C57 mice increase wheel-running behavior following stress: preliminary findings.
Sibold, Jeremy S; Hammack, Sayamwong E; Falls, William A
2011-10-01
Exercise has been shown to reduce anxiety in both humans and animals. To date, there are few, if any studies that examine the effect of stress on self-selected exercise using an animal model. This study examined the effect of acute stress on wheel-running distance in mice. Forty 8-week-old, male C57BL/6J mice were randomly assigned to one of three groups: no stress + wheel-running experience, stress + wheel-running experience, or stress with no wheel-running experience. Stressed mice were exposed to foot shock in a brightly lit environment. Following treatment, wheel-running distances were observed for three hours. Stress significantly increased voluntary wheel-running in mice with wheel-running experience as compared to nonstressed controls and stressed mice with no wheel-running experience. These results suggest that mice familiar with wheel-running may self-select this exercise as a modality for the mitigation of accumulated anxiety.
Lespine, L-F; Tirelli, E
2015-12-03
Previous literature suggests that free access to a running wheel can attenuate the behavioral responsiveness to addictive drugs in rodents. In a few studies, wheel-running cessation accentuated drug responsiveness. Here, we tested whether free wheel-running cessation is followed by (1) an accentuation or (2) an attenuation of cocaine psychomotor sensitization, knowing that no cessation of (continuous) wheel-running is associated with an attenuation of cocaine responsiveness. Male C57BL/6J mice, aged 35 days, were housed singly either with (exercising mice) or without (non-exercising mice) a running wheel. At the end of a period of 36 days, half of the exercising mice were deprived of their wheel whereas the other half of exercising mice kept their wheel until the end of experimentation (which lasted 85 days). The non-exercising mice were housed without wheel throughout experimentation. Testing took place 3 days after exercise cessation. After 2 once-daily drug-free test sessions, mice were tested for initiation of psychomotor sensitization over 13 once-daily injections of 8 mg/kg cocaine. Post-sensitization conditioned activation (saline challenge) and long-term expression of sensitization were assessed 2 or 30 days after the last sensitizing injection (same treatments as for initiation of sensitization), respectively. Exercising mice and mice undergoing wheel-running cessation exhibited comparable degrees of attenuation of all cocaine effects in comparison with the continuously non-exercising mice, which showed the greatest effects. Thus, the efficaciousness of wheel-running at attenuating cocaine sensitization not only resisted to exercise cessation but was also unambiguously persistent (an important effect rarely reported in previous literature). Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.
Conditioned taste avoidance induced by forced and voluntary wheel running in rats.
Forristall, J R; Hookey, B L; Grant, V L
2007-03-01
Voluntary exercise by rats running in a freely rotating wheel (free wheel) produces conditioned taste avoidance (CTA) of a flavored solution consumed before running [e.g., Lett, B.T., Grant, V.L., 1996. Wheel running induces conditioned taste aversion in rats trained while hungry and thirsty. Physiol. Behav. 59, 699-702]. Forced exercise, swimming or running, also produces CTA in rats [e.g., Masaki, T., Nakajima, S., 2006. Taste aversion induced by forced swimming, voluntary running, forced running, and lithium chloride injection treatments. Physiol. Behav. 88, 411-416]. Energy expenditure may be the critical factor in producing such CTA. If so, forced running in a motorized running wheel should produce CTA equivalent to that produced by a similar amount of voluntary running. In two experiments, we compared forced running in a motorized wheel with voluntary running in a free wheel. Mean distance run over 30 min was equated as closely as possible in the two apparatuses. Both types of exercise produced CTA relative to sedentary, locked-wheel controls. However, voluntary running produced greater CTA than forced running. We consider differences between running in the free and motorized wheels that may account for the differences in strength of CTA.
Voluntary Wheel Running Induces Exercise-Seeking Behavior in Male Rats: A Behavioral Study.
Naghshvarian, Mojtaba; Zarrindast, Mohammad-Reza; Sajjadi, Seyedeh Fatemeh
2017-12-01
Research evidence shows that exercise is associated with positive physical and mental health. Moreover, exercise and wheel running in rats activate overlapping neural systems and reward system. The most commonly used models for the study of rewarding and aversive effects of exercise involve using treadmill and wheel running paradigms in mice or rats. The purpose of our experiment was to study the influence of continuous voluntary exercise on exercise-seeking behavior. In this experimental study, we used 24 adult male Sprague-Dawley rats weighing 275-300 g on average. Rats were divided into 3 experimental groups for 4 weeks of voluntary wheel running. Each rat ran in the cage equipped with a wheel during 24 hours. A within-subject repeated measure design was employed to evaluate the trend of running and running rates. We found that time and higher levels of exercise will increase exercise tendency. Our results also show that the interaction of exercise within 4 weeks and different levels of exercise can significantly promote rats' exercise-seeking behavior (F = 5.440; df = 2.08; P < 0.001). Our data suggest that voluntary wheel running can increase the likelihood of extreme and obsessive exercising which is a form of non-drug addiction. 2017 The Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Improved infrared-sensing running wheel systems with an effective exercise activity indicator.
Chen, Chi-Chun; Chang, Ming-Wen; Chang, Ching-Ping; Chang, Wen-Ying; Chang, Shin-Chieh; Lin, Mao-Tsun; Yang, Chin-Lung
2015-01-01
This paper describes an infrared-sensing running wheel (ISRW) system for the quantitative measurement of effective exercise activity in rats. The ISRW system provides superior exercise training compared with commercially available traditional animal running platforms. Four infrared (IR) light-emitting diode/detector pairs embedded around the rim of the wheel detect the rat's real-time position; the acrylic wheel has a diameter of 55 cm and a thickness of 15 cm, that is, it is larger and thicker than traditional exercise wheels, and it is equipped with a rubber track. The acrylic wheel hangs virtually frictionless, and a DC motor with an axially mounted rubber wheel, which has a diameter of 10 cm, drives the acrylic wheel from the outer edge. The system can automatically train rats to run persistently. The proposed system can determine effective exercise activity (EEA), with the IR sensors (which are connected to a conventional PC) recording the rat exercise behavior. A prototype of the system was verified by a hospital research group performing ischemic stroke experiments on rats by considering middle cerebral artery occlusion. The experimental data demonstrated that the proposed system provides greater neuroprotection in an animal stroke model compared with a conventional treadmill and a motorized running wheel for a given exercise intensity. The quantitative exercise effectiveness indicator showed a 92% correlation between an increase in the EEA and a decrease in the infarct volume. This indicator can be used as a noninvasive and objective reference in clinical animal exercise experiments.
Meijer, Johanna H; Robbers, Yuri
2014-07-07
The importance of exercise for health and neurogenesis is becoming increasingly clear. Wheel running is often used in the laboratory for triggering enhanced activity levels, despite the common objection that this behaviour is an artefact of captivity and merely signifies neurosis or stereotypy. If wheel running is indeed caused by captive housing, wild mice are not expected to use a running wheel in nature. This however, to our knowledge, has never been tested. Here, we show that when running wheels are placed in nature, they are frequently used by wild mice, also when no extrinsic reward is provided. Bout lengths of running wheel behaviour in the wild match those for captive mice. This finding falsifies one criterion for stereotypic behaviour, and suggests that running wheel activity is an elective behaviour. In a time when lifestyle in general and lack of exercise in particular are a major cause of disease in the modern world, research into physical activity is of utmost importance. Our findings may help alleviate the main concern regarding the use of running wheels in research on exercise.
Exercise to reduce the escalation of cocaine self-administration in adolescent and adult rats.
Zlebnik, Natalie E; Anker, Justin J; Carroll, Marilyn E
2012-12-01
Concurrent access to an exercise wheel decreases cocaine self-administration under short access (5 h/day for 5 days) conditions and suppresses cocaine-primed reinstatement in adult rats. The effect of exercise (wheel running) on the escalation of cocaine intake during long access (LgA, 6 h/day for 26 days) conditions was evaluated. Adolescent and adult female rats acquired wheel running, and behavior was allowed to stabilize for 3 days. They were then implanted with an iv catheter and allowed to self-administer cocaine (0.4 mg/kg, iv) during 6-h daily sessions for 16 days with concurrent access to either an unlocked or a locked running wheel. Subsequently, for ten additional sessions, wheel access conditions during cocaine self-administration sessions were reversed (i.e., locked wheels became unlocked and vice versa). In the adolescents, concurrent access to the unlocked exercise wheel decreased responding for cocaine and attenuated escalation of cocaine intake irrespective of whether the locked or unlocked condition came first. However, cocaine intake increased when the wheel was subsequently locked for the adolescents that had initial access to an unlocked wheel. Concurrent wheel access either before or after the locked wheel access did not reduce cocaine intake in adults. Wheel running reduced cocaine intake during LgA conditions in adolescent but not adult rats, and concurrent access to the running wheel was necessary. These results suggest that exercise prevents cocaine seeking and that this effect is more pronounced in adolescents than adults.
Barkow, Jessica Cummiskey; Freed, Curt R.
2017-01-01
Exercise has been recommended to improve motor function in Parkinson patients, but its value in altering progression of disease is unknown. In this study, we examined the neuroprotective effects of running wheel exercise in mice. In adult wild-type mice, one week of running wheel activity led to significantly increased DJ-1 protein concentrations in muscle and plasma. In DJ-1 knockout mice, running wheel performance was much slower and Rotarod performance was reduced, suggesting that DJ-1 protein is required for normal motor activity. To see if exercise can prevent abnormal protein deposition and behavioral decline in transgenic animals expressing a mutant human form of α-synuclein in all neurons, we set up running wheels in the cages of pre-symptomatic animals at 12 months old. Activity was monitored for a 3-month period. After 3 months, motor and cognitive performance on the Rotarod and Morris Water Maze were significantly better in running animals compared to control transgenic animals with locked running wheels. Biochemical analysis revealed that running mice had significantly higher DJ-1, Hsp70 and BDNF concentrations and had significantly less α-synuclein aggregation in brain compared to control mice. By contrast, plasma concentrations of α-synuclein were significantly higher in exercising mice compared to control mice. Our results suggest that exercise may slow the progression of Parkinson’s disease by preventing abnormal protein aggregation in brain. PMID:29272304
Greenwood, Benjamin N.; Foley, Teresa E.; Le, Tony V.; Strong, Paul V.; Loughridge, Alice B.; Day, Heidi E.W.; Fleshner, Monika
2011-01-01
The mesolimbic reward pathway is implicated in stress-related psychiatric disorders and is a potential target of plasticity underlying the stress resistance produced by repeated voluntary exercise. It is unknown, however, whether rats find long-term access to running wheels rewarding, or if repeated voluntary exercise reward produces plastic changes in mesolimbic reward neurocircuitry. In the current studies, young adult, male Fischer 344 rats allowed voluntary access to running wheels for 6 weeks, but not 2 weeks, found wheel running rewarding, as measured by conditioned place preference (CPP). Consistent with prior reports and the behavioral data, 6 weeks of wheel running increased ΔFosB/FosB immunoreactivity in the nucleus accumbens (Acb). In addition, semi quantitative in situ hybridization revealed that 6 weeks of wheel running, compared to sedentary housing, increased tyrosine hydroxylase (TH) mRNA levels in the ventral tegmental area (VTA), increased delta opioid receptor (DOR) mRNA levels in the Acb shell, and reduced levels of dopamine receptor (DR)-D2 mRNA in the Acb core. Results indicate that repeated voluntary exercise is rewarding and alters gene transcription in mesolimbic reward neurocircuitry. The duration-dependent effects of wheel running on CPP suggest that as the weeks of wheel running progress, the rewarding effects of a night of voluntary wheel running might linger longer into the inactive cycle thus providing stronger support for CPP. The observed plasticity could contribute to the mechanisms by which exercise reduces the incidence and severity of substance abuse disorders, changes the rewarding properties of drugs of abuse, and facilitates successful coping with stress. PMID:21070820
Kolb, Erik M; Kelly, Scott A; Garland, Theodore
2013-03-15
Exercise is known to be rewarding and have positive effects on mental and physical health. Excessive exercise, however, can be the result of an underlying behavioral/physiological addiction. Both humans who exercise regularly and rodent models of exercise addiction sometimes display behavioral withdrawal symptoms, including depression and anxiety, when exercise is denied. However, few studies have examined the physiological state that occurs during this withdrawal period. Alterations in blood pressure (BP) are common physiological indicators of withdrawal in a variety of addictions. In this study, we examined exercise withdrawal in four replicate lines of mice selectively bred for high voluntary wheel running (HR lines). Mice from the HR lines run almost 3-fold greater distances on wheels than those from non-selected control lines, and have altered brain activity as well as increased behavioral despair when wheel access is removed. We tested the hypothesis that male HR mice have an altered cardiovascular response (heart rate, systolic, diastolic, and mean arterial pressure [MAP]) during exercise withdrawal. Measurements using an occlusion tail-cuff system were taken during 8 days of baseline, 6 days of wheel access, and 2 days of withdrawal (wheel access blocked). During withdrawal, HR mice had significantly lower systolic BP, diastolic BP, and MAP than controls, potentially indicating a differential dependence on voluntary wheel running in HR mice. This is the first characterization of a cardiovascular withdrawal response in an animal model of high voluntary exercise. Copyright © 2013. Published by Elsevier Inc.
Exercise attenuates the metabolic effects of dim light at night.
Fonken, Laura K; Meléndez-Fernández, O Hecmarie; Weil, Zachary M; Nelson, Randy J
2014-01-30
Most organisms display circadian rhythms that coordinate complex physiological and behavioral processes to optimize energy acquisition, storage, and expenditure. Disruptions to the circadian system with environmental manipulations such as nighttime light exposure alter metabolic energy homeostasis. Exercise is known to strengthen circadian rhythms and to prevent weight gain. Therefore, we hypothesized providing mice a running wheel for voluntary exercise would buffer against the effects of light at night (LAN) on weight gain. Mice were maintained in either dark (LD) or dim (dLAN) nights and provided either a running wheel or a locked wheel. Mice exposed to dim, rather than dark, nights increased weight gain. Access to a functional running wheel prevented body mass gain in mice exposed to dLAN. Voluntary exercise appeared to limit weight gain independently of rescuing changes to the circadian system caused by dLAN; increases in daytime food intake induced by dLAN were not diminished by increased voluntary exercise. Furthermore, although all of the LD mice displayed a 24h rhythm in wheel running, nearly half (4 out of 9) of the dLAN mice did not display a dominant 24h rhythm in wheel running. These results indicate that voluntary exercise can prevent weight gain induced by dLAN without rescuing circadian rhythm disruptions. © 2013.
Wheel running reduces high-fat diet intake, preference and mu-opioid agonist stimulated intake
Liang, Nu-Chu; Bello, Nicholas T.; Moran, Timothy H.
2015-01-01
The ranges of mechanisms by which exercise affects energy balance remain unclear. One potential mechanism may be that exercise reduces intake and preference for highly palatable, energy dense fatty foods. The current study used a rodent wheel running model to determine whether and how physical activity affects HF diet intake/preference and reward signaling. Experiment 1 examined whether wheel running affected the ability of intracerebroventricular (ICV) µ opioid receptor agonist D-Ala2, NMe-Phe4, Glyol5-enkephalin (DAMGO) to increase HF diet intake. Experiment 2 examined the effects of wheel running on the intake of and preference for a previously preferred HF diet. We also assessed the effects of wheel running and diet choice on mesolimbic dopaminergic and opioidergic gene expression. Experiment 1 revealed that wheel running decreased the ability of ICV DAMGO administration to stimulate HF diet intake. Experiment 2 showed that wheel running suppressed weight gain and reduced intake and preference for a previously preferred HF diet. Furthermore, the mesolimbic gene expression profile of wheel running rats was different from that of their sedentary paired-fed controls but similar to that of sedentary rats with large HF diet consumption. These data suggest that alterations in preference for palatable, energy dense foods play a role in the effects of exercise on energy homeostasis. The gene expression results also suggest that the hedonic effects of exercise may substitute for food reward to limit food intake and suppress weight gain. PMID:25668514
Free Access to Running Wheels Abolishes Hyperphagia in Human Growth Hormone Transgenic Rats
KOMATSUDA, Mugiko; YAMANOUCHI, Keitaro; MATSUWAKI, Takashi; NISHIHARA, Masugi
2014-01-01
ABSTRACT Obesity is a major health problem, and increased food intake and decreased physical activity are considered as two major factors causing obesity. Previous studies show that voluntary exercise in a running wheel decreases not only body weight but also food intake of rats. We previously produced human growth hormone transgenic (TG) rats, which are characterized by severe hyperphagia and obesity. To gain more insight into the effects on physical activity to food consumption and obesity, we examined whether voluntary running wheel exercise causes inhibition of hyperphagia and alteration of body composition in TG rats. Free access to running wheels completely abolished hyperphagia in TG rats, and this effect persisted for many weeks as far as the running wheel is accessible. Unexpectedly, though the running distances of TG rats were significantly less than those of wild type rats, it was sufficient to normalize their food consumption. This raises the possibility that rearing environment, which enables them to access to a running wheel freely, rather than the amounts of physical exercises is more important for the maintenance of proper food intake. PMID:24717416
Free access to running wheels abolishes hyperphagia in human growth hormone transgenic rats.
Komatsuda, Mugiko; Yamanouchi, Keitaro; Matsuwaki, Takashi; Nishihara, Masugi
2014-07-01
Obesity is a major health problem, and increased food intake and decreased physical activity are considered as two major factors causing obesity. Previous studies show that voluntary exercise in a running wheel decreases not only body weight but also food intake of rats. We previously produced human growth hormone transgenic (TG) rats, which are characterized by severe hyperphagia and obesity. To gain more insight into the effects on physical activity to food consumption and obesity, we examined whether voluntary running wheel exercise causes inhibition of hyperphagia and alteration of body composition in TG rats. Free access to running wheels completely abolished hyperphagia in TG rats, and this effect persisted for many weeks as far as the running wheel is accessible. Unexpectedly, though the running distances of TG rats were significantly less than those of wild type rats, it was sufficient to normalize their food consumption. This raises the possibility that rearing environment, which enables them to access to a running wheel freely, rather than the amounts of physical exercises is more important for the maintenance of proper food intake.
Greenwood, Benjamin N; Foley, Teresa E; Le, Tony V; Strong, Paul V; Loughridge, Alice B; Day, Heidi E W; Fleshner, Monika
2011-03-01
The mesolimbic reward pathway is implicated in stress-related psychiatric disorders and is a potential target of plasticity underlying the stress resistance produced by repeated voluntary exercise. It is unknown, however, whether rats find long-term access to running wheels rewarding, or if repeated voluntary exercise reward produces plastic changes in mesolimbic reward neurocircuitry. In the current studies, young adult, male Fischer 344 rats allowed voluntary access to running wheels for 6 weeks, but not 2 weeks, found wheel running rewarding, as measured by conditioned place preference (CPP). Consistent with prior reports and the behavioral data, 6 weeks of wheel running increased ΔFosB/FosB immunoreactivity in the nucleus accumbens (Acb). In addition, semi quantitative in situ hybridization revealed that 6 weeks of wheel running, compared to sedentary housing, increased tyrosine hydroxylase (TH) mRNA levels in the ventral tegmental area (VTA), increased delta opioid receptor (DOR) mRNA levels in the Acb shell, and reduced levels of dopamine receptor (DR)-D2 mRNA in the Acb core. Results indicate that repeated voluntary exercise is rewarding and alters gene transcription in mesolimbic reward neurocircuitry. The duration-dependent effects of wheel running on CPP suggest that as the weeks of wheel running progress, the rewarding effects of a night of voluntary wheel running might linger longer into the inactive cycle thus providing stronger support for CPP. The observed plasticity could contribute to the mechanisms by which exercise reduces the incidence and severity of substance abuse disorders, changes the rewarding properties of drugs of abuse, and facilitates successful coping with stress. Copyright © 2010 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Petri, Ines; Scherbarth, Frank; Steinlechner, Stephan
2010-09-01
Energy demands of gestation and lactation represent a severe challenge for small mammals. Therefore, additional energetic burdens may compromise successful breeding. In small rodents, food restriction, cold exposure (also in combination) and wheel running to obtain food have been shown to diminish reproductive outcome. Although exhibited responses such as lower incidence of pregnancy, extended lactation periods and maternal infanticide were species dependent, their common function is to adjust energetic costs to the metabolic state reflecting the trade-off between maternal investment and self-maintenance. In the present study, we sought to examine whether voluntary exercise affects reproduction in Djungarian hamsters ( Phodopus sungorus), which are known for their high motivation to run in a wheel. Voluntary exercise resulted in two different effects on reproduction; in addition to increased infanticide and cannibalism, which was evident across all experiments, the results of one experiment provided evidence that free access to a running wheel may prevent successful pregnancy. It seems likely that the impact of voluntary wheel running on reproduction was associated with a reduction of internal energy resources evoked by extensive exercise. Since the hamsters were neither food-restricted nor forced to run in the present study, an energetic deficit as reason for infanticide in exercising dams would emphasise the particularly high motivation to run in a wheel.
Kelly, Scott A; Rezende, Enrico L; Chappell, Mark A; Gomes, Fernando R; Kolb, Erik M; Malisch, Jessica L; Rhodes, Justin S; Mitchell, Gordon S; Garland, Theodore
2014-02-01
What is the central question of this study? We used experimental evolution to determine how selective breeding for high voluntary wheel running and exercise training (7-11 weeks) affect ventilatory chemoreflexes of laboratory mice at rest. What is the main finding and its importance? Selective breeding, although significantly affecting some traits, did not systematically alter ventilation across gas concentrations. As with most human studies, our findings support the idea that endurance training attenuates resting ventilation. However, little evidence was found for a correlation between ventilatory chemoreflexes and the amount of individual voluntary wheel running. We conclude that exercise 'training' alters respiratory behaviours, but these changes may not be necessary to achieve high levels of wheel running. Ventilatory control is affected by genetics, the environment and gene-environment and gene-gene interactions. Here, we used an experimental evolution approach to test whether 37 generations of selective breeding for high voluntary wheel running (genetic effects) and/or long-term (7-11 weeks) wheel access (training effects) alter acute respiratory behaviour of mice resting in normoxic, hypoxic and hypercapnic conditions. As the four replicate high-runner (HR) lines run much more than the four non-selected control (C) lines, we also examined whether the amount of exercise among individual mice was a quantitative predictor of ventilatory chemoreflexes at rest. Selective breeding and/or wheel access significantly affected several traits. In normoxia, HR mice tended to have lower mass-adjusted rates of oxygen consumption and carbon dioxide production. Chronic wheel access increased oxygen consumption and carbon dioxide production in both HR and C mice during hypercapnia. Breathing frequency and minute ventilation were significantly reduced by chronic wheel access in both HR and C mice during hypoxia. Selection history, while significantly affecting some traits, did not systematically alter ventilation across all gas concentrations. As with most human studies, our findings support the idea that endurance training (access to wheel running) attenuates resting ventilation. However, little evidence was found for a correlation at the level of the individual variation between ventilatory chemoreflexes and performance (amount of individual voluntary wheel running). We tentatively conclude that exercise 'training' alters respiratory behaviours, but these changes may not be necessary to achieve high levels of wheel running.
Voluntary wheel running improves recovery from a moderate spinal cord injury.
Engesser-Cesar, Christie; Anderson, Aileen J; Basso, D Michele; Edgerton, V R; Cotman, Carl W
2005-01-01
Recently, locomotor training has been shown to improve overground locomotion in patients with spinal cord injury (SCI). This has triggered renewed interest in the role of exercise in rehabilitation after SCI. However, there are no mouse models for voluntary exercise and recovery of function following SCI. Here, we report voluntary wheel running improves recovery from a SCI in mice. C57Bl/10 female mice received a 60-kdyne T9 contusion injury with an IH impactor after 3 weeks of voluntary wheel running or 3 weeks of standard single housing conditions. Following a 7-day recovery period, running mice were returned to their running wheels. Weekly open-field behavior measured locomotor recovery using the Basso, Beattie and Bresnahan (BBB) locomotor rating scale and the Basso Mouse Scale (BMS) locomotor rating scale, a scale recently developed specifically for mice. Initial experiments using standard rung wheels show that wheel running impaired recovery, but subsequent experiments using a modified flat-surface wheel show improved recovery with exercise. By 14 days post SCI, the modified flat-surface running group had significantly higher BBB and BMS scores than the sedentary group. A repeated measures ANOVA shows locomotor recovery of modified flat-surface running mice was significantly improved compared to sedentary animals (p < 0.05). Locomotor assessment using a ladder beam task also shows a significant improvement in the modified flat-surface runners (p < 0.05). Finally, fibronectin staining shows no significant difference in lesion size between the two groups. These data represent the first mouse model showing voluntary exercise improves recovery after SCI.
Neurochemical and behavioral indices of exercise reward are independent of exercise controllability
Herrera, Jonathan J; Fedynska, Sofiya; Ghasem, Parsa R; Wieman, Tyler; Clark, Peter J; Gray, Nathan; Loetz, Esteban; Campeau, Serge; Fleshner, Monika; Greenwood, Benjamin N
2016-01-01
Brain reward circuits are implicated in stress-related psychiatric disorders. Exercise reduces the incidence of stress-related disorders, but the contribution of exercise reward to stress resistance is unknown. Exercise-induced stress resistance is independent of exercise controllability; both voluntary and forced wheel running protect rats against anxiety- and depression-like behavioral consequences of stress. Voluntary exercise is a natural reward, but whether rats find forced wheel running rewarding is unknown. Moreover, the contribution of dopamine (DA) and striatal reward circuits to exercise reward is not well characterized. Adult, male rats were assigned to locked wheels, voluntary running (VR), or forced running (FR) groups. FR rats were forced to run in a pattern resembling rats' natural wheel running behavior. Both VR and FR increased the reward-related plasticity marker ΔFosB in the dorsal striatum (DS) and nucleus accumbens (NAc), and increased activity of DA neurons in the lateral ventral tegmental area (VTA), as revealed by immunohistochemistry for tyrosine hydroxylase (TH) and pCREB. Both VR and FR rats developed conditioned place preference (CPP) to the side of a CPP chamber paired with exercise. Re-exposure to the exercise-paired side of the CPP chamber elicited conditioned increases in cfos mRNA in direct pathway (dynorphin-positive) neurons in the DS and NAc in both VR and FR rats, and in TH-positive neurons in the lateral VTA of VR rats only. Results suggest that the rewarding effects of exercise are independent of exercise controllability and provide insight into the DA and striatal circuitries involved in exercise reward and exercise-induced stress resistance. PMID:26833814
A comparison of two types of running wheel in terms of mouse preference, health, and welfare.
Walker, Michael; Mason, Georgia
2018-07-01
Voluntary wheel running occurs in mice of all strains, sexes, and ages. Mice find voluntary wheel running rewarding, and it leads to numerous health benefits. For this reason wheels are used both to enhance welfare and to create models of exercise. However, many designs of running wheel are used. This makes between-study comparisons difficult, as this variability could potentially affect the amount, pattern, and/or intensity of running behaviour, and thence the wheels' effects on welfare and exercise-related changes in anatomy and physiology. This study therefore evaluated two commercially available models, chosen because safe for group-housed mice: Bio Serv®'s "fast-trac" wheel combo and Ware Manufacturing Inc.'s stainless steel mesh 5″ upright wheel. Working with a total of three hundred and fifty one female C57BL/6, DBA/2 and BALB/c mice, we assessed these wheels' relative utilization by mice when access was free; the strength of motivation for each wheel-type when access required crossing an electrified grid; and the impact each wheel had on mouse well-being (inferred from acoustic startle responses and neophobia) and exercise-related anatomical changes (BMI; heart and hind limb masses). Mice ran more on the "fast-trac" wheel regardless of whether both wheel-types were available at once, or only if one was present. In terms of motivation, subjects required to work to access a single wheel worked equally hard for both wheel-types (even if locked and thus not useable for running), but if provided with one working wheel for free and the other type of wheel (again unlocked) accessible via crossing the electrified grid, the "fast-trac" wheel emerged as more motivating, as the Maximum Price Paid for the Ware metal wheel was lower than that paid for the "fast-trac" plastic wheel, at least for C57BL/6s and DBA/2s. No deleterious consequences were noted with either wheel in terms of health and welfare, but only mice with plastic wheels developed significantly larger hearts and hind limbs than control animals with locked wheels. Thus, where differences emerged, Bio Serv®'s "fast-trac" wheel combos appeared to better meet the aims of exercise provision than Ware Manufacturing's steel upright wheels. Copyright © 2018 Elsevier Inc. All rights reserved.
Voluntary Wheel Running in Mice.
Goh, Jorming; Ladiges, Warren
2015-12-02
Voluntary wheel running in the mouse is used to assess physical performance and endurance and to model exercise training as a way to enhance health. Wheel running is a voluntary activity in contrast to other experimental exercise models in mice, which rely on aversive stimuli to force active movement. This protocol consists of allowing mice to run freely on the open surface of a slanted, plastic saucer-shaped wheel placed inside a standard mouse cage. Rotations are electronically transmitted to a USB hub so that frequency and rate of running can be captured via a software program for data storage and analysis for variable time periods. Mice are individually housed so that accurate recordings can be made for each animal. Factors such as mouse strain, gender, age, and individual motivation, which affect running activity, must be considered in the design of experiments using voluntary wheel running. Copyright © 2015 John Wiley & Sons, Inc.
Voluntary Wheel Running in Mice
Goh, Jorming; Ladiges, Warren
2015-01-01
Voluntary wheel running in the mouse is used to assess physical performance and endurance and to model exercise training as a way to enhance health. Wheel running is a voluntary activity in contrast to other experimental exercise models in mice, which rely on aversive stimuli to force active movement. The basic protocol consists of allowing mice to run freely on the open surface of a slanted plastic saucer-shaped wheel placed inside a standard mouse cage. Rotations are electronically transmitted to a USB hub so that frequency and rate of running can be captured to a software program for data storage and analysis for variable time periods. Mice are individually housed so that accurate recordings can be made for each animal. Factors such as mouse strain, gender, age, and individual motivation, which affect running activity, must be considered in the design of experiments using voluntary wheel running. PMID:26629772
García-Capdevila, Sílvia; Portell-Cortés, Isabel; Torras-Garcia, Meritxell; Coll-Andreu, Margalida; Costa-Miserachs, David
2009-09-14
The effect of long-term voluntary exercise (running wheel) on anxiety-like behaviour (plus maze and open field) and learning and memory processes (object recognition and two-way active avoidance) was examined on Wistar rats. Because major individual differences in running wheel behaviour were observed, the data were analysed considering the exercising animals both as a whole and grouped according to the time spent in the running wheel (low, high, and very-high running). Although some variables related to anxiety-like behaviour seem to reflect an anxiogenic compatible effect, the view of the complete set of variables could be interpreted as an enhancement of defensive and risk assessment behaviours in exercised animals, without major differences depending on the exercise level. Effects on learning and memory processes were dependent on task and level of exercise. Two-way avoidance was not affected either in the acquisition or in the retention session, while the retention of object recognition task was affected. In this latter task, an enhancement in low running subjects and impairment in high and very-high running animals were observed.
Rezende, Enrico L; Chappell, Mark A; Gomes, Fernando R; Malisch, Jessica L; Garland, Theodore
2005-06-01
Selective breeding for high wheel-running activity has generated four lines of laboratory house mice (S lines) that run about 170% more than their control counterparts (C lines) on a daily basis, mostly because they run faster. We tested whether maximum aerobic metabolic rates (V(O2max)) have evolved in concert with wheel-running, using 48 females from generation 35. Voluntary activity and metabolic rates were measured on days 5+6 of wheel access (mimicking conditions during selection), using wheels enclosed in metabolic chambers. Following this, V(O2max) was measured twice on a motorized treadmill and twice during cold-exposure in a heliox atmosphere (HeO2). Almost all measurements, except heliox V(O2max), were significantly repeatable. After accounting for differences in body mass (S < C) and variation in age at testing, S and C did not differ in V(O2max) during forced exercise or in heliox, nor in maximal running speeds on the treadmill. However, running speeds and V(O2max) during voluntary exercise were significantly higher in S lines. Nevertheless, S mice never voluntarily achieved the V(O2max) elicited during their forced treadmill trials, suggesting that aerobic capacity per se is not limiting the evolution of even higher wheel-running speeds in these lines. Our results support the hypothesis that S mice have genetically higher motivation for wheel-running and they demonstrate that behavior can sometimes evolve independently of performance capacities. We also discuss the possible importance of domestication as a confounding factor to extrapolate results from this animal model to natural populations.
Wheel running decreases the positive reinforcing effects of heroin.
Smith, Mark A; Pitts, Elizabeth G
2012-01-01
The purpose of this study was to examine the effects of voluntary wheel running on the positive reinforcing effects of heroin in rats with an established history of drug self-administration. Rats were assigned to sedentary (no wheel) and exercise (wheel) conditions and trained to self-administer cocaine under positive reinforcement contingencies. Rats acquiring cocaine self-administration were then tested with various doses of heroin during daily test sessions. Sedentary rats self-administered more heroin than exercising rats, and this effect was greatest at low and moderate doses of heroin. These data suggest that voluntary wheel running decreases the positive reinforcing effects of heroin.
Lee, Jada Chia-Di; Yau, Suk-Yu; Lee, Tatia M C; Lau, Benson Wui-Man; So, Kwok-Fai
2016-11-01
Adult neurogenesis within the dentate gyrus (DG) of the hippocampus can be increased by voluntary exercise but is suppressed under stress, such as with corticosterone (CORT). However, the effects of exercise and CORT on the cell proliferation of the other traditional neurogenic site, the subventricular zone (SVZ), have been reported with controversial results. In addition, the cotreatment effects of voluntary exercise and CORT have not been investigated. This study aims to determine whether CORT can suppress cell proliferation in the SVZ and whether this can be reversed by voluntary exercise. In the present study, the effect of chronic (4 weeks) CORT treatment and wheel running simultaneously on the SVZ cell proliferation of adult Sprague-Dawley rats was examined. The results showed that cell proliferation indicated by bromodeoxyuridine (BrdU) was increased by voluntary wheel running, whereas it was decreased by CORT treatment within the SVZ of the rats without running. For the rats with both CORT treatment and wheel running, it was found that the number of BrdU-labeled cells was approximately at the same level as the vehicle control group. Furthermore, these proliferating cells expressed doublecortin (DCX), a migrating neuroblast marker. Wheel running increased the percentage of BrdU-labeled cells expressing DCX in the SVZ, whereas CORT treatment decreased this percentage. Thus, chronic injection of CORT can decrease the number of proliferating cells, while wheel running can reverse the decrease in cell proliferation within the SVZ to normal levels. In addition, CORT can suppress the cell differentiation within the SVZ, and this was alleviated by wheel running as indicated by the double labeling of BrdU and DCX.
Restricted vs. unrestricted wheel running in mice: Effects on brain, behavior and endocannabinoids.
Biedermann, Sarah V; Auer, Matthias K; Bindila, Laura; Ende, Gabriele; Lutz, Beat; Weber-Fahr, Wolfgang; Gass, Peter; Fuss, Johannes
2016-11-01
Beneficial effects of voluntary wheel running on hippocampal neurogenesis, morphology and hippocampal-dependent behavior have widely been studied in rodents, but also serious side effects and similarities to stereotypy have been reported. Some mouse strains run excessively when equipped with running wheels, complicating the comparability to human exercise regimes. Here, we investigated how exercise restriction to 6h/day affects hippocampal morphology and metabolism, stereotypic and basal behaviors, as well as the endocannabinoid system in wheel running C57BL/6 mice; the strain most commonly used for behavioral analyses and psychiatric disease models. Restricted and unrestricted wheel running had similar effects on immature hippocampal neuron numbers, thermoregulatory nest building and basal home-cage behaviors. Surprisingly, hippocampal gray matter volume, assessed with magnetic resonance (MR) imaging at 9.4 Tesla, was only increased in unrestricted but not in restricted runners. Moreover, unrestricted runners showed less stereotypic behavior than restricted runners did. However, after blockage of running wheels for 24h stereotypic behavior also increased in unrestricted runners, arguing against a long-term effect of wheel running on stereotypic behavior. Stereotypic behaviors correlated with frontal glutamate and glucose levels assessed by 1 H-MR spectroscopy. While acute running increased plasma levels of the endocannabinoid anandamide in former studies in mice and humans, we found an inverse correlation of anandamide with the daily running distance after long-term running. In conclusion, although there are some diverging effects of restricted and unrestricted running on brain and behavior, restricted running does not per se seem to be a better animal model for aerobic exercise in mice. Copyright © 2016 Elsevier Inc. All rights reserved.
Ebada, Mohamed Elsaed; Kendall, David A; Pardon, Marie-Christine
2016-09-15
Physical exercise can improve cognition but whether this is related to motivation levels is unknown. Voluntary wheel running is a rewarding activity proposed as a model of motivation to exercise. To question the potential effects of exercise motivation on subsequent behaviour, we used a pharmacological approach targeting some reward mechanisms. The stress hormone corticosterone has rewarding effects mediated by activation of low affinity glucocorticoid receptors (GR). To investigate whether corticosterone synthesis motivates exercise via activation of GRs and subsequently, impacts on behaviour, we treated C57BL/6J mice acutely with the inhibitor of corticosterone synthesis metyrapone (35mg/kg) or repeatedly with the GR antagonist mifepristone (30mg/kg) prior to 1-h running wheel sessions. To investigate whether reducing motivation to exercise impacts on behaviour, we antagonised running-induced dopamine D2/D3 receptors activation with sulpiride (25 or 50mg/kg) and assessed locomotor, anxiety-related and memory performance after 20 running sessions over 4 weeks. We found that corticosterone synthesis contributes to running levels, but the maintenance of running behaviour was not mediated by activation of GRs. Intermittent exercise was not associated with changes in behavioural or cognitive performance. The persistent reduction in exercise levels triggered by sulpiride also had limited impact on behavioural performance, although the level of performance for some behaviours was related to the level of exercise. Altogether, these findings indicate that corticosterone and dopamine D2/D3 receptor activation contribute to the motivation for wheel running, but suggest that motivation for exercise is not a sufficient factor to alter behaviour in healthy mice. Copyright © 2016 Elsevier B.V. All rights reserved.
Resting Is Rusting: A Critical View on Rodent Wheel-Running Behavior.
Richter, Sophie Helene; Gass, Peter; Fuss, Johannes
2014-08-01
Physical exercise is known to exert various beneficial effects on brain function and bodily health throughout life. In biomedical research, these effects are widely studied by introducing running wheels into the cages of laboratory rodents. Yet, although rodents start to run in the wheels immediately, and perform wheel-running excessively on a voluntary basis, the biological significance of wheel-running is still not clear. Here, we review the current literature on wheel-running and discuss potentially negative side-effects that may give cause for concern. We particularly emphasize on analogies of wheel-running with stereotypic and addictive behavior to stimulate further research on this topic. © The Author(s) 2014.
Peterson, Alexis B; Abel, Jean M; Lynch, Wendy J
2014-04-01
Physical activity, and specifically exercise, has shown promise as an intervention for drug addiction; however, the exercise conditions that produce the most efficacious response, as well as its underlying mechanism, are unknown. In this study, we examined the dose-dependent effects of wheel running, an animal model of exercise, during abstinence on subsequent cocaine-seeking and associated changes in prefrontal cortex (PFC) brain-derived neurotrophic factor (Bdnf) exon IV expression, a marker of epigenetic regulation implicated in cocaine relapse and known to be regulated by exercise. Cocaine-seeking was assessed under a within-session extinction/cue-induced reinstatement procedure following extended access cocaine or saline self-administration (24-h/day, 4 discrete trials/h, 10 days, 1.5 mg/kg/infusion) and a 14-day abstinence period. During abstinence, rats had either locked or unlocked running wheel access for 1, 2, or 6 h/day. Bdnf exon IV expression was assessed using quantitative real-time polymerase chain reaction. Cocaine-seeking was highest under the locked wheel condition, and wheel running dose dependently attenuated this effect. Cocaine increased Bdnf exon IV expression, and wheel running dose dependently attenuated this increase, with complete blockade in rats given 6-h/day access. Notably, the efficacy of exercise was inversely associated with Bdnf exon IV expression, and both its efficacy and its effects on Bdnf exon IV expression were mimicked by treatment during abstinence with sodium butyrate, a histone deacetylase inhibitor that, like exercise, modulates gene transcription, including Bdnf exon IV expression. Taken together, these results indicate that the efficacy of exercise is dose dependent and likely mediated through epigenetic regulation of PFC Bdnf.
Seward, T; Harfmann, B D; Esser, K A; Schroder, E A
2018-04-01
Voluntary wheel cage assessment of mouse activity is commonly employed in exercise and behavioral research. Currently, no standardization for wheel cages exists resulting in an inability to compare results among data from different laboratories. The purpose of this study was to determine whether the distance run or average speed data differ depending on the use of two commonly used commercially available wheel cage systems. Two different wheel cages with structurally similar but functionally different wheels (electromechanical switch vs. magnetic switch) were compared side-by-side to measure wheel running data differences. Other variables, including enrichment and cage location, were also tested to assess potential impacts on the running wheel data. We found that cages with the electromechanical switch had greater inherent wheel resistance and consistently led to greater running distance per day and higher average running speed. Mice rapidly, within 1-2 days, adapted their running behavior to the type of experimental switch used, suggesting these running differences are more behavioral than due to intrinsic musculoskeletal, cardiovascular, or metabolic limits. The presence of enrichment or location of the cage had no detectable impact on voluntary wheel running. These results demonstrate that mice run differing amounts depending on the type of cage and switch mechanism used and thus investigators need to report wheel cage type/wheel resistance and use caution when interpreting distance/speed run across studies. NEW & NOTEWORTHY The results of this study highlight that mice will run different distances per day and average speed based on the inherent resistance present in the switch mechanism used to record data. Rapid changes in running behavior for the same mouse in the different cages demonstrate that a strong behavioral factor contributes to classic exercise outcomes in mice. Caution needs to be taken when interpreting mouse voluntary wheel running activity to include potential behavioral input and physiological parameters.
PROGRESSIVE RESISTANCE VOLUNTARY WHEEL RUNNING IN THE mdx MOUSE
Call, Jarrod A.; McKeehen, James N.; Novotny, Susan A.; Lowe, Dawn A.
2012-01-01
Exercise training has been minimally explored as a therapy to mitigate the loss of muscle strength for individuals with Duchenne muscular dystrophy (DMD). Voluntary wheel running is known to elicit beneficial adaptations in the mdx mouse model for DMD. The aim of this study was to examine progressive resistance wheel running in mdx mice by comprehensively testing muscle function before, during, and after a 12-week training period. Male mdx mice at ~4 weeks age were randomized into three groups: Sedentary, Free Wheel, and Resist Wheel. Muscle strength was assessed via in vivo dorsiflexion torque, grip strength, and whole body tension intermittently throughout the training period. Contractility of isolated soleus muscles was analyzed at the study’s conclusion. Both Free and Resist Wheel mice had greater grip strength (~22%) and soleus muscle specific tetanic force (26%) compared with Sedentary mice. This study demonstrates that two modalities of voluntary exercise are beneficial to dystrophic muscle and may help establish parameters for an exercise prescription for DMD. PMID:21104862
Lark, Daniel S; Kwan, Jamie R; McClatchey, P Mason; James, Merrygay N; James, Freyja D; Lighton, John R B; Lantier, Louise; Wasserman, David H
2018-05-01
Exercise alone is often ineffective for treating obesity despite the associated increase in metabolic requirements. Decreased nonexercise physical activity has been implicated in this resistance to weight loss, but the mechanisms responsible are unclear. We quantified the metabolic cost of nonexercise activity, or "off-wheel" activity (OWA), and voluntary wheel running (VWR) and examined whether changes in OWA during VWR altered energy balance in chow-fed C57BL/6J mice ( n = 12). Energy expenditure (EE), energy intake, and behavior (VWR and OWA) were continuously monitored for 4 days with locked running wheels followed by 9 days with unlocked running wheels. Unlocking the running wheels increased EE as a function of VWR distance. The metabolic cost of exercise (kcal/m traveled) decreased with increasing VWR speed. Unlocking the wheel led to a negative energy balance but also decreased OWA, which was predicted to mitigate the expected change in energy balance by ∼45%. A novel behavioral circuit involved repeated bouts of VWR, and roaming was discovered and represented novel predictors of VWR behavior. The integrated analysis described here reveals that the weight loss effects of voluntary exercise can be countered by a reduction in nonexercise activity. © 2018 by the American Diabetes Association.
Wheel-running activity modulates circadian organization and the daily rhythm of eating behavior
Pendergast, Julie S.; Branecky, Katrina L.; Huang, Roya; Niswender, Kevin D.; Yamazaki, Shin
2014-01-01
Consumption of high-fat diet acutely alters the daily rhythm of eating behavior and circadian organization (the phase relationship between oscillators in central and peripheral tissues) in mice. Voluntary wheel-running activity counteracts the obesogenic effects of high-fat diet and also modulates circadian rhythms in mice. In this study, we sought to determine whether voluntary wheel-running activity could prevent the proximate effects of high-fat diet consumption on circadian organization and behavioral rhythms in mice. Mice were housed with locked or freely rotating running wheels and fed chow or high-fat diet for 1 week and rhythms of locomotor activity, eating behavior, and molecular timekeeping (PERIOD2::LUCIFERASE luminescence rhythms) in ex vivo tissues were measured. Wheel-running activity delayed the phase of the liver rhythm by 4 h in both chow- and high-fat diet-fed mice. The delayed liver phase was specific to wheel-running activity since an enriched environment without the running wheel did not alter the phase of the liver rhythm. In addition, wheel-running activity modulated the effect of high-fat diet consumption on the daily rhythm of eating behavior. While high-fat diet consumption caused eating events to be more evenly dispersed across the 24 h-day in both locked-wheel and wheel-running mice, the effect of high-fat diet was much less pronounced in wheel-running mice. Together these data demonstrate that wheel-running activity is a salient factor that modulates liver phase and eating behavior rhythms in both chow- and high-fat-diet fed mice. Wheel-running activity in mice is both a source of exercise and a self-motivating, rewarding behavior. Understanding the putative reward-related mechanisms whereby wheel-running activity alters circadian rhythms could have implications for human obesity since palatable food and exercise may modulate similar reward circuits. PMID:24624109
Lapmanee, Sarawut; Charoenphandhu, Jantarima; Charoenphandhu, Narattaphol
2013-08-01
Rodents exposed to mild but repetitive stress may develop anxiety- and depression-like behaviors. Whether this stress response could be alleviated by pharmacological treatments or exercise interventions, such as wheel running, was unknown. Herein, we determined anxiety- and depression-like behaviors in restraint stressed rats (2h/day, 5 days/week for 4 weeks) subjected to acute diazepam treatment (30min prior to behavioral test), chronic treatment with fluoxetine, reboxetine or venlafaxine (10mg/kg/day for 4 weeks), and/or 4-week voluntary wheel running. In elevated plus-maze (EPM) and forced swimming tests (FST), stressed rats spent less time in the open arms and had less swimming duration than the control rats, respectively, indicating the presence of anxiety- and depression-like behaviors. Stressed rats also developed learned fear as evaluated by elevated T-maze test (ETM). Although wheel running could reduce anxiety-like behaviors in both EPM and ETM, only diazepam was effective in the EPM, while fluoxetine, reboxetine, and venlafaxine were effective in the ETM. Fluoxetine, reboxetine, and wheel running, but not diazepam and venlafaxine, also reduced depression-like behavior in FST. Combined pharmacological treatment and exercise did not further reduce anxiety-like behavior in stressed rats. However, stressed rats treated with wheel running plus reboxetine or venlafaxine showed an increase in climbing duration in FST. In conclusion, regular exercise (voluntary wheel running) and pharmacological treatments, especially fluoxetine and reboxetine, could alleviate anxiety- and depression-like behaviors in stressed male rats. Copyright © 2013 Elsevier B.V. All rights reserved.
Effects of acute voluntary loaded wheel running on BDNF expression in the rat hippocampus.
Lee, Minchul; Soya, Hideaki
2017-12-31
Voluntary loaded wheel running involves the use of a load during a voluntary running activity. A muscle-strength or power-type activity performed at a relatively high intensity and a short duration may cause fewer apparent metabolic adaptations but may still elicit muscle fiber hypertrophy. This study aimed to determine the effects of acute voluntary wheel running with an additional load on brain-derived neurotrophic factor (BDNF) expression in the rat hippocampus. Ten-week old male Wistar rats were assigned randomly to a (1) sedentary (Control) group; (2) voluntary exercise with no load (No-load) group; or (3) voluntary exercise with an additional load (Load) group for 1-week (acute period). The expression of BDNF genes was quantified by real-time PCR. The average distance levels were not significantly different in the No-load and Load groups. However, the average work levels significantly increased in the Load group. The relative soleus weights were greater in the No-load group. Furthermore, loaded wheel running up-regulated the BDNF mRNA level compared with that in the Control group. The BDNF mRNA levels showed a positive correlation with workload levels (r=0.75), suggesting that the availability of multiple workload levels contributes to the BDNF-related benefits of loaded wheel running noted in this study. This novel approach yielded the first set of findings showing that acute voluntary loaded wheel running, which causes muscular adaptation, enhanced BDNF expression, suggesting a possible role of high-intensity short-term exercise in hippocampal BDNF activity. ©2017 The Korean Society for Exercise Nutrition
Aghaie, Fatemeh; Khazali, Homayoun; Hedayati, Mehdi; Akbarnejad, Ali
2018-01-01
Polycystic ovarian syndrome (PCOS) is the most frequent female endocrine disorder that affects 5-10% of women. PCOS is characterized by hyperandrogenism, oligo-/anovulation, and polycystic ovaries. The aim of the present research is to evaluate the expression of steroidogenic acute regulatory protein (StAR) and aromatase (CYP19) mRNA in the ovaries of an estradiol valerate (EV)-induced PCOS rat model, and the effect of treadmill and running wheel (voluntary) exercise on these parameters. In this experimental study, we divided adult female Wistar rats that weighed approximately 220 ± 20 g initially into control (n=10) and PCOS (n=30). Subsequently, PCOS group were divided to PCOS, PCOS with treadmill exercise (P-ExT), and PCOS with running wheel exercise (P-ExR) groups (n=10 per group). The expressions of StAR and CYP19 mRNA in the ovaries were determined by quantitative real-time reverse transcriptase polymerase chain reaction (qRT-PCR). Data were analyzed by one-way ANOVA using SPSS software, version 16. The data were assessed at α=0.05. There was significantly lower mRNA expression of CYP19 in the EV-induced PCOS, running wheel and treadmill exercise rats compared to the control group (P<0.001). Treadmill exercise (P=0.972) and running wheel exercise (P=0.839) had no significant effects on CYP19 mRNA expression compared to the PCOS group. mRNA expression of StAR in the ovaries of the PCOS group indicated an increasing trend compared to the control group, however this was not statistically significant (P=0.810). We observed that 8 weeks of running wheel and treadmill exercises could not statistically decrease StAR mRNA expression compared to the PCOS group (P=0.632). EV-induced PCOS in rats decreased CYP19 mRNA expression, but had no effect on StAR mRNA expression. We demonstrated that running wheel and moderate treadmill exercise could not modify CYP19 and StAR mRNA expressions. Copyright© by Royan Institute. All rights reserved.
An Innovative Running Wheel-based Mechanism for Improved Rat Training Performance.
Chen, Chi-Chun; Yang, Chin-Lung; Chang, Ching-Ping
2016-09-19
This study presents an animal mobility system, equipped with a positioning running wheel (PRW), as a way to quantify the efficacy of an exercise activity for reducing the severity of the effects of the stroke in rats. This system provides more effective animal exercise training than commercially available systems such as treadmills and motorized running wheels (MRWs). In contrast to an MRW that can only achieve speeds below 20 m/min, rats are permitted to run at a stable speed of 30 m/min on a more spacious and high-density rubber running track supported by a 15 cm wide acrylic wheel with a diameter of 55 cm in this work. Using a predefined adaptive acceleration curve, the system not only reduces the operator error but also trains the rats to run persistently until a specified intensity is reached. As a way to evaluate the exercise effectiveness, real-time position of a rat is detected by four pairs of infrared sensors deployed on the running wheel. Once an adaptive acceleration curve is initiated using a microcontroller, the data obtained by the infrared sensors are automatically recorded and analyzed in a computer. For comparison purposes, 3 week training is conducted on rats using a treadmill, an MRW and a PRW. After surgically inducing middle cerebral artery occlusion (MCAo), modified neurological severity scores (mNSS) and an inclined plane test were conducted to assess the neurological damages to the rats. PRW is experimentally validated as the most effective among such animal mobility systems. Furthermore, an exercise effectiveness measure, based on rat position analysis, showed that there is a high negative correlation between the effective exercise and the infarct volume, and can be employed to quantify a rat training in any type of brain damage reduction experiments.
O'Dell, S J; Gross, N B; Fricks, A N; Casiano, B D; Nguyen, T B; Marshall, J F
2007-02-09
Forced use of the forelimb contralateral to a unilateral injection of the dopaminergic neurotoxin 6-hydroxydopamine can promote recovery of motor function in that limb and can significantly decrease damage to dopamine terminals. The present study was conducted to determine (1) whether a form of voluntary exercise, wheel running, would improve motor performance in rats with such lesions, and (2) whether any beneficial effects of wheel running are attributable to ameliorating the dopaminergic damage. In experiment 1, rats were allowed to run in exercise wheels or kept in home cages for 2 1/2 weeks, then given stereotaxic infusions of 6-hydroxydopamine into the left striatum. The rats were replaced into their original environments (wheels or home cages) for four additional weeks, and asymmetries in forelimb use were quantified at 3, 10, 17, and 24 days postoperatively. After killing, dopaminergic damage was assessed by both quantifying 3 beta-(4-iodophenyl)tropan-2 beta-carboxylic acid methyl ester ([(125)I]RTI-55) binding to striatal dopamine transporters and counting tyrosine hydroxylase-positive cells in the substantia nigra. Exercised 6-hydroxydopamine-infused rats showed improved motor outcomes relative to sedentary lesioned controls, effects that were most apparent at postoperative days 17 and 24. Despite this behavioral improvement, 6-hydroxydopamine-induced loss of striatal dopamine transporters and tyrosine hydroxylase-positive nigral cells in exercised and sedentary groups did not differ. Since prior studies suggested that forced limb use improves motor performance by sparing nigrostriatal dopaminergic neurons from 6-hydroxydopamine damage, experiment 2 used a combined regimen of forced plus voluntary wheel running. Again, we found that the motor performance of exercised rats improved more rapidly than that of sedentary controls, but that there were no differences between these groups in the damage produced by 6-hydroxydopamine. It appears that voluntary exercise can facilitate recovery from partial nigrostriatal injury, but it does so without evident sparing of dopamine nerve terminals.
Enhanced voluntary wheel running in GPRC6A receptor knockout mice.
Clemmensen, Christoffer; Pehmøller, Christian; Klein, Anders B; Ratner, Cecilia; Wojtaszewski, Jørgen F P; Bräuner-Osborne, Hans
2013-06-13
GPRC6A is an amino acid-sensing receptor highly expressed in the brain and in skeletal muscle. Although recent evidence suggests that genetically engineered GPRC6A receptor knockout (KO) mice are susceptible to develop subtle endocrine and metabolic disturbances, the underlying disruptions in energy metabolism are largely unexplored. Based on GPRC6A's expression pattern and ligand preferences, we hypothesize that the receptor may impact energy metabolism via regulating physical activity levels. Thus, in the present study, we exposed GPRC6A receptor KO mice and their wild-type (WT) littermates to voluntary wheel running and forced treadmill exercise. Moreover, we assessed energy expenditure in the basal state, and evaluated the effects of wheel running on food intake, body composition, and a range of exercise-induced central and peripheral biomarkers. We found that adaptation to voluntary wheel running is affected by GPRC6A, as ablation of the receptor significantly enhances wheel running in KO relative to WT mice. Both genotypes responded to voluntary exercise by increasing food intake and improving body composition to a similar degree. In conclusion, these data demonstrate that the GPRC6A receptor is involved in regulating exercise behaviour. Future studies are highly warranted to delineate the underlying molecular details and to assess if these findings hold any translational value. Copyright © 2013 Elsevier Inc. All rights reserved.
Greenwood, Benjamin N.; Spence, Katie G.; Crevling, Danielle M.; Clark, Peter J.; Craig, Wendy C.; Fleshner, Monika
2014-01-01
Exercise increases resistance against stress-related disorders such as anxiety and depression. Similarly, the perception of control is a powerful predictor of neurochemical and behavioral responses to stress, but whether the experience of choosing to exercise, and exerting control over that exercise, is a critical factor in producing exercise-induced stress resistance is unknown. The current studies investigated whether the protective effects of exercise against the anxiety- and depression-like consequences of stress are dependent on exercise controllability and a brain region implicated in the protective effects of controllable experiences, the medial prefrontal cortex. Adult male Fischer 344 rats remained sedentary, were forced to run on treadmills or motorised running wheels, or had voluntary access to wheels for 6 weeks. Three weeks after exercise onset, rats received sham surgery or excitotoxic lesions of the medial prefrontal cortex. Rats were exposed to home cage or uncontrollable tail shock treatment three weeks later. Shock-elicited fear conditioning and shuttle box escape testing occurred the next day. Both forced and voluntary wheel running, but not treadmill training, prevented the exaggerated fear conditioning and interference with escape learning produced by uncontrollable stress. Lesions of the medial prefrontal cortex failed to eliminate the protective effects of forced or voluntary wheel running. These data suggest that exercise controllability and the medial prefrontal cortex are not critical factors in conferring the protective effects of exercise against the affective consequences of stressor exposure, and imply that exercise perceived as forced may still benefit affect and mental health. PMID:23121339
Voluntary Exercise Produces Antidepressant and Anxiolytic Behavioral Effects in Mice
Duman, Catharine H.; Schlesinger, Lee; Russell, David S.; Duman, Ronald S.
2008-01-01
Reports of beneficial effects of exercise on psychological health in humans are increasingly supported by basic research studies. Exercise is hypothesized to regulate antidepressant-related mechanisms and we therefore characterized the effects of chronic exercise in mouse behavioral paradigms relevant to antidepressant actions. Mice given free access to running wheels showed antidepressant-like behavior in learned helplessness, forced-swim (FST) and tail suspension paradigms. These responses were similar to responses of antidepressant drug-treated animals. When tested under conditions where locomotor activity was not altered, exercising mice also showed reduced anxiety compared to sedentary control mice. In situ hybridization analysis showed that BDNF mRNA was increased in specific subfields of hippocampus after wheel running. We chose one paradigm, the FST, in which to investigate a functional role for brain-derived neurotrophic factor (BDNF) in the behavioral response to exercise. We tested mice heterozygous for a deletion of the BDNF gene in the FST after wheel-running. Exercising wild-type mice showed the expected antidepressant-like behavioral response in the FST but exercise was ineffective in improving FST performance in heterozygous BDNF knockout mice. A possible functional contribution of a BDNF signaling pathway to FST performance in exercising mice was investigated using the specific MEK inhibitor PD184161 to block the MAPK signaling pathway. Subchronic administration of PD184161 to exercising mice blocked the antidepressant-like behavioral response seen in vehicle-treated exercising mice in the FST. In summary, chronic wheel-running exercise in mice results in antidepressant-like behavioral changes that may involve a BDNF related mechanism similar to that hypothesized for antidepressant drug treatment. PMID:18267317
Nishijima, Takeshi; Llorens-Martín, María; Tejeda, Gonzalo Sanchez; Inoue, Koshiro; Yamamura, Yuhei; Soya, Hideaki; Trejo, José Luis; Torres-Alemán, Ignacio
2013-05-15
While increasing evidence demonstrates that physical exercise promotes brain health, little is known on how the reduction of physical activity affects brain function. We investigated whether the cessation of wheel running alters anxiety-like and depression-like behaviors and its impact on adult hippocampal neurogenesis in mice. Male C57BL/6 mice (4 weeks old) were assigned to one of the following groups, and housed until 21 weeks old; (1) no exercise control (noEx), housed in a standard cage; (2) exercise (Ex), housed in a running wheel cage; and (3) exercise-no exercise (Ex-noEx), housed in a running wheel cage for 8 weeks and subsequently in a standard cage. Behavioral evaluations suggested that Ex-noEx mice were more anxious compared to noEx control mice, but no differences were found in depression-like behavior. The number of BrdU-labeled surviving cells in the dentate gyrus was significantly higher in Ex but not in Ex-noEx compared with noEx, indicating that the facilitative effects of exercise on cell survival are reversible. Surprisingly, the ratio of differentiation of BrdU-positive cells to doublecortin-positive immature neurons was significantly lower in Ex-noEx compared to the other groups, suggesting that the cessation of wheel running impairs an important component of hippocampal neurogenesis in mice. These results indicate that hippocampal adaptation to physical inactivity is not simply a return to the conditions present in sedentary mice. As the impaired neurogenesis is predicted to increase a vulnerability to stress-induced mood disorders, the reduction of physical activity may contribute to a greater risk of these disorders. Copyright © 2013 Elsevier B.V. All rights reserved.
Sex-related differences in the wheel-running activity of mice decline with increasing age.
Bartling, Babett; Al-Robaiy, Samiya; Lehnich, Holger; Binder, Leonore; Hiebl, Bernhard; Simm, Andreas
2017-01-01
Laboratory mice of both sexes having free access to running wheels are commonly used to study mechanisms underlying the beneficial effects of physical exercise on health and aging in human. However, comparative wheel-running activity profiles of male and female mice for a long period of time in which increasing age plays an additional role are unknown. Therefore, we permanently recorded the wheel-running activity (i.e., total distance, median velocity, time of breaks) of female and male mice until 9months of age. Our records indicated higher wheel-running distances for females than males which were highest in 2-month-old mice. This was mainly reached by higher running velocities of the females and not by longer running times. However, the sex-related differences declined in parallel to the age-associated reduction in wheel-running activities. Female mice also showed more variances between the weekly running distances than males, which were recorded most often for females being 4-6months old but not older. Additional records of 24-month-old mice of both sexes indicated highly reduced wheel-running activities at old age. Surprisingly, this reduction at old age resulted mainly from lower running velocities and not from shorter running times. Old mice also differed in their course of night activity which peaked later compared to younger mice. In summary, we demonstrated the influence of sex on the age-dependent activity profile of mice which is somewhat contrasting to humans, and this has to be considered when transferring exercise-mediated mechanism from mouse to human. Copyright © 2016. Published by Elsevier Inc.
Thompson, Robert S; Roller, Rachel; Greenwood, Benjamin N; Fleshner, Monika
2016-05-01
Regular physical activity produces resistance to the negative health consequences of stressor exposure. One way that exercise may confer stress resistance is by reducing the impact of stress on diurnal rhythms and sleep; disruptions of which contribute to stress-related disease including mood disorders. Given the link between diurnal rhythm disruptions and stress-related disorders and that exercise both promotes stress resistance and is a powerful non-photic biological entrainment cue, we tested if wheel running could reduce stress-induced disruptions of sleep/wake behavior and diurnal rhythms. Adult, male F344 rats with or without access to running wheels were instrumented for biotelemetric recording of diurnal rhythms of locomotor activity, heart rate, core body temperature (CBT), and sleep (i.e. REM, NREM, and WAKE) in the presence of a 12 h light/dark cycle. Following 6 weeks of sedentary or exercise conditions, rats were exposed to an acute stressor known to disrupt diurnal rhythms and produce behaviors associated with mood disorders. Prior to stressor exposure, exercise rats had higher CBT, more locomotor activity during the dark cycle, and greater %REM during the light cycle relative to sedentary rats. NREM and REM sleep were consolidated immediately following peak running to a greater extent in exercise, compared to sedentary rats. In response to stressor exposure, exercise rats expressed higher stress-induced hyperthermia than sedentary rats. Stressor exposure disrupted diurnal rhythms in sedentary rats; and wheel running reduced these effects. Improvements in sleep and reduced diurnal rhythm disruptions following stress could contribute to the health promoting and stress protective effects of exercise.
Thompson, Robert S.; Roller, Rachel; Greenwood, Benjamin N.; Fleshner, Monika
2016-01-01
Regular physical activity produces resistance to the negative health consequences of stressor exposure. One way that exercise may confer stress resistance is by reducing the impact of stress on diurnal rhythms and sleep; disruptions of which contribute to stress-related disease including mood disorders. Given the link between diurnal rhythm disruptions and stress-related disorders and that exercise both promotes stress resistance and is a powerful non-photic biological entrainment cue, we tested if wheel running could reduce stress-induced disruptions of sleep/wake behavior and diurnal rhythms. Adult, male F344 rats with or without access to running wheels were instrumented for biotelemetric recording of diurnal rhythms of locomotor activity, heart rate, core body temperature (CBT), and sleep (i.e. REM, NREM, and WAKE) in the presence of a 12hr light/dark cycle. Following 6 weeks of sedentary or exercise conditions, rats were exposed to an acute stressor known to disrupt diurnal rhythms and produce behaviors associated with mood disorders. Prior to stressor exposure, exercise rats had higher CBT, more locomotor activity during the dark cycle, and greater %REM during the light cycle relative to sedentary rats. NREM and REM sleep were consolidated immediately following peak running to a greater extent in exercise, compared to sedentary rats. In response to stressor exposure, exercise rats expressed higher stress-induced hyperthermia than sedentary rats. Stressor exposure disrupted diurnal rhythms in sedentary rats; and wheel running reduced these effects. Improvements in sleep and reduced diurnal rhythm disruptions following stress could contribute to the health promoting and stress protective effects of exercise. PMID:27124542
Impact of wheel running on chronic ethanol intake in aged Syrian hamsters.
Brager, Allison J; Hammer, Steven B
2012-10-10
Alcohol dependence in aging populations is seen as a public health concern, most recently because of the significant proportion of heavy drinking among "Baby Boomers." Basic animal research on the effects of aging on physiological and behavioral regulation of ethanol (EtOH) intake is sparse, since most of this research is limited to younger models of alcoholism. Here, EtOH drinking and preference were measured in groups of aged Syrian hamsters. Further, because voluntary exercise (wheel-running) is a rewarding substitute for EtOH in young adult hamsters, the potential for such reward substitution was also assessed. Aged (24 month-old) male hamsters were subjected to a three-stage regimen of free-choice EtOH (20% v/v) or water and unlocked or locked running wheels to investigate the modulatory effects of voluntary wheel running on EtOH intake and preference. Levels of fluid intake and activity were recorded daily across 60 days of experimentation. Prior to wheel running, levels of EtOH intake were significantly less than levels of water intake, resulting in a low preference for EtOH (30%). Hamsters with access to an unlocked running wheel had decreased EtOH intake and preference compared with hamsters with access to a locked running wheel. These group differences in EtOH intake and preference were sustained for up to 10 days after running wheels were re-locked. These results extend upon those of our previous work in young adult hamsters, indicating that aging dampens EtOH intake and preference. Voluntary wheel running further limited EtOH intake, suggesting that exercise could offer a practical approach for managing late-life alcoholism. Copyright © 2012 Elsevier Inc. All rights reserved.
Pham, Therese M; Brené, Stefan; Baumans, Vera
2005-01-01
Physical cage enrichment--exercise devices for rodents in the laboratory--often includes running wheels. This study compared responses of mice in enriched physical and social conditions and in standard social conditions to wheel running, individual housing, and open-field test. The study divided into 6 groups, 48 female BALB/c mice group housed in enriched and standard conditions. On alternate days, the study exposed 2 groups to individual running wheel cages. It intermittently separated from their cage mates and housed individually 2 groups with no running wheels; 2 control groups remained in enriched or standard condition cages. There were no significant differences between enriched and standard group housed mice in alternate days' wheel running. Over time, enriched, group housed mice ran less. Both groups responded similarly to individual housing. In open-field test, mice exposed to individual housing without running wheel moved more and faster than wheel running and home cage control mice. They have lower body weights than group housed and wheel running mice. Intermittent withdrawal of individual housing affects the animals more than other commodities. Wheel running normalizes some effects of intermittent separation from the enriched, social home cage.
Zhu, Shun-Wei; Pham, Therese M; Aberg, Elin; Brené, Stefan; Winblad, Bengt; Mohammed, Abdul H; Baumans, Vera
2006-02-15
This study assessed the effects of intermittent individual housing on behaviour and brain neurotrophins, and whether physical exercise could influence alternate individual-housing-induced effects. Five-week-old BALB/c mice were either housed in enhanced social (E) or standard social (S) housing conditions for 2 weeks. Thereafter they were divided into six groups and for 6 weeks remained in the following experimental conditions: Control groups remained in their respective housing conditions (E-control, S-control); enhanced individual (E-individual) and standard individual (S-individual) groups were exposed every other day to individual cages without running-wheels; enhanced running-wheel (E-wheel) and standard running-wheel (S-wheel) groups were put on alternate days in individual running-wheel cages. Animals were assessed for activity in an automated individual cage system (LABORAS) and brain neurotrophins analysed. Intermittent individual housing increased behavioural activity and reduced nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) levels in frontal cortex; while it increased BDNF level in the amygdala and BDNF protein and mRNA in hippocampus. Besides normalizing motor activity and regulating BDNF and NGF levels in hippocampus, amygdala and cerebellum, physical exercise did not attenuate reduction of cortical NGF and BDNF induced by intermittent individual housing. This study demonstrates that alternate individual housing has significant impact on behaviour and brain neurotrophin levels in mice, which can be partially altered by voluntary physical exercise. Our results also suggest that some changes in neurotrophin levels induced by intermittent individual housing are not similar to those caused by continuous individual housing.
Thompson, Zoe; Argueta, Donovan; Garland, Theodore; DiPatrizio, Nicholas
2017-01-01
The endocannabinoid system serves many physiological roles, including in the regulation of energy balance, food reward, and voluntary locomotion. Signaling at the cannabinoid type 1 receptor has been specifically implicated in motivation for rodent voluntary exercise on wheels. We studied four replicate lines of high runner (HR) mice that have been selectively bred for 81 generations based on average number of wheel revolutions on days five and six of a six-day period of wheel access. Four additional replicate lines are bred without regard to wheel running, and serve as controls (C) for random genetic effects that may cause divergence among lines. On average, mice from HR lines voluntarily run on wheels three times more than C mice on a daily basis. We tested the general hypothesis that circulating levels of endocannabinoids (i.e., 2-arachidonoylglycerol [2-AG] and anandamide [AEA]) differ between HR and C mice in a sex-specific manner. Fifty male and 50 female mice were allowed access to wheels for six days, while another 50 males and 50 females were kept without access to wheels (half HR, half C for all groups). Blood was collected by cardiac puncture during the time of peak running on the sixth night of wheel access or no wheel access, and later analyzed for 2-AG and AEA content by ultra-performance liquid chromatography coupled to tandem mass spectrometry. We observed a significant three-way interaction among sex, linetype, and wheel access for 2-AG concentrations, with females generally having lower levels than males and wheel access lowering 2-AG levels in some but not all subgroups. The number of wheel revolutions in the minutes or hours immediately prior to sampling did not quantitatively predict plasma 2-AG levels within groups. We also observed a trend for a linetype-by-wheel access interaction for AEA levels, with wheel access lowering plasma concentrations of AEA in HR mice, while raising them in C mice. In addition, females tended to have higher AEA concentrations than males. For mice housed with wheels, the amount of running during the 30 minutes before sampling was a significant positive predictor of plasma AEA within groups, and HR mice had significantly lower levels of AEA than C mice. Our results suggest that voluntary exercise alters circulating levels of endocannabinoids, and further demonstrate that selective breeding for voluntary exercise is associated with evolutionary changes in the endocannabinoid system. PMID:28017680
Thompson, Zoe; Argueta, Donovan; Garland, Theodore; DiPatrizio, Nicholas
2017-03-01
The endocannabinoid system serves many physiological roles, including in the regulation of energy balance, food reward, and voluntary locomotion. Signaling at the cannabinoid type 1 receptor has been specifically implicated in motivation for rodent voluntary exercise on wheels. We studied four replicate lines of high runner (HR) mice that have been selectively bred for 81 generations based on average number of wheel revolutions on days five and six of a six-day period of wheel access. Four additional replicate lines are bred without regard to wheel running, and serve as controls (C) for random genetic effects that may cause divergence among lines. On average, mice from HR lines voluntarily run on wheels three times more than C mice on a daily basis. We tested the general hypothesis that circulating levels of endocannabinoids (i.e., 2-arachidonoylglycerol [2-AG] and anandamide [AEA]) differ between HR and C mice in a sex-specific manner. Fifty male and 50 female mice were allowed access to wheels for six days, while another 50 males and 50 females were kept without access to wheels (half HR, half C for all groups). Blood was collected by cardiac puncture during the time of peak running on the sixth night of wheel access or no wheel access, and later analyzed for 2-AG and AEA content by ultra-performance liquid chromatography coupled to tandem mass spectrometry. We observed a significant three-way interaction among sex, linetype, and wheel access for 2-AG concentrations, with females generally having lower levels than males and wheel access lowering 2-AG levels in some but not all subgroups. The number of wheel revolutions in the minutes or hours immediately prior to sampling did not quantitatively predict plasma 2-AG levels within groups. We also observed a trend for a linetype-by-wheel access interaction for AEA levels, with wheel access lowering plasma concentrations of AEA in HR mice, while raising them in C mice. In addition, females tended to have higher AEA concentrations than males. For mice housed with wheels, the amount of running during the 30min before sampling was a significant positive predictor of plasma AEA within groups, and HR mice had significantly lower levels of AEA than C mice. Our results suggest that voluntary exercise alters circulating levels of endocannabinoids, and further demonstrate that selective breeding for voluntary exercise is associated with evolutionary changes in the endocannabinoid system. Copyright © 2016 Elsevier Inc. All rights reserved.
Chronic wheel running affects cocaine-induced c-Fos expression in brain reward areas in rats.
Zlebnik, Natalie E; Hedges, Valerie L; Carroll, Marilyn E; Meisel, Robert L
2014-03-15
Emerging evidence from human and animal studies suggests that exercise is a highly effective treatment for drug addiction. However, most work has been done in behavioral models, and the effects of exercise on the neurobiological substrates of addiction have not been identified. Specifically, it is unknown whether prior exercise exposure alters neuronal activation of brain reward circuitry in response to drugs of abuse. To investigate this hypothesis, rats were given 21 days of daily access to voluntary wheel running in a locked or unlocked running wheel. Subsequently, they were challenged with a saline or cocaine (15 mg/kg, i.p.) injection and sacrificed for c-Fos immunohistochemistry. The c-Fos transcription factor is a measure of cellular activity and was used to quantify cocaine-induced activation of reward-processing areas of the brain: nucleus accumbens (NAc), caudate putamen (CPu), medial prefrontal cortex (mPFC), and orbitofrontal cortex (OFC). The mean fold change in cocaine-induced c-Fos cell counts relative to saline-induced c-Fos cell counts was significantly higher in exercising compared to control rats in the NAc core, dorsomedial and dorsolateral CPu, the prelimbic area, and the OFC, indicating differential cocaine-specific cellular activation of brain reward circuitry between exercising and control animals. These results suggest neurobiological mechanisms by which voluntary wheel running attenuates cocaine-motivated behaviors and provide support for exercise as a novel treatment for drug addiction. Copyright © 2013 Elsevier B.V. All rights reserved.
Boersma, Gretha J.; Tamashiro, Kellie L.; Moran, Timothy H.
2016-01-01
One of the mechanisms through which regular exercise contributes to weight maintenance could be by reducing intake and preference for high-fat (HF) diets. Indeed, we previously demonstrated that wheel-running rats robustly reduced HF diet intake and preference. The reduced HF diet preference by wheel running can be so profound that the rats consumed only the chow diet and completely avoided the HF diet. Because previous research indicates that exercise activates the hypothalamic-pituitary-adrenal axis and increases circulating levels of corticosterone, this study tested the hypothesis that elevation of circulating corticosterone is involved in wheel running-induced reduction in HF diet preference in rats. Experiment 1 measured plasma corticosterone levels under sedentary and wheel-running conditions in the two-diet-choice (high-carbohydrate chow vs. HF) feeding regimen. The results revealed that plasma corticosterone is significantly increased and positively correlated with the levels of running in wheel-running rats with two-diet choice. Experiments 2 and 3 determined whether elevated corticosterone without wheel running is sufficient to reduce HF diet intake and preference. Corticosterone was elevated by adding it to the drinking water. Compared with controls, corticosterone-drinking rats had reduced HF diet intake and body weight, but the HF diet preference between groups did not differ. The results of this study support a role for elevated corticosterone on the reduced HF diet intake during wheel running. The elevation of corticosterone alone, however, is not sufficient to produce a robust reduction in HF diet preference. PMID:26818055
Boersma, Gretha J; Tamashiro, Kellie L; Moran, Timothy H; Liang, Nu-Chu
2016-04-15
One of the mechanisms through which regular exercise contributes to weight maintenance could be by reducing intake and preference for high-fat (HF) diets. Indeed, we previously demonstrated that wheel-running rats robustly reduced HF diet intake and preference. The reduced HF diet preference by wheel running can be so profound that the rats consumed only the chow diet and completely avoided the HF diet. Because previous research indicates that exercise activates the hypothalamic-pituitary-adrenal axis and increases circulating levels of corticosterone, this study tested the hypothesis that elevation of circulating corticosterone is involved in wheel running-induced reduction in HF diet preference in rats.Experiment 1 measured plasma corticosterone levels under sedentary and wheel-running conditions in the two-diet-choice (high-carbohydrate chow vs. HF) feeding regimen. The results revealed that plasma corticosterone is significantly increased and positively correlated with the levels of running in wheel-running rats with two-diet choice.Experiments 2 and 3 determined whether elevated corticosterone without wheel running is sufficient to reduce HF diet intake and preference. Corticosterone was elevated by adding it to the drinking water. Compared with controls, corticosterone-drinking rats had reduced HF diet intake and body weight, but the HF diet preference between groups did not differ. The results of this study support a role for elevated corticosterone on the reduced HF diet intake during wheel running. The elevation of corticosterone alone, however, is not sufficient to produce a robust reduction in HF diet preference. Copyright © 2016 the American Physiological Society.
