that similar to murine bone marrow, human bone marrow contains cells that can generate BMP4-dependent stress erythroid burst-forming units when cultured under stress erythropoiesis conditions. PMID:25608563

  11. WheatGenome.info: A Resource for Wheat Genomics Resource.

    PubMed

    Lai, Kaitao

    2016-01-01

    An integrated database with a variety of Web-based systems named WheatGenome.info hosting wheat genome and genomic data has been developed to support wheat research and crop improvement. The resource includes multiple Web-based applications, which are implemented as a variety of Web-based systems. These include a GBrowse2-based wheat genome viewer with BLAST search portal, TAGdb for searching wheat second generation genome sequence data, wheat autoSNPdb, links to wheat genetic maps using CMap and CMap3D, and a wheat genome Wiki to allow interaction between diverse wheat genome sequencing activities. This portal provides links to a variety of wheat genome resources hosted at other research organizations. This integrated database aims to accelerate wheat genome research and is freely accessible via the web interface at http://www.wheatgenome.info/ .

  12. Types and rates of sequence evolution at the high-molecular-weight glutenin locus in hexaploid wheat and its ancestral genomes.

    PubMed

    Gu, Yong Qiang; Salse, Jérôme; Coleman-Derr, Devin; Dupin, Adeline; Crossman, Curt; Lazo, Gerard R; Huo, Naxin; Belcram, Harry; Ravel, Catherine; Charmet, Gilles; Charles, Mathieu; Anderson, Olin D; Chalhoub, Boulos

    2006-11-01

    The Glu-1 locus, encoding the high-molecular-weight glutenin protein subunits, controls bread-making quality in hexaploid wheat (Triticum aestivum) and represents a recently evolved region unique to Triticeae genomes. To understand the molecular evolution of this locus region, three orthologous Glu-1 regions from the three subgenomes of a single hexaploid wheat species were sequenced, totaling 729 kb of sequence. Comparing each Glu-1 region with its corresponding homologous region from the D genome of diploid wheat, Aegilops tauschii, and the A and B genomes of tetraploid wheat, Triticum turgidum, revealed that, in addition to the conservation of microsynteny in the genic regions, sequences in the intergenic regions, composed of blocks of nested retroelements, are also generally conserved, although a few nonshared retroelements that differentiate the homologous Glu-1 regions were detected in each pair of the A and D genomes. Analysis of the indel frequency and the rate of nucleotide substitution, which represent the most frequent types of sequence changes in the Glu-1 regions, demonstrated that the two A genomes are significantly more divergent than the two B genomes, further supporting the hypothesis that hexaploid wheat may have more than one tetraploid ancestor.

  13. Population- and genome-specific patterns of linkage disequilibrium and SNP variation in spring and winter wheat (Triticum aestivum L.)

    PubMed Central

    2010-01-01

    Background Single nucleotide polymorphisms (SNPs) are ideally suited for the construction of high-resolution genetic maps, studying population evolutionary history and performing genome-wide association mapping experiments. Here, we used a genome-wide set of 1536 SNPs to study linkage disequilibrium (LD) and population structure in a panel of 478 spring and winter wheat cultivars (Triticum aestivum) from 17 populations across the United States and Mexico. Results Most of the wheat oligo pool assay (OPA) SNPs that were polymorphic within the complete set of 478 cultivars were also polymorphic in all subpopulations. Higher levels of genetic differentiation were observed among wheat lines within populations than among populations. A total of nine genetically distinct clusters were identified, suggesting that some of the pre-defined populations shared significant proportion of genetic ancestry. Estimates of population structure (FST) at individual loci showed a high level of heterogeneity across the genome. In addition, seven genomic regions with elevated FST were detected between the spring and winter wheat populations. Some of these regions overlapped with previously mapped flowering time QTL. Across all populations, the highest extent of significant LD was observed in the wheat D-genome, followed by lower LD in the A- and B-genomes. The differences in the extent of LD among populations and genomes were mostly driven by differences in long-range LD ( > 10 cM). Conclusions Genome- and population-specific patterns of genetic differentiation and LD were discovered in the populations of wheat cultivars from different geographic regions. Our study demonstrated that the estimates of population structure between spring and winter wheat lines can identify genomic regions harboring candidate genes involved in the regulation of growth habit. Variation in LD suggests that breeding and selection had a different impact on each wheat genome both within and among populations. The

  14. In search of tetraploid wheat accessions reduced in celiac disease-related gluten epitopes.

    PubMed

    van den Broeck, Hetty; Hongbing, Chen; Lacaze, Xavier; Dusautoir, Jean-Claude; Gilissen, Ludovicus; Smulders, Marinus; van der Meer, Ingrid

    2010-11-01

    Tetraploid wheat (durum wheat) is mainly used for the preparation of pasta. As a result of breeding, thousands of tetraploid wheat varieties exist, but also tetraploid landraces are still maintained and used for local food preparations. Gluten proteins present in wheat can induce celiac disease, a T-cell mediated auto-immune disorder, in genetically predisposed individuals after ingestion. Compared to hexaploid wheat, tetraploid wheat might be reduced in T-cell stimulatory epitopes that cause celiac disease because of the absence of the D-genome. We tested gluten protein extracts from 103 tetraploid wheat accessions (obtained from the Dutch CGN genebank and from the French INRA collection) including landraces, old, modern, and domesticated accessions of various tetraploid species and subspecies from many geographic origins. Those accessions were typed for their level of T-cell stimulatory epitopes by immunoblotting with monoclonal antibodies against the α-gliadin epitopes Glia-α9 and Glia-α20. In the first selection, we found 8 CGN and 6 INRA accessions with reduced epitope staining. Fourteen of the 57 CGN accessions turned out to be mixed with hexaploid wheat, and 5 out of the 8 selected CGN accessions were mixtures of two or more different gluten protein chemotypes. Based on single seed analysis, lines from two CGN accessions and one INRA accession were obtained with significantly reduced levels of Glia-α9 and Glia-α20 epitopes. These lines will be further tested for industrial quality and may contribute to the development of safer foods for celiac patients.

  15. The Lr34 adult plant rust resistance gene provides seedling resistance in durum wheat without senescence.

    PubMed

    Rinaldo, Amy; Gilbert, Brian; Boni, Rainer; Krattinger, Simon G; Singh, Davinder; Park, Robert F; Lagudah, Evans; Ayliffe, Michael

    2016-12-22

    The hexaploid wheat (Triticum aestivum) adult plant resistance gene, Lr34/Yr18/Sr57/Pm38/Ltn1, provides broad-spectrum resistance to wheat leaf rust (Lr34), stripe rust (Yr18), stem rust (Sr57) and powdery mildew (Pm38) pathogens, and has remained effective in wheat crops for many decades. The partial resistance provided by this gene is only apparent in adult plants and not effective in field-grown seedlings. Lr34 also causes leaf tip necrosis (Ltn1) in mature adult plant leaves when grown under field conditions. This D genome-encoded bread wheat gene was transferred to tetraploid durum wheat (T. turgidum) cultivar Stewart by transformation. Transgenic durum lines were produced with elevated gene expression levels when compared with the endogenous hexaploid gene. Unlike nontransgenic hexaploid and durum control lines, these transgenic plants showed robust seedling resistance to pathogens causing wheat leaf rust, stripe rust and powdery mildew disease. The effectiveness of seedling resistance against each pathogen correlated with the level of transgene expression. No evidence of accelerated leaf necrosis or up-regulation of senescence gene markers was apparent in these seedlings, suggesting senescence is not required for Lr34 resistance, although leaf tip necrosis occurred in mature plant flag leaves. Several abiotic stress-response genes were up-regulated in these seedlings in the absence of rust infection as previously observed in adult plant flag leaves of hexaploid wheat. Increasing day length significantly increased Lr34 seedling resistance. These data demonstrate that expression of a highly durable, broad-spectrum adult plant resistance gene can be modified to provide seedling resistance in durum wheat.

  16. The Lr34 adult plant rust resistance gene provides seedling resistance in durum wheat without senescence.

    PubMed

    Rinaldo, Amy; Gilbert, Brian; Boni, Rainer; Krattinger, Simon G; Singh, Davinder; Park, Robert F; Lagudah, Evans; Ayliffe, Michael

    2016-09-29

    The hexaploid wheat (Triticum aestivum) adult plant resistance gene, Lr34/Yr18/Sr57/Pm38/Ltn1, provides broad spectrum resistance to wheat leaf rust (Lr34), stripe rust (Yr18), stem rust (Sr57) and powdery mildew (Pm38) pathogens, and has remained effective in wheat crops for many decades. The partial resistance provided by this gene is only apparent in adult plants and not effective in seedlings under standard growth conditions. Lr34 also causes leaf tip necrosis (Ltn1) in mature adult plant leaves when grown under field conditions. This D genome encoded bread wheat gene was transferred to tetraploid durum wheat (T. turgidum) cultivar Stewart by transformation. Transgenic durum lines were produced with elevated gene expression levels when compared with the endogenous hexaploid gene. Unlike nontransgenic hexaploid and durum control lines, these transgenic plants showed robust seedling resistance to pathogens causing wheat leaf rust, stripe rust and powdery mildew disease. The effectiveness of seedling resistance against each pathogen correlated with the level of transgene expression. No evidence of accelerated leaf necrosis or upregulation of senescence gene markers was apparent in these seedlings suggesting senescence is not required for Lr34 resistance. Several abiotic stress response genes were upregulated in these seedling in the absence of rust infection as previously observed in adult plant flag leaves of hexaploid wheat. Photoperiod and light intensity had significant effects on Lr34 phenotypes. These data demonstrate that expression of a highly durable, broad spectrum adult plant resistance gene can be modified to provide seedling resistance in durum wheat. This article is protected by copyright. All rights reserved.

  17. Registration of 'Ripper' Wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    ‘Ripper’ (Reg. No. CV-1016, PI 644222) hard red winter wheat (Triticum aestivum L.) was developed by the Colorado Agricultural Experiment Station and released in August 2006 through an exclusive marketing agreement with the Colorado Wheat Research Foundation. In addition to researchers at Colorado S...

  18. Wheat: Science and Trade

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Up-to-date textbooks are needed to educate the agricultural scientists of tomorrow. This manuscript comprises one chapter in such a textbook, “Wheat: Science and Trade”, and covers the subject of wheat genetic engineering. The chapter begins with a summary of key discussion elements and ends with a...

  19. Registration of 'Antero' Wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    ’Antero’ (Reg. No. CV-XXXX, PI 667743) hard white winter wheat (Triticum aestivum L.) was developed by the Colorado Agricultural Experiment Station and released in August 2012 through a marketing agreement with the Colorado Wheat Research Foundation. In addition to researchers at Colorado State Univ...

  20. Registration of 'Byrd' wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    'Byrd' (PI 664257) hard red winter wheat (Triticum aestivum L.) was developed by the Colorado Agricultural Experiment Station and released August, 2011, through a marketing agreement with the Colorado Wheat Research Foundation. In addition to researchers at Colorado State University (CSU), USDA-ARS ...

  1. Agrometeorology and Wheat Production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Winter wheat phenology varies among shoots on the plant to main stems on plants within a plot to locations across a landscape. Most often phenological measurements have focused on small treatment plots under presumably similar soils and topography. Many models exist to predict wheat phenology for sm...

  2. Genomic constitution and variation in five partial amphiploids of wheat--Thinopyrum intermedium as revealed by GISH, multicolor GISH and seed storage protein analysis.

    PubMed

    Han, Fangpu; Liu, Bao; Fedak, George; Liu, Zhaohui

    2004-09-01

    Genomic in situ hybridization (GISH) and multicolor GISH (mcGISH) methodology were used to establish the cytogenetic constitution of five partial amphiploid lines obtained from wheat x Thinopyrum intermedium hybridizations. Line Zhong 1, 2 n=52, contained 14 chromosomes from each of the wheat genomes plus ten Th. intermedium chromosomes, with one pair of A-genome chromosomes having a Th. intermedium chromosomal segment translocated to the short arm. Line Zhong 2, 2 n=54, had intact ABD wheat genome chromosomes plus 12 Th. intermedium chromosomes. The multicolor GISH results, using different fluorochrome labeled Th. intermedium and the various diploid wheat genomic DNAs as probes, indicated that both Zhong 1 and Zhong 2 contained one pair of Th. intermedium chromosomes with a significant homology to the wheat D genome. High-molecular-weight (HMW) glutenin and gliadin analysis revealed that Zhong 1 and Zhong 2 had identical banding patterns that contained all of the wheat bands and a specific HMW band from Th. intermedium. Zhong 1 and Zhong 2 had good HMW subunits for wheat breeding. Zhong 3 and Zhong 5, both 2 n=56, possessed no gross chromosomal aberrations or translocations that were detectable at the GISH level. Zhong 4 also had a chromosome number of 2 n=56 and contained the complete wheat ABD-genome chromosomes plus 14 Th. intermedium chromosomes, with one pair of Th. intermedium chromosomes being markedly smaller. Multicolor GISH results indicated that Zhong 4 also contained two pairs of reciprocally translocated chromosomes involving the A and D genomes. Zhong 3, Zhong 4 and Zhong 5 contained a specific gliadin band from Th. intermedium. Based on the above data, it was concluded that inter-genomic transfer of chromosomal segments and/or sequence introgression had occurred in these newly synthesized partial amphiploids despite their diploid-like meiotic behavior and disomic inheritance.

  3. Molecular analysis, cytogenetics and fertility of introgression lines from transgenic wheat to Aegilops cylindrica host.

    PubMed

    Schoenenberger, Nicola; Guadagnuolo, Roberto; Savova-Bianchi, Dessislava; Küpfer, Philippe; Felber, François

    2006-12-01

    Natural hybridization and backcrossing between Aegilops cylindrica and Triticum aestivum can lead to introgression of wheat DNA into the wild species. Hybrids between Ae. cylindrica and wheat lines bearing herbicide resistance (bar), reporter (gus), fungal disease resistance (kp4), and increased insect tolerance (gna) transgenes were produced by pollination of emasculated Ae. cylindrica plants. F1 hybrids were backcrossed to Ae. cylindrica under open-pollination conditions, and first backcrosses were selfed using pollen bags. Female fertility of F1 ranged from 0.03 to 0.6%. Eighteen percent of the sown BC1s germinated and flowered. Chromosome numbers ranged from 30 to 84 and several of the plants bore wheat-specific sequence-characterized amplified regions (SCARs) and the bar gene. Self fertility in two BC1 plants was 0.16 and 5.21%, and the others were completely self-sterile. Among 19 BC1S1 individuals one plant was transgenic, had 43 chromosomes, contained the bar gene, and survived glufosinate treatments. The other BC1S1 plants had between 28 and 31 chromosomes, and several of them carried SCARs specific to wheat A and D genomes. Fertility of these plants was higher under open-pollination conditions than by selfing and did not necessarily correlate with even or euploid chromosome number. Some individuals having supernumerary wheat chromosomes recovered full fertility.

  4. Discovery, evaluation and distribution of haplotypes of the wheat Ppd-D1 gene.

    PubMed

    Guo, Zhiai; Song, Yanxia; Zhou, Ronghua; Ren, Zhenglong; Jia, Jizeng

    2010-02-01

    Ppd-D1 is one of the most potent genes affecting the photoperiod response of wheat (Triticum aestivum). Only two alleles, insensitive Ppd-D1a and sensitive Ppd-D1b, were known previously, and these did not adequately explain the broad adaptation of wheat to photoperiod variation. In this study, five diagnostic molecular markers were employed to identify Ppd-D1 haplotypes in 492 wheat varieties from diverse geographic locations and 55 accessions of Aegilops tauschii, the D genome donor species of wheat. Six Ppd-D1 haplotypes, designated I-VI, were identified. Types II, V and VI were considered to be more ancient and types I, III and IV were considered to be derived from type II. The transcript abundances of the Ppd-D1 haplotypes showed continuous variation, being highest for haplotype I, lowest for haplotype III, and correlating negatively with varietal differences in heading time. These haplotypes also significantly affected other agronomic traits. The distribution frequency of Ppd-D1 haplotypes showed partial correlations with both latitudes and altitudes of wheat cultivation regions. The evolution, expression and distribution of Ppd-D1 haplotypes were consistent evidentially with each other. What was regarded as a pair of alleles in the past can now be considered a series of alleles leading to continuous variation.

  5. Introgression of an imidazolinone-resistance gene from winter wheat (Triticum aestivum L.) into jointed goatgrass (Aegilops cylindrica Host).

    PubMed

    Perez-Jones, Alejandro; Mallory-Smith, Carol A; Hansen, Jennifer L; Zemetra, Robert S

    2006-12-01

    Imidazolinone-resistant winter wheat (Triticum aestivum L.) is being commercialized in the USA. This technology allows wheat growers to selectively control jointed goatgrass (Aegilops cylindrica Host), a weed that is especially problematic because of its close genetic relationship with wheat. However, the potential movement of the imidazolinone-resistance gene from winter wheat to jointed goatgrass is a concern. Winter wheat and jointed goatgrass have the D genome in common and can hybridize and backcross under natural field conditions. Since the imidazolinone-resistance gene (Imi1) is located on the D genome, it is possible for resistance to be transferred to jointed goatgrass via hybridization and backcrossing. To study the potential for gene movement, BC(2)S(2) plants were produced artificially using imidazolinone-resistant winter wheat (cv. FS-4) as the female parent and a native jointed goatgrass collection as the male recurrent parent. FS-4, the jointed goatgrass collection, and 18 randomly selected BC(2)S(2) populations were treated with imazamox. The percentage of survival was 100% for the FS-4, 0% for the jointed goatgrass collection and 6 BC(2)S(2) populations, 40% or less for 2 BC(2)S(2) populations, and 50% or greater for the remaining 10 BC(2)S(2) populations. Chromosome counts in BC(2)S(3) plants showed a restoration of the chromosome number of jointed goatgrass, with four out of four plants examined having 28 chromosomes. Sequencing of AHASL1D in BC(2)S(3) plants derived from BC(2)S(2)-6 revealed the sexual transmission of Imi1 from FS-4 to jointed goatgrass. Imi1 conferred resistance to the imidazolinone herbicide imazamox, as shown by the in vitro assay for acetohydroxyacid synthase (AHAS) activity.

  6. PROGENITORS OF RECOMBINING SUPERNOVA REMNANTS

    SciTech Connect

    Moriya, Takashi J.

    2012-05-01

    Usual supernova remnants have either ionizing plasma or plasma in collisional ionization equilibrium, i.e., the ionization temperature is lower than or equal to the electron temperature. However, the existence of recombining supernova remnants, i.e., supernova remnants with ionization temperature higher than the electron temperature, has been recently confirmed. One suggested way to have recombining plasma in a supernova remnant is to have a dense circumstellar medium at the time of the supernova explosion. If the circumstellar medium is dense enough, collisional ionization equilibrium can be established in the early stage of the evolution of the supernova remnant and subsequent adiabatic cooling, which occurs after the shock wave gets out of the dense circumstellar medium, makes the electron temperature lower than the ionization temperature. We study the circumstellar medium around several supernova progenitors and show which supernova progenitors can have a circumstellar medium dense enough to establish collisional ionization equilibrium soon after the explosion. We find that the circumstellar medium around red supergiants (especially massive ones) and the circumstellar medium dense enough to make Type IIn supernovae can establish collisional ionization equilibrium soon after the explosion and can evolve to become recombining supernova remnants. Wolf-Rayet stars and white dwarfs have the possibility to be recombining supernova remnants but the fraction is expected to be very small. As the occurrence rate of the explosions of red supergiants is much higher than that of Type IIn supernovae, the major progenitors of recombining supernova remnants are likely to be red supergiants.

  7. Gamma-Ray Burst Progenitors

    NASA Astrophysics Data System (ADS)

    Levan, Andrew; Crowther, Paul; de Grijs, Richard; Langer, Norbert; Xu, Dong; Yoon, Sung-Chul

    2016-12-01

    We review our current understanding of the progenitors of both long and short duration gamma-ray bursts (GRBs). Constraints can be derived from multiple directions, and we use three distinct strands; (i) direct observations of GRBs and their host galaxies, (ii) parameters derived from modelling, both via population synthesis and direct numerical simulation and (iii) our understanding of plausible analog progenitor systems observed in the local Universe. From these joint constraints, we describe the likely routes that can drive massive stars to the creation of long GRBs, and our best estimates of the scenarios that can create compact object binaries which will ultimately form short GRBs, as well as the associated rates of both long and short GRBs. We further discuss how different the progenitors may be in the case of black hole engine or millisecond-magnetar models for the production of GRBs, and how central engines may provide a unifying theme between many classes of extremely luminous transient, from luminous and super-luminous supernovae to long and short GRBs.

  8. Genetic evidence for differential selection of grain and embryo weight during wheat evolution under domestication

    PubMed Central

    Golan, Guy; Oksenberg, Adi; Peleg, Zvi

    2015-01-01

    Wheat is one of the Neolithic founder crops domesticated ~10 500 years ago. Following the domestication episode, its evolution under domestication has resulted in various genetic modifications. Grain weight, embryo weight, and the interaction between those factors were examined among domesticated durum wheat and its direct progenitor, wild emmer wheat. Experimental data show that grain weight has increased over the course of wheat evolution without any parallel change in embryo weight, resulting in a significantly reduced (30%) embryo weight/grain weight ratio in domesticated wheat. The genetic factors associated with these modifications were further investigated using a population of recombinant inbred substitution lines that segregated for chromosome 2A. A cluster of loci affecting grain weight and shape was identified on the long arm of chromosome 2AL. Interestingly, a novel locus controlling embryo weight was mapped on chromosome 2AS, on which the wild emmer allele promotes heavier embryos and greater seedling vigour. To the best of our knowledge, this is the first report of a QTL for embryo weight in wheat. The results suggest a differential selection of grain and embryo weight during the evolution of domesticated wheat. It is argued that conscious selection by early farmers favouring larger grains and smaller embryos appears to have resulted in a significant change in endosperm weight/embryo weight ratio in the domesticated wheat. Exposing the genetic factors associated with endosperm and embryo size improves our understanding of the evolutionary dynamics of wheat under domestication and is likely to be useful for future wheat-breeding efforts. PMID:26019253

  9. Genetic evidence for differential selection of grain and embryo weight during wheat evolution under domestication.

    PubMed

    Golan, Guy; Oksenberg, Adi; Peleg, Zvi

    2015-09-01

    Wheat is one of the Neolithic founder crops domesticated ~10 500 years ago. Following the domestication episode, its evolution under domestication has resulted in various genetic modifications. Grain weight, embryo weight, and the interaction between those factors were examined among domesticated durum wheat and its direct progenitor, wild emmer wheat. Experimental data show that grain weight has increased over the course of wheat evolution without any parallel change in embryo weight, resulting in a significantly reduced (30%) embryo weight/grain weight ratio in domesticated wheat. The genetic factors associated with these modifications were further investigated using a population of recombinant inbred substitution lines that segregated for chromosome 2A. A cluster of loci affecting grain weight and shape was identified on the long arm of chromosome 2AL. Interestingly, a novel locus controlling embryo weight was mapped on chromosome 2AS, on which the wild emmer allele promotes heavier embryos and greater seedling vigour. To the best of our knowledge, this is the first report of a QTL for embryo weight in wheat. The results suggest a differential selection of grain and embryo weight during the evolution of domesticated wheat. It is argued that conscious selection by early farmers favouring larger grains and smaller embryos appears to have resulted in a significant change in endosperm weight/embryo weight ratio in the domesticated wheat. Exposing the genetic factors associated with endosperm and embryo size improves our understanding of the evolutionary dynamics of wheat under domestication and is likely to be useful for future wheat-breeding efforts.

  10. Argentina wheat yield model

    NASA Technical Reports Server (NTRS)

    Callis, S. L.; Sakamoto, C.

    1984-01-01

    Five models based on multiple regression were developed to estimate wheat yields for the five wheat growing provinces of Argentina. Meteorological data sets were obtained for each province by averaging data for stations within each province. Predictor variables for the models were derived from monthly total precipitation, average monthly mean temperature, and average monthly maximum temperature. Buenos Aires was the only province for which a trend variable was included because of increasing trend in yield due to technology from 1950 to 1963.

  11. Dynamics of tandem repetitive Afa-family sequences in Triticeae, wheat-related species.

    PubMed

    Nagaki, K; Tsujimoto, H; Sasakuma, T

    1998-08-01

    The Afa-family sequences in wheat-related species, Triticeae, are tandem repetitive sequences of 340 bp. All the analyzed Triticeae species carried the sequences in their genomes, though the copy numbers varied about 100-fold among the species. The nucleotide fragments amplified by PCR were cloned and sequenced, and their behavior in the evolution of Triticeae was analyzed by the neighbor-joining (NJ) method. The sequences in genomes with many copies of this family clustered at independent branches of the phylogenic tree, whereas the sequences in genomes with a few copies did not. This may suggest that Afa-family sequences had amplified several times in the evolution of Triticeae, each using a limited number of different master copies. In addition, the sequences of the A and B genomes of hexaploid common wheat indicated that the Afa-family sequences had not evolved in a concerted manner between the genomes. Furthermore, the sequences of each chromosome of the D genome of this species indicated that the sequences had amplified on all over the D-genome chromosomes in a short period.

  12. 21 CFR 184.1322 - Wheat gluten.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Wheat gluten. 184.1322 Section 184.1322 Food and....1322 Wheat gluten. (a) Wheat gluten (CAS Reg. No. 8002-80-0) is the principal protein component of wheat and consists mainly of gliadin and glutenin. Wheat gluten is obtained by hydrating wheat flour...

  13. Wheat for Kids! [and] Teacher's Guide.

    ERIC Educational Resources Information Center

    Idaho Wheat Commission, Boise.

    "Wheat for Kids" contains information at the elementary school level about: the structure of the wheat kernel; varieties of wheat and their uses; growing wheat; making wheat dough; the U.S. Department of Agriculture Food Guide Pyramid and nutrition; Idaho's part of the international wheat market; recipes; and word games based on the…

  14. Modeling Renal Progenitors – Defining the Niche

    PubMed Central

    Tanigawa, Shunsuke; Perantoni, Alan O.

    2016-01-01

    Significant recent advances in methodologies for the differentiation of pluripotent stem cells to renal progenitors as well as the definition of niche conditions for sustaining those progenitors have dramatically enhanced our understanding of their biology and developmental programing, prerequisites for establishing viable approaches to renal regeneration. In this article, we review the evolution of culture techniques and models for the study of metanephric development, describe the signaling mechanisms likely to be driving progenitor self-renewal, and discuss current efforts to generate de novo functional tissues, providing in depth protocols and niche conditions for the stabilization of the nephronic Six2+ progenitor. PMID:26856661

  15. Sequencing chromosome 5D of Aegilops tauschii and comparison with its allopolyploid descendant bread wheat (Triticum aestivum).

    PubMed

    Akpinar, Bala A; Lucas, Stuart J; Vrána, Jan; Doležel, Jaroslav; Budak, Hikmet

    2015-08-01

    Flow cytometric sorting of individual chromosomes and chromosome-based sequencing reduces the complexity of large, repetitive Triticeae genomes. We flow-sorted chromosome 5D of Aegilops tauschii, the D genome donor of bread wheat and sequenced it by Roche 454 GS FLX platform to approximately 2.2x coverage. Repetitive sequences represent 81.09% of the survey sequences of this chromosome, and Class I retroelements are the prominent type, with a particular abundance of LTR/Gypsy superfamily. Nonrepetitive sequences were assembled to cover 17.76% of the total chromosome regions. Up to 6188 nonrepetitive gene loci were predicted to be encoded by the 5D chromosome. The numbers and chromosomal distribution patterns of tRNA genes suggest abundance in tRNA(L) (ys) and tRNA(M) (et) species, while the nonrepetitive assembly reveals tRNA(A) (la) species as the most abundant type. A comparative analysis of the genomic sequences of bread wheat and Aegilops chromosome 5D indicates conservation of gene content. Orthologous unique genes, matching Aegilops 5D sequences, numbered 3730 in barley, 5063 in Brachypodium, 4872 in sorghum and 4209 in rice. In this study, we provide a chromosome-specific view into the structure and organization of the 5D chromosome of Ae. tauschii, the D genome ancestor of bread wheat. This study contributes to our understanding of the chromosome-level evolution of the wheat genome and presents a valuable resource in wheat genomics due to the recent hybridization of Ae. tauschii genome with its tetraploid ancestor.

  16. Wheat streak mosaic virus resistance in eight wheat germplasm lines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wheat Streak Mosaic Virus (WSMV) disease is an important disease in wheat. Use of resistant cultivars is the most effective approach to reduce the yield losses caused by the disease. To identify new sources of resistance to WSMV, eight resistant wheat lines that were selected based on the results fr...

  17. New Uses for Wheat and Modified Wheat Products

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hard wheat from the Great Plains historically has been used as a source of flour for the production of leavened bakery products. However, potentially applications of wheat in both new markets and new products has necessitated the need to develop wheats with novel processing attributes. The most lo...

  18. Wheat Quality Council, Hard Spring Wheat Technical Committee, 2014 Crop

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Eleven experimental lines of hard spring wheat were grown at up to five locations in 2014 and evaluated for kernel, milling, and bread baking quality against the check variety Glenn. Wheat samples were submitted through the Wheat Quality Council and processed and milled at the USDA-ARS Hard Red Spr...

  19. Visualization, analysis, and design of COMBO-FISH probes in the grid-based GLOBE 3D genome platform.

    PubMed

    Kepper, Nick; Schmitt, Eberhard; Lesnussa, Michael; Weiland, Yanina; Eussen, Hubert B; Grosveld, Frank G; Hausmann, Michael; Knoch, Tobias A

    2010-01-01

    The genome architecture in cell nuclei plays an important role in modern microscopy for the monitoring of medical diagnosis and therapy since changes of function and dynamics of genes are interlinked with changing geometrical parameters. The planning of corresponding diagnostic experiments and their imaging is a complex and often interactive IT intensive challenge and thus makes high-performance grids a necessity. To detect genetic changes we recently developed a new form of fluorescence in situ hybridization (FISH) - COMBinatorial Oligonucleotide FISH (COMBO-FISH) - which labels small nucleotide sequences clustering at a desired genomic location. To achieve a unique hybridization spot other side clusters have to be excluded. Therefore, we have designed an interactive pipeline using the grid-based GLOBE 3D Genome Viewer and Platform to design and display different labelling variants of candidate probe sets. Thus, we have created a grid-based virtual "paper" tool for easy interactive calculation, analysis, management, and representation for COMBO-FISH probe design with many an advantage: Since all the calculations and analysis run in a grid, one can instantly and with great visual ease locate duplications of gene subsequences to guide the elimination of side clustering sequences during the probe design process, as well as get at least an impression of the 3D architectural embedding of the respective chromosome region, which is of major importance to estimate the hybridization probe dynamics. Beyond, even several people at different locations could work on the same process in a team wise manner. Consequently, we present how a complex interactive process can profit from grid infrastructure technology using our unique GLOBE 3D Genome Platform gateway towards a real interactive curative diagnosis planning and therapy monitoring.

  20. Biofortification of wheat grain with iron and zinc: integrating novel genomic resources and knowledge from model crops

    PubMed Central

    Borrill, Philippa; Connorton, James M.; Balk, Janneke; Miller, Anthony J.; Sanders, Dale; Uauy, Cristobal

    2014-01-01

    Wheat, like many other staple cereals, contains low levels of the essential micronutrients iron and zinc. Up to two billion people worldwide suffer from iron and zinc deficiencies, particularly in regions with predominantly cereal-based diets. Although wheat flour is commonly fortified during processing, an attractive and more sustainable solution is biofortification, which requires developing new varieties of wheat with inherently higher iron and zinc content in their grains. Until now most studies aimed at increasing iron and zinc content in wheat grains have focused on discovering natural variation in progenitor or related species. However, recent developments in genomics and transformation have led to a step change in targeted research on wheat at a molecular level. We discuss promising approaches to improve iron and zinc content in wheat using knowledge gained in model grasses. We explore how the latest resources developed in wheat, including sequenced genomes and mutant populations, can be exploited for biofortification. We also highlight the key research and practical challenges that remain in improving iron and zinc content in wheat. PMID:24600464

  1. Differential response of wild and cultivated wheats to water deficits during grain development: changes in soluble carbohydrates and invertases.

    PubMed

    Suneja, Yadhu; Gupta, Anil K; Sharma, Achla; Bains, Navtej S

    2015-04-01

    Wheat, staple food crop of the world, is sensitive to drought, especially during the grain-filling period. Water soluble carbohydrates (WSCs), stem reserve mobilization and higher invertase activity in the developing grains are important biochemical traits for breeding wheat to enhance tolerance to terminal drought. These traits were studied for three accessions of Triticum dicoccoides(a tetraploid wheat progenitor species) - acc 7054 (EC 171812), acc 7079 (EC 171837) and acc 14004 (G-194-3 M-6 M) selected previously on the basis of grain filling characteristics. Check wheat cultivars- PBW-343 (a popular bread wheat cultivar for irrigated environments) and C-306 (widely adapted variety for rain-fed agriculture) were also included in this set. Analysis of variance revealed significant genotypic differences for the content of water soluble carbohydrates, activity of acid invertase and alkaline invertase. Acc 7079 was found to be a very efficient mobilizer of water soluble carbohydrates (236.43 mg g(-1) peduncle DW) when averaged over irrigated and rain-fed conditions. Acid invertase activity revealed marked genotypic differences between wild and cultivated wheats. Alkaline invertase activity was highest in Acc 7079 when pooled across both the environments. On the whole, acc 7079 qualifies as a suitable donor for enhancing tolerance of bread wheat to terminal drought. The association of physio-biochemical differences observed with grain filling attributes on one hand and molecular markers on the other could be of use in improving wheat for water stress conditions.

  2. Biofortification of wheat grain with iron and zinc: integrating novel genomic resources and knowledge from model crops.

    PubMed

    Borrill, Philippa; Connorton, James M; Balk, Janneke; Miller, Anthony J; Sanders, Dale; Uauy, Cristobal

    2014-01-01

    Wheat, like many other staple cereals, contains low levels of the essential micronutrients iron and zinc. Up to two billion people worldwide suffer from iron and zinc deficiencies, particularly in regions with predominantly cereal-based diets. Although wheat flour is commonly fortified during processing, an attractive and more sustainable solution is biofortification, which requires developing new varieties of wheat with inherently higher iron and zinc content in their grains. Until now most studies aimed at increasing iron and zinc content in wheat grains have focused on discovering natural variation in progenitor or related species. However, recent developments in genomics and transformation have led to a step change in targeted research on wheat at a molecular level. We discuss promising approaches to improve iron and zinc content in wheat using knowledge gained in model grasses. We explore how the latest resources developed in wheat, including sequenced genomes and mutant populations, can be exploited for biofortification. We also highlight the key research and practical challenges that remain in improving iron and zinc content in wheat.

  3. NAD-dependent aromatic alcohol dehydrogenase in wheats (Triticum L.) and goatgrasses (Aegilops L.): evolutionary genetics.

    PubMed

    Jaaska, V

    1984-04-01

    Evolutionary electrophoretic variation of a NAD-specific aromatic alcohol dehydrogenase, AADH-E, in wheat and goatgrass species is described and discussed in comparison with a NAD-specific alcohol dehydrogenase (ADH-A) and a NADP-dependent AADH-B studied previously. Cultivated tetraploid emmer wheats (T. turgidum s. l.) and hexaploid bread wheats (T. aestivum s. l.) are all fixed for a heterozygous triplet, E(0.58)/E(0.64). The slowest isoenzyme, E(0.58), is controlled by a homoeoallelic gene on the chromosome arm 6AL of T. aestivum cv. 'Chinese Spring' and is inherent in all diploid wheats, T. monococcum s. Str., T. boeoticum s. l. and T. urartu. The fastest isoenzyme, E(0.64), is presumably controlled by the B- and D-genome homoeoalleles of the bread wheat and is the commonest alloenzyme of diploid goat-grasses, including Ae. speltaides and Ae. tauschii. The tetraploid T. timopheevii s. str. has a particular heterozygous triplet E(0.56)/E(0.71), whereas the hexaploid T. zhukovskyi exhibited polymorphism with electromorphs characteristic of T. timopheevii and T. monococcum. Wild tetraploid wheats, T. dicoccoides and T. araraticum, showed partially homologous intraspecific variation of AADH-E with heterozygous triplets E(0.58)/E(0.64) (the commonest), E(0.58)/E(0.71), E(0.45)/E(0.58), E(0.48)/E(0.58) and E(0.56)/E(0.58) recorded. Polyploid goatgrasses of the D-genome group, excepting Ae. cylindrica, are fixed for the common triplet E(0.58)/E(0.64). Ae. cylindrica and polyploid goatgrasses of the C(u)-genome group, excepting Ae. kotschyi, are homozygous for E(0.64). Ae. kotschyi is exceptional, showing fixed heterozygosity for both AADH-E and ADH-A with unique triplets E(0.56)/E(0.64) and A(0.49)/A(0.56).

  4. Quantitation of the immunodominant 33-mer peptide from α-gliadin in wheat flours by liquid chromatography tandem mass spectrometry

    PubMed Central

    Schalk, Kathrin; Lang, Christina; Wieser, Herbert; Koehler, Peter; Scherf, Katharina Anne

    2017-01-01

    Coeliac disease (CD) is triggered by the ingestion of gluten proteins from wheat, rye, and barley. The 33-mer peptide from α2-gliadin has frequently been described as the most important CD-immunogenic sequence within gluten. However, from more than 890 published amino acid sequences of α-gliadins, only 19 sequences contain the 33-mer. In order to make a precise assessment of the importance of the 33-mer, it is necessary to elucidate which wheat species and cultivars contain the peptide and at which concentrations. This paper presents the development of a stable isotope dilution assay followed by liquid chromatography tandem mass spectrometry to quantitate the 33-mer in flours of 23 hexaploid modern and 15 old common (bread) wheat as well as two spelt cultivars. All flours contained the 33-mer peptide at levels ranging from 91–603 μg/g flour. In contrast, the 33-mer was absent (wheat, emmer, einkorn), most likely because of the absence of the D-genome, which encodes α2-gliadins. Due to the presence of the 33-mer in all common wheat and spelt flours analysed here, the special focus in the literature on this most immunodominant peptide seems to be justified. PMID:28327674

  5. Quantitation of the immunodominant 33-mer peptide from α-gliadin in wheat flours by liquid chromatography tandem mass spectrometry.

    PubMed

    Schalk, Kathrin; Lang, Christina; Wieser, Herbert; Koehler, Peter; Scherf, Katharina Anne

    2017-03-22

    Coeliac disease (CD) is triggered by the ingestion of gluten proteins from wheat, rye, and barley. The 33-mer peptide from α2-gliadin has frequently been described as the most important CD-immunogenic sequence within gluten. However, from more than 890 published amino acid sequences of α-gliadins, only 19 sequences contain the 33-mer. In order to make a precise assessment of the importance of the 33-mer, it is necessary to elucidate which wheat species and cultivars contain the peptide and at which concentrations. This paper presents the development of a stable isotope dilution assay followed by liquid chromatography tandem mass spectrometry to quantitate the 33-mer in flours of 23 hexaploid modern and 15 old common (bread) wheat as well as two spelt cultivars. All flours contained the 33-mer peptide at levels ranging from 91-603 μg/g flour. In contrast, the 33-mer was absent (wheat, emmer, einkorn), most likely because of the absence of the D-genome, which encodes α2-gliadins. Due to the presence of the 33-mer in all common wheat and spelt flours analysed here, the special focus in the literature on this most immunodominant peptide seems to be justified.

  6. Thermoformed wheat gluten biopolymers.

    PubMed

    Pallos, Ferenc M; Robertson, George H; Pavlath, Attila E; Orts, William J

    2006-01-25

    The quantity of available wheat gluten exceeds the current food use markets. Thermoforming is an alternative technical means for transforming wheat gluten. Thermoforming was applied here to wheat gluten under chemically reductive conditions to form pliable, translucent sheets. A wide variety of conditions, i.e., temperature, reducing agents, plasticizers and additives were tested to obtain a range of elastic properties in the thermoformed sheets. These properties were compared to those of commercially available polymers, such as polypropylene. Elasticity of the gluten formulations were indexed by Young's modulus and were in the range measured for commercial products when tested in the 30-70% relative humidity range. Removal of the gliadin subfraction of gluten yielded polymers with higher Young's modulus since this component acts as a polymer-chain terminator. At relative humidity less than 30% all whole gluten-based sheets were brittle, while above 70% they were highly elastic.

  7. High-density SNP genotyping array for hexaploid wheat and its secondary and tertiary gene pool.

    PubMed

    Winfield, Mark O; Allen, Alexandra M; Burridge, Amanda J; Barker, Gary L A; Benbow, Harriet R; Wilkinson, Paul A; Coghill, Jane; Waterfall, Christy; Davassi, Alessandro; Scopes, Geoff; Pirani, Ali; Webster, Teresa; Brew, Fiona; Bloor, Claire; King, Julie; West, Claire; Griffiths, Simon; King, Ian; Bentley, Alison R; Edwards, Keith J

    2016-05-01

    In wheat, a lack of genetic diversity between breeding lines has been recognized as a significant block to future yield increases. Species belonging to bread wheat's secondary and tertiary gene pools harbour a much greater level of genetic variability, and are an important source of genes to broaden its genetic base. Introgression of novel genes from progenitors and related species has been widely employed to improve the agronomic characteristics of hexaploid wheat, but this approach has been hampered by a lack of markers that can be used to track introduced chromosome segments. Here, we describe the identification of a large number of single nucleotide polymorphisms that can be used to genotype hexaploid wheat and to identify and track introgressions from a variety of sources. We have validated these markers using an ultra-high-density Axiom(®) genotyping array to characterize a range of diploid, tetraploid and hexaploid wheat accessions and wheat relatives. To facilitate the use of these, both the markers and the associated sequence and genotype information have been made available through an interactive web site.

  8. Biolistics Transformation of Wheat

    NASA Astrophysics Data System (ADS)

    Sparks, Caroline A.; Jones, Huw D.

    We present a complete, step-by-step guide to the production of transformed wheat plants using a particle bombardment device to deliver plasmid DNA into immature embryos and the regeneration of transgenic plants via somatic embryogenesis. Currently, this is the most commonly used method for transforming wheat and it offers some advantages. However, it will be interesting to see whether this position is challenged as facile methods are developed for delivering DNA by Agrobacterium tumefaciens or by the production of transformants via a germ-line process (see other chapters in this book).

  9. Breeding Value of Primary Synthetic Wheat Genotypes for Grain Yield

    PubMed Central

    Jafarzadeh, Jafar; Bonnett, David; Jannink, Jean-Luc; Akdemir, Deniz; Dreisigacker, Susanne; Sorrells, Mark E.

    2016-01-01

    To introduce new genetic diversity into the bread wheat gene pool from its progenitor, Aegilops tauschii (Coss.) Schmalh, 33 primary synthetic hexaploid wheat genotypes (SYN) were crossed to 20 spring bread wheat (BW) cultivars at the International Wheat and Maize Improvement Center. Modified single seed descent was used to develop 97 populations with 50 individuals per population using first back-cross, biparental, and three-way crosses. Individuals from each cross were selected for short stature, early heading, flowering and maturity, minimal lodging, and free threshing. Yield trials were conducted under irrigated, drought, and heat-stress conditions from 2011 to 2014 in Ciudad Obregon, Mexico. Genomic estimated breeding values (GEBVs) of parents and synthetic derived lines (SDLs) were estimated using a genomic best linear unbiased prediction (GBLUP) model with markers in each trial. In each environment, there were SDLs that had higher GEBVs than their recurrent BW parent for yield. The GEBVs of BW parents for yield ranged from -0.32 in heat to 1.40 in irrigated trials. The range of the SYN parent GEBVs for yield was from -2.69 in the irrigated to 0.26 in the heat trials and were mostly negative across environments. The contribution of the SYN parents to improved grain yield of the SDLs was highest under heat stress, with an average GEBV for the top 10% of the SDLs of 0.55 while the weighted average GEBV of their corresponding recurrent BW parents was 0.26. Using the pedigree-based model, the accuracy of genomic prediction for yield was 0.42, 0.43, and 0.49 in the drought, heat and irrigated trials, respectively, while for the marker-based model these values were 0.43, 0.44, and 0.55. The SYN parents introduced novel diversity into the wheat gene pool. Higher GEBVs of progenies were due to introgression and retention of some positive alleles from SYN parents. PMID:27656893

  10. Progenitors of Supernovae Type Ia

    NASA Astrophysics Data System (ADS)

    Toonen, S.; Nelemans, G.; Bours, M.; Portegies Zwart, S.; Claeys, J.; Mennekens, N.; Ruiter, A.

    2013-01-01

    Despite the significance of Type Ia supernovae (SNeIa) in many fields in astrophysics, SNeIa lack a theoretical explanation. The standard scenarios involve thermonuclear explosions of carbon/oxygen white dwarfs approaching the Chandrasekhar mass; either by accretion from a companion or by a merger of two white dwarfs. We investigate the contribution from both channels to the SNIa rate with the binary population synthesis (BPS) code SeBa in order to constrain binary processes such as the mass retention efficiency of WD accretion and common envelope evolution. We determine the theoretical rates and delay time distribution of SNIa progenitors and in particular study how assumptions affect the predicted rates.

  11. Prorenin receptor is critical for nephron progenitors.

    PubMed

    Song, Renfang; Preston, Graeme; Kidd, Laura; Bushnell, Daniel; Sims-Lucas, Sunder; Bates, Carlton M; Yosypiv, Ihor V

    2016-01-15

    Deficient nephrogenesis is the major factor contributing to renal hypoplasia defined as abnormally small kidneys. Nephron induction during kidney development is driven by reciprocal interactions between progenitor cells of the cap mesenchyme (CM) and the ureteric bud (UB). The prorenin receptor (PRR) is a receptor for renin and prorenin, and an accessory subunit of the vacuolar proton pump H(+)-ATPase. Global loss of PRR is lethal in mice and PRR mutations are associated with a high blood pressure, left ventricular hypertrophy and X-linked mental retardation in humans. To circumvent lethality of the ubiquitous PRR mutation in mice and to determine the potential role of the PRR in nephrogenesis, we generated a mouse model with a conditional deletion of the PRR in Six2(+) nephron progenitors and their epithelial derivatives (Six2(PRR-/-)). Targeted ablation of PRR in Six2(+) nephron progenitors caused a marked decrease in the number of developing nephrons, small cystic kidneys and podocyte foot process effacement at birth, and early postnatal death. Reduced congenital nephron endowment resulted from premature depletion of nephron progenitor cell population due to impaired progenitor cell proliferation and loss of normal molecular inductive response to canonical Wnt/β-catenin signaling within the metanephric mesenchyme. At 2 months of age, heterozygous Six2(PRR+/-) mice exhibited focal glomerulosclerosis, decreased kidney function and massive proteinuria. Collectively, these findings demonstrate a cell-autonomous requirement for the PRR within nephron progenitors for progenitor maintenance, progression of nephrogenesis, normal kidney development and function.

  12. The interface between glial progenitors and gliomas

    PubMed Central

    Canoll, Peter

    2009-01-01

    The mammalian brain and spinal cord contain heterogeneous populations of cycling, immature cells. These include cells with stem cell-like properties as well as progenitors in various stages of early glial differentiation. This latter population is distributed widely throughout gray and white matter and numerically represents an extremely large cell pool. In this review, we discuss the possibility that the glial progenitors that populate the adult CNS are one source of gliomas. Indeed, the marker phenotypes, morphologies, and migratory properties of cells in gliomas strongly resemble glial progenitors in many ways. We review briefly some salient features of normal glial development and then examine the similarities and differences between normal progenitors and cells in gliomas, focusing on the phenotypic plasticity of glial progenitors and the responses to growth factors in promoting proliferation and migration of normal and glioma cells, and discussing known mutational changes in gliomas in the context of how these might affect the proliferative and migratory behaviors of progenitors. Finally, we will discuss the “cancer stem cell” hypothesis in light of the possibility that glial progenitors can generate gliomas. PMID:18784926

  13. 21 CFR 184.1322 - Wheat gluten.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Wheat gluten. 184.1322 Section 184.1322 Food and... Substances Affirmed as GRAS § 184.1322 Wheat gluten. (a) Wheat gluten (CAS Reg. No. 8002-80-0) is the principal protein component of wheat and consists mainly of gliadin and glutenin. Wheat gluten is...

  14. 21 CFR 184.1322 - Wheat gluten.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Wheat gluten. 184.1322 Section 184.1322 Food and... Substances Affirmed as GRAS § 184.1322 Wheat gluten. (a) Wheat gluten (CAS Reg. No. 8002-80-0) is the principal protein component of wheat and consists mainly of gliadin and glutenin. Wheat gluten is...

  15. 21 CFR 184.1322 - Wheat gluten.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Wheat gluten. 184.1322 Section 184.1322 Food and... Substances Affirmed as GRAS § 184.1322 Wheat gluten. (a) Wheat gluten (CAS Reg. No. 8002-80-0) is the principal protein component of wheat and consists mainly of gliadin and glutenin. Wheat gluten is...

  16. 21 CFR 184.1322 - Wheat gluten.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Wheat gluten. 184.1322 Section 184.1322 Food and... Substances Affirmed as GRAS § 184.1322 Wheat gluten. (a) Wheat gluten (CAS Reg. No. 8002-80-0) is the principal protein component of wheat and consists mainly of gliadin and glutenin. Wheat gluten is...

  17. 21 CFR 137.190 - Cracked wheat.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Cracked wheat. 137.190 Section 137.190 Food and... Related Products § 137.190 Cracked wheat. Cracked wheat is the food prepared by so cracking or cutting... such wheat, other than moisture, remain unaltered. Cracked wheat contains not more than 15 percent...

  18. 21 CFR 137.190 - Cracked wheat.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Cracked wheat. 137.190 Section 137.190 Food and... Related Products § 137.190 Cracked wheat. Cracked wheat is the food prepared by so cracking or cutting... such wheat, other than moisture, remain unaltered. Cracked wheat contains not more than 15 percent...

  19. Progenitor's Signatures in Type Ia Supernova Remnants

    NASA Astrophysics Data System (ADS)

    Chiotellis, A.; Kosenko, D.; Schure, K. M.; Vink, J.

    2013-01-01

    The remnants of Type Ia supernovae (SNe Ia) can provide important clues about their progenitor histories. We discuss two well-observed supernova remnants (SNRs) that are believed to have resulted from SNe Ia, and use various tools to shed light on the possible progenitor histories. We find that Kepler's SNR is consistent with a symbiotic binary progenitor consisting of a white dwarf and an AGB star. Our hydrosimulations can reproduce the observed kinematic and morphological properties. For Tycho's remnant we use the characteristics of the X-ray spectrum and kinematics to show that the ejecta has likely interacted with dense circumstellar gas.

  20. Registration of Colter wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Colter’ (Reg. No. CV-1099, PI 670156) hard red winter wheat (Triticum aestivum L.) was developed and released by the Montana Agricultural Experiment Stations in September 2013. Colter was derived from the cross MT9982*2/BZ9W96-895. MT9982 is a sib selection of 'Yellowstone', and BZ9W96-895 is an unr...

  1. Registration of "Merl" Wheat.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    ‘Merl’ (Reg. No. CV- , PI 658598) soft red winter (SRW) wheat (Triticum aestivum L.)developed and tested as VA03W-412 by the Virginia Agricultural Experiment Station was released in March 2009. Merl was derived from the three-way cross ‘Roane’ / Pioneer Brand ‘2643’ // ‘38158’ (PI 619052). Merl is a...

  2. Registration of Camelot Wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    'Camelot ' (PI 653832) hard red winter wheat (Triticum aestivum L.) was developed cooperatively by the Nebraska Agricultural Experiment Station and the USDA-ARS and released in 2008. In addition to researchers at the releasing institutions, USDA-ARS researchers at Manhattan, KS, and St. Paul, MN, ...

  3. Registration of 'Otto' Wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Resistance to strawbreaker foot rot (caused by Oculimacula yallundae Crous & W. Gams and O. acuformis Crous & W. Gams) and to stripe rust (caused by Puccinia striiformis Westend. f. sp. tritici Eriks.) are important traits for winter wheat cultivars produced in the Pacifi Northwest region of the Uni...

  4. Registration of 'Cowboy' wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    'Cowboy' (Reg. No. CV-1095, PI 668564) hard red winter wheat (Triticum aestivum L.) was developed by the Colorado Agricultural Experiment Station and released cooperatively by Colorado State University (CSU) and the University of Wyoming (UWYO) in August 2011. In addition to researchers at CSU and U...

  5. Registration of 'Tiger' wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    ‘Tiger’ hard white winter wheat (Triticum aestivum L.) was developed at Research Center-Hays, Kansas State University and released by Kansas Agricultural Experiment Station in 2010. Tiger was selected from a three-way cross KS98H245/’Trego’//KS98HW518 made in 1999 at Hays, KS. The objective of this ...

