Determination of the role of Berberis spp. in wheat stem rust in China
USDA-ARS?s Scientific Manuscript database
Previous studies on the relationship of barberry (Berberis spp.) and wheat stem rust suggested that although some barberry species can serve as alternate hosts for the stem rust fungus Puccinia graminis f. sp. tritici (Pgt), barberry plants play no role in wheat stem rust development and virulence v...
Wheat Rusts in the United States in 2007
USDA-ARS?s Scientific Manuscript database
In 2007 90% of wheat stem rust races were QFC and 10% were RCRS Both races are relatively avirulent to wheat cultiars grown in the U.S. Wheat stem rust occurred in scattered locations on research plots of susceptible wheat cultivars in 2007, and did not cause yield loss. Wheat leaf rust was widespr...
Genetic characterization of stem rust resistance in a global spring wheat germplasm collection
USDA-ARS?s Scientific Manuscript database
Stem rust is considered one of the most damaging diseases of wheat. The recent emergence of the stem rust Ug99 race group poses a serious threat to world wheat production. Utilization of genetic resistance in cultivar development is the optimal way to control stem rust. Here we report association ma...
USDA-ARS?s Scientific Manuscript database
Research to identify and characterize stem rust resistance genes in common wheat, Triticum aestivum, has been stimulated by the emergence of Ug99-lineage races of the wheat stem rust pathogen, Puccinia graminis f. sp. tritici (Pgt), in Eastern Africa. The Montenegrin spring wheat landrace PI 362698 ...
USDA-ARS?s Scientific Manuscript database
Wheat stem rust caused by Puccinia graminis f. sp. tritici can cause severe yield losses on susceptible wheat varieties and cultivars. Although stem rust can be controlled by the use of genetic resistance, population dynamics of P. graminis f. sp. tritici can frequently lead to defeat of wheat stem ...
USDA-ARS?s Scientific Manuscript database
Wheat stem rust, caused by Puccinia graminis f. sp. tritici Erikss. & E. Henn, can incur yield losses on susceptible cultivars of durum wheat, Triticum turgidum ssp. durum (Desf.) Husnot. Though several durum cultivars possess the stem rust resistance gene Sr13, additional genes in durum wheat effec...
Edae, Erena A; Olivera, Pablo D; Jin, Yue; Poland, Jesse A; Rouse, Matthew N
2016-12-15
Wild relatives of wheat play a significant role in wheat improvement as a source of genetic diversity. Stem rust disease of wheat causes significant yield losses at the global level and stem rust pathogen race TTKSK (Ug99) is virulent to most previously deployed resistance genes. Therefore, the objective of this study was to identify loci conferring resistance to stem rust pathogen races including Ug99 in an Aegilops umbelluata bi-parental mapping population using genotype-by-sequencing (GBS) SNP markers. A bi-parental F 2:3 population derived from a cross made between stem rust resistant accession PI 298905 and stem rust susceptible accession PI 542369 was used for this study. F 2 individuals were evaluated with stem rust race TTTTF followed by testing F 2:3 families with races TTTTF and TTKSK. The segregation pattern of resistance to both stem rust races suggested the presence of one resistance gene. A genetic linkage map, comprised 1,933 SNP markers, was created for all seven chromosomes of Ae. umbellulata using GBS. A major stem rust resistance QTL that explained 80% and 52% of the phenotypic variations for TTTTF and TTKSK, respectively, was detected on chromosome 2U of Ae. umbellulata. The novel resistance gene for stem rust identified in this study can be transferred to commercial wheat varieties assisted by the tightly linked markers identified here. These markers identified through our mapping approach can be a useful strategy to identify and track the resistance gene in marker-assisted breeding in wheat.
Wheat rusts in the United States in 2011
USDA-ARS?s Scientific Manuscript database
Wheat stem rust (Puccinia graminis tritici) was found in Texas, Louisiana, Oklahoma, Kansas, Nebraska, North Dakota, Minnesota, Arkansas, Missouri, Kentucky, Illinois, Indiana, Wisconsin and Michigan in 2011. Nationally, wheat only incurred a trace loss due to wheat stem rust. Race QFCS was the most...
USDA-ARS?s Scientific Manuscript database
Background: Wild relatives of wheat play a significant role in wheat improvement as a source of genetic diversity. Stem rust disease of wheat causes significant yield losses at the global level and stem rust pathogen race TTKSK (Ug99) is virulent to most previously deployed resistance genes. Therefo...
USDA-ARS?s Scientific Manuscript database
The emergence and spread of new virulent races of the wheat stem rust pathogen (Puccinia graminis f. sp. tritici; Pgt), including the TTKSK (Ug99) race group, is a serious threat to global wheat production. In this study, we mapped and characterized two stem rust resistance genes from diploid wheat ...
USDA-ARS?s Scientific Manuscript database
Leaf rust, caused by Puccinia triticina (Pt) and stem rust caused by Puccinia graminis f. sp. tritici (Pgt) are important diseases of durum wheat. This study determined the inheritance and genomic locations of leaf rust resistance (Lr) genes to Pt-race BBBQJ and stem rust resistance (Sr) genes to Pg...
Detection of wheat stem rust race RRTTF in Ecuador in 2016
USDA-ARS?s Scientific Manuscript database
Wheat stem rust is a devastating disease that has incited numerous severe epidemics resulting in extreme yield losses over the past century. Stem rust infection in plots of wheat line UC11075, known to carry the Sr38 resistance gene, was severe in February 2016 in a nursery at the Instituto Nacional...
Genomic dissection of nonhost resistance to wheat stem rust in Brachypodium distachyon
USDA-ARS?s Scientific Manuscript database
Wheat stem rust caused by the fungus Puccinia graminis f.sp. tritici (Pgt) is a devastating disease that has largely been controlled for decades by the deployment of resistance genes. However, new races of this pathogen have emerged that overcome many important wheat stem rust resistance genes used ...
USDA-ARS?s Scientific Manuscript database
Stem rust of wheat caused by the fungal pathogen Puccinia graminis f. sp. tritici historically caused major yield losses of wheat worldwide. To understand the genetic basis of stem rust resistance in conventional North American spring wheat, genome-wide association analysis (GWAS) was conducted on a...
Genome-wide search of stem rust resistance loci at the seedling stage in durum wheat
USDA-ARS?s Scientific Manuscript database
Puccinia graminis f. sp. tritici, the causative agent of stem rust in wheat, is known to rapidly evolve new virulence to resistance genes. While more than 50 stem rust resistance (Sr) loci have been identified in wheat, only a few remain effective, particularly against the highly virulent race Ug99 ...
Targeted introgression of stem rust Ug99 resistance from wheatgrasses into pasta and bread wheat
USDA-ARS?s Scientific Manuscript database
In the past 50 years, a number of stem rust resistance (Sr) genes have been transferred from several wheat-related grasses into durum (i.e. pasta) and bread wheat through chromosome translocations and additions. To utilize these genes for controlling the Ug99 races of the stem rust pathogen, we ini...
Wheat rusts in the United States in 2014
USDA-ARS?s Scientific Manuscript database
Wheat stem rust caused by Puccinia graminis f. sp. tritici was not widespread or severe in the U.S. in 2014. It was only reported in nursery locations this season in Texas, Louisiana, Arkansas, Nebraska, Kansas, South Dakota, Minnesota and Wisconsin. Wheat stem rust was first reported on April 7 at ...
New insights into the obligate biotrophic lifestyle of rust fungi through comparative genomics
USDA-ARS?s Scientific Manuscript database
Wheat production continues to be plagued by rust pathogens and with the recent race shifts there is an increased concern regarding world food security. Three distinct rust fungi caused disease in wheat: Puccinia graminis f. sp. tritici (Pgt), stem rust or black stem rust; P. striiformis f. sp. triti...
A new 2DS·2RL Robertsonian translocation transfers stem rust resistance gene Sr59 into wheat.
Rahmatov, Mahbubjon; Rouse, Matthew N; Nirmala, Jayaveeramuthu; Danilova, Tatiana; Friebe, Bernd; Steffenson, Brian J; Johansson, Eva
2016-07-01
A new stem rust resistance gene Sr59 from Secale cereale was introgressed into wheat as a 2DS·2RL Robertsonian translocation. Emerging new races of the wheat stem rust pathogen (Puccinia graminis f. sp. tritici), from Africa threaten global wheat (Triticum aestivum L.) production. To broaden the resistance spectrum of wheat to these widely virulent African races, additional resistance genes must be identified from all possible gene pools. From the screening of a collection of wheat-rye (Secale cereale L.) chromosome substitution lines developed at the Swedish University of Agricultural Sciences, we described the line 'SLU238' 2R (2D) as possessing resistance to many races of P. graminis f. sp. tritici, including the widely virulent race TTKSK (isolate synonym Ug99) from Africa. The breakage-fusion mechanism of univalent chromosomes was used to produce a new Robertsonian translocation: T2DS·2RL. Molecular marker analysis and stem rust seedling assays at multiple generations confirmed that the stem rust resistance from 'SLU238' is present on the rye chromosome arm 2RL. Line TA5094 (#101) was derived from 'SLU238' and was found to be homozygous for the T2DS·2RL translocation. The stem rust resistance gene on chromosome 2RL arm was designated as Sr59. Although introgressions of rye chromosome arms into wheat have most often been facilitated by irradiation, this study highlights the utility of the breakage-fusion mechanism for rye chromatin introgression. Sr59 provides an additional asset for wheat improvement to mitigate yield losses caused by stem rust.
New approaches to rust resistance in wheat
USDA-ARS?s Scientific Manuscript database
Ug99 is new race of Puccinia graminis that is virulent on most of the widely deployed stem rust resistance genes from wheat, posing a serious threat to global wheat production. Sr35, a resistance gene from Triticum monococcum, confers resistance to Ug99 and all related Ug99-derived stem rust races i...
USDA-ARS?s Scientific Manuscript database
The Ug99 race (TTKSK) of wheat stem rust was first detected in Uganda in 1998, and since then seven additional variants have been reported, i.e., TTKSF, TTKST, TTTSK, TTKSP, PTKSK, PTKST, and TTKSF+. In this study, 84 stem rust samples from the 2014 surveys of wheat fields in east Africa (Kenya, 9; ...
A latent-period duration model for wheat stem rust
USDA-ARS?s Scientific Manuscript database
Wheat stem rust caused by Puccinia graminis subsp. graminis (Pgg) is a highly destructive disease of wheat and other small grains. The discovery of a Pgg race (Ug99) that overcomes durable resistance in wheat raises concerns for global wheat production and food security. There is currently no mat...
Li, Tian Ya; Cao, Yuan Yin; Wu, Xian Xin; Xu, Xiao Feng; Wang, Wan Lin
2016-01-01
Stem rust is one of the most potentially harmful wheat diseases, but has been effectively controlled in China since 1970s. However, the interest in breeding wheat with durable resistance to stem rust has been renewed with the emergence of Ug99 (TTKSK) virulent to the widely used resistance gene Sr31, and by which the wheat stem rust was controlled for 40 years in wheat production area worldwide. Yunnan Province, located on the Southwest border of China, is one of the main wheat growing regions, playing a pivotal role in the wheat stem rust epidemic in China. This study investigated the levels of resistance in key wheat cultivars (lines) of Yunnan Province. In addition, the existence of Sr25, Sr26, Sr28, Sr31, Sr32, and Sr38 genes in 119 wheat cultivars was assessed using specific DNA markers. The results indicated that 77 (64.7%) tested wheat varieties showed different levels of resistance to all the tested races of Puccinia graminis f. sp. tritici. Using molecular markers, we identified the resistance gene Sr31 in 43 samples; Sr38 in 10 samples; Sr28 in 12 samples, and one sample which was resistant against Ug99 (avirulent to Sr32). No Sr25 or Sr26 (effective against Ug99) was identified in any cultivars tested. Furthermore, 5 out of 119 cultivars tested carried both Sr31 and Sr38 and eight contained both Sr31 and Sr28. The results enable the development of appropriate strategies to breed varieties resistant to stem rust. PMID:27792757
Identification of stem rust resistance genes in wheat cultivars in China using molecular markers.
Xu, Xiaofeng; Yuan, Depeng; Li, Dandan; Gao, Yue; Wang, Ziyuan; Liu, Yang; Wang, Siting; Xuan, Yuanhu; Zhao, Hui; Li, Tianya; Wu, Yuanhua
2018-01-01
Wheat stem rust caused by Puccinia graminis f. sp. tritici Eriks. & E. Henn. ( Pgt ), is a major disease that has been effectively controlled using resistance genes. The appearance and spread of Pgt races such as Ug99, TKTTF, and TTTTF, which are virulent to most stem rust-resistant genes currently deployed in wheat breeding programs, renewed the interest in breeding cultivars resistant to wheat stem rust. It is therefore important to investigate the levels of resistance or vulnerability of wheat cultivars to Pgt races. Resistance to Pgt races 21C3CTHQM, 34MKGQM, and 34C3RTGQM was evaluated in 136 Chinese wheat cultivars at the seedling stage. A total of 124 cultivars (91.2%) were resistant to the three races. Resistance genes Sr2 , Sr24 , Sr25 , Sr26 , Sr31 , and Sr38 were analyzed using molecular markers closely linked to them, and 63 of the 136 wheat cultivars carried at least one of these genes: 21, 25, and 28 wheat cultivars likely carried Sr2 , Sr31 , and Sr38 , respectively. Cultivars "Kehan 3" and "Jimai 22" likely carried Sr25 . None of the cultivars carried Sr24 or Sr26 . These cultivars with known stem rust resistance genes provide valuable genetic material for breeding resistant wheat cultivars.
Muleta, Kebede T; Rouse, Matthew N; Rynearson, Sheri; Chen, Xianming; Buta, Bedada G; Pumphrey, Michael O
2017-08-04
The narrow genetic basis of resistance in modern wheat cultivars and the strong selection response of pathogen populations have been responsible for periodic and devastating epidemics of the wheat rust diseases. Characterizing new sources of resistance and incorporating multiple genes into elite cultivars is the most widely accepted current mechanism to achieve durable varietal performance against changes in pathogen virulence. Here, we report a high-density molecular characterization and genome-wide association study (GWAS) of stripe rust and stem rust resistance in 190 Ethiopian bread wheat lines based on phenotypic data from multi-environment field trials and seedling resistance screening experiments. A total of 24,281 single nucleotide polymorphism (SNP) markers filtered from the wheat 90 K iSelect genotyping assay was used to survey Ethiopian germplasm for population structure, genetic diversity and marker-trait associations. Upon screening for field resistance to stripe rust in the Pacific Northwest of the United States and Ethiopia over multiple growing seasons, and against multiple races of stripe rust and stem rust at seedling stage, eight accessions displayed resistance to all tested races of stem rust and field resistance to stripe rust in all environments. Our GWAS results show 15 loci were significantly associated with seedling and adult plant resistance to stripe rust at false discovery rate (FDR)-adjusted probability (P) <0.10. GWAS also detected 9 additional genomic regions significantly associated (FDR-adjusted P < 0.10) with seedling resistance to stem rust in the Ethiopian wheat accessions. Many of the identified resistance loci were mapped close to previously identified rust resistance genes; however, three loci on the short arms of chromosomes 5A and 7B for stripe rust resistance and two on chromosomes 3B and 7B for stem rust resistance may be novel. Our results demonstrate that considerable genetic variation resides within the landrace accessions that can be utilized to broaden the genetic base of rust resistance in wheat breeding germplasm. The molecular markers identified in this study should be useful in efficiently targeting the associated resistance loci in marker-assisted breeding for rust resistance in Ethiopia and other countries.
USDA-ARS?s Scientific Manuscript database
Stem rust (caused by Puccinia graminis f. sp. tritici) has historically caused severe yield losses of wheat (Triticum aestivum) worldwide and has been one of the most feared diseases of wheat and barley (Hordeum vulgare). Stem rust has been controlled successfully through the use of resistant varie...
USDA-ARS?s Scientific Manuscript database
Stem rust, caused by the macrocyclic fungal pathogen Puccinia graminis (Pg), is one of the most devastating diseases of wheat and other small grains globally; and the emergence of new stem rust races virulent on deployed resistance genes brings urgency to the discovery of more durable sources of gen...
Genetic maps of stem rust resistance gene Sr35 in diploid and hexaploid wheat
USDA-ARS?s Scientific Manuscript database
Puccinia graminis f. sp. tritici is the causal agent of stem rust of wheat. A new race designated TTKSK (also known as Ug99) has recently spread through East Africa, Yemen and on to Iran. TTKSK and its variants (TTKST and TTTSK) are virulent to most of the stem rust resistance genes currently deploy...
USDA-ARS?s Scientific Manuscript database
Stem rust, caused by Puccinia graminis Pers.:Pers. f. sp. tritici Eriks. & E. Henn.(Pgt), is a destructive disease of wheat that can be controlled by deploying effective stem rust resistance (Sr) genes. Highly virulent races of Pgt in Africa have been detected and characterized. These include race T...
USDA-ARS?s Scientific Manuscript database
Wheat is grown around the world and has been plagued by three rust fungi for centuries. Leaf rust, stripe rust, and stem rust each cause significant damage and can adapt quickly to overcome resistance that is present in wheat cultivars. Using advanced DNA sequencing technology, the genomes of leaf ...
Characterization of stem rust resistance in wheat cultivar 'Gage'
USDA-ARS?s Scientific Manuscript database
Wheat (Triticum spp.) stem rust, caused by Puccinia graminis f. sp. tritici Eriks. & E. Henn. (Pgt), re-emerged as a devastating disease of wheat because of virulent race Ug99 (TTKSK). Many bread wheat (T. aestivum L.) cultivars grown in North America are susceptible to Ug99 or its derivative races ...
Sources of stem rust resistance in wheat-alien introgression lines
USDA-ARS?s Scientific Manuscript database
Stem rust, caused by Puccinia graminis f. sp. tritici, is one of the most devastating diseases of wheat and the novel highly virulent race of TTKSK and its lineage are threatening wheat production worldwide. The objective of the study was to identify new sources of resistance in wheat-alien introgre...
Mago, Rohit; Verlin, Dawn; Zhang, Peng; Bansal, Urmil; Bariana, Harbans; Jin, Yue; Ellis, Jeffrey; Hoxha, Sami; Dundas, Ian
2013-12-01
Wheat- Aegilops speltoides recombinants carrying stem rust resistance genes Sr32 and SrAes1t effective against Ug99 and PCR markers for marker-assisted selection. Wild relatives of wheat are important resources for new rust resistance genes but underutilized because the valuable resistances are often linked to negative traits that prevent deployment of these genes in commercial wheats. Here, we report ph1b-induced recombinants with reduced alien chromatin derived from E.R. Sears' wheat-Aegilops speltoides 2D-2S#1 translocation line C82.2, which carries the widely effective stem rust resistance gene Sr32. Infection type assessments of the recombinants showed that the original translocation in fact carries two stem rust resistance genes, Sr32 on the short arm and a previously undescribed gene SrAes1t on the long arm of chromosome 2S#1. Recombinants with substantially shortened alien chromatin were produced for both genes, which confer resistance to stem rust races in the TTKSK (Ug99) lineage and representative races of all Australian stem rust lineages. Selected recombinants were back crossed into adapted Australian cultivars and PCR markers were developed to facilitate the incorporation of these genes into future wheat varieties. Our recombinants and those from several other labs now show that Sr32, Sr39, and SrAes7t on the short arm and Sr47 and SrAes1t on the long arm of 2S#1 form two linkage groups and at present no rust races are described that can distinguish these resistance specificities.
Molecular Characterization of wheat stem rust races in Kenya
USDA-ARS?s Scientific Manuscript database
Stem or black rust caused by Puccinia graminis f. sp. tritici (Pgt) Erikss. & Henning causes severe losses to wheat (Triticum aestivum L.), historically threatening global wheat production. Characterizing prevalent isolates of Pgt would enhance the knowledge of population dynamics and evolution of t...
Discovery and characterization of two new stem rust resistance genes in Aegilops sharonensis.
Yu, Guotai; Champouret, Nicolas; Steuernagel, Burkhard; Olivera, Pablo D; Simmons, Jamie; Williams, Cole; Johnson, Ryan; Moscou, Matthew J; Hernández-Pinzón, Inmaculada; Green, Phon; Sela, Hanan; Millet, Eitan; Jones, Jonathan D G; Ward, Eric R; Steffenson, Brian J; Wulff, Brande B H
2017-06-01
We identified two novel wheat stem rust resistance genes, Sr-1644-1Sh and Sr-1644-5Sh in Aegilops sharonensis that are effective against widely virulent African races of the wheat stem rust pathogen. Stem rust is one of the most important diseases of wheat in the world. When single stem rust resistance (Sr) genes are deployed in wheat, they are often rapidly overcome by the pathogen. To this end, we initiated a search for novel sources of resistance in diverse wheat relatives and identified the wild goatgrass species Aegilops sharonesis (Sharon goatgrass) as a rich reservoir of resistance to wheat stem rust. The objectives of this study were to discover and map novel Sr genes in Ae. sharonensis and to explore the possibility of identifying new Sr genes by genome-wide association study (GWAS). We developed two biparental populations between resistant and susceptible accessions of Ae. sharonensis and performed QTL and linkage analysis. In an F 6 recombinant inbred line and an F 2 population, two genes were identified that mapped to the short arm of chromosome 1S sh , designated as Sr-1644-1Sh, and the long arm of chromosome 5S sh , designated as Sr-1644-5Sh. The gene Sr-1644-1Sh confers a high level of resistance to race TTKSK (a member of the Ug99 race group), while the gene Sr-1644-5Sh conditions strong resistance to TRTTF, another widely virulent race found in Yemen. Additionally, GWAS was conducted on 125 diverse Ae. sharonensis accessions for stem rust resistance. The gene Sr-1644-1Sh was detected by GWAS, while Sr-1644-5Sh was not detected, indicating that the effectiveness of GWAS might be affected by marker density, population structure, low allele frequency and other factors.
USDA-ARS?s Scientific Manuscript database
A severe stem rust epidemic occurred in southern Ethiopia during November 2013 to January 2014 with yield losses close to 100% on the most widely grown wheat cultivar, 'Digalu'. Sixty-four stem rust samples collected from the regions were analyzed. A meteorological model for airborne spore dispersal...
A new 2DS·2RL Robertsonian translocation transfers Sr59 resistance to stem rust into wheat
USDA-ARS?s Scientific Manuscript database
Emerging new races of the wheat stem rust pathogen Puccinia graminis f. sp. tritici Eriks. & E. Henn, especially the Ug99 race group threaten global wheat, Triticum aestivum L., production. Screening of a collection of wheat-rye, Secale cereale L., chromosome substitution lines developed at the Swed...
USDA-ARS?s Scientific Manuscript database
Wheat stem rust (Puccinia graminis f. sp. tritici Eriks. and E. Henn.) is one of the most destructive diseases world-wide. Races belonging to Ug99 (or TTKSK) continue to cause crop losses in East Africa and threaten global wheat production. Developing and deploying wheat varieties with multiple race...
Mago, Rohit; Zhang, P; Bariana, H S; Verlin, D C; Bansal, U K; Ellis, J G; Dundas, I S
2009-11-01
The use of major resistance genes is a cost-effective strategy for preventing stem rust epidemics in wheat crops. The stem rust resistance gene Sr39 provides resistance to all currently known pathotypes of Puccinia graminis f. sp. tritici (Pgt) including Ug99 (TTKSK) and was introgressed together with leaf rust resistance gene Lr35 conferring adult plant resistance to P. triticina (Pt), into wheat from Aegilops speltoides. It has not been used extensively in wheat breeding because of the presumed but as yet undocumented negative agronomic effects associated with Ae. speltoides chromatin. This investigation reports the production of a set of recombinants with shortened Ae. speltoides segments through induction of homoeologous recombination between the wheat and the Ae. speltoides chromosome. Simple PCR-based DNA markers were developed for resistant and susceptible genotypes (Sr39#22r and Sr39#50s) and validated across a set of recombinant lines and wheat cultivars. These markers will facilitate the pyramiding of ameliorated sources of Sr39 with other stem rust resistance genes that are effective against the Pgt pathotype TTKSK and its variants.
Stem rust resistance in 1BL.1RS and 2RL.2BS double wheat-rye translocation lines
USDA-ARS?s Scientific Manuscript database
The wheat stem rust pathogen, Puccinia graminis f. sp. tritici, is a significant and devastating disease of wheat crops worldwide. Wheat has many wild relatives in which to source new resistance genes, including the cereal crop of rye in the tertiary genepool. The aim of this study was to assess the...
USDA-ARS?s Scientific Manuscript database
Background: Wheat leaf rust (Puccinia triticina Eriks; Pt) and stem rust (P. graminis f.sp. tritici; Pgt) are significant economic pathogens having similar host ranges and life cycles, but different alternate hosts. The Pt genome, currently estimated at 135 Mb, is significantly larger than Pgt, at ...
USDA-ARS?s Scientific Manuscript database
The challenge posed by rapidly changing wheat rust pathogens, both in virulence and in environmental adaptation, calls for the development and application of new techniques to accelerate the process of breeding for durable resistance. To expand the wheat resistance gene pool available for germplasm ...
USDA-ARS?s Scientific Manuscript database
The Puccinia graminis f. sp. tritici (Pgt) Ug99 race group is virulent to most stem rust resistance genes currently deployed in wheat and poses a serious threat to global wheat production. The durum wheat (Triticum turgidum ssp. durum) gene Sr13 confers resistance to Ug99 in addition to virulent rac...
A mutagenesis-derived broad-spectrum disease resistance locus in wheat
USDA-ARS?s Scientific Manuscript database
Wheat leaf rust, stem rust, stripe rust, and powdery mildew caused by the fungal pathogens Puccinia triticina, P. graminis f. sp. tritici, P. striiformis f. sp. tritici, and Blumeria graminis f. sp. tritici, respectively, are destructive diseases of wheat worldwide. The most effective and widely uti...
Identification of wheat gene Sr35 that confers resistance to Ug99 stem rust race group
USDA-ARS?s Scientific Manuscript database
Wheat stem rust, caused by Puccinia graminis f. sp. tritici (Pgt) is a devastating disease that can cause severe yield losses. A new Pgt race designated Ug99 has overcome most of the widely used resistance genes and is spreading through Africa and Asia threatening major wheat production areas. We re...
USDA-ARS?s Scientific Manuscript database
Wheat production in many wheat-growing regions is vulnerable to stem rust, caused by Puccinia graminis f. sp. tritici (Pgt). Several previous studies showed that most of the durum cultivars adapted to the upper Great Plains in the U.S. have good resistance to the major Pgt pathotypes, including the...
Faris, Justin D; Xu, Steven S; Cai, Xiwen; Friesen, Timothy L; Jin, Yue
2008-01-01
Stem rust is a serious disease of wheat that has caused historical epidemics, but it has not been a threat in recent decades in North America owing to the eradication of the alternative host and deployment of resistant cultivars. However, the recent emergence of Ug99 (or race TTKS) poses a threat to global wheat production because most currently grown wheat varieties are susceptible. In this study, we evaluated a durum wheat-Aegilops speltoides chromosome translocation line (DAS15) for reaction to Ug99 and six other races of stem rust, and used molecular and cytogenetic tools to characterize the translocation. DAS15 was resistant to all seven races of stem rust. Two durum-Ae. speltoides translocated chromosomes were detected in DAS15. One translocation involved the short arm, centromere, and a major portion of the long arm of Ae. speltoides chromosome 2S and a small terminal segment from durum chromosome arm 2BL. Thus, this translocated chromosome is designated T2BL-2SL*2SS. Cytogenetic mapping assigned the resistance gene(s) in DAS15 to the Ae. speltoides segment in T2BL-2SL*2SS. The Ae. speltoides segment in the other translocated chromosome did not harbour stem rust resistance. A comparison of DAS15 and the wheat stocks carrying the Ae. speltoides-derived resistance genes Sr32 and Sr39 indicated that stem rust resistance gene present in DAS15 is likely novel and will be useful for developing germplasm with resistance to Ug99. Efforts to reduce Ae. speltoides chromatin in T2BL-2SL*2SS are currently in progress.
Prins, Renée; Dreisigacker, Susanne; Pretorius, Zakkie; van Schalkwyk, Hester; Wessels, Elsabet; Smit, Corneli; Bender, Cornel; Singh, Davinder; Boyd, Lesley A.
2016-01-01
Following the emergence of the Ug99 lineage of Puccinia graminis f. sp. tritici (Pgt) a collective international effort has been undertaken to identify new sources of wheat stem rust resistance effective against these races. Analyses were undertaken in a collection of wheat genotypes gathered from across Africa to identify stem rust resistance effective against the Pgt races found in Eastern and Southern Africa. The African wheat collection consisted of historic genotypes collected in Kenya, South Africa, Ethiopia, Sudan, Zambia, Morocco, and Tunisia, and current South African breeding lines. Both Bayesian cluster and principal coordinate analyses placed the wheat lines from Sudan in a distinct group, but indicated a degree of genetic relatedness among the other wheat lines despite originating from countries across Africa. Seedling screens with Pgt race PTKST, pedigree information and marker haplotype analysis confirmed the presence of Sr2, Sr36, Sr24, Sr31, and Lr34/Yr18/Sr57 in a number of the lines. A genome-wide association study (GWAS) undertaken with Diversiry Arrays Technology (DArT) and stem rust (Sr) gene associated markers and Stem Area Infected (SAI) and Reaction Type (RT) field phenotypes, collected from trials carried out across two seasons in Kenya in 2009 and in South Africa in 2011, identified 29 marker-trait associations (MTA). Three MTA were in common between SAI and RT, with the biggest effect MTA being found on chromosome 6AS. Two wheat lines, W1406 and W6979 that exhibited high levels of adult plant stem rust resistance were selected to generate bi-parental mapping populations. Only the MTA on chromosomes 6AS and 3BS, and the locus Lr34/Yr18/Sr57 were confirmed following QTL mapping. Additional stem rust resistance QTL, not detected by the GWAS, were found on chromosomes 2BS, 2DL, 3DL, and 4D. PMID:27462322
Abdullah, Sidrat; Sehgal, Sunish Kumar; Jin, Yue; Turnipseed, Brent; Ali, Shaukat
2017-01-01
Tan spot (TS), caused by the fungus Pyrenophora tritici-repentis (Died) Drechs, is an important foliar disease of wheat and has become a threat to world wheat production since the 1970s. In this study a globally diverse pre-1940s collection of 247 wheat genotypes was evaluated against Ptr ToxA, P. tritici-repentis race 1, and stem rust to determine if; (i) acquisition of Ptr ToxA by the P. tritici-repentis from Stagonospora nodorum led to increased pathogen virulence or (ii) incorporation of TS susceptibility during development stem rust resistant cultivars led to an increase in TS epidemics globally. Most genotypes were susceptible to stem rust; however, a range of reactions to TS and Ptr ToxA were observed. Four combinations of disease-toxin reactions were observed among the genotypes; TS susceptible-Ptr ToxA sensitive, TS susceptible-Ptr ToxA insensitive, TS resistant-Ptr ToxA insensitive, and TS resistant-Ptr ToxA toxin sensitive. A weak correlation (r = 0.14 for bread wheat and −0.082 for durum) was observed between stem rust susceptibility and TS resistance. Even though there were no reported epidemics in the pre-1940s, TS sensitive genotypes were widely grown in that period, suggesting that Ptr ToxA may not be an important factor responsible for enhanced prevalence of TS. PMID:28381959
USDA-ARS?s Scientific Manuscript database
Rust fungi are obligate biotrophic pathogens causing considerable damage on crop plants. P. graminis f. sp. tritici, the causal agent of wheat stem rust, and M. larici-populina, the poplar rust pathogen, have strong deleterious impact on wheat and poplar wood production, respectively. The recently r...
Genomic selection for quantitative adult plant stem rust resistance in wheat
USDA-ARS?s Scientific Manuscript database
Quantitative adult plant resistance (APR) to stem rust (Puccinia graminis f. sp. tritici) is an important breeding target in wheat (Triticum aestivum L.) and a potential target for genomic selection (GS). To evaluate the relative importance of known APR loci in applying genomic selection, we charact...
USDA-ARS?s Scientific Manuscript database
A new race of Puccinia graminis f. sp. tritici, the causal pathogen of stem rust of wheat, designated TTKSK (also known as Ug99) and its variants are virulent to most of the stem rust resistance genes currently deployed in wheat cultivars worldwide. Therefore, identification, mapping and deployment ...
2004-04-01
triple-awn grass, annual fescues, and foxtail barley . Intermixed with these dominant grasses are an assemblage of native and non-native forb species...as a wheat- stem rust (fungal disease) biological production test site. Chemicals associated with the wheat- stem rust program included freon, carbon...Carboxide treatment (using a solution of 10 percent ethylene oxide and 90 percent carbon dioxide) was used to destroy the rust fungus stocks. Residual
Potential impacts of ambient ozone on wheat rust diseases and the role of plant ozone sensitivity
USDA-ARS?s Scientific Manuscript database
The resurgence of rust diseases and the continued rise in tropospheric ozone (O3) levels have the potential to limit global wheat production. We conducted a series of experiments to understand the potential interactions between these two stress factors. Both stem rust and leaf rust were increased o...
Gene action and linkage of avirulence genes to DNA makers in the rust fungus Puccinia graminis
P. J. Zambino; A. R. Kubelik; L. J. Szabo
2000-01-01
Two strains of the wheat stem rust fungus, Puccinia graminis f. sp. tritici, were crossed on barberry, and a single F1 progeny strain was seifed. The parents, F1 and 81 F2 progeny were examined for virulence phenotypes on wheat differential cultivars carrying stem...
Major Gene for Field Stem Rust Resistance Co-Locates with Resistance Gene Sr12 in ‘Thatcher’ Wheat
Hiebert, Colin W.; Kolmer, James A.; McCartney, Curt A.; Briggs, Jordan; Fetch, Tom; Bariana, Harbans; Choulet, Frederic; Rouse, Matthew N.; Spielmeyer, Wolfgang
2016-01-01
Stem rust, caused by Puccinia graminis (Pgt), is a damaging disease of wheat that can be controlled by utilizing effective stem rust resistance genes. ‘Thatcher’ wheat carries complex resistance to stem rust that is enhanced in the presence of the resistance gene Lr34. The purpose of this study was to examine APR in ‘Thatcher’ and look for genetic interactions with Lr34. A RIL population was tested for stem rust resistance in field nurseries in Canada, USA, and Kenya. BSA was used to find SNP markers associated with reduced stem rust severity. A major QTL was identified on chromosome 3BL near the centromere in all environments. Seedling testing showed that Sr12 mapped to the same region as the QTL for APR. The SNP markers were physically mapped and the region carrying the resistance was searched for sequences with homology to members of the NB-LRR resistance gene family. SNP marker from one NB-LRR-like sequence, NB-LRR3 co-segregated with Sr12. Two additional populations, including one that lacked Lr34, were tested in field nurseries. NB-LRR3 mapped near the maximum LOD for reduction in stem rust severity in both populations. Lines from a population that segregated for Sr12 and Lr34 were tested for seedling Pgt biomass and infection type, as well as APR to field stem rust which showed an interaction between the genes. We concluded that Sr12, or a gene closely linked to Sr12, was responsible for ‘Thatcher’-derived APR in several environments and this resistance was enhanced in the presence of Lr34. PMID:27309724
Major Gene for Field Stem Rust Resistance Co-Locates with Resistance Gene Sr12 in 'Thatcher' Wheat.
Hiebert, Colin W; Kolmer, James A; McCartney, Curt A; Briggs, Jordan; Fetch, Tom; Bariana, Harbans; Choulet, Frederic; Rouse, Matthew N; Spielmeyer, Wolfgang
2016-01-01
Stem rust, caused by Puccinia graminis (Pgt), is a damaging disease of wheat that can be controlled by utilizing effective stem rust resistance genes. 'Thatcher' wheat carries complex resistance to stem rust that is enhanced in the presence of the resistance gene Lr34. The purpose of this study was to examine APR in 'Thatcher' and look for genetic interactions with Lr34. A RIL population was tested for stem rust resistance in field nurseries in Canada, USA, and Kenya. BSA was used to find SNP markers associated with reduced stem rust severity. A major QTL was identified on chromosome 3BL near the centromere in all environments. Seedling testing showed that Sr12 mapped to the same region as the QTL for APR. The SNP markers were physically mapped and the region carrying the resistance was searched for sequences with homology to members of the NB-LRR resistance gene family. SNP marker from one NB-LRR-like sequence, NB-LRR3 co-segregated with Sr12. Two additional populations, including one that lacked Lr34, were tested in field nurseries. NB-LRR3 mapped near the maximum LOD for reduction in stem rust severity in both populations. Lines from a population that segregated for Sr12 and Lr34 were tested for seedling Pgt biomass and infection type, as well as APR to field stem rust which showed an interaction between the genes. We concluded that Sr12, or a gene closely linked to Sr12, was responsible for 'Thatcher'-derived APR in several environments and this resistance was enhanced in the presence of Lr34.
Variation in the AvrSr35 effector determines Sr35 resistance against wheat stem rust race Ug99
USDA-ARS?s Scientific Manuscript database
Puccinia graminis f. sp. tritici (Pgt) causes wheat stem rust, a devastating fungal disease. The Sr35 resistance gene confers immunity against this pathogen’s most virulent races, including Ug99. We used the comparative whole genome sequencing of chemically mutagenized and natural Pgt isolates to id...
Introgression of a new stem rust resistance gene from Aegilops markgrafii into wheat
USDA-ARS?s Scientific Manuscript database
In a prior study, we reported that an Alcedo/Aegilops markgrafii disomic addition line, AIII(D) (2n=44), was resistant to three races of the Ug99 lineage and five North American races of stem rust pathogen in wheat and the resistance originated from the alien chromosome. In this study, our objectiv...
Somatic recombination in wheat stem rust leads to virulence for Ug99-effective SR50 resistance
USDA-ARS?s Scientific Manuscript database
Race-specific resistance genes protect much of the global wheat crop from stem rust disease caused by Puccinia graminis f. sp. tritici (Pgt), but often break down due to evolution of new virulent pathogen races. To understand the molecular mechanisms of virulence evolution in Pgt we identified the p...
USDA-ARS?s Scientific Manuscript database
Wheat production is threatened by the disease stem rust, which is caused by the biotrophic fungal pathogen Puccinia graminis Pers.:Pers. f. sp. tritici (Pgt). Among all known Pgt races, TTKSK (Ug99) and TRTTF are significant threats to North American wheat production due to their virulence against f...
Singh, A; Knox, R E; DePauw, R M; Singh, A K; Cuthbert, R D; Campbell, H L; Shorter, S; Bhavani, S
2014-11-01
In wheat, advantageous gene-rich or pleiotropic regions for stripe, leaf, and stem rust and epistatic interactions between rust resistance loci should be accounted for in plant breeding strategies. Leaf rust (Puccinia triticina Eriks.) and stripe rust (Puccinia striiformis f. tritici Eriks) contribute to major production losses in many regions worldwide. The objectives of this research were to identify and study epistatic interactions of quantitative trait loci (QTL) for stripe and leaf rust resistance in a doubled haploid (DH) population derived from the cross of Canadian wheat cultivars, AC Cadillac and Carberry. The relationship of leaf and stripe rust resistance QTL that co-located with stem rust resistance QTL previously mapped in this population was also investigated. The Carberry/AC Cadillac population was genotyped with DArT(®) and simple sequence repeat markers. The parents and population were phenotyped for stripe rust severity and infection response in field rust nurseries in Kenya (Njoro), Canada (Swift Current), and New Zealand (Lincoln); and for leaf rust severity and infection response in field nurseries in Canada (Swift Current) and New Zealand (Lincoln). AC Cadillac was a source of stripe rust resistance QTL on chromosomes 2A, 2B, 3A, 3B, 5B, and 7B; and Carberry was a source of resistance on chromosomes 2B, 4B, and 7A. AC Cadillac contributed QTL for resistance to leaf rust on chromosome 2A and Carberry contributed QTL on chromosomes 2B and 4B. Stripe rust resistance QTL co-localized with previously reported stem rust resistance QTL on 2B, 3B, and 7B, while leaf rust resistance QTL co-localized with 4B stem rust resistance QTL. Several epistatic interactions were identified both for stripe and leaf rust resistance QTL. We have identified useful combinations of genetic loci with main and epistatic effects. Multiple disease resistance regions identified on chromosomes 2A, 2B, 3B, 4B, 5B, and 7B are prime candidates for further investigation and validation of their broad resistance.
USDA-ARS?s Scientific Manuscript database
Wild relatives of wheat are important but underutilized resources for new rust resistance genes because linked negative traits often hinder deployment of these genes in commercial wheats. Here we report reduced alien chromatin recombinants derived from E.R. Sears wheat-Aegilops speltoides translocat...
USDA-ARS?s Scientific Manuscript database
Wild relatives of wheat are important but underutilized resources for new rust resistance genes because linked negative traits often hinder deployment of these genes in commercial wheats. Here we report reduced alien chromatin recombinants derived from E.R. Sears' wheat-Aegilops speltoides transloca...
Association Analysis of Stem Rust Resistance in U.S. Winter Wheat
Zhang, Dadong; Bowden, Robert L.; Yu, Jianming; Carver, Brett F.; Bai, Guihua
2014-01-01
Stem rust has become a renewed threat to global wheat production after the emergence and spread of race TTKSK (also known as Ug99) and related races from Africa. To elucidate U.S. winter wheat resistance genes to stem rust, association mapping was conducted using a panel of 137 lines from cooperative U.S. winter wheat nurseries from 2008 and simple sequence repeat (SSR) and sequence tagged site (STS) markers across the wheat genome. Seedling infection types were evaluated in a greenhouse experiment using six U.S. stem rust races (QFCSC, QTHJC, RCRSC, RKQQC, TPMKC and TTTTF) and TTKSK, and adult plant responses to bulked U.S. races were evaluated in a field experiment. A linearization algorithm was used to convert the qualitative Stakman scale seedling infection types for quantitative analysis. Association mapping successfully detected six known stem rust seedling resistance genes in U.S. winter wheat lines with frequencies: Sr6 (12%), Sr24 (9%), Sr31 (15%), Sr36 (9%), Sr38 (19%), and Sr1RSAmigo (8%). Adult plant resistance gene Sr2 was present in 4% of lines. SrTmp was postulated to be present in several hard winter wheat lines, but the frequency could not be accurately determined. Sr38 was the most prevalent Sr gene in both hard and soft winter wheat and was the most effective Sr gene in the adult plant field test. Resistance to TTKSK was associated with nine markers on chromosome 2B that were in linkage disequilibrium and all of the resistance was attributed to the Triticum timopheevii chromosome segment carrying Sr36. Potential novel rust resistance alleles were associated with markers Xwmc326-203 on 3BL, Xgwm160-195 and Xwmc313-225 on 4AL near Sr7, Xgwm495-182 on 4BL, Xwmc622-147 and Xgwm624-146 on 4DL, and Xgwm334-123 on 6AS near Sr8. Xwmc326-203 was associated with adult plant resistance to bulked U.S. races and Xgwm495-182 was associated with seedling resistance to TTKSK. PMID:25072699
Chen, Shisheng; Zhang, Wenjun; Bolus, Stephen; Rouse, Matthew N.
2018-01-01
Wheat stem rust, caused by Puccinia graminis f. sp. tritici (Pgt), is a devastating foliar disease. The Ug99 race group has combined virulence to most stem rust (Sr) resistance genes deployed in wheat and is a threat to global wheat production. Here we identified a coiled-coil, nucleotide-binding leucine-rich repeat protein (NLR) completely linked to the Ug99 resistance gene Sr21 from Triticum monococcum. Loss-of-function mutations and transgenic complementation confirmed that this gene is Sr21. Sr21 transcripts were significantly higher at high temperatures, and this was associated with significant upregulation of pathogenesis related (PR) genes and increased levels of resistance at those temperatures. Introgression of Sr21 into hexaploid wheat resulted in lower levels of resistance than in diploid wheat, but transgenic hexaploid wheat lines with high levels of Sr21 expression showed high levels of resistance. Sr21 can be a valuable component of transgenic cassettes or gene pyramids combining multiple resistance genes against Ug99. PMID:29614079
Qi, L L; Pumphrey, M O; Friebe, Bernd; Zhang, P; Qian, C; Bowden, R L; Rouse, M N; Jin, Y; Gill, B S
2011-06-01
Stem rust (Puccinia graminis f. sp. tritici Eriks. & E. Henn.) (the causal agent of wheat stem rust) race Ug99 (also designated TTKSK) and its derivatives have defeated several important stem rust resistance genes widely used in wheat (Triticum aestivum L.) production, rendering much of the worldwide wheat acreage susceptible. In order to identify new resistance sources, a large collection of wheat relatives and genetic stocks maintained at the Wheat Genetic and Genomic Resources Center was screened. The results revealed that most accessions of the diploid relative Dasypyrum villosum (L.) Candargy were highly resistant. The screening of a set of wheat-D. villosum chromosome addition lines revealed that the wheat-D. villosum disomic addition line DA6V#3 was moderately resistant to race Ug99. The objective of the present study was to produce and characterize compensating wheat-D. villosum whole arm Robertsonian translocations (RobTs) involving chromosomes 6D of wheat and 6V#3 of D. villosum through the mechanism of centric breakage-fusion. Seven 6V#3-specific EST-STS markers were developed for screening F(2) progeny derived from plants double-monosomic for chromosomes 6D and 6V#3. Surprisingly, although 6D was the target chromosome, all recovered RobTs involved chromosome 6A implying a novel mechanism for the origin of RobTs. Homozygous translocations (T6AS·6V#3L and T6AL·6V#3S) with good plant vigor and full fertility were selected from F(3) families. A stem rust resistance gene was mapped to the long arm 6V#3L in T6AS·6V#3L and was designated as Sr52. Sr52 is temperature-sensitive and is most effective at 16°C, partially effective at 24°C, and ineffective at 28°C. The T6AS·6V#3L stock is a new source of resistance to Ug99, is cytogenetically stable, and may be useful in wheat improvement.
USDA-ARS?s Scientific Manuscript database
Stem rust (caused by Puccinia graminis f. sp. tritici Erikss. & E. Henn.), is a major disease in wheat (Triticum aestivium L.). However, in recent years it occurs rarely in Nebraska due to weather and the effective selection and gene pyramiding of resistance genes. To understand the genetic basis of...
Mapping resistance to the Ug99 race group of the stem rust pathogen in a spring wheat landrace
USDA-ARS?s Scientific Manuscript database
Wheat landrace PI 374670 has seedling and field resistance to stem rust caused by Puccinia graminis f. sp tritici Eriks. & E. Henn (Pgt) race TTKSK. To elucidate the inheritance of resistance, 216 BC1F2 families, 192 double haploid (DH) lines, and 185 recombinant inbred lines (RILs) were developed b...
Resistance to Stem Rust Pathotype TTKSK Maps to the Rgp4/Rpg5 Complex of Chromosome 5H of Barley
USDA-ARS?s Scientific Manuscript database
The wheat stem rust (Puccinia graminis f. sp. tritici) pathotype TTKSK (original isolate synonym Ug99) is a serious threat to both wheat and barley production worldwide because of its wide virulence on many cultivars and rapid spread from eastern Africa. Line Q21861 is one of the most resistant bar...
USDA-ARS?s Scientific Manuscript database
An unusual stem rust infestation occurred in German wheat fields in summer 2013. We analyzed 48 isolates derived from 16 Puccinia graminis f. sp. tritici (Pgt) samples and six races were identified: TKTTF, TKKTF, TKPTF, TKKTP, PKPTF, and MMMTF. Infection type and genotypic data confirm that none of ...
Specificity of a Rust Resistance Suppressor on 7DL in the Spring Wheat Cultivar Canthatch.
Talajoor, Mina; Jin, Yue; Wan, Anmin; Chen, Xianming; Bhavani, Sridhar; Tabe, Linda; Lagudah, Evans; Huang, Li
2015-04-01
The spring wheat 'Canthatch' has been shown to suppress stem rust resistance genes in the background due to the presence of a suppressor gene located on the long arm of chromosome 7D. However, it is unclear whether the suppressor also suppresses resistance genes against leaf rust and stripe rust. In this study, we investigated the specificity of the resistance suppression. To determine whether the suppression is genome origin specific, chromosome location specific, or rust species or race specific, we introduced 11 known rust resistance genes into the Canthatch background, including resistance to leaf, stripe, or stem rusts, originating from A, B, or D genomes and located on different chromosome homologous groups. F1 plants of each cross were tested with the corresponding rust race, and the infection types were scored and compared with the parents. Our results show that the Canthatch 7DL suppressor only suppressed stem rust resistance genes derived from either the A or B genome, and the pattern of the suppression is gene specific and independent of chromosomal location.
Mourad, Amira M I; Sallam, Ahmed; Belamkar, Vikas; Wegulo, Stephen; Bowden, Robert; Jin, Yue; Mahdy, Ezzat; Bakheit, Bahy; El-Wafaa, Atif A; Poland, Jesse; Baenziger, Peter S
2018-01-01
Stem rust (caused by Puccinia graminis f. sp. tritici Erikss. & E. Henn.), is a major disease in wheat ( Triticum aestivium L.). However, in recent years it occurs rarely in Nebraska due to weather and the effective selection and gene pyramiding of resistance genes. To understand the genetic basis of stem rust resistance in Nebraska winter wheat, we applied genome-wide association study (GWAS) on a set of 270 winter wheat genotypes (A-set). Genotyping was carried out using genotyping-by-sequencing and ∼35,000 high-quality SNPs were identified. The tested genotypes were evaluated for their resistance to the common stem rust race in Nebraska (QFCSC) in two replications. Marker-trait association identified 32 SNP markers, which were significantly (Bonferroni corrected P < 0.05) associated with the resistance on chromosome 2D. The chromosomal location of the significant SNPs (chromosome 2D) matched the location of Sr6 gene which was expected in these genotypes based on pedigree information. A highly significant linkage disequilibrium (LD, r 2 ) was found between the significant SNPs and the specific SSR marker for the Sr6 gene ( Xcfd43 ). This suggests the significant SNP markers are tagging Sr6 gene. Out of the 32 significant SNPs, eight SNPs were in six genes that are annotated as being linked to disease resistance in the IWGSC RefSeq v1.0. The 32 significant SNP markers were located in nine haplotype blocks. All the 32 significant SNPs were validated in a set of 60 different genotypes (V-set) using single marker analysis. SNP markers identified in this study can be used in marker-assisted selection, genomic selection, and to develop KASP (Kompetitive Allele Specific PCR) marker for the Sr6 gene. Novel SNPs for Sr6 gene, an important stem rust resistant gene, were identified and validated in this study. These SNPs can be used to improve stem rust resistance in wheat.
Lr67/Yr46 confers adult plant resistance to stem rust and powdery mildew in wheat.
Herrera-Foessel, Sybil A; Singh, Ravi P; Lillemo, Morten; Huerta-Espino, Julio; Bhavani, Sridhar; Singh, Sukhwinder; Lan, Caixia; Calvo-Salazar, Violeta; Lagudah, Evans S
2014-04-01
We demonstrate that Lr67/Yr46 has pleiotropic effect on stem rust and powdery mildew resistance and is associated with leaf tip necrosis. Genes are designated as Sr55, Pm46 and Ltn3 , respectively. Wheat (Triticum aestivum) accession RL6077, known to carry the pleiotropic slow rusting leaf and yellow rust resistance genes Lr67/Yr46 in Thatcher background, displayed significantly lower stem rust (P. graminis tritici; Pgt) and powdery mildew (Blumeria graminis tritici; Bgt) severities in Kenya and in Norway, respectively, compared to its recurrent parent Thatcher. We investigated the resistance of RL6077 to stem rust and powdery mildew using Avocet × RL6077 F6 recombinant inbred lines (RILs) derived from two photoperiod-insensitive F3 families segregating for Lr67/Yr46. Greenhouse seedling tests were conducted with Mexican Pgt race RTR. Field evaluations were conducted under artificially initiated stem rust epidemics with Pgt races RTR and TTKST (Ug99 + Sr24) at Ciudad Obregon (Mexico) and Njoro (Kenya) during 2010-2011; and under natural powdery mildew epiphytotic in Norway at Ås and Hamar during 2011 and 2012. In Mexico, a mean reduction of 41 % on stem rust severity was obtained for RILs carrying Lr67/Yr46, compared to RILs that lacked the gene, whereas in Kenya the difference was smaller (16 %) but significant. In Norway, leaf tip necrosis was associated with Lr67/Yr46 and RILs carrying Lr67/Yr46 showed a 20 % reduction in mean powdery mildew severity at both sites across the 2 years of evaluation. Our study demonstrates that Lr67/Yr46 confers partial resistance to stem rust and powdery mildew and is associated with leaf tip necrosis. The corresponding pleiotropic, or tightly linked, genes, designated as Sr55, Pm46, and Ltn3, can be utilized to provide broad-spectrum durable disease resistance in wheat.
Laidò, Giovanni; Panio, Giosuè; Marone, Daniela; Russo, Maria A; Ficco, Donatella B M; Giovanniello, Valentina; Cattivelli, Luigi; Steffenson, Brian; de Vita, Pasquale; Mastrangelo, Anna M
2015-01-01
Stem rust, caused by Puccinia graminis Pers. f. sp. tritici Eriks. and E. Henn. (Pgt), is one of the most destructive diseases of wheat. Races of the pathogen in the "Ug99 lineage" are of international concern due to their virulence for widely used stem rust resistance genes and their spread throughout Africa. Disease resistant cultivars provide one of the best means for controlling stem rust. To identify quantitative trait loci (QTL) conferring resistance to African stem rust race TTKSK at the seedling stage, we evaluated an association mapping (AM) panel consisting of 230 tetraploid wheat accessions under greenhouse conditions. A high level of phenotypic variation was observed in response to race TTKSK in the AM panel, allowing for genome-wide association mapping of resistance QTL in wild, landrace, and cultivated tetraploid wheats. Thirty-five resistance QTL were identified on all chromosomes, and seventeen are of particular interest as identified by multiple associations. Many of the identified resistance loci were coincident with previously identified rust resistance genes; however, nine on chromosomes 1AL, 2AL, 4AL, 5BL, and 7BS may be novel. To validate AM results, a biparental population of 146 recombinant inbred lines was also considered, which derived from a cross between the resistant cultivar "Cirillo" and susceptible "Neodur." The stem rust resistance of Cirillo was conferred by a single gene on the distal region of chromosome arm 6AL in an interval map coincident with the resistance gene Sr13, and confirmed one of the resistance loci identified by AM. A search for candidate resistance genes was carried out in the regions where QTL were identified, and many of them corresponded to NBS-LRR genes and protein kinases with LRR domains. The results obtained in the present study are of great interest as a high level of genetic variability for resistance to race TTKSK was described in a germplasm panel comprising most of the tetraploid wheat sub-species.
USDA-ARS?s Scientific Manuscript database
The emergence and spread of the Ug99 race group of the stem rust pathogen in the past decade has exposed the vulnerability of wheat to this disease. Discovery of novel and effective sources of resistance is vital to reduce losses. The experimental breeding line MN06113-8 and cultivar RB07 developed ...
USDA-ARS?s Scientific Manuscript database
Seven races have been described in the Ug99 lineage of Puccinia graminis f. sp. tritici (1). Variants of Ug99 previously recorded in South Africa are TTKSF, TTKSP and PTKST (2). In December 2010, severe stem rust infection was observed on the winter wheat cultivar Matlabas at Afrikaskop in the easte...
Aoun, Meriem; Kolmer, James A; Rouse, Matthew N; Chao, Shiaoman; Bulbula, Worku Denbel; Elias, Elias M; Acevedo, Maricelis
2017-12-01
Leaf rust, caused by Puccinia triticina, and stem rust, caused by P. graminis f. sp. tritici, are important diseases of durum wheat. This study determined the inheritance and genomic locations of leaf rust resistance (Lr) genes to P. triticina race BBBQJ and stem rust resistance (Sr) genes to P. graminis f. sp. tritici race TTKSK in durum accessions. Eight leaf-rust-resistant genotypes were used to develop biparental populations. Accessions PI 192051 and PI 534304 were also resistant to P. graminis f. sp. tritici race TTKSK. The resulting progenies were phenotyped for leaf rust and stem rust response at seedling stage. The Lr and Sr genes were mapped in five populations using single-nucleotide polymorphisms and bulked segregant analysis. Five leaf-rust-resistant genotypes carried single dominant Lr genes whereas, in the remaining accessions, there was deviation from the expected segregation ratio of a single dominant Lr gene. Seven genotypes carried Lr genes different from those previously characterized in durum. The single dominant Lr genes in PI 209274, PI 244061, PI387263, and PI 313096 were mapped to chromosome arms 6BS, 2BS, 6BL, and 6BS, respectively. The Sr gene in PI 534304 mapped to 6AL and is most likely Sr13, while the Sr gene in PI 192051 could be uncharacterized in durum.
USDA-ARS?s Scientific Manuscript database
In the tertiary gene pool of wheat, tall wheatgrass Thinopyrum ponticum (2n = 10x = 70) is an excellent source of resistance genes against numerous wheat diseases. The creation of wheat-Th. ponticum partial amphiploids is an intermediate step for transferring the useful genes from Th. ponticum to w...
USDA-ARS?s Scientific Manuscript database
Wheat landrace CItr 15026 previously showed adult plant resistance (APR) to the Ug99 stem rust race group in Kenya and seedling resistance to Puccinia graminis f. sp tritici (Pgt) races QFCSC, TTTTF, and TRTTF. CItr 15026 was crossed to susceptible accessions LMPG-6 and Red Bobs, and 180 DH lines an...
Yu, Guotai; Zhang, Qijun; Friesen, Timothy L; Rouse, Matthew N; Jin, Yue; Zhong, Shaobin; Rasmussen, Jack B; Lagudah, Evans S; Xu, Steven S
2015-03-01
Mapping studies confirm that resistance to Ug99 race of stem rust pathogen in Aegilops tauschii accession Clae 25 is conditioned by Sr46 and markers linked to the gene were developed for marker-assisted selection. The race TTKSK (Ug99) of Puccinia graminis f. sp. tritici, the causal pathogen for wheat stem rust, is considered as a major threat to global wheat production. To address this threat, researchers across the world have been devoted to identifying TTKSK-resistant genes. Here, we report the identification and mapping of a stem rust resistance gene in Aegilops tauschii accession CIae 25 that confers resistance to TTKSK and the development of molecular markers for the gene. An F2 population of 710 plants from an Ae. tauschii cross CIae 25 × AL8/78 were first evaluated against race TPMKC. A set of 14 resistant and 116 susceptible F2:3 families from the F2 plants were then evaluated for their reactions to TTKSK. Based on the tests, 179 homozygous susceptible F2 plants were selected as the mapping population to identify the simple sequence repeat (SSR) and sequence tagged site (STS) markers linked to the gene by bulk segregant analysis. A dominant stem rust resistance gene was identified and mapped with 16 SSR and five new STS markers to the deletion bin 2DS5-0.47-1.00 of chromosome arm 2DS in which Sr46 was located. Molecular marker and stem rust tests on CIae 25 and two Ae. tauschii accessions carrying Sr46 confirmed that the gene in CIae 25 is Sr46. This study also demonstrated that Sr46 is temperature-sensitive being less effective at low temperatures. The marker validation indicated that two closely linked markers Xgwm210 and Xwmc111 can be used for marker-assisted selection of Sr46 in wheat breeding programs.
Agricultural Bioterrorism: Why It Is A Concern And What We Must Do
2003-04-07
that causes smallpox. • Fungus are any of a major group (Fungi) of saprophytic and parasitic lower plants that lack chlorophyll and include molds, rusts ...fever* • Sheep and goat pox* • Swine vesicular disease* • Vesicular stomatitis* Plant Pathogens • Rice blast (Magnaporthe griesea) • Wheat stem rust ...Puccinia graminis) • Wheat smut (Fusarium graminearum) Wheat Pathogens • Wheat dwarf geminivirus • Barley yellow dwarf virus • Pseudomonas fascovaginaei
Rouse, Matthew N; Talbert, Luther E; Singh, Davinder; Sherman, Jamie D
2014-07-01
Quantitative trait loci conferring adult plant resistance to Ug99 stem rust in Thatcher wheat display complementary gene action suggesting multiple quantitative trait loci are needed for effective resistance. Adult plant resistance (APR) in wheat (Triticum aestivum L.) to stem rust, caused by Puccinia graminis f. sp. tritici (Pgt), is desirable because this resistance can be Pgt race non-specific. Resistance derived from cultivar Thatcher can confer high levels of APR to the virulent Pgt race TTKSK (Ug99) when combined with stem rust resistance gene Sr57 (Lr34). To identify the loci conferring APR in Thatcher, we evaluated 160 RILs derived from Thatcher crossed to susceptible cultivar McNeal for field stem rust reaction in Kenya for two seasons and in St. Paul for one season. All RILs and parents were susceptible as seedlings to race TTKSK. However, adult plant stem rust severities in Kenya varied from 5 to 80 %. Composite interval mapping identified four quantitative trait loci (QTL). Three QTL were inherited from Thatcher and one, Sr57, was inherited from McNeal. The markers closest to the QTL peaks were used in an ANOVA to determine the additive and epistatic effects. A QTL on 3BS was detected in all three environments and explained 27-35 % of the variation. The peak of this QTL was at the same location as the Sr12 seedling resistance gene effective to race SCCSC. Epistatic interactions were significant between Sr12 and QTL on chromosome arms 1AL and 2BS. Though Sr12 cosegregated with the largest effect QTL, lines with Sr12 were not always resistant. The data suggest that Sr12 or a linked gene, though not effective to race TTKSK alone, confers APR when combined with other resistance loci.
Nested Association Mapping of Stem Rust Resistance in Wheat Using Genotyping by Sequencing
Rouse, Matthew N.; Tsilo, Toi J.; Macharia, Godwin K.; Bhavani, Sridhar; Jin, Yue; Anderson, James A.