Dubreucq, Sarah; Marsicano, Giovanni; Chaouloff, Francis
2015-04-01
Several studies have indicated that animal models of exercise, such as voluntary wheel running, might be endowed with anxiolytic properties. Using the light/dark test of unconditioned anxiety, we have reported that one confounding factor in the estimation of wheel running impacts on anxiety might be the housing condition of the sedentary controls. The present mouse study analyzed whether the aforementioned observation in the light/dark test (i) could be repeated in the elevated plus-maze and social interaction tests of unconditioned anxiety, (ii) extended to conditioned anxiety, as assessed during cued fear recall tests, and (iii) required unlimited daily access to the running wheel. Housing with a locked wheel or with a free wheel that allowed limited or unlimited running activity triggered anxiolysis in the light/dark test, but not in the elevated plus-maze test, compared to standard housing. In the social interaction test, the duration, but not the number, of social contacts was increased in mice provided unlimited (but not limited) access to a wheel, compared to standard housing or housing with a locked wheel. Lastly, freezing responses to a cue during fear recall tests indicated that the reduction in freezing observed in mice provided limited or unlimited access to the wheels was fully accounted for by housing with a wheel. Besides confirming that the housing condition of the sedentary controls might bias the estimation of the effects of wheel running on anxiety, this study further shows that this estimation is dependent on the test used to assess anxiety. Copyright © 2014 Elsevier B.V. All rights reserved.
Acosta, Pedro; Sleeper, Meg M.; Barton, Elisabeth R.; Sweeney, H. Lee
2013-01-01
Dystrophin-deficient muscles suffer from free radical injury, mitochondrial dysfunction, apoptosis, and inflammation, among other pathologies that contribute to muscle fiber injury and loss, leading to wheelchair confinement and death in the patient. For some time, it has been appreciated that endurance training has the potential to counter many of these contributing factors. Correspondingly, numerous investigations have shown improvements in limb muscle function following endurance training in mdx mice. However, the effect of long-term volitional wheel running on diaphragm and cardiac function is largely unknown. Our purpose was to determine the extent to which long-term endurance exercise affected dystrophic limb, diaphragm, and cardiac function. Diaphragm specific tension was reduced by 60% (P < 0.05) in mice that performed 1 yr of volitional wheel running compared with sedentary mdx mice. Dorsiflexor mass (extensor digitorum longus and tibialis anterior) and function (extensor digitorum longus) were not altered by endurance training. In mice that performed 1 yr of volitional wheel running, plantarflexor mass (soleus and gastrocnemius) was increased and soleus tetanic force was increased 36%, while specific tension was similar in wheel-running and sedentary groups. Cardiac mass was increased 15%, left ventricle chamber size was increased 20% (diastole) and 18% (systole), and stroke volume was increased twofold in wheel-running compared with sedentary mdx mice. These data suggest that the dystrophic heart may undergo positive exercise-induced remodeling and that limb muscle function is largely unaffected. Most importantly, however, as the diaphragm most closely recapitulates the human disease, these data raise the possibility of exercise-mediated injury in dystrophic skeletal muscle. PMID:23823150
Chen, C C; Chang, M W; Chang, C P; Chan, S C; Chang, W Y; Yang, C L; Lin, M T
2014-10-01
We developed a forced non-electric-shock running wheel (FNESRW) system that provides rats with high-intensity exercise training using automatic exercise training patterns that are controlled by a microcontroller. The proposed system successfully makes a breakthrough in the traditional motorized running wheel to allow rats to perform high-intensity training and to enable comparisons with the treadmill at the same exercise intensity without any electric shock. A polyvinyl chloride runway with a rough rubber surface was coated on the periphery of the wheel so as to permit automatic acceleration training, and which allowed the rats to run consistently at high speeds (30 m/min for 1 h). An animal ischemic stroke model was used to validate the proposed system. FNESRW, treadmill, control, and sham groups were studied. The FNESRW and treadmill groups underwent 3 weeks of endurance running training. After 3 weeks, the experiments of middle cerebral artery occlusion, the modified neurological severity score (mNSS), an inclined plane test, and triphenyltetrazolium chloride were performed to evaluate the effectiveness of the proposed platform. The proposed platform showed that enhancement of motor function, mNSS, and infarct volumes was significantly stronger in the FNESRW group than the control group (P<0.05) and similar to the treadmill group. The experimental data demonstrated that the proposed platform can be applied to test the benefit of exercise-preconditioning-induced neuroprotection using the animal stroke model. Additional advantages of the FNESRW system include stand-alone capability, independence of subjective human adjustment, and ease of use.
Chen, C.C.; Chang, M.W.; Chang, C.P.; Chan, S.C.; Chang, W.Y.; Yang, C.L.; Lin, M.T.
2014-01-01
We developed a forced non-electric-shock running wheel (FNESRW) system that provides rats with high-intensity exercise training using automatic exercise training patterns that are controlled by a microcontroller. The proposed system successfully makes a breakthrough in the traditional motorized running wheel to allow rats to perform high-intensity training and to enable comparisons with the treadmill at the same exercise intensity without any electric shock. A polyvinyl chloride runway with a rough rubber surface was coated on the periphery of the wheel so as to permit automatic acceleration training, and which allowed the rats to run consistently at high speeds (30 m/min for 1 h). An animal ischemic stroke model was used to validate the proposed system. FNESRW, treadmill, control, and sham groups were studied. The FNESRW and treadmill groups underwent 3 weeks of endurance running training. After 3 weeks, the experiments of middle cerebral artery occlusion, the modified neurological severity score (mNSS), an inclined plane test, and triphenyltetrazolium chloride were performed to evaluate the effectiveness of the proposed platform. The proposed platform showed that enhancement of motor function, mNSS, and infarct volumes was significantly stronger in the FNESRW group than the control group (P<0.05) and similar to the treadmill group. The experimental data demonstrated that the proposed platform can be applied to test the benefit of exercise-preconditioning-induced neuroprotection using the animal stroke model. Additional advantages of the FNESRW system include stand-alone capability, independence of subjective human adjustment, and ease of use. PMID:25140816
Voluntary Running-Wheel Exercise Decreases the Threshold for Rewarding Intracranial Self-Stimulation
Morris, Michael J.; Na, Elisa S.; Johnson, Alan Kim
2015-01-01
Physical exercise has mood-enhancing and antidepressant properties although the mechanisms underlying these effects are not known. The present experiment investigated the effects of prolonged access to a running wheel on electrical self-stimulation of the lateral hypothalamus (LHSS), a measure of hedonic state, in rats. Rats with continuous voluntary access to a running wheel for either 2 or 5 weeks exhibited dramatic leftward shifts in the effective current 50 (ECu50; current value that supports half of maximum responding) of their LHSS current-response functions compared to their baselines, indicating a decrease in reward threshold, whereas control rats current-response functions after 2 or 5 weeks were not significantly different from baseline. An inverse correlation existed between the change in ECu50 from baseline and the amount an animal had run in the day prior to LHSS testing, indicating that animals that exhibited higher levels of running showed a more robust decrease in LHSS threshold. We conclude that long-term voluntary exercise increases sensitivity to rewarding stimuli, which may contribute to its antidepressant properties. PMID:22845707
Morris, Michael J; Na, Elisa S; Johnson, Alan Kim
2012-08-01
Physical exercise has mood-enhancing and antidepressant properties although the mechanisms underlying these effects are not known. The present experiment investigated the effects of prolonged access to a running wheel on electrical self-stimulation of the lateral hypothalamus (LHSS), a measure of hedonic state, in rats. Rats with continuous voluntary access to a running wheel for either 2 or 5 weeks exhibited dramatic leftward shifts in the effective current 50 (ECu50; current value that supports half of maximum responding) of their LHSS current-response functions compared to their baselines, indicating a decrease in reward threshold, whereas control rats current-response functions after 2 or 5 weeks were not significantly different from baseline. An inverse correlation existed between the change in ECu50 from baseline and the amount an animal had run in the day prior to LHSS testing, indicating that animals that exhibited higher levels of running showed a more robust decrease in LHSS threshold. We conclude that long-term voluntary exercise increases sensitivity to rewarding stimuli, which may contribute to its antidepressant properties.
Wheel running exercise attenuates vulnerability to self-administer nicotine in rats.
Sanchez, Victoria; Lycas, Matthew D; Lynch, Wendy J; Brunzell, Darlene H
2015-11-01
Preventing or postponing tobacco use initiation could greatly reduce the number of tobacco-related deaths. While evidence suggests that exercise is a promising treatment for tobacco addiction, it is not clear whether exercise could prevent initial vulnerability to tobacco use. Thus, using an animal model, we examined whether exercise attenuates vulnerability to the use and reinforcing effects of nicotine, the primary addictive chemical in tobacco. Initial vulnerability was assessed using an acquisition procedure wherein exercising (unlocked running wheel, n=10) and sedentary (locked or no wheel, n=12) male adolescent rats had access to nicotine infusions (0.01-mg/kg) during daily 21.5-h sessions beginning on postnatal day 30. Exercise/sedentary sessions (2-h/day) were conducted prior to each of the acquisition sessions. The effects of exercise on nicotine's reinforcing effects were further assessed in separate groups of exercising (unlocked wheel, n=7) and sedentary (no wheel, n=5) rats responding for nicotine under a progressive-ratio schedule with exercise/sedentary sessions (2-h/day) conducted before the daily progressive-ratio sessions. While high rates of acquisition of nicotine self-administration were observed among both groups of sedentary controls, acquisition was robustly attenuated in the exercise group with only 20% of exercising rats meeting the acquisition criterion within the 16-day testing period as compared to 67% of the sedentary controls. Exercise also decreased progressive-ratio responding for nicotine as compared to baseline and to sedentary controls. Exercise may effectively prevent the initiation of nicotine use in adolescents by reducing the reinforcing effects of nicotine. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Nishijima, Takeshi; Kawakami, Masashi; Kita, Ichiro
2013-01-01
Physical exercise improves multiple aspects of hippocampal function. In line with the notion that neuronal activity is key to promoting neuronal functions, previous literature has consistently demonstrated that acute bouts of exercise evoke neuronal activation in the hippocampus. Repeated activating stimuli lead to an accumulation of the transcription factor ΔFosB, which mediates long-term neural plasticity. In this study, we tested the hypothesis that long-term voluntary wheel running induces ΔFosB expression in the hippocampus, and examined any potential region-specific effects within the hippocampal subfields along the dorso–ventral axis. Male C57BL/6 mice were housed with or without a running wheel for 4 weeks. Long-term wheel running significantly increased FosB/ΔFosB immunoreactivity in all hippocampal regions measured (i.e., in the DG, CA1, and CA3 subfields of both the dorsal and ventral hippocampus). Results confirmed that wheel running induced region-specific expression of FosB/ΔFosB immunoreactivity in the cortex, suggesting that the uniform increase in FosB/ΔFosB within the hippocampus is not a non-specific consequence of running. Western blot data indicated that the increased hippocampal FosB/ΔFosB immunoreactivity was primarily due to increased ΔFosB. These results suggest that long-term physical exercise is a potent trigger for ΔFosB induction throughout the entire hippocampus, which would explain why exercise can improve both dorsal and ventral hippocampus-dependent functions. Interestingly, we found that FosB/ΔFosB expression in the DG was positively correlated with the number of doublecortin-immunoreactive (i.e., immature) neurons. Although the mechanisms by which ΔFosB mediates exercise-induced neurogenesis are still uncertain, these data imply that exercise-induced neurogenesis is at least activity dependent. Taken together, our current results suggest that ΔFosB is a new molecular target involved in regulating exercise-induced hippocampal plasticity. PMID:24282574
Furnari, Melody A; Jobes, Michelle L; Nekrasova, Tanya; Minden, Audrey; Wagner, George C
2014-04-01
PAK5 and PAK6 are protein kinases highly expressed in the brain. Previously, we observed that Pak6 knockout mice gained significantly more weight during development than Pak5 knockout mice as well as wild-type controls and double-knockout mice lacking both Pak5 and Pak6. In this study, we assessed the effects of exercise on food intake and weight gain of these mice as well as their sensitivity to the stimulant effects of amphetamine. Mice of each genotype were placed in cages with free access to run wheel exercise or in cages without run wheels for a total of 74 days. Food and fluid intake as well as body weight of each mouse were measured on a weekly basis. Finally, mice were given a high dose of amphetamine and activity levels were observed immediately thereafter for 90 minutes. Brains and testes of mice were assayed for protein levels of the estrogen alpha and progesterone receptors. While run wheel mice consumed significantly more food, they weighed less than non-run wheel mice. In addition, although Pak6 knockout mice consumed the same amount of food as wild-type mice, they were significantly heavier regardless of run wheel condition. Pak5 knockout mice were found to be more active than other genotypes after amphetamine treatment. Finally, protein levels of the progesterone and estrogen alpha receptors were altered in brain and testes of the Pak6 knockout mice. Collectively, these data suggest that PAK6 play a role in weight gain unrelated to exercise and caloric intake and that Pak5 knockout mice are more sensitive to the stimulant effects of amphetamine.
Acute bouts of wheel running decrease cocaine self-administration: Influence of exercise output.
Smith, Mark A; Fronk, Gaylen E; Zhang, Huailin; Magee, Charlotte P; Robinson, Andrea M
Exercise is associated with lower rates of drug use in human populations and decreases drug self-administration in laboratory animals. Most of the existing literature examining the link between exercise and drug use has focused on chronic, long-term exercise, and very few studies have examined the link between exercise output (i.e., amount of exercise) and drug self-administration. The purpose of this study was to examine the effects of acute bouts of exercise on cocaine self-administration, and to determine whether these effects were dependent on exercise output and the time interval between exercise and drug self-administration. Female rats were trained to run in automated running wheels, implanted with intravenous catheters, and allowed to self-administer cocaine on a fixed ratio (FR1) schedule of reinforcement. Immediately prior to each test session, subjects engaged in acute bouts of exercise in which they ran for 0, 30, or 60min at 12m/min. Acute bouts of exercise before test sessions decreased cocaine self-administration in an output-dependent manner, with the greatest reduction in cocaine intake observed in the 60-min exercise condition. Exercise did not reduce cocaine self-administration when wheel running and test sessions were separated by 12h, and exercise did not reduce responding maintained by food or responding during a saline substitution test. These data indicate that acute bouts of exercise decrease cocaine self-administration in a time- and output-dependent manner. These results also add to a growing body of literature suggesting that physical activity may be an effective component of drug abuse treatment programs. Copyright © 2016 Elsevier Inc. All rights reserved.
Copes, Lynn E; Schutz, Heidi; Dlugosz, Elizabeth M; Acosta, Wendy; Chappell, Mark A; Garland, Theodore
2015-10-01
We evaluated the effect of voluntary exercise on spontaneous physical activity (SPA) and food consumption in mice from 4 replicate lines bred for 57 generations for high voluntary wheel running (HR) and from 4 non-selected control (C) lines. Beginning at ~24 days of age, mice were housed in standard cages or in cages with attached wheels. Wheel activity and SPA were monitored in 1-min intervals. Data from the 8th week of the experiment were analyzed because mice were sexually mature and had plateaued in body mass, weekly wheel running distance, SPA, and food consumption. Body mass, length, and masses of the retroperitoneal fat pad, liver, and heart were recorded after the 13th week. SPA of both HR and C mice decreased with wheel access, due to reductions in both duration and average intensity of SPA. However, total activity duration (SPA+wheel running; min/day) was ~1/3 greater when mice were housed with wheels, and food consumption was significantly increased. Overall, food consumption in both HR and C mice was more strongly affected by wheel running than by SPA. Duration of wheel running had a stronger effect than average speed, but the opposite was true for SPA. With body mass as a covariate, chronic wheel access significantly reduced fat pad mass and increased heart mass in both HR and C mice. Given that both HR and C mice housed with wheels had increased food consumption, the energetic cost of wheel running was not fully compensated by concomitant reductions in SPA. The experiment demonstrates that both duration and intensity of both wheel running and SPA were significant predictors of food consumption. This sort of detailed analysis of the effects of different aspects of physical activity on food consumption has not previously been reported for a non-human animal, and it sets the stage for longitudinal examination of energy balance and its components in rodent models. Copyright © 2015 Elsevier Inc. All rights reserved.
Reduction of extinction and reinstatement of cocaine seeking by wheel running in female rats.
Zlebnik, Natalie E; Anker, Justin J; Gliddon, Luke A; Carroll, Marilyn E
2010-03-01
Previous work has shown that wheel running reduced the maintenance of cocaine self-administration in rats. In the present study, the effect of wheel running on extinction and reinstatement of cocaine seeking was examined. Female rats were trained to run in a wheel during 6-h sessions, and they were then catheterized and placed in an operant conditioning chamber where they did not have access to the wheel but were allowed to self-administer iv cocaine. Subsequently, rats were divided into four groups and were tested on the extinction and reinstatement of cocaine seeking while they had varying access to a wheel in an adjoining compartment. The four groups were assigned to the following wheel access conditions: (1) wheel running during extinction and reinstatement (WER), (2) wheel running during extinction and a locked wheel during reinstatement (WE), (3) locked wheel during extinction and wheel running during reinstatement (WR), and (4) locked wheel during extinction and reinstatement (WL). WE and WR were retested later to examine the effect of one session of wheel access on cocaine-primed reinstatement. There were no group differences in wheel revolutions, in rate of acquisition of cocaine self-administration, or in responding during maintenance when there was no wheel access. However, during extinction, WE and WER responded less than WR and WL. WR and WER had lower cocaine-primed reinstatement than WE and WL. One session of wheel exposure in WE also suppressed cocaine-primed reinstatement. Wheel running immediately and effectively reduced cocaine-seeking behavior, but concurrent access to running was necessary. Thus, exercise is a useful and self-sustaining intervention to reduce cocaine-seeking behavior.
Perinatal exercise improves glucose homeostasis in adult offspring
Carter, Lindsay G.; Lewis, Kaitlyn N.; Wilkerson, Donald C.; Tobia, Christine M.; Ngo Tenlep, Sara Y.; Shridas, Preetha; Garcia-Cazarin, Mary L.; Wolff, Gretchen; Andrade, Francisco H.; Charnigo, Richard J.; Esser, Karyn A.; Egan, Josephine M.; de Cabo, Rafael
2012-01-01
Emerging research has shown that subtle factors during pregnancy and gestation can influence long-term health in offspring. In an attempt to be proactive, we set out to explore whether a nonpharmacological intervention, perinatal exercise, might improve offspring health. Female mice were separated into sedentary or exercise cohorts, with the exercise cohort having voluntary access to a running wheel prior to mating and during pregnancy and nursing. Offspring were weaned, and analyses were performed on the mature offspring that did not have access to running wheels during any portion of their lives. Perinatal exercise caused improved glucose disposal following an oral glucose challenge in both female and male adult offspring (P < 0.05 for both). Blood glucose concentrations were reduced to lower values in response to an intraperitoneal insulin tolerance test for both female and male adult offspring of parents with access to running wheels (P < 0.05 and P < 0.01, respectively). Male offspring from exercised dams showed increased percent lean mass and decreased fat mass percent compared with male offspring from sedentary dams (P < 0.01 for both), but these parameters were unchanged in female offspring. These data suggest that short-term maternal voluntary exercise prior to and during healthy pregnancy and nursing can enhance long-term glucose homeostasis in offspring. PMID:22932781
Hicks, Jasmin A; Hatzidis, Aikaterini; Arruda, Nicole L; Gelineau, Rachel R; De Pina, Isabella Monteiro; Adams, Kenneth W; Seggio, Joseph A
2016-09-01
It is widely accepted that lifestyle plays a crucial role on the quality of life in individuals, particularly in western societies where poor diet is correlated to alterations in behavior and the increased possibility of developing type-2 diabetes. While exercising is known to produce improvements to overall health, there is conflicting evidence on how much of an effect exercise has staving off the development of type-2 diabetes or counteracting the effects of diet on anxiety. Thus, this study investigated the effects of voluntary wheel-running access on the progression of diabetes-like symptoms and open field and light-dark box behaviors in C57BL/6J mice fed a high-fat diet. C57BL/6J mice were placed into either running-wheel cages or cages without a running-wheel, given either regular chow or a high-fat diet, and their body mass, food consumption, glucose tolerance, insulin and c-peptide levels were measured. Mice were also exposed to the open field and light-dark box tests for anxiety-like behaviors. Access to a running-wheel partially attenuated the obesity and hyperinsulinemia associated with high-fat diet consumption in these mice, but did not affect glucose tolerance or c-peptide levels. Wheel-running strongly increased anxiety-like and decreased explorative-like behaviors in the open field and light-dark box, while high-fat diet consumption produced smaller increases in anxiety. These results suggest that voluntary wheel-running can assuage some, but not all, of the physiological problems associated with high-fat diet consumption, and can modify anxiety-like behaviors regardless of diet consumed. Copyright © 2016 Elsevier B.V. All rights reserved.
Johnson, R A; Rhodes, J S; Jeffrey, S L; Garland, T; Mitchell, G S
2003-01-01
Voluntary wheel running in rats increases hippocampal brain-derived neurotrophic factor (BDNF) expression, a neurochemical important for neuronal survival, differentiation, connectivity and synaptic plasticity. Here, we report the effects of wheel running on BDNF and neurotrophin-3 (NT-3) protein levels in normal control mice, and in mice selectively bred (25 generations) for increased voluntary wheel running. We hypothesized that increased voluntary wheel running in selected (S) mice would increase CNS BDNF and NT-3 protein levels more than in control (C) mice. Baseline hippocampal BDNF levels (mice housed without running wheels) were similar in S and C mice. Following seven nights of running, hippocampal BDNF increased significantly more in S versus C mice, and levels were correlated with distance run (considering C and S mice together). Spinal and cerebellar BDNF and hippocampal NT-3 levels were not significantly affected by wheel running in any group, but there was a small, positive correlation between spinal C3-C6 BDNF levels and distance run (considering C and S mice together). This is the first study to demonstrate that mice which choose to run more have greater elevations in hippocampal BDNF, suggesting enhanced potential for exercise-induced hippocampal neuroplasticity.
Smeda, Marta; Przyborowski, Kamil; Proniewski, Bartosz; Zakrzewska, Agnieszka; Kaczor, Dawid; Stojak, Marta; Buczek, Elzbieta; Nieckarz, Zenon; Zoladz, Jerzy A; Wietrzyk, Joanna; Chlopicki, Stefan
2017-01-01
It has been repeatedly shown that regular aerobic exercise exerts beneficial effects on incidence and progression of cancer. However, the data regarding effects of exercise on metastatic dissemination remain conflicting. Therefore, in the present study the possible preventive effects of voluntary wheel running on primary tumor growth and metastases formation in the model of spontaneous pulmonary metastasis were analyzed after orthotopic injection of 4T1 breast cancer cells into mammary fat pads of female Balb/C mice. This study identified that in the mice injected with 4T1 breast cancer cells and running on the wheels (4T1 ex) the volume and size of the primary tumor were not affected, but the number of secondary nodules formed in the lungs was significantly increased compared to their sedentary counterparts (4T1 sed). This effect was associated with decreased NO production in the isolated aorta of exercising mice (4T1 ex), suggesting deterioration of endothelial function that was associated with lower platelet count without their overactivation. This was evidenced by comparable selectin P, active GPIIb/IIIa expression, fibrinogen and vWF binding on the platelet surface. In conclusion, voluntary wheel running appeared to impair, rather than improve endothelial function, and to promote, but not decrease metastasis in the murine orthotopic model of metastatic breast cancer. These results call for revising the notion of the persistent beneficial effects of voluntary exercise on breast cancer progression, though further studies are needed to elucidate mechanisms involved in pro-metastatic effects of voluntary exercise.
Duncan, Marilyn J.; Franklin, Kathleen M.; Peng, Xiaoli; Yun, Christopher; Legan, Sandra J.
2014-01-01
Exposure of proestrous Syrian hamsters to a new room, cage, and novel running wheel blocks the luteinizing hormone (LH) surge until the next day in ~75% of hamsters (Legan et al, 2010) [1]. The studies described here tested the hypotheses that 1) exercise and/or 2) orexinergic neurotransmission mediate novel wheel blockade of the LH surge and circadian phase advances. Female hamsters were exposed to a 14L:10D photoperiod and activity rhythms were monitored with infra-red detectors. In Expt. 1, to test the effect of exercise, hamsters received jugular cannulae and on the next day, proestrus (Day 1), shortly before zeitgeber time 5 (ZT 5, 7 hours before lights-off) the hamsters were transported to the laboratory. After obtaining a blood sample at ZT 5, the hamsters were transferred to a new cage with a novel wheel that was either freely rotating (unlocked), or locked until ZT 9, and exposed to constant darkness (DD). Blood samples were collected hourly for 2 days from ZT 5–11 under red light for determination of plasma LH levels by radioimmunoassay. Running rhythms were monitored continuously for the next 10–14 days. The locked wheels were as effective as unlocked wheels in blocking LH surges (no Day 1 LH surge in 6/9 versus 8/8 hamsters, P>0.05) and phase advances in the activity rhythms did not differ between the groups (P= 0.28), suggesting that intense exercise is not essential for novel wheel blockade and phase advance of the proestrous LH surge. Expt. 2 tested whether orexin neurotransmission is essential for these effects. Hamsters were treated the same as in Expt. 1 except they were injected (i.p.) at ZT 4.5 and 5 with either the orexin 1 receptor antagonist SB334867 (15 mg/kg per injection) or vehicle (25% DMSO in 2-hydroxypropyl-beta-cyclodextrin (HCD). SB-334867 inhibited novel wheel blockade of the LH surge (surges blocked in 2/6 SB334867-injected animals versus 16/18 vehicle-injected animals, P<0.02) and also inhibited wheel running and circadian phase shifts, indicating that activation of orexin 1 receptors is necessary for these effects. Expt. 3 tested the hypothesis that novel wheel exposure activates orexin neurons. Proestrous hamsters were transferred at ZT 5 to a nearby room within the animal facility and were exposed to a new cage with a locked or unlocked novel wheel or left in their home cages. At ZT 8, the hamsters were anesthetized, blood was withdrawn, they were perfused with fixative and brains were removed for immunohistochemical localization of Fos, GnRH, and orexin. Exposure to a wheel, whether locked or unlocked, suppressed circulating LH concentrations at ZT 8, decreased the proportion of Fos-activated GnRH neurons, and increased Fos-immunoreactive orexin cells. Unlocked wheels had greater effects than locked wheels on all three endpoints. Thus in a familiar environment, exercise potentiated the effect of the novel wheel on Fos expression because a locked wheel was not a sufficient stimulus to block the LH surge. In conclusion, these studies indicate that novel wheel exposure activates orexin neurons and that blockade of orexin 1 receptors prevents novel wheel blockade of the LH surge. These findings are consistent with a role for both exercise and arousal in mediating novel wheel blockade of the LH surge. PMID:24727338
Claghorn, Gerald C; Fonseca, Ivana A T; Thompson, Zoe; Barber, Curtis; Garland, Theodore
2016-07-01
Serotonin (5-hydroxytryptamine; 5-HT) is implicated in central fatigue, and 5-HT1A pharmaceuticals are known to influence locomotor endurance in both rodents and humans. We studied the effects of a 5-HT1A agonist and antagonist on both forced and voluntary exercise in the same set of mice. This cohort of mice was taken from 4 replicate lines of mice that have been selectively bred for high levels of voluntary wheel running (HR) as compared with 4 non-selected control (C) lines. HR mice run voluntarily on wheels about 3× as many revolutions per day as compared with C, and have greater endurance during forced treadmill exercise. We hypothesized that drugs targeting serotonin receptors would have differential effects on locomotor behavior of HR and C mice. Subcutaneous injections of a 5-HT1A antagonist (WAY-100,635), a combination of 5-HT1A agonist and a 5-HT1A/1B partial agonist (8-OH-DPAT+pindolol), or physiological saline were given to separate groups of male mice before the start of each of three treadmill trials. The same manipulations were used later during voluntary wheel running on three separate nights. WAY-100,635 decreased treadmill endurance in HR but not C mice (dose by linetype interaction, P=0.0014). 8-OH-DPAT+pindolol affected treadmill endurance (P<0.0001) in a dose-dependent manner, with no dose by linetype interaction. Wheel running was reduced in HR but not C mice at the highest dose of 8-OH-DPAT+pindolol (dose by linetype, P=0.0221), but was not affected by WAY-100,635 treatment. These results provide further evidence that serotonin signaling is an important determinant of performance during both forced and voluntary exercise. Although the elevated wheel running of HR mice does not appear related to alterations in serotonin signaling, their enhanced endurance capacity does. More generally, our results indicate that both forced and voluntary exercise can be affected by an intervention that acts (primarily) centrally. Copyright © 2016 Elsevier Inc. All rights reserved.
Castilla-Ortega, Estela; Rosell-Valle, Cristina; Blanco, Eduardo; Pedraza, Carmen; Chun, Jerold; de Fonseca, Fernando Rodríguez; Estivill-Torrús, Guillermo; Santín, Luis J.
2014-01-01
This work was aimed to assess whether voluntary exercise rescued behavioral and hippocampal alterations in mice lacking the lysophosphatidic acid LPA1 receptor (LPA1-null mice), studying the potential relationship between the amount of exercise performed and its effects. Normal and LPA1-null mice underwent 23 days of free wheel running and were tested for open-field behavior and adult hippocampal neurogenesis (cell proliferation, immature neurons, cell survival). Running decreased anxiety-like behavior in both genotypes but increased exploration only in the normal mice. While running affected all neurogenesis-related measures in normal mice (especially in the suprapyramidal blade of the dentate gyrus), only a moderate increase in cell survival was found in the mutants. Importantly, the LPA1-nulls showed notably reduced running. Analysis suggested that defective running in the LPA1-null mice could contribute to explain the scarce benefit of the voluntary exercise treatment. On the other hand, a literature review revealed that voluntary exercise is frequently used to modulate behavior and the hippocampus in transgenic mice, but half of the studies did not assess the quantity of running, overlooking any potential running impairments. This study adds evidence to the relevance of the quantity of exercise performed, emphasizing the importance of its assessment in transgenic mice research. PMID:24055600
Novak, Colleen M; Burghardt, Paul R; Levine, James A
2012-03-01
Running wheels are commonly employed to measure rodent physical activity in a variety of contexts, including studies of energy balance and obesity. There is no consensus on the nature of wheel-running activity or its underlying causes, however. Here, we will begin by systematically reviewing how running wheel availability affects physical activity and other aspects of energy balance in laboratory rodents. While wheel running and physical activity in the absence of a wheel commonly correlate in a general sense, in many specific aspects the two do not correspond. In fact, the presence of running wheels alters several aspects of energy balance, including body weight and composition, food intake, and energy expenditure of activity. We contend that wheel-running activity should be considered a behavior in and of itself, reflecting several underlying behavioral processes in addition to a rodent's general, spontaneous activity. These behavioral processes include defensive behavior, predatory aggression, and depression- and anxiety-like behaviors. As it relates to energy balance, wheel running engages several brain systems-including those related to the stress response, mood, and reward, and those responsive to growth factors-that influence energy balance indirectly. We contend that wheel-running behavior represents factors in addition to rodents' tendency to be physically active, engaging additional neural and physiological mechanisms which can then independently alter energy balance and behavior. Given the impact of wheel-running behavior on numerous overlapping systems that influence behavior and physiology, this review outlines the need for careful design and interpretation of studies that utilize running wheels as a means for exercise or as a measurement of general physical activity. Copyright © 2012 Elsevier Ltd. All rights reserved.
Levine, James A.
2015-01-01
Running wheels are commonly employed to measure rodent physical activity in a variety of contexts, including studies of energy balance and obesity. There is no consensus on the nature of wheel-running activity or its underlying causes, however. Here, we will begin by systematically reviewing how running wheel availability affects physical activity and other aspects of energy balance in laboratory rodents. While wheel running and physical activity in the absence of a wheel commonly correlate in a general sense, in many specific aspects the two do not correspond. In fact, the presence of running wheels alters several aspects of energy balance, including body weight and composition, food intake, and energy expenditure of activity. We contend that wheel-running activity should be considered a behavior in and of itself, reflecting several underlying behavioral processes in addition to a rodent's general, spontaneous activity. These behavioral processes include defensive behavior, predatory aggression, and depression- and anxiety-like behaviors. As it relates to energy balance, wheel running engages several brain systems—including those related to the stress response, mood, and reward, and those responsive to growth factors—that influence energy balance indirectly. We contend that wheel-running behavior represents factors in addition to rodents' tendency to be physically active, engaging additional neural and physiological mechanisms which can then independently alter energy balance and behavior. Given the impact of wheel-running behavior on numerous overlapping systems that influence behavior and physiology, this review outlines the need for careful design and interpretation of studies that utilize running wheels as a means for exercise or as a measurement of general physical activity. PMID:22230703
Smythe, Gayle M; White, Jason D
2011-12-18
Voluntary wheel running can potentially be used to exacerbate the disease phenotype in dystrophin-deficient mdx mice. While it has been established that voluntary wheel running is highly variable between individuals, the key parameters of wheel running that impact the most on muscle pathology have not been examined in detail. We conducted a 2-week test of voluntary wheel running by mdx mice and the impact of wheel running on disease pathology. There was significant individual variation in the average daily distance (ranging from 0.003 ± 0.005 km to 4.48 ± 0.96 km), culminating in a wide range (0.040 km to 67.24 km) of total cumulative distances run by individuals. There was also variation in the number and length of run/rest cycles per night, and the average running rate. Correlation analyses demonstrated that in the quadriceps muscle, a low number of high distance run/rest cycles was the most consistent indicator for increased tissue damage. The amount of rest time between running bouts was a key factor associated with gastrocnemius damage. These data emphasize the need for detailed analysis of individual running performance, consideration of the length of wheel exposure time, and the selection of appropriate muscle groups for analysis, when applying the use of voluntary wheel running to disease exacerbation and/or pre-clinical testing of the efficacy of therapeutic agents in the mdx mouse.
Chowdhury, Tara Gunkali; Chen, Yi-Wen; Aoki, Chiye
2015-10-22
Anorexia nervosa (AN) is a psychiatric illness characterized by excessively restricted caloric intake and abnormally high levels of physical activity. A challenging illness to treat, due to the lack of understanding of the underlying neurobiology, AN has the highest mortality rate among psychiatric illnesses. To address this need, neuroscientists are using an animal model to study how neural circuits may contribute toward vulnerability to AN and may be affected by AN. Activity-based anorexia (ABA) is a bio-behavioral phenomenon described in rodents that models the key symptoms of anorexia nervosa. When rodents with free access to voluntary exercise on a running wheel experience food restriction, they become hyperactive - running more than animals with free access to food. Here, we describe the procedures by which ABA is induced in adolescent female C57BL/6 mice. On postnatal day 36 (P36), the animal is housed with access to voluntary exercise on a running wheel. After 4 days of acclimation to the running wheel, on P40, all food is removed from the cage. For the next 3 days, food is returned to the cage (allowing animals free food access) for 2 hr daily. After the fourth day of food restriction, free access to food is returned and the running wheel is removed from the cage to allow the animals to recover. Continuous multi-day analysis of running wheel activity shows that mice become hyperactive within 24 hr following the onset of food restriction. The mice run even during the limited time during which they have access to food. Additionally, the circadian pattern of wheel running becomes disrupted by the experience of food restriction. We have been able to correlate neurobiological changes with various aspects of the animals' wheel running behavior to implicate particular brain regions and neurochemical changes with resilience and vulnerability to food-restriction induced hyperactivity.
Chowdhury, Tara Gunkali; Chen, Yi-Wen; Aoki, Chiye
2015-01-01
Anorexia nervosa (AN) is a psychiatric illness characterized by excessively restricted caloric intake and abnormally high levels of physical activity. A challenging illness to treat, due to the lack of understanding of the underlying neurobiology, AN has the highest mortality rate among psychiatric illnesses. To address this need, neuroscientists are using an animal model to study how neural circuits may contribute toward vulnerability to AN and may be affected by AN. Activity-based anorexia (ABA) is a bio-behavioral phenomenon described in rodents that models the key symptoms of anorexia nervosa. When rodents with free access to voluntary exercise on a running wheel experience food restriction, they become hyperactive – running more than animals with free access to food. Here, we describe the procedures by which ABA is induced in adolescent female C57BL/6 mice. On postnatal day 36 (P36), the animal is housed with access to voluntary exercise on a running wheel. After 4 days of acclimation to the running wheel, on P40, all food is removed from the cage. For the next 3 days, food is returned to the cage (allowing animals free food access) for 2 hr daily. After the fourth day of food restriction, free access to food is returned and the running wheel is removed from the cage to allow the animals to recover. Continuous multi-day analysis of running wheel activity shows that mice become hyperactive within 24 hr following the onset of food restriction. The mice run even during the limited time during which they have access to food. Additionally, the circadian pattern of wheel running becomes disrupted by the experience of food restriction. We have been able to correlate neurobiological changes with various aspects of the animals’ wheel running behavior to implicate particular brain regions and neurochemical changes with resilience and vulnerability to food-restriction induced hyperactivity. PMID:26555618
Ogbonmwan, Yvonne E; Schroeder, Jason P; Holmes, Philip V; Weinshenker, David
2015-04-01
Voluntary aerobic exercise has shown promise as a treatment for substance abuse, reducing relapse in cocaine-dependent people. Wheel running also attenuates drug-primed and cue-induced reinstatement of cocaine seeking in rats, an animal model of relapse. However, in most of these studies, wheel access was provided throughout cocaine self-administration and/or extinction and had effects on several parameters of drug seeking. Moreover, the effects of exercise on footshock stress-induced reinstatement have not been investigated. The purposes of this study were to isolate and specifically examine the protective effect of exercise on relapse-like behavior elicited by a drug prime or stress. Rats were trained to self-administer cocaine at a stable level, followed by extinction training. Once extinction criteria were met, rats were split into exercise (24 h, continuous access to running wheel) and sedentary groups for 3 weeks, after which, drug-seeking behavior was assessed following a cocaine prime or footshock. We also measured galanin messenger RNA (mRNA) in the locus coeruleus and A2 noradrenergic nucleus. Exercising rats ran ∼4-6 km/day, comparable to levels previously reported for rats without a history of cocaine self-administration. Post-extinction exercise significantly attenuated cocaine-primed, but not footshock stress-induced, reinstatement of cocaine seeking, and increased galanin mRNA expression in the LC but not A2. These results indicate that chronic wheel running can attenuate some forms of reinstatement, even when initiated after the cessation of cocaine self-administration, supporting the idea that voluntary exercise programs may help maintain abstinence in clinical populations.
Wang, Xinrui; Fitts, Robert H
2017-08-01
Regular exercise training is known to affect the action potential duration (APD) and improve heart function, but involvement of β-adrenergic receptor (β-AR) subtypes and/or the ATP-sensitive K + (K ATP ) channel is unknown. To address this, female and male Sprague-Dawley rats were randomly assigned to voluntary wheel-running or control groups; they were anesthetized after 6-8 wk of training, and myocytes were isolated. Exercise training significantly increased APD of apex and base myocytes at 1 Hz and decreased APD at 10 Hz. Ca 2+ transient durations reflected the changes in APD, while Ca 2+ transient amplitudes were unaffected by wheel running. The nonselective β-AR agonist isoproterenol shortened the myocyte APD, an effect reduced by wheel running. The isoproterenol-induced shortening of APD was largely reversed by the selective β 1 -AR blocker atenolol, but not the β 2 -AR blocker ICI 118,551, providing evidence that wheel running reduced the sensitivity of the β 1 -AR. At 10 Hz, the K ATP channel inhibitor glibenclamide prolonged the myocyte APD more in exercise-trained than control rats, implicating a role for this channel in the exercise-induced APD shortening at 10 Hz. A novel finding of this work was the dual importance of altered β 1 -AR responsiveness and K ATP channel function in the training-induced regulation of APD. Of physiological importance to the beating heart, the reduced response to adrenergic agonists would enhance cardiac contractility at resting rates, where sympathetic drive is low, by prolonging APD and Ca 2+ influx; during exercise, an increase in K ATP channel activity would shorten APD and, thus, protect the heart against Ca 2+ overload or inadequate filling. NEW & NOTEWORTHY Our data demonstrated that regular exercise prolonged the action potential and Ca 2+ transient durations in myocytes isolated from apex and base regions at 1-Hz and shortened both at 10-Hz stimulation. Novel findings were that wheel running shifted the β-adrenergic receptor agonist dose-response curve rightward compared with controls by reducing β 1 -adrenergic receptor responsiveness and that, at the high activation rate, myocytes from trained animals showed higher K ATP channel function. Copyright © 2017 the American Physiological Society.
Merritt, Jennifer; Rhodes, Justin S.
2014-01-01
Moderate levels of aerobic exercise broadly enhance cognition throughout the lifespan. One hypothesized contributing mechanism is increased adult hippocampal neurogenesis. Recently, we measured the effects of voluntary wheel running on adult hippocampal neurogenesis in 12 different mouse strains, and found increased neurogenesis in all strains, ranging from 2 to 5 fold depending on the strain. The purpose of this study was to determine the extent to which increased neurogenesis from wheel running is associated with enhanced performance on the water maze for 5 of the 12 strains, chosen based on their levels of neurogenesis observed in the previous study (C57BL/6J, 129S1/SvImJ, B6129SF1/J, DBA/2J, and B6D2F1/J). Mice were housed with or without a running wheels for 30 days then tested for learning and memory on the plus water maze, adapted for multiple strains, and rotarod test of motor performance. The first 10 days, animals were injected with BrdU to label dividing cells. After behavioral testing animals were euthanized to measure adult hippocampal neurogenesis using standard methods. Levels of neurogenesis depended on strain but all mice had a similar increase in neurogenesis in response to exercise. All mice acquired the water maze but performance depended on strain. Exercise improved water maze performance in all strains to a similar degree. Rotarod performance depended on strain. Exercise improved rotarod performance only in DBA/2J and B6D2F1/J mice. Taken together, results demonstrate that despite different levels of neurogenesis, memory performance and motor coordination in these mouse strains, all strains have the capacity to increase neurogenesis and improve learning on the water maze through voluntary wheel running. PMID:25435316
Basso, Julia C; Morrell, Joan I
2017-10-01
Though voluntary wheel running (VWR) has been used extensively to induce changes in both behavior and biology, little attention has been given to the way in which different variables influence VWR. This lack of understanding has led to an inability to utilize this behavior to its full potential, possibly blunting its effects on the endpoints of interest. We tested how running experience, sex, gonadal hormones, and wheel apparatus influence VWR in a range of wheel access "doses". VWR increases over several weeks, with females eventually running 1.5 times farther and faster than males. Limiting wheel access can be used as a tool to motivate subjects to run but restricts maximal running speeds attained by the rodents. Additionally, circulating gonadal hormones regulate wheel running behavior, but are not the sole basis of sex differences in running. Limitations from previous studies include the predominate use of males, emphasis on distance run, variable amounts of wheel availability, variable light-dark cycles, and possible food and/or water deprivation. We designed a comprehensive set of experiments to address these inconsistencies, providing data regarding the "microfeatures" of running, including distance run, time spent running, running rate, bouting behavior, and daily running patterns. By systematically altering wheel access, VWR behavior can be finely tuned - a feature that we hypothesize is due to its positive incentive salience. We demonstrate how to maximize VWR, which will allow investigators to optimize exercise-induced changes in their behavioral and/or biological endpoints of interest. Published by Elsevier B.V.
Basso, Julia C; Morrell, Joan I
2015-08-01
Voluntary wheel running in rats provides a preclinical model of exercise motivation in humans. We hypothesized that rats run because this activity has positive incentive salience in both the acquisition and habitual stages of wheel running and that gender differences might be present. Additionally, we sought to determine which forebrain regions are essential for the motivational processes underlying wheel running in rats. The motivation for voluntary wheel running in male and female Sprague-Dawley rats was investigated during the acquisition (Days 1-7) and habitual phases (after Day 21) of running using conditioned place preference (CPP) and the reinstatement (rebound) response after forced abstinence, respectively. Both genders displayed a strong CPP for the acquisition phase and a strong rebound response to wheel deprivation during the habitual phase, suggesting that both phases of wheel running are rewarding for both sexes. Female rats showed a 1.5 times greater rebound response than males to wheel deprivation in the habitual phase of running, while during the acquisition phase, no gender differences in CPP were found. We transiently inactivated the medial prefrontal cortex (mPFC) or the nucleus accumbens (NA), hypothesizing that because these regions are involved in the acquisition and reinstatement of self-administration of both natural and pharmacological stimuli, they might also serve a role in the motivation to wheel run. Inactivation of either structure decreased the rebound response in the habitual phase of running, demonstrating that these structures are involved in the motivation for this behavior. (c) 2015 APA, all rights reserved).
Castilla-Ortega, Estela; Rosell-Valle, Cristina; Blanco, Eduardo; Pedraza, Carmen; Chun, Jerold; Rodríguez de Fonseca, Fernando; Estivill-Torrús, Guillermo; Santín, Luis J
2013-11-01
This work was aimed to assess whether voluntary exercise rescued behavioral and hippocampal alterations in mice lacking the lysophosphatidic acid LPA1 receptor (LPA1-null mice), studying the potential relationship between the amount of exercise performed and its effects. Normal and LPA1-null mice underwent 23 days of free wheel running and were tested for open-field behavior and adult hippocampal neurogenesis (cell proliferation, immature neurons, cell survival). Running decreased anxiety-like behavior in both genotypes but increased exploration only in the normal mice. While running affected all neurogenesis-related measures in normal mice (especially in the suprapyramidal blade of the dentate gyrus), only a moderate increase in cell survival was found in the mutants. Importantly, the LPA1-nulls showed notably reduced running. Analysis suggested that defective running in the LPA1-null mice could contribute to explain the scarce benefit of the voluntary exercise treatment. On the other hand, a literature review revealed that voluntary exercise is frequently used to modulate behavior and the hippocampus in transgenic mice, but half of the studies did not assess the quantity of running, overlooking any potential running impairments. This study adds evidence to the relevance of the quantity of exercise performed, emphasizing the importance of its assessment in transgenic mice research. Copyright © 2013 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.
Wheel-running in a transgenic mouse model of Alzheimer's disease: protection or symptom?
Richter, Helene; Ambrée, Oliver; Lewejohann, Lars; Herring, Arne; Keyvani, Kathy; Paulus, Werner; Palme, Rupert; Touma, Chadi; Schäbitz, Wolf-Rüdiger; Sachser, Norbert
2008-06-26
Several studies on both humans and animals reveal benefits of physical exercise on brain function and health. A previous study on TgCRND8 mice, a transgenic model of Alzheimer's disease, reported beneficial effects of premorbid onset of long-term access to a running wheel on spatial learning and plaque deposition. Our study investigated the effects of access to a running wheel after the onset of Abeta pathology on behavioural, endocrinological, and neuropathological parameters. From day 80 of age, the time when Abeta deposition becomes apparent, TgCRND8 and wildtype mice were kept with or without running wheel. Home cage behaviour was analysed and cognitive abilities regarding object recognition memory and spatial learning in the Barnes maze were assessed. Our results show that, in comparison to Wt mice, Tg mice were characterised by impaired object recognition memory and spatial learning, increased glucocorticoid levels, hyperactivity in the home cage and high levels of stereotypic behaviour. Access to a running wheel had no effects on cognitive or neuropathological parameters, but reduced the amount of stereotypic behaviour in transgenics significantly. Furthermore, wheel-running was inversely correlated with stereotypic behaviour, suggesting that wheel-running may have stereotypic qualities. In addition, wheel-running positively correlated with plaque burden. Thus, in a phase when plaques are already present in the brain, it may be symptomatic of brain pathology, rather than protective. Whether or not access to a running wheel has beneficial effects on Alzheimer-like pathology and symptoms may therefore strongly depend on the exact time when the wheel is provided during development of the disease.
Voluntary running enhances glymphatic influx in awake behaving, young mice.
von Holstein-Rathlou, Stephanie; Petersen, Nicolas Caesar; Nedergaard, Maiken
2018-01-01
Vascular pathology and protein accumulation contribute to cognitive decline, whereas exercise can slow vascular degeneration and improve cognitive function. Recent investigations suggest that glymphatic clearance measured in aged mice while anesthetized is enhanced following exercise. We predicted that exercise would also stimulate glymphatic activity in awake, young mice with higher baseline glymphatic function. Therefore, we assessed glymphatic function in young female C57BL/6J mice following five weeks voluntary wheel running and in sedentary mice. The active mice ran a mean distance of 6km daily. We injected fluorescent tracers in cisterna magna of awake behaving mice and in ketamine/xylazine anesthetized mice, and later assessed tracer distribution in coronal brain sections. Voluntary exercise consistently increased CSF influx during wakefulness, primarily in the hypothalamus and ventral parts of the cortex, but also in the middle cerebral artery territory. While glymphatic activity was higher under ketamine/xylazine anesthesia, we saw a decrease in glymphatic function during running in awake mice after five weeks of wheel running. In summary, daily running increases CSF flux in widespread areas of the mouse brain, which may contribute to the pro-cognitive effects of exercise. Copyright © 2017 Elsevier B.V. All rights reserved.
Martin, Stephen A.; Dantzer, Robert; Kelley, Keith W.; Woods, Jeffrey A.
2014-01-01
Peripheral stimulation of the innate immune system with lipopolysaccharide (LPS) causes prolonged depressive-like behavior in aged mice that is dependent on indoleamine 2,3 dioxygenase (IDO) activation. Regular moderate intensity exercise training has been shown to exert neuroprotective effects that might reduce depressive-like behavior in aged mice. The purpose of this study was to test the hypothesis that voluntary wheel running would attenuate LPS-induced depressive-like behavior and brain IDO gene expression in 4-month-old and 22-month-old C57BL/6J mice. Mice were housed with a running wheel (Voluntary Wheel Running, VWR) or no wheel (Standard) for 30 days (young adult mice) or 70 days (aged mice), after which they were intraperitoneally injected with LPS (young adult mice: 0.83 mg/kg; aged mice: 0.33 mg/kg). Young adult VWR mice ran on average 6.9 km/day, while aged VWR mice ran on average 3.4 km/day. Both young adult and aged VWR mice increased their forced exercise tolerance compared to their respective Standard control groups. VWR had no effect on LPS-induced anorexia, weight-loss, increased immobility in the tail suspension test, and decreased sucrose preference in either young adult or aged mice. Four (young adult mice) and twenty-four (aged mice) hours after injection of LPS transcripts for TNF-α, IL-1β, IL-6, and IDO were upregulated in the whole brain independently of VWR. These results indicate that prolonged physical exercise has no effect on the neuroinflammatory response to LPS and its behavioral consequences. PMID:24281669
Diet choice patterns in rodents depend on novelty of the diet, exercise, species, and sex.
Yang, Tiffany; Xu, Wei-Jie; York, Haley; Liang, Nu-Chu
2017-07-01
Prolonged consumption of a palatable, high fat (HF) diet paired with a lack of physical activity can exacerbate the development of obesity. Exercise can facilitate the maintenance of a healthy body weight, possibly though mediating changes in diet preference. Using a two-diet choice and wheel running (WR) paradigm, our laboratory previously demonstrated that WR induces HF diet avoidance with different persistency in male and female rats when HF diet and WR are introduced simultaneously. The aims of this study were to examine whether this behavior is species dependent and to what extent the novelty of the diet affects WR induced HF diet avoidance. Experiment 1 utilized male C57BL6 mice in a two-diet choice and WR paradigm. Results show that all mice preferred HF to chow diet regardless of exercise and the order in which exercise and HF diet were presented. Experiment 2A (diet novelty) utilized Sprague-Dawley rats that were first habituated to a 45% HF diet prior to the simultaneous introduction of WR and a novel high-carbohydrate, low-fat (DK) diet. All rats avoided the novel high-carbohydrate diet and neither male nor female wheel running rats exhibited reduction in HF diet intake or HF diet avoidance. After all rats were returned to a sedentary condition, female rats consumed significantly more of the DK diet than the male rats. In Experiment 2B (diet familiarity), rats remained sedentary and were re-habituated to the DK diet until intake stabilized. Subsequently, a 60% HF diet was introduced for all rats and for running rats, access to the running wheels were provided simultaneously. Consistent with our previous findings, HF diet intake and preference was significantly reduced in all wheel running rats. These data suggest that exercise induced HF diet avoidance is affected by species and the novelty of the diet. Copyright © 2017 Elsevier Inc. All rights reserved.
Sasaki, Hiroyuki; Hattori, Yuta; Ikeda, Yuko; Kamagata, Mayo; Iwami, Shiho; Yasuda, Shinnosuke; Tahara, Yu; Shibata, Shigenobu
2016-01-01
Exercise during the inactive period can entrain locomotor activity and peripheral circadian clock rhythm in mice; however, mechanisms underlying this entrainment are yet to be elucidated. Here, we showed that the bioluminescence rhythm of peripheral clocks in PER2::LUC mice was strongly entrained by forced treadmill and forced wheel-running exercise rather than by voluntary wheel-running exercise at middle time during the inactivity period. Exercise-induced entrainment was accompanied by increased levels of serum corticosterone and norepinephrine in peripheral tissues, similar to the physical stress-induced response. Adrenalectomy with norepinephrine receptor blockers completely blocked the treadmill exercise-induced entrainment. The entrainment of the peripheral clock by exercise is independent of the suprachiasmatic nucleus clock, the main oscillator in mammals. The present results suggest that the response of forced exercise, but not voluntary exercise, may be similar to that of stress, and possesses the entrainment ability of peripheral clocks through the activation of the adrenal gland and the sympathetic nervous system. PMID:27271267
Maternal exercise during pregnancy promotes physical activity in adult offspring
Eclarinal, Jesse D.; Zhu, Shaoyu; Baker, Maria S.; Piyarathna, Danthasinghe B.; Coarfa, Cristian; Fiorotto, Marta L.; Waterland, Robert A.
2016-01-01
Previous rodent studies have shown that maternal voluntary exercise during pregnancy leads to metabolic changes in adult offspring. We set out to test whether maternal voluntary exercise during pregnancy also induces persistent changes in voluntary physical activity in the offspring. Adult C57BL/6J female mice were randomly assigned to be caged with an unlocked (U) or locked (L) running wheel before and during pregnancy. Maternal running behavior was monitored during pregnancy, and body weight, body composition, food intake, energy expenditure, total cage activity, and running wheel activity were measured in the offspring at various ages. U offspring were slightly heavier at birth, but no group differences in body weight or composition were observed at later ages (when mice were caged without access to running wheels). Consistent with our hypothesis, U offspring were more physically active as adults. This effect was observed earlier in female offspring (at sexual maturation). Remarkably, at 300 d of age, U females achieved greater fat loss in response to a 3-wk voluntary exercise program. Our findings show for the first time that maternal physical activity during pregnancy affects the offspring’s lifelong propensity for physical activity and may have important implications for combating the worldwide epidemic of physical inactivity and obesity.—Eclarinal, J. D., Zhu, S., Baker, M. S., Piyarathna, D. B., Coarfa, C., Fiorotto, M. L., Waterland, R. A. Maternal exercise during pregnancy promotes physical activity in adult offspring. PMID:27033262
Whitehead, RA; Lam, NL; Sun, MS; Sanchez, JJ; Noor, S; Vanderwall, AG; Petersen, TR; Martin, HB
2016-01-01
BACKGROUND Animal models of peripheral neuropathy produced by a number of manipulations are assessed for the presence of pathological pain states such as allodynia. While stimulus-induced behavioral assays are frequently used and important to examine allodynia (i.e. sensitivity to light mechanical touch; von Frey fiber test) other measures of behavior that reflect overall function are not only complementary to stimulus-induced responsive measures, but are also critical to gain a complete understanding of the effects of the pain model on quality of life, a clinically relevant aspect of pain on general function. Voluntary wheel running activity in rodent models of inflammatory and muscle pain is emerging as a reliable index of general function that extends beyond stimulus-induced behavioral assays. Clinically, reports of increased pain intensity occur at night, a period typically characterized with reduced activity during the diurnal cycle. We therefore examined in rats whether alterations in wheel running activity were more robust during the inactive phase compared to the active phase of their diurnal cycle in a widely used rodent model of chronic peripheral neuropathic pain, the sciatic nerve chronic constriction injury (CCI) model. METHODS In adult male Sprague Dawley rats, baseline (BL) hindpaw threshold responses to light mechanical touch were assessed using the von Frey test prior to measuring BL activity levels using freely accessible running wheels (1 hr/day for 7 sequential days) to quantify distance traveled. Running wheel activity BL values are expressed as total distance traveled (m). The overall experimental design was: following BL measures, rats underwent either sham or CCI surgery followed by repeated behavioral re-assessment of hindpaw thresholds and wheel running activity levels for up to 18 days after surgery. Specifically, separate groups of rats were assessed for wheel running activity levels (1 hr total/trial) during the onset (within first 2 hrs) of either the (1) inactive (n=8/gp) or (2) active (n = 8/gp) phase of the diurnal cycle. An additional group of CCI-treated rats (n = 8/gp) were exposed to a locked running wheel to control for the potential effects of wheel running exercise on allodynia. The 1-hr running wheel trial period was further examined at discrete 20-min intervals to identify possible pattern differences in activity during the first, middle and last portion of the 1-hr trial. The effect of neuropathy on activity levels were assessed by measuring the change from their respective BLs to distance traveled in the running wheels. RESULTS While wheel running distances between groups were not different at BL from rats examined during either the inactive phase of the diurnal cycle or active phase of the diurnal cycle, sciatic nerve CCI reduced running wheel activity levels compared to sham-operated controls during the inactive phase. Additionally, compared to sham controls, bilateral low threshold mechanical allodynia was observed at all time-points after surgical induction of neuropathy in rats with free-wheel and locked-wheel access. Allodynia in CCI compared to shams was replicated in rats whose running wheel activity was examined during the active phase of the diurnal cycle. Conversely, no significant reduction in wheel running activity was observed in CCI-treated rats compared to sham controls at any timepoint when activity levels were examined during the active diurnal phase. Lastly, running wheel activity patterns within the 1 hr trial period during the inactive phase of the diurnal cycle were relatively consistent throughout each 20 min phase. CONCLUSIONS Compared to non-neuropathic sham controls, a profound and stable reduction of running wheel activity was observed in CCI rats during the inactive phase of the diurnal cycle. A concurrent robust allodynia persisted in all rats regardless of when wheel running activity was examined or whether they ran on wheels, suggesting that acute wheel running activity does not alter chronic low intensity mechanical allodynia as measured using the von Frey fiber test. Overall, these data support that acute wheel running exercise with limited repeated exposures does not itself alter allodynia and offers a behavioral assay complementary to stimulus-induced measures of neuropathic pain. PMID:27782944
Exercise reward induces appetitive 50-kHz calls in rats.
Heyse, Natalie C; Brenes, Juan C; Schwarting, Rainer K W
2015-08-01
Rats express affective states by visible behaviors (like approach or flight) and through different kinds of ultrasonic vocalizations (USV). 50-kHz calls are thought to reflect positive affective states since they occur during rewarding situations like social play or palatable food. However, the effects of voluntary exercise on USV have not been investigated yet, although such exercise can serve as reward. To this aim, we gave young adult rats restricted daily access to a runway maze, where they could interact with either a movable (experimental group) or locked wheel (sedentary group) for 14days and we tested USV in anticipation of and during subsequent running. We also studied inter-individual differences in running, and relationships with USV, and rat-typical trait measures. The results showed that the experimental rats had to be separated into "runners" and "pseudorunners" since only runners performed true running, whereas pseudorunners hardly entered the wheel and turned it only with their forelimbs. This outcome seems to be related to subject-dependent differences in responding to novelty and in reward sensitivity, as indicated by pertinent screening tests, which we had performed prior to the 14days of wheel access. In the runway, our experimental and control groups did not differ in visible anticipatory behavior, like approach. Yet, only runners and sedentary rats displayed an increasing but similar amount of anticipatory USV, which is suggestive of a state of incentive anticipation of the coming wheel access. During exercise, only runners increased USV, probably indicating a highly positive emotional state. To conclude, voluntary exercise provides a promising tool to induce 50-kHz USV during and in anticipation of exercise. When performing such studies, possible individual differences between subjects have to be taken into account, and the actual wheel performance should carefully be controlled. Copyright © 2015 Elsevier Inc. All rights reserved.
Geuzaine, Annabelle; Tirelli, Ezio
2014-04-01
Previous literature suggests that physical exercise allowed by an unlimited access to a running wheel for several weeks can mitigate chronic neurobehavioral responsiveness to several addictive drugs in rodents. Here, the potential preventive effects of unlimited wheel-running on the initiation of psychomotor sensitization and the acquisition and extinction of conditioned place preference (CPP) induced by 10 mg/kg cocaine in C56BL/6J mice were assessed in two independent experiments. To this end, half of the mice were singly housed with a running wheel at 28 days of age for 10 weeks prior to psychopharmacological tests, during which housing conditions did not change, and the other half of mice were housed without running wheel. In Experiment 1, prior to initiating sensitization, psychomotor activity on the two first drug-free once-daily sessions was not affected by wheel-running. This was also found for the acute psychomotor-activating effect of cocaine on the first sensitization session. Psychomotor sensitization readily developed over the 9 following once-daily sessions in mice housed without wheel, whereas it was inhibited in mice housed with a wheel. However, that difference did not transfer to post-sensitization conditioned activity. In contrast with the sensitization results, mice housed with a wheel still expressed a clear-cut CPP which did not extinguish differently from that of the other group, a result in disaccord with previous studies reporting either an attenuating or an increasing effect of wheel-running on cocaine-induced conditioned reward. The available results together indicate that interactions between wheel-running and cocaine effects are far from being satisfactorily characterized. Copyright © 2014 Elsevier B.V. All rights reserved.
Suwa, M; Ishioka, T; Kato, J; Komaita, J; Imoto, T; Kida, A; Yokochi, T
2016-06-01
The purpose of this study was to investigate whether long-term wheel running would attenuate age-related loss of muscle fiber. Male ICR mice were divided into young (Y, n=12, aged 3 months), old-sedentary (OS, n=5, aged 24 months), and old-exercise (OE, n=6, aged 24 months) groups. The OE group started spontaneous wheel running at 3 months and continued until 24 months of age. Soleus and plantaris muscles were fixed in 4% paraformaldehyde buffer. The fixed muscle was digested in a 50% NaOH solution to isolate single fiber and then fiber number was quantified. The masses of the soleus and plantaris muscles were significantly lower at 24 months than at 3 months of age, and this age-related difference was attenuated by wheel running (P<0.05). Soleus muscle fiber number did not differ among the groups. In the plantaris muscle, the fiber number in the OS group (1 288±92 fibers) was significantly lower than in the Y group (1 874±93 fibers), and this decrease was attenuated in the OE group (1 591±80 fibers) (P<0.05). These results suggest that age-related fiber loss occurs only in the fast-twitch fiber-rich muscle of mice, and that life-long wheel running exercise can prevent this fiber loss. © Georg Thieme Verlag KG Stuttgart · New York.
Caffeine stimulates voluntary wheel running in mice without increasing aerobic capacity.
Claghorn, Gerald C; Thompson, Zoe; Wi, Kristianna; Van, Lindsay; Garland, Theodore
2017-03-01
The "energy drink" Red Bull and the "sports drink" Gatorade are often marketed to athletes, with claims that they cause performance gains. However, both are high in sugars, and also consumed by non-athletes. Few studies have addressed the effects of these drinks or their biologically active components in rodent exercise models. We used three experiments to test effects on both voluntary exercise behavior and maximal aerobic capacity in lines of mice known to differ in "athletic" traits. Mice from four replicate High Runner (HR) lines have been selectively bred for voluntary running on wheels, and run approximately three times as many revolutions per day as do mice from four non-selected Control (C) lines. HR mice also have higher endurance and maximal oxygen consumption (VO 2 max) during forced treadmill exercise. In Experiment 1, we tested the hypothesis that Gatorade or Red Bull might cause or allow mice to increase their voluntary wheel running. On days 5 and 6 of 6days of wheel access, as is used to select breeders, HR mice ran 3.3-fold more than C, and females ran 1.2-fold more than males, with no linetype by sex interaction. On day 7, mice were administered Gatorade, Red Bull or tap water. During the subsequent 19-hour period, Gatorade had no statistical effect on running, but Red Bull significantly increased distance run by both sexes and in both HR and C lines. The increase in distance run caused by Red Bull was attributable to time spent running, not an increase in mean (or maximum) speed. As previous studies have found that sucrose alone does not generally increase wheel running, we tested two other active ingredients in Red Bull, caffeine and taurine, in Experiment 2. With a similar testing protocol, caffeine alone and caffeine+taurine increased running by about half the magnitude of Red Bull. In Experiment 3, we tested the hypothesis that Red Bull or caffeine alone can increase physiological performance ability during aerobic exercise, measured as VO 2 max. In a repeated-measures design spanning 6days, females were housed with water bottles containing Red Bull, caffeine or water in a randomized order, and tested for VO 2 max twice while receiving each fluid (6 total trials). Neither Red Bull nor caffeine significantly affected either VO 2 max or a measure of trial cooperativity (rated on a scale of 1-5), but both treatments significantly reduced tiredness (rated on a scale of 1-3) scored at the end of trials for both HR and C lines. Taken together, our results suggest that caffeine increases voluntary exercise levels of mice by delaying fatigue, rather than increasing aerobic capacity. Copyright © 2017 Elsevier Inc. All rights reserved.
Keyworth, Helen; Georgiou, Polymnia; Zanos, Panos; Rueda, André Veloso; Chen, Ying; Kitchen, Ian; Camarini, Rosana; Cropley, Mark; Bailey, Alexis
2018-06-01
Evidence suggests that exercise decreases nicotine withdrawal symptoms in humans; however, the mechanisms mediating this effect are unclear. We investigated, in a mouse model, the effect of exercise intensity during chronic nicotine exposure on nicotine withdrawal severity, binding of α4β2*, α7 nicotinic acetylcholine (nAChR), μ-opioid (μ receptors) and D 2 dopamine receptors and on brain-derived neurotrophic factor (BDNF) and plasma corticosterone levels. Male C57Bl/6J mice treated with nicotine (minipump, 24 mg·kg -1 ·day -1 ) or saline for 14 days underwent one of three concurrent exercise regimes: 24, 2 or 0 h·day -1 voluntary wheel running. Mecamylamine-precipitated withdrawal symptoms were assessed on day 14. Quantitative autoradiography of α4β2*, α7 nAChRs, μ receptors and D 2 receptor binding was performed in brain sections of these mice. Plasma corticosterone and brain BDNF levels were also measured. Nicotine-treated mice undertaking 2 or 24 h·day -1 wheel running displayed a significant reduction in withdrawal symptom severity compared with the sedentary group. Wheel running induced a significant up-regulation of α7 nAChR binding in the CA2/3 area of the hippocampus of nicotine-treated mice. Neither exercise nor nicotine treatment affected μ or D 2 receptor binding or BDNF levels. Nicotine withdrawal increased plasma corticosterone levels and α4β2* nAChR binding, irrespective of exercise regimen. We demonstrated for the first time a profound effect of exercise on α7 nAChRs in nicotine-dependent animals, irrespective of exercise intensity. These findings shed light onto the mechanism underlining the protective effect of exercise on the development of nicotine dependence. This article is part of a themed section on Nicotinic Acetylcholine Receptors. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.11/issuetoc. © 2017 The British Pharmacological Society.
Mazur, F G; Oliveira, L F G; Cunha, M P; Rodrigues, A L S; Pértile, R A N; Vendruscolo, L F; Izídio, G S
2017-09-01
We investigated the effects of physical exercise (PE) on locomotor activity and anxiety-like behavior in Lewis (LEW) and Spontaneously Hypertensive Rats (SHR) male rats. Rats received either four weeks of forced training, 5days/week, on a treadmill (experiment 1) or were given 21days of free access to running wheels (experiment 2). We also tested the effects of social isolation (SI) (seven days of isolation - experiment 3) on behavior. In experiment 1, 20% of LEW rats and 63% of SHR rats completed the training protocol. PE significantly increased central and peripheral locomotion in the open field (OF) and entries into the open arms in the elevated plus-maze (EPM) in both strains. In experiment 2, the distance traveled by SHR rats on running wheels was significantly higher compared with LEW rats. PE on running wheels also increased the time spent in the center of the OF in SHR rats only. In experiment 3, SI decreased central and peripheral locomotion in the OF in both strains. In summary, forced PE on a treadmill reduced anxiety-like behavior and increased locomotion in male rats of both strains, whereas voluntary PE on running wheels decreased anxiety-like behavior in SHR rats only. SI decreased locomotion in both strains in the OF. This study suggests that spontaneous activity levels are genotype-dependent and the effects of PE depend on the type of exercise performed. Copyright © 2017 Elsevier B.V. All rights reserved.
Running promotes wakefulness and increases cataplexy in orexin knockout mice.
España, Rodrigo A; McCormack, Sarah L; Mochizuki, Takatoshi; Scammell, Thomas E
2007-11-01
People with narcolepsy and mice lacking orexin/hypocretin have disrupted sleep/wake behavior and reduced physical activity. Our objective was to identify physiologic mechanisms through which orexin deficiency reduces locomotor activity. We examined spontaneous wheel running activity and its relationship to sleep/wake behavior in wild type (WT) and orexin knockout (KO) mice. Additionally, given that physical activity promotes alertness, we also studied whether orexin deficiency reduces the wake-promoting effects of exercise. Orexin KO mice ran 42% less than WT mice. Their ability to run appeared normal as they initiated running as often as WT mice and ran at normal speeds. However, their running bouts were considerably shorter, and they often had cataplexy or quick transitions into sleep after running. Wheel running increased the total amount of wakefulness in WT and orexin KO mice similarly, however, KO mice continued to have moderately fragmented sleep/wake behavior. Wheel running also doubled the amount of cataplexy by increasing the probability of transitioning into cataplexy. Orexin KO mice run significantly less than normal, likely due to sleepiness, imminent cataplexy, or a reduced motivation to run. Orexin is not required for the wake-promoting effects of wheel running given that both WT and KO mice had similar increases in wakefulness with running wheels. In addition, the clear increase in cataplexy with wheel running suggests the possibility that positive emotions or reward can trigger murine cataplexy, similar to that seen in people and dogs with narcolepsy.
Robison, Lisa S; Popescu, Dominique L; Anderson, Maria E; Beigelman, Steven I; Fitzgerald, Shannon M; Kuzmina, Antonina E; Lituma, David A; Subzwari, Sarima; Michaelos, Michalis; Anderson, Brenda J; Van Nostrand, William E; Robinson, John K
2018-06-04
Cardiovascular exercise (CVE) is associated with healthy aging and reduced risk of disease in humans, with similar benefits seen in animals. Most rodent studies, however, have used shorter intervention periods of a few weeks to a few months, begging questions as to the effects of longer-term, or even life-long, exercise. Additionally, most animal studies have utilized a single exercise treatment group - usually unlimited running wheel access - resulting in large volumes of exercise that are not clinically relevant. It is therefore incumbent to determine the physiological and cognitive/behavioral effects of a range of exercise intensities and volumes over a long-term period that model a lifelong commitment to CVE. In the current study, C57/Bl6 mice remained sedentary or were allowed either 1, 3, or 12 h of access to a running wheel per day, 5 days/weeks, beginning at 3.5-4 months of age. Following an eight-month intervention period, animals underwent a battery of behavioral testing, then euthanized and blood and tissue were collected. Longer access to a running wheel resulted in greater volume and higher running speed, but more breaks in running. All exercise groups showed similarly reduced body weight, increased muscle mass, improved motor function on the rotarod, and reduced anxiety in the open field. While all exercise groups showed increased food intake, this was greatest in the 12 h group but did not differ between 1 h and 3 h mice. While exercise dose-dependently increased working memory performance in the y-maze, the 1 h and 12 h groups showed the largest changes in the mass of many organs, as well as alterations in several behaviors including social interaction, novel object recognition, and Barnes maze performance. These findings suggest that long-term exercise has widespread effects on physiology, behavior, and cognition, which vary by "dose" and measure, and that even relatively small amounts of daily exercise can provide benefits. Copyright © 2018. Published by Elsevier Inc.
Smith, Mark A; Pennock, Michael M; Walker, Katherine L; Lang, Kimberly C
2012-02-01
Relapse to drug use after a period of abstinence is a persistent problem in the treatment of cocaine dependence. Physical activity decreases cocaine self-administration in laboratory animals and is associated with a positive prognosis in human substance-abusing populations. The purpose of this study was to examine the effects of long-term access to a running wheel on drug-primed and cue-induced reinstatement of cocaine-seeking behavior in male and female rats. methods: Long-Evans rats were obtained at weaning and assigned to sedentary (no wheel) and exercising (access to wheel) groups for the duration of the study. After 6 weeks, rats were implanted with intravenous catheters and trained to self-administer cocaine for 14 days. After training, saline was substituted for cocaine and responding was allowed to extinguish, after which cocaine-primed reinstatement was examined in both groups. Following this test, cocaine self-administration was re-established in both groups for a 5-day period. Next, a second period of abstinence occurred in which both cocaine and the cocaine-associated cues were withheld. After 5 days of abstinence, cue-induced reinstatement was examined in both groups. Sedentary and exercising rats exhibited similar levels of cocaine self-administration, but exercising rats responded less than sedentary rats during extinction. In tests of cocaine-primed and cue-induced reinstatement, exercising rats responded less than sedentary rats, and this effect was apparent in both males and females. These data indicate that long-term access to a running wheel decreases drug-primed and cue-induced reinstatement, and that physical activity may be effective at preventing relapse in substance-abusing populations. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Cormier, Jim; Cone, Katherine; Lanpher, Janell; Kinens, Abigail; Henderson, Terry; Liaw, Lucy; Bilsky, Edward J; King, Tamara; Rosen, Clifford J; Stevenson, Glenn W
2017-07-01
There is great interest in developing and utilizing non-pharmacological/non-invasive forms of therapy for osteoarthritis (OA) pain including exercise and other physical fitness regimens. The present experiments determined the effects of prior wheel running on OA-induced weight asymmetry and trabecular bone microarchitecture. Wheel running included 7 or 21days of prior voluntary access to wheels followed by OA induction, followed by 21days post-OA access to wheels. OA was induced with monosodium iodoacetate (MIA), and weight asymmetry was measured using a hind limb weight bearing apparatus. Bone microarchitecture was characterized using ex vivo μCT. Relative to saline controls, MIA (3.2mg/25μl) produced significant weight asymmetry measured on post-days (PDs) 3, 7, 14, 21 in sedentary rats. Seven days of prior running failed to alter MIA-induced weight asymmetry. In contrast, 21days of prior running resulted in complete reversal of MIA-induced weight asymmetry on all days tested. As a comparator, the opioid agonist morphine (3.2-10mg/kg) dose-dependently reversed weight asymmetry on PDs 3, 7, 14, but was ineffective in later-stage (PD 21) OA. In runners, Cohen's d (effect sizes) for OA vs. controls indicated large increases in bone volume fraction, trabecular number, trabecular thickness, and connective density in lateral compartment, and large decreases in the same parameters in medial compartment. In contrast, effect sizes were small to moderate for sedentary OA vs. Results indicate that voluntary exercise may protect against OA pain, the effect varies as a function of prior exercise duration, and is associated with distinct trabecular bone modifications. Copyright © 2017 Elsevier Inc. All rights reserved.
Sanchez, Victoria; Moore, Catherine F; Brunzell, Darlene H; Lynch, Wendy J
2014-04-01
Wheel running attenuates nicotine-seeking in male adolescent rats; however, it is not known if this effect extends to females. To determine if wheel running during abstinence would differentially attenuate subsequent nicotine-seeking in male and female rats that had extended access to nicotine self-administration during adolescence. Male (n = 49) and female (n = 43) adolescent rats self-administered saline or nicotine (5 μg/kg) under an extended access (23-h) paradigm. Following the last self-administration session, rats were moved to polycarbonate cages for an abstinence period where they either had access to a locked or unlocked running wheel for 2 h/day. Subsequently, nicotine-seeking was examined under a within-session extinction/cue-induced reinstatement paradigm. Due to low levels of nicotine-seeking in females in both wheel groups, additional groups were included that were housed without access to a running wheel during abstinence. Females self-administered more nicotine as compared to males; however, within males and females, intake did not differ between groups prior to wheel assignment. Compared to saline controls, males and females that self-administered nicotine showed a significant increase in drug-seeking during extinction. Wheel running during abstinence attenuated nicotine-seeking during extinction in males. In females, access to either locked or unlocked wheels attenuated nicotine-seeking during extinction. While responding was reinstated by cues in both males and females, levels were modest and not significantly affected by exercise in this adolescent-onset model. While wheel running reduced subsequent nicotine-seeking in males, access to a wheel, either locked or unlocked, was sufficient to suppress nicotine-seeking in females.