  6. Registration of Warhorse wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    'Warhorse' (Reg. No. CV-1096, PI 670157) hard red winter (HRW) wheat (Triticum aestivum L.) was developed and released by the Montana Agricultural Experiment Station in September 2013. Warhorse is of unknown pedigree, derived from a composite of three topcrosses made to the same F1 population in 200...

  7. Wheat allergy: diagnosis and management.

    PubMed

    Cianferoni, Antonella

    2016-01-01

    Triticum aestivum (bread wheat) is the most widely grown crop worldwide. In genetically predisposed individuals, wheat can cause specific immune responses. A food allergy to wheat is characterized by T helper type 2 activation which can result in immunoglobulin E (IgE) and non-IgE mediated reactions. IgE mediated reactions are immediate, are characterized by the presence of wheat-specific IgE antibodies, and can be life-threatening. Non-IgE mediated reactions are characterized by chronic eosinophilic and lymphocytic infiltration of the gastrointestinal tract. IgE mediated responses to wheat can be related to wheat ingestion (food allergy) or wheat inhalation (respiratory allergy). A food allergy to wheat is more common in children and can be associated with a severe reaction such as anaphylaxis and wheat-dependent, exercise-induced anaphylaxis. An inhalation induced IgE mediated wheat allergy can cause baker's asthma or rhinitis, which are common occupational diseases in workers who have significant repetitive exposure to wheat flour, such as bakers. Non-IgE mediated food allergy reactions to wheat are mainly eosinophilic esophagitis (EoE) or eosinophilic gastritis (EG), which are both characterized by chronic eosinophilic inflammation. EG is a systemic disease, and is associated with severe inflammation that requires oral steroids to resolve. EoE is a less severe disease, which can lead to complications in feeding intolerance and fibrosis. In both EoE and EG, wheat allergy diagnosis is based on both an elimination diet preceded by a tissue biopsy obtained by esophagogastroduodenoscopy in order to show the effectiveness of the diet. Diagnosis of IgE mediated wheat allergy is based on the medical history, the detection of specific IgE to wheat, and oral food challenges. Currently, the main treatment of a wheat allergy is based on avoidance of wheat altogether. However, in the near future immunotherapy may represent a valid way to treat IgE mediated reactions to

  8. Wheat allergy: diagnosis and management

    PubMed Central

    Cianferoni, Antonella

    2016-01-01

    Triticum aestivum (bread wheat) is the most widely grown crop worldwide. In genetically predisposed individuals, wheat can cause specific immune responses. A food allergy to wheat is characterized by T helper type 2 activation which can result in immunoglobulin E (IgE) and non-IgE mediated reactions. IgE mediated reactions are immediate, are characterized by the presence of wheat-specific IgE antibodies, and can be life-threatening. Non-IgE mediated reactions are characterized by chronic eosinophilic and lymphocytic infiltration of the gastrointestinal tract. IgE mediated responses to wheat can be related to wheat ingestion (food allergy) or wheat inhalation (respiratory allergy). A food allergy to wheat is more common in children and can be associated with a severe reaction such as anaphylaxis and wheat-dependent, exercise-induced anaphylaxis. An inhalation induced IgE mediated wheat allergy can cause baker’s asthma or rhinitis, which are common occupational diseases in workers who have significant repetitive exposure to wheat flour, such as bakers. Non-IgE mediated food allergy reactions to wheat are mainly eosinophilic esophagitis (EoE) or eosinophilic gastritis (EG), which are both characterized by chronic eosinophilic inflammation. EG is a systemic disease, and is associated with severe inflammation that requires oral steroids to resolve. EoE is a less severe disease, which can lead to complications in feeding intolerance and fibrosis. In both EoE and EG, wheat allergy diagnosis is based on both an elimination diet preceded by a tissue biopsy obtained by esophagogastroduodenoscopy in order to show the effectiveness of the diet. Diagnosis of IgE mediated wheat allergy is based on the medical history, the detection of specific IgE to wheat, and oral food challenges. Currently, the main treatment of a wheat allergy is based on avoidance of wheat altogether. However, in the near future immunotherapy may represent a valid way to treat IgE mediated reactions to

  9. Divergent Development of Hexaploid Triticale by a Wheat – Rye –Psathyrostachys huashanica Trigeneric Hybrid Method

    PubMed Central

    Huang, Juan; Wang, Yujie; Li, Daiyan; Diao, Chengdou; Zhu, Wei; Tang, Yao; Wang, Yi; Fan, Xing; Zeng, Jian; Xu, Lili; Sha, Lina; Zhang, Haiqin; Zhou, Yonghong

    2016-01-01

    Hexaploid triticale is an important forage crop and a promising energy plant. Some forms were previously reported for developing the hexaploid triticale, such as crossing tetraploid wheat or hexaploid wheat with rye, crossing hexaploid triticale and/or hexaploid wheat with octoploid triticale, and spontaneously appearing in the selfed progenies of octoploid triticale. In the present study, we developed an effective method for production of diverse types of hexaploid triticale via wheat—rye—Psathyrostachys huashanica trigeneric hybrid. Genomic in situ hybridization (GISH) and fluorescence in situ hybridization (FISH) karyotyping revealed that D genome chromosomes were completely eliminated and the whole A, B, and R genome chromosomes were retained in three lines. More interestingly, the composite genome of the line K14-489-2 consisted of complete A and B genomes and chromosomes 1D, 2R, 3R, 4R, 5R, 6R, and 7R, that of line K14-491-2 was 12 A-genome (1A-6A), 14 B-genome (1B-7B), 12 R-genome (1R-3R, 5R-7R), and chromosomes 1D and 3D, and that of the line K14-547-1 had 26A/B and 14R chromosomes, plus one pair of centric 6BL/2DS translocations. This finding implies that some of D genome chromosomes can be spontaneously and stably incorporated into the hexaploid triticale. Additionally, a variety of high-molecular-weight glutenin subunits (HMW-GS) compositions were detected in the six hexaploid triticale lines, respectively. Besides, compared with its recurrent triticale parent Zhongsi828, these lines showed high level of resistance to stripe rust (Puccinia striiformis f. sp. tritici, Pst) pathogens prevalent in China, including V26/Gui 22. These new hexaploid triticales not only enhanced diversification of triticale but also could be utilized as valuable germplasm for wheat improvement. PMID:27182983

  10. Wheat Genotypes With Combined Resistance to Wheat Curl Mite, Wheat Streak Mosaic Virus, Wheat Mosaic Virus, and Triticum Mosaic Virus.

    PubMed

    Chuang, Wen-Po; Rojas, Lina Maria Aguirre; Khalaf, Luaay Kahtan; Zhang, Guorong; Fritz, Allan K; Whitfield, Anna E; Smith, C Michael

    2017-01-13

    The wheat curl mite, Aceria tosichella Keifer, (WCM) is a global pest of bread wheat that reduces yields significantly. In addition, WCM carries Wheat streak mosaic virus (WSMV, family Potyviridae, genus Tritimovirus), the most significant wheat virus in North America; High Plains wheat mosaic virus (HPWMoV, genus Emaravirus, formerly High plains virus); and Triticum mosaic virus (TriMV, family Potyviridae, genus Poacevirus). Viruses carried by WCM have reduced wheat yields throughout the U.S. Great Plains for >50 yr, with average yield losses of 2-3% and occasional yield losses of 7-10%. Acaricides are ineffective against WCM, and delayed planting of winter wheat is not feasible. Five wheat breeding lines containing Cmc4, a WCM resistance gene from Aegilops tauschii, and Wsm2, a WSMV resistance gene from wheat germplasm CO960293-2 were selected from the breeding process and assessed for phenotypic reaction to WCM feeding, population increase, and the degree of WSMV, HPWMoV, and TriMV infection. Experiments determined that all five lines are resistant to WCM biotype 1 feeding and population increase, and that two breeding lines contain resistance to WSMV, HPWMoV, and TriMV infection as well. These WCM-, WSMV-, HPWMoV-, and TriMV-resistant genotypes can be used improve management of wheat yield losses from WCM-virus complexes.

  11. Circulating Vascular Progenitor Cells in Moyamoya Disease

    PubMed Central

    Kang, Hyun-Seung; Wang, Kyu-Chang

    2015-01-01

    Various approaches have been attempted in translational moyamoya disease research. One promising material for modeling and treating this disease is vascular progenitor cells, which can be acquired and expanded from patient peripheral blood. These cells may provide a novel experimental model and enable us to obtain insights regarding moyamoya disease pathogenesis. We briefly present the recent accomplishments in regard to the studies of vascular progenitor cells in moyamoya disease. PMID:26180610

  12. Molecular characterization of vernalization loci VRN1 in wild and cultivated wheats

    PubMed Central

    2010-01-01

    Background Variability of the VRN1 promoter region of the unique collection of spring polyploid and wild diploid wheat species together with diploid goatgrasses (donor of B and D genomes of polyploid wheats) were investigated. Accessions of wild diploid (T. boeoticum, T. urartu) and tetraploid (T. araraticum, T. timopheevii) species were studied for the first time. Results Sequence analysis indicated great variability in the region from -62 to -221 nucleotide positions of the VRN1 promoter region. Different indels were found within this region in spring wheats. It was shown that VRN1 promoter region of B and G genome can also contain damages such as the insertion of the transposable element. Some transcription factor recognition sites including hybrid C/G-box for TaFDL2 protein known as the VRN1 gene upregulator were predicted inside the variable region. It was shown that deletions leading to promoter damage occurred in diploid and polyploid species independently. DNA transposon insertions first occurred in polyploid species. At the same time, the duplication of the promoter region was observed in A genomes of polyploid species. Conclusions We can conclude that supposed molecular mechanism of the VRN1 gene activating in cultivated diploid wheat species T. monococcum is common also for wild T. boeoticum and was inherited by T. monococcum. The spring polyploids are not related in their origin to spring diploids. The spring T. urartu and goatgrass accessions have another mechanism of flowering activation that is not connected with indels in VRN1 promoter region. All obtained data may be useful for detailed insight into origin of spring wheat forms in evolution and domestication process. PMID:20699006

  13. Characterization and expression analysis of WOX5 genes from wheat and its relatives.

    PubMed

    Zhao, Shan; Jiang, Qian-Tao; Ma, Jian; Zhang, Xiao-Wei; Zhao, Quan-Zhi; Wang, Xiu-Ying; Wang, Chang-Shui; Cao, Xue; Lu, Zhen-Xiang; Zheng, You-Liang; Wei, Yu-Ming

    2014-03-01

    The WUSCHEL (WUS)-related homeobox (WOX) gene family plays an important role in coordinating gene transcription in the early phases of embryogenesis. In this study, we isolated and characterized WOX5 from common wheat and its relatives Triticum monococcum, Triticum urartu, Aegilops speltoides, Aegilops searsii, Aegilops sharonensis, Aegilops longissima, Aegilops bicornis, Aegilops tauschii, and Triticum turgidum. The size of the characterized WOX5 alleles ranged from 1029 to 1038 bp and encompassed the complete open reading frame (ORF) as well as 5' upstream and 3' downstream sequences. Domain prediction analysis showed that the putative primary structures of wheat WOX5 protein include the highly conserved homeodomain besides the WUS-box domain and the EAR-like domain, which is/are present in some members of the WOX protein family. The full-length ORF was subcloned into a prokaryotic expression vector pET30a, and an approximate 26-kDa protein was successfully expressed in Escherichia coli BL21 (DE3) cells with IPTG induction. The WOX5 genes from wheat-related species exhibit a similar structure to and high sequence similarity with WOX5 genes from common wheat. The degree of divergence and phylogenetic tree analysis among WOX5 alleles suggested the existence of three homoeologous copies in the A, B, or D genome of common wheat. Quantitative PCR results showed that TaWOX5 was primarily expressed in the root and calli induced by auxin and cytokinin, indicating that TaWOX5 may play a role related to root formation or development and is associated with hormone regulation in somatic embryogenesis.

  14. Wheat yield forecasts using LANDSAT data

    NASA Technical Reports Server (NTRS)

    Colwell, J. E.; Rice, D. P.; Nalepka, R. F.

    1977-01-01

    Several considerations of winter wheat yield prediction using LANDSAT data were discussed. In addition, a simple technique which permits direct early season forecasts of wheat production was described.

  15. Low temperature-induced necrosis shows phenotypic plasticity in wheat triploid hybrids.

    PubMed

    Takumi, Shigeo; Mizuno, Nobuyuki

    2011-10-01

    Hybrid necrosis sometimes appears in triploid hybrids between tetraploid wheat and Aegilops tauschii Coss. Two types of hybrid necrosis (type II and type III) were observed when cultivar Langdon was used as female parent for hybrid production. Type II necrosis symptoms occurred only under low temperature conditions, whereas bushy and dwarf phenotypes were observed under normal temperature conditions. The developmental plasticity might be related to a temperature-responsive alteration of meristematic activity at the crown tissue of triploid hybrids. Epistatic interaction between the AB and D genomes induced not only upregulation of a number of defense-related genes, but also extensive changes in plant architecture in the type II necrosis hybrids. Such phenotypic plasticity was also observed in other cross combinations between cultivated tetraploid wheat and type II necrosis-induced Ae. tauschii accessions. Wild tetraploid wheat, Triticum turgidum subspecies dicoccoides, did not induce type II necrosis in the triploid hybrids, indicating the possibility of identifying the chromosomal location of a causal gene for type II necrosis in the AB genome.

  16. TaER Expression Is Associated with Transpiration Efficiency Traits and Yield in Bread Wheat.

    PubMed

    Zheng, Jiacheng; Yang, Zhiyuan; Madgwick, Pippa J; Carmo-Silva, Elizabete; Parry, Martin A J; Hu, Yin-Gang

    2015-01-01

    ERECTA encodes a receptor-like kinase and is proposed as a candidate for determining transpiration efficiency of plants. Two genes homologous to ERECTA in Arabidopsis were identified on chromosomes 6 (TaER2) and 7 (TaER1) of bread wheat (Triticum aestivum L.), with copies of each gene on the A, B and D genomes of wheat. Similar expression patterns were observed for TaER1 and TaER2 with relatively higher expression of TaER1 in flag leaves of wheat at heading (Z55) and grain-filling (Z73) stages. Significant variations were found in the expression levels of both TaER1 and TaER2 in the flag leaves at both growth stages among 48 diverse bread wheat varieties. Based on the expression of TaER1 and TaER2, the 48 wheat varieties could be classified into three groups having high (5 varieties), medium (27 varieties) and low (16 varieties) levels of TaER expression. Significant differences were also observed between the three groups varying for TaER expression for several transpiration efficiency (TE)- related traits, including stomatal density (SD), transpiration rate, photosynthetic rate (A), instant water use efficiency (WUEi) and carbon isotope discrimination (CID), and yield traits of biomass production plant-1 (BYPP) and grain yield plant-1 (GYPP). Correlation analysis revealed that the expression of TaER1 and TaER2 at the two growth stages was significantly and negatively associated with SD (P<0.01), transpiration rate (P<0.05) and CID (P<0.01), while significantly and positively correlated with flag leaf area (FLA, P<0.01), A (P<0.05), WUEi (P<0.05), BYPP (P<0.01) and GYPP (P<0.01), with stronger correlations for TaER1 than TaER2 and at grain-filling stage than at heading stage. These combined results suggested that TaER involved in development of transpiration efficiency -related traits and yield in bread wheat, implying a function for TaER in regulating leaf development of bread wheat and contributing to expression of these traits. Moreover, the results indicate

  17. History and current status of wheat miRNAs using next-generation sequencing and their roles in development and stress.

    PubMed

    Budak, Hikmet; Khan, Zaeema; Kantar, Melda

    2015-05-01

    As small molecules that aid in posttranscriptional silencing, microRNA (miRNA) discovery and characterization have vastly benefited from the recent development and widespread application of next-generation sequencing (NGS) technologies. Several miRNAs were identified through sequencing of constructed small RNA libraries, whereas others were predicted by in silico methods using the recently accumulating sequence data. NGS was a major breakthrough in efforts to sequence and dissect the genomes of plants, including bread wheat and its progenitors, which have large, repetitive and complex genomes. Availability of survey sequences of wheat whole genome and its individual chromosomes enabled researchers to predict and assess wheat miRNAs both in the subgenomic and whole genome levels. Moreover, small RNA construction and sequencing-based studies identified several putative development- and stress-related wheat miRNAs, revealing their differential expression patterns in specific developmental stages and/or in response to stress conditions. With the vast amount of wheat miRNAs identified in recent years, we are approaching to an overall knowledge on the wheat miRNA repertoire. In the following years, more comprehensive research in relation to miRNA conservation or divergence across wheat and its close relatives or progenitors should be performed. Results may serve valuable in understanding both the significant roles of species-specific miRNAs and also provide us information in relation to the dynamics between miRNAs and evolution in wheat. Furthermore, putative development- or stress-related miRNAs identified should be subjected to further functional analysis, which may be valuable in efforts to develop wheat with better resistance and/or yield.

  18. Wheat Landrace Genome Diversity.

    PubMed

    Wingen, Luzie U; West, Claire; Leverington-Waite, Michelle; Collier, Sarah; Orford, Simon; Goram, Richard; Yang, Cai-Yun; King, Julie; Allen, Alexandra M; Burridge, Amanda; Edwards, Keith J; Griffiths, Simon

    2017-04-01

    Understanding the genomic complexity of bread wheat (Triticum aestivum L.) is a cornerstone in the quest to unravel the processes of domestication and the following adaptation of domesticated wheat to a wide variety of environments across the globe. Additionally, it is of importance for future improvement of the crop, particularly in the light of climate change. Focusing on the adaptation after domestication, a nested association mapping (NAM) panel of 60 segregating biparental populations was developed, mainly involving landrace accessions from the core set of the Watkins hexaploid wheat collection optimized for genetic diversity. A modern spring elite variety, "Paragon," was used as common reference parent. Genetic maps were constructed following identical rules to make them comparable. In total, 1611 linkage groups were identified, based on recombination from an estimated 126,300 crossover events over the whole NAM panel. A consensus map, named landrace consensus map (LRC), was constructed and contained 2498 genetic loci. These newly developed genetics tools were used to investigate the rules underlying genome fluidity or rigidity, e.g., by comparing marker distances and marker orders. In general, marker order was highly correlated, which provides support for strong synteny between bread wheat accessions. However, many exceptional cases of incongruent linkage groups and increased marker distances were also found. Segregation distortion was detected for many markers, sometimes as hot spots present in different populations. Furthermore, evidence for translocations in at least 36 of the maps was found. These translocations fell, in general, into many different translocation classes, but a few translocation classes were found in several accessions, the most frequent one being the well-known T5B:7B translocation. Loci involved in recombination rate, which is an interesting trait for plant breeding, were identified by QTL analyses using the crossover counts as a trait

  19. Wheat Landrace Genome Diversity

    PubMed Central

    Wingen, Luzie U.; West, Claire; Leverington-Waite, Michelle; Collier, Sarah; Orford, Simon; Goram, Richard; Yang, Cai-Yun; King, Julie; Allen, Alexandra M.; Burridge, Amanda; Edwards, Keith J.; Griffiths, Simon

    2017-01-01

    Understanding the genomic complexity of bread wheat (Triticum aestivum L.) is a cornerstone in the quest to unravel the processes of domestication and the following adaptation of domesticated wheat to a wide variety of environments across the globe. Additionally, it is of importance for future improvement of the crop, particularly in the light of climate change. Focusing on the adaptation after domestication, a nested association mapping (NAM) panel of 60 segregating biparental populations was developed, mainly involving landrace accessions from the core set of the Watkins hexaploid wheat collection optimized for genetic diversity. A modern spring elite variety, “Paragon,” was used as common reference parent. Genetic maps were constructed following identical rules to make them comparable. In total, 1611 linkage groups were identified, based on recombination from an estimated 126,300 crossover events over the whole NAM panel. A consensus map, named landrace consensus map (LRC), was constructed and contained 2498 genetic loci. These newly developed genetics tools were used to investigate the rules underlying genome fluidity or rigidity, e.g., by comparing marker distances and marker orders. In general, marker order was highly correlated, which provides support for strong synteny between bread wheat accessions. However, many exceptional cases of incongruent linkage groups and increased marker distances were also found. Segregation distortion was detected for many markers, sometimes as hot spots present in different populations. Furthermore, evidence for translocations in at least 36 of the maps was found. These translocations fell, in general, into many different translocation classes, but a few translocation classes were found in several accessions, the most frequent one being the well-known T5B:7B translocation. Loci involved in recombination rate, which is an interesting trait for plant breeding, were identified by QTL analyses using the crossover counts as a

  20. Neural Progenitors Adopt Specific Identities by Directly Repressing All Alternative Progenitor Transcriptional Programs.

    PubMed

    Kutejova, Eva; Sasai, Noriaki; Shah, Ankita; Gouti, Mina; Briscoe, James

    2016-03-21

    In the vertebrate neural tube, a morphogen-induced transcriptional network produces multiple molecularly distinct progenitor domains, each generating different neuronal subtypes. Using an in vitro differentiation system, we defined gene expression signatures of distinct progenitor populations and identified direct gene-regulatory inputs corresponding to locations of specific transcription factor binding. Combined with targeted perturbations of the network, this revealed a mechanism in which a progenitor identity is installed by active repression of the entire transcriptional programs of other neural progenitor fates. In the ventral neural tube, sonic hedgehog (Shh) signaling, together with broadly expressed transcriptional activators, concurrently activates the gene expression programs of several domains. The specific outcome is selected by repressive input provided by Shh-induced transcription factors that act as the key nodes in the network, enabling progenitors to adopt a single definitive identity from several initially permitted options. Together, the data suggest design principles relevant to many developing tissues.

  1. STELLAR BINARY COMPANIONS TO SUPERNOVA PROGENITORS

    SciTech Connect

    Kochanek, Christopher S.

    2009-12-20

    For typical models of binary statistics, 50%-80% of core-collapse supernova (ccSN) progenitors are members of a stellar binary at the time of the explosion. Independent of any consequences of mass transfer, this has observational consequences that can be used to study the binary properties of massive stars. In particular, the secondary companion to the progenitor of a Type Ib/c SN is frequently (approx50%) the more optically luminous star since the high effective temperatures of the stripped progenitors make it relatively easy for a lower luminosity, cooler secondary to emit more optical light. Secondaries to the lower mass progenitors of Type II SN will frequently produce excess blue emission relative to the spectral energy distribution of the red primary. Available data constrain the models weakly. Any detected secondaries also provide an independent lower bound on the progenitor mass and, for historical SN, show that it was not a Type Ia event. Bright ccSN secondaries have an unambiguous, post-explosion observational signature-strong, blueshifted, relatively broad absorption lines created by the developing SN remnant (SNR). These can be used to locate historical SN with bright secondaries, confirm that a source is a secondary, and, potentially, measure abundances of ccSN ejecta. Luminous, hot secondaries will re-ionize the SNR on timescales of 100-1000 yr that are faster than re-ionization by the reverse shock, creating peculiar H II regions due to the high metallicity and velocities of the ejecta.

  2. Registration of 'Bill Brown' Wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    ‘Bill Brown’ (Reg. No. CV-133, PI 653260) hard red winter wheat (Triticum aestivum L.) was developed by the Colorado Agricultural Experiment Station and released in August 2007 through an exclusive marketing agreement with the Colorado Wheat Research Foundation. In addition to researchers at Colorad...

  3. Registration of 'Bill Brown' wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    'Bill Brown’ (Reg. No. CV-133, PI 653260) hard red winter wheat (Triticum aestivum L.) was developed by the Colorado Agricultural Experiment Station and released in August 2007 through an exclusive marketing agreement with the Colorado Wheat Research Foundation. In addition to researchers at Colorad...

  4. Registration of 'Thunder CL' Wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    'Thunder CL' (Reg. No. CV- , PI XXXXXX) hard white winter wheat (Triticum aestivum L.) was developed by the Colorado Agricultural Experiment Station and released in August 2008 through a marketing agreement with the Colorado Wheat Research Foundation. In addition to researchers at Colorado State Uni...

  5. Registration of 'LCS Wizard' wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this research was to develop widely adapted hard winter wheat (Triticum aestivum L.) varieties to meet the needs of mills, bakeries, and consumers in the eastern and Great Plains regions of the United States. ‘LCS Wizard’ (Reg. No. CV-1111, PI 669574), a hard red winter (HRW) wheat,...

  6. Registration of 'Rollag' spring wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium head blight (FHB) (caused primarily by Fusarium graminearum Schwabe) is a disease that annually threatens wheat (Triticum aestivum L.) grown in the northern plains of the United States. Resistance to this disease is a high priority trait in the University of Minnesota’s spring wheat breedi...

  7. Wheat landraces: A mini review

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Farmers developed and utilized diverse wheat landraces to meet the complexity of a multitude of spatio-temporal, agro-ecological systems and to provide reliable sustenance and a sustainable food source to local communities. The genetic structure of wheat landraces is an evolutionary approach to surv...

  8. Evolution of New Disease Specificity at a Simple Resistance Locus in a Crop–Weed Complex: Reconstitution of the Lr21 Gene in Wheat

    PubMed Central

    Huang, Li; Brooks, Steven; Li, Wanlong; Fellers, John; Nelson, James C.; Gill, Bikram

    2009-01-01

    The wheat leaf-rust resistance gene Lr21 was first identified in an Iranian accession of goatgrass, Aegilops tauschii Coss., the D-genome donor of hexaploid bread wheat, and was introgressed into modern wheat cultivars by breeding. To elucidate the origin of the gene, we analyzed sequences of Lr21 and lr21 alleles from 24 wheat cultivars and 25 accessions of Ae. tauschii collected along the Caspian Sea in Iran and Azerbaijan. Three basic nonfunctional lr21 haplotypes, H1, H2, and H3, were identified. Lr21 was found to be a chimera of H1 and H2, which were found only in wheat. We attempted to reconstitute a functional Lr21 allele by crossing the cultivars Fielder (H1) and Wichita (H2). Rust inoculation of 5876 F2 progeny revealed a single resistant plant that proved to carry the H1H2 haplotype, a result attributed to intragenic recombination. These findings reflect how plants balance the penalty and the necessity of a resistance gene and suggest that plants can reuse “dead” alleles to generate new disease-resistance specificity, leading to a “death–recycle” model of plant-resistance gene evolution at simple loci. We suggest that selection pressure in crop–weed complexes contributes to this process. PMID:19364806

  9. Incidence of Wheat streak mosaic virus, Triticum mosaic virus, and Wheat mosaic virus in wheat curl mites recovered from maturing winter wheat spikes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wheat curl mites (WCM; Aceria tosichella) transmit Wheat streak mosaic virus (WSMV), Triticum mosaic virus (TriMV), and Wheat mosaic virus (WMoV) to wheat (Triticum aestivum L.) in the Great Plains region of the United States. These viruses can be detected in single, double, or triple combinations i...

  10. Neuropeptides: developmental signals in placode progenitor formation.

    PubMed

    Lleras-Forero, Laura; Tambalo, Monica; Christophorou, Nicolas; Chambers, David; Houart, Corinne; Streit, Andrea

    2013-07-29

    Few families of signaling factors have been implicated in the control of development. Here, we identify the neuropeptides nociceptin and somatostatin, a neurotransmitter and neuroendocrine hormone, as a class of developmental signals in both chick and zebrafish. We show that signals from the anterior mesendoderm are required for the formation of anterior placode progenitors, with one of the signals being somatostatin. Somatostatin controls ectodermal expression of nociceptin, and both peptides regulate Pax6 in lens and olfactory progenitors. Consequently, loss of somatostatin and nociceptin signaling leads to severe reduction of lens formation. Our findings not only uncover these neuropeptides as developmental signals but also identify a long-sought-after mechanism that initiates Pax6 in placode progenitors and may explain the ancient evolutionary origin of neuropeptides, predating a complex nervous system.

  11. Endothelial progenitor cells in cardiovascular diseases

    PubMed Central

    Lee, Poay Sian Sabrina; Poh, Kian Keong

    2014-01-01

    Endothelial dysfunction has been associated with the development of atherosclerosis and cardiovascular diseases. Adult endothelial progenitor cells (EPCs) are derived from hematopoietic stem cells and are capable of forming new blood vessels through a process of vasculogenesis. There are studies which report correlations between circulating EPCs and cardiovascular risk factors. There are also studies on how pharmacotherapies may influence levels of circulating EPCs. In this review, we discuss the potential role of endothelial progenitor cells as both diagnostic and prognostic biomarkers. In addition, we look at the interaction between cardiovascular pharmacotherapies and endothelial progenitor cells. We also discuss how EPCs can be used directly and indirectly as a therapeutic agent. Finally, we evaluate the challenges facing EPC research and how these may be overcome. PMID:25126384

  12. Tracking wheat rust on a continental scale.

    PubMed

    Kolmer, James A

    2005-08-01

    The rusts of wheat are important fungal plant pathogens that can be disseminated thousands of kilometers across continents and oceans by wind. Rusts are obligate parasites that interact with resistance genes in wheat in a gene-for-gene manner. New races of rust develop by mutation and selection for virulence against rust resistance genes in wheat. In recent years, new races of wheat leaf rust, wheat stripe rust, and wheat stem rust have been introduced into wheat production areas in different continents. These introductions have complicated efforts to develop wheat cultivars with durable rust resistance and have reduced the number of effective rust-resistance genes that are available for use. The migration patterns of wheat rusts are characterized by identifying their virulence against important rust resistance genes in wheat and by the use of molecular markers.

  13. Drought Tolerance in Wheat

    PubMed Central

    Prodhan, Zakaria Hossain; Faruq, Golam

    2013-01-01

    Drought is one of the most important phenomena which limit crops' production and yield. Crops demonstrate various morphological, physiological, biochemical, and molecular responses to tackle drought stress. Plants' vegetative and reproductive stages are intensively influenced by drought stress. Drought tolerance is a complicated trait which is controlled by polygenes and their expressions are influenced by various environmental elements. This means that breeding for this trait is so difficult and new molecular methods such as molecular markers, quantitative trait loci (QTL) mapping strategies, and expression patterns of genes should be applied to produce drought tolerant genotypes. In wheat, there are several genes which are responsible for drought stress tolerance and produce different types of enzymes and proteins for instance, late embryogenesis abundant (lea), responsive to abscisic acid (Rab), rubisco, helicase, proline, glutathione-S-transferase (GST), and carbohydrates during drought stress. This review paper has concentrated on the study of water limitation and its effects on morphological, physiological, biochemical, and molecular responses of wheat with the possible losses caused by drought stress. PMID:24319376

  14. The Progenitors of Type Ia Supernova

    NASA Astrophysics Data System (ADS)

    Tout, C. A.

    2005-08-01

    Type Ia supernovae are identified as exploding degenerate stars. Their luminosity is due to the radioactive decay of about a solar mass of 56Ni through 56Co to 56Fe. As such they are a major source of iron in the inter-stellar medium. Although it is generally accepted that a degenerate carbon/oxygen white dwarf explodes as it accretes material from a binary companion, the progenitors of type Ia supernovae have not been categorically identified. We discuss the various possible progenitors in detail and indicate theoretical and observational difficulties with each possibility. It may well be that the true nature of the progenitors has not yet even been conceived of. We look at why population synthesis fails to help distinguish and consider how the advent of population nucleosynthesis may change this. When used as universal standard candles SNe Ia are calibrated with the Phillips relation between absolute luminosity and light curve shape. This must therefore be valid at all redshifts and so both the absolute luminosity and the light curve decay must only depend on a single major property of the progenitors. We report on the latest understanding of this relation and find little to justify its universality beyond the local empirical evidence. A major effect on the absolute luminosities is the neutron to proton ratio at the time of the explosion because this determines the fraction of iron group elements made up of 56Ni.

  15. Progenitor Cell Fate Decisions in Mammary Tumorigenesis

    DTIC Science & Technology

    2013-03-01

    luminal progenitors contributing to transformation of ER- luminal and basal cells and development of treatment resistant breast cancer . We previously...proliferate and metastasize. Decreased DNA damage repair or altered epigenetic marks can dramatically affect the cellular composition of these tumors

  16. Single Degenerate Progenitors of Type Ia Supernovae

    NASA Astrophysics Data System (ADS)

    Bours, Madelon; Toonen, Silvia; Nelemans, Gijs

    2013-01-01

    There is a general agreement that Type Ia supernovae correspond to the thermonuclear runaway of a white dwarf (WD) in a compact binary. The details of these progenitor systems are still unclear. Using the population synthesis code SeBa and several assumption for the WD retention efficiency, we estimate the delay times and supernova rates for the single degenerate scenario.

  17. Direct Conversion of Fibroblasts to Megakaryocyte Progenitors.

    PubMed

    Pulecio, Julian; Alejo-Valle, Oriol; Capellera-Garcia, Sandra; Vitaloni, Marianna; Rio, Paula; Mejía-Ramírez, Eva; Caserta, Ilaria; Bueren, Juan A; Flygare, Johan; Raya, Angel

    2016-10-11

    Current sources of platelets for transfusion are insufficient and associated with risk of alloimmunization and blood-borne infection. These limitations could be addressed by the generation of autologous megakaryocytes (MKs) derived in vitro from somatic cells with the ability to engraft and differentiate in vivo. Here, we show that overexpression of a defined set of six transcription factors efficiently converts mouse and human fibroblasts into MK-like progenitors. The transdifferentiated cells are CD41(+), display polylobulated nuclei, have ploidies higher than 4N, form MK colonies, and give rise to platelets in vitro. Moreover, transplantation of MK-like murine progenitor cells into NSG mice results in successful engraftment and further maturation in vivo. Similar results are obtained using disease-corrected fibroblasts from Fanconi anemia patients. Our results combined demonstrate that functional MK progenitors with clinical potential can be obtained in vitro, circumventing the use of hematopoietic progenitors or pluripotent stem cells.

  18. Targeting human oligodendrocyte progenitors for myelin repair.

    PubMed

    Dietz, Karen C; Polanco, Jessie J; Pol, Suyog U; Sim, Fraser J

    2016-09-01

    Oligodendrocyte development has been studied for several decades, and has served as a model system for both neurodevelopmental and stem/progenitor cell biology. Until recently, the vast majority of studies have been conducted in lower species, especially those focused on rodent development and remyelination. In humans, the process of myelination requires the generation of vastly more myelinating glia, occurring over a period of years rather than weeks. Furthermore, as evidenced by the presence of chronic demyelination in a variety of human neurologic diseases, it appears likely that the mechanisms that regulate development and become dysfunctional in disease may be, in key ways, divergent across species. Improvements in isolation techniques, applied to primary human neural and oligodendrocyte progenitors from both fetal and adult brain, as well as advancements in the derivation of defined progenitors from human pluripotent stem cells, have begun to reveal the extent of both species-conserved signaling pathways and potential key differences at cellular and molecular levels. In this article, we will review the commonalities and differences in myelin development between rodents and man, describing the approaches used to study human oligodendrocyte differentiation and myelination, as well as heterogeneity within targetable progenitor pools, and discuss the advances made in determining which conserved pathways may be both modeled in rodents and translate into viable therapeutic strategies to promote myelin repair.

  19. The progenitors of subluminous type Ia supernovae

    SciTech Connect

    Howell, D. Andrew

    2001-02-01

    We find that spectroscopically peculiar subluminous SNe Ia come from an old population. Of the thirteen subluminous SNe Ia known, nine are found in E/S0 galaxies, and the remainder are found in early-type spirals. The probability that this is a chance occurrence is only 0.1%. The finding that subluminous SNe Ia are associated with an older stellar population indicates that for a sufficiently large lookback time (already accessible in current high redshift searches) they will not be found. Due to a scarcity in old populations, hydrogen and helium main sequence stars and He red giant stars that undergo Roche lobe overflow are unlikely to be the progenitors of subluminous SNe Ia. Earlier findings that overluminous SNe Ia (DELTA m{sub 15} (B) < 0.94) come from a young progenitor population are confirmed. The fact that subluminous SNe Ia and overluminous SNe Ia come from different progenitor populations and also have different properties is a prediction of the CO white dwarf merger progenitor scenario.

  20. SUPERNOVA REMNANT PROGENITOR MASSES IN M31

    SciTech Connect

    Jennings, Zachary G.; Williams, Benjamin F.; Dalcanton, Julianne J.; Gilbert, Karoline M.; Fouesneau, Morgan; Weisz, Daniel R.; Murphy, Jeremiah W.; Dolphin, Andrew E. E-mail: adolphin@raytheon.com

    2012-12-10

    Using Hubble Space Telescope photometry, we age-date 59 supernova remnants (SNRs) in the spiral galaxy M31 and use these ages to estimate zero-age main-sequence masses (M{sub ZAMS}) for their progenitors. To accomplish this, we create color-magnitude diagrams (CMDs) and employ CMD fitting to measure the recent star formation history of the regions surrounding cataloged SNR sites. We identify any young coeval population that likely produced the progenitor star, then assign an age and uncertainty to that population. Application of stellar evolution models allows us to infer the M{sub ZAMS} from this age. Because our technique is not contingent on identification or precise location of the progenitor star, it can be applied to the location of any known SNRs. We identify significant young star formation around 53 of the 59 SNRs and assign progenitor masses to these, representing a factor of {approx}2 increase over currently measured progenitor masses. We consider the remaining six SNRs as either probable Type Ia candidates or the result of core-collapse progenitors that have escaped their birth sites. In general, the distribution of recovered progenitor masses is bottom-heavy, showing a paucity of the most massive stars. If we assume a single power-law distribution, dN/dM{proportional_to}M{sup {alpha}}, then we find a distribution that is steeper than a Salpeter initial mass function (IMF) ({alpha} = -2.35). In particular, we find values of {alpha} outside the range -2.7 {>=} {alpha} {>=} -4.4 to be inconsistent with our measured distribution at 95% confidence. If instead we assume a distribution that follows a Salpeter IMF up to some maximum mass, then we find that values of M{sub Max} > 26 are inconsistent with the measured distribution at 95% confidence. In either scenario, the data suggest that some fraction of massive stars may not explode. The result is preliminary and requires more SNRs and further analysis. In addition, we use our distribution to estimate a

  1. Diversification of the celiac disease α-gliadin complex in wheat: a 33-mer peptide with six overlapping epitopes, evolved following polyploidization.

    PubMed

    Ozuna, Carmen V; Iehisa, Julio C M; Giménez, María J; Alvarez, Juan B; Sousa, Carolina; Barro, Francisco

    2015-06-01

    The gluten proteins from wheat, barley and rye are responsible both for celiac disease (CD) and for non-celiac gluten sensitivity, two pathologies affecting up to 6-8% of the human population worldwide. The wheat α-gliadin proteins contain three major CD immunogenic peptides: p31-43, which induces the innate immune response; the 33-mer, formed by six overlapping copies of three highly stimulatory epitopes; and an additional DQ2.5-glia-α3 epitope which partially overlaps with the 33-mer. Next-generation sequencing (NGS) and Sanger sequencing of α-gliadin genes from diploid and polyploid wheat provided six types of α-gliadins (named 1-6) with strong differences in their frequencies in diploid and polyploid wheat, and in the presence and abundance of these CD immunogenic peptides. Immunogenic variants of the p31-43 peptide were found in most of the α-gliadins. Variants of the DQ2.5-glia-α3 epitope were associated with specific types of α-gliadins. Remarkably, only type 1 α-gliadins contained 33-mer epitopes. Moreover, the full immunodominant 33-mer fragment was only present in hexaploid wheat at low abundance, probably as the result of allohexaploidization events from subtype 1.2 α-gliadins found only in Aegilops tauschii, the D-genome donor of hexaploid wheat. Type 3 α-gliadins seem to be the ancestral type as they are found in most of the α-gliadin-expressing Triticeae species. These findings are important for reducing the incidence of CD by the breeding/selection of wheat varieties with low stimulatory capacity of T cells. Moreover, advanced genome-editing techniques (TALENs, CRISPR) will be easier to implement on the small group of α-gliadins containing only immunogenic peptides.

  2. Studies on the nutraceuticals composition of wheat derived oils wheat bran oil and wheat germ oil.

    PubMed

    Kumar, G Suresh; Krishna, A G Gopala

    2015-02-01

    Fat-soluble nutraceuticals of cereals are known for number of disease preventive activities. Hence wheat bran oil (WBO) and wheat germ oil (WGO) were extracted from wheat bran and germ which yielded 3.35 % and 7.35 % of oil, containing polyunsaturated fatty acids (PUFA) (64 %, 61.2 %) respectively. Both oils contained tocopherols and carotenoids, which were higher in wheat germ oil (273 mg/100 g, 12.23 mg/100 g) than wheat bran oil (190 mg/100 g, 2.21 mg/100 g). Steryl ferulates were also present in both the oils, but their content was eight-fold higher in WBO than in WGO. Three major steryl ferulates identified by HPLC were campesteryl ferulate and sitostenyl ferulate, campestanyl ferulate and β-sitosteryl ferulate as in γ-oryzanol and another ferulate, viz., sitostanyl ferulate. A strong IC50 value of 7.5 mg/mL and 21.6 mg/mL DPPH free radicals scavenging for wheat germ oil for wheat bran oil was observed. NMR ((13)C and (1)H) profile explored the evidence of distribution of antioxidant molecules in the unsaponifiable matter of wheat derived oil. Since oils rich in PUFA and minor components are required for the normal physiological activities, blending such oils with other edible oils of the diet in wheat growing countries like India may be useful to provide health benefits.

  3. The GLOBE 3D Genome Platform - towards a novel system-biological paper tool to integrate the huge complexity of genome organization and function.

    PubMed

    Knoch, Tobias A; Lesnussa, Michael; Kepper, Nick; Eussen, Hubert B; Grosveld, Frank G

    2009-01-01

    Genomes are tremendous co-evolutionary holistic systems for molecular storage, processing and fabrication of information. Their system-biological complexity remains, however, still largely mysterious, despite immense sequencing achievements and huge advances in the understanding of the general sequential, three-dimensional and regulatory organization. Here, we present the GLOBE 3D Genome Platform a completely novel grid based virtual "paper" tool and in fact the first system-biological genome browser integrating the holistic complexity of genomes in a single easy comprehensible platform: Based on a detailed study of biophysical and IT requirements, every architectural level from sequence to morphology of one or several genomes can be approached in a real and in a symbolic representation simultaneously and navigated by continuous scale-free zooming within a unique three-dimensional OpenGL and grid driven environment. In principle an unlimited number of multi-dimensional data sets can be visualized, customized in terms of arrangement, shape, colour, and texture etc. as well as accessed and annotated individually or in groups using internal or external data bases/facilities. Any information can be searched and correlated by importing or calculating simple relations in real-time using grid resources. A general correlation and application platform for more complex correlative analysis and a front-end for system-biological simulations both using again the huge capabilities of grid infrastructures is currently under development. Hence, the GLOBE 3D Genome Platform is an example of a grid based approach towards a virtual desktop for genomic work combining the three fundamental distributed resources: i) visual data representation, ii) data access and management, and iii) data analysis and creation. Thus, the GLOBE 3D Genome Platform is the novel system-biology oriented information system urgently needed to access, present, annotate, and to simulate the holistic genome

  4. Whole-genome profiling and shotgun sequencing delivers an anchored, gene-decorated, physical map assembly of bread wheat chromosome 6A.

    PubMed

    Poursarebani, Naser; Nussbaumer, Thomas; Simková, Hana; Safář, Jan; Witsenboer, Hanneke; van Oeveren, Jan; Doležel, Jaroslav; Mayer, Klaus F X; Stein, Nils; Schnurbusch, Thorsten

    2014-07-01

    Bread wheat (Triticum aestivum L.) is the most important staple food crop for 35% of the world's population. International efforts are underway to facilitate an increase in wheat production, of which the International Wheat Genome Sequencing Consortium (IWGSC) plays an important role. As part of this effort, we have developed a sequence-based physical map of wheat chromosome 6A using whole-genome profiling (WGP™). The bacterial artificial chromosome (BAC) contig assembly tools fingerprinted contig (fpc) and linear topological contig (ltc) were used and their contig assemblies were compared. A detailed investigation of the contigs structure revealed that ltc created a highly robust assembly compared with those formed by fpc. The ltc assemblies contained 1217 contigs for the short arm and 1113 contigs for the long arm, with an L50 of 1 Mb. To facilitate in silico anchoring, WGP™ tags underlying BAC contigs were extended by wheat and wheat progenitor genome sequence information. Sequence data were used for in silico anchoring against genetic markers with known sequences, of which almost 79% of the physical map could be anchored. Moreover, the assigned sequence information led to the 'decoration' of the respective physical map with 3359 anchored genes. Thus, this robust and genetically anchored physical map will serve as a framework for the sequencing of wheat chromosome 6A, and is of immediate use for map-based isolation of agronomically important genes/quantitative trait loci located on this chromosome.

  5. Evolution and Adaptation of Wild Emmer Wheat Populations to Biotic and Abiotic Stresses.

    PubMed

    Huang, Lin; Raats, Dina; Sela, Hanan; Klymiuk, Valentina; Lidzbarsky, Gabriel; Feng, Lihua; Krugman, Tamar; Fahima, Tzion

    2016-08-04

    The genetic bottlenecks associated with plant domestication and subsequent selection in man-made agroecosystems have limited the genetic diversity of modern crops and increased their vulnerability to environmental stresses. Wild emmer wheat, the tetraploid progenitor of domesticated wheat, distributed along a wide range of ecogeographical conditions in the Fertile Crescent, has valuable "left behind" adaptive diversity to multiple diseases and environmental stresses. The biotic and abiotic stress responses are conferred by series of genes and quantitative trait loci (QTLs) that control complex resistance pathways. The study of genetic diversity, genomic organization, expression profiles, protein structure and function of biotic and abiotic stress-resistance genes, and QTLs could shed light on the evolutionary history and adaptation mechanisms of wild emmer populations for their natural habitats. The continuous evolution and adaptation of wild emmer to the changing environment provide novel solutions that can contribute to safeguarding food for the rapidly growing human population.

  6. Shortcomings in wheat yield predictions

    NASA Astrophysics Data System (ADS)

    Semenov, Mikhail A.; Mitchell, Rowan A. C.; Whitmore, Andrew P.; Hawkesford, Malcolm J.; Parry, Martin A. J.; Shewry, Peter R.

    2012-06-01

    Predictions of a 40-140% increase in wheat yield by 2050, reported in the UK Climate Change Risk Assessment, are based on a simplistic approach that ignores key factors affecting yields and hence are seriously misleading.

  7. Origin of hemopoietic stromal progenitor cells in chimeras

    SciTech Connect

    Chertkov, J.L.; Drize, N.J.; Gurevitch, O.A.; Samoylova, R.S.

    1985-12-01

    Intravenously injected bone marrow cells do not participate in the regeneration of hemopoietic stromal progenitors in irradiated mice, nor in the curetted parts of the recipient's marrow. The hemopoietic stromal progenitors in allogeneic chimeras are of recipient origin. The adherent cell layer (ACL) of long-term cultures of allogeneic chimera bone marrow contains only recipient hemopoietic stromal progenitors. However, in ectopic hemopoietic foci produced by marrow implantation under the renal capsule and repopulated by the recipient hemopoietic cells after irradiation and reconstitution by syngeneic hemopoietic cells, the stromal progenitors were of implant donor origin, as were stromal progenitors of the ACL in long-term cultures of hemopoietic cells from ectopic foci. Our results confirm that the stromal and hemopoietic progenitors differ in origin and that hemopoietic stromal progenitors are not transplantable by the intravenous route in mice.

  8. Identification of individual barley chromosomes based on repetitive sequences: conservative distribution of Afa-family repetitive sequences on the chromosomes of barley and wheat.

    PubMed

    Tsujimoto, H; Mukai, Y; Akagawa, K; Nagaki, K; Fujigaki, J; Yamamoto, M; Sasakuma, T

    1997-10-01

    The Afa-family repetitive sequences were isolated from barley (Hordeum vulgare, 2n = 14) and cloned as pHvA14. This sequence distinguished each barely chromosome by in situ hybridization. Double color fluorescence in situ hybridization using pHvA14 and 5S rDNA or HvRT-family sequence (subtelomeric sequence of barley) allocated individual barley chromosomes showing a specific pattern of pHvA14 to chromosome 1H to 7H. As the case of the D genome chromosomes of Aegilops squarrosa and common wheat (Triticum aestivum) hybridized by its Afa-family sequences, the signals of pHvA14 in barley chromosomes tended to appear in the distal regions that do not carry many chromosome band markers. In the telomeric regions these signals always placed in more proximal portions than those of HvRT-family. Based on the distribution patterns of Afa-family sequences in the chromosomes of barley and D genome chromosomes of wheat, we discuss a possible mechanism of amplification of the repetitive sequences during the evolution of Triticeae. In addition, we show here that HvRT-family also could be used to distinguish individual barley chromosomes from the patterns of in situ hybridization.

  9. Complementation of sugary-1 Phenotype in Rice Endosperm with the Wheat Isoamylase1 Gene Supports a Direct Role for Isoamylase1 in Amylopectin Biosynthesis

    PubMed Central

    Kubo, Akiko; Rahman, Sadequr; Utsumi, Yoshinori; Li, Zhongyi; Mukai, Yasuhiko; Yamamoto, Maki; Ugaki, Masashi; Harada, Kyuya; Satoh, Hikaru; Konik-Rose, Christine; Morell, Matthew; Nakamura, Yasunori

    2005-01-01

    To examine the role of isoamylase1 (ISA1) in amylopectin biosynthesis in plants, a genomic DNA fragment from Aegilops tauschii was introduced into the ISA1-deficient rice (Oryza sativa) sugary-1 mutant line EM914, in which endosperm starch is completely replaced by phytoglycogen. A. tauschii is the D genome donor of wheat (Triticum aestivum), and the introduced fragment effectively included the gene for ISA1 for wheat (TaISA1) that was encoded on the D genome. In TaISA1-expressing rice endosperm, phytoglycogen synthesis was substantially replaced by starch synthesis, leaving only residual levels of phytoglycogen. The levels of residual phytoglycogen present were inversely proportional to the expression level of the TaISA1 protein, although the level of pullulanase that had been reduced in EM914 was restored to the same level as that in the wild type. Small but significant differences were found in the amylopectin chain-length distribution, gelatinization temperatures, and A-type x-ray diffraction patterns of the starches from lines expressing TaISA1 when compared with wild-type rice starch, although in the first two parameters, the effect was proportional to the expression level of TaISA. The impact of expression levels of ISA1 on starch structure and properties provides support for the view that ISA1 is directly involved in the synthesis of amylopectin. PMID:15618430

  10. 19 CFR 19.32 - Wheat manipulation; reconditioning.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 19 Customs Duties 1 2013-04-01 2013-04-01 false Wheat manipulation; reconditioning. 19.32 Section... Bonded for the Storage of Wheat § 19.32 Wheat manipulation; reconditioning. (a) The mixing, blending, or commingling of imported wheat and domestic wheat, or of imported wheat of different classes and grades, as...

  11. 19 CFR 19.32 - Wheat manipulation; reconditioning.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 19 Customs Duties 1 2012-04-01 2012-04-01 false Wheat manipulation; reconditioning. 19.32 Section... Bonded for the Storage of Wheat § 19.32 Wheat manipulation; reconditioning. (a) The mixing, blending, or commingling of imported wheat and domestic wheat, or of imported wheat of different classes and grades, as...

  12. 19 CFR 19.32 - Wheat manipulation; reconditioning.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 19 Customs Duties 1 2011-04-01 2011-04-01 false Wheat manipulation; reconditioning. 19.32 Section... Bonded for the Storage of Wheat § 19.32 Wheat manipulation; reconditioning. (a) The mixing, blending, or commingling of imported wheat and domestic wheat, or of imported wheat of different classes and grades, as...

  13. 19 CFR 19.32 - Wheat manipulation; reconditioning.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 19 Customs Duties 1 2014-04-01 2014-04-01 false Wheat manipulation; reconditioning. 19.32 Section... Bonded for the Storage of Wheat § 19.32 Wheat manipulation; reconditioning. (a) The mixing, blending, or commingling of imported wheat and domestic wheat, or of imported wheat of different classes and grades, as...

  14. Dough Rheology and Wet Milling of Hard Waxy Wheat Flours

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To realize the full potential of waxy wheat (Triticum aestivum L.), wet milling of waxy wheat flour to produce gluten and waxy wheat starch was investigated. Flours of six advanced lines of waxy hard wheats, one normal hard wheat (‘Karl 92’), and one partial waxy wheat (‘Trego’) were fractionated by...

  15. Galactic constraints on supernova progenitor models

    NASA Astrophysics Data System (ADS)

    Acharova, I. A.; Gibson, B. K.; Mishurov, Yu. N.; Kovtyukh, V. V.