2016-01-01
We combined the recently developed genotyping by sequencing (GBS) method with joint mapping (also known as nested association mapping) to dissect and understand the genetic architecture controlling stem rust resistance in wheat (Triticum aestivum). Ten stem rust resistant wheat varieties were crossed to the susceptible line LMPG-6 to generate F6 recombinant inbred lines. The recombinant inbred line populations were phenotyped in Kenya, South Africa, and St. Paul, Minnesota, USA. By joint mapping of the 10 populations, we identified 59 minor and medium-effect QTL (explained phenotypic variance range of 1% – 20%) on 20 chromosomes that contributed towards adult plant resistance to North American Pgt races as well as the highly virulent Ug99 race group. Fifteen of the 59 QTL were detected in multiple environments. No epistatic relationship was detected among the QTL. While these numerous small- to medium-effect QTL are shared among the families, the founder parents were found to have different allelic effects for the QTL. Fourteen QTL identified by joint mapping were also detected in single-population mapping. As these QTL were mapped using SNP markers with known locations on the physical chromosomes, the genomic regions identified with QTL could be explored more in depth to discover candidate genes for stem rust resistance. The use of GBS-derived de novo SNPs in mapping resistance to stem rust shown in this study could be used as a model to conduct similar marker-trait association studies in other plant species. PMID:27186883
Kumar, Sundeep; Archak, Sunil; Tyagi, R K; Kumar, Jagdish; Vk, Vikas; Jacob, Sherry R; Srinivasan, Kalyani; Radhamani, J; Parimalan, R; Sivaswamy, M; Tyagi, Sandhya; Yadav, Mamata; Kumari, Jyotisna; Deepali; Sharma, Sandeep; Bhagat, Indoo; Meeta, Madhu; Bains, N S; Chowdhury, A K; Saha, B C; Bhattacharya, P M; Kumari, Jyoti; Singh, M C; Gangwar, O P; Prasad, P; Bharadwaj, S C; Gogoi, Robin; Sharma, J B; Gm, Sandeep Kumar; Saharan, M S; Bag, Manas; Roy, Anirban; Prasad, T V; Sharma, R K; Dutta, M; Sharma, Indu; Bansal, K C
2016-01-01
A comprehensive germplasm evaluation study of wheat accessions conserved in the Indian National Genebank was conducted to identify sources of rust and spot blotch resistance. Genebank accessions comprising three species of wheat-Triticum aestivum, T. durum and T. dicoccum were screened sequentially at multiple disease hotspots, during the 2011-14 crop seasons, carrying only resistant accessions to the next step of evaluation. Wheat accessions which were found to be resistant in the field were then assayed for seedling resistance and profiled using molecular markers. In the primary evaluation, 19,460 accessions were screened at Wellington (Tamil Nadu), a hotspot for wheat rusts. We identified 4925 accessions to be resistant and these were further evaluated at Gurdaspur (Punjab), a hotspot for stripe rust and at Cooch Behar (West Bengal), a hotspot for spot blotch. The second round evaluation identified 498 accessions potentially resistant to multiple rusts and 868 accessions potentially resistant to spot blotch. Evaluation of rust resistant accessions for seedling resistance against seven virulent pathotypes of three rusts under artificial epiphytotic conditions identified 137 accessions potentially resistant to multiple rusts. Molecular analysis to identify different combinations of genetic loci imparting resistance to leaf rust, stem rust, stripe rust and spot blotch using linked molecular markers, identified 45 wheat accessions containing known resistance genes against all three rusts as well as a QTL for spot blotch resistance. The resistant germplasm accessions, particularly against stripe rust, identified in this study can be excellent potential candidates to be employed for breeding resistance into the background of high yielding wheat cultivars through conventional or molecular breeding approaches, and are expected to contribute toward food security at national and global levels.
Singh, Ravi P; Hodson, David P; Jin, Yue; Lagudah, Evans S; Ayliffe, Michael A; Bhavani, Sridhar; Rouse, Matthew N; Pretorius, Zacharias A; Szabo, Les J; Huerta-Espino, Julio; Basnet, Bhoja R; Lan, Caixia; Hovmøller, Mogens S
2015-07-01
Race Ug99 (TTKSK) of Puccinia graminis f. sp. tritici, detected in Uganda in 1998, has been recognized as a serious threat to food security because it possesses combined virulence to a large number of resistance genes found in current widely grown wheat (Triticum aestivum) varieties and germplasm, leading to its potential for rapid spread and evolution. Since its initial detection, variants of the Ug99 lineage of stem rust have been discovered in Eastern and Southern African countries, Yemen, Iran, and Egypt. To date, eight races belonging to the Ug99 lineage are known. Increased pathogen monitoring activities have led to the identification of other races in Africa and Asia with additional virulence to commercially important resistance genes. This has led to localized but severe stem rust epidemics becoming common once again in East Africa due to the breakdown of race-specific resistance gene SrTmp, which was deployed recently in the 'Digalu' and 'Robin' varieties in Ethiopia and Kenya, respectively. Enhanced research in the last decade under the umbrella of the Borlaug Global Rust Initiative has identified various race-specific resistance genes that can be utilized, preferably in combinations, to develop resistant varieties. Research and development of improved wheat germplasm with complex adult plant resistance (APR) based on multiple slow-rusting genes has also progressed. Once only the Sr2 gene was known to confer slow rusting APR; now, four more genes-Sr55, Sr56, Sr57, and Sr58-have been characterized and additional quantitative trait loci identified. Cloning of some rust resistance genes opens new perspectives on rust control in the future through the development of multiple resistance gene cassettes. However, at present, disease-surveillance-based chemical control, large-scale deployment of new varieties with multiple race-specific genes or adequate levels of APR, and reducing the cultivation of susceptible varieties in rust hot-spot areas remains the best stem rust management strategy.
Pasam, Raj K; Bansal, Urmil; Daetwyler, Hans D; Forrest, Kerrie L; Wong, Debbie; Petkowski, Joanna; Willey, Nicholas; Randhawa, Mandeep; Chhetri, Mumta; Miah, Hanif; Tibbits, Josquin; Bariana, Harbans; Hayden, Matthew J
2017-04-01
BayesR and MLM association mapping approaches in common wheat landraces were used to identify genomic regions conferring resistance to Yr, Lr, and Sr diseases. Deployment of rust resistant cultivars is the most economically effective and environmentally friendly strategy to control rust diseases in wheat. However, the highly evolving nature of wheat rust pathogens demands continued identification, characterization, and transfer of new resistance alleles into new varieties to achieve durable rust control. In this study, we undertook genome-wide association studies (GWAS) using a mixed linear model (MLM) and the Bayesian multilocus method (BayesR) to identify QTL contributing to leaf rust (Lr), stem rust (Sr), and stripe rust (Yr) resistance. Our study included 676 pre-Green Revolution common wheat landrace accessions collected in the 1920-1930s by A.E. Watkins. We show that both methods produce similar results, although BayesR had reduced background signals, enabling clearer definition of QTL positions. For the three rust diseases, we found 5 (Lr), 14 (Yr), and 11 (Sr) SNPs significant in both methods above stringent false-discovery rate thresholds. Validation of marker-trait associations with known rust QTL from the literature and additional genotypic and phenotypic characterisation of biparental populations showed that the landraces harbour both previously mapped and potentially new genes for resistance to rust diseases. Our results demonstrate that pre-Green Revolution landraces provide a rich source of genes to increase genetic diversity for rust resistance to facilitate the development of wheat varieties with more durable rust resistance.
Rapid Phenotyping Adult Plant Resistance to Stem Rust in Wheat Grown under Controlled Conditions.
Riaz, Adnan; T Hickey, Lee
2017-01-01
Stem rust (SR) or black rust caused by Puccinia graminis f. sp. tritici is one of the most common diseases of wheat (Triticum aestivum L.) crops globally. Among the various control measures, the most efficient and sustainable approach is the deployment of genetically resistant cultivars. Traditionally, wheat breeding programs deployed genetic resistance in cultivars, but unknowingly this is often underpinned by a single seedling resistance gene, which is readily overcome by the pathogen. Nowadays, adult plant resistance (APR) is a widely adopted form of rust resistance because more durable mechanisms often underpin it. However, only a handful of SR APR genes are available, so breeders currently strive to combine seedling and APR genes. Phenotyping adult wheat plants for resistance to SR typically involves evaluation in the field. But establishing a rust nursery can be challenging, and screening is limited to once a year. This slows down research efforts to isolate new APR genes and breeding of genetically resistant cultivars.In this study, we report a protocol for rapid evaluation of adult wheat plants for resistance to stem rust. We demonstrate the technique by evaluating a panel of 16 wheat genotypes consisting of near isogenic lines (NILs) for known Sr genes (i.e., Sr2, Sr33, Sr45, Sr50, Sr55, Sr57, and Sr58) and three landraces carrying uncharacterized APR from the N. I. Vavilov Institute of Plant Genetic Resources (VIR). The method can be completed in just 10 weeks and involves two inoculations: first conducted at seedling stage and a second at the adult stage (using the same plants). The technique can detect APR, such as that conferred by APR gene Sr2, along with pseudo-black chaff (the morphological marker). Phenotyping can be conducted throughout the year, and is fast and resource efficient. Further, the phenotyping method can be applied to screen breeding populations or germplasm accessions using local or exotic races of SR.
Jacob, Sherry R.; Srinivasan, Kalyani; Radhamani, J.; Parimalan, R.; Sivaswamy, M.; Tyagi, Sandhya; Yadav, Mamata; Kumari, Jyotisna; Deepali; Sharma, Sandeep; Bhagat, Indoo; Meeta, Madhu; Bains, N. S.; Chowdhury, A. K.; Saha, B. C.; Bhattacharya, P. M.; Kumari, Jyoti; Singh, M. C.; Gangwar, O. P.; Prasad, P.; Bharadwaj, S. C.; Gogoi, Robin; Sharma, J. B.; GM, Sandeep Kumar; Saharan, M. S.; Bag, Manas; Roy, Anirban; Prasad, T. V.; Sharma, R. K.; Dutta, M.; Sharma, Indu; Bansal, K. C.
2016-01-01
A comprehensive germplasm evaluation study of wheat accessions conserved in the Indian National Genebank was conducted to identify sources of rust and spot blotch resistance. Genebank accessions comprising three species of wheat–Triticum aestivum, T. durum and T. dicoccum were screened sequentially at multiple disease hotspots, during the 2011–14 crop seasons, carrying only resistant accessions to the next step of evaluation. Wheat accessions which were found to be resistant in the field were then assayed for seedling resistance and profiled using molecular markers. In the primary evaluation, 19,460 accessions were screened at Wellington (Tamil Nadu), a hotspot for wheat rusts. We identified 4925 accessions to be resistant and these were further evaluated at Gurdaspur (Punjab), a hotspot for stripe rust and at Cooch Behar (West Bengal), a hotspot for spot blotch. The second round evaluation identified 498 accessions potentially resistant to multiple rusts and 868 accessions potentially resistant to spot blotch. Evaluation of rust resistant accessions for seedling resistance against seven virulent pathotypes of three rusts under artificial epiphytotic conditions identified 137 accessions potentially resistant to multiple rusts. Molecular analysis to identify different combinations of genetic loci imparting resistance to leaf rust, stem rust, stripe rust and spot blotch using linked molecular markers, identified 45 wheat accessions containing known resistance genes against all three rusts as well as a QTL for spot blotch resistance. The resistant germplasm accessions, particularly against stripe rust, identified in this study can be excellent potential candidates to be employed for breeding resistance into the background of high yielding wheat cultivars through conventional or molecular breeding approaches, and are expected to contribute toward food security at national and global levels. PMID:27942031
Crespo-Herrera, Leonardo A; Garkava-Gustavsson, Larisa; Åhman, Inger
2017-01-01
Wheat is globally one of the most important crops. With the current human population growth rate, there is an increasing need to raise wheat productivity by means of plant breeding, along with development of more efficient and sustainable agricultural systems. Damage by pathogens and pests, in combination with adverse climate effects, need to be counteracted by incorporating new germplasm that makes wheat more resistant/tolerant to such stress factors. Rye has been used as a source for improved resistance to pathogens and pests in wheat during more than 50 years. With new devastating stem and yellow rust pathotypes invading wheat at large acreage globally, along with new biotypes of pest insects, there is renewed interest in using rye as a source of resistance. Currently the proportion of wheat cultivars with rye chromatin varies between countries, with examples of up to 34%. There is mainly one rye source, Petkus, that has been widely exploited and that has contributed considerably to raise yields and increase disease resistance in wheat. Successively, the multiple disease resistances conferred by this source has been overcome by new pathotypes of leaf rust, yellow rust, stem rust and powdery mildew. However, there are several other rye sources reported to make wheat more resistant to various biotic constraints when their rye chromatin has been transferred to wheat. There is also development of knowledge on how to produce new rye translocation, substitution and addition lines. Here we compile information that may facilitate decision making for wheat breeders aiming to transfer resistance to biotic constraints from rye to elite wheat germplasm.
Three-Dimension Visualization for Primary Wheat Diseases Based on Simulation Model
NASA Astrophysics Data System (ADS)
Shijuan, Li; Yeping, Zhu
Crop simulation model has been becoming the core of agricultural production management and resource optimization management. Displaying crop growth process makes user observe the crop growth and development intuitionisticly. On the basis of understanding and grasping the occurrence condition, popularity season, key impact factors for main wheat diseases of stripe rust, leaf rust, stem rust, head blight and powdery mildew from research material and literature, we designed 3D visualization model for wheat growth and diseases occurrence. The model system will help farmer, technician and decision-maker to use crop growth simulation model better and provide decision-making support. Now 3D visualization model for wheat growth on the basis of simulation model has been developed, and the visualization model for primary wheat diseases is in the process of development.
Kruppa, Klaudia; Türkösi, Edina; Mayer, Marianna; Tóth, Viola; Vida, Gyula; Szakács, Éva; Molnár-Láng, Márta
2016-11-01
A Thinopyrum intermedium × Thinopyrum ponticum synthetic hybrid wheatgrass is an excellent source of leaf and stem rust resistance produced by N.V.Tsitsin. Wheat line Mv9kr1 was crossed with this hybrid (Agropyron glael) in Hungary in order to transfer its advantageous agronomic traits into wheat. As the wheat parent was susceptible to leaf rust, the transfer of resistance was easily recognizable in the progenies. Three different partial amphiploid lines with leaf rust resistance were selected from the wheat/Thinopyrum hybrid derivatives by multicolour genomic in situ hybridization. Chromosome counting on the partial amphiploids revealed 58 chromosomes (18 wheatgrass) in line 194, 56 (14 wheatgrass) in line 195 and 54 (12 wheatgrass) in line 196. The wheat chromosomes present in these lines were identified and the wheatgrass chromosomes were characterized by fluorescence in situ hybridization using the repetitive DNA probes Afa-family, pSc119.2 and pTa71. The 3D wheat chromosome was missing from the lines. Molecular marker analysis showed the presence of the Lr24 leaf rust resistance gene in lines 195 and 196. The morphological traits were evaluated in the field during two consecutive seasons in two different locations.
USDA-ARS?s Scientific Manuscript database
The recent resurgence of wheat stem rust caused by new virulent races of Puccinia graminis f. sp. tritici (Pgt) poses a threat to food security. These concerns have catalyzed an extensive global effort towards controlling this disease. Substantial research and breeding programs target the identifica...
Dai, Yi; Duan, Yamei; Liu, Huiping; Chi, Dawn; Cao, Wenguang; Xue, Allen; Gao, Yong; Fedak, George; Chen, Jianmin
2017-01-01
Fusarium head blight (FHB), leaf rust, and stem rust are the most destructive fungal diseases in current world wheat production. The diploid wheatgrass, Thinopyrum elongatum (Host) Dewey (2 n = 2 x = 14, EE) is an excellent source of disease resistance genes. Two new Triticum-Secale-Thinopyrum trigeneric hybrids were derived from a cross between a hexaploid triticale (X Triticosecale Wittmack, 2 n = 6 x = 42, AABBRR) and a hexaploid Triticum trititrigia (2 n = 6 x = 42, AABBEE), were produced and analyzed using genomic in situ hybridization and molecular markers. The results indicated that line RE21 contained 14 A-chromosomes, 14 B-chromosomes, three pairs of R-chromosomes (4R, 6R, and 7R), and four pairs of E-chromosomes (1E, 2E, 3E, and 5E) for a total chromosome number of 2 n = 42. Line RE62 contained 14 A-chromosomes, 14 B-chromosomes, six pairs of R-chromosomes, and one pair of translocation chromosomes between chromosome 5R and 5E, for a total chromosome number of 2 n = 42. At the seedling and adult growth stages under greenhouse conditions, line RE21 showed high levels of resistance to FHB, leaf rust, and stem rust race Ug99, and line RE62 was highly resistant to leaf rust and stem rust race Ug99. These two lines (RE21 and RE62) display superior disease resistance characteristics and have the potential to be utilized as valuable germplasm sources for future wheat improvement.
Chao, Shiaoman; Singh, Ravi P.; Sorrells, Mark E.
2017-01-01
Wheat stem rust (Puccinia graminis f. sp. tritici Eriks. and E. Henn.) is one of the most destructive diseases world-wide. Races belonging to Ug99 (or TTKSK) continue to cause crop losses in East Africa and threaten global wheat production. Developing and deploying wheat varieties with multiple race-specific genes or complex adult plant resistance is necessary to achieve durability. In the present study, we applied genome-wide association studies (GWAS) for identifying loci associated with the Ug99 stem rust resistance (SR) in a panel of wheat lines developed at the International Maize and Wheat Improvement Center (CIMMYT). Genotyping was carried out using the wheat 9K iSelect single nucleotide polymorphism (SNP) chip. Phenotyping was done in the field in Kenya by infection of Puccinia graminis f. sp. tritici race TTKST, the Sr24-virulent variant of Ug99. Marker-trait association identified 12 SNP markers significantly associated with resistance. Among them, 7 were mapped on five chromosomes. Markers located on chromosomes 4A and 4B overlapped with the location of the Ug99 resistance genes SrND643 and Sr37, respectively. Markers identified on 7DL were collocated with Sr25. Additional significant markers were located in the regions where no Sr gene has been reported. The chromosome location for five of the SNP markers was unknown. A BLASTN search of the NCBI database using the flanking sequences of the SNPs associated with Ug99 resistance revealed that several markers were linked to plant disease resistance analogues, while others were linked to regulatory factors or metabolic enzymes. A KASP (Kompetitive Allele Specific PCR) assay was used for validating six marker loci linked to genes with resistance to Ug99. Of those, four co-segregated with the Sr25-pathotypes while the rest identified unknown resistance genes. With further investigation, these markers can be used for marker-assisted selection in breeding for Ug99 stem rust resistance in wheat. PMID:28241006
Rinaldo, Amy; Gilbert, Brian; Boni, Rainer; Krattinger, Simon G; Singh, Davinder; Park, Robert F; Lagudah, Evans; Ayliffe, Michael
2017-07-01
The hexaploid wheat (Triticum aestivum) adult plant resistance gene, Lr34/Yr18/Sr57/Pm38/Ltn1, provides broad-spectrum resistance to wheat leaf rust (Lr34), stripe rust (Yr18), stem rust (Sr57) and powdery mildew (Pm38) pathogens, and has remained effective in wheat crops for many decades. The partial resistance provided by this gene is only apparent in adult plants and not effective in field-grown seedlings. Lr34 also causes leaf tip necrosis (Ltn1) in mature adult plant leaves when grown under field conditions. This D genome-encoded bread wheat gene was transferred to tetraploid durum wheat (T. turgidum) cultivar Stewart by transformation. Transgenic durum lines were produced with elevated gene expression levels when compared with the endogenous hexaploid gene. Unlike nontransgenic hexaploid and durum control lines, these transgenic plants showed robust seedling resistance to pathogens causing wheat leaf rust, stripe rust and powdery mildew disease. The effectiveness of seedling resistance against each pathogen correlated with the level of transgene expression. No evidence of accelerated leaf necrosis or up-regulation of senescence gene markers was apparent in these seedlings, suggesting senescence is not required for Lr34 resistance, although leaf tip necrosis occurred in mature plant flag leaves. Several abiotic stress-response genes were up-regulated in these seedlings in the absence of rust infection as previously observed in adult plant flag leaves of hexaploid wheat. Increasing day length significantly increased Lr34 seedling resistance. These data demonstrate that expression of a highly durable, broad-spectrum adult plant resistance gene can be modified to provide seedling resistance in durum wheat. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.
USDA-ARS?s Scientific Manuscript database
Partial amphiploids created by crossing common wheat (Triticum aestivum L.) and Thinopyrum ponticum (Podp.), Barkworth & D. R. Dewey may be resistant to major wheat diseases and are an important intermediate material in wheat breeding. In this study, we examined chromosome composition of five Xiaoy...
USDA-ARS?s Scientific Manuscript database
Stem rust (Puccinia graminis f. sp. tritici; Pgt) is a devastating fungal disease of wheat and barley. Pgt race TTKSK (isolate Ug99) is a serious threat to these Triticeae grain crops because resistance is rare. In barley, the complex Rpg-TTKSK locus on chromosome 5H is presently the only known so...
USDA-ARS?s Scientific Manuscript database
Biotic stresses including diseases [leaf, stem and stripe rusts, and wheat streak mosaic virus (WSMV)] and insects [greenbug (GB), Hessian fly (Hf), Russian wheat aphid (RWA) and wheat curl mite (WCM)] significantly affect grain yield and end-use quality of hard winter wheat (HWW, Triticum aestivum ...
Mapping resistance to the Ug99 race group of the stem rust pathogen in a spring wheat landrace.
Babiker, E M; Gordon, T C; Chao, S; Newcomb, M; Rouse, M N; Jin, Y; Wanyera, R; Acevedo, M; Brown-Guedira, G; Williamson, S; Bonman, J M
2015-04-01
A new gene for Ug99 resistance from wheat landrace PI 374670 was detected on the long arm of chromosome 7A. Wheat landrace PI 374670 has seedling and field resistance to stem rust caused by Puccinia graminis f. sp tritici Eriks. & E. Henn (Pgt) race TTKSK. To elucidate the inheritance of resistance, 216 BC1F2 families, 192 double haploid (DH) lines, and 185 recombinant inbred lines (RILs) were developed by crossing PI 374670 and the susceptible line LMPG-6. The parents and progeny were evaluated for seedling resistance to Pgt races TTKSK, MCCFC, and TPMKC. The DH lines were tested in field stem rust nurseries in Kenya and Ethiopia. The DH lines were genotyped with the 90K wheat iSelect SNP genotyping platform. Goodness-of-fit tests indicated that a single dominant gene in PI 374670 conditioned seedling resistance to the three Pgt races. The seedling resistance locus mapped to the long arm of chromosome 7A and this result was verified in the RIL population screened with the flanking SNP markers using KASP assays. In the same region, a major QTL for field resistance was detected in a 7.7 cM interval and explained 34-54 and 29-36% of the variation in Kenya and Ethiopia, respectively. Results from tests with specific Pgt races and the csIH81 marker showed that the resistance was not due to Sr22. Thus, a new stem rust resistance gene or allele, either closely linked or allelic to Sr15, is responsible for the seedling and field resistance of PI 374670 to Ug99.
Translations on People’s Republic of China, Number 389
1977-08-05
cm., resistant to lodging, early maturing, from germination to maturity about 82 days, resistant to stripe rust, stem rust and powdery mildew ...HSUEH TSA-CHIH, Feb 77).......... 7 AGRICULTURE Three New Spring Wheat Varieties Introduced (K’O-HSUEH SHIH-YEN, Jun 77) 10 Optimum Conditions...7682 CSO: 4008 AGRICULTURE THREE NEW SPRING WHEAT VARIETIES INTRODUCED Peking K’O-HSUEH SHIH-YEN {Scientific Experiment] in Chinese No 1, Jan
USDA-ARS?s Scientific Manuscript database
Throughout human history, wheat stem rust caused by Puccinia graminis f.sp. tritici (Pgt) has been one of the most destructive diseases of cereal crops. Stem rust has been well controlled in the U.S. for nearly a half a century, but with the appearance of a new, highly virulent race of Pgt in Uganda...
Nirmala, Jayaveeramuthu; Saini, Jyoti; Newcomb, Maria; Olivera, Pablo; Gale, Sam; Klindworth, Daryl; Elias, Elias; Talbert, Luther; Chao, Shiaoman; Faris, Justin; Xu, Steven; Jin, Yue; Rouse, Matthew N.
2017-01-01
Wheat stem rust, caused by Puccinia graminis f. sp. tritici Eriks. & E. Henn, can incur yield losses in susceptible cultivars of durum wheat, Triticum turgidum ssp. durum (Desf.) Husnot. Although several durum cultivars possess the stem rust resistance gene Sr13, additional genes in durum wheat effective against emerging virulent races have not been described. Durum line 8155-B1 confers resistance against the P. graminis f. sp. tritici race TTKST, the variant race of the Ug99 race group with additional virulence to wheat stem rust resistance gene Sr24. However, 8155-B1 does not confer resistance to the first-described race in the Ug99 race group: TTKSK. We mapped a single gene conferring resistance in 8155-B1 against race TTKST, Sr8155B1, to chromosome arm 6AS by utilizing Rusty/8155-B1 and Rusty*2/8155-B1 populations and the 90K Infinium iSelect Custom bead chip supplemented by KASP assays. One marker, KASP_6AS_IWB10558, cosegregated with Sr8155B1 in both populations and correctly predicted Sr8155B1 presence or absence in 11 durum cultivars tested. We confirmed the presence of Sr8155B1 in cultivar Mountrail by mapping in the population Choteau/Mountrail. The marker developed in this study could be used to predict the presence of resistance to race TTKST in uncharacterized durum breeding lines, and also to combine Sr8155B1 with resistance genes effective to Ug99 such as Sr13. The map location of Sr8155B1 cannot rule out the possibility that this gene is an allele at the Sr8 locus. However, race specificity indicates that Sr8155B1 is different from the known alleles Sr8a and Sr8b. PMID:28855282
Chen, Shisheng; Guo, Yan; Briggs, Jordan; Dubach, Felix; Chao, Shiaoman; Zhang, Wenjun; Rouse, Matthew N; Dubcovsky, Jorge
2018-03-01
The new stem rust resistance gene Sr60 was fine-mapped to the distal region of chromosome arm 5A m S, and the TTKSK-effective gene SrTm5 could be a new allele of Sr22. The emergence and spread of new virulent races of the wheat stem rust pathogen (Puccinia graminis f. sp. tritici; Pgt), including the Ug99 race group, is a serious threat to global wheat production. In this study, we mapped and characterized two stem rust resistance genes from diploid wheat Triticum monococcum accession PI 306540. We mapped SrTm5, a previously postulated gene effective to Ug99, on chromosome arm 7A m L, completely linked to Sr22. SrTm5 displayed a different race specificity compared to Sr22 indicating that they are distinct. Sequencing of the Sr22 homolog in PI 306540 revealed a novel haplotype. Characterization of the segregating populations with Pgt race QFCSC revealed an additional resistance gene on chromosome arm 5A m S that was assigned the official name Sr60. This gene was also effective against races QTHJC and SCCSC but not against TTKSK (a Ug99 group race). Using two large mapping populations (4046 gametes), we mapped Sr60 within a 0.44 cM interval flanked by sequenced-based markers GH724575 and CJ942731. These two markers delimit a 54.6-kb region in Brachypodium distachyon chromosome 4 and a 430-kb region in the Chinese Spring reference genome. Both regions include a leucine-rich repeat protein kinase (LRRK123.1) that represents a potential candidate gene. Three CC-NBS-LRR genes were found in the colinear Brachypodium region but not in the wheat genome. We are currently developing a Bacterial Artificial Chromosome library of PI 306540 to determine which of these candidate genes are present in the T. monococcum genome and to complete the cloning of Sr60.
Kumar, Dhananjay; Dutta, Summi; Singh, Dharmendra; Prabhu, Kumble Vinod; Kumar, Manish; Mukhopadhyay, Kunal
2017-01-01
Deep sequencing identified 497 conserved and 559 novel miRNAs in wheat, while degradome analysis revealed 701 targets genes. QRT-PCR demonstrated differential expression of miRNAs during stages of leaf rust progression. Bread wheat (Triticum aestivum L.) is an important cereal food crop feeding 30 % of the world population. Major threat to wheat production is the rust epidemics. This study was targeted towards identification and functional characterizations of micro(mi)RNAs and their target genes in wheat in response to leaf rust ingression. High-throughput sequencing was used for transcriptome-wide identification of miRNAs and their expression profiling in retort to leaf rust using mock and pathogen-inoculated resistant and susceptible near-isogenic wheat plants. A total of 1056 mature miRNAs were identified, of which 497 miRNAs were conserved and 559 miRNAs were novel. The pathogen-inoculated resistant plants manifested more miRNAs compared with the pathogen infected susceptible plants. The miRNA counts increased in susceptible isoline due to leaf rust, conversely, the counts decreased in the resistant isoline in response to pathogenesis illustrating precise spatial tuning of miRNAs during compatible and incompatible interaction. Stem-loop quantitative real-time PCR was used to profile 10 highly differentially expressed miRNAs obtained from high-throughput sequencing data. The spatio-temporal profiling validated the differential expression of miRNAs between the isolines as well as in retort to pathogen infection. Degradome analysis provided 701 predicted target genes associated with defense response, signal transduction, development, metabolism, and transcriptional regulation. The obtained results indicate that wheat isolines employ diverse arrays of miRNAs that modulate their target genes during compatible and incompatible interaction. Our findings contribute to increase knowledge on roles of microRNA in wheat-leaf rust interactions and could help in rust resistance breeding programs.
Genome-wide identification of the SWEET gene family in wheat.
Gao, Yue; Wang, Zi Yuan; Kumar, Vikranth; Xu, Xiao Feng; Yuan, De Peng; Zhu, Xiao Feng; Li, Tian Ya; Jia, Baolei; Xuan, Yuan Hu
2018-02-05
The SWEET (sugars will eventually be exported transporter) family is a newly characterized group of sugar transporters. In plants, the key roles of SWEETs in phloem transport, nectar secretion, pollen nutrition, stress tolerance, and plant-pathogen interactions have been identified. SWEET family genes have been characterized in many plant species, but a comprehensive analysis of SWEET members has not yet been performed in wheat. Here, 59 wheat SWEETs (hereafter TaSWEETs) were identified through homology searches. Analyses of phylogenetic relationships, numbers of transmembrane helices (TMHs), gene structures, and motifs showed that TaSWEETs carrying 3-7 TMHs could be classified into four clades with 10 different types of motifs. Examination of the expression patterns of 18 SWEET genes revealed that a few are tissue-specific while most are ubiquitously expressed. In addition, the stem rust-mediated expression patterns of SWEET genes were monitored using a stem rust-susceptible cultivar, 'Little Club' (LC). The resulting data showed that the expression of five out of the 18 SWEETs tested was induced following inoculation. In conclusion, we provide the first comprehensive analysis of the wheat SWEET gene family. Information regarding the phylogenetic relationships, gene structures, and expression profiles of SWEET genes in different tissues and following stem rust disease inoculation will be useful in identifying the potential roles of SWEETs in specific developmental and pathogenic processes. Copyright © 2017 Elsevier B.V. All rights reserved.
Li, Tianya; Liao, Kai; Xu, Xiaofeng; Gao, Yue; Wang, Ziyuan; Zhu, Xiaofeng; Jia, Baolei; Xuan, Yuanhu
2017-01-01
Ammonium transporter (AMT) proteins have been reported in many plants, but no comprehensive analysis was performed in wheat. In this study, we identified 23 AMT members (hereafter TaAMTs) using a protein homology search in wheat genome. Tissue-specific expression analysis showed that TaAMT1;1a, TaAMT1;1b , and TaAMT1;3a were relatively more highly expressed in comparison with other TaAMTs . TaAMT1;1a, TaAMT1;1b, and TaAMT1;3a-GFP were localized in the plasma membrane in tobacco leaves, and TaAMT1;1a, TaAMT1;1b , and TaAMT1;3a successfully complemented a yeast 31019b strain in which ammonium uptake was deficient. In addition, the expression of TaAMT1;1b in an Arabidopsis AMT quadruple mutant ( qko ) successfully restored [Formula: see text] uptake ability. Resupply of [Formula: see text] rapidly increased cellular [Formula: see text] contents and suppressed expression of TaAMT1;3a , but not of TaAMT;1;1a and TaAMT1;1b expressions. Expression of TaAMT1;1a, TaAMT1;1b , and TaAMT1;3a was not changed in leaves after [Formula: see text] resupply. In contrast, nitrogen (N) deprivation induced TaAMT1;1a, TaAMT1;1b , and TaAMT1;3a gene expressions in the roots and leaves. Expression analysis in the leaves of the stem rust-susceptible wheat line "Little Club" and the rust-tolerant strain "Mini 2761" revealed that TaAMT1;1a, TaAMT1;1b , and TaAMT1;3a were specifically induced in the former but not in the latter. Rust-susceptible wheat plants grown under N-free conditions exhibited a lower disease index than plants grown with [Formula: see text] as the sole N source in the medium after infection with Puccinia graminis f. sp. tritici , suggesting that [Formula: see text] and its transport may facilitate the infection of wheat stem rust disease. Our findings may be important for understanding the potential function TaAMTs in wheat plants.
Randhawa, Mandeep; Bansal, Urmil; Lillemo, Morten; Miah, Hanif; Bariana, Harbans
2016-11-01
Wild relatives, landraces and cultivars from different geographical regions have been demonstrated as the sources of genetic variation for resistance to rust diseases. This study involved assessment of diversity for resistance to three rust diseases among a set of Nordic spring wheat cultivars. These cultivars were tested at the seedling stage against several pathotypes of three rust pathogens in the greenhouse. All stage stem rust resistance genes Sr7b, Sr8a, Sr12, Sr15, Sr17, Sr23 and Sr30, and leaf rust resistance genes Lr1, Lr3a, Lr13, Lr14a, Lr16 and Lr20 were postulated either singly or in different combinations among these cultivars. A high proportion of cultivars were identified to carry linked rust resistance genes Sr15 and Lr20. Although 51 cultivars showed variation against Puccinia striiformis f. sp. tritici (Pst) pathotypes used in this study, results were not clearly contrasting to enable postulation of stripe rust resistance genes in these genotypes. Stripe rust resistance gene Yr27 was postulated in four cultivars and Yr1 was present in cultivar Zebra. Cultivar Tjalve produced low stripe rust response against all Pst pathotypes indicating the presence either of a widely effective resistance gene or combination of genes with compensating pathogenic specificities. Several cultivars carried moderate to high level of APR to leaf rust and stripe rust. Seedling stem rust susceptible cultivar Aston exhibited moderately resistant to moderately susceptible response, whereas other cultivars belonging to this class were rated moderately susceptible or higher. Molecular markers linked with APR genes Yr48, Lr34/Yr18/Sr57, Lr68 and Sr2 detected the presence of these genes in some genotypes.
Effects of neolignans from the stem bark of Magnolia obovata on plant pathogenic fungi.
Choi, N H; Choi, G J; Min, B-S; Jang, K S; Choi, Y H; Kang, M S; Park, M S; Choi, J E; Bae, B K; Kim, J-C
2009-06-01
To characterize antifungal principles from the methanol extract of Magnolia obovata and to evaluate their antifungal activities against various plant pathogenic fungi. Four neolignans were isolated from stem bark of M. obovata as antifungal principles and identified as magnolol, honokiol, 4-methoxyhonokiol and obovatol. In mycelial growth inhibition assay, both magnolol and honokiol displayed more potent antifungal activity than 4-methoxyhonokiol and obovatol. Both magnolol and honokiol showed similar in vivo antifungal spectrum against seven plant diseases tested; both compounds effectively suppressed the development of rice blast, tomato late blight, wheat leaf rust and red pepper anthracnose. 4-Methoxyhonokiol and obovatol were highly active to only rice blast and wheat leaf rust respectively. The extract of M. obovata and four neolignans had potent in vivo antifungal activities against plant pathogenic fungi. Neolignans from Magnolia spp. can be used and suggested as a novel antifungal lead compound for the development of new fungicide and directly as a natural fungicide for the control of plant diseases such as rice blast and wheat leaf rust.
Liu, Wenxuan; Rouse, Matthew; Friebe, Bernd; Jin, Yue; Gill, Bikram; Pumphrey, Michael O
2011-07-01
This study reports the discovery and molecular mapping of a resistance gene effective against stem rust races RKQQC and TTKSK (Ug99) derived from Aegilops geniculata (2n = 4x = 28, U(g)U(g)M(g)M(g)). Two populations from the crosses TA5599 (T5DL-5M(g)L·5M(g)S)/TA3809 (ph1b mutant in Chinese Spring background) and TA5599/Lakin were developed and used for genetic mapping to identify markers linked to the resistance gene. Further molecular and cytogenetic characterization resulted in the identification of nine spontaneous recombinants with shortened Ae. geniculata segments. Three of the wheat-Ae. geniculata recombinants (U6154-124, U6154-128, and U6200-113) are interstitial translocations (T5DS·5DL-5M(g)L-5DL), with 20-30% proximal segments of 5M(g)L translocated to 5DL; the other six are recombinants (T5DL-5M(g)L·5M(g)S) have shortened segments of 5M(g)L with fraction lengths (FL) of 0.32-0.45 compared with FL 0.55 for the 5M(g)L segment in the original translocation donor, TA5599. Recombinants U6200-64, U6200-117, and U6154-124 carry the stem rust resistance gene Sr53 with the same infection type as TA5599, the resistance gene donor. All recombinants were confirmed to be genetically compensating on the basis of genomic in situ hybridization and molecular marker analysis with chromosome 5D- and 5M(g)-specific SSR/STS-PCR markers. These recombinants between wheat and Ae. geniculata will provide another source for wheat stem rust resistance breeding and for physical mapping of the resistance locus and crossover hot spots between wheat chromosome 5D and chromosome 5M(g)L of Ae. geniculata.
Genomic and pedigree-based prediction for leaf, stem, and stripe rust resistance in wheat.
Juliana, Philomin; Singh, Ravi P; Singh, Pawan K; Crossa, Jose; Huerta-Espino, Julio; Lan, Caixia; Bhavani, Sridhar; Rutkoski, Jessica E; Poland, Jesse A; Bergstrom, Gary C; Sorrells, Mark E
2017-07-01
Genomic prediction for seedling and adult plant resistance to wheat rusts was compared to prediction using few markers as fixed effects in a least-squares approach and pedigree-based prediction. The unceasing plant-pathogen arms race and ephemeral nature of some rust resistance genes have been challenging for wheat (Triticum aestivum L.) breeding programs and farmers. Hence, it is important to devise strategies for effective evaluation and exploitation of quantitative rust resistance. One promising approach that could accelerate gain from selection for rust resistance is 'genomic selection' which utilizes dense genome-wide markers to estimate the breeding values (BVs) for quantitative traits. Our objective was to compare three genomic prediction models including genomic best linear unbiased prediction (GBLUP), GBLUP A that was GBLUP with selected loci as fixed effects and reproducing kernel Hilbert spaces-markers (RKHS-M) with least-squares (LS) approach, RKHS-pedigree (RKHS-P), and RKHS markers and pedigree (RKHS-MP) to determine the BVs for seedling and/or adult plant resistance (APR) to leaf rust (LR), stem rust (SR), and stripe rust (YR). The 333 lines in the 45th IBWSN and the 313 lines in the 46th IBWSN were genotyped using genotyping-by-sequencing and phenotyped in replicated trials. The mean prediction accuracies ranged from 0.31-0.74 for LR seedling, 0.12-0.56 for LR APR, 0.31-0.65 for SR APR, 0.70-0.78 for YR seedling, and 0.34-0.71 for YR APR. For most datasets, the RKHS-MP model gave the highest accuracies, while LS gave the lowest. GBLUP, GBLUP A, RKHS-M, and RKHS-P models gave similar accuracies. Using genome-wide marker-based models resulted in an average of 42% increase in accuracy over LS. We conclude that GS is a promising approach for improvement of quantitative rust resistance and can be implemented in the breeding pipeline.
Zhang, Zijin; Chen, Jieming; Su, Yongying; Liu, Hanmei; Chen, Yanger; Luo, Peigao; Du, Xiaogang; Wang, Dan; Zhang, Huaiyu
2015-01-01
LHY (late elongated hypocotyl) is an important gene that regulates and controls biological rhythms in plants. Additionally, LHY is highly expressed in the SSH (suppression subtractive hybridization) cDNA library-induced stripe rust pathogen (CYR32) in our previous research. To identify the function of the LHY gene in disease resistance against stripe rust, we used RACE-PCR technology to clone TaLHY in the wheat variety Chuannong19. The cDNA of TaLHY is 3085 bp long with an open reading frame of 1947 bp. TaLHY is speculated to encode a 70.3 kDa protein of 648 amino acids , which has one typical plant MYB-DNA binding domain; additionally, phylogenetic tree shows that TaLHY has the highest homology with LHY of Brachypodium distachyon(BdLHY-like). Quantitative fluorescence PCR indicates that TaLHY has higher expression in the leaf, ear and stem of wheat but lower expression in the root. Infestation of CYR32 can result in up-regulated expression of TaLHY, peaking at 72 h. Using VIGS (virus-induced gene silencing) technology to disease-resistant wheat in the fourth leaf stage, plants with silenced TaLHY cannot complete their heading stage. Through the compatible interaction with the stripe rust physiological race CYR32, Chuannong 19 loses its immune capability toward the stripe rust pathogen, indicating that TaLHY may regulate and participate in the heading of wheat, as well as the defense responses against stripe rust infection. PMID:26010918
USDA-ARS?s Scientific Manuscript database
Straw strength is one of the most important criteria for spring wheat cultivar selection in the north central U.S. ‘Linkert’ (PI 672164) hard red spring wheat was released by the University of Minnesota Agricultural Experiment Station in 2013 and has very good straw strength, high grain protein con...
NASA Technical Reports Server (NTRS)
Weinstein, L. H.; Osmeloski, J. F.; Wettlaufer, S. H.; Galston, A. W.
1987-01-01
In higher plants, polyamines arise from arginine by one of two pathways: via ornithine and ornithine decarboxylase or via agmatine and arginine decarboxylase but in fungi, only the ornithine decarboxylase pathway is present. Since polyamines are required for normal growth of microorganisms and plants and since the ornithine pathway can be irreversibly blocked by alpha-difluoromethylornithine (DFMO) which has no effect on arginine decarboxylase, fungal infection of green plants might be controlled by the site-directed use of such a specific metabolic inhibitor. DFMO at relatively low concentrations provided effective control of the three biotrophic fungal pathogens studied, Puccinia recondita (leaf rust), P. graminis f. sp. tritici (stem rust), and Erysiphe graminis (powdery mildew) on wheat (Triticum aestivum L.) Effective control of infection by leaf or stem rust fungi was obtained with sprays of DFMO that ranged from about 0.01 to 0.20 mM in experiments where the inhibitor was applied after spore inoculation. The powdery mildew fungus was somewhat more tolerant of DFMO, but good control of the pathogen was obtained at less than 1.0 mM. In general, application of DFMO after spore inoculation was more effective than application before inoculation. Less control was obtained following treatment with alpha-difluoromethylarginine (DFMA) but the relatively high degree of control obtained raises the possibility of a DFMA to DFMO conversion by arginase.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scherm, H.; Yang, X.B.
The El Nino/Southern Oscillation (ENSO) is one of the most important and best-characterized mechanisms of global climatic variation. Because regional temperature and precipitation patterns are influenced by the ENSO and plant diseases are responsive to these factors, historical disease records may contain an ENSO-related signal. We used cross-spectral analysis to establish coherence and phase relationships between the Southern Oscillation Index (SOI), which is a measure of the ENSO, and long-term (>40 years) data on wheat stripe rust in five regions of northern China and wheat stem rust in four climatic divisions of the midwestern United States. Monthly SOI values weremore » averaged from March to June and October to March for analysis of the rust data from China and the United States, respectively, based when weather patterns in these regions are influenced by the ENSO. The coherence relationships showed consistent and significant (0.01 {le} P {le} 0.10) cooscillations between the rust and SOI series at temporal scales characteristic of the ENSO. The five stripe rust series were coherent with the SOI series at periodicities of 2.0 to 3.0 and 8.0 to 10.0 years, and three of the four stem rust series were coherent with the SOI series at a periodicity of 6.8 to 8.2 years. The phase relationships showed that, in most cases, the rust and SOI series cooscillated out of phase, suggesting that the associations between them are indirect. In a separate analysis of a shorter (18 years) stripe rust series form the Pacific Northwest of the United States, disease severity was significantly lower during El Nino years (warm phases of the ENSO) than during non-El Nino years (P {le} 0.0222) or during La Nina years (cold phases of the ENSO) (P {le}0.0253). Although no cause-and-effect relationships could be deduced, this analysis identified methods and directions for future research into relationships between climate and disease at extended temporal scales. 34 refs., 5 figs., 1 tab.« less
Diseases Which Challenge Global Wheat Production - The Cereal Rusts
USDA-ARS?s Scientific Manuscript database
The rusts of wheat are common and widespread diseases in the US and throughout the world. Wheat rusts have been important throughout the history of wheat cultivation and are currently important diseases that are responsible for regularly occurring yield losses in wheat. The wheat rust fungi are obli...
The wheat Sr50 gene reveals rich diversity at a cereal disease resistance locus
USDA-ARS?s Scientific Manuscript database
We identify the wheat stem rust resistance gene Sr50 by physical mapping, mutation and complementation as homologous to barley Mla encoding a Coiled-Coil-Nucleotide-Binding-Leucine-Rich Repeat (CC-NB-LRR) protein. We show that Sr50 confers a unique resistance specificity, different from Sr31 and oth...
Genome-Wide Association Mapping of Stem Rust Resistance in Hordeum vulgare subsp. spontaneum
Sallam, Ahmad H.; Tyagi, Priyanka; Brown-Guedira, Gina; Muehlbauer, Gary J.; Hulse, Alex; Steffenson, Brian J.
2017-01-01
Stem rust was one of the most devastating diseases of barley in North America. Through the deployment of cultivars with the resistance gene Rpg1, losses to stem rust have been minimal over the past 70 yr. However, there exist both domestic (QCCJB) and foreign (TTKSK aka isolate Ug99) pathotypes with virulence for this important gene. To identify new sources of stem rust resistance for barley, we evaluated the Wild Barley Diversity Collection (WBDC) (314 ecogeographically diverse accessions of Hordeum vulgare subsp. spontaneum) for seedling resistance to four pathotypes (TTKSK, QCCJB, MCCFC, and HKHJC) of the wheat stem rust pathogen (Puccinia graminis f. sp. tritici, Pgt) and one isolate (92-MN-90) of the rye stem rust pathogen (P. graminis f. sp. secalis, Pgs). Based on a coefficient of infection, the frequency of resistance in the WBDC was low ranging from 0.6% with HKHJC to 19.4% with 92-MN-90. None of the accessions was resistant to all five cultures of P. graminis. A genome-wide association study (GWAS) was conducted to map stem rust resistance loci using 50,842 single-nucleotide polymorphic markers generated by genotype-by-sequencing and ordered using the new barley reference genome assembly. After proper accounting for genetic relatedness and structure among accessions, 45 quantitative trait loci were identified for resistance to P. graminis across all seven barley chromosomes. Three novel loci associated with resistance to TTKSK, QCCJB, MCCFC, and 92-MN-90 were identified on chromosomes 5H and 7H, and two novel loci associated with resistance to HKHJC were identified on chromosomes 1H and 3H. These novel alleles will enhance the diversity of resistance available for cultivated barley. PMID:28855281
Genome-Wide Association Mapping of Stem Rust Resistance in Hordeum vulgare subsp. spontaneum.
Sallam, Ahmad H; Tyagi, Priyanka; Brown-Guedira, Gina; Muehlbauer, Gary J; Hulse, Alex; Steffenson, Brian J
2017-10-05
Stem rust was one of the most devastating diseases of barley in North America. Through the deployment of cultivars with the resistance gene Rpg1 , losses to stem rust have been minimal over the past 70 yr. However, there exist both domestic (QCCJB) and foreign (TTKSK aka isolate Ug99) pathotypes with virulence for this important gene. To identify new sources of stem rust resistance for barley, we evaluated the Wild Barley Diversity Collection (WBDC) (314 ecogeographically diverse accessions of Hordeum vulgare subsp. spontaneum ) for seedling resistance to four pathotypes (TTKSK, QCCJB, MCCFC, and HKHJC) of the wheat stem rust pathogen ( Puccinia graminis f. sp. tritici , Pgt ) and one isolate (92-MN-90) of the rye stem rust pathogen ( P. graminis f. sp. secalis , Pgs ). Based on a coefficient of infection, the frequency of resistance in the WBDC was low ranging from 0.6% with HKHJC to 19.4% with 92-MN-90. None of the accessions was resistant to all five cultures of P. graminis A genome-wide association study (GWAS) was conducted to map stem rust resistance loci using 50,842 single-nucleotide polymorphic markers generated by genotype-by-sequencing and ordered using the new barley reference genome assembly. After proper accounting for genetic relatedness and structure among accessions, 45 quantitative trait loci were identified for resistance to P. graminis across all seven barley chromosomes. Three novel loci associated with resistance to TTKSK, QCCJB, MCCFC, and 92-MN-90 were identified on chromosomes 5H and 7H, and two novel loci associated with resistance to HKHJC were identified on chromosomes 1H and 3H. These novel alleles will enhance the diversity of resistance available for cultivated barley. Copyright © 2017 Sallam et al.
The genome sequence and effector complement of the flax rust pathogen Melampsora lini.
Nemri, Adnane; Saunders, Diane G O; Anderson, Claire; Upadhyaya, Narayana M; Win, Joe; Lawrence, Gregory J; Jones, David A; Kamoun, Sophien; Ellis, Jeffrey G; Dodds, Peter N
2014-01-01
Rust fungi cause serious yield reductions on crops, including wheat, barley, soybean, coffee, and represent real threats to global food security. Of these fungi, the flax rust pathogen Melampsora lini has been developed most extensively over the past 80 years as a model to understand the molecular mechanisms that underpin pathogenesis. During infection, M. lini secretes virulence effectors to promote disease. The number of these effectors, their function and their degree of conservation across rust fungal species is unknown. To assess this, we sequenced and assembled de novo the genome of M. lini isolate CH5 into 21,130 scaffolds spanning 189 Mbp (scaffold N50 of 31 kbp). Global analysis of the DNA sequence revealed that repetitive elements, primarily retrotransposons, make up at least 45% of the genome. Using ab initio predictions, transcriptome data and homology searches, we identified 16,271 putative protein-coding genes. An analysis pipeline was then implemented to predict the effector complement of M. lini and compare it to that of the poplar rust, wheat stem rust and wheat stripe rust pathogens to identify conserved and species-specific effector candidates. Previous knowledge of four cloned M. lini avirulence effector proteins and two basidiomycete effectors was used to optimize parameters of the effector prediction pipeline. Markov clustering based on sequence similarity was performed to group effector candidates from all four rust pathogens. Clusters containing at least one member from M. lini were further analyzed and prioritized based on features including expression in isolated haustoria and infected leaf tissue and conservation across rust species. Herein, we describe 200 of 940 clusters that ranked highest on our priority list, representing 725 flax rust candidate effectors. Our findings on this important model rust species provide insight into how effectors of rust fungi are conserved across species and how they may act to promote infection on their hosts.
Dehydro-alpha-lapachone isolated from Catalpa ovata stems: activity against plant pathogenic fungi.
Cho, Jun Young; Kim, Hae Young; Choi, Gyung Ja; Jang, Kyoung Soo; Lim, He Kyoung; Lim, Chi Hwan; Cho, Kwang Yun; Kim, Jin-Cheol
2006-05-01
The methanol extract of stems of Catalpa ovata G Don exhibits potent in vivo antifungal activity against Magnaporthe grisea (Hebert) Barr (rice blast) on rice plants, Botrytis cinerea Pers ex Fr (tomato grey mould) and Phytophthora infestans (Mont) de Bary (tomato late blight) on tomato plants, Puccinia recondita Rob ex Desm (wheat leaf rust) on wheat plants and Blumeria graminis (DC) Speer f. sp. hordei Marchal (barley powdery mildew) on barley plants. An antifungal substance was isolated and identified as dehydro-alpha-lapachone from mass and nuclear magnetic resonance spectral data. It completely inhibited the mycelial growth of B. cinerea, Colletotrichum acutatum Simmonds, Colletotrichum gloeosporioides Simmonds, M. grisea and Pythium ultimum Trow over a range of 0.4-33.3 mg litre(-1). It also controlled the development of rice blast, tomato late blight, wheat leaf rust, barley powdery mildew and red pepper anthracnose (Colletotrichum coccodes (Wallr) S Hughes). The chemical was particularly effective in suppressing red pepper anthracnose by 95% at a concentration of 125 mg litre(-1). Copyright 2006 Society of Chemical Industry.
Singh, Sukhwinder; Singh, Ravi P; Bhavani, Sridhar; Huerta-Espino, Julio; Eugenio, Lopez-Vera Eric
2013-05-01
Races of stem rust fungus pose a major threat to wheat production worldwide. We mapped adult plant resistance (APR) to Ug99 in 141 lines of a PBW343/Muu recombinant inbred lines (RILs) population by phenotyping them for three seasons at Njoro, Kenya in field trials and genotyping them with Diversity Arrays Technology (DArT) markers. Moderately susceptible parent PBW343 and APR parent Muu displayed mean stem rust severities of 66.6 and 5 %, respectively. The mean disease severity of RILs ranged from 1 to 100 %, with an average of 23.3 %. Variance components for stem rust severity were highly significant (p < 0.001) for RILs and seasons and the heritability (h (2)) for the disease ranged between 0.78 and 0.89. Quantitative trait loci (QTL) analysis identified four consistent genomic regions on chromosomes 2BS, 3BS, 5BL, and 7AS; three contributed by Muu (QSr.cim-2BS, QSr.cim-3BS and QSr.cim-7AS) and one (QSr.cim-5BL) derived from PBW343. RILs with flanking markers for these QTLs had significantly lower severities than those lacking the markers, and combinations of QTLs had an additive effect, significantly enhancing APR. The QTL identified on chromosome 3BS mapped to the matching region as the known APR gene Sr2. Four additional QTLs on chromosomes 1D, 3A, 4B, and 6A reduced disease severity significantly at least once in three seasons. Our results show a complex nature of APR to stem rust where Sr2 and other minor slow rusting resistance genes can confer a higher level of resistance when present together.
Figueroa, Melania; Upadhyaya, Narayana M; Sperschneider, Jana; Park, Robert F; Szabo, Les J; Steffenson, Brian; Ellis, Jeff G; Dodds, Peter N
2016-01-01
The recent resurgence of wheat stem rust caused by new virulent races of Puccinia graminis f. sp. tritici (Pgt) poses a threat to food security. These concerns have catalyzed an extensive global effort toward controlling this disease. Substantial research and breeding programs target the identification and introduction of new stem rust resistance (Sr) genes in cultivars for genetic protection against the disease. Such resistance genes typically encode immune receptor proteins that recognize specific components of the pathogen, known as avirulence (Avr) proteins. A significant drawback to deploying cultivars with single Sr genes is that they are often overcome by evolution of the pathogen to escape recognition through alterations in Avr genes. Thus, a key element in achieving durable rust control is the deployment of multiple effective Sr genes in combination, either through conventional breeding or transgenic approaches, to minimize the risk of resistance breakdown. In this situation, evolution of pathogen virulence would require changes in multiple Avr genes in order to bypass recognition. However, choosing the optimal Sr gene combinations to deploy is a challenge that requires detailed knowledge of the pathogen Avr genes with which they interact and the virulence phenotypes of Pgt existing in nature. Identifying specific Avr genes from Pgt will provide screening tools to enhance pathogen virulence monitoring, assess heterozygosity and propensity for mutation in pathogen populations, and confirm individual Sr gene functions in crop varieties carrying multiple effective resistance genes. Toward this goal, much progress has been made in assembling a high quality reference genome sequence for Pgt, as well as a Pan-genome encompassing variation between multiple field isolates with diverse virulence spectra. In turn this has allowed prediction of Pgt effector gene candidates based on known features of Avr genes in other plant pathogens, including the related flax rust fungus. Upregulation of gene expression in haustoria and evidence for diversifying selection are two useful parameters to identify candidate Avr genes. Recently, we have also applied machine learning approaches to agnostically predict candidate effectors. Here, we review progress in stem rust pathogenomics and approaches currently underway to identify Avr genes recognized by wheat Sr genes.
2011-04-01
Ug99 stem rust resistant wheat breeder seed to MAIL, which will be released to farmers for commercial planting in fall 2011. Poppy yields decreased...level continues to improve the Afghan Government’s overall agricultural sector. Wheat is a key staple in Afghanistan, accounting for over one-half of...tight global supply could affect the country’s food security. Afghanistan’s wheat production routinely does not meet demand and is subject to sizable
First Report of the Ug99 race group of wheat stem rust, Puccinia graminis f. sp. tritici, in Egypt
USDA-ARS?s Scientific Manuscript database
Since the first detection of Ug99 (or race TTKSK) of Puccinia graminis f.sp. tritici (Pgt) in Uganda in 1998 (Pretorius et al. 2000), it has been a priority to track further spread to other wheat growing areas. To date, variants in the Ug99 race group have been detected in 12 countries, i.e., Uganda...
Chen, Yang-Er; Cui, Jun-Mei; Su, Yan-Qiu; Yuan, Shu; Yuan, Ming; Zhang, Huai-Yu
2015-01-01
Wheat stripe rust (Puccinia striiformis f. sp. tritici, Pst), is one of the most serious diseases of wheat (Triticum aestivum L.) worldwide. To gain a better understanding of the protective mechanism against stripe rust at the adult plant stage, the differences in photosystem II and antioxidant enzymatic systems between susceptible and resistant wheat in response to stripe rust disease (P. striiformis) were investigated. We found that chlorophyll fluorescence and the activities of the antioxidant enzymes were higher in resistant wheat than in susceptible wheat after stripe rust infection. Compared with the susceptible wheat, the resistant wheat accumulated a higher level of D1 protein and a lower level of reactive oxygen species after infection. Furthermore, our results demonstrate that D1 and light-harvesting complex II (LHCII) phosphorylation are involved in the resistance to stripe rust in wheat. The CP29 protein was phosphorylated under stripe rust infection, like its phosphorylation in other monocots under environmental stresses. More extensive damages occur on the thylakoid membranes in the susceptible wheat compared with the resistant wheat. The findings provide evidence that thylakoid protein phosphorylation and antioxidant enzyme systems play important roles in plant responses and defense to biotic stress. PMID:26442087
Chen, Yang-Er; Cui, Jun-Mei; Su, Yan-Qiu; Yuan, Shu; Yuan, Ming; Zhang, Huai-Yu
2015-01-01
Wheat stripe rust (Puccinia striiformis f. sp. tritici, Pst), is one of the most serious diseases of wheat (Triticum aestivum L.) worldwide. To gain a better understanding of the protective mechanism against stripe rust at the adult plant stage, the differences in photosystem II and antioxidant enzymatic systems between susceptible and resistant wheat in response to stripe rust disease (P. striiformis) were investigated. We found that chlorophyll fluorescence and the activities of the antioxidant enzymes were higher in resistant wheat than in susceptible wheat after stripe rust infection. Compared with the susceptible wheat, the resistant wheat accumulated a higher level of D1 protein and a lower level of reactive oxygen species after infection. Furthermore, our results demonstrate that D1 and light-harvesting complex II (LHCII) phosphorylation are involved in the resistance to stripe rust in wheat. The CP29 protein was phosphorylated under stripe rust infection, like its phosphorylation in other monocots under environmental stresses. More extensive damages occur on the thylakoid membranes in the susceptible wheat compared with the resistant wheat. The findings provide evidence that thylakoid protein phosphorylation and antioxidant enzyme systems play important roles in plant responses and defense to biotic stress.
USDA-ARS?s Scientific Manuscript database
Rust diseases caused by Puccinia spp. pose a major threat to global wheat production. Puccinia triticina (Pt), an obligate basidiomycete biotroph, causes leaf rust disease which incurs yield losses of up to 50% in wheat. Historically, resistant wheat cultivars have been used to control leaf rust, bu...
Seifers, Dallas L.; Haber, Steve; Martin, Terry J.; McCallum, Brent D.
2014-01-01
Stable resistance to infection with Wheat streak mosaic virus (WSMV) can be evolved de novo in selfing bread wheat lines subjected to cycles of WSMV inoculation and selection of best-performing plants or tillers. To learn whether this phenomenon might be applied to evolve resistance de novo to pathogens unrelated to WSMV, we examined the responses to leaf rust of succeeding generations of the rust- and WSMV-susceptible cultivar ‘Lakin’ following WSMV inoculation and derived rust-resistant sublines. After three cycles of the iterative protocol five plants, in contrast to all others, expressed resistance to leaf and stripe rust. A subset of descendant sublines of one of these, ‘R1’, heritably and uniformly expressed the new trait of resistance to leaf rust. Such sublines, into which no genes from a known source of resistance had been introgressed, conferred resistance to progeny of crosses with susceptible parents. The F1 populations produced from crosses between, respectively, susceptible and resistant ‘Lakin’ sublines 4-3-3 and 4-12-3 were not all uniform in their response to seedling inoculation with race TDBG. In seedling tests against TDBG and MKPS races the F2s from F1 populations that were uniformly resistant had 3∶1 ratios of resistant to susceptible individuals but the F2s from susceptible F1 progenitors were uniformly susceptible. True-breeding lines derived from resistant individuals in F2 populations were resistant to natural stripe and leaf rust inoculum in the field, while the ‘Lakin’ progenitor was susceptible. The next generation of six of the ‘Lakin’-derived lines exhibited moderate to strong de novo resistance to stem rust races TPMK, QFCS and RKQQ in seedling tests while the ‘Lakin’ progenitor was susceptible. These apparently epigenetic effects in response to virus infection may help researchers fashion a new tool that expands the range of genetic resources already available in adapted germplasm. PMID:24497941
Epidemiology and control of rusts of wheat and barley
USDA-ARS?s Scientific Manuscript database
Rusts of wheat and barley were monitored throughout the Pacific Northwest (PNW) using trap plots and through field surveys during the 2008 growing season. Through collaborators in other states, stripe rusts of wheat and barley were monitored throughout the US. In 2008, stripe rust occurred in 18 st...
Millet, E; Manisterski, J; Ben-Yehuda, P; Distelfeld, A; Deek, J; Wan, A; Chen, X; Steffenson, B J
2014-06-01
Leaf rust and stripe rust are devastating wheat diseases, causing significant yield losses in many regions of the world. The use of resistant varieties is the most efficient way to protect wheat crops from these diseases. Sharon goatgrass (Aegilops sharonensis or AES), which is a diploid wild relative of wheat, exhibits a high frequency of leaf and stripe rust resistance. We used the resistant AES accession TH548 and induced homoeologous recombination by the ph1b allele to obtain resistant wheat recombinant lines carrying AES chromosome segments in the genetic background of the spring wheat cultivar Galil. The gametocidal effect from AES was overcome by using an "anti-gametocidal" wheat mutant. These recombinant lines were found resistant to highly virulent races of the leaf and stripe rust pathogens in Israel and the United States. Molecular DArT analysis of the different recombinant lines revealed different lengths of AES segments on wheat chromosome 6B, which indicates the location of both resistance genes.