Sanchez, Victoria; Moore, Catherine F; Brunzell, Darlene H; Lynch, Wendy J
2014-01-01
Rationale Wheel running attenuates nicotine-seeking in male adolescent rats; however it is not known if this effect extends to females. Objective To determine if wheel running during abstinence would differentially attenuate subsequent nicotine-seeking in male and female rats that had extended access to nicotine self-administration during adolescence. Methods Male (N = 49) and female (N = 43) adolescent rats self-administered saline or nicotine (5μg/kg) under an extended access (23-hour) paradigm. Following the last self-administration session, rats were moved to polycarbonate cages for an abstinence period where they either had access to a locked or unlocked running wheel for 2-hours/day. Subsequently, nicotine-seeking was examined under a within-session extinction/cue-induced reinstatement paradigm. Due to low levels of nicotine-seeking in females in both wheel groups, additional groups were included that were housed without access to a running wheel during abstinence. Results Females self-administered more nicotine as compared to males; however, within males and females, intake did not differ between groups prior to wheel assignment. Compared to saline controls, males and females that self-administered nicotine showed a significant increase in drug-seeking during extinction. Wheel running during abstinence attenuated nicotine-seeking during extinction in males. In females, access to either locked or unlocked wheels attenuated nicotine-seeking during extinction. While responding was reinstated by cues in both males and females, levels were modest and not significantly affected by exercise in this adolescent-onset model. Conclusions While wheel running reduced subsequent nicotine-seeking in males, access to a wheel, either locked or unlocked, was sufficient to suppress nicotine-seeking in females. PMID:24271035
Wheel running decreases palatable diet preference in Sprague-Dawley rats.
Moody, Laura; Liang, Joy; Choi, Pique P; Moran, Timothy H; Liang, Nu-Chu
2015-10-15
Physical activity has beneficial effects on not only improving some disease conditions but also by preventing the development of multiple disorders. Experiments in this study examined the effects of wheel running on intakes of chow and palatable diet e.g. high fat (HF) or high sucrose (HS) diet in male and female Sprague-Dawley rats. Experiment 1 demonstrated that acute wheel running results in robust HF or HS diet avoidance in male rats. Although female rats with running wheel access initially showed complete avoidance of the two palatable diets, the avoidance of the HS diet was transient. Experiment 2 demonstrated that male rats developed decreased HF diet preferences regardless of the order of diet and wheel running access presentation. Running associated changes in HF diet preference in females, on the other hand, depended on the testing schedule. In female rats, simultaneous presentation of the HF diet and running access resulted in transient complete HF diet avoidance whereas running experience prior to HF diet access did not affect the high preference for the HF diet. Ovariectomy in females resulted in HF diet preference patterns that were similar to those in male rats during simultaneous exposure of HF and wheel running access but similar to intact females when running occurred before HF exposure. Overall, the results demonstrated wheel running associated changes in palatable diet preferences that were in part sex dependent. Furthermore, ovarian hormones play a role in some of the sex differences. These data reveal complexity in the mechanisms underlying exercise associated changes in palatable diet preference. Published by Elsevier Inc.
Wheel running decreases palatable diet preference in Sprague-Dawley rats
Moody, Laura; Liang, Joy; Choi, Pique P.; Moran, Timothy H.; Liang, Nu-Chu
2015-01-01
Physical activity has beneficial effects on not only improving some disease conditions but also by preventing the development of multiple disorders. Experiments in this study examined the effects of wheel running on intakes of chow and palatable diet e.g. high fat (HF) or high sucrose (HS) diet in male and female Sprague Dawley rats. Experiment 1 demonstrated that acute wheel running results in robust HF or HS diet avoidance in male rats. Although female rats with running wheel access initially showed complete avoidance of the two palatable diets, the avoidance of the HS diet was transient. Experiment 2 demonstrated that male rats developed decreased HF diet preferences regardless of the order of diet and wheel running access presentation. Running associated changes in HF diet preference in females, on the other hand, depended on the testing schedule. In female rats, simultaneous presentation of the HF diet and running access resulted in transient complete HF diet avoidance whereas running experience prior to HF diet access did not affect the high preference for the HF diet. Ovariectomy in females resulted in HF diet preference patterns that were similar to those in male rats during simultaneous exposure of HF and wheel running access but similar to intact females when running occurred before HF exposure. Overall, the results demonstrated wheel running associated changes in palatable diet preferences that were in part sex dependent. Furthermore, ovarian hormones play a role in some of the sex differences. These data reveal complexity in the mechanisms underlying exercise associated changes in palatable diet preference. PMID:25791204
Voluntary exercise and its effects on body composition depend on genetic selection history.
Nehrenberg, Derrick L; Hua, Kunjie; Estrada-Smith, Daria; Garland, Theodore; Pomp, Daniel
2009-07-01
Little is known about how genetic variation affects the capacity for exercise to change body composition. We examined the extent to which voluntary exercise alters body composition in several lines of selectively bred mice compared to controls. Lines studied included high runner (HR) (selected for high wheel running), M16 (selected for rapid weight gain), Institute of Cancer Research (ICR) (randomly bred as control for M16), M16i (an inbred line derived from M16), HE (selected for high percentage of body fat while holding body weight constant), LF (selected for low percentage of body fat), C57BL/6J (common inbred line), and the F1 between HR and C57BL/6J. Body weight and body fat were recorded before and after 6 days of free access to running wheels in males and females that were individually caged. Total food intake was measured during this 6-day period. All pre- and postexercise measures showed significant strain effects. While HR mice predictably exercised at higher levels, all other selection lines had decreased levels of wheel running relative to ICR. The HR x B6 F1 ran at similar levels to HR demonstrating complete dominance for voluntary exercise. Also, all strains lost body fat after exercise, but the relationships between exercise and changes in percent body were not uniform across genotypes. These results indicate that there is significant genetic variation for voluntary exercise and its effects on body composition. It is important to carefully consider genetic background and/or selection history when using mice to model effects of exercise on body composition, and perhaps, other complex traits as well.
Voluntary exercise impact on cognitive impairments in sleep-deprived intact female rats.
Rajizadeh, Mohammad Amin; Esmaeilpour, Khadijeh; Masoumi-Ardakani, Yaser; Bejeshk, Mohammad Abbas; Shabani, Mohammad; Nakhaee, Nouzar; Ranjbar, Mohammad Pour; Borzadaran, Fatemeh Mohtashami; Sheibani, Vahid
2018-05-01
Sleep loss is a common problem in modern societies affecting different aspects of individuals' lives. Many studies have reported that sleep deprivation (SD) leads to impairments in various types of learning and memory. Physical exercise has been suggested to attenuate the cognitive impairments induced by sleep deprivation in male rats. Our previous studies have shown that forced exercise by treadmill improved learning and memory impairments following SD. The aim of the current study was to investigate the effects of voluntary exercise by running wheel on cognitive, motor and anxiety-like behavior functions of female rats following 72 h SD. Intact female rats were used in the present study. The multiple platform method was applied for the induction of 72 h SD. The exercise protocol was 4 weeks of running wheel and the cognitive function was evaluated using Morris water maze (MWM), passive avoidance and novel object recognition tests. Open field test and measurement of plasma corticosterone level were performed for evaluation of anxiety-like behaviors. Motor balance evaluation was surveyed by rotarod test. In this study, remarkable learning and long-term memory impairments were observed in sleep deprived rats in comparison to the other groups. Running wheel exercise ameliorated the SD-induced learning and memory impairments. Voluntary and mandatory locomotion and balance situation were not statistically significant among the different groups. Our study confirmed the negative effects of SD on cognitive function and approved protective effects of voluntary exercise on these negative effects. Copyright © 2018 Elsevier Inc. All rights reserved.
Thompson, Andrew B; Stolyarova, Alexandra; Ying, Zhe; Zhuang, Yumei; Gómez-Pinilla, Fernando; Izquierdo, Alicia
2015-12-01
Exposure to drugs of abuse can produce many neurobiological changes which may lead to increased valuation of rewards and decreased sensitivity to their costs. Many of these behavioral alterations are associated with activity of D2-expressing medium spiny neurons in the striatum. Additionally, Bdnf in the striatum has been shown to play a role in flexible reward-seeking behavior. Given that voluntary aerobic exercise can affect the expression of these proteins in healthy subjects, and that exercise has shown promise as an anti-addictive therapy, we set out to quantify changes in D2 and Bdnf expression in methamphetamine-exposed rats given access to running wheels. Sixty-four rats were treated for two weeks with an escalating dose of methamphetamine or saline, then either sacrificed, housed in standard cages, or given free access to a running wheel for 6 weeks prior to sacrifice. Rats treated with methamphetamine ran significantly greater distances than saline-treated rats, suggesting an augmentation in the reinforcement value of voluntary wheel running. Transcription of Drd2 and Bdnf was assessed via RT-qPCR. Protein expression levels of D2 and phosphorylation of the TrkB receptor were measured via western blot. Drd2 and Bdnf mRNA levels were impacted independently by exercise and methamphetamine, but exposure to methamphetamine prior to the initiation of exercise blocked the exercise-induced changes seen in rats treated with saline. Expression levels of both proteins were elevated immediately after methamphetamine, but returned to baseline after six weeks, regardless of exercise status. Copyright © 2015 Elsevier Ltd. All rights reserved.
Effect of wheel-running during abstinence on subsequent nicotine-seeking in rats.
Sanchez, Victoria; Moore, Catherine F; Brunzell, Darlene H; Lynch, Wendy J
2013-06-01
Exercise appears to be a promising non-pharmacological treatment for nicotine addiction that may be useful for the vulnerable adolescent population. The aim of this study is to determine if wheel-running, an animal model of aerobic exercise, during an abstinence period would decrease subsequent nicotine-seeking in rats that had extended access to nicotine self-administration during adolescence. Male adolescent rats (n = 55) were trained to self-administer saline or nicotine infusions (5 or 10 μg/kg) under a fixed ratio 1 schedule with a maximum of 20 infusions/day beginning on postnatal day 30. After 5 days, access was extended to 23 h/day with unlimited infusions for a total of 10 days. After the last self-administration session, rats were moved to polycarbonate cages for a 10-day abstinence period where they either had access to a locked or unlocked running wheel for 2 h/day. Nicotine-seeking was examined following the 10th day of abstinence under a within-session extinction/cue-induced reinstatement paradigm. Intake was higher at the 10 μg/kg dose as compared to the 5 μg/kg dose; however, intake did not differ within doses prior to wheel assignment. Compared to saline controls, rats that self-administered nicotine at either dose showed a significant increase in drug-seeking during extinction, and consistent with our hypothesis, exercise during abstinence attenuated this effect. Nicotine led to modest but significant levels of cue-induced reinstatement; however, in this adolescent-onset model, levels were variable and not affected by exercise. Exercise may effectively reduce relapse vulnerability for adolescent-onset nicotine addiction.
Effect of wheel-running during abstinence on subsequent nicotine-seeking in rats
Sanchez, Victoria; Moore, Catherine F; Brunzell, Darlene H; Lynch, Wendy J
2013-01-01
Rationale Exercise appears to be a promising non-pharmacological treatment for nicotine addiction that may be useful for the vulnerable adolescent population. Objectives To determine if wheel running, an animal model of aerobic exercise, during an abstinence period would decrease subsequent nicotine-seeking in rats that had extended access to nicotine self-administration during adolescence. Methods Male adolescent rats (n = 55) were trained to self-administer saline or nicotine infusions (5 or 10 μg/kg) under a fixed ratio 1 schedule with a maximum of 20 infusions/day beginning on postnatal day 30. After 5 days, access was extended to 23-hr/day with unlimited infusions for a total of 10 days. After the last self-administration session, rats were moved to polycarbonate cages for a 10-day abstinence period where they either had access to a locked or unlocked running wheel for 2-hr/day. Nicotine-seeking was examined following the 10th day of abstinence under a within-session extinction/cue-induced reinstatement paradigm. Results Intake was higher at the 10 μg/kg dose as compared to the 5 μg/kg dose; however, intake did not differ within doses prior to wheel assignment. Compared to saline controls, rats that self-administered nicotine at either dose showed a significant increase in drug-seeking during extinction, and consistent with our hypothesis, exercise during abstinence attenuated this effect. Nicotine led to modest, but significant levels of cue-induced reinstatement; however, in this adolescent-onset model, levels were variable and not affected by exercise. Conclusions Exercise may effectively reduce relapse vulnerability for adolescent-onset nicotine addiction. PMID:23371488
Sobieraj, Jeffery C.; Kim, Airee; Fannon, McKenzie J.; Mandyam, Chitra D.
2015-01-01
Exercise (physical activity) has been proposed as a treatment for drug addiction. In rodents, voluntary wheel running reduces cocaine and nicotine seeking during extinction, and reinstatement of cocaine seeking triggered by drug cues. The purpose of this study was to examine the effects of chronic wheel running during withdrawal and protracted abstinence on extinction and reinstatement of methamphetamine seeking in methamphetamine dependent rats, and to determine a potential neurobiological correlate underlying the effects. Rats were given extended access to methamphetamine (0.05 mg/kg, 6h/day) for 22 sessions. Rats were withdrawn and were given access to running wheels (wheel runners) or no wheels (sedentary) for three weeks after which they experienced extinction and reinstatement of methamphetamine seeking. Extended access to methamphetamine self-administration produced escalation in methamphetamine intake. Methamphetamine experience reduced running output, and conversely, access to wheel running during withdrawal reduced responding during extinction and, context- and cue-induced reinstatement of methamphetamine seeking. Immunohistochemical analysis of brain tissue demonstrated that wheel running during withdrawal did not regulate markers of methamphetamine neurotoxicity (neurogenesis, neuronal nitric oxide synthase, vesicular monoamine transporter-2) and cellular activation (c-Fos) in brain regions involved in relapse to drug seeking. However, reduced methamphetamine seeking was associated with running-induced reduction (and normalization) of the number of tyrosine hydroxylase (TH) immunoreactive neurons in the periaqueductal gray (PAG). The present study provides evidence that dopamine neurons of the PAG region show adaptive biochemical changes during methamphetamine seeking in methamphetamine dependent rats and wheel running abolishes these effects. Given that the PAG dopamine neurons project onto the structures of the extended amygdala, the present findings also suggest that wheel running may be preventing certain allostatic changes in the brain reward and stress systems contributing to the negative reinforcement and perpetuation of the addiction cycle. PMID:25273280
Sobieraj, Jeffery C; Kim, Airee; Fannon, McKenzie J; Mandyam, Chitra D
2016-01-01
Exercise (physical activity) has been proposed as a treatment for drug addiction. In rodents, voluntary wheel running reduces cocaine and nicotine seeking during extinction, and reinstatement of cocaine seeking triggered by drug-cues. The purpose of this study was to examine the effects of chronic wheel running during withdrawal and protracted abstinence on extinction and reinstatement of methamphetamine seeking in methamphetamine dependent rats, and to determine a potential neurobiological correlate underlying the effects. Rats were given extended access to methamphetamine (0.05 mg/kg, 6 h/day) for 22 sessions. Rats were withdrawn and were given access to running wheels (wheel runners) or no wheels (sedentary) for 3 weeks after which they experienced extinction and reinstatement of methamphetamine seeking. Extended access to methamphetamine self-administration produced escalation in methamphetamine intake. Methamphetamine experience reduced running output, and conversely, access to wheel running during withdrawal reduced responding during extinction and, context- and cue-induced reinstatement of methamphetamine seeking. Immunohistochemical analysis of brain tissue demonstrated that wheel running during withdrawal did not regulate markers of methamphetamine neurotoxicity (neurogenesis, neuronal nitric oxide synthase, vesicular monoamine transporter-2) and cellular activation (c-Fos) in brain regions involved in relapse to drug seeking. However, reduced methamphetamine seeking was associated with running-induced reduction (and normalization) of the number of tyrosine hydroxylase immunoreactive neurons in the periaqueductal gray (PAG). The present study provides evidence that dopamine neurons of the PAG region show adaptive biochemical changes during methamphetamine seeking in methamphetamine dependent rats and wheel running abolishes these effects. Given that the PAG dopamine neurons project onto the structures of the extended amygdala, the present findings also suggest that wheel running may be preventing certain allostatic changes in the brain reward and stress systems contributing to the negative reinforcement and perpetuation of the addiction cycle.
Darlington, Todd M; McCarthy, Riley D; Cox, Ryan J; Miyamoto-Ditmon, Jill; Gallego, Xavier; Ehringer, Marissa A
2016-01-01
Hedonic substitution, where wheel running reduces voluntary ethanol consumption has been observed in prior studies. Here we replicate and expand on previous work showing that mice decrease voluntary ethanol consumption and preference when given access to a running wheel. While earlier work has been limited mainly to behavioral studies, here we assess the underlying molecular mechanisms that may account for this interaction. From four groups of female C57BL/6J mice (control, access to two-bottle choice ethanol, access to a running wheel, and access to both two-bottle choice ethanol and a running wheel), mRNA-sequencing of the striatum identified differential gene expression. Many genes in ethanol preference quantitative trait loci were differentially expressed due to running. Furthermore, we conducted Weighted Gene Co-expression Network Analysis and identified gene networks corresponding to each effect behavioral group. Candidate genes for mediating the behavioral interaction between ethanol consumption and wheel running include multiple potassium channel genes, Oprm1, Prkcg, Stxbp1, Crhr1, Gabra3, Slc6a13, Stx1b, Pomc, Rassf5, Polr2a, and Camta2. After observing an overlap of many genes and functional groups previously identified in studies of initial sensitivity to ethanol, we hypothesized that wheel running may induce a change in sensitivity, thereby affecting ethanol consumption. A behavioral study examining Loss of Righting Reflex to ethanol following exercise trended toward supporting this hypothesis. These data provide a rich resource for future studies that may better characterize the observed transcriptional changes in gene networks in response to ethanol consumption and wheel running. PMID:27063791
Fediuc, Sergiu; Campbell, Jonathan E; Riddell, Michael C
2006-06-01
Adaptations of the hypothalamic-pituitary-adrenal (HPA) axis to voluntary exercise in rodents are not clear, because most investigations use forced-exercise protocols, which are associated with psychological stress. In the present study, we examined the effects of voluntary wheel running on the circadian corticosterone (Cort) rhythm as well as HPA axis responsiveness to, and recovery from, restraint stress. Male Sprague-Dawley rats were divided into exercise (E) and sedentary (S) groups, with E rats having 24-h access to running wheels for 5 wk. Circadian plasma Cort levels were measured at the end of each week, except for week 5 when rats were exposed to 20 min of restraint stress, followed by 95 min of recovery. Measurements of glucocorticoid receptor content in the hippocampus and anterior pituitary were performed using Western blotting at the termination of the restraint protocol. In week 1, circadian Cort levels were twofold higher in E compared with S animals, but the levels progressively decreased in the E group throughout the training protocol to reach similar values observed in S by week 4. During restraint stress and recovery, Cort values were similar between E and S, as was glucocorticoid receptor content in the hippocampus and pituitary gland after death. Compared with E, S animals had higher plasma ACTH levels during restraint. Taken together, these data indicate that 5 wk of wheel running are associated with normal circadian Cort activity and normal negative-feedback inhibition of the HPA axis, as well as with increased adrenal sensitivity to ACTH after restraint stress.
Beneficial effects of voluntary wheel running on the properties of dystrophic mouse muscle.
Hayes, A; Williams, D A
1996-02-01
Effects of voluntary exercise on the isometric contractile, fatigue, and histochemical properties of hindlimb dystrophic (mdx and 129ReJ dy/dy) skeletal muscles were investigated. Mice were allowed free access to a voluntary running wheel at 4 wk of age for a duration of 16 (mdx) or 5 (dy/dy) wk. Running performance of mdx mice (approximately 4 km/day at 1.6 km/h) was inferior to normal mice (approximately 6.5 km/day at 2.1 km/h). However, exercise improved the force output (approximately 15%) and the fatigue resistance of both C57BL/10 and mdx soleus muscles. These changes coincided with increased proportions of smaller type I fibers and decreased proportions of larger type IIa fibers in the mdx soleus. The extensor digitorum longus of mdx, but not of normal, mice also exhibited improved resistance to fatigue and conversion towards oxidative fiber types. The dy/dy animals were capable of exercising, yet ran significantly less than normal animals (approximately 0.5 km/day). Despite this, running increased the force output of the plantaris muscle (approximately 50%). Taken together, the results showed that exercise can have beneficial effects on dystrophic skeletal muscles.
Running Promotes Wakefulness and Increases Cataplexy in Orexin Knockout Mice
España, Rodrigo A.; McCormack, Sarah L.; Mochizuki, Takatoshi; Scammell, Thomas E.
2007-01-01
Study Objective: People with narcolepsy and mice lacking orexin/hypocretin have disrupted sleep/wake behavior and reduced physical activity. Our objective was to identify physiologic mechanisms through which orexin deficiency reduces locomotor activity. Design: We examined spontaneous wheel running activity and its relationship to sleep/wake behavior in wild type (WT) and orexin knockout (KO) mice. Additionally, given that physical activity promotes alertness, we also studied whether orexin deficiency reduces the wake-promoting effects of exercise. Measurements and Results: Orexin KO mice ran 42% less than WT mice. Their ability to run appeared normal as they initiated running as often as WT mice and ran at normal speeds. However, their running bouts were considerably shorter, and they often had cataplexy or quick transitions into sleep after running. Wheel running increased the total amount of wakefulness in WT and orexin KO mice similarly, however, KO mice continued to have moderately fragmented sleep/wake behavior. Wheel running also doubled the amount of cataplexy by increasing the probability of transitioning into cataplexy. Conclusions: Orexin KO mice run significantly less than normal, likely due to sleepiness, imminent cataplexy, or a reduced motivation to run. Orexin is not required for the wake-promoting effects of wheel running given that both WT and KO mice had similar increases in wakefulness with running wheels. In addition, the clear increase in cataplexy with wheel running suggests the possibility that positive emotions or reward can trigger murine cataplexy, similar to that seen in people and dogs with narcolepsy. Citation: España RA; McCormack SL; Mochizuki T; Scammell TE. Running promotes wakefulness and increases cataplexy in orexin knockout mice. SLEEP 2007;30(11):1417-1425. PMID:18041476
Meek, T H; Eisenmann, J C; Keeney, B K; Hannon, R M; Dlugosz, E M; Garland, T
2014-03-01
Experimental studies manipulating diet and exercise have shown varying effects on metabolic syndrome components in both humans and rodents. To examine the potential interactive effects of diet, exercise and genetic background, we studied mice from four replicate lines bred (52 generations) for high voluntary wheel running (HR lines) and four unselected control lines (C). At weaning, animals were housed for 60 days with or without wheels and fed either a standard chow or Western diet (WD, 42% kcal from fat). Four serial (three juvenile and one adult) blood samples were taken to measure fasting total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), triglycerides and glucose. Western diet was obesogenic for all mice, even after accounting for the amount of wheel running and kilojoules consumed. Western diet significantly raised glucose as well as TC and HDL-C concentrations. At the level of individual variation (repeatability), there was a modest correlation (r = 0.3-0.5) of blood lipids over time, which was reduced with wheel access and/or WD. Neither genetic selection history nor wheel access had a statistically significant effect on blood lipids. However, HR and C mice had divergent ontogenetic trajectories for body mass and caloric intake. HR mice also had lower adiposity, an effect that was dependent on wheel access. The environmental factors of diet and wheel access had pronounced effects on body mass, food consumption and fasting glucose concentrations, interacting with each other and/or with genetic strain. These data underscore the importance (and often unpredictable nature) of genotype-by-environment and environment-by-environment interactions when studying body weight regulation. © 2013 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.
Sun, Yi; Cui, Di; Zhang, Zhe; Zhang, Qiang; Ji, Liu; Ding, Shuzhe
2016-12-01
The discovery of miRNAs has brought the focus of physiologists to post-transcriptional regulation of the skeletal muscle. However, the field of how miRNAs are involved in regulating mitochondrial biogenesis and apoptosis of the skeletal muscle following endurance training is still in its infancy. Twelve male C57BL/6 mice were randomly assigned to either control group (Group C) or voluntary wheel running group (Group E). The Group C was housed in cages mounted with fixed wheels, while mice of Group E were allowed to run on wheels freely for 8weeks. It was found that miR-494 and miR-696 were significantly decreased in the gastrocnemius muscle after 8week voluntary wheel exercise, accompanied with an increase in the mRNA expression of NRF1, BIM and Bcl-XL, an increase in the protein content of PGC-1α, and a decrease in the protein content BIM. The lack of correlation between miR-494 and TFAM and BIM, as well as between miR-696 and PGC-1α suggests that even though miR-494 and miR-696 are sensitive miRNAs in response to exercise training, other factors or miRNAs might also be important during the regulation of mitochondrial biogenesis and apoptosis. Copyright © 2016. Published by Elsevier Inc.
Mika, Agnieszka; Bouchet, Courtney A.; Bunker, Preston; Hellwinkel, Justin E.; Spence, Katie G.; Day, Heidi E.W.; Campeau, Serge; Fleshner, Monika
2015-01-01
Relapse of previously extinguished fear presents a significant, pervasive obstacle to the successful long-term treatment of anxiety and trauma-related disorders. Thus, identification of a novel means to enhance fear extinction to stand the passage of time and generalize across contexts is of the utmost importance. Acute bouts of exercise can be used as inexpensive, noninvasive treatment strategies to reduce anxiety, and have been shown to enhance memory for extinction when performed in close temporal proximity to the extinction session. However, it is unclear whether acute exercise can be used to prevent relapse of fear, and the neural mechanisms underlying this potential effect are unknown. The current study therefore examined whether acute exercise during extinction of auditory fear can protect against the later relapse of fear. Male, F344 rats lacking an extended history of wheel running were conditioned to fear a tone CS and subsequently extinguished within either a freely mobile running wheel, a locked wheel, or a control context lacking a wheel. Rats exposed to fear extinction within a freely mobile wheel ran during fear extinction, and demonstrated reduced fear as well as attenuated corticosterone levels during re-exposure to the extinguished CS during the relapse test in a novel context 1 week later. Examination of cfos mRNA patterns elicited by re-exposure to the extinguished CS during the relapse test revealed that acute exercise during extinction decreased activation of brain circuits classically involved in driving fear expression and interestingly, increased activity within neurons of the direct striatal pathway involved in reward signaling. These data suggest that exercise during extinction reduces relapse through a mechanism involving the direct pathway of the striatum. It is suggested that a positive affective state could become associated with the CS during exercise during extinction, thus resulting in a relapse-resistant extinction memory. PMID:26454156
Mika, Agnieszka; Bouchet, Courtney A; Bunker, Preston; Hellwinkel, Justin E; Spence, Katie G; Day, Heidi E W; Campeau, Serge; Fleshner, Monika; Greenwood, Benjamin N
2015-11-01
Relapse of previously extinguished fear presents a significant, pervasive obstacle to the successful long-term treatment of anxiety and trauma-related disorders. Thus, identification of a novel means to enhance fear extinction to stand the passage of time and generalize across contexts is of the utmost importance. Acute bouts of exercise can be used as inexpensive, noninvasive treatment strategies to reduce anxiety, and have been shown to enhance memory for extinction when performed in close temporal proximity to the extinction session. However, it is unclear whether acute exercise can be used to prevent relapse of fear, and the neural mechanisms underlying this potential effect are unknown. The current study therefore examined whether acute exercise during extinction of auditory fear can protect against the later relapse of fear. Male F344 rats lacking an extended history of wheel running were conditioned to fear a tone CS and subsequently extinguished within either a freely mobile running wheel, a locked wheel, or a control context lacking a wheel. Rats exposed to fear extinction within a freely mobile wheel ran during fear extinction, and demonstrated reduced fear as well as attenuated corticosterone levels during re-exposure to the extinguished CS during the relapse test in a novel context 1week later. Examination of cfos mRNA patterns elicited by re-exposure to the extinguished CS during the relapse test revealed that acute exercise during extinction decreased activation of brain circuits classically involved in driving fear expression and interestingly, increased activity within neurons of the direct striatal pathway involved in reward signaling. These data suggest that exercise during extinction reduces relapse through a mechanism involving the direct pathway of the striatum. It is suggested that a positive affective state could become associated with the CS during exercise during extinction, thus resulting in a relapse-resistant extinction memory. Copyright © 2015 Elsevier Inc. All rights reserved.
Fermented soymilk increases voluntary wheel running activity and sexual behavior in male rats.
Sato, Takuya; Shinohara, Yasutomo; Kaneko, Daisuke; Nishimura, Ikuko; Matsuyama, Asahi
2010-12-01
Wheel running by rodents is thought to reflect voluntary exercise in humans. The present study examined the effect of fermented soymilk (FSM) on voluntary wheel running in rats. FSM was prepared from soymilk (SM) using the bacteria Leuconostoc pseudomesenteroides. The rats were fed a normal diet for 3 weeks followed by a 3-week administration of diet containing FSM or SM (5% w/w), and then the diets were switched back to a normal diet for 3 weeks. The voluntary wheel running activity was increased by FSM administration, although no changes were observed by SM administration. This effect was observed 2 weeks after FSM administration and lasted 1 week after deprivation of FSM. Then we evaluated the effect of FSM on sexual behavior in male rats. FSM administration for 10 days significantly increased the number of mounts. The protein expression of tyrosine hydroxylase (TH) increased in the hippocampus by FSM administration and it is suggested that FSM may change norepinephrine or dopamine signaling in the brain. Our study provides the first evidence that FSM increases voluntary wheel running activity and sexual behavior and suggests that TH may be involved in these effects.
Lapmanee, Sarawut; Teerapornpuntakit, Jarinthorn; Krishnamra, Nateetip; Charoenphandhu, Narattaphol
2017-01-01
Several severe stressful situations, e.g., natural disaster, infectious disease out break, and mass casualty, are known to cause anxiety, depression and cognitive impairment, and preventive intervention for these stress complications is worth exploring. We have previously reported that the serotonin-norepinephrine-dopamine reuptake inhibitor, venlafaxine, as well as voluntary wheel running are effective in the treatment of anxiety- and depression-like behaviors in stressed rats. But whether they are able to prevent deleterious consequences of restraint stress in rats, such as anxiety/depression-like behaviors and memory impairment that occur afterward, was not known. Herein, male Wistar rats were pre-treated for 4 weeks with anti-anxiety/anti-depressive drugs, agomelatine and venlafaxine, or voluntary wheel running, followed by 4 weeks of restraint-induced stress. During the stress period, rats received neither drug nor exercise intervention. Our results showed that restraint stress induced mixed anxiety- and depression-like behaviors, and memory impairment as determined by elevated plus-maze, elevated T-maze, open field test (OFT), forced swimming test (FST), and Morris water maze (MWM). Both pharmacological pre-treatments and running successfully prevented the anxiety-like behavior, especially learned fear, in stressed rats. MWM test suggested that agomelatine, venlafaxine, and running could prevent stress-induced memory impairment, but only pharmacological treatments led to better novel object recognition behavior and positive outcome in FST. Moreover, western blot analysis demonstrated that venlafaxine and running exercise upregulated brain-derived neurotrophic factor (BDNF) expression in the hippocampus. In conclusion, agomelatine, venlafaxine as well as voluntary wheel running had beneficial effects, i.e., preventing the restraint stress-induced anxiety/depression-like behaviors and memory impairment. PMID:29099859
Lapmanee, Sarawut; Charoenphandhu, Jantarima; Teerapornpuntakit, Jarinthorn; Krishnamra, Nateetip; Charoenphandhu, Narattaphol
2017-01-01
Several severe stressful situations, e.g., natural disaster, infectious disease out break, and mass casualty, are known to cause anxiety, depression and cognitive impairment, and preventive intervention for these stress complications is worth exploring. We have previously reported that the serotonin-norepinephrine-dopamine reuptake inhibitor, venlafaxine, as well as voluntary wheel running are effective in the treatment of anxiety- and depression-like behaviors in stressed rats. But whether they are able to prevent deleterious consequences of restraint stress in rats, such as anxiety/depression-like behaviors and memory impairment that occur afterward, was not known. Herein, male Wistar rats were pre-treated for 4 weeks with anti-anxiety/anti-depressive drugs, agomelatine and venlafaxine, or voluntary wheel running, followed by 4 weeks of restraint-induced stress. During the stress period, rats received neither drug nor exercise intervention. Our results showed that restraint stress induced mixed anxiety- and depression-like behaviors, and memory impairment as determined by elevated plus-maze, elevated T-maze, open field test (OFT), forced swimming test (FST), and Morris water maze (MWM). Both pharmacological pre-treatments and running successfully prevented the anxiety-like behavior, especially learned fear, in stressed rats. MWM test suggested that agomelatine, venlafaxine, and running could prevent stress-induced memory impairment, but only pharmacological treatments led to better novel object recognition behavior and positive outcome in FST. Moreover, western blot analysis demonstrated that venlafaxine and running exercise upregulated brain-derived neurotrophic factor (BDNF) expression in the hippocampus. In conclusion, agomelatine, venlafaxine as well as voluntary wheel running had beneficial effects, i.e., preventing the restraint stress-induced anxiety/depression-like behaviors and memory impairment.
Masini, Cher V; Nyhuis, Tara J; Sasse, Sarah K; Day, Heidi E W; Campeau, Serge
2011-05-01
Stress often negatively impacts physical and mental health but it has been suggested that voluntary physical activity may benefit health by reducing some of the effects of stress. The present experiments tested whether voluntary exercise can reduce heart rate, core body temperature and locomotor activity responses to acute (novelty or loud noise) or repeated stress (loud noise). After 6 weeks of running-wheel access, rats exposed to a novel environment had reduced heart rate, core body temperature, and locomotor activity responses compared to rats housed under sedentary conditions. In contrast, none of these measures were different between exercised and sedentary rats following acute 30-min noise exposures, at either 85 or 98 dB. Following 10 weeks of running-wheel access, both groups displayed significant habituation of all these responses to 10 consecutive daily 30-min presentations of 98 dB noise stress. However, the extent of habituation of all three responses was significantly enhanced in exercised compared to sedentary animals on the last exposure to noise. These results suggest that in physically active animals, under some conditions, acute responses to stress exposure may be reduced, and response habituation to repeated stress may be enhanced, which ultimately may reduce the negative and cumulative impact of stress.
MASINI, CHER V.; NYHUIS, TARA J.; SASSE, SARAH K.; DAY, HEIDI E. W.; CAMPEAU, SERGE
2015-01-01
Stress often negatively impacts physical and mental health but it has been suggested that voluntary physical activity may benefit health by reducing some of the effects of stress. The present experiments tested whether voluntary exercise can reduce heart rate, core body temperature and locomotor activity responses to acute (novelty or loud noise) or repeated stress (loud noise). After 6 weeks of running-wheel access, rats exposed to a novel environment had reduced heart rate, core body temperature, and locomotor activity responses compared to rats housed under sedentary conditions. In contrast, none of these measures were different between exercised and sedentary rats following acute 30-min noise exposures, at either 85 or 98 dB. Following 10 weeks of running-wheel access, both groups displayed significant habituation of all these responses to 10 consecutive daily 30-min presentations of 98 dB noise stress. However, the extent of habituation of all three responses was significantly enhanced in exercised compared to sedentary animals on the last exposure to noise. These results suggest that in physically active animals, under some conditions, acute responses to stress exposure may be reduced, and response habituation to repeated stress may be enhanced, which ultimately may reduce the negative and cumulative impact of stress. PMID:21438772
Neese, Steven L.; Korol, Donna L.; Schantz, Susan L.
2013-01-01
Estrogens differentially modulate behavior in the adult female rodent. Voluntary exercise can also impact behavior, often reversing age associated decrements in memory processes. Our research group has published a series of papers reporting a deficit in the acquisition of an operant working memory task, delayed spatial alternation (DSA), following 17β-estradiol treatment to middle-aged ovariectomized (OVX) rats. The current study examined if voluntary exercise could attenuate the 17β-estradiol induced deficits on DSA performance. OVX 12-month old Long- Evans rats were implanted with a Silastic capsule containing 17β-estradiol (10% in cholesterol: low physiological range) or with a blank capsule. A subset of the 17β-estradiol and OVX untreated rats were given free access to a running wheel in their home cage. All rats were tested for 40 sessions on the DSA task. Surprisingly, we found running wheel access to impair initial acquisition of the DSA task in 17β-estradiol treated rats, an effect not seen in OVX untreated rats given running wheel access. This deficit was driven by an increase in perseverative responding on a lever no longer associated with reinforcement. We also report for the first time a 17β-estradiol induced impairment on the DSA task following a long intertrial delay (18-sec), an effect revealed following more extended testing than in our previous studies (15 additional sessions). Overall, running wheel access increased initial error rate on the DSA task in 17β-estradiol treated middle-aged OVX rats, and failed to prevent the 17β-estradiol induced deficits in performance of the operant DSA task in later testing sessions. PMID:24013039
Sasaki, Hiroyuki; Hattori, Yuta; Ikeda, Yuko; Kamagata, Mayo; Shibata, Shigenobu
2015-06-01
Mice that exercise after meals gain less body weight and visceral fat compared to those that exercised before meals under a one meal/exercise time per day schedule. Humans generally eat two or three meals per day, and rarely have only one meal. To extend our previous observations, we examined here whether a "two meals, two exercise sessions per day" schedule was optimal in terms of maintaining a healthy body weight. In this experiment, "morning" refers to the beginning of the active phase (the "morning" for nocturnal animals). We found that 2-h feeding before 2-h exercise in the morning and evening (F-Ex/F-Ex) resulted in greater attenuation of high fat diet (HFD)-induced weight gain compared to other combinations of feeding and exercise under two daily meals and two daily exercise periods. There were no significant differences in total food intake and total wheel counts, but feeding before exercise in the morning groups (F-Ex/F-Ex and F-Ex/Ex-F) increased the morning wheel counts. These results suggest that habitual exercise after feeding in the morning and evening is more effective for preventing HFD-induced weight gain. We also determined whether there were any correlations between food intake, wheel rotation, visceral fat volume and skeletal muscle volumes. We found positive associations between gastrocnemius muscle volumes and morning wheel counts, as well as negative associations between morning food intake volumes/body weight and morning wheel counts. These results suggest that morning exercise-induced increase of muscle volume may refer to anti-obesity. Evening exercise is negatively associated with fat volume increases, suggesting that this practice may counteract fat deposition. Our multifactorial analysis revealed that morning food intake helps to increase exercise, and that evening exercise reduced fat volumes. Thus, exercise in the morning or evening is important for preventing the onset of obesity.
Western diet increases wheel running in mice selectively bred for high voluntary wheel running.
Meek, T H; Eisenmann, J C; Garland, T
2010-06-01
Mice from a long-term selective breeding experiment for high voluntary wheel running offer a unique model to examine the contributions of genetic and environmental factors in determining the aspects of behavior and metabolism relevant to body-weight regulation and obesity. Starting with generation 16 and continuing through to generation 52, mice from the four replicate high runner (HR) lines have run 2.5-3-fold more revolutions per day as compared with four non-selected control (C) lines, but the nature of this apparent selection limit is not understood. We hypothesized that it might involve the availability of dietary lipids. Wheel running, food consumption (Teklad Rodent Diet (W) 8604, 14% kJ from fat; or Harlan Teklad TD.88137 Western Diet (WD), 42% kJ from fat) and body mass were measured over 1-2-week intervals in 100 males for 2 months starting 3 days after weaning. WD was obesogenic for both HR and C, significantly increasing both body mass and retroperitoneal fat pad mass, the latter even when controlling statistically for wheel-running distance and caloric intake. The HR mice had significantly less fat than C mice, explainable statistically by their greater running distance. On adjusting for body mass, HR mice showed higher caloric intake than C mice, also explainable by their higher running. Accounting for body mass and running, WD initially caused increased caloric intake in both HR and C, but this effect was reversed during the last four weeks of the study. Western diet had little or no effect on wheel running in C mice, but increased revolutions per day by as much as 75% in HR mice, mainly through increased time spent running. The remarkable stimulation of wheel running by WD in HR mice may involve fuel usage during prolonged endurance exercise and/or direct behavioral effects on motivation. Their unique behavioral responses to WD may render HR mice an important model for understanding the control of voluntary activity levels.
Sasse, Sarah K.; Nyhuis, Tara J.; Masini, Cher V.; Day, Heidi E. W.; Campeau, Serge
2013-01-01
Accumulating evidence indicates that regular physical exercise benefits health in part by counteracting some of the negative physiological impacts of stress. While some studies identified reductions in some measures of acute stress responses with prior exercise, limited data were available concerning effects on cardiovascular function, and reported effects on hypothalamic-pituitary-adrenocortical (HPA) axis responses were largely inconsistent. Given that exposure to repeated or prolonged stress is strongly implicated in the precipitation and exacerbation of illness, we proposed the novel hypothesis that physical exercise might facilitate adaptation to repeated stress, and subsequently demonstrated significant enhancement of both HPA axis (glucocorticoid) and cardiovascular (tachycardia) response habituation to repeated noise stress in rats with long-term access to running wheels compared to sedentary controls. Stress habituation has been attributed to modifications of brain circuits, but the specific sites of adaptation and the molecular changes driving its expression remain unclear. Here, in situ hybridization histochemistry was used to examine regulation of select stress-associated signaling systems in brain regions representing likely candidates to underlie exercise-enhanced stress habituation. Analyzed brains were collected from active (6 weeks of wheel running) and sedentary rats following control, acute, or repeated noise exposures that induced a significantly faster rate of glucocorticoid response habituation in active animals but preserved acute noise responsiveness. Nearly identical experimental manipulations also induce a faster rate of cardiovascular response habituation in exercised, repeatedly stressed rats. The observed regulation of the corticotropin-releasing factor and brain-derived neurotrophic factor systems across several brain regions suggests widespread effects of voluntary exercise on central functions and related adaptations to stress across multiple response modalities. PMID:24324441
Does Conspecific Fighting Yield Conditioned Taste Aversion in Rats?
ERIC Educational Resources Information Center
Nakajima, Sadahiko; Kumazawa, Gaku; Ieki, Hayato; Hashimoto, Aya
2012-01-01
Running in an activity wheel yields conditioned aversion to a taste solution consumed before the running, but its underlying physiological mechanism is unknown. According to the claim that energy expenditure or general stress caused by physical exercise is a critical factor for this taste-aversion learning, not only running but also other…
Thompson, Zoe; Kolb, Erik M; Garland, Theodore
2018-01-01
To explore reward substitution in the context of voluntary exercise, female mice from four replicate high-runner (HR) lines (bred for wheel running) and four non-selected control (C) lines were given simultaneous access to wheels and palatable solutions as competing rewards (two doses of saccharin [0.1, 0.2% w/v]; two doses of common artificial sweetener blends containing saccharin [Sweet 'N Low ® : 0.1, 0.2% w/v], aspartame [Equal ® : 0.04, 0.08% w/v], or sucralose [Splenda ® : 0.08, 0.16% w/v]; or two doses of sucrose [3.5, 10.5% w/v]). Wheel running and fluid consumption were measured daily, with each dose (including plain water) lasting two days and two "washout" days between solutions. In a separate set of mice, the experiment was repeated without wheel access. The artificial sweeteners had no statistical effect on wheel running. However, based on proportional responses, both doses of sucrose significantly elevated wheel running in C but not HR mice. In contrast, the high dose of sucrose suppressed home-cage activity for both linetypes. Both sucrose and the artificial blends generally increased fluid consumption in a dose-dependent manner. When they had access to wheels, HR had a significantly smaller increase in consumption of artificial sweetener blends when compared with C mice, but not when housed without wheels. Overall, these results provide further evidence that the reward system of HR mice has evolved, and specifically suggest that HR mice have a reduced incentive salience for some artificial sweetener blends, likely attributable to the stronger competing reward of wheel running that has evolved in these lines. Copyright © 2017 Elsevier B.V. All rights reserved.
Hiramatsu, Layla; Garland, Theodore
2018-04-20
Physical activity is an important component of energy expenditure, and acute changes in activity can lead to energy imbalances that affect body composition, even under ad libitum food availability. One example of acute increases in physical activity is four replicate, selectively-bred High Runner (HR) lines of mice that voluntarily run ~3-fold more wheel revolutions per day over 6-day trials and are leaner, as compared with four non-selected control (C) lines. We expected that voluntary exercise would increase food consumption, build lean mass, and reduce fat mass, but that these effects would likely differ between HR and C lines or between the sexes. We compared wheel running, cage activity, food consumption, and body composition between HR and C lines for young adults of both sexes, and examined interrelationships of those traits across 6 days of wheel access. Before wheel testing, HR mice weighed less than C, primarily due to reduced lean mass, and females were lighter than males, entirely due to lower lean mass. Over 6 days of wheel access, all groups tended to gain small amounts of lean mass, but lose fat mass. HR mice lost less fat than C mice, in spite of much higher activity levels, resulting in convergence to a fat mass of ~1.7 g for all 4 groups. HR mice consumed more food than C mice (with body mass as a covariate), even accounting for their higher activity levels. No significant sex-by-linetype interactions were observed for any of the foregoing traits. Structural equation models showed that the four sex-by-linetype groups differed considerably in the complex phenotypic architecture of these traits. Interrelationships among traits differed by genetic background and sex, lending support to the idea that recommendations regarding weight management, diet, and exercise may need to be tailored to the individual level. Copyright © 2018 Elsevier Inc. All rights reserved.
Selection for increased voluntary wheel-running affects behavior and brain monoamines in mice
Waters, R.Parrish; Pringle, R.B.; Forster, G.L.; Renner, K.J.; Malisch, J.L.; Garland, T.; Swallow, J.G.
2013-01-01
Selective-breeding of house mice for increased voluntary wheel-running has resulted in multiple physiological and behavioral changes. Characterizing these differences may lead to experimental models that can elucidate factors involved in human diseases and disorders associated with physical inactivity, or potentially treated by physical activity, such as diabetes, obesity, and depression. Herein, we present ethological data for adult males from a line of mice that has been selectively bred for high levels of voluntary wheel-running and from a non-selected control line, housed with or without wheels. Additionally, we present concentrations of central monoamines in limbic, striatal, and midbrain regions. We monitored wheel-running for 8 weeks, and observed home-cage behavior during the last 5 weeks of the study. Mice from the selected line accumulated more revolutions per day than controls due to increased speed and duration of running. Selected mice exhibited more active behaviors than controls, regardless of wheel access, and exhibited less inactivity and grooming than controls. Selective-breeding also influenced the longitudinal patterns of behavior. We found statistically significant differences in monoamine concentrations and associated metabolites in brain regions that influence exercise and motivational state. These results suggest underlying neurochemical differences between selected and control lines that may influence the observed differences in behavior. Our results bolster the argument that selected mice can provide a useful model of human psychological and physiological diseases and disorders. PMID:23352668
Leduc, Renee Y M; Rauw, Gail; Baker, Glen B; McDermid, Heather E
2017-01-01
Environmental enrichment items such as running wheels can promote the wellbeing of laboratory mice. Growing evidence suggests that wheel running simulates exercise effects in many mouse models of human conditions, but this activity also might change other aspects of mouse behavior. In this case study, we show that the presence of running wheels leads to pronounced and permanent circling behavior with route-tracing in a proportion of the male mice of a genetically distinct cohort. The genetic background of this cohort includes a mutation in Arhgap19, but genetic crosses showed that an unknown second-site mutation likely caused the induced circling behavior. Behavioral tests for inner-ear function indicated a normal sense of gravity in the circling mice. However, the levels of dopamine, serotonin, and some dopamine metabolites were lower in the brains of circling male mice than in mice of the same genetic background that were weaned without wheels. Circling was seen in both singly and socially housed male mice. The additional stress of fighting may have exacerbated the predisposition to circling in the socially housed animals. Singly and socially housed male mice without wheels did not circle. Our current findings highlight the importance and possibly confounding nature of the environmental and genetic background in mouse behavioral studies, given that the circling behavior and alterations in dopamine and serotonin levels in this mouse cohort occurred only when the male mice were housed with running wheels. PMID:28315651
Kuczmarski, James M; Martens, Christopher R; Kim, Jahyun; Lennon-Edwards, Shannon L; Edwards, David G
2014-09-01
The purpose of this investigation was to determine the effect of 4 wk of voluntary wheel running on cardiac performance in the 5/6 ablation-infarction (AI) rat model of chronic kidney disease (CKD). We hypothesized that voluntary wheel running would be effective in preserving cardiac function in AI. Male Sprague-Dawley rats were divided into three study groups: 1) sham, sedentary nondiseased control; 2) AI-SED, sedentary AI; and 3) AI-WR, wheel-running AI. Animals were maintained over a total period of 8 wk following AI and sham surgery. The 8-wk period included 4 wk of disease development followed by a 4-wk voluntary wheel-running intervention/sedentary control period. Cardiac performance was assessed using an isolated working heart preparation. Left ventricular (LV) tissue was used for biochemical tissue analysis. In addition, soleus muscle citrate synthase activity was measured. AI-WR rats performed a low volume of exercise, running an average of 13 ± 2 km, which resulted in citrate synthase activity not different from that in sham animals. Isolated AI-SED hearts demonstrated impaired cardiac performance at baseline and in response to preload/afterload manipulations. Conversely, cardiac function was preserved in AI-WR vs. sham hearts. LV nitrite + nitrate and expression of LV nitric oxide (NO) synthase isoforms 2 and 3 in AI-WR were not different from those of sham rats. In addition, LV H2O2 in AI-WR was similar to that of sham and associated with increased expression of LV superoxide-dismutase-2 and glutathione peroxidase-1/2. The findings of the current study suggest that a low-volume exercise intervention is sufficient to maintain cardiac performance in rats with CKD, potentially through a mechanism related to improved redox homeostasis and increased NO. Copyright © 2014 the American Physiological Society.
Hoffman-Goetz, L; Pervaiz, N; Guan, J
2009-05-01
Acute exercise in mice induces intestinal lymphocyte (IL) apoptosis. Freewheel running reduces apoptosis and forced exercise training increases splenocyte antioxidant levels. The purpose of this study was to examine the effect of freewheel running and acute exercise on mouse IL numbers and concentrations of apoptosis and antioxidant proteins and pro-inflammatory cytokines in IL. Female C57BL/6 mice had access to in-cage running wheels (RW) or cages without wheels (NRW) for 16 weeks and were randomized at the end of training to no exercise control (TC) or to treadmill exercise with sacrifice after 90 min of running (TREAD; 30 min, 22 m min(-1); 30 min, 25 m min(-1); 30 min, 28 m min(-1); 2 degrees slope). IL were analyzed for pro-(caspase 3 and 7) and anti-(Bcl-2) apoptotic proteins, endogenous antioxidants (glutathione peroxidase: GPx; catalase: CAT) and the pro-inflammatory cytokine, TNF-alpha. RW mice had higher cytochrome oxidase (p<0.001) and citrate synthase (p<0.01) activities in plantaris and soleus muscles and higher GPx and CAT expression in IL (p<0.05) (indicative of training) compared with NRW mice. TNF-alpha expression was lower (p<0.05) and IL numbers higher (p<0.05) in RW vs. NRW mice. No training effect was observed for apoptotic protein expression, although TREAD resulted in higher caspase and lower Bcl-2. These results suggest that freewheel running in mice for 16 weeks enhances antioxidant and reduces TNF-alpha expression in IL but does not reduce pro-apoptotic protein expression after acute exercise. Results are discussed in terms of implications for inflammatory bowel diseases where apoptotic proteins and TNF-alpha levels are elevated.
Clark, Peter J.; Amat, Jose; McConnell, Sara O.; Ghasem, Parsa R.; Greenwood, Benjamin N.; Maier, Steven F.; Fleshner, Monika
2015-01-01
Accumulating evidence from both the human and animal literature indicates that exercise reduces the negative consequences of stress. The neurobiological etiology for this stress protection, however, is not completely understood. Our lab reported that voluntary wheel running protects rats from expressing depression-like instrumental learning deficits on the shuttle box escape task after exposure to unpredictable and inescapable tail shocks (uncontrollable stress). Impaired escape behavior is a result of stress-sensitized serotonin (5-HT) neuron activity in the dorsal raphe (DRN) and subsequent excessive release of 5-HT into the dorsal striatum following exposure to a comparatively mild stressor. However, the possible mechanisms by which exercise prevents stress-induced escape deficits are not well characterized. The purpose of this experiment was to test the hypothesis that exercise blunts the stress-evoked release of 5-HT in the dorsal striatum. Changes to dopamine (DA) levels were also examined, since striatal DA signaling is critical for instrumental learning and can be influenced by changes to 5-HT activity. Adult male F344 rats, housed with or without running wheels for 6 weeks, were either exposed to tail shock or remained undisturbed in laboratory cages. Twenty-four hours later, microdialysis was performed in the medial (DMS) and lateral (DLS) dorsal striatum to collect extracellular 5-HT and DA before, during, and following 2 mild foot shocks. We report wheel running prevents foot shock-induced elevation of extracellular 5-HT and potentiates DA concentrations in both the DMS and DLS approximately 24 h following exposure to uncontrollable stress. These data may provide a possible mechanism by which exercise prevents depression-like instrumental learning deficits following exposure to acute stress. PMID:26555633
Aarde, Shawn M.; Miller, Michelle L.; Creehan, Kevin M.; Vandewater, Sophia A.; Taffe, Michael A.
2015-01-01
Background Exercise influences drug craving and consumption in humans and drug self-administration in laboratory animals, but the effects can be variable. Improved understanding of how exercise affects drug intake or craving would enhance applications of exercise programs to human drug users attempting cessation. Methods Rats were trained in the intravenous self-administration (IVSA) of d-methamphetamine (METH; 0.05 mg/kg/inf), 3,4-methylenedioxymethamphetamine (MDMA; 0.5 mg/kg/inf) or methylone (0.5 mg/kg/inf). Once IVSA was established, the effect of ~22 hrs of wheel access in the home cage on subsequent drug taking was assessed in a two cohort crossover design. Results Provision of home cage wheel access during the day prior to IVSA sessions significantly decreased the self-administration of METH, MDMA and methylone. At the individual level, there was no correlation between the amount a rat used the wheel and the size of the individual’s decrease in drug intake. Conclusions Wheel access can reduce self-administration of a variety of psychomotor stimulants. It does so immediately, i.e., without a need for weeks of exercise prior to drug access. This study therefore indicates that future mechanistic investigations should focus on acute effects of exercise. In sum, the results predict that exercise programs can be used to decrease stimulant drug use in individuals even with no exercise history and an established drug taking pattern. PMID:25863714
Lee, Min Chul; Okamoto, Masahiro; Liu, Yu Fan; Inoue, Koshiro; Matsui, Takashi; Nogami, Haruo; Soya, Hideaki
2012-10-15
Although voluntary running has beneficial effects on hippocampal cognitive functions if done abundantly, it is still uncertain whether resistance running would be the same. For this purpose, voluntary resistance wheel running (RWR) with a load is a suitable model, since it allows increased work levels and resultant muscular adaptation in fast-twitch muscle. Here, we examined whether RWR would have potential effects on hippocampal cognitive functions with enhanced hippocampal brain-derived neurotrophic factor (BDNF), as does wheel running without a load (WR). Ten-week-old male Wistar rats were assigned randomly to sedentary (Sed), WR, and RWR (to a maximum load of 30% of body weight) groups for 4 wk. We found that in RWR, work levels increased with load, but running distance decreased by about half, which elicited muscular adaptation for fast-twitch plantaris muscle without causing any negative stress effects. Both RWR and WR led to improved spatial learning and memory as well as gene expressions of hippocampal BDNF signaling-related molecules. RWR increased hippocampal BDNF, tyrosine-related kinase B (TrkB), and cAMP response element-binding (CREB) protein levels, whereas WR increased only BDNF. With both exercise groups, there were correlations between spatial memory and BDNF protein (r = 0.41), p-CREB protein (r = 0.44), and work levels (r = 0.77). These results suggest that RWR plays a beneficial role in hippocampus-related cognitive functions associated with hippocampal BDNF signaling, even with short distances, and that work levels rather than running distance are more determinant of exercise-induced beneficial effects in wheel running with and without a load.
Williams, Rebecca M.; Farnum, Cornelia E.
2010-01-01
Ambient temperature and physical activity modulate bone elongation in mammals, but mechanisms underlying this plasticity are a century-old enigma. Longitudinal bone growth occurs in cartilaginous plates, which receive nutritional support via delivery of solutes from the vasculature. We tested the hypothesis that chronic exercise and warm temperature promote bone lengthening by increasing solute delivery to the growth plate, measured in real time using in vivo multiphoton microscopy. We housed 68 weanling female mice at cold (16°C) or warm (25°C) temperatures and allowed some groups voluntary access to a running wheel. We show that exercise mitigates the stunting effect of cold temperature on limb elongation after 11 days of wheel running. All runners had significantly lengthened limbs, regardless of temperature, while nonrunning mice had shorter limbs that correlated with housing temperature. Tail length was impacted only by temperature, indicating that the exercise effect was localized to limb bones and was not a systemic endocrine reaction. In vivo multiphoton imaging of fluoresceinated tracers revealed enhanced solute delivery to tibial growth plates in wheel-running mice, measured under anesthesia at rest. There was a minimal effect of rearing temperature on solute delivery when measured at an intermediate room temperature (20°C), suggesting that a lasting increase in solute delivery is an important factor in exercise-mediated limb lengthening but may not play a role in temperature-mediated limb lengthening. These results are relevant to the study of skeletal evolution in mammals from varying environments and have the potential to fundamentally advance our understanding of bone elongation processes. PMID:20930127
Benson, Curtis; Paylor, John W; Tenorio, Gustavo; Winship, Ian; Baker, Glen; Kerr, Bradley J
2015-09-01
Multiple sclerosis (MS) is classically defined by motor deficits, but it is also associated with the secondary symptoms of pain, depression, and anxiety. Up to this point modifying these secondary symptoms has been difficult. There is evidence that both MS and the animal model experimental autoimmune encephalomyelitis (EAE), commonly used to study the pathophysiology of the disease, can be modulated by exercise. To examine whether limited voluntary wheel running could modulate EAE disease progression and the co-morbid symptoms of pain, mice with EAE were allowed access to running wheels for 1h every day. Allowing only 1h every day of voluntary running led to a significant delay in the onset of clinical signs of the disease. The development of mechanical allodynia was assessed using Von Frey hairs and indicated that wheel running had a modest positive effect on the pain hypersensitivity associated with EAE. These behavioral changes were associated with reduced numbers of cFOS and phosphorylated NR1 positive cells in the dorsal horn of the spinal cord compared to no-run EAE controls. In addition, within the dorsal horn, voluntary wheel running reduced the number of infiltrating CD3(+) T-cells and reduced the overall levels of Iba1 immunoreactivity. Using high performance liquid chromatography (HPLC), we observed that wheel-running lead to significant changes in the spinal cord levels of the antioxidant glutathione. Oxidative stress has separately been shown to contribute to EAE disease progression and neuropathic pain. Together these results indicate that in mice with EAE, voluntary motor activity can delay the onset of clinical signs and reduce pain symptoms associated with the disease. Copyright © 2015 Elsevier Inc. All rights reserved.
Groves-Chapman, Jessica L.; Murray, Patrick S.; Stevens, Kristin L.; Monroe, Derek; Koch, Lauren G.; Britton, Steven L.; Holmes, Philip V.
2012-01-01
We evaluated levels of exercise-induced brain-derived neurotrophic factor (BDNF) messenger RNA (mRNA) within the hippocampal formation in rats selectively bred for 1) high intrinsic (i.e., untrained) aerobic capacity (High Capacity Runners, HCR), 2) low intrinsic aerobic capacity (Low Capacity Runners, LCR), and 3) unselected Sprague-Dawley (SD) rats with or without free access to running wheels for three weeks. The specific aim of the study was to determine whether a dose-response relationship exists between cumulative running distance and levels of BDNF mRNA. No additional treatments or behavioral manipulations were used. HCR, LCR, and SD rats were grouped by strain and randomly assigned to sedentary or activity (voluntary access to activity wheel) conditions. Animals were killed after 21 days of exposure to the assigned conditions. Daily running distances (mean ± standard deviation meters/d) during week three were: HCR (4726 ± 3220), SD (2293 ± 3461), LCR (672 ± 323). Regardless of strain, levels of BDNF mRNA in CA1 were elevated in wheel runners compared to sedentary rats and this difference persisted after adjustment for age (p=0.040). BDNF mRNA was not affected by intrinsic aerobic capacity and was not related to total running distance. The results support that BDNF mRNA expression is increased by unlimited access to activity wheel running for 3 weeks but is not dependent upon accumulated running distance. PMID:22024546
Effects of voluntary wheel running on LPS-induced sickness behavior in aged mice.
Martin, Stephen A; Pence, Brandt D; Greene, Ryan M; Johnson, Stephanie J; Dantzer, Robert; Kelley, Keith W; Woods, Jeffrey A
2013-03-01
Peripheral stimulation of the innate immune system with LPS causes exaggerated neuroinflammation and prolonged sickness behavior in aged mice. Regular moderate intensity exercise has been shown to exert anti-inflammatory effects that may protect against inappropriate neuroinflammation and sickness in aged mice. The purpose of this study was to test the hypothesis that voluntary wheel running would attenuate LPS-induced sickness behavior and proinflammatory cytokine gene expression in ~22-month-old C57BL/6J mice. Mice were housed with a running wheel (VWR), locked-wheel (Locked), or no wheel (Standard) for 10 weeks, after which they were intraperitoneally injected with LPS across a range of doses (0.02, 0.08, 0.16, 0.33 mg/kg). VWR mice ran on average 3.5 km/day and lost significantly more body weight and body fat, and increased their forced exercise tolerance compared to Locked and Shoebox mice. VWR had no effect on LPS-induced anorexia, adipsia, weight-loss, or reductions in locomotor activity at any LPS dose when compared to Locked and Shoebox groups. LPS induced sickness behavior in a dose-dependent fashion (0.33>0.02 mg/kg). Twenty-four hours post-injection (0.33 mg/kg LPS or Saline) we found a LPS-induced upregulation of whole brain TNFα, IL-1β, and IL-10 mRNA, and increased IL-1β and IL-6 in the spleen and liver; these effects were not attenuated by VWR. We conclude that VWR does not reduce LPS-induced exaggerated or prolonged sickness behavior in aged animals, or 24h post-injection (0.33 mg/kg LPS or Saline) brain and peripheral proinflammatory cytokine gene expression. The necessity of the sickness response is critical for survival and may outweigh the subtle benefits of exercise training in aged animals. Copyright © 2012 Elsevier Inc. All rights reserved.
Meissner, Maxi; Lombardo, Elisa; Havinga, Rick; Tietge, Uwe J F; Kuipers, Folkert; Groen, Albert K
2011-10-01
Regular physical activity decreases the risk for atherosclerosis but underlying mechanisms are not fully understood. We questioned whether voluntary wheel running provokes specific modulations in cholesterol turnover that translate into a decreased atherosclerotic burden in hypercholesterolemic mice. Male LDLR-deficient mice (8 weeks old) had either access to a voluntary running wheel for 12 weeks (RUN) or remained sedentary (CONTROL). Both groups were fed a western-type/high cholesterol diet. Running activity and food intake were recorded. At 12 weeks of intervention, feces, bile and plasma were collected to determine fecal, biliary and plasma parameters of cholesterol metabolism and plasma cytokines. Atherosclerotic lesion size was determined in the aortic root. RUN weighed less (∼13%) while food consumption was increased by 17% (p=0.004). Plasma cholesterol levels were decreased by 12% (p=0.035) and plasma levels of pro-atherogenic lipoproteins decreased in RUN compared to control. Running modulated cholesterol catabolism by enhancing cholesterol turnover: RUN displayed an increased biliary bile acid secretion (68%, p=0.007) and increased fecal bile acid (93%, p=0.009) and neutral sterol (33%, p=0.002) outputs compared to control indicating that reverse cholesterol transport was increased in RUN. Importantly, aortic lesion size was decreased by ∼33% in RUN (p=0.033). Voluntary wheel running reduces atherosclerotic burden in hypercholesterolemic mice. An increased cholesterol turnover, specifically its conversion into bile acids, may underlie the beneficial effect of voluntary exercise in mice. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Cloning and establishment of a line of rats for high levels of voluntary wheel running.
Morishima-Yamato, Masaki; Hisaoka, Fumiko; Shinomiya, Sachiko; Harada, Nagakatsu; Matoba, Hideki; Takahashi, Akira; Nakaya, Yutaka
2005-06-17
We generated an original Wistar line of rats that displayed increased levels of wheel running, which we named SPORTS (Spontaneously-Running-Tokushima-Shikoku). Male SPORTS rats ran voluntarily in a running wheel almost six times longer than male control Wistar rats, established without selection for their running activity. The running phenotype of female SPORTS rats was the same as female control Wistar rats. However, male offspring from the cross-mating between a female SPORTS rat and a male control rat also showed a similar level of hyper-running activity as the original SPORTS line. Compared to control rats, male SPORTS rats had lower levels of mean body weight, abdominal fat and plasma insulin after 4 weeks of running. It is likely that all these beneficial changes observed in the SPORTS rats reflected the increases in glucose disposal we observed in oral glucose tolerance tests carried out on the animals. We also found hyper-running caused a significant increase in skeletal muscle oxidative capacity, measured as the ratio of malate dehydrogenase to phosphofructokinase activity, an index of aerobic metabolism. These results indicate that the SPORTS rat may be a good animal model for determining the mechanisms responsible for up-regulation of running motivation, in addition to investigating changes in nutrient metabolism induced by high intensity exercise.
He, Xiao-fei; Liu, Dong-xu; Zhang, Qun; Liang, Feng-ying; Dai, Guang-yan; Zeng, Jin-sheng; Pei, Zhong; Xu, Guang-qing; Lan, Yue
2017-01-01
Age is characterized by chronic inflammation, leading to synaptic dysfunction and dementia because the clearance of protein waste is reduced. The clearance of proteins depends partly on the permeation of the blood–brain barrier (BBB) or on the exchange of water and soluble contents between the cerebrospinal fluid (CSF) and the interstitial fluid (ISF). A wealth of evidence indicates that physical exercise improves memory and cognition in neurodegenerative diseases during aging, such as Alzheimer’s disease (AD), but the influence of physical training on glymphatic clearance, BBB permeability and neuroinflammation remains unclear. In this study, glymphatic clearance and BBB permeability were evaluated in aged mice using in vivo two-photon imaging. The mice performed voluntary wheel running exercise and their water-maze cognition was assessed; the expression of the astrocytic water channel aquaporin 4 (AQP4), astrocyte and microglial activation, and the accumulation of amyloid beta (Aβ) were evaluated with immunofluorescence or an enzyme-linked immunosorbent assay (ELISA); synaptic function was investigated with Thy1–green fluorescent protein (GFP) transgenic mice and immunofluorescent staining. Voluntary wheel running significantly improved water-maze cognition in the aged mice, accelerated the efficiency of glymphatic clearance, but which did not affect BBB permeability. The numbers of activated astrocytes and microglia decreased, AQP4 expression increased, and the distribution of astrocytic AQP4 was rearranged. Aβ accumulation decreased, whereas dendrites, dendritic spines and postsynaptic density protein (PSD95) increased. Our study suggests that voluntary wheel running accelerated glymphatic clearance but not BBB permeation, improved astrocytic AQP4 expression and polarization, attenuated the accumulation of amyloid plaques and neuroinflammation, and ultimately protected mice against synaptic dysfunction and a decline in spatial cognition. These data suggest possible mechanisms for exercise-induced neuroprotection in the aging brain. PMID:28579942
Sumiyoshi, Akira; Taki, Yasuyuki; Nonaka, Hiroi; Takeuchi, Hikaru; Kawashima, Ryuta
2014-09-01
The effects of physical exercise on brain morphology in rodents have been well documented in histological studies. However, to further understand when and where morphological changes occur in the whole brain, a noninvasive neuroimaging method allowing an unbiased, comprehensive, and longitudinal investigation of brain morphology should be used. In this study, we investigated the effects of 7days of voluntary wheel running exercise on regional gray matter volume (rGMV) using longitudinal voxel-based morphometry (VBM) in rats. Eighteen pairs of adult male naïve Wistar rats were randomized to the exercise or control condition (one rat for each condition from each pair). Each rat was scanned in a 7.0-T MRI scanner at three time points: before exercise, after 7days of exercise, and after 7days of follow-up. The T2-weighted MRI images were segmented using the rat brain tissue priors that were recently published by our laboratory, and the intra- and inter-subject template creation steps were followed. Longitudinal VBM analysis revealed significant increases in rGMV in the motor, somatosensory, association, and visual cortices in the exercise group. Among these brain regions, rGMV changes in the motor cortex were positively correlated with the total distance that was run during the 7days of exercise. In addition, the effects of 7days of exercise on rGMV persisted after 7days of follow-up. These results support the utility of a longitudinal VBM study in rats and provide new insights into experience-dependent structural brain plasticity in naïve adult animals. Copyright © 2014 Elsevier Inc. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Excessive adiposity induced by a high-fat diet is detrimental to bone structure and strength in various animal models. This study investigated whether exercise or anti-oxidant supplementation with vitamin C and E during exercise counteracts bone structure deterioration at different skeletal sites an...
Effects of voluntary running exercise on bone histology in type 2 diabetic rats.
Takamine, Yuri; Ichinoseki-Sekine, Noriko; Tsuzuki, Takamasa; Yoshihara, Toshinori; Naito, Hisashi
2018-01-01
The incidence of obesity in children and adolescents, which may lead to type 2 diabetes, is increasing. Exercise is recommended to prevent and improve diabetes. However, little is known about the bone marrow environment at the onset of diabetes in the young, and it is unclear whether exercise training is useful for maintaining bone homeostasis, such as mechanical and histological properties. Thus, this study clarified the histological properties of bone and whether exercise contributes to maintaining bone homeostasis at the onset of type 2 diabetes in rats. Four-week-old male Otsuka Long-Evans Tokushima Fatty (OLETF; n = 21) rats as a diabetic model and Long-Evans Tokushima Otsuka (LETO; n = 18) rats as a control were assigned randomly to four groups: the OLETF sedentary group (O-Sed; n = 11), OLETF exercise group (O-Ex; n = 10), LETO sedentary group (L-Sed; n = 9), and LETO exercise group (L-Ex; n = 9). All rats in the exercise group were allowed free access to a steel running wheel for 20 weeks (5-25 weeks of age). In the glucose tolerance test, blood glucose level was higher in the O-Sed group than that in the L-Sed and L-Ex groups, and was markedly suppressed by the voluntary running exercise of O-Ex rats. The energy to fracture and the two-dimensional bone volume at 25 weeks of age did not differ significantly among the groups, though the maximum breaking force and stiffness were lower in OLETF rats. However, bone marrow fat volume was greater in O-Sed than that in L-Sed and L-Ex rats, and was markedly suppressed by wheel running in the O-Ex rats. Our results indicate that exercise has beneficial effects not only for preventing diabetes but also on normal bone remodeling at an early age.
Malisch, Jessica L; deWolski, Karen; Meek, Thomas H; Acosta, Wendy; Middleton, Kevin M; Crino, Ondi L; Garland, Theodore
In vertebrates, acute stressors-although short in duration-can influence physiology and behavior over a longer time course, which might have important ramifications under natural conditions. In laboratory rats, for example, acute stress has been shown to increase anxiogenic behaviors for days after a stressor. In this study, we quantified voluntary wheel-running behavior for 22 h following a restraint stress and glucocorticoid levels 24 h postrestraint. We utilized mice from four replicate lines that have been selectively bred for high voluntary wheel-running activity (HR mice) for 60 generations and their nonselected control (C) lines to examine potential interactions between exercise propensity and sensitivity to stress. Following 6 d of wheel access on a 12L∶12D photo cycle (0700-1900 hours, as during the routine selective breeding protocol), 80 mice were physically restrained for 40 min, beginning at 1400 hours, while another 80 were left undisturbed. Relative to unrestrained mice, wheel running increased for both HR and C mice during the first hour postrestraint (P < 0.0001) but did not differ 2 or 3 h postrestraint. Wheel running was also examined at four distinct phases of the photoperiod. Running in the period of 1600-1840 hours was unaffected by restraint stress and did not differ statistically between HR and C mice. During the period of peak wheel running (1920-0140 hours), restrained mice tended to run fewer revolutions (-11%; two-tailed P = 0.0733), while HR mice ran 473% more than C (P = 0.0008), with no restraint × line type interaction. Wheel running declined for all mice in the latter part of the scotophase (0140-0600 hours), restraint had no statistical effect on wheel running, but HR again ran more than C (+467%; P = 0.0122). Finally, during the start of the photophase (0720-1200 hours), restraint increased running by an average of 53% (P = 0.0443) in both line types, but HR and C mice did not differ statistically. Mice from HR lines had statistically higher plasma corticosterone concentrations than C mice, with no statistical effect of restraint and no interaction between line type and restraint. Overall, these results indicate that acute stress can affect locomotor activity (or activity patterns) for many hours, with the most prominent effect being an increase in activity during a period of typical inactivity at the start of the photophase, 15-20 h poststressor.
Access to a running wheel inhibits the acquisition of cocaine self-administration.
Smith, Mark A; Pitts, Elizabeth G
2011-12-01
Physical activity decreases cocaine self-administration in laboratory animals and is associated with positive outcomes in substance abuse treatment programs; however, less is known about its efficacy in preventing the establishment of regular patterns of substance use in drug-naive individuals. The purpose of the present study was to examine the effects of access to a running wheel on the acquisition of cocaine self-administration in experimentally naive rats. Male, Long-Evans rats were obtained at weaning and assigned to sedentary (no wheel) or exercising (access to wheel) conditions immediately upon arrival. After six weeks, rats were surgically implanted with intravenous catheters and placed in operant conditioning chambers for 2 h/day for 15 consecutive days. Each session began with a noncontingent priming infusion of cocaine, followed by a free-operant period in which each response on the active lever produced an infusion of cocaine on a fixed ratio (FR1) schedule of reinforcement. For days 1-5, responding was reinforced with 0.25 mg/kg/infusion cocaine; for days 6-15, responding was reinforced with 0.75 mg/kg/infusion cocaine. In addition, all rats were calorically restricted during days 11-15 to 85% to 95% of their free-feeding body weight. Compared to sedentary rats, exercising rats acquired cocaine self-administration at a significantly slower rate and emitted significantly fewer active lever presses during the 15 days of behavioral testing. These data indicate that access to a running wheel inhibits the acquisition of cocaine self-administration, and that physical activity may be an effective intervention in substance abuse prevention programs. Copyright © 2011 Elsevier Inc. All rights reserved.
Ohyama, Kana; Nogusa, Yoshihito; Suzuki, Katsuya; Shinoda, Kosaku; Kajimura, Shingo
2014-01-01
Exercise effectively prevents the development of obesity and obesity-related diseases such as type 2 diabetes. Capsinoids (CSNs) are capsaicin analogs found in a nonpungent pepper that increase whole body energy expenditure. Although both exercise and CSNs have antiobesity functions, the effectiveness of exercise with CSN supplementation has not yet been investigated. Here, we examined whether the beneficial effects of exercise could be further enhanced by CSN supplementation in mice. Mice were randomly assigned to four groups: 1) high-fat diet (HFD, Control), 2) HFD containing 0.3% CSNs, 3) HFD with voluntary running wheel exercise (Exercise), and 4) HFD containing 0.3% CSNs with voluntary running wheel exercise (Exercise + CSN). After 8 wk of ingestion, blood and tissues were collected and analyzed. Although CSNs significantly suppressed body weight gain under the HFD, CSN supplementation with exercise additively decreased body weight gain and fat accumulation and increased whole body energy expenditure compared with exercise alone. Exercise together with CSN supplementation robustly improved metabolic profiles, including the plasma cholesterol level. Furthermore, this combination significantly prevented diet-induced liver steatosis and decreased the size of adipocyte cells in white adipose tissue. Exercise and CSNs significantly increased cAMP levels and PKA activity in brown adipose tissue (BAT), indicating an increase of lipolysis. Moreover, they significantly activated both the oxidative phosphorylation gene program and fatty acid oxidation in skeletal muscle. These results indicate that CSNs efficiently promote the antiobesity effect of exercise, in part by increasing energy expenditure via the activation of fat oxidation in skeletal muscle and lipolysis in BAT. PMID:25516550
Naloxone and rimonabant reduce the reinforcing properties of exercise in rats.
Rasmussen, Erin B; Hillman, Conrad
2011-12-01
Naloxone and rimonabant block neurotransmitter action of some drugs of abuse (such as ethanol, opiates, and nicotine), and thereby reduce drug seeking and self-administration by suppressing the drugs' reinforcing properties. The present study represents an attempt to elucidate whether these drugs may also reduce rewarding properties of other events, in this case, activity-based reinforcement. In Experiment 1, 10 obese and 10 lean Zucker rats pressed a locked door under a progressive ratio schedule of reinforcement that, when unlocked, provided access to a running wheel for 2-min intervals. After baseline breakpoints were established, doses of naloxone (0.3-10 mg/kg) were administered prior to experimental sessions. Obese rats exhibited lower baseline breakpoints for wheel activity, lower response rates, and fewer revolutions compared to lean rats. Naloxone decreased revolutions and response rates for lean and obese rats, but did not reduce breakpoints. In Experiment 2, five Long-Evans rats pressed a door to unlock a wheel for 20 s of wheel activity. Doses of rimonabant (1-10 mg/kg) were administered before some experimental sessions. The highest dose of rimonabant suppressed breakpoints and response rates, but did not affect revolutions. These data suggest that both drugs reduce the reinforcing properties of wheel running, but do so in different manners: naloxone may suppress wheel-based activity (consummatory behavior), but not seeking (appetitive behavior), and rimonabant does the converse. The data also support the role of endocannabinoids in the reinforcing properties of exercise, an implication that is important in terms of CB1 antagonists as a type of pharmacotherapy.
Identification of mouse gaits using a novel force-sensing exercise wheel.