    2013-09-01

    Aims: To estimate the mean masses of oxygen and iron ejected per each type of supernovae (SNe) event from observations of the elemental abundance patterns in the Galactic disk and constrain the relevant SNe progenitor models. Methods: We undertake a statistical analysis of the radial abundance distributions in the Galactic disk within a theoretical framework for Galactic chemical evolution which incorporates the influence of spiral arms. This framework has been shown to recover the non-linear behaviour in radial gradients, the mean masses of oxygen and iron ejected during SNe explosions to be estimated, and constraints to be placed on SNe progenitor models. Results: (i) The mean mass of oxygen ejected per core-collapse SNe (CC SNe) event (which are concentrated within spiral arms) is ~0.27 M⊙; (ii) the mean mass of iron ejected by tardy Type Ia SNe (SNeIa, whose progenitors are older/longer-lived stars with ages ≳100 Myr and up to several Gyr, which do not concentrate within spiral arms) is ~0.58 M⊙; (iii) the upper mass of iron ejected by prompt SNeIa (SNe whose progenitors are younger/shorter-lived stars with ages ≲100 Myr, which are concentrated within spiral arms) is ≤0.23 M⊙ per event; (iv) the corresponding mean mass of iron produced by CC SNe is ≤0.04 M⊙ per event; (v) short-lived SNe (core-collapse or prompt SNeIa) supply ~85% of the Galactic disk's iron. Conclusions: The inferred low mean mass of oxygen ejected per CC SNe event implies a low upper mass limit for the corresponding progenitors of ~23 M⊙, otherwise the Galactic disk would be overabundant in oxygen. This inference is the consequence of the non-linear dependence between the upper limit of the progenitor initial mass and the mean mass of oxygen ejected per CC SNe explosion. The low mean mass of iron ejected by prompt SNeIa, relative to the mass produced by tardy SNeIa (~2.5 times lower), prejudices the idea that both sub-populations of SNeIa have the same physical nature. We

  16. Cadmium minimization in wheat: A critical review.

    PubMed

    Rizwan, Muhammad; Ali, Shafaqat; Abbas, Tahir; Zia-Ur-Rehman, Muhammad; Hannan, Fakhir; Keller, Catherine; Al-Wabel, Mohammad I; Ok, Yong Sik

    2016-08-01

    Cadmium (Cd) accumulation in wheat (Triticum aestivum L.) and its subsequent transfer to food chain is a major environmental issue worldwide. Understanding wheat response to Cd stress and its management for aiming to reduce Cd uptake and accumulation in wheat may help to improve wheat growth and grain quality. This paper reviewed the toxic effects, tolerance mechanisms, and management of Cd stress in wheat. It was concluded that Cd decreased germination, growth, mineral nutrients, photosynthesis and grain yield of wheat and plant response to Cd toxicity varies with cultivars, growth conditions and duration of stress applied. Cadmium caused oxidative stress and genotoxicity in wheat plants. Stimulation of antioxidant defense system, osmoregulation, ion homeostasis and over production of signalling molecules are important adaptive strategies of wheat under Cd stress. Exogenous application of plant growth regulators, inorganic amendments, proper fertilization, silicon, and organic, manures and biochar, amendments are commonly used for the reduction of Cd uptake in wheat. Selection of low Cd-accumulating wheat cultivars, crop rotation, soil type, and exogenous application of microbes are among the other agronomic practices successfully employed in reducing Cd uptake by wheat. These management practices could enhance wheat tolerance to Cd stress and reduce the transfer of Cd to the food chain. However, their long-term sustainability in reducing Cd uptake by wheat needs further assessment.

  17. Interneuron Progenitor Transplantation to Treat CNS Dysfunction

    PubMed Central

    Chohan, Muhammad O.; Moore, Holly

    2016-01-01

    Due to the inadequacy of endogenous repair mechanisms diseases of the nervous system remain a major challenge to scientists and clinicians. Stem cell based therapy is an exciting and viable strategy that has been shown to ameliorate or even reverse symptoms of CNS dysfunction in preclinical animal models. Of particular importance has been the use of GABAergic interneuron progenitors as a therapeutic strategy. Born in the neurogenic niches of the ventral telencephalon, interneuron progenitors retain their unique capacity to disperse, integrate and induce plasticity in adult host circuitries following transplantation. Here we discuss the potential of interneuron based transplantation strategies as it relates to CNS disease therapeutics. We also discuss mechanisms underlying their therapeutic efficacy and some of the challenges that face the field. PMID:27582692

  18. POPULATION SYNTHESIS AND GAMMA RAY BURST PROGENITORS

    SciTech Connect

    C. L. FREYER

    2000-12-11

    Population synthesis studies of binaries are always limited by a myriad of uncertainties from the poorly understood effects of binary mass transfer and common envelope evolution to the many uncertainties that still remain in stellar evolution. But the importance of these uncertainties depends both upon the objects being studied and the questions asked about these objects. Here I review the most critical uncertainties in the population synthesis of gamma-ray burst progenitors. With a better understanding of these uncertainties, binary population synthesis can become a powerful tool in understanding, and constraining, gamma-ray burst models. In turn, as gamma-ray bursts become more important as cosmological probes, binary population synthesis of gamma-ray burst progenitors becomes an important tool in cosmology.

  19. Human progenitor cells for bone engineering applications.

    PubMed

    de Peppo, G M; Thomsen, P; Karlsson, C; Strehl, R; Lindahl, A; Hyllner, J

    2013-06-01

    In this report, the authors review the human skeleton and the increasing burden of bone deficiencies, the limitations encountered with the current treatments and the opportunities provided by the emerging field of cell-based bone engineering. Special emphasis is placed on different sources of human progenitor cells, as well as their pros and cons in relation to their utilization for the large-scale construction of functional bone-engineered substitutes for clinical applications. It is concluded that, human pluripotent stem cells represent a valuable source for the derivation of progenitor cells, which combine the advantages of both embryonic and adult stem cells, and indeed display high potential for the construction of functional substitutes for bone replacement therapies.

  20. Noninvasive Imaging of Administered Progenitor Cells

    SciTech Connect

    Steven R Bergmann, M.D., Ph.D.

    2012-12-03

    The objective of this research grant was to develop an approach for labeling progenitor cells, specifically those that we had identified as being able to replace ischemic heart cells, so that the distribution could be followed non-invasively. In addition, the research was aimed at determining whether administration of progenitor cells resulted in improved myocardial perfusion and function. The efficiency and toxicity of radiolabeling of progenitor cells was to be evaluated. For the proposed clinical protocol, subjects with end-stage ischemic coronary artery disease were to undergo a screening cardiac positron emission tomography (PET) scan using N-13 ammonia to delineate myocardial perfusion and function. If they qualified based on their PET scan, they would undergo an in-hospital protocol whereby CD34+ cells were stimulated by the administration of granulocytes-colony stimulating factor (G-CSF). CD34+ cells would then be isolated by apharesis, and labeled with indium-111 oxine. Cells were to be re-infused and subjects were to undergo single photon emission computed tomography (SPECT) scanning to evaluate uptake and distribution of labeled progenitor cells. Three months after administration of progenitor cells, a cardiac PET scan was to be repeated to evaluate changes in myocardial perfusion and/or function. Indium oxine is a radiopharmaceutical for labeling of autologous lymphocytes. Indium-111 (In-111) decays by electron capture with a t{sub ½} of 67.2 hours (2.8 days). Indium forms a saturated complex that is neutral, lipid soluble, and permeates the cell membrane. Within the cell, the indium-oxyquinolone complex labels via indium intracellular chelation. Following leukocyte labeling, ~77% of the In-111 is incorporated in the cell pellet. The presence of red cells and /or plasma reduces the labeling efficacy. Therefore, the product needed to be washed to eliminate plasma proteins. This repeated washing can damage cells. The CD34 selected product was a 90

  1. Distribution of Wheat Germ Agglutinin in Young Wheat Plants 12

    PubMed Central

    Mishkind, Michael; Keegstra, Kenneth; Palevitz, Barry A.

    1980-01-01

    A liquid phase, competition-binding radioimmunoassay for wheat germ agglutinin, with a detection limit of 10 nanograms, was developed in order to determine the distribution of this lectin in young wheat plants. Affinity columns for wheat germ agglutinin removed all antigenically detectable activity from crude extracts of wheat tissue; thus, the antigenic cross-reactivity detected by the assay possesses sugar-binding specificity similar to the wheat germ-derived lectin. The amount of lectin per dry grain is approximately 1 microgram, all associated with the embryo. At 34 days of growth, the level of lectin per plant was reduced by about 50%, with approximately one-third in the roots and two-thirds in the shoot. The data also indicate that actively growing regions of the plant (the bases of the leaves and rapidly growing adventitious roots) contain the highest levels of lectin. Half of the lectin associated with the roots could be solubilized by washing intact roots in buffer containing oligomers of N-acetylglucosamine, whereas the remainder is liberated only upon homogenization of the tissue. Images PMID:16661559

  2. Endothelial Progenitors: A Consensus Statement on Nomenclature.

    PubMed

    Medina, Reinhold J; Barber, Chad L; Sabatier, Florence; Dignat-George, Francoise; Melero-Martin, Juan M; Khosrotehrani, Kiarash; Ohneda, Osamu; Randi, Anna M; Chan, Jerry K Y; Yamaguchi, Teruhide; Van Hinsbergh, Victor W M; Yoder, Mervin C; Stitt, Alan W

    2017-03-10

    Endothelial progenitor cell (EPC) nomenclature remains ambiguous and there is a general lack of concordance in the stem cell field with many distinct cell subtypes continually grouped under the term "EPC." It would be highly advantageous to agree standards to confirm an endothelial progenitor phenotype and this should include detailed immunophenotyping, potency assays, and clear separation from hematopoietic angiogenic cells which are not endothelial progenitors. In this review, we seek to discourage the indiscriminate use of "EPCs," and instead propose precise terminology based on defining cellular phenotype and function. Endothelial colony forming cells and myeloid angiogenic cells are examples of two distinct and well-defined cell types that have been considered EPCs because they both promote vascular repair, albeit by completely different mechanisms of action. It is acknowledged that scientific nomenclature should be a dynamic process driven by technological and conceptual advances; ergo the ongoing "EPC" nomenclature ought not to be permanent and should become more precise in the light of strong scientific evidence. This is especially important as these cells become recognized for their role in vascular repair in health and disease; and, in some cases, progress toward use in cell therapy. © Stem Cells Translational Medicine 2017.

  3. Transient nuclear Prospero induces neural progenitor quiescence

    PubMed Central

    Lai, Sen-Lin; Doe, Chris Q

    2014-01-01

    Stem cells can self-renew, differentiate, or enter quiescence. Understanding how stem cells switch between these states is highly relevant for stem cell-based therapeutics. Drosophila neural progenitors (neuroblasts) have been an excellent model for studying self-renewal and differentiation, but quiescence remains poorly understood. In this study, we show that when neuroblasts enter quiescence, the differentiation factor Prospero is transiently detected in the neuroblast nucleus, followed by the establishment of a unique molecular profile lacking most progenitor and differentiation markers. The pulse of low level nuclear Prospero precedes entry into neuroblast quiescence even when the timing of quiescence is advanced or delayed by changing temporal identity factors. Furthermore, loss of Prospero prevents entry into quiescence, whereas a pulse of low level nuclear Prospero can drive proliferating larval neuroblasts into quiescence. We propose that Prospero levels distinguish three progenitor fates: absent for self-renewal, low for quiescence, and high for differentiation. DOI: http://dx.doi.org/10.7554/eLife.03363.001 PMID:25354199

  4. Adrenomedullary progenitor cells: Isolation and characterization of a multi-potent progenitor cell population.

    PubMed

    Vukicevic, Vladimir; Rubin de Celis, Maria Fernandez; Pellegata, Natalia S; Bornstein, Stefan R; Androutsellis-Theotokis, Andreas; Ehrhart-Bornstein, Monika

    2015-06-15

    The adrenal is a highly plastic organ with the ability to adjust to physiological needs by adapting hormone production but also by generating and regenerating both adrenocortical and adrenomedullary tissue. It is now apparent that many adult tissues maintain stem and progenitor cells that contribute to their maintenance and adaptation. Research from the last years has proven the existence of stem and progenitor cells also in the adult adrenal medulla throughout life. These cells maintain some neural crest properties and have the potential to differentiate to the endocrine and neural lineages. In this article, we discuss the evidence for the existence of adrenomedullary multi potent progenitor cells, their isolation and characterization, their differentiation potential as well as their clinical potential in transplantation therapies but also in pathophysiology.

  5. Growing Wheat. People on the Farm.

    ERIC Educational Resources Information Center

    Department of Agriculture, Washington, DC. Office of Governmental and Public Affairs.

    This booklet, one in a series about life on modern farms, describes the daily life of the Don Riffel family, wheat farmers in Kansas. Beginning with early morning, the booklet traces the family's activities through a typical harvesting day in July, while explaining how a wheat farm is run. The booklet also briefly describes the wheat growing…

  6. Hard Spring Wheat Technical Committee 2016 Crop

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Seven experimental lines of hard spring wheat were grown at up to five locations in 2016 and evaluated for kernel, milling, and bread baking quality against the check variety Glenn. Wheat samples were submitted through the Wheat Quality Council and processed and milled at the USDA-ARS Hard Red Spri...

  7. Sequence diversity of wheat mosaic virus isolates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    High Plains disease of wheat and maize emerged in the United States in 1993 and its distribution has expanded in subsequent years. Wheat mosaic virus (WMoV), transmitted by eriophyid wheat curl mites (Aceria tosichella) is the causal agent of disease. WMoV and other members of the genus Emaravirus...

  8. Registration of 'UI Stone' spring wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soft white spring wheat (Triticum aestivumL.) is an important wheat class being used in domestic and international markets, especially in Idaho and Pacific Northwest (PNW). The objective of this study was to develop a SWS wheat cultivar with high grain yield, desirable end-use quality, and resistanc...

  9. The value of wheat landraces (Editorial)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Whether man was domesticated by wheat, or wheat was domesticated by man is but two faces of the same coin; both incidents marked a turning point in human history and led to the emergence of human civilization in the Fertile Crescent of the Old World. The complex history of wheat domestication from i...

  10. Regulation of the nascent brain vascular network by neural progenitors.

    PubMed

    Santhosh, Devi; Huang, Zhen

    2015-11-01

    Neural progenitors are central players in the development of the brain neural circuitry. They not only produce the diverse neuronal and glial cell types in the brain, but also guide their migration in this process. Recent evidence indicates that neural progenitors also play a critical role in the development of the brain vascular network. At an early stage, neural progenitors have been found to facilitate the ingression of blood vessels from outside the neural tube, through VEGF and canonical Wnt signaling. Subsequently, neural progenitors directly communicate with endothelial cells to stabilize nascent brain vessels, in part through down-regulating Wnt pathway activity. Furthermore, neural progenitors promote nascent brain vessel integrity, through integrin αvβ8-dependent TGFβ signaling. In this review, we will discuss the evidence for, as well as questions that remain, regarding these novel roles of neural progenitors and the underlying mechanisms in their regulation of the nascent brain vascular network.

  11. Transfusion Support for ABO-Incompatible Progenitor Cell Transplantation

    PubMed Central

    Kopko, Patricia M.

    2016-01-01

    Summary ABO-incompatible transplants comprise up to 50% of allogeneic progenitor cell transplants. Major, minor and bidirectional ABO-incompatible transplants each have unique complications that can occur, including hemolysis at the time of progenitor cell infusion, hemolysis during donor engraftment, passenger lymphocyte syndrome, delayed red blood cell engraftment, and pure red cell aplasia. Appropriate transfusion support during the different phases of the allogeneic progenitor cell transplant process is an important part of ABO-incompatible transplantation. PMID:27022318

  12. Adverse Effects of Wheat Gluten.

    PubMed

    Koning, Frits

    2015-01-01

    Man began to consume cereals approximately 10,000 years ago when hunter-gatherers settled in the fertile golden crescent in the Middle East. Gluten has been an integral part of the Western type of diet ever since, and wheat consumption is also common in the Middle East, parts of India and China as well as Australia and Africa. In fact, the food supply in the world heavily depends on the availability of cereal-based food products, with wheat being one of the largest crops in the world. Part of this is due to the unique properties of wheat gluten, which has a high nutritional value and is crucial for the preparation of high-quality dough. In the last 10 years, however, wheat and gluten have received much negative attention. Many believe that it is inherently bad for our health and try to avoid consumption of gluten-containing cereals; a gluten-low lifestyle so to speak. This is fueled by a series of popular publications like Wheat Belly; Lose the Wheat, Lose the Weight, and Find Your Path Back to Health. However, in reality, there is only one condition where gluten is definitively the culprit: celiac disease (CD), affecting approximately 1% of the population in the Western world. Here, I describe the complexity of the cereals from which gluten is derived, the special properties of gluten which make it so widely used in the food industry, the basis for its toxicity in CD patients and the potential for the development of safe gluten and alternatives to the gluten-free diet.

  13. Defining human dendritic cell progenitors by multiparametric flow cytometry

    PubMed Central

    Breton, Gaëlle; Lee, Jaeyop; Liu, Kang; Nussenzweig, Michel C

    2015-01-01

    Human dendritic cells (DCs) develop from progressively restricted bone marrow (BM) progenitors: these progenitor cells include granulocyte, monocyte and DC progenitor (GMDP) cells; monocyte and DC progenitor (MDP) cells; and common DC progenitor (CDP) and DC precursor (pre-DC) cells. These four DC progenitors can be defined on the basis of the expression of surface markers such as CD34 and hematopoietin receptors. In this protocol, we describe five multiparametric flow cytometry panels that can be used as a tool (i) to simultaneously detect or phenotype the four DC progenitors, (ii) to isolate DC progenitors to enable in vitro differentiation or (iii) to assess the in vitro differentiation and proliferation of DC progenitors. The entire procedure from isolation of cells to flow cytometry can be completed in 3–7 h. This protocol provides optimized antibody panels, as well as gating strategies, for immunostaining of BM and cord blood specimens to study human DC hematopoiesis in health, disease and vaccine settings. PMID:26292072

  14. Nutritional regulation of stem and progenitor cells in Drosophila

    PubMed Central

    Shim, Jiwon; Gururaja-Rao, Shubha; Banerjee, Utpal

    2013-01-01

    Stem cells and their progenitors are maintained within a microenvironment, termed the niche, through local cell-cell communication. Systemic signals originating outside the niche also affect stem cell and progenitor behavior. This review summarizes studies that pertain to nutritional effects on stem and progenitor cell maintenance and proliferation in Drosophila. Multiple tissue types are discussed that utilize the insulin-related signaling pathway to convey nutritional information either directly to these progenitors or via other cell types within the niche. The concept of systemic control of these cell types is not limited to Drosophila and may be functional in vertebrate systems, including mammals. PMID:24255094

  15. Progenitor Cells in Proximal Airway Epithelial Development and Regeneration

    PubMed Central

    Lynch, Thomas J.; Engelhardt, John F.

    2015-01-01

    Multiple distinct epithelial domains are found throughout the airway that are distinguishable by location, structure, function, and cell-type composition. Several progenitor cell populations in the proximal airway have been identified to reside in confined microenvironmental niches including the submucosal glands (SMGs), which are embedded in the tracheal connective tissue between the surface epithelium and cartilage, and basal cells that reside within the surface airway epithelium (SAE). Current research suggests that regulatory pathways that coordinate development of the proximal airway and establishment of progenitor cell niches may overlap with pathways that control progenitor cell responses during airway regeneration following injury. SMGs have been shown to harbor epithelial progenitor cells, and this niche is dysregulated in diseases such as cystic fibrosis. However, mechanisms that regulate progenitor cell proliferation and maintenance within this glandular niche are not completely understood. Here we discuss glandular progenitor cells during development and regeneration of the proximal airway and compare properties of glandular progenitors to those of basal cell progenitors in the SAE. Further investigation into glandular progenitor cell control will provide a direction for interrogating therapeutic interventions to correct aberrant conditions affecting the SMGs in diseases such as cystic fibrosis, chronic bronchitis, and asthma. PMID:24818588

  16. Wheat in the Mediterranean revisited – tetraploid wheat landraces assessed with elite bread wheat Single Nucleotide Polymorphism markers

    PubMed Central

    2014-01-01

    Background Single Nucleotide Polymorphism (SNP) panels recently developed for the assessment of genetic diversity in wheat are primarily based on elite varieties, mostly those of bread wheat. The usefulness of such SNP panels for studying wheat evolution and domestication has not yet been fully explored and ascertainment bias issues can potentially affect their applicability when studying landraces and tetraploid ancestors of bread wheat. We here evaluate whether population structure and evolutionary history can be assessed in tetraploid landrace wheats using SNP markers previously developed for the analysis of elite cultivars of hexaploid wheat. Results We genotyped more than 100 tetraploid wheat landraces and wild emmer wheat accessions, some of which had previously been screened with SSR markers, for an existing SNP panel and obtained publically available genotypes for the same SNPs for hexaploid wheat varieties and landraces. Results showed that quantification of genetic diversity can be affected by ascertainment bias but that the effects of ascertainment bias can at least partly be alleviated by merging SNPs to haplotypes. Analyses of population structure and genetic differentiation show strong subdivision between the tetraploid wheat subspecies, except for durum and rivet that are not separable. A more detailed population structure of durum landraces could be obtained than with SSR markers. The results also suggest an emmer, rather than durum, ancestry of bread wheat and with gene flow from wild emmer. Conclusions SNP markers developed for elite cultivars show great potential for inferring population structure and can address evolutionary questions in landrace wheat. Issues of marker genome specificity and mapping need, however, to be addressed. Ascertainment bias does not seem to interfere with the ability of a SNP marker system developed for elite bread wheat accessions to detect population structure in other types of wheat. PMID:24885044

  17. Identifying variation in resistance to the take-all fungus, Gaeumannomyces graminis var. tritici, between different ancestral and modern wheat species

    PubMed Central

    2014-01-01

    Background Ancestral wheat relatives are important sources of genetic diversity for the introduction of novel traits for the improvement of modern bread wheat. In this study the aim was to assess the susceptibility of 34 accessions of the diploid wheat Triticum monococcum (A genome) to Gaeumannomyces graminis var. tritici (Ggt), the causal agent of take-all disease. The second aim was to explore the susceptibility of tetraploid wheat (T. durum) and the B genome progenitor species Aegilops speltoides to Ggt. Results Field trials, conducted over 5 years, identified seven T. monococcum accessions with a good level of resistance to take-all when exposed to natural inoculum under UK field conditions. All other accessions were highly susceptible or did not exhibit a consistent phenotype across years. DArT marker genotyping revealed that whole genome diversity was not closely related to resistance to take-all within T. monococcum, suggesting that multiple genetic sources of resistance may exist within the species. In contrast the tetraploid wheat cultivars and Ae. speltoides were all highly susceptible to the disease, including those with known elevated levels of benzoxazinoids. Conclusions The diploid wheat species T. monococcum may provide a genetic source of resistance to take-all disease that could be utilised to improve the performance of T. aestivum in high disease risk situations. This represents an extremely valuable resource to achieve economic and sustainable genetic control of this root disease. PMID:25084989

  18. Radiation hybrid maps of D-genome of Aegilops tauschii and their application in sequence assembly of large and complex plant genomes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The large and complex genome of bread wheat (Triticum aestivum L., ~17 Gb) requires high-resolution genome maps saturated with ordered markers to assist in anchoring and orienting BAC contigs/ sequence scaffolds for whole genome sequence assembly. Radiation hybrid (RH) mapping has proven to be an e...

  19. Lacrimal Gland Repair Using Progenitor Cells.

    PubMed

    Gromova, Anastasia; Voronov, Dmitry A; Yoshida, Miya; Thotakura, Suharika; Meech, Robyn; Dartt, Darlene A; Makarenkova, Helen P

    2017-01-01

    In humans, the lacrimal gland (LG) is the primary contributor to the aqueous layer of the tear film. Production of tears in insufficient quantity or of inadequate quality may lead to aqueous-deficiency dry eye (ADDE). Currently there is no cure for ADDE. The development of strategies to reliably isolate LG stem/progenitor cells from the LG tissue brings great promise for the design of cell replacement therapies for patients with ADDE. We analyzed the therapeutic potential of epithelial progenitor cells (EPCPs) isolated from adult wild-type mouse LGs by transplanting them into the LGs of TSP -1(-/-) mice, which represent a novel mouse model for ADDE. TSP-1(-/-) mice are normal at birth but progressively develop a chronic form of ocular surface disease, characterized by deterioration, inflammation, and secretory dysfunction of the lacrimal gland. Our study shows that, among c-kit-positive epithelial cell adhesion molecule (EpCAM(+) ) populations sorted from mouse LGs, the c-kit(+) dim/EpCAM(+) /Sca1 (-) /CD34 (-) /CD45 (-) cells have the hallmarks of an epithelial cell progenitor population. Isolated EPCPs express pluripotency factors and markers of the epithelial cell lineage Runx1 and EpCAM, and they form acini and ducts when grown in reaggregated three-dimensional cultures. Moreover, when transplanted into injured or "diseased" LGs, they engraft into acinar and ductal compartments. EPCP-injected TSP-1(-/-) LGs showed reduction of cell infiltration, differentiation of the donor EPCPs within secretory acini, and substantial improvement in LG structural integrity and function. This study provides the first evidence for the effective use of adult EPCP cell transplantation to rescue LG dysfunction in a model system. Stem Cells Translational Medicine 2017;6:88-98.

  20. Lacrimal Gland Repair Using Progenitor Cells.

    PubMed

    Gromova, Anastasia; Voronov, Dmitry A; Yoshida, Miya; Thotakura, Suharika; Meech, Robyn; Dartt, Darlene A; Makarenkova, Helen P

    2016-08-15

    : In humans, the lacrimal gland (LG) is the primary contributor to the aqueous layer of the tear film. Production of tears in insufficient quantity or of inadequate quality may lead to aqueous-deficiency dry eye (ADDE). Currently there is no cure for ADDE. The development of strategies to reliably isolate LG stem/progenitor cells from the LG tissue brings great promise for the design of cell replacement therapies for patients with ADDE. We analyzed the therapeutic potential of epithelial progenitor cells (EPCPs) isolated from adult wild-type mouse LGs by transplanting them into the LGs of TSP-1(-/-) mice, which represent a novel mouse model for ADDE. TSP-1(-/-) mice are normal at birth but progressively develop a chronic form of ocular surface disease, characterized by deterioration, inflammation, and secretory dysfunction of the lacrimal gland. Our study shows that, among c-kit-positive epithelial cell adhesion molecule (EpCAM(+)) populations sorted from mouse LGs, the c-kit(+)dim/EpCAM(+)/Sca1(-)/CD34(-)/CD45(-) cells have the hallmarks of an epithelial cell progenitor population. Isolated EPCPs express pluripotency factors and markers of the epithelial cell lineage Runx1 and EpCAM, and they form acini and ducts when grown in reaggregated three-dimensional cultures. Moreover, when transplanted into injured or "diseased" LGs, they engraft into acinar and ductal compartments. EPCP-injected TSP-1(-/-) LGs showed reduction of cell infiltration, differentiation of the donor EPCPs within secretory acini, and substantial improvement in LG structural integrity and function. This study provides the first evidence for the effective use of adult EPCP cell transplantation to rescue LG dysfunction in a model system.

  1. Bone Marrow Stress Decreases Osteogenic Progenitors.

    PubMed

    Ng, Adeline H; Baht, Gurpreet S; Alman, Benjamin A; Grynpas, Marc D

    2015-11-01

    Age-related bone loss may be a result of declining levels of stem cells in the bone marrow. Using the Col2.3Δtk (DTK) transgenic mouse, osteoblast depletion was used as a source of marrow stress in order to investigate the effects of aging on osteogenic progenitors which reside in the marrow space. Five-month-old DTK mice were treated with one or two cycles of ganciclovir to conditionally ablate differentiated osteoblasts, whereas controls were saline-treated. Treatment cycles were two weeks in length followed by four weeks of recovery. All animals were sacrificed at 8 months of age; bone marrow stromal cells (BMSCs) were harvested for cell culture and whole bones were excised for bone quality assessment. Colony-forming unit (CFU) assays were conducted to investigate the osteogenic potential of BMSC in vitro, and RNA was extracted to assess the expression of osteoblastic genes. Bone quality assessments included bone histomorphometry, TRAP staining, microcomputed tomography, and biomechanical testing. Osteoblast depletion decreased CFU-F (fibroblast), CFU-ALP (alkaline phosphatase), and CFU-VK (von Kossa) counts and BMSC osteogenic capacity in cell culture. Ex vivo, there were no differences in bone mineral density of vertebrae or femurs between treatment groups. Histology showed a decrease in bone volume and bone connectivity with repeated osteoblast depletion; however, this was accompanied by an increase in bone formation rate. There were no notable differences in osteoclast parameters or observed bone marrow adiposity. We have developed a model that uses bone marrow stress to mimic age-related decrease in osteogenic progenitors. Our data suggest that the number of healthy BMSCs and their osteogenic potential decline with repeated osteoblast depletion. However, activity of the remaining osteoblasts increases to compensate for this loss in progenitor osteogenic potential.

  2. Progenitor endothelial cell involvement in Alzheimer's disease

    SciTech Connect

    Budinger, Thomas F.

    2003-05-01

    There is compelling evidence that endothelial cells of the brain and periphery are dysfunctional in Alzheimer's Disease. There is evidence for a fundamental defect in, or abnormal aging of, endothelial progenitor cells in atherosclerosis. The possibility that endothelial cell defects are a primary cause for Alzheimer's Disease or other dementias can be researched by molecular and cell biology studies as well as cell trafficking studies using recently demonstrated molecular imaging methods. The evidence for abnormal endothelial function and the methods to explore this hypothesis are presented.

  3. 21 CFR 139.138 - Whole wheat macaroni products.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 2 2012-04-01 2012-04-01 false Whole wheat macaroni products. 139.138 Section 139... and Noodle Products § 139.138 Whole wheat macaroni products. (a) Whole wheat macaroni products are the...)(3), and (g), except that: (1) Whole wheat flour or whole durum wheat flour or both are used as...

  4. 21 CFR 139.138 - Whole wheat macaroni products.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Whole wheat macaroni products. 139.138 Section 139... and Noodle Products § 139.138 Whole wheat macaroni products. (a) Whole wheat macaroni products are the...)(3), and (g), except that: (1) Whole wheat flour or whole durum wheat flour or both are used as...

  5. 21 CFR 139.138 - Whole wheat macaroni products.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 2 2013-04-01 2013-04-01 false Whole wheat macaroni products. 139.138 Section 139... and Noodle Products § 139.138 Whole wheat macaroni products. (a) Whole wheat macaroni products are the...)(3), and (g), except that: (1) Whole wheat flour or whole durum wheat flour or both are used as...

  6. 21 CFR 139.138 - Whole wheat macaroni products.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Whole wheat macaroni products. 139.138 Section 139... and Noodle Products § 139.138 Whole wheat macaroni products. (a) Whole wheat macaroni products are the...)(3), and (g), except that: (1) Whole wheat flour or whole durum wheat flour or both are used as...

  7. 21 CFR 139.138 - Whole wheat macaroni products.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 2 2014-04-01 2014-04-01 false Whole wheat macaroni products. 139.138 Section 139... and Noodle Products § 139.138 Whole wheat macaroni products. (a) Whole wheat macaroni products are the...)(3), and (g), except that: (1) Whole wheat flour or whole durum wheat flour or both are used as...

  8. Wheat Rusts in the United States in 2007

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In 2007 90% of wheat stem rust races were QFC and 10% were RCRS Both races are relatively avirulent to wheat cultiars grown in the U.S. Wheat stem rust occurred in scattered locations on research plots of susceptible wheat cultivars in 2007, and did not cause yield loss. Wheat leaf rust was widespr...

  9. Diseases Which Challenge Global Wheat Production - The Cereal Rusts

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The rusts of wheat are common and widespread diseases in the US and throughout the world. Wheat rusts have been important throughout the history of wheat cultivation and are currently important diseases that are responsible for regularly occurring yield losses in wheat. The wheat rust fungi are obli...

  10. Registration of 'Clara CL' Wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    ‘Clara CL’ hard white winter wheat (Triticum aestivum L.) was developed at the Agricultural Research Center-Hays, Kansas State University and released by the Kansas Agricultural Experiment Station in 2011. Clara CL carries one Clearfield gene and has the tolerance to imazamox herbicide. Clara CL wa...

  11. Registration of Vision 45 Wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    ‘Vision 45’ (Reg. No. CV-1110, PI 667642), is a hard red winter (HRW) wheat (Triticum aestivum L.) cultivar that was developed and tested as VA07HRW-45 and released by the Virginia Agricultural Experiment Station in 2012. Vision 45 was derived from the cross ‘Provinciale’/‘Vision 10’ using a modifie...

  12. Neutrino emission from nearby supernova progenitors

    NASA Astrophysics Data System (ADS)

    Yoshida, Takashi; Takahashi, Koh; Umeda, Hideyuki

    2016-05-01

    Neutrinos have an important role for energy loss process during advanced evolution of massive stars. Although the luminosity and average energy of neutrinos during the Si burning are much smaller than those of supernova neutrinos, these neutrinos are expected to be detected by the liquid scintillation neutrino detector KamLAND if a supernova explosion occurs at the distance of ~100 parsec. We investigate the neutrino emission from massive stars during advanced evolution. We calculate the evolution of the energy spectra of neutrinos produced through electron-positron pair-annihilation in the supernova progenitors with the initial mass of 12, 15, and 20 M ⊙ during the Si burning and core-collapse stages. The neutrino emission rate increases from ~ 1050 s-1 to ~ 1052 s-1. The average energy of electron-antineutrinos is about 1.25 MeV during the Si burning and gradually increases until the core-collapse. For one week before the supernova explosion, the KamLAND detector is expected to observe 12-24 and 6-13 v¯e events in the normal and inverted mass hierarchies, respectively, if a supernova explosion of a 12-20 M ⊙ star occurs at the distance of 200 parsec, corresponding to the distance to Betelgeuse. Observations of neutrinos from SN progenitors have a possibility to constrain the core structure and the evolution just before the core collapse of massive stars.

  13. Type Ia Supernovae: Colors, Rates, and Progenitors

    NASA Astrophysics Data System (ADS)

    Heringer, Epson; Pritchet, Chris; Kezwer, Jason; Graham, Melissa L.; Sand, David; Bildfell, Chris

    2017-01-01

    The rate of type Ia supernovae (SNe Ia) in a galaxy depends not only on stellar mass, but also on star formation history (SFH). Here we show that two simple observational quantities (g ‑ r or u ‑ r host galaxy color, and r-band luminosity), coupled with an assumed delay time distribution (DTD) (the rate of SNe Ia as a function of time for an instantaneous burst of star formation), are sufficient to accurately determine a galaxy’s SN Ia rate, with very little sensitivity to the precise details of the SFH. Using this result, we compare observed and predicted color distributions of SN Ia hosts for the MENeaCS cluster supernova survey, and for the SDSS Stripe 82 supernova survey. The observations are consistent with a continuous DTD, without any cutoff. For old progenitor systems, the power-law slope for the DTD is found to be -{1.50}-0.15+0.19. This result favors the double degenerate scenario for SN Ia, though other interpretations are possible. We find that the late-time slopes of the DTD are different at the 1σ level for low and high stretch supernova, which suggest a single degenerate (SD) scenario for the latter. However, due to ambiguity in the current models’ DTD predictions, SD progenitors can neither be confirmed as causing high stretch supernovae nor ruled out from contributing to the overall sample.

  14. The progenitors of supernovae Type Ia

    NASA Astrophysics Data System (ADS)

    Toonen, Silvia

    2014-09-01

    Despite the significance of Type Ia supernovae (SNeIa) in many fields in astrophysics, SNeIa lack a theoretical explanation. SNeIa are generally thought to be thermonuclear explosions of carbon/oxygen (CO) white dwarfs (WDs). The canonical scenarios involve white dwarfs reaching the Chandrasekhar mass, either by accretion from a non-degenerate companion (single-degenerate channel, SD) or by a merger of two CO WDs (double-degenerate channel, DD). The study of SNeIa progenitors is a very active field of research for binary population synthesis (BPS) studies. The strength of the BPS approach is to study the effect of uncertainties in binary evolution on the macroscopic properties of a binary population, in order to constrain binary evolutionary processes. I will discuss the expected SNeIa rate from the BPS approach and the uncertainties in their progenitor evolution, and compare with current observations. I will also discuss the results of the POPCORN project in which four BPS codes were compared to better understand the differences in the predicted SNeIa rate of the SD channel. The goal of this project is to investigate whether differences in the simulated populations are due to numerical effects or whether they can be explained by differences in the input physics. I will show which assumptions in BPS codes affect the results most and hence should be studied in more detail.

  15. Progenitor Cell Dysfunctions Underlie Some Diabetic Complications

    PubMed Central

    Rodrigues, Melanie; Wong, Victor W.; Rennert, Robert C.; Davis, Christopher R.; Longaker, Michael T.; Gurtner, Geoffrey C.

    2016-01-01

    Stem cells and progenitor cells are integral to tissue homeostasis and repair. They contribute to health through their ability to self-renew and commit to specialized effector cells. Recently, defects in a variety of progenitor cell populations have been described in both preclinical and human diabetes. These deficits affect multiple aspects of stem cell biology, including quiescence, renewal, and differentiation, as well as homing, cytokine production, and neovascularization, through mechanisms that are still unclear. More important, stem cell aberrations resulting from diabetes have direct implications on tissue function and seem to persist even after return to normoglycemia. Understanding how diabetes alters stem cell signaling and homeostasis is critical for understanding the complex pathophysiology of many diabetic complications. Moreover, the success of cell-based therapies will depend on a more comprehensive understanding of these deficiencies. This review has three goals: to analyze stem cell pathways dysregulated during diabetes, to highlight the effects of hyperglycemic memory on stem cells, and to define ways of using stem cell therapy to overcome diabetic complications. PMID:26079815

  16. Red supergiants as type II supernova progenitors

    NASA Astrophysics Data System (ADS)

    Negueruela, Ignacio; Dorda, Ricardo; González-Fernández, Carlos; Marco, Amparo

    2015-08-01

    Recent searches for supernova IIp progenitors in external galaxies have led to the identification of red objects with magnitudes and colours indicative of red supergiants, in most cases implying quite low luminosities and hence masses well below 10Msol. Stellar models, on the other hand, do not predict explosions from objects below 9 Msol. What does our knowledge of local red supergiants tells us about the expected properties of such objects?We have carried out a comprehensive spectroscopic and photometric study of a sample of hundreds of red supergiants in the Milky Way and both Magellanic Clouds. We have explored correlations between different parameters and the position of stars in the HR diagrams of open clusters. At solar metallicty, there is strong evidence for a phase of very heavy mass loss at the end of the red supergiant phase, but the existence of such a phase is still not confirmed at SMC metallicities. Objects of ~ 7Msol, on the other hand, become very dusty in the SMC, and appear as very luminous Miras.Among Milky Way clusters, we find a surprising lack of objects readily identifiable as the expected 7 to 10 Msol red supergiants or AGB stars. We are carrying out an open cluster survey aimed at filling this region of the HR diagram with reliable data. Finally, we will discuss the implications of all this findings for the expected properties of supernova progenitors, as it looks unlikely that typical red supergiants may explode without undergoing further evolution.

  17. Reinforcement Effect of Alkali-Hydrolyzed Wheat Gluten and Shear-Degraded Wheat Starch in Carboxylated Styrene-Butadiene Composites

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wheat gluten (WG) and wheat starch (WS) are the protein and carbohydrate obtained from wheat flours. Wheat gluten is not water soluble or dispersible due to its hydrophobic nature. To prepare wheat gluten dispersions, an alkali hydrolysis reaction was carried out to produce a stable aqueous disper...

  18. WheatGenome.info: an integrated database and portal for wheat genome information.

    PubMed

    Lai, Kaitao; Berkman, Paul J; Lorenc, Michal Tadeusz; Duran, Chris; Smits, Lars; Manoli, Sahana; Stiller, Jiri; Edwards, David

    2012-02-01

    Bread wheat (Triticum aestivum) is one of the most important crop plants, globally providing staple food for a large proportion of the human population. However, improvement of this crop has been limited due to its large and complex genome. Advances in genomics are supporting wheat crop improvement. We provide a variety of web-based systems hosting wheat genome and genomic data to support wheat research and crop improvement. WheatGenome.info is an integrated database resource which includes multiple web-based applications. These include a GBrowse2-based wheat genome viewer with BLAST search portal, TAGdb for searching wheat second-generation genome sequence data, wheat autoSNPdb, links to wheat genetic maps using CMap and CMap3D, and a wheat genome Wiki to allow interaction between diverse wheat genome sequencing activities. This system includes links to a variety of wheat genome resources hosted at other research organizations. This integrated database aims to accelerate wheat genome research and is freely accessible via the web interface at http://www.wheatgenome.info/.

  19. Hierarchization of myogenic and adipogenic progenitors within human skeletal muscle.

    PubMed

    Pisani, Didier F; Clement, Noémie; Loubat, Agnès; Plaisant, Magali; Sacconi, Sabrina; Kurzenne, Jean-Yves; Desnuelle, Claude; Dani, Christian; Dechesne, Claude A

    2010-12-01

    Skeletal muscle cells constitute a heterogeneous population that maintains muscle integrity through a high myogenic regenerative capacity. More unexpectedly, this population is also endowed with an adipogenic potential, even in humans, and intramuscular adipocytes have been found to be present in several disorders. We tested the distribution of myogenic and adipogenic commitments in human muscle-derived cells to decipher the cellular basis of the myoadipogenic balance. Clonal analysis showed that adipogenic progenitors can be separated from myogenic progenitors and, interestingly, from myoadipogenic bipotent progenitors. These progenitors were isolated in the CD34(+) population on the basis of the expression of CD56 and CD15 cell surface markers. In vivo, these different cell types have been found in the interstitial compartment of human muscle. In vitro, we show that the proliferation of bipotent myoadipogenic CD56(+)CD15(+) progenitors gives rise to myogenic CD56(+)CD15(-) progenitors and adipogenic CD56(-)CD15(+) progenitors. A cellular hierarchy of muscle and fat progenitors thus occurs within human muscle. These results provide cellular bases for adipogenic differentiation in human skeletal muscle, which may explain the fat development encountered in different muscle pathological situations.

  20. Mobilization of hematopoietic progenitor cells in patients with liver cirrhosis

    PubMed Central

    Gehling, Ursula M; Willems, Marc; Schlagner, Kathleen; Benndorf, Ralf A; Dandri, Maura; Petersen, Jörg; Sterneck, Martina; Pollok, Joerg-Matthias; Hossfeld, Dieter K; Rogiers, Xavier

    2010-01-01

    AIM: To test the hypothesis that liver cirrhosis is associated with mobilization of hematopoietic progenitor cells. METHODS: Peripheral blood samples from 72 patients with liver cirrhosis of varying etiology were analyzed by flow cytometry. Identified progenitor cell subsets were immunoselected and used for functional assays in vitro. Plasma levels of stromal cell-derived factor-1 (SDF-1) were measured using an enzyme linked immunosorbent assay. RESULTS: Progenitor cells with a CD133+/CD45+/CD14+ phenotype were observed in 61% of the patients. Between 1% and 26% of the peripheral blood mononuclear cells (MNCs) displayed this phenotype. Furthermore, a distinct population of c-kit+ progenitor cells (between 1% and 38 % of the MNCs) could be detected in 91% of the patients. Additionally, 18% of the patients showed a population of progenitor cells (between 1% and 68% of the MNCs) that was characterized by expression of breast cancer resistance protein-1. Further phenotypic analysis disclosed that the circulating precursors expressed CXC chemokine receptor 4, the receptor for SDF-1. In line with this finding, elevated plasma levels of SDF-1 were present in all patients and were found to correlate with the number of mobilized CD133+ progenitor cells. CONCLUSION: These data indicate that in humans, liver cirrhosis leads to recruitment of various populations of hematopoietic progenitor cells that display markers of intrahepatic progenitor cells. PMID:20066741

  1. Progenitor cells in arteriosclerosis: good or bad guys?

    PubMed

    Campagnolo, Paola; Wong, Mei Mei; Xu, Qingbo

    2011-08-15

    Accumulating evidence indicates that the mobilization and recruitment of circulating or tissue-resident progenitor cells that give rise to endothelial cells (ECs) and smooth muscle cells (SMCs) can participate in atherosclerosis, neointima hyperplasia after arterial injury, and transplant arteriosclerosis. It is believed that endothelial progenitor cells do exist and can repair and rejuvenate the arteries under physiologic conditions; however, they may also contribute to lesion formation by influencing plaque stability in advanced atherosclerotic plaque under specific pathologic conditions. At the same time, smooth muscle progenitors, despite their capacity to expedite lesion formation during restenosis, may serve to promote atherosclerotic plaque stabilization by producing extracellular matrix proteins. This profound evidence provides support to the hypothesis that both endothelial and smooth muscle progenitors may act as a double-edged sword in the pathogenesis of arteriosclerosis. Therefore, the understanding of the regulatory networks that control endothelial and smooth muscle progenitor differentiation is undoubtedly fundamental both for basic research and for improving current therapeutic avenues for atherosclerosis. We update the progress in progenitor cell study related to the development of arteriosclerosis, focusing specifically on the role of progenitor cells in lesion formation and discuss the controversial issues that regard the origins, frequency, and impact of the progenitors in the disease.

  2. GSK-3 is a master regulator of neural progenitor homeostasis

    PubMed Central

    Kim, Woo-Yang; Wang, Xinshuo; Wu, Yaohong; Doble, Bradley W; Patel, Satish; Woodgett, James R; Snider, William D

    2016-01-01

    The development of the brain requires the exquisite coordination of progenitor proliferation and differentiation to achieve complex circuit assembly. It has been suggested that glycogen synthase kinase 3 (GSK-3) acts as an integrating molecule for multiple proliferation and differentiation signals because of its essential role in the RTK, Wnt and Shh signaling pathways. We created conditional mutations that deleted both the α and β forms of GSK-3 in mouse neural progenitors. GSK-3 deletion resulted in massive hyperproliferation of neural progenitors along the entire neuraxis. Generation of both intermediate neural progenitors and postmitotic neurons was markedly suppressed. These effects were associated with the dysregulation of β-catenin, Sonic Hedgehog, Notch and fibroblast growth factor signaling. Our results indicate that GSK-3 signaling is an essential mediator of homeostatic controls that regulate neural progenitors during mammalian brain development. PMID:19801986

  3. Allelic diversity associated with aridity gradient in wild emmer wheat populations.

    PubMed

    Peleg, Zvi; Saranga, Yehoshua; Krugman, Tamar; Abbo, Shahal; Nevo, Eviatar; Fahima, Tzion

    2008-01-01

    The association between allelic diversity and ecogeographical variables was studied in natural populations of wild emmer wheat [Triticum turgidum ssp. dicoccoides (Körn.) Thell.], the tetraploid progenitor of cultivated wheat. Patterns of allelic diversity in 54 microsatellite loci were analyzed in a collection of 145 wild emmer wheat accessions representing 25 populations that were sampled across naturally occurring aridity gradient in Israel and surrounding regions. The obtained results revealed that 56% of the genetic variation resided among accessions within populations, while only 44% of the variation resided between populations. An unweighted pair-group method analysis (UPGMA) tree constructed based on the microsatellite allelic diversity divided the 25 populations into six major groups. Several groups were comprised of populations that were collected in ecologically similar but geographically remote habitats. Furthermore, genetic differentiation between populations was independent of the geographical distances. An interesting evolutionary phenomenon is highlighted by the unimodal relationship between allelic diversity and annual rainfall (r = 0.74, P < 0.0002), indicating higher allelic diversity in populations originated from habitats with intermediate environmental stress (i.e. rainfall 350-550 mm year(-1)). These results show for the first time that the 'intermediate-disturbance hypothesis', explaining biological diversity at the ecosystem level, also dominates the genetic diversity within a single species, the lowest hierarchical element of the biological diversity.

  4. Incorporating Yearly Derived Winter Wheat Maps Into Winter Wheat Yield Forecasting Model

    NASA Technical Reports Server (NTRS)

    Skakun, S.; Franch, B.; Roger, J.-C.; Vermote, E.; Becker-Reshef, I.; Justice, C.; Santamaría-Artigas, A.

    2016-01-01

    Wheat is one of the most important cereal crops in the world. Timely and accurate forecast of wheat yield and production at global scale is vital in implementing food security policy. Becker-Reshef et al. (2010) developed a generalized empirical model for forecasting winter wheat production using remote sensing data and official statistics. This model was implemented using static wheat maps. In this paper, we analyze the impact of incorporating yearly wheat masks into the forecasting model. We propose a new approach of producing in season winter wheat maps exploiting satellite data and official statistics on crop area only. Validation on independent data showed that the proposed approach reached 6% to 23% of omission error and 10% to 16% of commission error when mapping winter wheat 2-3 months before harvest. In general, we found a limited impact of using yearly winter wheat masks over a static mask for the study regions.

  5. Study of wheat protein based materials

    NASA Astrophysics Data System (ADS)

    Ye, Peng

    Wheat gluten is a naturally occurring protein polymer. It is produced in abundance by the agricultural industry, is biodegradable and very inexpensive (less than $0.50/lb). It has unique viscoelastic properties, which makes it a promising alternative to synthetic plastics. The unplasticized wheat gluten is, however, brittle. Plasticizers such as glycerol are commonly used to give flexibility to the articles made of wheat gluten but with the penalty of greatly reduced stiffness. Former work showed that the brittleness of wheat gluten can also be improved by modifying it with a tri-thiol additive with no penalty of reduced stiffness. However, the cost of the customer designed tri-thiol additive was very high and it was unlikely to make a cost effective material from such an expensive additive. Here we designed a new, inexpensive thiol additive called SHPVA. It was synthesized from polyvinyl alcohol (PVA) through a simple esterification reaction. The mechanical data of the molded wheat gluten/SHPVA material indicated that wheat gluten was toughened by SHPVA. As a control, the wheat gluten/PVA material showed no improvement compared with wheat gluten itself. Several techniques have been used to characterize this novel protein/polymer blend. Differential scanning calorimetric (DSC) study showed two phases in both wheat gluten/PVA and wheat gluten/SHPVA material. However, scanning electron microscope (SEM) pictures indicated that PVA was macroscopically separated from wheat gluten, while wheat gluten/SHPVA had a homogeneous look. The phase image from the atomic force microscope (AFM) gave interesting contrast based on the difference in the mechanical properties of these two phases. The biodegradation behavior of these protein/polymer blends was examined in soil. SHPVA was not degraded in the time period of the experiment. Wheat gluten/SHPVA degraded slower than wheat gluten. We also developed some other interesting material systems based on wheat gluten, including the

  6. Intrinsic karyotype stability and gene copy number variations may have laid the foundation for tetraploid wheat formation

    PubMed Central

    Zhang, Huakun; Bian, Yao; Gou, Xiaowan; Dong, Yuzhu; Rustgi, Sachin; Zhang, Bangjiao; Xu, Chunming; Li, Ning; Qi, Bao; Han, Fangpu; von Wettstein, Diter; Liu, Bao

    2013-01-01

    Polyploidy or whole-genome duplication is recurrent in plant evolution, yet only a small fraction of whole-genome duplications has led to successful speciation. A major challenge in the establishment of nascent polyploids is sustained karyotype instability, which compromises fitness. The three putative diploid progenitors of bread wheat, with AA, SS (S ∼ B), and DD genomes occurred sympatrically, and their cross-fertilization in different combinations may have resulted in fertile allotetraploids with various genomic constitutions. However, only SSAA or closely related genome combinations have led to the speciation of tetraploid wheats like Triticum turgidum and Triticum timopheevii. We analyzed early generations of four newly synthesized allotetraploid wheats with genome compositions SshSshAmAm, SlSlAA, SbSbDD, and AADD by combined fluorescence and genomic in situ hybridization-based karyotyping. Results of karyotype analyses showed that although SshSshAmAm and SlSlAA are characterized by immediate and persistent karyotype stability, massive aneuploidy and extensive chromosome restructuring are associated with SbSbDD and AADD in which parental subgenomes showed markedly different propensities for chromosome gain/loss and rearrangements. Although compensating aneuploidy and reciprocal translocation between homeologs prevailed, reproductive fitness was substantially compromised due to chromosome instability. Strikingly, localized genomic changes in repetitive DNA and copy-number variations in gene homologs occurred in both chromosome stable lines, SshSshAmAm and SlSlAA. Our data demonstrated that immediate and persistent karyotype stability is intrinsic to newly formed allotetraploid wheat with genome combinations analogous to natural tetraploid wheats. This property, coupled with rapid gene copy-number variations, may have laid the foundation of tetraploid wheat establishment. PMID:24218593

  7. Intrinsic karyotype stability and gene copy number variations may have laid the foundation for tetraploid wheat formation.