USDA, ARS Soft Wheat Quality Laboratory, Annual Report 2011
USDA-ARS?s Scientific Manuscript database
The report describes new activities for the lab including the a transitions in the laboratory and activites on the USDA, NIFA-funded Triticeae CAP project. Recent research on milling and quality evaluations, data management, molecular evaluations, stem rust resistance from the lab are highlighted, ...
USDA-ARS?s Scientific Manuscript database
Stem (black) rust, caused by Puccinia graminis, has plagued cereal crop production (wheat, barley, rye and oat) since the early days of agriculture. P. graminis is an obligate biotroph with a complex life cycle that includes five spore stages and two hosts. The asexual stage (uredinal) has a broad h...
Song, Liqiang; Han, Haiming; Zhou, Shenghui; Zhang, Jinpeng; Yang, Xinming; Li, Xiuquan; Liu, Weihua; Li, Lihui
2017-01-01
Stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), is one of the most destructive diseases of wheat (Triticum aestivum L.) worldwide. Agropyron cristatum (L.) Gaertn. (2n = 28, PPPP), one of the wild relatives of wheat, exhibits resistance to stripe rust. In this study, wheat-A. cristatum 6P disomic addition line 4844-12 also exhibited resistance to stripe rust. To identify the stripe rust resistance locus from A. cristatum 6P, ten translocation lines, five deletion lines and the BC2F2 and BC3F2 populations of two wheat-A. cristatum 6P whole-arm translocation lines were tested with a mixture of two races of Pst in two sites during 2015–2016 and 2016–2017, being genotyped with genomic in situ hybridization (GISH) and molecular markers. The result indicated that the locus conferring stripe rust resistance was located on the terminal 20% of 6P short arm’s length. Twenty-nine 6P-specific sequence-tagged-site (STS) markers mapped on the resistance locus have been acquired, which will be helpful for the fine mapping of the stripe rust resistance locus. The stripe rust-resistant translocation lines were found to carry some favorable agronomic traits, which could facilitate their use in wheat improvement. Collectively, the stripe rust resistance locus from A. cristatum 6P could be a novel resistance source and the screened stripe rust-resistant materials will be valuable for wheat disease breeding. PMID:29137188
Zhang, Zhi; Song, Liqiang; Han, Haiming; Zhou, Shenghui; Zhang, Jinpeng; Yang, Xinming; Li, Xiuquan; Liu, Weihua; Li, Lihui
2017-11-13
Stripe rust, caused by Puccinia striiformis f. sp. tritici ( Pst ), is one of the most destructive diseases of wheat ( Triticum aestivum L.) worldwide. Agropyron cristatum (L.) Gaertn. (2 n = 28, PPPP), one of the wild relatives of wheat, exhibits resistance to stripe rust. In this study, wheat- A . cristatum 6P disomic addition line 4844-12 also exhibited resistance to stripe rust. To identify the stripe rust resistance locus from A . cristatum 6P, ten translocation lines, five deletion lines and the BC₂F₂ and BC₃F₂ populations of two wheat- A . cristatum 6P whole-arm translocation lines were tested with a mixture of two races of Pst in two sites during 2015-2016 and 2016-2017, being genotyped with genomic in situ hybridization (GISH) and molecular markers. The result indicated that the locus conferring stripe rust resistance was located on the terminal 20% of 6P short arm's length. Twenty-nine 6P-specific sequence-tagged-site (STS) markers mapped on the resistance locus have been acquired, which will be helpful for the fine mapping of the stripe rust resistance locus. The stripe rust-resistant translocation lines were found to carry some favorable agronomic traits, which could facilitate their use in wheat improvement. Collectively, the stripe rust resistance locus from A . cristatum 6P could be a novel resistance source and the screened stripe rust-resistant materials will be valuable for wheat disease breeding.
Advances in control of wheat rusts
USDA-ARS?s Scientific Manuscript database
This chapter provides a summary of recent advances in wheat rust research. Although the emphasis is on recent developments, some historical context is provided. Critical concepts in studying the wheat rusts are pathogen and host genetics, host-pathogen interactions, epidemiology and management strat...
Niu, Zhixia; Klindworth, Daryl L; Friesen, Timothy L; Chao, Shiaoman; Jin, Yue; Cai, Xiwen; Xu, Steven S
2011-04-01
Chromosome engineering is a useful strategy for transfer of alien genes from wild relatives into modern crops. However, this strategy has not been extensively used for alien gene introgression in most crops due to low efficiency of conventional cytogenetic techniques. Here, we report an improved scheme of chromosome engineering for efficient elimination of a large amount of goatgrass (Aegilops speltoides) chromatin surrounding Sr39, a gene that provides resistance to multiple stem rust races, including Ug99 (TTKSK) in wheat. The wheat ph1b mutation, which promotes meiotic pairing between homoeologous chromosomes, was employed to induce recombination between wheat chromosome 2B and goatgrass 2S chromatin using a backcross scheme favorable for inducing and detecting the homoeologous recombinants with small goatgrass chromosome segments. Forty recombinants with Sr39 with reduced surrounding goatgrass chromatin were quickly identified from 1048 backcross progenies through disease screening and molecular marker analysis. Four of the recombinants carrying Sr39 with a minimal amount of goatgrass chromatin (2.87-9.15% of the translocated chromosomes) were verified using genomic in situ hybridization. Approximately 97% of the goatgrass chromatin was eliminated in one of the recombinants, in which a tiny goatgrass chromosome segment containing Sr39 was retained in the wheat genome. Localization of the goatgrass chromatin in the recombinants led to rapid development of three molecular markers tightly linked to Sr39. The new wheat lines and markers provide useful resources for the ongoing global effort to combat Ug99. This study has demonstrated great potential of chromosome engineering in genome manipulation for plant improvement.
Niu, Zhixia; Klindworth, Daryl L.; Friesen, Timothy L.; Chao, Shiaoman; Jin, Yue; Cai, Xiwen; Xu, Steven S.
2011-01-01
Chromosome engineering is a useful strategy for transfer of alien genes from wild relatives into modern crops. However, this strategy has not been extensively used for alien gene introgression in most crops due to low efficiency of conventional cytogenetic techniques. Here, we report an improved scheme of chromosome engineering for efficient elimination of a large amount of goatgrass (Aegilops speltoides) chromatin surrounding Sr39, a gene that provides resistance to multiple stem rust races, including Ug99 (TTKSK) in wheat. The wheat ph1b mutation, which promotes meiotic pairing between homoeologous chromosomes, was employed to induce recombination between wheat chromosome 2B and goatgrass 2S chromatin using a backcross scheme favorable for inducing and detecting the homoeologous recombinants with small goatgrass chromosome segments. Forty recombinants with Sr39 with reduced surrounding goatgrass chromatin were quickly identified from 1048 backcross progenies through disease screening and molecular marker analysis. Four of the recombinants carrying Sr39 with a minimal amount of goatgrass chromatin (2.87–9.15% of the translocated chromosomes) were verified using genomic in situ hybridization. Approximately 97% of the goatgrass chromatin was eliminated in one of the recombinants, in which a tiny goatgrass chromosome segment containing Sr39 was retained in the wheat genome. Localization of the goatgrass chromatin in the recombinants led to rapid development of three molecular markers tightly linked to Sr39. The new wheat lines and markers provide useful resources for the ongoing global effort to combat Ug99. This study has demonstrated great potential of chromosome engineering in genome manipulation for plant improvement. PMID:21242535
Nested association mapping of stem rust resistance in wheat using genotyping by sequencing
USDA-ARS?s Scientific Manuscript database
Nested association mapping is an approach to map trait loci in which families within populations are interconnected by a common parent. By implementing joint-linkage association analysis, this approach is able to map causative loci with higher power and resolution compared to biparental linkage mapp...
High density mapping of a resistance gene to Ug99 from an Iranian landrace
USDA-ARS?s Scientific Manuscript database
Managing the disease wheat stem rust caused by Puccinia graminis f. sp. tritici (Pgt) including the highly virulent race TTKSK is imperative for the preservation of global food security. The most effective strategy for managing this potentially devastating disease is pyramiding several resistance ge...
Multi-locus mixed model analysis of stem rust resistance in a worldwide collection of winter wheat
USDA-ARS?s Scientific Manuscript database
Genome-wide association mapping is a powerful tool for dissecting the relationship between phenotypes and genetic variants in diverse populations. With improved cost efficiency of high-throughput genotyping platforms, association mapping is a desirable method to mine populations for favorable allele...
Guo, Xiang; Wang, Ming Tian; Zhang, Guo Zhi
2017-12-01
The winter reproductive areas of Puccinia striiformis var. striiformis in Sichuan Basin are often the places mostly affected by wheat stripe rust. With data on the meteorological condition and stripe rust situation at typical stations in the winter reproductive area in Sichuan Basin from 1999 to 2016, this paper classified the meteorological conditions inducing wheat stripe rust into 5 grades, based on the incidence area ratio of the disease. The meteorological factors which were biologically related to wheat stripe rust were determined through multiple analytical methods, and a meteorological grade model for forecasting wheat stripe rust was created. The result showed that wheat stripe rust in Sichuan Basin was significantly correlated with many meteorological factors, such as the ave-rage (maximum and minimum) temperature, precipitation and its anomaly percentage, relative humidity and its anomaly percentage, average wind speed and sunshine duration. Among these, the average temperature and the anomaly percentage of relative humidity were the determining factors. According to a historical retrospective test, the accuracy of the forecast based on the model was 64% for samples in the county-level test, and 89% for samples in the municipal-level test. In a meteorological grade forecast of wheat stripe rust in the winter reproductive areas in Sichuan Basin in 2017, the prediction was accurate for 62.8% of the samples, with 27.9% error by one grade and only 9.3% error by two or more grades. As a result, the model could deliver satisfactory forecast results, and predicate future wheat stripe rust from a meteorological point of view.
USDA-ARS?s Scientific Manuscript database
Stripe rust of wheat, caused by Puccinia striiformis f. sp. tritici (Pst), is a global concern for wheat production and has been increasingly destructive in Ethiopia,as well as in the United States and many other countries. As Ethiopia has a long history of stripe rust epidemics, its native wheat ge...
Toor, Puneet Inder; Kaur, Satinder; Bansal, Mitaly; Yadav, Bharat; Chhuneja, Parveen
2016-12-01
A pair of stripe rust and leaf rust resistance genes was introgressed from Aegilops caudata, a nonprogenitor diploid species with the CC genome, to cultivated wheat. Inheritance and genetic mapping of stripe rust resistance gene in backcrossrecombinant inbred line (BC-RIL) population derived from the cross of a wheat-Ae. caudata introgression line (IL) T291- 2(pau16060) with wheat cv. PBW343 is reported here. Segregation of BC-RILs for stripe rust resistance depicted a single major gene conditioning adult plant resistance (APR) with stripe rust reaction varying from TR-20MS in resistant RILs signifying the presence of some minor genes as well. Genetic association with leaf rust resistance revealed that two genes are located at a recombination distance of 13%. IL T291-2 had earlier been reported to carry introgressions on wheat chromosomes 2D, 3D, 4D, 5D, 6D and 7D. Genetic mapping indicated the introgression of stripe rust resistance gene on wheat chromosome 5DS in the region carrying leaf rust resistance gene LrAc, but as an independent introgression. Simple sequence repeat (SSR) and sequence-tagged site (STS) markers designed from the survey sequence data of 5DS enriched the target region harbouring stripe and leaf rust resistance genes. Stripe rust resistance locus, temporarily designated as YrAc, mapped at the distal most end of 5DS linked with a group of four colocated SSRs and two resistance gene analogue (RGA)-STS markers at a distance of 5.3 cM. LrAc mapped at a distance of 9.0 cM from the YrAc and at 2.8 cM from RGA-STS marker Ta5DS_2737450, YrAc and LrAc appear to be the candidate genes for marker-assisted enrichment of the wheat gene pool for rust resistance.
Wang, Xiaojie; Tang, Chunlei; Zhang, Gang; Li, Yingchun; Wang, Chenfang; Liu, Bo; Qu, Zhipeng; Zhao, Jie; Han, Qingmei; Huang, Lili; Chen, Xianming; Kang, Zhensheng
2009-01-01
Background Puccinia striiformis f. sp. tritici is a fungal pathogen causing stripe rust, one of the most important wheat diseases worldwide. The fungus is strictly biotrophic and thus, completely dependent on living host cells for its reproduction, which makes it difficult to study genes of the pathogen. In spite of its economic importance, little is known about the molecular basis of compatible interaction between the pathogen and wheat host. In this study, we identified wheat and P. striiformis genes associated with the infection process by conducting a large-scale transcriptomic analysis using cDNA-AFLP. Results Of the total 54,912 transcript derived fragments (TDFs) obtained using cDNA-AFLP with 64 primer pairs, 2,306 (4.2%) displayed altered expression patterns after inoculation, of which 966 showed up-regulated and 1,340 down-regulated. 186 TDFs produced reliable sequences after sequencing of 208 TDFs selected, of which 74 (40%) had known functions through BLAST searching the GenBank database. Majority of the latter group had predicted gene products involved in energy (13%), signal transduction (5.4%), disease/defence (5.9%) and metabolism (5% of the sequenced TDFs). BLAST searching of the wheat stem rust fungus genome database identified 18 TDFs possibly from the stripe rust pathogen, of which 9 were validated of the pathogen origin using PCR-based assays followed by sequencing confirmation. Of the 186 reliable TDFs, 29 homologous to genes known to play a role in disease/defense, signal transduction or uncharacterized genes were further selected for validation of cDNA-AFLP expression patterns using qRT-PCR analyses. Results confirmed the altered expression patterns of 28 (96.5%) genes revealed by the cDNA-AFLP technique. Conclusion The results show that cDNA-AFLP is a reliable technique for studying expression patterns of genes involved in the wheat-stripe rust interactions. Genes involved in compatible interactions between wheat and the stripe rust pathogen were identified and their expression patterns were determined. The present study should be helpful in elucidating the molecular basis of the infection process, and identifying genes that can be targeted for inhibiting the growth and reproduction of the pathogen. Moreover, this study can also be used to elucidate the defence responses of the genes that were of plant origin. PMID:19566949
USDA-ARS?s Scientific Manuscript database
Leaf rust (Puccinia triticina Eriks. & Henn.) is a major disease affecting durum wheat production. The Lr14a leaf rust resistant gene present in the durum wheat cv. Creso and its derivative Colosseo is one of the best characterized leaf rust resistance sources presently deployed in durum wheat breed...
Novel rust resistance in wheat (Triticum aestivum L.)
USDA-ARS?s Scientific Manuscript database
The Puccinia fungi that cause wheat rust diseases are among the most globally destructive agricultural pathogens. The most effective and utilized defense against rust is genetic resistance. The vast majority of rust resistance is racespecific conferred by single genes rapidly overcome by the pathoge...
Physiologic specialization of Puccinia graminis f. sp. tritici in Kenya in 2011
USDA-ARS?s Scientific Manuscript database
A total of 12 collections of Puccinia graminis f. sp. tritici were obtained from Kenya during 2011. Collections were made around Mount Kenya and in wheat growing areas southwest towards Nakuru in the Rift Valley. Four collections were made from the international stem rust screening nursery in Njoro....
Mapping genes for resistance to stripe rust in spring wheat landrace PI 480035
USDA-ARS?s Scientific Manuscript database
Stripe rust caused by Puccinia striiformis Westend. f. sp. tritici Erikks. is an economically important disease of wheat (Triticum aestivum L.). Hexaploid spring wheat landrace PI 480035 was highly resistant to stripe rust in the field in Washington during 2011 and 2012. The objective of this resear...
Naruoka, Y; Garland-Campbell, K A; Carter, A H
2015-06-01
Potential novel and known QTL for race-specific all-stage and adult plant resistance to stripe rust were identified by genome-wide association mapping in the US PNW winter wheat accessions. Stripe rust (Puccinia striiformis F. sp. tritici; also known as yellow rust) is a globally devastating disease of wheat (Triticum aestivum L.) and a major threat to wheat production in the US Pacific Northwest (PNW), therefore both adult plant and all-stage resistance have been introduced into the winter wheat breeding programs in the PNW. The goal of this study was to identify quantitative trait loci (QTL) and molecular markers for these resistances through genome-wide association (GWAS) mapping in winter wheat accessions adapted to the PNW. Stripe rust response for adult plants was evaluated in naturally occurring epidemics in a total of nine environments in Washington State, USA. Seedling response was evaluated with three races under artificial inoculation in the greenhouse. The panel was genotyped with the 9K Illumina Wheat single nucleotide polymorphism (SNP) array and additional markers linked to previously reported genes and QTL for stripe rust resistance. The population was grouped into three sub-populations. Markers linked to Yr17 and previously reported QTL for stripe rust resistance were identified on chromosomes 1B, 2A, and 2B. Potentially novel QTL associated with race-specific seedling response were identified on chromosomes 1B and 1D. Potentially novel QTL associated with adult plant response were located on chromosomes 2A, 2B, 3B, 4A, and 4B. Stripe rust was reduced when multiple alleles for resistance were present. The resistant allele frequencies were different among sub-populations in the panel. This information provides breeders with germplasm and closely linked markers for stripe rust resistance to facilitate the transfer of multiple loci for durable stripe rust resistance into wheat breeding lines and cultivars.
Kaur, Jagdeep; Fellers, John; Adholeya, Alok; Velivelli, Siva L S; El-Mounadi, Kaoutar; Nersesian, Natalya; Clemente, Thomas; Shah, Dilip
2017-02-01
Rust fungi of the order Pucciniales are destructive pathogens of wheat worldwide. Leaf rust caused by the obligate, biotrophic basidiomycete fungus Puccinia triticina (Pt) is an economically important disease capable of causing up to 50 % yield losses. Historically, resistant wheat cultivars have been used to control leaf rust, but genetic resistance is ephemeral and breaks down with the emergence of new virulent Pt races. There is a need to develop alternative measures for control of leaf rust in wheat. Development of transgenic wheat expressing an antifungal defensin offers a promising approach to complement the endogenous resistance genes within the wheat germplasm for durable resistance to Pt. To that end, two different wheat genotypes, Bobwhite and Xin Chun 9 were transformed with a chimeric gene encoding an apoplast-targeted antifungal plant defensin MtDEF4.2 from Medicago truncatula. Transgenic lines from four independent events were further characterized. Homozygous transgenic wheat lines expressing MtDEF4.2 displayed resistance to Pt race MCPSS relative to the non-transgenic controls in growth chamber bioassays. Histopathological analysis suggested the presence of both pre- and posthaustorial resistance to leaf rust in these transgenic lines. MtDEF4.2 did not, however, affect the root colonization of a beneficial arbuscular mycorrhizal fungus Rhizophagus irregularis. This study demonstrates that the expression of apoplast-targeted plant defensin MtDEF4.2 can provide substantial resistance to an economically important leaf rust disease in transgenic wheat without negatively impacting its symbiotic relationship with the beneficial mycorrhizal fungus.
USDA-ARS?s Scientific Manuscript database
Stripe rust, caused by Puccinia striiformis Westend. f. sp. tritici Erikss. (Pst) remains one of the most significant diseases of wheat worldwide. We investigated stripe rust resistance by genome-wide association analysis (GWAS) in 959 spring wheat accessions from the Unites States Department of Agr...
USDA-ARS?s Scientific Manuscript database
Stripe rust, caused by Puccinia striiformis f. sp. tritici, is one of the most widespread and destructive wheat diseases worldwide. Resistant cultivars are the preferred means of control. The spring wheat germplasm ‘PI 178759’ originating from Iraq showed effective resistance to stripe rust in fie...
Genetics of leaf rust resistance in the hard red winter wheat cultivars Santa Fe and Duster
USDA-ARS?s Scientific Manuscript database
Leaf rust caused by Puccinia triticina is a common and important disease of hard red winter wheat in the Great Plains of the United States. The hard red winter wheat cultivars 'Santa Fe' and 'Duster' have had effective leaf rust resistance since their release in 2003 and 2006, respectively. Both cul...
Aoun, Meriem; Breiland, Matthew; Kathryn Turner, M; Loladze, Alexander; Chao, Shiaoman; Xu, Steven S; Ammar, Karim; Anderson, James A; Kolmer, James A; Acevedo, Maricelis
2016-11-01
Leaf rust (caused by Erikss. []) is increasingly impacting durum wheat ( L. var. ) production with the recent appearance of races with virulence to widely grown cultivars in many durum producing areas worldwide. A highly virulent race on durum wheat was recently detected in Kansas. This race may spread to the northern Great Plains, where most of the US durum wheat is produced. The objective of this study was to identify sources of resistance to several races from the United States and Mexico at seedling stage in the greenhouse and at adult stage in field experiments. Genome-wide association study (GWAS) was used to identify single-nucleotide polymorphism (SNP) markers associated with leaf rust response in a worldwide durum wheat collection of 496 accessions. Thirteen accessions were resistant across all experiments. Association mapping revealed 88 significant SNPs associated with leaf rust response. Of these, 33 SNPs were located on chromosomes 2A and 2B, and 55 SNPs were distributed across all other chromosomes except for 1B and 7B. Twenty markers were associated with leaf rust response at seedling stage, while 68 markers were associated with leaf rust response at adult plant stage. The current study identified a total of 14 previously uncharacterized loci associated with leaf rust response in durum wheat. The discovery of these loci through association mapping (AM) is a significant step in identifying useful sources of resistance that can be used to broaden the relatively narrow leaf rust resistance spectrum in durum wheat germplasm. Copyright © 2016 Crop Science Society of America.
USDA-ARS?s Scientific Manuscript database
Stripe rust (Puccinia striiformis F. sp. tritici; also known as yellow rust) is a globally devastating disease of wheat (Triticum aestivum L.) and a major threat to wheat production in the US Pacific Northwest (PNW), therefore both adult plant and all-stage resistance have been introduced into the w...
Genetics of Leaf Rust Resistance in the Soft Red Winter Wheat Cultivars Coker 9663 and Pioneer 26R61
USDA-ARS?s Scientific Manuscript database
Leaf rust, caused by the fungus Puccinia triticina, is an important disease of soft red winter wheat cultivars that are grown in the southern and eastern United States. The objectives of this study were to identify the leaf rust resistance genes in two soft red winter wheat cultivars, Coker 9663 and...
USDA-ARS?s Scientific Manuscript database
Stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), is a devastating disease of wheat worldwide. Spring wheat germplasm PI 192252 showed a high level of high-temperature adult-plant (HTAP) resistance to stripe rust in germplasm evaluation over eight years in the State of Washington. ...
International surveillance of wheat rust pathogens: progress and challenges
USDA-ARS?s Scientific Manuscript database
Surveillance of wheat rust pathogens, including assessments of rust incidence and virulence characterization via either trap plots or race (pathotype) surveys, has provided information fundamental in formulating and adopting appropriate national and international policies, investments and strategies...
Yin, Chuntao; Park, Jeong-Jin; Gang, David R; Hulbert, Scot H
2014-03-01
The plant hormone indole-3-acetic acid (IAA) is best known as a regulator of plant growth and development but its production can also affect plant-microbe interactions. Microorganisms, including numerous plant-associated bacteria and several fungi, are also capable of producing IAA. The stem rust fungus Puccinia graminis f. sp. tritici induced wheat plants to accumulate auxin in infected leaf tissue. A gene (Pgt-IaaM) encoding a putative tryptophan 2-monooxygenase, which makes the auxin precursor indole-3-acetamide (IAM), was identified in the P. graminis f. sp. tritici genome and found to be expressed in haustoria cells in infected plant tissue. Transient silencing of the gene in infected wheat plants indicated that it was required for full pathogenicity. Expression of Pgt-IaaM in Arabidopsis caused a typical auxin expression phenotype and promoted susceptibility to the bacterial pathogen Pseudomonas syringae pv. tomato DC3000.
USDA-ARS?s Scientific Manuscript database
Winter wheat cultivar 'Jagger' was recently found to have an alien chromosomal segment 'VPM1' that should carry Lr37, a gene conferring resistance against leaf rust caused by Puccinia triticina, and this cultivar was also reported to have the wheat gene Lr17 against leaf rust. Both Lr17 and Lr37 wer...
Mapping QTL for resistance to stripe rust in spring wheat PI 192252 and winter wheat Druchamp
USDA-ARS?s Scientific Manuscript database
Stripe rust, caused by Puccinia striiformis f. sp. tritici, is an important disease of wheat worldwide. High-temperature adult-plant (HTAP) resistance has proven to be durable, but may not be adequate. Spring wheat PI 192252 and winter wheat Druchamp have high-levels of HTAP resistance. To elucidate...
Kolmer, J A; Bernardo, A; Bai, G; Hayden, M J; Chao, S
2018-02-01
Leaf rust caused by Puccinia triticina is an important disease of wheat in many regions worldwide. Durable or long-lasting leaf rust resistance has been difficult to achieve because populations of P. triticina are highly variable for virulence to race-specific resistance genes, and respond to selection by resistance genes in released wheat cultivars. The wheat cultivar Toropi, developed and grown in Brazil, was noted to have long-lasting leaf rust resistance that was effective only in adult plants. The objectives of this study were to determine the chromosome location of the leaf rust resistance genes derived from Toropi in two populations of recombinant inbred lines in a partial Thatcher wheat background. In the first population, a single gene with major effects on chromosome 5DS that mapped 2.2 centimorgans distal to IWA6289, strongly reduced leaf rust severity in all 3 years of field plot tests. This gene for adult plant leaf rust resistance was designated as Lr78. In the second population, quantitative trait loci (QTL) with small effects on chromosomes 1BL, 3BS, and 4BS were found. These QTL expressed inconsistently over 4 years of field plot tests. The adult plant leaf rust resistance derived from Toropi involved a complex combination of QTL with large and small effects.
Milus, Eugene A; Moon, David E; Lee, Kevin D; Mason, R Esten
2015-08-01
Stripe rust, caused by Puccinia striiformis f. sp. tritici, is an important disease of wheat in the Great Plains and southeastern United States. Growing resistant cultivars is the preferred means for managing stripe rust, but new virulence in the pathogen population overcomes some of the resistance. The objectives of this study were to characterize the stripe rust resistance in contemporary soft and hard red winter wheat cultivars, to characterize the virulence of P. striiformis f. sp. tritici isolates based on the resistances found in the cultivars, and to determine wheat breeders' perceptions on the importance and methods for achieving stripe rust resistance. Seedlings of cultivars were susceptible to recent isolates, indicating they lacked effective all-stage resistance. However, adult-plants were resistant or susceptible depending on the isolate, indicating they had race-specific adult-plant resistance. Using isolates collected from 1990 to 2013, six major virulence patterns were identified on adult plants of twelve cultivars that were selected as adult-plant differentials. Race-specific adult-plant resistance appears to be the only effective type of resistance protecting wheat from stripe rust in eastern United States. Among wheat breeders, the importance of incorporating stripe rust resistance into cultivars ranged from high to low depending on the frequency of epidemics in their region, and most sources of stripe rust resistance were either unknown or already overcome by virulence in the pathogen population. Breeders with a high priority for stripe rust resistance made most of their selections based on adult-plant reactions in the field, whereas breeders with a low priority for resistance based selections on molecular markers for major all-stage resistance genes.
Remapping of the stripe rust resistance gene Yr10 in common wheat.
Yuan, Cuiling; Wu, Jingzheng; Yan, Baiqiang; Hao, Qunqun; Zhang, Chaozhong; Lyu, Bo; Ni, Fei; Caplan, Allan; Wu, Jiajie; Fu, Daolin
2018-06-01
Yr10 is an important gene to control wheat stripe rust, and the search for Yr10 needs to be continued. Wheat stripe rust or yellow rust is a devastating fungal disease caused by Puccinia striiformis f. sp. tritici (Pst). Host disease resistance offers a primary source for controlling wheat stripe rust. The stripe rust resistance gene Yr10 confers the race-specific resistance to most tested Pst races in China including CYR29. Early studies proposed that Yr10 was a nucleotide-binding site, leucine-rich repeat gene archived as GenBank accession AF149112 (hereafter designated the Yr10 candidate gene or Yr10 CG ). In this study, we revealed that 15 Chinese wheat cultivars positive for Yr10 CG are susceptible to CYR29. We then expressed the Yr10 CG cDNA in the common wheat 'Bobwhite'. The Yr10 CG -cDNA positive transgenic plants were also susceptible to CYR29. Thus, it is highly unlikely that Yr10 CG corresponds to the Yr10 resistance gene. Using the Yr10 donor 'Moro' and the Pst-susceptible wheat 'Huixianhong', we generated two F 3 populations that displayed a single Mendelian segregation on the Yr10 gene, and used them to remap the Yr10 gene. Six markers were placed in the Yr10 region, with the Yr10 CG gene now mapping about 1.2-cM proximal to the Yr10 locus and the Xsdauw79 marker is completely linked to the Yr10 locus. Apparently, the Yr10 gene has not yet been identified. Fine mapping and positional cloning of Yr10 is important for gene pyramiding for stripe rust resistance in wheat.
Wheat rusts in the United States in 2015
USDA-ARS?s Scientific Manuscript database
In 2015 wheat stripe rust caused by Puccinia striiformis f. sp. graminis was widespread throughout the United States. Cool temperatures and abundant rainfall in the southern Great Plains allowed stripe rust to become widely established and spread throughout the Great Plains and eastern United States...
Wheat rusts in the United States in 2016
USDA-ARS?s Scientific Manuscript database
In 2016, wheat stripe rust caused by Puccinia striiformis f. sp. graminis was widespread throughout the United States. Cool temperatures and abundant rainfall in the southern Great Plains allowed stripe rust to become widely established and spread throughout the Great Plains and eastern United State...
Glyphosate inhibits rust diseases in glyphosate-resistant wheat and soybean.
Feng, Paul C C; Baley, G James; Clinton, William P; Bunkers, Greg J; Alibhai, Murtaza F; Paulitz, Timothy C; Kidwell, Kimberlee K
2005-11-29
Glyphosate is a broad-spectrum herbicide used for the control of weeds in glyphosate-resistant crops. Glyphosate inhibits 5-enolpyruvyl shikimate 3-phosphate synthase, a key enzyme in the synthesis of aromatic amino acids in plants, fungi, and bacteria. Studies with glyphosate-resistant wheat have shown that glyphosate provided both preventive and curative activities against Puccinia striiformis f. sp. tritici and Puccinia triticina, which cause stripe and leaf rusts, respectively, in wheat. Growth-chamber studies demonstrated wheat rust control at multiple plant growth stages with a glyphosate spray dose typically recommended for weed control. Rust control was absent in formulation controls without glyphosate, dependent on systemic glyphosate concentrations in leaf tissues, and not mediated through induction of four common systemic acquired resistance genes. A field test with endemic stripe rust inoculum confirmed the activities of glyphosate pre- and postinfestation. Preliminary greenhouse studies also demonstrated that application of glyphosate in glyphosate-resistant soybeans suppressed Asian soybean rust, caused by Phakopsora pachyrhizi.
Li, Genqiao; Xu, Xiangyang; Bai, Guihua; Carver, Brett F; Hunger, Robert; Bonman, J Michael; Kolmer, James; Dong, Hongxu
2016-11-01
Leaf rust of wheat ( L.) is a major disease that causes significant yield losses worldwide. The short-lived nature of leaf rust resistance () genes necessitates a continuous search for novel sources of resistance. We performed a genome-wide association study (GWAS) on a panel of 1596 wheat accessions. The panel was evaluated for leaf rust reaction by testing with a bulk of Eriks. () isolates collected from multiple fields of Oklahoma in 2013 and two predominant races in the fields of Oklahoma in 2015. The panel was genotyped with a set of 5011 single-nucleotide polymorphism (SNP) markers. A total of 14 quantitative trait loci (QTL) for leaf rust resistance were identified at a false discovery rate (FDR) of 0.01 using the mixed linear model (MLM). Of these, eight QTL reside in the vicinity of known genes or QTL, and more studies are needed to determine their relationship with known loci. is a new QTL to bread wheat but is close to a locus previously identified in durum wheat [ L. subsp. (Desf.) Husn.]. The other five QTL, including , , , , and , are likely novel loci for leaf rust resistance. The uneven distribution of the 14 QTL in the six subpopulations of the panel suggests that wheat breeders can enhance leaf rust resistance by selectively introgressing some of these QTL into their breeding materials. In addition, another 31 QTL were significantly associated with leaf rust resistance at a FDR of 0.05. Copyright © 2016 Crop Science Society of America.
Prospects for advancing defense to cereal rusts through genetical genomics
Ballini, Elsa; Lauter, Nick; Wise, Roger
2013-01-01
Rusts are one of the most severe threats to cereal crops because new pathogen races emerge regularly, resulting in infestations that lead to large yield losses. In 1999, a new race of stem rust, Puccinia graminis f. sp. tritici (Pgt TTKSK or Ug99), was discovered in Uganda. Most of the wheat and barley cultivars grown currently worldwide are susceptible to this new race. Pgt TTKSK has already spread northward into Iran and will likely spread eastward throughout the Indian subcontinent in the near future. This scenario is not unique to stem rust; new races of leaf rust (Puccinia triticina) and stripe rust (Puccinia striiformis) have also emerged recently. One strategy for countering the persistent adaptability of these pathogens is to stack complete- and partial-resistance genes, which requires significant breeding efforts in order to reduce deleterious effects of linkage drag. These varied resistance combinations are typically more difficult for the pathogen to defeat, since they would be predicted to apply lower selection pressure. Genetical genomics or expression Quantitative Trait Locus (eQTL) analysis enables the identification of regulatory loci that control the expression of many to hundreds of genes. Integrated deployment of these technologies coupled with efficient phenotyping offers significant potential to elucidate the regulatory nodes in genetic networks that orchestrate host defense responses. The focus of this review will be to present advances in genetical genomic experimental designs and analysis, particularly as they apply to the prospects for discovering partial disease resistance alleles in cereals. PMID:23641250
Kang, Houyang; Wang, Yi; Fedak, George; Cao, Wenguang; Zhang, Haiqin; Fan, Xing; Sha, Lina; Xu, Lili; Zheng, Youliang; Zhou, Yonghong
2011-01-01
Wheat stripe rust is a destructive disease in the cool and humid wheat-growing areas of the world. Finding diverse sources of stripe rust resistance is critical for increasing genetic diversity of resistance for wheat breeding programs. Stripe rust resistance was identified in the alien species Psathyrostachys huashanica, and a wheat- P. huashanica amphiploid line (PHW-SA) with stripe rust resistance was reported previously. In this study, a P. huashanica 3Ns monosomic addition line (PW11) with superior resistance to stripe rust was developed, which was derived from the cross between PHW-SA and wheat J-11. We evaluated the alien introgressions PW11-2, PW11-5 and PW11-8 which were derived from line PW11 for reaction to new Pst race CYR32, and used molecular and cytogenetic tools to characterize these lines. The introgressions were remarkably resistant to CYR32, suggesting that the resistance to stripe rust of the introgressions thus was controlled by gene(s) located on P. huashanica chromosome 3Ns. All derived lines were cytologically stable in term of meiotic chromosome behavior. Two 3Ns chromosomes of P. huashanica were detected in the disomic addition line PW11-2. Chromosomes 1B of substitution line PW11-5 had been replaced by a pair of P. huashanica 3Ns chromosomes. In PW11-8, a small terminal segment from P. huashanica chromosome arm 3NsS was translocated to the terminal region of wheat chromosomes 3BL. Thus, this translocated chromosome is designated T3BL-3NsS. These conclusions were further confirmed by SSR analyses. Two 3Ns-specific markers Xgwm181 and Xgwm161 will be useful to rapidly identify and trace the translocated fragments. These introgressions, which had significant characteristics of resistance to stripe rust, could be utilized as novel germplasms for wheat breeding. PMID:21760909
Sonora exploratory study for the detection of wheat-leaf rust
NASA Technical Reports Server (NTRS)
Payne, R. W. (Principal Investigator)
1980-01-01
The applicability of LANDSAT remote sensing technology to the detection of a wheat-leaf-rust epidemic in Sonora, Mexico, during 1977 was investigated. LANDSAT data acquired during crop years 1975-76 and 1976-77 were clustered, classified, and analyzed in order to detect agricultural changes. Analysis of 1977 data indicates a significant proportion of the identified wheat is stressed (potentially rust-infected). Additional analyses show a significant increase in fallowing during the year, as well as a substantial decrease in reservoir levels in the Sonora agricultural region. Ground observations are required to substantiate these analyses. The possibility exists that heat-rust is not LANDSAT detectable and that the clusters identified as containing stressed signatures represent different varieties of wheat or perhaps nonwheat crops.
USDA-ARS?s Scientific Manuscript database
Virulence information in the wheat stripe rust (yellow rust, Yr) pathogen, Puccinia striiformis f. sp. tritici (Pst), is important for controlling the disease with resistant cultivars. A total of 236 Pst isolates from Algeria, Australia, Canada, Chile, China, Hungary, Kenya, Nepal, Pakistan, Russia,...
Evaluation of Pakistan wheat germplasms for stripe rust resistance using molecular markers
USDA-ARS?s Scientific Manuscript database
Wheat production in Pakistan is seriously constrained due to rust diseases. Stripe (yellow) rust, caused by Puccinia striiformis f. sp. tritici is one of these diseases that can limit yields in the area. Thus developing and cultivating genetically diverse and resistant varieties is the only sustaina...
Wang, Hui; Qin, Feng; Ruan, Liu; Wang, Rui; Liu, Qi; Ma, Zhanhong; Li, Xiaolong; Cheng, Pei; Wang, Haiguang
2016-01-01
It is important to implement detection and assessment of plant diseases based on remotely sensed data for disease monitoring and control. Hyperspectral data of healthy leaves, leaves in incubation period and leaves in diseased period of wheat stripe rust and wheat leaf rust were collected under in-field conditions using a black-paper-based measuring method developed in this study. After data preprocessing, the models to identify the diseases were built using distinguished partial least squares (DPLS) and support vector machine (SVM), and the disease severity inversion models of stripe rust and the disease severity inversion models of leaf rust were built using quantitative partial least squares (QPLS) and support vector regression (SVR). All the models were validated by using leave-one-out cross validation and external validation. The diseases could be discriminated using both distinguished partial least squares and support vector machine with the accuracies of more than 99%. For each wheat rust, disease severity levels were accurately retrieved using both the optimal QPLS models and the optimal SVR models with the coefficients of determination (R2) of more than 0.90 and the root mean square errors (RMSE) of less than 0.15. The results demonstrated that identification and severity evaluation of stripe rust and leaf rust at the leaf level could be implemented based on the hyperspectral data acquired using the developed method. A scientific basis was provided for implementing disease monitoring by using aerial and space remote sensing technologies.
Ruan, Liu; Wang, Rui; Liu, Qi; Ma, Zhanhong; Li, Xiaolong; Cheng, Pei; Wang, Haiguang
2016-01-01
It is important to implement detection and assessment of plant diseases based on remotely sensed data for disease monitoring and control. Hyperspectral data of healthy leaves, leaves in incubation period and leaves in diseased period of wheat stripe rust and wheat leaf rust were collected under in-field conditions using a black-paper-based measuring method developed in this study. After data preprocessing, the models to identify the diseases were built using distinguished partial least squares (DPLS) and support vector machine (SVM), and the disease severity inversion models of stripe rust and the disease severity inversion models of leaf rust were built using quantitative partial least squares (QPLS) and support vector regression (SVR). All the models were validated by using leave-one-out cross validation and external validation. The diseases could be discriminated using both distinguished partial least squares and support vector machine with the accuracies of more than 99%. For each wheat rust, disease severity levels were accurately retrieved using both the optimal QPLS models and the optimal SVR models with the coefficients of determination (R2) of more than 0.90 and the root mean square errors (RMSE) of less than 0.15. The results demonstrated that identification and severity evaluation of stripe rust and leaf rust at the leaf level could be implemented based on the hyperspectral data acquired using the developed method. A scientific basis was provided for implementing disease monitoring by using aerial and space remote sensing technologies. PMID:27128464
Buerstmayr, Maria; Matiasch, Lydia; Mascher, Fabio; Vida, Gyula; Ittu, Marianna; Robert, Olivier; Holdgate, Sarah; Flath, Kerstin; Neumayer, Anton; Buerstmayr, Hermann
2014-09-01
We detected several, most likely novel QTL for adult plant resistance to rusts. Notably three QTL improved resistance to leaf rust and stripe rust simultaneously indicating broad spectrum resistance QTL. The rusts of wheat (Puccinia spp.) are destructive fungal wheat diseases. The deployment of resistant cultivars plays a central role in integrated rust disease management. Durability of resistance would be preferred, but is difficult to analyse. The Austrian winter wheat cultivar Capo was released in the 1989 and grown on a large acreage during more than two decades and maintained a good level of quantitative leaf rust and stripe rust resistance. Two bi-parental mapping populations: Capo × Arina and Capo × Furore were tested in multiple environments for severity of leaf rust and stripe rust at the adult plant stage in replicated field experiments. Quantitative trait loci associated with leaf rust and stripe rust severity were mapped using DArT and SSR markers. Five QTL were detected in multiple environments associated with resistance to leaf rust designated as QLr.ifa-2AL, QLr.ifa-2BL, QLr.ifa-2BS, QLr.ifa-3BS, and QLr.ifa-5BL, and five for resistance to stripe rust QYr.ifa-2AL, QYr.ifa-2BL, QYr.ifa-3AS, QYr.ifa-3BS, and QYr.ifa-5A. For all QTL apart from two (QYr.ifa-3AS, QLr.ifa-5BL) Capo contributed the resistance improving allele. The leaf rust and stripe rust resistance QTL on 2AL, 2BL and 3BS mapped to the same chromosome positions, indicating either closely linked genes or pleiotropic gene action. These three multiple disease resistance QTL (QLr.ifa-2AL/QYr.ifa-2AL, QLr.ifa.2BL/QYr.ifa-2BL, QLr.ifa-3BS/QYr.ifa.3BS) potentially contribute novel resistance sources for stripe rust and leaf rust. The long-lasting resistance of Capo apparently rests upon a combination of several genes. The described germplasm, QTL and markers are applicable for simultaneous resistance improvement against leaf rust and stripe rust.
Liu, Weizhen; Maccaferri, Marco; Chen, Xianming; Laghetti, Gaetano; Pignone, Domenico; Pumphrey, Michael; Tuberosa, Roberto
2017-11-01
SNP-based genome scanning in worldwide domesticated emmer germplasm showed high genetic diversity, rapid linkage disequilibrium decay and 51 loci for stripe rust resistance, a large proportion of which were novel. Cultivated emmer wheat (Triticum turgidum ssp. dicoccum), one of the oldest domesticated crops in the world, is a potentially rich reservoir of variation for improvement of resistance/tolerance to biotic and abiotic stresses in wheat. Resistance to stripe rust (Puccinia striiformis f. sp. tritici) in emmer wheat has been under-investigated. Here, we employed genome-wide association (GWAS) mapping with a mixed linear model to dissect effective stripe rust resistance loci in a worldwide collection of 176 cultivated emmer wheat accessions. Adult plants were tested in six environments and seedlings were evaluated with five races from the United States and one from Italy under greenhouse conditions. Five accessions were resistant across all experiments. The panel was genotyped with the wheat 90,000 Illumina iSelect single nucleotide polymorphism (SNP) array and 5106 polymorphic SNP markers with mapped positions were obtained. A high level of genetic diversity and fast linkage disequilibrium decay were observed. In total, we identified 14 loci associated with field resistance in multiple environments. Thirty-seven loci were significantly associated with all-stage (seedling) resistance and six of them were effective against multiple races. Of the 51 total loci, 29 were mapped distantly from previously reported stripe rust resistance genes or quantitative trait loci and represent newly discovered resistance loci. Our results suggest that GWAS is an effective method for characterizing genes in cultivated emmer wheat and confirm that emmer wheat is a rich source of stripe rust resistance loci that can be used for wheat improvement.
Kolmer, James A; Su, Zhenqi; Bernardo, Amy; Bai, Guihua; Chao, Shiaoman
2018-07-01
A new gene for adult plant leaf rust resistance in wheat was mapped to chromosome 3BL. This gene was designated as Lr77. 'Santa Fe' is a hard red winter cultivar that has had long-lasting resistance to the leaf rust fungus, Puccinia triticina. The objective of this study was to determine the chromosome location of the adult plant leaf rust resistance in Santa Fe wheat. A partial backcross line of 'Thatcher' (Tc) wheat with adult plant leaf rust resistance derived from Santa Fe was crossed with Thatcher to develop a Thatcher//Tc*2/Santa Fe F 6 recombinant inbred line (RIL) population. The RIL population and parental lines were evaluated for segregation of leaf rust resistance in three field plot tests and in an adult plant greenhouse test. A genetic map of the RIL population was constructed using 90,000 single-nucleotide polymorphism (SNP) markers with the Illumina Infinium iSelect 90K wheat bead array. A significant quantitative trait locus for reduction of leaf rust severity in all four tests was found on chromosome 3BL that segregated as a single adult plant resistance gene. The RILs with the allele from the resistant parent for SNP marker IWB10344 had lower leaf rust severity and a moderately resistant to moderately susceptible response compared to the susceptible RILs and Thatcher. The gene derived from Santa Fe on chromosome 3BL was designated as Lr77. Kompetitive allele-specific polymerase chain reaction assay markers linked to Lr77 on 3BL should be useful for selection of wheat germplasm with this gene.
USDA-ARS?s Scientific Manuscript database
Stripe rust (Puccinia striiformis f. sp. tritici, Pst) is an important disease of wheat in the United States and Pakistan. Genetic resistance in wheat is a cost-effective and convenient control measure. In the present study, resistance testing of 115 wheat landraces from Pakistan was carried out ini...
Niranjana, M; Vinod; Sharma, J B; Mallick, Niharika; Tomar, S M S; Jha, S K
2017-12-01
Leaf rust (Puccinia triticina) is a major biotic stress affecting wheat yields worldwide. Host-plant resistance is the best method for controlling leaf rust. Aegilops speltoides is a good source of resistance against wheat rusts. To date, five Lr genes, Lr28, Lr35, Lr36, Lr47, and Lr51, have been transferred from Ae. speltoides to bread wheat. In Selection2427, a bread wheat introgresed line with Ae. speltoides as the donor parent, a dominant gene for leaf rust resistance was mapped to the long arm of chromosome 3B (LrS2427). None of the Lr genes introgressed from Ae. speltoides have been mapped to chromosome 3B. Since none of the designated seedling leaf rust resistance genes have been located on chromosome 3B, LrS2427 seems to be a novel gene. Selection2427 showed a unique property typical of gametocidal genes, that when crossed to other bread wheat cultivars, the F 1 showed partial pollen sterility and poor seed setting, whilst Selection2427 showed reasonable male and female fertility. Accidental co-transfer of gametocidal genes with LrS2427 may have occurred in Selection2427. Though LrS2427 did not show any segregation distortion and assorted independently of putative gametocidal gene(s), its utilization will be difficult due to the selfish behavior of gametocidal genes.
Novel sources of leaf rust resistance in winter wheat
USDA-ARS?s Scientific Manuscript database
Leaf rust is one of the most widespread diseases of wheat, causing significant yield losses. More than 70 leaf rust resistance genes have been reported, but most of them have lost their effectiveness in the southern Great Plains of the USA. Thus continuous search for new sources of resistance is e...
Kertho, Albert; Mamidi, Sujan; Bonman, J. Michael; McClean, Phillip E.; Acevedo, Maricelis
2015-01-01
Leaf rust, caused by Puccinia triticina (Pt), and stripe rust, caused by P. striiformis f. sp. tritici (Pst), are destructive foliar diseases of wheat worldwide. Breeding for disease resistance is the preferred strategy of managing both diseases. The continued emergence of new races of Pt and Pst requires a constant search for new sources of resistance. Here we report a genome-wide association analysis of 567 winter wheat (Triticum aestivum) landrace accessions using the Infinium iSelect 9K wheat SNP array to identify loci associated with seedling resistance to five races of Pt (MDCL, MFPS, THBL, TDBG, and TBDJ) and one race of Pst (PSTv-37) frequently found in the Northern Great Plains of the United States. Mixed linear models identified 65 and eight significant markers associated with leaf rust and stripe rust, respectively. Further, we identified 31 and three QTL associated with resistance to Pt and Pst, respectively. Eleven QTL, identified on chromosomes 3A, 4A, 5A, and 6D, are previously unknown for leaf rust resistance in T. aestivum. PMID:26076040
USDA-ARS?s Scientific Manuscript database
Sexual reproduction of the stem rust pathogen, Puccinia graminis f. sp. tritici (Pgt), on barberry (Berberis vulgaris) has been shown to provide initial inoculum for the development of the disease on wheat and barley and also generate diverse races of the pathogen. However, in our previous study, t...
USDA-ARS?s Scientific Manuscript database
Brachypodium distachyon is regarded as non-host to the causal agent of stem rust in wheat and barley, P. graminis f. sp. tritici (Pgt), and a near-host to the pathogens of forage grasses, P. graminis f. sp. lolii (Pgl) and P. graminis f. sp. phlei-pratensis (Pgp). Given the devastating effect of ste...
Characterization of Lr75: a partial, broad-spectrum leaf rust resistance gene in wheat.
Singla, Jyoti; Lüthi, Linda; Wicker, Thomas; Bansal, Urmil; Krattinger, Simon G; Keller, Beat
2017-01-01
Here, we describe a strategy to improve broad-spectrum leaf rust resistance by marker-assisted combination of two partial resistance genes. One of them represents a novel partial adult plant resistance gene, named Lr75. Leaf rust caused by the fungal pathogen Puccinia triticina is a damaging disease of wheat (Triticum aestivum L.). The combination of several, additively-acting partial disease resistance genes has been proposed as a suitable strategy to breed wheat cultivars with high levels of durable field resistance. The Swiss winter wheat cultivar 'Forno' continues to show near-immunity to leaf rust since its release in the 1980s. This resistance is conferred by the presence of at least six quantitative trait loci (QTL), one of which is associated with the morphological trait leaf tip necrosis. Here, we used a marker-informed strategy to introgress two 'Forno' QTLs into the leaf rust-susceptible Swiss winter wheat cultivar 'Arina'. The resulting backcross line 'ArinaLrFor' showed markedly increased leaf rust resistance in multiple locations over several years. One of the introgressed QTLs, QLr.sfr-1BS, is located on chromosome 1BS. We developed chromosome 1B-specific microsatellite markers by exploiting the Illumina survey sequences of wheat cv. 'Chinese Spring' and mapped QLr.sfr-1BS to a 4.3 cM interval flanked by the SSR markers gwm604 and swm271. QLr.sfr-1BS does not share a genetic location with any of the described leaf rust resistance genes present on chromosome 1B. Therefore, QLr.sfr-1BS is novel and was designated as Lr75. We conclude that marker-assisted combination of partial resistance genes is a feasible strategy to increase broad-spectrum leaf rust resistance. The identification of Lr75 adds a novel and highly useful gene to the small set of known partial, adult plant leaf rust resistance genes.
Dutta, Summi; Kumar, Dhananjay; Jha, Shailendra; Prabhu, Kumble Vinod; Kumar, Manish; Mukhopadhyay, Kunal
2017-11-01
A novel leaf rust responsive ta-siRNA-producing locus was identified in wheat showing similarity to 28S rRNA and generated four differentially expressing ta-siRNAs by phasing which targeted stress responsive genes. Trans-acting-small interfering RNAs (Ta-siRNAs) are plant specific molecules generally involved in development and are also stress responsive. Ta-siRNAs identified in wheat till date are all responsive to abiotic stress only. Wheat cultivation is severely affected by rusts and leaf rust particularly affects grain filling. This study reports a novel ta-siRNA producing locus (TAS) in wheat which is a segment of 28S ribosomal RNA but shows differential expression during leaf rust infestation. Four small RNA libraries prepared from wheat Near Isogenic Lines were treated with leaf rust pathogen and compared with untreated controls. A TAS with the ability to generate four ta-siRNAs by phasing events was identified along with the microRNA TamiR16 as the phase initiator. The targets of the ta-siRNAs included α-gliadin, leucine rich repeat, trans-membrane proteins, glutathione-S-transferase, and fatty acid desaturase among others, which are either stress responsive genes or are essential for normal growth and development of plants. Expression of the TAS, its generated ta-siRNAs, and their target genes were profiled at five different time points after pathogen inoculation of susceptible and resistant wheat isolines and compared with mock-inoculated controls. Comparative analysis of expression unveiled differential and reciprocal relationship as well as discrete patterns between susceptible and resistant isolines. The expression profiles of the target genes of the identified ta-siRNAs advocate more towards effector triggered susceptibility favouring pathogenesis. The study helps in discerning the functions of wheat genes regulated by ta-siRNAs in response to leaf rust.
Next generation sequencing provides rapid access to the genome of wheat stripe rust
USDA-ARS?s Scientific Manuscript database
Background: The wheat stripe rust fungus (Puccinia striiformis f. sp. tritici, PST) is responsible for significant yield losses in wheat production worldwide. In spite of its economic importance, the PST genomic sequence is not currently available. Fortunately Next Generation Sequencing (NGS) has ra...
A threshold-based weather model for predicting stripe rust infection in winter wheat
USDA-ARS?s Scientific Manuscript database
Wheat stripe rust (WSR) (caused by Puccinia striiformis sp. tritici) is a major threat in most wheat growing regions worldwide, with potential to inflict regular yield losses when environmental conditions are favorable. We propose a threshold-based disease-forecasting model using a stepwise modeling...
Resistance Potential of Bread Wheat Genotypes Against Yellow Rust Disease Under Egyptian Climate.
Mahmoud, Amer F; Hassan, Mohamed I; Amein, Karam A
2015-12-01
Yellow rust (stripe rust), caused by Puccinia striiformis f. sp. tritici, is one of the most destructive foliar diseases of wheat in Egypt and worldwide. In order to identify wheat genotypes resistant to yellow rust and develop molecular markers associated with the resistance, fifty F8 recombinant inbred lines (RILs) derived from a cross between resistant and susceptible bread wheat landraces were obtained. Artificial infection of Puccinia striiformis was performed under greenhouse conditions during two growing seasons and relative resistance index (RRI) was calculated. Two Egyptian bread wheat cultivars i.e. Giza-168 (resistant) and Sakha-69 (susceptible) were also evaluated. RRI values of two-year trial showed that 10 RILs responded with RRI value >6 <9 with an average of 7.29, which exceeded the Egyptian bread wheat cultivar Giza-168 (5.58). Thirty three RILs were included among the acceptable range having RRI value >2 <6. However, only 7 RILs showed RRI value <2. Five RILs expressed hypersensitive type of resistance (R) against the pathogen and showed the lowest Average Coefficient of Infection (ACI). Bulked segregant analysis (BSA) with eight simple sequence repeat (SSR), eight sequence-related amplified polymorphism (SRAP) and sixteen random amplified polymorphic DNA (RAPD) markers revealed that three SSR, three SRAP and six RAPD markers were found to be associated with the resistance to yellow rust. However, further molecular analyses would be performed to confirm markers associated with the resistance and suitable for marker-assisted selection. Resistant RILs identified in the study could be efficiently used to improve the resistance to yellow rust in wheat.
USDA-ARS?s Scientific Manuscript database
Leaf rust is a major disease that causes significant wheat yield losses worldwide. Growing resistant cultivars is an effective approach to reduce disease losses. The short-lived nature of leaf rust resistance (Lr) genes necessitates a continuous search for novel sources of resistance. We performe...
USDA-ARS?s Scientific Manuscript database
Stripe rust is one of major diseases in wheat production worldwide. The best economic and efficient method is to utilize resistant varieties. Alturas has high-temperature adult-plant resistance. In order to determine stripe rust resistance characteristics, resistance gene combination and molecular m...
USDA-ARS?s Scientific Manuscript database
Brazil, was noted to have long lasting leaf rust resistance that was effective only in adult plants. The objectives of this study were to determine the chromosome location of the leaf rust resistance genes derived from Toropi in two populations of recombinant inbred lines in a partial Thatcher wheat...
Cytosolic activation of cell death and stem rust resistance by cereal MLA-family CC-NLR proteins.
Cesari, Stella; Moore, John; Chen, Chunhong; Webb, Daryl; Periyannan, Sambasivam; Mago, Rohit; Bernoux, Maud; Lagudah, Evans S; Dodds, Peter N
2016-09-06
Plants possess intracellular immune receptors designated "nucleotide-binding domain and leucine-rich repeat" (NLR) proteins that translate pathogen-specific recognition into disease-resistance signaling. The wheat immune receptors Sr33 and Sr50 belong to the class of coiled-coil (CC) NLRs. They confer resistance against a broad spectrum of field isolates of Puccinia graminis f. sp. tritici, including the Ug99 lineage, and are homologs of the barley powdery mildew-resistance protein MLA10. Here, we show that, similarly to MLA10, the Sr33 and Sr50 CC domains are sufficient to induce cell death in Nicotiana benthamiana Autoactive CC domains and full-length Sr33 and Sr50 proteins self-associate in planta In contrast, truncated CC domains equivalent in size to an MLA10 fragment for which a crystal structure was previously determined fail to induce cell death and do not self-associate. Mutations in the truncated region also abolish self-association and cell-death signaling. Analysis of Sr33 and Sr50 CC domains fused to YFP and either nuclear localization or nuclear export signals in N benthamiana showed that cell-death induction occurs in the cytosol. In stable transgenic wheat plants, full-length Sr33 proteins targeted to the cytosol provided rust resistance, whereas nuclear-targeted Sr33 was not functional. These data are consistent with CC-mediated induction of both cell-death signaling and stem rust resistance in the cytosolic compartment, whereas previous research had suggested that MLA10-mediated cell-death and disease resistance signaling occur independently, in the cytosol and nucleus, respectively.
USDA-ARS?s Scientific Manuscript database
Stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), is one of the most damaging diseases of wheat worldwide. It is essential to identify new genes for effective resistance against the disease. Durum wheat PI 480148, originally from Ethiopia, was resistant in all seedling tests with s...
Postulation and mapping of seedling stripe rust resistance genes in Ethiopian bread wheat cultivars
USDA-ARS?s Scientific Manuscript database
Stripe rust caused by Puccinia striiformis f. sp. tritici (Pst), is one of the most important diseases of wheat worldwide. In Ethiopia, grain yield loss in wheat cultivars ranges from 30 to 69%. The use of resistant cultivars is the most economical and environmentally friendly method of controlling ...
USDA-ARS?s Scientific Manuscript database
Leaf rust (caused by Puccinia triticina Eriks.) is increasingly impacting durum wheat production with the recent appearance of races with virulence to widely grown cultivars in many durum producing areas worldwide. A highly virulent P. triticina race on durum wheat was recently collected in Kansas....
Lan, Caixia; Hale, Iago L; Herrera-Foessel, Sybil A; Basnet, Bhoja R; Randhawa, Mandeep S; Huerta-Espino, Julio; Dubcovsky, Jorge; Singh, Ravi P
2017-01-01
Growing resistant wheat varieties is a key method of minimizing the extent of yield losses caused by the globally important wheat leaf rust (LR) and stripe rust (YR) diseases. In this study, a population of 186 F 8 recombinant inbred lines (RILs) derived from a cross between a synthetic wheat derivative (PI610750) and an adapted common wheat line (cv. "UC1110") were phenotyped for LR and YR response at both seedling and adult plant stages over multiple seasons. Using a genetic linkage map consisting of single sequence repeats and diversity arrays technology markers, in combination with inclusive composite interval mapping analysis, we detected a new LR adult plant resistance (APR) locus, QLr.cim-2DS , contributed by UC1110. One co-located resistance locus to both rusts, QLr.cim-3DC/QYr.cim-3DC , and the known seedling resistance gene Lr26 were also mapped. QLr.cim-2DS and QLr.cim-3DC showed a marginally significant interaction for LR resistance in the adult plant stage. In addition, two previously reported YR APR loci, QYr.ucw-3BS and Yr48 , were found to exhibit stable performances in rust environments in both Mexico and the United States and showed a highly significant interaction in the field. Yr48 was also observed to confer intermediate seedling resistance against Mexican YR races, thus suggesting it should be re-classified as an all-stage resistance gene. We also identified 5 and 2 RILs that possessed all detected YR and LR resistance loci, respectively. With the closely linked molecular markers reported here, these RILs could be used as donors for multiple resistance loci to both rusts in wheat breeding programs.
Chandra, Saket; Kazmi, Andaleeb Z; Ahmed, Zainab; Roychowdhury, Gargi; Kumari, Veena; Kumar, Manish; Mukhopadhyay, Kunal
2017-07-01
NB-ARC domain-containing resistance genes from the wheat genome were identified, characterized and localized on chromosome arms that displayed differential yet positive response during incompatible and compatible leaf rust interactions. Wheat (Triticum aestivum L.) is an important cereal crop; however, its production is affected severely by numerous diseases including rusts. An efficient, cost-effective and ecologically viable approach to control pathogens is through host resistance. In wheat, high numbers of resistance loci are present but only few have been identified and cloned. A comprehensive analysis of the NB-ARC-containing genes in complete wheat genome was accomplished in this study. Complete NB-ARC encoding genes were mined from the Ensembl Plants database to predict 604 NB-ARC containing sequences using the HMM approach. Genome-wide analysis of orthologous clusters in the NB-ARC-containing sequences of wheat and other members of the Poaceae family revealed maximum homology with Oryza sativa indica and Brachypodium distachyon. The identification of overlap between orthologous clusters enabled the elucidation of the function and evolution of resistance proteins. The distributions of the NB-ARC domain-containing sequences were found to be balanced among the three wheat sub-genomes. Wheat chromosome arms 4AL and 7BL had the most NB-ARC domain-containing contigs. The spatio-temporal expression profiling studies exemplified the positive role of these genes in resistant and susceptible wheat plants during incompatible and compatible interaction in response to the leaf rust pathogen Puccinia triticina. Two NB-ARC domain-containing sequences were modelled in silico, cloned and sequenced to analyze their fine structures. The data obtained in this study will augment isolation, characterization and application NB-ARC resistance genes in marker-assisted selection based breeding programs for improving rust resistance in wheat.
USDA-ARS?s Scientific Manuscript database
Common barberry (Berberis vulgaris) has been known to serve as an alternate host for the wheat stem rust pathogen, Puccinia graminis f. sp. tritici (Pgt), under natural conditions in the U. S. Pacific Northwest for a long time. The plant has been recently shown to be infected by basidiospores of th...