Smith, Benjamin J H; Cullingford, Lottie; Usherwood, James R
2015-09-15
The gaits that animals use can provide information on neurological and musculoskeletal disorders, as well as the biomechanics of locomotion. Mice are a common research model in many fields; however, there is no consensus in the literature on how (and if) mouse gaits vary with speed. One of the challenges in studying mouse gaits is that mice tend to run intermittently on treadmills or overground; this paper attempts to overcome this issue with a novel exercise wheel that measures vertical ground reaction forces. Unlike previous instrumented wheels, this wheel is able to measure forces continuously and can therefore record data from consecutive strides. By concatenating the maximum limb force at each time point, a force trace can be constructed to quantify and identify gaits. The wheel was three dimensionally printed, allowing the design to be shared with other researchers. The kinematic parameters measured by the wheel were evaluated using high-speed video. Gaits were classified using a metric called "3S" (stride signal symmetry), which quantifies the half wave symmetry of the force trace peaks. Although mice are capable of using both symmetric and asymmetric gaits throughout their speed range, the continuum of gaits can be divided into regions based on the frequency of symmetric and asymmetric gaits; these divisions are further supported by the fact that mice run less frequently at speeds near the boundaries between regions. The boundary speeds correspond to gait transition speeds predicted by the hypothesis that mice move in a dynamically similar fashion to other legged animals. Copyright © 2015 the American Physiological Society.
Identification of mouse gaits using a novel force-sensing exercise wheel
Cullingford, Lottie; Usherwood, James R.
2015-01-01
The gaits that animals use can provide information on neurological and musculoskeletal disorders, as well as the biomechanics of locomotion. Mice are a common research model in many fields; however, there is no consensus in the literature on how (and if) mouse gaits vary with speed. One of the challenges in studying mouse gaits is that mice tend to run intermittently on treadmills or overground; this paper attempts to overcome this issue with a novel exercise wheel that measures vertical ground reaction forces. Unlike previous instrumented wheels, this wheel is able to measure forces continuously and can therefore record data from consecutive strides. By concatenating the maximum limb force at each time point, a force trace can be constructed to quantify and identify gaits. The wheel was three dimensionally printed, allowing the design to be shared with other researchers. The kinematic parameters measured by the wheel were evaluated using high-speed video. Gaits were classified using a metric called “3S” (stride signal symmetry), which quantifies the half wave symmetry of the force trace peaks. Although mice are capable of using both symmetric and asymmetric gaits throughout their speed range, the continuum of gaits can be divided into regions based on the frequency of symmetric and asymmetric gaits; these divisions are further supported by the fact that mice run less frequently at speeds near the boundaries between regions. The boundary speeds correspond to gait transition speeds predicted by the hypothesis that mice move in a dynamically similar fashion to other legged animals. PMID:26139220
Soffe, Z; Radley-Crabb, H G; McMahon, C; Grounds, M D; Shavlakadze, T
2016-02-01
This study compared the capacity of young and old male C57Bl/6J mice to exercise with increasing resistance over 10 weeks, and its impact on muscle mass. Young mice (aged 15-25 weeks) were subjected to low (LR) and high (HR) resistance exercise, whereas only LR was used for old mice (107-117 weeks). Weekly patterns of voluntary wheel activity, food consumption and body weights were measured. Running patterns changed over time and with age, with two peaks of activity detected for young, but only one for old mice: speed and distance run was also less for old mice. The mass for six limb muscles was measured at the end of the experiment. The most pronounced increase in mass in response to exercise was for the soleus in young and old mice, and also quadriceps and gastrocnemius in young mice. Soleus and quadriceps muscles were analyzed histologically for myofiber number and size. A striking feature was the many small myofibers in response to exercise in young (but not old) soleus, whereas these were not present after exercise in young or old quadriceps. Overall, there was a striking difference in response to exercise between muscles and this was influenced by age. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Avoidance of physical activity is a sensitive indicator of illness.
Skinner, Gregory W; Mitchell, Duncan; Harden, Lois M
2009-03-02
Although fever and sickness behavior are common responses to infection, it has been proposed that the sickness behaviors associated with infection, in particular lethargy and fatigue, may be more valuable clinical markers of illness and recovery in patients, than is body temperature alone. Measuring abdominal temperature, food intake and wheel running we therefore determined the dose thresholds and sensitivities of these responses to lipopolysaccharide (LPS). Male Sprague-Dawley rats were randomly assigned to receive one of three LPS doses (10, 50, 250 microg/kg), or saline, subcutaneously. Administration of LPS induced a dose-dependent increase in abdominal temperature and decrease in wheel running, food intake and body mass. Regression analysis revealed that decreased running was the most-sensitive of the sickness responses to LPS administration, with a regression slope of -41%/log microg, compared to the slopes for food intake (-30%/log microg, F(1,2)=244, P=0.004) and body mass (-2.2%/log microg, F(1,5)=7491, P<0.0001). To determine the likelihood that exercise training influenced the sickness responses we measured in our dose-response study we performed a second experiment in which we investigated whether fever and anorexia induced by LPS administration would present differently depending on whether rats had been exercising or sedentary. Six weeks of wheel running had no effect on the magnitude of fever and anorexia induced by LPS administration. Avoidance of physical activity therefore appears to be a more-sensitive indicator of a host's reaction to LPS than is anorexia and fever.
Gu, Changgui; Coomans, Claudia P; Hu, Kun; Scheer, Frank A J L; Stanley, H Eugene; Meijer, Johanna H
2015-02-24
In healthy humans and other animals, behavioral activity exhibits scale invariance over multiple timescales from minutes to 24 h, whereas in aging or diseased conditions, scale invariance is usually reduced significantly. Accordingly, scale invariance can be a potential marker for health. Given compelling indications that exercise is beneficial for mental and physical health, we tested to what extent a lack of exercise affects scale invariance in young and aged animals. We studied six or more mice in each of four age groups (0.5, 1, 1.5, and 2 y) and observed an age-related deterioration of scale invariance in activity fluctuations. We found that limiting the amount of exercise, by removing the running wheels, leads to loss of scale-invariant properties in all age groups. Remarkably, in both young and old animals a lack of exercise reduced the scale invariance in activity fluctuations to the same level. We next showed that scale invariance can be restored by returning the running wheels. Exercise during the active period also improved scale invariance during the resting period, suggesting that activity during the active phase may also be beneficial for the resting phase. Finally, our data showed that exercise had a stronger influence on scale invariance than the effect of age. The data suggest that exercise is beneficial as revealed by scale-invariant parameters and that, even in young animals, a lack of exercise leads to strong deterioration in these parameters.
Acute and Chronic Exercise in Animal Models.
Thu, Vu Thi; Kim, Hyoung Kyu; Han, Jin
2017-01-01
Numerous animal cardiac exercise models using animal subjects have been established to uncover the cardiovascular physiological mechanism of exercise or to determine the effects of exercise on cardiovascular health and disease. In most cases, animal-based cardiovascular exercise modalities include treadmill running, swimming, and voluntary wheel running with a series of intensities, times, and durations. Those used animals include small rodents (e.g., mice and rats) and large animals (e.g., rabbits, dogs, goats, sheep, pigs, and horses). Depending on the research goal, each experimental protocol should also describe whether its respective exercise treatment can produce the anticipated acute or chronic cardiovascular adaptive response. In this chapter, we will briefly describe the most common kinds of animal models of acute and chronic cardiovascular exercises that are currently being conducted and are likely to be chosen in the near future. Strengths and weakness of animal-based cardiac exercise modalities are also discussed.
Homa, Lori D; Burger, Laura L; Cuttitta, Ashley J; Michele, Daniel E; Moenter, Suzanne M
2015-12-01
Prenatal androgen (PNA) exposure in mice produces a phenotype resembling lean polycystic ovary syndrome. We studied effects of voluntary exercise on metabolic and reproductive parameters in PNA vs vehicle (VEH)-treated mice. Mice (8 wk of age) were housed individually and estrous cycles monitored. At 10 weeks of age, mice were divided into groups (PNA, PNA-run, VEH, VEH-run, n = 8-9/group); those in the running groups received wheels allowing voluntary running. Unexpectedly, PNA mice ran less distance than VEH mice; ovariectomy eliminated this difference. In ovary-intact mice, there was no difference in glucose tolerance, lower limb muscle fiber types, weight, or body composition among groups after 16 weeks of running, although some mitochondrial proteins were mildly up-regulated by exercise in PNA mice. Before running, estrous cycles in PNA mice were disrupted with most days in diestrus. There was no change in cycles during weeks 1-6 of running (10-15 wk of age). In contrast, from weeks 11 to 16 of running, cycles in PNA mice improved with more days in proestrus and estrus and fewer in diestrus. PNA programs reduced voluntary exercise, perhaps mediated in part by ovarian secretions. Exercise without weight loss improved estrous cycles, which if translated could be important for fertility in and counseling of lean women with polycystic ovary syndrome.
Brooks, Matthew J; Hajira, Ameena; Mohamed, Junaith S; Alway, Stephen E
2018-06-01
Reloading of atrophied muscles after hindlimb suspension unloading (HSU) can induce injury and prolong recovery. Low-impact exercise, such as voluntary wheel running, has been identified as a nondamaging rehabilitation therapy in rodents, but its effects on muscle function, morphology, and satellite cell activity after HSU are unclear. This study tested the hypothesis that low-impact wheel running would increase satellite cell proliferation and improve recovery of muscle structure and function after HSU in mice. Young adult male and female C57BL/6 mice ( n = 6/group) were randomly placed into five groups. These included HSU without recovery (HSU), normal ambulatory recovery for 14 days after HSU (HSU+NoWR), and voluntary wheel running recovery for 14 days after HSU (HSU+WR). Two control groups were used: nonsuspended mouse cage controls (Control) and voluntary wheel running controls (ControlWR). Satellite cell activation was evaluated by providing mice 5-bromo-2'-deoxyuridine (BrdU) in their drinking water. As expected, HSU significantly reduced in vivo maximal force, decreased in vivo fatigability, and decreased type I and IIa myosin heavy chain (MHC) abundance in plantarflexor muscles. HSU+WR mice significantly improved plantarflexor fatigue resistance, increased type I and IIa MHC abundance, increased fiber cross-sectional area, and increased the percentage of type I and IIA muscle fibers in the gastrocnemius muscle. HSU+WR mice also had a significantly greater percentage of BrdU-positive and Pax 7-positive nuclei inside muscle fibers and a greater MyoD-to-Pax 7 protein ratio compared with HSU+NoWR mice. The mechanotransduction protein Yes-associated protein (YAP) was elevated with reloading after HSU, but HSU+WR mice had lower levels of the inactive phosphorylated YAP serine127 , which may have contributed to increased satellite cell activation with reloading after HSU. These results indicate that voluntary wheel running increased YAP signaling and satellite cell activity after HSU and this was associated with improved recovery. NEW & NOTEWORTHY Although satellite cell involvement in muscle remodeling has been challenged, the data in this study suggest that voluntary wheel running increased satellite cell activity and suppressed Yes-associated protein (YAP) protein relative to no wheel running and this was associated with improved muscle recovery of force, fatigue resistance, expression of type I myosin heavy chain, and greater fiber cross-sectional area after disuse.
SASSE, SARAH K.; GREENWOOD, BENJAMIN N.; MASINI, CHER V.; NYHUIS, TARA J.; FLESHNER, MONIKA; DAY, HEIDI E. W.; CAMPEAU, SERGE
2008-01-01
Voluntary exercise is associated with the prevention and treatment of numerous physical and psychological illnesses, yet the mechanisms by which it confers this protection remain unclear. In contrast, stress, particularly under conditions of prolonged or repeated exposure when glucocorticoid levels are consistently elevated, can have a devastating impact on health. It has been suggested that the benefits of physical exercise may lie in an ability to reduce some of the more deleterious health effects of stress and stress hormones. The present series of experiments provides evidence that voluntary exercise facilitates habituation of corticosterone but not adrenocorticotropin hormone responses to repeated stress presentations. After 6 weeks of running wheel access or sedentary housing conditions, rats were exposed to 11 consecutive daily 30 min presentations of 98 dB noise stress. Similar corticosterone responses in exercised rats and sedentary controls were observed following the first, acute stress presentation. While both groups demonstrated habituation of corticosterone secretory responses with repeated noise stress exposures, the rate of habituation was significantly facilitated in exercised animals. These results suggest that voluntary exercise may reduce the negative impact of prolonged or repeated stress on health by enhancing habituation of hypothalamo-pituitary–adrenocortical axis responses at the level of the adrenal cortex, ultimately reducing the amount of glucocorticoids the body and brain are exposed to. PMID:19065456
Ohyama, Kana; Nogusa, Yoshihito; Suzuki, Katsuya; Shinoda, Kosaku; Kajimura, Shingo; Bannai, Makoto
2015-02-15
Exercise effectively prevents the development of obesity and obesity-related diseases such as type 2 diabetes. Capsinoids (CSNs) are capsaicin analogs found in a nonpungent pepper that increase whole body energy expenditure. Although both exercise and CSNs have antiobesity functions, the effectiveness of exercise with CSN supplementation has not yet been investigated. Here, we examined whether the beneficial effects of exercise could be further enhanced by CSN supplementation in mice. Mice were randomly assigned to four groups: 1) high-fat diet (HFD, Control), 2) HFD containing 0.3% CSNs, 3) HFD with voluntary running wheel exercise (Exercise), and 4) HFD containing 0.3% CSNs with voluntary running wheel exercise (Exercise + CSN). After 8 wk of ingestion, blood and tissues were collected and analyzed. Although CSNs significantly suppressed body weight gain under the HFD, CSN supplementation with exercise additively decreased body weight gain and fat accumulation and increased whole body energy expenditure compared with exercise alone. Exercise together with CSN supplementation robustly improved metabolic profiles, including the plasma cholesterol level. Furthermore, this combination significantly prevented diet-induced liver steatosis and decreased the size of adipocyte cells in white adipose tissue. Exercise and CSNs significantly increased cAMP levels and PKA activity in brown adipose tissue (BAT), indicating an increase of lipolysis. Moreover, they significantly activated both the oxidative phosphorylation gene program and fatty acid oxidation in skeletal muscle. These results indicate that CSNs efficiently promote the antiobesity effect of exercise, in part by increasing energy expenditure via the activation of fat oxidation in skeletal muscle and lipolysis in BAT. Copyright © 2015 the American Physiological Society.
The effect of exercise on carbohydrate preference in female rats.
Keeley, R J; Zelinski, E L; Fehr, L; McDonald, R J
2014-02-01
Exercise has a myriad of health benefits, including positive effects against heart disease, diabetes, and dementia. Cognitive performance improves following chronic exercise, both in animal models and humans. Studies have examined the effect of exercise on feeding, demonstrating a preference towards increased food consumption. Further, sex differences exist such that females tend to prefer carbohydrates over other macronutrients following exercise. However, no clear effect of exercise on macronutrient or carbohydrate selection has been described in animal or human studies. This research project sought to determine the effect of voluntary exercise on carbohydrate selection in female rats. Preference for a complex (starch) versus a simple (dextrose) carbohydrate was assessed using a discriminative preference to context paradigm in non-exercising and voluntarily exercising female rats. In addition, fasting blood glucose and performance in the Morris water task was examined in order to verify the effects of exercise on performance in this task. Female rats given access to running wheels preferred a context previously associated with starch, whereas females with no running wheel access preferred a context previously associated with dextrose. No changes in blood glucose were observed. However, cognitive differences in the Morris water task were observed such that voluntary exercise allowed rats to find a new location of a hidden platform following 4 days of training to an old platform location. These results suggest that voluntary exercise may decrease preservative behaviors in a spatial navigation task through the facilitation of plasticity mechanisms. This study is the first of its kind to demonstrate the influence of exercise on taste preference for complex and simple carbohydrates with this context conditioning paradigm. Copyright © 2014 Elsevier Inc. All rights reserved.
Effects of leptin treatment and Western diet on wheel running in selectively bred high runner mice.
Meek, Thomas H; Dlugosz, Elizabeth M; Vu, Kim T; Garland, Theodore
2012-05-15
The role of leptin in regulating physical activity is varied. The behavioral effects of leptin signaling depend on the type of activity and the animal's physiological state. We used mice from lines selectively bred for high voluntary wheel running to further study how leptin regulates volitional exercise. Mice from four replicate high runner (HR) lines typically run ~3-fold more revolutions per day than those from four non-selected control (C) lines. HR mice have altered dopamine function and differences from C in brain regions known to be important in leptin-mediated behavior. Furthermore, male HR mice have been found to dramatically increase running when administered Western diet, an effect possibly mediated through leptin signaling. Male mice from generation 61 (representing three HR lines and one C line) were allowed wheel access at 24 days of age and given either Western diet (high in fat and with added sucrose) or standard chow. After four weeks, Western diet significantly increased circulating leptin, insulin, C-peptide, gastric inhibitory polypeptide, and inflammatory hormone resistin concentrations in HR mice (C mice not measured). Western diet increased running in HR mice, but did not significantly affect running in C mice. During the fifth week, all mice received two days of intra-peritoneal sham injections (physiological saline) followed by three days of murine recombinant leptin injections, and then another six days of sham injections. Leptin treatment significantly decreased caloric intake (adjusted for body mass) and body mass in all groups. Wheel running significantly increased with leptin injections in HR mice (fed Western or standard diet), but was unaffected in C mice. Whether Western diet and leptin treatment stimulate wheel running in HR mice through the same physiological pathways awaits future study. These results have implications for understanding the neural and endocrine systems that control locomotor activity, food consumption, and body weight, and how they may vary with genetic background. Copyright © 2012 Elsevier Inc. All rights reserved.
McMullan, Rachel C; Kelly, Scott A; Hua, Kunjie; Buckley, Brian K; Faber, James E; Pardo-Manuel de Villena, Fernando; Pomp, Daniel
2016-11-01
Aging is associated with declining exercise and unhealthy changes in body composition. Exercise ameliorates certain adverse age-related physiological changes and protects against many chronic diseases. Despite these benefits, willingness to exercise and physiological responses to exercise vary widely, and long-term exercise and its benefits are difficult and costly to measure in humans. Furthermore, physiological effects of aging in humans are confounded with changes in lifestyle and environment. We used C57BL/6J mice to examine long-term patterns of exercise during aging and its physiological effects in a well-controlled environment. One-year-old male (n = 30) and female (n = 30) mice were divided into equal size cohorts and aged for an additional year. One cohort was given access to voluntary running wheels while another was denied exercise other than home cage movement. Body mass, composition, and metabolic traits were measured before, throughout, and after 1 year of treatment. Long-term exercise significantly prevented gains in body mass and body fat, while preventing loss of lean mass. We observed sex-dependent differences in body mass and composition trajectories during aging. Wheel running (distance, speed, duration) was greater in females than males and declined with age. We conclude that long-term exercise may serve as a preventive measure against age-related weight gain and body composition changes, and that mouse inbred strains can be used to characterize effects of long-term exercise and factors (e.g. sex, age) modulating these effects. These findings will facilitate studies on relationships between exercise and health in aging populations, including genetic predisposition and genotype-by-environment interactions. © 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.
Sugihara, Masami; Odagiri, Fuminori; Suzuki, Takeshi; Murayama, Takashi; Nakazato, Yuji; Unuma, Kana; Yoshida, Ken-ichi; Daida, Hiroyuki; Sakurai, Takashi; Morimoto, Sachio; Kurebayashi, Nagomi
2013-01-01
Inherited dilated cardiomyopathy (DCM) is a progressive disease that often results in death from congestive heart failure (CHF) or sudden cardiac death (SCD). Mouse models with human DCM mutation are useful to investigate the developmental mechanisms of CHF and SCD, but knowledge of the severity of CHF in live mice is necessary. We aimed to diagnose CHF in live DCM model mice by measuring voluntary exercise using a running wheel and to determine causes of death in these mice. A knock-in mouse with a mutation in cardiac troponin T (ΔK210) (DCM mouse), which results in frequent death with a t(1/2) of 70 to 90 days, was used as a DCM model. Until 2 months of age, average wheel-running activity was similar between wild-type and DCM mice (approximately 7 km/day). At approximately 3 months, some DCM mice demonstrated low running activity (LO: <1 km/day) while others maintained high running activity (HI: >5 km/day). In the LO group, the lung weight/body weight ratio was much higher than that in the other groups, and the lungs were infiltrated with hemosiderin-loaded alveolar macrophages. Furthermore, echocardiography showed more severe ventricular dilation and a lower ejection fraction, whereas Electrocardiography (ECG) revealed QRS widening. There were two patterns in the time courses of running activity before death in DCM mice: deaths with maintained activity and deaths with decreased activity. Our results indicate that DCM mice with low running activity developed severe CHF and that running wheels are useful for detection of CHF in mouse models. We found that approximately half of ΔK210 DCM mice die suddenly before onset of CHF, whereas others develop CHF, deteriorate within 10 to 20 days, and die.
Endurance capacity of mice selectively bred for high voluntary wheel running.
Meek, Thomas H; Lonquich, Brian P; Hannon, Robert M; Garland, Theodore
2009-09-15
Mice from four lines bred for high voluntary wheel activity run approximately 3-fold more revolutions per day and have elevated maximal oxygen consumption during forced treadmill exercise, as compared with four unselected control (C) lines. We hypothesized that these high runner (HR) lines would have greater treadmill endurance-running capacity. Ninety-six mice from generation 49 were familiarized with running on a motorized treadmill for 3 days. On days 4 and 5, mice were given an incremental speed test (starting at 20 m min(-1), increased 1.5 m min(-1) every 2 min) and endurance was measured as the total time or distance run to exhaustion. Blood samples were taken to measure glucose and lactate concentrations at rest during the photophase, during peak nightly wheel running, and immediately following the second endurance test. Individual differences in endurance time were highly repeatable between days (r=0.79), and mice tended to run longer on the second day (paired t-test, P<0.0001). Blood glucose following the treadmill test was low for all animals ( approximately 53 mg dl(-1)) and lactate was high ( approximately 6.5 mmol l(-1)), suggesting that exhaustion occurred. The HR lines had significantly higher endurance than the C lines (1-tailed P<0.05), whether or not body mass was used as a covariate in the analysis. The relationship between line means for wheel running and treadmill endurance differed between the sexes, reinforcing previous studies that indicate sex-specific responses to selective breeding. HR mice appear to have a higher endurance capacity than reported in the literature for inbred strains of mice or transgenics intended to enhance endurance.
Clark, Peter J.; Ghasem, Parsa R.; Mika, Agnieszka; Day, Heidi E.; Herrera, Jonathan J.; Greenwood, Benjamin N.; Fleshner, Monika
2014-01-01
Emerging evidence indicates that adenosine is a major regulator of striatum activity, in part, through the antagonistic modulation of dopaminergic function. Exercise can influence adenosine and dopamine activity, which may subsequently promote plasticity in striatum adenosine and dopamine systems. Such changes could alter activity of medium spiny neurons and impact striatum function. The purpose of this study was two-fold. The first was to characterize the effect of long-term wheel running on adenosine 1 (A1R), adenosine 2A (A2AR), dopamine 1 (D1R), and dopamine 2 (D2R) receptor mRNA expression in adult rat dorsal and ventral striatum structures using in situ hybridization. The second was to determine if changes to adenosine and dopamine receptor mRNA from running are associated with altered cfos mRNA induction in dynorphin- (direct pathway) and enkephalin- (indirect pathway) expressing neurons of the dorsal striatum following stress exposure. We report that chronic running, as well as acute uncontrollable stress, reduced A1R and A2AR mRNA levels in the dorsal and ventral striatum. Running also modestly elevated D2R mRNA levels in striatum regions. Finally, stress-induced cfos was potentiated in dynorphin and attenuated in enkephalin expressing neurons of running rats. These data suggest striatum adenosine and dopamine systems are targets for neuroplasticity from exercise, which may contribute to changes in direct and indirect pathway activity. These findings may have implications for striatum mediated motor and cognitive processes, as well as exercise facilitated stress-resistance. PMID:25017571
Voluntary exercise promotes beneficial anti-aging mechanisms in SAMP8 female brain.
Bayod, Sergi; Guzmán-Brambila, Carolina; Sanchez-Roige, Sandra; Lalanza, Jaume F; Kaliman, Perla; Ortuño-Sahagun, Daniel; Escorihuela, Rosa M; Pallàs, Mercè
2015-02-01
Regular physical exercise mediates health and longevity promotion involving Sirtuin 1 (SIRT1)-regulated pathways. The anti-aging activity of SIRT1 is achieved, at least in part, by means of fine-tuning the adenosine monophosphate (AMP)-activated protein kinase (AMPK) pathway by preventing the transition of an originally pro-survival program into a pro-aging mechanism. Additionally, SIRT1 promotes mitochondrial function and reduces the production of reactive oxygen species (ROS) through regulating peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α), the master controller of mitochondrial biogenesis. Here, by using senescence-accelerated mice prone 8 (SAMP8) as a model for aging, we determined the effect of wheel-running as a paradigm for long-term voluntary exercise on SIRT1-AMPK pathway and mitochondrial functionality measured by oxidative phosphorylation (OXPHOS) complex content in the hippocampus and cortex. We found differential activation of SIRT1 in both tissues and hippocampal-specific activation of AMPK. These findings correlated well with significant changes in OXPHOS in the hippocampal, but not in the cerebral cortex, area. Collectively, the results revealed greater benefits of the exercise in the wheel-running intervention in a murine model of senescence, which was directly related with mitochondrial function and which was mediated through the modulation of SIRT1 and AMPK pathways.
Sciolino, Natale R.; Dishman, Rodney K.; Holmes, Philip V.
2012-01-01
Although exercise improves anxiety in humans, it is controversial whether exercise is anxiolytic in rodents. We tested the hypothesis that stress influences the effect of exercise on anxiety-like and defensive behaviors. To explore the neurobiological mechanisms of exercise, we also examined whether exercise alters gene expression for the stress-related peptide galanin. Rats were housed in the presence or absence of a running wheel for 21 d. A subset of these rats were (1) not injected or received a single high, dose of the β-carboline FG7142 (inverse agonist at the benzodiazepine receptor site) immediately prior to testing or (2) were injected repeatedly with vehicle or FG7142 during the last 10 d of exercise. On day 22, anxiety-like and defensive behaviors were measured in the elevated plus maze, shock probe defensive burying, and defensive withdrawal tests. Locus coeruleus prepro-galanin mRNA was measured by in situ hybridization. Exercise and sedentary rats that were not injected exhibited similar behavior in all tests, whereas FG7142 injected immediately prior to the test battery produced intense avoidance and immobility consistent with an anxiety-like response. However, exercise produced anxiolytic-like and active defensive behaviors in the test battery relative to the sedentary condition in rats injected repeatedly with vehicle or FG7142. Exercise also increased prepro-galanin mRNA in the locus coeruleus relative to sedentary controls. These data suggest that the emergence of enhanced adaptive behavior after chronic voluntary exercise is influenced by stress. Our data support a role for galanin in the beneficial consequences of wheel running. PMID:22580167
Sciolino, Natale R.; Holmes, Philip V.
2016-01-01
Although physical activity reduces anxiety in humans, the neural basis for this response is unclear. Rodent models are essential to understand the mechanisms that underlie the benefits of exercise. However, it is controversial whether exercise exerts anxiolytic-like potential in rodents. Evidence is reviewed to evaluate the effects of wheel running, an experimental mode of exercise in rodents, on behavior in tests of anxiety and on norepinephrine and galanin systems in neural circuits that regulate stress. Stress is proposed to account for mixed behavioral findings in this literature. Indeed, running promotes an adaptive response to stress and alters anxiety-like behaviors in a manner dependent on stress. Running amplifies galanin expression in noradrenergic locus coeruleus (LC) and suppresses stress-induced activity of the LC and norepinephrine output in LC-target regions. Thus, enhanced galanin-mediated suppression of brain norepinephrine in runners is supported by current literature as a mechanism that may contribute to the stress-protective effects of exercise. These data support the use of rodents to study the emotional and neurobiological consequences of exercise. PMID:22771334
Kim, Tae-Kyung; Han, Pyung-Lim
2016-08-01
Chronic stress induces anxiety disorders, whereas physical exercise is believed to help people with clinical anxiety. In the present study, we investigated the mechanisms underlying stress-induced anxiety and its counteraction by exercise using an established animal model of anxiety. Mice treated with restraint for 2 h daily for 14 days exhibited anxiety-like behaviors, including social and nonsocial behavioral symptoms, and these behavioral impairments lasted for more than 12 weeks after the stress treatment was removed. Despite these lasting behavioral changes, wheel-running exercise treatment for 1 h daily from post-stress days 1 - 21 counteracted anxiety-like behaviors, and these anxiolytic effects of exercise persisted for more than 2 months, suggesting that anxiolytic effects of exercise stably induced. Repeated restraint treatment up-regulated the expression of the neuropeptide, melanin-concentrating hormone (MCH), in the lateral hypothalamus, hippocampus, and basolateral amygdala, the brain regions important for emotional behaviors. In an in vitro study, treatment of HT22 hippocampal cells with glucocorticoid increased MCH expression, suggesting that MCH upregulation can be initially triggered by the stress hormone, corticosterone. In contrast, post-stress treatment with wheel-running exercise reduced the stress-induced increase in MCH expression to control levels in the lateral hypothalamus, hippocampus and basolateral amygdala. Administration of an MCH receptor antagonist (SNAP94847) to stress-treated mice was therapeutic against stress-induced anxiety-like behaviors. These results suggest that repeated stress produces long-lasting anxiety-like behaviors and upregulates MCH in the brain, while exercise counteracts stress-induced MCH expression and persisting anxiety-like behaviors.
Belke, Terry W; Pierce, W David; Duncan, Ian D
2006-09-01
Choice between sucrose and wheel-running reinforcement was assessed in two experiments. In the first experiment, ten male Wistar rats were exposed to concurrent VI 30 s VI 30 s schedules of wheel-running and sucrose reinforcement. Sucrose concentration varied across concentrations of 2.5, 7.5, and 12.5%. As concentration increased, more behavior was allocated to sucrose and more reinforcements were obtained from that alternative. Allocation of behavior to wheel running decreased, but obtained wheel-running reinforcement did not change. Overall, the results suggested that food-deprived rats were sensitive to qualitative changes in food supply (sucrose concentration) while continuing to defend a level of physical activity (wheel running). In the second study, 15 female Long Evans rats were exposed to concurrent variable ratio schedules of sucrose and wheel-running, wheel-running and wheel-running, and sucrose and sucrose reinforcement. For each pair of reinforcers, substitutability was assessed by the effect of income-compensated price changes on consumption of the two reinforcers. Results showed that, as expected, sucrose substituted for sucrose and wheel running substituted for wheel running. Wheel running, however, did not substitute for sucrose; but sucrose partially substituted for wheel running. We address the implications of the interrelationships of sucrose and wheel running for an understanding of activity anorexia.
Belke, Terry W; Duncan, Ian D; David Pierce, W
2006-01-01
Choice between sucrose and wheel-running reinforcement was assessed in two experiments. In the first experiment, ten male Wistar rats were exposed to concurrent VI 30 s VI 30 s schedules of wheel-running and sucrose reinforcement. Sucrose concentration varied across concentrations of 2.5, 7.5, and 12.5%. As concentration increased, more behavior was allocated to sucrose and more reinforcements were obtained from that alternative. Allocation of behavior to wheel running decreased, but obtained wheel-running reinforcement did not change. Overall, the results suggested that food-deprived rats were sensitive to qualitative changes in food supply (sucrose concentration) while continuing to defend a level of physical activity (wheel running). In the second study, 15 female Long Evans rats were exposed to concurrent variable ratio schedules of sucrose and wheel-running, wheel-running and wheel-running, and sucrose and sucrose reinforcement. For each pair of reinforcers, substitutability was assessed by the effect of income-compensated price changes on consumption of the two reinforcers. Results showed that, as expected, sucrose substituted for sucrose and wheel running substituted for wheel running. Wheel running, however, did not substitute for sucrose; but sucrose partially substituted for wheel running. We address the implications of the interrelationships of sucrose and wheel running for an understanding of activity anorexia. PMID:17002224
Rezende, Enrico L; Kelly, Scott A; Gomes, Fernando R; Chappell, Mark A; Garland, Theodore
2006-01-01
Selective breeding for over 35 generations has led to four replicate (S) lines of laboratory house mice (Mus domesticus) that run voluntarily on wheels about 170% more than four random-bred control (C) lines. We tested whether S lines have evolved higher running performance by increasing running economy (i.e., decreasing energy spent per unit of distance) as a correlated response to selection, using a recently developed method that allows for nearly continuous measurements of oxygen consumption (VO2) and running speed in freely behaving animals. We estimated slope (incremental cost of transport [COT]) and intercept for regressions of power (the dependent variable, VO2/min) on speed for 49 males and 47 females, as well as their maximum VO2 and speeds during wheel running, under conditions mimicking those that these lines face during the selection protocol. For comparison, we also measured COT and maximum aerobic capacity (VO2max) during forced exercise on a motorized treadmill. As in previous studies, the increased wheel running of S lines was mainly attributable to increased average speed, with males also showing a tendency for increased time spent running. On a whole-animal basis, combined analysis of males and females indicated that COT during voluntary wheel running was significantly lower in the S lines (one-tailed P=0.015). However, mice from S lines are significantly smaller and attain higher maximum speeds on the wheels; with either body mass or maximum speed (or both) entered as a covariate, the statistical significance of the difference in COT is lost (one-tailed P> or =0.2). Thus, both body size and behavior are key components of the reduction in COT. Several statistically significant sex differences were observed, including lower COT and higher resting metabolic rate in females. In addition, maximum voluntary running speeds were negatively correlated with COT in females but not in males. Moreover, males (but not females) from the S lines exhibited significantly higher treadmill VO2max as compared to those from C lines. The sex-specific responses to selection may in part be consequences of sex differences in body mass and running style. Our results highlight how differences in size and running speed can account for lower COT in S lines and suggest that lower COT may have coadapted in response to selection for higher running distances in these lines.
Tal-Krivisky, Katy; Kronfeld-Schor, Noga; Einat, Haim
2015-11-01
Physical exercise is a non-pharmacological treatment for affective disorders. The mechanisms of its effects are unknown although some suggest a relationship to synchronization of circadian rhythms. One way to explore mechanisms is to utilize animal models. We previously demonstrated that the diurnal fat sand rat is an advantageous model for studying the interactions between photoperiods and mood. The current study was designed to evaluate the effects of voluntary exercise on activity rhythms and anxiety and depression-like behaviors in sand rats as a step towards better understanding of the underlying mechanisms. Male sand rats were housed in short photoperiod (SP; 5h light/19 h dark) or neutral light (NP; 12h light/12h dark) regimens for 3 weeks and divided into subgroups with or without running wheels. Activity was monitored for 3 additional weeks and then animals were tested in the elevated plus-maze, the forced swim test and the social interaction test. Activity rhythms were enhanced by the running wheels. As hypothesized, voluntary exercise had significant effects on SP animals' anxiety- and depression-like behaviors but not on NP animals. Results are discussed in the context of interactions between physical exercise, circadian rhythms and mood. We suggest that the sand rat model can be used to explore the underlying mechanism of the effects of physical exercise for mood disorders. Copyright © 2015 Elsevier Inc. All rights reserved.
Noble, Emily E.; Mavanji, Vijayakumar; Little, Morgan R.; Billington, Charles J.; Kotz, Catherine M.; Wang, ChuanFeng
2014-01-01
Background Previous studies have shown that a western diet impairs, whereas physical exercise enhances hippocampus-dependent learning and memory. Both diet and exercise influence expression of hippocampal brain-derived neurotrophic factor (BDNF), which is associated with improved cognition. We hypothesized that exercise reverses diet-induced cognitive decline while increasing hippocampal BDNF. Methods To test the effects of exercise on hippocampal-dependent memory, we compared cognitive scores of Sprague-Dawley rats exercised by voluntary running wheel (RW) access or forced treadmill (TM) to sedentary (Sed) animals. Memory was tested by two-way active avoidance test (TWAA), in which animals are exposed to a brief shock in a specific chamber area. When an animal avoids, escapes or has reduced latency to do either, this is considered a measure of memory. In a second experiment, rats were fed either a high-fat diet or control diet for 16 weeks, then randomly assigned to running wheel access or sedentary condition, and TWAA memory was tested once a week for seven weeks of exercise intervention. Results Both groups of exercised animals had improved memory as indicated by reduced latency to avoid and escape shock, and increased avoid and escape episodes (p<0.05). Exposure to a high-fat diet resulted in poor performance during both the acquisition and retrieval phases of the memory test as compared to controls. Exercise reversed high-fat diet-induced memory impairment, and increased brain-derived neurotrophic factor (BDNF) in neurons of the hippocampal CA3 region. Conclusions These data suggest that exercise improves memory retrieval, particularly with respect to avoiding aversive stimuli, and may be beneficial in protecting against diet induced cognitive decline, likely via elevated BDNF in neurons of the CA3 region. PMID:24755094
Noble, Emily E; Mavanji, Vijayakumar; Little, Morgan R; Billington, Charles J; Kotz, Catherine M; Wang, ChuanFeng
2014-10-01
Previous studies have shown that a western diet impairs, whereas physical exercise enhances hippocampus-dependent learning and memory. Both diet and exercise influence expression of hippocampal brain-derived neurotrophic factor (BDNF), which is associated with improved cognition. We hypothesized that exercise reverses diet-induced cognitive decline while increasing hippocampal BDNF. To test the effects of exercise on hippocampal-dependent memory, we compared cognitive scores of Sprague-Dawley rats exercised by voluntary running wheel (RW) access or forced treadmill (TM) to sedentary (Sed) animals. Memory was tested by two-way active avoidance test (TWAA), in which animals are exposed to a brief shock in a specific chamber area. When an animal avoids, escapes or has reduced latency to do either, this is considered a measure of memory. In a second experiment, rats were fed either a high-fat diet or control diet for 16 weeks, then randomly assigned to running wheel access or sedentary condition, and TWAA memory was tested once a week for 7 weeks of exercise intervention. Both groups of exercised animals had improved memory as indicated by reduced latency to avoid and escape shock, and increased avoid and escape episodes (p<0.05). Exposure to a high-fat diet resulted in poor performance during both the acquisition and retrieval phases of the memory test as compared to controls. Exercise reversed high-fat diet-induced memory impairment, and increased brain-derived neurotrophic factor (BDNF) in neurons of the hippocampal CA3 region. These data suggest that exercise improves memory retrieval, particularly with respect to avoiding aversive stimuli, and may be beneficial in protecting against diet induced cognitive decline, likely via elevated BDNF in neurons of the CA3 region. Published by Elsevier Inc.
Belke, Terry W; Pierce, W David
2014-03-01
The current study investigated the effect of motivational manipulations on operant wheel running for sucrose reinforcement and on wheel running as a behavioral consequence for lever pressing, within the same experimental context. Specifically, rats responded on a two-component multiple schedule of reinforcement in which lever pressing produced the opportunity to run in a wheel in one component of the schedule (reinforcer component) and wheel running produced the opportunity to consume sucrose solution in the other component (operant component). Motivational manipulations involved removal of sucrose contingent on wheel running and providing 1h of pre-session wheel running. Results showed that, in opposition to a response strengthening view, sucrose did not maintain operant wheel running. The motivational operations of withdrawing sucrose or providing pre-session wheel running, however, resulted in different wheel-running rates in the operant and reinforcer components of the multiple schedule; this rate discrepancy revealed the extrinsic reinforcing effects of sucrose on operant wheel running, but also indicated the intrinsic reinforcement value of wheel running across components. Differences in wheel-running rates between components were discussed in terms of arousal, undermining of intrinsic motivation, and behavioral contrast. Copyright © 2013 Elsevier B.V. All rights reserved.
Noble, E G; Moraska, A; Mazzeo, R S; Roth, D A; Olsson, M C; Moore, R L; Fleshner, M
1999-05-01
High-intensity treadmill exercise increases the expression of a cardioprotective, inducible 72-kDa stress protein (SP72) in cardiac muscle. This investigation examined whether voluntary free wheel exercise training would be sufficient to confer a similar response. Male Sprague-Dawley rats were randomly assigned to either treadmill (TM-Tr) or free wheel (FW-Tr) training groups. By the end of the 8-wk training period, TM-Tr animals ran 1 h/day, 5 days/wk up a 10% grade, covering a distance of 8,282 m/wk. FW-Tr rats ran, on average, 5,300 m/wk, with one-third of the animals covering distances similar to those for the TM-Tr group. At the time of death, hearts of trained and caged sedentary control (Sed) animals were divided into left (LV) and right (RV) ventricles. Citrate synthase activity and the relative immunoblot contents of SP72, SP73 (the constitutive isoform of the SP70 family), and a 75-kDa mitochondrial chaperone (SP75) were subsequently determined. LV and RV did not differ on any measure, and SP73, SP75, and citrate synthase were not affected by training. Cardiac SP72 levels were elevated over fourfold in both ventricles of TM-Tr compared with RV of FW-Sed rats. Despite the animals having run a similar total distance, cardiac SP72 content in FW-Tr rats was not different from that in Sed animals. These data indicate that voluntary exercise training is insufficient to elicit an elevation of SP72 in rat heart and suggest that exercise intensity may be a critical factor in evoking the cardioprotective SP72 response.
Sack, Markus; Lenz, Jenny N; Jakovcevski, Mira; Biedermann, Sarah V; Falfán-Melgoza, Claudia; Deussing, Jan; Bielohuby, Maximilian; Bidlingmaier, Martin; Pfister, Frederik; Stalla, Günter K; Sartorius, Alexander; Gass, Peter; Weber-Fahr, Wolfgang; Fuss, Johannes; Auer, Matthias K
2017-10-01
Excessive intake of high-caloric diets as well as subsequent development of obesity and diabetes mellitus may exert a wide range of unfavorable effects on the central nervous system (CNS) in the long-term. The potentially harmful effects of such diets were suggested to be mitigated by physical exercise. Here, we conducted a study investigating early effects of a cafeteria-diet on gray and white brain matter volume by means of voxel-based morphometry (VBM) and region-of-interest (ROI) analysis. Half of the mice performed voluntary wheel running to study if regular physical exercise prevents unfavorable effects of a cafeteria-diet. In addition, histological analyses for myelination and neurogenesis were performed. As expected, wheel running resulted in a significant increase of gray matter volume in the CA1-3 areas, the dentate gyrus and stratum granulosum of the hippocampus in the VBM analysis, while a positive effect of the cafeteria-diet was shown for the whole hippocampal CA1-3 area only in the ROI analysis, indicating a regional volume effect. It was earlier found that hippocampal neurogenesis may be related to volume increases after exercise. Interestingly, while running resulted in a significant increase in neurogenesis assessed by doublecortin (DCX)-labeling, this was not true for cafeteria diet. This indicates different underlying mechanisms for gray matter increase. Moreover, animals receiving cafeteria diet only showed mild deficits in long-term memory assessed by the puzzle-box paradigm, while executive functioning and short term memory were not affected. Our data therefore highlight that high caloric diet impacts on the brain and behavior. Physical exercise seems not to interact with these mechanisms.
Jones, Alexis B; Gupton, Rebecca; Curtis, Kathleen S
2016-09-15
The beneficial effects of physical exercise to reduce anxiety and depression and to alleviate stress are increasingly supported in research studies. The role of ovarian hormones in interactions between exercise and anxiety/stress has important implications for women's health, given that women are at increased risk of developing anxiety-related disorders, particularly during and after the menopausal transition. In these experiments, we tested the hypothesis that estrogen enhances the positive impact of exercise on stress responses by investigating the combined effects of exercise and estrogen on anxiety-like behaviors and stress hormone levels in female rats after an acute stressor. Ovariectomized female rats with or without estrogen were given access to running wheels for one or three days of voluntary running immediately after or two days prior to being subjected to restraint stress. We found that voluntary running was not effective at reducing anxiety-like behaviors, whether or not rats were subjected to restraint stress. In contrast, stress-induced elevations of stress hormone levels were attenuated by exercise experience in estrogen-treated rats, but were increased in rats without estrogen. These results suggest that voluntary exercise may be more effective at reducing stress hormone levels if estrogen is present. Additionally, exercise experience, or the distance run, may be important in reducing stress. Copyright © 2016 Elsevier B.V. All rights reserved.
Wone, Bernard W M; Yim, Won C; Schutz, Heidi; Meek, Thomas H; Garland, Theodore
2018-04-04
Mitochondrial haplotypes have been associated with human and rodent phenotypes, including nonshivering thermogenesis capacity, learning capability, and disease risk. Although the mammalian mitochondrial D-loop is highly polymorphic, D-loops in laboratory mice are identical, and variation occurs elsewhere mainly between nucleotides 9820 and 9830. Part of this region codes for the tRNA Arg gene and is associated with mitochondrial densities and number of mtDNA copies. We hypothesized that the capacity for high levels of voluntary wheel-running behavior would be associated with mitochondrial haplotype. Here, we analyzed the mtDNA polymorphic region in mice from each of four replicate lines selectively bred for 54 generations for high voluntary wheel running (HR) and from four control lines (Control) randomly bred for 54 generations. Sequencing the polymorphic region revealed a variable number of adenine repeats. Single nucleotide polymorphisms (SNPs) varied from 2 to 3 adenine insertions, resulting in three haplotypes. We found significant genetic differentiations between the HR and Control groups (F st = 0.779, p ≤ 0.0001), as well as among the replicate lines of mice within groups (F sc = 0.757, p ≤ 0.0001). Haplotypes, however, were not strongly associated with voluntary wheel running (revolutions run per day), nor with either body mass or litter size. This system provides a useful experimental model to dissect the physiological processes linking mitochondrial, genomic SNPs, epigenetics, or nuclear-mitochondrial cross-talk to exercise activity. Copyright © 2018. Published by Elsevier B.V.
Zhao, Zhi-Jun; Król, Elzbieta; Moille, Sophie; Gamo, Yuko; Speakman, John R
2013-06-15
The capacity of animals to dissipate heat may constrain sustained energy intake during lactation. We examined these constraints at peak lactation in MF1 mice that had ad libitum access to food, or that had to run a pre-set target on running wheels to obtain ad libitum access to food. The voluntary distance run decreased sharply during pregnancy and peak lactation. When lactating females were provided with 80% of their estimated food requirements, and had to run pre-set distances of 2, 4 or 6 km before given access to additional ad libitum food, most of them did not complete the running target during late lactation and the mice with the highest targets failed to reach their targets earlier in lactation. There were consequently significant group differences in asymptotic food intake (2 km, 16.97 ± 0.40 g day(-1); 4 km, 14.29 ± 0.72 g day(-1); and 6 km, 12.65 ± 0.45 g day(-1)) and weaned litter masses (2 km, 71.11 ± 2.39 g; 4 km, 54.63 ± 4.28 g and 6 km, 47.18 ± 2.46 g). When the females did run sufficiently to gain ad libitum food access, their intake did not differ between the different distance groups or from controls that were not required to run. Thus, despite being physically capable of running the distances, mice could not exercise sufficiently in lactation to gain regular ad libitum access to food, probably because of the risks of hyperthermia when combining heat production from exercise with thermogenesis from lactation.
O'dell, Steven J; Marshall, John F
2014-09-01
Repeated administration of methamphetamine (mAMPH) to rodents in a single-day "binge" dosing regimen produces long-lasting damage to forebrain dopaminergic nerve terminals as measured by decreases in tissue dopamine (DA) content and levels of the plasmalemmal DA transporter (DAT). However, the midbrain cell bodies from which the DA terminals arise survive, and previous reports show that striatal DA markers return to control levels by 12 months post-mAMPH, suggesting long-term repair or regrowth of damaged DA terminals. We previously showed that when rats engaged in voluntary aerobic exercise for 3 weeks before and 3 weeks after a binge regimen of mAMPH, exercise significantly ameliorated mAMPH-induced decreases in striatal DAT. However, these data left unresolved the question of whether exercise protected against the initial neurotoxicity from the mAMPH binge or accelerated the repair of the damaged DA terminals. The present experiments were designed to test whether exercise protects against the mAMPH-induced injury. Adult male Sprague-Dawley rats were allowed to run in wheels for 3 weeks before an acute binge regimen of mAMPH or saline, then placed into nonwheel cages for an additional week before autoradiographic determination of striatal DAT binding. The autoradiographic findings showed that prior exercise provided no protection against mAMPH-induced damage to striatal DA terminals. These results, together with analyses from our previous experiments, suggest that voluntary exercise may accelerate the repair of mAMPH-damaged DA terminals and that voluntary exercise may be useful as therapeutic adjunct in the treatment mAMPH addicts. © 2014 Wiley Periodicals, Inc.
Holland, Angelia Maleah; Kephart, Wesley C; Mumford, Petey W; Mobley, Christopher Brooks; Lowery, Ryan P; Shake, Joshua J; Patel, Romil K; Healy, James C; McCullough, Danielle J; Kluess, Heidi A; Huggins, Kevin W; Kavazis, Andreas N; Wilson, Jacob M; Roberts, Michael D
2016-08-01
We investigated the effects of different diets on adipose tissue, liver, serum morphology, and biomarkers in rats that voluntarily exercised. Male Sprague-Dawley rats (∼9-10 wk of age) exercised with resistance-loaded voluntary running wheels (EX; wheels loaded with 20-60% body mass) or remained sedentary (SED) over 6 wk. EX and SED rats were provided isocaloric amounts of either a ketogenic diet (KD; 20.2%-10.3%-69.5% protein-carbohydrate-fat), a Western diet (WD; 15.2%-42.7-42.0%), or standard chow (SC; 24.0%-58.0%-18.0%); n = 8-10 in each diet for SED and EX rats. Following the intervention, body mass and feed efficiency were lowest in KD rats, independent of exercise (P < 0.05). Absolute and relative (body mass-adjusted) omental adipose tissue (OMAT) masses were greatest in WD rats (P < 0.05), and OMAT adipocyte diameters were lowest in KD-fed rats (P < 0.05). None of the assayed OMAT or subcutaneous (SQ) protein markers were affected by the diets [total acetyl coA carboxylase (ACC), CD36, and CEBPα or phosphorylated NF-κB/p65, AMPKα, and hormone-sensitive lipase (HSL)], although EX unexpectedly altered some OMAT markers (i.e., higher ACC and phosphorylated NF-κB/p65, and lower phosphorylated AMPKα and phosphorylated HSL). Liver triglycerides were greatest in WD rats (P < 0.05), and liver phosphorylated NF-κB/p65 was lowest in KD rats (P < 0.05). Serum insulin, glucose, triglycerides, and total cholesterol were greater in WD and/or SC rats compared with KD rats (P < 0.05), and serum β-hydroxybutyrate was greater in KD vs. SC rats (P < 0.05). In conclusion, KD rats presented a healthier metabolic profile, albeit the employed exercise protocol minimally impacts any potentiating effects that KD has on fat loss. Copyright © 2016 the American Physiological Society.
Voluntary Running Attenuates Metabolic Dysfunction in Ovariectomized Low-Fit Rats
Park, Young-Min; Padilla, Jaume; Kanaley, Jill A.; Zidon, Terese; Welly, Rebecca J.; Britton, Steven L.; Koch, Lauren G.; Thyfault, John P.; Booth, Frank W.; Vieira-Potter, Victoria J.
2016-01-01
INTRODUCTION Ovariectomy and high fat diet (HFD) worsen obesity and metabolic dysfunction associated with low aerobic fitness. Exercise training mitigates metabolic abnormalities induced by low aerobic fitness, but whether the protective effect is maintained following ovariectomy and HFD is unknown. PURPOSE This study determined whether, following ovariectomy and HFD, exercise training improves metabolic function in rats bred for low intrinsic aerobic capacity. METHODS Female rats selectively bred for low (LCR) and high (HCR) intrinsic aerobic capacity (n=30) were ovariectomized, fed HFD, and randomized to either a sedentary (SED) or voluntary wheel running (EX) group. Resting energy expenditure, glucose tolerance, and spontaneous physical activity were determined midway through the experiment, while body weight, wheel running volume, and food intake were assessed throughout the study. Body composition, circulating metabolic markers, and skeletal muscle gene and protein expression was measured at sacrifice. RESULTS EX reduced body weight and adiposity in LCR rats (−10% and −50%, respectively; P<0.05) and, unexpectedly, increased these variables in HCR rats (+7% and +37%, respectively; P<0.05) compared to their respective SED controls, likely due to dietary overcompensation. Wheel running volume was ~5-fold greater in HCR than LCR rats, yet EX enhanced insulin sensitivity equally in LCR and HCR rats (P<0.05). This EX-mediated improvement in metabolic function was associated with gene up-regulation of skeletal muscle IL-6&-10. EX also increased resting energy expenditure, skeletal muscle mitochondrial content (oxidative phosphorylation complexes and citrate synthase activity), and AMPK activation similarly in both lines (all P <0.05). CONCLUSION Despite a 5-fold difference in running volume between rat lines, EX similarly improved systemic insulin sensitivity, resting energy expenditure, and skeletal muscle mitochondrial content and AMPK activation in ovariectomized LCR and HCR rats fed HFD compared to their respective SED controls. PMID:27669449
Marlatt, Michael W.; Potter, Michelle C.; Lucassen, Paul J.; van Praag, Henriette
2012-01-01
Age-related memory loss is considered to commence at middle-age and coincides with reduced adult hippocampal neurogenesis and neurotrophin levels. Consistent physical activity at midlife may preserve brain-derived neurotrophic factor (BDNF) levels, new cell genesis and learning. In the present study, 9-month-old female C57Bl/6J mice were housed with or without a running wheel and injected with bromodeoxyuridine (BrdU) to label newborn cells. Morris water maze learning, open field activity and rotarod behavior were tested 1 and 6 months after exercise onset. Here we show that long-term running improved retention of spatial memory and modestly enhanced rotarod performance at 15 months of age. Both hippocampal neurogenesis and mature BDNF peptide levels were elevated after long-term running. Thus, regular exercise from the onset and during middle-age may maintain brain function. PMID:22252978
Kelly, Scott A; Gomes, Fernando R; Kolb, Erik M; Malisch, Jessica L; Garland, Theodore
2017-03-15
Chronic voluntary exercise elevates total daily energy expenditure and food consumption, potentially resulting in organ compensation supporting nutrient extraction/utilization. Additionally, species with naturally higher daily energy expenditure often have larger processing organs, which may represent genetic differences and/or phenotypic plasticity. We tested for possible adaptive changes in organ masses of four replicate lines of house mice selected (37 generations) for high running (HR) compared with four non-selected control (C) lines. Females were housed with or without wheel access for 13-14 weeks beginning at 53-60 days of age. In addition to organ compensation, chronic activity may also require an elevated aerobic capacity. Therefore, we also measured hematocrit and both citrate synthase activity and myoglobin concentration in heart and gastrocnemius. Both selection (HR versus C) and activity (wheels versus no wheels) significantly affected morphological and biochemical traits. For example, with body mass as a covariate, mice from HR lines had significantly higher hematocrit and larger ventricles, with more myoglobin. Wheel access lengthened the small intestine, increased relative ventricle and kidney size, and increased skeletal muscle citrate synthase activity and myoglobin concentration. As compared with C lines, HR mice had greater training effects for ventricle mass, hematocrit, large intestine length and gastrocnemius citrate synthase activity. For ventricle and gastrocnemius citrate synthase activity, the greater training was quantitatively explainable as a result of greater wheel running (i.e. 'more pain, more gain'). For hematocrit and large intestine length, differences were not related to amount of wheel running and instead indicate inherently greater adaptive plasticity in HR lines. © 2017. Published by The Company of Biologists Ltd.
Bone marrow fat accumulation accelerated by high fat diet is suppressed by exercise
Styner, Maya; Thompson, William R.; Galior, Kornelia; Uzer, Gunes; Wu, Xin; Kadari, Sanjay; Case, Natasha; Xie, Zhihui; Sen, Buer; Romaine, Andrew; Pagnotti, Gabriel M.; Rubin, Clinton T.; Styner, Martin A.; Horowitz, Mark C.; Rubin, Janet
2014-01-01
Marrow adipose tissue (MAT), associated with skeletal fragility and hematologic insufficiency, remains poorly understood and difficult to quantify. We tested the response of MAT to high fat diet (HFD) and exercise using a novel volumetric analysis, and compared it to measures of bone quantity. We hypothesized that HFD would increase MAT and diminish bone quantity, while exercise would slow MAT acquisition and promote bone formation. Eight week-old female C57BL/6 mice were fed a regular (RD) or HFD, and exercise groups were provided voluntary access to running wheels (RD-E, HFD-E). Femoral MAT was assessed by μCT (lipid binder osmium) using a semi-automated approach employing rigid co-alignment, regional bone masks and was normalized for total femoral volume (TV) of the bone compartment. MAT was 2.6-fold higher in HFD relative to RD mice. Exercise suppressed MAT in RD-E mice by more than half compared with RD. Running similarly inhibited MAT acquisition in HFD mice. Exercise significantly increased bone quantity in both diet groups. Thus, HFD caused significant accumulation of MAT; importantly running exercise limited MAT acquisition while promoting bone formation during both diets. That MAT is exquisitely responsive to diet and exercise, and its regulation by exercise appears to be inversely proportional to effects on exercise induced bone formation, is relevant for an aging and sedentary population. PMID:24709686
Development and testing of a new system for assessing wheel-running behaviour in rodents.
Chomiak, Taylor; Block, Edward W; Brown, Andrew R; Teskey, G Campbell; Hu, Bin
2016-05-05
Wheel running is one of the most widely studied behaviours in laboratory rodents. As a result, improved approaches for the objective monitoring and gathering of more detailed information is increasingly becoming important for evaluating rodent wheel-running behaviour. Here our aim was to develop a new quantitative wheel-running system that can be used for most typical wheel-running experimental protocols. Here we devise a system that can provide a continuous waveform amenable to real-time integration with a high-speed video ideal for wheel-running experimental protocols. While quantification of wheel running behaviour has typically focused on the number of revolutions per unit time as an end point measure, the approach described here allows for more detailed information like wheel rotation fluidity, directionality, instantaneous velocity, and acceleration, in addition to total number of rotations, and the temporal pattern of wheel-running behaviour to be derived from a single trace. We further tested this system with a running-wheel behavioural paradigm that can be used for investigating the neuronal mechanisms of procedural learning and postural stability, and discuss other potentially useful applications. This system and its ability to evaluate multiple wheel-running parameters may become a useful tool for screening new potentially important therapeutic compounds related to many neurological conditions.
Mustroph, M L; Merritt, J R; Holloway, A L; Pinardo, H; Miller, D S; Kilby, C N; Bucko, P; Wyer, A; Rhodes, J S
2015-01-01
Recent evidence suggests that wheel running can abolish conditioned place preference (CPP) for cocaine in mice. Running significantly increases the number of new neurons in the hippocampus, and new neurons have been hypothesised to enhance plasticity and behavioral flexibility. Therefore, we tested the hypothesis that increased neurogenesis was necessary for exercise to abolish cocaine CPP. Male nestin-thymidine kinase transgenic mice were conditioned with cocaine, and then housed with or without running wheels for 32 days. Half of the mice were fed chow containing valganciclovir to induce apoptosis in newly divided neurons, and the other half were fed standard chow. For the first 10 days, mice received daily injections of bromodeoxyuridine (BrdU) to label dividing cells. On the last 4 days, mice were tested for CPP, and then euthanized for measurement of adult hippocampal neurogenesis by counting the number of BrdU-positive neurons in the dentate gyrus. Levels of running were similar in mice fed valganciclovir-containing chow and normal chow. Valganciclovir significantly reduced the numbers of neurons (BrdU-positive/NeuN-positive) in the dentate gyrus of both sedentary mice and runner mice. Valganciclovir-fed runner mice showed similar levels of neurogenesis as sedentary, normal-fed controls. However, valganciclovir-fed runner mice showed the same abolishment of CPP as runner mice with intact neurogenesis. The results demonstrate that elevated adult hippocampal neurogenesis resulting from running is not necessary for running to abolish cocaine CPP in mice. © 2014 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Pedersen, Line; Idorn, Manja; Olofsson, Gitte H; Lauenborg, Britt; Nookaew, Intawat; Hansen, Rasmus Hvass; Johannesen, Helle Hjorth; Becker, Jürgen C; Pedersen, Katrine S; Dethlefsen, Christine; Nielsen, Jens; Gehl, Julie; Pedersen, Bente K; Thor Straten, Per; Hojman, Pernille
2016-03-08
Regular exercise reduces the risk of cancer and disease recurrence. Yet the mechanisms behind this protection remain to be elucidated. In this study, tumor-bearing mice randomized to voluntary wheel running showed over 60% reduction in tumor incidence and growth across five different tumor models. Microarray analysis revealed training-induced upregulation of pathways associated with immune function. NK cell infiltration was significantly increased in tumors from running mice, whereas depletion of NK cells enhanced tumor growth and blunted the beneficial effects of exercise. Mechanistic analyses showed that NK cells were mobilized by epinephrine, and blockade of β-adrenergic signaling blunted training-dependent tumor inhibition. Moreover, epinephrine induced a selective mobilization of IL-6-sensitive NK cells, and IL-6-blocking antibodies blunted training-induced tumor suppression, intratumoral NK cell infiltration, and NK cell activation. Together, these results link exercise, epinephrine, and IL-6 to NK cell mobilization and redistribution, and ultimately to control of tumor growth. Copyright © 2016 Elsevier Inc. All rights reserved.
Exercise Increases and Browns Muscle Lipid in High-Fat Diet-Fed Mice.
Morton, Tiffany L; Galior, Kornelia; McGrath, Cody; Wu, Xin; Uzer, Gunes; Uzer, Guniz Bas; Sen, Buer; Xie, Zhihui; Tyson, David; Rubin, Janet; Styner, Maya
2016-01-01
Muscle lipid increases with high-fat feeding and diabetes. In trained athletes, increased muscle lipid is not associated with insulin resistance, a phenomenon known as the athlete's paradox. To understand if exercise altered the phenotype of muscle lipid, female C57BL/6 mice fed CTL or high-fat diet (HFD for 6 or 18 weeks) were further divided into sedentary or exercising groups (CTL-E or HFD-E) with voluntary access to running wheels for the last 6 weeks of experiments, running 6 h/night. Diet did not affect running time or distance. HFD mice weighed more than CTL after 18 weeks (p < 0.01). Quadriceps muscle TG was increased in running animals and in sedentary mice fed HFD for 18 weeks (p < 0.05). In exercised animals, markers of fat, Plin1, aP2, FSP27, and Fasn, were increased significantly in HFD groups. Ucp1 and Pgc1a, markers for brown fat, increased with exercise in the setting of high fat feeding. Fndc5, which encodes irisin, and CytC were sensitive to exercise regardless of diet. Plin5 was increased with HFD and unaffected by exercise; the respiratory exchange ratio was 15% lower in the 18-week HFD group compared with CTL (p < 0.001) and 10% lower in 18 weeks HFD-E compared with CTL-E (p < 0.001). Increased Ucp1 and Pgc1a in exercised muscle of running mice suggests that a beige/brown fat phenotype develops, which differs from the fat phenotype that induces insulin resistance in high fat feeding. This suggests that increased muscle lipid may develop a "brown" phenotype in the setting of endurance exercise training, a shift that is further promoted by HFD.
Belke, Terry W; Pierce, W David
2009-02-01
Twelve female Long-Evans rats were exposed to concurrent variable (VR) ratio schedules of sucrose and wheel-running reinforcement (Sucrose VR 10 Wheel VR 10; Sucrose VR 5 Wheel VR 20; Sucrose VR 20 Wheel VR 5) with predetermined budgets (number of responses). The allocation of lever pressing to the sucrose and wheel-running alternatives was assessed at high and low body weights. Results showed that wheel-running rate and lever-pressing rates for sucrose and wheel running increased, but the choice of wheel running decreased at the low body weight. A regression analysis of relative consumption as a function of relative price showed that consumption shifted toward sucrose and interacted with price differences in a manner consistent with increased substitutability. Demand curves showed that demand for sucrose became less elastic while demand for wheel running became more elastic at the low body weight. These findings reflect an increase in the difference in relative value of sucrose and wheel running as body weight decreased. Discussion focuses on the limitations of response rates as measures of reinforcement value. In addition, we address the commonalities between matching and demand curve equations for the analysis of changes in relative reinforcement value.
de Visser, Leonie; van den Bos, Ruud; Stoker, Astrid K; Kas, Martien J H; Spruijt, Berry M
2007-02-27
Recent studies suggest running wheel activity to be naturally rewarding and reinforcing; considering the shared neuro-behavioural characteristics with drug-induced reward situations, wheel running behaviour gains interest as a tool to study mechanisms underlying reward-sensitivity. Previously, we showed that wheel running has the potential to disrupt the daily organization of home cage behaviour in female C57BL/6 [de Visser L, van den Bos R, Spruijt BM. Automated home cage observations as a tool to measure the effects of wheel running on cage floor locomotion. Behav Brain Res 2005;160:382-8]. In the present study, we investigated the effects of novelty-induced stress on wheel running and its impact on home cage behaviour in male C57BL/6 and DBA/2 mice. Our aim was to determine whether wheel running may be used as a tool to study both genetic and environmentally induced differences in sensitivity to rewarding behaviour in mice. One group of male mice was placed in an automated home cage observation system for 2 weeks with a wheel integrated in the cage. A second group of mice was allowed to habituate to this cage for 1 week before a running wheel was introduced. Results showed a pronounced sensitising effect of novelty on the level of wheel running in C57Bl/6 mice but not in DBA mice. Overall levels of wheel running were higher in DBA/2 mice. Furthermore, wheel running affected circadian rhythmicity in DBA/2 mice but not in C57BL/6 mice. From these findings we tentatively suggest that wheel running behaviour could serve as a tool to study the interaction between genetic and environmental factors in sensitivity to rewarding behaviour in mice. As it is displayed spontaneously and easy to monitor, wheel running may be well suitable to be included in high-throughput phenotyping assays.
Zheng, Fei; Zhang, Ming; Ding, Qi; Sethna, Ferzin; Yan, Lily; Moon, Changjong; Yang, Miyoung
2016-01-01
Mental health and cognitive functions are influenced by both genetic and environmental factors. Although having active lifestyle with physical exercise improves learning and memory, how it interacts with the specific key molecular regulators of synaptic plasticity is largely unknown. Here, we examined the effects of voluntary running on long-term potentiation (LTP) and memory formation in mice lacking type 1 adenylyl cyclase (AC1), a neurospecific synaptic enzyme that contributes to Ca2+-stimulated cAMP production. Following 1 mo of voluntary running-wheel exercise, the impaired LTP and object recognition memory in AC1 knockout (KO) mice were significantly attenuated. Running up-regulated exon II mRNA level of BDNF (brain-derived neurotrophic factor), though it failed to increase exon I and IV mRNAs in the hippocampus of AC1 KO mice. Intrahippocampal infusion of recombinant BDNF was sufficient to rescue LTP and object recognition memory defects in AC1 KO mice. Therefore, voluntary running and exogenous BDNF application overcome the defective Ca2+-stimulated cAMP signaling. Our results also demonstrate that alteration in Ca2+-stimulated cAMP can affect the molecular outcome of physical exercise. PMID:27421897
Anxiety is correlated with running in adolescent female mice undergoing activity-based anorexia
Wable, Gauri S.; Min, Jung-Yun; Chen, Yi-Wen; Aoki, Chiye
2015-01-01
Activity-based anorexia (ABA) is a widely used animal model for identifying the biological basis of excessive exercise and starvation, two hallmarks of anorexia nervosa (AN). Anxiety is correlated with exercise in AN. Yet the anxiety level of animals in ABA has not been reported. We asked: Does food restriction as part of ABA induction change the anxiety level of animals? If so, is the degree of anxiety correlated with degree of hyperactivity? We used the open field test before food restriction and the elevated plus maze test (EPM) during food restriction to quantify anxiety among singly housed adolescent female mice and determined whether food restriction alone or combined with exercise (i.e., ABA induction) abates or increases anxiety. We show that food restriction, with or without exercise, reduced anxiety significantly, as measured by the proportion of entries into the open arms of EPM (35.73 %, p= .04). Moreover, ABA-induced individuals varied in their open arm time measure of anxiety and this value was highly and negatively correlated to the individual’s food restriction-evoked wheel activity during the 24 hours following the anxiety test (R = − .75, p= .004, N = 12). This correlation was absent among the exercise-only controls. Additionally, mice with higher increase in anxiety ran more following food restriction. Our data suggest that food restriction-evoked wheel running hyperactivity can be used as a reliable and continuous measure of anxiety in ABA. The parallel relationship between anxiety level and activity in AN and ABA-induced female mice strengthens the animal model. PMID:25730124
Reinforcement of wheel running in BALB/c mice: role of motor activity and endogenous opioids.
Vargas-Pérez, Héctor; Sellings, Laurie H L; Paredes, Raúl G; Prado-Alcalá, Roberto A; Díaz, José-Luis
2008-11-01
The authors investigated the effect of the opioid antagonist naloxone on wheel-running behavior in Balb/c mice. Naloxone delayed the acquisition of wheel-running behavior, but did not reduce the expression of this behavior once acquired. Delayed acquisition was not likely a result of reduced locomotor activity, as naloxone-treated mice did not exhibit reduced wheel running after the behavior was acquired, and they performed normally on the rotarod test. However, naloxone-blocked conditioned place preference for a novel compartment paired previously with wheel running, suggesting that naloxone may delay wheel-running acquisition by blocking the rewarding or reinforcing effects of the behavior. These results suggest that the endogenous opioid system mediates the initial reinforcing effects of wheel running that are important in acquisition of the behavior.
Nedelescu, Hermina; Chowdhury, Tara G; Wable, Gauri S; Arbuthnott, Gordon; Aoki, Chiye
2017-01-01
The vermis or "spinocerebellum" receives input from the spinal cord and motor cortex for controlling balance and locomotion, while the longitudinal hemisphere region or "cerebro-cerebellum" is interconnected with non-motor cortical regions, including the prefrontal cortex that underlies decision-making. Noradrenaline release in the cerebellum is known to be important for motor plasticity but less is known about plasticity of the cerebellar noradrenergic (NA) system, itself. We characterized plasticity of dopamine β-hydroxylase-immunoreactive NA fibers in the cerebellum of adolescent female rats that are evoked by voluntary wheel running, food restriction (FR) or by both, in combination. When 8 days of wheel access was combined with FR during the last 4 days, some responded with excessive exercise, choosing to run even during the hours of food access: this exacerbated weight loss beyond that due to FR alone. In the vermis, exercise, with or without FR, shortened the inter-varicosity intervals and increased varicosity density along NA fibers, while excessive exercise, due to FR, also shortened NA fibers. In contrast, the hemisphere required the FR-evoked excessive exercise to evoke shortened inter-varicosity intervals along NA fibers and this change was exhibited more strongly by rats that suppressed the FR-evoked excessive exercise, a behavior that minimized weight loss. Presuming that shortened inter-varicosity intervals translate to enhanced NA release and synthesis of norepinephrine, this enhancement in the cerebellar hemisphere may contribute towards protection of individuals from the life-threatening activity-based anorexia via relays with higher-order cortical areas that mediate the animal's decision to suppress the innate FR-evoked hyperactivity.
Diet and sex modify exercise and cardiac adaptation in the mouse
Chen, Hao; Luczak, Elizabeth; McKee, Laurel A.; Regan, Jessica; Watson, Peter A.; Stauffer, Brian L.; Khalpey, Zain I; Mckinsey, Timothy A.; Horn, Todd; LaFleur, Bonnie; Leinwand, Leslie A.
2014-01-01
The heart adapts to exercise stimuli in a sex-dimorphic manner when mice are fed the traditional soy-based chow. Females undergo more voluntary exercise (4 wk) than males and exhibit more cardiac hypertrophy per kilometer run (18, 32). We have found that diet plays a critical role in cage wheel exercise and cardiac adaptation to the exercise stimulus in this sex dimorphism. Specifically, feeding male mice a casein-based, soy-free diet increases daily running distance over soy-fed counterparts to equal that of females. Moreover, casein-fed males have a greater capacity to increase their cardiac mass in response to exercise compared with soy-fed males. To further explore the biochemical mechanisms for these differences, we performed a candidate-based RT-PCR screen on genes previously implicated in diet- or exercise-based cardiac hypertrophy. Of the genes screened, many exhibit significant exercise, diet, or sex effects but only transforming growth factor-β1 shows a significant three-way interaction with no genes showing a two-way interaction. Finally, we show that the expression and activity of adenosine monophosphate-activated kinase-α2 and acetyl-CoA carboxylase is dependent on exercise, diet, and sex. PMID:25398983
Diet and sex modify exercise and cardiac adaptation in the mouse.
Konhilas, John P; Chen, Hao; Luczak, Elizabeth; McKee, Laurel A; Regan, Jessica; Watson, Peter A; Stauffer, Brian L; Khalpey, Zain I; Mckinsey, Timothy A; Horn, Todd; LaFleur, Bonnie; Leinwand, Leslie A
2015-01-15
The heart adapts to exercise stimuli in a sex-dimorphic manner when mice are fed the traditional soy-based chow. Females undergo more voluntary exercise (4 wk) than males and exhibit more cardiac hypertrophy per kilometer run (18, 32). We have found that diet plays a critical role in cage wheel exercise and cardiac adaptation to the exercise stimulus in this sex dimorphism. Specifically, feeding male mice a casein-based, soy-free diet increases daily running distance over soy-fed counterparts to equal that of females. Moreover, casein-fed males have a greater capacity to increase their cardiac mass in response to exercise compared with soy-fed males. To further explore the biochemical mechanisms for these differences, we performed a candidate-based RT-PCR screen on genes previously implicated in diet- or exercise-based cardiac hypertrophy. Of the genes screened, many exhibit significant exercise, diet, or sex effects but only transforming growth factor-β1 shows a significant three-way interaction with no genes showing a two-way interaction. Finally, we show that the expression and activity of adenosine monophosphate-activated kinase-α2 and acetyl-CoA carboxylase is dependent on exercise, diet, and sex.
Tachinardi, Patricia; Tøien, Øivind; Valentinuzzi, Veronica S.; Buck, C. Loren; Oda, Gisele A.
2015-01-01
Several rodent species that are diurnal in the field become nocturnal in the lab. It has been suggested that the use of running-wheels in the lab might contribute to this timing switch. This proposition is based on studies that indicate feed-back of vigorous wheel-running on the period and phase of circadian clocks that time daily activity rhythms. Tuco-tucos (Ctenomys aff. knighti) are subterranean rodents that are diurnal in the field but are robustly nocturnal in laboratory, with or without access to running wheels. We assessed their energy metabolism by continuously and simultaneously monitoring rates of oxygen consumption, body temperature, general motor and wheel running activity for several days in the presence and absence of wheels. Surprisingly, some individuals spontaneously suppressed running-wheel activity and switched to diurnality in the respirometry chamber, whereas the remaining animals continued to be nocturnal even after wheel removal. This is the first report of timing switches that occur with spontaneous wheel-running suppression and which are not replicated by removal of the wheel. PMID:26460828
Kimura, Hiroko; Kon, Nobuko; Furukawa, Satoshi; Mukaida, Masahiro; Yamakura, Fumiyuki; Matsumoto, Kazuko; Sone, Hirohito; Murakami-Murofushi, Kimiko
2010-01-01
The purpose of this study is to elucidate the effect of wheel training on oxidative stress maker levels in spontaneous hypertensive rats (SHR). 4-hydroxynonenal and 3-nitrotyrosine levels in the aorta of SHRs were allowed to run for 10 weeks from the age of 15 weeks were measured and compared with those of nonexercised SHRs. The 4-hydroxynonenal and 3-nitrotyrosine levels in the exercised group were significantly lower than those in the nonexercised group. The exercised group showed a significant increase of manganese-containing superoxide dismutase. Endurance exercise showed a possible suppressing effect on the arteriosclerosis development by reducing oxidative stress, even after emergence of hypertension.
Wheel-running reinforcement in free-feeding and food-deprived rats.
Belke, Terry W; Pierce, W David
2016-03-01
Rats experiencing sessions of 30min free access to wheel running were assigned to ad-lib and food-deprived groups, and given additional sessions of free wheel activity. Subsequently, both ad-lib and deprived rats lever pressed for 60s of wheel running on fixed ratio (FR) 1, variable ratio (VR) 3, VR 5, and VR 10 schedules, and on a response-initiated variable interval (VI) 30s schedule. Finally, the ad-lib rats were switched to food deprivation and the food-deprived rats were switched to free food, as rats continued responding on the response-initiated VI 30-s schedule. Wheel running functioned as reinforcement for both ad-lib and food-deprived rats. Food-deprived rats, however, ran faster and had higher overall lever-pressing rates than free-feeding rats. On the VR schedules, wheel-running rates positively correlated with local and overall lever pressing rates for deprived, but not ad-lib rats. On the response-initiated VI 30s schedule, wheel-running rates and lever-pressing rates changed for ad-lib rats switched to food deprivation, but not for food-deprived rats switched to free-feeding. The overall pattern of results suggested different sources of control for wheel running: intrinsic motivation, contingencies of automatic reinforcement, and food-restricted wheel running. An implication is that generalizations about operant responding for wheel running in food-deprived rats may not extend to wheel running and operant responding of free-feeding animals. Copyright © 2015 Elsevier B.V. All rights reserved.
Voluntary resistance running wheel activity pattern and skeletal muscle growth in rats.