    PubMed

    Zhang, Huakun; Bian, Yao; Gou, Xiaowan; Dong, Yuzhu; Rustgi, Sachin; Zhang, Bangjiao; Xu, Chunming; Li, Ning; Qi, Bao; Han, Fangpu; von Wettstein, Diter; Liu, Bao

    2013-11-26

    Polyploidy or whole-genome duplication is recurrent in plant evolution, yet only a small fraction of whole-genome duplications has led to successful speciation. A major challenge in the establishment of nascent polyploids is sustained karyotype instability, which compromises fitness. The three putative diploid progenitors of bread wheat, with AA, SS (S ∼ B), and DD genomes occurred sympatrically, and their cross-fertilization in different combinations may have resulted in fertile allotetraploids with various genomic constitutions. However, only SSAA or closely related genome combinations have led to the speciation of tetraploid wheats like Triticum turgidum and Triticum timopheevii. We analyzed early generations of four newly synthesized allotetraploid wheats with genome compositions S(sh)S(sh)A(m)A(m), S(l)S(l)AA, S(b)S(b)DD, and AADD by combined fluorescence and genomic in situ hybridization-based karyotyping. Results of karyotype analyses showed that although S(sh)S(sh)A(m)A(m) and S(l)S(l)AA are characterized by immediate and persistent karyotype stability, massive aneuploidy and extensive chromosome restructuring are associated with S(b)S(b)DD and AADD in which parental subgenomes showed markedly different propensities for chromosome gain/loss and rearrangements. Although compensating aneuploidy and reciprocal translocation between homeologs prevailed, reproductive fitness was substantially compromised due to chromosome instability. Strikingly, localized genomic changes in repetitive DNA and copy-number variations in gene homologs occurred in both chromosome stable lines, S(sh)S(sh)A(m)A(m) and S(l)S(l)AA. Our data demonstrated that immediate and persistent karyotype stability is intrinsic to newly formed allotetraploid wheat with genome combinations analogous to natural tetraploid wheats. This property, coupled with rapid gene copy-number variations, may have laid the foundation of tetraploid wheat establishment.

  8. Recognition of wheat varieties by image analysis

    NASA Astrophysics Data System (ADS)

    Yang, Hongwei; Zhou, Zhanming; Zhao, Renyong; Wang, Bingxi

    2003-09-01

    The objective of this paper is to develop a rapid, objective, and easy method for recognizing wheat varieties, which is important for breeding, milling and marketing. The method can be used in place of the existing procedures to remove subjectivity from wheat variety recognition. In contrast to previous work, most of which has focused on wheat morphological characteristics, the features utilized in this paper are based mainly on kernel color. Varietal classification is performed by using Support Vector Machines (SVMs) method. More than 96% correct recognition rates are achieved with bulk samples involving 16 varieties representing a wide range of wheat varieties, wheat class, and kernel types. The proportion of single wheat kernels correctly recognized ranges from 87% to 93%. The results were encouraging since the method proposed here can be easily conducted in routine inspection.

  9. Wheat yield dynamics: a structural econometric analysis.

    PubMed

    Sahin, Afsin; Akdi, Yilmaz; Arslan, Fahrettin

    2007-10-15

    In this study we initially have tried to explore the wheat situation in Turkey, which has a small-open economy and in the member countries of European Union (EU). We have observed that increasing the wheat yield is fundamental to obtain comparative advantage among countries by depressing domestic prices. Also the changing structure of supporting schemes in Turkey makes it necessary to increase its wheat yield level. For this purpose, we have used available data to determine the dynamics of wheat yield by Ordinary Least Square Regression methods. In order to find out whether there is a linear relationship among these series we have checked each series whether they are integrated at the same order or not. Consequently, we have pointed out that fertilizer usage and precipitation level are substantial inputs for producing high wheat yield. Furthermore, in respect for our model, fertilizer usage affects wheat yield more than precipitation level.

  10. Recurrent deletions of puroindoline genes at the grain hardness locus in four independent lineages of polyploid wheat.

    PubMed

    Li, Wanlong; Huang, Li; Gill, Bikram S

    2008-01-01

    Polyploidy is known to induce numerous genetic and epigenetic changes but little is known about their physiological bases. In wheat, grain texture is mainly determined by the Hardness (Ha) locus consisting of genes Puroindoline a (Pina) and b (Pinb). These genes are conserved in diploid progenitors but were deleted from the A and B genomes of tetraploid Triticum turgidum (AB). We now report the recurrent deletions of Pina-Pinb in other lineages of polyploid wheat. We analyzed the Ha haplotype structure in 90 diploid and 300 polyploid accessions of Triticum and Aegilops spp. Pin genes were conserved in all diploid species and deletion haplotypes were detected in all polyploid Triticum and most of the polyploid Aegilops spp. Two Pina-Pinb deletion haplotypes were found in hexaploid wheat (Triticum aestivum; ABD). Pina and Pinb were eliminated from the G genome, but maintained in the A genome of tetraploid Triticum timopheevii (AG). Subsequently, Pina and Pinb were deleted from the A genome but retained in the A(m) genome of hexaploid Triticum zhukovskyi (A(m)AG). Comparison of deletion breakpoints demonstrated that the Pina-Pinb deletion occurred independently and recurrently in the four polyploid wheat species. The implications of Pina-Pinb deletions for polyploid-driven evolution of gene and genome and its possible physiological significance are discussed.

  11. Alteration in expression of hormone-related genes in wild emmer wheat roots associated with drought adaptation mechanisms.

    PubMed

    Krugman, Tamar; Peleg, Zvi; Quansah, Lydia; Chagué, Véronique; Korol, Abraham B; Nevo, Eviatar; Saranga, Yehoshua; Fait, Aaron; Chalhoub, Boulos; Fahima, Tzion

    2011-12-01

    Transcriptomic and metabolomic profiles were used to unravel drought adaptation mechanisms in wild emmer wheat (Triticum turgidum ssp. dicoccoides), the progenitor of cultivated wheat, by comparing the response to drought stress in roots of genotypes contrasting in drought tolerance. The differences between the drought resistant (R) and drought susceptible (S) genotypes were characterized mainly by shifts in expression of hormone-related genes (e.g., gibberellins, abscisic acid (ABA) and auxin), including biosynthesis, signalling and response; RNA binding; calcium (calmodulin, caleosin and annexin) and phosphatidylinositol signalling, in the R genotype. ABA content in the roots of the R genotype was higher in the well-watered treatment and increased in response to drought, while in the S genotype ABA was invariant. The metabolomic profiling revealed in the R genotype a higher accumulation of tricarboxylic acid cycle intermediates and drought-related metabolites, including glucose, trehalose, proline and glycine. The integration of transcriptomics and metabolomics results indicated that adaptation to drought included efficient regulation and signalling pathways leading to effective bio-energetic processes, carbon metabolism and cell homeostasis. In conclusion, mechanisms of drought tolerance were identified in roots of wild emmer wheat, supporting our previous studies on the potential of this genepool as a valuable source for novel candidate genes to improve drought tolerance in cultivated wheat.

  12. Evaluation and reselection of wheat resistance to Russian wheat aphid biotype 2

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Russian wheat aphid (RWA, Diuraphis noxia, Mordvilko) biotype 2 (RWA2) is virulent to most known RWA resistance genes and severely threatens wheat production in the hard winter wheat area of the US western Great Plains. We determined RWA2 reactions of 386 cultivars from China, 227 advanced breeding...

  13. Resistance to Wheat streak mosaic virus identified in synthetic wheat lines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wheat streak mosaic virus (WSMV) is a significant pathogen in wheat that causes economic loss each year. WSMV is typically controlled using cultural practices such as the removal of volunteer wheat. Genetic resistance is limited. Until recently, no varieties have been available with major resista...

  14. Effects of protein in wheat flour on retrogradation of wheat starch.

    PubMed

    Xijun, Lian; Junjie, Guo; Danli, Wang; Lin, Li; Jiaran, Zhu

    2014-08-01

    Albumins, globulins, gliadins, and glutenins were isolated from wheat flour and the effects of those proteins on retrogradation of wheat starch were investigated. The results showed that only glutenins retarded retrogradation of wheat starch and other 3 proteins promoted it. The results of IR spectra proved that no S-S linkage formed during retrogradation of wheat starch blended with wheat proteins. Combination of wheat starch and globulins or gliadins through glucosidic bonds hindered the hydrolysis of wheat starch by α-amylase. The melting peak temperatures of retrograded wheat starch attached to different proteins were 128.46, 126.14, 132.03, 121.65, and 134.84 °C for the control with no protein, albumins, glutenins, globulins, gliadins groups, respectively, and there was no second melting temperature for albumins group. Interaction of wheat proteins and starch in retrograded wheat starch greatly decreased the endothermic enthalpy (△H) of retrograded wheat starch. Retrograded wheat starch bound to gliadins might be a new kind of resistant starch based on glycosidic bond between starch and protein.

  15. Relationship between Russian wheat aphid abundance and edaphic and topographic characteristics of wheat fields

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study explores the spatial relationship between Russian wheat aphid population density and variation in edaphic or topographic factors within wheat fields. Multiple regression analysis was applied to data collected from six wheat fields located in three States, Colorado, Wyoming, and Nebraska....

  16. Binary mixtures of waxy wheat and conventional wheat as measured by nir reflectance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Waxy wheat contains very low concentration (generally <2%) of amylose in endosperm starch, in contrast to conventional wheat whose starch is typically 20% amylose, with the balance being the branched macromolecule, amylopectin. With the release of a commercial hard winter waxy wheat cultivar in the ...

  17. Physiological responses of hard red winter wheat to infection by wheat streak mosaic virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wheat streak mosaic virus (WSMV) causes significant yield loss in hard red winter wheat in the U.S. Southern High Plains. Despite the prevalence of this pathogen, little is known about the physiological response of wheat to WSMV infection. A 2-year study was initiated to (i) investigate the effect o...

  18. Safeguarding world wheat and barley production against Russian wheat aphid: An international pre-breeding initiative

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Russian wheat aphid (RWA), Diuraphis noxia, is one of the most damaging insect pests of wheat and barley throughout the World. This aphid, although is not yet present in Australia, is extremely damaging with up to 70% yield loses in wheat and barley producing lands, causing significant financia...

  19. Immunocytochemical localization of wheat germ agglutinin in wheat

    PubMed Central

    1982-01-01

    Immunocytological techniques were developed to localize the plant lectin, wheat germ agglutinin (WGA), in the tissues and cells of wheat plants. In a previous study we demonstrated with a radioimmunoassay that the lectin is present in wheat embryos and adult plants both in the roots and at the base of the stem. We have now found, using rhodamine, peroxidase, and ferritin-labeled secondary antibodies, that WGA is located in cells and tissues that establish direct contact with the soil during germination and growth of the plant In the embryo, WGA is found in the surface layer of the radicle, the first adventitious roots, the coleoptile, and the scutellum. Although found throughout the coleorhiza and epiblast, it is at its highest levels within the cells at the surface of these organs. In adult plants, WGA is located only in the caps and tips of adventitious roots. Reaction product for WGA was not visualized in embryonic or adult leaves or in other tissues of adult plants. At the subcellular level, WGA is located at the periphery of protein bodies, within electron-translucent regions of the cytoplasm, and at the cell wall-protoplast interface. Since WGA is found at potential infection sites and is known to have fungicidal properties, it may function in the defense against fungal pathogens. PMID:7045136

  20. LACIE: Wheat yield models for the USSR

    NASA Technical Reports Server (NTRS)

    Sakamoto, C. M.; Leduc, S. K.

    1977-01-01

    A quantitative model determining the relationship between weather conditions and wheat yield in the U.S.S.R. was studied to provide early reliable forecasts on the size of the U.S.S.R. wheat harvest. Separate models are developed for spring wheat and for winter. Differences in yield potential and responses to stress conditions and cultural improvements necessitate models for each class.

  1. PET imaging of adoptive progenitor cell therapies.

    SciTech Connect

    Gelovani, Juri G.

    2008-05-13

    Objectives. The overall objective of this application is to develop novel technologies for non-invasive imaging of adoptive stem cell-based therapies with positron emission tomography (PET) that would be applicable to human patients. To achieve this objective, stem cells will be genetically labeled with a PET-reporter gene and repetitively imaged to assess their distribution, migration, differentiation, and persistence using a radiolabeled reporter probe. This new imaging technology will be tested in adoptive progenitor cell-based therapy models in animals, including: delivery pro-apoptotic genes to tumors, and T-cell reconstitution for immunostimulatory therapy during allogeneic bone marrow progenitor cell transplantation. Technical and Scientific Merits. Non-invasive whole body imaging would significantly aid in the development and clinical implementation of various adoptive progenitor cell-based therapies by providing the means for non-invasive monitoring of the fate of injected progenitor cells over a long period of observation. The proposed imaging approaches could help to address several questions related to stem cell migration and homing, their long-term viability, and their subsequent differentiation. The ability to image these processes non-invasively in 3D and repetitively over a long period of time is very important and will help the development and clinical application of various strategies to control and direct stem cell migration and differentiation. Approach to accomplish the work. Stem cells will be genetically with a reporter gene which will allow for repetitive non-invasive “tracking” of the migration and localization of genetically labeled stem cells and their progeny. This is a radically new approach that is being developed for future human applications and should allow for a long term (many years) repetitive imaging of the fate of tissues that develop from the transplanted stem cells. Why the approach is appropriate. The novel approach to

  2. The Progenitor of SN 1987A. [IUE

    NASA Technical Reports Server (NTRS)

    Sonneborn, G.

    1988-01-01

    Spatially resolved IUE spectra (1150 to 2000 A) taken at the position of SN 1987A in March 1987 show that the 12th mag B3 I star Sk -69 deg 202 disappeared. Only the fainter companion stars (Star 2 and Star 3) are present near the site of the supernova. It is concluded that Sk -69 deg 202 exploded to produce SN 1987A. The known characteristics of Sk -69 deg 202 are consistent with the interpretation that the progenitor was a relatively compact star, having a high-velocity low-density stellar wind prior to the outburst. Recent IUE spectra of SN 1987A (May 1988) show no evidence that Sk -69 deg 202 still exists inside the expanding ejecta.

  3. Stem/Progenitor cells in vascular regeneration.

    PubMed

    Zhang, Li; Xu, Qingbo

    2014-06-01

    A series of studies has been presented in the search for proof of circulating and resident vascular progenitor cells, which can differentiate into endothelial and smooth muscle cells and pericytes in animal and human studies. In terms of pluripotent stem cells, including embryonic stem cells, iPS, and partial-iPS cells, they display a great potential for vascular lineage differentiation. Development of stem cell therapy for treatment of vascular and ischemic diseases remains a major challenging research field. At the present, there is a clear expansion of research into mechanisms of stem cell differentiation into vascular lineages that are tested in animal models. Although there are several clinical trials ongoing that primarily focus on determining the benefits of stem cell transplantation in ischemic heart or peripheral ischemic tissues, intensive investigation for translational aspects of stem cell therapy would be needed. It is a hope that stem cell therapy for vascular diseases could be developed for clinic application in the future.

  4. Multipotent pancreas progenitors: Inconclusive but pivotal topic

    PubMed Central

    Jiang, Fang-Xu; Morahan, Grant

    2015-01-01

    The establishment of multipotent pancreas progenitors (MPP) should have a significant impact not only on the ontology of the pancreas, but also for the translational research of glucose-responding endocrine β-cells. Deficiency of the latter may lead to the pandemic type 1 or type 2 diabetes mellitus, a metabolic disorder. An ideal treatment of which would potentially be the replacement of destroyed or failed β-cells, by restoring function of endogenous pancreatic endocrine cells or by transplantation of donor islets or in vitro generated insulin-secreting cells. Thus, considerable research efforts have been devoted to identify MPP candidates in the pre- and post-natal pancreas for the endogenous neogenesis or regeneration of endocrine insulin-secreting cells. In order to advance this inconclusive but critical field, we here review the emerging concepts, recent literature and newest developments of potential MPP and propose measures that would assist its forward progression. PMID:26730269

  5. L1 Retrotransposition in Neural Progenitor Cells.

    PubMed

    Muotri, Alysson R

    2016-01-01

    Long interspersed nucleotide element 1 (LINE-1 or L1) is a family of non-LTR retrotransposons that can replicate and reintegrate into the host genome. L1s have considerably influenced mammalian genome evolution by retrotransposing during germ cell development or early embryogenesis, leading to massive genome expansion. For many years, L1 retrotransposons were viewed as a selfish DNA parasite that had no contribution in somatic cells. Historically, L1s were thought to only retrotranspose during gametogenesis and in neoplastic processes, but recent studies have shown that L1s are extremely active in the mouse, rat, and human neuronal progenitor cells (NPCs). These de novo L1 insertions can impact neuronal transcriptional expression, creating unique transcriptomes of individual neurons, possibly contributing to the uniqueness of the individual cognition and mental disorders in humans.

  6. Proteomic analysis of wheat flour allergens.

    PubMed

    Akagawa, Mitsugu; Handoyo, Tri; Ishii, Takeshi; Kumazawa, Shigenori; Morita, Naofumi; Suyama, Kyozo

    2007-08-22

    Wheat can cause severe IgE-mediated systematic reactions, but knowledge on relevant wheat allergens at the molecular level is scanty. The aim of the present study was to achieve a more detailed and comprehensive characterization of the wheat allergens involved in food allergy to wheat using proteomic strategies, referred to as "allergenomics". Whole flour proteins were separated by two-dimensional gel electrophoresis with isoelectric focusing and lithium dodecyl sulfate-polyacrylamide gel electrophoresis. Then, IgE-binding proteins were detected by immunoblotting with sera of patients with a food allergy to wheat. After tryptic digestion, the peptides of IgE-binding proteins were analyzed by matrix-assisted laser desorption ionization tandem time-of-flight mass spectrometry. In this study, we identified four previously reported wheat allergens or their sequentially homologous proteins [serpin, alpha-amylase inhibitor, gamma-gliadin, and low molecular weight (LMW) glutenin] by a database search. As a result of the high resolution of two-dimensional gel electrophoresis, nine subunits of LMW glutenins were identified as the most predominant IgE-binding antigens. The two-dimensional allergen map can be beneficial in many ways. It could be used, for example, for precise diagnosis of wheat-allergic patients and assessment of wheat allergens in food. Additionally, we compared allergenomics to conventional biochemical methods and evaluated the usefulness of a proteomic strategy for identifying putative allergens to wheat allergy.

  7. Pannexin 1 regulates postnatal neural stem and progenitor cell proliferation

    PubMed Central

    2012-01-01

    Background Pannexin 1 forms ion and metabolite permeable hexameric channels and is abundantly expressed in the brain. After discovering pannexin 1 expression in postnatal neural stem and progenitor cells we sought to elucidate its functional role in neuronal development. Results We detected pannexin 1 in neural stem and progenitor cells in vitro and in vivo. We manipulated pannexin 1 expression and activity in Neuro2a neuroblastoma cells and primary postnatal neurosphere cultures to demonstrate that pannexin 1 regulates neural stem and progenitor cell proliferation likely through the release of adenosine triphosphate (ATP). Conclusions Permeable to ATP, a potent autocrine/paracine signaling metabolite, pannexin 1 channels are ideally suited to influence the behavior of neural stem and progenitor cells. Here we demonstrate they play a robust role in the regulation of neural stem and progenitor cell proliferation. Endogenous postnatal neural stem and progenitor cells are crucial for normal brain health, and their numbers decline with age. Furthermore, these special cells are highly responsive to neurological injury and disease, and are gaining attention as putative targets for brain repair. Therefore, understanding the fundamental role of pannexin 1 channels in neural stem and progenitor cells is of critical importance for brain health and disease. PMID:22458943

  8. Identification of functional progenitor cells in the pulmonary vasculature

    PubMed Central

    Firth, Amy L.; Yuan, Jason X. -J.

    2012-01-01

    The pulmonary vasculature comprises a complex network of branching arteries and veins all functioning to reoxygenate the blood for circulation around the body. The cell types of the pulmonary artery are able to respond to changes in oxygen tension in order to match ventilation to perfusion. Stem and progenitor cells in the pulmonary vasculature are also involved, be it in angiogenesis, endothelial dysfunction or formation of vascular lesions. Stem and progenitor cells may be circulating around the body, residing in the pulmonary artery wall or stimulated for release from a central niche like the bone marrow and home to the pulmonary vasculature along a chemotactic gradient. There may currently be some controversy over the pathogenic versus therapeutic roles of stem and progenitor cells and, indeed, it is likely both chains of evidence are correct due to the specific influence of the immediate environmental niche a progenitor cell may be in. Due to their great plasticity and a lack of specific markers for stem and progenitor cells, they can be difficult to precisely identify. This review discusses the methodological approaches used to validate the presence of and subtype of progenitors cells in the pulmonary vasculature while putting it in context of the current knowledge of the therapeutic and pathogenic roles for such progenitor cells. PMID:22558524

  9. THE PROGENITOR OF THE TYPE IIb SN 2008ax REVISITED

    SciTech Connect

    Folatelli, Gastón; Bersten, Melina C.; Benvenuto, Omar G.; Kuncarayakti, Hanindyo; Maeda, Keiichi; Nomoto, Ken’ichi

    2015-10-01

    Hubble Space Telescope observations of the site of the supernova (SN) SN 2008ax obtained in 2011 and 2013 reveal that the possible progenitor object detected in pre-explosion images was in fact multiple. Four point sources are resolved in the new, higher-resolution images. We identify one of the sources with the fading SN. The other three objects are consistent with single supergiant stars. We conclude that their light contaminated the previously identified progenitor candidate. After subtraction of these stars, the progenitor appears to be significantly fainter and bluer than previously measured. Post-explosion photometry at the SN location indicates that the progenitor object has disappeared. If single, the progenitor is compatible with a supergiant star of B to mid-A spectral type, while a Wolf–Rayet (W-R) star would be too luminous in the ultraviolet to account for the observations. Moreover, our hydrodynamical modeling shows that the pre-explosion mass was 4–5 M{sub ⊙} and the radius was 30–50 R{sub ⊙}, which is incompatible with a W-R progenitor. We present a possible interacting binary progenitor computed with our evolutionary models that reproduces all the observational evidence. A companion star as luminous as an O9–B0 main-sequence star may have remained after the explosion.

  10. Proteome analysis of wheat lemma.

    PubMed

    Woo, Sun-Hee; Kimura, Makoto; Higa-Nishiyama, Arisa; Dohmae, Naoshi; Hamamoto, Hiroshi; Jong, Seung-Keun; Yamaguchi, Isamu

    2003-11-01

    We report here for the first time on the construction of proteomes from wheat lemma at the anthesis stage. After transfer of lemma proteins to polyvinylidene difluoride membranes, seventy larger spots were subjected to peptide sequence analysis; the amino acid sequences could be described for forty-eight of these proteins. The result suggested that wheat proteins were less N-terminally blocked compared to rice proteins, which are known to have a much higher ratio of N-terminal blocks. We further analyzed the internal sequences of eight blocked proteins by the Cleveland peptide mapping method. Out of these total 56 amino acid sequences, forty-one could be assigned to the corresponding expressed sequence tags (ESTs). The expression profile of lemma proteins was generally similar to that of leaf, and the majority of identified proteins were related to cellular metabolisms. We analyzed the internal sequences of one protein spot present in lemma, which was not present in leaf.

  11. Marker-assisted selection for recognizing wheat mutant genotypes carrying HMW glutenin alleles related to baking quality.

    PubMed

    Zamani, Mohammad Javad; Bihamta, Mohammad Reza; Naserian Khiabani, Behnam; Tahernezhad, Zahra; Hallajian, Mohammad Taher; Shamsi, Marzieh Varasteh

    2014-01-01

    Allelic diversity of HMW glutenin loci in several studies revealed that allelic combinations affect dough quality. Dx5 + Dy10 subunits are related to good baking quality and Dx2 + Dy12 are related to undesirable baking quality. One of the most regular methods to evaluate the baking quality is SDS-PAGE which is used to improve baking quality labs. Marker-assisted selection is the method which can recognize the alleles related to baking quality and this method is based on polymerase chain reaction. 10 pairs of specific primers related to Dx2, Dx2.1, Dx5, Dy10, and Dy12 subunits were used for recognizing baking quality of some wheat varieties and some mutant genotypes. Only 5 pairs of them could show the specific bands. All subunits were recognized by the primers except Dx2.1. Some of the primers were extracted from previous studies and the others were designed based on D genome subunits of wheat. SDS-PAGE method accomplished having confidence in these marker's results. To realize the effect of mutation, seed storage proteins were measured. It showed that mutation had effect on the amount of seed storage protein on the mutant seeds (which showed polymorphism).

  12. Winter wheat and summer shade

    NASA Astrophysics Data System (ADS)

    Artru, S.; Garre, S.; Lassois, L.; Dupraz, C.

    2014-12-01

    Agroforestry research is in full expansion, but uncertainty remains on the performance of combinations of species with regard to the broad range of possible species associations. In addition, the variability of environmental conditions under which agroforestry stands can be successfully developed is unknown. Under Belgian pedoclimatic conditions, tree-crop competition for light might be the principal limiting factor in the agroforestry context. Most studies show that shade stress induces a systematic reduction of final crop yield. However, the response of a specific crop to shade is highly dependent on environmental conditions. In agroforestry systems, the tree canopy reduces the incident radiation for the crop following a dynamic spatio-temporal pattern. In this study, we will report on the efficiency of wheat under artificial dynamic shade in the experimental farm of Gembloux Agro-Bio Tech, Belgium in order to evaluate it's potential for agroforestry purposes in the same region. Wheat productivity and development under artificial shade conditions have been monitored during 1 year and the observations will be continued for 2 more years. We constructed an artificial shade structure, which mimics the light environment observed under hybrid walnut agroforestry trees: periodic fluctuation in radiation transmittance and discontinuous light quantity. We collected information on biomass development, soil state and radiation patterns in the field. Using this data, we evaluated the influence of dynamic shade, light availability and the efficiency with which energy is converted in wheat dry matter under the artificial shade treatment. This, in combination with modeling, will allow a thorough study of the potential of wheat-walnut agroforestry systems in the Hesbaye region in Belgium.

  13. Response of Russian wheat aphid resistance in wheat and barley to four Diuraphis (Hemiptera: Aphididae) species.

    PubMed

    Puterka, Gary J; Scott, J Nicholson; Brown, Michael J; Hammon, R W

    2013-04-01

    Three Diuraphis species, Diuraphis frequens (Walker), Diuraphis mexicana (McVicar Baker), and Diuraphis tritici (Gillette), were known to exist in the United States before the 1986 appearance of the Russian wheat aphid, Diuraphis noxia Kurdjumov. The Russian wheat aphid soon became a significant pest of wheat although other endemic Diuraphis species were known to infest wheat. Wheat and barley entries resistant and susceptible to Russian wheat aphid biotype 2 were evaluated against all four Diuraphis species to determine their host interrelationships. Leaf chlorosis, leaf roll, leaf number, plant height, and infestation levels were assessed 21 d after the plants were infested by aphids in a no-choice caged environment. D. mexicana was unable to survive on wheat by 21 d after infestation and effects on the plant damage variables were negligible. D. frequens survived at low levels on resistant and susceptible plant entries and had a low impact on plant damage and growth. Russian wheat aphid biotype 2 and D. tritici were damaged most wheat and barley lines except the Russian wheat aphid biotype 2-resistant wheat lines containing genes from Dn7, STARS 2414-11, and CI2401; and resistant barley containing genes from STARS 9577B and 9301B. Russian wheat aphid biotype 2 and D. tritici reduced the growth of resistant plants by 25-50% and susceptible entries by 65-75%. Reductions at this level are typical under no-choice studies but resistant cultivars do not have these reductions under field conditions. The Russian wheat aphid biotype 2 resistant wheat lines would be effective in managing both wheat pest species.

  14. Salt acclimation processes in wheat.

    PubMed

    Janda, Tibor; Darko, Éva; Shehata, Sami; Kovács, Viktória; Pál, Magda; Szalai, Gabriella

    2016-04-01

    Young wheat plants (Triticum aestivum L. cv. Mv Béres) were exposed to 0 or 25 mM NaCl for 11 days (salt acclimation). Thereafter the plants were irrigated with 500 mM NaCl for 5 days (salt stress). Irrigating the plants with a low concentration of NaCl successfully led to a reduction in chlorotic symptoms and in the impairment of the photosynthetic processes when the plants were exposed to subsequent high-dose salt treatment. After exposure to a high concentration of NaCl there was no difference in leaf Na content between the salt-acclimated and non-acclimated plants, indicating that salt acclimation did not significantly modify Na transport to the shoots. While the polyamine level was lower in salt-treated plants than in the control, salt acclimation led to increased osmotic potential in the leaves. Similarly, the activities of certain antioxidant enzymes, namely glutathione reductase, catalase and ascorbate peroxidase, were significantly higher in salt-acclimated plants. The results also suggest that while SOS1, SOS2 or NHX2 do not play a decisive role in the salt acclimation processes in young wheat plants; another stress-related gene, WALI6, may contribute to the success of the salt acclimation processes. The present study suggested that the responses of wheat plants to acclimation with low level of salt and to treatment with high doses of salt may be fundamentally different.

  15. Effect of acyclovir and interferon on human hematopoietic progenitor cells.

    PubMed Central

    Parker, L M; Lipton, J M; Binder, N; Crawford, E L; Kudisch, M; Levin, M J

    1982-01-01

    Continuous in vitro exposure of human bone marrow cells to acyclovir (approximately 200 microM) or human leukocyte interferon (approximately 250 U/ml) caused 50% inhibition of granulocyte colony-forming cell differentiation. Colonies expressed in the presence of either agent were reduced both in size and number. Erythroid progenitors were more resistant than granulocyte progenitors to the antiproliferative effects of acyclovir. Progenitor cells of patients recovering from cytotoxic chemotherapy were no more sensitive to the effects of acyclovir or interferon than were cells obtained from patients before chemotherapy. PMID:6177284

  16. Lineage tracing of neuromesodermal progenitors reveals novel Wnt-dependent roles in trunk progenitor cell maintenance and differentiation.

    PubMed

    Garriock, Robert J; Chalamalasetty, Ravindra B; Kennedy, Mark W; Canizales, Lauren C; Lewandoski, Mark; Yamaguchi, Terry P

    2015-05-01

    In the development of the vertebrate body plan, Wnt3a is thought to promote the formation of paraxial mesodermal progenitors (PMPs) of the trunk region while suppressing neural specification. Recent lineage-tracing experiments have demonstrated that these trunk neural progenitors and PMPs derive from a common multipotent progenitor called the neuromesodermal progenitor (NMP). NMPs are known to reside in the anterior primitive streak (PS) region; however, the extent to which NMPs populate the PS and contribute to the vertebrate body plan, and the precise role that Wnt3a plays in regulating NMP self-renewal and differentiation are unclear. To address this, we used cell-specific markers (Sox2 and T) and tamoxifen-induced Cre recombinase-based lineage tracing to locate putative NMPs in vivo. We provide functional evidence for NMP location primarily in the epithelial PS, and to a lesser degree in the ingressed PS. Lineage-tracing studies in Wnt3a/β-catenin signaling pathway mutants provide genetic evidence that trunk progenitors normally fated to enter the mesodermal germ layer can be redirected towards the neural lineage. These data, combined with previous PS lineage-tracing studies, support a model that epithelial anterior PS cells are Sox2(+)T(+) multipotent NMPs and form the bulk of neural progenitors and PMPs of the posterior trunk region. Finally, we find that Wnt3a/β-catenin signaling directs trunk progenitors towards PMP fates; however, our data also suggest that Wnt3a positively supports a progenitor state for both mesodermal and neural progenitors.

  17. Systematic Investigation of FLOWERING LOCUS T-Like Poaceae Gene Families Identifies the Short-Day Expressed Flowering Pathway Gene, TaFT3 in Wheat (Triticum aestivum L.)

    PubMed Central

    Halliwell, Joanna; Borrill, Philippa; Gordon, Anna; Kowalczyk, Radoslaw; Pagano, Marina L.; Saccomanno, Benedetta; Bentley, Alison R.; Uauy, Cristobal; Cockram, James

    2016-01-01

    To date, a small number of major flowering time loci have been identified in the related Triticeae crops, bread wheat (Triticum aestivum), durum wheat (T. durum), and barley (Hordeum vulgare). Natural genetic variants at these loci result in major phenotypic changes which have adapted crops to the novel environments encountered during the spread of agriculture. The polyploid nature of bread and durum wheat means that major flowering time loci in which recessive alleles confer adaptive advantage in related diploid species have not been readily identified. One such example is the PPD-H2 flowering time locus encoded by FLOWERING LOCUS T 3 (HvFT3) in the diploid crop barley, for which recessive mutant alleles confer delayed flowering under short day (SD) photoperiods. In autumn-sown barley, such alleles aid the repression of flowering over the winter, which help prevent the development of cold-sensitive floral organs until the onset of inductive long day (LD) photoperiods the following spring. While the identification of orthologous loci in wheat could provide breeders with alternative mechanisms to fine tune flowering time, systematic identification of wheat orthologs of HvFT3 has not been reported. Here, we characterize the FT gene families in six Poaceae species, identifying novel members in all taxa investigated, as well as FT3 homoeologs from the A, B and D genomes of hexaploid (TaFT3) and tetraploid wheat. Sequence analysis shows TaFT3 homoeologs display high similarity to the HvFT3 coding region (95–96%) and predicted protein (96–97%), with conservation of intron/exon structure across the five cereal species investigated. Genetic mapping and comparative analyses in hexaploid and tetraploid wheat find TaFT3 homoeologs map to the long arms of the group 1 chromosomes, collinear to HvFT3 in barley and FT3 orthologs in rice, foxtail millet and brachypodium. Genome-specific expression analyses show FT3 homoeologs in tetraploid and hexaploid wheat are upregulated

  18. Stem and progenitor cell dysfunction in human trisomies

    PubMed Central

    Liu, Binbin; Filippi, Sarah; Roy, Anindita; Roberts, Irene

    2015-01-01

    Trisomy 21, the commonest constitutional aneuploidy in humans, causes profound perturbation of stem and progenitor cell growth, which is both cell context dependent and developmental stage specific and mediated by complex genetic mechanisms beyond increased Hsa21 gene dosage. While proliferation of fetal hematopoietic and testicular stem/progenitors is increased and may underlie increased susceptibility to childhood leukemia and testicular cancer, fetal stem/progenitor proliferation in other tissues is markedly impaired leading to the characteristic craniofacial, neurocognitive and cardiac features in individuals with Down syndrome. After birth, trisomy 21-mediated premature aging of stem/progenitor cells may contribute to the progressive multi-system deterioration, including development of Alzheimer's disease. PMID:25520324

  19. Luminal progenitors restrict their lineage potential during mammary gland development.

    PubMed

    Rodilla, Veronica; Dasti, Alessandro; Huyghe, Mathilde; Lafkas, Daniel; Laurent, Cécile; Reyal, Fabien; Fre, Silvia

    2015-02-01

    The hierarchical relationships between stem cells and progenitors that guide mammary gland morphogenesis are still poorly defined. While multipotent basal stem cells have been found within the myoepithelial compartment, the in vivo lineage potential of luminal progenitors is unclear. Here we used the expression of the Notch1 receptor, previously implicated in mammary gland development and tumorigenesis, to elucidate the hierarchical organization of mammary stem/progenitor cells by lineage tracing. We found that Notch1 expression identifies multipotent stem cells in the embryonic mammary bud, which progressively restrict their lineage potential during mammary ductal morphogenesis to exclusively generate an ERαneg luminal lineage postnatally. Importantly, our results show that Notch1-labelled cells represent the alveolar progenitors that expand during pregnancy and survive multiple successive involutions. This study reveals that postnatal luminal epithelial cells derive from distinct self-sustained lineages that may represent the cells of origin of different breast cancer subtypes.

  20. Luminal Progenitors Restrict Their Lineage Potential during Mammary Gland Development

    PubMed Central

    Rodilla, Veronica; Dasti, Alessandro; Huyghe, Mathilde; Lafkas, Daniel; Laurent, Cécile; Reyal, Fabien; Fre, Silvia

    2015-01-01

    The hierarchical relationships between stem cells and progenitors that guide mammary gland morphogenesis are still poorly defined. While multipotent basal stem cells have been found within the myoepithelial compartment, the in vivo lineage potential of luminal progenitors is unclear. Here we used the expression of the Notch1 receptor, previously implicated in mammary gland development and tumorigenesis, to elucidate the hierarchical organization of mammary stem/progenitor cells by lineage tracing. We found that Notch1 expression identifies multipotent stem cells in the embryonic mammary bud, which progressively restrict their lineage potential during mammary ductal morphogenesis to exclusively generate an ERαneg luminal lineage postnatally. Importantly, our results show that Notch1-labelled cells represent the alveolar progenitors that expand during pregnancy and survive multiple successive involutions. This study reveals that postnatal luminal epithelial cells derive from distinct self-sustained lineages that may represent the cells of origin of different breast cancer subtypes. PMID:25688859

  1. Registration of ‘Ripper’ Wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    ‘Ripper’ (Reg. No. CV-1016, PI 644222) hard red winter wheat (Triticum aestivum L.) was developed by the Colorado Agricultural Experiment Station and released in August 2006 through an exclusive marketing agreement with the Colorado Wheat Research Foundation. In addition to researchers at Colorado S...

  2. Pentaploid Wheat Hybrids: Applications, Characterisation, and Challenges

    PubMed Central

    Padmanaban, Sriram; Zhang, Peng; Hare, Ray A.; Sutherland, Mark W.; Martin, Anke

    2017-01-01

    Interspecific hybridisation between hexaploid and tetraploid wheat species leads to the development of F1 pentaploid hybrids with unique chromosomal constitutions. Pentaploid hybrids derived from bread wheat (Triticum aestivum L.) and durum wheat (Triticum turgidum spp. durum Desf.) crosses can improve the genetic background of either parent by transferring traits of interest. The genetic variability derived from bread and durum wheat and transferred into pentaploid hybrids has the potential to improve disease resistance, abiotic tolerance, and grain quality, and to enhance agronomic characters. Nonetheless, pentaploid wheat hybrids have not been fully exploited in breeding programs aimed at improving crops. There are several potential barriers for efficient pentaploid wheat production, such as low pollen compatibility, poor seed set, failed seedling establishment, and frequent sterility in F1 hybrids. However, most of the barriers can be overcome by careful selection of the parental genotypes and by employing the higher ploidy level genotype as the maternal parent. In this review, we summarize the current research on pentaploid wheat hybrids and analyze the advantages and pitfalls of current methods used to assess pentaploid-derived lines. Furthermore, we discuss current and potential applications in commercial breeding programs and future directions for research into pentaploid wheat. PMID:28367153

  3. Stem rust resistance in 'Jagger' winter wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    "Jagger" has been utilized widely as a parent to develop hard red winter wheat varieties throughout the U.S. southern Great Plains. Jagger has resistance to stem rust pathogen race TTTTF, which is virulent to many winter wheat cultivars, yet the genetic basis of this resistance remains unknown. Mark...

  4. Selecting wheat varieties for tortilla production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wheat flour tortillas are the second most consumed bread product behind white pan bread. Manufactured tortillas are formulated with highly viscoelastic hard red wheat flours selected and grown for bread making. However, the inherent properties of the bread making flours require costly reducing agent...

  5. Genetic mapping of flavor loci in wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Flavor is an essential aspect of consumer acceptance, especially with whole-wheat foods. However, little if any selection is performed during breeding of new wheat cultivars for flavor, and little is known regarding the genetics of flavor. Our research is aimed at identifying genes that impart eithe...

  6. Endothelial progenitor cells in chronic obstructive pulmonary disease and emphysema.

    PubMed

    Doyle, Margaret F; Tracy, Russell P; Parikh, Megha A; Hoffman, Eric A; Shimbo, Daichi; Austin, John H M; Smith, Benjamin M; Hueper, Katja; Vogel-Claussen, Jens; Lima, Joao; Gomes, Antoinette; Watson, Karol; Kawut, Steven; Barr, R Graham

    2017-01-01

    Endothelial injury is implicated in the pathogenesis of COPD and emphysema; however the role of endothelial progenitor cells (EPCs), a marker of endothelial cell repair, and circulating endothelial cells (CECs), a marker of endothelial cell injury, in COPD and its subphenotypes is unresolved. We hypothesized that endothelial progenitor cell populations would be decreased in COPD and emphysema and that circulating endothelial cells would be increased. Associations with other subphenotypes were examined. The Multi-Ethnic Study of Atherosclerosis COPD Study recruited smokers with COPD and controls age 50-79 years without clinical cardiovascular disease. Endothelial progenitor cell populations (CD34+KDR+ and CD34+KDR+CD133+ cells) and circulating endothelial cells (CD45dimCD31+CD146+CD133-) were measured by flow cytometry. COPD was defined by standard spirometric criteria. Emphysema was assessed qualitatively and quantitatively on CT. Full pulmonary function testing and expiratory CTs were measured in a subset. Among 257 participants, both endothelial progenitor cell populations, and particularly CD34+KDR+ endothelial progenitor cells, were reduced in COPD. The CD34+KDR+CD133+ endothelial progenitor cells were associated inversely with emphysema extent. Both endothelial progenitor cell populations were associated inversely with extent of panlobular emphysema and positively with diffusing capacity. Circulating endothelial cells were not significantly altered in COPD but were inversely associated with pulmonary microvascular blood flow on MRI. There was no consistent association of endothelial progenitor cells or circulating endothelial cells with measures of gas trapping. These data provide evidence that endothelial repair is impaired in COPD and suggest that this pathological process is specific to emphysema.

  7. Dendritic cell potentials of early lymphoid and myeloid progenitors.

    PubMed

    Manz, M G; Traver, D; Miyamoto, T; Weissman, I L; Akashi, K

    2001-06-01

    It has been proposed that there are at least 2 classes of dendritic cells (DCs), CD8alpha(+) DCs derived from the lymphoid lineage and CD8alpha(-) DCs derived from the myeloid lineage. Here, the abilities of lymphoid- and myeloid-restricted progenitors to generate DCs are compared, and their overall contributions to the DC compartment are evaluated. It has previously been shown that primitive myeloid-committed progenitors (common myeloid progenitors [CMPs]) are efficient precursors of both CD8alpha(+) and CD8alpha(-) DCs in vivo. Here it is shown that the earliest lymphoid-committed progenitors (common lymphoid progenitors [CLPs]) and CMPs and their progeny granulocyte-macrophage progenitors (GMPs) can give rise to functional DCs in vitro and in vivo. CLPs are more efficient in generating DCs than their T-lineage descendants, the early thymocyte progenitors and pro-T cells, and CMPs are more efficient DC precursors than the descendant GMPs, whereas pro-B cells and megakaryocyte-erythrocyte progenitors are incapable of generating DCs. Thus, DC developmental potential is preserved during T- but not B-lymphoid differentiation from CLP and during granulocyte-macrophage but not megakaryocyte-erythrocyte development from CMP. In vivo reconstitution experiments show that CLPs and CMPs can reconstitute CD8alpha(+) and CD8alpha(-) DCs with similar efficiency on a per cell basis. However, CMPs are 10-fold more numerous than CLPs, suggesting that at steady state, CLPs provide only a minority of splenic DCs and approximately half the DCs in thymus, whereas most DCs, including CD8alpha(+) and CD8alpha(-) subtypes, are of myeloid origin. (Blood. 2001;97:3333-3341)

  8. Endothelial progenitor cells in chronic obstructive pulmonary disease and emphysema

    PubMed Central

    Tracy, Russell P.; Parikh, Megha A.; Hoffman, Eric A.; Shimbo, Daichi; Austin, John H. M.; Smith, Benjamin M.; Hueper, Katja; Vogel-Claussen, Jens; Lima, Joao; Gomes, Antoinette; Watson, Karol; Kawut, Steven; Barr, R. Graham

    2017-01-01

    Endothelial injury is implicated in the pathogenesis of COPD and emphysema; however the role of endothelial progenitor cells (EPCs), a marker of endothelial cell repair, and circulating endothelial cells (CECs), a marker of endothelial cell injury, in COPD and its subphenotypes is unresolved. We hypothesized that endothelial progenitor cell populations would be decreased in COPD and emphysema and that circulating endothelial cells would be increased. Associations with other subphenotypes were examined. The Multi-Ethnic Study of Atherosclerosis COPD Study recruited smokers with COPD and controls age 50–79 years without clinical cardiovascular disease. Endothelial progenitor cell populations (CD34+KDR+ and CD34+KDR+CD133+ cells) and circulating endothelial cells (CD45dimCD31+CD146+CD133-) were measured by flow cytometry. COPD was defined by standard spirometric criteria. Emphysema was assessed qualitatively and quantitatively on CT. Full pulmonary function testing and expiratory CTs were measured in a subset. Among 257 participants, both endothelial progenitor cell populations, and particularly CD34+KDR+ endothelial progenitor cells, were reduced in COPD. The CD34+KDR+CD133+ endothelial progenitor cells were associated inversely with emphysema extent. Both endothelial progenitor cell populations were associated inversely with extent of panlobular emphysema and positively with diffusing capacity. Circulating endothelial cells were not significantly altered in COPD but were inversely associated with pulmonary microvascular blood flow on MRI. There was no consistent association of endothelial progenitor cells or circulating endothelial cells with measures of gas trapping. These data provide evidence that endothelial repair is impaired in COPD and suggest that this pathological process is specific to emphysema. PMID:28291826

  9. The Limbal Epithelial Progenitors in the Limbal Niche Environment

    PubMed Central

    Zhang, Yuan; Sun, Hong; Liu, Yongsong; Chen, Shuangling; Cai, Subo; Zhu, Yingting; Guo, Ping

    2016-01-01

    Limbal epithelial progenitors are stem cells located in limbal palisades of vogt. In this review, we present the audience with recent evidence that limbal epithelial progenitors may be a powerful stem cell resource for the cure of human corneal stem cell deficiency. Further understanding of their mechanism may shed lights to the future successful application of stem cell therapy not only to the eye tissue, but also to the other tissues in the human body. PMID:27877075

  10. Large volume leukapheresis maximizes the progenitor cell yield for allogeneic peripheral blood progenitor donation.

    PubMed

    Kobbe, G; Soehngen, D; Heyll, A; Fischer, J; Thiele, K P; Aul, C; Wernet, P

    1997-04-01

    We have investigated the efficiency and safety of large volume leukapheresis (LVL) for the collection of granulocyte colony-stimulating factor (G-CSF)-mobilized peripheral blood progenitor cells (PBPCs) from healthy donors. In six apheresis sessions in four healthy individuals on a COBE-BCT Spectra cell separator (median processed volume 3.5 X total blood volume, TBV, range 3.3-4.4 X TBV), harvested cells were collected sequentially into three single bags. The collection bags were changed after processing 33%, 66%, and 100% of the prospective apheresis volume, allowing analysis of PBPCs collected at different periods during one harvest. Mononuclear cells (MNCs), CD34+ cells, CD34+ subsets, and lymphocyte subsets were determined in each bag. Substantially more PBPCs were harvested than were in the circulation before G-CSF administration preceding LVL (median 171%, range 69-267%), reflecting progenitor release during the procedure. In donors 1 and 3, the CD34+ cell yields decreased in the third bag to 53% and 42% of that collected in the first bag, whereas the progenitor cell yields in donors 2 and 4 were stable or rose during the procedure, achieving in the third bag 157% and 105% of the number of CD34+ cells collected in the first bag. Minor changes were found in the subsets of CD34+ cells, lymphocytes, and monocytes collected at different periods during a single harvest. LVL was well tolerated. Reversible thombocytopenia developed in all cases. No late effects attributable to LVL or G-CSF were found in the 4 donors and 16 other healthy individuals who have undergone LVL in our institution. We conclude that LVL is safe and maximizes PBPC yields for allogeneic transplantation.

  11. Constraining the Progenitor Masses of Core Collapse Supernova Remnants

    NASA Astrophysics Data System (ADS)

    Díaz Rodríguez, Mariangelly; Murphy, Jeremiah Wayne; Elwood, Benjamin; Williams, Benjamin F.; Rubin, David

    2016-01-01

    Understanding the progenitor mass distribution of supernova explosions is an important observational constraint of stellar evolution theory. Recently, a novel approach was proposed to significantly increase the number of progenitor masses: characterize the progenitor mass of supernova remnants (SNRs) by age-dating the local stellar population. Preliminary statistical analyses suggested that there is a lack of SNRs around the most massive of massive stars. This suggested that there is a maximum mass for core collapse supernova explosions, or there is a bias against finding SNRs associated with the most massive stars. We test for a bias by considering the distribution of SNRs sizes using a Monte Carlo simulation. We find that the distribution of remnants sizes is the same for low mass progenitors and high mass progenitors. This implies that there is no bias against finding SNRs around the most massive progenitors. Our next step is to apply Bayesian statistical inference and obtain the joint probability for all the parameters involved in the statistical distribution model: the minimum mass, maximum mass, and slope of the mass distribution.

  12. Interstitial stromal progenitors during kidney development: here, there and everywhere.

    PubMed

    Fanni, Daniela; Gerosa, Clara; Vinci, Laura; Ambu, Rossano; Dessì, Angelica; Eyken, Peter Van; Fanos, Vassilios; Faa, Gavino

    2016-12-01

    In recent years, the renal interstitium has been identified as the site of multiple cell types, giving rise to multiple contiguous cellular networks with multiple fundamental structural and functional roles. Few studies have been carried out on the morphological and functional properties of the stromal/interstitial renal cells during the intrauterine life. This work was aimed at reviewing the peculiar features of renal interstitial stem/progenitor cells involved in kidney development. The origin of the renal interstitial progenitor cells remains unknown. During kidney development, besides the Six2 + cells of the cap mesenchyme, a self-renewing progenitor population, characterized by the expression of Foxd1, represents the first actor of the non-nephrogenic lineage. Foxd1 + interstitial progenitors originate the cortical and the renal medullary interstitial progenitors. Here, the most important stromal/interstitial compartments present in the developing human kidney will be analyzed: capsular stromal cells, cortical interstitial cells, medullary interstitial cells, the interstitium inside the renal stem cell niche, Hilar interstitial cells and Ureteric interstitial cells. Data reported here indicate that the different interstitial compartments of the developing kidney are formed by different cell types that characterize the different renal areas. Further studies are needed to better characterize the different pools of renal interstitial progenitors and their role in human nephrogenesis.

  13. Viral disruption of olfactory progenitors is exacerbated in allergic mice.

    PubMed

    Ueha, R; Mukherjee, S; Ueha, S; de Almeida Nagata, D E; Sakamoto, T; Kondo, K; Yamasoba, T; Lukacs, N W; Kunkel, S L

    2014-09-01

    Upper airway viral infection in patients with airway allergy often exacerbates olfactory dysfunction, but the mechanism for this exacerbation remains unclear. Here, we examined the effects of respiratory syncytial virus (RSV) infection, in the presence or absence of airway allergy, on olfactory receptor neurons (ORNs) and their progenitors in mice. Immunohistological analyses revealed that cockroach allergen (CRA)-induced airway allergy alone did not affect the number of OMP(+) mature ORNs and SOX2(+) ORN progenitors. Intranasal RSV line 19 infection in allergy-free mice resulted in a transient decrease in SOX2(+) ORN progenitors without affecting OMP(+) ORNs. In contrast, the RSV-induced decrease in SOX2(+) ORN progenitors was exacerbated and prolonged in allergic mice, which resulted in eventual loss of OMP(+) ORNs. In the allergic mice, reduction of RSV in the olfactory epithelium was delayed as compared with allergy-free mice. These results suggest that ORN progenitors were impaired by RSV infection and that airway allergy exacerbated damage to ORN progenitors by reducing viral clearance.

  14. Characterization of Botulinum Progenitor Toxins by Mass Spectrometry†

    PubMed Central

    Hines, Harry B.; Lebeda, Frank; Hale, Martha; Brueggemann, Ernst E.

    2005-01-01

    Botulinum toxin analysis has renewed importance. This study included the use of nanochromatography-nanoelectrospray-mass spectrometry/mass spectrometry to characterize the protein composition of botulinum progenitor toxins and to assign botulinum progenitor toxins to their proper serotype and strain by using currently available sequence information. Clostridium botulinum progenitor toxins from strains Hall, Okra, Stockholm, MDPH, Alaska, and Langeland and 89 representing serotypes A through G, respectively, were reduced, alkylated, digested with trypsin, and identified by matching the processed product ion spectra of the tryptic peptides to proteins in accessible databases. All proteins known to be present in progenitor toxins from each serotype were identified. Additional proteins, including flagellins, ORF-X1, and neurotoxin binding protein, not previously reported to be associated with progenitor toxins, were present also in samples from several serotypes. Protein identification was used to assign toxins to a serotype and strain. Serotype assignments were accurate, and strain assignments were best when either sufficient nucleotide or amino acid sequence data were available. Minor difficulties were encountered using neurotoxin-associated protein identification for assigning serotype and strain. This study found that combined nanoscale chromatographic and mass spectrometric techniques can characterize C. botulinum progenitor toxin protein composition and that serotype/strain assignments based upon these proteins can provide accurate serotype and, in most instances, strain assignments using currently available information. Assignment accuracy will continue to improve as more nucleotide/amino acid sequence information becomes available for different botulinum strains. PMID:16085839

  15. Characterization of botulinum progenitor toxins by mass spectrometry.

    PubMed

    Hines, Harry B; Lebeda, Frank; Hale, Martha; Brueggemann, Ernst E

    2005-08-01

    Botulinum toxin analysis has renewed importance. This study included the use of nanochromatography-nanoelectrospray-mass spectrometry/mass spectrometry to characterize the protein composition of botulinum progenitor toxins and to assign botulinum progenitor toxins to their proper serotype and strain by using currently available sequence information. Clostridium botulinum progenitor toxins from strains Hall, Okra, Stockholm, MDPH, Alaska, and Langeland and 89 representing serotypes A through G, respectively, were reduced, alkylated, digested with trypsin, and identified by matching the processed product ion spectra of the tryptic peptides to proteins in accessible databases. All proteins known to be present in progenitor toxins from each serotype were identified. Additional proteins, including flagellins, ORF-X1, and neurotoxin binding protein, not previously reported to be associated with progenitor toxins, were present also in samples from several serotypes. Protein identification was used to assign toxins to a serotype and strain. Serotype assignments were accurate, and strain assignments were best when either sufficient nucleotide or amino acid sequence data were available. Minor difficulties were encountered using neurotoxin-associated protein identification for assigning serotype and strain. This study found that combined nanoscale chromatographic and mass spectrometric techniques can characterize C. botulinum progenitor toxin protein composition and that serotype/strain assignments based upon these proteins can provide accurate serotype and, in most instances, strain assignments using currently available information. Assignment accuracy will continue to improve as more nucleotide/amino acid sequence information becomes available for different botulinum strains.