The Barberry Eradication Program in Minnesota for Stem Rust Control: A Case Study.
Peterson, Paul D
2018-06-11
The Barberry Eradication Program was an unprecedented federal and state cooperative plant disease control campaign between 1918 and the late 1970s to remove common barberry (Berberis vulgaris), the alternate host of Puccinia graminis f. sp. tritici, from the major centers of wheat production in the United States. Eradication of barberry has been credited with helping to reduce stem rust of wheat to a minor problem in the United States by the end of the campaign. The Barberry Eradication Program has also been viewed as a model for successful eradication based on its robust leadership, effective publicity and public cooperation, forceful quarantine laws, and adaptive eradication methods and procedures employed in its field operations. The Barberry Eradication Program was particularly successful because of its leaders' ability to adapt to changing internal and external conditions over time. The program lasted nearly a century, extending through two world wars and the Great Depression, with each period producing unique challenges. Because of its central role, barberry eradication in Minnesota offers an excellent case study to examine how the program developed over time and ultimately achieved success. Expected final online publication date for the Annual Review of Phytopathology Volume 56 is August 25, 2018. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
USDA-ARS?s Scientific Manuscript database
Stripe rust, also known as yellow rust, caused by Puccinia striiformis Westend. f. sp. tritici Erikss. (Pst), is one of the most important foliar diseases of wheat (Triticum aestivum L.) in the United States and other parts of the world. To investigate the genetic basis of resistance conferred by th...
USDA-ARS?s Scientific Manuscript database
Stripe rust, caused by Puccinia striiformis f. sp. tritici, is one of the most destructive diseases of wheat worldwide. Resistance is the best approach to control the disease. High-temperature adult-plant (HTAP) stripe rust resistance has proven to be race non-specific and durable. However, genes...
USDA-ARS?s Scientific Manuscript database
High-temperature adult-plant (HTAP) resistance to stripe rust (caused by Puccinia striiformis f. sp. tritici) is a durable type of resistance in wheat. The objective of this study was to identify quantitative trait loci (QTL) conferring HTAP resistance to stripe rust in a population consisting of 16...
Zhan, Gangming; Tian, Yuan; Wang, Fuping; Chen, Xianming; Guo, Jun; Jiao, Min; Huang, Lili; Kang, Zhensheng
2014-01-01
Puccinia striiformis f. sp. tritici (Pst), the causal fungus of wheat stripe rust, was previously reported to be infected by Lecanicillium lecanii, Microdochium nivale and Typhula idahoensis. Here, we report a novel hyperparasite on Pst. This hyperparasitic fungus was identified as Cladosporium cladosporioides (Fresen.) GA de Vries based on morphological characteristics observed by light and scanning electron microscopy together with molecular data. The hyperparasite reduced the production and viability of urediniospores and, therefore, could potentially be used for biological control of wheat stripe rust. PMID:25369036
Zhan, Gangming; Tian, Yuan; Wang, Fuping; Chen, Xianming; Guo, Jun; Jiao, Min; Huang, Lili; Kang, Zhensheng
2014-01-01
Puccinia striiformis f. sp. tritici (Pst), the causal fungus of wheat stripe rust, was previously reported to be infected by Lecanicillium lecanii, Microdochium nivale and Typhula idahoensis. Here, we report a novel hyperparasite on Pst. This hyperparasitic fungus was identified as Cladosporium cladosporioides (Fresen.) GA de Vries based on morphological characteristics observed by light and scanning electron microscopy together with molecular data. The hyperparasite reduced the production and viability of urediniospores and, therefore, could potentially be used for biological control of wheat stripe rust.
USDA-ARS?s Scientific Manuscript database
Collections of Puccinia triticina, the wheat leaf rust pathogen, were obtained from Pakistan in 2008, 2010, 2011, 2013, and 2014. Collections were also obtained from Bhutan in 2013. Single uredinial isolates were derived and tested for virulence phenotype to 20 lines of Thatcher wheat that differ fo...
78 FR 27855 - Black Stem Rust; Additions of Rust-Resistant Species and Varieties
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-13
.... APHIS-2012-0108] Black Stem Rust; Additions of Rust-Resistant Species and Varieties AGENCY: Animal and... stem rust quarantine and regulations by adding two varieties to the list of rust-resistant Berberis species and varieties and one variety to the list of rust-resistant Mahonia species and varieties. This...
USDA-ARS?s Scientific Manuscript database
Fusarium graminaerum (Fusarium head blight; FHB) and Puccinia recondita Roberge ex Desmaz. f. sp. tritici Eriks. & E. Henn (leaf rust; LR) are two major fungal pathogens threatening the wheat crop; consequently identifying resistance genes from various sources is always of importance to wheat breede...
USDA-ARS?s Scientific Manuscript database
Leaf rust, caused by Puccinia triticina Eriks., is one of the most widespread diseases of wheat worldwide and breeding for resistance is one of the most effective methods of control. Lr16 is a wheat leaf rust resistance gene that provides resistance at both the seedling and adult stages. Simple s...
USDA-ARS?s Scientific Manuscript database
Stripe rust is a devastating fungal disease of wheat caused by Puccinia striiformis f. sp. tritici(Pst). The WKS1 resistance gene has an unusual combination of serine/threonine kinase and START lipid-binding domains and confers partial resistance to Pst. Here we show that wheat plants transformed w...
Evaluation of spring wheat cultivars to fungicide application for control of stripe rust in 2016
USDA-ARS?s Scientific Manuscript database
To evaluate spring wheat cultivars grown in the U.S. Pacific Northwest to fungicide application for control of stripe rust and assess their yield loss caused by the disease, this study was conducted in a field near Pullman, WA. Spring wheat genotype ‘Avocet S’ (AvS) was used as a susceptible check, ...
Sperschneider, Jana; Ying, Hua; Dodds, Peter N.; Gardiner, Donald M.; Upadhyaya, Narayana M.; Singh, Karam B.; Manners, John M.; Taylor, Jennifer M.
2014-01-01
Plant pathogens cause severe losses to crop plants and threaten global food production. One striking example is the wheat stem rust fungus, Puccinia graminis f. sp. tritici, which can rapidly evolve new virulent pathotypes in response to resistant host lines. Like several other filamentous fungal and oomycete plant pathogens, its genome features expanded gene families that have been implicated in host-pathogen interactions, possibly encoding effector proteins that interact directly with target host defense proteins. Previous efforts to understand virulence largely relied on the prediction of secreted, small and cysteine-rich proteins as candidate effectors and thus delivered an overwhelming number of candidates. Here, we implement an alternative analysis strategy that uses the signal of adaptive evolution as a line of evidence for effector function, combined with comparative information and expression data. We demonstrate that in planta up-regulated genes that are rapidly evolving are found almost exclusively in pathogen-associated gene families, affirming the impact of host-pathogen co-evolution on genome structure and the adaptive diversification of specialized gene families. In particular, we predict 42 effector candidates that are conserved only across pathogens, induced during infection and rapidly evolving. One of our top candidates has recently been shown to induce genotype-specific hypersensitive cell death in wheat. This shows that comparative genomics incorporating the evolutionary signal of adaptation is powerful for predicting effector candidates for laboratory verification. Our system can be applied to a wide range of pathogens and will give insight into host-pathogen dynamics, ultimately leading to progress in strategies for disease control. PMID:25225496
USDA-ARS?s Scientific Manuscript database
High-temperature adult-plant (HTAP) resistance to stripe rust (Puccinia striiformis f. sp. tritici) is a durable type of resistance in wheat. The objective of this study was to identify quantitative trait loci (QTL) conferring the HTAP resistance to stripe rust in a population consisted of 179 F7:8...
Research investment implications of shifts in the global geography of wheat stripe rust.
Beddow, Jason M; Pardey, Philip G; Chai, Yuan; Hurley, Terrance M; Kriticos, Darren J; Braun, Hans-Joachim; Park, Robert F; Cuddy, William S; Yonow, Tania
2015-09-14
Breeding new crop varieties with resistance to the biotic stresses that undermine crop yields is tantamount to increasing the amount and quality of biological capital in agriculture. However, the success of genes that confer resistance to pests induces a co-evolutionary response that depreciates the biological capital embodied in the crop, as pests evolve the capacity to overcome the crop's new defences. Thus, simply maintaining this biological capital, and the beneficial production and economic outcomes it bestows, requires continual reinvestment in new crop defences. Here we use observed and modelled data on stripe rust occurrence to gauge changes in the geographic spread of the disease over recent decades. We document a significant increase in the spread of stripe rust since 1960, with 88% of the world's wheat production now susceptible to infection. Using a probabilistic Monte Carlo simulation model we estimate that 5.47 million tonnes of wheat are lost to the pathogen each year, equivalent to a loss of US$979 million per year. Comparing the cost of developing stripe-rust-resistant varieties of wheat with the cost of stripe-rust-induced yield losses, we estimate that a sustained annual research investment of at least US$32 million into stripe rust resistance is economically justified.
75 FR 29191 - Black Stem Rust; Additions of Rust-Resistant Varieties
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-25
.... APHIS-2010-0035] Black Stem Rust; Additions of Rust-Resistant Varieties AGENCY: Animal and Plant Health Inspection Service, USDA. ACTION: Direct final rule. SUMMARY: We are amending the black stem rust quarantine and regulations by adding 21 varieties to the list of rust-resistant Berberis species or cultivars and...
Cytogenetics and stripe rust resistance of wheat-Thinopyrum elongatum hybrid derivatives.
Li, Daiyan; Long, Dan; Li, Tinghui; Wu, Yanli; Wang, Yi; Zeng, Jian; Xu, Lili; Fan, Xing; Sha, Lina; Zhang, Haiqin; Zhou, Yonghong; Kang, Houyang
2018-01-01
Amphidiploids generated by distant hybridization are commonly used as genetic bridge to transfer desirable genes from wild wheat species into cultivated wheat. This method is typically used to enhance the resistance of wheat to biotic or abiotic stresses, and to increase crop yield and quality. Tetraploid Thinopyrum elongatum exhibits strong adaptability, resistance to stripe rust and Fusarium head blight, and tolerance to salt, drought, and cold. In the present study, we produced hybrid derivatives by crossing and backcrossing the Triticum durum-Th. elongatum partial amphidiploid ( Trititrigia 8801, 2 n = 6 × = 42, AABBEE) with wheat cultivars common to the Sichuan Basin. By means of cytogenetic and disease resistance analyses, we identified progeny harboring alien chromosomes and measured their resistance to stripe rust. Hybrid progenies possessed chromosome numbers ranging from 40 to 47 (mean = 42.72), with 40.0% possessing 42 chromosomes. Genomic in situ hybridization revealed that the number of alien chromosomes ranged from 1 to 11. Out of the 50 of analyzed lines, five represented chromosome addition (2 n = 44 = 42 W + 2E) and other five were chromosome substitution lines (2 n = 42 = 40 W + 2E). Importantly, a single chromosome derived from wheat- Th. elongatum intergenomic Robertsonian translocations chromosome was occurred in 12 lines. Compared with the wheat parental cultivars ('CN16' and 'SM482'), the majority (70%) of the derivative lines were highly resistant to strains of stripe rust pathogen known to be prevalent in China. The findings suggest that these hybrid-derivative lines with stripe rust resistance could potentially be used as germplasm sources for further wheat improvement.
Li, Feng; Li, Yinghui; Cao, Lirong; Liu, Peiyuan; Geng, Miaomiao; Zhang, Qiang; Qiu, Lina; Sun, Qixin; Xie, Chaojie
2018-01-01
Wheat powdery mildew, caused by Blumeria graminis f. sp. tritici, and wheat leaf rust, caused by Puccinia triticina Eriks, are two important diseases that severely threaten wheat production. Sorento, a hexaploid triticale cultivar from Poland, shows high resistance to the wheat powdery mildew isolate E09 and the leaf rust isolate PHT in Beijing, China. To introduce resistance genes into common wheat, Sorento was crossed with wheat line Xuezao, which is susceptible to both diseases, and the F1 hybrids were then backcrossed with Xuezao as the recurrent male parent. By marker analysis, we demonstrate that the long arm of the 2R (2RL) chromosome confers resistance to both the leaf rust and powdery mildew isolates at adult-plant and seedling stages, while the long arm of 4R (4RL) confers resistance only to powdery mildew at both stages. The chromosomal composition of BC2F3 plants containing 2R or 2RL and 4R or 4RL in the form of substitution and translocation were confirmed by GISH (genomic in situ hybridization) and FISH (fluorescence in situ hybridization). Monosomic and disomic substitutions of a wheat chromosome with chromosome 2R or 4R, as well as one 4RS-4DL/4DS-4RL reciprocal translocation homozigote and one 2RL-1DL translocation hemizigote, were recovered. Such germplasms are of great value in wheat improvement. PMID:29459877
Li, Feng; Li, Yinghui; Cao, Lirong; Liu, Peiyuan; Geng, Miaomiao; Zhang, Qiang; Qiu, Lina; Sun, Qixin; Xie, Chaojie
2018-01-01
Wheat powdery mildew, caused by Blumeria graminis f. sp. tritici , and wheat leaf rust, caused by Puccinia triticina Eriks, are two important diseases that severely threaten wheat production. Sorento, a hexaploid triticale cultivar from Poland, shows high resistance to the wheat powdery mildew isolate E09 and the leaf rust isolate PHT in Beijing, China. To introduce resistance genes into common wheat, Sorento was crossed with wheat line Xuezao, which is susceptible to both diseases, and the F 1 hybrids were then backcrossed with Xuezao as the recurrent male parent. By marker analysis, we demonstrate that the long arm of the 2R (2RL) chromosome confers resistance to both the leaf rust and powdery mildew isolates at adult-plant and seedling stages, while the long arm of 4R (4RL) confers resistance only to powdery mildew at both stages. The chromosomal composition of BC 2 F 3 plants containing 2R or 2RL and 4R or 4RL in the form of substitution and translocation were confirmed by GISH (genomic in situ hybridization) and FISH (fluorescence in situ hybridization). Monosomic and disomic substitutions of a wheat chromosome with chromosome 2R or 4R, as well as one 4RS-4DL/4DS-4RL reciprocal translocation homozigote and one 2RL-1DL translocation hemizigote, were recovered. Such germplasms are of great value in wheat improvement.
Lan, Caixia; Zhang, Yelun; Herrera-Foessel, Sybil A; Basnet, Bhoja R; Huerta-Espino, Julio; Lagudah, Evans S; Singh, Ravi P
2015-03-01
Two new co-located resistance loci, QLr.cim - 1AS/QYr.cim - 1AS and QLr.cim - 7BL/YrSuj , in combination with Lr46 / Yr29 and Lr67/Yr46 , and a new leaf rust resistance quantitative trait loci, conferred high resistance to rusts in adult plant stage. The tall Indian bread wheat cultivar Sujata displays high and low infection types to leaf rust and stripe rust, respectively, at the seedling stage in greenhouse tests. It was also highly resistant to both rusts at adult plant stage in field trials in Mexico. The genetic basis of this resistance was investigated in a population of 148 F5 recombinant inbred lines (RILs) derived from the cross Avocet × Sujata. The parents and RIL population were characterized in field trials for resistance to leaf rust during 2011 at El Batán, and 2012 and 2013 at Ciudad Obregón, Mexico, and for stripe rust during 2011 and 2012 at Toluca, Mexico; they were also characterized three times for stripe rust at seedling stage in the greenhouse. The RILs were genotyped with diversity arrays technology and simple sequence repeat markers. The final genetic map was constructed with 673 polymorphic markers. Inclusive composite interval mapping analysis detected two new significant co-located resistance loci, QLr.cim-1AS/QYr.cim-1AS and QLr.cim-7BL/YrSuj, on chromosomes 1AS and 7BL, respectively. The chromosomal position of QLr.cim-7BL overlapped with the seedling stripe rust resistance gene, temporarily designated as YrSuj. Two previously reported pleiotropic adult plant resistance genes, Lr46/Yr29 and Lr67/Yr46, and a new leaf rust resistance quantitative trait loci derived from Avocet were also mapped in the population. The two new co-located resistance loci are expected to contribute to breeding durable rust resistance in wheat. Closely linked molecular markers can be used to transfer all four resistance loci simultaneously to modern wheat varieties.
ERTS-1 data collection systems used to predict wheat disease severities. [Riley County, Kansas
NASA Technical Reports Server (NTRS)
Kanemasu, E. T.; Schimmelpfenning, H.; Choy, E. C.; Eversmeyer, M. G.; Lenhert, D.
1974-01-01
The author has identified the following significant results. The feasibility of using the data collection system on ERTS-1 to predict wheat leaf rust severity and resulting yield loss was tested. Ground-based data collection platforms (DCP'S), placed in two commercial wheat fields in Riley County, Kansas, transmitted to the satellite such meteorological information as maximum and minimum temperature, relative humidity, and hours of free moisture. Meteorological data received from the two DCP'S from April 23 to 29 were used to estimate the disease progress curve. Values from the curve were used to predict the percentage decrease in wheat yields resulting from leaf rust. Actual decrease in yield was obtained by applying a zinc and maneb spray (5.6 kg/ha) to control leaf rust, then comparing yields of the controlled (healthy) and the noncontrolled (rusted) areas. In each field a 9% decrease in yield was predicted by the DCP-derived data; actual decreases were 12% and 9%.
Race and virulence characterization of Puccinia graminis f. sp. tritici in China.
Li, Tian Ya; Ma, Yu Chen; Wu, Xian Xin; Chen, Si; Xu, Xiao Feng; Wang, Hao; Cao, Yuan Yin; Xuan, Yuan Hu
2018-01-01
Wheat stem rust was once the most destructive plant disease, but it has been largely controlled. However, to prevent future problems, the ongoing development of resistant wheat varieties requires knowledge of the changing virulence patterns for Pgt virulence of the fungus that causes wheat stem rust and the detection of new races. Surveys were conducted from 2013-2014 to determine the races of the Pgt present in China. Low levels of stem rust infections were found in China during this investigation and 11 Puccinia graminis f. sp. tritici (Pgt) samples were obtained. In addition, 22 Pgt samples collected from the alternate host (Berberis) were obtained and have been reported for the first time. Fifty-three isolates were obtained from all samples. Four race groups, including 13 physiological races, were identified. They included the most prevalent races, 34C3MTGQM and 34C6MRGQM, with 13.2% predominance, followed by 34C0MRGQM at 11.3%. Six new races that were virulent against the resistance genes, Sr5 + Sr11, were found for the first time in China, namely 34C0MRGQM, 34C3MTGQM, 34C3MKGQM, 34C3MKGSM, 34C6MTGSM, and 34C6MRGQM, with a predominance of 11.3, 13.2, 9.4, 9.4, 1.9, and 13.2%, respectively. Most of the genes studied were ineffective against one or more of the tested isolates, except Sr9e, Sr21, Sr26, Sr31, Sr33, Sr38, Sr47, and SrTt3. Genes Sr35, SrTmp, Sr30, Sr37, Sr17, and Sr36 were effective in 92.5, 86.8, 84.9, 84.9, 79.3, and 77.4% of the tested isolates, respectively. In contrast, all of the isolates were virulent against Sr6, Sr7b, Sr9a, Sr9b, Sr9d, Sr9g, and SrMcN. Our results indicate that remarkable differences exist among the categories of the races in this study (i.e., their known virulence gene spectra) and the Pgt races reported previously. In addition, the sexual cycle of Pgt may contribute to its diversity in China.
Code of Federal Regulations, 2011 CFR
2011-01-01
..., DEPARTMENT OF AGRICULTURE DOMESTIC QUARANTINE NOTICES Black Stem Rust § 301.38-1 Definitions. In this subpart... Agriculure. Black stem rust. The disease commonly known as the black stem rust of grains (Puccinia graminis... clonally propagated only if its parent stock is, or was derived from, a seed-propagated black stem rust...
Code of Federal Regulations, 2014 CFR
2014-01-01
..., DEPARTMENT OF AGRICULTURE DOMESTIC QUARANTINE NOTICES Black Stem Rust § 301.38-1 Definitions. In this subpart... Agriculure. Black stem rust. The disease commonly known as the black stem rust of grains (Puccinia graminis... clonally propagated only if its parent stock is, or was derived from, a seed-propagated black stem rust...
Code of Federal Regulations, 2010 CFR
2010-01-01
..., DEPARTMENT OF AGRICULTURE DOMESTIC QUARANTINE NOTICES Black Stem Rust § 301.38-1 Definitions. In this subpart... Agriculure. Black stem rust. The disease commonly known as the black stem rust of grains (Puccinia graminis... clonally propagated only if its parent stock is, or was derived from, a seed-propagated black stem rust...
Code of Federal Regulations, 2012 CFR
2012-01-01
..., DEPARTMENT OF AGRICULTURE DOMESTIC QUARANTINE NOTICES Black Stem Rust § 301.38-1 Definitions. In this subpart... Agriculure. Black stem rust. The disease commonly known as the black stem rust of grains (Puccinia graminis... clonally propagated only if its parent stock is, or was derived from, a seed-propagated black stem rust...
Code of Federal Regulations, 2013 CFR
2013-01-01
..., DEPARTMENT OF AGRICULTURE DOMESTIC QUARANTINE NOTICES Black Stem Rust § 301.38-1 Definitions. In this subpart... Agriculure. Black stem rust. The disease commonly known as the black stem rust of grains (Puccinia graminis... clonally propagated only if its parent stock is, or was derived from, a seed-propagated black stem rust...
Satapathy, Lopamudra; Singh, Dharmendra; Ranjan, Prashant; Kumar, Dhananjay; Kumar, Manish; Prabhu, Kumble Vinod; Mukhopadhyay, Kunal
2014-12-01
WRKY, a plant-specific transcription factor family, has important roles in pathogen defense, abiotic cues and phytohormone signaling, yet little is known about their roles and molecular mechanism of function in response to rust diseases in wheat. We identified 100 TaWRKY sequences using wheat Expressed Sequence Tag database of which 22 WRKY sequences were novel. Identified proteins were characterized based on their zinc finger motifs and phylogenetic analysis clustered them into six clades consisting of class IIc and class III WRKY proteins. Functional annotation revealed major functions in metabolic and cellular processes in control plants; whereas response to stimuli, signaling and defense in pathogen inoculated plants, their major molecular function being binding to DNA. Tag-based expression analysis of the identified genes revealed differential expression between mock and Puccinia triticina inoculated wheat near isogenic lines. Gene expression was also performed with six rust-related microarray experiments at Gene Expression Omnibus database. TaWRKY10, 15, 17 and 56 were common in both tag-based and microarray-based differential expression analysis and could be representing rust specific WRKY genes. The obtained results will bestow insight into the functional characterization of WRKY transcription factors responsive to leaf rust pathogenesis that can be used as candidate genes in molecular breeding programs to improve biotic stress tolerance in wheat.
Gao, Liangliang; Turner, M Kathryn; Chao, Shiaoman; Kolmer, James; Anderson, James A
2016-01-01
Leaf rust is an important disease, threatening wheat production annually. Identification of resistance genes or QTLs for effective field resistance could greatly enhance our ability to breed durably resistant varieties. We applied a genome wide association study (GWAS) approach to identify resistance genes or QTLs in 338 spring wheat breeding lines from public and private sectors that were predominately developed in the Americas. A total of 46 QTLs were identified for field and seedling traits and approximately 20-30 confer field resistance in varying degrees. The 10 QTLs accounting for the most variation in field resistance explained 26-30% of the total variation (depending on traits: percent severity, coefficient of infection or response type). Similarly, the 10 QTLs accounting for most of the variation in seedling resistance to different races explained 24-34% of the variation, after correcting for population structure. Two potentially novel QTLs (QLr.umn-1AL, QLr.umn-4AS) were identified. Identification of novel genes or QTLs and validation of previously identified genes or QTLs for seedling and especially adult plant resistance will enhance understanding of leaf rust resistance and assist breeding for resistant wheat varieties. We also developed computer programs to automate field and seedling rust phenotype data conversions. This is the first GWAS study of leaf rust resistance in elite wheat breeding lines genotyped with high density 90K SNP arrays.
Genetic Architecture of Resistance to Stripe Rust in a Global Winter Wheat Germplasm Collection
Bulli, Peter; Zhang, Junli; Chao, Shiaoman; Chen, Xianming; Pumphrey, Michael
2016-01-01
Virulence shifts in populations of Puccinia striiformis f. sp. tritici (Pst), the causal pathogen of wheat stripe rust, are a major challenge to resistance breeding. The majority of known resistance genes are already ineffective against current races of Pst, necessitating the identification and introgression of new sources of resistance. Germplasm core collections that reflect the range of genetic and phenotypic diversity of crop species are ideal platforms for examining the genetic architecture of complex traits such as resistance to stripe rust. We report the results of genetic characterization and genome-wide association analysis (GWAS) for resistance to stripe rust in a core subset of 1175 accessions in the National Small Grains Collection (NSGC) winter wheat germplasm collection, based on genotyping with the wheat 9K single nucleotide polymorphism (SNP) iSelect assay and phenotyping of seedling and adult plants under natural disease epidemics in four environments. High correlations among the field data translated into high heritability values within and across locations. Population structure was evident when accessions were grouped by stripe rust reaction. GWAS identified 127 resistance loci that were effective across at least two environments, including 20 with significant genome-wide adjusted P-values. Based on relative map positions of previously reported genes and QTL, five of the QTL with significant genome-wide adjusted P-values in this study represent potentially new loci. This study provides an overview of the diversity of Pst resistance in the NSGC winter wheat germplasm core collection, which can be exploited for diversification of stripe rust resistance in breeding programs. PMID:27226168
Genetic Architecture of Resistance to Stripe Rust in a Global Winter Wheat Germplasm Collection.
Bulli, Peter; Zhang, Junli; Chao, Shiaoman; Chen, Xianming; Pumphrey, Michael
2016-08-09
Virulence shifts in populations of Puccinia striiformis f. sp. tritici (Pst), the causal pathogen of wheat stripe rust, are a major challenge to resistance breeding. The majority of known resistance genes are already ineffective against current races of Pst, necessitating the identification and introgression of new sources of resistance. Germplasm core collections that reflect the range of genetic and phenotypic diversity of crop species are ideal platforms for examining the genetic architecture of complex traits such as resistance to stripe rust. We report the results of genetic characterization and genome-wide association analysis (GWAS) for resistance to stripe rust in a core subset of 1175 accessions in the National Small Grains Collection (NSGC) winter wheat germplasm collection, based on genotyping with the wheat 9K single nucleotide polymorphism (SNP) iSelect assay and phenotyping of seedling and adult plants under natural disease epidemics in four environments. High correlations among the field data translated into high heritability values within and across locations. Population structure was evident when accessions were grouped by stripe rust reaction. GWAS identified 127 resistance loci that were effective across at least two environments, including 20 with significant genome-wide adjusted P-values. Based on relative map positions of previously reported genes and QTL, five of the QTL with significant genome-wide adjusted P-values in this study represent potentially new loci. This study provides an overview of the diversity of Pst resistance in the NSGC winter wheat germplasm core collection, which can be exploited for diversification of stripe rust resistance in breeding programs. Copyright © 2016 Bulli et al.
Multi-location wheat stripe rust QTL analysis: genetic background and epistatic interactions.
Vazquez, M Dolores; Zemetra, Robert; Peterson, C James; Chen, Xianming M; Heesacker, Adam; Mundt, Christopher C
2015-07-01
Epistasis and genetic background were important influences on expression of stripe rust resistance in two wheat RIL populations, one with resistance conditioned by two major genes and the other conditioned by several minor QTL. Stripe rust is a foliar disease of wheat (Triticum aestivum L.) caused by the air-borne fungus Puccinia striiformis f. sp. tritici and is present in most regions around the world where commercial wheat is grown. Breeding for durable resistance to stripe rust continues to be a priority, but also is a challenge due to the complexity of interactions among resistance genes and to the wide diversity and continuous evolution of the pathogen races. The goal of this study was to detect chromosomal regions for resistance to stripe rust in two winter wheat populations, 'Tubbs'/'NSA-98-0995' (T/N) and 'Einstein'/'Tubbs' (E/T), evaluated across seven environments and mapped with diversity array technology and simple sequence repeat markers covering polymorphic regions of ≈1480 and 1117 cM, respectively. Analysis of variance for phenotypic data revealed significant (P < 0.01) genotypic differentiation for stripe rust among the recombinant inbred lines. Results for quantitative trait loci/locus (QTL) analysis in the E/T population indicated that two major QTL located in chromosomes 2AS and 6AL, with epistatic interaction between them, were responsible for the main phenotypic response. For the T/N population, eight QTL were identified, with those in chromosomes 2AL and 2BL accounting for the largest percentage of the phenotypic variance.
Makdis, Farid; Badebo, Ayele; Ogbonnaya, Francis C.
2014-01-01
Use of genetic diversity from related wild and domesticated species has made a significant contribution to improving wheat productivity. Synthetic hexaploid wheats (SHWs) exhibit natural genetic variation for resistance and/or tolerance to biotic and abiotic stresses. Stripe rust caused by (Puccinia striiformis f. sp. tritici; Pst), is an important disease of wheat worldwide. To characterise loci conferring resistance to stripe rust in SHWs, we conducted a genome-wide association study (GWAS) with a panel of 181 SHWs using the wheat 9K SNP iSelect array. The SHWs were evaluated for their response to the prevailing races of Pst at the seedling and adult plant stages, the latter in replicated field trials at two sites in Ethiopia in 2011. About 28% of the SHWs exhibited immunity at the seedling stage while 56% and 83% were resistant to Pst at the adult plant stage at Meraro and Arsi Robe, respectively. A total of 27 SNPs in nine genomic regions (1BS, 2AS, 2BL, 3BL, 3DL, 5A, 5BL, 6DS and 7A) were linked with resistance to Pst at the seedling stage, while 38 SNPs on 18 genomic regions were associated with resistance at the adult plant stage. Six genomic regions were commonly detected at both locations using a mixed linear model corrected for population structure, kinship relatedness and adjusted for false discovery rate (FDR). The loci on chromosome regions 1AS, 3DL, 6DS and 7AL appeared to be novel QTL; our results confirm that resynthesized wheat involving its progenitor species is a rich source of new stripe (yellow) rust resistance that may be useful in choosing SHWs and incorporating diverse yellow rust (YR) resistance loci into locally adapted wheat cultivars. PMID:25153126
Panwar, Vinay; Jordan, Mark; McCallum, Brent; Bakkeren, Guus
2018-05-01
Leaf rust, caused by the pathogenic fungus Puccinia triticina (Pt), is one of the most serious biotic threats to sustainable wheat production worldwide. This obligate biotrophic pathogen is prevalent worldwide and is known for rapid adaptive evolution to overcome resistant wheat varieties. Novel disease control approaches are therefore required to minimize the yield losses caused by Pt. Having shown previously the potential of host-delivered RNA interference (HD-RNAi) in functional screening of Pt genes involved in pathogenesis, we here evaluated the use of this technology in transgenic wheat plants as a method to achieve protection against wheat leaf rust (WLR) infection. Stable expression of hairpin RNAi constructs with sequence homology to Pt MAP-kinase (PtMAPK1) or a cyclophilin (PtCYC1) encoding gene in susceptible wheat plants showed efficient silencing of the corresponding genes in the interacting fungus resulting in disease resistance throughout the T 2 generation. Inhibition of Pt proliferation in transgenic lines by in planta-induced RNAi was associated with significant reduction in target fungal transcript abundance and reduced fungal biomass accumulation in highly resistant plants. Disease protection was correlated with the presence of siRNA molecules specific to targeted fungal genes in the transgenic lines harbouring the complementary HD-RNAi construct. This work demonstrates that generating transgenic wheat plants expressing RNAi-inducing transgenes to silence essential genes in rust fungi can provide effective disease resistance, thus opening an alternative way for developing rust-resistant crops. © 2017 Her Majesty the Queen in Right of Canada. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.
USDA-ARS?s Scientific Manuscript database
Puccinia striiformis causes stripe rust on wheat, barley, and grasses. Natural population studies have indicated that somatic recombination plays a possible role in the pathogen variation. To determine if somatic recombination can occur, susceptible wheat or barley plants were inoculated with mixe...
Association Mapping of Leaf Rust Response in Durum Wheat
USDA-ARS?s Scientific Manuscript database
Resistance to leaf rust (Puccinia triticina Eriks.) is a main objective for durum wheat (Triticum durum Desf.) breeding.Association mapping on germplasm collections is now being used as an additional approach for the discovery and validation of major genes/QTLs. In this study, a collection of 164 el...
Agronomic Traits and Molecular Marker Identification of Wheat–Aegilops caudata Addition Lines
Gong, Wenping; Han, Ran; Li, Haosheng; Song, Jianmin; Yan, Hongfei; Li, Genying; Liu, Aifeng; Cao, Xinyou; Guo, Jun; Zhai, Shengnan; Cheng, Dungong; Zhao, Zhendong; Liu, Cheng; Liu, Jianjun
2017-01-01
Aegilops caudata is an important gene source for wheat breeding. Intensive evaluation of its utilization value is an essential first step prior to its application in breeding. In this research, the agronomical and quality traits of Triticum aestivum-Ae. caudata additions B–G (homoeologous groups not identified) were analyzed and evaluated. Disease resistance tests showed that chromosome D of Ae. caudata might possess leaf rust resistance, and chromosome E might carry stem rust and powdery mildew resistance genes. Investigations into agronomical traits suggested that the introduction of the Ae. caudata chromosome in addition line F could reduce plant height. Grain quality tests showed that the introduction of chromosomes E or F into wheat could increase its protein and wet gluten content. Therefore, wheat-Ae. caudata additions D–F are all potentially useful candidates for chromosome engineering activities to create useful wheat-alien chromosome introgressions. A total of 55 EST-based molecular markers were developed and then used to identify the chromosome homoeologous group of each of the Ae. caudata B–G chromosomes. Marker analysis indicated that the Ae. caudata chromosomes in addition lines B to G were structurally altered, therefore, a large population combined with intensive screening pressure should be taken into consideration when inducing and screening for wheat-Ae. caudata compensating translocations. Marker data also indicated that the Ae. caudata chromosomes in addition lines C–F were 5C, 6C, 7C, and 3C, respectively, while the homoeologous group of chromosomes B and G of Ae. caudata are as yet undetermined and need further research. PMID:29075275
Extraction of High Molecular Weight DNA from Fungal Rust Spores for Long Read Sequencing.
Schwessinger, Benjamin; Rathjen, John P
2017-01-01
Wheat rust fungi are complex organisms with a complete life cycle that involves two different host plants and five different spore types. During the asexual infection cycle on wheat, rusts produce massive amounts of dikaryotic urediniospores. These spores are dikaryotic (two nuclei) with each nucleus containing one haploid genome. This dikaryotic state is likely to contribute to their evolutionary success, making them some of the major wheat pathogens globally. Despite this, most published wheat rust genomes are highly fragmented and contain very little haplotype-specific sequence information. Current long-read sequencing technologies hold great promise to provide more contiguous and haplotype-phased genome assemblies. Long reads are able to span repetitive regions and phase structural differences between the haplomes. This increased genome resolution enables the identification of complex loci and the study of genome evolution beyond simple nucleotide polymorphisms. Long-read technologies require pure high molecular weight DNA as an input for sequencing. Here, we describe a DNA extraction protocol for rust spores that yields pure double-stranded DNA molecules with molecular weight of >50 kilo-base pairs (kbp). The isolated DNA is of sufficient purity for PacBio long-read sequencing, but may require additional purification for other sequencing technologies such as Nanopore and 10× Genomics.
USDA-ARS?s Scientific Manuscript database
Stripe rust of wheat, caused by Puccinia striiformis f. sp. tritici, continues causing severe damage worldwide. Durable resistance is a key for sustainable control of the disease. High-temperature adult-plant (HTAP) resistance, which expresses when weather becomes warm and plants grow old, has bee...
USDA-ARS?s Scientific Manuscript database
Puccinia striiformis f. sp. tritici (Pst), the causal fungus of wheat stripe rust, was previously reported to be infected by Lecanicillium lecanii, Microdochium nivale and Typhula idahoensis. Here, we report a novel hyperparasite on Pst. This hyperparasitic fungus was identified as Cladosporium clad...
Genetic differentiation of the wheat leaf rust fungus Puccinia triticina in Europe
USDA-ARS?s Scientific Manuscript database
Leaf rust, caused by Puccinia triticina is a common disease of wheat in Europe. The objective of this study was to determine whether genetically differentiated groups of P. triticina are present in Europe. In total, 133 isolates of P. triticina collected from western Europe, central Europe, and Turk...
Gao, Liangliang; Turner, M. Kathryn; Chao, Shiaoman; Kolmer, James; Anderson, James A.
2016-01-01
Leaf rust is an important disease, threatening wheat production annually. Identification of resistance genes or QTLs for effective field resistance could greatly enhance our ability to breed durably resistant varieties. We applied a genome wide association study (GWAS) approach to identify resistance genes or QTLs in 338 spring wheat breeding lines from public and private sectors that were predominately developed in the Americas. A total of 46 QTLs were identified for field and seedling traits and approximately 20–30 confer field resistance in varying degrees. The 10 QTLs accounting for the most variation in field resistance explained 26–30% of the total variation (depending on traits: percent severity, coefficient of infection or response type). Similarly, the 10 QTLs accounting for most of the variation in seedling resistance to different races explained 24–34% of the variation, after correcting for population structure. Two potentially novel QTLs (QLr.umn-1AL, QLr.umn-4AS) were identified. Identification of novel genes or QTLs and validation of previously identified genes or QTLs for seedling and especially adult plant resistance will enhance understanding of leaf rust resistance and assist breeding for resistant wheat varieties. We also developed computer programs to automate field and seedling rust phenotype data conversions. This is the first GWAS study of leaf rust resistance in elite wheat breeding lines genotyped with high density 90K SNP arrays. PMID:26849364
Liu, Jindong; He, Zhonghu; Wu, Ling; Bai, Bin; Wen, Weie; Xie, Chaojie; Xia, Xianchun
2015-01-01
Stripe rust is one of the most devastating diseases of wheat (Triticum aestivum) worldwide. Adult-plant resistance (APR) is an efficient approach to provide long-term protection of wheat from the disease. The Chinese winter wheat cultivar Zhong 892 has a moderate level of APR to stripe rust in the field. To determine the inheritance of the APR resistance in this cultivar, 273 F6 recombinant inbred lines (RILs) were developed from a cross between Linmai 2 and Zhong 892. The RILs were evaluated for maximum disease severity (MDS) in two sites during the 2011–2012, 2012–2013 and 2013–2014 cropping seasons, providing data for five environments. Illumina 90k SNP (single nucleotide polymorphism) chips were used to genotype the RILs and their parents. Composite interval mapping (CIM) detected eight QTL, namely QYr.caas-2AL, QYr.caas-2BL.3, QYr.caas-3AS, QYr.caas-3BS, QYr.caas-5DL, QYr.caas-6AL, QYr.caas-7AL and QYr.caas-7DS.1, respectively. All except QYr.caas-2BL.3 resistance alleles were contributed by Zhong 892. QYr.caas-3AS and QYr.caas-3BS conferred stable resistance to stripe rust in all environments, explaining 6.2–17.4% and 5.0–11.5% of the phenotypic variances, respectively. The genome scan of SNP sequences tightly linked to QTL for APR against annotated proteins in wheat and related cereals genomes identified two candidate genes (autophagy-related gene and disease resistance gene RGA1), significantly associated with stripe rust resistance. These QTL and their closely linked SNP markers, in combination with kompetitive allele specific PCR (KASP) technology, are potentially useful for improving stripe rust resistances in wheat breeding. PMID:26714310
Feng, Junyan; Wang, Meinan; See, Deven R; Chao, Shiaoman; Zheng, Youliang; Chen, Xianming
2018-06-01
Stripe rust, caused by Puccinia striiformis f. sp. tritici, is an important disease of wheat worldwide. Exploring new resistance genes is essential for breeding resistant wheat cultivars. PI 182103, a spring wheat landrace originally from Pakistan, has shown a high level of resistance to stripe rust in fields for many years, but genes for resistance to stripe rust in the variety have not been studied. To map the resistance gene(s) in PI 182103, 185 recombinant inbred lines (RILs) were developed from a cross with Avocet Susceptible (AvS). The RIL population was genotyped with simple sequence repeat (SSR) and single nucleotide polymorphism markers and tested with races PST-100 and PST-114 at the seedling stage under controlled greenhouse conditions and at the adult-plant stage in fields at Pullman and Mt. Vernon, Washington under natural infection by the stripe rust pathogen in 2011, 2012, and 2013. A total of five quantitative trait loci (QTL) were detected. QyrPI182103.wgp-2AS and QyrPI182103.wgp-3AL were detected at the seedling stage, QyrPI182103.wgp-4DL was detected only in Mt. Vernon field tests, and QyrPI182103.wgp-5BS was detected in both seedling and field tests. QyrPI182103.wgp-7BL was identified as a high-temperature adult-plant resistance gene and detected in all field tests. Interactions among the QTL were mostly additive, but some negative interactions were detected. The 7BL QTL was mapped in chromosomal bin 7BL 0.40 to 0.45 and identified as a new gene, permanently designated as Yr79. SSR markers Xbarc72 and Xwmc335 flanking the Yr79 locus were highly polymorphic in various wheat genotypes, indicating that the molecular markers are useful for incorporating the new gene for potentially durable stripe rust resistance into new wheat cultivars.
Xue, Shulin; Kolmer, James A; Wang, Shuwen; Yan, Liuling
2018-05-31
Winter wheat cultivar 'Jagger' was recently found to have an alien chromosomal segment 2NS that has Lr37 , a gene conferring resistance against leaf rust caused by Puccinia triticina The objective of this study was to map and characterize the gene(s) for seedling leaf rust resistance in Jagger. The recombinant inbred line (RIL) population of Jagger × '2174' was inoculated with leaf rust pathogen THBJG and BBBDB, and evaluated for infection type (IT) response. A major quantitative trait locus (QTL) for THBJG and BBBDB was coincidently mapped to chromosome arm 2AS, and the QTL accounted for 56.6-66.2% of total phenotypic variation in infection type (IT) response to THBJG, and 72.1-86.9% to BBBDB. The causal gene for resistance to these rust races was mapped to the 2NS segment in Jagger. The 2NS segment was located in a region of approximately 27.8 Mb starting from the telomere of chromosome arm 2AS, based on the sequences of the A genome in tetraploid wheat. The Lr17a gene on chromosome arm 2AS was delimited to 3.1 Mb in the genomic region, which was orthologous to the 2NS segment. Therefore, the Lr37 gene in the 2NS segment can be pyramided with other effective resistance genes, rather than Lr17a in wheat, to improve resistance to rust diseases. Copyright © 2018 Xue et al.
Lan, Caixia; Basnet, Bhoja R; Singh, Ravi P; Huerta-Espino, Julio; Herrera-Foessel, Sybil A; Ren, Yong; Randhawa, Mandeep S
2017-03-01
New leaf rust adult plant resistance (APR) QTL QLr.cim - 6BL was mapped and confirmed the known pleotropic APR gene Lr46 effect on leaf rust in durum wheat line Bairds. CIMMYT-derived durum wheat line Bairds displays an adequate level of adult plant resistance (APR) to leaf rust in Mexican field environments. A recombinant inbred line (RIL) population developed from a cross of Bairds with susceptible parent Atred#1 was phenotyped for leaf rust response at Ciudad Obregon, Mexico, during 2013, 2014, 2015 and 2016 under artificially created epidemics of Puccinia triticina (Pt) race BBG/BP. The RIL population and its parents were genotyped with the 50 K diversity arrays technology (DArT) sequence system and simple sequence repeat (SSR) markers. A genetic map comprising 1150 markers was used to map the resistance loci. Four significant quantitative trait loci (QTLs) were detected on chromosomes 1BL, 2BC (centromere region), 5BL and 6BL. These QTLs, named Lr46, QLr.cim-2BC, QLr.cim-5BL and QLr.cim-6BL, respectively, explained 13.5-60.8%, 9.0-14.3%, 2.8-13.9%, and 11.6-29.4%, respectively, of leaf rust severity variation by the inclusive composite interval mapping method. All of these resistance loci were contributed by the resistant parent Bairds, except for QLr.cim-2BC, which came from susceptible parent Atred#1. Among these, the QTL on chromosome 1BL was the known pleiotropic APR gene Lr46, whereas QLr.cim-6BL, a consistently detected locus, should be a new leaf rust resistance locus in durum wheat. The mean leaf rust severity of RILs carrying all four QTLs ranged from 8.0 to 17.5%, whereas it ranged from 10.9 to 38.5% for three QTLs (Lr46 + 5BL + 6BL) derived from the resistant parent Bairds. Two RILs with four QTLs combinations can be used as sources of complex APR in durum wheat breeding.
Sela, Hanan; Ezrati, Smadar; Ben-Yehuda, Pnina; Manisterski, Jacob; Akhunov, Eduard; Dvorak, Jan; Breiman, Adina; Korol, Abraham
2014-11-01
Rapid LD decay in wild emmer population from Israel allows high-resolution association mapping. Known and putative new stripe rust resistance genes were found. Genome-wide association mapping (GWAM) is becoming an important tool for the discovery and mapping of loci underlying trait variation in crops, but in the wild relatives of crops the use of GWAM has been limited. Critical factors for the use of GWAM are the levels of linkage disequilibrium (LD) and genetic diversity in mapped populations, particularly in those of self-pollinating species. Here, we report LD estimation in a population of 128 accessions of self-pollinating wild emmer, Triticum turgidum ssp. dicoccoides, the progenitor of cultivated wheat, collected in Israel. LD decayed fast along wild emmer chromosomes and reached the background level within 1 cM. We employed GWAM for the discovery and mapping of genes for resistance to three isolates of Puccinia striiformis, the causative agent of wheat stripe rust. The wild emmer population was genotyped with the wheat iSelect assay including 8643 gene-associated SNP markers (wheat 9K Infinium) of which 2,278 were polymorphic. The significance of association between stripe rust resistance and each of the polymorphic SNP was tested using mixed linear model implemented in EMMA software. The model produced satisfactory results and uncovered four significant associations on chromosome arms 1BS, 1BL and 3AL. The locus on 1BS was located in a region known to contain stripe rust resistance genes. These results show that GWAM is an effective strategy for gene discovery and mapping in wild emmer that will accelerate the utilization of this genetic resource in wheat breeding.
Ghazvini, Habibollah; Hiebert, Colin W; Thomas, Julian B; Fetch, Thomas
2013-02-01
An important aspect of studying putative new genes in wheat is determining their position on the wheat genetic map. The primary difficulty in mapping genes is determining which chromosome carries the gene of interest. Several approaches have been developed to address this problem, each with advantages and disadvantages. Here we describe a new approach called multiple bulked segregant analysis (MBSA). A set of 423 simple sequence repeat (SSR) markers were selected based on profile simplicity, frequency of polymorphism, and distribution across the wheat genome. SSR primers were preloaded in 384-well PCR plates with each primer occupying 16 wells. In practice, 14 wells are reserved for "mini-bulks" that are equivalent to four gametes (e.g. two F(2) individuals) comprised of individuals from a segregated population that have a known homozygous genotype for the gene of interest. The remaining two wells are reserved for the parents of the population. Each well containing a mini-bulk can have one of three allele compositions for each SSR: only the allele from one parent, only the allele from the other parent, or both alleles. Simulation experiments were performed to determine the pattern of mini-bulk allele composition that would indicate putative linkage between the SSR in question and the gene of interest. As a test case, MBSA was employed to locate an unidentified stem rust resistance (Sr) gene in the winter wheat cultivar Norin 40. A doubled haploid (DH) population (n = 267) was produced from hybrids of the cross LMPG-6S/Norin 40. The DH population segregated for a single gene (χ (1:1) (2) = 0.093, p = 0.76) for resistance to Puccinia graminis f.sp. tritici race LCBN. Four resistant DH lines were included in each of the 14 mini-bulks for screening. The Sr gene was successfully located to the long arm of chromosome 2D using MBSA. Further mapping confirmed the chromosome location and revealed that the Sr gene was located in a linkage block that may represent an alien translocation. The new Sr gene was designated as Sr54.
Wheat differential gene expression induced by different races of Puccinia triticina.
Neugebauer, Kerri A; Bruce, Myron; Todd, Tim; Trick, Harold N; Fellers, John P
2018-01-01
Puccinia triticina, the causal agent of wheat leaf rust, causes significant losses in wheat yield and quality each year worldwide. During leaf rust infection, the host plant recognizes numerous molecules, some of which trigger host defenses. Although P. triticina reproduces clonally, there is still variation within the population due to a high mutation frequency, host specificity, and environmental adaptation. This study explores how wheat responds on a gene expression level to different P. triticina races. Six P. triticina races were inoculated onto a susceptible wheat variety and samples were taken at six days post inoculation, just prior to pustule eruption. RNA sequence data identified 63 wheat genes differentially expressed between the six races. A time course, conducted over the first seven days post inoculation, was used to examine the expression pattern of 63 genes during infection. Forty-seven wheat genes were verified to have differential expression. Three common expression patterns were identified. In addition, two genes were associated with race specific gene expression. Differential expression of an ER molecular chaperone gene was associated with races from two different P. triticina lineages. Also, differential expression in an alanine glyoxylate aminotransferase gene was associated with races with virulence shifts for leaf rust resistance genes.
USDA-ARS?s Scientific Manuscript database
Development and utilization of genetic markers play a pivotal role in marker assisted breeding of wheat cultivars with pyramids of disease resistance genes. The objective of this study is to develop a closed tube, gel-free assay for high throughput genotyping of leaf rust resistance locus Lr21. Poly...
USDA-ARS?s Scientific Manuscript database
Wheat cultivar Express has durable, high-temperature adult-plant (HTAP) resistance to stripe rust (Puccinia striiformis f. sp. tritici). To elucidate the genetic basis of the resistance, Express was crossed with ‘Avocet Susceptible’ (AVS). A mapping population of 146 F5 recombinant inbred lines (R...
USDA-ARS?s Scientific Manuscript database
Several new races of the stripe rust pathogen have established throughout the wheat growing regions of China in recent years. These new races are virulent to most of the designated seedling resistance genes limiting the resistance sources. It is necessary to identify new genes for diversification an...
Characterization of resistance to stripe rust in contemporary cultivars and lines of winter wheat
USDA-ARS?s Scientific Manuscript database
Stripe rust, caused by Puccinia striiformis f. sp. tritici, has been an important disease of winter wheat in the eastern United States since 2000 when a new strain of the pathogen emerged. The new strain was more aggressive and better adapted to warmer temperatures than the old strain, and overcame ...
High genome heterozygosity and endemic genetic recombination in the wheat stripe rust fungus
USDA-ARS?s Scientific Manuscript database
Stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), is one of the most destructive diseases of wheat. Here we report a 110-Mb draft sequence of Pst isolate CY32, obtained using a ‘fosmid-to-fosmid’ strategy, to better understand its race evolution and pathogenesis. The Pst genome is hi...
USDA-ARS?s Scientific Manuscript database
'Caldwell' is a U.S. soft red winter wheat that has partial, adult plant resistance to the leaf rust pathogen Puccinia triticina. A line of 'Thatcher*2/Caldwell' with adult plant resistance derived from Caldwell was crossed with 'Thatcher' to develop a population of recombinant inbred lines (RILs). ...
USDA-ARS?s Scientific Manuscript database
The wheat (Triticum aestivum L.) cultivar ‘Stephens’ has been grown commercially in the USA Pacific Northwest for 30 years. The durable resistance of ‘Stephens’ to stripe rust (Puccinia striiformis f. sp. tritici) was believed to be due to a combination of seedling and adult plant resistance genes. ...
New Spectral Index for Detecting Wheat Yellow Rust Using Sentinel-2 Multispectral Imagery
Zheng, Qiong; Huang, Wenjiang; Cui, Ximin; Liu, Linyi
2018-01-01
Yellow rust is one of the most destructive diseases for winter wheat and has led to a significant decrease in winter wheat quality and yield. Identifying and monitoring yellow rust is of great importance for guiding agricultural production over large areas. Compared with traditional crop disease discrimination methods, remote sensing technology has proven to be a useful tool for accomplishing such a task at large scale. This study explores the potential of the Sentinel-2 Multispectral Instrument (MSI), a newly launched satellite with refined spatial resolution and three red-edge bands, for discriminating between yellow rust infection severities (i.e., healthy, slight, and severe) in winter wheat. The corresponding simulative multispectral bands for the Sentinel-2 sensor were calculated by the sensor’s relative spectral response (RSR) function based on the in situ hyperspectral data acquired at the canopy level. Three Sentinel-2 spectral bands, including B4 (Red), B5 (Re1), and B7 (Re3), were found to be sensitive bands using the random forest (RF) method. A new multispectral index, the Red Edge Disease Stress Index (REDSI), which consists of these sensitive bands, was proposed to detect yellow rust infection at different severity levels. The overall identification accuracy for REDSI was 84.1% and the kappa coefficient was 0.76. Moreover, REDSI performed better than other commonly used disease spectral indexes for yellow rust discrimination at the canopy scale. The optimal threshold method was adopted for mapping yellow rust infection at regional scales based on realistic Sentinel-2 multispectral image data to further assess REDSI’s ability for yellow rust detection. The overall accuracy was 85.2% and kappa coefficient was 0.67, which was found through validation against a set of field survey data. This study suggests that the Sentinel-2 MSI has the potential for yellow rust discrimination, and the newly proposed REDSI has great robustness and generalized ability for yellow rust detection at canopy and regional scales. Furthermore, our results suggest that the above remote sensing technology can be used to provide scientific guidance for monitoring and precise management of crop diseases and pests. PMID:29543736
New Spectral Index for Detecting Wheat Yellow Rust Using Sentinel-2 Multispectral Imagery.
Zheng, Qiong; Huang, Wenjiang; Cui, Ximin; Shi, Yue; Liu, Linyi
2018-03-15
Yellow rust is one of the most destructive diseases for winter wheat and has led to a significant decrease in winter wheat quality and yield. Identifying and monitoring yellow rust is of great importance for guiding agricultural production over large areas. Compared with traditional crop disease discrimination methods, remote sensing technology has proven to be a useful tool for accomplishing such a task at large scale. This study explores the potential of the Sentinel-2 Multispectral Instrument (MSI), a newly launched satellite with refined spatial resolution and three red-edge bands, for discriminating between yellow rust infection severities (i.e., healthy, slight, and severe) in winter wheat. The corresponding simulative multispectral bands for the Sentinel-2 sensor were calculated by the sensor's relative spectral response (RSR) function based on the in situ hyperspectral data acquired at the canopy level. Three Sentinel-2 spectral bands, including B4 (Red), B5 (Re1), and B7 (Re3), were found to be sensitive bands using the random forest (RF) method. A new multispectral index, the Red Edge Disease Stress Index (REDSI), which consists of these sensitive bands, was proposed to detect yellow rust infection at different severity levels. The overall identification accuracy for REDSI was 84.1% and the kappa coefficient was 0.76. Moreover, REDSI performed better than other commonly used disease spectral indexes for yellow rust discrimination at the canopy scale. The optimal threshold method was adopted for mapping yellow rust infection at regional scales based on realistic Sentinel-2 multispectral image data to further assess REDSI's ability for yellow rust detection. The overall accuracy was 85.2% and kappa coefficient was 0.67, which was found through validation against a set of field survey data. This study suggests that the Sentinel-2 MSI has the potential for yellow rust discrimination, and the newly proposed REDSI has great robustness and generalized ability for yellow rust detection at canopy and regional scales. Furthermore, our results suggest that the above remote sensing technology can be used to provide scientific guidance for monitoring and precise management of crop diseases and pests.
Quantifying airborne dispersal routes of pathogens over continents to safeguard global wheat supply.
Meyer, M; Cox, J A; Hitchings, M D T; Burgin, L; Hort, M C; Hodson, D P; Gilligan, C A
2017-10-01
Infectious crop diseases spreading over large agricultural areas pose a threat to food security. Aggressive strains of the obligate pathogenic fungus Puccinia graminis f.sp. tritici (Pgt), causing the crop disease wheat stem rust, have been detected in East Africa and the Middle East, where they lead to substantial economic losses and threaten livelihoods of farmers. The majority of commercially grown wheat cultivars worldwide are susceptible to these emerging strains, which pose a risk to global wheat production, because the fungal spores transmitting the disease can be wind-dispersed over regions and even continents 1-11 . Targeted surveillance and control requires knowledge about airborne dispersal of pathogens, but the complex nature of long-distance dispersal poses significant challenges for quantitative research 12-14 . We combine international field surveys, global meteorological data, a Lagrangian dispersion model and high-performance computational resources to simulate a set of disease outbreak scenarios, tracing billions of stochastic trajectories of fungal spores over dynamically changing host and environmental landscapes for more than a decade. This provides the first quantitative assessment of spore transmission frequencies and amounts amongst all wheat producing countries in Southern/East Africa, the Middle East and Central/South Asia. We identify zones of high air-borne connectivity that geographically correspond with previously postulated wheat rust epidemiological zones (characterized by endemic disease and free movement of inoculum) 10,15 , and regions with genetic similarities in related pathogen populations 16,17 . We quantify the circumstances (routes, timing, outbreak sizes) under which virulent pathogen strains such as 'Ug99' 5,6 pose a threat from long-distance dispersal out of East Africa to the large wheat producing areas in Pakistan and India. Long-term mean spore dispersal trends (predominant direction, frequencies, amounts) are summarized for all countries in the domain (Supplementary Data). Our mechanistic modelling framework can be applied to other geographic areas, adapted for other pathogens and used to provide risk assessments in real-time 3 .
Huang, Xuan; Wang, Jian; Du, Zhen; Zhang, Chen; Li, Lan; Xu, Ziqin
2013-10-01
Stripe rust is a devastating fungal disease of wheat worldwide which is primarily caused by Puccinia striiformis f. sp tritici. Transgenic wheat (Triticum aestivum L.) expressing rice class chitinase gene RC24 were developed by particle bombardment of immature embryos and tested for resistance to Puccinia striiformis f.sp tritici. under greenhouse and field conditions. Putative transformants were selected on kanamycin-containing media. Polymease chain reaction indicated that RC24 was transferred into 17 transformants obtained from bombardment of 1,684 immature embryos. Integration of RC24 was confirmed by Southern blot with a RC24-labeled probe and expression of RC24 was verified by RT-PCR. Nine transgenic T1 lines exhibited enhanced resistance to stripe rust infection with lines XN8 and BF4 showing the highest level of resistance. Southern blot hybridization confirmed the stable inheritance of RC24 in transgenic T1 plants. Resistance to stripe rust in transgenic T2 and T3 XN8 and BF4 plants was confirmed over two consecutive years in the field. Increased yield (27-36 %) was recorded for transgenic T2 and T3 XN8 and BF4 plants compared to controls. These results suggest that rice class I chitinase RC24 can be used to engineer stripe rust resistance in wheat.
Comparison of multi- and hyperspectral imaging data of leaf rust infected wheat plants
NASA Astrophysics Data System (ADS)
Franke, Jonas; Menz, Gunter; Oerke, Erich-Christian; Rascher, Uwe
2005-10-01
In the context of precision agriculture, several recent studies have focused on detecting crop stress caused by pathogenic fungi. For this purpose, several sensor systems have been used to develop in-field-detection systems or to test possible applications of remote sensing. The objective of this research was to evaluate the potential of different sensor systems for multitemporal monitoring of leaf rust (puccinia recondita) infected wheat crops, with the aim of early detection of infected stands. A comparison between a hyperspectral (120 spectral bands) and a multispectral (3 spectral bands) imaging system shows the benefits and limitations of each approach. Reflectance data of leaf rust infected and fungicide treated control wheat stand boxes (1sqm each) were collected before and until 17 days after inoculation. Plants were grown under controlled conditions in the greenhouse and measurements were taken under consistent illumination conditions. The results of mixture tuned matched filtering analysis showed the suitability of hyperspectral data for early discrimination of leaf rust infected wheat crops due to their higher spectral sensitivity. Five days after inoculation leaf rust infected leaves were detected, although only slight visual symptoms appeared. A clear discrimination between infected and control stands was possible. Multispectral data showed a higher sensitivity to external factors like illumination conditions, causing poor classification accuracy. Nevertheless, if these factors could get under control, even multispectral data may serve a good indicator for infection severity.
Wu, Jianhui; Huang, Shuo; Zeng, Qingdong; Liu, Shengjie; Wang, Qilin; Mu, Jingmei; Yu, Shizhou; Han, Dejun; Kang, Zhensheng
2018-06-16
A major stripe rust resistance QTL on chromosome 4BL was localized to a 4.5-Mb interval using comparative QTL mapping methods and validated in 276 wheat genotypes by haplotype analysis. CYMMIT-derived wheat line P10103 was previously identified to have adult plant resistance (APR) to stripe rust in the greenhouse and field. The conventional approach for QTL mapping in common wheat is laborious. Here, we performed QTL detection of APR using a combination of genome-wide scanning and extreme pool-genotyping. SNP-based genetic maps were constructed using the Wheat55 K SNP array to genotype a recombinant inbred line (RIL) population derived from the cross Mingxian 169 × P10103. Five stable QTL were detected across multiple environments. A fter comparing SNP profiles from contrasting, extreme DNA pools of RILs six putative QTL were located to approximate chromosome positions. A major QTL on chromosome 4B was identified in F 2:4 contrasting pools from cross Zhengmai 9023 × P10103. A consensus QTL (LOD = 26-40, PVE = 42-55%), named QYr.nwafu-4BL, was defined and localized to a 4.5-Mb interval flanked by SNP markers AX-110963704 and AX-110519862 in chromosome arm 4BL. Based on stripe rust response, marker genotypes, pedigree analysis and mapping data, QYr.nwafu-4BL is likely to be a new APR QTL. The applicability of the SNP-based markers flanking QYr.nwafu-4BL was validated on a diversity panel of 276 wheat lines. The additional minor QTL on chromosomes 4A, 5A, 5B and 6A enhanced the level of resistance conferred by QYr.nwafu-4BL. Marker-assisted pyramiding of QYr.nwafu-4BL and other favorable minor QTL in new wheat cultivars should improve the level of APR to stripe rust.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-15
...] Notice of Request for Extension of Approval of an Information Collection; Black Stem Rust; Identification Requirements for Addition of Rust-Resistant Varieties AGENCY: Animal and Plant Health Inspection Service, USDA... black stem rust quarantine and regulations. DATES: We will consider all comments that we receive on or...