Legerlotz, Kirsten; Elliott, Bradley; Guillemin, Bernard; Smith, Heather K
2008-06-01
The aims of this study were to characterize the pattern of voluntary activity of young rats in response to resistance loading on running wheels and to determine the effects of the activity on the growth of six limb skeletal muscles. Male Sprague-Dawley rats (4 weeks old) were housed individually with a resistance running wheel (R-RUN, n = 7) or a conventional free-spinning running wheel (F-RUN, n = 6) or without a wheel, as non-running control animals (CON, n = 6). The torque required to move the wheel in the R-RUN group was progressively increased, and the activity (velocity, distance and duration of each bout) of the two running wheel groups was recorded continuously for 45 days. The R-RUN group performed many more, shorter and faster bouts of running than the F-RUN group, yet the mean daily distance was not different between the F-RUN (1.3 +/- 0.2 km) and R-RUN group (1.4 +/- 0.6 km). Only the R-RUN resulted in a significantly (P < 0.05) enhanced muscle wet mass, relative to the increase in body mass, of the plantaris (23%) and vastus lateralis muscle (17%), and the plantaris muscle fibre cross-sectional area, compared with CON. Both F-RUN and R-RUN led to a significantly greater wet mass relative to increase in body mass and muscle fibre cross-sectional area in the soleus muscle compared with CON. We conclude that the pattern of voluntary activity on a resistance running wheel differs from that on a free-spinning running wheel and provides a suitable model to induce physiological muscle hypertrophy in rats.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ji, Jian-feng; Ji, Sheng-jun; Sun, Rui
Highlights: •Forced exercise can ameliorate WBI induced cognitive impairment in our rat model. •Mature BDNF plays an important role in the effects of forced exercise. •Exercise may be a possible treatment of the radiation-induced cognitive impairment. -- Abstract: Cranial radiotherapy induces progressive and debilitating cognitive deficits, particularly in long-term cancer survivors, which may in part be caused by the reduction of hippocampal neurogenesis. Previous studies suggested that voluntary exercise can reduce the cognitive impairment caused by radiation therapy. However, there is no study on the effect of forced wheel exercise and little is known about the molecular mechanisms mediating themore » effect of exercise. In the present study, we investigated whether the forced running exercise after irradiation had the protective effects of the radiation-induced cognitive impairment. Sixty-four Male Sprague–Dawley rats received a single dose of 20 Gy or sham whole-brain irradiation (WBI), behavioral test was evaluated using open field test and Morris water maze at 2 months after irradiation. Half of the rats accepted a 3-week forced running exercise before the behavior detection. Immunofluorescence was used to evaluate the changes in hippocampal neurogenesis and Western blotting was used to assess changes in the levels of mature brain-derived neurotrophic factor (BDNF), phosphorylated tyrosine receptor kinase B (TrkB) receptor, protein kinase B (Akt), extracellular signal-regulated kinase (ERK), calcium-calmodulin dependent kinase (CaMKII), cAMP-calcium response element binding protein (CREB) in the BDNF–pCREB signaling. We found forced running exercise significantly prevented radiation-induced cognitive deficits, ameliorated the impairment of hippocampal neurogenesis and attenuated the down-regulation of these proteins. Moreover, exercise also increased behavioral performance, hippocampal neurogenesis and elevated BDNF–pCREB signaling in non-irradiation group. These results suggest that forced running exercise offers a potentially effective treatment for radiation-induced cognitive deficits.« less
Exercise Protects against PCB-Induced Inflammation and Associated Cardiovascular Risk Factors
Murphy, Margaret O.; Petriello, Michael C.; Han, Sung Gu; Sunkara, Manjula; Morris, Andrew J; Esser, Karyn; Hennig, Bernhard
2015-01-01
Polychlorinated biphenyls (PCBs) are persistent environmental pollutants that contribute to the initiation of cardiovascular disease. Exercise has been shown to reduce the risk of cardiovascular disease; however, whether exercise can modulate PCB-induced vascular endothelial dysfunction and associated cardiovascular risk factors is unknown. We examined the effects of exercise on coplanar PCB- induced cardiovascular risk factors including oxidative stress, inflammation, impaired glucose tolerance, hypercholesteremia, and endothelium-dependent relaxation. Male ApoE−/− mice were divided into sedentary and exercise groups (voluntary wheel running) over a 12 week period. Half of each group was exposed to vehicle or PCB 77 at weeks 1, 2, 9, and 10. For ex vivo studies, male C57BL/6 mice exercised via voluntary wheel training for 5 weeks and then were administered with vehicle or PCB 77 24 hours before vascular reactivity studies were performed. Exposure to coplanar PCB increased risk factors associated with cardiovascular disease, including oxidative stress and systemic inflammation, glucose intolerance, and hypercholesteremia. The 12 week exercise intervention significantly reduced these pro-atherogenic parameters. Exercise also upregulated antioxidant enzymes including phase II detoxification enzymes. Sedentary animals exposed to PCB 77 exhibited endothelial dysfunction as demonstrated by significant impairment of endothelium-dependent relaxation, which was prevented by exercise. Lifestyle modifications such as aerobic exercise could be utilized as a therapeutic approach for the prevention of adverse cardiovascular health effects induced by environmental pollutants such as PCBs. Keywords: exercise, polychlorinated biphenyl, endothelial function, antioxidant response, cardiovascular disease, inflammation, oxidative stress PMID:25586614
Park, Young-Min; Kanaley, Jill A.; Padilla, Jaume; Zidon, Terese; Welly, Rebecca J.; Will, Matthew J.; Britton, Steven L.; Koch, Lauren G.; Ruegsegger, Gregory N.; Booth, Frank W.; Thyfault, John P.; Vieira-Potter, Victoria J.
2016-01-01
Rats selectively bred for high (HCR) and low (LCR) aerobic capacity show a stark divergence in wheel running behavior, which may be associated with dopamine (DA) system in the brain. HCR possess greater motivation for voluntary running along with greater brain DA activity compared to LCR. We recently demonstrated that HCR are not immune to ovariectomy (OVX)-associated reductions in spontaneous cage (i.e. locomotor) activity. Whether HCR and LCR rats differ in their OVX-mediated voluntary wheel running response is unknown. PURPOSE To determine whether HCR are protected from OVX-associated reduction in voluntary wheel running. METHODS Forty female HCR and LCR rats (age ~27 weeks) had either SHM or OVX operations, and given access to a running wheel for 11 weeks. Weekly wheel running distance was monitored throughout the intervention. Nucleus accumbens (NAc) was assessed for mRNA expression of DA receptors at sacrifice. RESULTS Compared to LCR, HCR ran greater distance and had greater ratio of excitatory/inhibitory DA mRNA expression (both line main effects, P<0.05). Wheel running distance was significantly, positively correlated with the ratio of excitatory/inhibitory DA mRNA expression across animals. In both lines, OVX reduced wheel running (P<0.05). Unexpectedly, although HCR started with significantly greater voluntary wheel running, they had greater OVX-induced reduction in wheel running than LCR such that no differences were found 11 weeks after OVX between HCROVX and LCROVX (interaction, P<0.05). This significant reduction in wheel running in HCR was associated with an OVX-mediated reduction in the ratio of excitatory/inhibitory DA mRNA expression. CONCLUSION DA system in the NAc region may play a significant role in motivation to run in female rats. Compared to LCR, HCR rats run significantly more, which associates with greater ratio of excitatory/inhibitory DA mRNA expression. However, despite greater inherent motivation to run and an associated brain DA mRNA expression profile, these HCR rats are not protected against OVX-induced reduction in wheel running. The impairment in wheel running in HCR rats may be partially explained by their reduced ratio of excitatory/inhibitory DA receptor mRNA expression. PMID:27297873
Nesting behavior of house mice (Mus domesticus) selected for increased wheel-running activity.
Carter, P A; Swallow, J G; Davis, S J; Garland, T
2000-03-01
Nest building was measured in "active" (housed with access to running wheels) and "sedentary" (without wheel access) mice (Mus domesticus) from four replicate lines selected for 10 generations for high voluntary wheel-running behavior, and from four randombred control lines. Based on previous studies of mice bidirectionally selected for thermoregulatory nest building, it was hypothesized that nest building would show a negative correlated response to selection on wheel-running. Such a response could constrain the evolution of high voluntary activity because nesting has also been shown to be positively genetically correlated with successful production of weaned pups. With wheel access, selected mice of both sexes built significantly smaller nests than did control mice. Without wheel access, selected females also built significantly smaller nests than did control females, but only when body mass was excluded from the statistical model, suggesting that body mass mediated this correlated response to selection. Total distance run and mean running speed on wheels was significantly higher in selected mice than in controls, but no differences in amount of time spent running were measured, indicating a complex cause of the response of nesting to selection for voluntary wheel running.
Salvy, Sarah-Jeanne; Pierce, W David; Heth, Donald C; Russell, James C
2004-09-15
Rats repeatedly exposed to a distinctive novel solution (conditioned stimulus, CS) followed by the opportunity to run in a wheel subsequently drink less of this solution. Investigations on this phenomenon indicate that wheel running is an effective unconditioned stimulus (US) for establishing conditioned taste aversion (CTA) when using a forward conditioning procedure (i.e., the US-wheel running follows the CS-taste). However, other studies show that wheel running produces reliable preference for a distinctive place when pairings are backward (i.e., the CS-location follows the US-wheel running). One possibility to account for these results is that rewarding aftereffects of wheel running conditioned preference to the CS. The main objective of the present study was to assess the effects of backward conditioning using wheel running as the US and a distinctive taste as the CS. In a between-groups design, two experimental groups [i.e., forward (FC) and backward conditioning (BC)] and two control groups [CS-taste alone (TA) and CS-US unpaired (UNP)] were compared. Results from this experiment indicated that there is less suppression of drinking when a CS-taste followed a bout of wheel running. In fact, rats in the BC group drank more of the paired solution than all the other groups.
Roach, Grahm C.; Edke, Mangesh
2012-01-01
Biomechanical data provide fundamental information about changes in musculoskeletal function during development, adaptation, and disease. To facilitate the study of mouse locomotor biomechanics, we modified a standard mouse running wheel to include a force-sensitive rung capable of measuring the normal and tangential forces applied by individual paws. Force data were collected throughout the night using an automated threshold trigger algorithm that synchronized force data with wheel-angle data and a high-speed infrared video file. During the first night of wheel running, mice reached consistent running speeds within the first 40 force events, indicating a rapid habituation to wheel running, given that mice generated >2,000 force-event files/night. Average running speeds and peak normal and tangential forces were consistent throughout the first four nights of running, indicating that one night of running is sufficient to characterize the locomotor biomechanics of healthy mice. Twelve weeks of wheel running significantly increased spontaneous wheel-running speeds (16 vs. 37 m/min), lowered duty factors (ratio of foot-ground contact time to stride time; 0.71 vs. 0.58), and raised hindlimb peak normal forces (93 vs. 115% body wt) compared with inexperienced mice. Peak normal hindlimb-force magnitudes were the primary force component, which were nearly tenfold greater than peak tangential forces. Peak normal hindlimb forces exceed the vertical forces generated during overground running (50-60% body wt), suggesting that wheel running shifts weight support toward the hindlimbs. This force-instrumented running-wheel system provides a comprehensive, noninvasive screening method for monitoring gait biomechanics in mice during spontaneous locomotion. PMID:22723628
Effects of environmental enrichment on the amyotrophic lateral sclerosis mouse model.
Sorrells, A D; Corcoran-Gomez, K; Eckert, K A; Fahey, A G; Hoots, B L; Charleston, L B; Charleston, J S; Roberts, C R; Markowitz, H
2009-04-01
The manner in which an animal's environment is furnished may have significant implications for animal welfare as well as research outcomes. We evaluated four different housing conditions to determine the effects of what has been considered standard rodent enrichment and the exercise opportunities those environments allow on disease progression in the amyotrophic lateral sclerosis mouse model. Forty-eight copper/zinc superoxide dismutase mice (strain: B6SJL-TgN [SOD1-G931]1Gur) (SOD1) and 48 control (C) (strain: B6SJL-TgN[SOD1]2Gur) male mice were randomly assigned to four different conditions where 12 SOD1 and 12 C animals were allotted to each condition (n = 96). Conditions tested the effects of standard housing, a forced exercise regime, access to a mouse house and opportunity for ad libitum exercise on a running wheel. In addition to the daily all-occurrence behavioural sampling, mice were weighed and tested twice per week on gait and Rotor-Rod performance until the mice reached the age of 150 days (C) or met the criteria for our humane endpoint (SOD1). The SOD1 mice exposed to the forced exercise regime and wheel access did better in average lifespan and Rotor-Rod performance, than SOD1 mice exposed to the standard cage and mouse house conditions. In SOD1 mice, stride length remained longest throughout the progression of the disease in mice exposed to the forced exercise regime compared with other SOD1 conditions. Within the control group, mice in the standard cage and forced exercise regime conditions performed significantly less than the mice with the mouse house and wheels on the Rotor-Rod. Alpha motor neuron counts were highest in mice with wheels and in mice exposed to forced exercise regime in both mouse strains. All SOD1 mice had significantly lower alpha neuron counts than controls (P < 0.05). These data show that different enrichment strategies affect behaviour and disease progression in a transgenic mouse model, and may have implications for the effects of these strategies on experimental outcomes.
Griesbach, Grace S; Tio, Delia L; Vincelli, Jennifer; McArthur, David L; Taylor, Anna N
2012-05-01
Voluntary exercise increases levels of brain-derived neurotrophic factor (BDNF) after traumatic brain injury (TBI) when it occurs during a delayed time window. In contrast, acute post-TBI exercise does not increase BDNF. It is well known that increases in glucocorticoids suppress levels of BDNF. Moreover, recent work from our laboratory showed that there is a heightened stress response after fluid percussion injury (FPI). In order to determine if a heightened stress response is also observed with acute exercise, at post-injury days 0-4 and 7-11, corticosterone (CORT) and adrenocorticotropic hormone (ACTH) release were measured in rats running voluntarily or exposed to two daily 20-min periods of forced running wheel exercise. Forced, but not voluntary exercise, continuously elevated CORT. ACTH levels were initially elevated with forced exercise, but decreased by post-injury day 7 in the control, but not the FPI animals. As previously reported, voluntary exercise did not increase BDNF in the FPI group as it did in the control animals. Forced exercise did not increase levels of BDNF in any group. It did, however, decrease hippocampal glucocorticoid receptors in the control group. The results suggest that exercise regimens with strong stress responses may not be beneficial during the early post-injury period.
Grant, Virginia L; McDonald, Sarah V; Sheppard, Robyn C; Caldwell, Catherine L; Heeley, Thomas H; Brown, Adam R; Martin, Gerard M
2012-06-01
It is well established that wheel running in rats produces conditioned taste avoidance; that is, rats that run in wheels after consuming a novel-tasting solution later consume less of that solution than rats that do not run. In experiment 1, we found that wheel running also produces conditioned disgust reactions, indicated by gapes elicited by both the taste and context that were experienced before running. Experiment 2 showed that the conditioned disgust reactions were likely not due to running itself but to a by-product of running, the rocking of the wheel that occurs when the running stops. When rocking was reduced, the disgust reactions were also reduced, but consumption of the taste solution was not changed, showing dissociation of conditioned taste avoidance and disgust. These findings indicate that the taste avoidance induced by wheel running itself is more like the taste avoidance produced by rewarding drugs than that produced by nausea-inducing drugs. Crown Copyright © 2012. Published by Elsevier B.V. All rights reserved.
Belke, Terry W; Pierce, W David
2015-07-01
As a follow up to Belke and Pierce's (2014) study, we assessed the effects of repeated presentation and removal of sucrose solution on the behavior of rats responding on a two-component multiple schedule. Rats completed 15 wheel turns (FR 15) for either 15% or 0% sucrose solution in the manipulated component and lever pressed 10 times on average (VR 10) for an opportunity to complete 15 wheel turns (FR 15) in the other component. In contrast to our earlier study, the components advanced based on time (every 8min) rather than completed responses. Results showed that in the manipulated component wheel-running rates were higher and the latency to initiate running longer when sucrose was present (15%) compared to absent (0% or water); the number of obtained outcomes (sucrose/water), however, did not differ with the presentation and withdrawal of sucrose. For the wheel-running as reinforcement component, rates of wheel turns, overall lever-pressing rates, and obtained wheel-running reinforcements were higher, and postreinforcement pauses shorter, when sucrose was present (15%) than absent (0%) in manipulated component. Overall, our findings suggest that wheel-running rate regardless of its function (operant or reinforcement) is maintained by automatically generated consequences (automatic reinforcement) and is increased as an operant by adding experimentally arranged sucrose reinforcement (extrinsic reinforcement). This additive effect on operant wheel-running generalizes through induction or arousal to the wheel-running as reinforcement component, increasing the rate of responding for opportunities to run and the rate of wheel-running per opportunity. Copyright © 2015 Elsevier B.V. All rights reserved.
Kandasamy, Ram; Lee, Andrea T; Morgan, Michael M
2017-12-01
The development of new anti-migraine treatments is limited by the difficulty inassessing migraine pain in laboratory animals. Depression of activity is one of the few diagnostic criteria formigraine that can be mimicked in rats. The goal of the present study was to test the hypothesis thatdepression of home cage wheel running is a reliable and clinically relevant method to assess migraine painin rats. Adult female rats were implanted with a cannula to inject allyl isothiocyanate (AITC) onto the dura to induce migraine pain, as has been shown before. Rats recovered from implantation surgery for 8 days in cages containing a running wheel. Home cage wheel running was recorded 23 h a day. AITC and the migraine medication sumatriptan were administered in the hour prior to onset of the dark phase. Administration of AITC caused a concentration-dependent decrease in wheel running that lasted 3 h. The duration and magnitude of AITC-induced depression of wheel running was consistent following three repeated injections spaced 48 h apart. Administration of sumatriptan attenuated AITC-induced depressionof wheel running when a large dose (1 mg/kg) was administered immediately following AITC administration. Wheel running patterns did not change when sumatriptan was given to naïve rats. These data indicate that home cage wheel running is a sensitive, reliable, and clinically relevant method to assess migraine pain in the rat.
Analysis of Flexible Car Body of Straddle Monorail Vehicle
NASA Astrophysics Data System (ADS)
Zhong, Yuanmu
2018-03-01
Based on the finite element model of straddle monorail vehicle, a rigid-flexible coupling dynamic model considering vehicle body’s flexibility is established. The influence of vertical stiffness and vertical damping of the running wheel on the modal parameters of the car body is analyzed. The effect of flexible car body on modal parameters and vehicle ride quality is also studied. The results show that when the vertical stiffness of running wheel is less than 1 MN / m, the car body bounce and pitch frequency increase with the increasing of the vertical stiffness of the running wheel, when the running wheel vertical stiffness is 1MN / m or more, car body bounce and pitch frequency remained unchanged; When the vertical stiffness of the running wheel is below 1.8 MN / m, the vehicle body bounce and pitch damping ratio increase with the increasing of the vertical stiffness of the running wheel; When the running wheel vertical stiffness is 1.8MN / m or more, the car body bounce and pitch damping ratio remained unchanged; The running wheel vertical damping on the car body bounce and pitch frequency has no effect; Car body bounce and pitch damping ratio increase with the increasing of the vertical damping of the running wheel. The flexibility of the car body has no effect on the modal parameters of the car, which will improve the vehicle ride quality index.
Park, Young-Min; Kanaley, Jill A; Padilla, Jaume; Zidon, Terese; Welly, Rebecca J; Will, Matthew J; Britton, Steven L; Koch, Lauren G; Ruegsegger, Gregory N; Booth, Frank W; Thyfault, John P; Vieira-Potter, Victoria J
2016-10-01
Rats selectively bred for high (HCR) and low (LCR) aerobic capacity show a stark divergence in wheel running behavior, which may be associated with the dopamine (DA) system in the brain. HCR possess greater motivation for voluntary running along with greater brain DA activity compared to LCR. We recently demonstrated that HCR are not immune to ovariectomy (OVX)-associated reductions in spontaneous cage (i.e. locomotor) activity. Whether HCR and LCR rats differ in their OVX-mediated voluntary wheel running response is unknown. To determine whether HCR are protected from OVX-associated reduction in voluntary wheel running. Forty female HCR and LCR rats (age ~27weeks) had either SHM or OVX operations, and given access to a running wheel for 11weeks. Weekly wheel running distance was monitored throughout the intervention. Nucleus accumbens (NAc) was assessed for mRNA expression of DA receptors at sacrifice. Compared to LCR, HCR ran greater distance and had greater ratio of excitatory/inhibitory DA mRNA expression (both line main effects, P<0.05). Wheel running distance was significantly, positively correlated with the ratio of excitatory/inhibitory DA mRNA expression across animals. In both lines, OVX reduced wheel running (P<0.05). Unexpectedly, although HCR started with significantly greater voluntary wheel running, they had greater OVX-induced reduction in wheel running than LCR such that no differences were found 11weeks after OVX between HCROVX and LCROVX (interaction, P<0.05). This significant reduction in wheel running in HCR was associated with an OVX-mediated reduction in the ratio of excitatory/inhibitory DA mRNA expression. The DA system in the NAc region may play a significant role in motivation to run in female rats. Compared to LCR, HCR rats run significantly more, which associates with greater ratio of excitatory/inhibitory DA mRNA expression. However, despite greater inherent motivation to run and an associated brain DA mRNA expression profile, HCR rats are not protected against OVX-induced reduction in wheel running or OVX-mediated reduction in the ratio of excitatory/inhibitory DA receptor mRNA expression. OVX-mediated reduction in motivated physical activity may be partially explained by a reduced ratio of excitatory/inhibitory DA receptor mRNA expression for which intrinsic fitness does not confer protection. Copyright © 2016 Elsevier Inc. All rights reserved.
de Vaca, Soledad Cabeza; Kannan, Pavitra; Pan, Yan; Jiang, Nancy; Sun, Yanjie; Carr, Kenneth D.
2007-01-01
Adenosine A2A receptors are preferentially expressed in rat striatum, where they are concentrated in dendritic spines of striatopallidal medium spiny neurons and exist in a heteromeric complex with D2 dopamine (DA) receptors. Behavioral and biochemical studies indicate an antagonistic relationship between A2A and D2 receptors. Previous studies have demonstrated that food-restricted (FR) rats display behavioral and striatal cellular hypersensitivity to D1 and D2 DA receptor stimulation. These alterations may underlie adaptive, as well as maladaptive, behaviors characteristic of the FR rat. The present study examined whether FR rats are hypersensitive to the A2A receptor agonist, CGS-21680. In Experiment 1, spontaneous horizontal motor activity did not differ between FR and ad libitum fed (AL) rats, while vertical activity was greater in the former. Intracerebroventricular (i.c.v.) administration of CGS-21680 (0.25 and 1.0 nmol) decreased both types of motor activity in FR rats, and returned vertical activity levels to those observed in AL rats. In Experiment 2, FR rats given access to a running wheel for a brief period outside of the home cage rapidly acquired wheel running while AL rats did not. Pretreatment with CGS-21680 (1.0 nmol) blocked the acquisition of wheel running. When administered to FR subjects that had previously acquired wheel running, CGS-21680 suppressed the behavior. In Experiment 3, CGS-21680 (1.0 nmol) activated both ERK 1/2 and CREB in caudate-putamen with no difference between feeding groups. However, in nucleus accumbens (NAc), CGS-21680 failed to activate ERK 1/2 and selectively activated CREB in FR rats. These results indicate that FR subjects are hypersensitive to several effects of an adenosine A2A agonist, and suggest the involvement of an upregulated A2A receptor-linked signaling pathway in NAc. Medications targeting the A2A receptor may have utility in the treatment of maladaptive behaviors associated with FR, including substance abuse and compulsive exercise. PMID:17292868
Fujimaki, Shin; Hidaka, Ryo; Asashima, Makoto; Takemasa, Tohru; Kuwabara, Tomoko
2014-01-01
Muscle represents an abundant, accessible, and replenishable source of adult stem cells. Skeletal muscle-derived stem cells, called satellite cells, play essential roles in regeneration after muscle injury in adult skeletal muscle. Although the molecular mechanism of muscle regeneration process after an injury has been extensively investigated, the regulation of satellite cells under steady state during the adult stage, including the reaction to exercise stimuli, is relatively unknown. Here, we show that voluntary wheel running exercise, which is a low stress exercise, converts satellite cells to the activated state due to accelerated Wnt signaling. Our analysis showed that up-regulated canonical Wnt/β-catenin signaling directly modulated chromatin structures of both MyoD and Myf5 genes, resulting in increases in the mRNA expression of Myf5 and MyoD and the number of proliferative Pax7+Myf5+ and Pax7+ MyoD+ cells in skeletal muscle. The effect of Wnt signaling on the activation of satellite cells, rather than Wnt-mediated fibrosis, was observed in both adult and aged mice. The association of β-catenin, T-cell factor, and lymphoid enhancer transcription factors of multiple T-cell factor/lymphoid enhancer factor regulatory elements, conserved in mouse, rat, and human species, with the promoters of both the Myf5 and MyoD genes drives the de novo myogenesis in satellite cells even in aged muscle. These results indicate that exercise-stimulated extracellular Wnts play a critical role in the regulation of satellite cells in adult and aged skeletal muscle. PMID:24482229
de Visser, Leonie; van den Bos, Ruud; Spruijt, Berry M
2005-05-28
This paper introduces automated observations in a modular home cage system as a tool to measure the effects of wheel running on the time distribution and daily organization of cage floor locomotor activity in female C57BL/6 mice. Mice (n = 16) were placed in the home cage system for 6 consecutive days. Fifty percent of the subjects had free access to a running wheel that was integrated in the home cage. Overall activity levels in terms of duration of movement were increased by wheel running, while time spent inside a sheltering box was decreased. Wheel running affected the hourly pattern of movement during the animals' active period of the day. Mice without a running wheel, in contrast to mice with a running wheel, showed a clear differentiation between novelty-induced and baseline levels of locomotion as reflected by a decrease after the first day of introduction to the home cage. The results are discussed in the light of the use of running wheels as a tool to measure general activity and as an object for environmental enrichment. Furthermore, the possibilities of using automated home cage observations for e.g. behavioural phenotyping are discussed.
Naloxone attenuates the conditioned place preference induced by wheel running in rats.
Lett, B T; Grant, V L; Koh, M T
2001-02-01
Pairings, during which an episode of wheel running is followed by confinement in a distinctive place, produce conditioned place preference (CPP) in rats. This finding indicates that wheel running has a rewarding effect that outlasts the activity itself. In two similar experiments, we tested the hypothesis that this rewarding effect of wheel running is mediated by endogenous opioids. During a paired trial, the rats in the naloxone group were first allowed to wheel run for 2 h, then injected with naloxone (0.5 or 0.1 mg/kg in Experiments 1 and 2, respectively), and 10 min later placed in a distinctive chamber. During an unpaired trial, these rats were confined in an adjoining chamber without wheel running. Naloxone was injected before placement in both chambers, so that if naloxone-induced conditioned place aversion occurred, it would have counteracting effects on performance during the preference test. The rats in the saline group were similarly treated, except that saline was injected instead of naloxone. CPP occurred in the saline group, but not in the naloxone group. Thus, naloxone attenuated the CPP induced by wheel running. This finding supports the hypothesis that the rewarding effect of wheel running is mediated by endogenous opioids.
Running increases ethanol preference.
Werme, Martin; Lindholm, Sara; Thorén, Peter; Franck, Johan; Brené, Stefan
2002-07-18
Wheel running performed by rats is reinforcing, rewarding and possibly addictive. In this study we analyzed if wheel running could affect ethanol preference. Lewis rats, known to be both addiction-prone and to develop an excessive wheel running behavior, were given access to ethanol in a two-bottle free-choice paradigm. The animals reached a high and stable ethanol intake after 5 weeks. In the next phase, rats were subjected to ethanol withdrawal for 1, 2 or 4 weeks with or without access to running wheels. Finally animals were again given access to ethanol in the same two-bottle free-choice paradigm, combined with access to running wheels. The rats that ran in running wheels during 1 or 2, but not 4, weeks of ethanol withdrawal increased both ethanol intake and preference as compared with the control group that did not have access to the wheels. Previous studies have demonstrated that low doses of morphine increases ethanol preference. Here we show that also running potentiates ethanol intake and preference. Thus, running which shares many of the reinforcing properties with addictive drugs appears to potentiate rats to an increased preference for ethanol. Our results describe a behavioral interaction where running increases ethanol consumption.
Reduced physical activity and risk of chronic disease: the biology behind the consequences.
Booth, Frank W; Laye, Matthew J; Lees, Simon J; Rector, R Scott; Thyfault, John P
2008-03-01
This review focuses on three preserved, ancient, biological mechanisms (physical activity, insulin sensitivity, and fat storage). Genes in humans and rodents were selected in an environment of high physical activity that favored an optimization of aerobic metabolic pathways to conserve energy for a potential, future food deficiency. Today machines and other technologies have replaced much of the physical activity that selected optimal gene expression for energy metabolism. Distressingly, the negative by-product of a lack of ancient physical activity levels in our modern civilization is an increased risk of chronic disease. We have been employing a rodent wheel-lock model to approximate the reduction in physical activity in humans from the level under which genes were selected to a lower level observed in modern daily functioning. Thus far, two major changes have been identified when rats undertaking daily, natural voluntary running on wheels experience an abrupt cessation of the running (wheel lock model). First, insulin sensitivity in the epitrochlearis muscle of rats falls to sedentary values after 2 days of the cessation of running, confirming the decline to sedentary values in whole-body insulin sensitivity when physically active humans stop high levels of daily exercise. Second, visceral fat increases within 1 week after rats cease daily running, confirming the plasticity of human visceral fat. This review focuses on the supporting data for the aforementioned two outcomes. Our primary goal is to better understand how a physically inactive lifestyle initiates maladaptations that cause chronic disease.
Roberts, Michael D; Gilpin, Leigh; Parker, Kyle E; Childs, Thomas E; Will, Matthew J; Booth, Frank W
2012-02-01
Dopamine signaling in the nucleus accumbens (NAc) has been postulated to influence reward development towards drugs of abuse and exercise. Herein, we used generation 4-5 rats that were selectively bred to voluntary run high (HVR) versus low (LVR) distances in order to examine if dopamine-like 1 (D1) receptor modulation in the NAc differentially affects nightly voluntary wheel running between these lines. A subset of generation 5-6 HVR and LVR rats were also used to study the mRNA expression of key genes related to reward and addiction in the NAc (i.e., DRD1, DRD5, DRD2, Nr4a2, FosB, and BDNF). In a crossover fashion, a D1-like agonist SKF 82958 (2 μg per side) or D1-like full antagonist SCH 23390 (4 μg per side) was bilaterally injected into the NAc of HVR and LVR female Wistar rats prior to their high running nights. Notably, during hours 2-4 (between 2000 and 2300) of the dark cycle there was a significant decrement in running distances in the HVR rats treated with the D1 agonist (p=0.025) and antagonist (p=0.017) whereas the running distances in LVR rats were not affected. Interestingly, HVR and LVR rats possessed similar NAc concentrations of the studied mRNAs. These data suggest that: a) animals predisposed to run high distances on a nightly basis may quickly develop a rewarding response to exercise due to an optimal D1-like receptor signaling pathway in the NAc that can be perturbed by either activation or blocking, b) D1-like agonist or antagonist injections do not increase running distances in rats that are bred to run low nightly distances, and c) running differences between HVR and LVR animals are seemingly not due to the expression of the studied mRNAs. Given the societal prevalence of obesity and extraneous physical inactivity, future studies should be performed in order to further determine the culprit for the low running phenotype observed in LVR animals. Copyright © 2011. Published by Elsevier Inc.
Pre-exposure to wheel running disrupts taste aversion conditioning.
Salvy, Sarah-Jeanne; Pierce, W David; Heth, Donald C; Russell, James C
2002-05-01
When rats are given access to a running wheel after drinking a flavored solution, they subsequently drink less of that flavor solution. It has been suggested that running produces a conditioned taste aversion (CTA). This study explored whether CTA is eliminated by prior exposure to wheel running [i.e., unconditioned stimulus (UCS) pre-exposure effect]. The rats in the experimental group (UW) were allowed to wheel run for 1 h daily for seven consecutive days of pre-exposure. Rats in the two other groups had either access to locked wheels (LW group) or were maintained in their home cages (HC group) during the pre-exposure days. All rats were then exposed to four paired and four unpaired trials using a "ABBAABBA" design. Conditioning trials were composed of one flavored liquid followed by 60-min access to wheel running. For the unpaired trials, rats received a different flavor not followed by the opportunity to run. All rats were then initially tested for water consumption followed by tests of the two flavors (paired or unpaired) in a counterbalanced design. Rats in the UW group show no CTA to the liquid paired with wheel running, whereas LW and HC groups developed CTA. These results indicate that pre-exposure to wheel running (i.e., the UCS), eliminates subsequent CTA.
Belke, Terry W; Wagner, Jason P
2005-02-28
Wheel running reinforces the behavior that generates it and produces a preference for the context that follows it. The goal of the present study was to demonstrate both of these effects in the same animals. Twelve male Wistar rats were first exposed to a fixed-interval 30 s schedule of wheel-running reinforcement. The operant was lever-pressing and the reinforcer was the opportunity to run for 45 s. Following this phase, the method of place conditioning was used to test for a rewarding aftereffect following operant sessions. On alternating days, half the rats responded for wheel-running reinforcement while the other half remained in their home cage. Upon completion of the wheel-running reinforcement sessions, rats that ran and rats that remained in their home cages were placed into a chamber of a conditioned place preference (CPP) apparatus for 30 min. Each animal received six pairings of a distinctive context with wheel running and six pairings of a different context with their home cage. On the test day, animals were free to move between the chambers for 10 min. Results showed a conditioned place preference for the context associated with wheel running; however, time spent in the context associated with running was not related to wheel-running rate, lever-pressing rate, or post-reinforcement pause duration. (c) 2004 Elsevier B.V. All rights reserved.
Nagatomo, Fumiko; Fujino, Hidemi; Kondo, Hiroyo; Kouzaki, Motoki; Gu, Ning; Takeda, Isao; Tsuda, Kinsuke; Ishihara, Akihiko
2012-03-01
Skeletal muscles in animals with metabolic syndrome exhibit reduced oxidative capacity. We investigated the effects of running exercise on fiber characteristics, oxidative capacity, and mRNA levels in the soleus muscles of rats with metabolic syndrome [SHR/NDmcr-cp (cp/cp); CP]. We divided 5-week-old CP rats into non-exercise (CP) and exercise (CP-Ex) groups. Wistar-Kyoto rats (WKY) were used as the control group. CP-Ex rats were permitted voluntary exercise on running wheels for 10 weeks. Triglyceride levels were higher and adiponectin levels lower in the CP and CP-Ex groups than in the WKY group. However, triglyceride levels were lower and adiponectin levels higher in the CP-Ex group than in the CP group. The soleus muscles in CP-Ex rats contained only high-oxidative type I fibers, whereas those in WKY and CP rats contained type I, IIA, and IIC fibers. Muscle succinate dehydrogenase (SDH) activity was higher in the CP-Ex group than in the CP group; there was no difference in SDH activity between the WKY and CP-Ex groups. Muscle proliferator-activated receptor γ coactivator-1α (PGC-1α) mRNA levels were higher in the CP-Ex group than in the CP group; there was no difference in PGC-1α mRNA levels between the WKY and CP-Ex groups. In CP-Ex rats, longer running distance was associated with increased muscle SDH activity and PGC-1α mRNA levels. We concluded that running exercise restored decreased muscle oxidative capacity and PGC-1α mRNA levels and improved hypertriglyceridemia in rats with metabolic syndrome.
Blocking of conditioned taste avoidance induced by wheel running.
Pierce, W David; Heth, C Donald
2010-01-01
In Experiment 1, compared to non-reinforced presentation of a food stimulus (A-->no US), the association of a food stimulus with wheel running (A-->US) blocked subsequent avoidance of a distinctive flavor (X), when both the food and flavor were followed by wheel running (AX-->US). Experiment 2 replicated and extended the blocking effect, demonstrating that the amount of avoidance of X after AX-->wheel training depended on the correlation between A-alone trials and wheel running-the predictiveness of the A stimulus. The present study is the first to demonstrate associative blocking of conditioned taste avoidance (CTA) induced by wheel running and strongly implicates associative learning as the basis for this kind of avoidance. 2009 Elsevier B.V. All rights reserved.
Responding for sucrose and wheel-running reinforcement: effect of pre-running.
Belke, Terry W
2006-01-10
Six male albino Wistar rats were placed in running wheels and exposed to a fixed interval 30-s schedule that produced either a drop of 15% sucrose solution or the opportunity to run for 15s as reinforcing consequences for lever pressing. Each reinforcer type was signaled by a different stimulus. To assess the effect of pre-running, animals were allowed to run for 1h prior to a session of responding for sucrose and running. Results showed that, after pre-running, response rates in the later segments of the 30-s schedule decreased in the presence of a wheel-running stimulus and increased in the presence of a sucrose stimulus. Wheel-running rates were not affected. Analysis of mean post-reinforcement pauses (PRP) broken down by transitions between successive reinforcers revealed that pre-running lengthened pausing in the presence of the stimulus signaling wheel running and shortened pauses in the presence of the stimulus signaling sucrose. No effect was observed on local response rates. Changes in pausing in the presence of stimuli signaling the two reinforcers were consistent with a decrease in the reinforcing efficacy of wheel running and an increase in the reinforcing efficacy of sucrose. Pre-running decreased motivation to respond for running, but increased motivation to work for food.
Hormetic effects by exercise on hippocampal neurogenesis with glucocorticoid signaling
Okamoto, Masahiro; Yamamura, Yuhei; Liu, Yu-Fan; Min-Chul, Lee; Matsui, Takashi; Shima, Takeru; Soya, Mariko; Takahashi, Kanako; Soya, Shingo; McEwen, Bruce S.; Soya, Hideaki
2015-01-01
Abstract Exercise enhances adult hippocampal neurogenesis (AHN), although the exact nature of how this happens remains controversial. The beneficial effects of exercise vary depending upon the exercise condition, especially intensity. Most animal studies, however, have used wheel running, which only evaluates running distance (exercise volume) and does not consider intensity. In our rat model, we have found that exercise-induced neurogenesis varies depending on the intensity of the exercise and have found that exercise-enhanced neurogenesis is more pronounced with mild exercise than with moderate and/or intense exercise. This may be due, at least in part, to increased glucocorticoid (CORT) secretion. To test this hypothesis, we used our special exercise model in mice, with and without a stress response, based on the lactate threshold (LT) in which moderate exercise above the LT increases lactate and adrenocorticotropic hormone (ACTH) release, while mild exercise does not. Adult male C57BL/6J mice were subjected to two weeks of exercise training and AHN was measured with a 5-Bromo-2-deoxyuridine (BrdU) pre-injection and immunohistochemistry. The role of glucocorticoid signaling was examined using intrapertioneal injections of antagonists for the glucocorticoid receptor (GR), mifepristone, and the mineralocorticoid receptor (MR), spironolactone. We found that, while mild exercise increased AHN without elevating CORT blood levels, both MR and GR antagonists abolished mild-exercise-induced AHN, but did not affect AHN under intense exercise. This suggests a facilitative, permissive role of glucocorticoid and mineralocorticoid receptors in AHN during mild exercise (234/250)
Kitanaka, Nobue; Kitanaka, Junichi; Hall, F. Scott; Uhl, George R.; Watabe, Kaname; Kubo, Hitoshi; Takahashi, Hitoshi; Tatsuta, Tomohiro; Morita, Yoshio; Takemura, Motohiko
2014-01-01
Repeated intermittent administration of amphetamines acutely increases appetitive and consummatory aspects of motivated behaviors as well as general activity and exploratory behavior, including voluntary running wheel activity. Subsequently, if the drug is withdrawn, the frequency of these behaviors decrease, which is thought to be indicative of dysphoric symptoms associated with amphetamine withdrawal. Such decreases may be observed after chronic treatment or even after single drug administrations. In the present study, the effect of acute methamphetamine (METH) on running wheel activity, horizontal locomotion, appetitive behavior (food access), and consummatory behavior (food and water intake) was investigated in mice. A multi-configuration behavior apparatus designed to monitor the five behaviors was developed, where combined measures were recorded simultaneously. In the first experiment, naïve male ICR mice showed gradually increasing running wheel activity over three consecutive days after exposure to a running wheel, while mice without a running wheel showed gradually decreasing horizontal locomotion, consistent with running wheel activity being a positively motivated form of natural motor activity. In experiment 2, increased horizontal locomotion and food access, and decreased food intake, were observed for the initial 3 h after acute METH challenge. Subsequently, during the dark phase period decreased running wheel activity and horizontal locomotion were observed. The reductions in running wheel activity and horizontal locomotion may be indicative of reduced dopaminergic function, although it remains to be seen if these changes may be more pronounced after more prolonged METH treatments. PMID:22079320
Jonsdottir, I H; Johansson, C; Asea, A; Johansson, P; Hellstrand, K; Thorén, P; Hoffmann, P
1997-08-01
We have recently shown that in vivo natural cytotoxicity is enhanced after chronic exercise in spontaneously hypertensive rats (SHRs). In the present report, we have studied the duration of this augmentation and some possible mechanisms involved. Exercise consisted of voluntary running for 4-5 weeks, with the running distance ranging from 2.7-15.6 km day(-1) during the last week of running. In vivo cytotoxicity was measured as clearance of injected 51Cr-labelled YAC-1 lymphoma cells from the lungs. The in vivo natural cytotoxicity was increased in running SHRs, and also in SHRs that had their running wheel locked for 24 and 48 h prior to the experiment, and was still present after 96 h. The enhancement of in vivo cytotoxicity after 5 weeks of exercise was abolished after an acute injection of the beta-adrenergic receptor antagonist timolol (0.5 mg kg(-1) i.v.), indicating that catecholamines are involved in this augmentation. Interestingly, 24 h after the last exercise bout, the increased natural cytotoxicity could be blocked by timolol. The opioid receptor antagonist naloxone given subcutaneously for 7 days by osmotic pumps (6 mg kg(-1) h(-1)) could not reverse the increased in vivo cytotoxicity seen in the running SHRs, suggesting that opioid receptor mechanisms are not involved, or at least not the naloxone-sensitive mu-receptor. Natural immunity was not influenced by the histamine H2 receptor antagonist ranitidine, either in controls or in runners, indicating that the natural killer cell-regulatory effect of histamine is not present in SHRs and does not seem to be involved in the exercise-induced changes in natural immune function. We conclude that the augmentation of in vivo natural cytotoxicity after voluntary chronic exercise in rats is long-lasting and that the augmentation is partly mediated by beta-adrenergic receptors.
Belke, Terry W; Pierce, W David; Jensen, K
2004-07-30
A biobehavioural analysis of activity anorexia suggests that the motivation for physical activity is regulated by food supply and body weight. In the present experiment, food allocation was varied within subjects by prefeeding food-deprived rats 0, 5, 10 and 15 g of food before sessions of lever pressing for wheel-running reinforcement. The experiment assessed the effects of prefeeding on rates of wheel running, lever pressing, and postreinforcement pausing. Results showed that prefeeding animals 5 g of food had no effect. Prefeeding 10 g of food reduced lever pressing for wheel running and rates of wheel running without a significant change in body weight; the effect was, however, transitory. Prefeeding 15 g of food increased the animals' body weights, resulting in a sustained decrease of wheel running and lever pressing, and an increase in postreinforcement pausing. Overall the results indicate that the motivation for physical activity is regulated by changes in local food supply, but is sustained only when there is a concomitant change in body weight.
Exercise training, glucose transporters, and glucose transport in rat skeletal muscles
NASA Technical Reports Server (NTRS)
Rodnick, K. J.; Henriksen, E. J.; James, D. E.; Holloszy, J. O.
1992-01-01
It was previously found that voluntary wheel running induces an increase in the insulin-sensitive glucose transporter, i.e., the GLUT4 isoform, in rat plantaris muscle (K. J. Rodnick, J. O. Holloszy, C. E. Mondon, and D. E. James. Diabetes 39: 1425-1429, 1990). The present study was undertaken to determine whether 1) the increase in muscle GLUT4 protein is associated with an increase in maximally stimulated glucose transport activity, 2) a conversion of type IIb to type IIa or type I muscle fibers plays a role in the increase in GLUT4 protein, and 3) an increase in the GLUT1 isoform is a component of the adaptation of muscle to endurance exercise. Five weeks of voluntary wheel running that resulted in a 33% increase in citrate synthase activity induced a 50% increase in GLUT4 protein in epitrochlearis muscles of female Sprague-Dawley rats. The rate of 2-deoxy-glucose transport maximally stimulated with insulin or insulin plus contractions was increased approximately 40% (P less than 0.05). There was no change in muscle fiber type composition, evaluated by myosin ATPase staining, in the epitrochlearis. There was also no change in GLUT1 protein concentration. We conclude that an increase in GLUT4, but not of GLUT1 protein, is a component of the adaptive response of muscle to endurance exercise and that the increase in GLUT4 protein is associated with an increased capacity for glucose transport.
Haydari, Sakineh; Safari, Manouchehr; Zarbakhsh, Sam; Bandegi, Ahmad Reza; Miladi-Gorji, Hossein
2016-11-10
This study was designed to investigate whether free access to a running wheel during pregnancy in morphine-dependent mothers would influence the viability, proliferation and BDNF levels of bone marrow stromal cells in rat pups. Pregnant rats were made dependent by chronic administration of morphine in drinking water simultaneously with free access to a running wheel. Male pups are weaned at 21days of birth and their bones marrows were aspirated from the femurs and tibias and also the bone marrow stromal cells (BMSCs) cultured. MTT assay was used to determine cell viability and proliferation rate. The level of BDNF was measured in the supernant of BMSCs culture by ELISA. The sedentary morphine-dependent mothers' pups showed a significant increase in the percentage cell viability and proliferation rate and also a significant decrease in the BDNF protein levels in BMSCs. The rat pups borne from exercising the control and morphine-dependent mothers exhibited an increase in the percentage viability, proliferation rate and BDNF levels of the BMSCs. This study showed that maternal exercise during pregnancy in morphine-dependent and non-dependent mothers, with increasing of BDNF levels increased the proliferation and viability of BMSCs in the rat pups. Also, chronic administration of morphine during pregnancy was able to increase the proliferation and viability of BMSCs in the rat pups. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
The Running Wheel Enhances Food Anticipatory Activity: An Exploratory Study
Flôres, Danilo E. F. L.; Bettilyon, Crystal N.; Jia, Lori; Yamazaki, Shin
2016-01-01
Rodents anticipate rewarding stimuli such as daily meals, mates, and stimulant drugs. When a single meal is provided daily at a fixed time of day, an increase in activity, known as food anticipatory activity (FAA), occurs several hours before feeding time. The factors affecting the expression of FAA have not been well-studied. Understanding these factors may provide clues to the undiscovered anatomical substrates of food entrainment. In this study we determined whether wheel-running activity, which is also rewarding to rodents, modulated the robustness of FAA. We found that access to a freely rotating wheel enhanced the robustness of FAA. This enhancement was lost when the wheel was removed. In addition, while prior exposure to a running wheel alone did not enhance FAA, the presence of a locked wheel did enhance FAA as long as mice had previously run in the wheel. Together, these data suggest that FAA, like wheel-running activity, is influenced by reward signaling. PMID:27458354
The Running Wheel Enhances Food Anticipatory Activity: An Exploratory Study.
Flôres, Danilo E F L; Bettilyon, Crystal N; Jia, Lori; Yamazaki, Shin
2016-01-01
Rodents anticipate rewarding stimuli such as daily meals, mates, and stimulant drugs. When a single meal is provided daily at a fixed time of day, an increase in activity, known as food anticipatory activity (FAA), occurs several hours before feeding time. The factors affecting the expression of FAA have not been well-studied. Understanding these factors may provide clues to the undiscovered anatomical substrates of food entrainment. In this study we determined whether wheel-running activity, which is also rewarding to rodents, modulated the robustness of FAA. We found that access to a freely rotating wheel enhanced the robustness of FAA. This enhancement was lost when the wheel was removed. In addition, while prior exposure to a running wheel alone did not enhance FAA, the presence of a locked wheel did enhance FAA as long as mice had previously run in the wheel. Together, these data suggest that FAA, like wheel-running activity, is influenced by reward signaling.
Stabilization of the wheel running phenotype in mice.
Bowen, Robert S; Cates, Brittany E; Combs, Eric B; Dillard, Bryce M; Epting, Jessica T; Foster, Brittany R; Patterson, Shawnee V; Spivey, Thomas P
2016-03-01
Increased physical activity is well known to improve health and wellness by modifying the risks for many chronic diseases. Rodent wheel running behavior is a beneficial surrogate model to evaluate the biology of daily physical activity in humans. Upon initial exposure to a running wheel, individual mice differentially respond to the experience, which confounds the normal activity patterns exhibited in this otherwise repeatable phenotype. To promote phenotypic stability, a minimum seven-day (or greater) acclimation period is utilized. Although phenotypic stabilization is achieved during this 7-day period, data to support acclimation periods of this length are not currently available in the literature. The purpose of this project is to evaluate the wheel running response in C57BL/6j mice immediately following exposure to a running wheel. Twenty-eight male and thirty female C57BL/6j mice (Jackson Laboratory, Bar Harbor, ME) were acquired at eight weeks of age and were housed individually with free access to running wheels. Wheel running distance (km), duration (min), and speed (m∙min(-1)) were measured daily for fourteen days following initial housing. One-way ANOVAs were used to evaluate day-to-day differences in each wheel running character. Limits of agreement and mean difference statistics were calculated between days 1-13 (acclimating) and day 14 (acclimated) to assess day-to-day agreement between each parameter. Wheel running distance (males: F=5.653, p=2.14 × 10(-9); females: F=8.217, p=1.20 × 10(-14)), duration (males: F=2.613, p=0.001; females: F=4.529, p=3.28 × 10(-7)), and speed (males: F=7.803, p=1.22 × 10(-13); females: F=13.140, p=2.00 × 10(-16)) exhibited day-to-day differences. Tukey's HSD post-hoc testing indicated differences between early (males: days 1-3; females: days 1-6) and later (males: days >3; females: days >6) wheel running periods in distance and speed. Duration only exhibited an anomalous difference between wheel running on day 13 and wheel running on days 1 through 4 in males. In females, duration exhibited anomalous differences due to abnormally depressed wheel running on day 6 and abnormally elevated wheel running on day 14. Limits of agreement and mean difference statistics indicated stable phenotypic variability with an up-trending daily mean for distance and speed that stabilized within the first three days in males and within eight days in females. Duration exhibited stable variability after nine days in males and after seven days in females. Although it is common practice to allow a prolonged (≥ seven day) acclimation period prior to recording wheel running data, the current study suggests that phenotypic stabilization of all three indices is achieved at different times with distance and speed exhibiting stability by day three in males and day eight in females. Duration exhibits stability by day nine in males and day seven in females. Copyright © 2015 Elsevier Inc. All rights reserved.
Habituation contributes to within-session changes in free wheel running.
Aoyama, K; McSweeney, F K
2001-01-01
Three experiments tested the hypothesis that habituation contributes to the regulation of wheel running. Rats ran in a wheel for 30-min sessions. Experiment 1 demonstrated spontaneous recovery. Rats ran more and the within-session decreases in running were smaller after 2 days of wheel deprivation than after 1 day. Experiment 2 demonstrated dishabituation. Running rate increased immediately after the termination of a brief extra event (application of the brake or flashing of the houselight). Experiment 3 demonstrated stimulus specificity. Rats completed the second half of the session in either the same wheel as the first half, or a different wheel. Second-half running was faster in the latter case. Within-session patterns of running were well described by equations that describe data from the habituation, motivation, and operant literatures. These results suggest that habituation contributes to the regulation of running. In fact, habituation provides a better explanation for the termination of wheel running than fatigue, the variable to which this termination is usually attributed. Overall, the present findings are consistent with the proposition that habituation and sensitization contribute to the regulation of several forms of motivated behavior. PMID:11768712
The antidepressant effect of running is associated with increased hippocampal cell proliferation.
Bjørnebekk, Astrid; Mathé, Aleksander A; Brené, Stefan
2005-09-01
A common trait of antidepressant drugs, electroconvulsive treatment and physical exercise is that they relieve depression and up-regulate neurotrophic factors as well as cell proliferation and neurogenesis in the hippocampus. In order to identify possible biological underpinnings of depression and the antidepressant effect of running, we analysed cell proliferation, the level of the neurotrophic factor BDNF in hippocampus and dynorphin in striatum/accumbens in 'depressed' Flinders Sensitive Line rats (FSL) and Flinders Resistant Line (FRL) rats with and without access to running-wheels. The FRL strain exhibited a higher daily running activity than the FSL strain. Wheel-running had an antidepressant effect in the 'depressed' FSL rats, as indicated by the forced swim test. In the hippocampus, cell proliferation was lower in the 'depressed' rats compared to the control FRL rats but there was no difference in BDNF or dynorphin levels in striatum/accumbens. After 5 wk of running, cell proliferation increased in FSL but not in FRL rats. BDNF and dynorphin mRNA levels were increased in FRL but not to the same extent in the in FSL rats; thus, increased BDNF and dynorphin levels were correlated to the running activity but not to the antidepressant effect of running. The only parameter that was associated to basal level of 'depression' and to the antidepressant effect was cell proliferation in the hippocampus. Thus, suppression of cell proliferation in the hippocampus could constitute one of the mechanisms that underlie depression, and physical activity might be an efficient antidepressant.
Santos-Soto, Iván J.; Chorna, Nataliya; Carballeira, Néstor M.; Vélez-Bartolomei, José G.; Méndez-Merced, Ana T.; Chornyy, Anatoliy P.; de Ortiz, Sandra Peña
2013-01-01
Combinatorial therapies using voluntary exercise and diet supplementation with polyunsaturated fatty acids have synergistic effects benefiting brain function and behavior. Here, we assessed the effects of voluntary exercise on anxiety-like behavior and on total FA accumulation within three brain regions: cortex, hippocampus, and cerebellum of running versus sedentary young adult male C57/BL6J mice. The running group was subjected to one month of voluntary exercise in their home cages, while the sedentary group was kept in their home cages without access to a running wheel. Elevated plus maze (EPM), several behavioral postures and two risk assessment behaviors (RABs) were then measured in both animal groups followed immediately by blood samplings for assessment of corticosterone levels. Brains were then dissected for non-targeted lipidomic analysis of selected brain regions using gas chromatography coupled to mass spectrometry (GC/MS). Results showed that mice in the running group, when examined in the EPM, displayed significantly lower anxiety-like behavior, higher exploratory and risky behaviors, compared to sedentary mice. Notably, we found no differences in blood corticosterone levels between the two groups, suggesting that the different EPM and RAB behaviors were not related to reduced physiological stress in the running mice. Lipidomics analysis revealed a region-specific cortical decrease of the saturated FA: palmitate (C16:0) and a concomitant increase of polyunsaturated FA, arachidonic acid (AA, omega 6-C20: 4) and docosahexaenoic acid (DHA, omega 3-C22: 6), in running mice compared to sedentary controls. Finally, we found that running mice, as opposed to sedentary animals, showed significantly enhanced cortical expression of phospholipase A2 (PLA2) protein, a signaling molecule required in the production of both AA and DHA. In summary, our data support the anxiolytic effects of exercise and provide insights into the molecular processes modulated by exercise that may lead to its beneficial effects on mood. PMID:24349072
Packer, Nicholas; Hoffman-Goetz, Laurie
2012-06-01
Aging is associated with increased intestinal inflammation and elevated risk of chronic diseases including inflammatory bowel diseases and colon cancer; many epidemiologic studies show that regular exercise reduces risk. This study examined the effects of long-term voluntary exercise on inflammatory mediators expressed in the intestine of older (15-16 months), healthy C57BL/6 mice. Animals were assigned to four months of freewheel running (WR; n = 20) or to a "sedentary" no wheel running (NWR; n = 20) control group. Intestinal lymphocytes were harvested and analysed for expression of (1) pro-inflammatory (TNF-α, IL-1β) and pleiotropic (IL-6) cytokines, and (2) pro-(caspase-3/-7) and anti-(Bcl-2) apoptotic proteins. Training was confirmed by skeletal muscle enzyme activity; stress was assessed by plasma 8-iso-PGF(2α) and corticosterone. The WR mice had a lower expression of TNF-α, caspase-7, and 8-isoprostanes (p < .05) compared to sedentary controls, suggesting that long-term exercise may "protect" the bowel by reducing inflammatory cytokine and apoptotic protein expression.
Voluntary chronic exercise augments in vivo natural immunity in rats.
Jonsdottir, I H; Asea, A; Hoffmann, P; Dahlgren, U I; Andersson, B; Hellstrand, K; Thorén, P
1996-05-01
The effect of chronic voluntary exercise on the immune response was studied in spontaneously hypertensive rats. Exercise consisted of voluntary running in wheels for 5 wk, and the mean running distance was 4.2 km/24 h. In vivo cytotoxicity was measured as clearance of injected 51Cr-labeled YAC-1 lymphoma cells from the lungs. The clearance of YAC-1 cells in vivo was significantly increased in runners compared with sedentary controls (P < 0.001). The total number of mononuclear cells in the spleen was significantly decreased in runners compared with controls. Analysis of splenic lymphocyte phenotypes revealed a significantly increased fraction of OX52+/CD5- natural killer cells in runners compared with sedentary controls. In contrast to changes in natural immunity, immunoglobulins G and M levels in serum, the antibody response to antigen in vivo, and the proliferation of splenic T cells in vitro were unchanged. Our data suggest that chronic voluntary exercise augments natural cytotoxicity mechanisms in vivo, whereas splenic T-cell proliferation and the antibody-mediated immune response remain unchanged.
Exercise Effects on Tumorigenesis in a p53-deficient Mouse Model of Breast Cancer
Colbert, Lisa H.; Westerlind, Kim C.; Perkins, Susan N.; Haines, Diana C.; Berrigan, David; Donehower, Lawrence A.; Fuchs-Young, Robin; Hursting, Stephen D.
2011-01-01
Purpose Physically active women have a reduced risk of breast cancer, but the dose of activity necessary and the role of energy balance and other potential mechanisms have not been fully explored in animal models. We examined treadmill and wheel running effects on mammary tumorigenesis and biomarkers in p53-deficient (p53+/−): MMTV-Wnt-1 transgenic mice. Methods Female mice (9 wks old) were randomly assigned to the following groups in Experiment 1: treadmill exercise 5 d/wk, 45 min/d, 5% grade at 20 m/min, ~0.90 km/d (TREX1, n=20); at 24 m/min, ~1.08 km/d (TREX2, n=21); or a non-exercise control (CON-TREX, n=22). In Experiment 2, mice were randomly assigned to voluntary wheel-running (WHL, n=21, 2.46 ± 1.11 km/d (mean ± SD)) or a non-exercise control (CON-WHL, n=22). Body composition was measured at ~9 weeks and serum insulin-like growth factor-1 (IGF-1) at 2–3 monthly time points beginning at ~9 weeks on study. Mice were sacrificed when tumors reached 1.5 cm, mice became moribund, or there was only one mouse per treatment group remaining. Results TREX1 (24 wks) and TREX2 (21 wks) had shorter survival median survival times than CON-TREX (34 wks; p<0.01); WHL and CON-WHL survival was similar (23 vs. 24 wks; p=0.32). TREX2 had increased multiplicity of mammary gland carcinomas compared to CON-TREX; WHL had a higher tumor incidence than CON-WHL. All exercising animals were lighter than their respective controls, and WHL had lower body fat than CON-WHL (p<0.01). There was no difference in IGF-1 between groups (p>0.05). Conclusion Despite beneficial or no effects on body weight, body fat, or IGF-1, exercise had detrimental effects on tumorigenesis in this p53-deficient mouse model of spontaneous mammary cancer. PMID:19568200
ERIC Educational Resources Information Center
Belke, T. W.; Mondona, A. R.; Conrad, K. M.; Poirier, K. F.; Pickering, K. L.
2008-01-01
Do rats run and respond at a higher rate to run during the dark phase when they are typically more active? To answer this question, Long Evans rats were exposed to a response-initiated variable interval 30-s schedule of wheel-running reinforcement during light and dark cycles. Wheel-running and local lever-pressing rates increased modestly during…
Hall, Joseph M; Savage, Lisa M
2016-04-01
Exercise has been shown to improve cognitive functioning in a range of species, presumably through an increase in neurotrophins throughout the brain, but in particular the hippocampus. The current study assessed the ability of exercise to restore septohippocampal cholinergic functioning in the pyrithiamine-induced thiamine deficiency (PTD) rat model of the amnestic disorder Korsakoff Syndrome. After voluntary wheel running or sedentary control conditions (stationary wheel attached to the home cage), PTD and control rats were behaviorally tested with concurrent in vivo microdialysis, at one of two time points: 24-h or 2-weeks post-exercise. It was found that only after the 2-week adaption period did exercise lead to an interrelated sequence of events in PTD rats that included: (1) restored spatial working memory; (2) rescued behaviorally-stimulated hippocampal acetylcholine efflux; and (3) within the medial septum/diagonal band, the re-emergence of the cholinergic (choline acetyltransferase [ChAT+]) phenotype, with the greatest change occurring in the ChAT+/nestin+ neurons. Furthermore, in control rats, exercise followed by a 2-week adaption period improved hippocampal acetylcholine efflux and increased the number of neurons co-expressing the ChAT and nestin phenotype. These findings demonstrate a novel mechanism by which exercise can modulate the mature cholinergic/nestin neuronal phenotype leading to improved neurotransmitter function as well as enhanced learning and memory. Copyright © 2016 Elsevier Inc. All rights reserved.
Platt, Kristen M; Charnigo, Richard J; Shertzer, Howard G; Pearson, Kevin J
2016-01-01
Exercise is an inexpensive intervention that may be used to reduce obesity and its consequences. In addition, many individuals who regularly exercise utilize dietary supplements to enhance their exercise routine and to accelerate fat loss or increase lean mass. Branched-chain amino acids (BCAAs) are a popular supplement and have been shown to produce a number of beneficial effects in rodent models and humans. Therefore, we hypothesized that BCAA supplementation would protect against high fat diet (HFD)-induced glucose intolerance and obesity in mice with and without access to exercise. We subjected 80 female C57BL/6 mice to a paradigm of HFD feeding, exercise in the form of voluntary wheel running, and BCAA supplementation in the drinking water for 16 weeks (n = 10 per group). Body weight was monitored weekly, while food and water consumption were recorded twice weekly. During the 5th, 10th, and 15th weeks of treatment, glucose tolerance and body composition were analyzed. Exercise significantly improved glucose tolerance in both control-fed and HFD-fed mice. BCAA supplementation, however, did not significantly alter glucose tolerance in any treatment group. While BCAA supplements did not improve lean to fat mass ratio in sedentary mice, it significantly augmented the effects of exercise on this parameter.
Loughridge, Alice B.; Greenwood, Benjamin N.; Day, Heidi E. W.; McQueen, Matthew B.; Fleshner, Monika
2013-01-01
Serotonin (5-HT) is implicated in the development of stress-related mood disorders in humans. Physical activity reduces the risk of developing stress-related mood disorders, such as depression and anxiety. In rats, 6 weeks of wheel running protects against stress-induced behaviors thought to resemble symptoms of human anxiety and depression. The mechanisms by which exercise confers protection against stress-induced behaviors, however, remain unknown. One way by which exercise could generate stress resistance is by producing plastic changes in gene expression in the dorsal raphe nucleus (DRN). The DRN has a high concentration of 5-HT neurons and is implicated in stress-related mood disorders. The goal of the current experiment was to identify changes in the expression of genes that could be novel targets of exercise-induced stress resistance in the DRN. Adult, male F344 rats were allowed voluntary access to running wheels for 6 weeks; exposed to inescapable stress or no stress; and sacrificed immediately and 2 h after stressor termination. Laser capture micro dissection selectively sampled the DRN. mRNA expression was measured using the whole genome Affymetrix microarray. Comprehensive data analyses of gene expression included differential gene expression, log fold change (LFC) contrast analyses with False Discovery Rate correction, KEGG and Wiki Web Gestalt pathway enrichment analyses, and Weighted Gene Correlational Network Analysis (WGCNA). Our results suggest that physically active rats exposed to stress modulate expression of twice the number of genes, and display a more rapid and strongly coordinated response, than sedentary rats. Bioinformatics analyses revealed several potential targets of stress resistance including genes that are related to immune processes, tryptophan metabolism, and circadian/diurnal rhythms. PMID:23717271
Lensu, Sanna; Ahtiainen, Juha P.; Johansson, Petra P.; Koch, Lauren G.; Britton, Steven L.; Kainulainen, Heikki
2016-01-01
Key points Aerobic exercise, such as running, enhances adult hippocampal neurogenesis (AHN) in rodents.Little is known about the effects of high‐intensity interval training (HIT) or of purely anaerobic resistance training on AHN.Here, compared with a sedentary lifestyle, we report a very modest effect of HIT and no effect of resistance training on AHN in adult male rats.We found the most AHN in rats that were selectively bred for an innately high response to aerobic exercise that also run voluntarily and increase maximal running capacity.Our results confirm that sustained aerobic exercise is key in improving AHN. Abstract Aerobic exercise, such as running, has positive effects on brain structure and function, such as adult hippocampal neurogenesis (AHN) and learning. Whether high‐intensity interval training (HIT), referring to alternating short bouts of very intense anaerobic exercise with recovery periods, or anaerobic resistance training (RT) has similar effects on AHN is unclear. In addition, individual genetic variation in the overall response to physical exercise is likely to play a part in the effects of exercise on AHN but is less well studied. Recently, we developed polygenic rat models that gain differentially for running capacity in response to aerobic treadmill training. Here, we subjected these low‐response trainer (LRT) and high‐response trainer (HRT) adult male rats to various forms of physical exercise for 6–8 weeks and examined the effects on AHN. Compared with sedentary animals, the highest number of doublecortin‐positive hippocampal cells was observed in HRT rats that ran voluntarily on a running wheel, whereas HIT on the treadmill had a smaller, statistically non‐significant effect on AHN. Adult hippocampal neurogenesis was elevated in both LRT and HRT rats that underwent endurance training on a treadmill compared with those that performed RT by climbing a vertical ladder with weights, despite their significant gain in strength. Furthermore, RT had no effect on proliferation (Ki67), maturation (doublecortin) or survival (bromodeoxyuridine) of new adult‐born hippocampal neurons in adult male Sprague–Dawley rats. Our results suggest that physical exercise promotes AHN most effectively if the exercise is aerobic and sustained, especially when accompanied by a heightened genetic predisposition for response to physical exercise. PMID:26844666
Clark, Peter J.; Bhattacharya, Tushar K.; Miller, Daniel S.; Rhodes, Justin S.
2011-01-01
The functional significance of newly formed granule neurons in the adult mammalian hippocampus remains a mystery. Recently, it was demonstrated that wheel running increases new neuron survival and c-Fos expression in new and pre-existing granule cells in an activity-dependent manner. It is currently unknown whether other immediate early genes (IEGs) become expressed in granule neurons from running. Further, it is unknown whether locomotor activity in home cages without wheels can influence neurogenesis and IEG expression similar to running. The purpose of this study was three fold: 1) to determine if Arc and Zif268 expression are also induced from wheel running in both pre-existing and newly formed neurons 2) to determine if neurogenesis and IEG induction is related to horizontal distance traveled in home cages without wheels and 3) to determine whether IEG induction is related to acute bouts of running or chronic effects. Adult C57BL/6J female mice were placed in cages with or without running wheels for 31 days. The first 10 days, mice received daily injections of 5-Bromo-2′-deoxyuridine (BrdU) to label dividing cells. On day 31, running and non-running animals were euthanized either 2 hours after peak activity, or during a period of relative inactivity. Immunohistochemistry was performed on hippocampal sections with antibodies against BrdU, mature neuron marker NeuN, c-Fos, Arc, and Zif268. Results demonstrate that Arc, Zif268, and c-Fos are induced from wheel running but not movement in cages without wheels. All IEGs were expressed in new neurons from running. Further, IEGs were induced acutely by running, as increased expression did not continue into the light cycle, a period of relative inactivity. The results suggest that robust movements, like running, are necessary to stimulate IEG expression and neurogenesis. Moreover, results suggest new neurons from running may be processing information about running behavior itself. PMID:21497182
Belke, Terry W; Pierce, W David
2016-12-01
Rats responded on a multiple variable-ratio (VR) 10 VR 10 schedule of reinforcement in which lever pressing was reinforced by the opportunity to run in a wheel for 30s in both the changed (manipulated) and unchanged components. To generate positive contrast, the schedule of reinforcement in the changed component was shifted to extinction; to generate negative contrast, the schedule was shifted to VR 3. With the shift to extinction in the changed component, wheel-running and local lever-pressing rates increased in the unchanged component, a result supporting positive contrast; however, the shift to a VR 3 schedule in the changed component showed no evidence of negative contrast in the unaltered setting, only wheel running decreased in the unchanged component. Changes in wheel-running rates across components were consistent in showing a compensation effect, depending on whether the schedule manipulation increased or decreased opportunities for wheel running in the changed component. These findings are the first to demonstrate positive behavioral contrast on a multiple schedule with wheel running as reinforcement in both components. Copyright © 2016 Elsevier B.V. All rights reserved.
Wheel running, voluntary ethanol consumption, and hedonic substitution.
Ozburn, Angela Renee; Harris, R Adron; Blednov, Yuri A
2008-08-01
Few studies have examined the relationship between naturally rewarding behaviors and ethanol drinking behaviors in mice. Although natural and drug reinforcers activate similar brain circuitry, there is behavioral evidence suggesting food and drug rewards differ in perceived value. The primary goal of the present study was to investigate the relationships between naturally reinforcing stimuli and consumption of ethanol in ethanol preferring C57BL/6J mice. Mouse behaviors were observed after the following environmental manipulations: standard or enhanced environment, accessible or inaccessible wheel, and presence or absence of ethanol. Using a high-resolution volumetric drinking monitor and wheel running monitor, we evaluated whether alternating access to wheel running modified ethanol-related behaviors and whether alternating access to ethanol modified wheel running or subsequent ethanol-related behaviors. We found that ethanol consumption remains stable with alternating periods of wheel running. Wheel running increases in the absence of ethanol and decreases upon reintroduction of ethanol. Upon reintroduction of ethanol, an alcohol deprivation effect was seen. Collectively, the results support theories of hedonic substitution and suggest that female C57BL/6J mice express ethanol seeking and craving under these specific conditions.
Spontaneous running activity in male rats - Effect of age
NASA Technical Reports Server (NTRS)
Mondon, C. E.; Dolkas, C. B.; Sims, C.; Reaven, G. M.
1985-01-01
Variations in the intensity and the patterns of spontaneous running activity in wheel cages were studied in male rats aged 7 weeks to one year. Daily running records were obtained for periods of 12 mo, and 24-hour recordings were made for selected runners in order to study variations in running activity during the day. The data indicate that for rats running over two miles/day, the maximum running intensity can be divided into two groups: a group of high achievers running 8 miles/day; and a group of moderate achievers running 4.8 miles/day. For both groups spontaneous activity reached a maximum after 4-5 weeks. An hourly pattern of running activity during the day was identified in rats of increasing age who averaged 9.0, 4.5, 2.6, and 1.2 miles/day, respectively. Progressive losses were observed in both the speed and the duration of spontaneous running as the rats increased in age, with the intensity of exercise falling below 2 miles/day after 7-8 months of age.
Saul, M C; Majdak, P; Perez, S; Reilly, M; Garland, T; Rhodes, J S
2017-03-01
Although exercise is critical for health, many lack the motivation to exercise, and it is unclear how motivation might be increased. To uncover the molecular underpinnings of increased motivation for exercise, we analyzed the transcriptome of the striatum in four mouse lines selectively bred for high voluntary wheel running and four non-selected control lines. The striatum was dissected and RNA was extracted and sequenced from four individuals of each line. We found multiple genes and gene systems with strong relationships to both selection and running history over the previous 6 days. Among these genes were Htr1b, a serotonin receptor subunit and Slc38a2, a marker for both glutamatergic and γ-aminobutyric acid (GABA)-ergic signaling. System analysis of the raw results found enrichment of transcriptional regulation and kinase genes. Further, we identified a splice variant affecting the Wnt-related Golgi signaling gene Tmed5. Using coexpression network analysis, we found a cluster of interrelated coexpression modules with relationships to running behavior. From these modules, we built a network correlated with running that predicts a mechanistic relationship between transcriptional regulation by nucleosome structure and Htr1b expression. The Library of Integrated Network-Based Cellular Signatures identified the protein kinase C δ inhibitor, rottlerin, the tyrosine kinase inhibitor, Linifanib and the delta-opioid receptor antagonist 7-benzylidenenaltrexone as potential compounds for increasing the motivation to run. Taken together, our findings support a neurobiological framework of exercise motivation where chromatin state leads to differences in dopamine signaling through modulation of both the primary neurotransmitters glutamate and GABA, and by neuromodulators such as serotonin. © 2016 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.
Careau, Vincent; Bininda-Emonds, Olaf R P; Ordonez, Genesis; Garland, Theodore
2012-09-01
Voluntary wheel running and open-field behavior are probably the two most widely used measures of locomotion in laboratory rodents. We tested whether these two behaviors are correlated in mice using two approaches: the phylogenetic comparative method using inbred strains of mice and an ongoing artificial selection experiment on voluntary wheel running. After taking into account the measurement error and phylogenetic relationships among inbred strains, we obtained a significant positive correlation between distance run on wheels and distance moved in the open-field for both sexes. Thigmotaxis was negatively correlated with distance run on wheels in females but not in males. By contrast, mice from four replicate lines bred for high wheel running did not differ in either distance covered or thigmotaxis in the open field as compared with mice from four non-selected control lines. Overall, results obtained in the selection experiment were generally opposite to those observed among inbred strains. Possible reasons for this discrepancy are discussed.
ERIC Educational Resources Information Center
Belke, Terry W.; Garland, Theodore, Jr.
2007-01-01
Mice from replicate lines, selectively bred based on high daily wheel-running rates, run more total revolutions and at higher average speeds than do mice from nonselected control lines. Based on this difference it was assumed that selected mice would find the opportunity to run in a wheel a more efficacious consequence. To assess this assumption…
Response of Gut Microbiota to Metabolite Changes Induced by Endurance Exercise.
Zhao, Xia; Zhang, Zhujun; Hu, Bin; Huang, Wei; Yuan, Chao; Zou, Lingyun
2018-01-01
A few animal studies have shown that wheel running could reverse an unhealthy status by shifting the gut microbial composition, but no investigations have studied the effect of endurance running, such as marathon running, on human gut microbial communities. Since many findings have shown that marathon running immediately causes metabolic changes in blood, urine, muscles and lymph that potentially impact the gut microbiota (GM) within several hours. Here, we investigated whether the GM immediately responds to the enteric changes in amateur half-marathon runners. Alterations in the metabolic profile and microbiota were investigated in fecal samples based on an untargeted metabolomics methodology and 16S rDNA sequencing analysis. A total of 40 fecal metabolites were found significantly changed after finishing a half-marathon race. The most significantly different metabolites were organic acids (the major increased metabolites) and nucleic acid components (the major decreased metabolites). The enteric changes induced by running did not affect the α-diversity of the GM, but the abundances of certain microbiota members were shown to be significantly different before and after running. The family Coriobacteriaceae was identified as a potential biomarker that links exercise with health improvement. Functional prediction showed a significantly activated "Cell motility" function of GM within participants after running. Correlation analysis indicated that the observed differential GM in our study might have been the shared outcome of running and diet. This study provided knowledge regarding the health impacts of marathon running from the perspective of GM for the first time. Our data indicated that long-distance endurance running can immediately cause striking metabolic changes in the gut environment. Gut microbes can rapidly respond to the altered fecal metabolites by adjusting certain bacterial taxa. These findings highlighted the health-promoting benefits of exercise from the perspective of GM.
Shapiro, Alexandra; Cheng, Kit-Yan; Gao, Yongxin; Seo, Dong-Oh; Anton, Steve; Carter, Christy S; Zhang, Yi; Tumer, Nihal; Scarpace, Philip J
2011-01-01
To test the hypothesis that exercise increases central leptin signaling, and thus reduces dietary weight gain in an aged obese model, we assessed the effects of voluntary wheel running (WR) in 23-month-old F344×BN rats fed a 60% high-fat (HF) diet for 3 months. After 2 months on the HF diet, half of the rats were provided access to running wheels for 2 weeks while the other half remained sedentary. Following the removal of the wheels, physical performance was evaluated, and 4 weeks later leptin signaling was assessed in hypothalamus and VTA after an acute bout of WR. Introduction of a HF diet led to prolonged hyperphagia (63.9 ± 7.8 kcal/day on chow diet vs. 88.1 ± 8.2 kcal/day on high-fat diet (when food intake stabilized), p < 0.001). As little as 9 (ranging to 135) wheel revolutions per day significantly reduced caloric consumption of HF food (46.8 ± 11.2 kcal/day) to a level below that on chow diet (63.9 ± 7.8 kcal/day, p < 0.001). After 2 weeks of WR, body weight was significantly reduced (7.9 ± 2.1% compared with prerunning weight, p < 0.001), and physical performance (latency to fall from an incline plane) was significantly improved (p = 0.04). WR significantly increased both basal (p = 0.04) and leptin-stimulated (p = 0.001) STAT3 phosphorylation in the ventral tegmental area (VTA), but not in the hypothalamus. Thus, in aged dietary obese rats, the act but not the extent of voluntary WR is highly effective in reversing HF consumption, decreasing body weight, and improving physical performance. It appears to trigger a response that substitutes for the reward of highly palatable food that may be mediated by increased leptin signaling in the VTA. Copyright © 2010 S. Karger AG, Basel.