  16. Invited review: mesenchymal progenitor cells in intramuscular connective tissue development.

    PubMed

    Miao, Z G; Zhang, L P; Fu, X; Yang, Q Y; Zhu, M J; Dodson, M V; Du, M

    2016-01-01

    The abundance and cross-linking of intramuscular connective tissue contributes to the background toughness of meat, and is thus undesirable. Connective tissue is mainly synthesized by intramuscular fibroblasts. Myocytes, adipocytes and fibroblasts are derived from a common pool of progenitor cells during the early embryonic development. It appears that multipotent mesenchymal stem cells first diverge into either myogenic or non-myogenic lineages; non-myogenic mesenchymal progenitors then develop into the stromal-vascular fraction of skeletal muscle wherein adipocytes, fibroblasts and derived mesenchymal progenitors reside. Because non-myogenic mesenchymal progenitors mainly undergo adipogenic or fibrogenic differentiation during muscle development, strengthening progenitor proliferation enhances the potential for both intramuscular adipogenesis and fibrogenesis, leading to the elevation of both marbling and connective tissue content in the resulting meat product. Furthermore, given the bipotent developmental potential of progenitor cells, enhancing their conversion to adipogenesis reduces fibrogenesis, which likely results in the overall improvement of marbling (more intramuscular adipocytes) and tenderness (less connective tissue) of meat. Fibrogenesis is mainly regulated by the transforming growth factor (TGF) β signaling pathway and its regulatory cascade. In addition, extracellular matrix, a part of the intramuscular connective tissue, provides a niche environment for regulating myogenic differentiation of satellite cells and muscle growth. Despite rapid progress, many questions remain in the role of extracellular matrix on muscle development, and factors determining the early differentiation of myogenic, adipogenic and fibrogenic cells, which warrant further studies.

  17. Dual Function of Sox1 in Telencephalic Progenitor Cells

    PubMed Central

    Kan, Lixin; Jalali, Ali; Zhao, Li-Ru; Zhou, Xiaojing; McGuire, Tammy; Kazanis, Ilias; Episkopou, Vasso; Bassuk, Alexander G.; Kessler, John A.

    2012-01-01

    The transcription factor, Sox1 has been implicated in the maintenance of neural progenitor cell status, but accumulating evidence suggests that this is only part of its function. This study examined the role of Sox1 expression in proliferation, lineage commitment, and differentiation by telencephalic neural progenitor cells in vitro and in vivo, and further clarified the pattern of Sox1 expression in postnatal and adult mouse brain. Telencephalic neural progenitor cells isolated from Sox1 null embryos formed neurospheres normally, but were specifically deficient in neuronal differentiation. Conversely, overexpression of Sox1 in the embryonic telencephalon in vivo both expanded the progenitor pool and biased neural progenitor cells towards neuronal lineage commitment. Sox1 mRNA and protein were found to be persistently expressed in the postnatal and adult brain in both differentiated and neurogenic regions. Importantly, in differentiated regions Sox1 co-labeled only with neuronal markers. These observations, coupled with previous studies, suggest that Sox1 expression by early embryonic progenitor cells initially helps to maintain the cells in cell cycle, but that continued expression subsequently promotes neuronal lineage commitment. PMID:17719572

  18. [Characterization of hematopoietic progenitor cells during the human embryonic development].

    PubMed

    Coulombel, L; Huyhn, A; Izac, B

    1995-01-01

    In a search for assays that might facilitate identification of pluripotent stem cells with extended potentialities, we analysed the properties of hematopoietic progenitor cells detected in the extraembryonic yolk sac and in the intraembryonic part of human embryos between approximately 28 and 45 days of development. Cells from the yolk sac, the liver rudiment and the remainder of the embryo were plated in semi solid methylcellulose colony-assays supplemented with combinations of cytokines. Large BFU-E-derived colonies as well as granulocytic colonies were detected in every yolk sac sample. Interestingly, progenitor cells were also detected in the intraembryonic part, outside the liver and a subclass of these progenitors were detected that generated large granulomacrophagic colonies capable of generating secondary colonies when replated. These were preferentially located in the embryo. Colony-assays initiated with CD34+ cells sorted from the different tissues confirmed these data. These results first indicate that embryonic progenitors exhibit unique phenotypic features, and second, analysis of the distribution of progenitors between the different tissues may suggest the existence of other sites of hematopoietic production. More detailed analysis of the potentialities of these progenitors should now be assessed in vitro in cocultures assays and in vivo by reconstituting immunodeficient mice.

  19. On the progenitor of the Type IIb supernova 2016gkg

    NASA Astrophysics Data System (ADS)

    Kilpatrick, Charles D.; Foley, Ryan J.; Abramson, Louis E.; Pan, Yen-Chen; Lu, Cicero-Xinyu; Williams, Peter; Treu, Tommaso; Siebert, Matthew R.; Fassnacht, Christopher D.; Max, Claire E.

    2017-03-01

    We present a detection in pre-explosion Hubble Space Telescope (HST) imaging of a point source consistent with being the progenitor star of the Type IIb supernova (SN IIb) 2016gkg. Post-explosion imaging from the Keck adaptive optics system was used to perform relative astrometry between the Keck and HST imaging. We identify a single point source in the HST images coincident with the SN position to 0.89σ. The HST photometry is consistent with the progenitor star being an A0 Ia star with T = 9500 K and log (L/L⊙) = 5.15. We find that the SN 2016gkg progenitor star appears more consistent with binary than single-star evolutionary models. In addition, early-time light-curve data from SN 2016gkg revealed a rapid rise in luminosity within ∼0.4 d of non-detection limits, consistent with models of the cooling phase after shock break-out. We use these data to determine an explosion date of 2016 September 20.15 and progenitor-star radius of log (R/R⊙) = 2.41, which agrees with photometry from the progenitor star. Our findings are also consistent with detections of other SNe IIb progenitor stars, although more luminous and bluer than most other examples.

  20. 7 CFR 810.2201 - Definition of wheat.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 7 2010-01-01 2010-01-01 false Definition of wheat. 810.2201 Section 810.2201... GRAIN United States Standards for Wheat Terms Defined § 810.2201 Definition of wheat. Grain that, before the removal of dockage, consists of 50 percent or more common wheat (Triticum aestivum L.), club...

  1. 7 CFR 782.17 - Wheat purchased for resale.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 7 2010-01-01 2010-01-01 false Wheat purchased for resale. 782.17 Section 782.17... § 782.17 Wheat purchased for resale. (a) This section applies to an importer or subsequent buyer who imports or purchases Canadian-produced wheat for the purpose of reselling the wheat. (b) The importer...

  2. 7 CFR 810.2201 - Definition of wheat.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 7 2012-01-01 2012-01-01 false Definition of wheat. 810.2201 Section 810.2201... GRAIN United States Standards for Wheat Terms Defined § 810.2201 Definition of wheat. Grain that, before the removal of dockage, consists of 50 percent or more common wheat (Triticum aestivum L.), club...

  3. 21 CFR 139.180 - Wheat and soy noodle products.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 2 2014-04-01 2014-04-01 false Wheat and soy noodle products. 139.180 Section 139... and Noodle Products § 139.180 Wheat and soy noodle products. (a) Wheat and soy noodle products are the... wheat and soy ingredients used (the soy flour used is made from heat-processed, dehulled soybeans,...

  4. 7 CFR 782.17 - Wheat purchased for resale.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 7 2011-01-01 2011-01-01 false Wheat purchased for resale. 782.17 Section 782.17... § 782.17 Wheat purchased for resale. (a) This section applies to an importer or subsequent buyer who imports or purchases Canadian-produced wheat for the purpose of reselling the wheat. (b) The importer...

  5. 7 CFR 810.2201 - Definition of wheat.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 7 2014-01-01 2014-01-01 false Definition of wheat. 810.2201 Section 810.2201... GRAIN United States Standards for Wheat Terms Defined § 810.2201 Definition of wheat. Grain that, before the removal of dockage, consists of 50 percent or more common wheat (Triticum aestivum L.), club...

  6. 7 CFR 810.2201 - Definition of wheat.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 7 2013-01-01 2013-01-01 false Definition of wheat. 810.2201 Section 810.2201... GRAIN United States Standards for Wheat Terms Defined § 810.2201 Definition of wheat. Grain that, before the removal of dockage, consists of 50 percent or more common wheat (Triticum aestivum L.), club...

  7. 7 CFR 782.17 - Wheat purchased for resale.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 7 2012-01-01 2012-01-01 false Wheat purchased for resale. 782.17 Section 782.17... § 782.17 Wheat purchased for resale. (a) This section applies to an importer or subsequent buyer who imports or purchases Canadian-produced wheat for the purpose of reselling the wheat. (b) The importer...

  8. 7 CFR 782.17 - Wheat purchased for resale.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 7 2013-01-01 2013-01-01 false Wheat purchased for resale. 782.17 Section 782.17... § 782.17 Wheat purchased for resale. (a) This section applies to an importer or subsequent buyer who imports or purchases Canadian-produced wheat for the purpose of reselling the wheat. (b) The importer...

  9. 7 CFR 782.17 - Wheat purchased for resale.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 7 2014-01-01 2014-01-01 false Wheat purchased for resale. 782.17 Section 782.17... § 782.17 Wheat purchased for resale. (a) This section applies to an importer or subsequent buyer who imports or purchases Canadian-produced wheat for the purpose of reselling the wheat. (b) The importer...

  10. 7 CFR 810.2201 - Definition of wheat.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 7 2011-01-01 2011-01-01 false Definition of wheat. 810.2201 Section 810.2201... GRAIN United States Standards for Wheat Terms Defined § 810.2201 Definition of wheat. Grain that, before the removal of dockage, consists of 50 percent or more common wheat (Triticum aestivum L.), club...

  11. Registration of “Pritchett” soft white winter club wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soft white club winter wheat (Triticium aestivum L. ssp. compactum) is a unique component of the wheat production in the PNW, comprising 6-10% of the wheat crop. It is valued for milling and baking functionality and marketed for export in a 20-30% blend with soft white wheat as Western White. Our g...

  12. A latent-period duration model for wheat stem rust

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wheat stem rust caused by Puccinia graminis subsp. graminis (Pgg) is a highly destructive disease of wheat and other small grains. The discovery of a Pgg race (Ug99) that overcomes durable resistance in wheat raises concerns for global wheat production and food security. There is currently no mat...

  13. Glutenin alleles in U.S. Pacific Northwest wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The U.S. Pacific Northwest (PNW), comprised of the states of Washington, Idaho and Oregon, produces about 8 million metric tonnes of wheat annually. This region is somewhat unique in that it grows winter and spring wheats, hard and soft wheats, white and red-grained wheats, and club and lax-head (‘c...

  14. Progenitors for Ly-1 B cells are distinct from progenitors for other B cells

    PubMed Central

    1985-01-01

    Data from previous multiparameter fluorescence-activated cell sorter (FACS) analysis and sorting studies define a subset of murine B cells that expresses the Ly-1 surface determinant in conjunction with IgM, IgD, Ia, and other typical B cell markers. These Ly-1 B cells are physically and functionally distinct. They express more IgM and less IgD than most other B cells; they are not normally found in lymph node or bone marrow; they are always present at low frequencies (1-5%) in normal spleens, and, as we show here, they comprise about half of the B cells (10-20% of total cells) recovered from the peritoneal cavity in normal mice. Furthermore, most of the commonly studied IgM autoantibodies in normal and autoimmune mice are produced by these Ly-1 B cells, even though they seldom produce antibodies to exogenous antigens such as trinitrophenyl-Ficoll or trinitrophenyl-keyhole limpet hemocyanin. Cell transfer studies presented here demonstrate that the progenitors of Ly-1 B cells are different from the progenitors of the predominant B cell populations in spleen and lymph node. In these studies, we used FACS analysis and functional assays to characterize donor-derived (allotype-marked) B cells present in lethally irradiated recipients 1-2 mo after transfer. Surprisingly, adult bone marrow cells typically used to reconstitute B cells in irradiated recipients selectively failed to reconstitute the Ly-1 B subset. Liver, spleen, and bone marrow cells from young mice, in contrast, reconstituted all B cells (including Ly-1 B), and peritoneal "washout" cells (PerC) from adult mice uniquely reconstituted Ly-1 B. Bone marrow did not block Ly- 1 B development, since PerC and newborn liver still gave rise to Ly-1 B when jointly transferred with marrow. These findings tentatively assign Ly-1 B to a distinct developmental lineage originating from progenitors that inhabit the same locations as other B cell progenitors in young animals, but move to unique location(s) in adults. PMID

  15. The impact of photoperiod insensitive Ppd-1a mutations on the photoperiod pathway across the three genomes of hexaploid wheat (Triticum aestivum).

    PubMed

    Shaw, Lindsay M; Turner, Adrian S; Laurie, David A

    2012-07-01

    Flowering time is a trait that has been extensively altered during wheat domestication, enabling it to be highly productive in diverse environments and providing a rich source of variation for studying adaptation mechanisms. Hexaploid wheat is ancestrally a long-day plant, but many environments require varieties with photoperiod insensitivity (PI) that can flower in short days. PI results from mutations in the Ppd-1 gene on the A, B or D genomes, with individual mutations conferring different degrees of earliness. The basis of this is poorly understood. Using a common genetic background, the effects of A, B and D genome PI mutations on genes of the circadian clock and photoperiod pathway were studied using genome-specific expression assays. Ppd-1 PI mutations did not affect the clock or immediate clock outputs, but affected TaCO1 and TaFT1, with a reduction in TaCO1 expression as TaFT1 expression increased. Therefore, although Ppd-1 is related to PRR genes of the Arabidopsis circadian clock, Ppd-1 affects flowering by an alternative route, most likely by upregulating TaFT1 with a feedback effect that reduces TaCO1 expression. Individual genes in the circadian clock and photoperiod pathway were predominantly expressed from one genome, and there was no genome specificity in Ppd-1 action. Lines combining PI mutations on two or three genomes had enhanced earliness with higher levels, but not earlier induction, of TaFT1, showing that there is a direct quantitative relationship between Ppd-1 mutations, TaFT1 expression and flowering.

  16. The Binary Progenitor of Tycho Brahe's Supernova

    NASA Astrophysics Data System (ADS)

    Ruiz-Lapuente, P.

    2006-08-01

    The brightness of type Ia supernovae, and their homogeneity as a class, makes them powerful tools in cosmology, yet little is known about the progenitor systems of these explosions. They are thought to arise when a white dwarf accretes matter from a companion star, is compressed and undergoes a thermonuclear explosion. Unless the companion star is another white dwarf (in which case it should be destroyed by the mass-transfer process itself), it should survive and show distinguishing properties. Tycho's supernova (SN 1572) provides an opportunity to address observationally the identification of the surviving companion. Here we report a survey of the central region of its remnant, around the position of the explosion, which excludes red giants as the mass donor of the exploding white dwarf. We found a type G0-G2 star, similar to our Sun in surface temperature and luminosity (but lower surface gravity), moving at more than three times the mean velocity of the stars at that distance, which appears to be the surviving companion of the supernova.

  17. Harmine stimulates proliferation of human neural progenitors

    PubMed Central

    Dakic, Vanja; Maciel, Renata de Moraes; Drummond, Hannah; Nascimento, Juliana M.; Trindade, Pablo

    2016-01-01

    Harmine is the β-carboline alkaloid with the highest concentration in the psychotropic plant decoction Ayahuasca. In rodents, classical antidepressants reverse the symptoms of depression by stimulating neuronal proliferation. It has been shown that Ayahuasca presents antidepressant effects in patients with depressive disorder. In the present study, we investigated the effects of harmine in cell cultures containing human neural progenitor cells (hNPCs, 97% nestin-positive) derived from pluripotent stem cells. After 4 days of treatment, the pool of proliferating hNPCs increased by 71.5%. Harmine has been reported as a potent inhibitor of the dual specificity tyrosine-phosphorylation-regulated kinase (DYRK1A), which regulates cell proliferation and brain development. We tested the effect of analogs of harmine, an inhibitor of DYRK1A (INDY), and an irreversible selective inhibitor of monoamine oxidase (MAO) but not DYRK1A (pargyline). INDY but not pargyline induced proliferation of hNPCs similarly to harmine, suggesting that inhibition of DYRK1A is a possible mechanism to explain harmine effects upon the proliferation of hNPCs. Our findings show that harmine enhances proliferation of hNPCs and suggest that inhibition of DYRK1A may explain its effects upon proliferation in vitro and antidepressant effects in vivo. PMID:27957390

  18. NFAT restricts osteochondroma formation from entheseal progenitors

    PubMed Central

    Tsang, Kelly; He, Lizhi; Garcia, Roberto A.; Ermann, Joerg; Mizoguchi, Fumitaka; Zhang, Minjie; Aliprantis, Antonios O.

    2016-01-01

    Osteochondromas are common benign osteocartilaginous tumors in children and adolescents characterized by cartilage-capped bony projections on the surface of bones. These tumors often cause pain, deformity, fracture, and musculoskeletal dysfunction, and they occasionally undergo malignant transformation. The pathogenesis of osteochondromas remains poorly understood. Here, we demonstrate that nuclear factor of activated T cells c1 and c2 (NFATc1 and NFATc2) suppress osteochondromagenesis through individual and combinatorial mechanisms. In mice, conditional deletion of NFATc1 in mesenchymal limb progenitors, Scleraxis-expressing (Scx-expressing) tendoligamentous cells, or postnatally in Aggrecan-expressing cells resulted in osteochondroma formation at entheses, the insertion sites of ligaments and tendons onto bone. Combinatorial deletion of NFATc1 and NFATc2 gave rise to larger and more numerous osteochondromas in inverse proportion to gene dosage. A population of entheseal NFATc1- and Aggrecan-expressing cells was identified as the osteochondroma precursor, previously believed to be growth plate derived or perichondrium derived. Mechanistically, we show that NFATc1 restricts the proliferation and chondrogenesis of osteochondroma precursors. In contrast, NFATc2 preferentially inhibits chondrocyte hypertrophy and osteogenesis. Together, our findings identify and characterize a mechanism of osteochondroma formation and suggest that regulating NFAT activity is a new therapeutic approach for skeletal diseases characterized by defective or exaggerated osteochondral growth. PMID:27158674

  19. Developmental origin of postnatal cardiomyogenic progenitor cells

    PubMed Central

    Liu, Yuan-Hung; Lai, Ling-Ping; Huang, Shih-Yun; Lin, Yi-Shuan; Wu, Shinn-Chih; Chou, Chih-Jen; Lin, Jiunn-Lee

    2016-01-01

    Aim: To trace the cell origin of the cells involved in postnatal cardiomyogenesis. Materials & methods: Nkx2.5 enhancer-eGFP (Nkx2.5 enh-eGFP) mice were used to test the cardiomyogenic potential of Nkx2.5 enhancer-expressing cells. By analyzing Cre excision of activated Nkx2.5-eGFP+ cells from different lineage-Cre/Nkx2.5 enh-eGFP/ROSA26 reporter mice, we traced the developmental origin of Nkx2.5 enhancer-expressing cells. Results: Nkx2.5 enhancer-expressing cells could differentiate into striated cardiomyocytes both in vitro and in vivo. Nkx2.5-eGFP+ cells increased remarkably after experimental myocardial infarction (MI). The post-MI Nkx2.5-eGFP+ cells originated from the embryonic epicardial cells, not from the pre-existing cardiomyocytes, endothelial cells, cardiac neural crest cells or perinatal/postnatal epicardial cells. Conclusion: Postnatal Nkx2.5 enhancer-expressing cells are cardiomyogenic progenitor cells and originate from embryonic epicardium-derived cells. PMID:28031967

  20. Using the Hexaploid Nature of Wheat To Create Variability in Starch Characteristics.

    PubMed

    Inokuma, Takayuki; Vrinten, Patricia; Shimbata, Tomoya; Sunohara, Ai; Ito, Hiroyuki; Saito, Mika; Taniguchi, Yoshinori; Nakamura, Toshiki

    2016-02-03

    In hexaploid crops, such as bread wheat, it should be possible to fine-tune phenotypic traits by identifying wild-type and null genes from each of the three genomes and combining them in a calculated manner. Here, we demonstrate this with gene combinations for two starch synthesis genes, SSIIa and GBSSI. Lines with inactive copies of both enzymes show a very dramatic change in phenotype, so to create intermediate phenotypes, we used marker-assisted selection to develop near-isogenic lines (NILs) carrying homozygous combinations of null alleles. For both genes, gene dosage effects follow the order B > D ≥ A; therefore, we completed detailed analysis of starch characteristics for NIL 3-3, which is null for the B-genome copy of the SSIIa and GBSSI genes, and NIL 5-5, which has null mutations in the B- and D-genome-encoded copies of both of these genes. The effects of the combinations on phenotypic traits followed the order expected on the basis of genotype, with NIL 5-5 showing the largest differences from the wild type, while NIL 3-3 characteristics were intermediate between NIL 5-5 and the wild type. Differences among genotypes were significant for many starch characteristics, including percent amylose, chain length distribution, gelatinization temperature, retrogradation, and pasting properties, and these differences appeared to translate into improvements in end-product quality, since bread made from type 5-5 flour showed a 3 day lag in staling.

  1. Wheat Blast: A New Fungal Inhabitant to Bangladesh Threatening World Wheat Production

    PubMed Central

    Sadat, Md. Abu; Choi, Jaehyuk

    2017-01-01

    World wheat production is now under threat due to the wheat blast outbreak in Bangladesh in early March 2016. This is a new disease in this area, indicating the higher possibility of this pathogen spreading throughout the Asia, the world’s largest wheat producing area. Occurrence of this disease caused ~3.5% reduction of the total wheat fields in Bangladesh. Its economic effect on the Bangladesh wheat market was little because wheat contributes to 3% of total cereal consumption, among which ~70% have been imported from other countries. However, as a long-term perspective, much greater losses will occur once this disease spreads to other major wheat producing areas of Bangladesh, India, and Pakistan due to the existing favorable condition for the blast pathogen. The wheat blast pathogen belongs to the Magnaporthe oryzae species complex causing blast disease on multiple hosts in the Poaceae family. Phylogenetic analysis revealed that the Bangladesh outbreak strains and the Brazil outbreak strains were the same phylogenetic lineage, suggesting that they might be migrated from Brazil to Bangladesh during the seed import. To protect wheat production of Bangladesh and its neighbors, several measures including rigorous testing of seed health, use of chemicals, crop rotation, reinforcement of quarantine procedures, and increased field monitoring should be implemented. Development of blast resistant wheat varieties should be a long-term solution and combination of different methods with partial resistant lines may suppress this disease for some time. PMID:28381956

  2. Wheat Blast: A New Fungal Inhabitant to Bangladesh Threatening World Wheat Production.

    PubMed

    Sadat, Md Abu; Choi, Jaehyuk

    2017-04-01

    World wheat production is now under threat due to the wheat blast outbreak in Bangladesh in early March 2016. This is a new disease in this area, indicating the higher possibility of this pathogen spreading throughout the Asia, the world's largest wheat producing area. Occurrence of this disease caused ~3.5% reduction of the total wheat fields in Bangladesh. Its economic effect on the Bangladesh wheat market was little because wheat contributes to 3% of total cereal consumption, among which ~70% have been imported from other countries. However, as a long-term perspective, much greater losses will occur once this disease spreads to other major wheat producing areas of Bangladesh, India, and Pakistan due to the existing favorable condition for the blast pathogen. The wheat blast pathogen belongs to the Magnaporthe oryzae species complex causing blast disease on multiple hosts in the Poaceae family. Phylogenetic analysis revealed that the Bangladesh outbreak strains and the Brazil outbreak strains were the same phylogenetic lineage, suggesting that they might be migrated from Brazil to Bangladesh during the seed import. To protect wheat production of Bangladesh and its neighbors, several measures including rigorous testing of seed health, use of chemicals, crop rotation, reinforcement of quarantine procedures, and increased field monitoring should be implemented. Development of blast resistant wheat varieties should be a long-term solution and combination of different methods with partial resistant lines may suppress this disease for some time.

  3. Genome-wide linkage disequilibrium analysis in bread wheat and durum wheat.

    PubMed

    Somers, Daryl J; Banks, Travis; Depauw, Ron; Fox, Stephen; Clarke, John; Pozniak, Curtis; McCartney, Curt

    2007-06-01

    Bread wheat and durum wheat were examined for linkage disequilibrium (LD) using microsatellite markers distributed across the genome. The allele database consisted of 189 bread wheat accessions genotyped at 370 loci and 93 durum wheat accessions genotyped at 245 loci. A significance level of p < 0.001 was set for all comparisons. The bread and durum wheat collections showed that 47.9% and 14.0% of all locus pairs were in LD, respectively. LD was more prevalent between loci on the same chromosome compared with loci on independent chromosomes and was highest between adjacent loci. Only a small fraction (bread wheat, 0.9%; durum wheat, 3.2%) of the locus pairs in LD showed R2 values > 0.2. The LD between adjacent locus pairs extended (R2 > 0.2) approximately 2-3 cM, on average, but some regions of the bread and durum wheat genomes showed high levels of LD (R2 = 0.7 and 1.0, respectively) extending 41.2 and 25.5 cM, respectively. The wheat collections were clustered by similarity into subpopulations using unlinked microsatellite data and the software Structure. Analysis within subpopulations showed 14- to 16-fold fewer locus pairs in LD, higher R2 values for those pairs in LD, and LD extending further along the chromosome. The data suggest that LD mapping of wheat can be performed with simple sequence repeats to a resolution of <5 cM.

  4. Wheat mosaic virus (WMoV), the causal agent of High Plains disease, is present in Ohio wheat fields

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wheat mosaic virus (WMoV), the causal agent of High Plains disease in wheat, was found in wheat fields in three western counties in Ohio: Auglaize, Miami, and Paulding. WMoV nucleoprotein sequence was identified from Illumina deep sequencing of RNA collected from symptomatic and asymptomatic wheat s...

  5. End-use quality of CIMMYT-derived soft kernel durum wheat germplasm. I. Grain, milling and soft wheat quality.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wheat kernel texture is used in part to define U.S. wheat market class due to its importance in end-use quality and utilization. Durum wheat (Triticum turgidum subsp. durum) has lower demand and fewer culinary end-uses compared to bread wheat because of its extremely hard kernel texture, which precl...

  6. Using multispectral imagery to compare the spatial pattern of injury to wheat caused by Russian wheat aphid and greenbug

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Russian wheat aphid, Diuraphis noxia (Mordvilko), and greenbug, Schizaphis graminum (Rondani), are important aphid pests of wheat. Outbreaks of both pests in commercial wheat fields occur almost every year in the Great Plains of the United States. Infestations of both pests in wheat fields are...

  7. Winter wheat cultivars with temperature sensitive resistance to wheat streak mosaic virus do not recover from early season infections

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wheat streak mosaic virus (WSMV), Triticum mosaic virus, and Wheat mosaic virus, all vectored by the wheat curl mite Aceria tosichella Keifer, frequently cause devastating losses to winter wheat production throughout the central and western Great Plains. Resistant 'Mace' and 'RonL' are commercially ...

  8. Separability study of wheat and small grains

    NASA Technical Reports Server (NTRS)

    Lennington, R. K.; Marquina, N. E. (Principal Investigator)

    1978-01-01

    The author has identified the following significant results. Barley showed significant separability from spring wheat, both multitemporally and on a single date chosen near the turning time for barley. Oats showed occasional multitemporal separability from barley and spring wheat; however, the cause of this separability was not well understood. Oats showed no significant separability from spring wheat on any single date during the growing season. By pooling data from segments having an acquisition near the turning time for barley, a fixed unitemporal projection for aiding in the labeling of barley versus spring wheat and oats was constructed. This projection has about the same separability of barley from spring wheat and oats as the unitemporal greeness versus brightness plot. The new fixed projection has the advantage that barley occurs consistently in the same general location on the plot with respect to spring wheat and oats. Attempts to construct a fixed multitemporal or a segment-dependent multitemporal projection for aiding in the labeling of spring wheat versus other small grains were unsuccessful due to segment availability and the fact that each segment has a unique acquisition history.

  9. Endophytic establishment of Azorhizobium caulinodans in wheat

    PubMed Central

    Sabry, S. R. S.; Saleh, S. A.; Batchelor, C. A.; Jones, J.; Jotham, J.; Webster, G.; Kothari, S. L.; Davey, M. R.; Cocking, E. C.

    1997-01-01

    Nitrogen fixing nodules are formed on the roots and stems of the tropical legume Sesbania rostrata by Azorhizobium caulinodans as a result of crack entry invasion of emerging lateral roots. Advantage was taken of this invasion capability of A. caulinodans to determine whether inoculation of the non-legume wheat with A. caulinodans would result in the endophytic establishment of azorhizobia within wheat roots. Advantage was also taken of the oxygen tolerance of the nitrogenase of free-living azorhizobia to assess the extent to which the endophytic establishment of azorhizobia in wheat roots would provide a niche for nitrogen fixation of benefit to the plant. Wheat was inoculated with A. caulinodans and grown in pots under controlled conditions, without added growth reglators and without addition of fixed nitrogen. Microscopic examination of the short lateral roots of inocluated wheat showed invasion of azorhizobia between cells of the cortex, within the xylem and the root meristem Acetylene reduction assays combined with analysis of tissue nitrogen levels indicated the likelihood that colonization led to nitrogenase activity. Inoculated wheat showed significant increases in dry weight and nitrogen content as compared with uninoculated controls. We discuss the extent to which this nitrogen fixation is likely to involve symbiotic nitrogen fixation, and we indicate the need for field trials to determine the extent to which inolculation of wheat with A. caulinodans will reduce the requirement for inputs of nitrogenous fertilizers.

  10. Unlocking the genetic diversity of Creole wheats.

    PubMed

    Vikram, Prashant; Franco, Jorge; Burgueño-Ferreira, Juan; Li, Huihui; Sehgal, Deepmala; Saint Pierre, Carolina; Ortiz, Cynthia; Sneller, Clay; Tattaris, Maria; Guzman, Carlos; Sansaloni, Carolina Paola; Fuentes-Davila, Guillermo; Reynolds, Matthew; Sonders, Kai; Singh, Pawan; Payne, Thomas; Wenzl, Peter; Sharma, Achla; Bains, Navtej Singh; Singh, Gyanendra Pratap; Crossa, José; Singh, Sukhwinder

    2016-03-15

    Climate change and slow yield gains pose a major threat to global wheat production. Underutilized genetic resources including landraces and wild relatives are key elements for developing high-yielding and climate-resilient wheat varieties. Landraces introduced into Mexico from Europe, also known as Creole wheats, are adapted to a wide range of climatic regimes and represent a unique genetic resource. Eight thousand four hundred and sixteen wheat landraces representing all dimensions of Mexico were characterized through genotyping-by-sequencing technology. Results revealed sub-groups adapted to specific environments of Mexico. Broadly, accessions from north and south of Mexico showed considerable genetic differentiation. However, a large percentage of landrace accessions were genetically very close, although belonged to different regions most likely due to the recent (nearly five centuries before) introduction of wheat in Mexico. Some of the groups adapted to extreme environments and accumulated high number of rare alleles. Core reference sets were assembled simultaneously using multiple variables, capturing 89% of the rare alleles present in the complete set. Genetic information about Mexican wheat landraces and core reference set can be effectively utilized in next generation wheat varietal improvement.

  11. Unlocking the genetic diversity of Creole wheats

    PubMed Central

    Vikram, Prashant; Franco, Jorge; Burgueño-Ferreira, Juan; Li, Huihui; Sehgal, Deepmala; Saint Pierre, Carolina; Ortiz, Cynthia; Sneller, Clay; Tattaris, Maria; Guzman, Carlos; Sansaloni, Carolina Paola; Fuentes-Davila, Guillermo; Reynolds, Matthew; Sonders, Kai; Singh, Pawan; Payne, Thomas; Wenzl, Peter; Sharma, Achla; Bains, Navtej Singh; Singh, Gyanendra Pratap; Crossa, José; Singh, Sukhwinder

    2016-01-01

    Climate change and slow yield gains pose a major threat to global wheat production. Underutilized genetic resources including landraces and wild relatives are key elements for developing high-yielding and climate-resilient wheat varieties. Landraces introduced into Mexico from Europe, also known as Creole wheats, are adapted to a wide range of climatic regimes and represent a unique genetic resource. Eight thousand four hundred and sixteen wheat landraces representing all dimensions of Mexico were characterized through genotyping-by-sequencing technology. Results revealed sub-groups adapted to specific environments of Mexico. Broadly, accessions from north and south of Mexico showed considerable genetic differentiation. However, a large percentage of landrace accessions were genetically very close, although belonged to different regions most likely due to the recent (nearly five centuries before) introduction of wheat in Mexico. Some of the groups adapted to extreme environments and accumulated high number of rare alleles. Core reference sets were assembled simultaneously using multiple variables, capturing 89% of the rare alleles present in the complete set. Genetic information about Mexican wheat landraces and core reference set can be effectively utilized in next generation wheat varietal improvement. PMID:26976656

  12. Wheat products as acceptable substitutes for rice.

    PubMed

    Yu, B H; Kies, C

    1993-07-01

    The objective of the study was to compare the acceptability to semi-trained US American and Asian palatability panelist, of four wheat products processed to be possible replacers of rice in human diets. Products evaluated using rice as the control standard of excellence were steamed whole wheat, couscous (steamed, extracted wheat flour semolina), rosamarina (rice shaped, extracted wheat flour pasta), and bulgar (steamed, pre-cooked partly debranned, cracked wheat). Using a ten point hedonic rating scale, both groups of panelists gave rosamarina closely followed by couscous, most favorable ratings although these ratings were somewhat lower than that of the positive control, steamed polished rice. Bulgar wheat was given the lowest evaluation and was, in general, found to be an unacceptable replacement for rice by both American and Asian judges because of its dark, 'greasy' color and distinctive flavor. In their personal dietaries, judges included rice from 0.25 to 18 times per week with the Asian judges consuming rice significantly more times per week than did the American judges (10.8 +/- 4.71 vs 1.75 +/- 1.65, p < 0.01). However, rice consumption patterns, nationality, race, or sex of the judges was not demonstrated to affect scoring of the wheat products as rice replacers.

  13. Interleukin-1 regulates proliferation and differentiation of oligodendrocyte progenitor cells.

    PubMed

    Vela, José M; Molina-Holgado, Eduardo; Arévalo-Martín, Angel; Almazán, Guillermina; Guaza, Carmen

    2002-07-01

    Interleukin-1 (IL-1) is a pleiotropic cytokine expressed during normal CNS development and in inflammatory demyelinating diseases, but remarkably little is known about its effect on oligodendroglial cells. In this study we explored the role of IL-1beta in oligodendrocyte progenitors and differentiated oligodendrocytes. The effects of IL-1beta were compared to those of IL-1 receptor antagonist, the specific inhibitor of IL-1 activity, since progenitors and differentiated oligodendrocytes produce IL-1beta and express IL-1 receptors. Unlike other proinflammatory cytokines (TNFalpha and IFNgamma), IL-1beta was not toxic for oligodendrocyte lineage cells. However, this cytokine inhibited proliferation of oligodendrocyte progenitors in the presence of growth factors (PDGF plus bFGF). This was evidenced by a significant decrease in both cells incorporating bromodeoxyuridine (45%) and total cell numbers (57%) after 6 days of treatment. Interestingly, IL-1beta blocked proliferation at the late progenitor/prooligodendrocyte (O4+) stage but did not affect proliferation of early progenitors (A2B5+). Inhibition of proliferation paralleled with promotion of differentiation, as revealed by the increased percentage of R-mab+ cells (6.7-fold). Moreover, when oligodendrocyte progenitors were allowed to differentiate in the absence of growth factors, treatment with IL-1beta promoted maturation to the MBP+ stage (4.2-fold) and survival of differentiating oligodendrocytes (2.1-fold). Regarding intracellular signaling, IL-1beta activated the p38 mitogen-activated protein kinase (MAPK) but not the p42/p44 MAPK and, when combined with growth factors, intensified p38 activation but inhibited the growth-factor-induced p42/p44 activation. IL-1beta also induced a time-dependent inhibition of PFGF-Ralpha gene expression. These results support a role for IL-1beta in promoting mitotic arrest and differentiation of oligodendrocyte progenitors as well as maturation and survival of differentiating

  14. Characterization of hematopoietic progenitors from human yolk sacs and embryos.

    PubMed

    Huyhn, A; Dommergues, M; Izac, B; Croisille, L; Katz, A; Vainchenker, W; Coulombel, L

    1995-12-15

    Hematopoiesis first arises in the extraembryonic yolk sac, and it is generally believed that yolk sac-derived stem cells migrate and seed the fetal liver at approximately week 6 of development in humans. Recently, the identification at day 8.5 to 9 of multipotential stem cells in intraembryonic sites different from the liver suggests that the establishment of hematopoiesis might be more complex than initially believed. In an attempt to understand initial steps of hematopoiesis during human ontogeny, we characterized clonogenic myeloid progenitor cells in human yolk sacs and corresponding embryos at 25 to 50 days of development. Most erythroid colonies derived from the yolk sacs differed from adult marrow-derived progenitors in that they also contained cells of the granulomacrophagic lineage, suggesting that they were pluripotent and exhibited a different response to cytokines. Furthermore, a subclass of nonerythroid progenitors generated very large granulomacrophagic colonies, some of which generated secondary erythroid colonies on replating. Analysis of the distribution of progenitors revealed that in contrast to erythroid progenitors, whose numbers were equally distributed between the yolk sac and the embryo, 80% of the nonerythroid progenitors were found in the embryo at stages II and III. Interestingly, a high proportion of nonerythroid progenitors (including high proliferative potential cells) was present in colony assays initiated with cells remaining after the liver has been removed. These findings were validated in colony assays established with CD34+ cells purified from extraembryonic yolk sacs and intraembryonic tissues. Increased knowledge about the biology of hematopoietic stem cells early in life may help to further understanding of the mechanisms associated with the restriction in proliferative and differentiative potential observed in the adult hematopoietic stem cell compartment.

  15. Microencapsulation of wheat germ oil.

    PubMed

    Yazicioglu, Basak; Sahin, Serpil; Sumnu, Gulum

    2015-06-01

    Wheat germ oil (WGO) is beneficial for health since it is a rich source of omega-3, omega-6 and tocopherol. However, as it contains polyunsaturated fatty acids, it is prone to oxidation. The aim of this study was to encapsulate wheat germ oil and determine the effects of core to coating ratio, coating materials ratio and ultrasonication time on particle size distribution of emulsions and encapsulation efficiency (EE) and surface morphology of capsules. Maltodextrin (MD) and whey protein concentrate (WPC) at different ratios (3:1, 2:2, 1:3) were used as coating materials. Total solid content of samples was 40 % (w/w). Five core to coating ratios (1:8, 1:4, 1:2, 3:4, 1:1) were tried. Ultrasound was used at 320 W and 20 kHz for 2, 5, 10 min to obtain emulsions. Then, emulsions were freeze dried to obtain microcapsules. It was observed that, increasing WPC ratio in the coating resulted in higher encapsulation efficiency and smaller particle size. Microcapsules prepared with MD:WPC ratio of 1:3 were found to have higher EE (74.35-89.62 %). Increase in oil load led to decrease in EE. Thus 1:8 core to coating ratio gave better results. Increasing ultrasonication time also had a positive effect on encapsulation efficiency.

  16. Wheat production in controlled environments

    NASA Technical Reports Server (NTRS)

    Salisbury, Frank B.; Bugbee, Bruce; Bubenheim, David

    1987-01-01

    Conditions are optimized for maximum yield and quality of wheat to be used in a controlled environment life support system (CELSS) in a Lunar or Martian base or a spacecraft. With yields of 23 to 57 g/sq m/d of edible biomass, a minimum size for a CELSS would be between 12 and 30 sq m per person, utilizing about 600 W/sq m of electrical energy for artificial light. Temperature, irradiance, photoperiod, carbon dioxide levels, humidity, and wind velocity are controlled in growth chambers. Nutrient solutions (adjusted for wheat) are supplied to the roots via a recirculating system that controls pH by adding HNO3 and controlling the NO3/NH4 ratio in solution. A rock-wool plant support allows direct seeding and densities up to 10,000 plants sq m. Densities up to 2000 plants/sq m appear to increase seed yield. Biomass production increases almost linearily with increasing irradiance from 400 to 1700 micromol/sq m/s of photosynthetic photon flux, but the efficiency of light utilization decreases over this range. Photoperiod and temperature both have a profound influence on floral initiation, spikelet formation, stem elongation, and fertilization.

  17. Durum wheat and allelopathy: toward wheat breeding for natural weed management.

    PubMed

    Fragasso, Mariagiovanna; Iannucci, Anna; Papa, Roberto

    2013-09-24

    Wheat-derived foodstuffs represent about one-fifth of the calories consumed by humans worldwide. Bread wheat (Triticum aestivum L.) is one of the most important crops throughout the world, and it has been extensively studied for its allelopathic potential. In contrast, for allelopathy in durum wheat (Triticum turgidum ssp. durum), our knowledge is partial and fragmentary. Through highlighting recent advances in using allelopathy as a crop-breeding tool, we provide an overview of allelopathy in Triticum spp., to stimulate further coordinated breeding-oriented studies, to favor allelopathy exploitation for the sustainable cultivation of wheat, and in particular, to achieve improved biological weed control.

  18. Chronic headaches and sleepiness caused by facial soap (containing hydrolyzed wheat proteins)-induced wheat allergy.

    PubMed

    Iseki, Chifumi; Kawanami, Toru; Tsunoda, Takahiko; Chinuki, Yuko; Kato, Takeo

    2014-01-01

    A 38-year-old woman was suffering from irregular headaches and sleepiness. She had used soap containing Glupearl 19S (hydrolyzed wheat proteins) every day for approximately one year and had experienced an episode of rash eruption on her face seven months ago. Wheat-specific IgE antibodies were detected in her serum. A Western blot analysis revealed a high titer of IgE antibodies against Glupearl 19S and wheat proteins. The patient was sensitive to these compounds in a skin prick test. After avoiding eating wheat, her headaches and sleepiness disappeared. A hidden food allergy is a possible cause of these symptoms.

  19. Durum wheat and allelopathy: toward wheat breeding for natural weed management

    PubMed Central

    Fragasso, Mariagiovanna; Iannucci, Anna; Papa, Roberto

    2013-01-01

    Wheat-derived foodstuffs represent about one-fifth of the calories consumed by humans worldwide. Bread wheat (Triticum aestivum L.) is one of the most important crops throughout the world, and it has been extensively studied for its allelopathic potential. In contrast, for allelopathy in durum wheat (Triticum turgidum ssp. durum), our knowledge is partial and fragmentary. Through highlighting recent advances in using allelopathy as a crop-breeding tool, we provide an overview of allelopathy in Triticum spp., to stimulate further coordinated breeding-oriented studies, to favor allelopathy exploitation for the sustainable cultivation of wheat, and in particular, to achieve improved biological weed control. PMID:24065979

  20. SUPERNOVA 2008bk AND ITS RED SUPERGIANT PROGENITOR

    SciTech Connect

    Van Dyk, Schuyler D.; Elias-Rosa, Nancy; and others

    2012-01-15

    We have obtained limited photometric and spectroscopic data for supernova (SN) 2008bk in NGC 7793, primarily at {approx}> 150 days after explosion. We find that it is a Type II-Plateau (II-P) SN that most closely resembles the low-luminosity SN 1999br in NGC 4900. Given the overall similarity between the observed light curves and colors of SNe 2008bk and 1999br, we infer that the total visual extinction to SN 2008bk (A{sub V} = 0.065 mag) must be almost entirely due to the Galactic foreground, similar to what has been assumed for SN 1999br. We confirm the identification of the putative red supergiant (RSG) progenitor star of the SN in high-quality g'r'i' images we had obtained in 2007 at the Gemini-South 8 m telescope. Little ambiguity exists in this progenitor identification, qualifying it as the best example to date, next to the identification of the star Sk -69 Degree-Sign 202 as the progenitor of SN 1987A. From a combination of photometry of the Gemini images with that of archival, pre-SN, Very Large Telescope JHK{sub s} images, we derive an accurate observed spectral energy distribution (SED) for the progenitor. We find from nebular strong-intensity emission-line indices for several H II regions near the SN that the metallicity in the environment is likely subsolar (Z Almost-Equal-To 0.6 Z{sub Sun }). The observed SED of the star agrees quite well with synthetic SEDs obtained from model RSG atmospheres with effective temperature T{sub eff} = 3600 {+-} 50 K. We find, therefore, that the star had a bolometric luminosity with respect to the Sun of log (L{sub bol}/L{sub Sun} ) = 4.57 {+-} 0.06 and radius R{sub *} = 496 {+-} 34 R{sub Sun} at {approx}6 months prior to explosion. Comparing the progenitor's properties with theoretical massive-star evolutionary models, we conclude that the RSG progenitor had an initial mass in the range of 8-8.5 M{sub Sun }. This mass is consistent with, albeit at the low end of, the inferred range of initial masses for SN II

  1. Cytoglobin modulates myogenic progenitor cell viability and muscle regeneration.

    PubMed

    Singh, Sarvjeet; Canseco, Diana C; Manda, Shilpa M; Shelton, John M; Chirumamilla, Rajendra R; Goetsch, Sean C; Ye, Qiu; Gerard, Robert D; Schneider, Jay W; Richardson, James A; Rothermel, Beverly A; Mammen, Pradeep P A

    2014-01-07

    Mammalian skeletal muscle can remodel, repair, and regenerate itself by mobilizing satellite cells, a resident population of myogenic progenitor cells. Muscle injury and subsequent activation of myogenic progenitor cells is associated with oxidative stress. Cytoglobin is a hemoprotein expressed in response to oxidative stress in a variety of tissues, including striated muscle. In this study, we demonstrate that cytoglobin is up-regulated in activated myogenic progenitor cells, where it localizes to the nucleus and contributes to cell viability. siRNA-mediated depletion of cytoglobin from C2C12 myoblasts increased levels of reactive oxygen species and apoptotic cell death both at baseline and in response to stress stimuli. Conversely, overexpression of cytoglobin reduced reactive oxygen species levels, caspase activity, and cell death. Mice in which cytoglobin was knocked out specifically in skeletal muscle were generated to examine the role of cytoglobin in vivo. Myogenic progenitor cells isolated from these mice were severely deficient in their ability to form myotubes as compared with myogenic progenitor cells from wild-type littermates. Consistent with this finding, the capacity for muscle regeneration was severely impaired in mice deficient for skeletal-muscle cytoglobin. Collectively, these data demonstrate that cytoglobin serves an important role in muscle repair and regeneration.

  2. Impaired DNA replication within progenitor cell pools promotes leukemogenesis.

    PubMed

    Bilousova, Ganna; Marusyk, Andriy; Porter, Christopher C; Cardiff, Robert D; DeGregori, James

    2005-12-01

    Impaired cell cycle progression can be paradoxically associated with increased rates of malignancies. Using retroviral transduction of bone marrow progenitors followed by transplantation into mice, we demonstrate that inhibition of hematopoietic progenitor cell proliferation impairs competition, promoting the expansion of progenitors that acquire oncogenic mutations which restore cell cycle progression. Conditions that impair DNA replication dramatically enhance the proliferative advantage provided by the expression of Bcr-Abl or mutant p53, which provide no apparent competitive advantage under conditions of healthy replication. Furthermore, for the Bcr-Abl oncogene the competitive advantage in contexts of impaired DNA replication dramatically increases leukemogenesis. Impaired replication within hematopoietic progenitor cell pools can select for oncogenic events and thereby promote leukemia, demonstrating the importance of replicative competence in the prevention of tumorigenesis. The demonstration that replication-impaired, poorly competitive progenitor cell pools can promote tumorigenesis provides a new rationale for links between tumorigenesis and common human conditions of impaired DNA replication such as dietary folate deficiency, chemotherapeutics targeting dNTP synthesis, and polymorphisms in genes important for DNA metabolism.

  3. The Progenitor Mass of the Magnetar SGR1900+14

    NASA Astrophysics Data System (ADS)

    Davies, Ben; Figer, Don F.; Kudritzki, Rolf-Peter; Trombley, Christine; Kouveliotou, Chryssa; Wachter, Stefanie

    2009-12-01

    Magnetars are young neutron stars with extreme magnetic fields (B gsim 1014-1015 G). How these fields relate to the properties of their progenitor stars is not yet clearly established. However, from the few objects associated with young clusters it has been possible to estimate the initial masses of the progenitors, with results indicating that a very massive progenitor star (M prog> 40 M _{⊙}) is required to produce a magnetar. Here, we present adaptive-optics assisted Keck/NIRC2 imaging and Keck/NIRSPEC spectroscopy of the cluster associated with the magnetar SGR 1900+14, and report that the initial progenitor star mass of the magnetar was a factor of 2 lower than this limit, M prog = 17 ± 2 M_{⊙}. Our result presents a strong challenge to the concept that magnetars can only result from very massive progenitors. Instead, we favor a mechanism which is dependent on more than just initial stellar mass for the production of these extreme magnetic fields, such as the "fossil-field" model or a process involving close binary evolution.

  4. Type Ia Supernovae Keep Memory of their Progenitor Metallicity

    NASA Astrophysics Data System (ADS)

    Piersanti, Luciano; Bravo, Eduardo; Cristallo, Sergio; Domínguez, Inmaculada; Straniero, Oscar; Tornambé, Amedeo; Martínez-Pinedo, Gabriel

    2017-02-01

    The ultimate understanding of SNe Ia diversity is one of the most urgent issues to exploit thermonuclear explosions of accreted White Dwarfs (WDs) as cosmological yardsticks. In particular, we investigate the impact of the progenitor system metallicity on the physical and chemical properties of the WD at the explosion epoch. We analyze the evolution of CO WDs through the accretion and simmering phases by using evolutionary models based on time-dependent convective mixing and an extended nuclear network including the most important electron captures, beta decays, and URCA processes. We find that, due to URCA processes and electron-captures, the neutron excess and density at which the thermal runaway occurs are substantially larger than previously claimed. Moreover, we find that the higher the progenitor metallicity, the larger the neutron excess variation during the accretion and simmering phases and the higher the central density and the convective velocity at the explosion. Hence, the simmering phase acts as an amplifier of the differences existing in SNe Ia progenitors. When applying our results to the neutron excess estimated for the Tycho and Kepler young supernova remnants, we derive that the metallicity of the progenitors should be in the range Z=0.030{--}0.032, close to the average metallicity value of the thin disk of the Milky Way. As the amount of {}56{Ni} produced in the explosion depends on the neutron excess and central density at the thermal runaway, our results suggest that the light curve properties depend on the progenitor metallicity.

  5. Inhibition of cyclooxygenase (COX)-2 affects endothelial progenitor cell proliferation

    SciTech Connect

    Colleselli, Daniela; Bijuklic, Klaudija; Mosheimer, Birgit A.; Kaehler, Christian M. . E-mail: C.M.Kaehler@uibk.ac.at

    2006-09-10

    Growing evidence indicates that inducible cyclooxygenase-2 (COX-2) is involved in the pathogenesis of inflammatory disorders and various types of cancer. Endothelial progenitor cells recruited from the bone marrow have been shown to be involved in the formation of new vessels in malignancies and discussed for being a key point in tumour progression and metastasis. However, until now, nothing is known about an interaction between COX and endothelial progenitor cells (EPC). Expression of COX-1 and COX-2 was detected by semiquantitative RT-PCR and Western blot. Proliferation kinetics, cell cycle distribution and rate of apoptosis were analysed by MTT test and FACS analysis. Further analyses revealed an implication of Akt phosphorylation and caspase-3 activation. Both COX-1 and COX-2 expression can be found in bone-marrow-derived endothelial progenitor cells in vitro. COX-2 inhibition leads to a significant reduction in proliferation of endothelial progenitor cells by an increase in apoptosis and cell cycle arrest. COX-2 inhibition leads further to an increased cleavage of caspase-3 protein and inversely to inhibition of Akt activation. Highly proliferating endothelial progenitor cells can be targeted by selective COX-2 inhibition in vitro. These results indicate that upcoming therapy strategies in cancer patients targeting COX-2 may be effective in inhibiting tumour vasculogenesis as well as angiogenic processes.