Cheng, Yulin; Yao, Juanni; Zhang, Hongchang; Huang, Lili; Kang, Zhensheng
2015-07-01
Cereal powdery mildews caused by Blumeria graminis and cereal rusts caused by Puccinia spp. are constant disease threats that limit the production of almost all important cereal crops. Rice is an intensively grown agricultural cereal that is atypical because of its immunity to all powdery mildew and rust fungi. We analyzed the nonhost interactions between rice and the wheat powdery mildew fungus B. graminis f. sp. tritici (Bgt) and the wheat leaf rust fungus Puccinia triticina (Ptr) to identify the basis of nonhost resistance (NHR) in rice against cereal powdery mildew and rust fungi at cytological and molecular levels. No visible symptoms were observed on rice leaves inoculated with Bgt or Ptr. Microscopic observations showed that both pathogens exhibited aberrant differentiation and significantly reduced penetration frequencies on rice compared to wheat. The development of Bgt and Ptr was also completely arrested at early infection stages in cases of successful penetration into rice leaves. Attempted infection of rice by Bgt and Ptr induced similar defense responses, including callose deposition, accumulation of reactive oxygen species, and hypersensitive response in rice epidermal and mesophyll cells, respectively. Furthermore, a set of defense-related genes were upregulated in rice against Bgt and Ptr infection. Rice is an excellent monocot model for genetic and molecular studies. Therefore, our results demonstrate that rice is a useful model to study the mechanisms of NHR to cereal powdery mildew and rust fungi, which provides useful information for the development of novel and durable strategies to control these important pathogens.
USDA-ARS?s Scientific Manuscript database
Puccinia striiformis f. sp. tritici (Pst), the causal agent of wheat stripe rust, is highly variable. The fungal pathogen produces new races overcoming resistance in wheat cultivars. A recently identified race, V26 with virulence to Yr26 and many other stripe rust resistance genes, has a high potent...
USDA-ARS?s Scientific Manuscript database
Since 2000, many of the previously effective wheat (Triticum aestivum L.) seedling stripe rust (pathogen Puccinia striiformis Westend. f.sp. tritici Eriks) resistance genes have become ineffective to the new more aggressive races of the pathogen. Because seedling resistance genes work on a gene for...
USDA-ARS?s Scientific Manuscript database
Winter wheat Druchamp has both high-temperature adult-plant (HTAP) resistance and all-stage resistance to stripe rust caused by Puccinia striiformis f. sp. tritici (Pst). The HTAP resistance in Druchamp is durable as the variety has been resistant in adult-plant stage since it was introduced ...
Effects of fungicide application on control of stripe rust on winter wheat cultivars in 2014
USDA-ARS?s Scientific Manuscript database
To determine the effects of fungicide application on control of stripe rust on individual winter wheat cultivars with various levels of resistance grown in the U.S. Pacific Northwest, this study was conducted in a field near Pullman, WA. Fertilizer (100N-20K-25S) was applied at 80 lb/A at the time o...
Bokore, Firdissa E; Cuthbert, Richard D; Knox, Ron E; Randhawa, Harpinder S; Hiebert, Colin W; DePauw, Ron M; Singh, Asheesh K; Singh, Arti; Sharpe, Andrew G; N'Diaye, Amidou; Pozniak, Curtis J; McCartney, Curt; Ruan, Yuefeng; Berraies, Samia; Meyer, Brad; Munro, Catherine; Hay, Andy; Ammar, Karim; Huerta-Espino, Julio; Bhavani, Sridhar
2017-12-01
Quantitative trait loci controlling stripe rust resistance were identified in adapted Canadian spring wheat cultivars providing opportunity for breeders to stack loci using marker-assisted breeding. Stripe rust or yellow rust, caused by Puccinia striiformis Westend. f. sp. tritici Erikss., is a devastating disease of common wheat (Triticum aestivum L.) in many regions of the world. The objectives of this research were to identify and map quantitative trait loci (QTL) associated with stripe rust resistance in adapted Canadian spring wheat cultivars that are effective globally, and investigate opportunities for stacking resistance. Doubled haploid (DH) populations from the crosses Vesper/Lillian, Vesper/Stettler, Carberry/Vesper, Stettler/Red Fife and Carberry/AC Cadillac were phenotyped for stripe rust severity and infection response in field nurseries in Canada (Lethbridge and Swift Current), New Zealand (Lincoln), Mexico (Toluca) and Kenya (Njoro), and genotyped with SNP markers. Six QTL for stripe rust resistance in the population of Vesper/Lillian, five in Vesper/Stettler, seven in Stettler/Red Fife, four in Carberry/Vesper and nine in Carberry/AC Cadillac were identified. Lillian contributed stripe rust resistance QTL on chromosomes 4B, 5A, 6B and 7D, AC Cadillac on 2A, 2B, 3B and 5B, Carberry on 1A, 1B, 4A, 4B, 7A and 7D, Stettler on 1A, 2A, 3D, 4A, 5B and 6A, Red Fife on 2D, 3B and 4B, and Vesper on 1B, 2B and 7A. QTL on 1A, 1B, 2A, 2B, 3B, 4A, 4B, 5B, 7A and 7D were observed in multiple parents. The populations are compelling sources of recombination of many stripe rust resistance QTL for stacking disease resistance. Gene pyramiding should be possible with little chance of linkage drag of detrimental genes as the source parents were mostly adapted cultivars widely grown in Canada.
Naz, Rabia; Bano, Asghari; Wilson, Neil L; Guest, David; Roberts, Thomas H
2014-09-01
Leaf rust (Puccinia triticina) is a major disease of wheat. We tested aqueous leaf extracts of Jacaranda mimosifolia (Bignoniaceae), Thevetia peruviana (Apocynaceae), and Calotropis procera (Apocynaceae) for their ability to protect wheat from leaf rust. Extracts from all three species inhibited P. triticina urediniospore germination in vitro. Plants sprayed with extracts before inoculation developed significantly lower levels of disease incidence (number of plants infected) than unsprayed, inoculated controls. Sprays combining 0.6% leaf extracts and 2 mM salicylic acid with the fungicide Amistar Xtra at 0.05% (azoxystrobin at 10 μg/liter + cyproconazole at 4 μg/liter) reduced disease incidence significantly more effectively than sprays of fungicide at 0.1% alone. Extracts of J. mimosifolia were most active, either alone (1.2%) or in lower doses (0.6%) in combination with 0.05% Amistar Xtra. Leaf extracts combined with fungicide strongly stimulated defense-related gene expression and the subsequent accumulation of pathogenesis-related (PR) proteins in the apoplast of inoculated wheat leaves. The level of protection afforded was significantly correlated with the ability of extracts to increase PR protein expression. We conclude that pretreatment of wheat leaves with spray formulations containing previously untested plant leaf extracts enhances protection against leaf rust provided by fungicide sprays, offering an alternative disease management strategy.
USDA-ARS?s Scientific Manuscript database
New races of Puccinia striiformis f. sp. tritici (Pst), the causal pathogen of wheat stripe rust, show high virulence to previously deployed resistance genes and are causing large yield losses worldwide. To identify new sources of resistance we performed a genome-wide association study (GWAS) using...
USDA-ARS?s Scientific Manuscript database
Over time, many single, all-stage resistance genes to stripe rust (Puccinia striiformis f. sp. tritici) in wheat (Triticum aestivum L.) are circumvented by race changes in the pathogen. In contrast, high-temperature, adult-plant resistance (HTAP), which only is expressed during the adult-plant stag...
Control of stripe rust of winter wheat with foliar fungicides in 2016
USDA-ARS?s Scientific Manuscript database
The study was conducted in a field with Palouse silt loam soil near Pullman, WA. Stripe rust susceptible ‘PS 279’ winter wheat was seeded in rows spaced 14-in. apart at 60 lb/A (99% germination rate) with a drill planter on 12 Oct 2015. Ammonia fertilizer (46-0-0) was applied at the rate of 100 lb/...
Control of stripe rust of spring wheat with foliar fungicides in 2016
USDA-ARS?s Scientific Manuscript database
The study was conducted in a field with Palouse silt loam soil near Pullman, WA. Stripe rust susceptible ‘Avocet S’ spring wheat was seeded in rows spaced 14-in. apart at 60 lb/A (99% germination rate) with a drill planter on 4 May 2016. Urea fertilizer (46-0-0) was applied at the rate of 100 lb/A o...
Bürling, K; Hunsche, M; Noga, G
2010-01-01
In modern agriculture there is a great demand for a rapid and objective screening method for stress resistance, because so far, the resistance of new cultivars is tested in time- and money consuming field experiments. Based on fluorescence ratios, and lifetime of fluorophores measured by fluorescence spectroscopy, we have postulated that an early discrimination of susceptible and resistant wheat cultivars to the leaf rust pathogen Puccinia triticina can be accomplished. As representative for leaf rust resistant and leaf rust susceptible wheat genotypes the cultivars Esket and Skalmeje, respectively, were chosen. Plants were grown under controlled environment conditions and inoculated with the leaf rust pathogen at the second-leaf-stage by single-droplet application. Fluorescence measurements were carried out from two to four days after inoculation (dai) by using a compact fibre-optic fluorescence spectrometer with nanosecond time-resolution. Experimental results indicated that UV laser-induced spectral characteristics as well as determination of fluorescence lifetime are suited to detect leaf rust two dai. For this purpose several ratios and wavelength can be considered. In general, the tested cultivars showed distinct responses to the pathogen development. In this context the ratio F451/F687 measured three dai and mean lifetimes at 500 nm and 530 nm are suited to differentiate the resistant Esket from the susceptible Skalmeje genotypes.
Serfling, Albrecht; Templer, Sven E.; Winter, Peter; Ordon, Frank
2016-01-01
Puccinia triticina f. sp. tritici (Eriks.), the causal agent of leaf rust, causes substantial yield losses in wheat production. In wheat many major leaf rust resistance genes have been overcome by virulent races. In contrast, the prehaustorial resistance (phr) against wheat leaf rust detected in the diploid wheat Einkorn (Triticum monoccocum var. monococcum) accession PI272560 confers race-independent resistance against isolates virulent on accessions harboring resistance genes located on the A-genome of Triticum aestivum. Phr in PI272560 leads to abortion of fungal development during the formation of haustorial mother cells and to increased hydrogen peroxide concentration in comparison to the susceptible accession 36554 (Triticum boeoticum ssp. thaoudar var. reuteri). Increased peroxidase and endochitinase activity was detected in PI272560 within 6 h after inoculation (hai). Comparative transcriptome profiling using Massive Analysis of cDNA Ends (MACE) in infected and non-infected leaves detected 14220 differentially expressed tags in PI272560 and 15472 in accession 36554. Of these 2908 and 3004, respectively, could be assigned to Gene Ontology (GO) categories of which 463 were detected in both accessions and 311 were differentially expressed between the accessions. In accordance with the concept of non-host resistance in PI272560, genes with similarity to peroxidases, chitinases, β-1,3-glucanases and other pathogenesis-related genes were up-regulated within the first 8 hai, whereas up-regulation of such genes was delayed in 36554. Moreover, a Phosphoribulokinase gene contributing to non-host resistance in rice against stripe rust was exclusively expressed in the resistant accession PI272560. Gene expression underpinned physiological and phenotypic observations at the site of infection and are in accordance with the concept of non-host resistance. PMID:27881987
Mapping genes for resistance to stripe rust in spring wheat landrace PI 480035
Krishnan, Vandhana; Jiwan, Derick; Chen, Xianming; Skinner, Daniel Z.; See, Deven R.
2017-01-01
Stripe rust caused by Puccinia striiformis Westend. f. sp. tritici Erikks. is an economically important disease of wheat (Triticum aestivum L.). Hexaploid spring wheat landrace PI 480035 was highly resistant to stripe rust in the field in Washington during 2011 and 2012. The objective of this research was to identify quantitative trait loci (QTL) for stripe rust resistance in PI 480035. A spring wheat, “Avocet Susceptible” (AvS), was crossed with PI 480035 to develop a biparental population of 110 recombinant inbred lines (RIL). The population was evaluated in the field in 2013 and 2014 and seedling reactions were examined against three races (PSTv-14, PSTv-37, and PSTv-40) of the pathogen under controlled conditions. The population was genotyped with genotyping-by-sequencing and microsatellite markers across the whole wheat genome. A major QTL, QYr.wrsggl1-1BS was identified on chromosome 1B. The closest flanking markers were Xgwm273, Xgwm11, and Xbarc187 1.01 cM distal to QYr.wrsggl1-1BS, Xcfd59 0.59 cM proximal and XA365 3.19 cM proximal to QYr.wrsggl1-1BS. Another QTL, QYr.wrsggl1-3B, was identified on 3B, which was significant only for PSTv-40 and was not significant in the field, indicating it confers a race-specific resistance. Comparison with markers associated with previously reported Yr genes on 1B (Yr64, Yr65, and YrH52) indicated that QYr.wrsggl1-1BS is potentially a novel stripe rust resistance gene that can be incorporated into modern breeding materials, along with other all-stage and adult-plant resistance genes to develop cultivars that can provide durable resistance. PMID:28542451
Characterization and mapping of leaf rust resistance in four durum wheat cultivars.
Kthiri, Dhouha; Loladze, Alexander; MacLachlan, P R; N'Diaye, Amidou; Walkowiak, Sean; Nilsen, Kirby; Dreisigacker, Susanne; Ammar, Karim; Pozniak, Curtis J
2018-01-01
Widening the genetic basis of leaf rust resistance is a primary objective of the global durum wheat breeding effort at the International Wheat and Maize Improvement Center (CIMMYT). Breeding programs in North America are following suit, especially after the emergence of new races of Puccinia triticina such as BBG/BP and BBBQD in Mexico and the United States, respectively. This study was conducted to characterize and map previously undescribed genes for leaf rust resistance in durum wheat and to develop reliable molecular markers for marker-assisted breeding. Four recombinant inbred line (RIL) mapping populations derived from the resistance sources Amria, Byblos, Geromtel_3 and Tunsyr_2, which were crossed to the susceptible line ATRED #2, were evaluated for their reaction to the Mexican race BBG/BP of P. triticina. Genetic analyses of host reactions indicated that leaf rust resistance in these genotypes was based on major seedling resistance genes. Allelism tests among resistant parents supported that Amria and Byblos carried allelic or closely linked genes. The resistance in Geromtel_3 and Tunsyr_2 also appeared to be allelic. Bulked segregant analysis using the Infinium iSelect 90K single nucleotide polymorphism (SNP) array identified two genomic regions for leaf rust resistance; one on chromosome 6BS for Geromtel_3 and Tunsyr_2 and the other on chromosome 7BL for Amria and Byblos. Polymorphic SNPs identified within these regions were converted to kompetitive allele-specific PCR (KASP) assays and used to genotype the RIL populations. KASP markers usw215 and usw218 were the closest to the resistance genes in Geromtel_3 and Tunsyr_2, while usw260 was closely linked to the resistance genes in Amria and Byblos. DNA sequences associated with these SNP markers were anchored to the wild emmer wheat (WEW) reference sequence, which identified several candidate resistance genes. The molecular markers reported herein will be useful to effectively pyramid these resistance genes with other previously marked genes into adapted, elite durum wheat genotypes.
Characterization and mapping of leaf rust resistance in four durum wheat cultivars
Kthiri, Dhouha; Loladze, Alexander; MacLachlan, P. R.; N’Diaye, Amidou; Walkowiak, Sean; Nilsen, Kirby; Dreisigacker, Susanne; Ammar, Karim
2018-01-01
Widening the genetic basis of leaf rust resistance is a primary objective of the global durum wheat breeding effort at the International Wheat and Maize Improvement Center (CIMMYT). Breeding programs in North America are following suit, especially after the emergence of new races of Puccinia triticina such as BBG/BP and BBBQD in Mexico and the United States, respectively. This study was conducted to characterize and map previously undescribed genes for leaf rust resistance in durum wheat and to develop reliable molecular markers for marker-assisted breeding. Four recombinant inbred line (RIL) mapping populations derived from the resistance sources Amria, Byblos, Geromtel_3 and Tunsyr_2, which were crossed to the susceptible line ATRED #2, were evaluated for their reaction to the Mexican race BBG/BP of P. triticina. Genetic analyses of host reactions indicated that leaf rust resistance in these genotypes was based on major seedling resistance genes. Allelism tests among resistant parents supported that Amria and Byblos carried allelic or closely linked genes. The resistance in Geromtel_3 and Tunsyr_2 also appeared to be allelic. Bulked segregant analysis using the Infinium iSelect 90K single nucleotide polymorphism (SNP) array identified two genomic regions for leaf rust resistance; one on chromosome 6BS for Geromtel_3 and Tunsyr_2 and the other on chromosome 7BL for Amria and Byblos. Polymorphic SNPs identified within these regions were converted to kompetitive allele-specific PCR (KASP) assays and used to genotype the RIL populations. KASP markers usw215 and usw218 were the closest to the resistance genes in Geromtel_3 and Tunsyr_2, while usw260 was closely linked to the resistance genes in Amria and Byblos. DNA sequences associated with these SNP markers were anchored to the wild emmer wheat (WEW) reference sequence, which identified several candidate resistance genes. The molecular markers reported herein will be useful to effectively pyramid these resistance genes with other previously marked genes into adapted, elite durum wheat genotypes. PMID:29746580
Xia, Chongjing; Wang, Meinan; Cornejo, Omar E; Jiwan, Derick A; See, Deven R; Chen, Xianming
2017-01-01
Stripe (yellow) rust, caused by Puccinia striiformis f. sp. tritici ( Pst ), is one of the most destructive diseases of wheat worldwide. Planting resistant cultivars is an effective way to control this disease, but race-specific resistance can be overcome quickly due to the rapid evolving Pst population. Studying the pathogenicity mechanisms is critical for understanding how Pst virulence changes and how to develop wheat cultivars with durable resistance to stripe rust. We re-sequenced 7 Pst isolates and included additional 7 previously sequenced isolates to represent balanced virulence/avirulence profiles for several avirulence loci in seretome analyses. We observed an uneven distribution of heterozygosity among the isolates. Secretome comparison of Pst with other rust fungi identified a large portion of species-specific secreted proteins, suggesting that they may have specific roles when interacting with the wheat host. Thirty-two effectors of Pst were identified from its secretome. We identified candidates for Avr genes corresponding to six Yr genes by correlating polymorphisms for effector genes to the virulence/avirulence profiles of the 14 Pst isolates. The putative AvYr76 was present in the avirulent isolates, but absent in the virulent isolates, suggesting that deleting the coding region of the candidate avirulence gene has produced races virulent to resistance gene Yr76 . We conclude that incorporating avirulence/virulence phenotypes into correlation analysis with variations in genomic structure and secretome, particularly presence/absence polymorphisms of effectors, is an efficient way to identify candidate Avr genes in Pst . The candidate effector genes provide a rich resource for further studies to determine the evolutionary history of Pst populations and the co-evolutionary arms race between Pst and wheat. The Avr candidates identified in this study will lead to cloning avirulence genes in Pst , which will enable us to understand molecular mechanisms underlying Pst -wheat interactions, to determine the effectiveness of resistance genes and further to develop durable resistance to stripe rust.
Hiebert, Colin W; Thomas, Julian B; McCallum, Brent D; Humphreys, D Gavin; DePauw, Ronald M; Hayden, Matthew J; Mago, Rohit; Schnippenkoetter, Wendelin; Spielmeyer, Wolfgang
2010-10-01
Adult plant resistance (APR) to leaf rust and stripe rust derived from the wheat (Triticum aestivum L.) line PI250413 was previously identified in RL6077 (=Thatcher*6/PI250413). The leaf rust resistance gene in RL6077 is phenotypically similar to Lr34 which is located on chromosome 7D. It was previously hypothesized that the gene in RL6077 could be Lr34 translocated to another chromosome. Hybrids between RL6077 and Thatcher and between RL6077 and 7DS and 7DL ditelocentric stocks were examined for first meiotic metaphase pairing. RL6077 formed chain quadrivalents and trivalents relative to Thatcher and Chinese Spring; however both 7D telocentrics paired only as heteromorphic bivalents and never with the multivalents. Thus, chromosome 7D is not involved in any translocation carried by RL6077. A genome-wide scan of SSR markers detected an introgression from chromosome 4D of PI250413 transferred to RL6077 through five cycles of backcrossing to Thatcher. Haplotype analysis of lines from crosses of Thatcher × RL6077 and RL6058 (Thatcher*6/PI58548) × RL6077 showed highly significant associations between introgressed markers (including SSR marker cfd71) and leaf rust resistance. In a separate RL6077-derived population, APR to stripe rust was also tightly linked with cfd71 on chromosome 4DL. An allele survey of linked SSR markers cfd71 and cfd23 on a set of 247 wheat lines from diverse origins indicated that these markers can be used to select for the donor segment in most wheat backgrounds. Comparison of RL6077 with Thatcher in field trials showed no effect of the APR gene on important agronomic or quality traits. Since no other known Lr genes exist on chromosome 4DL, the APR gene in RL6077 has been assigned the name Lr67.
Han, Jae Woo; Shim, Sang Hee; Jang, Kyoung Soo; Choi, Yong Ho; Dang, Quang Le; Kim, Hun; Choi, Gyung Ja
2018-02-01
As an alternative to synthetic pesticides, natural materials such as plant extracts and microbes have been considered to control plant diseases. In this study, methanol extracts of 120 plants were explored for in vivo antifungal activity against Rhizoctonia solani, Botrytis cinerea, Phytophthora infestans, Puccinia triticina, and Blumeria graminis f. sp. hordei. Of the 120 plant extracts, eight plant extracts exhibited a disease control efficacy of more than 90% against at least one of five plant diseases. In particular, a methanol extract of Curcuma zedoaria rhizomes exhibited strong activity against wheat leaf rust caused by P. triticina. When the C. zedoaria methanol extracts were partitioned with various solvents, the layers of n-hexane, methylene chloride, and ethyl acetate showed disease control values of 100, 80, and 43%, respectively, against wheat leaf rust. From the C. zedoaria rhizome extracts, an antifungal substance was isolated and identified as a sesquiterpene ketolactone based on the mass and nuclear magnetic resonance spectral data. The active compound controlled the development of rice sheath blight, wheat leaf rust, and tomato late blight. Considering the in vivo antifungal activities of the sesquiterpene ketolactone and the C. zedoaria extracts, these results suggest that C. zedoaria can be used as a potent fungicide in organic agriculture.
Stem rust spores elicit rapid RPG1 phosphorylation
USDA-ARS?s Scientific Manuscript database
Stem rust threatens cereal production worldwide. Understanding the mechanism by which durable resistance genes, such as Rpg1, function is critical. We show that the RPG1 protein is phosphorylated within 5 min by exposure to spores from avirulent but not virulent races of stem rust. Transgenic mutant...
Wheat Gene TaATG8j Contributes to Stripe Rust Resistance.
Mamun, Md Abdullah-Al; Tang, Chunlei; Sun, Yingchao; Islam, Md Nazrul; Liu, Peng; Wang, Xiaojie; Kang, Zhensheng
2018-06-05
Autophagy-related 8 (ATG8) protein has been reported to be involved in plant's innate immune response, but it is not clear whether such genes play a similar role in cereal crops against obligate biotrophic fungal pathogens. Here, we reported an ATG8 gene from wheat ( Triticum aestivum ), designated TaATG8j . This gene has three copies located in chromosomes 2AS, 2BS, and 2DS. The transcriptions of all three copies were upregulated in plants of the wheat cultivar Suwon 11, inoculated with an avirulent race (CYR23) of Puccinia striiformis f. sp. tritici ( Pst ), the causal fungal pathogen of stripe rust. The transient expression of TaATG8j in Nicotiana benthamiana showed that TaATG8j proteins were distributed throughout the cytoplasm, but mainly in the nucleus and plasma membrane. The overexpression of TaATG8j in N. benthamiana slightly delayed the cell death caused by the mouse apoptotic protein BAX (BCL2-associated X protein). However, the expression of TaATG8j in yeast ( Schizosaccharomyces pombe ) induced cell death. The virus-induced gene silencing of all TaATG8j copies rendered Suwon 11 susceptible to the avirulent Pst race CYR23, accompanied by an increased fungal biomass and a decreased necrotic area per infection site. These results indicate that TaATG8j contributes to wheat resistance against stripe rust fungus by regulating cell death, providing information for the understanding of the mechanisms of wheat resistance to the stripe rust pathogen.
Yang, Xiaofei; Li, Xin; Wang, Changyou; Chen, Chunhuan; Tian, Zengrong; Ji, Wanquan
2017-12-01
A common wheat - Leymus mollis (2n = 4x = 28, NsNsXmXm) double monosomic addition line, M11003-4-3-8/13/15 (2n = 44 = 42T.a + L.m2 + L.m3), with stripe rust resistance was developed (where T.a represents Triticum aestivum chromosome, L.m represents L. mollis chromosome, and L.m2/3 represents L. mollis chromosome of homoeologous groups 2 and 3). The progenies of line M11003-4-3-8/13/15 were characterized by cytological observation, specific molecular markers, fluorescence in situ hybridization (FISH), and genomic in situ hybridization (GISH). Among the progenies, there existed five different types (I, II, III, IV, and V) of chromosome constitution, the formulas of which were 2n = 44 = 42T.a + 1L.m2 + 1L.m3, 2n = 43 = 42T.a + 1L.m2, 2n = 43 = 42T.a + 1L.m3, 2n = 42 = 42T.a, and 2n = 44 = 42T.a + 2L.m2, respectively. Field disease screening showed that types I and III showed high resistance to stripe rust, while types II, IV, and V were susceptible. Leymus mollis was almost immune to stripe rust, whereas the wheat parent, cultivar 7182, was susceptible. Therefore, we concluded that the stripe rust resistance originated from L. mollis. These various lines could be further fully exploited as important disease resistance materials to enrich wheat genetic resources.
Wang, Guan-Feng; Fan, Renchun; Wang, Xianping; Wang, Daowen; Zhang, Xiangqi
2015-04-01
RAR1 and SGT1 are important co-chaperones of Hsp90. We previously showed that TaHsp90.1 is required for wheat seedling growth, and that TaHsp90.2 and TaHsp90.3 are essential for resistance (R) gene mediated resistance to stripe rust fungus. Here, we report the characterization of TaRAR1 and TaSGT1 genes in bread wheat. TaRAR1 and TaSGT1 each had three homoeologs, which were located on wheat groups 2 and 3 chromosomes, respectively. Strong inhibition of seedling growth was observed after silencing TaSGT1 but not TaRAR1. In contrast, decreasing the expression of TaRAR1 or TaSGT1 could all compromise R gene mediated resistance to stripe rust fungus infection. Protein-protein interactions were found among TaRAR1, TaSGT1 and TaHsp90. The N-terminus of TaHsp90, the CHORD-I and CHORD-II domains of TaRAR1 and the CS domain of TaSGT1 may be instrumental for the interactions among the three proteins. Based on this work and our previous study on TaHsp90, we speculate that the TaSGT1-TaHsp90.1 interaction is important for maintaining bread wheat seedling growth. The TaRAR1-TaSGT1-TaHsp90.2 and TaRAR1-TaSGT1-TaHsp90.3 interactions are involved in controlling the resistance to stripe rust disease. The new information obtained here should aid further functional investigations of TaRAR1-TaSGT1-TaHsp90 complexes in regulating bread wheat growth and disease resistance.
USDA-ARS?s Scientific Manuscript database
The barley stem rust resistance gene Reaction to Puccinia graminis 1 (Rpg1), encoding a receptor-like kinase, confers durable resistance to the stem rust pathogen Puccinia graminis f. sp. tritici. The fungal urediniospores form adhesion structures with the leaf epidermal cells within 1 h of inocula...
Kulshreshtha, Deepika; Gupta, Sangeeta; Singh, Kartar; Bhardwaj, Subhash C.
2018-01-01
Leaf rust of wheat caused by Puccinia triticina has significant impact on wheat production worldwide. Effective and quick detection methodologies are required to mitigate yield loss and time constraints associated with monitoring and management of leaf rust of wheat. In the present study, detection of P. triticina has been simplified by developing a rapid, reliable, efficient and visual colorimetric method i.e., loop mediated isothermal amplification of DNA (LAMP). Based on in silico analysis of P. triticina genome, PTS68, a simple sequence repeat was found highly specific to leaf rust fungus. A marker (PtRA68) was developed and its specificity was validated through PCR technique which gave a unique and sharp band of 919 bp in P. triticina pathotypes only. A novel gene amplification method LAMP which enables visual detection of pathogen by naked eye was developed for leaf rust pathogen. A set of six primers was designed from specific region of P. triticina and conditions were optimised to complete the observation process in 60 minutes at 65o C. The assay developed in the study could detect presence of P. triticina on wheat at 24 hpi (pre-symptomatic stage) which was much earlier than PCR without requiring thermal cycler. Sensitivity of LAMP assay developed in the study was 100 fg which was more sensitive than conventional PCR (50 pg) and equivalent to qPCR (100 fg). The protocol developed in the study was utilized for detection of leaf rust infected samples collected from different wheat fields. LAMP based colorimetric detection assay showed sky blue color in positive reaction and violet color in negative reaction after addition of 120 μM hydroxyl napthol blue (HNB) solution to reaction mixture. Similarly, 0.6 mg Ethidium bromide/ml was added to LAMP products, placed on transilluminator to witness full brightness in positive reaction and no such brightness could be seen in negative reaction mixture. Further, LAMP products spread in a ladder like banding pattern in gel electrophoresis. Our assay is significantly faster than the conventional methods used in the identification of P. triticina. The assay developed in the study shall be very much useful in the development of diagnostic kit for monitoring disease, creation of prediction model and efficient management of disease. PMID:29698484
Manjunatha, C; Sharma, Sapna; Kulshreshtha, Deepika; Gupta, Sangeeta; Singh, Kartar; Bhardwaj, Subhash C; Aggarwal, Rashmi
2018-01-01
Leaf rust of wheat caused by Puccinia triticina has significant impact on wheat production worldwide. Effective and quick detection methodologies are required to mitigate yield loss and time constraints associated with monitoring and management of leaf rust of wheat. In the present study, detection of P. triticina has been simplified by developing a rapid, reliable, efficient and visual colorimetric method i.e., loop mediated isothermal amplification of DNA (LAMP). Based on in silico analysis of P. triticina genome, PTS68, a simple sequence repeat was found highly specific to leaf rust fungus. A marker (PtRA68) was developed and its specificity was validated through PCR technique which gave a unique and sharp band of 919 bp in P. triticina pathotypes only. A novel gene amplification method LAMP which enables visual detection of pathogen by naked eye was developed for leaf rust pathogen. A set of six primers was designed from specific region of P. triticina and conditions were optimised to complete the observation process in 60 minutes at 65o C. The assay developed in the study could detect presence of P. triticina on wheat at 24 hpi (pre-symptomatic stage) which was much earlier than PCR without requiring thermal cycler. Sensitivity of LAMP assay developed in the study was 100 fg which was more sensitive than conventional PCR (50 pg) and equivalent to qPCR (100 fg). The protocol developed in the study was utilized for detection of leaf rust infected samples collected from different wheat fields. LAMP based colorimetric detection assay showed sky blue color in positive reaction and violet color in negative reaction after addition of 120 μM hydroxyl napthol blue (HNB) solution to reaction mixture. Similarly, 0.6 mg Ethidium bromide/ml was added to LAMP products, placed on transilluminator to witness full brightness in positive reaction and no such brightness could be seen in negative reaction mixture. Further, LAMP products spread in a ladder like banding pattern in gel electrophoresis. Our assay is significantly faster than the conventional methods used in the identification of P. triticina. The assay developed in the study shall be very much useful in the development of diagnostic kit for monitoring disease, creation of prediction model and efficient management of disease.
USDA-ARS?s Scientific Manuscript database
Background: Rust fungi are biotrophic basidiomycete plant pathogens that cause major diseases on plants and trees world-wide, affecting agriculture and forestry. Their biotrophic nature precludes many established molecular genetic manipulations and lines of research. The generation of genomic resour...
USDA-ARS?s Scientific Manuscript database
Collections of Puccinia triticina, the wheat leaf rust fungus, were obtained from tetraploid and hexaploid wheat in the central highlands of Ethiopia, and a smaller number from Kenya from 2011 to 2013, in order to determine the genetic diversity of this wheat pathogen in a center of host diversity. ...
75 FR 44881 - Black Stem Rust; Additions of Rust-Resistant Varieties
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-30
...;Prices of new books are listed in the first FEDERAL REGISTER issue of each #0;week. #0; #0; #0; #0;#0... direct final rule notified the public of our intention to amend the black stem rust quarantine and...
Xia, Chongjing; Wang, Meinan; Yin, Chuntao; Cornejo, Omar E; Hulbert, Scot; Chen, Xianming
2018-05-24
Puccinia striiformis f. sp. tritici (Pst) causes devastating stripe (yellow) rust on wheat and P. striiformis f. sp. hordei (Psh) causes stripe rust on barley. Several Pst genomes are available, but no Psh genome is available. More genomes of Pst and Psh are needed to understand the genome evolution and molecular mechanisms of their pathogenicity. We sequenced Pst isolate 93-210 and Psh isolate 93TX-2 using PacBio and Illumina technologies, and RNA sequencing. Their genomic sequences were assembled to contigs with high continuity and showed significant structural differences. The circular mitochondria genomes of both were complete. These genomes provide high-quality resources for deciphering the genomic basis of rapid evolution and host adaptation, identifying genes for avirulence and other important traits, and studying host-pathogen interaction.
Sehgal, Deepmala; Dreisigacker, Susanne; Belen, Savaş; Küçüközdemir, Ümran; Mert, Zafer; Özer, Emel; Morgounov, Alexey
2016-01-01
Wheat landraces in Turkey are an important genetic resource for wheat improvement. An exhaustive 5-year (2009–2014) effort made by the International Winter Wheat Improvement Programme (IWWIP), a cooperative program between the Ministry of Food, Agriculture and Livestock of Turkey, the International Center for Maize and Wheat Improvement (CIMMYT) and the International Center for Agricultural Research in the Dry Areas (ICARDA), led to the collection and documentation of around 2000 landrace populations from 55 provinces throughout Turkey. This study reports the genetic characterization of a subset of bread wheat landraces collected in 2010 from 11 diverse provinces using genotyping-by-sequencing (GBS) technology. The potential of this collection to identify loci determining grain yield and stripe rust resistance via genome-wide association (GWA) analysis was explored. A high genetic diversity (diversity index = 0.260) and a moderate population structure based on highly inherited spike traits was revealed in the panel. The linkage disequilibrium decayed at 10 cM across the whole genome and was slower as compared to other landrace collections. In addition to previously reported QTL, GWA analysis also identified new candidate genomic regions for stripe rust resistance, grain yield, and spike productivity components. New candidate genomic regions reflect the potential of this landrace collection to further increase genetic diversity in elite germplasm. PMID:27917192
Chandra, Saket; Singh, Dharmendra; Pathak, Jyoti; Kumari, Supriya; Kumar, Manish; Poddar, Raju; Balyan, Harindra Singh; Gupta, Puspendra Kumar; Prabhu, Kumble Vinod; Mukhopadhyay, Kunal
2016-01-01
Pathogens like Puccinia triticina, the causal organism for leaf rust, extensively damages wheat production. The interaction at molecular level between wheat and the pathogen is complex and less explored. The pathogen induced response was characterized using mock- or pathogen inoculated near-isogenic wheat lines (with or without seedling leaf rust resistance gene Lr28). Four Serial Analysis of Gene Expression libraries were prepared from mock- and pathogen inoculated plants and were subjected to Sequencing by Oligonucleotide Ligation and Detection, which generated a total of 165,767,777 reads, each 35 bases long. The reads were processed and multiple k-mers were attempted for de novo transcript assembly; 22 k-mers showed the best results. Altogether 21,345 contigs were generated and functionally characterized by gene ontology annotation, mining for transcription factors and resistance genes. Expression analysis among the four libraries showed extensive alterations in the transcriptome in response to pathogen infection, reflecting reorganizations in major biological processes and metabolic pathways. Role of auxin in determining pathogenesis in susceptible and resistant lines were imperative. The qPCR expression study of four LRR-RLK (Leucine-rich repeat receptor-like protein kinases) genes showed higher expression at 24 hrs after inoculation with pathogen. In summary, the conceptual model of induced resistance in wheat contributes insights on defense responses and imparts knowledge of Puccinia triticina-induced defense transcripts in wheat plants.
Zhan, Haixian; Zhang, Xiaojun; Li, Guangrong; Pan, Zhihui; Hu, Jin; Li, Xin; Qiao, Linyi; Jia, Juqing; Guo, Huijuan; Chang, Zhijian; Yang, Zujun
2015-01-01
A new wheat-Thinopyrum translocation line CH13-21 was selected from the progenies derived from a cross between wheat-Th. intermedium partial amphiploid TAI7047 and wheat line Mianyang11. CH13-21 was characterized by using genomic in situ hybridization (GISH), multicolor-GISH (mc-GISH), multicolor-fluorescence in situ hybridization (mc-FISH) and chromosome-specific molecular markers. When inoculated with stripe rust and powdery mildew isolates, CH13-21 displayed novel resistance to powdery mildew and stripe rust which inherited from its Thinopyrum parent. The chromosomal counting analyses indicated that CH13-21 has 42 chromosomes, with normal bivalent pairing at metaphase I of meiosis. GISH probed by Th. intermedium genomic DNA showed that CH13-21 contained a pair of wheat-Th. intermedium translocated chromosomes. Sequential mc-FISH analyses probed by pSc119.2 and pAs1 clearly revealed that chromosome arm 6BS of CH13-21 was replaced by Thinopyrum chromatin in the translocation chromosome. The molecular markers analysis further confirmed that the introduced Th. intermedium chromatin in CH13-21 belonged to the long arm of homoeologous group 6 chromosome. Therefore, CH13-21 was a new T6BS.6Ai#1L compensating Robertsonian translocation line. It concludes that CH13-21 is a new genetic resource for wheat breeding programs providing novel variation for disease resistances. PMID:25608651
Pathak, Jyoti; Kumari, Supriya; Kumar, Manish; Poddar, Raju; Balyan, Harindra Singh; Gupta, Puspendra Kumar; Prabhu, Kumble Vinod; Mukhopadhyay, Kunal
2016-01-01
Pathogens like Puccinia triticina, the causal organism for leaf rust, extensively damages wheat production. The interaction at molecular level between wheat and the pathogen is complex and less explored. The pathogen induced response was characterized using mock- or pathogen inoculated near-isogenic wheat lines (with or without seedling leaf rust resistance gene Lr28). Four Serial Analysis of Gene Expression libraries were prepared from mock- and pathogen inoculated plants and were subjected to Sequencing by Oligonucleotide Ligation and Detection, which generated a total of 165,767,777 reads, each 35 bases long. The reads were processed and multiple k-mers were attempted for de novo transcript assembly; 22 k-mers showed the best results. Altogether 21,345 contigs were generated and functionally characterized by gene ontology annotation, mining for transcription factors and resistance genes. Expression analysis among the four libraries showed extensive alterations in the transcriptome in response to pathogen infection, reflecting reorganizations in major biological processes and metabolic pathways. Role of auxin in determining pathogenesis in susceptible and resistant lines were imperative. The qPCR expression study of four LRR-RLK (Leucine-rich repeat receptor-like protein kinases) genes showed higher expression at 24 hrs after inoculation with pathogen. In summary, the conceptual model of induced resistance in wheat contributes insights on defense responses and imparts knowledge of Puccinia triticina-induced defense transcripts in wheat plants. PMID:26840746
Sucher, Justine; Boni, Rainer; Yang, Ping; Rogowsky, Peter; Büchner, Heike; Kastner, Christine; Kumlehn, Jochen; Krattinger, Simon G; Keller, Beat
2017-04-01
Maize (corn) is one of the most widely grown cereal crops globally. Fungal diseases of maize cause significant economic damage by reducing maize yields and by increasing input costs for disease management. The most sustainable control of maize diseases is through the release and planting of maize cultivars with durable disease resistance. The wheat gene Lr34 provides durable and partial field resistance against multiple fungal diseases of wheat, including three wheat rust pathogens and wheat powdery mildew. Because of its unique qualities, Lr34 became a cornerstone in many wheat disease resistance programmes. The Lr34 resistance is encoded by a rare variant of an ATP-binding cassette (ABC) transporter that evolved after wheat domestication. An Lr34-like disease resistance phenotype has not been reported in other cereal species, including maize. Here, we transformed the Lr34 resistance gene into the maize hybrid Hi-II. Lr34-expressing maize plants showed increased resistance against the biotrophic fungal disease common rust and the hemi-biotrophic disease northern corn leaf blight. Furthermore, the Lr34-expressing maize plants developed a late leaf tip necrosis phenotype, without negative impact on plant growth. With this and previous reports, it could be shown that Lr34 is effective against various biotrophic and hemi-biotrophic diseases that collectively parasitize all major cereal crop species. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.
Exploiting a wheat EST database to assess genetic diversity
2010-01-01
Expressed sequence tag (EST) markers have been used to assess variety and genetic diversity in wheat (Triticum aestivum). In this study, 1549 ESTs from wheat infested with yellow rust were used to examine the genetic diversity of six susceptible and resistant wheat cultivars. The aim of using these cultivars was to improve the competitiveness of public wheat breeding programs through the intensive use of modern, particularly marker-assisted, selection technologies. The F2 individuals derived from cultivar crosses were screened for resistance to yellow rust at the seedling stage in greenhouses and adult stage in the field to identify DNA markers genetically linked to resistance. Five hundred and sixty ESTs were assembled into 136 contigs and 989 singletons. BlastX search results showed that 39 (29%) contigs and 96 (10%) singletons were homologous to wheat genes. The database-matched contigs and singletons were assigned to eight functional groups related to protein synthesis, photosynthesis, metabolism and energy, stress proteins, transporter proteins, protein breakdown and recycling, cell growth and division and reactive oxygen scavengers. PCR analyses with primers based on the contigs and singletons showed that the most polymorphic functional categories were photosynthesis (contigs) and metabolism and energy (singletons). EST analysis revealed considerable genetic variability among the Turkish wheat cultivars resistant and susceptible to yellow rust disease and allowed calculation of the mean genetic distance between cultivars, with the greatest similarity (0.725) being between Harmankaya99 and Sönmez2001, and the lowest (0.622) between Aytin98 and Izgi01. PMID:21637582
Exploiting a wheat EST database to assess genetic diversity.
Karakas, Ozge; Gurel, Filiz; Uncuoglu, Ahu Altinkut
2010-10-01
Expressed sequence tag (EST) markers have been used to assess variety and genetic diversity in wheat (Triticum aestivum). In this study, 1549 ESTs from wheat infested with yellow rust were used to examine the genetic diversity of six susceptible and resistant wheat cultivars. The aim of using these cultivars was to improve the competitiveness of public wheat breeding programs through the intensive use of modern, particularly marker-assisted, selection technologies. The F(2) individuals derived from cultivar crosses were screened for resistance to yellow rust at the seedling stage in greenhouses and adult stage in the field to identify DNA markers genetically linked to resistance. Five hundred and sixty ESTs were assembled into 136 contigs and 989 singletons. BlastX search results showed that 39 (29%) contigs and 96 (10%) singletons were homologous to wheat genes. The database-matched contigs and singletons were assigned to eight functional groups related to protein synthesis, photosynthesis, metabolism and energy, stress proteins, transporter proteins, protein breakdown and recycling, cell growth and division and reactive oxygen scavengers. PCR analyses with primers based on the contigs and singletons showed that the most polymorphic functional categories were photosynthesis (contigs) and metabolism and energy (singletons). EST analysis revealed considerable genetic variability among the Turkish wheat cultivars resistant and susceptible to yellow rust disease and allowed calculation of the mean genetic distance between cultivars, with the greatest similarity (0.725) being between Harmankaya99 and Sönmez2001, and the lowest (0.622) between Aytin98 and Izgi01.
Characterisation and mapping of adult plant stripe rust resistance in wheat accession Aus27284.
Nsabiyera, Vallence; Bariana, Harbans S; Qureshi, Naeela; Wong, Debbie; Hayden, Matthew J; Bansal, Urmil K
2018-07-01
A new adult plant stripe rust resistance gene, Yr80, was identified in a common wheat landrace Aus27284. Linked markers were developed and validated for their utility in marker-assisted selection. Stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), is among the most important constraints to global wheat production. The identification and characterisation of new sources of host plant resistance enrich the gene pool and underpin deployment of resistance gene pyramids in new cultivars. Aus27284 exhibited resistance at the adult plant stage against predominant Pst pathotypes and was crossed with a susceptible genotype Avocet S. A recombinant inbred line (RIL) population comprising 121 lines was developed and tested in the field at three locations in 2016 and two in 2017 crop seasons. Monogenic segregation for adult plant stripe rust response was observed among the Aus27284/Avocet S RIL population and the underlying locus was temporarily designated YrAW11. Bulked-segregant analysis using the Infinium iSelect 90K SNP wheat array placed YrAW11 in chromosome 3B. Kompetitive allele specific PCR (KASP) primers were designed for the linked SNPs and YrAW11 was flanked by KASP_65624 and KASP_53292 (3 cM) proximally and KASP_53113 (4.9 cM) distally. A partial linkage map of the genomic region carrying YrAW11 comprised nine KASP and two SSR markers. The physical position of KASP markers in the pseudomolecule of chromosome 3B placed YrAW11 in the long arm and the location of markers gwm108 and gwm376 in the deletion bin 3BL2-0.22 supported this conclusion. As no other stripe rust resistance locus has been reported in chromosome 3BL, YrAW11 was formally designated Yr80. Marker KASP_ 53113 was polymorphic among 94% of 81 Australian wheat cultivars used for validation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duplessis, Sebastien; Cuomo, Christina A.; Lin, Yao-Cheng
Rust fungi are some of the most devastating pathogens of crop plants. They are obligate biotrophs, which extract nutrients only from living plant tissues and cannot grow apart from their hosts. Their lifestyle has slowed the dissection of molecular mechanisms underlying host invasion and avoidance or suppression of plant innate immunity. We sequenced the 101 mega base pair genome of Melampsora larici-populina, the causal agent of poplar leaf rust, and the 89 mega base pair genome of Puccinia graminis f. sp. tritici, the causal agent of wheat and barley stem rust. We then compared the 16,841 predicted proteins of M.more » larici-populina to the 18,241 predicted proteins of P. graminis f. sp tritici. Genomic features related to their obligate biotrophic life-style include expanded lineage-specific gene families, a large repertoire of effector-like small secreted proteins (SSPs), impaired nitrogen and sulfur assimilation pathways, and expanded families of amino-acid, oligopeptide and hexose membrane transporters. The dramatic upregulation of transcripts coding for SSPs, secreted hydrolytic enzymes, and transporters in planta suggests that they play a role in host infection and nutrient acquisition. Some of these genomic hallmarks are mirrored in the genomes of other microbial eukaryotes that have independently evolved to infect plants, indicating convergent adaptation to a biotrophic existence inside plant cells« less
Investigating Gene Function in Cereal Rust Fungi by Plant-Mediated Virus-Induced Gene Silencing.
Panwar, Vinay; Bakkeren, Guus
2017-01-01
Cereal rust fungi are destructive pathogens, threatening grain production worldwide. Targeted breeding for resistance utilizing host resistance genes has been effective. However, breakdown of resistance occurs frequently and continued efforts are needed to understand how these fungi overcome resistance and to expand the range of available resistance genes. Whole genome sequencing, transcriptomic and proteomic studies followed by genome-wide computational and comparative analyses have identified large repertoire of genes in rust fungi among which are candidates predicted to code for pathogenicity and virulence factors. Some of these genes represent defence triggering avirulence effectors. However, functions of most genes still needs to be assessed to understand the biology of these obligate biotrophic pathogens. Since genetic manipulations such as gene deletion and genetic transformation are not yet feasible in rust fungi, performing functional gene studies is challenging. Recently, Host-induced gene silencing (HIGS) has emerged as a useful tool to characterize gene function in rust fungi while infecting and growing in host plants. We utilized Barley stripe mosaic virus-mediated virus induced gene silencing (BSMV-VIGS) to induce HIGS of candidate rust fungal genes in the wheat host to determine their role in plant-fungal interactions. Here, we describe the methods for using BSMV-VIGS in wheat for functional genomics study in cereal rust fungi.
76 FR 3011 - Black Stem Rust; Additions of Rust-Resistant Varieties
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-19
...;Prices of new books are listed in the first FEDERAL REGISTER issue of each #0;week. #0; #0; #0; #0;#0... notified the public of our intention to amend the black stem rust quarantine and regulations by adding four...
Cao, Shuanghe; Carver, Brett F; Zhu, Xinkai; Fang, Tilin; Chen, Yihua; Hunger, Robert M; Yan, Liuling
2010-07-01
Leaf rust, caused by Puccinia triticina Eriks, is one of the most common and persistent wheat diseases in the US Great Plains. We report that the Lr34 gene was mapped in the center of a QTL for leaf rust reaction and explained 18-35% of the total phenotypic variation in disease severity of adult plants in a Jagger x 2174 population of recombinant inbred lines (RILs) field-tested for 3 years. The sequence of the complete Lr34 gene was determined for the susceptible Jagger allele and for the resistant 2174 allele. The two alleles had exactly the same sequence as the resistant allele reported previously in Chinese Spring at three polymorphic sites in intron 4, exon 11, and exon 12. A G/T polymorphism was found in exon 22, where a premature stop codon was found in the susceptible Jagger allele (Lr34E22s), confirming a previous report, due to a point mutation compared with the resistant 2174 allele (Lr34E22r). We have experimentally demonstrated a tight association between the point mutation at exon 22 of Lr34 and leaf rust susceptibility in a segregating biparental population. A PCR marker was developed to distinguish between the Lr34E22r and Lr34E22s alleles. A survey of 33 local hard winter wheat cultivars indicated that 7 cultivars carry the Lr34E22s allele and 26 cultivars carry the Lr34E22r allele. This study significantly improves our genetic understanding of allelic variation in the Lr34 gene and provides a functional molecular tool to improve leaf rust resistance in a major US wheat gene pool.
Pawar, Sushma Kumari; Sharma, Davinder; Duhan, Joginder Singh; Saharan, Mahender Singh; Tiwari, Ratan; Sharma, Indu
2016-06-01
Stripe rust caused by Puccinia striiformis f. sp. tritici is most important and devastating disease of wheat worldwide, which affects the grain yields, quality and nutrition. To elucidate, the genetic basis of resistance, a mapping population of recombinant inbred lines was developed from a cross between resistant Cappelle-Desprez and susceptible cultivar PBW343 using single-seed descent. Variety PBW343 had been one of the most popular cultivars of North Western Plains Zone, for more than a decade, before succumbing to the stripe rust. Cappelle-Desprez, a source of durable adult plant resistance, has maintained its resistance against stripe rust for a long time in Europe. Map construction and QTL analysis were completed with 1012 polymorphic (DArT and SSR) markers. Screenings for stripe rust disease were carried out in field condition for two consecutive crop seasons (2012-2013 and 2013-2014). Susceptible parent (PBW343) achieved a significant level of disease i.e., 100 % in both the years. In present investigations, resistance in Cappelle-Desprez was found stable and response to the rust ranged from 0 to 1.5 % over the years. The estimated broad-sense heritability (h 2 ) of stripe rust rAUDPC in the mapping population was 0.82. The relative area under the disease progress curve data showed continuous distributions, indicating that trait was controlled multigenically. Genomic region identified on chromosome 2D, was located within the short arm, with flanking markers (Xgwm484-Xcfd73), explained phenotypic variation (PVE) ranged from 13.9 to 31.8 %. The genomic region identified on chromosome 5B was found with the effect of maximum contribution with flanking DArT markers (1376633|F|0-1207571|F|0), PVE ranged from 24 to 27.0 %. This can, therefore, be utilized for marker assisted selection in developing much needed stripe rust resistant lines for the northern wheat belt of India.
2011-01-01
Background Rust fungi are biotrophic basidiomycete plant pathogens that cause major diseases on plants and trees world-wide, affecting agriculture and forestry. Their biotrophic nature precludes many established molecular genetic manipulations and lines of research. The generation of genomic resources for these microbes is leading to novel insights into biology such as interactions with the hosts and guiding directions for breakthrough research in plant pathology. Results To support gene discovery and gene model verification in the genome of the wheat leaf rust fungus, Puccinia triticina (Pt), we have generated Expressed Sequence Tags (ESTs) by sampling several life cycle stages. We focused on several spore stages and isolated haustorial structures from infected wheat, generating 17,684 ESTs. We produced sequences from both the sexual (pycniospores, aeciospores and teliospores) and asexual (germinated urediniospores) stages of the life cycle. From pycniospores and aeciospores, produced by infecting the alternate host, meadow rue (Thalictrum speciosissimum), 4,869 and 1,292 reads were generated, respectively. We generated 3,703 ESTs from teliospores produced on the senescent primary wheat host. Finally, we generated 6,817 reads from haustoria isolated from infected wheat as well as 1,003 sequences from germinated urediniospores. Along with 25,558 previously generated ESTs, we compiled a database of 13,328 non-redundant sequences (4,506 singlets and 8,822 contigs). Fungal genes were predicted using the EST version of the self-training GeneMarkS algorithm. To refine the EST database, we compared EST sequences by BLASTN to a set of 454 pyrosequencing-generated contigs and Sanger BAC-end sequences derived both from the Pt genome, and to ESTs and genome reads from wheat. A collection of 6,308 fungal genes was identified and compared to sequences of the cereal rusts, Puccinia graminis f. sp. tritici (Pgt) and stripe rust, P. striiformis f. sp. tritici (Pst), and poplar leaf rust Melampsora species, and the corn smut fungus, Ustilago maydis (Um). While extensive homologies were found, many genes appeared novel and species-specific; over 40% of genes did not match any known sequence in existing databases. Focusing on spore stages, direct comparison to Um identified potential functional homologs, possibly allowing heterologous functional analysis in that model fungus. Many potentially secreted protein genes were identified by similarity searches against genes and proteins of Pgt and Melampsora spp., revealing apparent orthologs. Conclusions The current set of Pt unigenes contributes to gene discovery in this major cereal pathogen and will be invaluable for gene model verification in the genome sequence. PMID:21435244
USDA-ARS?s Scientific Manuscript database
Wheat stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), is a devastating disease of wheat (Triticum aestivum) worldwide. Wheat high-temperature seedling-plant (HTSP) resistance to Pst is non-race-specific and durable. WRKY transcription factors have proven to play important roles in ...
USDA-ARS?s Scientific Manuscript database
Hexaploid wheat has relatively narrow genetic diversity due to its evolution and domestication processes compared to its wild relatives that often carry agronomically important traits including resistance to biotic and abiotic stresses. Many genes have been introgressed into wheat from wild relative...
Hybrid wheat: quantitative genetic parameters and consequences for the design of breeding programs.
Longin, Carl Friedrich Horst; Gowda, Manje; Mühleisen, Jonathan; Ebmeyer, Erhard; Kazman, Ebrahim; Schachschneider, Ralf; Schacht, Johannes; Kirchhoff, Martin; Zhao, Yusheng; Reif, Jochen Christoph
2013-11-01
Commercial heterosis for grain yield is present in hybrid wheat but long-term competiveness of hybrid versus line breeding depends on the development of heterotic groups to improve hybrid prediction. Detailed knowledge of the amount of heterosis and quantitative genetic parameters are of paramount importance to assess the potential of hybrid breeding. Our objectives were to (1) examine the extent of midparent, better-parent and commercial heterosis in a vast population of 1,604 wheat (Triticum aestivum L.) hybrids and their parental elite inbred lines and (2) discuss the consequences of relevant quantitative parameters for the design of hybrid wheat breeding programs. Fifteen male lines were crossed in a factorial mating design with 120 female lines, resulting in 1,604 of the 1,800 potential single-cross hybrid combinations. The hybrids, their parents, and ten commercial wheat varieties were evaluated in multi-location field experiments for grain yield, plant height, heading time and susceptibility to frost, lodging, septoria tritici blotch, yellow rust, leaf rust, and powdery mildew at up to five locations. We observed that hybrids were superior to the mean of their parents for grain yield (10.7 %) and susceptibility to frost (-7.2 %), leaf rust (-8.4 %) and septoria tritici blotch (-9.3 %). Moreover, 69 hybrids significantly (P < 0.05) outyielded the best commercial inbred line variety underlining the potential of hybrid wheat breeding. The estimated quantitative genetic parameters suggest that the establishment of reciprocal recurrent selection programs is pivotal for a successful long-term hybrid wheat breeding.
Pei, Yanru; Cui, Yu; Zhang, Yanping; Wang, Honggang; Bao, Yinguang; Li, Xingfeng
2018-01-01
Thinopyrum ponticum (2n = 10× = 70, J S J S J S J S JJJJJJ) is an important wild perennial Triticeae species that has a unique gene pool with many desirable traits for common wheat. The partial amphiploids derived from wheat- Th. ponticum set up a bridge for transferring valuable genes from Th. ponticum into common wheat. In this study, genomic in situ hybridization (GISH), multicolor GISH (mcGISH) and fluorescence in situ hybridization (FISH) were used to analyze the genomic constitution of SN0389, SN0398 and SN0406, three octoploid accessions with good resistance to rust. The results demonstrated that the three octoploids possessed 42 wheat chromosomes, while SN0389 contained 12 Th. ponticum chromosomes and SN0398 and SN0406 contained 14 Th. ponticum chromosomes. The genomic constitution of SN0389 was 42 W + 12J S , and for SN0398 and SN0406 it was 42 W + 12J S + 2 J. Chromosomal variation was found in chromosomes 1A, 3A, 6A, 2B, 5B, 6B, 7B, 1D and 5D of SN0389, SN0398 and SN0406 based on the FISH and McGISH pattern. A resistance evaluation showed that SN0389, SN0398 and SN0406 possessed good resistance to stripe and leaf rust at the seedling stage and adult-plant stage. The results indicated that these wheat- Th. ponticum partial amphiploids are new resistant germplasms for wheat improvement.
Peng, Fred Y; Yang, Rong-Cai
2017-06-20
The resistance to leaf rust (Lr) caused by Puccinia triticina in wheat (Triticum aestivum L.) has been well studied over the past decades with over 70 Lr genes being mapped on different chromosomes and numerous QTLs (quantitative trait loci) being detected or mapped using DNA markers. Such resistance is often divided into race-specific and race-nonspecific resistance. The race-nonspecific resistance can be further divided into resistance to most or all races of the same pathogen and resistance to multiple pathogens. At the molecular level, these three types of resistance may cover across the whole spectrum of pathogen specificities that are controlled by genes encoding different protein families in wheat. The objective of this study is to predict and analyze genes in three such families: NBS-LRR (nucleotide-binding sites and leucine-rich repeats or NLR), START (Steroidogenic Acute Regulatory protein [STaR] related lipid-transfer) and ABC (ATP-Binding Cassette) transporter. The focus of the analysis is on the patterns of relationships between these protein-coding genes within the gene families and QTLs detected for leaf rust resistance. We predicted 526 ABC, 1117 NLR and 144 START genes in the hexaploid wheat genome through a domain analysis of wheat proteome. Of the 1809 SNPs from leaf rust resistance QTLs in seedling and adult stages of wheat, 126 SNPs were found within coding regions of these genes or their neighborhood (5 Kb upstream from transcription start site [TSS] or downstream from transcription termination site [TTS] of the genes). Forty-three of these SNPs for adult resistance and 18 SNPs for seedling resistance reside within coding or neighboring regions of the ABC genes whereas 14 SNPs for adult resistance and 29 SNPs for seedling resistance reside within coding or neighboring regions of the NLR gene. Moreover, we found 17 nonsynonymous SNPs for adult resistance and five SNPs for seedling resistance in the ABC genes, and five nonsynonymous SNPs for adult resistance and six SNPs for seedling resistance in the NLR genes. Most of these coding SNPs were predicted to alter encoded amino acids and such information may serve as a starting point towards more thorough molecular and functional characterization of the designated Lr genes. Using the primer sequences of 99 known non-SNP markers from leaf rust resistance QTLs, we found candidate genes closely linked to these markers, including Lr34 with distances to its two gene-specific markers being 1212 bases (to cssfr1) and 2189 bases (to cssfr2). This study represents a comprehensive analysis of ABC, NLR and START genes in the hexaploid wheat genome and their physical relationships with QTLs for leaf rust resistance at seedling and adult stages. Our analysis suggests that the ABC (and START) genes are more likely to be co-located with QTLs for race-nonspecific, adult resistance whereas the NLR genes are more likely to be co-located with QTLs for race-specific resistance that would be often expressed at the seedling stage. Though our analysis was hampered by inaccurate or unknown physical positions of numerous QTLs due to the incomplete assembly of the complex hexaploid wheat genome that is currently available, the observed associations between (i) QTLs for race-specific resistance and NLR genes and (ii) QTLs for nonspecific resistance and ABC genes will help discover SNP variants for leaf rust resistance at seedling and adult stages. The genes containing nonsynonymous SNPs are promising candidates that can be investigated in future studies as potential new sources of leaf rust resistance in wheat breeding.
Muleta, Kebede T; Bulli, Peter; Rynearson, Sheri; Chen, Xianming; Pumphrey, Michael
2017-01-01
Stripe rust, caused by Puccinia striiformis Westend. f. sp. tritici Erikss. (Pst) remains one of the most significant diseases of wheat worldwide. We investigated stripe rust resistance by genome-wide association analysis (GWAS) in 959 spring wheat accessions from the United States Department of Agriculture-Agricultural Research Service National Small Grains Collection, representing major global production environments. The panel was characterized for field resistance in multi-environment field trials and seedling resistance under greenhouse conditions. A genome-wide set of 5,619 informative SNP markers were used to examine the population structure, linkage disequilibrium and marker-trait associations in the germplasm panel. Based on model-based analysis of population structure and hierarchical Ward clustering algorithm, the accessions were clustered into two major subgroups. These subgroups were largely separated according to geographic origin and improvement status of the accessions. A significant correlation was observed between the population sub-clusters and response to stripe rust infection. We identified 11 and 7 genomic regions with significant associations with stripe rust resistance at adult plant and seedling stages, respectively, based on a false discovery rate multiple correction method. The regions harboring all, except three, of the QTL identified from the field and greenhouse studies overlap with positions of previously reported QTL. Further work should aim at validating the identified QTL using proper germplasm and populations to enhance their utility in marker assisted breeding.