Narath, E; Skalicky, M; Viidik, A
2001-11-01
The importance of maintaining physical fitness by engaging in exercise in a life-long perspective as well as the avoidance of obesity has been emphasised in recent years by epidemiological studies on human populations as well as studies on laboratory rodents. In laboratory studies, voluntary running in wheels and forced training in a treadmill have been used with beneficial results. Restriction of the food intake of sedentary laboratory rodents can be regarded either as life prolongation or prevention of life shortening by obesity. We compared the effects of these interventions on male Sprague-Dawley rats from the age of 5 to 23 months in the following groups: (1) RW=voluntary running in wheels; (2) PW=fed to pair weight with RW animals; (3) TM=forced training in a treadmill; and (4) S1=sedentary with ad libitum access to food. Each group consisted of 32 animals, all housed individually in cages. Two RW animals died, five died in each of the PW and S1 groups and 10 in the TM group (p<0.05). The S1 and TM groups gained most weight, the TM less after the age of 21 months (p<0.05). The body weights of the RW group was lower than those of the S1 and TM groups all the time (p<0.001) and the difference increased all the time. Body composition was analysed by bioelectrical impedance analysis. There were no differences in fat free mass (FFM) neither between RW and PW at any time, nor between S1 and TM. FFM was lower for RW and PW compared to S1 and TM. TM gained FFM until the age of 17 months, while S1 gained FFM all the time. S1 gained fat all the time, but the gain for TM levelled off. It stayed constant for RW until 13 months and decreased afterwards. We conclude that voluntary running in wheels enhances survival and keeps body fat lower than in PW animals up to the age of 17 months. Body composition and survival data suggest that voluntary running is more optimal than forced. Care must, however, be taken in analyses, since RW is a heterogenous group because there is a large variation between the animals with respect to how much they run.
Ichiyama, Ronaldo M; Gilbert, Andrea B; Waldrop, Tony G; Iwamoto, Gary A
2002-08-30
The purpose of this study was to determine whether exercise training changes the extent or pattern of activation of areas in the central nervous system (CNS) involved in cardiorespiratory control. Rats that spontaneously trained on running wheels for 80-100 days were compared to rats that were not provided an opportunity to exercise. Selected brain regions including the hypothalamic and mesencephalic locomotor regions, and ventrolateral medulla were studied using c-Fos-like immunocytochemistry. A single test bout of exercise evoked significantly less activation as indicated by Fos labeling in the posterior (caudal) hypothalamic area, periaqueductal gray, nucleus of the tractus solitarius and the rostral ventrolateral medulla of the trained rats when compared to sedentary rats. These results are consistent with the concept that the nervous system changes its responses to a given level of exercise after training. These changes may also be related to perceived exertion.
Otsuka, Airi; Shiuchi, Tetsuya; Chikahisa, Sachiko; Shimizu, Noriyuki; Séi, Hiroyoshi
2015-11-01
It is well-established that exercise can influence psychological conditions, cognitive function, and energy metabolism in peripheral tissues including the skeletal muscle. However, it is not clear whether exercise can influence social interaction with others and alleviate defeat stress. This study investigated the effect of voluntary wheel running on impaired social interaction induced by chronic social defeat stress (SDS) using the resident-intruder social defeat model. Mice were divided into three groups: control, stress alone, and stress+exercise. SDS was performed by exposing C57BL/6 mice to retired ICR mice for 2.5 min. The C57BL/6 mice were continuously defeated by these resident (aggressor) mice and, following 5 days of SDS, experienced 2 days of rest with no SDS. Mice in the stress+exercise group were allowed to voluntarily run on a wheel for 2h after every SDS exposure. Two weeks later, compared to the control group, the stress group showed a higher ratio of time spent in the corner zone of a social interaction paradigm even though SDS did not elicit depressive- and anxiety-like behaviors. We also observed that voluntary exercise, which did not affect muscle weight and gene expression, decreased social avoidance behavior of stressed mice without clear changes in brain monoamine levels. Interestingly, food intake in the stress+exercise group was the greatest among the three groups. To test the effect of the exercise-induced increase in food intake on social behavior, we set up a pair-fed group where food intake was restricted. We then compared these mice to mice in the stress alone group. We found that the ratio of time spent in the corner zone of the social interaction test was not different between ad libitum- and pair-fed groups, although pair-fed mice spent more time in the corner zone when an aggressor mouse was present than when it was absent. In addition, pair-feeding did not show exercise-induced reductions of adrenal gland weight and enhanced the loss of body fat. Our findings indicate that voluntary exercise reduces social avoidance behavior induced by SDS. Further, we determined that SDS and exercise-induced increases in food intake partially influence energy metabolism and social avoidance behavior. Copyright © 2015 Elsevier Inc. All rights reserved.
Voluntary wheel running improves adipose tissue immunometabolism in ovariectomized low-fit rats.
Zidon, Terese M; Park, Young-Min; Welly, Rebecca J; Woodford, Makenzie L; Scroggins, Rebecca J; Britton, Steven L; Koch, Lauren G; Booth, Frank W; Padilla, Jaume; Kanaley, Jill A; Vieira-Potter, Victoria J
2018-01-02
Loss of ovarian hormones is associated with increased adiposity, white adipose tissue (WAT) inflammation, and insulin resistance (IR). Previous work demonstrated ovariectomized (OVX) rats bred for high aerobic fitness (HCR) are protected against weight gain and IR compared to rats bred for low aerobic fitness (LCR) yet wheel running prevents OVX-induced IR in LCR rats. The purpose of this study was to determine whether adipose tissue immunometabolic characteristics from female HCR and LCR rats differs before or after OVX, and whether wheel running mitigates OVX-induced adipose tissue immunometabolic changes in LCR rats. Female OVX HCR and LCR rats were all fed a high fat diet (HFD) (n = 7-8/group) and randomized to either a running wheel or remain sedentary for 11 weeks. Ovary-intact rats (n = 7-12/group) were fed a standard chow diet with no wheel. Ovary-intact LCR rats had a greater visceral WAT inflammatory profile compared to HCR. Following OVX, sedentary LCR rats had greater serum leptin (p<0.001) and WAT inflammation (p<0.05) than sedentary HCR. Wheel running normalized the elevated serum leptin and reduced both visceral (p<0.05) and subcutaneous (p<0.03) WAT inflammatory markers in the LCR rats. Paradoxically, wheel running increased some markers of WAT inflammation in OVX HCR rats (p<0.05), which correlated with observed weight gain. Taken together, HCR rats appear to have a healthier WAT immune and metabolic profile compared to LCR, even following OVX. Wheel running improves WAT health in previously sedentary LCR rats. On the other hand, increased WAT inflammation is associated with adiposity gain despite a high volume of wheel running in HCR rats.
Effects of 2-AG on the reinforcing properties of wheel activity in obese and lean Zucker rats.
Smith, Shilo L; Rasmussen, Erin B
2010-07-01
The endocannabinoid system plays a role in obesity, primarily by its role in food reward. Activity, also involved in obesity, seems to be at least partially controlled by the endocannabinoid system, but the relevant behavioral and neurochemical mechanisms have not been well established. This study represents an attempt to begin elucidating these mechanisms by examining the effects of an endogenous cannabinoid ligand, 2-arachidonoylglycerol (2-AG), on the reinforcing properties of exercise reinforcement in lean and obese Zucker rats. Ten obese and 10 lean Zucker rats pressed a locked door under a progressive ratio schedule of reinforcement that, when unlocked, provided access to a running wheel for 2-min periods. After baseline breakpoints were established, doses of 2-AG (0.3-3 mg/kg) were administered before experimental sessions. Obese rats exhibited lower breakpoints for wheel activity, lower response rates, and fewer revolutions compared with lean rats. 2-AG decreased breakpoints, response rates, and revolutions for obese rats, and revolutions only for lean rats. These data suggest that 2-AG may reduce the reinforcing properties of activity, and that obese Zuckers may show a greater sensitivity to 2-AG. The data also suggest that endocannabinoids may play a role in the reinforcing properties of exercise.
Brouwers, Bram; Stephens, Natalie A.; Costford, Sheila R.; Hopf, Meghan E.; Ayala, Julio E.; Yi, Fanchao; Xie, Hui; Li, Jian-Liang; Gardell, Stephen J.; Sparks, Lauren M.; Smith, Steven R.
2018-01-01
Mice overexpressing NAMPT in skeletal muscle (NamptTg mice) develop higher exercise endurance and maximal aerobic capacity (VO2max) following voluntary exercise training compared to wild-type (WT) mice. Here, we aimed to investigate the mechanisms underlying by determining skeletal muscle mitochondrial respiratory capacity in NamptTg and WT mice. Body weight and body composition, tissue weight (gastrocnemius, quadriceps, soleus, heart, liver, and epididymal white adipose tissue), skeletal muscle and liver glycogen content, VO2max, skeletal muscle mitochondrial respiratory capacity (measured by high-resolution respirometry), skeletal muscle gene expression (measured by microarray and qPCR), and skeletal muscle protein content (measured by Western blot) were determined following 6 weeks of voluntary exercise training (access to running wheel) in 13-week-old male NamptTg (exercised NamptTg) mice and WT (exercised WT) mice. Daily running distance and running time during the voluntary exercise training protocol were recorded. Daily running distance (p = 0.51) and running time (p = 0.85) were not significantly different between exercised NamptTg mice and exercised WT mice. VO2max was higher in exercised NamptTg mice compared to exercised WT mice (p = 0.02). Body weight (p = 0.92), fat mass (p = 0.49), lean mass (p = 0.91), tissue weight (all p > 0.05), and skeletal muscle (p = 0.72) and liver (p = 0.94) glycogen content were not significantly different between exercised NamptTg mice and exercised WT mice. Complex I oxidative phosphorylation (OXPHOS) respiratory capacity supported by fatty acid substrates (p < 0.01), maximal (complex I+II) OXPHOS respiratory capacity supported by glycolytic (p = 0.02) and fatty acid (p < 0.01) substrates, and maximal uncoupled respiratory capacity supported by fatty acid substrates (p < 0.01) was higher in exercised NamptTg mice compared to exercised WT mice. Transcriptomic analyses revealed differential expression for genes involved in oxidative metabolism in exercised NamptTg mice compared to exercised WT mice, specifically, enrichment for the gene set related to the SIRT3-mediated signaling pathway. SIRT3 protein content correlated with NAMPT protein content (r = 0.61, p = 0.04). In conclusion, NamptTg mice develop higher exercise capacity following voluntary exercise training compared to WT mice, which is paralleled by higher mitochondrial respiratory capacity in skeletal muscle. The changes in SIRT3 targets suggest that these effects are due to remodeling of mitochondrial function. PMID:29942262
Wheel-running attenuates intravenous cocaine self-administration in rats: sex differences.
Cosgrove, Kelly P; Hunter, Robb G; Carroll, Marilyn E
2002-10-01
This experiment examines the effect of access to a running-wheel on intravenous cocaine self-administration in male and female rats. Rats maintained at 85% of their free-feeding body weight were first exposed to the running-wheel alone during the 6-h sessions until behavior stabilized for 14 days. Intravenous cannulae were then implanted, and the rats were trained to self-administer a low dose of cocaine (0.2 mg/kg) under a fixed-ratio (FR 1) schedule during the 6-h sessions, while the wheel remained inactive and cocaine self-administration stabilized (cocaine-only condition). Next, the wheel access and cocaine self-administration were concurrently available followed by a period of cocaine-only. Behavior was allowed to stabilize for 10 days at each phase. During wheel access, cocaine infusions decreased by 21.9% in males and 70.6% in females compared to the cocaine-only condition; the effect was statistically significant in females. Infusions increased to baseline levels when wheel access was terminated. When cocaine infusions were concurrently available, wheel revolutions were reduced by 63.7% and 61.5% in males and females, respectively, compared to the wheel-only condition. This result did not differ due to sex, but it was statistically significant when data from males and females were combined. These results indicate that wheel-running activity had a greater suppressant effect on cocaine self-administration in females than in males, and in females, wheel-running and cocaine self-administration are substitutable as reinforcers.
Kandasamy, Ram; Calsbeek, Jonas J.; Morgan, Michael M.
2016-01-01
Background The assessment of nociception in preclinical studies is undergoing a transformation from pain-evoked to pain-depressed tests to more closely mimic the effects of clinical pain. Many inflammatory pain-depressed behaviors (reward seeking, locomotion) have been examined, but these tests are limited because of confounds such as stress and difficulties in quantifying behavior. New Method The present study evaluates home cage wheel running as an objective method to assess the magnitude and duration of inflammatory pain in male and female rats. Results Injection of Complete Freund’s Adjuvant (CFA) into the right hindpaw to induce inflammatory pain almost completely inhibited wheel running for 2 days in males and females. Wheel running gradually returned to baseline levels within 12 days despite persistent mechanical hypersensitivity (von Frey test). Comparison with Existing Methods Continuously monitoring home cage wheel running improves on previous studies examining inflammatory pain-depressed wheel running because it is more sensitive to noxious stimuli, avoids the stress of removing the rat from its cage for testing, and provides a complete analysis of the time course for changes in nociception. Conclusions The present data indicate that home cage wheel running is a clinically relevant method to assess inflammatory pain in the rat. The decrease in activity caused by inflammatory pain and subsequent gradual recovery mimics the changes in activity caused by pain in humans. The tendency for pain-depressed wheel running to be greater in female than male rats is consistent with the tendency for women to be at greater risk of chronic pain than men. PMID:26891874
Loyd, Christine; Magrisso, I Jack; Haas, Michael; Balusu, Sowmya; Krishna, Radha; Itoh, Nobuyuki; Sandoval, Darleen A; Perez-Tilve, Diego; Obici, Silvana; Habegger, Kirk M
2016-09-01
Exercise is an effective therapy against the metabolic syndrome. However, the molecular pathways underlying the advantageous effects of exercise are elusive. Glucagon receptor signaling is essential for exercise benefits, and recent evidence indicates that a downstream effector of glucagon, fibroblast growth factor 21 (FGF21), is implicated in this response. Therefore, we tested the hypothesis that FGF21 action is necessary in mediating metabolic effects of exercise. We utilized acute exhaustive treadmill exercise in Wistar rats to identify a putative, concomitant increase in plasma glucagon and FGF21 with the increase in glucose and lactate following exercise. To test the necessity of FGF21 action in the exercise response, we exposed FGF21 congenitally deficient mice (Fgf21(-/-)) and their wild-type (Wt) littermates to chronic high-fat (HF) feeding and inoperable (sedentary) or operable (exercise) voluntary running wheels. Physiological tests were performed to assess the role of FGF21 in the beneficial effect of exercise on glucose metabolism. Wt and Fgf21(-/-) littermates exhibited similar running behavior, and exercise was effective in suppressing weight and fat mass gain and dyslipidemia independently of genotype. However, exercise failed to positively affect hepatic triglyceride content and glucose tolerance in HF diet-fed Fgf21(-/-) mice. Furthermore, Fgf21(-/-) mice exhibited an impaired adaptation to exercise training, including reduced AMP-activated protein kinase activity in skeletal muscle. This study demonstrates that FGF21 action is necessary to achieve the full metabolic benefits of exercise during chronic HF feeding. Copyright © 2016 the American Physiological Society.
Loyd, Christine; Magrisso, I. Jack; Haas, Michael; Balusu, Sowmya; Krishna, Radha; Itoh, Nobuyuki; Sandoval, Darleen A.; Perez-Tilve, Diego; Obici, Silvana
2016-01-01
Exercise is an effective therapy against the metabolic syndrome. However, the molecular pathways underlying the advantageous effects of exercise are elusive. Glucagon receptor signaling is essential for exercise benefits, and recent evidence indicates that a downstream effector of glucagon, fibroblast growth factor 21 (FGF21), is implicated in this response. Therefore, we tested the hypothesis that FGF21 action is necessary in mediating metabolic effects of exercise. We utilized acute exhaustive treadmill exercise in Wistar rats to identify a putative, concomitant increase in plasma glucagon and FGF21 with the increase in glucose and lactate following exercise. To test the necessity of FGF21 action in the exercise response, we exposed FGF21 congenitally deficient mice (Fgf21−/−) and their wild-type (Wt) littermates to chronic high-fat (HF) feeding and inoperable (sedentary) or operable (exercise) voluntary running wheels. Physiological tests were performed to assess the role of FGF21 in the beneficial effect of exercise on glucose metabolism. Wt and Fgf21−/− littermates exhibited similar running behavior, and exercise was effective in suppressing weight and fat mass gain and dyslipidemia independently of genotype. However, exercise failed to positively affect hepatic triglyceride content and glucose tolerance in HF diet-fed Fgf21−/− mice. Furthermore, Fgf21−/− mice exhibited an impaired adaptation to exercise training, including reduced AMP-activated protein kinase activity in skeletal muscle. This study demonstrates that FGF21 action is necessary to achieve the full metabolic benefits of exercise during chronic HF feeding. PMID:27445299
Stereotypic wheel running decreases cortical activity in mice
Fisher, Simon P.; Cui, Nanyi; McKillop, Laura E.; Gemignani, Jessica; Bannerman, David M.; Oliver, Peter L.; Peirson, Stuart N.; Vyazovskiy, Vladyslav V.
2016-01-01
Prolonged wakefulness is thought to gradually increase ‘sleep need' and influence subsequent sleep duration and intensity, but the role of specific waking behaviours remains unclear. Here we report the effect of voluntary wheel running during wakefulness on neuronal activity in the motor and somatosensory cortex in mice. We find that stereotypic wheel running is associated with a substantial reduction in firing rates among a large subpopulation of cortical neurons, especially at high speeds. Wheel running also has longer-term effects on spiking activity across periods of wakefulness. Specifically, cortical firing rates are significantly higher towards the end of a spontaneous prolonged waking period. However, this increase is abolished when wakefulness is dominated by running wheel activity. These findings indicate that wake-related changes in firing rates are determined not only by wake duration, but also by specific waking behaviours. PMID:27748455
Platt, Kristen M.; Charnigo, Richard J.; Shertzer, Howard G.; Pearson, Kevin J.
2016-01-01
Exercise is an inexpensive intervention that may be used to reduce obesity and its consequences. In addition, many individuals who regularly exercise utilize dietary supplements to enhance their exercise routine and to accelerate fat loss or increase lean mass. Branched-chain amino acids (BCAAs) are a popular supplement and have been shown to produce a number of beneficial effects in rodent models and humans. Therefore, we hypothesized that BCAA supplementation would protect against high fat diet (HFD)-induced glucose intolerance and obesity in mice with and without access to exercise. We subjected 80 female C57BL/6 mice to a paradigm of HFD feeding, exercise in the form of voluntary wheel running, and BCAA supplementation in the drinking water for 16 weeks (n = 10 per group). Body weight was monitored weekly, while food and water consumption were recorded twice weekly. During the 5th, 10th, and 15th weeks of treatment, glucose tolerance and body composition were analyzed. Exercise significantly improved glucose tolerance in both control-fed and HFD-fed mice. BCAA supplementation, however, did not significantly alter glucose tolerance in any treatment group. While BCAA supplements did not improve lean to fat mass ratio in sedentary mice, it significantly augmented the effects of exercise on this parameter. PMID:26716948
Exercise addiction- diagnosis, bio-psychological mechanisms and treatment issues.
Weinstein, Aviv; Weinstein, Yitzhak
2014-01-01
Exercise and sports activity are beneficial both physically and psychologically but excessive exercise may have adverse physiological and psychological effects. There are methodological issues in the definition, diagnosis and etiology of exercise addiction. Several questionnaires and diagnostic tools have been developed and validated and they show high validity and reliability. Exercise addiction has been suggested as having an obsessive-compulsive dimension as well as rewarding aspects that may include it among the behavioral addictions. Biological studies show that in rodents, exercise such as wheel running activates the dopamine reward system and thus contributing to stress reduction. Further evidence suggests that running is associated with endorphins and cannabinoids thus explaining the "runners high" or euphoric feelings that may lead to exercise addiction. Genetic studies suggest that genes which control preference for drugs also control the preference for naturally rewarding behaviors such as exercise. Psychological studies also explain exercise addiction in terms of reward, habituation, social support, stress-relief, avoidance of withdrawal and reduction of anxiety. It has been suggested that exercise addiction is a part of a continuum of sportive activity that develops in stages from the recreational exercise to at-risk exercise, problematic exercise and finally into exercise addiction. Assessment and treatment should take into account the various stages of exercise addiction development, its comorbidity with other psychiatric disorders such as eating disorders or substance use and alcohol disorders. Treatment approaches for exercise addiction are based on the cognitive-behavioral approach but little is known about their effectiveness. A single-case study shows promise of pharmacological treatment for exercise addiction and further studies are required. This review summarizes diagnostic and phenomenology of exercise addiction with emphasis on physiological and neuro-pharmacological mechanisms responsible for its rewarding and addictive properties.
Gordon, Elizabeth A.; Corbitt, Cynthia
2015-01-01
Sex differences in social behaviors exist in mammals during adulthood, and further evidence suggests that sex differences in behavior are present before sexual maturity. In order to model behavioral disorders in animals, it is important to assess baseline sex-related behavioral differences, especially when studying disorders for which sex-related behavioral effects are expected. We investigated the effect of sex on behavior in 3 strains of pre-pubertal mice (C57BL/6, CFW, and CF1) using a wheel-running assay. We found no significant sex differences in latency to run on the wheel or total duration of wheel running within each strain. During the social interaction test, there were no differences between sexes in latency or total duration of contact or following between a subject and novel mouse. We also evaluated behavioral patterns of wheel running and stereotypical behaviors, such as burrowing and grooming. Both sexes showed characteristic wheel running behavior, spending the majority of each trial interacting with the wheel when it was free and more time performing other activities (e.g., stereotypical behaviors, general locomotion) when it was jammed. These results provide evidence that, among various strains of pre-pubertal mice, baseline sex-related behavioral differences are not strong enough to influence the measured behaviors. PMID:26316671
Gordon, Elizabeth A; Corbitt, Cynthia
2015-08-01
Sex differences in social behaviors exist in mammals during adulthood, and further evidence suggests that sex differences in behavior are present before sexual maturity. In order to model behavioral disorders in animals, it is important to assess baseline sex-related behavioral differences, especially when studying disorders for which sex-related behavioral effects are expected. We investigated the effect of sex on behavior in 3 strains of pre-pubertal mice (C57BL/6, CFW, and CF1) using a wheel-running assay. We found no significant sex differences in latency to run on the wheel or total duration of wheel running within each strain. During the social interaction test, there were no differences between sexes in latency or total duration of contact or following between a subject and novel mouse. We also evaluated behavioral patterns of wheel running and stereotypical behaviors, such as burrowing and grooming. Both sexes showed characteristic wheel running behavior, spending the majority of each trial interacting with the wheel when it was free and more time performing other activities ( e.g. , stereotypical behaviors, general locomotion) when it was jammed. These results provide evidence that, among various strains of pre-pubertal mice, baseline sex-related behavioral differences are not strong enough to influence the measured behaviors.
Green, David J; Richmond, Brian G; Miran, Sara L
2012-12-01
Mechanical loads play a significant role in determining long bone shape and strength, but less work has explored how these loads influence flat bones like the scapula, which has been shown to vary with locomotor preference among primate taxa. Here, we tested the effects of voluntary running and climbing exercise in mice to examine how the mechanical loads borne from different locomotor patterns influence shoulder morphological development. Ninety-nine female wild-type mice were distributed equally among sedentary control, activity-wheel running, and vertical climbing experimental conditions. Running mice had the lowest body masses, larger intrinsic shoulder muscles, and the most pronounced differences in scapular size and shape relative to the other groups. Climbing mouse scapular morphology also differed significantly from the control individuals, but these differences were not as marked as those between the running and control mice. This might be attributable in part to greater levels of activity in the wheel-runners relative to the climbers. Additionally, climbing mice held their bodies closer to the substrate and maintained more flexed limbs and posterior hand positions compared with the kinematics of running. As a result, climbers differed significantly from both the running and control mice in developing a relatively broader infraspinous region, which is likely related to preferential recruitment of the infraspinatus and teres minor muscles to maintain flexed shoulder postures. The results of this study demonstrate that variation in activity level and type of locomotor regime over a significant portion of the life history influences muscle and bone development in the shoulder. Copyright © 2012 Wiley Periodicals, Inc.
Exercise is associated with reduction in the anxiogenic effect of mCPP on acoustic startle.
Fox, James H; Hammack, Sayamwong E; Falls, William A
2008-08-01
Voluntary exercise has been associated with reduced anxiety across several animal models. Manipulation of central 5-HT can alter anxiety-like behaviors and administration of the 5-HT agonist metachlorophenylpiperazine (mCPP) increases anxiety in rodents and humans. To examine whether the anxiolytic effect of exercise is associated with an alteration in 5-HT systems, we examined the anxiogenic effect of mCPP in exercising and nonexercising mice. C57BL/6J mice were given 2 weeks of free access to either a functioning or nonfunctioning running wheel. Mice were then tested for acoustic startle following systemic injection of either 0, 0.1, 0.3, or 1 mg/kg of mCPP. Consistent with its anxiogenic properties, mCPP produced a dose-dependent increase in acoustic startle in nonexercising mice. However, this anxiogenic effect was blunted in exercising mice. These findings suggest that exercise may help to reduce anxiety by altering 5-HT systems, perhaps by down-regulating postsynaptic 5HT 2B/2C receptors.
High levels of wheel running protect against behavioral sensitization to cocaine.
Renteria Diaz, Laura; Siontas, Dora; Mendoza, Jose; Arvanitogiannis, Andreas
2013-01-15
Although there is no doubt that the direct action of stimulant drugs on the brain is necessary for sensitization to their behavioral stimulating effects, several experiments indicate that drug action is often not sufficient to produce sensitization. There is considerable evidence that many individual characteristics and experiential variables can modulate the behavioral and neural changes that are seen following repeated exposure to stimulant drugs. In the work presented here, we examined whether chronic wheel running would modulate behavioral sensitization to cocaine, and whether any such influence was contingent on individual differences in wheel running. We found that a 5- or 10-week experience with wheel running protects against behavioral sensitization to cocaine but only in animals with a natural tendency to run the most. Understanding the mechanism underlying the modulating effect of wheel running on behavioral sensitization may have important implications for future studies on the link between drug-induced behavioral and neural adaptations. Copyright © 2012 Elsevier B.V. All rights reserved.
Mifune, Hiroharu; Tajiri, Yuji; Nishi, Yoshihiro; Hara, Kento; Iwata, Shimpei; Tokubuchi, Ichiro; Mitsuzono, Ryouichi; Yamada, Kentaro; Kojima, Masayasu
2015-09-01
In the present study, effects of voluntary exercise in an obese animal model were investigated in relation to the rhythm of daily activity and ghrelin production. Male Sprague-Dawley rats were fed either a high fat diet (HFD) or a chow diet (CD) from four to 16 weeks old. They were further subdivided into either an exercise group (HFD-Ex, CD-Ex) with a running wheel for three days of every other week or sedentary group (HFD-Se, CD-Se). At 16 weeks old, marked increases in body weight and visceral fat were observed in the HFD-Se group, together with disrupted rhythms of feeding and locomotor activity. The induction of voluntary exercise brought about an effective reduction of weight and fat, and ameliorated abnormal rhythms of activity and feeding in the HFD-Ex rats. Wheel counts as voluntary exercise was greater in HFD-Ex rats than those in CD-Ex rats. The HFD-obese had exhibited a deterioration of ghrelin production, which was restored by the induction of voluntary exercise. These findings demonstrated that abnormal rhythms of feeding and locomotor activity in HFD-obese rats were restored by infrequent voluntary exercise with a concomitant amelioration of the ghrelin production and weight reduction. Because ghrelin is related to food anticipatory activity, it is plausible that ghrelin participates in the circadian rhythm of daily activity including eating behavior. A beneficial effect of voluntary exercise has now been confirmed in terms of the amelioration of the daily rhythms in eating behavior and physical activity in an animal model of obesity. Copyright © 2015 Elsevier Inc. All rights reserved.
Kump, David S; Booth, Frank W
2005-01-01
Four-week-old, Fischer–Brown Norway F1-generation male rats were given access to voluntary running wheels for 21 days, and then the wheels were locked for 5 (WL5), 10 (WL10), 29 (WL29), or 53 (WL53) hours. Two other groups (SED5 and SED10) had no access to voluntary running wheels and were killed at the same time as WL5 and WL10, respectively. Absolute and relative epididymal fat mass, mean cell volume, and amount of lipid per cell increased in WL53 relative to all other groups, with no change in cell number. C/EBPα protein levels in epididymal fat were 30% greater in SED5 than in WL5. The rate of triacylglycerol synthesis in epididymal fat was 4.2-fold greater in SED5 than in WL5, increased 14-fold between WLS and WL10, and was 79% lower in SED10 than in WL10. Triacylglycerol synthesis remained at this elevated level (at least 3.5-fold greater than SED5) through WL53. Thus, the rapid increase in epididymal fat mass with the cessation of voluntary wheel running is associated with a prolonged overshoot in epididymal fat triacylglycerol synthesis. Moreover, rats without running wheels had a 9.4% lower body mass after 21 days than those with running wheels. The individual mass of seven different muscles from the hindlimb, upper forelimb, and back were each lower in animals without running wheels, suggesting that physical activity in rapidly growing rats may be requisite for optimal muscle development. PMID:15774517
Van Hoomissen, Jacqueline; Kunrath, Julie; Dentlinger, Renee; Lafrenz, Andrew; Krause, Mark; Azar, Afaf
2011-09-12
Despite the evidence that exercise improves cognitive behavior in animal models, little is known about these beneficial effects in animal models of pathology. We examined the effects of activity wheel (AW) running on contextual fear conditioning (CFC) and locomotor/exploratory behavior in the olfactory bulbectomy (OBX) model of depression, which is characterized by hyperactivity and changes in cognitive function. Twenty-four hours after the conditioning session of the CFC protocol, the animals were tested for the conditioned response in a conditioned and a novel context to test for the effects of both AW and OBX on CFC, but also the context specificity of the effect. OBX reduced overall AW running behavior throughout the experiment, but increased locomotor/exploratory behavior during CFC, thus demonstrating a context-dependent effect. OBX animals, however, displayed normal CFC behavior that was context-specific, indicating that aversively conditioned memory is preserved in this model. AW running increased freezing behavior during the testing session of the CFC protocol in the control animals but only in the conditioned context, supporting the hypothesis that AW running improves cognitive function in a context-specific manner that does not generalize to an animal model of pathology. Blood corticosterone levels were increased in all animals at the conclusion of the testing sessions, but levels were higher in AW compared to sedentary groups indicating an effect of exercise on neuroendocrine function. Given the differential results of AW running on behavior and neuroendocrine function after OBX, further exploration of the beneficial effects of exercise in animal models of neuropathology is warranted. Copyright © 2011 Elsevier B.V. All rights reserved.
Wilson, W. Jeffrey; Johnson, Brandon A.
2016-01-01
We describe the construction and use of a running wheel responsive to the movement of the earthworm. The wheel employs readily available, inexpensive components and is easily constructed. Movement of the wheel can be monitored visually or via standard behavioral laboratory computer interfaces. Examples of data are presented, and possibilities for use in the teaching classroom are discussed. PMID:27385934
Stranahan, Alexis M; Martin, Bronwen; Maudsley, Stuart
2012-01-01
Physical activity has been correlated with a reduced incidence of cognitive decline and Alzheimer's disease in human populations. Although data from intervention-based randomized trials is scarce, there is some indication that exercise may confer protection against age-related deficits in cognitive function. Data from animal models suggests that exercise, in the form of voluntary wheel running, is associated with reduced amyloid deposition and enhanced clearance of amyloid beta, the major constituent of plaques in Alzheimer's disease. Treadmill exercise has also been shown to ameliorate the accumulation of phosphorylated tau, an essential component of neurofibrillary tangles in Alzheimer's models. A common therapeutic theme arising from studies of exercise-induced neuroprotection in human populations and in animal models involves reduced inflammation in the central nervous system. In this respect, physical activity may promote neuronal resilience by reducing inflammation.
ERIC Educational Resources Information Center
Belke, Terry W.; Duncan, Ian D.; Pierce, W. David
2006-01-01
Choice between sucrose and wheel-running reinforcement was assessed in two experiments. In the first experiment, ten male Wistar rats were exposed to concurrent VI 30 s VI 30 s schedules of wheel-running and sucrose reinforcement. Sucrose concentration varied across concentrations of 2.5, 7.5, and 12.5%. As concentration increased, more behavior…
Mitochondrial and performance adaptations to exercise training in mice lacking skeletal muscle LKB1
Tanner, Colby B.; Madsen, Steven R.; Hallowell, David M.; Goring, Darren M. J.; Moore, Timothy M.; Hardman, Shalene E.; Heninger, Megan R.; Atwood, Daniel R.
2013-01-01
LKB1 and its downstream targets of the AMP-activated protein kinase family are important regulators of many aspects of skeletal muscle cell function, including control of mitochondrial content and capillarity. LKB1 deficiency in skeletal and cardiac muscle (mLKB1-KO) greatly impairs exercise capacity. However, cardiac dysfunction in that genetic model prevents a clear assessment of the role of skeletal muscle LKB1 in the observed effects. Our purposes here were to determine whether skeletal muscle-specific knockout of LKB1 (skmLKB1-KO) decreases exercise capacity and mitochondrial protein content, impairs accretion of mitochondrial proteins after exercise training, and attenuates improvement in running performance after exercise training. We found that treadmill and voluntary wheel running capacity was reduced in skmLKB1-KO vs. control (CON) mice. Citrate synthase activity, succinate dehydrogenase activity, and pyruvate dehydrogenase kinase content were lower in KO vs. CON muscles. Three weeks of treadmill training resulted in significantly increased treadmill running performance in both CON and skmLKB1-KO mice. Citrate synthase activity increased significantly with training in both genotypes, but protein content and activity for components of the mitochondrial electron transport chain increased only in CON mice. Capillarity and VEGF protein was lower in skmLKB1-KO vs. CON muscles, but VEGF increased with training only in skmLKB1-KO. Three hours after an acute bout of muscle contractions, PGC-1α, cytochrome c, and VEGF gene expression all increased in CON but not skmLKB1-KO muscles. Our findings indicate that skeletal muscle LKB1 is required for accretion of some mitochondrial proteins but not for early exercise capacity improvements with exercise training. PMID:23982155
Rosa-Caldwell, Megan E; Brown, Jacob L; Lee, David E; Blackwell, Thomas A; Turner, Kyle W; Brown, Lemuel A; Perry, Richard A; Haynie, Wesley S; Washington, Tyrone A; Greene, Nicholas P
2017-09-01
What is the central question of this study? What are the individual and combined effects of muscle-specific peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) overexpression and physical activity during high-fat feeding on glucose and exercise tolerance? What is the main finding and its importance? Our main finding is that muscle-specific PGC-1α overexpression provides no protection against lipid-overload pathologies nor does it enhance exercise adaptations. Instead, physical activity, regardless of PGC-1α content, protects against high-fat diet-induced detriments. Activation of muscle autophagy was correlated with exercise protection, suggesting that autophagy might be a mediating factor for exercise-induced protection from lipid overload. The prevalence of glucose intolerance is alarmingly high. Efforts to promote mitochondrial biogenesis through peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) to mitigate glucose intolerance have been controversial. However, physical activity remains a primary means to alleviate the condition. The aim of this study was to determine the combined effects of muscle-specific overexpression of PGC-1α and physical activity on glucose handling during diet-induced obesity. Wild-type (WT, ∼20) and PGC-1α muscle transgenic (MCK-PGC-1α, ∼20) mice were given a Western diet (WD) at 8 weeks age and allowed to consume food ab libitum throughout the study. At 12 weeks of age, all animals were divided into sedentary (SED) or voluntary wheel running (VWR) interventions. At 7, 11 and 15 weeks of age, animals underwent glucose tolerance tests (GTT) and graded exercise tests (GXT). At 16 weeks of age, tissues were collected. At 11 weeks, the MCK-PGC-1α animals had 50% greater glucose tolerance integrated area under the curve compared with WT. However, at 15 weeks, SED animals also had greater GTT integrated area under the curve compared with VWR, regardless of genotype; furthermore, SED animals demonstrated reduced exercise capacity compared with earlier time points, which was not seen in VWR animals. Voluntary distance run per day was correlated with GTT in VWR-WT, but not VWR-MCK-PGC-1α mice. Voluntary wheel running and genotype independently resulted in a greater LC3II/LC3I ratio, suggesting enhanced autophagosome formation, which was correlated with exercise-induced improvements in GTT. In conclusion, artificially increasing mitochondrial content does not protect from lipid-induced pathologies nor does it augment exercise adaptations. Physical activity ameliorates the effects of lipid overload-induced glucose intolerance, an effect that appears to be related to enhanced activation of autophagy. © 2017 The Authors. Experimental Physiology © 2017 The Physiological Society.
Liu, Tzu-Wen; Park, Young-Min; Holscher, Hannah D.; Padilla, Jaume; Scroggins, Rebecca J.; Welly, Rebecca; Britton, Steven L.; Koch, Lauren G.; Vieira-Potter, Victoria J.; Swanson, Kelly S.
2015-01-01
The gut microbiota is considered a relevant factor in obesity and associated metabolic diseases, for which postmenopausal women are particularly at risk. Increasing physical activity has been recognized as an efficacious approach to prevent or treat obesity, yet the impact of physical activity on the microbiota remains under-investigated. We examined the impacts of voluntary exercise on host metabolism and gut microbiota in ovariectomized (OVX) high capacity (HCR) and low capacity running (LCR) rats. HCR and LCR rats (age = 27wk) were OVX and fed a high-fat diet (45% kcal fat) ad libitum and housed in cages equipped with (exercise, EX) or without (sedentary, SED) running wheels for 11wk (n = 7-8/group). We hypothesized that increased physical activity would hinder weight gain, increase metabolic health and shift the microbiota of LCR rats, resulting in populations more similar to that of HCR rats. Animals were compared for characteristic metabolic parameters including body composition, lipid profile and energy expenditure; whereas cecal digesta were collected for DNA extraction. 16S rRNA gene-based amplicon Illumina MiSeq sequencing was performed, followed by analysis using QIIME 1.8.0 to assess cecal microbiota. Voluntary exercise decreased body and fat mass, and normalized fasting NEFA concentrations of LCR rats, despite only running one-third the distance of HCR rats. Exercise, however, increased food intake, weight gain and fat mass of HCR rats. Exercise clustered the gut microbial community of LCR rats, which separated them from the other groups. Assessments of specific taxa revealed significant (p<0.05) line by exercise interactions including shifts in the abundances of Firmicutes, Proteobacteria, and Cyanobacteria. Relative abundance of Christensenellaceae family was higher (p = 0.026) in HCR than LCR rats, and positively correlated (p<0.05) with food intake, body weight and running distance. These findings demonstrate that exercise differentially impacts host metabolism and gut microbial communities of female HCR and LCR rats without ovarian function. PMID:26301712
Gordon, C J; Phillips, P M; Johnstone, A F M
2016-01-01
Chronic exercise is considered as one of the most effective means of countering symptoms of the metabolic syndrome (MS) such as obesity and hyperglycemia. Rodent models of forced or voluntary exercise are often used to study the mechanisms of MS and type 2 diabetes. However, there is little known on the impact of genetic strain on the metabolic response to exercise. We studied the effects of housing rats with running wheels (RW) for 65 days compared to sedentary (SED) housing in five female rat strains: Sprague-Dawley (SD), Long-Evans (LE), Wistar (WIS), spontaneously hypertensive (SHR), and Wistar-Kyoto (WKY). Key parameters measured were total distance run, body composition, food consumption, motor activity, ventilatory responses by plethysmography, and resting metabolic rate (MR). WKY and SHR ran significantly more than the WIS, LE, and SD strains. Running-induced reduction in body fat was affected by strain but not by distance run. LE's lost 6% fat after 21 d of running whereas WKY's lost 2% fat but ran 40% more than LE's. LE and WIS lost body weight while the SHR and WKY strains gained weight during running. Food intake with RW was markedly increased in SHR, WIS, and WKY while LE and SD showed modest increases. Exploratory motor activity was reduced sharply by RW in all but the SD strain. Ventilatory parameters were primarily altered by RW in the SHR, WKY, and WIS strains. MR was unaffected by RW. In an overall ranking of physiological and behavioral responses to RW, the SD strain was considered the least responsive whereas the WIS was scored as most responsive. In terms of RW-induced fat loss, the LE strain appears to be the most ideal. These results should be useful in the future selection of rat models to study benefits of volitional exercise. Published by Elsevier Inc.
Habituation contributes to the decline in wheel running within wheel-running reinforcement periods.
Belke, Terry W; McLaughlin, Ryan J
2005-02-28
Habituation appears to play a role in the decline in wheel running within an interval. Aoyama and McSweeney [Aoyama, K., McSweeney, F.K., 2001. Habituation contributes to within-session changes in free wheel running. J. Exp. Anal. Behav. 76, 289-302] showed that when a novel stimulus was presented during a 30-min interval, wheel-running rates following the stimulus increased to levels approximating those earlier in the interval. The present study sought to assess the role of habituation in the decline in running that occurs over a briefer interval. In two experiments, rats responded on fixed-interval 30-s schedules for the opportunity to run for 45 s. Forty reinforcers were completed in each session. In the first experiment, the brake and chamber lights were repeatedly activated and inactivated after 25 s of a reinforcement interval had elapsed to assess the effect on running within the remaining 20 s. Presentations of the brake/light stimulus occurred during nine randomly determined reinforcement intervals in a session. In the second experiment, a 110 dB tone was emitted after 25 s of the reinforcement interval. In both experiments, presentation of the stimulus produced an immediate decline in running that dissipated over sessions. No increase in running following the stimulus was observed in the first experiment until the stimulus-induced decline dissipated. In the second experiment, increases in running were observed following the tone in the first session as well as when data were averaged over several sessions. In general, the results concur with the assertion that habituation plays a role in the decline in wheel running that occurs within both long and short intervals. (c) 2004 Elsevier B.V. All rights reserved.
Lee, Min Chul; Rakwal, Randeep; Shibato, Junko; Inoue, Koshiro; Chang, Hyukki; Soya, Hideaki
2014-01-01
Abstract In two separate experiments, voluntary resistance wheel running with 30% of body weight (RWR), rather than wheel running (WR), led to greater enhancements, including adult hippocampal neurogenesis and cognitive functions, in conjunction with hippocampal brain‐derived neurotrophic factor (BDNF) signaling (Lee et al., J Appl Physiol, 2012; Neurosci Lett., 2013). Here we aimed to unravel novel molecular factors and gain insight into underlying molecular mechanisms for RWR‐enhanced hippocampal functions; a high‐throughput whole‐genome DNA microarray approach was applied to rats performing voluntary running for 4 weeks. RWR rats showed a significant decrease in average running distances although average work levels increased immensely, by about 11‐fold compared to WR, resulting in muscular adaptation for the fast‐twitch plantaris muscle. Global transcriptome profiling analysis identified 128 (sedentary × WR) and 169 (sedentary × RWR) up‐regulated (>1.5‐fold change), and 97 (sedentary × WR) and 468 (sedentary × RWR) down‐regulated (<0.75‐fold change) genes. Functional categorization using both pathway‐ or specific‐disease‐state‐focused gene classifications and Ingenuity Pathway Analysis (IPA) revealed expression pattern changes in the major categories of disease and disorders, molecular functions, and physiological system development and function. Genes specifically regulated with RWR include the newly identified factors of NFATc1, AVPR1A, and FGFR4, as well as previously known factors, BDNF and CREB mRNA. Interestingly, RWR down‐regulated multiple inflammatory cytokines (IL1B, IL2RA, and TNF) and chemokines (CXCL1, CXCL10, CCL2, and CCR4) with the SYCP3, PRL genes, which are potentially involved in regulating hippocampal neuroplastic changes. These results provide understanding of the voluntary‐RWR‐related hippocampal transcriptome, which will open a window to the underlying mechanisms of the positive effects of exercise, with therapeutic value for enhancing hippocampal functions. PMID:25413326
Cobos, Enrique J; Ghasemlou, Nader; Araldi, Dionéia; Segal, David; Duong, Kelly; Woolf, Clifford J
2012-04-01
Inflammatory pain impacts adversely on the quality of life of patients, often resulting in motor disabilities. Therefore, we studied the effect of peripheral inflammation induced by intraplantar administration of complete Freund's adjuvant (CFA) in mice on a particular form of voluntary locomotion, wheel running, as an index of mobility impairment produced by pain. The distance traveled over 1 hour of free access to activity wheels decreased significantly in response to hind paw inflammation, peaking 24 hours after CFA administration. Recovery of voluntary wheel running by day 3 correlated with the ability to support weight on the inflamed limb. Inflammation-induced mechanical hypersensitivity, measured with von Frey hairs, lasted considerably longer than the impaired voluntary wheel running and is not driving; therefore, the change in voluntary behavior. The CFA-induced decrease in voluntary wheel running was dose-dependently reversed by subcutaneous administration of antiinflammatory and analgesic drugs, including naproxen (10-80 mg/kg), ibuprofen (2.5-20mg/kg), diclofenac (1.25-10mg/kg), celecoxib (2.5-20mg/kg), prednisolone (0.62-5mg/kg), and morphine (0.06-0.5mg/kg), all at much lower doses than reported in most rodent models. Furthermore, the doses that induced recovery in voluntary wheel running did not reduce CFA-induced mechanical allodynia, indicating a greater sensitivity of the former as a surrogate measure of inflammatory pain. We conclude that monitoring changes in voluntary wheel running in mice during peripheral inflammation is a simple, observer-independent objective measure of functional changes produced by inflammation, likely more aligned to the global level of pain than reflexive measures, and much more sensitive to analgesic drug effects. Copyright © 2012 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.
Mizuno, Masaki; Iwamoto, Gary A.; Vongpatanasin, Wanpen; Mitchell, Jere H.
2014-01-01
Functional sympatholysis is impaired in hypertensive animals and patients. Exercise training (ET) improves functional sympatholysis through a nitric oxide (NO)-dependent mechanism in normotensive rats. However, whether ET has similar physiological benefits in hypertension remains to be elucidated. Thus we tested the hypothesis that the impairment in functional sympatholysis in hypertension is reversed by ET through a NO-dependent mechanism. In untrained normotensive Wistar-Kyoto rats (WKYUT; n = 13), untrained spontaneously hypertensive rats (SHRUT; n = 13), and exercise-trained SHR (SHRET; n = 6), changes in femoral vascular conductance (FVC) were examined during lumbar sympathetic nerve stimulation (1, 2.5, and 5 Hz) at rest and during muscle contraction. The magnitude of functional sympatholysis (Δ%FVC = Δ%FVC muscle contraction − Δ%FVC rest) in SHRUT was significantly lower than WKYUT (1 Hz: −2 ± 4 vs. 13 ± 3%; 2.5 Hz: 9 ± 3 vs. 21 ± 3%; and 5 Hz: 12 ± 3 vs. 26 ± 3%, respectively; P < 0.05). Three months of voluntary wheel running significantly increased maximal oxygen uptake in SHRET compared with nontrained SHRUT (78 ± 6 vs. 62 ± 4 ml·kg−1·min−1, respectively; P < 0.05) and restored the magnitude of functional sympatholysis in SHRET (1 Hz: 9 ± 2%; 2.5 Hz: 20 ± 4%; and 5 Hz: 34 ± 5%). Blockade of NO synthase (NOS) by NG-nitro-l-arginine methyl ester attenuated functional sympatholysis in WKYUT but not SHRUT. Furthermore, NOS inhibition significantly diminished the improvements in functional sympatholysis in SHRET. These data demonstrate that impairments in functional sympatholysis are normalized via a NO mechanism by voluntary wheel running in hypertensive rats. PMID:24816260
Kalogeraki, Evgenia; Pielecka-Fortuna, Justyna; Löwel, Siegrid
2017-01-01
In standard cage (SC) raised mice, experience-dependent ocular dominance (OD) plasticity in the primary visual cortex (V1) rapidly declines with age: in postnatal day 25-35 (critical period) mice, 4 days of monocular deprivation (MD) are sufficient to induce OD-shifts towards the open eye; thereafter, 7 days of MD are needed. Beyond postnatal day 110, even 14 days of MD failed to induce OD-plasticity in mouse V1. In contrast, mice raised in a so-called "enriched environment" (EE), exhibit lifelong OD-plasticity. EE-mice have more voluntary physical exercise (running wheels), and experience more social interactions (bigger housing groups) and more cognitive stimulation (regularly changed labyrinths or toys). Whether experience-dependent shifts of V1-activation happen faster in EE-mice and how long the plasticity promoting effect would persist after transferring EE-mice back to SCs has not yet been investigated. To this end, we used intrinsic signal optical imaging to visualize V1-activation i) before and after MD in EE-mice of different age groups (from 1-9 months), and ii) after transferring mice back to SCs after postnatal day 130. Already after 2 days of MD, and thus much faster than in SC-mice, EE-mice of all tested age groups displayed a significant OD-shift towards the open eye. Transfer of EE-mice to SCs immediately abolished OD-plasticity: already after 1 week of SC-housing and MD, OD-shifts could no longer be visualized. In an attempt to rescue abolished OD-plasticity of these mice, we either administered the anti-depressant fluoxetine (in drinking water) or supplied a running wheel in the SCs. OD-plasticity was only rescued for the running wheel- mice. Altogether our results show that raising mice in less deprived environments like large EE-cages strongly accelerates experience-dependent changes in V1-activation compared to the impoverished SC-raising. Furthermore, preventing voluntary physical exercise of EE-mice in adulthood immediately precludes OD-shifts in V1.
Pielecka-Fortuna, Justyna; Löwel, Siegrid
2017-01-01
In standard cage (SC) raised mice, experience-dependent ocular dominance (OD) plasticity in the primary visual cortex (V1) rapidly declines with age: in postnatal day 25–35 (critical period) mice, 4 days of monocular deprivation (MD) are sufficient to induce OD-shifts towards the open eye; thereafter, 7 days of MD are needed. Beyond postnatal day 110, even 14 days of MD failed to induce OD-plasticity in mouse V1. In contrast, mice raised in a so-called “enriched environment” (EE), exhibit lifelong OD-plasticity. EE-mice have more voluntary physical exercise (running wheels), and experience more social interactions (bigger housing groups) and more cognitive stimulation (regularly changed labyrinths or toys). Whether experience-dependent shifts of V1-activation happen faster in EE-mice and how long the plasticity promoting effect would persist after transferring EE-mice back to SCs has not yet been investigated. To this end, we used intrinsic signal optical imaging to visualize V1-activation i) before and after MD in EE-mice of different age groups (from 1–9 months), and ii) after transferring mice back to SCs after postnatal day 130. Already after 2 days of MD, and thus much faster than in SC-mice, EE-mice of all tested age groups displayed a significant OD-shift towards the open eye. Transfer of EE-mice to SCs immediately abolished OD-plasticity: already after 1 week of SC-housing and MD, OD-shifts could no longer be visualized. In an attempt to rescue abolished OD-plasticity of these mice, we either administered the anti-depressant fluoxetine (in drinking water) or supplied a running wheel in the SCs. OD-plasticity was only rescued for the running wheel- mice. Altogether our results show that raising mice in less deprived environments like large EE-cages strongly accelerates experience-dependent changes in V1-activation compared to the impoverished SC-raising. Furthermore, preventing voluntary physical exercise of EE-mice in adulthood immediately precludes OD-shifts in V1. PMID:29073219
Wang, Zhuo; Guo, Yumei; Myers, Kalisa G; Heintz, Ryan; Holschneider, Daniel P
2015-05-01
Exercise modality and complexity play a key role in determining neurorehabilitative outcome in Parkinson's disease (PD). Exercise training (ET) that incorporates both motor skill training and aerobic exercise has been proposed to synergistically improve cognitive and automatic components of motor control in PD patients. Here we introduced such a skilled aerobic ET paradigm in a rat model of dopaminergic deafferentation. Rats with bilateral, intra-striatal 6-hydroxydopamine lesions were exposed to forced ET for 4weeks, either on a simple running wheel (non-skilled aerobic exercise, NSAE) or on a complex wheel with irregularly spaced rungs (skilled aerobic exercise, SAE). Cerebral perfusion was mapped during horizontal treadmill walking or at rest using [(14)C]-iodoantipyrine 1week after the completion of ET. Regional cerebral blood flow (rCBF) was quantified by autoradiography and analyzed in 3-dimensionally reconstructed brains by statistical parametric mapping. SAE compared to NSAE resulted in equal or greater recovery in motor deficits, as well as greater increases in rCBF during walking in the prelimbic area of the prefrontal cortex, broad areas of the somatosensory cortex, and the cerebellum. NSAE compared to SAE animals showed greater activation in the dorsal caudate-putamen and dorsal hippocampus. Seed correlation analysis revealed enhanced functional connectivity in SAE compared to NSAE animals between the prelimbic cortex and motor areas, as well as altered functional connectivity between midline cerebellum and sensorimotor regions. Our study provides the first evidence for functional brain reorganization following skilled aerobic exercise in Parkinsonian rats, and suggests that SAE compared to NSAE results in enhancement of prefrontal cortex- and cerebellum-mediated control of motor function. Copyright © 2015 Elsevier Inc. All rights reserved.
Wang, Zhuo; Guo, Yumei; Myers, Kalisa G.; Heintz, Ryan; Holschneider, Daniel P.
2015-01-01
Exercise modality and complexity play a key role in determining neurorehabilitative outcome in Parkinson’s disease (PD). Exercise training (ET) that incorporates both motor skill training and aerobic exercise has been proposed to synergistically improve cognitive and automatic components of motor control in PD patients. Here we introduced such a skilled aerobic ET paradigm in a rat model of dopaminergic deafferentation. Rats with bilateral, intra-striatal 6-hydroxydopamine lesions were exposed to forced ET for 4 weeks, either on a simple running wheel (non-skilled aerobic exercise, NSAE) or on a complex wheel with irregularly spaced rungs (skilled aerobic exercise, SAE). Cerebral perfusion was mapped during horizontal treadmill walking or at rest using [14C]-iodoantipyrine 1 week after the completion of ET. Regional cerebral blood flow (rCBF) was quantified by autoradiography and analyzed in 3-dimensionally reconstructed brains by statistical parametric mapping. SAE compared to NSAE resulted in equal or greater recovery in motor deficits, as well as greater increases in rCBF during walking in the prelimbic area of the prefrontal cortex, broad areas of the somatosensory cortex, and the cerebellum. NSAE compared to SAE animals showed greater activation in the dorsal caudate-putamen and dorsal hippocampus. Seed correlation analysis revealed enhanced functional connectivity in SAE compared to NSAE animals between the prelimbic cortex and motor areas, as well as altered functional connectivity between midline cerebellum and sensorimotor regions. Our study provides the first evidence for functional brain reorganization following skilled aerobic exercise in Parkinsonian rats, and suggests that SAE compared to NSAE results in enhancement of prefrontal cortex- and cerebellum-mediated control of motor function. PMID:25747184
Voluntary and forced exercise differentially alters the gut microbiome in C57BL/6J mice.
Allen, Jacob M; Berg Miller, Margret E; Pence, Brandt D; Whitlock, Keith; Nehra, Vandana; Gaskins, H Rex; White, Bryan A; Fryer, John D; Woods, Jeffrey A
2015-04-15
We have previously shown that voluntary wheel running (VWR) attenuates, whereas forced treadmill running (FTR) exacerbates, intestinal inflammation and clinical outcomes in a mouse model of colitis. As the gut microbiome is implicated in colitis, we hypothesized that VWR and FTR would differentially affect the gut microbiome. Mice (9-10/treatment) were randomly assigned to VWR, FTR, or sedentary home cage control (SED) for 6 wk. VWR were given running wheel access, whereas FTR ran on a treadmill for 40 min/day at 8-12 m/min, 5% grade. Forty-eight hours after the last exercise session, DNA was isolated from the fecal pellets and cecal contents, and the conserved bacterial 16S rRNA gene was amplified and sequenced using the Illumina Miseq platform. Permutational multivariate analysis of variance based on weighted UniFrac distance matrix revealed different bacterial clusters between feces and cecal contents in all groups (P < 0.01). Interestingly, the community structures of the three treatment groups clustered separately from each other in both gut regions (P < 0.05). Contrary to our hypothesis, the α-diversity metric, Chao1, indicated that VWR led to reduced bacterial richness compared with FTR or SED (P < 0.05). Taxonomic evaluation revealed that both VWR and FTR altered many individual bacterial taxa. Of particular interest, Turicibacter spp., which has been strongly associated with immune function and bowel disease, was significantly lower in VWR vs. SED/FTR. These data indicate that VWR and FTR differentially alter the intestinal microbiome of mice. These effects were observed in both the feces and cecum despite vastly different community structures between each intestinal region. Copyright © 2015 the American Physiological Society.
Belke, Terry W; Hancock, Stephanie D
2003-03-01
Six male albino rats were placed in running wheels and exposed to a fixed-interval 30-s schedule of lever pressing that produced either a drop of sucrose solution or the opportunity to run for a fixed duration as reinforcers. Each reinforcer type was signaled by a different stimulus. In Experiment 1, the duration of running was held constant at 15 s while the concentration of sucrose solution was varied across values of 0, 2.5. 5, 10, and 15%. As concentration decreased, postreinforcement pause duration increased and local rates decreased in the presence of the stimulus signaling sucrose. Consequently, the difference between responding in the presence of stimuli signaling wheel-running and sucrose reinforcers diminished, and at 2.5%, response functions for the two reinforcers were similar. In Experiment 2, the concentration of sucrose solution was held constant at 15% while the duration of the opportunity to run was first varied across values of 15, 45, and 90 s then subsequently across values of 5, 10, and 15 s. As run duration increased, postreinforcement pause duration in the presence of the wheel-running stimulus increased and local rates increased then decreased. In summary, inhibitory aftereffects of previous reinforcers occurred when both sucrose concentration and run duration varied; changes in responding were attributable to changes in the excitatory value of the stimuli signaling the two reinforcers.
Belke, Terry W
2010-01-01
Previous research suggested that allocation of responses on concurrent schedules of wheel-running reinforcement was less sensitive to schedule differences than typically observed with more conventional reinforcers. To assess this possibility, 16 female Long Evans rats were exposed to concurrent FR FR schedules of reinforcement and the schedule value on one alternative was systematically increased. In one condition, the reinforcer on both alternatives was .1 ml of 7.5% sucrose solution; in the other, it was a 30-s opportunity to run in a wheel. Results showed that the average ratio at which greater than 90% of responses were allocated to the unchanged alternative was higher with wheel-running reinforcement. As the ratio requirement was initially increased, responding strongly shifted toward the unchanged alternative with sucrose, but not with wheel running. Instead, responding initially increased on both alternatives, then subsequently shifted toward the unchanged alternative. Furthermore, changeover responses as a percentage of total responses decreased with sucrose, but not wheel-running reinforcement. Finally, for some animals, responding on the increasing ratio alternative decreased as the ratio requirement increased, but then stopped and did not decline with further increments. The implications of these results for theories of choice are discussed. PMID:21451744
Belke, Terry W
2010-09-01
Previous research suggested that allocation of responses on concurrent schedules of wheel-running reinforcement was less sensitive to schedule differences than typically observed with more conventional reinforcers. To assess this possibility, 16 female Long Evans rats were exposed to concurrent FR FR schedules of reinforcement and the schedule value on one alternative was systematically increased. In one condition, the reinforcer on both alternatives was .1 ml of 7.5% sucrose solution; in the other, it was a 30-s opportunity to run in a wheel. Results showed that the average ratio at which greater than 90% of responses were allocated to the unchanged alternative was higher with wheel-running reinforcement. As the ratio requirement was initially increased, responding strongly shifted toward the unchanged alternative with sucrose, but not with wheel running. Instead, responding initially increased on both alternatives, then subsequently shifted toward the unchanged alternative. Furthermore, changeover responses as a percentage of total responses decreased with sucrose, but not wheel-running reinforcement. Finally, for some animals, responding on the increasing ratio alternative decreased as the ratio requirement increased, but then stopped and did not decline with further increments. The implications of these results for theories of choice are discussed.
Kandasamy, Ram; Lee, Andrea T.; Morgan, Michael M.
2017-01-01
Opioid withdrawal in humans is often subtle and almost always spontaneous. In contrast, most preclinical studies precipitate withdrawal by administration of an opioid receptor antagonist such as naloxone. These animal studies rely on measurement of physiological symptoms (e.g., wet dog shakes) in the period immediately following naloxone administration. To more closely model the human condition, we tested the hypothesis that depression of home cage wheel running will provide an objective method to measure the magnitude and duration of spontaneous morphine withdrawal. Rats were allowed access to a running wheel in their home cage for 8 days prior to implantation of two 75 mg morphine or placebo pellets. The pellets were removed 3 or 5 days later to induce spontaneous withdrawal. In normal pain-free rats, removal of the morphine pellets depressed wheel running for 48 hours compared to rats that had placebo pellets removed. Morphine withdrawal-induced depression of wheel running was greatly enhanced in rats with persistent inflammatory pain induced by injection of Complete Freund’s Adjuvant (CFA) into the hindpaw. Removal of the morphine pellets following 3 days of treatment depressed wheel running in these rats for over 6 days. These data demonstrate that home cage wheel running provides an objective and more clinically relevant method to assess spontaneous morphine withdrawal compared to precipitated withdrawal in laboratory rats. Moreover, the enhanced withdrawal in rats with persistent inflammatory pain suggests that pain patients may be especially susceptible to opioid withdrawal. PMID:28366799
Toedebusch, Ryan G.; Roberts, Christian K.; Roberts, Michael D.; Booth, Frank W.
2015-01-01
In maturing rats, the growth of abdominal fat is attenuated by voluntary wheel running. After the cessation of running by wheel locking, a rapid increase in adipose tissue growth to a size that is similar to rats that have never run (i.e. catch-up growth) has been previously reported by our lab. In contrast, diet-induced increases in adiposity have a slower onset with relatively delayed transcriptomic responses. The purpose of the present study was to identify molecular pathways associated with the rapid increase in adipose tissue after ending 6 wks of voluntary running at the time of puberty. Age-matched, male Wistar rats were given access to running wheels from 4 to 10 weeks of age. From the 10th to 11th week of age, one group of rats had continued wheel access, while the other group had one week of wheel locking. Perirenal adipose tissue was extracted, RNA sequencing was performed, and bioinformatics analyses were executed using Ingenuity Pathway Analysis (IPA). IPA was chosen to assist in the understanding of complex ‘omics data by integrating data into networks and pathways. Wheel locked rats gained significantly more fat mass and significantly increased body fat percentage between weeks 10–11 despite having decreased food intake, as compared to rats with continued wheel access. IPA identified 646 known transcripts differentially expressed (p < 0.05) between continued wheel access and wheel locking. In wheel locked rats, IPA revealed enrichment of transcripts for the following functions: extracellular matrix, macrophage infiltration, immunity, and pro-inflammatory. These findings suggest that increases in visceral adipose tissue that accompanies the cessation of pubertal physical activity are associated with the alteration of multiple pathways, some of which may potentiate the development of pubertal obesity and obesity-associated systemic low-grade inflammation that occurs later in life. PMID:26678390
Ruegsegger, Gregory N; Company, Joseph M; Toedebusch, Ryan G; Roberts, Christian K; Roberts, Michael D; Booth, Frank W
2015-01-01
In maturing rats, the growth of abdominal fat is attenuated by voluntary wheel running. After the cessation of running by wheel locking, a rapid increase in adipose tissue growth to a size that is similar to rats that have never run (i.e. catch-up growth) has been previously reported by our lab. In contrast, diet-induced increases in adiposity have a slower onset with relatively delayed transcriptomic responses. The purpose of the present study was to identify molecular pathways associated with the rapid increase in adipose tissue after ending 6 wks of voluntary running at the time of puberty. Age-matched, male Wistar rats were given access to running wheels from 4 to 10 weeks of age. From the 10th to 11th week of age, one group of rats had continued wheel access, while the other group had one week of wheel locking. Perirenal adipose tissue was extracted, RNA sequencing was performed, and bioinformatics analyses were executed using Ingenuity Pathway Analysis (IPA). IPA was chosen to assist in the understanding of complex 'omics data by integrating data into networks and pathways. Wheel locked rats gained significantly more fat mass and significantly increased body fat percentage between weeks 10-11 despite having decreased food intake, as compared to rats with continued wheel access. IPA identified 646 known transcripts differentially expressed (p < 0.05) between continued wheel access and wheel locking. In wheel locked rats, IPA revealed enrichment of transcripts for the following functions: extracellular matrix, macrophage infiltration, immunity, and pro-inflammatory. These findings suggest that increases in visceral adipose tissue that accompanies the cessation of pubertal physical activity are associated with the alteration of multiple pathways, some of which may potentiate the development of pubertal obesity and obesity-associated systemic low-grade inflammation that occurs later in life.
Crytzer, Theresa M; Keramati, Mariam; Anthony, Steven J; Cheng, Yu-Ting; Robertson, Robert J; Dicianno, Brad E
2018-02-03
People with spina bifida (SB) face personal and environmental barriers to exercise that contribute to physical inactivity, obesity, risk of cardiovascular disease, and poor aerobic fitness. The WHEEL rating of perceived exertion (RPE) Scale was validated in people with SB to monitor exercise intensity. However, the psycho-physiological link between RPE and ventilatory breakpoint (Vpt), the group-normalized perceptual response, has not been determined and would provide a starting point for aerobic exercise in this cohort. The primary objectives were to determine the group-normalized RPE equivalent to Vpt based on WHEEL and Borg Scale ratings and to develop a regression model to predict Borg Scale (conditional metric) from WHEEL Scale (criterion metric). The secondary objective was to create a table of interchangeable values between WHEEL and Borg Scale RPE for people with SB performing a load incremental stress test. Cross-sectional observational. University laboratory. Twenty-nine participants with SB. Participants completed a load incremented arm ergometer exercise stress test. WHEEL and Borg Scale ratings were recorded the last 15 seconds of each 1-minute test phase. WHEEL and Borg Scale ratings, metabolic measures (eg, oxygen consumption, carbon dioxide production). Determined Vpt via plots of oxygen consumption and carbon dioxide production against time. Nineteen of 29 participants achieved Vpt (Group A). The mean ± standard deviation peak oxygen consumption at Vpt for Group A was 61.76 ± 16.26. The WHEEL and Borg Scale RPE at Vpt were 5.74 ± 2.58 (range 0-10) and 13.95 ± 3.50 (range 6-19), respectively. A significant linear regression model was developed (Borg Scale rating = 1.22 × WHEEL Scale rating + 7.14) and used to create a WHEEL-to-Borg Scale RPE conversion table. A significant linear regression model and table of interchangeable values was developed for participants with SB. The group-normalized RPE (WHEEL, 5.74; Borg, 13.95) can be used to prescribe and self-regulate arm ergometer exercise intensity approximating the Vpt. II. Copyright © 2018. Published by Elsevier Inc.
Voluntary wheel running is beneficial to the amino acid profile of lysine-deficient rats.
Nagao, Kenji; Bannai, Makoto; Seki, Shinobu; Kawai, Nobuhiro; Mori, Masato; Takahashi, Michio
2010-06-01
Rats voluntarily run up to a dozen kilometers per night when their cages are equipped with a running wheel. Daily voluntary running is generally thought to enhance protein turnover. Thus, we sought to determine whether running worsens or improves protein degradation caused by a lysine-deficient diet and whether it changes the utilization of free amino acids released by proteolysis. Rats were fed a lysine-deficient diet and were given free access to a running wheel or remained sedentary (control) for 4 wk. Amino acid levels in plasma, muscle, and liver were measured together with plasma insulin levels and tissue weight. The lysine-deficient diet induced anorexia, skeletal muscle loss, and serine and threonine aminoacidemia, and it depleted plasma insulin and essential amino acids in skeletal muscle. Allowing rats to run voluntarily improved these symptoms; thus, voluntary wheel running made the rats less susceptible to dietary lysine deficiency. Amelioration of the declines in muscular leucine and plasma insulin observed in running rats could contribute to protein synthesis together with the enhanced availability of lysine and other essential amino acids in skeletal muscle. These results indicate that voluntary wheel running under lysine-deficient conditions does not enhance protein catabolism; on the contrary, it accelerates protein synthesis and contributes to the maintenance of muscle mass. The intense nocturnal voluntary running that characterizes rodents might be an adaptation of lysine-deficient grain eaters that allows them to maximize opportunities for food acquisition.
Mendez, Sean; Watanabe, Louis; Hill, Rachel; Owens, Meredith; Moraczewski, Jason; Rowe, Glenn C.; Riddle, Nicole C.
2016-01-01
Obesity is one of the dramatic health issues affecting developed and developing nations, and exercise is a well-established intervention strategy. While exercise-by-genotype interactions have been shown in humans, overall little is known. Using the natural negative geotaxis of Drosophila melanogaster, an important model organism for the study of genetic interactions, a novel exercise machine, the TreadWheel, can be used to shed light on this interaction. The mechanism for inducing exercise with the TreadWheel is inherently gentle, thus minimizing possible confounding effects of other stressors. Using this machine, we were able to assess large cohorts of adult flies from eight genetic lines for their response to exercise after one week of training. We measured their triglyceride, glycerol, protein, glycogen, glucose content, and body weight, as well as their climbing ability and feeding behavior in response to exercise. Exercised flies showed decreased stored triglycerides, glycogen, and body weight, and increased stored protein and climbing ability. In addition to demonstrating an overall effect of TreadWheel exercise on flies, we found significant interactions of exercise with genotype, sex, or genotype-by-sex effects for most of the measured phenotypes. We also observed interaction effects between exercise, genotype, and tissue (abdomen or thorax) for metabolite profiles, and those differences can be partially linked to innate differences in the flies' persistence in maintaining activity during exercise bouts. In addition, we assessed gene expression levels for a panel of 13 genes known to be associated with respiratory fitness and found that many responded to exercise. With this study, we have established the TreadWheel as a useful tool to study the effect of exercise in flies, shown significant genotype-specific and sex-specific impacts of exercise, and have laid the ground work for more extensive studies of how genetics, sex, environment, and aging interact with exercise to influence metabolic fitness in Drosophila. PMID:27736996
An analysis of excessive running in the development of activity anorexia.
Beneke, W M; Schulte, S E; vander Tuig, J G
1995-09-01
Food restriction combined with activity wheel access produces activity anorexia: a combination of excessive running, reduced food intake and rapid weight loss. Temporal distributions of running in activity anorexia were examined in a reversal design with one of 2 x 2 x 2 factorial combinations (pelleted-vs-powdered food x deprivation x wheel access) as the treatment condition. Wheel revolutions were recorded in 30 min intervals; body weights, food and water intakes were measured daily. Only wheel access combined with food deprivation reliably produced activity anorexia. Excessive running occurred in the absence of schedule-induced polydipsia, was unaffected by food form, and showed distributional characteristics of facultative behavior. These results are inconsistent with schedule-induced behavior explanations. Running distributions appeared consistent with chronobiological models with light/dark onset and feeding serving as zeitgebers.
Wheel access duration in rats: I. Effects on feeding and running.
Lattanzio, Sara B; Eikelboom, Roelof
2003-06-01
The effects of 0-, 2-, and 24-hr wheel access on the pattern of running, feeding, and weight were explored over 24 days in 3 groups of 8 male rats. Both 2 and 24 hr of wheel access suppressed feeding by about 15% for about 8 days before feeding gradually returned to normal. Weight in these 2 groups was similar and was suppressed for the 24 days. Like the pattern seen with drug self-administration (S. H. Ahmed & G. F. Koob, 1998, 1999), running levels stayed low with short, 2-hr daytime wheel access, but with long, 24-hr access, rats' running escalated over days to chronically high levels. These results may have relevance for the understanding of addiction and anorexia nervosa.
2014-10-07
is counted as. Per the TDTC, a test bridge with longitudinal and/or lateral symmetry under non- eccentric loading can be considered as 1, 2, or 4...Level Run036 3 MLC70T (tracked) BA Run046 6 AB Run055 9 AB Run060 9 BA Run064 12 BA Run071 15 AB Run155 3 MLC96W ( wheeled ) AB...Run331 9 AB Run359 15 AB Run430 12 MLC96W ( wheeled ) BA Run434 12 AB Run447 3 BA Bank Condition: Side Slope, Even Strain Channels High
Karvat, Golan; Kimchi, Tali
2012-08-01
Three core symptoms of autistic spectrum disorders are stereotypic movements, resistance to change in routines and deficits in social interaction. In order to understand their neuronal mechanisms, there is a dire need for behavioral paradigms to assess those symptoms in rodents. Here we present a novel method which is based on positive reward in a customized wheel-running apparatus to assess these symptoms. As a proof of concept, 4 mouse strains were tested in the new behavioral paradigm; 2 control lines (C57BL/6 and ICR) and 2 mouse-models of autism (BTBR T+ tf/J and Nlgn3(tm1Sud)). We found that the C57BL/6, ICR and Nlgn3(tm1Sud) mice showed a significant reduction in stereotypical behavior in the presence of the running wheel, ability to forfeit the running habit when the running-wheel was jammed, and preference of interacting with a social stimulus over the jammed running-wheel. No difference was found between genotypes of the Nlgn3(tm1Sud) mice. On the other hand, the BTBR mice exhibited persistent, elevated levels of stereotypical behavior. In addition, they presented a deficit in their ability to adjust to a changing environment, as manifested in persistence to interact with the wheel even when it was jammed. Lastly, the BTBR mice exhibited no significant preference to interact with the stranger mouse over the jammed running-wheel. These results were validated by a set of commonly used behavioral tests. Overall, our novel behavioral paradigm detects multiple components of autistic-like phenotypes, including cognitive rigidity, stereotypic behavior and social deficiency. Copyright © 2012 Elsevier B.V. All rights reserved.
Exercise, learned helplessness, and the stress-resistant brain.
Greenwood, Benjamin N; Fleshner, Monika
2008-01-01
Exercise can prevent the development of stress-related mood disorders, such as depression and anxiety. The underlying neurobiological mechanisms of this effect, however, remain unknown. Recently, researchers have used animal models to begin to elucidate the potential mechanisms underlying the protective effects of physical activity. Using the behavioral consequences of uncontrollable stress or "learned helplessness" as an animal analog of depression- and anxiety-like behaviors in rats, we are investigating factors that could be important for the antidepressant and anxiolytic properties of exercise (i.e., wheel running). The current review focuses on the following: (1) the effect of exercise on the behavioral consequences of uncontrollable stress and the implications of these effects on the specificity of the "learned helplessness" animal model; (2) the neurocircuitry of learned helplessness and the role of serotonin; and (3) exercise-associated neural adaptations and neural plasticity that may contribute to the stress-resistant brain. Identifying the mechanisms by which exercise prevents learned helplessness could shed light on the complex neurobiology of depression and anxiety and potentially lead to novel strategies for the prevention of stress-related mood disorders.
Nguemeni, Carine; McDonald, Matthew W; Jeffers, Matthew S; Livingston-Thomas, Jessica; Lagace, Diane; Corbett, Dale
2018-01-15
Continuous running wheel (RW) exercise increases adult hippocampal neurogenesis in the dentate gyrus (DG) of rodents. Evidence suggests that greater amounts of RW exercise does not always equate to more adult-generated neurons in hippocampus. It can also be argued that continuous access to a RW results in exercise levels not representative of human exercise patterns. This study tested if RW paradigms that more closely represent human exercise patterns (e.g. shorter bouts, alternating daily exercise) alter neurogenesis. Neurogenesis was measured by examining the survival and fate of bromodeoxyuridine (BrdU)-labeled proliferating cells in the DG of male Sprague-Dawley rats after acute (14 days) or chronic (30 days) RW access. Rats were assigned to experimental groups based on the number of hours that they had access to a RW over two days: 0 h, 4 h, 8 h, 24 h, and 48 h. After acute RW access, rats that had unlimited access to the RW on alternating days (24 h) had a stronger neurogenic response compared to those rats that ran modest distances (4 h, 8 h) or not at all (0 h). In contrast, following chronic RW access, rats that ran a moderate amount (4 h, 8 h) had significantly more surviving cells compared to 0 h, 24 h, and 48 h. Linear regression analysis established a negative relationship between running distance and surviving BrdU+ cells in the chronic RW access cohort (R 2 = 0.40). These data demonstrate that in rats moderate amounts of RW exercise are superior to continuous daily RW exercise paradigms at promoting hippocampal neurogenesis in the long-term. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.
Siette, Joyce; Reichelt, Amy C.; Westbrook, R. Frederick
2014-01-01
Three experiments used rats to examine the effect of a single bout of voluntary activity (wheel running) on the acquisition, extinction, and reconsolidation of context conditioned fear. In Experiment 1, rats provided with access to a wheel for 3 h immediately before or after a shocked exposure to a context froze more when tested in that context than rats provided with access to the wheels 6 h after the shocked exposure or rats not provided with access to the wheels. In Experiment 2, rats provided with access to the wheels immediately before or after a nonshocked exposure to the conditioned context froze less when tested in that context than rats provided with access to the wheels 6 h after the nonshocked exposure or rats not provided with access to the wheels. In Experiment 3, rats provided with access to wheels immediately after an extended nonshocked exposure to the conditioned context again froze less, whereas rats provided with access to the wheels after a brief nonshocked exposure froze more on the subsequent test than sedentary controls. These results show that a single bout of running can enhance acquisition, extinction, and reconsolidation of context conditioned fear. PMID:24429425
Siette, Joyce; Reichelt, Amy C; Westbrook, R Frederick
2014-01-15
Three experiments used rats to examine the effect of a single bout of voluntary activity (wheel running) on the acquisition, extinction, and reconsolidation of context conditioned fear. In Experiment 1, rats provided with access to a wheel for 3 h immediately before or after a shocked exposure to a context froze more when tested in that context than rats provided with access to the wheels 6 h after the shocked exposure or rats not provided with access to the wheels. In Experiment 2, rats provided with access to the wheels immediately before or after a nonshocked exposure to the conditioned context froze less when tested in that context than rats provided with access to the wheels 6 h after the nonshocked exposure or rats not provided with access to the wheels. In Experiment 3, rats provided with access to wheels immediately after an extended nonshocked exposure to the conditioned context again froze less, whereas rats provided with access to the wheels after a brief nonshocked exposure froze more on the subsequent test than sedentary controls. These results show that a single bout of running can enhance acquisition, extinction, and reconsolidation of context conditioned fear.