  6. Emergence of neuronal diversity from patterning of telencephalic progenitors.

    PubMed

    Azzarelli, Roberta; Hardwick, Laura J A; Philpott, Anna

    2015-01-01

    During central nervous system (CNS) development, hundreds of distinct neuronal subtypes are generated from a single layer of multipotent neuroepithelial progenitor cells. Within the rostral CNS, initial regionalization of the telencephalon marks the territories where the cerebral cortex and the basal ganglia originate. Subsequent refinement of the primary structures determines the formation of domains of differential gene expression, where distinct fate-restricted progenitors are located. To understand how diversification of neural progenitors and neurons is achieved in the telencephalon, it is important to address early and late patterning events in this context. In particular, important questions include: How does the telencephalon become specified and regionalized along the major spatial axes? Within each region, are the differences in neuronal subtypes established at the progenitor level or at the postmitotic stage? If distinct progenitors exist that are committed to subtype-specific neuronal lineages, how does the diversification emerge? What is the contribution of positional and temporal cues and how is this information integrated into the intrinsic programs of cell identity? WIREs For further resources related to this article, please visit the WIREs website.

  7. High fat diet enhances stemness and tumorigenicity of intestinal progenitors

    PubMed Central

    Beyaz, Semir; Mana, Miyeko D.; Roper, Jatin; Kedrin, Dmitriy; Saadatpour, Assieh; Hong, Sue-Jean; Bauer-Rowe, Khristian E.; Xifaras, Michael E.; Akkad, Adam; Arias, Erika; Pinello, Luca; Katz, Yarden; Shinagare, Shweta; Abu-Remaileh, Monther; Mihaylova, Maria M.; Lamming, Dudley W.; Dogum, Rizkullah; Guo, Guoji; Bell, George W.; Selig, Martin; Nielsen, G. Petur; Gupta, Nitin; Ferrone, Cristina R.; Deshpande, Vikram; Yuan, Guo-Cheng; Orkin, Stuart H.; Sabatini, David M.; Yilmaz, Ömer H.

    2016-01-01

    Little is known about how pro-obesity diets regulate tissue stem and progenitor cell function. Here we find that high fat diet (HFD)-induced obesity augments the numbers and function of Lgr5+ intestinal stem-cells (ISCs) of the mammalian intestine. Mechanistically, HFD induces a robust peroxisome proliferator-activated receptor delta (PPAR-d) signature in intestinal stem and (non-ISC) progenitor cells, and pharmacologic activation of PPAR-d recapitulates the effects of a HFD on these cells. Like a HFD, ex vivo treatment of intestinal organoid cultures with fatty acid constituents of the HFD enhances the self-renewal potential of these organoid bodies in a PPAR-d dependent manner. Interestingly, HFD- and agonist-activated PPAR-d signaling endow organoid-initiating capacity to progenitors, and enforced PPAR-d signaling permits these progenitors to form in vivo tumors upon loss of the tumor suppressor Apc. These findings highlight how diet-modulated PPAR-d activation alters not only the function of intestinal stem and progenitor cells, but also their capacity to initiate tumors. PMID:26935695

  8. Derivation of endodermal progenitors from pluripotent stem cells†

    PubMed Central

    Ikonomou, Laertis; Kotton, Darrell N.

    2014-01-01

    Stem and progenitor cells play important roles in organogenesis during development and in tissue homeostasis and response to injury postnatally. As the regenerative capacity of many human tissues is limited, cell replacement therapies hold great promise for human disease management. Pluripotent stem cells such as embryonic stem (ES) cells and induced pluripotent stem (iPS) cells are prime candidates for the derivation of unlimited quantities of clinically relevant cell types through development of directed differentiation protocols, i.e. the recapitulation of developmental milestones in in vitro cell culture. Tissue-specific progenitors, including progenitors of endodermal origin, are important intermediates in such protocols since they give rise to all mature parenchymal cells. In this review, we focus on the in vivo biology of embryonic endodermal progenitors in terms of key transcription factors and signaling pathways. We critically review the emerging literature aiming to apply this basic knowledge to achieve the efficient and reproducible in vitro derivation of endodermal progenitors such as pancreas, liver and lung precursor cells. PMID:25160562

  9. Energy balance of wheat conversion to ethanol

    SciTech Connect

    Stumborg, M.A.; Zentner, R.P.; Coxworth, E.

    1996-12-31

    The Western Canadian ethanol industry uses wheat as the preferred feed stock. The net energy balance of an ethanol system based on this starchy feed stock is of interest if Canada utilizes ethanol fuels from wheat as one of its measures to meet international commitments for greenhouse gas reduction and energy conservation under the Green Plan. The wheat to ethanol production systems for the Brown and Thin Black soil zones of the Canadian Prairies were analyzed from soil to processing completion to determine the net energy balance. The data clearly demonstrates the positive net energy balance, with the energy balance ranging from 1.32 to 1.63:1 for the Brown soil zone, and from 1.19 to 1.47:1 for the Thin Black soil zone. The final energy balance depends upon the agronomic practices and wheat variety assumed for the production system.

  10. Rising Temperatures Reduce Global Wheat Production

    NASA Technical Reports Server (NTRS)

    Asseng, S.; Ewert, F.; Martre, P.; Rötter, R. P.; Lobell, D. B.; Cammarano, D.; Kimball, B. A.; Ottman, M. J.; Wall, G. W.; White, J. W.; Reynolds, M. P.; Alderman, P. D.; Prasad, P. V. V.; Aggarwal, P. K.; Anothai, J.; Basso, B.; Biernath, C.; Challinor, A. J.; De Sanctis, G.; Doltra, J.; Fereres, E.; Garcia-Vila, M.; Gayler, S.; Hoogenboom, G.; Hunt, L. A.; Izaurralde, R. C.; Jabloun, M.; C. D. Jones,; Kersebaum, K. C.; Koehler, A-K.; Müller, C.; Naresh Kumar, S.; Nendel, C.; O’Leary, G.; Olesen, J. E.; Palosuo, T.; Priesack, E.; Eyshi Rezaei, E.; Ruane, A. C.; Semenov, M. A.; Shcherbak, I.; Stöckle, C.; Stratonovitch, P.; Streck, T.; Supit, I.; Tao, F.; Thorburn, P. J.; Waha, K.; Wang, E.; Wallach, D.; Wolf, J.; Zhao, Z.; Zhu, Y.

    2015-01-01

    Crop models are essential tools for assessing the threat of climate change to local and global food production. Present models used to predict wheat grain yield are highly uncertain when simulating how crops respond to temperature. Here we systematically tested 30 different wheat crop models of the Agricultural Model Intercomparison and Improvement Project against field experiments in which growing season mean temperatures ranged from 15 degrees C to 32? degrees C, including experiments with artificial heating. Many models simulated yields well, but were less accurate at higher temperatures. The model ensemble median was consistently more accurate in simulating the crop temperature response than any single model, regardless of the input information used. Extrapolating the model ensemble temperature response indicates that warming is already slowing yield gains at a majority of wheat-growing locations. Global wheat production is estimated to fall by 6% for each degree C of further temperature increase and become more variable over space and time.

  11. Identification of a common mesenchymal stromal progenitor for the adult haematopoietic niche

    PubMed Central

    Hu, Xingbin; Garcia, Mayra; Weng, Lihong; Jung, Xiaoman; Murakami, Jodi L.; Kumar, Bijender; Warden, Charles D.; Todorov, Ivan; Chen, Ching-Cheng

    2016-01-01

    Microenvironment cues received by haematopoietic stem cells (HSC) are important in regulating the choice between self-renewal and differentiation. On the basis of the differential expression of cell-surface markers, here we identify a mesenchymal stromal progenitor hierarchy, where CD45−Ter119−CD31−CD166−CD146−Sca1+(Sca1+) progenitors give rise to CD45−Ter119−CD31−CD166−CD146+(CD146+) intermediate and CD45−Ter119−CD31−CD166+CD146−(CD166+) mature osteo-progenitors. All three progenitors preserve HSC long-term multi-lineage reconstitution capability in vitro; however, their in vivo fates are different. Post-transplantation, CD146+ and CD166+ progenitors form bone only. While Sca1+ progenitors produce CD146+, CD166+ progenitors, osteocytes and CXCL12-producing stromal cells. Only Sca1+ progenitors are capable of homing back to the marrow post-intravenous infusion. Ablation of Sca1+ progenitors results in a decrease of all three progenitor populations as well as haematopoietic stem/progenitor cells. Moreover, suppressing production of KIT-ligand in Sca1+ progenitors inhibits their ability to support HSCs. Our results indicate that Sca1+ progenitors, through the generation of both osteogenic and stromal cells, provide a supportive environment for hematopoiesis. PMID:27721421

  12. Thermonuclear supernova light curves: Progenitors and cosmology

    NASA Astrophysics Data System (ADS)

    Rodney, Steven A.

    Thermonuclear Supernovae (TN SNe) are an extremely important tool in modern astronomy. In their role as cosmological distance probes, they have revealed the accelerated expansion of the universe and have begun to constrain the nature of the dark energy that may be driving that expansion. The next decade will see a succession of wide-field surveys producing thousands of TNSN detections each year. Traditional methods of SN analysis, rooted in time-intensive spectroscopic follow-up, will become completely impractical. To realize the potential of this coming tide of massive data sets, we will need to extract cosmographic parameters (redshift and luminosity distance) from SN photometry without any spectroscopic support. In this dissertation, I present the Supernova Ontology with Fuzzy Templates (SOFT) method, an innovative new approach to the analysis of SN light curves. SOFT uses the framework of fuzzy set theory to perform direct comparisons of SN candidates against template light curves, simultaneously producing both classifications and cosmological parameter estimates. The SOFT method allows us to shed new light on two rich archival data sets. I revisit the IfA Deep Survey and HST GOODS to extract new and improved measurements of the TNSN rate from z=0.2 out to z=1.6. Our new analysis shows a steady increase in the TNSN rate out to z˜1, and adds support for a decrease in the rate at z=1.5. Comparing these rate measurements to theoretical models, I conclude that the progenitor scenario most favored by the collective observational data is a single degenerate model, regulated by a strong wind from the accreting white dwarf. Using a compilation of SN light curves from five recent surveys, I demonstrate that SOFT is able to derive useful constraints on cosmological models from a data set with no spectroscopic information at all. Looking ahead to the near future, I find that photometric analysis of data sets containing 2,000 SNe will be able to improve our constraints on

  13. Rates and progenitors of type Ia supernovae

    SciTech Connect

    Wood-Vasey, William Michael

    2004-01-01

    analyzing the true sensitivity of a multi-epoch supernova search and finds a Type Ia supernova rate from z ~ 0.01-0.1 of rV = 4.26$+1.39 +0.10\\atop{-1.93 -0.10}$h3 x 10-4 SNe Ia/yr/Mpc3 from a preliminary analysis of a subsample of the SNfactory prototype search. Several unusual supernovae were found in the course of the SNfactory prototype search. One in particular, SN 2002ic, was the first SN Ia to exhibit convincing evidence for a circumstellar medium and offers valuable insight into the progenitors of Type Ia supernovae.

  14. Wnt2 regulates progenitor proliferation in the developing ventral midbrain.

    PubMed

    Sousa, Kyle M; Villaescusa, J Carlos; Cajanek, Lukas; Ondr, Jennifer K; Castelo-Branco, Goncalo; Hofstra, Wytske; Bryja, Vitezslav; Palmberg, Carina; Bergman, Tomas; Wainwright, Brandon; Lang, Richard A; Arenas, Ernest

    2010-03-05

    Wnts are secreted, lipidated proteins that regulate multiple aspects of brain development, including dopaminergic neuron development. In this study, we perform the first purification and signaling analysis of Wnt2 and define the function of Wnt2 in ventral midbrain precursor cultures, as well as in Wnt2-null mice in vivo. We found that purified Wnt2 induces the phosphorylation of both Lrp5/6 and Dvl-2/3, and activates beta-catenin in SN4741 dopaminergic cells. Moreover, purified Wnt2 increases progenitor proliferation, and the number of dopaminergic neurons in ventral midbrain precursor cultures. In agreement with these findings, analysis of the ventral midbrain of developing Wnt2-null mice revealed a decrease in progenitor proliferation and neurogenesis that lead to a decrease in the number of postmitotic precursors and dopaminergic neurons. Collectively, our observations identify Wnt2 as a novel regulator of dopaminergic progenitors and dopaminergic neuron development.

  15. Close Binary Progenitors and Ejected Companions of Thermonuclear Supernovae

    NASA Astrophysics Data System (ADS)

    Geier, S.; Kupfer, T.; Heber, U.; Nemeth, P.; Ziegerer, E.; Irrgang, A.; Schindewolf, M.; Marsh, T. R.; Gänsicke, B. T.; Barlow, B. N.; Bloemen, S.

    2017-03-01

    Hot subdwarf stars (sdO/Bs) are evolved core helium-burning stars with very thin hydrogen envelopes, which can be formed by common envelope ejection. Close sdB binaries with massive white dwarf (WD) companions are potential progenitors of thermonuclear supernovae type Ia (SN Ia). We discovered such a progenitor candidate as well as a candidate for a surviving companion star, which escapes from the Galaxy. More candidates for both types of objects have been found by cross-matching known sdB stars with proper motion and light curve catalogues. We found 72 sdO/B candidates with high Galactic restframe velocities, 12 of them might be unbound to our Galaxy. Furthermore, we discovered the second-most compact sdB+WD binary known. However, due to the low mass of the WD companion, it is unlikely to be a SN Ia progenitor.

  16. Wnt2 Regulates Progenitor Proliferation in the Developing Ventral Midbrain*

    PubMed Central

    Sousa, Kyle M.; Villaescusa, J. Carlos; Cajanek, Lukas; Ondr, Jennifer K.; Castelo-Branco, Goncalo; Hofstra, Wytske; Bryja, Vitezslav; Palmberg, Carina; Bergman, Tomas; Wainwright, Brandon; Lang, Richard A.; Arenas, Ernest

    2010-01-01

    Wnts are secreted, lipidated proteins that regulate multiple aspects of brain development, including dopaminergic neuron development. In this study, we perform the first purification and signaling analysis of Wnt2 and define the function of Wnt2 in ventral midbrain precursor cultures, as well as in Wnt2-null mice in vivo. We found that purified Wnt2 induces the phosphorylation of both Lrp5/6 and Dvl-2/3, and activates β-catenin in SN4741 dopaminergic cells. Moreover, purified Wnt2 increases progenitor proliferation, and the number of dopaminergic neurons in ventral midbrain precursor cultures. In agreement with these findings, analysis of the ventral midbrain of developing Wnt2-null mice revealed a decrease in progenitor proliferation and neurogenesis that lead to a decrease in the number of postmitotic precursors and dopaminergic neurons. Collectively, our observations identify Wnt2 as a novel regulator of dopaminergic progenitors and dopaminergic neuron development. PMID:20018874

  17. Establishment of bipotent progenitor cell clone from rat skeletal muscle.

    PubMed

    Murakami, Yousuke; Yada, Erica; Nakano, Shin-ichi; Miyagoe-Suzuki, Yuko; Hosoyama, Tohru; Matsuwaki, Takashi; Yamanouchi, Keitaro; Nishihara, Masugi

    2011-12-01

    The present study describes the isolation, cloning and characterization of adipogenic progenitor cells from rat skeletal muscle. Among the obtained 10 clones, the most highly adipogenic progenitor, 2G11 cells, were further characterized. In addition to their adipogenicity, 2G11 cells retain myogenic potential as revealed by formation of multinucleated myotubes when co-cultured with myoblasts. 2G11 cells were resistant to an inhibitory effect of basic fibroblast growth factor on adipogenesis, while adipogenesis of widely used preadipogenic cell line, 3T3-L1 cells, was suppressed almost completely by the same treatment. In vivo transplantation experiments revealed that 2G11 cells are able to possess both adipogenicity and myogenicity in vivo. These results indicate the presence of bipotent progenitor cells in rat skeletal muscle, and suggest that such cells may contribute to ectopic fat formation in skeletal muscle.

  18. Neural progenitors, neurogenesis and the evolution of the neocortex.

    PubMed

    Florio, Marta; Huttner, Wieland B

    2014-06-01

    The neocortex is the seat of higher cognitive functions and, in evolutionary terms, is the youngest part of the mammalian brain. Since its origin, the neocortex has expanded in several mammalian lineages, and this is particularly notable in humans. This expansion reflects an increase in the number of neocortical neurons, which is determined during development and primarily reflects the number of neurogenic divisions of distinct classes of neural progenitor cells. Consequently, the evolutionary expansion of the neocortex and the concomitant increase in the numbers of neurons produced during development entail interspecies differences in neural progenitor biology. Here, we review the diversity of neocortical neural progenitors, their interspecies variations and their roles in determining the evolutionary increase in neuron numbers and neocortex size.

  19. Searching for the Progenitors of Type Ia Supernova

    NASA Astrophysics Data System (ADS)

    Di Stefano, Rosanne

    2011-05-01

    Type Ia supernovae are important cosmic probes. To understand and eliminate systematic uncertainties, it is important to know the nature and characteristics of their progenitors. I will talk about recent progress that may allow us to search for and identify progenitors within our own Galaxy, using data from wide-field surveys such as SDSS, Pan-STARRS, and LSST. We will consider the nuclear-burning phase that is expected to occur in both single-degenerate and double-degenerate models. We will also consider the expected characteristics just prior to explosion in the new class of spin-up/spin-down models. Finally, we will discuss the prospects for finding the progenitors in external galaxies, in light of the fact that most do not appear as x-ray sources, or else have a low duty cycle of x-ray activity.

  20. Glial Progenitors as Targets for Transformation in Glioma

    PubMed Central

    Ilkanizadeh, Shirin; Lau, Jasmine; Huang, Miller; Foster, Daniel J.; Wong, Robyn; Frantz, Aaron; Wang, Susan; Weiss, William A.; Persson, Anders I.

    2014-01-01

    Glioma is the most common primary malignant brain tumor and arises throughout the central nervous system (CNS). Recent focus on stem-like glioma cells has implicated neural stem cells (NSCs), a minor precursor population restricted to germinal zones, as a potential source of gliomas. In this review, we will focus on the relationship between oligodendrocyte progenitor cells (OPCs), the largest population of cycling glial progenitors in the postnatal brain, and gliomas. Recent studies suggest that OPCs can give rise to gliomas. Furthermore, signaling pathways often associated with NSCs also play key roles during OPC lineage development. Recent advances suggesting that gliomas can undergo a switch from progenitor- to stem-like phenotype after therapy, implicating that an OPC-origin is more likely than previously recognized. Future in-depth studies of OPC biology may shed light on the etiology of OPC-derived gliomas and reveal new therapeutic avenues. PMID:24889528

  1. Telomerase extends a helping hand to progenitor cells.

    PubMed

    Natesan, Sridaran

    2005-01-01

    The idea of a cell-based regeneration therapy for controlling or curing chronic human diseases is highly attractive. However, realization of this idea in the clinic has been hampered by the safety concerns associated with the transplantation of immortalized cells into human patients. An elegant study done by Roy and colleagues shows that neural progenitor cells immortalized by the ectopic expression of telomerase reverse transcriptase (TERT) can give rise to specific types of functionally competent neurons both in vitro and in vivo. Importantly, the immortalized progenitors maintained their phenotype with no evidence of transformation even several months after transplantation in mouse disease models. Although the potential use of telomerase-immortalized cells in the clinic remains controversial, Roy and colleagues work provides a compelling reason to seriously evaluate the potential use of telomerase-immortalized progenitor cells to treat neurodegenerative and other chronic human illnesses.

  2. Chromosome arm-specific BAC end sequences permit comparative analysis of homoeologous chromosomes and genomes of polyploid wheat

    PubMed Central

    2012-01-01

    Insertion Site Based Polymorphisms (ISBPs). Of the 96 ISBP primer pairs tested, 28 (29%) were 3A-specific and compared to 17 (18%) for 96 SSRs. Conclusion This work reports on the use of wheat chromosome arm 3AS-specific BAC library for the targeted generation of sequence data from a particular region of the huge genome of wheat. A large quantity of sequences were generated from the A genome of hexaploid wheat for comparative genome analysis with homoeologous B and D genomes and other model grass genomes. Hundreds of molecular markers were developed from the 3AS arm-specific sequences; these and other sequences will be useful in gene discovery and physical mapping. PMID:22559868

  3. Wheat production in controlled environments

    NASA Technical Reports Server (NTRS)

    Salisbury, Frank B.; Bugbee, Bruce; Bubenheim, David

    1987-01-01

    The present optimization study for maximum yield and quality conditions in the lunar or Martian Controlled Environment Life Support System (CELSS)-based growth of wheat has determined that, for 23-57 g/sq m per day of edible biomass, minimum CELSS size must be of the order of 12-30 sq m/person. About 600 W/sq m of electricity would be consumed by the artificial lighting required; temperature, irradiance, photoperiod, CO2 levels, humidity, and wind velocity are all controlled. A rock wool plant support allows direct seeding, and densities of up to 10,000 plants/sq m. Densities of up to 2000 plants/sq m appear to increase seed yields.

  4. Wheat production in controlled environments

    NASA Astrophysics Data System (ADS)

    Salisbury, Frank B.; Bugbee, Bruce; Bubenheim, David

    Our goal is to optimize conditions for maximum yield and quality of wheat to be used in a controlled-environment, life-support system (CELSS) in a Lunar or Martian base or perhaps in a space craft. With yields of 23 to 57 g m-2 d-1 of edible biomass, a minimum size for a CELSS would be between 12 and 30 m2 per person, utilizing about 600 W m-2 of electrical energy for artificial light. Temperature, irradiance, photoperiod, carbon-dioxide levels, humidity, and wind velocity are controlled in state-of-the-art growth chambers. Nutrient solutions (adjusted for wheat) are supplied to the roots via a recirculating system that controls pH by adding HNO3 and controlling the NO3/NH4 ratio in solution. A rock-wool plant support allows direct seeding and densities up to 10,000 plants per meter2. Densities up to 2000 plants m-2 appear to increase seed yield. Biomass production increases almost linearily with increasing irradiance from 400 to 1700 μmol m-2 s-1 of photosynthetic photon flux (PPF), but the efficiency of light utilization decreases over this range. Photoperiod and temperature both have a profound influence on floral initiation, spikelet formation, stem elongation, and fertilization. High temperatures (25 to 27°C) and long days shorten the life cycle and promote rapid growth, but cooler temperatures (20°C) and shorter days greatly increase seed number per head and thus yield (g m-2). The life cycle is lengthened in these conditions but yield per day (g m-2 d-1) is still increased. We have evaluated about 600 cultivars from around the world and have developed several breeding lines for our controlled conditions. Some of our ultra-dwarf lines (30 to 50 cm tall) look especially promising with high yields and high harvest indices (percent edible biomass).

  5. Wheat production in controlled environments.

    PubMed

    Salisbury, F B; Bugbee, B; Bubenheim, D

    1987-01-01

    Our goal is to optimize conditions for maximum yield and quality of wheat to be used in a controlled-environment, life-support system (CELSS) in a Lunar or Martian base or perhaps in a space craft. With yields of 23 to 57 g m-2 d-1 of edible biomass, a minimum size for a CELSS would be between 12 and 30 m2 per person, utilizing about 600 W m-2 of electrical energy for artificial light. Temperature, irradiance, photoperiod, carbon-dioxide levels, humidity, and wind velocity are controlled in state-of-the-art growth chambers. Nutrient solutions (adjusted for wheat) are supplied to the roots via a recirculating system that controls pH by adding HNO3 and controlling the NO3/NH4 ratio in solution. A rock-wool plant support allows direct seeding and densities up to 10,000 plants per meter2. Densities up to 2000 plants m-2 appear to increase seed yield. Biomass production increases almost linearly with increasing irradiance from 400 to 1700 micromoles m-2 s-1 of photosynthetic photon flux (PPF), but the efficiency of light utilization decreases over this range. Photoperiod and temperature both have a profound influence on floral initiation, spikelet formation, stem elongation, and fertilization. High temperatures (25 to 27 degrees C) and long days shorten the life cycle and promote rapid growth, but cooler temperatures (20 degrees C) and shorter days greatly increase seed number per head and thus yield (g m-2). The life cycle is lengthened in these conditions but yield per day (g m-2 d-1) is still increased. We have evaluated about 600 cultivars from around the world and have developed several breeding lines for our controlled conditions. Some of our ultra-dwarf lines (30 to 50 cm tall) look especially promising with high yields and high harvest indices (percent edible biomass).

  6. Recurrent Deletions of Puroindoline Genes at the Grain Hardness Locus in Four Independent Lineages of Polyploid Wheat1[W][OA

    PubMed Central

    Li, Wanlong; Huang, Li; Gill, Bikram S.

    2008-01-01

    Polyploidy is known to induce numerous genetic and epigenetic changes but little is known about their physiological bases. In wheat, grain texture is mainly determined by the Hardness (Ha) locus consisting of genes Puroindoline a (Pina) and b (Pinb). These genes are conserved in diploid progenitors but were deleted from the A and B genomes of tetraploid Triticum turgidum (AB). We now report the recurrent deletions of Pina-Pinb in other lineages of polyploid wheat. We analyzed the Ha haplotype structure in 90 diploid and 300 polyploid accessions of Triticum and Aegilops spp. Pin genes were conserved in all diploid species and deletion haplotypes were detected in all polyploid Triticum and most of the polyploid Aegilops spp. Two Pina-Pinb deletion haplotypes were found in hexaploid wheat (Triticum aestivum; ABD). Pina and Pinb were eliminated from the G genome, but maintained in the A genome of tetraploid Triticum timopheevii (AG). Subsequently, Pina and Pinb were deleted from the A genome but retained in the Am genome of hexaploid Triticum zhukovskyi (AmAG). Comparison of deletion breakpoints demonstrated that the Pina-Pinb deletion occurred independently and recurrently in the four polyploid wheat species. The implications of Pina-Pinb deletions for polyploid-driven evolution of gene and genome and its possible physiological significance are discussed. PMID:18024553

  7. Enrichment and terminal differentiation of striated muscle progenitors in vitro

    SciTech Connect

    Becher, Ulrich M.; Breitbach, Martin; Sasse, Philipp; Garbe, Stephan; Ven, Peter F.M. van der; Fuerst, Dieter O.; Fleischmann, Bernd K.

    2009-10-01

    Enrichment and terminal differentiation of mammalian striated muscle cells is severely hampered by fibroblast overgrowth, de-differentiation and/or lack of functional differentiation. Herein we report a new, reproducible and simple method to enrich and terminally differentiate muscle stem cells and progenitors from mice and humans. We show that a single gamma irradiation of muscle cells induces their massive differentiation into structurally and functionally intact myotubes and cardiomyocytes and that these cells can be kept in culture for many weeks. Similar results are also obtained when treating skeletal muscle-derived stem cells and progenitors with Mitomycin C.

  8. Systematic Features and Progenitor Dependence of Core-Collapse Supernovae

    NASA Astrophysics Data System (ADS)

    Nakamura, Ko; Takiwaki, Tomoya; Kuroda, Takami; Kotake, Kei

    We present our latest results of two-dimensional core-collapse supernova simulations for about 400 progenitors. Our self-consistent supernova models reveal the systematic features of core-collapse supernova properties such as neutrino luminosity and energy spectrum, explosion energy, remnant mass, and yield of radioactive 56Ni. We find that these explosion characteristics tend to show a monotonic increase as a function of mass accretion rate onto a shock. The accretion rate depends on the structure of the progenitor core and its envelope, which is well described by the compactness parameter.

  9. ON IDENTIFYING THE PROGENITORS OF Type Ia SUPERNOVAE

    SciTech Connect

    Livio, Mario; Pringle, J. E.

    2011-10-10

    We propose two new means of identifying the main class of progenitors of Type Ia supernovae-single or double degenerate: (1) if the range of supernova properties is significantly determined by the range of viewing angles of non-spherically symmetric explosions, then the nature of the correlation between polarization and another property (for example, the velocity gradient) can be used to determine the geometry of the asymmetry and hence the nature of the progenitor, and (2) in the double- but not in the single-degenerate case, the range in the observed properties (e.g., velocity gradients) is likely to increase with the amount of carbon seen in the ejecta.

  10. Stem and progenitor cells: the premature desertion of rigorous definitions.

    PubMed

    Seaberg, Raewyn M; van der Kooy, Derek

    2003-03-01

    A current disturbing trend in stem cell biology is the abandonment of rigorous definitions of stem and progenitor cells in favor of more ambiguous, all-encompassing concepts. However, recent studies suggest that there are consistent, functional differences in the biology of these two cell types. Admittedly, it can be difficult to harmonize the in vivo and in vitro functional differences between stem and progenitor cells. Nonetheless, these distinctions between cell types should be emphasized rather than ignored, as they can be used to test specific hypotheses in neural stem cell biology.

  11. Viscoelastic Properties of Rubber Composites Reinforced by Wheat Gluten and Wheat Starch Co-filler

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Due to different abilities of wheat gluten (WG) and wheat starch (WS) to increase the modulus of rubber composites, the composite properties can be adjusted by varying the ratio of WG to WS as a co-filler. This study shows that the co-filler composites became more temperature dependent as the WG co...

  12. The surface-associated proteins of wheat starch granules: suitability of wheat starch for celiac patients

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wheat starch is used to make baked products for celiac patients in several European countries, but is avoided in the US because of uncertainty about the amounts of associated grain storage (gluten) proteins. People with celiac disease (CD) must avoid wheat, rye and barley proteins and products that...

  13. Sheep Grazing Effect on Dryland Soil Properties and Wheat Yield in the Wheat-Fallow System

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sheep (Ovis aries L.) grazing during fallow is an effective method of controlling weeds and pests in the wheat (Triticum aestivum L.)-fallow system. Little is known about the effect of sheep grazing on dryland soil properties and wheat yield. We evaluated the effects of fallow management for weed co...

  14. Antifungal properties of wheat histones (H1-H4) and purified wheat histone H1

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wheat (Triticum sp.) histones H1, H2, H3, and H4 were extracted. H1 was further purified. Their activities against fungi with varying degrees of wheat pathogenicity were determined. They included Aspergillus flavus, A. fumigatus, A. niger, F. oxysporum, F. verticillioides, F. solani, F. graminearu...

  15. Stable Resistance to Wheat streak mosaic virus in wheat mediated by RNAi

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wheat streak mosaic virus (WSMV) is one of the major wheat viruses in the Great Plains of the United States. Cultural practices are the primary method of disease management, though not fully effective. Genetic resistance is available but is temperature sensitive. Alternative approaches to viral res...

  16. Wheat CBL-interacting protein kinase 25 negatively regulates salt tolerance in transgenic wheat

    PubMed Central

    Jin, Xia; Sun, Tao; Wang, Xiatian; Su, Peipei; Ma, Jingfei; He, Guangyuan; Yang, Guangxiao

    2016-01-01

    CBL-interacting protein kinases are involved in plant responses to abiotic stresses, including salt stress. However, the negative regulating mechanism of this gene family in response to salinity is less reported. In this study, we evaluated the role of TaCIPK25 in regulating salt response in wheat. Under conditions of high salinity, TaCIPK25 expression was markedly down-regulated in roots. Overexpression of TaCIPK25 resulted in hypersensitivity to Na+ and superfluous accumulation of Na+ in transgenic wheat lines. TaCIPK25 expression did not decline in transgenic wheat and remained at an even higher level than that in wild-type wheat controls under high-salinity treatment. Furthermore, transmembrane Na+/H+ exchange was impaired in the root cells of transgenic wheat. These results suggested that TaCIPK25 negatively regulated salt response in wheat. Additionally, yeast-one-hybrid, β-glucuronidase activity and DNA-protein-interaction-enzyme-linked-immunosorbent assays showed that the transcription factor TaWRKY9 bound W-box in the TaCIPK25 promoter region. Quantitative real-time polymerase chain reaction assays showed concomitantly inverted expression patterns of TaCIPK25 and TaWRKY9 in wheat roots under salt treatment, ABA application and inhibition of endogenous ABA condition. Overall, based on our results, in a salt stress condition, the negative salt response in wheat involved TaCIPK25 with the expression regulated by TaWRKY9. PMID:27358166

  17. Row width influences wheat yield, but has little effect on wheat quality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Growers are interested in wide-row wheat production due to reductions in equipment inventory (lack of grain drill) and to allow intercropping of soybean into wheat. A trial was established during the 2012-2013 and 2013-2014 growing seasons in Wayne County and Wood County, Ohio to evaluate the effec...

  18. Removal of wheat-germ agglutinin increases protein synthesis in wheat-germ extracts.

    PubMed

    Abraham, A K; Kolseth, S; Pihl, A

    1982-05-17

    Affinity chromatography of wheat germ extracts on a chitin column increased the rate and extent of protein synthesis, programmed by rabbit globin mRNA. Addition of purified wheat germ agglutinin to the chitin-treated extract reduced the rate of protein synthesis to about the levels seen in the untreated extracts. Experiments where the ratio of messenger to extract and the ratio of supernatant to ribosomes were varied, indicated that addition of wheat germ agglutinin reduced the amount of available ribosomes. Reduced and carboxymethylated wheat germ agglutinin failed to inhibit protein synthesis and was unable to bind to the ribosomes. However, labelled intact agglutinin was found to be bound to ribosomes. The bound agglutinin was not released by acid treatment. The inhibiting effect of wheat germ, agglutinin on protein synthesis could not be counteracted by addition of N-acetyl-D-glucosamine or sialic acid, whereas thiols partially diminished the inhibition. The data indicate that wheat germ agglutinin binds reversibly to ribosomes, probably through mixed disulfide formation, and that chitin treatment increases the ability of wheat germ extracts to support protein synthesis, at least in part, by removing the wheat germ agglutinin. The possibility that chitin treatment also removed other inhibitors of protein synthesis cannot be excluded.

  19. Population Density and Distribution of Wheat Bugs Infesting Durum Wheat in Sardinia, Italy

    PubMed Central

    Salis, Luigi; Goula, Marta; Izquierdo, Jordi; Gordún, Elena

    2013-01-01

    Wheat is a very important crop in Italy, and is infested by wheat bugs belonging to the genera Eurygaster (Hemiptera: Scutellaridae) and Aelia (Hemiptera: Pentatomidae). Many wheat bug infestations have been reported in the north, south, and center of Italy, both in the past as well as recently. The present study was carried out in Sardinia, Italy, during two years (2007 and 2008). The objective of this study was to determine the species and distribution of wheat bugs in durum wheat fields in Sardinia, and to estimate their population density in order to know the incidence of the pest on the island. Sampling took place twice a year (May and June) in three zones, representative of durum wheat cropping in the island. Four species of wheat bugs were found; the predominant species was Eurygaster austriaca (Schrank), followed by Aelia germari (Kuster), Eurygaster maura L., and Aelia acuminata L. The average density of wheat bugs was low (1.1 individuals/m2), but in certain areas it was above the damage threshold (4 individuals/m2). For this reason, the conclusion of the study is that this pest should be monitored in order to control outbreaks and prevent their further spread. PMID:23906035

  20. Pathogenicity of three isolates of Rhizoctonia sp. from wheat and peanut on hard red winter wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rhizoctonia-induced root diseases can significantly affect wheat and peanut production where these two field crops are grown in rotation. Hence, this study characterized two isolates of Rhizoctonia spp. from wheat [R. cerealis (RC) and R. solani (RSW)] and one from peanut [R. solani (RSP) ] for cul...

  1. 75 FR 41963 - Wheat and Oilseed Programs; Durum Wheat Quality Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-20

    ... control Fusarium head blight, commonly known as wheat scab. DATES: Effective Date: July 20, 2010. FOR... Fusarium head blight, a wheat disease caused by the Fusarium genus of fungi. The 2008 Farm Bill authorizes... producer must have used an eligible fungicide to control Fusarium head blight on acres certified as...

  2. Population density and distribution of wheat bugs infesting durum wheat in Sardinia, Italy.

    PubMed

    Salis, Luigi; Goula, Marta; Izquierdo, Jordi; Gordún, Elena

    2013-01-01

    Wheat is a very important crop in Italy, and is infested by wheat bugs belonging to the genera Eurygaster (Hemiptera: Scutellaridae) and Aelia (Hemiptera: Pentatomidae). Many wheat bug infestations have been reported in the north, south, and center of Italy, both in the past as well as recently. The present study was carried out in Sardinia, Italy, during two years (2007 and 2008). The objective of this study was to determine the species and distribution of wheat bugs in durum wheat fields in Sardinia, and to estimate their population density in order to know the incidence of the pest on the island. Sampling took place twice a year (May and June) in three zones, representative of durum wheat cropping in the island. Four species of wheat bugs were found; the predominant species was Eurygaster austriaca (Schrank), followed by Aelia germari (Kuster), Eurygaster maura L., and Aelia acuminata L. The average density of wheat bugs was low (1.1 individuals/m²), but in certain areas it was above the damage threshold (4 individuals/m²). For this reason, the conclusion of the study is that this pest should be monitored in order to control outbreaks and prevent their further spread.

  3. Solid-stemmed wheat does not affect overwintering mortality of the wheat stem sawfly, Cephus cinctus.

    PubMed

    Cárcamo, Héctor A; Beres, Brian L; Herle, Carolyn E; McLean, Hugh; McGinne, Sean

    2011-01-01

    The wheat stem sawfly, Cephus cinctus Norton (Hymenoptera: Cephidae), is a key pest of wheat in the northern Great Plains of North America. Host plant resistance in the form of solid-stemmed wheat cultivars is the main control strategy for C. cinctus. This study investigated the effect of novel and traditional solid wheat hosts on the overwintering mortality and cold-hardiness of C. cinctus. Field conditions from 2003-2005 showed that overwintering mortality in various wheat cultivars averaged 8% and was not related to the type of wheat cultivar. Similarly, supercooling points (-22° C) were not influenced by wheat host type. C. cintus are cold-hardy; up to 80% survive 10 days at -20° C and 10% survive 40 days. Its overwintering microhabitat near the crown area of the plant is well insulated for temperatures above -10° C and remains ~ 20° C above ambient minima. These data suggest that winter mortality is a minor factor in the population dynamics of wheat stem sawfly, and despite clear detrimental effects on larval weight and adult fitness, solid-stemmed cultivars do not reduce the ability of larvae to survive winters.

  4. [Wheat dependent exercise induced anaphylaxis possibly sensitized by the hydrolyzed wheat proteins in a facial cleansing soap].

    PubMed

    Kobayashi, Miwa; Okura, Risa; Yoshioka, Haruna; Hiromasa, Kana; Yoshioka, Manabu; Nakamura, Motonobu

    2012-03-01

    There are increasing cases of wheat dependent exercise-induced anaphylaxis (WDEIA) with transcutaneous or transmucosal sensitization. Hydrolyzed wheat included in a certain brand of soap was identified as a cause of sensitization. The useful clues to detect this disorder consist of the patient's past usage of a soap containing hydrolyzed wheat, the appearance of cutaneous or mucosal symptoms after the intake of wheat or washing with this soap, and a high level of specific IgE for wheat gluten. Because hydrolyzed wheat is used as an additive in a wide variety of cosmetics, we should pay careful attention to the ingredients of cosmetics when observing WDEIA.

  5. Testing and validating the CERES-wheat (Crop Estimation through Resource and Environment Synthesis-wheat) model in diverse environments

    NASA Technical Reports Server (NTRS)

    Otter-Nacke, S.; Godwin, D. C.; Ritchie, J. T.

    1986-01-01

    CERES-Wheat is a computer simulation model of the growth, development, and yield of spring and winter wheat. It was designed to be used in any location throughout the world where wheat can be grown. The model is written in Fortran 77, operates on a daily time stop, and runs on a range of computer systems from microcomputers to mainframes. Two versions of the model were developed: one, CERES-Wheat, assumes nitrogen to be nonlimiting; in the other, CERES-Wheat-N, the effects of nitrogen deficiency are simulated. The report provides the comparisons of simulations and measurements of about 350 wheat data sets collected from throughout the world.

  6. Stress-Induced Premature Senescence of Endothelial and Endothelial Progenitor Cells

    PubMed Central

    Goligorsky, M.S.; Hirschi, K.

    2016-01-01

    This brief overview of premature senescence of dysfunctional endothelial and endothelial progenitor cells provides information on endothelial cell differentiation and specialization, their ontogeny, and controversies related to endothelial stem and progenitor cells. Stressors responsible for the dysfunction of endothelial and endothelial progenitor cells, as well as cellular mechanisms and consequences of endothelial cell dysfunction are presented. Metabolic signatures of dysfunctional endothelial cells and senescence pathways are described. Emerging strategies to rejuvenate endothelial and endothelial progenitor cells conclude the review. PMID:27451101

  7. Type Ia supernovae: explosions and progenitors

    NASA Astrophysics Data System (ADS)

    Kerzendorf, Wolfgang Eitel

    2011-08-01

    that they somehow need to acquire mass if they are to explode as SN Ia. Currently there are two major scenarios for this mass acquisition. In the favoured single degenerate scenario the white dwarf accretes matter from a companion star which is much younger in its evolutionary state. The less favoured double degenerate scenario sees the merger of two white dwarfs (with a total combined mass of more than 1.38 Msun). This thesis has tried to answer the question about the mass acquisition in two ways. First the single degenerate scenario predicts a surviving companion post-explosion. We undertook an observational campaign to find this companion in two ancient supernovae (SN 1572 and SN 1006). Secondly, we have extended an existing code to extract the elemental and energy yields of SNe Ia spectra by automating spectra fitting to specific SNe Ia. This type of analysis, in turn, help diagnose to which of the two major progenitor scenarios is right.

  8. Influence of three resistance sources in winter wheat derived from TAM 107 on yield response to Russian wheat aphid.

    PubMed

    Randolph, Terri L; Peairs, Frank B; Koch, Michael; Walker, Cynthia B; Quick, James S

    2005-04-01

    A study to determine yield response to the Russian wheat aphid, Diuraphis noxia (Mordvilko), was conducted during the 1997-1998 and 1998-1999 growing seasons at three eastern Colorado locations, Akron, Fort Collins, and Lamar, with three wheat lines containing either Russian wheat aphid-resistant Dn4 gene, Dn6 gene, or resistance derived from PI 222668, and TAM 107 as the susceptible control. Russian wheat aphids per tiller were greater on TAM 107 than the resistant wheat lines at the 10x infestation level at Fort Collins and Akron in 1999. Yield, seed weight, and number of seeds per spike for each wheat line were somewhat affected by Russian wheat aphid per tiller mainly at Fort Collins. The infested resistant wheat lines harbored fewer Russian wheat aphids and yielded more than the infested susceptible wheat lines. Wheat lines containing the Dn4, Dn6, and PI 222668 genes contain different levels of antibiosis or antixenosis and tolerance. Although differences existed among sites and resistance, there is a benefit to planting resistant wheat when there is a potential for Russian wheat aphid infestations.

  9. Morphological features and physicochemical properties of waxy wheat starch.

    PubMed

    Zhang, Huanxin; Zhang, Wei; Xu, Chunzhong; Zhou, Xing

    2013-11-01

    Morphological features, granule composition, and physicochemical properties of waxy wheat starch were compared with those of normal wheat starch. The morphologies and granule populations were found to be similar for the two starches. However, waxy wheat starch contained a smaller proportion of B-type granules, had a larger average granule diameter, and a higher degree of crystallinity than normal wheat starch, as measured by particle size analysis and differential scanning calorimetry. These differences resulted in a higher gelatinization temperature, transition enthalpy, peak viscosity, breakdown, swelling power, lower peak viscosity temperature and final viscosity in waxy wheat starch. These points suggest that waxy wheat starch should have greater resistance to retrogradation during cooling and higher water-holding capacity under dry conditions. Highlighting the differences in physicochemical properties of waxy and normal wheat starches should help point toward effective applications of waxy wheat starch in the food industry.

  10. Relationship between lutein and mycotoxin content in durum wheat.

    PubMed

    Delgado, Rosa M; Sulyok, Michael; Jirsa, Ondřej; Spitzer, Tomáš; Krska, Rudolf; Polišenská, Ivana

    2014-01-01

    Levels of lutein and a number of mycotoxins were determined in seven varieties of durum wheat (Triticum durum) and two varieties of common wheat (Triticum aestivum) in order to explore possible relationships amongst these components. Durum wheat cultivars always showed both higher lutein and mycotoxin contents than common wheat cultivars. The mycotoxins detected in both common and durum wheat cultivars were produced by the genera Fusarium, Claviceps, Alternaria and Aspergillus. Fusarium was the major producer of mycotoxins (26 mycotoxins) followed by Claviceps (14 mycotoxins), which was present only in some cultivars such as Chevalier (common wheat), Lupidur and Selyemdur (both durum wheat), Alternaria (six mycotoxins) and Aspergillus (three mycotoxins). Positive correlations between the levels of lutein and mycotoxins in durum wheat cultivars were found for the following mycotoxins: deoxynivalenol (DON), its derivative DON-3-glucoside, moniliformin, culmorin and its derivatives (5-hydroxyculmorin and 15-hydroxyculmorin).

  11. 21 CFR 137.205 - Bromated whole wheat flour.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...) FOOD FOR HUMAN CONSUMPTION CEREAL FLOURS AND RELATED PRODUCTS Requirements for Specific Standardized Cereal Flours and Related Products § 137.205 Bromated whole wheat flour. Bromated whole wheat...

  12. 21 CFR 137.205 - Bromated whole wheat flour.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...) FOOD FOR HUMAN CONSUMPTION CEREAL FLOURS AND RELATED PRODUCTS Requirements for Specific Standardized Cereal Flours and Related Products § 137.205 Bromated whole wheat flour. Bromated whole wheat...

  13. Oral mucosal progenitor cell clones resist in vitro myogenic differentiation.

    PubMed

    Locke, Matthew; Davies, Lindsay C; Stephens, Phil

    2016-10-01

    Progenitor cells derived from the oral mucosa lamina propria (OMLP-PCs) demonstrate an ability to differentiate into tissue lineages removed from their anatomical origin. This clonally derived population of neural-crest cells have demonstrated potential to differentiate along mesenchymal and neuronal cell lineages.

  14. Core-Collapse Supernova Progenitors in Hubble Space Telescope Images

    NASA Astrophysics Data System (ADS)

    van Dyk, Schuyler D.; Li, Weidong; Filippenko, Alexei V.

    Determining which stars give rise to supernovae (SNe) is key to SN research and stellar evolution studies. Without knowledge of SN progenitors, many of the conclusions and inferences made about the connection between SNe and important problems in astrophysics stand on precarious ground. The main obstacle is that a SN leaves few traces of the star that exploded.

  15. Evolutionary Models for Type Ib/c Supernova Progenitors

    NASA Astrophysics Data System (ADS)

    Yoon, Sung-Chul

    2015-04-01

    SNe Ib/c mark the deaths of hydrogen-deficient massive stars. The evolutionary scenarios for SNe Ib/c progenitors involve many important physical processes including mass loss by winds and its metallicity dependence, stellar rotation, and binary interactions. This makes SNe Ib/c an excellent test bed for stellar evolution theory. We review the main results of evolutionary models for SN Ib/c progenitors available in the literature and their confrontation with recent observations. We argue that the nature of SN Ib/c progenitors can be significantly different for single and binary systems, and that binary evolution models can explain the ejecta masses derived from SN Ib/c light curves, the distribution of SN Ib/c sites in their host galaxies, and the optical magnitudes of the tentative progenitor candidate of iPTF13bvn. We emphasise the importance of early-time observations of light curves and spectra, accurate measurements of helium mass in SN Ib/c ejecta, and systematic studies about the metallicity dependence of SN Ib/c properties, to better constrain theories.

  16. Type IIb Supernovae with Compact and Extended Progenitors

    NASA Astrophysics Data System (ADS)

    Chevalier, Roger A.; Soderberg, Alicia M.

    2010-03-01

    The classic example of a Type IIb supernova is SN 1993J, which had a cool extended progenitor surrounded by a dense wind. There is evidence for another category of Type IIb supernova that has a more compact progenitor with a lower density, probably fast, wind. Distinguishing features of the compact category are weak optical emission from the shock heated envelope at early times, nonexistent or very weak H emission in the late nebular phase, rapidly evolving radio emission, rapid expansion of the radio shell, and expected nonthermal as opposed to thermal X-ray emission. Type IIb supernovae that have one or more of these features include SNe 1996cb, 2001ig, 2003bg, 2008ax, and 2008bo. All of these with sufficient radio data (the last four) show evidence for presupernova wind variability. We estimate a progenitor envelope radius ~1 × 1011 cm for SN 2008ax, a value consistent with a compact Wolf-Rayet progenitor. Supernovae in the SN 1993J extended category include SN 2001gd and probably the Cas A supernova. We suggest that the compact Type IIb events be designated Type cIIb and the extended ones Type eIIb. The H envelope mass dividing these categories is ~0.1 M sun.

  17. Flow cytometric data analysis of circulating progenitor cell stability.

    PubMed

    Mahar, Ernestine A; Mou, Liping; Hayek, Salim S; Quyyumi, Arshed A; Waller, Edmund K

    2017-02-01

    A recent publication by Mekonnen et al. demonstrated that among women with non-obstructive coronary artery disease, higher levels of circulating progenitor cells in the blood (CPC), were associated with impaired coronary flow reserve [1]. We performed a quality control assessment of the stability of circulating blood progenitor cells in blood samples stored at 4 °C, to determine the time period during which blood samples can be analyzed and yield consistent data for progenitor cell content. Healthy volunteers (n=6) were recruited and underwent phlebotomy, and blood was stored in EDTA tubes at 4 °C. Flow cytometry was performed to quantitate progenitor cell subsets at 0-4 h, 24 h, and 48 h post phlebotomy. All processed samples were fixed with 1% Paraformaldehyde and 1,000,000 total data events were collected. We found no significant differences in PC data for both CD34+ (P=0.68 for one-way ANOVA) and CD34+/CD133+ (P=0.74 for one-way ANOVA).

  18. Repair of injured proximal tubule does not involve specialized progenitors

    PubMed Central

    Humphreys, Benjamin D.; Czerniak, Suzanne; DiRocco, Derek P.; Hasnain, Wirasat; Cheema, Rabia; Bonventre, Joseph V.

    2011-01-01

    Recently we have established that the kidney tubular epithelium is repaired by surviving epithelial cells. It is not known, however, whether a population of intratubular adult progenitor cells are responsible for this epithelial repair after acute kidney injury. In this study, we used an unbiased DNA analog-based approach that does not rely on candidate markers to track multiple rounds of cell division in vivo. In the proximal tubule, robust thymidine analog incorporation was observed postinjury. Cell division was stochastic and enriched among cells that were injured and dedifferentiated. There was no evidence for the presence of a population of specialized progenitors that repeatedly divide in response to injury. Instead, these results indicate that after injury, new epithelial cells arise from self-duplication of surviving cells, most of which are injured. Because the renal papilla contains DNA label-retaining cells and has been proposed as a stem cell niche, we examined the proliferative behavior of these putative progenitors after ischemia-reperfusion injury. Although label-retaining cells in the renal papilla diminished with time after ischemia-reperfusion injury, they neither proliferated nor migrated to the outer medulla or cortex. Thus, nonlethally injured cells repopulate the kidney epithelium after injury in the absence of any specialized progenitor cell population. PMID:21576461

  19. Dual requirement for Pax6 in retinal progenitor cells

    PubMed Central

    Elgart, Michael; Marquardt, Till; Remizova, Lena; Yaron, Orly; Xie, Qing; Cvekl, Ales; Ashery-Padan, Ruth

    2014-01-01

    Throughout the developing central nervous system, pre-patterning of the ventricular zone into discrete neural progenitor domains is one of the predominant strategies used to produce neuronal diversity in a spatially coordinated manner. In the retina, neurogenesis proceeds in an intricate chronological and spatial sequence, yet it remains unclear whether retinal progenitor cells (RPCs) display intrinsic heterogeneity at any given time point. Here, we performed a detailed study of RPC fate upon temporally and spatially confined inactivation of Pax6. Timed genetic removal of Pax6 appeared to unmask a cryptic divergence of RPCs into qualitatively divergent progenitor pools. In the more peripheral RPCs under normal circumstances, Pax6 seemed to prevent premature activation of a photoreceptor-differentiation pathway by suppressing expression of the transcription factor Crx. More centrally, Pax6 contributed to the execution of the comprehensive potential of RPCs: Pax6 ablation resulted in the exclusive generation of amacrine interneurons. Together, these data suggest an intricate dual role for Pax6 in retinal neurogenesis, while pointing to the cryptic divergence of RPCs into distinct progenitor pools. PMID:19004853

  20. ADAR1 promotes malignant progenitor reprogramming in chronic myeloid leukemia

    PubMed Central

    Jiang, Qingfei; Crews, Leslie A.; Barrett, Christian L.; Chun, Hye-Jung; Court, Angela C.; Isquith, Jane M.; Zipeto, Maria A.; Goff, Daniel J.; Minden, Mark; Sadarangani, Anil; Rusert, Jessica M.; Dao, Kim-Hien T.; Morris, Sheldon R.; Goldstein, Lawrence S. B.; Marra, Marco A.; Frazer, Kelly A.; Jamieson, Catriona H. M.