Bulli, Peter; Rynearson, Sheri; Chen, Xianming; Pumphrey, Michael
2017-01-01
Stripe rust, caused by Puccinia striiformis Westend. f. sp. tritici Erikss. (Pst) remains one of the most significant diseases of wheat worldwide. We investigated stripe rust resistance by genome-wide association analysis (GWAS) in 959 spring wheat accessions from the United States Department of Agriculture-Agricultural Research Service National Small Grains Collection, representing major global production environments. The panel was characterized for field resistance in multi-environment field trials and seedling resistance under greenhouse conditions. A genome-wide set of 5,619 informative SNP markers were used to examine the population structure, linkage disequilibrium and marker-trait associations in the germplasm panel. Based on model-based analysis of population structure and hierarchical Ward clustering algorithm, the accessions were clustered into two major subgroups. These subgroups were largely separated according to geographic origin and improvement status of the accessions. A significant correlation was observed between the population sub-clusters and response to stripe rust infection. We identified 11 and 7 genomic regions with significant associations with stripe rust resistance at adult plant and seedling stages, respectively, based on a false discovery rate multiple correction method. The regions harboring all, except three, of the QTL identified from the field and greenhouse studies overlap with positions of previously reported QTL. Further work should aim at validating the identified QTL using proper germplasm and populations to enhance their utility in marker assisted breeding. PMID:28591221
Jighly, Abdulqader; Oyiga, Benedict C; Makdis, Farid; Nazari, Kumarse; Youssef, Omran; Tadesse, Wuletaw; Abdalla, Osman; Ogbonnaya, Francis C
2015-07-01
Identified DArT and SNP markers including a first reported QTL on 3AS, validated large effect APR on 3BS. The different genes can be used to incorporate stripe resistance in cultivated varieties. Stripe rust [yellow rust, caused by Puccinia striiformis f. sp. tritici (Pst)] is a serious disease in wheat (Triticum aestivum). This study employed genome-wide association mapping (GWAM) to identify markers linked to stripe rust resistance genes using Diversity Arrays Technology (DArT(®)) and single-nucleotide polymorphism (SNP) Infinium 9K assays in 200 ICARDA wheat genotypes, phenotyped for seedling and adult plant resistance in two sites over two growing seasons in Syria. Only 25.8 % of the genotypes showed resistance at seedling stage while about 33 and 44 % showed moderate resistance and resistance response, respectively. Mixed-linear model adjusted for false discovery rate at p < 0.05 identified 12 DArT and 29 SNP markers on chromosome arms 3AS, 3AL, 1AL, 2AL, 2BS, 2BL, 3BS, 3BL, 5BL, 6AL, and 7DS significantly linked to Pst resistance genes. Of these, the locus on 3AS has not been previously reported to confer resistance to stripe rust in wheat. The QTL on 3AS, 3AL, 1AL, 2AL, and 2BS were effective at seedling and adult plant growth stages while those on 3BS, 3BL, 5BL, 6AL and 7DS were effective at adult plant stage. The 3BS QTL was validated in Cham-6 × Cham-8 recombinant inbred line population; composite interval analysis identified a stripe resistance QTL flanked by the DArT marker, wPt-798970, contributed by Cham-6 parent which accounted for 31.2 % of the phenotypic variation. The DArT marker "wPt-798970" lies 1.6 cM away from the 3BS QTL detected within GWAM. Epistatic interactions were also investigated; only the QTL on 1AL, 3AS and 6AL exhibited interactions with other loci. These results suggest that GWAM can be an effective approach for identifying and improving resistance to stripe rust in wheat.
Spectral analysis of winter wheat leaves for detection and differentiation of diseases and insects
USDA-ARS?s Scientific Manuscript database
Yellow rust (Puccinia striiformis f. sp. Tritici), powdery mildew (Blumeria graminis) and wheat aphid (Sitobion avenae F.) infestation are three serious conditions that have a severe impact on yield and grain quality of winter wheat worldwide. Discrimination among these three stressors is of practic...
Miedaner, Thomas; Schmitt, Ann-Kristin; Klocke, Bettina; Schmiedchen, Brigitta; Wilde, Peer; Spieß, Hartmut; Szabo, Lilla; Koch, Silvia; Flath, Kerstin
2016-11-01
Stem rust (Puccinia graminis f. sp. secalis) leads to considerable yield losses in rye-growing areas with continental climate, from Eastern Germany to Siberia. For implementing resistance breeding, it is of utmost importance to (i) analyze the diversity of stem rust populations in terms of pathotypes (= virulence combinations) and (ii) identify resistance sources in winter rye populations. We analyzed 323 single-uredinial isolates mainly collected from German rye-growing areas across 3 years for their avirulence/virulence on 15 rye inbred differentials. Out of these, 226 pathotypes were detected and only 56 pathotypes occurred more than once. This high diversity was confirmed by a Simpson index of 1.0, a high Shannon index (5.27), and an evenness index of 0.97. In parallel, we investigated stem rust resistance among and within 121 heterogeneous rye populations originating mainly from Russia, Poland, Austria, and the United States across 3 to 15 environments (location-year combinations). While German rye populations had an average stem rust severity of 49.7%, 23 nonadapted populations were significantly (P < 0.01) more resistant with a stem rust severity ranging from 3 to 40%. Out of these, two modern Russian breeding populations and two old Austrian landraces were the best harboring 32 to 70% fully resistant plants across 8 to 10 environments. These populations with the lowest disease severity in adult-plant stage in the field also displayed resistance in leaf segment tests. In conclusion, stem rust populations are highly diverse and the majority of resistances in rye populations seems to be race specific.
USDA-ARS?s Scientific Manuscript database
Wheat leaf rust, caused by the basidiomycete Puccinia triticina, can cause yield losses of up to 20% in wheat-producing regions. During infection, the fungus forms haustoria that secrete proteins into the plant cell and effect changes in plant transcription, metabolism and defense. It is hypothesize...
Physiologic specialization of Puccinia triticina on Wheat in the United States in 2015
USDA-ARS?s Scientific Manuscript database
Collections of Puccinia triticina obtained from wheat fields and breeding plots in the Great Plains, Ohio River Valley, and southeastern states, were tested for virulence in 2015 in order to determine the virulence of the wheat leaf rust pathogen population in the United States. Single uredinial iso...
While it is generally accepted that dense stands of plants exacerbate epidemics caused by foliar pathogens, there is little experimental evidence to support this view. We grew model plant communities consisting of wheat and wild oats at different densities and proportions and exp...
While it is generally accepted that dense stands of plants exacerbate epidermics caused by foliar pathogens, there is little experimental evidence to support this view. We grew model plant communities consisting of wheat and wild oats at different densities and proportions and ex...
Du, Wanli; Wang, Jing; Pang, Yuhui; Wang, Liangming; Wu, Jun; Zhao, Jixin; Yang, Qunhui; Chen, Xinhong
2014-01-01
We isolated a wheat germplasm line, 22-2, which was derived from common wheat (Triticum aestivum '7182') and Psathyrostachys huashanica 'Keng' (2n = 2x = 14, NsNs). Genomic composition and homoeologous relationships of 22-2 was analyzed using cytology, genomic in situ hybridization (GISH), EST-SSR, and EST-STS to characterize the alien chromatin in the transfer line. The cytological investigations showed that the chromosome number and configuration were 2n = 44 = 22 II. Mitotic and meiotic GISH using P. huashanica genomic DNA as the probe indicated that 22-2 contained a pair of P. huashanica chromosomes. The genomic affinities of the introduced P. huashanica chromosomes were determined by EST-SSR and EST-STS using multiple-loci markers from seven wheat homoeologous groups between the parents and addition line. One EST-SSR and 17 EST-STS markers, which were located on the homoeologous group 3 chromosomes of wheat, amplified polymorphic bands in 22-2 that were unique to P. huashanica. Thus, these markers suggested that the introduced Ns chromosome pair belonged to homoeologous group 3, so we designated 22-2 as a 3Ns disomic addition line. Based on disease reaction to mixed races (CYR31, CYR32, and Shuiyuan14) of stripe rust in the adult stages, 22-2 was found to have high resistance to stripe rust, which was possibly derived from its P. huashanica parent. Consequently, the new disomic addition line 22-2 could be a valuable donor source for wheat improvement depending on the excellent agronomic traits, especially, the introduction of novel disease resistance genes into wheat during breeding programs.
USDA-ARS?s Scientific Manuscript database
Virulence patterns of wheat stripe rust were studied under the field conditions across four environmentally different locations: Quaid-i-Azam University (Islamabad), Pirsabak (NWFP), Faisalabad (Punjab) and Sakrand (Sindh) by planting trap nursery of tester lines and Pakistan varieties. The results ...
Singh, Sukhwinder; Franks, C D; Huang, L; Brown-Guedira, G L; Marshall, D S; Gill, B S; Fritz, A
2004-02-01
The leaf rust resistance gene Lr41 in wheat germplasm KS90WGRC10 and a resistance gene in wheat breeding line WX93D246-R-1 were transferred to Triticum aestivum from Aegilops tauschii and Ae. cylindrica, respectively. The leaf rust resistance gene in WX93D246-R-1 was located on wheat chromosome 2D by monosomic analysis. Molecular marker analysis of F(2) plants from non-critical crosses determined that this gene is 11.2 cM distal to marker Xgwm210 on the short arm of 2D. No susceptible plants were detected in a population of 300 F(2) plants from a cross between WX93D246-R-1 and TA 4186 ( Lr39), suggesting that the gene in WX93D246-R-1 is the same as, or closely linked to, Lr39. In addition, no susceptible plants were detected in a population of 180 F(2) plants from the cross between KS90WGRC10 and WX93D246-R-1. The resistance gene in KS90WGRC10, Lr41, was previously reported to be located on wheat chromosome 1D. In this study, no genetic association was found between Lr41 and 51 markers located on chromosome 1D. A population of 110 F(3 )lines from a cross between KS90WGRC10 and TAM 107 was evaluated with polymorphic SSR markers from chromosome 2D and marker Xgdm35 was found to be 1.9 cM proximal to Lr41. When evaluated with diverse isolates of Puccinia triticina, similar reactions were observed on WX93D246-R-1, KS90WGRC10, and TA 4186. The results of mapping, allelism, and race specificity test indicate that these germplasms likely have the same gene for resistance to leaf rust.
USDA-ARS?s Scientific Manuscript database
Expression of dsRNA fragments of rust pathogen genes in wheat seedlings through the barley stripe mosaic virus (BSMV) based host-induced gene silencing (HIGS) system can reduce the expression of the corresponding genes in the rust fungus. The highest levels of suppression have generally been observe...
High-temperature adult-plant resistance, the key for sustainable control of stripe rust
USDA-ARS?s Scientific Manuscript database
High-temperature adult-plant (HTAP) resistance expresses when plants grow old and the weather becomes warm. This non-race specific and durable type of resistance has been used successfully in control of wheat stripe rust in the U.S. since early 1960s. This article describes practical procedures f...
USDA-ARS?s Scientific Manuscript database
Stripe rust of wheat, caused by Puccinia striiformis f. sp. tritici (Pst), is one of the most important diseases in the United States. Epidemiological regions were determined based on epidemic patterns, cropping systems, geographic barriers, weather patterns, and inoculum exchanges. Areas where Ps...
The control of Asian rust by glyphosate in glyphosate-resistant soybeans.
Feng, Paul C C; Clark, Celeste; Andrade, Gabriella C; Balbi, Maria C; Caldwell, Pat
2008-04-01
Glyphosate is a widely used broad-spectrum herbicide. Recent studies in glyphosate-resistant (GR) crops have shown that, in addition to its herbicidal activity, glyphosate exhibits activity against fungi, thereby providing disease control benefits. In GR wheat, glyphosate has shown both preventive and curative activities against Puccinia striiformis f. sp. tritici (Erikss) CO Johnston and Puccinia triticina Erikss, which cause stripe and leaf rusts respectively. Laboratory studies confirmed earlier observations that glyphosate has activity against Phakopsora pachyrhizi Syd & P Syd which causes Asian soybean rust (ASR) in GR soybeans. The results showed that glyphosate at rates between 0.84 and 1.68 kg ha(-1) delayed the onset of ASR in GR soybeans. However, field trials conducted in Argentina and Brazil under natural infestations showed variable ASR control from application of glyphosate in GR soybeans. Further field studies are ongoing to define the activity of glyphosate against ASR. These results demonstrate the disease control activities of glyphosate against rust diseases in GR wheat and GR soybeans. Copyright (c) 2007 Society of Chemical Industry.
Maccaferri, Marco; Zhang, Junli; Bulli, Peter; Abate, Zewdie; Chao, Shiaoman; Cantu, Dario; Bossolini, Eligio; Chen, Xianming; Pumphrey, Michael; Dubcovsky, Jorge
2015-01-01
New races of Puccinia striiformis f. sp. tritici (Pst), the causal pathogen of wheat stripe rust, show high virulence to previously deployed resistance genes and are responsible for large yield losses worldwide. To identify new sources of resistance we performed a genome-wide association study (GWAS) using a worldwide collection of 1000 spring wheat accessions. Adult plants were evaluated under field conditions in six environments in the western United States, and seedlings were tested with four Pst races. A single-nucleotide polymorphism (SNP) Infinium 9K-assay provided 4585 SNPs suitable for GWAS. High correlations among environments and high heritabilities were observed for stripe rust infection type and severity. Greater levels of Pst resistance were observed in a subpopulation from Southern Asia than in other groups. GWAS identified 97 loci that were significant for at least three environments, including 10 with an experiment-wise adjusted Bonferroni probability < 0.10. These 10 quantitative trait loci (QTL) explained 15% of the phenotypic variation in infection type, a percentage that increased to 45% when all QTL were considered. Three of these 10 QTL were mapped far from previously identified Pst resistance genes and QTL, and likely represent new resistance loci. The other seven QTL mapped close to known resistance genes and allelism tests will be required to test their relationships. In summary, this study provides an integrated view of stripe rust resistance resources in spring wheat and identifies new resistance loci that will be useful to diversify the current set of resistance genes deployed to control this devastating disease. PMID:25609748
Maccaferri, Marco; Zhang, Junli; Bulli, Peter; Abate, Zewdie; Chao, Shiaoman; Cantu, Dario; Bossolini, Eligio; Chen, Xianming; Pumphrey, Michael; Dubcovsky, Jorge
2015-01-20
New races of Puccinia striiformis f. sp. tritici (Pst), the causal pathogen of wheat stripe rust, show high virulence to previously deployed resistance genes and are responsible for large yield losses worldwide. To identify new sources of resistance we performed a genome-wide association study (GWAS) using a worldwide collection of 1000 spring wheat accessions. Adult plants were evaluated under field conditions in six environments in the western United States, and seedlings were tested with four Pst races. A single-nucleotide polymorphism (SNP) Infinium 9K-assay provided 4585 SNPs suitable for GWAS. High correlations among environments and high heritabilities were observed for stripe rust infection type and severity. Greater levels of Pst resistance were observed in a subpopulation from Southern Asia than in other groups. GWAS identified 97 loci that were significant for at least three environments, including 10 with an experiment-wise adjusted Bonferroni probability < 0.10. These 10 quantitative trait loci (QTL) explained 15% of the phenotypic variation in infection type, a percentage that increased to 45% when all QTL were considered. Three of these 10 QTL were mapped far from previously identified Pst resistance genes and QTL, and likely represent new resistance loci. The other seven QTL mapped close to known resistance genes and allelism tests will be required to test their relationships. In summary, this study provides an integrated view of stripe rust resistance resources in spring wheat and identifies new resistance loci that will be useful to diversify the current set of resistance genes deployed to control this devastating disease. Copyright © 2015 Maccaferri et al.
Liu, Weizhen; Maccaferri, Marco; Rynearson, Sheri; Letta, Tesfaye; Zegeye, Habtemariam; Tuberosa, Roberto; Chen, Xianming; Pumphrey, Michael
2017-01-01
Stripe rust of wheat, caused by Puccinia striiformis f. sp. tritici (Pst), is a global concern for wheat production, and has been increasingly destructive in Ethiopia, as well as in the United States and in many other countries. As Ethiopia has a long history of stripe rust epidemics, its native wheat germplasm harbors potentially valuable resistance loci. Moreover, the Ethiopian germplasm has been historically underutilized in breeding of modern wheat worldwide and thus the resistance alleles from the Ethiopian germplasm represent potentially novel sources. The objective of this study was to identify loci conferring resistance to predominant Pst races in Ethiopia and the United States. Using a high-density 90 K wheat single nucleotide polymorphism array, a genome-wide association analysis (GWAS) was conducted on 182 durum wheat landrace accessions and contemporary varieties originating from Ethiopia. Landraces were detected to be more resistant at the seedling stage while cultivars were more resistant at the adult-plant stages. GWAS identified 68 loci associated with seedling resistance to one or more races. Six loci on chromosome arms 1AS, 1BS, 3AS, 4BL, and 5BL were associated with resistance against at least two races at the seedling stage, and five loci were previously undocumented. GWAS analysis of field resistance reactions identified 12 loci associated with resistance on chromosomes 1A, 1B, 2BS, 3BL, 4AL, 4B and 5AL, which were detected in at least two of six field screening nurseries at the adult-plant stage. Comparison with previously mapped resistance loci indicates that six of the 12 resistance loci are newly documented. This study reports effective sources of resistance to contemporary races in Ethiopia and the United States and reveals that Ethiopian durum wheat landraces are abundant in novel Pst resistance loci that may be transferred into adapted cultivars to provide resistance against Pst. PMID:28553306
Molecular mapping and improvement of leaf rust resistance in wheat breeding lines.
Tsilo, Toi J; Kolmer, James A; Anderson, James A
2014-08-01
Leaf rust, caused by Puccinia triticina, is the most common and widespread disease of wheat (Triticum aestivum) worldwide. Deployment of host-plant resistance is one of the strategies to reduce losses due to leaf rust disease. The objective of this study was to map genes for adult-plant resistance to leaf rust in a recombinant inbred line (RIL) population originating from MN98550-5/MN99394-1. The mapping population of 139 RILs and five checks were evaluated in 2005, 2009, and 2010 in five environments. Natural infection occurred in the 2005 trials and trials in 2009 and 2010 were inoculated with leaf rust. Four quantitative trait loci (QTL) on chromosomes 2BS, 2DS, 7AL, and 7DS were detected. The QTL on 2BS explained up to 33.6% of the phenotypic variation in leaf rust response, whereas the QTL on 2DS, 7AL, and 7DS explained up to 15.7, 8.1, and 34.2%, respectively. Seedling infection type tests conducted with P. triticina races BBBD and SBDG confirmed that the QTL on 2BS and 2DS were Lr16 and Lr2a, respectively, and these genes were expressed in the seedling and field plot tests. The Lr2a gene mapped at the same location as Sr6. The QTL on 7DS was Lr34. The QTL on 7AL is a new QTL for leaf rust resistance. The joint effects of all four QTL explained 74% of the total phenotypic variation in leaf rust severity. Analysis of different combinations of QTL showed that the RILs containing all four or three of the QTL had the lowest average leaf rust severity in all five environments. Deployment of these QTL in combination or with other effective genes will lead to successful control of leaf rust.
Evaluation of a Portable Laser Depainting System
2009-02-05
processes: February 5, 2009 3 Army Corrosion Summit, 2009 Clearwater Beach, FL plastic media and coating residueDry Media Pressure Blasting wheat starch...146-1 1.270 cm 146-2 1.905 cm 146 Removal of Corrosion Products Lightly Rusted Panel: Fe/O = 0.72 Fe/O = 2.73 21 BEFORE AFTER Heavily Rusted Panel: Fe...corrosion products from 1018 carbon steel. Most of the corrosion product layer was removed in case of lightly rusted surfaces, while only the top corrosion
Mapping Stripe Rust Resistance in a BrundageXCoda Winter Wheat Recombinant Inbred Line Population
Case, Austin J.; Naruoka, Yukiko; Chen, Xianming; Garland-Campbell, Kimberly A.; Zemetra, Robert S.; Carter, Arron H.
2014-01-01
A recombinant inbred line (RIL) mapping population developed from a cross between winter wheat (Triticum aestivum L.) cultivars Coda and Brundage was evaluated for reaction to stripe rust (caused by Puccinia striiformis f. sp. tritici). Two hundred and sixty eight RIL from the population were evaluated in replicated field trials in a total of nine site-year locations in the U.S. Pacific Northwest. Seedling reaction to stripe rust races PST-100, PST-114 and PST-127 was also examined. A linkage map consisting of 2,391 polymorphic DNA markers was developed covering all chromosomes of wheat with the exception of 1D. Two QTL on chromosome 1B were associated with adult plant and seedling reaction and were the most significant QTL detected. Together these QTL reduced adult plant infection type from a score of seven to a score of two reduced disease severity by an average of 25% and provided protection against race PST-100, PST-114 and PST-127 in the seedling stage. The location of these QTL and the race specificity provided by them suggest that observed effects at this locus are due to a complementation of the previously known but defeated resistances of the cultivar Tres combining with that of Madsen (the two parent cultivars of Coda). Two additional QTL on chromosome 3B and one on 5B were associated with adult plant reaction only, and a single QTL on chromosome 5D was associated with seedling reaction to PST-114. Coda has been resistant to stripe rust since its release in 2000, indicating that combining multiple resistance genes for stripe rust provides durable resistance, especially when all-stage resistance genes are combined in a fashion to maximize the number of races they protect against. Identified molecular markers will allow for an efficient transfer of these genes into other cultivars, thereby continuing to provide excellent resistance to stripe rust. PMID:24642574
Rochi, Lucia; Diéguez, María José; Burguener, Germán; Darino, Martín Alejandro; Pergolesi, María Fernanda; Ingala, Lorena Romina; Cuyeu, Alba Romina; Turjanski, Adrián; Kreff, Enrique Domingo; Sacco, Francisco
2018-03-01
Rust fungi are one of the most devastating pathogens of crop plants. The biotrophic fungus Puccinia sorghi Schwein (Ps) is responsible for maize common rust, an endemic disease of maize (Zea mays L.) in Argentina that causes significant yield losses in corn production. In spite of this, the Ps genomic sequence was not available. We used Illumina sequencing to rapidly produce the 99.6Mbdraft genome sequence of Ps race RO10H11247, derived from a single-uredinial isolate from infected maize leaves collected in the Argentine Corn Belt Region during 2010. High quality reads were obtained from 200bppaired-end and 5000bpmate-paired libraries and assembled in 15,722 scaffolds. A pipeline which combined an ab initio program with homology-based models and homology to in planta enriched ESTs from four cereal pathogenic fungus (the three sequenced wheat rusts and Ustilago maydis) was used to identify 21,087 putative coding sequences, of which 1599 might be part of the Ps RO10H11247 secretome. Among the 458 highly conserved protein families from the euKaryotic Orthologous Groups (KOG) that occur in a wide range of eukaryotic organisms, 97.5% have at least one member with high homology in the Ps assembly (TBlastN, E-value⩽e-10) covering more than 50% of the length of the KOG protein. Comparative studies with the three sequenced wheat rust fungus, and microsynteny analysis involving Puccinia striiformis f. sp. tritici (Pst, wheat stripe rust fungus), support the quality achieved. The results presented here show the effectiveness of the Illumina strategy for sequencing dikaryotic genomes of non-model organisms and provides reliable DNA sequence information for genomic studies, including pathogenic mechanisms of this maize fungus and molecular marker design. Copyright © 2016 Elsevier Inc. All rights reserved.
R.C. Froelich; Ronald C. Schmidtling
1998-01-01
Probabilities of death of young slash pine infected by fusiform rust pathogen varied with timing and severity of infection. Trees in nine slash pine plantations varying widely in site quality and initial number of trees per acre had similar probabilities of death from rust. About 90 percent of trees with stem infections in the first three growing seasons died by age 15...
Zhang, Hong; Zhang, Lu; Wang, Changyou; Wang, Yajuan; Zhou, Xinli; Lv, Shikai; Liu, Xinlun; Kang, Zhensheng; Ji, Wanquan
2016-02-01
YrSM139-1B maybe a new gene for effective resistance to stripe rust and useful flanking markers for marker-assisted selection were developed. Stripe rust, caused by Puccinia striiformis f. sp. tritici, is an important foliar disease of wheat. Two dominant stripe rust resistant genes YrSM139-1B and YrSM139-2D were pyramided in bread wheat cultivar Shaanmai 139; one from wild emmer and the other from Thinopyrum intermedium. Three near-isogenic F7:8 line pairs (contrasting RILs), N122-1013R/S, N122-185R/S, and N122-1812R/S, independently derived from different F2 plants and differing at the YrSM139-1B locus were generated from the cross Shaanmai 139 × Hu 901-19 through marker-assisted selection. A large F2:3 population from cross N122-1013R × N122-1013S tested for stripe rust response and subjected to analysis with markers in the 1BS10-0.5 bin region using SSR expressed sequence tags (EST) and site-specific sequence markers developed from the 90 K Illumina iSelect SNP array. Five EST-STS markers and four allele-specific PCR markers were mapped to the YrSM139-1B region. The 30.5 cM genetic map for YrSM139-1B consisted of nine markers, two of which were closer to YrSM139-1B than Xgwm273, which was used in producing the contrasting RIL pairs. Race response data and allelism tests showed that YrSM139-1B is different from Yr10, Yr15, and Yr24/26/CH42.
Hao, Yingbin; Wang, Ting; Wang, Kang; Wang, Xiaojie; Fu, Yanping; Huang, Lili; Kang, Zhensheng
2016-01-01
Stripe rust (or yellow rust), which is caused by Puccinia striiformis f. sp. tritici (Pst), is one of the most devastating wheat diseases worldwide. The wheat cultivar Xingzi 9104 (XZ) is an elite wheat germplasm that possesses adult plant resistance (APR), which is non–race-specific and durable. Thus, to better understand the mechanism underlying APR, we performed transcriptome sequencing of wheat seedlings and adult plants without Pst infection, and a total of 157,689 unigenes were obtained as a reference. In total, 2,666, 783 and 2,587 differentially expressed genes (DEGs) were found to be up- or down-regulated after Pst infection at 24, 48 and 120 hours post-inoculation (hpi), respectively, based on a comparison of Pst- and mock-infected plants. Among these unigenes, the temporal pattern of the up-regulated unigenes exhibited transient expression patterns during Pst infection, as determined through a Gene Ontology (GO) enrichment analysis. In addition, a Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed that many biological processes, including phenylpropanoid biosynthesis, reactive oxygen species, photosynthesis and thiamine metabolism, which mainly control the mechanisms of lignification, reactive oxygen species and sugar, respectively, are involved in APR. In particular, the continuous accumulation of reactive oxygen species may potentially contribute to the ability of the adult plant to inhibit fungal growth and development. To validate the bioinformatics results, 6 candidate genes were selected for further functional identification using the virus-induced gene silencing (VIGS) system, and 4 candidate genes likely contribute to plant resistance against Pst infection. Our study provides new information concerning the transcriptional changes that occur during the Pst-wheat interaction at the adult stage and will help further our understanding of the detailed mechanisms underlying APR to Pst. PMID:26991894
7 CFR 301.38 - Notice of quarantine; restrictions on interstate movement of regulated articles.
Code of Federal Regulations, 2014 CFR
2014-01-01
... QUARANTINE NOTICES Black Stem Rust § 301.38 Notice of quarantine; restrictions on interstate movement of... prevent the spread of black stem rust. No person shall move interstate any regulated article except in...
7 CFR 301.38 - Notice of quarantine; restrictions on interstate movement of regulated articles.
Code of Federal Regulations, 2013 CFR
2013-01-01
... QUARANTINE NOTICES Black Stem Rust § 301.38 Notice of quarantine; restrictions on interstate movement of... prevent the spread of black stem rust. No person shall move interstate any regulated article except in...
7 CFR 301.38 - Notice of quarantine; restrictions on interstate movement of regulated articles.
Code of Federal Regulations, 2010 CFR
2010-01-01
... QUARANTINE NOTICES Black Stem Rust § 301.38 Notice of quarantine; restrictions on interstate movement of... prevent the spread of black stem rust. No person shall move interstate any regulated article except in...
7 CFR 301.38 - Notice of quarantine; restrictions on interstate movement of regulated articles.
Code of Federal Regulations, 2012 CFR
2012-01-01
... QUARANTINE NOTICES Black Stem Rust § 301.38 Notice of quarantine; restrictions on interstate movement of... prevent the spread of black stem rust. No person shall move interstate any regulated article except in...
7 CFR 301.38 - Notice of quarantine; restrictions on interstate movement of regulated articles.
Code of Federal Regulations, 2011 CFR
2011-01-01
... QUARANTINE NOTICES Black Stem Rust § 301.38 Notice of quarantine; restrictions on interstate movement of... prevent the spread of black stem rust. No person shall move interstate any regulated article except in...
Wang, Bing; Wei, Jinping; Song, Na; Wang, Ning; Zhao, Jing; Kang, Zhensheng
2018-05-01
NAC transcription factors are widespread in the plant kingdom and play essential roles in the transcriptional regulation of defense responses. In this study, we isolated a novel NAC transcription factor gene, TaNAC30, from a cDNA library constructed from wheat (Triticum aestivum) plants inoculated with the stripe rust pathogen Puccinia striiformis f. sp. tritici (Pst). TaNAC30 contains a typical NAM domain and localizes to the nucleus. Yeast one-hybrid assays revealed that TaNAC30 exhibits transcriptional activity and that its C-terminus is necessary for the activation of transcription. Expression of TaNAC30 increased when host plants were infected with a virulent race (CYR31) of the rust fungus Pst. Silencing of TaNAC30 by virus-induced gene silencing inhibited colonization of the virulent Pst isolate CYR31. Moreover, detailed histological analyses showed that silencing of TaNAC30 enhanced resistance to Pst by inducing a significant increase in the accumulation of H 2 O 2 . Finally, we overexpressed TaNAC30 in fission yeast and determined that cell viability was severely reduced in TaNAC30-transformed cells grown on medium containing H 2 O 2 . These results suggest that TaNAC30 negatively regulates plant resistance in a compatible wheat-Pst interaction. © 2017 Institute of Botany, Chinese Academy of Sciences.
Bartaula, Radhika; Melo, Arthur T O; Connolly, Bryan A; Jin, Yue; Hale, Iago
2018-04-27
Stem rust, caused by Puccinia graminis (Pg), remains a devastating disease of wheat, and the emergence of new Pg races virulent on deployed resistance genes fuels the ongoing search for sources of durable resistance. Despite its intrinsic durability, non-host resistance (NHR) is largely unexplored as a protection strategy against Pg, partly due to the inherent challenge of developing a genetically tractable system within which NHR segregates. Here, we demonstrate that Pg's far less studied ancestral host, barberry (Berberis spp.), provides such a unique pathosystem. Characterization of a natural population of B. ×ottawensis, an interspecific hybrid of Pg-susceptible B. vulgaris and Pg-resistant B. thunbergii (Bt), reveals that this uncommon nothospecies can be used to dissect the genetic mechanism(s) of Pg-NHR exhibited by Bt. Artificial inoculation of a natural population of B. ×ottawensis accessions, verified via genotyping by sequencing to be first-generation hybrids, revealed 51% susceptible, 33% resistant, and 16% intermediate phenotypes. Characterization of a B. ×ottawensis full sib family excluded the possibility of maternal inheritance of the resistance. By demonstrating segregation of Pg-NHR in a hybrid population, this study challenges the assumed irrelevance of Bt to Pg epidemiology and lays a novel foundation for the genetic dissection of NHR to one of agriculture's most studied pathogens.
TaMAPK4 Acts as a Positive Regulator in Defense of Wheat Stripe-Rust Infection
Wang, Bing; Song, Na; Zhang, Qiong; Wang, Ning; Kang, Zhensheng
2018-01-01
Highly conserved mitogen-activated protein kinase (MAPK) cascades regulate numerous plant processes, including hormonal responses, stress, and innate immunity. In this research, TaMAPK4 was predicted to be a target of tae-miR164. We verified the binding and suppression of TaMAPK4 by co-expression in Nicotiana benthamiana. Moreover, we found TaMAPK4 was localized in the cytoplasm and nucleus using transient expression analyses. TaMAPK4 transcripts increased following salicylic acid (SA) treatment and when host plants were infected with an avirulent race of the stripe-rust pathogen. Silencing of TaMAPK4 by virus-induced gene silencing permitted increased colonization by the avirulent pathogen race. Detailed histological results showed increased Puccinia striiformis (Pst) hyphal length, hyphal branches, and infection uredinial size compared to the non-silenced control. SA accumulation and the transcript levels of TaPR1, TaPR2, and TaPR5 were significantly down-regulated in TaMAPK4 knockdown plants. Overall, these results suggest that TaMAPK4 plays an important role in signaling during the wheat-Pst interaction. These results present new insights into MAPK signaling in wheat defense to rust pathogen. PMID:29527215
Host status of barley to Puccinia coronata from couch grass and P. striiformis from wheat and brome
USDA-ARS?s Scientific Manuscript database
The pathogenicity and identity of a field sample (PcE) of crown rust fungus Puccinia coronata collected in Hungary on wild couch grass (Elytrigia repens) and of a field sample (Psb) of stripe rust (P. striiformis) collected in the Netherlands on California brome (Bromus carinatus) was studied. We fo...
Bao, Y; Wang, J; He, F; Ma, H; Wang, H
2012-05-22
Leymus mollis, a perennial allotetraploid (2n = 4x = 28), known as American dune grass, is a wild relative of wheat that could be useful for cultivar improvement. Shannong0096, developed from interspecific hybridization between common wheat cv. Yannong15 and L. mollis, was analyzed with cytological procedures, genomic in situ hybridization, stripe-rust resistance screening and molecular marker analysis. We found that Shannong0096 has 42 chromosomes in the root-tip cells at mitotic metaphase and 21 bivalents in the pollen mother cells at meiotic metaphase I, demonstrating cytogenetic stability. Genomic in situ hybridization probed with total genomic DNA from L. mollis gave strong hybridization signals in the distal region of two wheat chromosome arms. A single dominant Yr gene, derived from L. mollis and temporarily designated as YrSn0096, was found on the long arm of chromosome 4A of Shannong0096. YrSn0096 should be a novel Yr gene because none of the previously reported Yr genes on chromosome 4A are related to L. mollis. This gene was found to be closely linked to the loci Xbarc236 and Xksum134 with genetic distances of 5.0 and 4.8 cM, respectively. Based on data from 267 F(2) plants of Yannong15/Huixianhong, the linkage map of YrSn0096, using the two molecular markers, was established in the order Xbarc236-YrSn0096-Xksum134. Shannong0096 appeared to be a unique wheat-L. mollis translocation with cryptic alien introgression. Cytogenetic stability, a high level of stripe-rust resistance, the common wheat background, and other positive agronomic traits make it a desirable donor for introducing novel alien resistance genes in wheat breeding programs, with the advantage of molecular markers that can be used to confirm introgression.
Registration of 'TAM 305' hard red winter Wheat
USDA-ARS?s Scientific Manuscript database
Leaf and stripe rusts (cause by Puccinia triticina Erikss. and Puccinia striiformis Westend. f. sp. tritici Erikss., respectively) are major disease problems in South Texas, Rolling Plains, and the Blacklands area of the state where hard red winter wheat (HRW; Triticum aestivum L.) is a major crop a...
Identification of novel powdery mildew resistance sources in wheat
USDA-ARS?s Scientific Manuscript database
Powdery mildew is a globally dominating disease of wheat with a high occurrence frequency, and genetic resistance plays an important role in managing this devastating disease. The objectives of this study were to evaluate leaf rust resistance and the underlying genes of breeding lines in the USA, a...
Tolerance of Loblolly Pines to Fusiform Rust
Charles H. Walkinshaw; James P. Barnett
1995-01-01
Loblolly pines (Pinus taeda L.) that were 8 to 17 yr old tolerated one to three fusiform rust (Cronartium quercuum [Berk.] Miyabe ex Shirai f. sp. fusiforme) galls in their stems.Families with four or more galls in their stems lost 2.5% or more of the trees by age 17.In living trees with less than four stem galls, diameter growth was comparable to...
Jiang, Zhengning; Wang, Hui; Zhang, Guoqin; Zhao, Renhui; Bie, Tongde; Zhang, Ruiqi; Gao, Derong; Xing, Liping; Cao, Aizhong
2017-04-01
The stripe rust resistance gene, Yr26, is commonly used in wheat production. Identification of Yr26 resistance related genes is important for better understanding of the resistance mechanism. TaRab18, a putative small GTP-binding protein, was screened as a resistance regulated gene as it showed differential expression between the Yr26-containing resistant wheat and the susceptible wheat at different time points after Pst inoculation. TaRab18 contains four typical domains (GI to GIV) of the small GTP-binding proteins superfamily and five domains (RabF1 to RabF5) specific to the Rab subfamily. From the phylogenetic tree that TaRab18 was identified as belonging to the RABC1 subfamily. Chromosome location analysis indicated that TaRab18 and its homeoalles were on the homeologous group 7 chromosomes, and the Pst induced TaRab18 was on the 7 B chromosome. Functional analysis by virus induced gene silencing (VIGS) indicated that TaRab18 was positively involved in the stripe rust resistance through regulating the hypersensitive response, and Pst can develop on the leaves of TaRab18 silenced 92R137. However, over-expression of TaRab18 in susceptible Yangmai158 did not enhance its resistance dramatically, only from 9 grade in Yangmai158 to 8 grade in the transgenic plant. However, histological observation indicated that the transgenic plants with over-expressed TaRab18 showed a strong hypersensitive response at the early infection stage. The research herein, will improve our understanding of the roles of Rab in wheat resistance. Copyright © 2017. Published by Elsevier Masson SAS.
2009-01-01
Background Stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), is one of the most destructive diseases of wheat (Triticum aestivum L.) worldwide. In spite of its agricultural importance, the genomics and genetics of the pathogen are poorly characterized. Pst transcripts from urediniospores and germinated urediniospores have been examined previously, but little is known about genes expressed during host infection. Some genes involved in virulence in other rust fungi have been found to be specifically expressed in haustoria. Therefore, the objective of this study was to generate a cDNA library to characterize genes expressed in haustoria of Pst. Results A total of 5,126 EST sequences of high quality were generated from haustoria of Pst, from which 287 contigs and 847 singletons were derived. Approximately 10% and 26% of the 1,134 unique sequences were homologous to proteins with known functions and hypothetical proteins, respectively. The remaining 64% of the unique sequences had no significant similarities in GenBank. Fifteen genes were predicted to be proteins secreted from Pst haustoria. Analysis of ten genes, including six secreted protein genes, using quantitative RT-PCR revealed changes in transcript levels in different developmental and infection stages of the pathogen. Conclusions The haustorial cDNA library was useful in identifying genes of the stripe rust fungus expressed during the infection process. From the library, we identified 15 genes encoding putative secreted proteins and six genes induced during the infection process. These genes are candidates for further studies to determine their functions in wheat-Pst interactions. PMID:20028560
The wheat Lr34 multipathogen resistance gene confers resistance to anthracnose and rust in sorghum.
Schnippenkoetter, Wendelin; Lo, Clive; Liu, Guoquan; Dibley, Katherine; Chan, Wai Lung; White, Jodie; Milne, Ricky; Zwart, Alexander; Kwong, Eunjung; Keller, Beat; Godwin, Ian; Krattinger, Simon G; Lagudah, Evans
2017-11-01
The ability of the wheat Lr34 multipathogen resistance gene (Lr34res) to function across a wide taxonomic boundary was investigated in transgenic Sorghum bicolor. Increased resistance to sorghum rust and anthracnose disease symptoms following infection with the biotrophic pathogen Puccinia purpurea and the hemibiotroph Colletotrichum sublineolum, respectively, occurred in transgenic plants expressing the Lr34res ABC transporter. Transgenic sorghum lines that highly expressed the wheat Lr34res gene exhibited immunity to sorghum rust compared to the low-expressing single copy Lr34res genotype that conferred partial resistance. Pathogen-induced pigmentation mediated by flavonoid phytoalexins was evident on transgenic sorghum leaves following P. purpurea infection within 24-72 h, which paralleled Lr34res gene expression. Elevated expression of flavone synthase II, flavanone 4-reductase and dihydroflavonol reductase genes which control the biosynthesis of flavonoid phytoalexins characterized the highly expressing Lr34res transgenic lines 24-h post-inoculation with P. purpurea. Metabolite analysis of mesocotyls infected with C. sublineolum showed increased levels of 3-deoxyanthocyanidin metabolites were associated with Lr34res expression, concomitant with reduced symptoms of anthracnose. © 2017 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.
Liu, Peng; Myo, Thwin; Ma, Wei; Lan, Dingyun; Qi, Tuo; Guo, Jia; Song, Ping; Guo, Jun; Kang, Zhensheng
2016-01-01
Tyrosine phosphorylation protein A (TypA/BipA) belongs to the ribosome-binding GTPase superfamily. In many bacterial species, TypA acts as a global stress and virulence regulator and also mediates resistance to the antimicrobial peptide bactericidal permeability-increasing protein. However, the function of TypA in plants under biotic stresses is not known. In this study, we isolated and functionally characterized a stress-responsive TypA gene (TaTypA) from wheat, with three copies located on chromosomes 6A, 6B, and 6D, respectively. Transient expression assays indicated chloroplast localization of TaTypA. The transcript levels of TaTypA were up-regulated in response to treatment with methyl viologen, which induces reactive oxygen species (ROS) in chloroplasts through photoreaction, cold stress, and infection by an avirulent strain of the stripe rust pathogen. Knock down of the expression of TaTypA through virus-induced gene silencing decreased the resistance of wheat to stripe rust accompanied by weakened ROS accumulation and hypersensitive response, an increase in TaCAT and TaSOD expression, and an increase in pathogen hyphal growth and branching. Our findings suggest that TaTypA contributes to resistance in an ROS-dependent manner. PMID:27446108
NASA Astrophysics Data System (ADS)
Shi, Yue; Huang, Wenjiang; Zhou, Xianfeng
2017-04-01
Hyperspectral absorption features are important indicators of characterizing plant biophysical variables for the automatic diagnosis of crop diseases. Continuous wavelet analysis has proven to be an advanced hyperspectral analysis technique for extracting absorption features; however, specific wavelet features (WFs) and their relationship with pathological characteristics induced by different infestations have rarely been summarized. The aim of this research is to determine the most sensitive WFs for identifying specific pathological lesions from yellow rust and powdery mildew in winter wheat, based on 314 hyperspectral samples measured in field experiments in China in 2002, 2003, 2005, and 2012. The resultant WFs could be used as proxies to capture the major spectral absorption features caused by infestation of yellow rust or powdery mildew. Multivariate regression analysis based on these WFs outperformed conventional spectral features in disease detection; meanwhile, a Fisher discrimination model exhibited considerable potential for generating separable clusters for each infestation. Optimal classification returned an overall accuracy of 91.9% with a Kappa of 0.89. This paper also emphasizes the WFs and their relationship with pathological characteristics in order to provide a foundation for the further application of this approach in monitoring winter wheat diseases at the regional scale.
Efficient use of historical data for genomic selection: a case study of rust resistance in wheat
USDA-ARS?s Scientific Manuscript database
Genomic selection (GS) is a new methodology that can improve wheat breeding efficiency. To implement GS, a training population (TP) with both phenotypic and genotypic data is required to train a statistical model used to predict genotyped selection candidates (SCs). Several factors impact prediction...
Identification of Berberis spp. as alternate hosts of Puccinia striiformis f. sp. tritici in China
USDA-ARS?s Scientific Manuscript database
Wheat stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), is an important disease on wheat in China because of high virulence diversity. Since the discovery of sexual stage of P. striiformis on Berberis spp., especially B. chinesensis, our interests focused on identifying Berberis spec...
75 FR 54461 - Black Stem Rust; Additions of Rust-Resistant Varieties
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-08
...;Prices of new books are listed in the first FEDERAL REGISTER issue of each #0;week. #0; #0; #0; #0;#0... Department of Agriculture (USDA) at its Cereal Rust Laboratory in St. Paul, MN. The testing is performed in...
USDA-ARS?s Scientific Manuscript database
Brachypodium distachyon is an emerging model to study fungal disease resistance in cereals and grasses. We characterized the stem rust-Brachypodium pathosystem to evaluate its potential for investigating molecular and genetic aspects of resistance to P. graminis, the pathogen that causes stem rust. ...
7 CFR 301.38-3 - Protected areas.
Code of Federal Regulations, 2011 CFR
2011-01-01
..., DEPARTMENT OF AGRICULTURE DOMESTIC QUARANTINE NOTICES Black Stem Rust § 301.38-3 Protected areas. (a) The... rust-susceptible plants of the genera Berberis, Mahoberberis, and Mahonia under the cooperative Federal... ensure that they are free of rust-susceptible plants. During the requisite nursery inspections, all...
7 CFR 301.38-3 - Protected areas.
Code of Federal Regulations, 2010 CFR
2010-01-01
..., DEPARTMENT OF AGRICULTURE DOMESTIC QUARANTINE NOTICES Black Stem Rust § 301.38-3 Protected areas. (a) The... rust-susceptible plants of the genera Berberis, Mahoberberis, and Mahonia under the cooperative Federal... ensure that they are free of rust-susceptible plants. During the requisite nursery inspections, all...
7 CFR 301.38-3 - Protected areas.
Code of Federal Regulations, 2013 CFR
2013-01-01
..., DEPARTMENT OF AGRICULTURE DOMESTIC QUARANTINE NOTICES Black Stem Rust § 301.38-3 Protected areas. (a) The... rust-susceptible plants of the genera Berberis, Mahoberberis, and Mahonia under the cooperative Federal... ensure that they are free of rust-susceptible plants. During the requisite nursery inspections, all...
7 CFR 301.38-3 - Protected areas.
Code of Federal Regulations, 2014 CFR
2014-01-01
..., DEPARTMENT OF AGRICULTURE DOMESTIC QUARANTINE NOTICES Black Stem Rust § 301.38-3 Protected areas. (a) The... rust-susceptible plants of the genera Berberis, Mahoberberis, and Mahonia under the cooperative Federal... ensure that they are free of rust-susceptible plants. During the requisite nursery inspections, all...
7 CFR 301.38-3 - Protected areas.
Code of Federal Regulations, 2012 CFR
2012-01-01
..., DEPARTMENT OF AGRICULTURE DOMESTIC QUARANTINE NOTICES Black Stem Rust § 301.38-3 Protected areas. (a) The... rust-susceptible plants of the genera Berberis, Mahoberberis, and Mahonia under the cooperative Federal... ensure that they are free of rust-susceptible plants. During the requisite nursery inspections, all...
Li, Jianbo; Lang, Tao; Li, Bin; Yu, Zhihui; Wang, Hongjin; Li, Guangrong; Yang, Ennian; Yang, Zujun
2017-06-01
Fluorescence in situ hybridization and molecular markers have confirmed that several chromosomes from Thinopyrum intermedium ssp. trichophorum have been added to a wheat background, which originated from a cross between a wheat- Thinopyrum partial amphiploid and triticale. The lines displayed blue grains and resistance to wheat stripe rust. Thinopyrum intermedium has been used as a valuable resource for improving the disease resistance and yield potential of wheat. With the aim to transfer novel genetic variation from Th. intermedium species for sustainable wheat breeding, a new trigeneric hybrid was produced by crossing an octoploid wheat-Th. intermedium ssp. trichophorum partial amphiploid with hexaploid triticale. Fluorescence in situ hybridization (FISH) revealed that Thinopyrum chromosomes were transmitted preferably and the number of rye chromosomes tended to decrease gradually in the selfed derivatives of the trigeneric hybrids. Four stable wheat-Th. intermedium chromosome substitution, addition and translocation lines were selected, and a 2J S addition line, two substitution lines of 4J S (4B) and 4J(4B), and a small 4J.4B translocation line were identified by FISH and molecular markers. It was revealed that the gene(s) responsible for blue grains may located on the FL0.60-1.00 of long arm of Th. intermedium-derived 4J chromosome. Disease resistance screenings indicated that chromosomes 4J S and 2J S appear to enhance the resistance to stripe rust in the adult plant stage. The new germplasm with Th. intermedium introgression shows promise for utilization of Thinopyrum chromosome segments in future wheat improvement.
Association mapping of stem rust race TTKSK resistance in US barley breeding germplasm.
Zhou, H; Steffenson, B J; Muehlbauer, Gary; Wanyera, Ruth; Njau, Peter; Ndeda, Sylvester
2014-06-01
Loci conferring resistance to the highly virulent African stem rust race TTKSK were identified in advanced barley breeding germplasm and positioned to chromosomes 5H and 7H using an association mapping approach. African races of the stem rust pathogen (Puccinia graminis f. sp. tritici) are a serious threat to barley production worldwide because of their wide virulence. To discover and characterize resistance to African stem rust race TTKSK in US barley breeding germplasm, over 3,000 lines/cultivars were assessed for resistance at the seedling stage in the greenhouse and also the adult plant stage in the field in Kenya. Only 12 (0.3 %) and 64 (2.1 %) lines exhibited a resistance level comparable to the resistant control at the seedling and adult plant stage, respectively. To map quantitative trait loci (QTL) for resistance to race TTKSK, an association mapping approach was conducted, utilizing 3,072 single nucleotide polymorphism (SNP) markers. At the seedling stage, two neighboring SNP markers (0.8 cM apart) on chromosome 7H (11_21491 and 12_30528) were found significantly associated with resistance. The most significant one found was 12_30528; thus, the resistance QTL was named Rpg-qtl-7H-12_30528. At the adult plant stage, two SNP markers on chromosome 5H (11_11355 and 12_31427) were found significantly associated with resistance. This resistance QTL was named Rpg-qtl-5H-11_11355 for the most significant marker identified. Adult plant resistance is of paramount importance for stem rust. The marker associated with Rpg-qtl-5H-11_11355 for adult plant resistance explained only a small portion of the phenotypic variation (0.02); however, this QTL reduced disease severity up to 55.0 % under low disease pressure and up to 21.1 % under heavy disease pressure. SNP marker 11_11355 will be valuable for marker-assisted selection of adult plant stem rust resistance in barley breeding.
1986-03-04
per hectare) is employed against snow mould in the autumn and Bayleton (0.5 kg) is used upon the appearance of powdery mildew , brown rust and root rots...mould in the autumn and Bayleton (0.5 kg) is used upon the appearance of powdery mildew , brown rust and root rots prior to the forming of the grain. At...33 Fallow as Wheat Predecessor Stressed for Kazakhstan (A. Zadorin, L. Mozhayev; SELSKOYE KHOZYAYSTVO KAZAKHSTANA
1986-10-16
Bayleton or Tilt in a dosage of 0.5 kilograms per hectare — upon the observance of powdery mildew or rust in the winter crops or...the 11 observance of powdery mildew or rust in the winter crops or belminthosporiosis blight in the barley sowings. Treatments should first qß all...grain. There were reductions in deliveries of high grade and strong wheat . Among the reasons are errors in determing cropping structure. More than 1.3
Registration of spring wheat sources of the resistance genes Lr53, Lr56, Lr59 and Lr62
USDA-ARS?s Scientific Manuscript database
Spring wheat (Triticum aestivum L.) germplasm with the alien derived leaf rust (caused by Puccinia triticina Erikss) resistance genes, Lr53, Lr56, Lr59, and Lr62 has been developed with infrastructure and financial support provided consecutively by the University of Stellenbosch (South Africa), the ...
Molecular mapping of stripe rust resistance gene Yr76 in winter club wheat cultivar Tyee
USDA-ARS?s Scientific Manuscript database
Tyee, one of the wheat cultivars used to differentiate races of Puccinia striiformis f. sp. tritici (Pst) in the United States, was identified to have a single gene for all-stage resistance, tentatively named YrTye. To map the gene, Tyee was crossed with ‘Avocet Susceptible’ (AvS). Genetic analysi...
Agroterrorism: the risks to the United States food supply and national security.
Gill, Kevin M
2015-01-01
Agroterrorism is a collective term that describes an intentional criminal attack against crops or mankind using viral, bacterial, fungal, or insect-borne agents. Agroterrorism also includes attacks against animals using infectious pathogens such as Burkholderia mallei (glanders), Bacillus anthracis (anthrax), viral avian influenza, foot and mouth disease, and several equine encephalitis viruses. Agents that could be used against crops include the causative agents of wheat blast, rice blast, rice brown spot disease, and wheat stem rust. The primary goal of terrorists using agroterrorism is to spread fear and cause massive economic loss. Subsequent goals include causing disease and death to humans and animals. The use of bioterrorism agents is a much more practical approach than using explosives, for example, to achieve those results since many of these biological agents are commonly found naturally in the environment and are difficult to detect with modern technology. The effective use of biological warfare dates back centuries and can still can be employed by terrorist groups, lone wolves, and political and religious groups to cause death and mayhem on a grand scale.
Taxonomy, phylogeny, and coevolution of pines and their stem rusts
C. I. Millar; B. B. Kinloch
1991-01-01
We review and reinterpret major events in the evolution of pines and their stem rusts using information from their taxonomy, genetics, biogeography, and fossil history. Understanding of pine evolution has been significantly revised in the last 20 years. Pines appear to have evolved early in the Mesozoic and to have diversified and migrated throughout middle latitudes...
East Europe Report, Economic and Industrial Affairs, No. 2410.
1983-06-13
high culture. Spring wheat of the Jara variety was developed at CSRS. Its features are: a very high grain production, low sensitivity to powdery ... mildew and rust, it can be harvested sooner than any presently grown varieties of Spring wheats in our country. It is adaptable for cultivation in wheat ...has great hope for the Polon variety. Its char- acteristics are: good yield, good resistance to powdery mildew and mottle disease, and what is also
Targeted Segment Transfer from Rye Chromosome 2R to Wheat Chromosomes 2A, 2B, and 7B.
Ren, Tianheng; Li, Zhi; Yan, Benju; Tan, Feiquan; Tang, Zongxiang; Fu, Shulan; Yang, Manyu; Ren, Zhenglong
2017-01-01
Increased chromosome instability was induced by a rye (Secale cereale L.) monosomic 2R chromosome into wheat (Triticum aestivum L.). Centromere breakage and telomere dysfunction result in high rates of chromosome aberrations, including breakages, fissions, fusions, deletions, and translocations. Plants with target traits were sequentially selected to produce a breeding population, from which 3 translocation lines with target traits have been selected. In these lines, wheat chromosomes 2A, 2B, and 7B recombined with segments of the rye chromosome arm 2RL. This was detected by FISH analysis using repeat sequences pSc119.2, pAs1 and genomic DNA of rye together as probes. The translocation chromosomes in these lines were named as 2ASMR, 2BSMR, and 7BSMR. The small segments that were transferred into wheat consisted of pSc119.2 repeats and other chromatin regions that conferred resistance to stripe rust and expressed target traits. These translocation lines were highly resistant to stripe rust, and expressed several typical traits that were associated with chromosome arm 2RL, which are better than those of its wheat parent, disomic addition, and substitution lines that show agronomic characteristics. The integration of molecular methods and conventional techniques to improve wheat breeding schemes are discussed. © 2017 S. Karger AG, Basel.
7 CFR 301.38-4 - Interstate movement of regulated articles.
Code of Federal Regulations, 2014 CFR
2014-01-01
... HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE DOMESTIC QUARANTINE NOTICES Black Stem Rust § 301.38... protected area: (i) All rust-susceptible Berberis, Mahoberberis, and Mahonia plants, seeds, fruits, and...-propagated plants of the Berberis species and varieties designated as rust-resistant in § 301.38-2(a)(1) of...
7 CFR 301.38-4 - Interstate movement of regulated articles.
Code of Federal Regulations, 2010 CFR
2010-01-01
... HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE DOMESTIC QUARANTINE NOTICES Black Stem Rust § 301.38... protected area: (i) All rust-susceptible Berberis, Mahoberberis, and Mahonia plants, seeds, fruits, and...-propagated plants of the Berberis species and varieties designated as rust-resistant in § 301.38-2(a)(1) of...
7 CFR 301.38-4 - Interstate movement of regulated articles.
Code of Federal Regulations, 2013 CFR
2013-01-01
... HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE DOMESTIC QUARANTINE NOTICES Black Stem Rust § 301.38... protected area: (i) All rust-susceptible Berberis, Mahoberberis, and Mahonia plants, seeds, fruits, and...-propagated plants of the Berberis species and varieties designated as rust-resistant in § 301.38-2(a)(1) of...
Bariana, H. S.; Brown, G. N.; Ahmed, N. U.; Khatkar, S.; Conner, R. L.; Wellings, C. R.; Haley, S.; Sharp, P. J.; Laroche, A.
2002-02-01
Stripe rust resistance was identified in Triticum vavilovii( T. vaviloviiAus22498)-derived Russian wheat aphid (RWA)-resistant germplasm. Inheritance studies indicated monogenic control of resistance. The resistance gene was tentatively designated as Yrvav and was located on chromosome 1B by monosomic analysis. A close association (1.5+/-0.9% recombination) of Yrvav with a T. vavilovii-derived gliadin allele ( Gli-B1vav) placed it in chromosome arm 1BS. Yrvavwas allelic with Yr10. Tests with Yr10 avirulent and virulent pathotypes showed that Yrvav and Yr10 possess identical pathogenic specificity. Yrvav and Yr10 showed close genetic associations with alternate alleles at the Xpsp3000(microsatellite marker), Gli-B1 and Rg1 loci. Based on these observations Yrvav was named as Yr10vav. The close association between Xpsp3000 and Gli-B1 was also confirmed. The Yr10vav-linked Xpsp3000 allele (285 bp) was not present in 65 Australian cultivars, whereas seven Australian wheats lacking Yr10 carried the same Xpsp3000 allele (260 bp) as Yr10carrying wheat cultivar Moro. Xpsp3000 and/or Gli-B1 could be used in marker-assisted selection for pyramiding Yr10vavor Yr10 with other stripe rust resistance genes. Yr10vav was inherited independently of the T. vavilovii-derived RWA resistance.
USDA-ARS?s Scientific Manuscript database
The widely effective and linked rust resistance genes Yr47 and Lr52 were previously mapped in the short arm of chromosome 5B in two F3 populations (Aus28183/Aus27229 and Aus28187/Aus27229). The Aus28183/Aus27229 F3 population was advanced to generate an F6 recombinant inbred line (RIL) population t...
Fu, Sheng-Jie; Wang, Hui; Feng, Li-Na; Sun, Yi; Yang, Wen-Xiang; Liu, Da-Qun
2009-03-01
Intrinsic DNA methylation pattern is an integral component of the epigenetic network in many eukaryotes. DNA methylation plays an important role in regulating gene expression in eukaryotes. Biological stress in plant provides an inherent epigenetic driving force of evolution. Study of DNA methylation patterns arising from biological stress will help us fully understand the epigenetic regulation of gene expression and DNA methylation of biological functions. The wheat near-isogenic lines TcLr19 and TcLr41 were resistant to races THTT and TKTJ, respectively, and Thatcher is compatible in the interaction with Puccinia triticina THTT and TKTJ, respectively. By means of methylation-sensitive amplified polymorphism (MSAP) analysis, the patterns of cytosine methylation in TcLr19, TcLr41, and Thatcher inoculated with P. triticina THTT and TKTJ were compared with those of the untreated samples. All the DNA fragments, each representing a recognition site cleaved by each or both of isoschizomers, were amplified using 60 pairs of selective primers. The results indicated that there was no significant difference between the challenged and unchallenged plants at DNA methylation level. However, epigenetic difference between the near-isogenic line for wheat leaf rust resistance gene Lr41 and Thatcher was present.
Applications of Genomic Selection in Breeding Wheat for Rust Resistance.
Ornella, Leonardo; González-Camacho, Juan Manuel; Dreisigacker, Susanne; Crossa, Jose
2017-01-01
There are a lot of methods developed to predict untested phenotypes in schemes commonly used in genomic selection (GS) breeding. The use of GS for predicting disease resistance has its own particularities: (a) most populations shows additivity in quantitative adult plant resistance (APR); (b) resistance needs effective combinations of major and minor genes; and (c) phenotype is commonly expressed in ordinal categorical traits, whereas most parametric applications assume that the response variable is continuous and normally distributed. Machine learning methods (MLM) can take advantage of examples (data) that capture characteristics of interest from an unknown underlying probability distribution (i.e., data-driven). We introduce some state-of-the-art MLM capable to predict rust resistance in wheat. We also present two parametric R packages for the reader to be able to compare.
Obukhova, L V; Laĭkova, L I; Shumnyĭ, V K
2010-06-01
Storage proteins (prolamines, puroindolines, and Waxy) were studied in common wheat introgression lines obtained with the use of the Saratovskaya 29 (S29) cultivar line and synthetic hexaploid wheat (Triticum timopheevii Zhuk. x T. tauschii) (Sintetik, Sin.) and displaying complex resistance to fungal infections. Comparative analysis of storage proteins in the introgression lines of common wheat Triticum aestivum L. and in the parental forms revealed the only line (BC5) having a substitution at the Gli-B2 locus from Sintetik. Hybrid lines subjected to nine back crosses with the recurrent parental form S29 and selections for resistance to pathogens can be considered as nearly isogenic for the selected trait and retaining the allelic composition of (1) prolamines responsible for the bread-making qualitiy, (2) puroindolines associated with grain texture, and (3) Waxy proteins responsible for nutritive qualities. These lines are valuable as donors of immunity in breeding programs without the loss of the quality of flour and grain as compared to the S29 line and are also important in searching for genes determining resistance to leaf and stem rust and to powdery mildew. The amphiploid has a number of characters (silent Glu-A 1 locus and Ha genotype) that can negatively affect the quality of flour and grain and thus should be taken into account when choosing this donor.
USDA-ARS?s Scientific Manuscript database
North American durum lines, selected for resistance to TTKSK and related races of Puccinia graminis f. sp. tritici in Kenya, became highly susceptible in Debre Zeit, Ethiopia, suggesting the presence of stem rust races that were virulent to the TTKSK-effective genes in durum. The objective of this s...
Dobon, Albor; Bunting, Daniel C E; Cabrera-Quio, Luis Enrique; Uauy, Cristobal; Saunders, Diane G O
2016-05-20
Understanding how plants and pathogens modulate gene expression during the host-pathogen interaction is key to uncovering the molecular mechanisms that regulate disease progression. Recent advances in sequencing technologies have provided new opportunities to decode the complexity of such interactions. In this study, we used an RNA-based sequencing approach (RNA-seq) to assess the global expression profiles of the wheat yellow rust pathogen Puccinia striiformis f. sp. tritici (PST) and its host during infection. We performed a detailed RNA-seq time-course for a susceptible and a resistant wheat host infected with PST. This study (i) defined the global gene expression profiles for PST and its wheat host, (ii) substantially improved the gene models for PST, (iii) evaluated the utility of several programmes for quantification of global gene expression for PST and wheat, and (iv) identified clusters of differentially expressed genes in the host and pathogen. By focusing on components of the defence response in susceptible and resistant hosts, we were able to visualise the effect of PST infection on the expression of various defence components and host immune receptors. Our data showed sequential, temporally coordinated activation and suppression of expression of a suite of immune-response regulators that varied between compatible and incompatible interactions. These findings provide the framework for a better understanding of how PST causes disease and support the idea that PST can suppress the expression of defence components in wheat to successfully colonize a susceptible host.