Rao, Shailaja Kishan; Ross, Jordan M; Harrison, Fiona E; Bernardo, Alexandra; Reiserer, Randall S; Reiserer, Ronald S; Mobley, James A; McDonald, Michael P
2015-06-01
Physical exercise may provide protection against the cognitive decline and neuropathology associated with Alzheimer's disease, although the mechanisms are not clear. In the present study, APP/PSEN1 double-transgenic and wild-type mice were allowed unlimited voluntary exercise for 7months. Consistent with previous reports, wheel-running improved cognition in the double-transgenic mice. Interestingly, the average daily distance run was strongly correlated with spatial memory in the water maze in wild-type mice (r(2)=.959), but uncorrelated in transgenics (r(2)=.013). Proteomics analysis showed that sedentary transgenic mice differed significantly from sedentary wild-types with respect to proteins involved in synaptic transmission, cytoskeletal regulation, and neurogenesis. When given an opportunity to exercise, the transgenics' deficiencies in cytoskeletal regulation and neurogenesis largely normalized, but abnormal synaptic proteins did not change. In contrast, exercise enhanced proteins associated with cytoskeletal regulation, oxidative phosphorylation, and synaptic transmission in wild-type mice. Soluble and insoluble Aβ40 and Aβ42 levels were significantly decreased in both cortex and hippocampus of active transgenics, suggesting that this may have played a role in the cognitive improvement in APP/PSEN1 mice. β-secretase was significantly reduced in active APP/PSEN1 mice compared to sedentary controls, suggesting a mechanism for reduced Aβ. Taken together, these data illustrate that exercise improves memory in wild-type and APP-overexpressing mice in fundamentally different ways. Copyright © 2015 Elsevier Inc. All rights reserved.
Belarbi, Karim; Burnouf, Sylvie; Fernandez-Gomez, Francisco-Jose; Laurent, Cyril; Lestavel, Sophie; Figeac, Martin; Sultan, Audrey; Troquier, Laetitia; Leboucher, Antoine; Caillierez, Raphaëlle; Grosjean, Marie-Eve; Demeyer, Dominique; Obriot, Hélène; Brion, Ingrid; Barbot, Bérangère; Galas, Marie-Christine; Staels, Bart; Humez, Sandrine; Sergeant, Nicolas; Schraen-Maschke, Susanna; Muhr-Tailleux, Anne; Hamdane, Malika; Buée, Luc; Blum, David
2011-08-01
Tau pathology is encountered in many neurodegenerative disorders known as tauopathies, including Alzheimer's disease. Physical activity is a lifestyle factor affecting processes crucial for memory and synaptic plasticity. Whether long-term voluntary exercise has an impact on Tau pathology and its pathophysiological consequences is currently unknown. To address this question, we investigated the effects of long-term voluntary exercise in the THY-Tau22 transgenic model of Alzheimer's disease-like Tau pathology, characterized by the progressive development of Tau pathology, cholinergic alterations and subsequent memory impairments. Three-month-old THY-Tau22 mice and wild-type littermates were assigned to standard housing or housing supplemented with a running wheel. After 9 months of exercise, mice were evaluated for memory performance and examined for hippocampal Tau pathology, cholinergic defects, inflammation and genes related to cholesterol metabolism. Exercise prevented memory alterations in THY-Tau22 mice. This was accompanied by a decrease in hippocampal Tau pathology and a prevention of the loss of expression of choline acetyltransferase within the medial septum. Whereas the expression of most cholesterol-related genes remained unchanged in the hippocampus of running THY-Tau22 mice, we observed a significant upregulation in mRNA levels of NPC1 and NPC2, genes involved in cholesterol trafficking from the lysosomes. Our data support the view that long-term voluntary physical exercise is an effective strategy capable of mitigating Tau pathology and its pathophysiological consequences. Copyright © 2011 Elsevier Inc. All rights reserved.
Food restriction-induced hyperactivity: addiction or adaptation to famine?
Duclos, Martine; Ouerdani, Amel; Mormède, Pierre; Konsman, Jan Pieter
2013-06-01
Increased physical activity is present in 30-80% of anorexia nervosa patients. To explain the paradox of low food intake and excessive exercise in humans and other animals, it has been proposed that increased physical activity along with food restriction activates brain reward circuits and is addictive. Alternatively, the fleeing-famine hypothesis postulates that refusal of known scarce energy-low food sources and hyperactivity facilitate migration towards new habitats that potentially contain new energy-rich foodstuffs. The use of rewarding compounds that differ in energy density, such as the energy-free sweetener saccharin and the energy rich sucrose makes it possible to critically test the reward-addiction and fleeing-famine hypotheses. The aims of the present work were to study if sucrose and/or saccharin could attenuate food restriction-induced hyperactivity, weight loss, increased plasma corticosterone, and activation of brain structures involved in neuroendocrine control, energy balance, physical activity, and reward signaling in rats. Its major findings are that access to sucrose, but not to saccharin, attenuated food restriction-induced running wheel activity, weight loss, rises in plasma corticosterone, and expression of the cellular activation marker c-Fos in the paraventricular and arcuate hypothalamus and in the nucleus accumbens. These findings suggest that the energy-richness and easy availability of sucrose interrupted a fleeing-famine-like hyperactivity response. Since corticosterone mediates food restriction-induced wheel running (Duclos et al., 2009), we propose that the attenuating effect of sucrose consumption on plasma corticosterone plays a role in reduced wheel running and weight loss by lowering activation of the nucleus accumbens and arcuate hypothalamus in these animals. Copyright © 2012 Elsevier Ltd. All rights reserved.
Zlebnik, Natalie E; Carroll, Marilyn E
2015-03-01
Aerobic exercise and the attention-deficit/hyperactivity disorder medication, atomoxetine (ATO), are two monotherapies that have been shown to suppress reinstatement of cocaine-seeking in an animal model of relapse. The present study investigated the effects of combining wheel running and ATO versus each treatment alone on cocaine-seeking precipitated by cocaine and cocaine-paired cues in rats with differing susceptibility to drug abuse (i.e., high vs. low impulsive). Rats were screened for high (HiI) or low impulsivity (LoI) based on their performance on a delay-discounting task and then trained to self-administer cocaine (0.4 mg/kg/inf) for 10 days. Following 14 days of extinction, both groups were tested for reinstatement of cocaine-seeking precipitated by cocaine or cocaine-paired cues in the presence of concurrent running wheel access (W), pretreatment with ATO, or both (W+ATO). HiI rats acquired cocaine self-administration more quickly than LoI rats. While both individual treatments and W+ATO significantly attenuated cue-induced cocaine seeking in HiI and LoI rats, only W+ATO was effective in reducing cocaine-induced reinstatement compared with vehicle treatment. There were dose-dependent and phenotype-specific effects of ATO with HiI rats responsive to the low but not high ATO dose. Floor effects of ATO and W on cue-induced reinstatement prevented the assessment of combined treatment effects. These findings demonstrated greater attenuation of cue- versus cocaine-induced reinstatement by ATO and W alone and recapitulate impulsivity phenotype differences in both acquisition of cocaine self-administration and receptivity to treatment.
Rozeske, Robert R; Greenwood, Benjamin N; Fleshner, Monika; Watkins, Linda R; Maier, Steven F
2011-06-01
In rodents, exposure to acute inescapable, but not escapable, stress potentiates morphine conditioned place preference (CPP), an effect that is dependent upon hyperactivation of serotonin (5-HT) neurons in the dorsal raphe nucleus (DRN). Six weeks of voluntary wheel running constrains activation of DRN 5-HT neurons during exposure to inescapable stress. Six weeks of voluntary wheel running before inescapable stress blocked stress-induced potentiation of morphine CPP. Published by Elsevier B.V.
Beig, Mirza I; Callister, Robin; Saint, David A; Bondarenko, Eugene; Walker, Frederick R; Day, Trevor A; Nalivaiko, Eugene
2011-01-01
1. It is currently unknown whether long-term voluntary exercise has enduring cardioprotective effects in animal models. 2. The present study was conducted in three groups of rats: (i) sedentary controls (n = 6); (ii) 24 h runners (n = 8; unlimited access to running wheels); and (iii) 2 h runners (n = 8; access to running wheels limited to 2 h daily). After termination of the 6 week exercise protocol, all rats were implanted with the telemetric electrocardiogram transmitters and were studied 1 week later. 3. Resting heart rate (HR) values in the control rats, 24 h runners and 2 h runners were 372 ± 7, 361 ± 9 and 298 ± 5 b.p.m., respectively (P < 0.05 for 2 h runners vs controls). The high-frequency spectral power in the control rats, 24 h runners and 2 h runners was 3.9 ± 0.2, 4.3 ± 0.3 and 5.3 ± 0.3 s², respectively (P < 0.05 for 2 h runners vs controls), whereas intrinsic HR was 383 ± 3, 377 ± 2 and 346 ± 3 b.p.m., respectively (P < 0.001 for 2 h runners vs controls). Restraint stress provoked tachycardia of similar magnitude in all groups. 4. After completion of telemetric studies, haemodynamic indices and susceptibility to cardiac arrhythmias were assessed in anaesthetized animals, there were no major between-group differences in HR, arterial pressure, contractility indices or sensitivity to β-adrenoceptor stimulation (dobutamine) or blockade (atenolol). The effective refractory period in the control rats, 24 h runners and 2 h runners was 49 ± 2, 55 ± 2 and 60 ± 4 ms, respectively (P = 0.054 for 2 h runners vs controls). A significantly higher dose of aconitine was required to provoke ventricular arrhythmias in the 24 h and 2 h running groups compared with controls (489 ± 76, 505 ± 88 and 173 ± 33 μg, respectively; P < 0.05). 5. We conclude that, in rats, long-term voluntary exercise has enduring cardioprotective effects mediated at the level of both the central nervous system and the heart. © 2010 The Authors. Clinical and Experimental Pharmacology and Physiology © 2010 Blackwell Publishing Asia Pty Ltd.
Marczak, Ewa D; Jinsmaa, Yunden; Myers, Page H; Blankenship, Terry; Wilson, Ralph; Balboni, Gianfranco; Salvadori, Severo; Lazarus, Lawrence H
2009-08-15
Orally active dual mu-/delta-opioid receptor antagonist, H-Dmt-Tic-Lys-NH-CH(2)-Ph (MZ-2) was applied to study body weight gain, fat content, bone mineral density, serum insulin, cholesterol and glucose levels in female ob/ob (B6.V-Lep
Lin, Tzu-Wei; Chen, Shean-Jen; Huang, Tung-Yi; Chang, Chia-Yuan; Chuang, Jih-Ing; Wu, Fong-Sen; Kuo, Yu-Min; Jen, Chauying J
2012-01-01
Different exercise paradigms show differential effects on various forms of memory. We hypothesize that the differential effects of exercises on memory performance are caused by different neuroplasticity changes in relevant brain regions in response to different exercise trainings. We examined the effects of treadmill running (TR) and wheel running (WR) on the Pavlovian fear conditioning task that assesses learning and memory performance associated with the amygdala (cued conditioning) and both the amygdala and hippocampus (contextual conditioning). The skeletal muscle citrate synthase activity, an indicator of aerobic capacity, was elevated in rats received 4 w of TR, but not WR. While both TR and WR elevated the contextual conditional response, only TR facilitated the cued conditional response. Using a single-neuron labeling technique, we found that while both TR and MR enlarged the dendritic field and increased the spine density in hippocampal CA3 neurons, only TR showed these effects in basolateral amygdalar neurons. Moreover, both types of exercise upregulated synaptic proteins (i.e., TrkB and SNAP-25) in the hippocampus; however only TR showed similar effects in the amygdala. Injection of K252a, a TrkB kinase inhibitor, in the dorsal hippocampus or basolateral amygdala abolished the exercise-facilitated contextual or cued fear learning and memory performance, respectively, regardless of the types of exercise. In summary, our results supported that different types of exercise affect the performance of learning and memory via BDNF-TrkB signaling and neuroplasticity in specific brain regions. The brain region-specific neuronal adaptations are possibly induced by various levels of intensity/stress elicited by different types of exercise. Copyright © 2011 Elsevier Inc. All rights reserved.
Ruegsegger, Gregory N; Toedebusch, Ryan G; Childs, Thomas E; Grigsby, Kolter B; Booth, Frank W
2017-01-01
Physical inactivity, which drastically increases with advancing age, is associated with numerous chronic diseases. The nucleus accumbens (the pleasure and reward 'hub' in the brain) influences wheel running behaviour in rodents. RNA-sequencing and subsequent bioinformatics analysis led us to hypothesize a potential relationship between the regulation of dendritic spine density, the molecules involved in synaptic transmission, and age-related reductions in wheel running. Upon completion of follow-up studies, we developed the working model that synaptic plasticity in the nucleus accumbens is central to age-related changes in voluntary running. Testing this hypothesis, inhibition of Cdk5 (comprising a molecule central to the processes described above) in the nucleus accumbens reduced wheel running. The results of the present study show that reductions in synaptic transmission and Cdk5 function are related to decreases in voluntary running behaviour and provide guidance for understanding the neural mechanisms that underlie age-dependent reductions in the motivation to be physically active. Increases in age are often associated with reduced levels of physical activity, which, in turn, associates with the development of numerous chronic diseases. We aimed to assess molecular differences in the nucleus accumbens (NAc) (a specific brain nucleus postulated to influence rewarding behaviour) with respect to wheel running and sedentary female Wistar rats at 8 and 14 weeks of age. RNA-sequencing was used to interrogate transcriptomic changes between 8- and 14-week-old wheel running rats, and select transcripts were later analysed by quantitative RT-PCR in age-matched sedentary rats. Voluntary wheel running was greatest at 8 weeks and had significantly decreased by 12 weeks. From 619 differentially expressed mRNAs, bioinformatics suggested that cAMP-mediated signalling, dopamine- and cAMP-regulated neuronal phosphoprotein of 32 kDa feedback, and synaptic plasticity were greater in 8- vs. 14-week-old rats. In depth analysis of these networks showed significant (∼20-30%; P < 0.05) decreases in cell adhesion molecule (Cadm)4 and p39 mRNAs, as well as their proteins from 8 to 14 weeks of age in running and sedentary rats. Furthermore, Cadm4, cyclin-dependent kinase 5 (Cdk5) and p39 mRNAs were significantly correlated with voluntary running distance. Analysis of dendritic spine density in the NAc showed that wheel access increased spine density (P < 0.001), whereas spine density was lower in 14- vs. 8-week-old sedentary rats (P = 0.03). Intriguingly, intra-NAc injection of the Cdk5 inhibitor roscovitine, dose-dependently decreased wheel running. Collectively, these experiments suggest that an age-dependent loss in synaptic function and Cdk5/p39 activity in the NAc may be partially responsible for age-related declines in voluntary running behaviour. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.
Ruegsegger, Gregory N.; Toedebusch, Ryan G.; Childs, Thomas E.; Grigsby, Kolter B.
2016-01-01
Key points Physical inactivity, which drastically increases with advancing age, is associated with numerous chronic diseases.The nucleus accumbens (the pleasure and reward ‘hub’ in the brain) influences wheel running behaviour in rodents.RNA‐sequencing and subsequent bioinformatics analysis led us to hypothesize a potential relationship between the regulation of dendritic spine density, the molecules involved in synaptic transmission, and age‐related reductions in wheel running. Upon completion of follow‐up studies, we developed the working model that synaptic plasticity in the nucleus accumbens is central to age‐related changes in voluntary running.Testing this hypothesis, inhibition of Cdk5 (comprising a molecule central to the processes described above) in the nucleus accumbens reduced wheel running.The results of the present study show that reductions in synaptic transmission and Cdk5 function are related to decreases in voluntary running behaviour and provide guidance for understanding the neural mechanisms that underlie age‐dependent reductions in the motivation to be physically active. Abstract Increases in age are often associated with reduced levels of physical activity, which, in turn, associates with the development of numerous chronic diseases. We aimed to assess molecular differences in the nucleus accumbens (NAc) (a specific brain nucleus postulated to influence rewarding behaviour) with respect to wheel running and sedentary female Wistar rats at 8 and 14 weeks of age. RNA‐sequencing was used to interrogate transcriptomic changes between 8‐ and 14‐week‐old wheel running rats, and select transcripts were later analysed by quantitative RT‐PCR in age‐matched sedentary rats. Voluntary wheel running was greatest at 8 weeks and had significantly decreased by 12 weeks. From 619 differentially expressed mRNAs, bioinformatics suggested that cAMP‐mediated signalling, dopamine‐ and cAMP‐regulated neuronal phosphoprotein of 32 kDa feedback, and synaptic plasticity were greater in 8‐ vs. 14‐week‐old rats. In depth analysis of these networks showed significant (∼20–30%; P < 0.05) decreases in cell adhesion molecule (Cadm)4 and p39 mRNAs, as well as their proteins from 8 to 14 weeks of age in running and sedentary rats. Furthermore, Cadm4, cyclin‐dependent kinase 5 (Cdk5) and p39 mRNAs were significantly correlated with voluntary running distance. Analysis of dendritic spine density in the NAc showed that wheel access increased spine density (P < 0.001), whereas spine density was lower in 14‐ vs. 8‐week‐old sedentary rats (P = 0.03). Intriguingly, intra‐NAc injection of the Cdk5 inhibitor roscovitine, dose‐dependently decreased wheel running. Collectively, these experiments suggest that an age‐dependent loss in synaptic function and Cdk5/p39 activity in the NAc may be partially responsible for age‐related declines in voluntary running behaviour. PMID:27461471
Aoki, Chiye; Wable, Gauri; Chowdhury, Tara G.; Sabaliauskas, Nicole A.; Laurino, Kevin; Barbarich-Marsteller, Nicole C.
2014-01-01
Anorexia nervosa (AN) is a psychiatric illness characterized by restricted eating and an intense fear of gaining weight. Most individuals with AN are females, diagnosed first during adolescence, 40% to 80% of whom exhibit excessive exercise, and an equally high number with a history of anxiety disorder. We sought to determine the cellular basis for individual differences in AN vulnerability by using an animal model, activity-based anorexia (ABA), that is induced by combining food restriction (FR) with access to a running wheel that allows voluntary exercise. Previously, we showed that by the 4th day of FR, the ABA group of adolescent female rats exhibit > 500% greater levels of non-synaptic α4βδ−GABAARs at the plasma membrane of hippocampal CA1 pyramidal cell spines, relative to the levels found in age-matched controls that are not FR and without wheel access. Here, we show that the ABA group exhibits individual differences in body weight loss, with some losing nearly 30%, while others lose only 15%. The individual differences in weight loss are ascribable to individual differences in wheel activity that both precedes and concurs with days of FR. Moreover, the increase in activity during FR correlates strongly and negatively with α4βδ−GABAAR levels (R= - 0.9, p<0.01). This negative correlation is evident within 2 days of FR, before body weight loss approaches life-threatening levels for any individual. These findings suggest that increased shunting inhibition by α4βδ−GABAARs in spines of CA1 pyramidal neurons may participate in the protection against the ABA-inducing environmental factors of severe weight loss by suppressing excitability of the CA1 pyramidal neurons which, in turn, is related indirectly to suppression of excessive exercise. The data also indicate that, although exercise has many health benefits, it can be maladaptive to individuals with low levels of α4βδ−GABAARs in the CA1, particularly when combined with FR. PMID:24444828
Decrease in Ground-Run Distance of Small Airplanes by Applying Electrically-Driven Wheels
NASA Astrophysics Data System (ADS)
Kobayashi, Hiroshi; Nishizawa, Akira
A new takeoff method for small airplanes was proposed. Ground-roll performance of an airplane driven by electrically-powered wheels was experimentally and computationally studied. The experiments verified that the ground-run distance was decreased by half with a combination of the powered driven wheels and propeller without increase of energy consumption during the ground-roll. The computational analysis showed the ground-run distance of the wheel-driven aircraft was independent of the motor power when the motor capability exceeded the friction between tires and ground. Furthermore, the distance was minimized when the angle of attack was set to the value so that the wing generated negative lift.
Hulmi, Juha J; Oliveira, Bernardo M; Silvennoinen, Mika; Hoogaars, Willem M H; Pasternack, Arja; Kainulainen, Heikki; Ritvos, Olli
2013-07-15
The importance of adequate levels of muscle size and function and physical activity is widely recognized. Myostatin/activin blocking increases skeletal muscle mass but may decrease muscle oxidative capacity and can thus be hypothesized to affect voluntary physical activity. Soluble activin receptor IIB (sActRIIB-Fc) was produced to block myostatin/activins. Modestly dystrophic mdx mice were injected with sActRIIB-Fc or PBS with or without voluntary wheel running exercise for 7 wk. Healthy mice served as controls. Running for 7 wk attenuated the sActRIIB-Fc-induced increase in body mass by decreasing fat mass. Running also enhanced/restored the markers of muscle oxidative capacity and autophagy in mdx mice to or above the levels of healthy mice. Voluntary running activity was decreased by sActRIIB-Fc during the first 3-4 wk correlating with increased body mass. Home cage physical activity of mice, quantified from the force plate signal, was decreased by sActRIIB-Fc the whole 7-wk treatment in sedentary mice. To understand what happens during the first weeks after sActRIIB-Fc administration, when mice are less active, healthy mice were injected with sActRIIB-Fc or PBS for 2 wk. During the sActRIIB-Fc-induced rapid 2-wk muscle growth period, oxidative capacity and autophagy were reduced, which may possibly explain the decreased running activity. These results show that increased muscle size and decreased markers of oxidative capacity and autophagy during the first weeks of myostatin/activin blocking are associated with decreased voluntary activity levels. Voluntary exercise in dystrophic mice enhances the markers of oxidative capacity and autophagy to or above the levels of healthy mice.
Vidal, Pedro; Pérez-Padilla, Ángeles; Pellón, Ricardo
2013-02-01
Clinical studies have found that patients with anorexia develop high activity levels. These data suggest a possible implication of activity in the aetiology of anorexia and are in line with findings obtained in animals during experimental procedures to model interactions between activity and weight loss. Activity-based anorexia (ABA) and semistarvation-induced hyperactivity (SIH) develop when laboratory rats have food access restricted to a single period in the day and are given free access to an activity wheel. This experiment sought to show the effect on weight loss of the excessive activity normally seen in Dark Agouti rats and of hyperactivity induced by 3,4-methylenedioxymethamphetamine (MDMA). To this end, 32 female rats of the Dark Agouti strain were selected and divided into four groups in accordance with a 2 × 2 factorial design, in which one factor was treatment (saline or MDMA) and the other was access or lack of access to an activity wheel. Animals with wheel running access displayed a marked increase in running combined with accelerated weight loss. Although pharmacological treatment resulted in no observable effect on weight loss, rats treated with 12.5mg/kg MDMA generally registered more wheel running than did those treated with saline. Analysis of data on the temporal distribution of wheel running revealed an alteration in circadian activity patterns as a consequence of MDMA. These results, by showing a general high level of wheel running in Dark Agouti rats, once again emphasise the close relationship between activity and weight loss in the development of SIH and related phenomena such as ABA. Copyright © 2012 Elsevier Ltd. All rights reserved.
Effects of Post-Session Wheel Running on Within-Session Changes in Operant Responding
ERIC Educational Resources Information Center
Aoyama, Kenjiro
2007-01-01
This study tested the effects of post-session wheel running on within-session changes in operant responding. Lever-pressing by six rats was reinforced by a food pellet under a continuous reinforcement (CRF) schedule in 30-min sessions. Two different flavored food pellets were used as reinforcers. In the wheel conditions, 30-min operant-sessions…
Miller, ML; Vaillancourt, BD; Wright, MJ; Aarde, SM; Vandewater, SA; Creehan, KM; Taffe, MA
2011-01-01
Background Some epidemiological and cessation studies suggest physical exercise attenuates or prevents recreational drug use in humans. Preclinical studies indicate wheel activity reduces cocaine self-administration in rats; this may, however, require the establishment of compulsive wheel activity. Methods Effects of concurrent wheel activity on intravenous d-methamphetamine (METH) self-administration were examined in male Wistar and Sprague Dawley rats with negligible prior wheel experience. Wistar rats self-administered METH (0.05 mg/kg/inf) under a fixed-ratio 1 (FR1) schedule with concurrent access to an activity wheel during sessions 1–14, 8–21 or 15–21. Control rats which did not self-administer METH had access to an activity wheel during sessions 1–14, 8–21 or 15–28. Sprague Dawley rats self-administered METH (0.1 mg/kg/inf) under FR1 for 14 sessions with either concurrent access to a locked or an unlocked activity wheel. Results METH self-administration was lower when the wheel was available concurrently from the start of self-administration training in both strains, even though Sprague Dawley rats self-administered twice as many METH infusions and ran one-sixth as much on the wheel compared to Wistar rats. Wheel access initiated after 7 or 14 days had no effect on METH self-administration in Wistar rats. Wheel activity was significantly reduced in these groups compared with the group with concurrent wheel and METH access for the first 14 sessions. Conclusions These data show METH self-administration is reduced by exercise if initiated from the start of self-administration and that prior METH self-administration experience interferes with the value of exercise as a reinforcer. PMID:21899959
Nagata, Masatoshi; Yanagihara, Dai; Tomioka, Ryohei; Utsumi, Hideko; Kubota, Yasuo; Yagi, Takeshi; Graybiel, Ann M.; Yamamori, Tetsuo
2011-01-01
Motor control is critical in daily life as well as in artistic and athletic performance and thus is the subject of intense interest in neuroscience. Mouse models of movement disorders have proven valuable for many aspects of investigation, but adequate methods for analyzing complex motor control in mouse models have not been fully established. Here, we report the development of a novel running-wheel system that can be used to evoke simple and complex stepping patterns in mice. The stepping patterns are controlled by spatially organized pegs, which serve as footholds that can be arranged in adjustable, ladder-like configurations. The mice run as they drink water from a spout, providing reward, while the wheel turns at a constant speed. The stepping patterns of the mice can thus be controlled not only spatially, but also temporally. A voltage sensor to detect paw touches is attached to each peg, allowing precise registration of footfalls. We show that this device can be used to analyze patterns of complex motor coordination in mice. We further demonstrate that it is possible to measure patterns of neural activity with chronically implanted tetrodes as the mice engage in vigorous running bouts. We suggest that this instrumented multipeg running wheel (which we name the Step-Wheel System) can serve as an important tool in analyzing motor control and motor learning in mice. PMID:21525375
Kitsukawa, Takashi; Nagata, Masatoshi; Yanagihara, Dai; Tomioka, Ryohei; Utsumi, Hideko; Kubota, Yasuo; Yagi, Takeshi; Graybiel, Ann M; Yamamori, Tetsuo
2011-07-01
Motor control is critical in daily life as well as in artistic and athletic performance and thus is the subject of intense interest in neuroscience. Mouse models of movement disorders have proven valuable for many aspects of investigation, but adequate methods for analyzing complex motor control in mouse models have not been fully established. Here, we report the development of a novel running-wheel system that can be used to evoke simple and complex stepping patterns in mice. The stepping patterns are controlled by spatially organized pegs, which serve as footholds that can be arranged in adjustable, ladder-like configurations. The mice run as they drink water from a spout, providing reward, while the wheel turns at a constant speed. The stepping patterns of the mice can thus be controlled not only spatially, but also temporally. A voltage sensor to detect paw touches is attached to each peg, allowing precise registration of footfalls. We show that this device can be used to analyze patterns of complex motor coordination in mice. We further demonstrate that it is possible to measure patterns of neural activity with chronically implanted tetrodes as the mice engage in vigorous running bouts. We suggest that this instrumented multipeg running wheel (which we name the Step-Wheel System) can serve as an important tool in analyzing motor control and motor learning in mice.
Exercise alters resting state functional connectivity of motor circuits in Parkinsonian rats
Wang, Zhuo; Guo, Yumei; Myers, Kalisa G.; Heintz, Ryan; Peng, Yu-Hao; Maarek, Jean-Michel I.; Holschneider, Daniel P.
2014-01-01
Few studies have examined changes in functional connectivity after long-term aerobic exercise. We examined the effects of 4 weeks of forced running wheel exercise on the resting-state functional connectivity (rsFC) of motor circuits of rats subjected to bilateral 6-hydroxydopamine lesion of the dorsal striatum. Our results showed substantial similarity between lesion-induced changes in rsFC in the rats and alterations in rsFC reported in Parkinson’s disease subjects, including disconnection of the dorsolateral striatum. Exercise in lesioned rats resulted in: (a) normalization of many of the lesion-induced alterations in rsFC, including reintegration of the dorsolateral striatum into the motor network; (b) emergence of the ventrolateral striatum as a new broadly connected network hub; (c) increased rsFC among the motor cortex, motor thalamus, basal ganglia, and cerebellum. Our results showed for the first time that long-term exercise training partially reversed lesion-induced alterations in rsFC of the motor circuits, and in addition enhanced functional connectivity in specific motor pathways in the Parkinsonian rats, which could underlie recovery in motor functions observed in these rats. PMID:25219465
Staples, M C; Somkuwar, S S; Mandyam, C D
2015-10-01
Recent evidence suggests that the behavioral benefits associated with voluntary wheel running in rodents may be due to modulation of glutamatergic transmission in the hippocampus, a brain region implicated in learning and memory. However, the expression of the glutamatergic ionotropic N-methyl-d-aspartate receptor (GluN) in the hippocampus in response to chronic sustained voluntary wheel running has not yet been investigated. Further, the developmental effects during young and mature adulthood on wheel running output and GluN expression in hippocampal subregions has not been determined, and therefore is the main focus of this investigation. Eight-week-old and 16-week-old male Wistar rats were housed in home cages with free access to running wheels and running output was monitored for 4weeks. Wheel access was terminated and tissues from the dorsal and ventral hippocampi were processed for Western blot analysis of GluN subunit expression. Young adult runners demonstrated an escalation in running output but this behavior was not evident in mature adult runners. In parallel, young adult runners demonstrated a significant increase in total GluN (1 and 2A) subunit expression in the dorsal hippocampus (DH), and an opposing effect in the ventral hippocampus (VH) compared to age-matched sedentary controls; these changes in total protein expression were not associated with significant alterations in the phosphorylation of the GluN subunits. In contrast, mature adult runners demonstrated a reduction in total GluN2A expression in the DH, without producing alterations in the VH compared to age-matched sedentary controls. In conclusion, differential running activity-mediated modulation of GluN subunit expression in the hippocampal subregions was revealed to be associated with developmental effects on running activity, which may contribute to altered hippocampal synaptic activity and behavioral outcomes in young and mature adult subjects. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.
Staples, Miranda C.; Somkuwar, Sucharita S.; Mandyam, Chitra D.
2015-01-01
Recent evidence suggests that the behavioral benefits associated with voluntary wheel running in rodents may be due to modulation of glutamatergic transmission in the hippocampus, a brain region implicated in learning and memory. However, the expression of the n-Methyl-d-Aspartate glutamate receptor subunits (GluNs) in the hippocampus in response to chronic sustained voluntary wheel running has not yet been investigated. Further, the developmental effects during young and mature adulthood on wheel running output and GluN expression in hippocampal subregions has not been determined, and therefore is the main focus of this investigation. Eight-week-old and sixteen-week-old male Wistar rats were housed in home cages with free access to running wheels and running output was monitored for four weeks. Wheel access was terminated and tissue from the dorsal and ventral hippocampi were processed for Western blot analysis of GluN subunit expression. Young adult runners demonstrated an escalation in running output but this behavior was not evident in mature adult runners. In parallel, young adult runners demonstrated a significant increase in total GluN (1 and 2A) subunit expression in the dorsal hippocampus, and an opposing effect in the ventral hippocampus compared to age-matched sedentary controls; these changes in total protein expression were not associated with significant alterations in the phosphorylation of the GluN subunits. In contrast, mature adult runners demonstrated a reduction in total GluN2A expression in the dorsal hippocampus, without producing alterations in the ventral hippocampus compared to age-matched sedentary controls. In conclusion, differential running activity-mediated modulation of GluN subunit expression in the hippocampal subregions was revealed to be associated with developmental effects on running activity, which may contribute to altered hippocampal synaptic activity and behavioral outcomes in young and mature adult subjects. PMID:26220171
Influence of manual therapy on functional mobility after joint injury in a rat model.
Ruhlen, Rachel L; Snider, Eric J; Sargentini, Neil J; Worthington, Bart D; Singh, Vineet K; Pazdernik, Vanessa K; Johnson, Jane C; Degenhardt, Brian F
2013-10-01
Animal models can be used to investigate manual therapy mechanisms, but testing manipulation in animal models is problematic because animals cannot directly report their pain. To develop a rat model of inflammatory joint injury to test the efficacy of manual therapy in reducing nociception and restoring function. The authors induced acute inflammatory joint injury in rats by injecting carrageenan into the ankle and then measured voluntary running wheel activity in treated and untreated rats. Treatments included manual therapy applied to the ankle and knee of the injured limb and several analgesic medications (eg, morphine, ketorolac, prednisone). Intra-articular injection of carrageenan to the ankle produced significant swelling (diameter of the ankle increased by 64% after injection; P=.004) and a robust reduction in voluntary running wheel activity (running distance reduced by 91% compared with controls; P<.001). Injured rats gradually returned to running levels equal to controls over 10 days. Neither manual therapy nor analgesic medications increased running wheel activity relative to untreated rats. Voluntary running wheel activity appears to be an appropriate functional measure to evaluate the impact of an acute inflammatory joint injury. However, efforts to treat the injury did not restore running relative to untreated rats.
Kandasamy, Ram; Calsbeek, Jonas J; Morgan, Michael M
2017-01-15
Opioids are effective at inhibiting responses to noxious stimuli in rodents, but have limited efficacy and many side effects in chronic pain patients. One reason for this disconnect is that nociception is typically assessed using withdrawal from noxious stimuli in animals, whereas chronic pain patients suffer from abnormal pain that disrupts normal activity. We hypothesized that assessment of home cage wheel running in rats would provide a much more clinically relevant method to assess opioid efficacy to restore normal behavior. Intraplantar injection of Complete Freund's Adjuvant (CFA) into the right hindpaw depressed wheel running and caused mechanical allodynia measured with the von Frey test in both male and female rats. Administration of an ED 50 dose of morphine (3.2mg/kg) reversed mechanical allodynia, but did not reverse CFA-induced depression of wheel running. In contrast, administration of a low dose of morphine (1.0mg/kg) restored running for one hour in both sexes, but had no effect on mechanical allodynia. Administration of the atypical opioid buprenorphine had no effect on inflammation-induced depression of wheel running in male or female rats, but attenuated mechanical allodynia in male rats. Administration of buprenorphine and higher doses of morphine depressed wheel running in non-inflamed rats, suggesting that the side effects of opioids interfere with restoration of function. These data indicate that restoration of pain-depressed function requires antinociception in the absence of disruptive side effects. The disruptive side effects of opioids are consistent with the major limitation of opioid use in human pain patients. Copyright © 2016 Elsevier B.V. All rights reserved.
Kandasamy, Ram; Calsbeek, Jonas J.; Morgan, Michael M.
2016-01-01
Opioids are effective at inhibiting responses to noxious stimuli in rodents, but have limited efficacy and many side effects in chronic pain patients. One reason for this disconnect is that nociception is typically assessed using withdrawal from noxious stimuli in animals, whereas chronic pain patients suffer from abnormal pain that disrupts normal activity. We hypothesized that assessment of home cage wheel running in rats would provide a much more clinically relevant method to assess opioid efficacy to restore normal behavior. Intraplantar injection of Complete Freund’s Adjuvant (CFA) into the right hindpaw depressed wheel running and caused mechanical allodynia measured with the von Frey test in both male and female rats. Administration of an ED50 dose of morphine (3.2 mg/kg) reversed mechanical allodynia, but did not reverse CFA-induced depression of wheel running. In contrast, administration of a low dose of morphine (1.0 mg/kg) restored running for one hour in both sexes, but had no effect on mechanical allodynia. Administration of the atypical opioid buprenorphine had no effect on inflammation-induced depression of wheel running in male or female rats, but attenuated mechanical allodynia in male rats. Administration of buprenorphine and higher doses of morphine depressed wheel running in non-inflamed rats, suggesting that the side effects of opioids interfere with restoration of function. These data indicate that restoration of pain-depressed function requires antinociception in the absence of disruptive side effects. The disruptive side effects of opioids are consistent with the major limitation of opioid use in human pain patients. PMID:27746208
Aberg, Elin; Perlmann, Thomas; Olson, Lars; Brené, Stefan
2008-01-01
Both vitamin A deficiency and high doses of retinoids can result in learning and memory impairments, depression as well as decreases in cell proliferation, neurogenesis and cell survival. Physical activity enhances hippocampal neurogenesis and can also exert an antidepressant effect. Here we elucidate a putative link between running, retinoid signaling, and neurogenesis in hippocampus. Adult transgenic reporter mice designed to detect ligand-activated retinoic acid receptors (RAR) or retinoid X receptors (RXR) were used to localize the distribution of activated RAR or RXR at the single-cell level in the brain. Two months of voluntary wheel-running induced an increase in hippocampal neurogenesis as indicated by an almost two-fold increase in doublecortin-immunoreactive cells. Running activity was correlated with neurogenesis. Under basal conditions a distinct pattern of RAR-activated cells was detected in the granule cell layer of the dentate gyrus (DG), thalamus, and cerebral cortex layers 3-4 and to a lesser extent in hippocampal pyramidal cell layers CA1-CA3. Running did not change the number of RAR-activated cells in the DG. There was no correlation between running and RAR activation or between RAR activation and neurogenesis in the DG of hippocampus. Only a few scattered activated retinoid X receptors were found in the DG under basal conditions and after wheel-running, but RXR was detected in other areas such as in the hilus region of hippocampus and in layer VI of cortex cerebri. RAR agonists affect mood in humans and reduce neurogenesis, learning and memory in animal models. In our study, long-term running increased neurogenesis but did not alter RAR ligand activation in the DG in individually housed mice. Thus, our data suggest that the effects of exercise on neurogenesis and other plasticity changes in the hippocampal formation are mediated by mechanisms that do not involve retinoid receptor activation. (c) 2008 Wiley-Liss, Inc.
Middleton, Kevin M; Goldstein, Beth D; Guduru, Pradeep R; Waters, Julie F; Kelly, Scott A; Swartz, Sharon M; Garland, T
2010-01-01
The hierarchical structure of bone, involving micro-scale organization and interaction of material components, is a critical determinant of macro-scale mechanics. Changes in whole-bone morphology in response to the actions of individual genes, physiological loading during life, or evolutionary processes, may be accompanied by alterations in underlying mineralization or architecture. Here, we used nanoindentation to precisely measure compressive stiffness in the femoral mid-diaphysis of mice that had experienced 37 generations of selective breeding for high levels of voluntary wheel running (HR). Mice (n = 48 total), half from HR lines and half from non-selected control (C) lines, were divided into two experimental groups, one with 13-14 weeks of access to a running wheel and one housed without wheels (n = 12 in each group). At the end of the experiment, gross and micro-computed tomography (microCT)-based morphometric traits were measured, and reduced elastic modulus (E(r)) was estimated separately for four anatomical quadrants of the femoral cortex: anterior, posterior, lateral, and medial. Two-way, mixed-model analysis of covariance (ancova) showed that body mass was a highly significant predictor of all morphometric traits and that structural change is more apparent at the microCT level than in conventional morphometrics of whole bones. Both line type (HR vs. C) and presence of the mini-muscle phenotype (caused by a Mendelian recessive allele and characterized by a approximately 50% reduction in mass of the gastrocnemius muscle complex) were significant predictors of femoral cortical cross-sectional anatomy. Measurement of reduced modulus obtained by nanoindentation was repeatable within a single quadrant and sensitive enough to detect inter-individual differences. Although we found no significant effects of line type (HR vs. C) or physical activity (wheel vs. no wheel) on mean stiffness, anterior and posterior quadrants were significantly stiffer (P < 0.0001) than medial and lateral quadrants (32.67 and 33.09 GPa vs. 29.78 and 30.46 GPa, respectively). Our findings of no significant difference in compressive stiffness in the anterior and posterior quadrants agree with previous results for mice, but differ from those for large mammals. Integrating these results with others from ongoing research on these mice, we hypothesize that the skeletons of female HR mice may be less sensitive to the effects of chronic exercise, due to decreased circulating leptin levels and potentially altered endocannabinoid signaling.
Hopkins, Michael E; Sharma, Mita; Evans, Gretchen C; Bucci, David J
2009-06-01
The effects of voluntary physical exercise on attentional function and social behavior were examined in male and female spontaneously hypertensive rats (SHR), a commonly used animal model of attention-deficit/hyperactivity disorder (ADHD). Rats in the exercise groups had free access to a running wheel for 2 weeks and then all rats received nonreinforced presentations of a visual stimulus (light) during the 1st training session, followed by daily sessions in which the light was paired with food. Nonexercising male and female SHR rats exhibited more unconditioned orienting behavior than Wistar-Kyoto rats. SHRs also exhibited impaired conditioning when the light was paired with food. Exercise reduced orienting in female SHRs but not in male SHRs. In the social interaction task, nonexercising male and female SHRs interacted more with an unfamiliar rat than Wistar-Kyoto rats. Exercise reduced the number of social interactions in female SHRs but not male SHRs. There were no differences in general locomotor activity observed between the nonexercising and exercising SHRs. These data indicate that exercise may preferentially benefit female SHRs, and has implications for using exercise as an intervention for ADHD and for understanding sex differences in the effects of exercise on behavior. Copyright (c) 2009 APA, all rights reserved.
Studies with the USF/NASA toxicity screening test method - Exercise wheels and oxygen replenishment
NASA Technical Reports Server (NTRS)
Hilado, C. J.; Cumming, H. J.
1977-01-01
Continuing efforts to improve the University of San Francisco/NASA toxicity screening test method have included the addition of exercise wheels to provide a different measure of incapacitation, and oxygen replenishment to offset any effect of oxygen depletion by the test animals. The addition of exercise wheels limited the number of animals in each test and doubled the required number of tests without any significant improvement in reproducibility. Oxygen replenishment appears to have an effect on survival in the last 5 minutes of the 30-minute test, but the effect is expected to be similar for most materials.
Escamilla, Rafael F; Babb, Eric; DeWitt, Ryan; Jew, Patrick; Kelleher, Patrick; Burnham, Toni; Busch, Juliann; D'Anna, Kristen; Mowbray, Ryan; Imamura, Rodney T
2006-05-01
Performing nontraditional abdominal exercises with devices such as abdominal straps, the Power Wheel, and the Ab Revolutionizer has been suggested as a way to activate abdominal and extraneous (nonabdominal) musculature as effectively as more traditional abdominal exercises, such as the crunch and bent-knee sit-up. The purpose of this study was to test the effectiveness of traditional and nontraditional abdominal exercises in activating abdominal and extraneous musculature. Twenty-one men and women who were healthy and between 23 and 43 years of age were recruited for this study. Surface electromyography (EMG) was used to assess muscle activity from the upper and lower rectus abdominis, external and internal oblique, rectus femoris, latissimus dorsi, and lumbar paraspinal muscles while each exercise was performed. The EMG data were normalized to maximum voluntary muscle contractions. Differences in muscle activity were assessed by a 1-way, repeated-measures analysis of variance. Upper and lower rectus abdominis, internal oblique, and latissimus dorsi muscle EMG activity were highest for the Power Wheel (pike, knee-up, and roll-out), hanging knee-up with straps, and reverse crunch inclined 30 degrees. External oblique muscle EMG activity was highest for the Power Wheel (pike, knee-up, and roll-out) and hanging knee-up with straps. Rectus femoris muscle EMG activity was highest for the Power Wheel (pike and knee-up), reverse crunch inclined 30 degrees, and bent-knee sit-up. Lumbar paraspinal muscle EMG activity was low and similar among exercises. The Power Wheel (pike, knee-up, and roll-out), hanging knee-up with straps, and reverse crunch inclined 30 degrees not only were the most effective exercises in activating abdominal musculature but also were the most effective in activating extraneous musculature. The relatively high rectus femoris muscle activity obtained with the Power Wheel (pike and knee-up), reverse crunch inclined 30 degrees, and bent-knee sit-up may be problematic for some people with low back problems.
Why Animals Run on Legs, Not on Wheels.
ERIC Educational Resources Information Center
Diamond, Jared
1983-01-01
Speculates why animals have not developed wheels in place of inefficient legs. One study cited suggests three reasons why animals are better off without wheels: wheels are efficient only on hard surfaces, limitation of wheeled motion due to vertical obstructions, and the problem of turning in spaces cluttered with obstacles. (JN)
Tapia-Rojas, Cheril; Aranguiz, Florencia; Varela-Nallar, Lorena; Inestrosa, Nibaldo C
2016-01-01
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by loss of memory and cognitive abilities, and the appearance of amyloid plaques composed of the amyloid-β peptide (Aβ) and neurofibrillary tangles formed of tau protein. It has been suggested that exercise might ameliorate the disease; here, we evaluated the effect of voluntary running on several aspects of AD including amyloid deposition, tau phosphorylation, inflammatory reaction, neurogenesis and spatial memory in the double transgenic APPswe/PS1ΔE9 mouse model of AD. We report that voluntary wheel running for 10 weeks decreased Aβ burden, Thioflavin-S-positive plaques and Aβ oligomers in the hippocampus. In addition, runner APPswe/PS1ΔE9 mice showed fewer phosphorylated tau protein and decreased astrogliosis evidenced by lower staining of GFAP. Further, runner APPswe/PS1ΔE9 mice showed increased number of neurons in the hippocampus and exhibited increased cell proliferation and generation of cells positive for the immature neuronal protein doublecortin, indicating that running increased neurogenesis. Finally, runner APPswe/PS1ΔE9 mice showed improved spatial memory performance in the Morris water maze. Altogether, our findings indicate that in APPswe/PS1ΔE9 mice, voluntary running reduced all the neuropathological hallmarks of AD studied, reduced neuronal loss, increased hippocampal neurogenesis and reduced spatial memory loss. These findings support that voluntary exercise might have therapeutic value on AD. © 2015 International Society of Neuropathology.
Roberts, Michael D.; Brown, Jacob D.; Company, Joseph M.; Oberle, Lauren P.; Heese, Alexander J.; Toedebusch, Ryan G.; Wells, Kevin D.; Cruthirds, Clayton L.; Knouse, John A.; Ferreira, J. Andries; Childs, Thomas E.; Brown, Marybeth
2013-01-01
The purpose of the present study was to partially phenotype male and female rats from generations 8–10 (G8–G10) that had been selectively bred to possess low (LVR) vs. high voluntary running (HVR) behavior. Over the first 6 days with wheels, 34-day-old G8 male and female LVRs ran shorter distances (P < 0.001), spent less time running (P < 0.001), and ran slower (P < 0.001) than their G8 male and female HVR counterparts, respectively. HVR and LVR lines consumed similar amounts of standard chow with or without wheels. No inherent difference existed in PGC-1α mRNA in the plantaris and soleus muscles of LVR and HVR nonrunners, although G8 LVR rats inherently possessed less NADH-positive superficial plantaris fibers compared with G8 HVR rats. While day 28 body mass tended to be greater in both sexes of G9–G10 LVR nonrunners vs. G9–G10 HVR nonrunners (P = 0.06), body fat percentage was similar between lines. G9–G10 HVRs had fat mass loss after 6 days of running compared with their prerunning values, while LVR did not lose or gain fat mass during the 6-day voluntary running period. RNA deep sequencing efforts in the nucleus accumbens showed only eight transcripts to be >1.5-fold differentially expressed between lines in HVR and LVR nonrunners. Interestingly, HVRs presented less Oprd1 mRNA, which ties in to potential differences in dopaminergic signaling between lines. This unique animal model provides further evidence as to how exercise may be mechanistically regulated. PMID:23552494
Li, J-Y; Kuo, T B J; Hsieh, I-T; Yang, C C H
2012-06-28
Hippocampal theta rhythm (4-12 Hz) can be observed during locomotor behavior, but findings on the relationship between locomotion speed and theta frequency are inconsistent if not contradictory. The inconsistency may be because of the difficulties that previous analyses and protocols have had excluding the effects of behavior training. We recorded the first or second voluntary wheel running each day, and assumed that theta frequency and activity are correlated with speed in different running phases. By simultaneously recording electroencephalography, physical activity, and wheel running speed, this experiment explored the theta oscillations during spontaneous running of the 12-h dark period. The recording was completely wireless and allowed the animal to run freely while being recorded in the wheel. Theta frequency and theta power of middle frequency were elevated before running and theta frequency, theta power of middle frequency, physical activity, and running speed maintained persistently high levels during running. The slopes of the theta frequency and theta activity (4-9.5 Hz) during the initial running were different compared to the same values during subsequent running. During the initial running, the running speed was positively correlated with theta frequency and with theta power of middle frequency. Over the 12-h dark period, the running speed did not positively correlate with theta frequency but was significantly correlated with theta power of middle frequency. Thus, theta frequency was associated with running speed only at the initiation of running. Furthermore, theta power of middle frequency was associated with speed and with physical activity during running when chronological order was not taken into consideration. Copyright © 2012 IBRO. Published by Elsevier Ltd. All rights reserved.
Mustroph, M L; Pinardo, H; Merritt, J R; Rhodes, J S
2016-10-01
Evidence suggests that 4 weeks of voluntary wheel running abolishes conditioned place preference (CPP) for cocaine in male C57BL/6J mice. To determine the duration and timing of exposure to running wheels necessary to reduce CPP, and the extent to which the running per se influences CPP as compared to environmental enrichment without running. A total of 239 males were conditioned for 4days twice daily with cocaine (10mg/kg) and then split into 7 intervention groups prior to 4days of CPP testing. Experiment 1 consisted of two groups housed as follows: short sedentary group (SS; n=20) in normal cages for 1 week; the short running group (SR; n=20) with running wheels for 1 week. Experiment 2 consisted of five groups housed as follows; short 1 week of running followed by a 3 week sedentary period (SRS; n=20); a 3 week sedentary period followed by 1 week of running (SSR; n=20); long sedentary group (LS; n=66) in normal cages for 4 weeks; long running group (LR; n=66) with running wheels for 4 weeks; and long environmental enrichment group (EE; n=27) with toys for 4 weeks. Levels of running were similar in all running groups. Both running and environmental enrichment reduced CPP relative to sedentary groups. Results suggest that the abolishment of cocaine CPP from running is robust and occurs with as low as 1 week of intervention but may be related to enrichment component of running rather than physical activity. Copyright © 2016 Elsevier B.V. All rights reserved.
Kozareva, Danka A; O'Leary, Olivia F; Cryan, John F; Nolan, Yvonne M
2018-01-01
Adolescence is a sensitive period of neurodevelopment during which life experiences can have profound effects on the brain. Hippocampal neurogenesis, the neurodevelopmental process of generating functional new neurons from neural stem cells, occurs throughout the lifespan and has been shown to play a role in learning, memory and in mood regulation. In adulthood it is influenced by extrinsic environmental factors such as exercise and stress. Intrinsic factors that regulate hippocampal neurogenesis include the orphan nuclear receptor TLX (Nr2e1) which is primarily expressed in the neurogenic niches of the brain. While mechanisms regulating adult hippocampal neurogenesis have been widely studied, less is known on how hippocampal neurogenesis is affected during adolescence. The aim of this study was to investigate the influence of both TLX and isolation stress on exercise-induced increases in neurogenesis in running and sedentary conditions during adolescence. Single- (isolation stress) wild type and Nr2e1 -/- mice or pair-housed wild type mice were housed in sedentary conditions or allowed free access to running wheels for 3 weeks during adolescence. A reduction of neuronal survival was evident in mice lacking TLX, and exercise did not increase hippocampal neurogenesis in these Nr2e1 -/- mice. This suggests that TLX is necessary for the pro-neurogenic effects of exercise during adolescence. Interestingly, although social isolation during adolescence did not affect hippocampal neurogenesis, it prevented an exercise-induced increase in neurogenesis in the ventral hippocampus. Together these data demonstrate the importance of intrinsic and extrinsic factors in promoting an exercise-induced increase in neurogenesis at this key point in life. © 2017 Wiley Periodicals, Inc.
Hagberg, James M.; Rankinen, Tuomo; Loos, Ruth J. F.; Pérusse, Louis; Roth, Stephen M.; Wolfarth, Bernd; Bouchard, Claude
2014-01-01
This review of the exercise genomics literature emphasizes the strongest papers published in 2010 as defined by sample size, quality of phenotype measurements, quality of the exercise program or physical activity exposure, study design, adjustment for multiple testing, quality of genotyping, and other related study characteristics. One study on voluntary running wheel behavior was performed in 448 mice from 41 inbred strains. Several quantitative trait loci for running distance, speed, and duration were identified. Several studies on the alpha-3 actinin (ACTN3) R577X nonsense polymorphism and the angiotensin converting enzyme (ACE) I/D polymorphism were reported with no clear evidence for a joint effect, but the studies were generally underpowered. Skeletal muscle RNA abundance at baseline for 29 transcripts and 11 single nucleotide polymorphisms (SNPs) were both found to be predictive of the VO2max response to exercise training in one report from multiple laboratories. None of the 50 loci associated with adiposity traits is known to influence physical activity behavior. However, physical activity appears to reduce the obesity-promoting effects of at least 12 of these loci. Evidence continues to be strong for a role of gene-exercise interaction effects on the improvement in insulin sensitivity following exposure to regular exercise. SNPs in the cAMP responsive element binding position 1 (CREB1) gene were associated with training-induced heart rate response, in the C-reactive protein (CRP) gene with training-induced changes in left ventricular mass, and in the methylenetetrahydrofolate reductase (MTHFR) gene with carotid stiffness in low-fit individuals. We conclude that progress is being made but that high-quality research designs and replication studies with large sample sizes are urgently needed. PMID:21499051
NASA Astrophysics Data System (ADS)
Borecki, M.; Prus, P.; Korwin-Pawlowski, M. L.; Rychlik, A.; Kozubel, W.
2017-08-01
Modern rims and wheels are tested at the design and production stages. Tests can be performed in laboratory conditions and on the ride. In the laboratory, complex and costly equipment is used, as for example wheel balancers and impact testers. Modern wheel balancers are equipped with electronic and electro-mechanical units that enable touch-less measurement of dimensions, including precision measurement of radial and lateral wheel run-out, automatic positioning and application of the counterweights, and vehicle wheel set monitoring - tread wear, drift angles and run-out unbalance. Those tests are performed by on-wheel axis measurements with laser distance meters. The impact tester enables dropping of weights from a defined height onto a wheel. Test criteria are the loss of pressure of the tire and generation of cracks in the wheel without direct impact of the falling weights. In the present paper, a set up composed of three accelerometers, a temperature sensor and a pressure sensor is examined as the base of a wheel tester. The sensor set-up configuration, on-line diagnostic and signal transmission are discussed.
Responding for sucrose and wheel-running reinforcement: effect of D-amphetamine.
Belke, T W; Oldford, A C; Forgie, M Y; Beye, J A
2005-07-01
The present study assessed the effect of D-amphetamine on responding maintained by wheel-running and sucrose reinforcement. Six male albino Wistar rats were placed in running wheels and exposed to a fixed-interval 30-s schedule that produced either a drop of 5% sucrose solution or the opportunity to run for 15 s as reinforcing consequences for lever pressing. Each reinforcer type was signaled by a different stimulus. Doses of 0.25, 0.5, 1.0, 1.5, and 3.0 mg/kg D-amphetamine were administered by i.p. injection 20 min prior to a session. As the dose increased, index of curvature values decreased toward zero and rate-dependency plots revealed increases in lower rates early in the interval and decreases in higher rates toward the end of the interval. Effects were similar in the presence of both stimuli. However, an analysis of post-reinforcement pauses and local response rates broken down by transitions revealed a differential effect. As the dose increased, local response rates following a wheel-running reinforcer were affected more than those following a sucrose reinforcer.
Belke, Terry W; Christie-Fougere, Melissa M
2006-11-01
Across two experiments, a peak procedure was used to assess the timing of the onset and offset of an opportunity to run as a reinforcer. The first experiment investigated the effect of reinforcer duration on temporal discrimination of the onset of the reinforcement interval. Three male Wistar rats were exposed to fixed-interval (FI) 30-s schedules of wheel-running reinforcement and the duration of the opportunity to run was varied across values of 15, 30, and 60s. Each session consisted of 50 reinforcers and 10 probe trials. Results showed that as reinforcer duration increased, the percentage of postreinforcement pauses longer than the 30-s schedule interval increased. On probe trials, peak response rates occurred near the time of reinforcer delivery and peak times varied with reinforcer duration. In a second experiment, seven female Long-Evans rats were exposed to FI 30-s schedules leading to 30-s opportunities to run. Timing of the onset and offset of the reinforcement period was assessed by probe trials during the schedule interval and during the reinforcement interval in separate conditions. The results provided evidence of timing of the onset, but not the offset of the wheel-running reinforcement period. Further research is required to assess if timing occurs during a wheel-running reinforcement period.
Wong-Goodrich, Sarah J.E.; Pfau, Madeline L.; Flores, Catherine T.; Fraser, Jennifer A.; Williams, Christina L.; Jones, Lee W.
2010-01-01
Whole-brain irradiation (WBI) therapy produces progressive learning and memory deficits in patients with primary or secondary brain tumors. Exercise enhances memory and adult hippocampal neurogenesis in the intact brain, so we hypothesized that exercise may be an effective treatment to alleviate consequences of WBI. Previous studies using animal models to address this issue have yielded mixed results and have not examined potential molecular mechanisms. We investigated the short- and long-term effects of WBI on spatial learning and memory retention, and determined whether voluntary running after WBI aids recovery of brain and cognitive function. Forty adult female C57Bl/6 mice given a single dose of 5 Gy or sham WBI were trained 2.5 weeks and up to four months after WBI in a Barnes maze. Half of the mice received daily voluntary wheel access starting one month after sham- or WBI. Daily running following WBI prevented the marked decline in spatial memory retention observed months after irradiation. Bromodeoxyuridine (BrdU) immunolabeling and ELISA indicated that this behavioral rescue was accompanied by a partial restoration of newborn BrdU+/NeuN+ neurons in the dentate gyrus and increased hippocampal expression of brain-derived vascular endothelial growth factor and insulin-like growth factor, and occurred despite irradiation-induced elevations in hippocampal pro-inflammatory cytokines. WBI in adult mice produced a progressive memory decline consistent with what has been reported in cancer patients receiving WBI therapy. Our findings show that running can abrogate this memory decline and aid recovery of adult hippocampal plasticity, thus highlighting exercise as a potential therapeutic intervention. PMID:20884629
Dopamine D3 receptor status modulates sexual dimorphism in voluntary wheel running behavior in mice.
Klinker, Florian; Ko Hnemann, Kathrin; Paulus, Walter; Liebetanz, David
2017-08-30
Sexual dimorphism has been described in various aspects of physiological and pathophysiological processes involving dopaminergic signaling. This might account for the different disease characteristics in men and women in e.g. Parkinson's disease or ADHD. A better understanding might contribute to the future individualization of therapy. We examined spontaneous wheel running activity of male and female mice, homo- and heterozygote for dopamine D3 receptor deficiency (D3R -/- and D3R+/-), and compared them to wild type controls. We found higher wheel running activity in female mice than in their male littermates. D3-/- mice, irrespective of sex, were also hyperactive compared to both D3+/- and wild type animals. Hyperactivity of D3-/- female mice was pronounced during the first days of wheel running but then decreased while their male counterparts continued to be hyperactive. Physical activity was menstrual cycle-dependent. Activity fluctuations were also seen in D3 receptor knockout mice and are therefore presumably independent of D3 receptor activation. Our data underscore the complex interaction of dopaminergic signaling and gonadal hormones that leads to specific running behavior. Furthermore, we detected sex- and D3 receptor status-specific reactions during novel exposure to the running wheel. These findings suggest the need for adapting dopaminergic therapies to individual factors such as sex or even menstrual cycle to optimize therapeutic success. Copyright © 2017 Elsevier B.V. All rights reserved.
Garland, Theodore; Schutz, Heidi; Chappell, Mark A.; Keeney, Brooke K.; Meek, Thomas H.; Copes, Lynn E.; Acosta, Wendy; Drenowatz, Clemens; Maciel, Robert C.; van Dijk, Gertjan; Kotz, Catherine M.; Eisenmann, Joey C.
2011-01-01
Mammals expend energy in many ways, including basic cellular maintenance and repair, digestion, thermoregulation, locomotion, growth and reproduction. These processes can vary tremendously among species and individuals, potentially leading to large variation in daily energy expenditure (DEE). Locomotor energy costs can be substantial for large-bodied species and those with high-activity lifestyles. For humans in industrialized societies, locomotion necessary for daily activities is often relatively low, so it has been presumed that activity energy expenditure and DEE are lower than in our ancestors. Whether this is true and has contributed to a rise in obesity is controversial. In humans, much attention has centered on spontaneous physical activity (SPA) or non-exercise activity thermogenesis (NEAT), the latter sometimes defined so broadly as to include all energy expended due to activity, exclusive of volitional exercise. Given that most people in Western societies engage in little voluntary exercise, increasing NEAT may be an effective way to maintain DEE and combat overweight and obesity. One way to promote NEAT is to decrease the amount of time spent on sedentary behaviours (e.g. watching television). The effects of voluntary exercise on other components of physical activity are highly variable in humans, partly as a function of age, and have rarely been studied in rodents. However, most rodent studies indicate that food consumption increases in the presence of wheels; therefore, other aspects of physical activity are not reduced enough to compensate for the energetic cost of wheel running. Most rodent studies also show negative effects of wheel access on body fat, especially in males. Sedentary behaviours per se have not been studied in rodents in relation to obesity. Several lines of evidence demonstrate the important role of dopamine, in addition to other neural signaling networks (e.g. the endocannabinoid system), in the control of voluntary exercise. A largely separate literature points to a key role for orexins in SPA and NEAT. Brain reward centers are involved in both types of physical activities and eating behaviours, likely leading to complex interactions. Moreover, voluntary exercise and, possibly, eating can be addictive. A growing body of research considers the relationships between personality traits and physical activity, appetite, obesity and other aspects of physical and mental health. Future studies should explore the neurobiology, endocrinology and genetics of physical activity and sedentary behaviour by examining key brain areas, neurotransmitters and hormones involved in motivation, reward and/or the regulation of energy balance. PMID:21177942
Balter, Rebecca E; Dykstra, Linda A
2012-11-01
There is evidence to suggest that the rewarding effects of drugs of abuse can be altered by environmental manipulations such as housing conditions and access to running wheels. There is less information about how these environmental manipulations alter withdrawal behaviors following the termination of chronic drug administration. The objective of this study is to examine the effects of access to running wheels and group housing on spontaneous morphine withdrawal. C57BL/6J mice were assigned to one of the three housing conditions: wheel access (singly housed), no wheels (singly housed), or group-housed (no wheels). Mice received 30 or 56 mg/kg morphine or saline (s.c.) twice daily for 5.5 days. At baseline and at 8, 24, 32, and 48 h following the final injection, latency to respond on a hot plate was determined across a range of temperatures (50, 52, 54, and 56 °C). Latency to respond decreased as a function of temperature. Response latencies during the withdrawal period were decreased in mice without wheel access treated with both 30 and 56 mg/kg of morphine. This increase in thermal sensitivity was significantly attenuated in singly housed mice with wheel access and in group-housed mice; however, the effects were less pronounced in the group-housed mice and depended upon the time during withdrawal. Both wheel access and group housing attenuate the increase in thermal sensitivity seen in morphine-treated mice during morphine withdrawal.
Chen, Yi-Wen; Actor-Engel, Hannah; Sherpa, Ang Doma; Klingensmith, Lauren; Chowdhury, Tara G; Aoki, Chiye
2017-07-01
Hunger evokes foraging. This innate response can be quantified as voluntary wheel running following food restriction (FR). Paradoxically, imposing severe FR evokes voluntary FR, as some animals choose to run rather than eat, even during limited periods of food availability. This phenomenon, called activity-based anorexia (ABA), has been used to identify brain changes associated with FR and excessive exercise (EX), two core symptoms of anorexia nervosa (AN), and to explore neurobiological bases of AN vulnerability. Previously, we showed a strong positive correlation between suppression of FR-evoked hyperactivity, i.e., ABA resilience, and levels of extra-synaptic GABA receptors in stratum radiatum (SR) of hippocampal CA1. Here, we tested for the converse: whether animals with enhanced expression of NMDA receptors (NMDARs) exhibit greater levels of FR-evoked hyperactivity, i.e., ABA vulnerability. Four groups of animals were assessed for NMDAR levels at CA1 spines: (1) ABA, in which 4 days of FR was combined with wheel access to allow voluntary EX; (2) FR only; (3) EX only; and (4) control (CON) that experienced neither EX nor FR. Electron microscopy revealed that synaptic NR2A-NMDARs and NR2B-NMDARs levels are significantly elevated, relative to CONs'. Individuals' ABA severity, based on weight loss, correlated with synaptic NR2B-NMDAR levels. ABA resilience, quantified as suppression of hyperactivity, correlated strongly with reserve pools of NR2A-NMDARs in spine cytoplasm. NR2A- and NR2B-NMDAR measurements correlated with spinous prevalence of an F-actin binding protein, drebrin, suggesting that drebrin enables insertion of NR2B-NMDAR to and retention of NR2A-NMDARs away from synaptic membranes, together influencing ABA vulnerability.
Coletti, Dario; Adamo, Sergio; Moresi, Viviana
2017-02-24
Invited Letter to the Editor. Physical activity has multiple beneficial effects in the physiology and pathology of the organism. In particular, we and other groups have shown that running counteracts cancer cachexia in both humans and rodents. The latter are prone to exercise in wheel-equipped cages even at advanced stages of cachexia. However, when we wanted to replicate the experimental model routinely used at the University of Rome in a different laboratory (i.e. at Paris 6 University), we had to struggle with puzzling results due to unpredicted mouse behavior. Here we report the experience and offer the explanation underlying these apparently irreproducible results. The original data are currently used for teaching purposes in undergraduate student classes of biological sciences.
40 CFR 86.235-94 - Dynamometer procedure.
Code of Federal Regulations, 2010 CFR
2010-07-01
..., carbon dioxide, and oxides of nitrogen. (b) As long as an emission sample is not taken, practice runs...) Four-wheel drive vehicles will be tested in a two-wheel drive mode of operation. Full-time four-wheel drive vehicles will have one set of drive wheels temporarily disengaged by the vehicle manufacturer...
Fahimi, Atoossa; Baktir, Mehmet Akif; Moghadam, Sarah; Mojabi, Fatemeh S; Sumanth, Krithika; McNerney, M Windy; Ponnusamy, Ravikumar; Salehi, Ahmad
2017-05-01
While it has been known that physical activity can improve cognitive function and protect against neurodegeneration, the underlying mechanisms for these protective effects are yet to be fully elucidated. There is a large body of evidence indicating that physical exercise improves neurogenesis and maintenance of neurons. Yet, its possible effects on glial cells remain poorly understood. Here, we tested whether physical exercise in mice alters the expression of trophic factor-related genes and the status of astrocytes in the dentate gyrus of the hippocampus. In addition to a significant increase in Bdnf mRNA and protein levels, we found that 4 weeks of treadmill and running wheel exercise in mice, led to (1) a significant increase in synaptic load in the dentate gyrus, (2) alterations in astrocytic morphology, and (3) orientation of astrocytic projections towards dentate granule cells. Importantly, these changes were possibly linked to increased TrkB receptor levels in astrocytes. Our study suggests that astrocytes actively respond and could indeed mediate the positive effects of physical exercise on the central nervous system and potentially counter degenerative processes during aging and neurodegenerative disorders.
Exercise alters resting-state functional connectivity of motor circuits in parkinsonian rats.
Wang, Zhuo; Guo, Yumei; Myers, Kalisa G; Heintz, Ryan; Peng, Yu-Hao; Maarek, Jean-Michel I; Holschneider, Daniel P
2015-01-01
Few studies have examined changes in functional connectivity after long-term aerobic exercise. We examined the effects of 4 weeks of forced running wheel exercise on the resting-state functional connectivity (rsFC) of motor circuits of rats subjected to bilateral 6-hydroxydopamine lesion of the dorsal striatum. Our results showed substantial similarity between lesion-induced changes in rsFC in the rats and alterations in rsFC reported in Parkinson's disease subjects, including disconnection of the dorsolateral striatum. Exercise in lesioned rats resulted in: (1) normalization of many of the lesion-induced alterations in rsFC, including reintegration of the dorsolateral striatum into the motor network; (2) emergence of the ventrolateral striatum as a new broadly connected network hub; and (3) increased rsFC among the motor cortex, motor thalamus, basal ganglia, and cerebellum. Our results showed for the first time that long-term exercise training partially reversed lesion-induced alterations in rsFC of the motor circuits, and in addition enhanced functional connectivity in specific motor pathways in the parkinsonian rats, which could underlie recovery in motor functions observed in these animals. Copyright © 2015 Elsevier Inc. All rights reserved.
Lipid peroxidation and antioxidant status in rat: effect of food restriction and wheel running.
Filaire, Edith; Rouveix, Matthieu; Massart, Alain; Gladine, Cécile; Davicco, Marie Jeanne; Durand, Denys
2009-09-01
Using the activity-based anorexia model, the aim of this investigation was to explore antioxidant enzyme activity (catalase, superoxide dismutase), total antioxidant status (TAS), and alpha-tocopherol in blood, liver, and gastrocnemius muscle associated with the food restriction and voluntary wheel running during 8 days. In addition, lipid peroxidation was measured by measurements of malondialdehyde (MDA). Wistars rats (n = 56) were randomly assigned to one of four groups: an ad lib sedentary group, a control wheel activity group, a food restriction-induced hyperactivity group (1 h/day ad lib food, 23 h/day ad lib wheel access), and a food-restricted sedentary group. The animals were killed when the rats in the food-restricted group had lost 25% of their free feeding weight. Antioxidant enzyme activities and TAS in blood, liver, and gastrocnemius muscle were unaffected by voluntary wheel running. A wheel activity effect (P < 0.05) was obtained for the MDA concentrations in plasma, with lower concentrations in trained animals. Food restriction effects were obtained for antioxidant capacity in liver, as well as for CAT activity in the gastrocnemius muscle and plasma MDA concentrations with lower values in the restricted animals. On the other hand, the food-restricted rats showed higher plasma TAS concentrations (P < 0.05) and higher alpha-tocopherol concentrations in the liver (P < 0.05) when compared to animals fed ad libitum. Our results also showed that food restriction coupled to wheel running decreased antioxidant parameters in liver, and plasmatic MDA concentrations and increased TAS plasma concentrations when compared to the ad libitum sedentary situation.
Oxidative Capacity and Fatigability in Run Trained Malignant Hyperthermia Susceptible Mice
Rouviere, Clement; Corona, Benjamin T.; Ingalls, Christopher P.
2011-01-01
Introduction The purpose of this study was to test the hypothesis that Malignant Hyperthermia model mice (RyR1Y522S/wt) are more vulnerable to exercise-induced muscle injury and fatigability and adapt less to run training. Methods Following 6 weeks of voluntary wheel running, we measured anterior crural muscle fatigability, muscle injury, and cytochrome oxidase (COX) and citrate synthase (CS). Results Although RyR1Y522S/wt mice ran without experiencing MH episodes, they ran 42% less distance than wild type (WT) mice. Muscles from WT mice exhibited increased fatigue resistance and COX content after training. Muscles from RyR1Y522S/wt mice demonstrated no significant change in fatigability or COX and CS after training. However, muscles from RyR1Y522S/wt mice displayed less intrinsic fatigability and greater COX/CS content and muscle damage than WT mice. Discussion RyR1Y522S/wt mice can run without experiencing rhabdomyolysis, and their inability to adapt to training appears to stem from intrinsic enhancement of mitochondrial enzymes and fatigue resistance. PMID:22431093
Oxidative capacity and fatigability in run-trained malignant hyperthermia-susceptible mice.
Rouviere, Clement; Corona, Benjamin T; Ingalls, Christopher P
2012-04-01
The purpose of this study was to test the hypothesis that malignant hyperthermia model mice (RyR1Y522S/wt) are more vulnerable to exercise-induced muscle injury and fatigability and adapt less to run training. After 6 weeks of voluntary wheel running, we measured anterior crural muscle fatigability, muscle injury, and cytochrome oxidase (COX) and citrate synthase (CS). Although RyR1Y522S/wt mice ran without undergoing MH episodes, they ran 42% less distance than wild-type (WT) mice. Muscles from WT mice exhibited increased fatigue resistance and COX content after training. Muscles from RyR1Y522S/wt mice demonstrated no significant change in fatigability or COX and CS after training. However, muscles from RyR1Y522S/wt mice displayed less intrinsic fatigability and greater COX/CS content and muscle damage than WT mice. RyR1Y522S/wt mice can run without having rhabdomyolysis, and their inability to adapt to training appears to stem from intrinsic enhancement of mitochondrial enzymes and fatigue resistance. Copyright © 2012 Wiley Periodicals, Inc.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-09
... assembly, are assembled in the U.S. The primary subassemblies include the wheel assembly; the leg leveler.../shaft; the drive pulley/crank hub; the idler-arm assembly; the alternator- pulley assembly; the rear.... Pressing flange bearing into wheel using arbor press; (wheel assembly) 2. Securing insert to wheel and...
Sun, Bo; Liang, Nu-Chu; Ewald, Erin R; Purcell, Ryan H; Boersma, Gretha J; Yan, Jianqun; Moran, Timothy H; Tamashiro, Kellie L K
2013-11-01
Maternal high-fat (HF) diet has long-term consequences on the metabolic phenotype of the offspring. Here, we determined the effects of postweaning exercise in offspring of rat dams fed HF diet during gestation and lactation. Pregnant Sprague-Dawley rats were maintained on chow or HF diet throughout gestation and lactation. All pups were weaned onto chow diet on postnatal day (PND) 21. At 4 wk of age, male pups were given free access to running wheels (RW) or remained sedentary (SED) for 3 wk, after which all rats remained sedentary, resulting in four groups: CHOW-SED, CHOW-RW, HF-SED, and HF-RW. Male HF offspring gained more body weight by PND7 compared with CHOW pups and maintained this weight difference through the entire experiment. Three weeks of postweaning exercise did not affect body weight gain in either CHOW or HF offspring, but reduced adiposity in HF offspring. Plasma leptin was decreased at the end of the 3-wk running period in HF-RW rats but was not different from HF-SED 9 wk after the exercise period ended. At 14 wk of age, intracerebroventricular injection of leptin suppressed food intake in CHOW-SED, CHOW-RW, and HF-RW, while it did not affect food intake in HF-SED group. At death, HF-RW rats also had higher leptin-induced phospho-STAT3 level in the arcuate nucleus than HF-SED rats. Both maternal HF diet and postweaning exercise had effects on hypothalamic neuropeptide and receptor mRNA expression in adult offspring. Our data suggest that postweaning exercise improves central leptin sensitivity and signaling in this model.
Bull, Cecilia; Cooper, Christiana; Lindahl, Veronica; Fitting, Sylvia; Persson, Anders I; Grandér, Rita; Alborn, Ann-Marie; Björk-Eriksson, Thomas; Kuhn, H Georg; Blomgren, Klas
2017-10-01
Cranial radiation severely affects brain health and function, including glial cell production and myelination. Recent studies indicate that voluntary exercise has beneficial effects on oligodendrogenesis and myelination. Here, we hypothesized that voluntary running would increase oligodendrocyte numbers in the corpus callosum after irradiation of the juvenile mouse brain. The brains of C57Bl/6J male mice were 6 Gy irradiated on postnatal day 9 during the main gliogenic developmental phase, resulting in a loss of oligodendrocyte precursor cells. Upon adulthood, the mice were injected with bromodeoxyuridine and allowed to exercise on a running wheel for four weeks. Cell proliferation and survival, Ascl1 + oligodendrocyte precursor and Olig2 + oligodendrocyte cell numbers as well as CC1 + mature oligodendrocytes were quantified using immunohistology. Radiation induced a reduction in the number of Olig2 + oligodendrocytes by nearly 50% without affecting production or survival of new Olig2 + cells. Ascl1 + cells earlier in the oligodendroglial cell lineage were also profoundly affected, with numbers reduced by half. By three weeks of age, Olig2 + cell numbers had not recovered, and this was paralleled by a volumetric loss in the corpus callosum. The deficiency of Olig2 + oligodendrocytes persisted into adulthood. Additionally, the depletion of Ascl1 + progenitor cells was irreversible, and was even more pronounced at 12 weeks postirradiation compared to day 2 postirradiation. Furthermore, the overall number of CC1 + mature oligodendrocytes decreased by 28%. The depletion of Olig2 + cells in irradiated animals was reversed by 4 weeks of voluntary exercise. Moreover, voluntary exercise also increased the number of Ascl1 + progenitor cells in irradiated animals. Taken together, these results demonstrate that exercise in adulthood significantly ameliorates the profound and long-lasting effects of moderate exposure to immature oligodendrocytes during postnatal development.
Advances in exercise, fitness, and performance genomics in 2010.