    2013-01-01

    The molecular etiology of human progenitor reprogramming into self-renewing leukemia stem cells (LSC) has remained elusive. Although DNA sequencing has uncovered spliceosome gene mutations that promote alternative splicing and portend leukemic transformation, isoform diversity also may be generated by RNA editing mediated by adenosine deaminase acting on RNA (ADAR) enzymes that regulate stem cell maintenance. In this study, whole-transcriptome sequencing of normal, chronic phase, and serially transplantable blast crisis chronic myeloid leukemia (CML) progenitors revealed increased IFN-γ pathway gene expression in concert with BCR-ABL amplification, enhanced expression of the IFN-responsive ADAR1 p150 isoform, and a propensity for increased adenosine-to-inosine RNA editing during CML progression. Lentiviral overexpression experiments demonstrate that ADAR1 p150 promotes expression of the myeloid transcription factor PU.1 and induces malignant reprogramming of myeloid progenitors. Moreover, enforced ADAR1 p150 expression was associated with production of a misspliced form of GSK3β implicated in LSC self-renewal. Finally, functional serial transplantation and shRNA studies demonstrate that ADAR1 knockdown impaired in vivo self-renewal capacity of blast crisis CML progenitors. Together these data provide a compelling rationale for developing ADAR1-based LSC detection and eradication strategies. PMID:23275297

  1. ADAR1 promotes malignant progenitor reprogramming in chronic myeloid leukemia.

    PubMed

    Jiang, Qingfei; Crews, Leslie A; Barrett, Christian L; Chun, Hye-Jung; Court, Angela C; Isquith, Jane M; Zipeto, Maria A; Goff, Daniel J; Minden, Mark; Sadarangani, Anil; Rusert, Jessica M; Dao, Kim-Hien T; Morris, Sheldon R; Goldstein, Lawrence S B; Marra, Marco A; Frazer, Kelly A; Jamieson, Catriona H M

    2013-01-15

    The molecular etiology of human progenitor reprogramming into self-renewing leukemia stem cells (LSC) has remained elusive. Although DNA sequencing has uncovered spliceosome gene mutations that promote alternative splicing and portend leukemic transformation, isoform diversity also may be generated by RNA editing mediated by adenosine deaminase acting on RNA (ADAR) enzymes that regulate stem cell maintenance. In this study, whole-transcriptome sequencing of normal, chronic phase, and serially transplantable blast crisis chronic myeloid leukemia (CML) progenitors revealed increased IFN-γ pathway gene expression in concert with BCR-ABL amplification, enhanced expression of the IFN-responsive ADAR1 p150 isoform, and a propensity for increased adenosine-to-inosine RNA editing during CML progression. Lentiviral overexpression experiments demonstrate that ADAR1 p150 promotes expression of the myeloid transcription factor PU.1 and induces malignant reprogramming of myeloid progenitors. Moreover, enforced ADAR1 p150 expression was associated with production of a misspliced form of GSK3β implicated in LSC self-renewal. Finally, functional serial transplantation and shRNA studies demonstrate that ADAR1 knockdown impaired in vivo self-renewal capacity of blast crisis CML progenitors. Together these data provide a compelling rationale for developing ADAR1-based LSC detection and eradication strategies.

  2. Gluten and wheat intolerance today: are modern wheat strains involved?

    PubMed

    de Lorgeril, Michel; Salen, Patricia

    2014-08-01

    Celiac disease is a food-induced enteropathy resulting from exposure to gluten in genetically predisposed individuals. The non-celiac gluten sensitivity (NCGS) is a less known syndrome whose prevalence is under-estimated. The last decades have seen changes in the clinical presentation of both diseases. One possible explanation is that changes in the gluten-rich cereals themselves were the principal causes. Celiac-triggering gluten proteins are indeed expressed to higher levels in modern cereals while non-triggering proteins are expressed less. Sophisticated hybridization techniques have been used to produce new strains of modern wheat, the most high-yielding of which have since made their way into human foods in the absence of animal or human safety testing. The dramatic changes in the clinical presentation of celiac disease and NCGS have taken place when new cereal hybrids were introduced into human foods. This is a critical medical and environmental issue which needs to be investigated by appropriate studies.

  3. Characterization of progenitor domains in the developing mouse thalamus.

    PubMed

    Vue, Tou Yia; Aaker, Joshua; Taniguchi, Aya; Kazemzadeh, Christina; Skidmore, Jennifer M; Martin, Donna M; Martin, James F; Treier, Mathias; Nakagawa, Yasushi

    2007-11-01

    To understand the molecular basis of the specification of thalamic nuclei, we analyzed the expression patterns of various transcription factors and defined progenitor cell populations in the embryonic mouse thalamus. We show that the basic helix-loop-helix (bHLH) transcription factor Olig3 is expressed in the entire thalamic ventricular zone and the zona limitans intrathalamica (ZLI). Next, we define two distinct progenitor domains within the thalamus, which we name pTH-R and pTH-C, located caudal to the ZLI. pTH-R is immediately caudal to the ZLI and expresses Nkx2.2, Mash1, and Olig3. pTH-C is caudal to pTH-R and expresses Ngn1, Ngn2, and Olig3. Short-term lineage analysis of Olig3-, Mash1-, Ngn1-, and Ngn2-expressing progenitor cells as well as tracing the Pitx2 cell lineage suggests that pTH-C is the only major source of thalamic nuclei containing neurons that project to the cerebral cortex, whereas pTH-R and ZLI are likely to produce distinct postmitotic populations outside of the cortex-projecting part of the thalamus. To determine if pTH-C is composed of subdomains, we characterized expression of the homeodomain protein Dbx1 and the bHLH protein Olig2. We show that Dbx1 is expressed in caudodorsal-high to rostroventral-low gradient within pTH-C. Analysis of heterozygous Dbx1(nlslacZ) knockin mice demonstrated that Dbx1-expressing progenitors preferentially give rise to caudodorsal thalamic nuclei. Olig2 is expressed in an opposite gradient within pTH-C to that of Dbx1. These results establish the molecular heterogeneity within the progenitor cells of the thalamus, and suggest that such heterogeneity contributes to the specification of thalamic nuclei.

  4. Effect of Reishi polysaccharides on human stem/progenitor cells.

    PubMed

    Chen, Wan-Yu; Yang, Wen-Bin; Wong, Chi-Huey; Shih, Daniel Tzu-Bi

    2010-12-15

    The polysaccharide fraction of Ganoderma lucidum (F3) was found to benefit our health in many ways by influencing the activity of tissue stem/progenitor cells. In this study, F3 was found to promote the adipose tissue MSCs' aggregation and chondrosphere formation, with the increase of CAM (N-CAM, I-CAM) expressions and autokine (BMP-2, IL-11, and aggrecan) secretions, in an in vitro chondrogenesis assay. In a stem cell expansion culture, it possesses the thrombopoietin (TPO) and GM-CSF like functions to enhance the survival/renewal abilities of primitive hematopoietic stem/progenitor cells (HSCs). F3 was found to promote the dendrite growth of blood mononuclear cells (MNCs) and the expression of cell adhesion molecules in the formation of immature dendritic cells (DC). On the other hand, F3 exhibited inhibitory effects on blood endothelial progenitor (EPC) colony formation, with concomitant reduction of cell surface endoglin (CD105) and vascular endothelial growth factor receptor-3 (VEGFR-3) marker expressions, in the presence of angiogenic factors. A further cytokine array analysis revealed that F3 indeed inhibited the angiogenin synthesis and enhanced IL-1, MCP-1, MIP-1, RANTES, and GRO productions in the blood EPC derivation culture. Collectively, we have demonstrated that the polysaccharide fraction of G. lucidum F3 exhibits cytokine and chemokine like functions which are beneficial to human tissue stem/progenitor cells by modulating their CAM expressions and biological activities. These findings provide us a better the observation that F3 glycopolysaccharides indeed possesses anti-angiogenic and immune-modulating functions and promotes hematopoietic stem/progenitor cell homing for better human tissue protection, reducing disease progression and health.

  5. Observations of Core-Collapse Supernovae with Candidate Progenitor Identifications.

    NASA Astrophysics Data System (ADS)

    Elias-Rosa, Nancy; van Dyk, Schuyler D.

    2010-02-01

    Supernovae (SNe) have a profound effect on galaxies. They are clearly very important events deserving of intense study. Yet, even with nearly 4000 historical SNe, we know relatively little about the stars which give rise to these powerful explosions. The main limitation has been the lack of spatial resolution in pre-SN imaging data. However, since 1999 our team has been at the vanguard of directly identifying the progenitor stars of Core-Collapse (CC-) SNe in Hubble Space Telescope (HST) images. From this exciting new line of study, the emerging trend from a growing number of detections for Type II-Plateau SNe is that their progenitors appear to be relatively low mass (8-20 M_⊙) red supergiants, although more cases are needed. The nature of the progenitors of Type Ib/c SNe, a subset of which are associated with the amazing gamma-ray bursts, remains ambiguous. In HST Cycle 17 we are expecting to trigger our ToO observations using ACS/HRC (GO-11575) on 4 nearby (within 17 Mpc) CC-SNe, to determine the identities of the progenitors. It is conceivable that at least half of these will be discovered in the southern hemisphere. To fully characterize the progenitor star, we require detailed light curves and spectral evolution for the SNe, starting soon after discovery, to estimate the reddening to the SNe, characterize the overall luminosity and obtain a better understanding of the physics of the event. Therefore, to support the HST work, we are requesting up to 2 ToO triggers during semester 2010A, where we will monitor the SNe in BVRI with ANDICAM, and the 300 l/mm grating with the Goodman.

  6. [Stem and progenitor cells in biostructure of blood vessel walls].

    PubMed

    Korta, Krzysztof; Kupczyk, Piotr; Skóra, Jan; Pupka, Artur; Zejler, Paweł; Hołysz, Marcin; Gajda, Mariusz; Nowakowska, Beata; Barć, Piotr; Dorobisz, Andrzej T; Dawiskiba, Tomasz; Szyber, Piotr; Bar, Julia

    2013-09-18

    Development of vascular and hematopoietic systems during organogenesis occurs at the same time. During vasculogenesis, a small part of cells does not undergo complete differentiation but stays on this level, "anchored" in tissue structures described as stem cell niches. The presence of blood vessels within tissue stem cell niches is typical and led to identification of niches and ensures that they are functioning. The three-layer biostructure of vessel walls for artery and vein, tunica: intima, media and adventitia, for a long time was defined as a mechanical barrier between vessel light and the local tissue environment. Recent findings from vascular biology studies indicate that vessel walls are dynamic biostructures, which are equipped with stem and progenitor cells, described as vascular wall-resident stem cells/progenitor cells (VW-SC/PC). Distinct zones for vessel wall harbor heterogeneous subpopulations of VW-SC/PC, which are described as "subendothelial or vasculogenic zones". Recent evidence from in vitro and in vivo studies show that prenatal activity of stem and progenitor cells is not only limited to organogenesis but also exists in postnatal life, where it is responsible for vessel wall homeostasis, remodeling and regeneration. It is believed that VW-SC/PC could be engaged in progression of vascular disorders and development of neointima. We would like to summarize current knowledge about mesenchymal and progenitor stem cell phenotype with special attention to distribution and biological properties of VW-SC/PC in biostructures of intima, media and adventitia niches. It is postulated that in the near future, niches for VW-SC/PC could be a good source of stem and progenitor cells, especially in the context of vessel tissue bioengineering as a new alternative to traditional revascularization therapies.

  7. UPDATE ON THE CETUS POLAR STREAM AND ITS PROGENITOR

    SciTech Connect

    Yam, William; Carlin, Jeffrey L.; Newberg, Heidi Jo; Dumas, Julie; O'Malley, Erin; Newby, Matthew; Martin, Charles

    2013-10-20

    We trace the Cetus Polar Stream (CPS) with blue horizontal branch and red giant stars from Data Release 8 of the Sloan Digital Sky Survey. Using a larger data set than was available previously, we are able to refine the measured distance and velocity to this tidal debris star stream in the south Galactic cap. Assuming that the tidal debris traces the progenitor's orbit, we fit an orbit to the CPS and find that the stream is confined between ∼24 and 36 kpc on a rather polar orbit inclined 87° to the Galactic plane. The eccentricity of the orbit is 0.20, and the period is ∼700 Myr. If we instead matched N-body simulations to the observed tidal debris, these orbital parameters would change by 10% or less. The CPS stars travel in the opposite direction to those from the Sagittarius tidal stream in the same region of the sky. Through N-body models of satellites on the best-fitting orbit, and assuming that mass follows light, we show that the stream width, line-of-sight depth, and velocity dispersion imply a progenitor of ∼> 10{sup 8} M{sub ☉}. However, the density of stars along the stream requires either a disruption time on the order of one orbit or a stellar population that is more centrally concentrated than the dark matter. We suggest that an ultrafaint dwarf galaxy progenitor could reproduce a large stream width and velocity dispersion without requiring a very recent deflection of the progenitor into its current orbit. We find that most Cetus stars have metallicities of –2.5 < [Fe/H] <–2.0, similar to the observed metallicities of the ultrafaint dwarfs. Our simulations suggest that the parameters of the dwarf galaxy progenitors, including their dark matter content, could be constrained by observations of their tidal tails through comparison of the debris with N-body simulations.

  8. Fas transduces dual apoptotic and trophic signals in hematopoietic progenitors.

    PubMed

    Pearl-Yafe, Michal; Stein, Jerry; Yolcu, Esma S; Farkas, Daniel L; Shirwan, Haval; Yaniv, Isaac; Askenasy, Nadir

    2007-12-01

    Stem cells and progenitors are often required to realize their differentiation potential in hostile microenvironments. The Fas/Fas ligand (FasL) interaction is a major effector pathway of apoptosis, which negatively regulates the expansion of differentiated hematopoietic cells. The involvement of this molecular interaction in the function of hematopoietic stem and progenitor cells is not well understood. In the murine syngeneic transplant setting, both Fas and FasL are acutely upregulated in bone marrow-homed donor cells; however, the Fas(+) cells are largely insensitive to FasL-induced apoptosis. In heterogeneous populations of lineage-negative (lin(-)) bone marrow cells and progenitors isolated by counterflow centrifugal elutriation, trimerization of the Fas receptor enhanced the clonogenic activity. Inhibition of caspases 3 and 8 did not affect the trophic signals mediated by Fas, yet it efficiently blocked the apoptotic pathways. Fas-mediated tropism appears to be of physiological significance, as pre-exposure of donor cells to FasL improved the radioprotective qualities of hematopoietic progenitors, resulting in superior survival of myeloablated hosts. Under these conditions, the activity of long-term reconstituting cells was not affected, as determined in sequential secondary and tertiary transplants. Dual caspase-independent tropic and caspase-dependent apoptotic signaling place the Fas receptor at an important junction of activation and death. This regulatory mechanism of hematopoietic homeostasis activates progenitors to promote the recovery from aplasia and converts into a negative regulator in distal stages of cell differentiation. Disclosure of potential conflicts of interest is found at the end of this article.

  9. MiR-128-2 inhibits common lymphoid progenitors from developing into progenitor B cells.

    PubMed

    Yang, Yi; Xu, Jie; Chen, Huo; Fei, Xia; Tang, YuXu; Yan, Yunqiu; Zhang, Huimin; Zhang, Jinping

    2016-04-05

    A considerable number of studies revealed that B cell development is finely regulated by transcription factors (TFs). Recent studies suggested that TFs are coordinated with microRNAs to control the development of B cells in numerous checkpoints. In the present study, we first found that miR-128-2 was differentially expressed in various immune organs and immunocytes. B cell development was inhibited in miR-128-2-overexpressed chimera and transgenic (TG) mice in bone marrow with decreased preproB, preB, proB, immature B, and recirculating B cells, as well as increased common lymphoid progenitors (CLPs). Further experiments showed that the apoptosis of CLP decreased, but proliferation was not altered in miR-128-2-overexpressed mice. Extensive studies suggested that the inhibition of apoptosis of CLP may be caused by miR-128-2 targeting A2B and MALT1, thereby increasing the phosphorylation of ERK and P38 MAPK. Such findings have prompted future investigations on the function of miR-128-2 in lymph genesis.

  10. MiR-128-2 inhibits common lymphoid progenitors from developing into progenitor B cells

    PubMed Central

    Chen, Huo; Fei, Xia; Tang, YuXu; Yan, Yunqiu; Zhang, Huimin; Zhang, Jinping

    2016-01-01

    A considerable number of studies revealed that B cell development is finely regulated by transcription factors (TFs). Recent studies suggested that TFs are coordinated with microRNAs to control the development of B cells in numerous checkpoints. In the present study, we first found that miR-128-2 was differentially expressed in various immune organs and immunocytes. B cell development was inhibited in miR-128-2-overexpressed chimera and transgenic (TG) mice in bone marrow with decreased preproB, preB, proB, immature B, and recirculating B cells, as well as increased common lymphoid progenitors (CLPs). Further experiments showed that the apoptosis of CLP decreased, but proliferation was not altered in miR-128-2-overexpressed mice. Extensive studies suggested that the inhibition of apoptosis of CLP may be caused by miR-128-2 targeting A2B and MALT1, thereby increasing the phosphorylation of ERK and P38 MAPK. Such findings have prompted future investigations on the function of miR-128-2 in lymph genesis. PMID:27008703

  11. 21 CFR 139.140 - Wheat and soy macaroni products.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Wheat and soy macaroni products. 139.140 Section... Macaroni and Noodle Products § 139.140 Wheat and soy macaroni products. (a) Wheat and soy macaroni products...(a), (f)(2), (f)(3), and (g), except that: (1) Soy flour is added in a quantity not less than...

  12. 21 CFR 139.140 - Wheat and soy macaroni products.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Wheat and soy macaroni products. 139.140 Section... Macaroni and Noodle Products § 139.140 Wheat and soy macaroni products. (a) Wheat and soy macaroni products...(a), (f)(2), (f)(3), and (g), except that: (1) Soy flour is added in a quantity not less than...

  13. Investigating the role of ABA signaling in wheat drought tolerance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Allohexaploid wheat (Triticum aestivum L.) is one of the three major cereal crops supporting human nutrition. Because wheat is often grown under dryland conditions, it is subject to losses as a result of drought stress. This study examines the role of the plant hormone ABA is wheat responses to wate...

  14. 7 CFR 782.18 - Wheat purchased for export.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 7 2013-01-01 2013-01-01 false Wheat purchased for export. 782.18 Section 782.18... § 782.18 Wheat purchased for export. (a) This section applies to an importer or subsequent buyer who imports or purchases Canadian-produced wheat for the purpose of export to a foreign country...

  15. 7 CFR 407.17 - Group risk plan for wheat.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Group risk plan for wheat. 407.17 Section 407.17..., DEPARTMENT OF AGRICULTURE GROUP RISK PLAN OF INSURANCE REGULATIONS § 407.17 Group risk plan for wheat. The provisions of the Group Risk Plan for Wheat for the 2000 and succeeding crop years are as follows:...

  16. 7 CFR 782.18 - Wheat purchased for export.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 7 2012-01-01 2012-01-01 false Wheat purchased for export. 782.18 Section 782.18... § 782.18 Wheat purchased for export. (a) This section applies to an importer or subsequent buyer who imports or purchases Canadian-produced wheat for the purpose of export to a foreign country...

  17. 7 CFR 407.17 - Group risk plan for wheat.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 6 2013-01-01 2013-01-01 false Group risk plan for wheat. 407.17 Section 407.17..., DEPARTMENT OF AGRICULTURE GROUP RISK PLAN OF INSURANCE REGULATIONS § 407.17 Group risk plan for wheat. The provisions of the Group Risk Plan for Wheat for the 2000 and succeeding crop years are as follows:...

  18. 7 CFR 782.18 - Wheat purchased for export.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 7 2011-01-01 2011-01-01 false Wheat purchased for export. 782.18 Section 782.18... § 782.18 Wheat purchased for export. (a) This section applies to an importer or subsequent buyer who imports or purchases Canadian-produced wheat for the purpose of export to a foreign country...

  19. 7 CFR 407.17 - Group risk plan for wheat.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 6 2011-01-01 2011-01-01 false Group risk plan for wheat. 407.17 Section 407.17..., DEPARTMENT OF AGRICULTURE GROUP RISK PLAN OF INSURANCE REGULATIONS § 407.17 Group risk plan for wheat. The provisions of the Group Risk Plan for Wheat for the 2000 and succeeding crop years are as follows:...

  20. 7 CFR 782.18 - Wheat purchased for export.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 7 2014-01-01 2014-01-01 false Wheat purchased for export. 782.18 Section 782.18... § 782.18 Wheat purchased for export. (a) This section applies to an importer or subsequent buyer who imports or purchases Canadian-produced wheat for the purpose of export to a foreign country...

  1. 7 CFR 407.17 - Group risk plan for wheat.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 6 2012-01-01 2012-01-01 false Group risk plan for wheat. 407.17 Section 407.17..., DEPARTMENT OF AGRICULTURE GROUP RISK PLAN OF INSURANCE REGULATIONS § 407.17 Group risk plan for wheat. The provisions of the Group Risk Plan for Wheat for the 2000 and succeeding crop years are as follows:...

  2. High speed sorting of Fusarium-damaged wheat kernels

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recent studies have found that resistance to Fusarium fungal infection can be inherited in wheat from one generation to another. However, there is not yet available a cost effective method to separate Fusarium-damaged wheat kernels from undamaged kernels so that wheat breeders can take advantage of...

  3. Wheat mill stream properties for discrete element method modeling

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A discrete phase approach based on individual wheat kernel characteristics is needed to overcome the limitations of previous statistical models and accurately predict the milling behavior of wheat. As a first step to develop a discrete element method (DEM) model for the wheat milling process, this s...

  4. Crop diversity on traditional great plains wheat farms

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Historically, the vast majority of cropland in the western Great Plains was either seeded to continuous monoculture wheat or was in a wheat-fallow rotation. The objective of this paper is to determine the combined effects of crop diversity and tillage systems on wheat grain yield and net returns fo...

  5. End-use quality of soft kernel durum wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Kernel texture is a major determinant of end-use quality of wheat. Durum wheat is known for its very hard texture, which influences how it is milled and for what products it is well suited. We developed soft kernel durum wheat lines via Ph1b-mediated homoeologous recombination with Dr. Leonard Joppa...

  6. Wheat rusts in the United States in 2011

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wheat stem rust (Puccinia graminis tritici) was found in Texas, Louisiana, Oklahoma, Kansas, Nebraska, North Dakota, Minnesota, Arkansas, Missouri, Kentucky, Illinois, Indiana, Wisconsin and Michigan in 2011. Nationally, wheat only incurred a trace loss due to wheat stem rust. Race QFCS was the most...

  7. 7 CFR 782.18 - Wheat purchased for export.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 7 2010-01-01 2010-01-01 false Wheat purchased for export. 782.18 Section 782.18... § 782.18 Wheat purchased for export. (a) This section applies to an importer or subsequent buyer who imports or purchases Canadian-produced wheat for the purpose of export to a foreign country...

  8. 21 CFR 137.205 - Bromated whole wheat flour.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 2 2012-04-01 2012-04-01 false Bromated whole wheat flour. 137.205 Section 137...) FOOD FOR HUMAN CONSUMPTION CEREAL FLOURS AND RELATED PRODUCTS Requirements for Specific Standardized Cereal Flours and Related Products § 137.205 Bromated whole wheat flour. Bromated whole wheat...

  9. 21 CFR 137.205 - Bromated whole wheat flour.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 2 2014-04-01 2014-04-01 false Bromated whole wheat flour. 137.205 Section 137...) FOOD FOR HUMAN CONSUMPTION CEREAL FLOURS AND RELATED PRODUCTS Requirements for Specific Standardized Cereal Flours and Related Products § 137.205 Bromated whole wheat flour. Bromated whole wheat...

  10. 21 CFR 137.205 - Bromated whole wheat flour.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 2 2013-04-01 2013-04-01 false Bromated whole wheat flour. 137.205 Section 137...) FOOD FOR HUMAN CONSUMPTION CEREAL FLOURS AND RELATED PRODUCTS Requirements for Specific Standardized Cereal Flours and Related Products § 137.205 Bromated whole wheat flour. Bromated whole wheat...

  11. 77 FR 21685 - United States Standards for Wheat

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-11

    ... marketing of wheat. DATES: Comments must be received on or before June 11, 2012. ADDRESSES: You may submit... standards facilitate the marketing of wheat and define U.S. wheat quality and commonly used industry terms... adversely impact the marketing system or current priorities and operations of GIPSA. GIPSA received...

  12. Milling and Baking Test Results for Eastern Soft Wheats

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Soft Wheat Quality Council (SWQC) will provide an organizataion structure to evaluate the quality of soft wheat experimental lines and varieties that may be grown in the traditional soft wheat growing regions of the U.S. The SWQC will also establish other activities as requested by the membersh...

  13. Characterization of stem rust resistance in wheat cultivar 'Gage'

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wheat (Triticum spp.) stem rust, caused by Puccinia graminis f. sp. tritici Eriks. & E. Henn. (Pgt), re-emerged as a devastating disease of wheat because of virulent race Ug99 (TTKSK). Many bread wheat (T. aestivum L.) cultivars grown in North America are susceptible to Ug99 or its derivative races ...

  14. Genome Evolution Due to Allopolyploidization in Wheat

    PubMed Central

    Feldman, Moshe; Levy, Avraham A.

    2012-01-01

    The wheat group has evolved through allopolyploidization, namely, through hybridization among species from the plant genera Aegilops and Triticum followed by genome doubling. This speciation process has been associated with ecogeographical expansion and with domestication. In the past few decades, we have searched for explanations for this impressive success. Our studies attempted to probe the bases for the wide genetic variation characterizing these species, which accounts for their great adaptability and colonizing ability. Central to our work was the investigation of how allopolyploidization alters genome structure and expression. We found in wheat that allopolyploidy accelerated genome evolution in two ways: (1) it triggered rapid genome alterations through the instantaneous generation of a variety of cardinal genetic and epigenetic changes (which we termed “revolutionary” changes), and (2) it facilitated sporadic genomic changes throughout the species’ evolution (i.e., evolutionary changes), which are not attainable at the diploid level. Our major findings in natural and synthetic allopolyploid wheat indicate that these alterations have led to the cytological and genetic diploidization of the allopolyploids. These genetic and epigenetic changes reflect the dynamic structural and functional plasticity of the allopolyploid wheat genome. The significance of this plasticity for the successful establishment of wheat allopolyploids, in nature and under domestication, is discussed. PMID:23135324

  15. Wheat germ stabilization by infrared radiation.

    PubMed

    Gili, Renato D; Palavecino, Pablo M; Cecilia Penci, M; Martinez, Marcela L; Ribotta, Pablo D

    2017-01-01

    Wheat germ has an important enzymatic activity, being lipases the enzymes which cause the highest impact in the reduction of shelf life. The objective of this study was to evaluate the effects of infrared radiation on wheat germ stabilization in an attempt to extend the shelf life. The effects of treatment time, gap (sample distance to IR emitters) and infrared radiation intensity on wheat germ were analyzed through response surface methodology. Final moisture content, final temperature, color of germ and germ oil quality parameters: free fatty acid content changes and total tocopherol content were the responses evaluated using a Box-Behnken design. A combination of an infrared radiation intensity of 4800 W/m(2), a 3 min treatment and 0.2 m emitter-sample distance were the best processing condition to stabilize the wheat germ without significantly reduction of the tocopherol content. A confirmatory experiment was conducted with these optimal conditions, and the heat-treated and raw germ samples were stored for 90 days at room temperature in three layer packages to protect them against light and oxygen. The oil quality parameters indicated that the raw germ had a shelf-life of about 15 days, with the heat-treated wheat germ maintaining its quality for at least 90 days under these stored conditions.

  16. Adapting wheat in Europe for climate change.

    PubMed

    Semenov, M A; Stratonovitch, P; Alghabari, F; Gooding, M J

    2014-05-01

    Increasing cereal yield is needed to meet the projected increased demand for world food supply of about 70% by 2050. Sirius, a process-based model for wheat, was used to estimate yield potential for wheat ideotypes optimized for future climatic projections for ten wheat growing areas of Europe. It was predicted that the detrimental effect of drought stress on yield would be decreased due to enhanced tailoring of phenology to future weather patterns, and due to genetic improvements in the response of photosynthesis and green leaf duration to water shortage. Yield advances could be made through extending maturation and thereby improve resource capture and partitioning. However the model predicted an increase in frequency of heat stress at meiosis and anthesis. Controlled environment experiments quantify the effects of heat and drought at booting and flowering on grain numbers and potential grain size. A current adaptation of wheat to areas of Europe with hotter and drier summers is a quicker maturation which helps to escape from excessive stress, but results in lower yields. To increase yield potential and to respond to climate change, increased tolerance to heat and drought stress should remain priorities for the genetic improvement of wheat.

  17. Adapting wheat in Europe for climate change

    PubMed Central

    Semenov, M.A.; Stratonovitch, P.; Alghabari, F.; Gooding, M.J.

    2014-01-01

    Increasing cereal yield is needed to meet the projected increased demand for world food supply of about 70% by 2050. Sirius, a process-based model for wheat, was used to estimate yield potential for wheat ideotypes optimized for future climatic projections for ten wheat growing areas of Europe. It was predicted that the detrimental effect of drought stress on yield would be decreased due to enhanced tailoring of phenology to future weather patterns, and due to genetic improvements in the response of photosynthesis and green leaf duration to water shortage. Yield advances could be made through extending maturation and thereby improve resource capture and partitioning. However the model predicted an increase in frequency of heat stress at meiosis and anthesis. Controlled environment experiments quantify the effects of heat and drought at booting and flowering on grain numbers and potential grain size. A current adaptation of wheat to areas of Europe with hotter and drier summers is a quicker maturation which helps to escape from excessive stress, but results in lower yields. To increase yield potential and to respond to climate change, increased tolerance to heat and drought stress should remain priorities for the genetic improvement of wheat. PMID:24882934

  18. Sequence diversity of wheat mosaic virus isolates.

    PubMed

    Stewart, Lucy R

    2016-02-02

    Wheat mosaic virus (WMoV), transmitted by eriophyid wheat curl mites (Aceria tosichella) is the causal agent of High Plains disease in wheat and maize. WMoV and other members of the genus Emaravirus evaded thorough molecular characterization for many years due to the experimental challenges of mite transmission and manipulating multisegmented negative sense RNA genomes. Recently, the complete genome sequence of a Nebraska isolate of WMoV revealed eight segments, plus a variant sequence of the nucleocapsid protein-encoding segment. Here, near-complete and partial consensus sequences of five more WMoV isolates are reported and compared to the Nebraska isolate: an Ohio maize isolate (GG1), a Kansas barley isolate (KS7), and three Ohio wheat isolates (H1, K1, W1). Results show two distinct groups of WMoV isolates: Ohio wheat isolate RNA segments had 84% or lower nucleotide sequence identity to the NE isolate, whereas GG1 and KS7 had 98% or higher nucleotide sequence identity to the NE isolate. Knowledge of the sequence variability of WMoV isolates is a step toward understanding virus biology, and potentially explaining observed biological variation.

  19. Uncovering hidden variation in polyploid wheat

    PubMed Central

    Krasileva, Ksenia V.; Vasquez-Gross, Hans A.; Howell, Tyson; Bailey, Paul; Paraiso, Francine; Clissold, Leah; Simmonds, James; Ramirez-Gonzalez, Ricardo H.; Wang, Xiaodong; Borrill, Philippa; Fosker, Christine; Ayling, Sarah; Phillips, Andrew L.; Uauy, Cristobal

    2017-01-01

    Comprehensive reverse genetic resources, which have been key to understanding gene function in diploid model organisms, are missing in many polyploid crops. Young polyploid species such as wheat, which was domesticated less than 10,000 y ago, have high levels of sequence identity among subgenomes that mask the effects of recessive alleles. Such redundancy reduces the probability of selection of favorable mutations during natural or human selection, but also allows wheat to tolerate high densities of induced mutations. Here we exploited this property to sequence and catalog more than 10 million mutations in the protein-coding regions of 2,735 mutant lines of tetraploid and hexaploid wheat. We detected, on average, 2,705 and 5,351 mutations per tetraploid and hexaploid line, respectively, which resulted in 35–40 mutations per kb in each population. With these mutation densities, we identified an average of 23–24 missense and truncation alleles per gene, with at least one truncation or deleterious missense mutation in more than 90% of the captured wheat genes per population. This public collection of mutant seed stocks and sequence data enables rapid identification of mutations in the different copies of the wheat genes, which can be combined to uncover previously hidden variation. Polyploidy is a central phenomenon in plant evolution, and many crop species have undergone recent genome duplication events. Therefore, the general strategy and methods developed herein can benefit other polyploid crops. PMID:28096351

  20. Ancestral QTL Alleles from Wild Emmer Wheat Improve Drought Resistance and Productivity in Modern Wheat Cultivars

    PubMed Central

    Merchuk-Ovnat, Lianne; Barak, Vered; Fahima, Tzion; Ordon, Frank; Lidzbarsky, Gabriel A.; Krugman, Tamar; Saranga, Yehoshua

    2016-01-01

    Wild emmer wheat (Triticum turgidum ssp. dicoccoides) is considered a promising source for improving stress resistances in domesticated wheat. Here we explored the potential of selected quantitative trait loci (QTLs) from wild emmer wheat, introgressed via marker-assisted selection, to enhance drought resistance in elite durum (T. turgidum ssp. durum) and bread (T. aestivum) wheat cultivars. The resultant near-isogenic lines (BC3F3 and BC3F4) were genotyped using SNP array to confirm the introgressed genomic regions and evaluated in two consecutive years under well-watered (690–710 mm) and water-limited (290–320 mm) conditions. Three of the introgressed QTLs were successfully validated, two in the background of durum wheat cv. Uzan (on chromosomes 1BL and 2BS), and one in the background of bread wheat cvs. Bar Nir and Zahir (chromosome 7AS). In most cases, the QTL x environment interaction was validated in terms of improved grain yield and biomass—specifically under drought (7AS QTL in cv. Bar Nir background), under both treatments (2BS QTL), and a greater stability across treatments (1BL QTL). The results provide a first demonstration that introgression of wild emmer QTL alleles can enhance productivity and yield stability across environments in domesticated wheat, thereby enriching the modern gene pool with essential diversity for the improvement of drought resistance. PMID:27148287

  1. Ancestral QTL Alleles from Wild Emmer Wheat Improve Drought Resistance and Productivity in Modern Wheat Cultivars.

    PubMed

    Merchuk-Ovnat, Lianne; Barak, Vered; Fahima, Tzion; Ordon, Frank; Lidzbarsky, Gabriel A; Krugman, Tamar; Saranga, Yehoshua

    2016-01-01

    Wild emmer wheat (Triticum turgidum ssp. dicoccoides) is considered a promising source for improving stress resistances in domesticated wheat. Here we explored the potential of selected quantitative trait loci (QTLs) from wild emmer wheat, introgressed via marker-assisted selection, to enhance drought resistance in elite durum (T. turgidum ssp. durum) and bread (T. aestivum) wheat cultivars. The resultant near-isogenic lines (BC3F3 and BC3F4) were genotyped using SNP array to confirm the introgressed genomic regions and evaluated in two consecutive years under well-watered (690-710 mm) and water-limited (290-320 mm) conditions. Three of the introgressed QTLs were successfully validated, two in the background of durum wheat cv. Uzan (on chromosomes 1BL and 2BS), and one in the background of bread wheat cvs. Bar Nir and Zahir (chromosome 7AS). In most cases, the QTL x environment interaction was validated in terms of improved grain yield and biomass-specifically under drought (7AS QTL in cv. Bar Nir background), under both treatments (2BS QTL), and a greater stability across treatments (1BL QTL). The results provide a first demonstration that introgression of wild emmer QTL alleles can enhance productivity and yield stability across environments in domesticated wheat, thereby enriching the modern gene pool with essential diversity for the improvement of drought resistance.

  2. Transcription in Isolated Wheat Nuclei

    PubMed Central

    Luthe, Dawn Sywassink; Quatrano, Ralph S.

    1980-01-01

    Nuclei free of RNase activity were isolated from 3-hour-imbibed wheat (var. Yamhill) embryos by centrifugation through a discontinuous gradient of Percoll. The maximum rate of RNA synthesis observed in these nuclei was approximately 5 picomoles [3H]UTP per milligram DNA per minute. Two monovalent cation optima were found when measured in the presence of 15 millimolar MgCl2 or 2 millimolar MnCl2; 15 and 75 millimolar (NH4)2SO4. At the high monovalent cation optimum, the rate of RNA synthesis was linear for the first 10 to 15 minutes of incubation and still increasing after 3 hours. RNA synthesized in vitro (30-minute pulse followed by a 30-minute chase) showed distinct 18 and 26S RNA peaks comprising 13 and 17% of the total radioactivity, respectively. The over-all pattern of RNA synthesized in vitro was similar to the in vivo pattern. Approximately 40 to 50% of the RNA synthesized was inhibited by α-amanitin at 4 micrograms per milliliter. The newly synthesized 6 to 10S RNA appeared to be selectively inhibited by α-amanitin. PMID:16661179

  3. Analysing human neural stem cell ontogeny by consecutive isolation of Notch active neural progenitors.

    PubMed

    Edri, Reuven; Yaffe, Yakey; Ziller, Michael J; Mutukula, Naresh; Volkman, Rotem; David, Eyal; Jacob-Hirsch, Jasmine; Malcov, Hagar; Levy, Carmit; Rechavi, Gideon; Gat-Viks, Irit; Meissner, Alexander; Elkabetz, Yechiel

    2015-03-23

    Decoding heterogeneity of pluripotent stem cell (PSC)-derived neural progeny is fundamental for revealing the origin of diverse progenitors, for defining their lineages, and for identifying fate determinants driving transition through distinct potencies. Here we have prospectively isolated consecutively appearing PSC-derived primary progenitors based on their Notch activation state. We first isolate early neuroepithelial cells and show their broad Notch-dependent developmental and proliferative potential. Neuroepithelial cells further yield successive Notch-dependent functional primary progenitors, from early and midneurogenic radial glia and their derived basal progenitors, to gliogenic radial glia and adult-like neural progenitors, together recapitulating hallmarks of neural stem cell (NSC) ontogeny. Gene expression profiling reveals dynamic stage-specific transcriptional patterns that may link development of distinct progenitor identities through Notch activation. Our observations provide a platform for characterization and manipulation of distinct progenitor cell types amenable for developing streamlined neural lineage specification paradigms for modelling development in health and disease.

  4. Growth of Pleurotus ostreatus on wheat straw and wheat-grain-based media: Biochemical aspects and preparation of mushroom inoculum.

    PubMed

    Sainos, E; Díaz-Godínez, G; Loera, O; Montiel-González, A M; Sánchez, C

    2006-10-01

    Mycelial growth, intracellular activity of proteases, laccases and beta-1,3-glucanases, and cytoplasmic protein were evaluated in the vegetative phase of Pleurotus ostreatus grown on wheat straw and in wheat-grain-based media in Petri dishes and in bottles. The productivity of the wheat straw and wheat-grain-based spawn in cylindrical polyethylene bags containing 5 kg of chopped straw was also determined. We observed high activity of proteases and high content of intracellular protein in cultures grown on wheat straw. This suggests that the proteases are not secreted into the medium and that the protein is an important cellular reserve. On the contrary, cultures grown on wheat straw secreted laccases into the medium, which could be induced by this substrate. P. ostreatus grown on media prepared with a combination of wheat straw and wheat grain showed a high radial growth rate in Petri dishes and a high level of mycelial growth in bottles. The productivities of wheat straw and wheat-grain-based spawn were similar. Our results show that cheaper and more productive mushroom spawn can be prepared by developing the mycelium on wheat straw and wheat-grain-based substrates.

  5. Effects of durum wheat background on the expression of hexaploid wheat-derived Fusarium head blight resistance genes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Multiple Fusarium head blight (FHB) resistance sources have been identified in common wheat, but an effective source of resistance to FHB has not found in durum wheat. Here we report preliminary results on the effects of durum background on the expression of hexaploid wheat-derived FHB resistance g...

  6. Association study of resistance to soil-borne wheat mosaic virus (SBWMV) in U.S. winter wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil-borne wheat mosaic virus (SBWMV) is one of the most important winter wheat pathogens worldwide. To identify genes for resistance to the virus in U.S. winter wheat, association study was conducted using a selected panel of 205 elite experimental lines and cultivars from U.S. hard and soft winter...

  7. Genetically divergent types of the wheat leaf fungus Puccinia triticina in Ethiopia, a center of tetraploid wheat diversity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Collections of Puccinia triticina, the wheat leaf rust fungus, were obtained from tetraploid and hexaploid wheat in the central highlands of Ethiopia, and a smaller number from Kenya from 2011 to 2013, in order to determine the genetic diversity of this wheat pathogen in a center of host diversity. ...

  8. Remotely sensing wheat maturation with radar

    NASA Technical Reports Server (NTRS)

    Bush, T. F.; Ulaby, F. T.

    1975-01-01

    The scattering properties of wheat were studied in the 8-18 GHz band as a function of frequency, polarization, incidence angle, and crop maturity. Supporting ground truth was collected at the time of measurement. The data indicate that the radar backscattering coefficient is sensitive to both radar system parameters and crop characteristics particularly at incidence angles near nadir. Linear regression analyses of the radar backscattering coefficient on both time and plant moisture content result in rather good correlation. Furthermore, by calculating the average time rate of change of the radar backscattering coefficient it is found that it undergoes rapid variations shortly before and after the wheat is harvested. Both of these analyses suggest methods for estimating wheat maturity and for monitoring the progress of harvest.

  9. Ultrasonic study of wheat flour properties.

    PubMed

    García-Álvarez, J; Salazar, J; Rosell, C M

    2011-02-01

    In this work, the wheat flour properties are investigated using ultrasound techniques. Moreover, the flour samples were also characterized by means of well established techniques such as protein content, Alveograph and Mixolab®. A set of 35 dough samples, made of wheat flours with diverse physical and quality properties, were studied. The obtained results shown that ultrasound measurements can detect changes in the dough consistency induced by proteins and also by gelatinization of the starch. Furthermore, ultrasound measurements can be related to parameters indicative of the proteolytic degradation or softening of the dough due to protease activity. Thus, ultrasound can be considered a low cost and rapid tool, complementary to conventional test, for wheat flour characterization.

  10. Wheat productivity estimates using LANDSAT data

    NASA Technical Reports Server (NTRS)

    Nalepka, R. F.; Colwell, J. (Principal Investigator); Rice, D. P.

    1976-01-01

    The author has identified the following significant results. Objective measurements of percent green wheat cover on May 21 were significantly correlated with yield, as were measurements of green LAI and LANDSAT data. Three data sets from the Finney test site were analyzed from LANDSAT passes on 22 November 1974, 15 April 1975, and 21 May 1975. After mean signal values in each band were computed for each sufficiently large wheat field, the mean values were correlated with the farmer estimates of wheat grain yield in order to assess relative information content. It is clear that the single best spectral temporal band for predicting yield is the 15 April red band (0.6-0.7 microns, band 5), with the 15 April green band (0.5-0.6 microns, band 4) a close second.

  11. Antioxidant responses of wheat plants under stress

    PubMed Central

    Caverzan, Andréia; Casassola, Alice; Brammer, Sandra Patussi

    2016-01-01

    Abstract Currently, food security depends on the increased production of cereals such as wheat (Triticum aestivum L.), which is an important source of calories and protein for humans. However, cells of the crop have suffered from the accumulation of reactive oxygen species (ROS), which can cause severe oxidative damage to the plants, due to environmental stresses. ROS are toxic molecules found in various subcellular compartments. The equilibrium between the production and detoxification of ROS is sustained by enzymatic and nonenzymatic antioxidants. In the present review, we offer a brief summary of antioxidant defense and hydrogen peroxide (H2O2) signaling in wheat plants. Wheat plants increase antioxidant defense mechanisms under abiotic stresses, such as drought, cold, heat, salinity and UV-B radiation, to alleviate oxidative damage. Moreover, H2O2 signaling is an important factor contributing to stress tolerance in cereals. PMID:27007891

  12. Genetic structure of Argentinean hexaploid wheat germplasm

    PubMed Central

    Vanzetti, Leonardo S.; Yerkovich, Nadia; Chialvo, Eugenia; Lombardo, Lucio; Vaschetto, Luis; Helguera, Marcelo

    2013-01-01

    The identification of genetically homogeneous groups of individuals is an ancient issue in population genetics and in the case of crops like wheat, it can be valuable information for breeding programs, genetic mapping and germplasm resources. In this work we determined the genetic structure of a set of 102 Argentinean bread wheat (Triticum aestivum L.) elite cultivars using 38 biochemical and molecular markers (functional, closely linked to genes and neutral ones) distributed throughout 18 wheat chromosomes. Genetic relationships among these lines were examined using model-based clustering methods. In the analysis three subpopulations were identified which correspond largely to the origin of the germplasm used by the main breeding programs in Argentina. PMID:24130447

  13. Genetic Map of Diploid Wheat, Triticum Monococcum L., and Its Comparison with Maps of Hordeum Vulgare L

    PubMed Central

    Dubcovsky, J.; Luo, M. C.; Zhong, G. Y.; Bransteitter, R.; Desai, A.; Kilian, A.; Kleinhofs, A.; Dvorak, J.

    1996-01-01

    A genetic map of diploid wheat, Triticum monococcum L., involving 335 markers, including RFLP DNA markers, isozymes, seed storage proteins, rRNA, and morphological loci, is reported. T. monococcum and barley linkage groups are remarkably conserved. They differ by a reciprocal translocation involving the long arms of chromosomes 4 and 5, and paracentric inversions in the long arm of chromosomes 1 and 4; the latter is in a segment of chromosome arm 4L translocated to 5L in T. monococcum. The order of the markers in the inverted segments in the T. monococcum genome is the same as in the B and D genomes of T. aestivum L. The T. monococcum map differs from the barley maps in the distribution of recombination within chromosomes. The major 5S rRNA loci were mapped on the short arms of T. monococcum chromosomes 1 and 5 and the long arms of barley chromosomes 2 and 3. Since these chromosome arms are colinear, the major 5S rRNA loci must be subjected to positional changes in the evolving Triticeae genome that do not perturb chromosome colinearity. The positional changes of the major 5S rRNA loci in Triticeae genomes are analogous to those of the 18S-5.8S-26S rRNA loci. PMID:8725244

  14. Drought Tolerance in Modern and Wild Wheat

    PubMed Central

    Budak, Hikmet; Kantar, Melda; Yucebilgili Kurtoglu, Kuaybe

    2013-01-01

    The genus Triticum includes bread (Triticum aestivum) and durum wheat (Triticum durum) and constitutes a major source for human food consumption. Drought is currently the leading threat on world's food supply, limiting crop yield, and is complicated since drought tolerance is a quantitative trait with a complex phenotype affected by the plant's developmental stage. Drought tolerance is crucial to stabilize and increase food production since domestication has limited the genetic diversity of crops including wild wheat, leading to cultivated species, adapted to artificial environments, and lost tolerance to drought stress. Improvement for drought tolerance can be achieved by the introduction of drought-grelated genes and QTLs to modern wheat cultivars. Therefore, identification of candidate molecules or loci involved in drought tolerance is necessary, which is undertaken by “omics” studies and QTL mapping. In this sense, wild counterparts of modern varieties, specifically wild emmer wheat (T. dicoccoides), which are highly tolerant to drought, hold a great potential. Prior to their introgression to modern wheat cultivars, drought related candidate genes are first characterized at the molecular level, and their function is confirmed via transgenic studies. After integration of the tolerance loci, specific environment targeted field trials are performed coupled with extensive analysis of morphological and physiological characteristics of developed cultivars, to assess their performance under drought conditions and their possible contributions to yield in certain regions. This paper focuses on recent advances on drought related gene/QTL identification, studies on drought related molecular pathways, and current efforts on improvement of wheat cultivars for drought tolerance. PMID:23766697

  15. Phylogenetic analysis of Wheat dwarf virus isolates from Iran.

    PubMed

    Parizipour, Mohamad Hamed Ghodoum; Schubert, Jörg; Behjatnia, Seyed Ali Akbar; Afsharifar, Alireza; Habekuß, Antje; Wu, Beilei

    2017-04-01

    Wheat dwarf virus (WDV) adversely affects cereal production in Asia, Europe, and North Africa. In this study, sequences of several WDV isolates from Iran which is located in the Fertile Crescent were analyzed. Analysis revealed a new geographic cluster for WDV-Wheat from Iran. Recombination analysis demonstrated the existence of several breakpoints in different regions of the viral genome. Data analysis demonstrated that WDV-Barley has an older history and lower diversity than WDV-Wheat. Sequence analysis identified a rare occasion of a co-infection of wheat with WDV-Wheat and WDV-Barley.

  16. Effects of herbicide applications in wheat fields

    PubMed Central

    Varshney, Sugandha; Hayat, Shamshul; Alyemeni, Mohammed Nasser; Ahmad, Aqil

    2012-01-01

    The present review encompasses the physiological and yield constraints of herbicide applications with special reference to wheat productivity. Post-independence lagging of Indian agriculture to feed its population led to haphazard use of chemical pesticides and weedicides which deteriorated the productivity pay-off particularly of wheat and rice. Past some decades witnessed the potential use of certain phytohormones in augmenting abiotic stress to get rid of yield gap and productivity constraints. We summed up with reviewing the potential role of these natural regulators in overcoming above mentioned drawbacks to substitute or to integrate these chemicals with the use of plant hormones. PMID:22516826

  17. [Direct embryogenesis from protoplast of winter wheat].

    PubMed

    Ge, T M; Zhang, R D; Qin, F L; Yu, Y J; Xie, Y F

    2000-09-01

    Friable embryogenic calli were obtained on a modified N6 medium (NBD medium) from a winter wheat cultivar "Jinghua No. 1" (Triticum aestivum L. cv. Jinghua No. 1) and were transferred to a modified MS liquid medium (MSDL medium) to initiate embryogenic suspension cultures. Protoplasts were isolated from the suspensions and cultured on a modified MS medium (MSDP medium). The somatic embryoids were formed directly from the protoplasts and germinated into entire plants. The development of the somatic embryoids was very similar to that of zygotic embryos of wheat.

  18. Wheat productivity estimates using LANDSAT data

    NASA Technical Reports Server (NTRS)

    Nalepka, R. F.; Colwell, J. E. (Principal Investigator); Rice, D. P.; Bresnahan, P. A.

    1977-01-01

    The author has identified the following significant results. Large area LANDSAT yield estimates were generated. These results were compared with estimates computed using a meteorological yield model (CCEA). Both of these estimates were compared with Kansas Crop and Livestock Reporting Service (KCLRS) estimates of yield, in an attempt to assess the relative and absolute accuracy of the LANDSAT and CCEA estimates. Results were inconclusive. A large area direct wheat prediction procedure was implemented. Initial results have produced a wheat production estimate comparable with the KCLRS estimate.

  19. Dough rheology and wet milling of hard waxy wheat flours.

    PubMed

    Guan, Lan; Seib, Paul A; Graybosch, Robert A; Bean, Scott; Shi, Yong-Cheng

    2009-08-12

    To realize the full potential of waxy wheat (Triticum aestivum L.), the wet milling properties of waxy wheat flours including their dough-mixing properties were investigated. Flours of six waxy hard wheats, one normal hard wheat ('Karl 92'), and one partial waxy hard wheat ('Trego') were fractionated by the dough-washing (Martin) process, and the yields and recoveries of starch and gluten were compared. When waxy and normal wheat starches each were blended with a wheat gluten to give a mixture containing 14.5% protein, they gave very different mixograms even though the protein was the same in those blends. Waxy wheat starch absorbed more water than normal wheat starch, which apparently retarded hydration of gluten and dough development. Higher water content had to be used for some waxy wheat flours to develop optimum dough. Washing waxy wheat flour dough under a stream of water caused dough to become slack, spread out more on the sieve, and break apart into several pieces, which when thoroughly washed, coalesced into an elastic dough like the controls. By mixing a weak dough with 2% NaCl solution or by adding hemicellulase, stickiness of the dough subsided during the washing step and thereby improved the recovery of the gluten and starch fractions.