RADIATION-INDUCED MUTATIONS FOR STEM RUST RESISTANCE IN OATS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Konzak, C.F.
1959-01-01
Stem rust rcsistant viriants from earlier experiments on the induction or resistance in oats by radiation were found to result from natural field hybridization. Recent controlled experiments did, however, yield new variants at a low frequency in one instance. and no variants in another. Both experiments included over 3,000 lines from irradiated seeds. One previously unknown type of rust resistance reaction was obtained in a mutant plant. This mutant shows a temperature sensitive response for resistance to race 7A of Puccinia graminis avenae. It was suggested that some, as yet unknown, mcdifying factors mav limit the development of induced changesmore » into mutations. (auth)« less
USDA-ARS?s Scientific Manuscript database
Little is known about the molecular interaction of wheat and leaf rust (Puccinia triticina Eriks). However, genomic tools are now becoming available so that the host-pathogen interaction can be understood. In this work, a cDNA library was made from haustoria isolated from P. triticina race PBJL inf...
Hou, Lu; Chen, Xianming; Wang, Meinan; See, Deven R.; Chao, Shiaoman; Bulli, Peter; Jing, Jinxue
2015-01-01
Winter wheat Druchamp has both high-temperature adult-plant (HTAP) resistance and all-stage resistance to stripe rust caused by Puccinia striiformis f. sp. tritici (Pst). The HTAP resistance in Druchamp is durable as the variety has been resistant in adult-plant stage since it was introduced from France to the United States in late 1940s. To map the quantitative trait loci (QTL) for stripe rust resistance, an F8 recombinant inbred line (RIL) population from cross Druchamp × Michigan Amber was phenotyped for stripe rust response in multiple years in fields under natural infection and with selected Pst races under controlled greenhouse conditions, and genotyped with simple sequence repeat (SSR) and single nucleotide polymorphism (SNP) markers. Composite interval mapping (CIM) identified eight HTAP resistance QTL and three all-stage resistance QTL. Among the eight HTAP resistance QTL, QYrdr.wgp-1BL.2 (explaining 2.36-31.04% variation), QYrdr.wgp-2BL (2.81–15.65%), QYrdr.wgp-5AL (2.27–17.22%) and QYrdr.wgp-5BL.2 (2.42–15.13%) were significant in all tests; and QYrdr.wgp-1BL.1 (1.94–10.19%), QYrdr.wgp-1DS (2.04–27.24%), QYrdr.wgp-3AL (1.78–13.85%) and QYrdr.wgp-6BL.2 (1.69–33.71%) were significant in some of the tests. The three all-stage resistance QTL, QYrdr.wgp-5BL.1 (5.47–36.04%), QYrdr.wgp-5DL (9.27–11.94%) and QYrdr.wgp-6BL.1 (13.07-20.36%), were detected based on reactions in the seedlings tested with certain Pst races. Among the eleven QTL detected in Druchamp, at least three (QYrdr.wgp-5DL for race-specific all-stage resistance and QYrdr.wgp-3AL and QYrdr.wgp-6BL.2 for race non-specific HTAP resistance) are new. All these QTL, especially those for durable HTAP resistance, and their closely linked molecular markers could be useful for developing wheat cultivars with durable resistance to stripe rust. PMID:25970329
Hou, Lu; Chen, Xianming; Wang, Meinan; See, Deven R; Chao, Shiaoman; Bulli, Peter; Jing, Jinxue
2015-01-01
Winter wheat Druchamp has both high-temperature adult-plant (HTAP) resistance and all-stage resistance to stripe rust caused by Puccinia striiformis f. sp. tritici (Pst). The HTAP resistance in Druchamp is durable as the variety has been resistant in adult-plant stage since it was introduced from France to the United States in late 1940s. To map the quantitative trait loci (QTL) for stripe rust resistance, an F8 recombinant inbred line (RIL) population from cross Druchamp × Michigan Amber was phenotyped for stripe rust response in multiple years in fields under natural infection and with selected Pst races under controlled greenhouse conditions, and genotyped with simple sequence repeat (SSR) and single nucleotide polymorphism (SNP) markers. Composite interval mapping (CIM) identified eight HTAP resistance QTL and three all-stage resistance QTL. Among the eight HTAP resistance QTL, QYrdr.wgp-1BL.2 (explaining 2.36-31.04% variation), QYrdr.wgp-2BL (2.81-15.65%), QYrdr.wgp-5AL (2.27-17.22%) and QYrdr.wgp-5BL.2 (2.42-15.13%) were significant in all tests; and QYrdr.wgp-1BL.1 (1.94-10.19%), QYrdr.wgp-1DS (2.04-27.24%), QYrdr.wgp-3AL (1.78-13.85%) and QYrdr.wgp-6BL.2 (1.69-33.71%) were significant in some of the tests. The three all-stage resistance QTL, QYrdr.wgp-5BL.1 (5.47-36.04%), QYrdr.wgp-5DL (9.27-11.94%) and QYrdr.wgp-6BL.1 (13.07-20.36%), were detected based on reactions in the seedlings tested with certain Pst races. Among the eleven QTL detected in Druchamp, at least three (QYrdr.wgp-5DL for race-specific all-stage resistance and QYrdr.wgp-3AL and QYrdr.wgp-6BL.2 for race non-specific HTAP resistance) are new. All these QTL, especially those for durable HTAP resistance, and their closely linked molecular markers could be useful for developing wheat cultivars with durable resistance to stripe rust.
Yun, Yeo Hong; Ahn, Geum Ran; Yoon, Seong Kwon; Kim, Hoo Hyun; Son, Seung Yeol; Kim, Seong Hwan
2016-12-01
During the growing season of 2015, leaf specimens with yellow rust spots were collected from Salix koreensis Andersson, known as Korean willow, in riverine areas in Cheonan, Korea. The fungus on S. koreensis was identified as the rust species, Melampsora yezoensis , based on the morphology of urediniospores observed by light and scanning electron microscopy, and the molecular properties of the internal transcribed spacer rDNA region. Pathogenicity tests confirmed that the urediniospores are the causal agent of the rust symptoms on the leaves and young stems of S. koreensis . Here, we report a new rust disease of S. koreensis caused by the rust fungus, M. yezoensis , a previously unrecorded rust pathogen in Korea.
Szczepaniec, Adrianna; Glover, Karl D; Berzonsky, William
2015-10-01
Wheat stem sawfly (WSS), Cephus cinctus Norton (Hymenoptera: Cephidae), has recently emerged as a key pest of wheat (Triticum aestivum L.) in the Great Plains and Canadian provinces. The expanding impact of WSS has caused considerable economic losses to wheat production. Solid-stem varieties of wheat remain the only effective measure of suppression of WSS, and the goal of this research was to test whether five solid- and hollow-stem varieties of winter and spring wheat reduce survival of WSS in South Dakota. We reported that solid-stem varieties had significantly lower numbers of WSS larvae, and this effect was especially evident when WSS infestation rates exceeded 15%. We also observed that the yield of solid-stem varieties was significantly lower than hollow-stem varieties when the abundance of WSS was low, but not when populations of WSS were relatively high. We did not observe consistent differences in grain quality between solid- and hollow-stem varieties, however, and in case of protein levels of grain, solid-stem wheat varieties performed better than hollow-stem wheat. We conclude that solid-stem varieties of wheat appear to effectively suppress WSS survival, and reduced yield of these varieties is less apparent when populations of C. cinctus are high enough to affect the yield of hollow-stem wheat. This is the first report to describe the effectiveness of solid-stem varieties of wheat on WSS in South Dakota. More research in the state is necessary before more robust conclusions can be drawn. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Buteler, Micaela; Peterson, Robert K D; Hofland, Megan L; Weaver, David K
2015-12-01
This study investigated the dynamics of parasitism, host plant resistance, pathogens, and predation on the demography of wheat stem sawfly, Cephus cinctus Norton (Hymenoptera: Cephidae), developing in susceptible (hollow stem) and resistant (solid stem) wheat hosts. This study is also the first to investigate the prevalence and impact of cannibalism on wheat stem sawfly mortality. Wheat stem sawflies were sampled in two commercial wheat fields over 4 yr from the egg stage through adult emergence, and multiple decrement life tables were constructed and analyzed. Cannibalism, host plant resistance, or unknown factors were the most prevalent factors causing egg mortality. Summer mortality of prediapause larvae ranged from 28 to 84%, mainly due to parasitism by Bracon cephi (Gahan) and Bracon lissogaster Muesebeck, cannibalism, and host plant resistance. Winter mortality ranged from 6 to 54% of the overwintering larvae, mainly due to unknown factors or pathogens. Cannibalism is a major cause of irreplaceable mortality because it is absolute, with only a single survivor in every multiple infested stem. Subsequent to obligate cannibalism, mortality of feeding larvae due to host plant resistance was lower in hollow stem wheat than in solid stem wheat. Mortality from host plant resistance was largely irreplaceable. Irreplaceable mortality due to parasitoids was greater in hollow stem wheat than in solid stem wheat. Host plant resistance due to stem solidness and parasitism in hollow stems cause substantial mortality in populations of actively feeding larvae responsible for all crop losses. Therefore, enhancing these mortality factors is vital to effective integrated pest management of wheat stem sawfly. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Screening conventional fungicides...control of blister rust on sugar pine in California
Clarence R. Quick
1967-01-01
After 5 years, 4 of 14 fungicides tested showed varying pr of development into satisfactory direct control of blister rust. Little promise of systemic control was found. Trees treated were second-growth sugar pine in a mixed conifer forest in eastern Shasta County, California, where blister rust has been intensifying for many years. Most trees received basal-stem...
Beres, B L; Cárcamo, H A; Bremer, E
2009-12-01
Wheat, Triticum aestivum L., producers are often reluctant to use solid-stemmed wheat cultivars resistant to wheat stem sawfly, Cephus cinctus Norton (Hymenoptera: Cephidae), due to concerns regarding yield, efficacy or market opportunities. We evaluated the impact of several planting strategies on wheat yield and quality and wheat stem sawfly infestation at two locations over a three-year period. Experimental units consisted of large plots (50 by 200 m) located on commercial farms adjacent to wheat stem sawfly-infested fields. Compared with a monoculture of a hollow-stemmed cultivar ('AC Barrie'), planting a monoculture of a solid-stemmed cultivar ('AC Eatonia') increased yield by an average of 16% (0.4 mg ha(-1)) and increased the grade of wheat by one unit at the two most heavily infested site-years. Planting a 1:1 blend of AC Eatonia and AC Barrie increased yield by an average of 11%, whereas planting 20- or 40-m plot margins to AC Eatonia increased yield by an average of 8%. High wheat stem sawfly pressure limited the effectiveness of using resistant cultivars in field margins because plants were often infested beyond the plot margin, with uniform infestation down the length of the plots at the two most heavily infested site-years. The effectiveness of AC Eatonia to reduce wheat stem sawfly survivorship was modest in this study, probably due to weather-related factors influencing pith expression and to the high abundance of wheat stem sawfly. Greater benefits from planting field margins to resistant cultivars or planting a blend of resistant and susceptible cultivars might be achievable under lower wheat stem sawfly pressure.
Rethinking Intelligence to Integrate Counterterrorism into the Local Law Enforcement Mission
2007-03-01
a needle in the haystack problem. Also referred to as the wheat versus the chaff problem, valuable information must be separated from unimportant...information and processed before analysts can yield any useful intelligence.25 3. Processing and Exploitation To address the wheat -versus-chaff...93 Despite the perception that Chicago is an aging Rust Belt city, some experts report that it has the largest high technology and information
Gardiner, Laura-Jayne; Bansept-Basler, Pauline; Olohan, Lisa; Joynson, Ryan; Brenchley, Rachel; Hall, Neil; O'Sullivan, Donal M; Hall, Anthony
2016-08-01
Previously we extended the utility of mapping-by-sequencing by combining it with sequence capture and mapping sequence data to pseudo-chromosomes that were organized using wheat-Brachypodium synteny. This, with a bespoke haplotyping algorithm, enabled us to map the flowering time locus in the diploid wheat Triticum monococcum L. identifying a set of deleted genes (Gardiner et al., 2014). Here, we develop this combination of gene enrichment and sliding window mapping-by-synteny analysis to map the Yr6 locus for yellow stripe rust resistance in hexaploid wheat. A 110 MB NimbleGen capture probe set was used to enrich and sequence a doubled haploid mapping population of hexaploid wheat derived from an Avalon and Cadenza cross. The Yr6 locus was identified by mapping to the POPSEQ chromosomal pseudomolecules using a bespoke pipeline and algorithm (Chapman et al., 2015). Furthermore the same locus was identified using newly developed pseudo-chromosome sequences as a mapping reference that are based on the genic sequence used for sequence enrichment. The pseudo-chromosomes allow us to demonstrate the application of mapping-by-sequencing to even poorly defined polyploidy genomes where chromosomes are incomplete and sub-genome assemblies are collapsed. This analysis uniquely enabled us to: compare wheat genome annotations; identify the Yr6 locus - defining a smaller genic region than was previously possible; associate the interval with one wheat sub-genome and increase the density of SNP markers associated. Finally, we built the pipeline in iPlant, making it a user-friendly community resource for phenotype mapping. © 2016 The Authors. The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd.
HOW to Identify and Control Stem Rusts of Jack Pine
Kathryn Robbins; Dale K. Smeltzer; D. W. French
Damage to jack pine caused by rust fungi includes growth reduction, cankers, death (by girdling or wind breakage), and creation of entryways for other fungi and insects. Seedlings and saplings are more seriously affected than older trees.
Behavioural responses of wheat stem sawflies to wheat volatiles
D. Piesik; D. K. Weaver; J. B. Runyon; M. Buteler; G. E. Peck; W. L. Morrill
2008-01-01
1) Adult wheat stem sawflies Cephus cinctus, pests of cultivated cereals that also infests wild grasses, migrate into wheat fields where they oviposit in elongating, succulent stems. 2) Volatiles released by wheat plants at susceptible stages were analyzed to determine potential semiochemical compounds. Seven major compounds were identified and...
Ahmed, Soyed M.; Liu, Peng; Xue, Qinghe; Ji, Changan; Qi, Tuo; Guo, Jia; Guo, Jun; Kang, Zhensheng
2017-01-01
Very few LTPs have been shown to act through plasma membrane receptors or to be involved in the hypersensitive response (HR). DIR1, a new type of plant LTP interacts with lipids in vitro, moves to distant tissues during systemic acquired resistance (SAR) and therefore is thought to be involved in long-distance signaling during SAR. However, the exact functions of DIR1 orthologs in cereal species under biotic and abiotic stresses have not been thoroughly defined. In this study, a novel wheat ortholog of the DIR1 gene, TaDIR1-2, was isolated from Suwon11, a Chinese cultivar of wheat and functionally characterized. Phylogenetic analysis indicated that TaDIR1-2 is clustered within the nsLTP-Type II group and shows a closer relationship with DIR1 orthologs from monocots than from eudicots. TaDIR1-2 was localized in the cytoplasm and the cell membrane of wheat mesophyll protoplast. Transcription of TaDIR1-2 was detected in wheat roots, stems and leaves. TaDIR1-2 transcript was significantly induced during the compatible interaction of wheat with the stripe rust pathogen, Puccinia striiformis f. sp. tritici (Pst). Treatments with salicylic acid (SA) and low temperature significantly up-regulated the expression of TaDIR1-2. Transient overexpression of TaDIR1-2 did not induce cell death or suppress Bax-induced cell death in tobacco leaves. Knocking down the expression of TaDIR1-2 through virus-induced gene silencing increased wheat resistance to Pst accompanied by HR, increased accumulation of H2O2 and SA, increased expression of TaPR1, TaPR2, TaPAL, and TaNOX, and decreased expression of two reactive oxygen species (ROS) scavenging genes TaCAT and TaSOD. Our results suggest that TaDIR1-2 acts as a negative regulator in wheat resistance to Pst by modulating ROS and/or SA-induced signaling. PMID:28443114
Satapathy, Lopamudra; Kumar, Dhananjay; Kumar, Manish; Mukhopadhyay, Kunal
2018-01-01
WRKY, a plant-specific transcription factor family, plays vital roles in pathogen defense, abiotic stress, and phytohormone signalling. Little is known about the roles and function of WRKY transcription factors in response to rust diseases in wheat. In the present study, three TaWRKY genes encoding complete protein sequences were cloned. They belonged to class II and III WRKY based on the number of WRKY domains and the pattern of zinc finger structures. Twenty-two DNA-protein binding docking complexes predicted stable interactions of WRKY domain with W-box. Quantitative real-time-PCR using wheat near-isogenic lines with or without Lr28 gene revealed differential up- or down-regulation in response to biotic and abiotic stress treatments which could be responsible for their functional divergence in wheat. TaWRKY62 was found to be induced upon treatment with JA, MJ, and SA and reduced after ABA treatments. Maximum induction of six out of seven genes occurred at 48 h post inoculation due to pathogen inoculation. Hence, TaWRKY (49, 50 , 52 , 55 , 57, and 62 ) can be considered as potential candidate genes for further functional validation as well as for crop improvement programs for stress resistance. The results of the present study will enhance knowledge towards understanding the molecular basis of mode of action of WRKY transcription factor genes in wheat and their role during leaf rust pathogenesis in particular.
Liu, L; Wang, M N; Feng, J Y; See, D R; Chao, S M; Chen, X M
2018-05-24
Wheat cultivar Madsen has a new gene on the short arm of chromosome 1A and two QTL for all-stage resistance and three QTL for high-temperature adult-plant resistance that in combination confer high-level, durable resistance to stripe rust. Wheat cultivar Madsen has maintained a high-level resistance to stripe rust over 30 years. To map quantitative trait loci (QTL) underlying the high-level, durable resistance, 156 recombinant inbred lines (RILs) developed from cross Avocet S × Madsen were phenotyped with selected races of Puccinia striiformis f. sp. tritici in the greenhouse seedling tests, and in naturally infected fields during 2015-2017. The RILs were genotyped by SSR and SNP markers from genotyping by sequencing and the 90 K wheat SNP chip. Three QTL for all-stage resistance were mapped on chromosomes 1AS, 1BS and 2AS, and two QTL for high-temperature adult-plant (HTAP) resistance were mapped on 3BS and 6BS. The most effective QTL on 2AS, explaining 8.97-23.10% of the phenotypic variation in seedling tests and 8.60-71.23% in field tests, contained Yr17 for all-stage resistance and an additional gene for HTAP resistance. The 6BS QTL, detected in all field tests, was identified as Yr78. The 1AS QTL, conferring all-stage resistance, was identified as a new gene, which explained 20.45 and 30.23% of variation in resistance to races PSTv-37 and PSTv-40, respectively, and contributed significantly to field resistance at Pullman in 2015-2017, but was not detected at Mount Vernon. The interactions among QTL were mostly additive, and RILs with all five QTL had the highest level of resistance in the field, similar to Madsen. Genotyping 148 US Pacific Northwest wheat cultivars with markers for the 1AS, 2AS and 6BS QTL validated the genes and markers, and indicated their usefulness for marker-assisted selection.
Wheat: Its water use, production and disease detection and prediction. [Kansas
NASA Technical Reports Server (NTRS)
Kanemasu, E. T. (Principal Investigator); Lenhert, D.; Niblett, C.; Manges, H.; Eversmeyer, M. G.
1974-01-01
The author has identified the following significant results. Discussed in this report are: (1) the effects of wheat disease on water use and yield; and (2) the use of ERTS-1 imagery in the evaluation of wheat growth and in the detection of disease severity. Leaf area index was linearly correlated with ratios MSS4:MSS5 and MSS5:MSS6. In an area of severe wheat streak mosaic virus infected fields, correlations of ERTS-1 digital counts with wheat yields and disease severity levels were significant at the 5% level for MSS bands 4 and 5 and band ratios 4/6 and 4/7. Data collection platforms were used to gather meteorological data for the early prediction of rust severity and economic loss.
Philip G. Cannon; Acelino Couto Alfenas; Rodrigo Neves Graca; Mee-Sook Kim; Tobin L. Peever; Ned B. Klopfenstein
2010-01-01
The rust, Puccinia psidii, was first found on the leaves, stems and fruit of guava in Brazil in 1894 (Winter, 1984). As a result, it was first called guava rust. It has subsequently been identified in other countries of the western hemisphere including Paraguay in 1884, Uruguay in 1989, Puerto Rico in 1913, Colombia in 1913, Cuba in 1926, Jamaica in 1936, Florida in...
Detlev R. Vogler; Patricia E. Maloney; Tom Burt; Jacob W. Snelling
2017-01-01
In 2013, while surveying for five-needle white pine cone crops in northeastern Nevada, we observed white pine blister rust, caused by the rust pathogen Cronartium ribicola Fisch., infecting branches and stems of limber pines (Pinus flexilis James) on Pine Mountain (41.76975°N, 115.61622°W), Humboldt National Forest,...
Crossing borders -- the global dimension of rust monitoring
USDA-ARS?s Scientific Manuscript database
Rust pathogens are highly mobile trans-boundary organisms capable of rapid, long distance movements, either by wind-assisted or accidental human-mediated transmission. Emergence of new virulent races in one country can very rapidly have implications for other countries or regions. Detection of stem ...
Verification of STS markers for leaf rust resistance genes of wheat by seven European laboratories.
Błaszczyk, Lidia; Chełkowski, Jerzy; Korzun, Victor; Kraic, Jan; Ordon, Frank; Ovesná, Jaroslava; Purnhauser, Laszlo; Tar, Melinda; Vida, Gyula
2004-01-01
A set of Thatcher near-isogenic lines and two breeding lines were used to examine sequence tagged site (STS) markers linked to leaf rust resistance genes Lr9, Lr10, Lr19, Lr24, Lr28, Lr29, Lr35, and a simple sequenced repeat (SSR) marker for Lr39. The selected STS markers for resistance genes Lr9, Lr10, Lr19, Lr24 and Lr28 were identified in seven accessions by seven European laboratories. Near-isogenic lines of the spring wheat Thatcher were used as positive controls. Markers for resistance genes Lr9, Lr10, Lr19, Lr24 were identified in all seven laboratories as amplification products of 1100 bp, 310 bp, 130 bp and 310 bp, respectively. The STS markers linked to resistance genes Lr9, Lr10, Lr19, Lr24, Lr29, Lr35 and the SSR marker for Lr39 were robust and highly specific for these genes and will be useful in marker-assisted selection in wheat. However, the amplification product of 378 bp that corresponded with resistance gene Lr28 was detected in all accessions including genotypes lacking this gene in all seven laboratories. This marker needs to be improved.
Functionalized Nanoparticles and Nanostructures as Carriers for Organic Corrosion Inhibitors
2009-02-01
TDA Research Inc. Wheat Ridge, CO 80033 www.tda.com Clearwater Beach FL February 2-5, 2009 Report Documentation Page Form ApprovedOMB No. 0704-0188...S) AND ADDRESS(ES) TDA Research Inc, Wheat Ridge,CO,80033 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING AGENCY NAME(S) AND...DTL-24441 Rust /corrosion removed (in bottom half of panel) to look for undergrowth No corrosion undergrowth, clean scribe Coating scraped to look for
Zhang, Jiarui; Wang, Fei; Liang, Fang; Zhang, Yanjun; Ma, Lisong; Wang, Haiyan; Liu, Daqun
2018-05-04
Plants have evolved multifaceted defence mechanisms to resist pathogen infection. Production of the pathogenesis-related (PR) proteins in response to pathogen attack has been implicated in plant disease resistance specialized in systemic-acquired resistance (SAR). Our earlier studies have reported that a full length TaLr35PR5 gene, encoding a protein exhibiting amino acid and structural similarity to a sweet protein thaumatin, was isolated from wheat near-isogenic line TcLr35. The present study aims to understand the function of TaLr35PR5 gene in Lr35-mediated adult resistance to Puccinia triticina. We determined that the TaLr35PR5 protein contained a functional secretion peptide by utilizing the yeast signal sequence trap system. Using a heterologous expression assay on onion epidermal cells we found that TaLr35PR5 protein was secreted into the apoplast of onion cell. Expression of TaLr35PR5 was significantly reduced in BSMV-induced gene silenced wheat plants, and pathology test on these silenced plants revealed that Lr35-mediated resistance phenotype was obviously altered, indicating that Lr35-mediated resistance was compromised. All these findings strongly suggest that TaLr35PR5 is involved in Lr35-mediated adult wheat defense in response to leaf rust attack.
Antibiotic Treatment of Blister Rust Cankers in Eastern White Pine
William R. Phelps; Ray Weber
1970-01-01
Cycloheximide (Acti-dione) and Phytoactin antibiotics, applied as basal stem treatments, aerial spray treatments, and complete foliar drenches were not effective in controlling blister rust cankers in eastern white pine. Cycloheximide was effective in suppressing canker activity and growth if directly applied to scarified cankers.
Adhikari, Subodh; Seipel, Tim; Menalled, Fabian D; Weaver, David K
2018-03-26
Cephus cinctus infestation causes $350 million in annual losses in the Northern Great Plains. We compared infestation and parasitism of C. cinctus in spring (including Kamut; Triticum turgidum ssp. turanicum) and winter wheat cultivars grown in organic and conventional fields in Montana, USA. In the greenhouse, we compared C. cinctus preference and survival in Kamut, Gunnison, and Reeder spring wheat cultivars. Stems cut by C. cinctus varied by farming system and the seasonality of the wheat crop. No stems of Kamut in organic fields were cut by C. cinctus, but 1.5% [±0.35% standard error (SE)] of stems in conventional spring wheat, 5% (±0.70% SE) of stems in organic winter wheat, and 20% (±0.93% SE) of stems in conventional winter wheat fields were cut by C. cinctus. More larvae of C. cinctus were parasitized in organic (27 ± 0.03% SE) compared with conventional (5 ± 0.01% SE) winter wheat fields. Cephus cinctus oviposition, survival, and the number of stems cut were lowest in Kamut compared with Gunnison and Reeder. Cephus cinctus infestation was more common in winter wheat than in spring wheat. Organic fields with fewer cut stems also supported more parasitoids. Kamut is a genetic resource for developing C. cinctus-resistant cultivars. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.
Nonhost resistance to rust pathogens - a continuation of continua.
Bettgenhaeuser, Jan; Gilbert, Brian; Ayliffe, Michael; Moscou, Matthew J
2014-01-01
The rust fungi (order: Pucciniales) are a group of widely distributed fungal plant pathogens, which can infect representatives of all vascular plant groups. Rust diseases significantly impact several crop species and considerable research focuses on understanding the basis of host specificity and nonhost resistance. Like many pathogens, rust fungi vary considerably in the number of hosts they can infect, such as wheat leaf rust (Puccinia triticina), which can only infect species in the genera Triticum and Aegilops, whereas Asian soybean rust (Phakopsora pachyrhizi) is known to infect over 95 species from over 42 genera. A greater understanding of the genetic basis determining host range has the potential to identify sources of durable resistance for agronomically important crops. Delimiting the boundary between host and nonhost has been complicated by the quantitative nature of phenotypes in the transition between these two states. Plant-pathogen interactions in this intermediate state are characterized either by (1) the majority of accessions of a species being resistant to the rust or (2) the rust only being able to partially complete key components of its life cycle. This leads to a continuum of disease phenotypes in the interaction with different plant species, observed as a range from compatibility (host) to complete immunity within a species (nonhost). In this review we will highlight how the quantitative nature of disease resistance in these intermediate interactions is caused by a continuum of defense barriers, which a pathogen needs to overcome for successfully establishing itself in the host. To illustrate continua as this underlying principle, we will discuss the advances that have been made in studying nonhost resistance towards rust pathogens, particularly cereal rust pathogens.
Nonhost resistance to rust pathogens – a continuation of continua
Bettgenhaeuser, Jan; Gilbert, Brian; Ayliffe, Michael; Moscou, Matthew J.
2014-01-01
The rust fungi (order: Pucciniales) are a group of widely distributed fungal plant pathogens, which can infect representatives of all vascular plant groups. Rust diseases significantly impact several crop species and considerable research focuses on understanding the basis of host specificity and nonhost resistance. Like many pathogens, rust fungi vary considerably in the number of hosts they can infect, such as wheat leaf rust (Puccinia triticina), which can only infect species in the genera Triticum and Aegilops, whereas Asian soybean rust (Phakopsora pachyrhizi) is known to infect over 95 species from over 42 genera. A greater understanding of the genetic basis determining host range has the potential to identify sources of durable resistance for agronomically important crops. Delimiting the boundary between host and nonhost has been complicated by the quantitative nature of phenotypes in the transition between these two states. Plant–pathogen interactions in this intermediate state are characterized either by (1) the majority of accessions of a species being resistant to the rust or (2) the rust only being able to partially complete key components of its life cycle. This leads to a continuum of disease phenotypes in the interaction with different plant species, observed as a range from compatibility (host) to complete immunity within a species (nonhost). In this review we will highlight how the quantitative nature of disease resistance in these intermediate interactions is caused by a continuum of defense barriers, which a pathogen needs to overcome for successfully establishing itself in the host. To illustrate continua as this underlying principle, we will discuss the advances that have been made in studying nonhost resistance towards rust pathogens, particularly cereal rust pathogens. PMID:25566270
Registration of ‘Puma’ soft white winter wheat
USDA-ARS?s Scientific Manuscript database
Resistance to strawbreaker foot rot (caused by Oculimacula yallundae Crous & W. Gams and O. acuformis Crous & W. Gams), stripe rust (caused by Puccinia striiformis Westend. f. sp. tritici Eriks.), and Cephalosporium stripe (caused by Cephalosporium gramineum Nisikado and Ikata) are important traits ...
Du, Wanli; Wang, Jing; Wang, Liangming; Zhang, Jun; Chen, Xinhong; Zhao, Jixin; Yang, Qunhui; Wu, Jun
2013-01-01
The aim of this study was to characterize a Triticum aestivum-Psathyrostachys huashanica Keng (2n = 2x = 14, NsNs) disomic addition line 2-1-6-3. Individual line 2-1-6-3 plants were analyzed using cytological, genomic in situ hybridization (GISH), EST-SSR, and EST-STS techniques. The alien addition line 2-1-6-3 was shown to have two P. huashanica chromosomes, with a meiotic configuration of 2n = 44 = 22 II. We tested 55 EST-SSR and 336 EST-STS primer pairs that mapped onto seven different wheat chromosomes using DNA from parents and the P. huashanica addition line. One EST-SSR and nine EST-STS primer pairs indicated that the additional chromosome of P. huashanica belonged to homoeologous group 7, the diagnostic fragments of five EST-STS markers (BE404955, BE591127, BE637663, BF482781 and CD452422) were cloned, sequenced and compared. The results showed that the amplified polymorphic bands of P. huashanica and disomic addition line 2-1-6-3 shared 100% sequence identity, which was designated as the 7Ns disomic addition line. Disomic addition line 2-1-6-3 was evaluated to test the leaf rust resistance of adult stages in the field. We found that one pair of the 7Ns genome chromosomes carried new leaf rust resistance gene(s). Moreover, wheat line 2-1-6-3 had a superior numbers of florets and grains per spike, which were associated with the introgression of the paired P. huashanica chromosomes. These high levels of disease resistance and stable, excellent agronomic traits suggest that this line could be utilized as a novel donor in wheat breeding programs. PMID:23976963
Bryant, Ruth R M; McGrann, Graham R D; Mitchell, Alice R; Schoonbeek, Henk-Jan; Boyd, Lesley A; Uauy, Cristobal; Dorling, Steve; Ridout, Christopher J
2014-01-08
Rust diseases are of major importance in wheat production worldwide. With the constant evolution of new rust strains and their adaptation to higher temperatures, consistent and durable disease resistance is a key challenge. Environmental conditions affect resistance gene performance, but the basis for this is poorly understood. Here we show that a change in day temperature affects wheat resistance to Puccinia striiformis f. sp tritici (Pst), the causal agent of yellow (or stripe) rust. Using adult plants of near-isogenic lines UC1041 +/- Yr36, there was no significant difference between Pst percentage uredia coverage in plants grown at day temperatures of 18°C or 25°C in adult UC1041 + Yr36 plants. However, when plants were transferred to the lower day temperature at the time of Pst inoculation, infection increased up to two fold. Interestingly, this response was independent of Yr36, which has previously been reported as a temperature-responsive resistance gene as Pst development in adult UC1041 -Yr36 plants was similarly affected by the plants experiencing a temperature reduction. In addition, UC1041 -Yr36 plants grown at the lower temperature then transferred to the higher temperature were effectively resistant and a temperature change in either direction was shown to affect Pst development up to 8 days prior to inoculation. Results for seedlings were similar, but more variable compared to adult plants. Enhanced resistance to Pst was observed in seedlings of UC1041 and the cultivar Shamrock when transferred to the higher temperature. Resistance was not affected in seedlings of cultivar Solstice by a temperature change in either direction. Yr36 is effective at 18°C, refining the lower range of temperature at which resistance against Pst is conferred compared to previous studies. Results reveal previously uncharacterised defence temperature sensitivity in the UC1041 background which is caused by a change in temperature and independently of Yr36. This novel phenotype is present in some cultivars but absent in others, suggesting that Pst defence may be more stable in some cultivars than others when plants are exposed to varying temperatures.
Zhang, Peng; Hiebert, Colin W; McIntosh, Robert A; McCallum, Brent D; Thomas, Julian B; Hoxha, Sami; Singh, Davinder; Bansal, Urmil
2016-03-01
Genetic and mutational analyses of wheat leaf rust resistance gene Lr13 and hybrid necrosis gene Ne2 m indicated that they are the same gene. Hybrid necrosis in wheat characterized by chlorosis and eventual necrosis of plant tissues in certain wheat hybrids is controlled by the interaction of complementary dominant genes Ne1 and Ne2 located on chromosome arms 5BL and 2BS, respectively. Multiple alleles at each locus can be identified by differences in necrotic phenotypes when varieties are crossed with a fixed accession of the other genotype. Some of at least five Ne2 alleles were described as s (strong), m (medium) and w (weak); alleles of Ne1 were similarly described. Ne2m causes moderate necrosis in hybrids with genotypes having Ne1s. Ne2 is located on chromosome arm 2BS in close proximity to Lr13. Most wheat lines with Ne2m carry Lr13, and all wheat lines with Lr13 appear to carry Ne2m. To further dissect the relationship between Lr13 and Ne2m, more than 350 crosses were made between cv. Spica (Triticum aestivum) or Kubanka (T. durum) carrying Ne1s and recombinant inbred lines or doubled haploid lines from three crosses segregating for Lr13. F1 plants from lines carrying Lr13 crossed with Spica (Ne1s) always showed progressive necrosis; those lacking Lr13 did not. Four wheat cultivars/lines carrying Lr13 were treated with the mutagen EMS. Thirty-five susceptible mutants were identified; eight were distinctly less glaucous and late maturing indicative of chromosome 2B or sub-chromosome loss. Hybrids of phenotypically normal Lr13 mutant plants crossed with Spica did not produce symptoms of hybrid necrosis. Thus, Lr13 and one particular Ne2m allele may be the same gene.
USDA-ARS?s Scientific Manuscript database
The common barberry and several other Berberis spp. serve as the alternate hosts to two important rust pathogens of small grains and grasses, Puccinia graminis and P. striiformis. Barberry eradication has been practiced for centuries as a means to control stem rust. Diverse virulence variations have...
J. B. Runyon; W. L. Morrill; D. K. Weaver; P. R. Miller
2002-01-01
We evaluated wheat stem sawfly, Cephus cinctus Norton, parasitism, infestation, and sawfly-cut stems in wheat fields bordering intensely tilled (no visible stubble residue), minimally tilled (>75% stubble residue visible), and untilled (chemical fallow, herbicide fallow management) summer fallow fields in north-central and south-central Montana....
USDA-ARS?s Scientific Manuscript database
The wheat stem sawfly (Cephus cinctus, Norton), has become a destructive pest of cereal crops in the Northern Great Plains, including: Montana, North Dakota, South Dakota, Minnesota, Saskatchewan, Alberta, and Manitoba. Wheat stem sawflies (WSS) typically infest wheat (Triticum sp.), but they also d...
Bohland, C.; Balkenhohl, T.; Loers, G.; Feussner, I.; Grambow, H. J.
1997-01-01
A glycopeptide elicitor prepared from germ tubes of the rust fungus Puccinia graminis Pers. f. sp. tritici Erikss. & Henn (Pgt), as well as chitin oligosaccharides, chitosan, and methyl jasmonate (MJ) stimulated lipoxygenase (LOX) activity (E.C. 1.13.11.12) in wheat (Triticum aestivum) leaves. Immunoblot analysis using anti-LOX antibodies revealed the induction of 92- and 103-kD LOX species after Pgt elicitor treatment. In contrast, MJ treatment led to a significant increase of a 100-kD LOX species, which was also detected at lower levels in control plants. The effects of chitin oligomers and chitosan resembled those caused by MJ. In conjunction with other observations the results suggest that separate reaction cascades exist, and that jasmonates may not be involved in Pgt elicitor action. LOX-92 appears to be mainly responsible for the increase in LOX activity after Pgt elicitor treatment because its appearance on western blots coincided with high LOX activity in distinct anion-exchange chromatography fractions. It is most active at pH 5.5 to 6.0, and product formation from linoleic and [alpha]-linolenic acid is clearly in favor of the 9-LOOHs. It is interesting that a 92-kD LOX species, which seems to correspond to the Pgt elicitor-induced LOX species, was also detected in rust-inoculated leaves. PMID:12223735
Effect of wheat stem sawfly damage on yield and quality of selected Canadian spring wheat.
Beres, B L; Cárcamo, H A; Byers, J R
2007-02-01
The wheat stem sawfly, Cephus cinctus Norton (Hymenoptera: Cephidae), has reached outbreak status at most locations in the southern Canadian prairies. Solid-stemmed wheat, Triticum aestivum L., cultivars, which are less susceptible to damage, remain the primary management option. This article quantifies the effect of wheat stem sawfly damage on grain yield and quality at harvest and determines how cultivar selection affects harvest losses. Solid-stemmed cultivars were compared with hollow-stemmed cultivars and with blends of a 1:1 ratio of each. The hollow-stemmed cultivars with the exception of'McKenzie', which had intermediate levels of stem cutting, were all significantly more susceptible to stem cutting than solid-stemmed cultivars. Cultivar blends had lower damage but were still significantly higher than the solid-stemmed cultivars. The solid-stemmed 'AC Eatonia' and 'AC Abbey' had the lowest levels of stem cutting and ranked second and third overall for yield in 2001 and 2002. McKenzie ranked first, which reflects its yield potential in combination with its partial resistance to stem cutting. Lower cutting in AC Eatonia, AC Abbey, McKenzie, and the blend of AC Abbey/ McKenzie was significantly correlated with lower grain losses. Grain lost at harvest has major economic implications if sawfly pressure is moderate to high and susceptible cultivars predominate.
Delaney, Kevin J; Weaver, David K; Peterson, Robert K D
2010-04-01
The impact of herbivory on plants is variable and influenced by several factors. The current study examined causes of variation in the impact of larval stem mining by the wheat stem sawfly, Cephus cinctus Norton (Hymenoptera: Cephidae), on spring wheat, Triticum aestivum L. We performed greenhouse experiments over 2 yr to (1) study whether biotic (hollow versus solid stemmed host wheat) and abiotic (water, phosphorus stress) factors interact with C. cinctus stem mining to influence degree of mined stem physiological (photosynthesis) and yield (grain weight) reductions; and (2) determine whether whole plant yield compensatory responses occur to offset stem-mining reductions. Flag leaf photosynthetic reduction was not detected 16-20 d after infestation, but were detected at 40-42 d and doubled from water or phosphorus stresses. Main stem grain weight decreased from 10 to 25% from stem mining, largely due to reductions in grain size, with greater reductions under low phosphorus and/or water levels. Phosphorus-deficient plants without water stress were most susceptible to C. cinctus, more than doubling the grain weight reduction due to larval feeding relative to other water and phosphorus treatments. Two solid stemmed varieties with stem mining had less grain weight loss than a hollow stemmed variety, so greater internal mechanical resistance may reduce larval stem mining and plant yield reductions. Our results emphasize the importance of sufficient water and macronutrients for plants grown in regions impacted by C. cinctus. Also, solid stemmed varieties not only reduce wheat lodging from C. cinctus, they may reduce harvested grain losses from infested stems.
Perceptions on Social Networking: A Study on Their Operational Relevance for the Navy
2010-03-01
in a shared network. VIRT would essentially isolate the “ wheat from the chaff” and present the warfighter with only the relevant tactical...Socialnomics: How social media transforms the way we live and do Business. Hoboken, NJ: Wiley. Rust , S. M. (2006). Collaborative network evolution
Virulence Phenotypes and Molecular Genotypes of Puccinia triticina Isolates from Italy
USDA-ARS?s Scientific Manuscript database
Twenty-four isolates of Puccinia triticina from Italy were characterized for virulence to seedlings of 22 common wheat cv. Thatcher isolines each with a different leaf rust resistance gene, and for molecular genotypes at 15 simple sequence repeat (SSR) loci. The isolates were compared with a set of ...
USDA-ARS?s Scientific Manuscript database
Rhodomyrtus tomentosa (Aiton) Hassk. (downy-rose myrtle, Family: Myrtaceae) of south Asian origin is an invasive shrub that has formed monotypic stands in Florida. During the winter and spring of 2010-2012, a rust disease of epiphytotic proportion was observed on young foliage, stem terminals and i...
Fusiform Rust of Southern Pines
W. R. Phelps; F. L. Czabator
1978-01-01
Fusiform rust, caused by the fungus Cronartium fusiforme Hedg. & Hunt ex Cumm., is distributed in the Southern United States from Maryland to Florida and west to Texas and southern Arkansas. Infections by the fungus, which develops at or near the point of infection, result in tapered, spindle-shaped swells, called galls, on branches and stems of pines. (see photo...
Qureshi, Naeela; Bariana, Harbans; Kumran, Vikas Venu; Muruga, Sivasamy; Forrest, Kerrie L; Hayden, Mathew J; Bansal, Urmil
2018-05-01
A new leaf rust resistance gene Lr79 has been mapped in the long arm of chromosome 3B and a linked marker was identified for marker-assisted selection. Aus26582, a durum wheat landrace from the A. E. Watkins Collection, showed seedling resistance against durum-specific and common wheat-specific Puccinia triticina (Pt) pathotypes. Genetic analysis using a recombinant inbred line (RIL) population developed from a cross between Aus26582 and the susceptible parent Bansi with Australian Pt pathotype showed digenic inheritance and the underlying loci were temporarily named LrAW2 and LrAW3. LrAW2 was located in chromosome 6BS and this study focused on characterisation of LrAW3 using RILs lacking LrAW2. LrAW3 was incorporated into the DArTseq map of Aus26582/Bansi and was located in chromosome 3BL. Markers linked with LrAW3 were developed from the chromosome survey sequence contig 3B_10474240 in which closely-linked DArTseq markers 1128708 and 3948563 were located. Although bulk segregant analysis (BSA) with the 90 K Infinium array identified 51 SNPs associated with LrAW3, only one SNP-derived KASP marker mapped close to the locus. Deletion bin mapping of LrAW3-linked markers located LrAW3 between bins 3BL11-0.85-0.90 and 3BL7-0.63. Since no other all stage leaf rust resistance gene is located in chromosome 3BL, LrAW3 represented a new locus and was designated Lr79. Marker sun786 mapped 1.8 cM distal to Lr79 and Aus26582 was null for this locus. However, the marker can be reliably scored as it also amplifies a monomorphic fragment that serves as an internal control to differentiate the null status of Aus26582 from reaction failure. This marker was validated among a set of durum and common wheat cultivars and was shown to be useful for marker-assisted selection of Lr79 at both ploidy levels.
A review of wheat diseases-a field perspective.
Figueroa, Melania; Hammond-Kosack, Kim E; Solomon, Peter S
2018-06-01
Wheat is one of the primary staple foods throughout the planet. Significant yield gains in wheat production over the past 40 years have resulted in a steady balance of supply versus demand. However, predicted global population growth rates and dietary changes mean that substantial yield gains over the next several decades will be needed to meet this escalating demand. A key component to meeting this challenge is better management of fungal incited diseases, which can be responsible for 15%-20% yield losses per annum. Prominent diseases of wheat that currently contribute to these losses include the rusts, blotches and head blight/scab. Other recently emerged or relatively unnoticed diseases, such as wheat blast and spot blotch, respectively, also threaten grain production. This review seeks to provide an overview of the impact, distribution and management strategies of these diseases. In addition, the biology of the pathogens and the molecular basis of their interaction with wheat are discussed. © 2017 BSPP AND JOHN WILEY & SONS LTD.
A Plant Gene Up-Regulated at Rust Infection Sites
Ayliffe, Michael A.; Roberts, James K.; Mitchell, Heidi J.; Zhang, Ren; Lawrence, Gregory J.; Ellis, Jeffrey G.; Pryor, Tony J.
2002-01-01
Expression of the fis1 gene from flax (Linum usitatissimum) is induced by a compatible rust (Melampsora lini) infection. Infection of transgenic plants containing a β-glucuronidase (GUS) reporter gene under the control of the fis1 promoter showed that induction is highly localized to those leaf mesophyll cells within and immediately surrounding rust infection sites. The level of induction reflects the extent of fungal growth. In a strong resistance reaction, such as the hypersensitive fleck mediated by the L6 resistance gene, there is very little fungal growth and a microscopic level of GUS expression. Partially resistant flax leaves show levels of GUS expression that were intermediate to the level observed in the fully susceptible infection. Sequence and deletion analysis using both transient Agrobacterium tumefaciens expression and stable transformation assays have shown that the rust-inducible fis1 promoter is contained within a 580-bp fragment. Homologs of fis1 were identified in expressed sequence tag databases of a range of plant species including dicots, monocots, and a gymnosperm. Homologous genes isolated from maize (Zea mays; mis1), barley (Hordeum vulgare; bis1), wheat (Triticum aestivum; wis1), and Arabidopsis encode proteins that are highly similar (76%–82%) to the FIS1 protein. The Arabidopsis homologue has been reported to encode a Δ1-pyrroline-5-carboxylate dehydrogenase that is involved in the catabolism of proline to glutamate. RNA-blot analysis showed that mis1 in maize and the bis1 homolog in barley are both up-regulated by a compatible infection with the corresponding species-specific rust. The rust-induced genes homologous to fis1 are present in many plants. The promoters of these genes have potential roles for the engineering of synthetic rust resistance genes by targeting transgene expression to the sites of rust infection. PMID:12011348
Franco, Sulamita de Freitas; Baroni, Renata Moro; Carazzolle, Marcelo Falsarella; Teixeira, Paulo José Pereira Lima; Reis, Osvaldo; Pereira, Gonçalo Amarante Guimarães; Mondego, Jorge Maurício Costa
2015-10-30
Thaumatin-like proteins (TLPs) are found in diverse eukaryotes. Plant TLPs, known as Pathogenicity Related Protein (PR-5), are considered fungal inhibitors. However, genes encoding TLPs are frequently found in fungal genomes. In this work, we have identified that Moniliophthora perniciosa, a basidiomycete pathogen that causes the Witches' Broom Disease (WBD) of cacao, presents thirteen putative TLPs from which four are expressed during WBD progression. One of them is similar to small TLPs, which are present in phytopathogenic basidiomycete, such as wheat stem rust fungus Puccinia graminis. Fungi genomes annotation and phylogenetic data revealed a larger number of TLPs in basidiomycetes when comparing with ascomycetes, suggesting that these proteins could be involved in specific traits of mushroom-forming species. Based on the present data, we discuss the contribution of TLPs in the combat against fungal competitors and hypothesize a role of these proteins in M. perniciosa pathogenicity. Copyright © 2015 Elsevier Inc. All rights reserved.
Gupta, Om Prakash; Permar, Vipin; Koundal, Vikas; Singh, Uday Dhari; Praveen, Shelly
2012-02-01
Plants have evolved diverse mechanism to recognize pathogen attack and triggers defense responses. These defense responses alter host cellular function regulated by endogenous, small, non-coding miRNAs. To understand the mechanism of miRNAs regulated cellular functions during stem rust infection in wheat, we investigated eight different miRNAs viz. miR159, miR164, miR167, miR171, miR444, miR408, miR1129 and miR1138, involved in three different independent cellular defense response to infection. The investigation reveals that at the initiation of disease, accumulation of miRNAs might be playing a key role in hypersensitive response (HR) from host, which diminishes at the maturation stage. This suggests a possible host-fungal synergistic relation leading to susceptibility. Differential expression of these miRNAs in presence and absence of R gene provides a probable explanation of miRNA regulated R gene mediated independent pathways.
USDA-ARS?s Scientific Manuscript database
The stripe rust pathogen, Puccinia striiformis f. sp. tritici (Pst), frequently causes significant yield losses in China, due to rapid development of new races that overcome resistance in wheat cultivars. Indirect evidence suggests that sexual reproduction occurs in the Pst population in China, but...
USDA-ARS?s Scientific Manuscript database
Puccinia striiformis f. sp. tritici (Pst) causes stripe rust, one of the most important diseases of wheat worldwide. To identify Pst genes involved in infection and sporulation, a custom oligonucleotide Genechip was made using sequences of 442 genes selected from Pst cDNA libraries. Microarray analy...
Planting data and wheat yield models. [Kansas, South Dakota, and U.S.S.R.
NASA Technical Reports Server (NTRS)
Feyerherm, A. M. (Principal Investigator)
1977-01-01
The author has identified the following significant results. A variable date starter model for spring wheat depending on temperature was more precise than a fixed date model. The same conclusions for fall-planted wheat were not reached. If the largest and smallest of eight temperatures were used to estimate daily maximum and minimum temperatures; respectively, a 1-4 F bias would be introduced into these extremes. For Kansas, a reduction of 0.5 bushels/acre in the root-mean-square-error between model and SRS yields was achieved by a six fold increase (7 to 42) in the density of weather stations. An additional reduction of 0.3 b/A was achieved by incorporating losses due to rusts in the model.
Moscou, Matthew J; Lauter, Nick; Steffenson, Brian; Wise, Roger P
2011-07-01
Stem rust (Puccinia graminis f. sp. tritici; Pgt) is a devastating fungal disease of wheat and barley. Pgt race TTKSK (isolate Ug99) is a serious threat to these Triticeae grain crops because resistance is rare. In barley, the complex Rpg-TTKSK locus on chromosome 5H is presently the only known source of qualitative resistance to this aggressive Pgt race. Segregation for resistance observed on seedlings of the Q21861 × SM89010 (QSM) doubled-haploid (DH) population was found to be predominantly qualitative, with little of the remaining variance explained by loci other than Rpg-TTKSK. In contrast, analysis of adult QSM DH plants infected by field inoculum of Pgt race TTKSK in Njoro, Kenya, revealed several additional quantitative trait loci that contribute to resistance. To molecularly characterize these loci, Barley1 GeneChips were used to measure the expression of 22,792 genes in the QSM population after inoculation with Pgt race TTKSK or mock-inoculation. Comparison of expression Quantitative Trait Loci (eQTL) between treatments revealed an inoculation-dependent expression polymorphism implicating Actin depolymerizing factor3 (within the Rpg-TTKSK locus) as a candidate susceptibility gene. In parallel, we identified a chromosome 2H trans-eQTL hotspot that co-segregates with an enhancer of Rpg-TTKSK-mediated, adult plant resistance discovered through the Njoro field trials. Our genome-wide eQTL studies demonstrate that transcript accumulation of 25% of barley genes is altered following challenge by Pgt race TTKSK, but that few of these genes are regulated by the qualitative Rpg-TTKSK on chromosome 5H. It is instead the chromosome 2H trans-eQTL hotspot that orchestrates the largest inoculation-specific responses, where enhanced resistance is associated with transcriptional suppression of hundreds of genes scattered throughout the genome. Hence, the present study associates the early suppression of genes expressed in this host-pathogen interaction with enhancement of R-gene mediated resistance.
Moscou, Matthew J.; Lauter, Nick; Steffenson, Brian; Wise, Roger P.
2011-01-01
Stem rust (Puccinia graminis f. sp. tritici; Pgt) is a devastating fungal disease of wheat and barley. Pgt race TTKSK (isolate Ug99) is a serious threat to these Triticeae grain crops because resistance is rare. In barley, the complex Rpg-TTKSK locus on chromosome 5H is presently the only known source of qualitative resistance to this aggressive Pgt race. Segregation for resistance observed on seedlings of the Q21861 × SM89010 (QSM) doubled-haploid (DH) population was found to be predominantly qualitative, with little of the remaining variance explained by loci other than Rpg-TTKSK. In contrast, analysis of adult QSM DH plants infected by field inoculum of Pgt race TTKSK in Njoro, Kenya, revealed several additional quantitative trait loci that contribute to resistance. To molecularly characterize these loci, Barley1 GeneChips were used to measure the expression of 22,792 genes in the QSM population after inoculation with Pgt race TTKSK or mock-inoculation. Comparison of expression Quantitative Trait Loci (eQTL) between treatments revealed an inoculation-dependent expression polymorphism implicating Actin depolymerizing factor3 (within the Rpg-TTKSK locus) as a candidate susceptibility gene. In parallel, we identified a chromosome 2H trans-eQTL hotspot that co-segregates with an enhancer of Rpg-TTKSK-mediated, adult plant resistance discovered through the Njoro field trials. Our genome-wide eQTL studies demonstrate that transcript accumulation of 25% of barley genes is altered following challenge by Pgt race TTKSK, but that few of these genes are regulated by the qualitative Rpg-TTKSK on chromosome 5H. It is instead the chromosome 2H trans-eQTL hotspot that orchestrates the largest inoculation-specific responses, where enhanced resistance is associated with transcriptional suppression of hundreds of genes scattered throughout the genome. Hence, the present study associates the early suppression of genes expressed in this host–pathogen interaction with enhancement of R-gene mediated resistance. PMID:21829384
Lin, F; Chen, X M
2007-05-01
Stripe rust, caused by Puccinia striiformis f. sp. tritici, is one of the most widespread and destructive wheat diseases worldwide. Growing resistant cultivars is the preferred control of the disease. The spring wheat cultivar 'Alpowa' has both race-specific, all-stage resistance and non-race-specific, high-temperature adult-plant (HTAP) resistances to stripe rust. To identify genes for the stripe rust resistances, Alpowa was crossed with 'Avocet Susceptible' (AVS). Seedlings of the parents, and F(1), F(2) and F(3) progeny were tested with races PST-1 and PST-21 of P. striiformis f. sp. tritici under controlled greenhouse conditions. Alpowa has a single partially dominant gene, designated as YrAlp, conferring all-stage resistance. Resistance gene analog polymorphism (RGAP) and simple sequence repeat (SSR) techniques were used to identify molecular markers linked to YrAlp. A linkage group of five RGAP markers and two SSR markers was constructed for YrAlp using 136 F(3) lines. Amplification of a set of nulli-tetrasomic Chinese Spring lines with RGAP markers Xwgp47 and Xwgp48 and the two SSR markers indicated that YrAlp is located on the short arm of chromosome 1B. To map quantitative trait loci (QTLs) for the non-race-specific HTAP resistance, the parents and 136 F(3) lines were tested at two sites near Pullman and one site near Mount Vernon, Washington, under naturally infected conditions. A major HTAP QTL was consistently detected across environments and was located on chromosome 7BL. Because of its chromosomal location and the non-race-specific nature of the HTAP resistance, this gene is different from previously described genes for adult-plant resistance, and is therefore designated Yr39. The gene contributed to 64.2% of the total variation of relative area under disease progress curve (AUDPC) data and 59.1% of the total variation of infection type data recorded at the heading-flowering stages. Two RGAP markers, Xwgp36 and Xwgp45 with the highest R (2) values were closely linked to Yr39, should be useful for incorporation of the non-race-specific resistance gene into new cultivars and for combining Yr39 with other genes for durable and high-level resistance.
M. B. Rayamajhi; P. D. Pratt; N. B. Klopfenstein; A. L. Ross-Davis; L. Rodgers
2013-01-01
Rhodomyrtus tomentosa (Aiton) Hassk. (downy-rose myrtle, family: Myrtaceae), of South Asian origin, is an invasive shrub that has formed monotypic stands in Florida (3). During the winter and spring of 2010 through 2012, a rust disease of epiphytotic proportion was observed on young foliage, stem terminals, and immature fruits of this shrub in natural areas of Martin...
Oiestad, A J; Martin, J M; Cook, J; Varella, A C; Giroux, M J
2017-07-01
The wheat stem sawfly (WSS) is an economically important pest of wheat in the Northern Great Plains. The primary means of WSS control is resistance associated with the single quantitative trait locus (QTL) , which controls most stem solidness variation. The goal of this study was to identify stem solidness candidate genes via RNA-seq. This study made use of 28 single nucleotide polymorphism (SNP) makers derived from expressed sequence tags (ESTs) linked to contained within a 5.13 cM region. Allele specific expression of EST markers was examined in stem tissue for solid and hollow-stemmed pairs of two spring wheat near isogenic lines (NILs) differing for the QTL. Of the 28 ESTs, 13 were located within annotated genes and 10 had detectable stem expression. Annotated genes corresponding to four of the ESTs were differentially expressed between solid and hollow-stemmed NILs and represent possible stem solidness gene candidates. Further examination of the 5.13 cM region containing the 28 EST markers identified 260 annotated genes. Twenty of the 260 linked genes were up-regulated in hollow NIL stems, while only seven genes were up-regulated in solid NIL stems. An -methyltransferase within the region of interest was identified as a candidate based on differential expression between solid and hollow-stemmed NILs and putative function. Further study of these candidate genes may lead to the identification of the gene(s) controlling stem solidness and an increased ability to select for wheat stem solidness and manage WSS. Copyright © 2017 Crop Science Society of America.
Kruppa, Klaudia; Molnár-Láng, Márta
2016-01-01
Abstract Multicolour genomic in situ hybridization (mcGISH) using total genomic DNA probes from Thinopyrum bessarabicum (Săvulescu & Rayss, 1923) Á. Löve, 1984 (genome Jb or Eb, 2n = 14), and Pseudoroegneria spicata (Pursh, 1814) Á. Löve, 1980 (genome St, 2n = 14) was used to characterize the mitotic metaphase chromosomes of a synthetic hybrid of Thinopyrum intermedium (Host, 1805) Barkworth & D.R. Dewey, 1985 and Thinopyrum ponticum (Podpěra, 1902) Z.-W. Liu et R.-C.Wang, 1993 named „Agropyron glael” and produced by N.V. Tsitsin in the former Soviet Union. The mcGISH pattern of this synthetic hybrid was compared to its parental wheatgrass species. Hexaploid Thinopyrum intermedium contained 19 J, 9 JSt and 14 St chromosomes. The three analysed Thinopyrum ponticum accessions had different chromosome compositions: 43 J + 27 JSt (PI531737), 40 J + 30 JSt (VIR-44486) and 38 J + 32 JSt (D-3494). The synthetic hybrid carried 18 J, 28 JSt and 8 St chromosomes, including one pair of J-St translocation and/or decreased fluorescent intensity, resulting in unique hybridization patterns. Wheat line Mv9kr1 was crossed with the Thinopyrum intermedium × Thinopyrum ponticum synthetic hybrid in Hungary in order to transfer its advantageous agronomic traits (leaf rust and yellow rust resistance) into wheat. The chromosome composition of a wheat/A.glael F1 hybrid was 21 wheat + 28 wheatgrass (11 J + 14 JSt+ 3 S). In the present study, mcGISH involving the simultaneous use of St and J genomic DNA as probes provided information about the type of Thinopyrum chromosomes in a Thinopyrum intermedium/Thinopyrum ponticum synthetic hybrid called A. glael. PMID:27551349
Ren, Yan; Hou, Weixiu; Lan, Caixia; Basnet, Bhoja R.; Singh, Ravi P.; Zhu, Wei; Cheng, Xiyong; Cui, Dangqun; Chen, Feng
2017-01-01
CIMMYT wheat (Triticum aestivum L.) lines Francolin#1 and Quaiu#3 displayed effective and stable adult plant resistance (APR) to Chinese Blumeria graminis f. sp. tritici isolates in the field. To elucidate their genetic basis of resistance, two recombinant inbred line (RIL) populations of their crosses with Avocet, the susceptible parent, were phenotyped in Zhengzhou and Shangqiu in the 2014–2015 and 2015–2016 cropping seasons. These populations were also genotyped with SSR (simple sequence repeat markers) and DArT (diversity arrays technology) markers. Two common significant quantitative trait loci (QTL) on wheat chromosomes 1BL and 4BL were detected in both populations by joint and individual inclusive composite interval mapping, explaining 20.3–28.7% and 9.6–15.9% of the phenotypic variance in Avocet × Francolin#1 and 4.8–11.5% and 10.8–18.9% in Avocet × Quaiu#3, respectively. Additional QTL were mapped on chromosomes 1DL and 5BL in Avocet × Francolin#1 and on 2DL and 6BS in Avocet × Quaiu#3. Among these, QPm.heau-1DL is probably a novel APR gene contributing 6.1–8.5% of total phenotypic variance. The QTL on 1BL corresponds to the pleiotropic multi-pathogen resistance gene Yr29/Lr46/Pm39, whereas the QTL on 2DL maps to a similar region where stripe rust resistance gene Yr54 is located. The QTL identified can potentially be used for the improvement of powdery mildew and rust resistance in wheat breeding. PMID:28798752
Wang, Xiaodong; Wang, Xiaojie; Deng, Lin; Chang, Haitao; Dubcovsky, Jorge; Feng, Hao; Han, Qingmei; Huang, Lili; Kang, Zhensheng
2014-01-01
Subcellular localisation of SNAREs (soluble N-ethylmaleimide-sensitive factor attachment protein receptors) and their ability to form SNARE complexes are critical for determining the specificity of vesicle fusion. NPSN11, a Novel Plant SNARE (NPSN) gene, has been reported to be involved in the delivery of cell wall precursors to the newly formed cell plate during cytokinesis. However, functions of NPSN genes in plant–pathogen interactions are largely unknown. In this study, we cloned and characterized three NPSN genes (TaNPSN11, TaNPSN12, and TaNPSN13) and three plant defence-related SNARE homologues (TaSYP132, TaSNAP34, and TaMEMB12). TaSYP132 showed a highly specific interaction with TaNPSN11 in both yeast two-hybrid and bimolecular fluorescence complementation (BiFC) assays. We hypothesize that this interaction may indicate a partnership in vesicle trafficking. Expressions of the three TaNPSNs and TaSYP132 were differentially induced in wheat leaves when challenged by Puccinia striiformis f. sp. tritici (Pst). In virus-induced gene silencing (VIGS) assays, resistance of wheat (Triticum aestivum) cultivar Xingzi9104 to the Pst avirulent race CYR23 was reduced by knocking down TaNPSN11, TaNPSN13 and TaSYP132, but not TaNPSN12, implying diversified functions of these wheat SNARE homologues in prevention of Pst infection and hyphal elongation. Immuno-localization results showed that TaNPSN11 or its structural homologues were mainly distributed in vesicle structures near cell membrane toward Pst hypha. Taken together, our data suggests a role of TaNPSN11 in vesicle-mediated resistance to stripe rust. PMID:24963004
Muleta, Kebede T; Bulli, Peter; Zhang, Zhiwu; Chen, Xianming; Pumphrey, Michael
2017-11-01
Harnessing diversity from germplasm collections is more feasible today because of the development of lower-cost and higher-throughput genotyping methods. However, the cost of phenotyping is still generally high, so efficient methods of sampling and exploiting useful diversity are needed. Genomic selection (GS) has the potential to enhance the use of desirable genetic variation in germplasm collections through predicting the genomic estimated breeding values (GEBVs) for all traits that have been measured. Here, we evaluated the effects of various scenarios of population genetic properties and marker density on the accuracy of GEBVs in the context of applying GS for wheat ( L.) germplasm use. Empirical data for adult plant resistance to stripe rust ( f. sp. ) collected on 1163 spring wheat accessions and genotypic data based on the wheat 9K single nucleotide polymorphism (SNP) iSelect assay were used for various genomic prediction tests. Unsurprisingly, the results of the cross-validation tests demonstrated that prediction accuracy increased with an increase in training population size and marker density. It was evident that using all the available markers (5619) was unnecessary for capturing the trait variation in the germplasm collection, with no further gain in prediction accuracy beyond 1 SNP per 3.2 cM (∼1850 markers), which is close to the linkage disequilibrium decay rate in this population. Collectively, our results suggest that larger germplasm collections may be efficiently sampled via lower-density genotyping methods, whereas genetic relationships between the training and validation populations remain critical when exploiting GS to select from germplasm collections. Copyright © 2017 Crop Science Society of America.