  20. Elite Haplotypes of a Protein Kinase Gene TaSnRK2.3 Associated with Important Agronomic Traits in Common Wheat

    PubMed Central

    Miao, Lili; Mao, Xinguo; Wang, Jingyi; Liu, Zicheng; Zhang, Bin; Li, Weiyu; Chang, Xiaoping; Reynolds, Matthew; Wang, Zhenhua; Jing, Ruilian

    2017-01-01

    Plant-specific protein kinase SnRK2s play crucial roles in response to various environmental stimuli. TaSnRK2.3, a SnRK2 member, was involved in the response to multiple abiotic stresses in wheat. To facilitate the use of TaSnRK2.3 in wheat breeding, the three genomic sequences of TaSnRK2.3, originating from the A, B, and D genomes of hexaploid wheat, were obtained. Sequence polymorphism assays showing 4 and 10 variations were detected at TaSnRK2.3-1A and at TaSnRK2.3-1B, respectively, yet no variation was identified at TaSnRK2.3-1D. Three haplotypes for A genome, and two main haplotypes for B genome of TaSnRK2.3 were identified in 32 genotypes. Functional markers (2.3AM1, 2.3AM2, 2.3BM1, 2.3BM2) were successfully developed to distinguish different haplotypes. Association analysis was performed with the general linear model in TASSEL 2.1. The results showed that both TaSnRK2.3-1A and TaSnRK2.3-1B were significantly associated with plant height (PH), length of peduncle and penultimate node, as well as 1,000-grain weight (TGW) under different environments. Additionally, TaSnRK2.3-1B was significantly associated with stem water-soluble carbohydrates at flowering and mid-grain filling stages. Hap-1A-1 had higher TGW and lower PH; Hap-1B-1 had higher TGW and stem water-soluble carbohydrates, as well as lower PH, thus the two haplotypes were considered as elite haplotypes. Geographic distribution and allelic frequencies indicated that the two preferred haplotypes Hap-1A-1 and Hap-1B-1 were positively selected in the process of Chinese wheat breeding. These results could be valuable for genetic improvement and germplasm enhancement using molecular marker assisted selection in wheat breeding.

  1. Genome-wide exploration of metal tolerance protein (MTP) genes in common wheat (Triticum aestivum): insights into metal homeostasis and biofortification.

    PubMed

    Vatansever, Recep; Filiz, Ertugrul; Eroglu, Seckin

    2017-04-01

    Metal transport process in plants is a determinant of quality and quantity of the harvest. Although it is among the most important of staple crops, knowledge about genes that encode for membrane-bound metal transporters is scarce in wheat. Metal tolerance proteins (MTPs) are involved in trace metal homeostasis at the sub-cellular level, usually by providing metal efflux out of the cytosol. Here, by using various bioinformatics approaches, genes that encode for MTPs in the hexaploid wheat genome (Triticum aestivum, abbreviated as Ta) were identified and characterized. Based on the comparison with known rice MTPs, the wheat genome contained 20 MTP sequences; named as TaMTP1-8A, B and D. All TaMTPs contained a cation diffusion facilitator (CDF) family domain and most members harbored a zinc transporter dimerization domain. Based on motif, phylogeny and alignment analysis, A, B and D genomes of TaMTP3-7 sequences demonstrated higher homology compared to TaMTP1, 2 and 8. With reference to their rice orthologs, TaMTP1s and TaMTP8s belonged to Zn-CDFs, TaMTP2s to Fe/Zn-CDFs and TaMTP3-7s to Mn-CDFs. Upstream regions of TaMTP genes included diverse cis-regulatory motifs, indicating regulation by developmental stage, tissue type and stresses. A scan of the coding sequences of 20 TaMTPs against published miRNAs predicted a total of 14 potential miRNAs, mainly targeting the members of most diverged groups. Expression analysis showed that several TaMTPs were temporally and spatially regulated during the developmental time-course. In grains, MTPs were preferentially expressed in the aleurone layer, which is known as a reservoir for high concentrations of iron and zinc. The work identified and characterized metal tolerance proteins in common wheat and revealed a potential involvement of MTPs in providing a sink for trace element storage in wheat grains.

  2. FRIZZY PANICLE Drives Supernumerary Spikelets in Bread Wheat1

    PubMed Central

    Dobrovolskaya, Oxana; Pont, Caroline; Sibout, Richard; Martinek, Petr; Badaeva, Ekaterina; Murat, Florent; Chosson, Audrey; Watanabe, Nobuyoshi; Prat, Elisa; Gautier, Nadine; Gautier, Véronique; Poncet, Charles; Orlov, Yuriy L.; Krasnikov, Alexander A.; Bergès, Hélène; Salina, Elena; Laikova, Lyudmila; Salse, Jerome

    2015-01-01

    Bread wheat (Triticum aestivum) inflorescences, or spikes, are characteristically unbranched and normally bear one spikelet per rachis node. Wheat mutants on which supernumerary spikelets (SSs) develop are particularly useful resources for work towards understanding the genetic mechanisms underlying wheat inflorescence architecture and, ultimately, yield components. Here, we report the characterization of genetically unrelated mutants leading to the identification of the wheat FRIZZY PANICLE (FZP) gene, encoding a member of the APETALA2/Ethylene Response Factor transcription factor family, which drives the SS trait in bread wheat. Structural and functional characterization of the three wheat FZP homoeologous genes (WFZP) revealed that coding mutations of WFZP-D cause the SS phenotype, with the most severe effect when WFZP-D lesions are combined with a frameshift mutation in WFZP-A. We provide WFZP-based resources that may be useful for genetic manipulations with the aim of improving bread wheat yield by increasing grain number. PMID:25398545

  3. Ancient wheat and health: a legend or the reality? A review on KAMUT khorasan wheat.

    PubMed

    Bordoni, Alessandra; Danesi, Francesca; Di Nunzio, Mattia; Taccari, Annalisa; Valli, Veronica

    2017-05-01

    After WWII, the industrialized agriculture selected modern varieties of Triticum turgidum spp. durum and spp. aestivum (durum wheat and common wheat) based on higher yields and technological characteristics. Nowadays, the use of whole ancient grains and pseudo cereals is considered nutritionally important. How ancient grains have positive effects is not entirely known, the fragmentation of the scientific knowledge being also related to the fact that ancient grains are not a homogeneous category. The KAMUT(®) trademark indicates a specific and ancient variety of grain (Triticum turgidum ssp. turanicum, commonly khorasan wheat), and guarantees certain attributes making studies sufficiently comparable. In this work, studies on KAMUT(®) khorasan wheat have been systematically reviewed, evidencing different aspects supporting its benefits. Although it is not possible to establish whether all ancient grains share these positive characteristics, in total or in part, this review provides further evidences supporting the consumption of ancient grains.

  4. Is black-hole ringdown a memory of its progenitor?

    PubMed

    Kamaretsos, Ioannis; Hannam, Mark; Sathyaprakash, B S

    2012-10-05

    We perform an extensive numerical study of coalescing black-hole binaries to understand the gravitational-wave spectrum of quasinormal modes excited in the merged black hole. Remarkably, we find that the masses and spins of the progenitor are clearly encoded in the mode spectrum of the ringdown signal. Some of the mode amplitudes carry the signature of the binary's mass ratio, while others depend critically on the spins. Simulations of precessing binaries suggest that our results carry over to generic systems. Using Bayesian inference, we demonstrate that it is possible to accurately measure the mass ratio and a proper combination of spins even when the binary is itself invisible to a detector. Using a mapping of the binary masses and spins to the final black-hole spin allows us to further extract the spin components of the progenitor. Our results could have tremendous implications for gravitational astronomy by facilitating novel tests of general relativity using merging black holes.

  5. Neuromesodermal progenitors and the making of the spinal cord

    PubMed Central

    Henrique, Domingos; Abranches, Elsa; Verrier, Laure; Storey, Kate G.

    2016-01-01

    Neuromesodermal progenitors (NMps) contribute to both the elongating spinal cord and the adjacent paraxial mesoderm. It has been assumed that these cells arise as a result of patterning of the anterior neural plate. However, as the molecular mechanisms that specify NMps in vivo are uncovered, and as protocols for generating these bipotent cells from mouse and human pluripotent stem cells in vitro are established, the emerging data suggest that this view needs to be revised. Here, we review the characteristics, regulation, in vitro derivation and in vivo induction of NMps. We propose that these cells arise within primitive streak-associated epiblast via a mechanism that is separable from that which establishes neural fate in the anterior epiblast. We thus argue for the existence of two distinct routes for making central nervous system progenitors. PMID:26329597

  6. Renal progenitors: Roles in kidney disease and regeneration

    PubMed Central

    Chambers, Brooke E; Wingert, Rebecca A

    2016-01-01

    Kidney disease is a devastating condition that affects millions of people worldwide, and its prevalence is predicted to significantly increase. The kidney is a complex organ encompassing many diverse cell types organized in a elaborate tissue architecture, making regeneration a challenging feat. In recent years, there has been a surge in the field of stem cell research to develop regenerative therapies for various organ systems. Here, we review some recent progressions in characterizing the role of renal progenitors in development, regeneration, and kidney disease in mammals. We also discuss how the zebrafish provides a unique experimental animal model that can provide a greater molecular and genetic understanding of renal progenitors, which may contribute to the development of potential regenerative therapies for human renal afflictions. PMID:27928463

  7. Endothelial progenitor cells: Exploring the pleiotropic effects of statins

    PubMed Central

    Sandhu, Kully; Mamas, Mamas; Butler, Robert

    2017-01-01

    Statins have become a cornerstone of risk modification for ischaemic heart disease patients. A number of studies have shown that they are effective and safe. However studies have observed an early benefit in terms of a reduction in recurrent infarct and or death after a myocardial infarction, prior to any significant change in lipid profile. Therefore, pleiotropic mechanisms, other than lowering lipid profile alone, must account for this effect. One such proposed pleiotropic mechanism is the ability of statins to augment both number and function of endothelial progenitor cells. The ability to augment repair and maintenance of a functioning endothelium may have profound beneficial effect on vascular repair and potentially a positive impact on clinical outcomes in patients with cardiovascular disease. The following literature review will discuss issues surrounding endothelial progenitor cell (EPC) identification, role in vascular repair, factors affecting EPC numbers, the role of statins in current medical practice and their effects on EPC number. PMID:28163831

  8. Epigenetic Reprogramming of Muscle Progenitors: Inspiration for Clinical Therapies

    PubMed Central

    Consalvi, Silvia; Sandoná, Martina

    2016-01-01

    In the context of regenerative medicine, based on the potential of stem cells to restore diseased tissues, epigenetics is becoming a pivotal area of interest. Therapeutic interventions that promote tissue and organ regeneration have as primary objective the selective control of gene expression in adult stem cells. This requires a deep understanding of the epigenetic mechanisms controlling transcriptional programs in tissue progenitors. This review attempts to elucidate the principle epigenetic regulations responsible of stem cells differentiation. In particular we focus on the current understanding of the epigenetic networks that regulate differentiation of muscle progenitors by the concerted action of chromatin-modifying enzymes and noncoding RNAs. The novel exciting role of exosome-bound microRNA in mediating epigenetic information transfer is also discussed. Finally we show an overview of the epigenetic strategies and therapies that aim to potentiate muscle regeneration and counteract the progression of Duchenne Muscular Dystrophy (DMD). PMID:26839565

  9. Decoding the stellar fossils of the dusty Milky Way progenitors

    NASA Astrophysics Data System (ADS)

    de Bennassuti, M.; Schneider, R.; Valiante, R.; Salvadori, S.

    2014-12-01

    We investigate the metallicity distribution function (MDF) of the Galactic halo and the relative fraction of Carbon-normal and Carbon-rich stars using the semi-analytical code GAMETE. The code reconstructs the hierarchical merger tree of the Milky Way (MW) and follows the star formation history and the metal evolution in individual progenitors, including for the first time the formation and evolution of dust. We predict scaling relations between the dust, metal and gas masses for MW progenitors and compare them with observational data of galaxies at 0 <= z < 6.3. We find that the relative contribution of C-normal and C-enhanced stars to the MDF and its dependence on [Fe/H] allow to discriminate among different Pop III/II transition criteria as well as between different Initial Mass Functions (IMFs) and supernova (SN) yields for Population III stars.

  10. Imparting regenerative capacity to limbs by progenitor cell transplantation

    PubMed Central

    Lin, Gufa; Chen, Ying; Slack, Jonathan M.W.

    2012-01-01

    Summary The frog Xenopus can normally regenerate its limbs at early developmental stages but loses the ability during metamorphosis. This behavior provides a potential gain-of-function model for measures that can enhance limb regeneration. Here we show that frog limbs can be caused to form multidigit regenerates after receiving transplants of larval limb progenitor cells. It is necessary to activate Wnt/β -catenin signaling in the cells, and to add Sonic hedgehog, FGF10 and thymosin β4. These factors promote survival and growth of the grafted cells and also provide pattern information. The eventual regenerates are not composed solely of donor tissue; the host cells also make a substantial contribution despite their lack of regeneration-competence. Cells from adult frog legs or from regenerating tadpole tails do not promote limb regeneration, demonstrating the necessity for limb progenitor cells. These findings have obvious implications for the development of a technology to promote limb regeneration in mammals. PMID:23273877

  11. Progenitors of type Ia supernovae in elliptical galaxies

    SciTech Connect

    Gilfanov, M.; Bogdan, A.

    2011-09-21

    Although there is a nearly universal agreement that type Ia supernovae are associated with the thermonuclear disruption of a CO white dwarf, the exact nature of their progenitors is still unknown. The single degenerate scenario envisages a white dwarf accreting matter from a non-degenerate companion in a binary system. Nuclear energy of the accreted matter is released in the form of electromagnetic radiation or gives rise to numerous classical nova explosions prior to the supernova event. We show that combined X-ray output of supernova progenitors and statistics of classical novae predicted in the single degenerate scenario are inconsistent with X-ray and optical observations of nearby early type galaxies and galaxy bulges. White dwarfs accreting from a donor star in a binary system and detonating at the Chandrasekhar mass limit can account for no more than {approx}5% of type Ia supernovae observed in old stellar populations.

  12. Genome evolution of intermediate wheatgrass as revealed by EST-SSR markers developed from its three progenitor diploid species.

    PubMed

    Wang, Richard R-C; Larson, Steve R; Jensen, Kevin B; Bushman, B Shaun; DeHaan, Lee R; Wang, Shuwen; Yan, Xuebing

    2015-02-01

    Intermediate wheatgrass (Thinopyrum intermedium (Host) Barkworth & D.R. Dewey), a segmental autoallohexaploid (2n = 6x = 42), is not only an important forage crop but also a valuable gene reservoir for wheat (Triticum aestivum L.) improvement. Throughout the scientific literature, there continues to be disagreement as to the origin of the different genomes in intermediate wheatgrass. Genotypic data obtained from newly developed EST-SSR primers derived from the putative progenitor diploid species Pseudoroegneria spicata (Pursh) Á. Löve (St genome), Thinopyrum bessarabicum (Savul. & Rayss) Á. Löve (J = J(b) = E(b)), and Thinopyrum elongatum (Host) D. Dewey (E = J(e) = E(e)) indicate that the V genome of Dasypyrum (Coss. & Durieu) T. Durand is not one of the three genomes in intermediate wheatgrass. Based on all available information in the literature and findings in this study, the genomic designation of intermediate wheatgrass should be changed to J(vs)J(r)St, where J(vs) and J(r) represent ancestral genomes of present-day J(b) of Th. bessarabicum and J(e) of Th. elongatum, with J(vs) being more ancient. Furthermore, the information suggests that the St genome in intermediate wheatgrass is most similar to the present-day St found in diploid species of Pseudoroegneria from Eurasia.

  13. Homing and migration assays of hematopoietic stem/progenitor cells.

    PubMed

    He, Xi C; Li, Zhenrui; Sugimura, Rio; Ross, Jason; Zhao, Meng; Li, Linheng

    2014-01-01

    Hematopoietic stem and progenitor cells (HSPCs) reside mainly in bone marrow; however, under homeostatic and stressed conditions, HSPCs dynamically change their location-either egressing from bone marrow and getting into circulation, a process of mobilization; or coming back to the bone marrow, the homing process. How to analyze these two processes will be critical for understanding the behavior of HSPCs. Here we provide an experimental protocol to monitor and analyze homing and migration of HSPCs.

  14. Characterization of Botulinum Progenitor Toxins by Mass Spectrometry

    DTIC Science & Technology

    2005-08-01

    strains Hall, Okra , Stockholm, MDPH, Alaska, and Langeland and 89 representing serotypes A through G, respectively, were reduced, alkylated, digested with...sequence information. Clostridium botulinum progenitor toxins from strains Hall, Okra , Stockholm, MDPH, Alaska, Langeland, and 89 representing...from sero- types A (strain 62A), B (strain Okra ), C (003-9), D (CB-16), E (no designation; equivalent to NCTC 11219 by analysis), and F (Langeland) that

  15. Does energy of type IIP supernovae depend on progenitor mass?

    NASA Astrophysics Data System (ADS)

    Chugai, Nikolai

    The oxygen [O I] 6300 A emission doublet, seen in nebular spectra of core-collapse supernovae, is used to obtain oxygen density in central zone of a sample of SN IIP. The inferred values of the oxygen density on day 300 turn out to fall into rather narrow range. This result does not depend on the distance, extinction, or model assumptions. The found density distribution led us to conclude that the SN IIP explosion energy monotonically increases with the progenitor mass.

  16. Regulation of Circulating Progenitor Cells in Left Ventricular Dysfunction

    PubMed Central

    Boilson, Barry A.; Larsen, Katarina; Harbuzariu, Adriana; Delacroix, Sinny; Korinek, Josef; Froehlich, Harald; Bailey, Kent R.; Scott, Christopher G.; Shapiro, Brian P.; Boerrigter, Guido; Chen, Horng H.; Redfield, Margaret M.; Burnett, John C.; Simari, Robert D.

    2011-01-01

    Background Reductions in numbers of circulating progenitor cells (CD34+ cell subsets) have been demonstrated in patients at risk for, or in the presence of, cardiovascular disease. The mediators of these reductions remain undefined. To determine whether neurohumoral factors might regulate circulating CD34+ cell subsets in vivo, we studied complementary canine models of left ventricular (LV) dysfunction. Methods and Results A pacing model of severe LV dysfunction and a hypertensive renal wrap (RW) model in which dogs were randomized to receive deoxycorticosterone acetate (DOCA) were studied. Circulating CD34+ cell subsets including hematopoietic precursor cells (HPCs:CD34+/CD45dim/VEGFR2-) and endothelial progenitor cells (EPCs:CD34+/CD45-/VEGFR2+) were quantified. Additionally, the effect of mineralocorticoid excess on circulating progenitor cells in normal dogs was studied. The majority of circulating CD34+ cells expressed CD45 dimly and did not express VEGFR2, consistent with an HPC phenotype. HPCs were decreased in response to pacing, and this decrease correlated with plasma aldosterone levels (Spearman Rank correlation = -0.67, p=0.03). In the RW model, administration of DOCA resulted in decreased HPCs. No changes were seen in EPCs in either model. Normal dogs treated with DOCA exhibited a decrease in HPCs in peripheral blood but not bone marrow associated with decreased telomerase activity. Conclusions This is the first study to demonstrate that mineralocorticoid excess, either endogenous or exogenous, results in reduction in HPCs. These data suggest that mineralocorticoids may induce accelerated senescence of progenitor cells leading to their reduced survival and decline in numbers. PMID:20573992

  17. Extracellular Matrix-Mediated Differentiation of Periodontal Progenitor Cells

    PubMed Central

    Dangaria, Smit J.; Ito, Yoshihiro; Walker, Cameron; Druzinsky, Robert; Luan, Xianghong; Diekwisch, Thomas G.H.

    2009-01-01

    The periodontal ligament (PDL) is a specialized connective tissue that connects the surface of the tooth root with the bony tooth socket. The healthy PDL harbors stem cell niches and extracellular matrix (ECM) microenvironments that facilitate periodontal regeneration. During periodontal disease, the PDL is often compromised or destroyed, reducing the life-span of the tooth. In order to explore new approaches toward the regeneration of diseased periodontal tissues, we have tested the effect of periodontal ECM signals, fibroblast growth factor 2 (FGF2), connective tissue growth factor (CTGF), and the cell adhesion peptide Arg-Gly- Asp (RGD) on the differentiation of two types of periodontal progenitor cells, PDL progenitor cells (PDLPs) and dental follicle progenitor cells (DFCs). Our studies documented that CTGF and FGF2 significantly enhanced the expression of collagens I & III, biglycan and periostin in tissue engineered regenerates after 4 weeks compared to untreated controls. Specifically, CTGF promoted mature PDL-like tissue regeneration as demonstrated by dense periostin localization in collagen fiber bundles. CTGF and FGF2 displayed synergistic effects on collagen III and biglycan gene expression, while effects on mineralization were antagonistic to each other: CTGF promoted while FGF2 inhibited mineralization in PDL cell cultures. Incorporation of RGD peptides in hydrogel matrices significantly enhanced attachment, spreading, survival and mineralization of the encapsulated DFCs, suggesting that RGD additives might promote the use of hydrogels for periodontal mineralized tissue engineering. Together, our studies have documented the effect of three key components of the periodontal ECM on the differentiation of periodontal progenitor populations. PMID:19433344

  18. Engineering Retina from Human Retinal Progenitors (Cell Lines)

    PubMed Central

    Cao, Yang

    2009-01-01

    Retinal degeneration resulting in the loss of photoreceptors is the leading cause of blindness. Several therapeutic protocols are under consideration for treatment of this disease. Tissue replacement is one such strategy currently being explored. However, availability of tissues for transplant poses a major obstacle. Another strategy with great potential is the use of adult stem cells, which could be expanded in culture and then utilized to engineer retinal tissue. In this study, we have explored a spontaneously immortalized human retinal progenitor cell line for its potential in retinal engineering using rotary cultures to generate three-dimensional (3D) structures. Retinal progenitors cultured alone or cocultured with retinal pigment epithelial cells form aggregates. The aggregate size increases between days 1 and 10. The cells grown as a 3D culture rotary system, which promotes cell–cell interaction, retain a spectrum of differentiation capability. Photoreceptor differentiation in these cultures is confirmed by significant upregulation of rhodopsin and AaNat, an enzyme implicated in melatonin synthesis (immunohistochemistry and Western blot analysis). Photoreceptor induction and differentiation is further attested to by the upregulation of rod transcription factor Nrl, Nr2e3, expression of interstitial retinal binding protein, and rhodopsin kinase by reverse transcription–polymerase chain reaction. Differentiation toward other cell lineages is confirmed by the expression of tyrosine hydroxylase in amacrine cells, thy 1.1 expression in ganglion cells and calbindin, and GNB3 expression in cone cells. The capability of retinal progenitors to give rise to several retinal cell types when grown as aggregated cells in rotary culture offers hope that progenitor stem cells under appropriate culture conditions will be valuable to engineer retinal constructs, which could be further tested for their transplant potential. The fidelity with which this multipotential cell

  19. Fate mapping by piggyBac transposase reveals that neocortical GLAST+ progenitors generate more astrocytes than Nestin+ progenitors in rat neocortex.

    PubMed

    Siddiqi, Faez; Chen, Fuyi; Aron, Abraham W; Fiondella, Christopher G; Patel, Komal; LoTurco, Joseph J

    2014-02-01

    Progenitors within the neocortical ventricular zone (VZ) first generate pyramidal neurons and then astrocytes. We applied novel piggyBac transposase lineage tracking methods to fate-map progenitor populations positive for Nestin or glutamate and aspartate transpoter (GLAST) promoter activities in the rat neocortex. GLAST+ and Nestin+ progenitors at embryonic day 13 (E13) produce lineages containing similar rations of neurons and astrocytes. By E15, the GLAST+ progenitor population diverges significantly to produce lineages with 5-10-fold more astrocytes relative to neurons than generated by the Nestin+ population. To determine when birth-dated progeny within GLAST+ and Nestin+ populations diverge, we used a Cre/loxP fate-mapping system in which plasmids are lost after a cell division. By E18, birth-dated progeny of GLAST+ progenitors give rise to 2-3-fold more neocortical astrocytes than do Nestin+ progenitors. Finally, we used a multicolor clonal labeling method to show that the GLAST+ population labeled at E15 generates astrocyte progenitors that produce larger, spatially restricted, clonal clusters than the Nestin+ population. This study provides in vivo evidence that by mid-corticogenesis (E15), VZ progenitor populations have significantly diversified in terms of their potential to generate astrocytes and neurons.

  20. Wheat-dependent exercise-induced anaphylaxis sensitized with hydrolyzed wheat protein in soap.

    PubMed

    Chinuki, Yuko; Morita, Eishin

    2012-12-01

    Wheat-dependent exercise-induced anaphylaxis (WDEIA) is a specific form of wheat allergy typically induced by exercise after ingestion of wheat products. Wheat ω-5 gliadin is a major allergen associated with conventional WDEIA, and detection of serum immunoglobulin E (IgE) specific to recombinant ω-5 gliadin is a reliable method for its diagnosis. Recently, an increased incidence of a new subtype of WDEIA, which is likely to be sensitized via a percutaneous and/or rhinoconjunctival route to hydrolyzed wheat protein (HWP), has been observed. All of the patients with this new subtype had used the same brand of soap, which contained HWP. Approximately half of these patients developed contact allergy several months later and subsequently developed WDEIA. In each of these patients, contact allergy with soap exposure preceded food ingestion-induced reactions. Other patients directly developed generalized symptoms upon ingestion of wheat products. The predominant observed symptom of the new WDEIA subtype was angioedema of the eyelids; a number of patients developed anaphylaxis. This new subtype of WDEIA has little serum ω-5 gliadin-specific serum IgE.

  1. Genomic dissection of drought resistance in durum wheat x wild emmer wheat recombinant inbreed line population.

    PubMed

    Peleg, Zvi; Fahima, Tzion; Krugman, Tamar; Abbo, Shahal; Yakir, Dan; Korol, Abraham B; Saranga, Yehoshua

    2009-07-01

    Drought is the major factor limiting wheat productivity worldwide. The gene pool of wild emmer wheat, Triticum turgidum ssp. dicoccoides, harbours a rich allelic repertoire for morpho-physiological traits conferring drought resistance. The genetic and physiological bases of drought responses were studied here in a tetraploid wheat population of 152 recombinant inbreed lines (RILs), derived from a cross between durum wheat (cv. Langdon) and wild emmer (acc# G18-16), under contrasting water availabilities. Wide genetic variation was found among RILs for all studied traits. A total of 110 quantitative trait loci (QTLs) were mapped for 11 traits, with LOD score range of 3.0-35.4. Several QTLs showed environmental specificity, accounting for productivity and related traits under water-limited (20 QTLs) or well-watered conditions (15 QTLs), and in terms of drought susceptibility index (22 QTLs). Major genomic regions controlling productivity and related traits were identified on chromosomes 2B, 4A, 5A and 7B. QTLs for productivity were associated with QTLs for drought-adaptive traits, suggesting the involvement of several strategies in wheat adaptation to drought stress. Fifteen pairs of QTLs for the same trait were mapped to seemingly homoeologous positions, reflecting synteny between the A and B genomes. The identified QTLs may facilitate the use of wild alleles for improvement of drought resistance in elite wheat cultivars.

  2. Mouse Mesenchymal Progenitor Cells Expressing Adipogenic and Osteogenic Transcription Factors Suppress the Macrophage Inflammatory Response.

    PubMed

    Fernandez, Natalie; Renna, Heather; McHugh, Lauren; Mazolkova, Katie; Crugnola, William; Evans, Jodi F

    2017-01-01

    Mesenchymal progenitor cell characteristics that can identify progenitor populations with specific functions in immunity are actively being investigated. Progenitors from bone marrow and adipose tissue regulate the macrophage (MΦ) inflammatory response by promoting the switch from an inflammatory to an anti-inflammatory phenotype. Conversely, mesenchymal progenitors from the mouse aorta (mAo) support and contribute to the MΦ response under inflammatory conditions. We used cell lines with purported opposing immune-regulatory function, a bone marrow derived mesenchymal progenitor cell line (D1) and a mouse aorta derived mesenchymal progenitor cell line (mAo). Their interaction and regulation of the MΦ cell response to the inflammatory mediator, lipopolysaccharide (LPS), was examined by coculture. As expected, D1 cells suppressed NO, TNF-α, and IL-12p70 production but MΦ phagocytic activity remained unchanged. The mAo cells enhanced NO and TNF-α production in coculture and enhanced MΦ phagocytic activity. Using flow cytometry and PCR array, we then sought to identify sets of MSC-associated genes and markers that are expressed by these progenitor populations. We have determined that immune-supportive mesenchymal progenitors highly express chondrogenic and tenogenic transcription factors while immunosuppressive mesenchymal progenitors highly express adipogenic and osteogenic transcription factors. These data will be useful for the isolation, purification, and modification of mesenchymal progenitors to be used in the treatment of inflammatory diseases.

  3. The evolution of basal progenitors in the developing non-mammalian brain

    PubMed Central

    Nomura, Tadashi; Ohtaka-Maruyama, Chiaki; Yamashita, Wataru; Wakamatsu, Yoshio; Murakami, Yasunori; Calegari, Federico; Suzuki, Kunihiro; Gotoh, Hitoshi; Ono, Katsuhiko

    2016-01-01

    The amplification of distinct neural stem/progenitor cell subtypes during embryogenesis is essential for the intricate brain structures present in various vertebrate species. For example, in both mammals and birds, proliferative neuronal progenitors transiently appear on the basal side of the ventricular zone of the telencephalon (basal progenitors), where they contribute to the enlargement of the neocortex and its homologous structures. In placental mammals, this proliferative cell population can be subdivided into several groups that include Tbr2+ intermediate progenitors and basal radial glial cells (bRGs). Here, we report that basal progenitors in the developing avian pallium show unique morphological and molecular characteristics that resemble the characteristics of bRGs, a progenitor population that is abundant in gyrencephalic mammalian neocortex. Manipulation of LGN (Leu-Gly-Asn repeat-enriched protein) and Cdk4/cyclin D1, both essential regulators of neural progenitor dynamics, revealed that basal progenitors and Tbr2+ cells are distinct cell lineages in the developing avian telencephalon. Furthermore, we identified a small population of subapical mitotic cells in the developing brains of a wide variety of amniotes and amphibians. Our results suggest that unique progenitor subtypes are amplified in mammalian and avian lineages by modifying common mechanisms of neural stem/progenitor regulation during amniote brain evolution. PMID:26732839

  4. Mouse Mesenchymal Progenitor Cells Expressing Adipogenic and Osteogenic Transcription Factors Suppress the Macrophage Inflammatory Response

    PubMed Central

    Fernandez, Natalie; Renna, Heather; McHugh, Lauren; Mazolkova, Katie; Crugnola, William

    2017-01-01

    Mesenchymal progenitor cell characteristics that can identify progenitor populations with specific functions in immunity are actively being investigated. Progenitors from bone marrow and adipose tissue regulate the macrophage (MΦ) inflammatory response by promoting the switch from an inflammatory to an anti-inflammatory phenotype. Conversely, mesenchymal progenitors from the mouse aorta (mAo) support and contribute to the MΦ response under inflammatory conditions. We used cell lines with purported opposing immune-regulatory function, a bone marrow derived mesenchymal progenitor cell line (D1) and a mouse aorta derived mesenchymal progenitor cell line (mAo). Their interaction and regulation of the MΦ cell response to the inflammatory mediator, lipopolysaccharide (LPS), was examined by coculture. As expected, D1 cells suppressed NO, TNF-α, and IL-12p70 production but MΦ phagocytic activity remained unchanged. The mAo cells enhanced NO and TNF-α production in coculture and enhanced MΦ phagocytic activity. Using flow cytometry and PCR array, we then sought to identify sets of MSC-associated genes and markers that are expressed by these progenitor populations. We have determined that immune-supportive mesenchymal progenitors highly express chondrogenic and tenogenic transcription factors while immunosuppressive mesenchymal progenitors highly express adipogenic and osteogenic transcription factors. These data will be useful for the isolation, purification, and modification of mesenchymal progenitors to be used in the treatment of inflammatory diseases. PMID:28191017

  5. 19 CFR 19.30 - Domestic wheat not to be allowed in bonded space.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 19 Customs Duties 1 2013-04-01 2013-04-01 false Domestic wheat not to be allowed in bonded space... THEREIN Space Bonded for the Storage of Wheat § 19.30 Domestic wheat not to be allowed in bonded space. The presence of domestic wheat in space bonded for the storage of imported wheat shall not...

  6. 19 CFR 19.30 - Domestic wheat not to be allowed in bonded space.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 19 Customs Duties 1 2014-04-01 2014-04-01 false Domestic wheat not to be allowed in bonded space... THEREIN Space Bonded for the Storage of Wheat § 19.30 Domestic wheat not to be allowed in bonded space. The presence of domestic wheat in space bonded for the storage of imported wheat shall not...

  7. 19 CFR 19.30 - Domestic wheat not to be allowed in bonded space.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 19 Customs Duties 1 2011-04-01 2011-04-01 false Domestic wheat not to be allowed in bonded space... THEREIN Space Bonded for the Storage of Wheat § 19.30 Domestic wheat not to be allowed in bonded space. The presence of domestic wheat in space bonded for the storage of imported wheat shall not...

  8. 19 CFR 19.30 - Domestic wheat not to be allowed in bonded space.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 19 Customs Duties 1 2012-04-01 2012-04-01 false Domestic wheat not to be allowed in bonded space... THEREIN Space Bonded for the Storage of Wheat § 19.30 Domestic wheat not to be allowed in bonded space. The presence of domestic wheat in space bonded for the storage of imported wheat shall not...

  9. Reinforcement Effect of Alkali Hydrolyzed Wheat Gluten and Starch in Carboxylated Styrene-Butadiene Composites

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wheat gluten (WG) and wheat starch (WS) are the protein and carbohydrate obtained from wheat flours. Wheat gluten is not water soluble or dispersible due to its hydrophobic nature. To prepare wheat gluten dispersions, an alkali hydrolysis reaction was carried out to produce a stable aqueous disper...

  10. Neutronization During Carbon Simmering In Type Ia Supernova Progenitors

    NASA Astrophysics Data System (ADS)

    Martínez-Rodríguez, Héctor; Piro, Anthony L.; Schwab, Josiah; Badenes, Carles

    2016-07-01

    When a Type Ia supernova (SN Ia) progenitor first ignites carbon in its core, it undergoes ˜103-104 years of convective burning prior to the onset of thermonuclear runaway. This carbon simmering phase is important for setting the thermal profile and composition of the white dwarf. Using the MESA stellar evolution code, we follow this convective burning and examine the production of neutron-rich isotopes. The neutron content of the SN fuel has important consequences for the ensuing nucleosynthesis, and in particular, for the production of secondary Fe-peak nuclei like Mn and stable Ni. These elements have been observed in the X-ray spectra of SN remnants like Tycho, Kepler, and 3C 397, and their yields can provide valuable insights into the physics of SNe Ia and the properties of their progenitors. We find that weak reactions during simmering can at most generate a neutron excess of ≈ 3 × 10-4. This is ≈ 70% lower than that found in previous studies that do not take the full density and temperature profile of the simmering region into account. Our results imply that the progenitor metallicity is the main contributor to the neutron excess in SN Ia fuel for Z ≳ 1/3 Z ⊙. Alternatively, at lower metallicities, this neutron excess provides a floor that should be present in any centrally-ignited SN Ia scenario.

  11. ENDOTHELIAL PROGENITOR CELLS AS SHUTTLE OF ANTICANCER AGENTS.

    PubMed

    Laurenzana, Anna; Margheri, Francesca; Chilla', Anastasia; Biagioni, Alessio; Margheri, Giancarlo; Calorini, Lido; Fibbi, Gabriella; Del Rosso, Mario

    2016-08-08

    Cell therapies are treatments in which stem or progenitor cells are induced to differentiate into the specific cell type required to repair damaged or destroyed tissues. Following their discovery, endothelial progenitor cells (EPCs) have stimulated a worldwide interest as possible vehicles to perform an autologous cell-therapy of tumors. Taking into account the tumor-homing properties of EPCs, two different approaches to control cancer progression have been pursued by combining the cell-based therapy with gene therapy or with nanomedicine. The first one is based on the possibility to engineer EPCs to express different transgenes, the second one on the capacity of EPCs to uptake nanomaterials. Here we will review the most important progresses covering the following issues: the characterization of bona fide endothelial progenitor cells, their role in tumor vascularisation and metastasis, and preclinical data about their use in cell-based tumor therapy, considering anti-angiogenic, suicide, immune-stimulating and oncolytic virus gene-therapy. The mixed approach of EPC cell therapy and nanomedicine will be discussed in terms of plasmonic-dependent thermoablation and molecular imaging.

  12. Reprogramming mouse fibroblasts into engraftable myeloerythroid and lymphoid progenitors

    PubMed Central

    Cheng, Hui; Ang, Heather Yin-Kuan; A. EL Farran, Chadi; Li, Pin; Fang, Hai Tong; Liu, Tong Ming; Kong, Say Li; Chin, Michael Lingzi; Ling, Wei Yin; Lim, Edwin Kok Hao; Li, Hu; Huber, Tara; Loh, Kyle M.; Loh, Yuin-Han; Lim, Bing

    2016-01-01

    Recent efforts have attempted to convert non-blood cells into hematopoietic stem cells (HSCs) with the goal of generating blood lineages de novo. Here we show that hematopoietic transcription factors Scl, Lmo2, Runx1 and Bmi1 can convert a developmentally distant lineage (fibroblasts) into ‘induced hematopoietic progenitors' (iHPs). Functionally, iHPs generate acetylcholinesterase+ megakaryocytes and phagocytic myeloid cells in vitro and can also engraft immunodeficient mice, generating myeloerythoid and B-lymphoid cells for up to 4 months in vivo. Molecularly, iHPs transcriptionally resemble native Kit+ hematopoietic progenitors. Mechanistically, reprogramming factor Lmo2 implements a hematopoietic programme in fibroblasts by rapidly binding to and upregulating the Hhex and Gfi1 genes within days. Moreover the reprogramming transcription factors also require extracellular BMP and MEK signalling to cooperatively effectuate reprogramming. Thus, the transcription factors that orchestrate embryonic hematopoiesis can artificially reconstitute this programme in developmentally distant fibroblasts, converting them into engraftable blood progenitors. PMID:27869129

  13. NLRP1 inflammasome activation induces pyroptosis of hematopoietic progenitor cells

    PubMed Central

    Masters, Seth L.; Gerlic, Motti; Metcalf, Donald; Preston, Simon; Pellegrini, Marc; O’Donnell, Joanne A.; McArthur, Kate; Baldwin, Tracey M.; Chevrier, Stephane; Nowell, Cameron J.; Cengia, Louise H.; Henley, Katya J.; Collinge, Janelle E.; Kastner, Daniel L.; Feigenbaum, Lionel; Hilton, Douglas J.; Alexander, Warren S.; Kile, Benjamin T.; Croker, Ben A.

    2014-01-01

    Cytopenias are key prognostic indicators of life-threatening infection, contributing to immunosuppression and mortality. Here we define a role for Caspase-1-dependent death, known as pyroptosis, in infection-induced cytopenias by studying inflammasome activation in hematopoietic progenitor cells. The NLRP1a inflammasome is expressed in hematopoietic progenitor cells and its activation triggers their pyroptotic death. Active NLRP1a induced a lethal systemic inflammatory disease that was driven by Caspase-1 and IL-1β but was independent of apoptosis-associated speck-like protein containing a CARD (ASC) and ameliorated by IL-18. Surprisingly, in the absence of IL-1β-driven inflammation, active NLRP1a triggered pyroptosis of hematopoietic progenitor cells resulting in leukopenia in the steady state. During periods of hematopoietic stress induced by chemotherapy or lymphocytic choriomeningitis virus (LCMV) infection, active NLRP1a caused prolonged cytopenia, bone marrow hypoplasia and immunosuppression. Conversely, NLRP1-deficient mice showed enhanced recovery from chemotherapy and LCMV infection, demonstrating that NLRP1 acts as a cellular sentinel to alert Caspase-1 to hematopoietic and infectious stress. PMID:23219391

  14. NOTCH signaling in skeletal progenitors is critical for fracture repair

    PubMed Central

    Wang, Cuicui; Inzana, Jason A.; Mirando, Anthony J.; Liu, Zhaoyang; Shen, Jie; O’Keefe, Regis J.; Awad, Hani A.; Hilton, Matthew J.

    2016-01-01

    Fracture nonunions develop in 10%–20% of patients with fractures, resulting in prolonged disability. Current data suggest that bone union during fracture repair is achieved via proliferation and differentiation of skeletal progenitors within periosteal and soft tissues surrounding bone, while bone marrow stromal/stem cells (BMSCs) and other skeletal progenitors may also contribute. The NOTCH signaling pathway is a critical maintenance factor for BMSCs during skeletal development, although the precise role for NOTCH and the requisite nature of BMSCs following fracture is unknown. Here, we evaluated whether NOTCH and/or BMSCs are required for fracture repair by performing nonstabilized and stabilized fractures on NOTCH-deficient mice with targeted deletion of RBPjk in skeletal progenitors, maturing osteoblasts, and committed chondrocytes. We determined that removal of NOTCH signaling in BMSCs and subsequent depletion of this population result in fracture nonunion, as the fracture repair process was normal in animals harboring either osteoblast- or chondrocyte-specific deletion of RBPjk. Together, this work provides a genetic model of a fracture nonunion and demonstrates the requirement for NOTCH and BMSCs in fracture repair, irrespective of fracture stability and vascularity. PMID:26950423

  15. Morphological and functional aspects of progenitors perturbed in cortical malformations

    PubMed Central

    Bizzotto, Sara; Francis, Fiona

    2015-01-01

    In this review, we discuss molecular and cellular mechanisms important for the function of neuronal progenitors during development, revealed by their perturbation in different cortical malformations. We focus on a class of neuronal progenitors, radial glial cells (RGCs), which are renowned for their unique morphological and behavioral characteristics, constituting a key element during the development of the mammalian cerebral cortex. We describe how the particular morphology of these cells is related to their roles in the orchestration of cortical development and their influence on other progenitor types and post-mitotic neurons. Important for disease mechanisms, we overview what is currently known about RGC cellular components, cytoskeletal mechanisms, signaling pathways and cell cycle characteristics, focusing on how defects lead to abnormal development and cortical malformation phenotypes. The multiple recent entry points from human genetics and animal models are contributing to our understanding of this important cell type. Combining data from phenotypes in the mouse reveals molecules which potentially act in common pathways. Going beyond this, we discuss future directions that may provide new data in this expanding area. PMID:25729350

  16. Centroacinar Cells Are Progenitors That Contribute to Endocrine Pancreas Regeneration

    PubMed Central

    Delaspre, Fabien; Beer, Rebecca L.; Rovira, Meritxell; Huang, Wei; Wang, Guangliang; Gee, Stephen; Vitery, Maria del Carmen; Wheelan, Sarah J.

    2015-01-01

    Diabetes is associated with a paucity of insulin-producing β-cells. With the goal of finding therapeutic routes to treat diabetes, we aim to find molecular and cellular mechanisms involved in β-cell neogenesis and regeneration. To facilitate discovery of such mechanisms, we use a vertebrate organism where pancreatic cells readily regenerate. The larval zebrafish pancreas contains Notch-responsive progenitors that during development give rise to adult ductal, endocrine, and centroacinar cells (CACs). Adult CACs are also Notch responsive and are morphologically similar to their larval predecessors. To test our hypothesis that adult CACs are also progenitors, we took two complementary approaches: 1) We established the transcriptome for adult CACs. Using gene ontology, transgenic lines, and in situ hybridization, we found that the CAC transcriptome is enriched for progenitor markers. 2) Using lineage tracing, we demonstrated that CACs do form new endocrine cells after β-cell ablation or partial pancreatectomy. We concluded that CACs and their larval predecessors are the same cell type and represent an opportune model to study both β-cell neogenesis and β-cell regeneration. Furthermore, we show that in cftr loss-of-function mutants, there is a deficiency of larval CACs, providing a possible explanation for pancreatic complications associated with cystic fibrosis. PMID:26153247

  17. Glial progenitor cell-based treatment of the childhood leukodystrophies

    PubMed Central

    Osorio, M. Joana; Goldman, Steven A.

    2017-01-01

    The childhood leukodystrophies comprise a group of hereditary disorders characterized by the absence, malformation or destruction of myelin. These disorders share common clinical, radiological and pathological features, despite their diverse molecular and genetic etiologies. Oligodendrocytes and astrocytes are the major affected cell populations, and are either structurally impaired or metabolically compromised through cell-intrinsic pathology, or are the victims of mis-accumulated toxic byproducts of metabolic derangement. In either case, glial cell replacement using implanted tissue or pluripotent stem cell-derived human neural or glial progenitor cells may comprise a promising strategy for both structural remyelination and metabolic rescue. A broad variety of pediatric white matter disorders, including the primary hypomyelinating disorders, the lysosomal storage disorders, and the broader group of non-lysosomal metabolic leukodystrophies, may all be appropriate candidates for glial progenitor cell-based treatment. Nonetheless, a variety of specific challenges remain before this therapeutic strategy can be applied to children. These include timely diagnosis, before irreparable neuronal injury has ensued; understanding the natural history of the targeted disease; defining the optimal cell phenotype for each disorder; achieving safe and scalable cellular compositions, designing age-appropriate controlled clinical trials; and for autologous therapy of genetic disorders, achieving the safe genetic editing of pluripotent stem cells. Yet these challenges notwithstanding, the promise of glial progenitor cell-based treatment of the childhood myelin disorders offers hope to the many victims of this otherwise largely untreatable class of disease. PMID:27170209

  18. Rising temperatures reduce global wheat production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Crop models are essential to assess the threat of climate change for food production but have not been systematically tested against temperature experiments, despite demonstrated uncertainty in temperature response. Herein, we compare 30 different wheat crop models against field experiments in which...

  19. Registration of ‘3434’ Wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The soft red winter (SRW) wheat (Triticum aestivum L.) cultivar ‘3434’ (Reg. No. CV-, PI) was developed by the Virginia Agricultural Experiment Station and released in March 2008. Cultivar 3434 was derived from the three-way cross ‘Roane’ (PI 612958) / ’Coker 9835’ (PI 548846 PVPO) // VA96W-270. Cul...

  20. Registration of ‘Shirley’ Wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    ‘Shirley’ (Reg. No. CV-, PI) soft red winter (SRW) wheat (Triticum aestivum L.) was developed by the Virginia Agricultural Experiment Station and released in March 2008. Shirley was derived from the three-way cross VA94-52-25 / ‘Coker 9835’ (PI 548846 PVPO) // VA96-54-234. Shirley is widely adapted ...

  1. Registration of ‘3434’ Wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soft red winter (SRW) wheat (Triticum aestivum L.) cultivar 3434 (Reg. No. CV-1040, PI 656754) developed and tested as VA03W-434 by the Virginia Agricultural Experiment Station was released in March 2008. Cultivar 3434 was derived from the three-way cross ‘Roane’/‘Coker 9835’//VA96W-270. Cultivar 34...

  2. Registration of ‘Shirley’ Wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    ‘Shirley’ (Reg. No. CV-1039, PI 656753) soft red winter (SRW) wheat (Triticum aestivum L.), developed and tested as VA03W-409 by the Virginia Agricultural Experiment Station, was released in March 2008. Shirley was derived from the three-way cross VA94-52-25/‘Coker 9835’//VA96-54-234. Shirley is wid...

  3. Registration of 'Advance' Hard Red Spring Wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Grower and end-user acceptance of new hard red spring wheat (HRSW; Triticum aestivum L.) cultivars is largely contingent on satisfactory agronomic performance, end-use quality potential, and disease resistance levels. Additional characteristics, such as desirable plant height, can also help to maxi...

  4. Wheat arabinoxylan structure provides insight into function

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recent attention to dietary fiber in wheat (Triticum aestivum L.) has invigorated research in the non-starch carbohydrate arabinoxylan. Arabinoxylan (AX) molecules are comprised of a linear xylose backbone with arabinose substitutions along the backbone. These arabinose substituents can also carry a...

  5. Registration of ‘Coral’ Wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    ‘Coral’ soft white winter wheat (Triticum aestivum L.) was developed by the Michigan Agricultural Experiment Station and released March 28, 2008, via an exclusive licensing agreement through Michigan State University (MSU) Technologies. Coral was selected from the cross MSU D3913 / MSU D0331 made i...

  6. Registration of 'Prevail' hard red spring wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Grower and end-user acceptance of new Hard Red Spring Wheat (HRSW; Triticum aestivum L.) cultivars is largely contingent upon satisfactory agronomic performance, end-use quality potential, and disease resistance levels. Additional characteristics, such as desirable plant height, can also contribute...

  7. Germinated wheat: Phytochemical composition and mixing characteristics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Germinated grain recently attracts interest due to its beneficial effect on human health. In this research, whole wheat flour samples obtained after three days and five days of germination were analyzed for biochemical components, mixing quality, and effects on human breast cancer cells. Germinati...

  8. Registration of ‘Jamestown’ Wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    ‘Jamestown’ (Reg. No. CV-, PI 653731) soft red winter wheat (Triticum aestivum L.) was developed and released by the Virginia Agricultural Experiment Station in March 2007. Jamestown was derived from the cross ‘Roane’ (PI 612958)/Pioneer Brand ‘2691’ (PI 590941 PVPO) and was tested under the experim...

  9. Registration of ‘Jamestown’ Wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    ‘Jamestown’ (Reg. No. CV-1041, PI 653731) soft red winter wheat (Triticum aestivum L.) was developed and released by the Virginia Agricultural Experiment Station in March 2007. Jamestown was derived from the cross ‘Roane’/Pioneer Brand ‘2691’ and was tested under the experimental number VA02W-370. J...

  10. Registration of ‘UI Darwin’ Wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    ‘UI Darwin’ (PI 639953) is a hard white winter wheat (Triticum aestivum L.) developed by the Idaho Agricultural Experiment Station and released in February 2006. UI Darwin, named for English naturalist Charles Darwin, was released for selected improvements in bread quality relative to hard white wi...

  11. Efflux Of Nitrate From Hydroponically Grown Wheat

    NASA Technical Reports Server (NTRS)

    Huffaker, R. C.; Aslam, M.; Ward, M. R.

    1992-01-01

    Report describes experiments to measure influx, and efflux of nitrate from hydroponically grown wheat seedlings. Ratio between efflux and influx greater in darkness than in light; increased with concentration of nitrate in nutrient solution. On basis of experiments, authors suggest nutrient solution optimized at lowest possible concentration of nitrate.

  12. Wheat productivity estimates using LANDSAT data. [Michigan

    NASA Technical Reports Server (NTRS)

    Nalepka, R. F.; Colwell, J. (Principal Investigator); Rice, D. P.

    1977-01-01

    The author has identified the following significant results. An initial demonstration was made of the capability to make direct production forecasts for winter wheat using early season LANDSAT data. The approach offers the potential to make production forecasts quickly and simply, possibly avoiding some of the complexities of alternate procedures.

  13. 21 CFR 137.190 - Cracked wheat.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 2 2012-04-01 2012-04-01 false Cracked wheat. 137.190 Section 137.190 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION CEREAL FLOURS AND RELATED PRODUCTS Requirements for Specific Standardized Cereal Flours...

  14. 21 CFR 137.190 - Cracked wheat.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 2 2014-04-01 2014-04-01 false Cracked wheat. 137.190 Section 137.190 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION CEREAL FLOURS AND RELATED PRODUCTS Requirements for Specific Standardized Cereal Flours...

  15. 21 CFR 137.195 - Crushed wheat.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 2 2012-04-01 2012-04-01 false Crushed wheat. 137.195 Section 137.195 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION CEREAL FLOURS AND RELATED PRODUCTS Requirements for Specific Standardized Cereal Flours...

  16. 21 CFR 137.190 - Cracked wheat.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 2 2013-04-01 2013-04-01 false Cracked wheat. 137.190 Section 137.190 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION CEREAL FLOURS AND RELATED PRODUCTS Requirements for Specific Standardized Cereal Flours...

  17. 21 CFR 137.195 - Crushed wheat.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 2 2013-04-01 2013-04-01 false Crushed wheat. 137.195 Section 137.195 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION CEREAL FLOURS AND RELATED PRODUCTS Requirements for Specific Standardized Cereal Flours...

  18. 21 CFR 137.195 - Crushed wheat.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 2 2014-04-01 2014-04-01 false Crushed wheat. 137.195 Section 137.195 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION CEREAL FLOURS AND RELATED PRODUCTS Requirements for Specific Standardized Cereal Flours...

  19. Insect and mite pests of durum wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This book chapter discusses the postharvest arthropod pests of durum wheat and their control. The main internally feeding pests are Rhyzopertha dominica, Sitophilus granarius, S. oryzae, and S. zeamais. The main externally feeding pests are Cryptolestes ferrugineus, Oryzaephilus surinamensis, O. m...

  20. 21 CFR 137.195 - Crushed wheat.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Crushed wheat. 137.195 Section 137.195 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION CEREAL FLOURS AND RELATED PRODUCTS Requirements for Specific Standardized Cereal Flours...