David K. Weaver; Micaela Buteler; Megan L. Hofland; Justin B. Runyon; Christian Nansen; Luther E. Talbert; Peggy Lamb; Gregg R. Carlson
2009-01-01
The wheat stem sawfly, Cephus cinctus Norton, causes severe losses in wheat grown in the northern Great Plains. Much of the affected area is planted in monoculture with wheat, Triticum aestivum L., grown in large fields alternating yearly between crop and no-till fallow. The crop and fallow fields are adjacent. This cropping landscape creates pronounced edge effects of...
Terracciano, Irma; Maccaferri, Marco; Bassi, Filippo; Mantovani, Paola; Sanguineti, Maria C; Salvi, Silvio; Simková, Hana; Doležel, Jaroslav; Massi, Andrea; Ammar, Karim; Kolmer, James; Tuberosa, Roberto
2013-04-01
Leaf rust (Puccinia triticina Eriks. & Henn.) is a major disease affecting durum wheat production. The Lr14a-resistant gene present in the durum wheat cv. Creso and its derivative cv. Colosseo is one of the best characterized leaf-rust resistance sources deployed in durum wheat breeding. Lr14a has been mapped close to the simple sequence repeat markers gwm146, gwm344 and wmc10 in the distal portion of the chromosome arm 7BL, a gene-dense region. The objectives of this study were: (1) to enrich the Lr14a region with single nucleotide polymorphisms (SNPs) and high-resolution melting (HRM)-based markers developed from conserved ortholog set (COS) genes and from sequenced Diversity Array Technology (DArT(®)) markers; (2) to further investigate the gene content and colinearity of this region with the Brachypodium and rice genomes. Ten new COS-SNP and five HRM markers were mapped within an 8.0 cM interval spanning Lr14a. Two HRM markers pinpointed the locus in an interval of <1.0 cM and eight COS-SNPs were mapped 2.1-4.1 cM distal to Lr14a. Each marker was tested for its capacity to predict the state of Lr14a alleles (in particular, Lr14-Creso associated to resistance) in a panel of durum wheat elite germplasm including 164 accessions. Two of the most informative markers were converted into KASPar(®) markers. Single assay markers ubw14 and wPt-4038-HRM designed for agarose gel electrophoresis/KASPar(®) assays and high-resolution melting analysis, respectively, as well as the double-marker combinations ubw14/ubw18, ubw14/ubw35 and wPt-4038-HRM-ubw35 will be useful for germplasm haplotyping and for molecular-assisted breeding.
Host plants of the wheat stem sawfly (Hymenoptera: Cephidae)
USDA-ARS?s Scientific Manuscript database
Wheat stem sawfly (Cephus cinctus Norton) is a pest of economic importance across much of the wheat cultivating areas of the western Great Plains as well as an ecologically important insect due to its wide range of grass hosts. Little research has been published involving the native host preference ...
Berlin, Anna; Samils, Berit; Andersson, Björn
2017-01-01
Cereal rust fungi ( Puccinia spp.) are among the most economically important plant pathogens. These fungi have a complex life cycle, including five spore stages and two hosts. They infect one grass host on which they reproduce clonally and cause the cereal rust diseases, while the alternate host is required for sexual reproduction. Although previous studies clearly demonstrate the importance of the alternate host in creating genetic diversity in cereal rust fungi, little is known about the amount of novel genotypes created in each successful completion of a sexual reproduction event. In this study, single sequence repeat markers were used to study the genotypic diversity within aecial clusters by genotyping individual aecial cups. Two common cereal rusts, Puccinia graminis causing stem rust and Puccinia coronata the causal agent of crown rust were investigated. We showed that under natural conditions, a single aecial cluster usually include several genotypes, either because a single pycnial cluster is fertilized by several different pycniospores, or because aecia within the cluster are derived from more than one fertilized adjoining pycnial cluster, or a combination of both. Our results imply that although sexual events in cereal rust fungi in most regions of the world are relatively rare, the events that occur may still significantly contribute to the genetic variation within the pathogen populations.
Cheng, Yulin; Wu, Kuan; Yao, Juanni; Li, Shumin; Wang, Xiaojie; Huang, Lili; Kang, Zhensheng
2017-05-01
During the infection of host plants, pathogens can deliver virulence-associated 'effector' proteins to promote plant susceptibility. However, little is known about effector function in the obligate biotrophic pathogen Puccinia striiformis f. sp. tritici (Pst) that is an important fungal pathogen in wheat production worldwide. Here, they report their findings on an in planta highly induced candidate effector from Pst, PSTha5a23. The PSTha5a23 gene is unique to Pst and shows a low level of intra-species polymorphism. It has a functional N-terminal signal peptide and is translocated to the host cytoplasm after infection. Overexpression of PSTha5a23 in Nicotiana benthamiana was found to suppress the programmed cell death triggered by BAX, PAMP-INF1 and two resistance-related mitogen-activated protein kinases (MKK1 and NPK1). Overexpression of PSTha5a23 in wheat also suppressed pattern-triggered immunity (PTI)-associated callose deposition. In addition, silencing of PSTha5a23 did not change Pst virulence phenotypes; however, overexpression of PSTha5a23 significantly enhanced Pst virulence in wheat. These results indicate that the Pst candidate effector PSTha5a23 plays an important role in plant defense suppression and rust pathogenicity, and also highlight the utility of gene overexpression in plants as a tool for studying effectors from obligate biotrophic pathogens. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.
2010-05-21
reduced the size of the Army to 23,010 and finally to a low of 11,000.73 A variety of military equipment from different countries sat rusting due to...and U.S. Policy,” 4. 40% unemployment rate; 80% of the population is involved in agriculture. Self-sufficiency in wheat production as of May 2009
2003-09-03
primarily grasslands.. Prior to the establishment of Travis AFB, the land was used for cattle grazing and dry-land wheat and barley farming. Cattle and...use has led to the rails becoming rusted . Soil and gravels have built up along the edges of the ties in some locations, or have eroded away in
Wang, Jian; Zhu, Jinmao; Huang, RuZhu; Yang, YuSheng
2012-07-01
We explored the rapid qualitative analysis of wheat cultivars with good lodging resistances by Fourier transform infrared resonance (FTIR) spectroscopy and multivariate statistical analysis. FTIR imaging showing that wheat stem cell walls were mainly composed of cellulose, pectin, protein, and lignin. Principal components analysis (PCA) was used to eliminate multicollinearity among multiple peak absorptions. PCA revealed the developmental internodes of wheat stems could be distributed from low to high along the load of the second principal component, which was consistent with the corresponding bands of cellulose in the FTIR spectra of the cell walls. Furthermore, four distinct stem populations could also be identified by spectral features related to their corresponding mechanical properties via PCA and cluster analysis. Histochemical staining of four types of wheat stems with various abilities to resist lodging revealed that cellulose contributed more than lignin to the ability to resist lodging. These results strongly suggested that the main cell wall component responsible for these differences was cellulose. Therefore, the combination of multivariate analysis and FTIR could rapidly screen wheat cultivars with good lodging resistance. Furthermore, the application of these methods to a much wider range of cultivars of unknown mechanical properties promises to be of interest.
USDA-ARS?s Scientific Manuscript database
he wheat stem sawfly, Cephus cinctus Norton (Hymenoptera: Cephidae), is a key pest of wheat in the northern Great Plains of North America, and damage by this species has recently expanded southward. Current pest management practices are not very effective and uncertainties regarding its origin and i...
Pushing the boundaries of resistance: insights from Brachypodium-rust interactions
Figueroa, Melania; Castell-Miller, Claudia V.; Li, Feng; Hulbert, Scot H.; Bradeen, James M.
2015-01-01
The implications of global population growth urge transformation of current food and bioenergy production systems to sustainability. Members of the family Poaceae are of particular importance both in food security and for their applications as biofuel substrates. For centuries, rust fungi have threatened the production of valuable crops such as wheat, barley, oat, and other small grains; similarly, biofuel crops can also be susceptible to these pathogens. Emerging rust pathogenic races with increased virulence and recurrent rust epidemics around the world point out the vulnerability of monocultures. Basic research in plant immunity, especially in model plants, can make contributions to understanding plant resistance mechanisms and improve disease management strategies. The development of the grass Brachypodium distachyon as a genetically tractable model for monocots, especially temperate cereals and grasses, offers the possibility to overcome the experimental challenges presented by the genetic and genomic complexities of economically valuable crop plants. The numerous resources and tools available in Brachypodium have opened new doors to investigate the underlying molecular and genetic bases of plant–microbe interactions in grasses and evidence demonstrating the applicability and advantages of working with B. distachyon is increasing. Importantly, several interactions between B. distachyon and devastating plant pathogens, such rust fungi, have been examined in the context of non-host resistance. Here, we discuss the use of B. distachyon in these various pathosystems. Exploiting B. distachyon to understand the mechanisms underpinning disease resistance to non-adapted rust fungi may provide effective and durable approaches to fend off these pathogens. The close phylogenetic relationship among Brachypodium spp. and grasses with industrial and agronomic value support harnessing this model plant to improve cropping systems and encourage its use in translational research. PMID:26284085
USDA-ARS?s Scientific Manuscript database
The wheat stripe rust pathogen (Puccinia striiformis f. sp. tritici, Pst) population in China has been reported to be a distinct genetic group with higher diversity than those in many other countries. Genetic recombination in the Pst population has been identified with molecular markers, but whethe...
1980-11-03
away seasonally (Delorme 1955). Plants cultivated included Indian corn, potatoes, tobacco, barley , and a bearded variety of wheat (Robinson 1966). The...informed the authors that V some indications of the plant structures and rusted machinery were still visible on the site when she last visited the area
SNP Discovery for mapping alien introgressions in wheat
2014-01-01
Background Monitoring alien introgressions in crop plants is difficult due to the lack of genetic and molecular mapping information on the wild crop relatives. The tertiary gene pool of wheat is a very important source of genetic variability for wheat improvement against biotic and abiotic stresses. By exploring the 5Mg short arm (5MgS) of Aegilops geniculata, we can apply chromosome genomics for the discovery of SNP markers and their use for monitoring alien introgressions in wheat (Triticum aestivum L). Results The short arm of chromosome 5Mg of Ae. geniculata Roth (syn. Ae. ovata L.; 2n = 4x = 28, UgUgMgMg) was flow-sorted from a wheat line in which it is maintained as a telocentric chromosome. DNA of the sorted arm was amplified and sequenced using an Illumina Hiseq 2000 with ~45x coverage. The sequence data was used for SNP discovery against wheat homoeologous group-5 assemblies. A total of 2,178 unique, 5MgS-specific SNPs were discovered. Randomly selected samples of 59 5MgS-specific SNPs were tested (44 by KASPar assay and 15 by Sanger sequencing) and 84% were validated. Of the selected SNPs, 97% mapped to a chromosome 5Mg addition to wheat (the source of t5MgS), and 94% to 5Mg introgressed from a different accession of Ae. geniculata substituting for chromosome 5D of wheat. The validated SNPs also identified chromosome segments of 5MgS origin in a set of T5D-5Mg translocation lines; eight SNPs (25%) mapped to TA5601 [T5DL · 5DS-5MgS(0.75)] and three (8%) to TA5602 [T5DL · 5DS-5MgS (0.95)]. SNPs (gsnp_5ms83 and gsnp_5ms94), tagging chromosome T5DL · 5DS-5MgS(0.95) with the smallest introgression carrying resistance to leaf rust (Lr57) and stripe rust (Yr40), were validated in two released germplasm lines with Lr57 and Yr40 genes. Conclusion This approach should be widely applicable for the identification of species/genome-specific SNPs. The development of a large number of SNP markers will facilitate the precise introgression and monitoring of alien segments in crop breeding programs and further enable mapping and cloning novel genes from the wild relatives of crop plants. PMID:24716476
Dolores Vazquez, M; James Peterson, C; Riera-Lizarazu, Oscar; Chen, Xianming; Heesacker, Adam; Ammar, Karim; Crossa, Jose; Mundt, Christopher C
2012-01-01
The wheat (Triticum aestivum L.) cultivar 'Stephens' has been grown commercially in the USA Pacific Northwest for 30 years. The durable resistance of 'Stephens' to stripe rust (Puccinia striiformis f. sp. tritici) was believed to be due to a combination of seedling and adult plant resistance genes. Multilocation field trials, diversity array technology (DArT), and simple sequence repeat (SSR) markers were used to identify quantitative trait loci (QTL) for resistance. Recombinant inbred lines were assessed for stripe rust response in eight locations/years, five in 2008 and three in 2009. The data from Mt. Vernon, WA, differed from all other environments, and composite interval mapping (CIM) identified three QTL, QYrst.orr-1AL, QYrst.orr-4BS, and QYrpl.orr-6AL, which accounted for 12, 11, and 6% of the phenotypic variance, respectively. CIM across the remaining six environments identified four main QTL. Two QTL, QYrst.orr-2BS.2 and QYrst.orr-7AS, were detected in five of six environments and explained 11 and 15% of the phenotypic variance, respectively. Two other QTL, QYrst.orr-2AS and QYrpl.orr-4BL, were detected across four and three of six environments, and explained 19 and 9% of the phenotypic variance, respectively. The susceptible parent 'Platte' contributed QYrpl.orr-4BL and QYrpl.orr-6AL, with the remaining QTL originating from 'Stephens'. For each environment, additional minor QTL were detected, each accounting for 6-10% of the phenotypic variance. Different QTL with moderate effects were identified in both 'Stephens' and 'Platte'. Significant QTL × environment interactions were evident, suggesting that specificity to plant stage, pathogen genotype, and/or temperature was important.
Code of Federal Regulations, 2011 CFR
2011-01-01
... celery of similar varietal characteristics which are fairly well developed and have fairly good heart..., freezing, suckers, growth cracks, hollow crown, pithy branches, seedstems, rust, cracked stem, other...
Effectors from Wheat Rust Fungi Suppress Multiple Plant Defense Responses.
Ramachandran, Sowmya R; Yin, Chuntao; Kud, Joanna; Tanaka, Kiwamu; Mahoney, Aaron K; Xiao, Fangming; Hulbert, Scot H
2017-01-01
Fungi that cause cereal rust diseases (genus Puccinia) are important pathogens of wheat globally. Upon infection, the fungus secretes a number of effector proteins. Although a large repository of putative effectors has been predicted using bioinformatic pipelines, the lack of available high-throughput effector screening systems has limited functional studies on these proteins. In this study, we mined the available transcriptomes of Puccinia graminis and P. striiformis to look for potential effectors that suppress host hypersensitive response (HR). Twenty small (<300 amino acids), secreted proteins, with no predicted functions were selected for the HR suppression assay using Nicotiana benthamiana, in which each of the proteins were transiently expressed and evaluated for their ability to suppress HR caused by four cytotoxic effector-R gene combinations (Cp/Rx, ATR13/RPP13, Rpt2/RPS-2, and GPA/RBP-1) and one mutated R gene-Pto(Y207D). Nine out of twenty proteins, designated Shr1 to Shr9 (suppressors of hypersensitive response), were found to suppress HR in N. benthamiana. These effectors varied in the effector-R gene defenses they suppressed, indicating these pathogens can interfere with a variety of host defense pathways. In addition to HR suppression, effector Shr7 also suppressed PAMP-triggered immune response triggered by flg22. Finally, delivery of Shr7 through Pseudomonas fluorescens EtHAn suppressed nonspecific HR induced by Pseudomonas syringae DC3000 in wheat, confirming its activity in a homologous system. Overall, this study provides the first evidence for the presence of effectors in Puccinia species suppressing multiple plant defense responses.
Characterization of Resistance to Cephus cinctus (Hymenoptera: Cephidae) in Barley Germplasm.
Varella, Andrea C; Talbert, Luther E; Achhami, Buddhi B; Blake, Nancy K; Hofland, Megan L; Sherman, Jamie D; Lamb, Peggy F; Reddy, Gadi V P; Weaver, David K
2018-04-02
Most barley cultivars have some degree of resistance to the wheat stem sawfly (WSS), Cephus cinctus Norton (Hymenoptera: Cephidae). Damage caused by WSS is currently observed in fields of barley grown in the Northern Great Plains, but the impact of WSS damage among cultivars due to genetic differences within the barley germplasm is not known. Specifically, little is known about the mechanisms underlying WSS resistance in barley. We characterized WSS resistance in a subset of the spring barley CAP (Coordinated Agricultural Project) germplasm panel containing 193 current and historically important breeding lines from six North American breeding programs. Panel lines were grown in WSS infested fields for two consecutive years. Lines were characterized for stem solidness, stem cutting, WSS infestation (antixenosis), larval mortality (antibiosis), and parasitism (indirect plant defense). Variation in resistance to WSS in barley was compared to observations made for solid-stemmed resistant and hollow-stemmed susceptible wheat lines. Results indicate that both antibiosis and antixenosis are involved in the resistance of barley to the WSS, but antibiosis seems to be more prevalent. Almost all of the barley lines had greater larval mortality than the hollow-stemmed wheat lines, and only a few barley lines had mortality as low as that observed in the solid-stemmed wheat line. Since barley lines lack solid stems, it is apparent that barley has a different form of antibiosis. Our results provide information for use of barley in rotation to control the WSS and may provide a basis for identification of new approaches for improving WSS resistance in wheat.
Anatomical and cellular responses of Pinus monticola stem tissues to invasion by Cronartium ribicola
J. W. Hudgins; G. I . McDonald; P. J. Zambino; N. B. Klopfenstein; V. R. Franceschi
2005-01-01
White pine blister rust (Cronartium ribicola) causes extensive damage to white pines and their associated ecosystems across North America. The anatomical and cellular characteristics of C. ribicola colonization in Pinus monticola branch and stem tissues were studied as a basis for understanding host tree reactions that may be related to resistance. Samples examined...
Haghdoust, R; Singh, D; Garnica, D P; Park, R F; Dracatos, P M
2018-05-01
Barley is a host to Puccinia striiformis f. sp. hordei, and is an intermediate or near nonhost to the formae speciales adapted to wheat (P. striiformis f. sp. tritici) and to barley grass (P. striiformis f. sp. pseudo-hordei). The genetic basis of resistance to these forms of P. striiformis is not well understood. Accordingly, a recombinant inbred line (RIL) population was developed using a P. striiformis-susceptible accession (Biosaline-19) and the immune cultivar Pompadour. We investigated the genetic basis of resistance to four diverse P. striiformis isolates (P. striiformis f. sp. pseudo-hordei, and P. striiformis f. sp. tritici pathotypes 104 E137 A-, 134 E16 A+, and 64 E0 A-). and determined that the immunity in Pompadour at the seedling stage to the different P. striiformis isolates was due to quantitative trait loci (QTL) on chromosomes 1H, 3H, 5H, and 7H with both overlapping and distinct specificities. Further histological analysis confirmed the presence of isolate specificity. The RILs were also assessed in the field for resistance to P. striiformis f. sp. pseudo-hordei, P. striiformis f. sp. hordei, and the leaf rust pathogen (P. hordei) to identify pleiotropic QTL loci effective at the adult plant stage and determine whether the leaf rust resistance in Pompadour (Rph20) was also effective to P. striiformis. RILs that were seedling susceptible to P. striiformis f. sp. pseudo-hordei were resistant in the field, implicating the involvement of adult plant resistance (APR). Additional QTLs were identified on chromosome 7H at the same genetic position as Rph23 (APR to leaf rust), suggesting either pleiotropic resistance or the presence of a stripe rust resistance gene closely linked to or allelic with Rph23. Unlike many pleiotropic APR genes identified and isolated in wheat, our data suggest that the Rph20 locus does not confer resistance to the P. striiformis isolates used in this study (P. striiformis f. sp. hordei [χ 2 (independence) = 2.47 P > 0.12] and P. striiformis f. sp. pseudo-hordei [χ 2 (independence) = 0.42 P > 0.60]).
Apoplastic Sugar Extraction and Quantification from Wheat Leaves Infected with Biotrophic Fungi.
Roman-Reyna, Veronica; Rathjen, John P
2017-01-01
Biotrophic fungi such as rusts modify the nutrient status of their hosts by extracting sugars. Hemibiotrophic and biotrophic fungi obtain nutrients from the cytoplasm of host cells and/or the apoplastic spaces. Uptake of nutrients from the cytoplasm is via intracellular hyphae or more complex structures such as haustoria. Apoplastic nutrients are taken up by intercellular hyphae. Overall the infection creates a sink causing remobilization of nutrients from local and distal tissues. The main mobile sugar in plants is sucrose which is absorbed via plant or fungal transporters once unloaded into the cytoplasm or the apoplast. Infection by fungal pathogens alters the apoplastic sugar contents and stimulates the influx of nutrients towards the site of infection as the host tissue transitions to sink. Quantification of solutes in the apoplast can help to understand the allocation of nutrients during infection. However, separation of apoplastic fluids from whole tissue is not straightforward and leakage from damaged cells can alter the results of the extraction. Here, we describe how variation in cytoplasmic contamination and infiltrated leaf volumes must be controlled when extracting apoplastic fluids from healthy and rust-infected wheat leaves. We show the importance of correcting the data for these parameters to measure sugar concentrations accurately.
Kruppa, Klaudia; Molnár-Láng, Márta
2016-01-01
Multicolour genomic in situ hybridization (mcGISH) using total genomic DNA probes from Thinopyrum bessarabicum (Săvulescu & Rayss, 1923) Á. Löve, 1984 (genome J(b) or E(b), 2n = 14), and Pseudoroegneria spicata (Pursh, 1814) Á. Löve, 1980 (genome St, 2n = 14) was used to characterize the mitotic metaphase chromosomes of a synthetic hybrid of Thinopyrum intermedium (Host, 1805) Barkworth & D.R. Dewey, 1985 and Thinopyrum ponticum (Podpěra, 1902) Z.-W. Liu et R.-C.Wang, 1993 named "Agropyron glael" and produced by N.V. Tsitsin in the former Soviet Union. The mcGISH pattern of this synthetic hybrid was compared to its parental wheatgrass species. Hexaploid Thinopyrum intermedium contained 19 J, 9 J(St) and 14 St chromosomes. The three analysed Thinopyrum ponticum accessions had different chromosome compositions: 43 J + 27 J(St) (PI531737), 40 J + 30 J(St) (VIR-44486) and 38 J + 32 J(St) (D-3494). The synthetic hybrid carried 18 J, 28 J(St) and 8 St chromosomes, including one pair of J-St translocation and/or decreased fluorescent intensity, resulting in unique hybridization patterns. Wheat line Mv9kr1 was crossed with the Thinopyrum intermedium × Thinopyrum ponticum synthetic hybrid in Hungary in order to transfer its advantageous agronomic traits (leaf rust and yellow rust resistance) into wheat. The chromosome composition of a wheat/A.glael F1 hybrid was 21 wheat + 28 wheatgrass (11 J + 14 J(St)+ 3 S). In the present study, mcGISH involving the simultaneous use of St and J genomic DNA as probes provided information about the type of Thinopyrum chromosomes in a Thinopyrum intermedium/Thinopyrum ponticum synthetic hybrid called A. glael.
Dmochowska-Boguta, Marta; Alaba, Sylwia; Yanushevska, Yuliya; Piechota, Urszula; Lasota, Elzbieta; Nadolska-Orczyk, Anna; Karlowski, Wojciech M; Orczyk, Waclaw
2015-10-05
Inoculation of wheat plants with Puccinia triticina (Pt) spores activates a wide range of host responses. Compatible Pt interaction with susceptible Thatcher plants supports all stages of the pathogen life cycle. Incompatible interaction with TcLr9 activates defense responses including oxidative burst and micronecrotic reactions associated with the pathogen's infection structures and leads to complete termination of pathogen development. These two contrasting host-pathogen interactions were a foundation for transcriptome analysis of incompatible wheat-Pt interaction. A suppression subtractive hybridization (SSH) library was constructed using cDNA from pathogen-inoculated susceptible Thatcher and resistant TcLr9 isogenic lines. cDNA represented steps of wheat-brown rust interactions: spore germination, haustorium mother cell (HMC) formation and micronecrotic reactions. All ESTs were clustered and validated by similarity search to wheat genome using BLASTn and sim4db tools. qRT-PCR was used to determine transcript levels of selected ESTs after inoculation in both lines. Out of 793 isolated cDNA clones, 183 were classified into 152 contigs. 89 cDNA clones and encoded proteins were functionally annotated and assigned to 5 Gene Ontology categories: catalytic activity 48 clones (54 %), binding 32 clones (36 %), transporter activity 6 clones (7 %), structural molecule activity 2 clones (2 %) and molecular transducer activity 1 clone (1 %). Detailed expression profiles of 8 selected clones were analyzed using the same plant-pathogen system. The strongest induction after pathogen infection and the biggest differences between resistant and susceptible interactions were detected for clones encoding wall-associated kinase (GenBank accession number JG969003), receptor with leucine-rich repeat domain (JG968955), putative serine/threonine protein kinase (JG968944), calcium-mediated signaling protein (JG968925) and 14-3-3 protein (JG968969). The SSH library represents transcripts regulated by pathogen infection during compatible and incompatible interactions of wheat with P. triticina. Annotation of selected clones confirms their putative roles in successive steps of plant-pathogen interactions. The transcripts can be categorized as defense-related due to their involvement in either basal defense or resistance through an R-gene mediated reaction. The possible involvement of selected clones in pathogen recognition and pathogen-induced signaling as well as resistance mechanisms such as cell wall enforcement, oxidative burst and micronecrotic reactions is discussed.
D. Noshad; J.N. King
2012-01-01
Cronartium ribicola is one of the most destructive forest pathogens of North American white pines. The pathogen infects pine trees through their stomata, colonizes the stem, and produces stem cankers the following growing season. In this research, we collected samples from different white pine populations across Canada and the United States to...
Production and Identification of Wheat-Agropyron cristatum 2P Translocation Lines
Li, Huanhuan; Lv, Mingjie; Song, Liqiang; Zhang, Jinpeng; Gao, Ainong; Li, Lihui; Liu, Weihua
2016-01-01
Agropyron cristatum (L.) Gaertn. (2n = 28, PPPP), a wild relative of common wheat, possesses many potentially valuable traits that can be transferred to common wheat through breeding programs. The wheat-A. cristatum disomic addition and translocation lines can be used as bridge materials to introduce alien chromosomal segments to wheat. Wheat-A. cristatum 2P disomic addition line II-9-3 was highly resistant to powdery mildew and leaf rust, which was reported in our previous study. However, some translocation lines induced from II-9-3 have not been reported. In this study, some translocation lines were induced from II-9-3 by 60Co-γ irradiation and gametocidal chromosome 2C and then identified by cytological methods. Forty-nine wheat-A. cristatum translocation lines were obtained and various translcoation types were identified by GISH (genomic in situ hybridization), such as whole-arm, segmental and intercalary translocations. Dual-color FISH (fluorescent in situ hybridization) was applied to identify the wheat chromosomes involved in the translocations, and the results showed that A. cristatum 2P chromosome segments were translocated to the different wheat chromosomes, including 1A, 2A, 3A, 4A, 5A, 6A, 7A, 3B, 5B, 7B, 1D, 4D and 6D. Many different types of wheat-A. cristatum alien translocation lines would be valuable for not only identifying and cloning A. cristatum 2P-related genes and understanding the genetics and breeding effects of the translocation between A. cristatum chromosome 2P and wheat chromosomes, but also providing new germplasm resources for the wheat genetic improvement. PMID:26731742
NASA Astrophysics Data System (ADS)
Khajeh, Mostafa; Pedersen-Bjergaard, Stig; Barkhordar, Afsaneh; Bohlooli, Mousa
2015-02-01
In this study, wheat stem was used for electromembrane extraction (EME) for the first time. The EME technique involved the use of a wheat stem whose channel was filled with 3 M HCl, immersed in 10 mL of an aqueous sample solution. Thorium migrated from aqueous samples, through a thin layer of 1-octanol and 5%v/v Di-(2-ethylhexyl) phosphate (DEHP) immobilized in the pores of a porous stem, and into an acceptor phase solution present inside the lumen of the stem. The pH of donor and acceptor phases, extraction time, voltage, and stirring speed were optimized. At the optimum conditions, an enrichment factor of 50 and a limit of detection of 0.29 ng mL-1 was obtained for thorium. The developed procedure was then applied to the extraction and determination of thorium in water samples and in reference material.
Weigt, Dorota; Kiel, Angelika; Nawracała, Jerzy; Pluta, Mateusz; Łacka, Agnieszka
2016-01-01
Solid-stemmed spring wheat cultivars ( Triticum aestivum L.) are resistant to the stem sawfly ( Cephus cinctus Nort.) and lodging. Anthers of 24 spring wheat cultivars with varying content of pith in the stem were used in the experiment. All were classified into three groups: solid, medium-solid and hollow stems. There was considerable influence of the cultivar on callus formation and green plant regeneration. The highest efficiency of green plant regeneration (24%) was observed for the solid-stemmed AC Abbey cultivar. There was no regeneration from the explants of four cultivars: CLTR 7027, Alentejano, Marquis and Bombona. Principal component analysis showed no differences between the cases under observation (callus induction and green plant regeneration) in their response to pre-treatment temperatures (4 and 8°C). The examination of the effects of various auxin types in the induction medium on callus formation and green plant regeneration revealed that the strongest stimulation of these processes was observed in the C17 medium with 2,4-D and dicamba. The efficiency of callus formation and green plant regeneration was greater in solid-stemmed cultivars than in hollow-stemmed cultivars.
Winter, Mark; Koopmann, Birger; Döll, Katharina; Karlovsky, Petr; Kropf, Ute; Schlüter, Klaus; von Tiedemann, Andreas
2013-07-01
Factors limiting trichothecene contamination of mature wheat grains after Fusarium infection are of major interest in crop production. In addition to ear infection, systemic translocation of deoxynivalenol (DON) may contribute to mycotoxin levels in grains after stem base infection with toxigenic Fusarium spp. However, the exact and potential mechanisms regulating DON translocation into wheat grains from the plant base are still unknown. We analyzed two wheat cultivars differing in susceptibility to Fusarium head blight (FHB), which were infected at the stem base with Fusarium culmorum in climate chamber experiments. Fungal DNA was found only in the infected stem base tissue, whereas DON and its derivative, DON-3-glucoside (D3G), were detected in upper plant parts. Although infected stem bases contained more than 10,000 μg kg⁻¹ dry weight (DW) of DON and mean levels of DON after translocation in the ear and husks reached 1,900 μg kg⁻¹ DW, no DON or D3G was detectable in mature grains. D3G quantification revealed that DON detoxification took mainly place in the stem basis, where ≤ 50% of DON was metabolized into D3G. Enhanced expression of a gene putatively encoding a uridine diphosphate-glycosyltransferase (GenBank accession number FG985273) was observed in the stem base after infection with F. culmorum. Resistance to F. culmorum stem base infection, DON glycosylation in the stem base, and mycotoxin translocation were unrelated to cultivar resistance to FHB. Histological studies demonstrated that the vascular transport of DON labeled with fluorescein as a tracer from the peduncle to the grain was interrupted by a barrier zone at the interface between grain and rachilla, formerly described as "xylem discontinuity". This is the first study to demonstrate the effective control of influx of systemically translocated fungal mycotoxins into grains at the rachilla-seed interface by the xylem discontinuity tissue in wheat ears.
Lestina, Jordan; Cook, Maxwell; Kumar, Sunil; Morisette, Jeffrey T.; Ode, Paul J.; Peirs, Frank
2016-01-01
Wheat stem sawfly (Cephus cinctus Norton, Hymenoptera: Cephidae) has long been a significant insect pest of spring, and more recently, winter wheat in the northern Great Plains. Wheat stem sawfly was first observed infesting winter wheat in Colorado in 2010 and, subsequently, has spread rapidly throughout wheat production regions of the state. Here, we used maximum entropy modeling (MaxEnt) to generate habitat suitability maps in order to predict the risk of crop damage as this species spreads throughout the winter wheat-growing regions of Colorado. We identified environmental variables that influence the current distribution of wheat stem sawfly in the state and evaluated whether remotely sensed variables improved model performance. We used presence localities of C. cinctus and climatic, topographic, soils, and normalized difference vegetation index and enhanced vegetation index data derived from Moderate Resolution Imaging Spectroradiometer (MODIS) imagery as environmental variables. All models had high performance in that they were successful in predicting suitable habitat for C. cinctus in its current distribution in eastern Colorado. The enhanced vegetation index for the month of April improved model performance and was identified as a top contributor to MaxEnt model. Soil clay percent at 0–5 cm, temperature seasonality, and precipitation seasonality were also associated with C. cinctus distribution in Colorado. The improved model performance resulting from integrating vegetation indices in our study demonstrates the ability of remote sensing technologies to enhance species distribution modeling. These risk maps generated can assist managers in planning control measures for current infestations and assess the future risk of C. cinctus establishment in currently uninfested regions.
NIR calibration of soluble stem carbohydrates for predicting drought tolerance in spring wheat
USDA-ARS?s Scientific Manuscript database
Soluble stem carbohydrates are a component of drought response in wheat (Triticum aestivum L.) and other grasses. Near-infrared spectroscopy (NIR) can rapidly assay for soluble carbohydrates indirectly, but this requires a statistical model for calibration. The objectives of this study were: (i) to ...
Cook, David C.; Fraser, Rob W.; Paini, Dean R.; Warden, Andrew C.; Lonsdale, W. Mark; De Barro, Paul J.
2011-01-01
The delivery of food security via continued crop yield improvement alone is not an effective food security strategy, and must be supported by pre- and post-border biosecurity policies to guard against perverse outcomes. In the wake of the green revolution, yield gains have been in steady decline, while post-harvest crop losses have increased as a result of insufficiently resourced and uncoordinated efforts to control spoilage throughout global transport and storage networks. This paper focuses on the role that biosecurity is set to play in future food security by preventing both pre- and post-harvest losses, thereby protecting crop yield. We model biosecurity as a food security technology that may complement conventional yield improvement policies if the gains in global farm profits are sufficient to offset the costs of implementation and maintenance. Using phytosanitary measures that slow global spread of the Ug99 strain of wheat stem rust as an example of pre-border biosecurity risk mitigation and combining it with post-border surveillance and invasive alien species control efforts, we estimate global farm profitability may be improved by over US$4.5 billion per annum. PMID:22022517
The Nature of Cold-induced Dormancy in Urediospores of Puccinia graminis tritici
Maheshwari, Ramesh; Sussman, Alfred S.
1971-01-01
When air-dry urediospores of the wheat stem rust, Puccinia graminis f. sp. tritici, are exposed to temperatures below freezing, their germinability is markedly reduced, even after prolonged thawing at room temperature. Germinability is fully restored by a brief heat-shock or by vapor phase hydration. We have found that this “cold dormancy” cannot be reversed once the spores contact liquid water. Enhanced loss of metabolites occurs immediately upon suspension of cold-dormant urediospores in liquid without a prior heat-shock. Such leakage is two to three times greater than from untreated or heatshocked cold-dormant spores and accounts for up to 70% of the soluble pool of metabolites normally present in germinating urediospores. Respiratory activity of cold-dormant urediospores declines rapidly during incubation in liquid. Incorporation of isotopic carbon into cold-dormant urediospores is only a fraction of that of untreated or heat-activated spores. Thus, cold shock transforms the spores into a state of supersensitivity to liquid water, which is reversed by heat-shock or slow hydration by vapor phase equilibration. The primary cause of damage to cold-dormant cells exposed to liquid water appears to be irreversible permeability damage, followed by metabolic injury. PMID:16657610
Mondal, Suchismita; Rutkoski, Jessica E.; Velu, Govindan; Singh, Pawan K.; Crespo-Herrera, Leonardo A.; Guzmán, Carlos; Bhavani, Sridhar; Lan, Caixia; He, Xinyao; Singh, Ravi P.
2016-01-01
Current trends in population growth and consumption patterns continue to increase the demand for wheat, a key cereal for global food security. Further, multiple abiotic challenges due to climate change and evolving pathogen and pests pose a major concern for increasing wheat production globally. Triticeae species comprising of primary, secondary, and tertiary gene pools represent a rich source of genetic diversity in wheat. The conventional breeding strategies of direct hybridization, backcrossing and selection have successfully introgressed a number of desirable traits associated with grain yield, adaptation to abiotic stresses, disease resistance, and bio-fortification of wheat varieties. However, it is time consuming to incorporate genes conferring tolerance/resistance to multiple stresses in a single wheat variety by conventional approaches due to limitations in screening methods and the lower probabilities of combining desirable alleles. Efforts on developing innovative breeding strategies, novel tools and utilizing genetic diversity for new genes/alleles are essential to improve productivity, reduce vulnerability to diseases and pests and enhance nutritional quality. New technologies of high-throughput phenotyping, genome sequencing and genomic selection are promising approaches to maximize progeny screening and selection to accelerate the genetic gains in breeding more productive varieties. Use of cisgenic techniques to transfer beneficial alleles and their combinations within related species also offer great promise especially to achieve durable rust resistance. PMID:27458472
Identification of novel QTL for sawfly resistance in wheat
J. D. Sherman; D. K. Weaver; M. L. Hofland; S. E. Sing; M. Buteler; S. P. Lanning; Y. Naruoka; F. Crutcher; N. K. Blake; J. M. Martin; P. F. Lamb; G. R. Carlson; L. E. Talbert
2010-01-01
The wheat stem sawfly (WSS) (Cephus cinctus Nort.) is an important pest of wheat (Triticum aestivum L. em. Thell.) in the Northern Great Plains. This paper reports the genetic analysis of antixenosis for egg-laying WSS females in recombinant inbred lines (RIL) of hard red spring wheat. Female WSS preferentially choose certain wheat genotypes for egg-laying, with the...
David K. Weaver; Christian Nansen; Justin B. Runyon; Sharlene E. Sing; Wendell L. Morrill
2005-01-01
Bracon cephi and Bracon lissogaster are native parasitoids of the wheat stem sawfly, Cephus cinctus, an important pest of dryland wheat production. This spatial distribution study, using survey data from seven dryland wheat fields at four locations in north-central Montana over two years, examined: (1) the...
Majka, Maciej; Kwiatek, Michał T; Majka, Joanna; Wiśniewska, Halina
2017-01-01
Aegilops tauschii (2n = 2x = 14) is a diploid wild species which is reported as a donor of the D-genome of cultivated bread wheat. The main goal of this study was to examine the differences and similarities in chromosomes organization among accessions of Ae. tauschii with geographically diversed origin, which is believed as a potential source of genes, especially determining resistance to fungal diseases (i.e., leaf rust and powdery mildew) for breeding of cereals. We established and compared the fluorescence in situ hybridization patterns of 21 accessions of Ae. tauschii using various repetitive sequences mainly from the BAC library of wheat cultivar Chinese Spring. Results obtained for Ae. tauschii chromosomes revealed many similarities between analyzed accessions, however, some hybridization patterns were specific for accessions, which become from cognate regions of the World. The most noticeable differences were observed for accessions from China which were characterized by presence of distinct signals of pTa-535 in the interstitial region of chromosome 3D, less intensity of pTa-86 signals in chromosome 2D, as well as lack of additional signals of pTa-86 in chromosomes 1D, 5D, or 6D. Ae. tauschii of Chinese origin appeared homogeneous and separate from landraces that originated in western Asia. Ae. tauschii chromosomes showed similar hybridization patterns to wheat D-genome chromosomes, but some differences were also observed among both species. What is more, we identified reciprocal translocation between short arm of chromosome 1D and long arm of chromosome 7D in accession with Iranian origin. High polymorphism between analyzed accessions and extensive allelic variation were revealed using molecular markers associated with resistance genes. Majority of the markers localized in chromosomes 1D and 2D showed the diversity of banding patterns between accessions. Obtained results imply, that there is a moderate or high level of polymorphism in the genome of Ae . tauschii determined by a geographical origin, which we proved by cytogenetic and molecular markers analysis. Therefore, selected accessions might constitute an accessible source of variation for improvement of Triticeae species like wheat and triticale.
Yang, Congcong; Ding, Puyang; Liu, Yaxi; Qiao, Linyi; Chang, Zhijian; Geng, Hongwei; Wang, Penghao; Jiang, Qiantao; Wang, Jirui; Chen, Guoyue; Wei, Yuming; Zheng, Youliang; Lan, Xiujin
2017-01-01
The MADS-box genes encode transcription factors with key roles in plant growth and development. A comprehensive analysis of the MADS-box gene family in bread wheat (Triticum aestivum) has not yet been conducted, and our understanding of their roles in stress is rather limited. Here, we report the identification and characterization of the MADS-box gene family in wheat. A total of 180 MADS-box genes classified as 32 Mα, 5 Mγ, 5 Mδ, and 138 MIKC types were identified. Evolutionary analysis of the orthologs among T. urartu, Aegilops tauschii and wheat as well as homeologous sequences analysis among the three sub-genomes in wheat revealed that gene loss and chromosomal rearrangements occurred during and/or after the origin of bread wheat. Forty wheat MADS-box genes that were expressed throughout the investigated tissues and development stages were identified. The genes that were regulated in response to both abiotic stresses (i.e., phosphorus deficiency, drought, heat, and combined drought and heat) and biotic stresses (i.e., Fusarium graminearum, Septoria tritici, stripe rust and powdery mildew) were detected as well. A few notable MADS-box genes were specifically expressed in a single tissue and those showed relatively higher expression differences between the stress and control treatment. The expression patterns of considerable MADS-box genes differed from those of their orthologs in Brachypodium, rice, and Arabidopsis. Collectively, the present study provides new insights into the possible roles of MADS-box genes in response to stresses and will be valuable for further functional studies of important candidate MADS-box genes. PMID:28742823
Ma, Jian; Yang, Yujie; Luo, Wei; Yang, Congcong; Ding, Puyang; Liu, Yaxi; Qiao, Linyi; Chang, Zhijian; Geng, Hongwei; Wang, Penghao; Jiang, Qiantao; Wang, Jirui; Chen, Guoyue; Wei, Yuming; Zheng, Youliang; Lan, Xiujin
2017-01-01
The MADS-box genes encode transcription factors with key roles in plant growth and development. A comprehensive analysis of the MADS-box gene family in bread wheat (Triticum aestivum) has not yet been conducted, and our understanding of their roles in stress is rather limited. Here, we report the identification and characterization of the MADS-box gene family in wheat. A total of 180 MADS-box genes classified as 32 Mα, 5 Mγ, 5 Mδ, and 138 MIKC types were identified. Evolutionary analysis of the orthologs among T. urartu, Aegilops tauschii and wheat as well as homeologous sequences analysis among the three sub-genomes in wheat revealed that gene loss and chromosomal rearrangements occurred during and/or after the origin of bread wheat. Forty wheat MADS-box genes that were expressed throughout the investigated tissues and development stages were identified. The genes that were regulated in response to both abiotic stresses (i.e., phosphorus deficiency, drought, heat, and combined drought and heat) and biotic stresses (i.e., Fusarium graminearum, Septoria tritici, stripe rust and powdery mildew) were detected as well. A few notable MADS-box genes were specifically expressed in a single tissue and those showed relatively higher expression differences between the stress and control treatment. The expression patterns of considerable MADS-box genes differed from those of their orthologs in Brachypodium, rice, and Arabidopsis. Collectively, the present study provides new insights into the possible roles of MADS-box genes in response to stresses and will be valuable for further functional studies of important candidate MADS-box genes.
Fu, S; Tang, Z; Ren, Z; Zhang, H
2010-01-01
One hundred wheat lines, derived from monosomic additions of chromosome 1R of rye inbred line R12 (Chinese rye), were detected by PCR amplification using rye-specific primer pairs. Only 5 wheat lines, 1R296, 1R330, 1R314, 1R725, and 1R734, were determined to contain rye chromatin. While 1R296 and 1R330 were highly susceptible to stripe rust and powdery mildew, 1R314, 1R725 and 1R734 were highly resistant to both diseases. Acid-polyacrylamide gel electrophoresis showed that the omega-secalin bands were absent in 1R314, but present in the other 4 wheat lines. Genomic in situ hybridization indicated that 1R296, 1R330, and 1R725 contained translocations involving the whole short arm of chromosome 1R. However, 1R314 and 1R734 contained a pair of wheat chromosomes with small, terminal, rye-derived chromosome segments. The results suggest that the translocation breakpoint of 1RS in 1R314 was located between the Sec-1 locus and the disease-resistance loci, while in line 1R734, the breakpoint was located between the Sec-1 locus and the centromere. Taking account of the improved disease resistance of 1R725, 1R314 and 1R734, the chromosome arm 1RS of R12 may represent new and valuable disease resistance resources for wheat improvement.
A system for diagnosis of wheat leaf diseases based on Android smartphone
NASA Astrophysics Data System (ADS)
Xie, Xinhua; Zhang, Xiangqian; He, Bing; Liang, Dong; Zhang, Dongyang; Huang, Linsheng
2016-10-01
Owing to the shortages of inconvenience, expensive and high professional requirements etc. for conventional recognition devices of wheat leaf diseases, it does not satisfy the requirements of uploading and releasing timely investigation data in the large-scale field, which may influence the effectiveness of prevention and control for wheat diseases. In this study, a fast, accurate, and robust diagnose system of wheat leaf diseases based on android smartphone was developed, which comprises of two parts—the client and the server. The functions of the client include image acquisition, GPS positioning, corresponding, and knowledge base of disease prevention and control. The server includes image processing, feature extraction, and selection, and classifier establishing. The recognition process of the system goes as follow: when disease images were collected in fields and sent to the server by android smartphone, and then image processing of disease spots was carried out by the server. Eighteen larger weight features were selected by algorithm relief-F and as the input of Relevance Vector Machine (RVM), and the automatic identification of wheat stripe rust and powdery mildew was realized. The experimental results showed that the average recognition rate and predicted speed of RVM model were 5.56% and 7.41 times higher than that of Support Vector Machine (SVM). And application discovered that it needs about 1 minute to get the identification result. Therefore, it can be concluded that the system could be used to recognize wheat diseases and real-time investigate in fields.
Miller, Charlotte N; Harper, Andrea L; Trick, Martin; Werner, Peter; Waldron, Keith; Bancroft, Ian
2016-07-16
The current approach to reducing the tendency for wheat grown under high fertilizer conditions to collapse (lodge) under the weight of its grain is based on reducing stem height via the introduction of Rht genes. However, these reduce the yield of straw (itself an important commodity) and introduce other undesirable characteristics. Identification of alternative height-control loci is therefore of key interest. In addition, the improvement of stem mechanical strength provides a further way through which lodging can be reduced. To investigate the prospects for genetic alternatives to Rht, we assessed variation for plant height and stem strength properties in a training genetic diversity panel of 100 wheat accessions fixed for Rht. Using mRNAseq data derived from RNA purified from leaves, functional genotypes were developed for the panel comprising 42,066 Single Nucleotide Polymorphism (SNP) markers and 94,060 Gene Expression Markers (GEMs). In the first application in wheat of the recently-developed method of Associative Transcriptomics, we identified associations between trait variation and both SNPs and GEMs. Analysis of marker-trait associations revealed candidates for the causative genes underlying the trait variation, implicating xylan acetylation and the COP9 signalosome as contributing to stem strength and auxin in the control of the observed variation for plant height. Predictive capabilities of key markers for stem strength were validated using a test genetic diversity panel of 30 further wheat accessions. This work illustrates the power of Associative Transcriptomics for the exploration of complex traits of high agronomic importance in wheat. The careful selection of genotypes included in the analysis, allowed for high resolution mapping of novel trait-controlling loci in this staple crop. The use of Gene Expression markers coupled with the more traditional sequence-based markers, provides the power required to understand the biological context of the marker-trait associations observed. This not only adds to the wealth of knowledge that we strive to accumulate regarding gene function and plant adaptation, but also provides breeders with the information required to make more informed decisions regarding the potential consequences of incorporating the use of particular markers into future breeding programmes.
Portman, Scott L.; Krishnankutty, Sindhu M.
2016-01-01
The wheat stem sawfly, (Cephus cinctus Norton) Hymenoptera: Cephidae, has been a major pest of winter wheat and barley in the northern Great Plains for more than 100 years. The insect’s cryptic nature and lack of safe chemical control options make the wheat stem sawfly (WSS) difficult to manage; thus, biological control offers the best hope for sustainable management of WSS. Entomopathogenic nematodes (EPNs) have been used successfully against other above-ground insect pests, and adding adjuvants to sprays containing EPNs has been shown to improve their effectiveness. We tested the hypothesis that adding chemical adjuvants to sprays containing EPNs will increase the ability of EPNs to enter wheat stems and kill diapausing WSS larvae. This is the first study to test the ability of EPNs to infect the WSS, C. cinctus, and test EPNs combined with adjuvants against C. cinctus in both the laboratory and the field. Infection assays showed that three different species of EPNs caused 60–100% mortality to WSS larvae. Adding Penterra, Silwet L-77, Sunspray 11N, or Syl-Tac to solutions containing EPNs resulted in higher WSS mortality than solutions made with water alone. Field tests showed that sprays containing S. feltiae added to 0.1% Penterra increased WSS mortality up to 29.1%. These results indicate a novel control method for WSS, and represent a significant advancement in the biological control of this persistent insect pest. PMID:28006820
Fast-growing willow shrub named `Fish Creek`
Abrahamson, Lawrence P.; Kopp, Richard F.; Smart, Lawrence B.; Volk, Timothy A.
2007-05-08
A distinct male cultivar of Salix purpurea named `Fish Creek`, characterized by rapid stem growth producing greater than 30% more woody biomass than either of its parents (`94001` and `94006`) and 20% more biomass than a current production cultivar (`SV1`). `Fish Creek` can be planted from dormant stem cuttings, produces multiple stems after coppice, and the stem biomass can be harvested when the plant is dormant. In the spring following harvest, the plant will re-sprout very vigorously, producing new stems that can be harvested after two to four years of growth. This harvest cycle can be repeated several times. The stem biomass can be chipped and burned as a source of renewable energy, generating heat and/or electricity. `Fish Creek` displays a low incidence of rust disease or damage by beetles or sawflies.
Rapid cloning of genes in hexaploid wheat using cultivar-specific long-range chromosome assembly.
Thind, Anupriya Kaur; Wicker, Thomas; Šimková, Hana; Fossati, Dario; Moullet, Odile; Brabant, Cécile; Vrána, Jan; Doležel, Jaroslav; Krattinger, Simon G
2017-08-01
Cereal crops such as wheat and maize have large repeat-rich genomes that make cloning of individual genes challenging. Moreover, gene order and gene sequences often differ substantially between cultivars of the same crop species. A major bottleneck for gene cloning in cereals is the generation of high-quality sequence information from a cultivar of interest. In order to accelerate gene cloning from any cropping line, we report 'targeted chromosome-based cloning via long-range assembly' (TACCA). TACCA combines lossless genome-complexity reduction via chromosome flow sorting with Chicago long-range linkage to assemble complex genomes. We applied TACCA to produce a high-quality (N50 of 9.76 Mb) de novo chromosome assembly of the wheat line CH Campala Lr22a in only 4 months. Using this assembly we cloned the broad-spectrum Lr22a leaf-rust resistance gene, using molecular marker information and ethyl methanesulfonate (EMS) mutants, and found that Lr22a encodes an intracellular immune receptor homologous to the Arabidopsis thaliana RPM1 protein.
Molecular Mapping of Stripe Rust Resistance Gene Yr76 in Winter Club Wheat Cultivar Tyee.
Xiang, C; Feng, J Y; Wang, M N; Chen, X M; See, D R; Wan, A M; Wang, T
2016-10-01
Tyee, one of the wheat cultivars used to differentiate races of Puccinia striiformis f. sp. tritici in the United States, was identified to have a single gene for all-stage resistance, tentatively named YrTye. To map the gene, Tyee was crossed with 'Avocet Susceptible' (AvS). Genetic analysis of the F 1 , F 2 , F 2:3 , and BC 1 progenies confirmed a single dominant gene for resistance to race PSTv-37 that is avirulent to YrTye. A mapping population of 135 F 2 plants was phenotyped with PSTv-37 and the derived F 2:3 lines were tested with races PSTv-37, PSTv-40, and PSTv-79. The F 2 mapping population was genotyped with simple sequence repeat (SSR) markers. A genetic map comprising 13 SSR markers located YrTye in chromosome 3AS flanked distally by SSR marker wmc11 and proximally by wmc532 at 2.6 and 3.4 cM, respectively. Amplification of Chinese Spring 3A deletion lines placed the gene in the distal bin 3AS4-0.45 to 1.00. Because YrTye is different from all formally named Yr genes in chromosomal location, we permanently name the gene Yr76. A near-isogenic line of spring common wheat was developed and selected by testing F 3 lines derived from a AvS*4/Tyee cross with Tyee-avirulent and virulent races and the flanking markers. The specific SSR alleles flanking Yr76 were validated using cultivars and breeding lines with and without the gene, and showed high polymorphisms. The specificity of Yr76 is useful in differentiating P. striiformis f. sp. tritici races, and its tightly linked markers will be useful in developing resistant cultivars when combining the gene with other genes for resistance to stripe rust.
Yadav, Inderjit S.; Sharma, Amandeep; Kaur, Satinder; Nahar, Natasha; Bhardwaj, Subhash C.; Sharma, Tilak R.; Chhuneja, Parveen
2016-01-01
Leaf rust caused by Puccinia triticina (Pt) is one of the most important diseases of bread wheat globally. Recent advances in sequencing technologies have provided opportunities to analyse the complete transcriptomes of the host as well as pathogen for studying differential gene expression during infection. Pathogen induced differential gene expression was characterized in a near isogenic line carrying leaf rust resistance gene Lr57 and susceptible recipient genotype WL711. RNA samples were collected at five different time points 0, 12, 24, 48, and 72 h post inoculation (HPI) with Pt 77-5. A total of 3020 transcripts were differentially expressed with 1458 and 2692 transcripts in WL711 and WL711+Lr57, respectively. The highest number of differentially expressed transcripts was detected at 12 HPI. Functional categorization using Blast2GO classified the genes into biological processes, molecular function and cellular components. WL711+Lr57 showed much higher number of differentially expressed nucleotide binding and leucine rich repeat genes and expressed more protein kinases and pathogenesis related proteins such as chitinases, glucanases and other PR proteins as compared to susceptible genotype. Pathway annotation with KEGG categorized genes into 13 major classes with carbohydrate metabolism being the most prominent followed by amino acid, secondary metabolites, and nucleotide metabolism. Gene co-expression network analysis identified four and eight clusters of highly correlated genes in WL711 and WL711+Lr57, respectively. Comparative analysis of the differentially expressed transcripts led to the identification of some transcripts which were specifically expressed only in WL711+Lr57. It was apparent from the whole transcriptome sequencing that the resistance gene Lr57 directed the expression of different genes involved in building the resistance response in the host to combat invading pathogen. The RNAseq data and differentially expressed transcripts identified in present study is a genomic resource which can be used for further studying the host pathogen interaction for Lr57 and wheat transcriptome in general. PMID:28066494
Differences in the response of wheat, soybean and lettuce to reduced blue radiation
NASA Technical Reports Server (NTRS)
Dougher, T. A.; Bugbee, B.
2001-01-01
Although many fundamental blue light responses have been identified, blue light dose-response curves are not well characterized. We studied the growth and development of soybean, wheat and lettuce plants under high-pressure sodium (HPS) and metal halide (MH) lamps with yellow filters creating five fractions of blue light. The blue light fractions obtained were < 0.1, 2 and 6% under HPS lamps, and 6, 12 and 26% under MH lamps. Studies utilizing both lamp types were done at two photosynthetic photon flux levels, 200 and 500 mumol m-2 s-1 under a 16 h photoperiod. Phytochrome photoequilibria was nearly identical among treatments. The blue light effect on dry mass, stem length, leaf area, specific leaf area and tillering/branching was species dependent. For these parameters, wheat did not respond to blue light, but lettuce was highly sensitive to blue light fraction between 0 and 6% blue. Soybean stem length decreased and leaf area increased up to 6% blue, but total dry mass was unchanged. The blue light fraction determined the stem elongation response in soybean, whereas the absolute amount of blue light determined the stem elongation response in lettuce. The data indicate that lettuce growth and development requires blue light, but soybean and wheat may not.
An assessment of Japanese barberry in northern U.S. forests
Cassandra M. Kurtz; Mark H. Hansen
2018-01-01
Japanese barberry (Berberis thunbergii), a member of the barberry family (Berberidaceae), is a low-growing perennial shrub. This ornamental shrub was sent to Boston from Russia in 1875 as a substitute for common barberry, a nuisance plant that harbors black stem rust (Puccinia graminis), which affects several cereal crops (...
7 CFR 301.38-8 - Costs and charges.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 7 Agriculture 5 2014-01-01 2014-01-01 false Costs and charges. 301.38-8 Section 301.38-8 Agriculture Regulations of the Department of Agriculture (Continued) ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE DOMESTIC QUARANTINE NOTICES Black Stem Rust § 301.38-8 Costs and...
7 CFR 301.38-7 - Attachment and disposition of certificates.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 7 Agriculture 5 2012-01-01 2012-01-01 false Attachment and disposition of certificates. 301.38-7 Section 301.38-7 Agriculture Regulations of the Department of Agriculture (Continued) ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE DOMESTIC QUARANTINE NOTICES Black Stem Rust § 301.38...
7 CFR 301.38-6 - Compliance agreements and cancellation.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 7 Agriculture 5 2014-01-01 2014-01-01 false Compliance agreements and cancellation. 301.38-6 Section 301.38-6 Agriculture Regulations of the Department of Agriculture (Continued) ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE DOMESTIC QUARANTINE NOTICES Black Stem Rust § 301.38...
7 CFR 301.38-7 - Attachment and disposition of certificates.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 5 2010-01-01 2010-01-01 false Attachment and disposition of certificates. 301.38-7 Section 301.38-7 Agriculture Regulations of the Department of Agriculture (Continued) ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE DOMESTIC QUARANTINE NOTICES Black Stem Rust § 301.38...
7 CFR 301.38-6 - Compliance agreements and cancellation.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 7 Agriculture 5 2012-01-01 2012-01-01 false Compliance agreements and cancellation. 301.38-6 Section 301.38-6 Agriculture Regulations of the Department of Agriculture (Continued) ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE DOMESTIC QUARANTINE NOTICES Black Stem Rust § 301.38...
7 CFR 301.38-6 - Compliance agreements and cancellation.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 5 2010-01-01 2010-01-01 false Compliance agreements and cancellation. 301.38-6 Section 301.38-6 Agriculture Regulations of the Department of Agriculture (Continued) ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE DOMESTIC QUARANTINE NOTICES Black Stem Rust § 301.38...
7 CFR 301.38-6 - Compliance agreements and cancellation.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 7 Agriculture 5 2013-01-01 2013-01-01 false Compliance agreements and cancellation. 301.38-6 Section 301.38-6 Agriculture Regulations of the Department of Agriculture (Continued) ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE DOMESTIC QUARANTINE NOTICES Black Stem Rust § 301.38...
7 CFR 301.38-8 - Costs and charges.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 7 Agriculture 5 2013-01-01 2013-01-01 false Costs and charges. 301.38-8 Section 301.38-8 Agriculture Regulations of the Department of Agriculture (Continued) ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE DOMESTIC QUARANTINE NOTICES Black Stem Rust § 301.38-8 Costs and...
7 CFR 301.38-8 - Costs and charges.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 7 Agriculture 5 2011-01-01 2011-01-01 false Costs and charges. 301.38-8 Section 301.38-8 Agriculture Regulations of the Department of Agriculture (Continued) ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE DOMESTIC QUARANTINE NOTICES Black Stem Rust § 301.38-8 Costs and...
7 CFR 301.38-7 - Attachment and disposition of certificates.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 7 Agriculture 5 2011-01-01 2011-01-01 false Attachment and disposition of certificates. 301.38-7 Section 301.38-7 Agriculture Regulations of the Department of Agriculture (Continued) ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE DOMESTIC QUARANTINE NOTICES Black Stem Rust § 301.38...