Hagberg, James M; Rankinen, Tuomo; Loos, Ruth J F; Pérusse, Louis; Roth, Stephen M; Wolfarth, Bernd; Bouchard, Claude
2011-05-01
This review of the exercise genomics literature emphasizes the strongest articles published in 2010 as defined by sample size, quality of phenotype measurements, quality of the exercise program or physical activity exposure, study design, adjustment for multiple testing, quality of genotyping, and other related study characteristics. One study on voluntary running wheel behavior was performed in 448 mice from 41 inbred strains. Several quantitative trait loci for running distance, speed, and duration were identified. Several studies on the alpha-3 actinin (ACTN3) R577X nonsense polymorphism and the angiotensin-converting enzyme (ACE) I/D polymorphism were reported with no clear evidence for a joint effect, but the studies were generally underpowered. Skeletal muscle RNA abundance at baseline for 29 transcripts and 11 single nucleotide polymorphisms (SNPs) were both found to be predictive of the V˙O2max response to exercise training in one report from multiple laboratories. None of the 50 loci associated with adiposity traits are known to influence physical activity behavior. However, physical activity seems to reduce the obesity-promoting effects of at least 12 of these loci. Evidence continues to be strong for a role of gene-exercise interaction effects on the improvement in insulin sensitivity after exposure to regular exercise. SNPs in the cAMP-responsive element binding position 1 (CREB1) gene were associated with training-induced HR response, in the C-reactive protein (CRP) gene with training-induced changes in left ventricular mass, and in the methylenetetrahydrofolate reductase (MTHFR) gene with carotid stiffness in low-fit individuals. We conclude that progress is being made but that high-quality research designs and replication studies with large sample sizes are urgently needed. © 2011 by the American College of Sports Medicine
Logan, Ryan W.; Seggio, Joseph A.; Robinson, Stacy L.; Richard, Gregory R.; Rosenwasser, Alan M.
2010-01-01
Alcohol withdrawal is associated with affective-behavioral disturbances in both human alcoholics and in animal models. In general, these phenomena are potentiated by increased alcohol exposure duration and by prior withdrawal episodes. Previous studies have also reported locomotor hypoactivity during ethanol withdrawal in rats and mice, but only in novel test environments, not in the home-cage. In the present study, we examined the effects of withdrawal from chronic intermittent ethanol (CIE) vapor exposure on the level and circadian periodicity of wheel-running activity in C57BL/6J mice. CIE treatment resulted in reductions in wheel-running activity relative to plain-air controls that persisted for about one week after withdrawal. Analysis of circadian waveforms indicated that reduced activity occurred throughout the night phase, but that daily activity patterns were otherwise unaltered. CIE failed to alter free-running circadian period or phase in animals maintained under constant darkness. These results show that ethanol withdrawal can result in locomotor hypoactivity even in the habitual, home-cage environment, and suggest that withdrawal-related reductions in wheel-running activity may reflect the specific motivational significance of this behavior. PMID:20682191
Intermittent individual housing increases survival of newly proliferated cells.
Aberg, Elin; Pham, Therese M; Zwart, Mieke; Baumans, Vera; Brené, Stefan
2005-09-08
In this study, we analyzed how intermittent individual housing with or without a running wheel influenced corticosterone levels and survival of newly proliferated cells in the dentate gyrus of the hippocampus. Female Balb/c mice, in standard or enhanced housing, were divided into groups that were individually housed with or without running wheels on every second day. Intermittent individual housing without, but not with, running wheels increased survival of proliferated cells in the dentate gyrus as compared with continuous group housing in standard or enhanced conditions. Thus, changes in housing conditions on every second day can, under certain circumstances, have an impact on the survival of newly proliferated cells in the dentate gyrus.
Thongchote, Kanogwun; Svasti, Saovaros; Teerapornpuntakit, Jarinthorn; Krishnamra, Nateetip; Charoenphandhu, Narattaphol
2014-06-15
A marked decrease in β-globin production led to β-thalassemia, a hereditary anemic disease associated with bone marrow expansion, bone erosion, and osteoporosis. Herein, we aimed to investigate changes in bone mineral density (BMD) and trabecular microstructure in hemizygous β-globin knockout thalassemic (BKO) mice and to determine whether endurance running (60 min/day, 5 days/wk for 12 wk in running wheels) could effectively alleviate bone loss in BKO mice. Both male and female BKO mice (1-2 mo old) showed growth retardation as indicated by smaller body weight and femoral length than their wild-type littermates. A decrease in BMD was more severe in female than in male BKO mice. Bone histomorphometry revealed that BKO mice had decreases in trabecular bone volume, trabecular number, and trabecular thickness, presumably due to suppression of osteoblast-mediated bone formation and activation of osteoclast-mediated bone resorption, the latter of which was consistent with elevated serum levels of osteoclastogenic cytokines IL-1α and -1β. As determined by peripheral quantitative computed tomography, running increased cortical density and thickness in the femoral and tibial diaphyses of BKO mice compared with those of sedentary BKO mice. Several histomorphometric parameters suggested an enhancement of bone formation (e.g., increased mineral apposition rate) and suppression of bone resorption (e.g., decreased osteoclast surface), which led to increases in trabecular bone volume and trabecular thickness in running BKO mice. In conclusion, BKO mice exhibited pervasive osteopenia and impaired bone microstructure, whereas running exercise appeared to be an effective intervention in alleviating bone microstructural defect in β-thalassemia. Copyright © 2014 the American Physiological Society.
Grassi, Bruno; Majerczak, Joanna; Bardi, Eleonora; Buso, Alessia; Comelli, Marina; Chlopicki, Stefan; Guzik, Magdalena; Mavelli, Irene; Nieckarz, Zenon; Salvadego, Desy; Tyrankiewicz, Urszula; Skórka, Tomasz; Bottinelli, Roberto; Zoladz, Jerzy A; Pellegrino, Maria Antonietta
2017-08-01
Cardiac function, skeletal (soleus) muscle oxidative metabolism, and the effects of exercise training were evaluated in a transgenic murine model (Tgα q *44) of chronic heart failure during the critical period between the occurrence of an impairment of cardiac function and the stage at which overt cardiac failure ensues (i.e., from 10 to 12 mo of age). Forty-eight Tgα q *44 mice and 43 wild-type FVB controls were randomly assigned to control groups and to groups undergoing 2 mo of intense exercise training (spontaneous running on an instrumented wheel). In mice evaluated at the beginning and at the end of training we determined: exercise performance (mean distance covered daily on the wheel); cardiac function in vivo (by magnetic resonance imaging); soleus mitochondrial respiration ex vivo (by high-resolution respirometry); muscle phenotype [myosin heavy chain (MHC) isoform content; citrate synthase (CS) activity]; and variables related to the energy status of muscle fibers [ratio of phosphorylated 5'-AMP-activated protein kinase (AMPK) to unphosphorylated AMPK] and mitochondrial biogenesis and function [peroxisome proliferative-activated receptor-γ coactivator-α (PGC-1α)]. In the untrained Tgα q *44 mice functional impairments of exercise performance, cardiac function, and soleus muscle mitochondrial respiration were observed. The impairment of mitochondrial respiration was related to the function of complex I of the respiratory chain, and it was not associated with differences in CS activity, MHC isoforms, p-AMPK/AMPK, and PGC-1α levels. Exercise training improved exercise performance and cardiac function, but it did not affect mitochondrial respiration, even in the presence of an increased percentage of type 1 MHC isoforms. Factors "upstream" of mitochondria were likely mainly responsible for the improved exercise performance. NEW & NOTEWORTHY Functional impairments in exercise performance, cardiac function, and soleus muscle mitochondrial respiration were observed in transgenic chronic heart failure mice, evaluated in the critical period between the occurrence of an impairment of cardiac function and the terminal stage of the disease. Exercise training improved exercise performance and cardiac function, but it did not affect the impaired mitochondrial respiration. Factors "upstream" of mitochondria, including an enhanced cardiovascular O 2 delivery, were mainly responsible for the functional improvement. Copyright © 2017 the American Physiological Society.
Vellers, Heather L.; Letsinger, Ayland C.; Walker, Nicholas R.; Granados, Jorge Z.; Lightfoot, J. Timothy
2017-01-01
Introduction: Indirect results in humans suggest that chronic overfeeding decreases physical activity with few suggestions regarding what mechanism(s) may link overfeeding and decreased activity. The primary sex hormones are known regulators of activity and there are reports that chronic overfeeding alters sex hormone levels. Thepurpose of this study was to determine if chronic overfeeding altered wheel running through altered sex hormone levels. Materials and Methods: C57BL/6J mice were bred and the pups were weaned at 3-weeks of age and randomly assigned to either a control (CFD) or high fat/high sugar (HFHS) diet for 9–11 weeks depending on activity analysis. Nutritional intake, body composition, sex hormone levels, and 3-day and 2-week wheel-running activity were measured. Additionally, groups of HFHS animals were supplemented with testosterone (males) and 17β-estradiol (females) to determine if sex hormone augmentation altered diet-induced changes in activity. Results: 117 mice (56♂, 61♀) were analyzed. The HFHS mice consumed significantly more calories per day than CFD mice (male: p < 0.0001; female: p < 0.0001) and had significantly higher body fat (male: p < 0.0001; female: p < 0.0001). The HFHS diet did not reduce sex hormone levels, but did significantly reduce acute running-wheel distance in male (p = 0.05, 70 ± 28%) and female mice (p = 0.02, 57 ± 26%). In animals that received hormone supplementation, there was no significant effect on activity levels. Two-weeks of wheel access was not sufficient to alter HFHS-induced reductions in activity or increases in body fat. Conclusion: Chronic overfeeding reduces wheel running, but is independent of the primary sex hormones. PMID:28890701
Belke, Terry W
2012-07-01
Belke (2010) showed that on concurrent ratio schedules, the difference in ratio requirements required to produce near exclusive preference for the lower ratio alternative was substantively greater when the reinforcer was wheel running than when it was sucrose. The current study replicated this finding and showed that this choice behavior can be described by the matching law and the contingency discriminability model. Eight female Long Evans rats were exposed to concurrent VR schedules of wheel-running reinforcement (30s) and the schedule value of the initially preferred alternative was systematically increased. Two rats rapidly developed exclusive preference for the lower ratio alternative, but the majority did not - even when ratios differed by 20:1. Analysis showed that estimates of slopes from the matching law and the proportion of reinforcers misattributed from the contingency discriminability model were related to the ratios at which near exclusive preference developed. The fit of these models would be consistent with misattribution of reinforcers or poor discrimination between alternatives due to the long duration of wheel running. Copyright © 2012 Elsevier B.V. All rights reserved.
Revilla, Susana; Suñol, Cristina; García-Mesa, Yoelvis; Giménez-Llort, Lydia; Sanfeliu, Coral; Cristòfol, Rosa
2014-06-01
Physical exercise has become a potentially beneficial therapy for reducing neurodegeneration symptoms in Alzheimer's disease. Previous studies have shown that cognitive deterioration, anxiety and the startle response observed in 7-month-old 3xTg-AD mice were ameliorated after 6 months of free access to a running wheel. Also, alterations in synaptic response to paired-pulse stimulation were improved. The present study further investigated some molecular mechanisms underlying the beneficial effects of 6 months of voluntary exercise on synaptic plasticity in 7-month-old 3xTg-AD mice. Changes in binding parameters of [(3)H]-flunitrazepam to GABAA receptor and of [(3)H]-MK-801 to NMDA receptor in cerebral cortex of 3xTgAD mice were restored by voluntary exercise. In addition, reduced expression levels of NMDA receptor NR2B subunit were reestablished. The synaptic proteins synaptophysin and PSD-95 and the neuroprotective proteins GDNF and SIRT1 were downregulated in 3xTgAD mice and were recovered by exercise treatment. Overall, in this paper we highlight the fact that different interrelated mechanisms are involved in the beneficial effects of exercise on synaptic plasticity alterations in the 3xTg-AD mouse model. Copyright © 2014 Elsevier Ltd. All rights reserved.
Zhao, Zaorui; Sabirzhanov, Boris; Wu, Junfang; Faden, Alan I.
2015-01-01
Abstract Physical activity can attenuate neuronal loss, reduce neuroinflammation, and facilitate recovery after brain injury. However, little is known about the mechanisms of exercise-induced neuroprotection after traumatic brain injury (TBI) or its modulation of post-traumatic neuronal cell death. Voluntary exercise, using a running wheel, was conducted for 4 weeks immediately preceding (preconditioning) moderate-level controlled cortical impact (CCI), a well-established experimental TBI model in mice. Compared to nonexercised controls, exercise preconditioning (pre-exercise) improved recovery of sensorimotor performance in the beam walk task, as well as cognitive/affective functions in the Morris water maze, novel object recognition, and tail-suspension tests. Further, pre-exercise reduced lesion size, attenuated neuronal loss in the hippocampus, cortex, and thalamus, and decreased microglial activation in the cortex. In addition, exercise preconditioning activated the brain-derived neurotrophic factor pathway before trauma and amplified the injury-dependent increase in heat shock protein 70 expression, thus attenuating key apoptotic pathways. The latter include reduction in CCI-induced up-regulation of proapoptotic B-cell lymphoma 2 (Bcl-2)-homology 3–only Bcl-2 family molecules (Bid, Puma), decreased mitochondria permeabilization with attenuated release of cytochrome c and apoptosis-inducing factor (AIF), reduced AIF translocation to the nucleus, and attenuated caspase activation. Given these neuroprotective actions, voluntary physical exercise may serve to limit the consequences of TBI. PMID:25419789
Simultaneous Introduction of a Novel High Fat Diet and Wheel Running Induces Anorexia
Scarpace, E. T.; Matheny, M.; Strehler, K. Y. E.; Shapiro, A.; Cheng, K. Y.; Tümer, N.; Scarpace, P. J.
2011-01-01
Voluntary wheel running (WR) is a form of physical activity in rodents that influences ingestive behavior. The present report describes an anorexic behavior triggered by the simultaneous introduction of a novel diet and WR. This study examined the sequential, compared with the simultaneous, introduction of a novel high-fat (HF) diet and voluntary WR in rats of three different ages and revealed a surprising finding; the simultaneous introduction of HF food and voluntary WR induced a behavior in which the animals chose not to eat although food was available at all times. This phenomenon was apparently not due to an aversion to the novel HF diet because introduction of the running wheels plus the HF diet, while continuing the availability of the normal chow diet did not prevent the anorexia. Moreover, the anorexia was prevented with prior exposure to the HF diet. In addition, the anorexia was not related to extent of WR but dependent on the act of WR. The introduction a HF diet and locked running wheels did not induce the anorexia. This voluntary anorexia was accompanied by substantial weight loss, and the anorexia was rapidly reversed by removal of the running wheels. Moreover, the HF/WR-induced anorexia is preserved across the age span despite the intrinsic decrease in WR activity and increased consumption of HF food with advancing age. The described phenomenon provides a new model to investigate anorexia behavior in rodents. PMID:22115947
Biedermann, Sarah; Fuss, Johannes; Zheng, Lei; Sartorius, Alexander; Falfán-Melgoza, Claudia; Demirakca, Traute; Gass, Peter; Ende, Gabriele; Weber-Fahr, Wolfgang
2012-07-16
Voluntary exercise has tremendous effects on adult hippocampal plasticity and metabolism and thus sculpts the hippocampal structure of mammals. High-field (1)H magnetic resonance (MR) investigations at 9.4 T of metabolic and structural changes can be performed non-invasively in the living rodent brain. Numerous molecular and cellular mechanisms mediating the effects of exercise on brain plasticity and behavior have been detected in vitro. However, in vivo attempts have been rare. In this work a method for voxel based morphometry (VBM) was developed with automatic tissue segmentation in mice using a 9.4 T animal scanner equipped with a (1)H-cryogenic coil. The thus increased signal to noise ratio enabled the acquisition of high resolution T2-weighted images of the mouse brain in vivo and the creation of group specific tissue class maps for the segmentation and normalization with SPM. The method was used together with hippocampal single voxel (1)H MR spectroscopy to assess the structural and metabolic differences in the mouse brain due to voluntary wheel running. A specific increase of hippocampal volume with a concomitant decrease of hippocampal glutamate levels in voluntary running mice was observed. An inverse correlation of hippocampal gray matter volume and glutamate concentration indicates a possible implication of the glutamatergic system for hippocampal volume. Copyright © 2012 Elsevier Inc. All rights reserved.
Response of rat body composition to simultaneous exercise and centrifugation at 3.14g
NASA Technical Reports Server (NTRS)
Pitts, G. C.; Oyama, J.
1982-01-01
A study is described calling into question the hypothesis that an increased physical load during chronic centrifugation contributes to the body composition changes observed in centrifuged rats. Considering fat-free and fat-free dry masses of the total body and carcass, it is seen that centrifugation combined with either wheel running or restraint reduced these masses to approximately 85% of the respective 1-g values, that is, the same result with either sedentary rats or rats running several hundred meters per day. It is pointed out that if an effect of a centrifugation-induced load is present but hidden by opposing factors, an analysis of variance should reveal it as an interaction between acceleration and other variables; however, no such interactions are found here. Tables are included emphasizing the pervasive influence of chronic centrifugation after only 12 days exposure.
Roberts, Michael D.; Company, Joseph M.; Brown, Jacob D.; Toedebusch, Ryan G.; Padilla, Jaume; Jenkins, Nathan T.; Laughlin, M. Harold
2012-01-01
According to the latest data from the Center for Disease Control and Prevention 17%, or 12.5 million, of children and adolescents aged 2–19 years in the United States are obese. Physical inactivity is designated as one of the actual causes of US deaths and undoubtedly contributes to the obesity epidemic in children and adults. Examining the effects of inactivity on physiological homeostasis during youth is crucial given that 58% of children between the ages 6–11 yr old fail to obtain the recommended 60 min/day of physical activity and 92% of adolescents fail to achieve this goal [Troiano et al. Med Sci Sports Exerc. 40, 2008]. Nonetheless, invasive mechanistic studies in children linking diminished physical activity with metabolic maladies are lacking for obvious ethical reasons. The rodent wheel lock (WL) model was adopted by our laboratory and others to study how different organ systems of juvenile rats respond to a cessation of daily physical activity. Our WL model houses rats in cages equipped with voluntary running wheels starting at 28 days of age. After a certain period of voluntary running (3 to 6 wk), the wheels are locked, thus preventing the rats' primary source of physical activity. The studies discussed herein suggest that obesity-associated maladies including skeletal muscle insulin resistance, hypothalamic leptin resistance, fatty acid oxidation impairments in skeletal muscle and adipose tissue, nonalcoholic fatty liver disease, and endothelial dysfunction are initiated in juvenile animals that are restrained from voluntary exercise via WL. The use of the juvenile rodent WL or other inactivity models will continue to provide a powerful clinical translational tool that can be used for primordial prevention of human childhood obesity. PMID:22696577
Roberts, Michael D; Company, Joseph M; Brown, Jacob D; Toedebusch, Ryan G; Padilla, Jaume; Jenkins, Nathan T; Laughlin, M Harold; Booth, Frank W
2012-08-01
According to the latest data from the Center for Disease Control and Prevention 17%, or 12.5 million, of children and adolescents aged 2-19 years in the United States are obese. Physical inactivity is designated as one of the actual causes of US deaths and undoubtedly contributes to the obesity epidemic in children and adults. Examining the effects of inactivity on physiological homeostasis during youth is crucial given that 58% of children between the ages 6-11 yr old fail to obtain the recommended 60 min/day of physical activity and 92% of adolescents fail to achieve this goal [Troiano et al. Med Sci Sports Exerc. 40, 2008]. Nonetheless, invasive mechanistic studies in children linking diminished physical activity with metabolic maladies are lacking for obvious ethical reasons. The rodent wheel lock (WL) model was adopted by our laboratory and others to study how different organ systems of juvenile rats respond to a cessation of daily physical activity. Our WL model houses rats in cages equipped with voluntary running wheels starting at 28 days of age. After a certain period of voluntary running (3 to 6 wk), the wheels are locked, thus preventing the rats' primary source of physical activity. The studies discussed herein suggest that obesity-associated maladies including skeletal muscle insulin resistance, hypothalamic leptin resistance, fatty acid oxidation impairments in skeletal muscle and adipose tissue, nonalcoholic fatty liver disease, and endothelial dysfunction are initiated in juvenile animals that are restrained from voluntary exercise via WL. The use of the juvenile rodent WL or other inactivity models will continue to provide a powerful clinical translational tool that can be used for primordial prevention of human childhood obesity.
ERIC Educational Resources Information Center
Belke, Terry W.
2010-01-01
Previous research suggested that allocation of responses on concurrent schedules of wheel-running reinforcement was less sensitive to schedule differences than typically observed with more conventional reinforcers. To assess this possibility, 16 female Long Evans rats were exposed to concurrent FR FR schedules of reinforcement and the schedule…
Kodali, Maheedhar; Megahed, Tarick; Mishra, Vikas; Shuai, Bing; Hattiangady, Bharathi; Shetty, Ashok K
2016-08-03
Running exercise (RE) improves cognition, formation of anterograde memories, and mood, alongside enhancing hippocampal neurogenesis. A previous investigation in a mouse model showed that RE-induced increased neurogenesis erases retrograde memory (Akers et al., 2014). However, it is unknown whether RE-induced forgetting is common to all species. We ascertained whether voluntary RE-induced enhanced neurogenesis interferes with the recall of spatial memory in rats. Young rats assigned to either sedentary (SED) or running exercise (RE) groups were first subjected to eight learning sessions in a water maze. A probe test (PT) conducted 24 h after the final training session confirmed that animals in either group had a similar ability for the recall of short-term memory. Following this, rats in the RE group were housed in larger cages fitted with running wheels, whereas rats in the SED group remained in standard cages. Animals in the RE group ran an average of 78 km in 4 weeks. A second PT performed 4 weeks after the first PT revealed comparable ability for memory recall between animals in the RE and SED groups, which was evidenced through multiple measures of memory retrieval function. The RE group displayed a 1.5- to 2.1-fold higher hippocampal neurogenesis than SED rats. Additionally, both moderate and brisk RE did not interfere with the recall of memory, although increasing amounts of RE proportionally enhanced neurogenesis. In conclusion, RE does not impair memory recall ability in a rat model despite substantially increasing neurogenesis. Running exercise (RE) improves new memory formation along with an increased neurogenesis in the hippocampus. In view of a recent study showing that RE-mediated increased hippocampal neurogenesis promotes forgetfulness in a mouse model, we ascertained whether a similar adverse phenomenon exists in a rat model. Memory recall ability examined 4 weeks after learning confirmed that animals that had run a mean of 78 km and displayed a 1.5- to 2.1-fold increase in hippocampal neurogenesis demonstrated similar proficiency for memory recall as animals that had remained sedentary. Furthermore, both moderate and brisk RE did not interfere with memory recall, although increasing amounts of RE proportionally enhanced neurogenesis, implying that RE has no adverse effects on memory recall. Copyright © 2016 the authors 0270-6474/16/368112-11$15.00/0.
Delta FosB regulates wheel running.
Werme, Martin; Messer, Chad; Olson, Lars; Gilden, Lauren; Thorén, Peter; Nestler, Eric J; Brené, Stefan
2002-09-15
DeltaFosB is a transcription factor that accumulates in a region-specific manner in the brain after chronic perturbations. For example, repeated administration of drugs of abuse increases levels of DeltaFosB in the striatum. In the present study, we analyzed the effect of spontaneous wheel running, as a model for a natural rewarding behavior, on levels of DeltaFosB in striatal regions. Moreover, mice that inducibly overexpress DeltaFosB in specific subpopulations of striatal neurons were used to study the possible role of DeltaFosB on running behavior. Lewis rats given ad libitum access to running wheels for 30 d covered what would correspond to approximately 10 km/d and showed increased levels of DeltaFosB in the nucleus accumbens compared with rats exposed to locked running wheels. Mice that overexpress DeltaFosB selectively in striatal dynorphin-containing neurons increased their daily running compared with control littermates, whereas mice that overexpress DeltaFosB predominantly in striatal enkephalin-containing neurons ran considerably less than controls. Data from the present study demonstrate that like drugs of abuse, voluntary running increases levels of DeltaFosB in brain reward pathways. Furthermore, overexpression of DeltaFosB in a distinct striatal output neuronal population increases running behavior. Because previous work has shown that DeltaFosB overexpression within this same neuronal population increases the rewarding properties of drugs of abuse, results of the present study suggest that DeltaFosB may play a key role in controlling both natural and drug-induced reward.
Forced and voluntary exercise differentially affect brain and behavior.
Leasure, J L; Jones, M
2008-10-15
The potential of physical exercise to decrease body weight, alleviate depression, combat aging and enhance cognition has been well-supported by research studies. However, exercise regimens vary widely across experiments, raising the question of whether there is an optimal form, intensity and duration of exertion that would produce maximal benefits. In particular, a comparison of forced and voluntary exercise is needed, since the results of several prior studies suggest that they may differentially affect brain and behavior. In the present study, we employed a novel 8-week exercise paradigm that standardized the distance, pattern, equipment and housing condition of forced and voluntary exercisers. Exercising rats were then compared with sedentary controls on measures previously shown to be influenced by physical activity. Our results indicate that although the distance covered by both exercise groups was the same, voluntary exercisers ran at higher speed and for less total time than forced exercisers. When compared with sedentary controls, forced but not voluntary exercise was found to increase anxiety-like behaviors in the open field. Both forms of exercise increased the number of surviving bromodeoxyuridine (BrdU)+ cells in the dentate gyrus after 8 weeks of exercise, although forced exercisers had significantly more than voluntary exercisers. Phenotypic analysis of BrdU+ cells showed no difference between groups in the percentage of newborn cells that became neurons, however, because forced exercise maximally increased the number of BrdU+ cells, it ultimately produced more neurons than voluntary exercise. Our results indicate that forced and voluntary exercise are inherently different: voluntary wheel running is characterized by rapid pace and short duration, whereas forced exercise involves a slower, more consistent pace for longer periods of time. This basic difference between the two forms of exercise is likely responsible for their differential effects on brain and behavior.
Glucose transporters and maximal transport are increased in endurance-trained rat soleus
NASA Technical Reports Server (NTRS)
Slentz, C. A.; Gulve, E. A.; Rodnick, K. J.; Henriksen, E. J.; Youn, J. H.; Holloszy, J. O.
1992-01-01
Voluntary wheel running induces an increase in the concentration of the regulatable glucose transporter (GLUT4) in rat plantaris muscle but not in soleus muscle (K. J. Rodnick, J. O. Holloszy, C. E. Mondon, and D. E. James. Diabetes 39: 1425-1429, 1990). Wheel running also causes hypertrophy of the soleus in rats. This study was undertaken to ascertain whether endurance training that induces enzymatic adaptations but no hypertrophy results in an increase in the concentration of GLUT4 protein in rat soleus (slow-twitch red) muscle and, if it does, to determine whether there is a concomitant increase in maximal glucose transport activity. Female rats were trained by treadmill running at 25 m/min up a 15% grade, 90 min/day, 6 days/wk for 3 wk. This training program induced increases of 52% in citrate synthase activity, 66% in hexokinase activity, and 47% in immunoreactive GLUT4 protein concentration in soleus muscles without causing hypertrophy. Glucose transport activity stimulated maximally with insulin plus contractile activity was increased to roughly the same extent (44%) as GLUT4 protein content in soleus muscle by the treadmill exercise training. In a second set of experiments, we examined whether a swim-training program increases glucose transport activity in the soleus in the presence of a maximally effective concentration of insulin. The swimming program induced a 44% increase in immunoreactive GLUT4 protein concentration. Glucose transport activity maximally stimulated with insulin was 62% greater in soleus muscle of the swimmers than in untrained controls. Training did not alter the basal rate of 2-deoxyglucose uptake.(ABSTRACT TRUNCATED AT 250 WORDS).
Iwamoto, Gary A.; Vongpatanasin, Wanpen; Mitchell, Jere H.; Smith, Scott A.
2015-01-01
Cardiovascular responses to exercise are exaggerated in hypertension. We previously demonstrated that this heightened cardiovascular response to exercise is mediated by an abnormal skeletal muscle exercise pressor reflex (EPR) with important contributions from its mechanically and chemically sensitive components. Exercise training attenuates exercise pressor reflex function in healthy subjects as well as in heart failure rats. However, whether exercise training has similar physiological benefits in hypertension remains to be elucidated. Thus we tested the hypothesis that the EPR overactivity manifest in hypertension is mitigated by exercise training. Changes in mean arterial pressure (MAP) and renal sympathetic nerve activity (RSNA) in response to muscle contraction, passive muscle stretch, and hindlimb intra-arterial capsaicin administration were examined in untrained normotensive Wistar-Kyoto rats (WKYUT; n = 6), exercise-trained WKY (WKYET; n = 7), untrained spontaneously hypertensive rats (SHRUT; n = 8), and exercise-trained SHR (SHRET; n = 7). Baseline MAP after decerebration was significantly decreased by 3 mo of wheel running in SHRET (104 ± 9 mmHg) compared with SHRUT (125 ± 10 mmHg). As previously reported, the pressor and renal sympathetic responses to muscle contraction, stretch, and capsaicin administration were significantly higher in SHRUT than WKYUT. Exercise training significantly attenuated the enhanced contraction-induced elevations in MAP (SHRUT: 53 ± 11 mmHg; SHRET: 19 ± 3 mmHg) and RSNA (SHRUT: 145 ± 32%; SHRET: 57 ± 11%). Training produced similar attenuating effects in SHR during passive stretch and capsaicin administration. These data demonstrate that the abnormally exaggerated EPR function that develops in hypertensive rats is significantly diminished by exercise training. PMID:26163445
Spontaneous appetence for wheel-running: a model of dependency on physical activity in rat.
Ferreira, Anthony; Lamarque, Stéphanie; Boyer, Patrice; Perez-Diaz, Fernando; Jouvent, Roland; Cohen-Salmon, Charles
2006-12-01
According to human observations of a syndrome of physical activity dependence and its consequences, we tried to examine if running activity in a free activity paradigm, where rats had a free access to activity wheel, may present a valuable animal model for physical activity dependence and most generally to behavioral dependence. The pertinence of reactivity to novelty, a well-known pharmacological dependence predictor was also tested. Given the close linkage observed in human between physical activity and drugs use and abuse, the influence of free activity in activity wheels on reactivity to amphetamine injection and reactivity to novelty were also assessed. It appeared that (1) free access to wheel may be used as a valuable model for physical activity addiction, (2) two populations differing in activity amount also differed in dependence to wheel-running. (3) Reactivity to novelty did not appeared as a predictive factor for physical activity dependence (4) activity modified novelty reactivity and (5) subjects who exhibited a high appetence to wheel-running, presented a strong reactivity to amphetamine. These results propose a model of dependency on physical activity without any pharmacological intervention, and demonstrate the existence of individual differences in the development of this addiction. In addition, these data highlight the development of a likely vulnerability to pharmacological addiction after intense and sustained physical activity, as also described in man. This model could therefore prove pertinent for studying behavioral dependencies and the underlying neurobiological mechanisms. These results may influence the way psychiatrists view behavioral dependencies and phenomena such as doping in sport or addiction to sport itself.
Rojas, Manuel J.; Cardenas P., Fernando
2017-01-01
Background Exercise can change cellular structure and connectivity (neurogenesis or synaptogenesis), causing alterations in both behavior and working memory. The aim of this study was to evaluate the effect of exercise on working memory and hippocampal neurogenesis in adult male Wistar rats using a T-maze test. Methods An experimental design with two groups was developed: the experimental group (n = 12) was subject to a forced exercise program for five days, whereas the control group (n = 9) stayed in the home cage. Six to eight weeks after training, the rats’ working memory was evaluated in a T-maze test and four choice days were analyzed, taking into account alternation as a working memory indicator. Hippocampal neurogenesis was evaluated by means of immunohistochemistry of BrdU positive cells. Results No differences between groups were found in the behavioral variables (alternation, preference index, time of response, time of trial or feeding), or in the levels of BrdU positive cells. Discussion Results suggest that although exercise may have effects on brain structure, a construct such as working memory may require more complex changes in networks or connections to demonstrate a change at behavioral level. PMID:28503368
Yau, S-Y; Lau, B W-M; Zhang, E-D; Lee, J C-D; Li, A; Lee, T M C; Ching, Y-P; Xu, A-M; So, K-F
2012-10-11
Previous studies have shown that a 2-week treatment with 40 mg/kg corticosterone (CORT) in rats suppresses hippocampal neurogenesis and decreases hippocampal brain-derived neurotrophic factor (BDNF) levels and impairs spatial learning, all of which could be counteracted by voluntary wheel running. BDNF and insulin-like growth factor (IGF-1) have been suggested to mediate physical exercise-enhanced hippocampal neurogenesis and cognition. Here we examined whether such running-elicited benefits were accompanied by corresponding changes of peripheral BDNF and IGF-1 levels in a rat model of stress. We examined the effects of acute (5 days) and chronic (4 weeks) treatment with CORT and/or wheel running on (1) hippocampal cell proliferation, (2) spatial learning and memory and (3) plasma levels of BDNF and IGF-1. Acute CORT treatment improved spatial learning without altered cell proliferation compared to vehicle treatment. Acute CORT-treated non-runners showed an increased trend in plasma BDNF levels together with a significant increase in hippocampal BDNF levels. Acute running showed no effect on cognition, cell proliferation and peripheral BDNF and IGF-1 levels. Conversely, chronic CORT treatment in non-runners significantly impaired spatial learning and suppressed cell proliferation in association with a decreased trend in plasma BDNF level and a significant increase in hippocampal BDNF levels. Running counteracted cognitive deficit and restored hippocampal cell proliferation following chronic CORT treatment; but without corresponding changes in plasma BDNF and IGF-1 levels. The results suggest that the beneficial effects of acute stress on cognitive improvement may be mediated by BDNF-enhanced synaptic plasticity that is hippocampal cell proliferation-independent, whereas chronic stress may impair cognition by decreasing hippocampal cell proliferation and BDNF levels. Furthermore, the results indicate a trend in changes of plasma BDNF levels associated with a significant alteration in hippocampal levels, suggesting that treatment with running/CORT for 4 weeks may induce a change in central levels of hippocampal BDNF level, which may not lead to a significant change in peripheral levels. Copyright © 2012 IBRO. Published by Elsevier Ltd. All rights reserved.
Code of Federal Regulations, 2010 CFR
2010-07-01
..., running over wheels or pulleys, and used for sawing materials. (6) The term guillotine shear shall mean a machine equipped with a movable blade operated vertically and used to shear materials. The term shall not... series of notches or teeth, running over wheels or pulleys, and used for sawing materials. Chain saw...
Open-field behavior of house mice selectively bred for high voluntary wheel-running.
Bronikowski, A M; Carter, P A; Swallow, J G; Girard, I A; Rhodes, J S; Garland, T
2001-05-01
Open-field behavioral assays are commonly used to test both locomotor activity and emotionality in rodents. We performed open-field tests on house mice (Mus domesticus) from four replicate lines genetically selected for high voluntary wheel-running for 22 generations and from four replicate random-bred control lines. Individual mice were recorded by video camera for 3 min in a 1-m2 open-field arena on 2 consecutive days. Mice from selected lines showed no statistical differences from control mice with respect to distance traveled, defecation, time spent in the interior, or average distance from the center of the arena during the trial. Thus, we found little evidence that open-field behavior, as traditionally defined, is genetically correlated with wheel-running behavior. This result is a useful converse test of classical studies that report no increased wheel-running in mice selected for increased open-field activity. However, mice from selected lines turned less in their travel paths than did control-line mice, and females from selected lines had slower travel times (longer latencies) to reach the wall. We discuss these results in the context of the historical open-field test and newly defined measures of open-field activity.
Kasimay, Ozgür; Güzel, Esra; Gemici, Ali; Abdyli, Asead; Sulovari, Admir; Ercan, Feriha; Yeğen, Berrak C
2006-09-01
Epidemiological studies have shown that exercise protects the gastrointestinal tract, reducing the risk of diverticulosis, gastrointestinal haemorrhage and inflammatory bowel disease, while many digestive complaints occurring during exercise are attributed to the adverse effects of exercise on the colon. In order to assess the effects of regular exercise on the pathogenesis of colitis, Sprague-Dawley rats of both sexes were either kept sedentary or given exercise on a running wheel (0.4 km h(-1), 30 min for 3 days week(-1)). At the end of 6 weeks, under anaesthesia, either saline or acetic acid (4%, 1 ml) was given intracolonically. Holeboard tests were performed for the evaluation of anxiety at 24 h before and 48 h after induction of colitis. Increased 'freezing time' in the colitis-induced sedentary group, representing increased anxiety, was reduced in the exercised colitis group (P < 0.05). On the third day following the colonic instillation, the rats were decapitated under brief ether anesthesia and the distal 8 cm of the colons were removed. In the sedentary colitis group, macroscopic and microscopic damage scores, malondialdehyde level and myeloperoxidase activity were increased when compared to the control group (P < 0.01-0.001), while exercise prior to colitis reduced all the measurements with respect to sedentary colitis group (P < 0.05-0.001). The results demonstrate that low-intensity, repetitive exercise protects against oxidative colonic injury, and that this appears to involve the anxiolytic effect of exercise, suggesting that exercise may have a therapeutic value in reducing stress-related exacerbation of colitis.
Smith, Andrew M.; Spiegler, Kevin M.; Sauce, Bruno; Wass, Christopher D.; Sturzoiu, Tudor; Matzel, Louis D.
2013-01-01
Increases in performance on tests of attention and learning are often observed shortly after a period of aerobic exercise, and evidence suggests that humans who engage in regular exercise are partially protected from age-related cognitive decline. However, the cognitive benefits of exercise are typically short-lived, limiting the practical application of these observations. We explored whether physical exercise would induce lasting changes in general cognitive ability if that exercise was combined with working memory training, which is purported to broadly impact on cognitive performance. Mice received either exercise (six weeks of voluntary running wheel access), working memory training, both treatments, or various control treatments. Near the completion of this period of exercise, working memory training (in a dual radial-arm maze) was initiated (alternating with days of exercise), and was continued for several weeks. Upon completion of these treatments, animals were assessed (2–4 weeks later) for performance on four diverse learning tasks, and the aggregate performance of individual animals across all four learning tasks was estimated. Working memory training alone promoted small increases in general cognitive performance, although any beneficial effects of exercise alone had dissipated by the time of learning assessments. However, the two treatments in combination more than doubled the improvement in general cognitive performance supported by working memory training alone. Unlike the transient effects that acute aerobic exercise can have on isolated learning tasks, these results indicate that an acute period of exercise combined with working memory training can have synergistic and lasting impact on general cognitive performance. PMID:24036169
Behavior of captive white-footed mice.
Kavanau, J L
1967-03-31
Detailed studies of the behavior of captive white-footed mice have cast a number of old problems in new perspectives. Many responses of small captive mammals cannot be interpreted at face value because of severe distortions of behavior that are caused by depriving the wild animal of natural outlets for activity. Confined animals are likely to seize upon and repeatedly exercise virtually any opportunities to modify (and alter their relationships with) their surroundings. In addition they have a strong tendency to counteract nonvolitional and "unexpected" deviations from the status quo. As a result, their responses do not bear an immutable relationship to the nature of the stimulus or other variable being modified; stimuli and activities that are rewarding in certain circumstances are avoided in others. These aspects of behavior have been illustrated by studies of nest occupancy, running in motordriven wheels, and control of intensity of illumination. The results of the control-of-illumination studies suggest the complex interplay of tendencies to modify features of the environment, to avoid conditions imposed compulsorily, and to select preferred levels of illumination. The importance of split-second timing, coordination, and quick reflex actions in the running of activity wheels is indicated by the fact that experienced white-footed mice prefer running in square "wheels" and wheels with hurdles to running in plain round wheels. The relatively conservative behavior of these mice in selecting between multiple sources of food and water and different types of activity wheels suggests the need for careful experimental design in free-choice studies with inexperienced animals. The tendency of trained animals to give some so-called "incorrect" responses even after long experience can be interpreted most reasonably in terms of the adaptive value of a certain degree of variability of behavior in the wild. White-footed mice readily master complex regimes in which several different levers and shutters must be pressed or rotated in certain sequences within seconds for different rewards. They quickly learn to traverse mazes containing hundreds of blind alleys and do so frequently without extrinsic reward. It is unlikely that these remarkable learning performances even begin to approach the capacities of the animals. When two female mice having markedly different solitary behavior patterns were placed in consort, the behavior of each changed, becoming more like that of the other, and the animals showed a strong tendency to remain in each other's company. The behavior of mice in enclosures of great extent casts doubt upon the postulate that hunger and thirst play leading roles in the motivation of wide-ranging locomotor movements. Accordingly, studies of deprived domestic animals in simple mazes may have but limited significance for understanding the behavior of wild and relatively unconfined animals. The existence of marked individual differences between mice selected at random from wild populations sounds the need for a cautious approach in the interpretation of results obtained with highly inbred domestic animals. The relatively uniform behavior of inbred strains represents only a small fragment of the total response spectrum for the species and probably has minimal significance for adaptation and evolution in the wild. When allowed to control the intensity of illumination by operating a series of switches, white-footed mice establish a roughly 24-hour regime consistent with that experienced in the wild, namely dim light during periods of activity and very dim light during periods of inactivity. Consistent with this finding, when exposed to a dim-dark light cycle, the mice are active during the dim phase, not in darkness. Artificial twilight transitions of both constant and varying color temperature have several marked effects upon the activity of white-footed mice. The existence of a strong orienting influence of dim light on the direction of wheel-running suggests that mice in the wild use the twilight sun and the moon (and possibly other celestial light sources) as navigational references.
Walker, Jennifer M; Klakotskaia, Diana; Ajit, Deepa; Weisman, Gary A; Wood, W Gibson; Sun, Grace Y; Serfozo, Peter; Simonyi, Agnes; Schachtman, Todd R
2015-01-01
Alzheimer's disease (AD) is a progressive, age-dependent neurodegenerative disorder affecting specific brain regions that control memory and cognitive functions. Epidemiological studies suggest that exercise and dietary antioxidants are beneficial in reducing AD risk. To date, botanical flavonoids are consistently associated with the prevention of age-related diseases. The present study investigated the effects of 4 months of wheel-running exercise, initiated at 2-months of age, in conjunction with the effects of the green tea catechin (-)-epigallocatechin-3-gallate (EGCG) administered orally in the drinking water (50 mg/kg daily) on: (1) behavioral measures: learning and memory performance in the Barnes maze, nest building, open-field, anxiety in the light-dark box; and (2) soluble amyloid-β (Aβ) levels in the cortex and hippocampus in TgCRND8 (Tg) mice. Untreated Tg mice showed hyperactivity, relatively poor nest building behaviors, and deficits in spatial learning in the Barnes maze. Both EGCG and voluntary exercise, separately and in combination, were able to attenuate nest building and Barnes maze performance deficits. Additionally, these interventions lowered soluble Aβ1-42 levels in the cortex and hippocampus. These results, together with epidemiological and clinical studies in humans, suggest that dietary polyphenols and exercise may have beneficial effects on brain health and slow the progression of AD.
Determination of vertical pressures on running wheels of freight trolleys of bridge type cranes
NASA Astrophysics Data System (ADS)
Goncharov, K. A.; Denisov, I. A.
2018-03-01
The problematic issues of the design of the bridge-type trolley crane, connected with ensuring uniform load distribution between the running wheels, are considered. The shortcomings of the existing methods of calculation of reference pressures are described. The results of the analytical calculation of the pressure of the support wheels are compared with the results of the numerical solution of this problem for various schemes of trolley supporting frames. Conclusions are given on the applicability of various methods for calculating vertical pressures, depending on the type of metal structures used in the trolley.
Responding for sucrose and wheel-running reinforcement: effect of body weight manipulation.
Belke, Terry W
2004-02-27
As body weight increases, the excitatory strength of a stimulus signaling an opportunity to run should weaken to a greater degree than that of a stimulus signaling an opportunity to eat. To test this hypothesis, six male albino Wistar rats were placed in running wheels and exposed to a fixed interval 30-s schedule that produced either a drop of 15% sucrose solution or the opportunity to run for 15s as reinforcing consequences for lever pressing. Each reinforcer type was signaled by a different stimulus. The effect of varying body weight on responding maintained by these two reinforcers was investigated by systematically increasing and decreasing post-session food amounts. The initial body weight was 335 g. Body weights were increased to approximately 445 g and subsequently returned to 335 g. As body weight increased, overall and local lever-pressing rates decreased while post-reinforcement pauses lengthened. Analysis of post-reinforcement pauses and local lever-pressing rates in terms of transitions between successive reinforcers revealed that local response rates in the presence of stimuli signaling upcoming wheel and sucrose reinforcers were similarly affected. However, pausing in the presence of the stimulus signaling a wheel-running reinforcer lengthened to a greater extent than did pausing in the presence of the stimulus signaling sucrose. This result suggests that as body weight approaches ad-lib levels, the likelihood of initiation of responding to obtain an opportunity to run approaches zero and the animal "rejects" the opportunity to run in a manner similar to the rejection of less preferred food items in studies of food selectivity.
Locomotor trade-offs in mice selectively bred for high voluntary wheel running.
Dlugosz, Elizabeth M; Chappell, Mark A; McGillivray, David G; Syme, Douglas A; Garland, Theodore
2009-08-01
We investigated sprint performance and running economy of a unique ;mini-muscle' phenotype that evolved in response to selection for high voluntary wheel running in laboratory mice (Mus domesticus). Mice from four replicate selected (S) lines run nearly three times as far per day as four control lines. The mini-muscle phenotype, resulting from an initially rare autosomal recessive allele, has been favoured by the selection protocol, becoming fixed in one of the two S lines in which it occurred. In homozygotes, hindlimb muscle mass is halved, mass-specific muscle oxidative capacity is doubled, and the medial gastrocnemius exhibits about half the mass-specific isotonic power, less than half the mass-specific cyclic work and power, but doubled fatigue resistance. We hypothesized that mini-muscle mice would have a lower whole-animal energy cost of transport (COT), resulting from lower costs of cycling their lighter limbs, and reduced sprint speed, from reduced maximal force production. We measured sprint speed on a racetrack and slopes (incremental COT, or iCOT) and intercepts of the metabolic rate versus speed relationship during voluntary wheel running in 10 mini-muscle and 20 normal S-line females. Mini-muscle mice ran faster and farther on wheels, but for less time per day. Mini-muscle mice had significantly lower sprint speeds, indicating a functional trade-off. However, contrary to predictions, mini-muscle mice had higher COT, mainly because of higher zero-speed intercepts and postural costs (intercept-resting metabolic rate). Thus, mice with altered limb morphology after intense selection for running long distances do not necessarily run more economically.
Short, A K; Yeshurun, S; Powell, R; Perreau, V M; Fox, A; Kim, J H; Pang, T Y; Hannan, A J
2017-01-01
There is growing evidence that the preconceptual lifestyle and other environmental exposures of a father can significantly alter the physiological and behavioral phenotypes of their children. We and others have shown that paternal preconception stress, regardless of whether the stress was experienced during early-life or adulthood, results in offspring with altered anxiety and depression-related behaviors, attributed to hypothalamic–pituitary–adrenal axis dysregulation. The transgenerational response to paternal preconceptual stress is believed to be mediated by sperm-borne small noncoding RNAs, specifically microRNAs. As physical activity confers physical and mental health benefits for the individual, we used a model of voluntary wheel-running and investigated the transgenerational response to paternal exercise. We found that male offspring of runners had suppressed reinstatement of juvenile fear memory, and reduced anxiety in the light–dark apparatus during adulthood. No changes in these affective behaviors were observed in female offspring. We were surprised to find that running had a limited impact on sperm-borne microRNAs. The levels of three unique microRNAs (miR-19b, miR-455 and miR-133a) were found to be altered in the sperm of runners. In addition, we discovered that the levels of two species of tRNA-derived RNAs (tDRs)—tRNA-Gly and tRNA-Pro—were also altered by running. Taken together, we believe this is the first evidence that paternal exercise is associated with an anxiolytic behavioral phenotype of male offspring and altered levels of small noncoding RNAs in sperm. These small noncoding RNAs are known to have an impact on post-transcriptional gene regulation and can thus change the developmental trajectory of offspring brains and associated affective behaviors. PMID:28463242
Marlatt, Michael W; Potter, Michelle C; Bayer, Thomas A; van Praag, Henriette; Lucassen, Paul J
2013-01-01
Reductions in adult neurogenesis have been documented in the original 3xTg mouse model of Alzheimer's disease (AD), notably occurring at the same age when spatial memory deficits and amyloid plaque pathology appeared. As this suggested reduced neurogenesis was associated with behavioral deficits, we tested whether activity and pharmacological stimulation could prevent memory deficits and modify neurogenesis and/or neuropathology in the 3xTg model backcrossed to the C57Bl/6 strain. We chronically administered the antidepressant fluoxetine to one group of mice, allowed access to a running wheel in another, and combined both treatments in a third cohort. All treatments lasted for 11 months. The female 3xTg mice failed to exhibit any deficits in spatial learning and memory as measured in the Morris water maze, indicating that when backcrossed to the C57Bl/6 strain, the 3xTg mice lost the behavioral phenotype that was present in the original 3xTg mouse maintained on a hybrid background. Despite this, the backcrossed 3xTg mice expressed prominent intraneuronal amyloid beta (Aβ) levels in the cortex and amygdala, with lower levels in the CA1 area of the hippocampus. In the combined cohort, fluoxetine treatment interfered with exercise and reduced the total distance run. The extent of Aβ neuropathology, the tau accumulations, or BDNF levels, were not altered by prolonged exercise. Thus, neuropathology was present but not paralleled by spatial memory deficits in the backcrossed 3xTg mouse model of AD. Prolonged exercise for 11 months did improve the long-term survival of newborn neurons generated during middle-age, whereas fluoxetine had no effect. We further review and discuss the relevant literature in this respect.
Schroeder, Analyne M; Truong, Danny; Loh, Dawn H; Jordan, Maria C; Roos, Kenneth P; Colwell, Christopher S
2012-01-01
The circadian system co-ordinates the temporal patterning of behaviour and many underlying biological processes. In some cases, the regulated outputs of the circadian system, such as activity, may be able to feed back to alter core clock processes. In our studies, we used four wheel-access conditions (no access; free access; early night; and late night) to manipulate the duration and timing of activity while under the influence of a light–dark cycle. In wild-type mice, scheduled wheel access was able to increase ambulatory activity, inducing a level of exercise driven at various phases of the light–dark cycle. Scheduled exercise also manipulated the magnitude and phasing of the circadian-regulated outputs of heart rate and body temperature. At a molecular level, the phasing and amplitude of PER2::LUCIFERASE (PER2::LUC) expression rhythms in the SCN and peripheral tissues of Per2::Luc knockin mice were altered by scheduled exercise. We then tested whether scheduled wheel access could improve deficits observed in vasointestinal polypeptide-deficient mice under the influence of a light–dark cycle. We found that scheduled wheel access during the late night improved many of the behavioural, physiological and molecular deficits previously described in vasointestinal polypeptide-deficient mice. Our results raise the possibility that scheduled exercise could be used as a tool to modulate daily rhythms and, when applied, may counteract some of the negative impacts of ageing and disease on the circadian system. PMID:22988135
Latimer, Caitlin S; Searcy, James L; Bridges, Michael T; Brewer, Lawrence D; Popović, Jelena; Blalock, Eric M; Landfield, Philip W; Thibault, Olivier; Porter, Nada M
2011-01-01
Healthy brain aging and cognitive function are promoted by exercise. The benefits of exercise are attributed to several mechanisms, many which highlight its neuroprotective role via actions that enhance neurogenesis, neuronal morphology and/or neurotrophin release. However, the brain is also composed of glial and vascular elements, and comparatively less is known regarding the effects of exercise on these components in the aging brain. Here, we show that aerobic exercise at mid-age decreased markers of unhealthy brain aging including astrocyte hypertrophy, a hallmark of brain aging. Middle-aged female mice were assigned to a sedentary group or provided a running wheel for six weeks. Exercise decreased hippocampal astrocyte and myelin markers of aging but increased VEGF, a marker of angiogenesis. Brain vascular casts revealed exercise-induced structural modifications associated with improved endothelial function in the periphery. Our results suggest that age-related astrocyte hypertrophy/reactivity and myelin dysregulation are aggravated by a sedentary lifestyle and accompanying reductions in vascular function. However, these effects appear reversible with exercise initiated at mid-age. As this period of the lifespan coincides with the appearance of multiple markers of brain aging, including initial signs of cognitive decline, it may represent a window of opportunity for intervention as the brain appears to still possess significant vascular plasticity. These results may also have particular implications for aging females who are more susceptible than males to certain risk factors which contribute to vascular aging.
Latimer, Caitlin S.; Searcy, James L.; Bridges, Michael T.; Brewer, Lawrence D.; Popović, Jelena; Blalock, Eric M.; Landfield, Philip W.; Thibault, Olivier; Porter, Nada M.
2011-01-01
Healthy brain aging and cognitive function are promoted by exercise. The benefits of exercise are attributed to several mechanisms, many which highlight its neuroprotective role via actions that enhance neurogenesis, neuronal morphology and/or neurotrophin release. However, the brain is also composed of glial and vascular elements, and comparatively less is known regarding the effects of exercise on these components in the aging brain. Here, we show that aerobic exercise at mid-age decreased markers of unhealthy brain aging including astrocyte hypertrophy, a hallmark of brain aging. Middle-aged female mice were assigned to a sedentary group or provided a running wheel for six weeks. Exercise decreased hippocampal astrocyte and myelin markers of aging but increased VEGF, a marker of angiogenesis. Brain vascular casts revealed exercise-induced structural modifications associated with improved endothelial function in the periphery. Our results suggest that age-related astrocyte hypertrophy/reactivity and myelin dysregulation are aggravated by a sedentary lifestyle and accompanying reductions in vascular function. However, these effects appear reversible with exercise initiated at mid-age. As this period of the lifespan coincides with the appearance of multiple markers of brain aging, including initial signs of cognitive decline, it may represent a window of opportunity for intervention as the brain appears to still possess significant vascular plasticity. These results may also have particular implications for aging females who are more susceptible than males to certain risk factors which contribute to vascular aging. PMID:22046366
Exercise Prevents Amyloid-β-Induced Hippocampal Network Disruption by Inhibiting GSK3β Activation.
Isla, Arturo G; Vázquez-Cuevas, Francisco Gabriel; Peña-Ortega, Fernando
2016-03-16
Exercise is becoming a promising therapeutic approach to prevent alterations both in Alzheimer's disease (AD) patients and in transgenic models of AD. This neuroprotection has been associated with changes in hippocampal structure and function, as well as with the reduction of amyloid-β (Aβ) production and accumulation. However, whether exercise produces lasting changes in hippocampal population activity and renders it resistant to Aβ-induced network dysfunction is still unknown. Thus, we tested whether voluntary exercise changes hippocampal population activity and prevents its alteration in the presence of Aβ, which has been associated to glycogen synthase kinase-3β (GSK3β) activation. We found that the hippocampal population activity recorded in slices obtained from mice that exercised voluntarily (with free access to a running wheel for 21 days) exhibits higher power and faster frequency composition than slices obtained from sedentary animals. Moreover, the hippocampal network of mice that exercised becomes insensitive to Aβ-induced inhibition of spontaneous population activity. This protective effect correlates with the inability of Aβ to activate GSK3β, is mimicked by GSK3β inhibition with SB126763 (in slices obtained from sedentary mice), and is abolished by the inhibition of PI3K with LY294002 (in slices obtained from mice that exercised). We conclude that voluntary exercise produces a lasting protective state in the hippocampus, maintained in hippocampal slices by a PI3K-dependent mechanism that precludes its functional disruption in the presence of Aβ by avoiding GSK3β activation.
Mikus, Catherine R; Roseguini, Bruno T; Uptergrove, Grace M; Morris, E Matthew; Rector, Randy Scott; Libla, Jessica L; Oberlin, Douglas J; Borengasser, Sarah J; Taylor, Angelina M; Ibdah, Jamal A; Laughlin, Maurice Harold; Thyfault, John P
2012-11-01
Exercise (RUN) prevents declines in insulin-mediated vasodilation, an important component of insulin-mediated glucose disposal, in rats prone to obesity and insulin resistance. Determine whether RUN (1) improves insulin-stimulated vasodilation after insulin resistance has been established, and (2) differentially affects arterioles from red and white muscle. Insulin signaling and vasoreactivity to insulin (1-1000 μIU/mL) were assessed in 2A from the Gw and Gr of SED OLETF rats at 12 and 20 weeks of age (SED12, SED20) and those undergoing RUN (RUN20) or caloric restriction (CR20; to match body weight of RUN) from 12 to 20 weeks. Glucose and insulin responses to i.p. glucose were reduced in RUN20, elevated in SED20 (p < 0.05 vs. SED12), and maintained in CR20. Insulin-stimulated vasodilation was greater in Gw but not Gr, 2As of RUN20 (p < 0.01 vs. all groups), and was improved by ET-1 receptor inhibition in Gw 2As from SED20 and CR20 (p < 0.05). There were no differences in microvascular insulin signaling among groups or muscle beds. RUN selectively improved insulin-mediated vasodilation in Gw 2As, in part through attenuated ET-1 sensitivity/production, an adaptation that was independent of changes in adiposity and may contribute to enhanced insulin-stimulated glucose disposal. © 2012 John Wiley & Sons Ltd.
Pulmonary sensitivity to ozone exposure in sedentary versus chronically trained, female rats.
Gordon, Christopher J; Phillips, Pamela M; Beasley, Tracey E; Ledbetter, A; Aydin, Cenk; Snow, Samantha J; Kodavanti, Urmila P; Johnstone, Andrew F
2016-06-01
Epidemiological data suggest that a sedentary lifestyle may contribute to increased susceptibility for some environmental toxicants. We developed an animal model of active versus sedentary life style by providing female Sprague-Dawley rats with continuous access to running wheels. Sedentary rats were housed in standard cages without wheels. After training for 12 wks, rats were exposed to 0, 0.25, 0.5 or 1.0 ppm ozone [O3 for 5 h/d, 1 d/wk, for 6 wk (N = 10 per group)]. Body composition (%fat, lean and fluid) was monitored noninvasively over the course of the study. Ventilatory parameters [tidal volume, minute ventilation, frequency and enhanced pause (Penh)] were assessed using whole-body plethysmography prior to O3 and 24 h after the 5th O3 exposure. Trained rats lost ∼2% body fat after 12 wk of access to running wheels. Peak wheel activity was reduced by 40% after exposure to 1.0 ppm O3. After the 5th O3 exposure, body weight and %fat were reduced in sedentary but not trained rats. Penh was significantly elevated in sedentary but not trained rats the day after exposure to 1.0 ppm O3. However, lung lavage cell counts and biomarkers of pulmonary inflammation measured 1 day after the final exposure were inconsistently affected by training. Wheel running led to marked physiological responses along with some indication of improved pulmonary recovery from O3 exposure. However, wheel running with O3 exposure may also be a detriment for some pulmonary endpoints. Overall, a sedentary lifestyle may increase susceptibility to O3, but additional studies are needed.
Hancock, Stephanie D; Grant, Virginia L
2009-12-01
Hyperactivity of the hypothalamic-pituitary-adrenal (HPA) axis is a marked feature of anorexia nervosa. Using a modified version of the activity-based animal model of anorexia nervosa, we examine whether factors known to affect HPA axis activity influence the development of activity-based anorexia (ABA). Male and female rats were subjected to maternal separation or handling procedures during the first two postnatal weeks and tested in a mild version of the ABA paradigm, comprised of 2-hr daily running wheel access followed by 1-hr food access, either in adolescence or adulthood. Compared to handled females, maternally separated females demonstrated greater increases in wheel running and a more pronounced running-induced suppression of food intake during adolescence, but not in adulthood. In contrast, it was only in adulthood that wheel running produced more prolonged anorexic effects in maternally separated than in handled males. These findings highlight the interplay between early postnatal treatment, sex of the animal, and developmental age on running, food intake, and rate of body weight loss in a mild version of the ABA paradigm.
Peppler, Willem T; Townsend, Logan K; Knuth, Carly M; Foster, Michelle T; Wright, David C
2018-01-01
Exercise training has robust effects on subcutaneous inguinal white adipose tissue (iWAT), characterized by a shift to a brown adipose tissue (BAT)-like phenotype. Consistent with this, transplantation of exercise-trained iWAT into sedentary rodents activates thermogenesis and improves glucose homeostasis, suggesting that iWAT metabolism may contribute to the beneficial effects of exercise. However, it is yet to be determined if adaptations in iWAT are necessary for the beneficial systemic effects of exercise. To test this, male C57BL/6 mice were provided access to voluntary wheel running (VWR) or remained as a cage control (SED) for 11 nights after iWAT removal via lipectomy (LIPX) or SHAM surgery. We found that SHAM and LIPX mice with access to VWR ran similar distances and had comparable reductions in body mass, increased food intake, and increased respiratory exchange ratio (RER). Further, VWR improved indexes of glucose homeostasis and insulin tolerance in both SHAM and LIPX mice. The lack of effect of LIPX in the response to VWR was not explained by compensatory increases in markers of mitochondrial biogenesis and thermogenesis in skeletal muscle, epididymal white adipose tissue, or interscapular brown adipose tissue. Together, these data demonstrate that mice with and without iWAT have comparable adaptations to VWR, suggesting that iWAT may be dispensable for the metabolic health benefits of exercise.
Chen, Yi-Wen; Wable, Gauri Satish; Chowdhury, Tara Gunkali; Aoki, Chiye
2016-01-01
Many, but not all, adolescent female mice that are exposed to a running wheel while food restricted (FR) become excessive wheel runners, choosing to run even during the hours of food availability, to the point of death. This phenomenon is called activity-based anorexia (ABA). We used electron microscopic immunocytochemistry to ask whether individual differences in ABA resilience may correlate with the lengths of axo-somatic contacts made by GABAergic axon terminals onto layer 5 pyramidal neurons (L5P) in the prefrontal cortex. Contact lengths were, on average, 40% greater for the ABA-induced mice, relative to controls. Correspondingly, the proportion of L5P perikaryal plasma membrane contacted by GABAergic terminals was 45% greater for the ABA mice. Contact lengths in the anterior cingulate cortex correlated negatively and strongly with the overall wheel activity after FR (R = −0.87, P < 0.01), whereas those in the prelimbic cortex correlated negatively with wheel running specifically during the hours of food availability of the FR days (R = −0.84, P < 0.05). These negative correlations support the idea that increases in the glutamic acid decarboxylase (GAD) terminal contact lengths onto L5P contribute toward ABA resilience through suppression of wheel running, a behavior that is intrinsically rewarding and helpful for foraging but maladaptive within a cage. PMID:25979087
Belke, Terry W; Garland, Theodore
2007-09-01
Mice from replicate lines, selectively bred based on high daily wheel-running rates, run more total revolutions and at higher average speeds than do mice from nonselected control lines. Based on this difference it was assumed that selected mice would find the opportunity to run in a wheel a more efficacious consequence. To assess this assumption within an operant paradigm, mice must be trained to make a response to produce the opportunity to run as a consequence. In the present study an autoshaping procedure was used to compare the acquisition of lever pressing reinforced by the opportunity to run for a brief opportunity (i.e., 90 s) between selected and control mice and then, using an operant procedure, the effect of the duration of the opportunity to run on lever pressing was assessed by varying reinforcer duration over values of 90 s, 30 min, and 90 s. The reinforcement schedule was a ratio schedule (FR 1 or VR 3). Results from the autoshaping phase showed that more control mice met a criterion of responses on 50% of trials. During the operant phase, when reinforcer duration was 90 s, almost all control, but few selected mice completed a session of 20 reinforcers; however, when reinforcer duration was increased to 30 min almost all selected and control mice completed a session of 20 reinforcers. Taken together, these results suggest that selective breeding based on wheel-running rates over 24 hr may have altered the motivational system in a way that reduces the reinforcing value of shorter running durations. The implications of this finding for these mice as a model for attention deficit hyperactivity disorder (ADHD) are discussed. It also is proposed that there may be an inherent trade-off in the motivational system for activities of short versus long duration.
Belke, Terry W; GarlandJr, Theodore
2007-01-01
Mice from replicate lines, selectively bred based on high daily wheel-running rates, run more total revolutions and at higher average speeds than do mice from nonselected control lines. Based on this difference it was assumed that selected mice would find the opportunity to run in a wheel a more efficacious consequence. To assess this assumption within an operant paradigm, mice must be trained to make a response to produce the opportunity to run as a consequence. In the present study an autoshaping procedure was used to compare the acquisition of lever pressing reinforced by the opportunity to run for a brief opportunity (i.e., 90 s) between selected and control mice and then, using an operant procedure, the effect of the duration of the opportunity to run on lever pressing was assessed by varying reinforcer duration over values of 90 s, 30 min, and 90 s. The reinforcement schedule was a ratio schedule (FR 1 or VR 3). Results from the autoshaping phase showed that more control mice met a criterion of responses on 50% of trials. During the operant phase, when reinforcer duration was 90 s, almost all control, but few selected mice completed a session of 20 reinforcers; however, when reinforcer duration was increased to 30 min almost all selected and control mice completed a session of 20 reinforcers. Taken together, these results suggest that selective breeding based on wheel-running rates over 24 hr may have altered the motivational system in a way that reduces the reinforcing value of shorter running durations. The implications of this finding for these mice as a model for attention deficit hyperactivity disorder (ADHD) are discussed. It also is proposed that there may be an inherent trade-off in the motivational system for activities of short versus long duration. PMID:17970415
46 CFR 58.25-35 - Helm arrangements.
Code of Federal Regulations, 2010 CFR
2010-10-01
... the vessel is running ahead, after clockwise movement of the wheel the vessel's heading must change to... station, other than in the steering-gear compartment, must be such that the helmsman is abaft the wheel. The rim of the wheel must be plainly marked with arrows and lettering for right and left rudder, or a...
Belke, T W; Belliveau, J
2001-05-01
Six male Wistar rats were exposed to concurrent variable-interval schedules of wheel-running reinforcement. The reinforcer associated with each alternative was the opportunity to run for 15 s, and the duration of the changeover delay was 1 s. Results suggested that time allocation was more sensitive to relative reinforcement rate than was response allocation. For time allocation, the mean slopes and intercepts were 0.82 and 0.008, respectively. In contrast, for response allocation, mean slopes and intercepts were 0.60 and 0.03, respectively. Correction for low response rates and high rates of changing over, however, increased slopes for response allocation to about equal those for time allocation. The results of the present study suggest that the two-operant form of the matching law can be extended to wheel-running reinforcement. 'I'he effects of a low overall response rate, a short Changeover delay, and long postreinforcement pausing on the assessment of matching in the present study are discussed.
Lee, Min Chul; Inoue, Koshiro; Okamoto, Masahiro; Liu, Yu Fan; Matsui, Takashi; Yook, Jang Soo; Soya, Hideaki
2013-03-14
Recently, we reported that voluntary resistance wheel running with a resistance of 30% of body weight (RWR), which produces shorter distances but higher work levels, enhances spatial memory associated with hippocampal brain-derived neurotrophic factor (BDNF) signaling compared to wheel running without a load (WR) [17]. We thus hypothesized that RWR promotes adult hippocampal neurogenesis (AHN) as a neuronal substrate underlying this memory improvement. Here we used 10-week-old male Wistar rats divided randomly into sedentary (Sed), WR, and RWR groups. All rats were injected intraperitoneally with the thymidine analogue 5-Bromo-2'-deoxuridine (BrdU) for 3 consecutive days before wheel running. We found that even when the average running distance decreased by about half, the average work levels significantly increased in the RWR group, which caused muscular adaptation (oxidative capacity) for fast-twitch plantaris muscle without causing any negative stress effects. Additionally, immunohistochemistry revealed that the total BrdU-positive cells and newborn mature cells (BrdU/NeuN double-positive) in the dentate gyrus increased in both the WR and RWR groups. These results provide new evidence that RWR has beneficial effects on AHN comparable to WR, even with short running distances. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-07
... wood-framed powerhouse housing a 3-kilowatt (kW) generating unit run by a water wheel and a 5-kW generating unit run by a 24-inch vertical-shaft propeller turbine for a total installed capacity of 8 kW; and... Edison generator that operates via the water wheel and is operated once a year. The applicant operates...
Separating the effects of shelter from additional cage enhancements for group-housed BALB/cJ mice.
Swetter, Brentt J; Karpiak, Christie P; Cannon, J Timothy
2011-05-20
Enrichment studies with rodents have demonstrated that cage enhancements can improve animal welfare and performance on common behavioral measures, but few studies have compared more than one type of enrichment or controlled for confounds, and some have revealed undesirable effects including increased aggression. We compared effects on male (n=51) and female (n=52) BALB/cJ mice of three common additions to a standard home cage: shelter, shelter+running wheel, and shelter+novel objects. Mice in all conditions lived in standard sized cages with 3-4 mice per cage. Males evidenced significant condition effects. Shelter increased longevity and maintained low levels of aggression. Adding a running wheel increased aggression over shelter alone, changed behavior in the elevated plus (EP) and open field (OF), and maintained the improved longevity seen in all shelter conditions. Novel objects impacted behavioral measures compared to the standard condition. An Igloo shelter without running wheel creates a very different home cage environment than the same shelter with the running wheel attached. Shelter, with positive impact on animal welfare, minimal effects on some common behavioral measures, and some positive effects on test variance, warrants consideration for routine inclusion with group-housed BALB/cJ males. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Hord, Jeffrey M; Botchlett, Rachel; Lawler, John M
2016-10-01
Age-related loss of skeletal muscle mass and function, referred to as sarcopenia, is mitigated by lifelong calorie restriction as well as exercise. In aged skeletal muscle fibers there is compromised integrity of the cell membrane that may contribute to sarcopenia. The purpose of this study was to determine if lifelong mild (8%) caloric restriction (CR) and lifelong CR+voluntary wheel running (WR) could ameliorate disruption of membrane scaffolding and signaling proteins during the aging process, thus maintaining a favorable, healthy membrane environment in plantaris muscle fibers. Fischer-344 rats were divided into four groups: 24-month old adults fed ad libitum (OAL); 24-month old on 8% caloric restriction (OCR); 24month old 8% caloric restriction+wheel running (OCRWR); and 6-month old sedentary adults fed ad libitum (YAL) were used to determine age-related changes. Aging resulted in discontinuous membrane expression of dystrophin glycoprotein complex (DGC) proteins: dystrophin and α-syntrophin. Older muscle also displayed decreased content of neuronal nitric oxide synthase (nNOS), a key DGC signaling protein. In contrast, OCR and OCRWR provided significant protection against age-related DGC disruption. In conjunction with the age-related decline in membrane DGC patency, key membrane repair proteins (MG53, dysferlin, annexin A6, and annexin A2) were significantly increased in the OAL plantaris. However, lifelong CR and CRWR interventions were effective at maintaining membrane repair proteins near YAL levels of. OAL fibers also displayed reduced protein content of NADPH oxidase isoform 2 (Nox2) subunits (p67phox and p47phox), consistent with a perturbed sarcolemmal environment. Loss of Nox2 subunits was prevented by lifelong CR and CRWR. Our results are therefore consistent with the hypothesis that lifelong CR and WR are effective countermeasures against age-related alterations in the myofiber membrane environment. Copyright © 2016 Elsevier Inc. All rights reserved.
Evaluation of oxidative stress in mice subjected to aerobic exercise.
Lima, Mônica Cruvinel de; Marks, Guido; Silva, Iandara Schettert; Silva, Baldomero Antonio Kato da; Cônsolo, Lourdes Zélia Zanoni; Nogueira, Gabriel Bogalho
2012-08-01
To evaluate the influence of aerobic exercise on oxidative stress in mice. The study included twenty female mice Mus musculus-Swiss divided into two groups: sedentary control (GA) and exercise (GB), each containing ten animals. All animals underwent an adaptation period of seven days isolated in individual boxes. After this period, the animals in the exercise group (GB) were trained in angled running wheel with circumference of 25 cm assembled on an articulated axle during five minutes for three consecutive days. On the fourth day, they underwent an exercise program of one session lasting 45 minutes. The evaluation of oxidative stress was performed by determining the levels of malondialhyde derived of lipid peroxidation by the TBA method. The samples were read in a spectrophotometer at 535 nm. No significant difference was observed in the intergroup comparison of MDA levels in the tissues evaluated. A significant difference was observed in the intragroup comparison of MDA levels in the control group (p = 0.0201).The Tukeys' post hoc test indicated significantly lower values of MDA in the smooth muscle in relation to plasma. In the analysis of variance in the exercise group, a significant difference between tissues (p = 0.0009), with significantly lower values in the smooth muscle in relation to plasma (p<0.001) and higher in striated muscle in relation to smooth muscle (p<0.05) was observed. There was no change in the analysis of oxidative stress in mice which were undergone a single session of aerobic exercise.
Moderate daily exercise activates metabolic flexibility to prevent prenatally induced obesity.
Miles, Jennifer L; Huber, Korinna; Thompson, Nichola M; Davison, Michael; Breier, Bernhard H
2009-01-01
Obesity and its associated comorbidities are of major worldwide concern. It is now recognized that there are a number of metabolically distinct pathways of obesity development. The present paper investigates the effect of moderate daily exercise on the underlying mechanisms of one such pathway to obesity, through interrogation of metabolic flexibility. Pregnant Wistar rats were either fed chow ad libitum or undernourished throughout pregnancy, generating control or intrauterine growth restricted (IUGR) offspring, respectively. At 250 d of age, dual-emission x-ray absorptiometry scans and plasma analyses showed that moderate daily exercise, in the form of a measured amount of wheel running (56 m/d), prevented the development of obesity consistently observed in nonexercised IUGR offspring. Increased plasma C-peptide and hepatic atypical protein kinase Czeta levels explained increased glucose uptake and increased hepatic glycogen storage in IUGR offspring. Importantly, whereas circulating levels of retinol binding protein 4 were elevated in obese, nonexercised IUGR offspring, indicative of glucose sparing without exercise, retinol binding protein 4 levels were normalized in the exercised IUGR group. These data suggest that IUGR offspring have increased flexibility of energy storage and use and that moderate daily exercise prevents obesity development through activation of distinct pathways of energy use. Thus, despite a predisposition to develop obesity under sedentary conditions, obesity development was prevented in IUGR offspring when exercise was available. These results emphasize the importance of tailored lifestyle changes that activate distinct pathways of metabolic flexibility for obesity prevention.
Morgan, Julie A; Singhal, Gaurav; Corrigan, Frances; Jaehne, Emily J; Jawahar, Magdalene C; Baune, Bernhard T
2018-01-30
Preclinical studies have demonstrated exercise improves various types of behaviours such as anxiety-like, depression-like, and cognition-like behaviours. However, these findings were largely conducted in studies utilising short-term exercise protocols, and the effects of lifetime exercise on these behaviours remain unknown. This study investigates the behavioural effects of lifetime exercise in normal healthy ageing C57BL/6 mice over the adult lifespan. 12 week-old C57BL/6 mice were randomly assigned to voluntary wheel running or non-exercise (control) groups. Exercise commenced at aged 3 months and behaviours were assessed in young adult (Y), early middle age (M), and old (O) mice (n=11-17/group). The open field and elevated zero maze examined anxiety-like behaviours, depression-like behaviours were quantified with the forced swim test, and the Y maze and Barnes maze investigated cognition-like behaviours. The effects of lifetime exercise were not simply an extension of the effects of chronic exercise on anxiety-like, depression-like, and cognition-like behaviours. Exercise tended to reduce overt anxiety-like behaviours with ageing, and improved recognition memory and spatial learning in M mice as was expected. However, exercise also increased anxiety behaviours including greater freezing behaviour that extended spatial learning latencies in Y female mice in particular, while reduced distances travelled contributed to longer spatial memory and cognitive flexibility latencies in Y and O mice. Lifetime exercise may increase neurogenesis-associated anxiety. This could be an evolutionary conserved adaptation that nevertheless has adverse impacts on cognition-like function, with particularly pronounced effects in Y female mice with intact sex hormones. These issues require careful investigation in future rodent studies. Copyright © 2017 Elsevier B.V. All rights reserved.
Aerobic exercise decreases the positive-reinforcing effects of cocaine.
Smith, Mark A; Schmidt, Karl T; Iordanou, Jordan C; Mustroph, Martina L
2008-11-01
Aerobic exercise can serve as an alternative, non-drug reinforcer in laboratory animals and has been recommended as a potential intervention for substance abusing populations. Unfortunately, relatively little empirical data have been collected that specifically address the possible protective effects of voluntary, long-term exercise on measures of drug self-administration. The purpose of the present study was to examine the effects of chronic exercise on sensitivity to the positive-reinforcing effects of cocaine in the drug self-administration procedure. Female rats were obtained at weaning and immediately divided into two groups. Sedentary rats were housed individually in standard laboratory cages that permitted no exercise beyond normal cage ambulation; exercising rats were housed individually in modified cages equipped with a running wheel. After 6 weeks under these conditions, rats were surgically implanted with venous catheters and trained to self-administer cocaine on a fixed-ratio schedule of reinforcement. Once self-administration was acquired, cocaine was made available on a progressive ratio schedule and breakpoints were obtained for various doses of cocaine. Sedentary and exercising rats did not differ in the time to acquire cocaine self-administration or responding on the fixed-ratio schedule of reinforcement. However, on the progressive ratio schedule, breakpoints were significantly lower in exercising rats than sedentary rats when responding was maintained by both low (0.3mg/kg/infusion) and high (1.0mg/kg/infusion) doses of cocaine. In exercising rats, greater exercise output prior to catheter implantation was associated with lower breakpoints at the high dose of cocaine. These data indicate that chronic exercise decreases the positive-reinforcing effects of cocaine and support the possibility that exercise may be an effective intervention in drug abuse prevention and treatment programs.
Hu, Xiquan; Zheng, Haiqing; Yan, Tiebin; Pan, Sanqiang; Fang, Jie; Jiang, Ruishu; Ma, Shangfeng
2010-05-01
The present study was aimed at examining the role of physical exercise in the improvement of damaged neural function and the induction of angiogenesis. An infarction model was induced by ligating the left middle cerebral artery occlusion (MCAO) in a total of 66 adult Sprague-Dawley rats that were further randomly divided into three groups: the physical exercise group (n=30), which was given running wheel exercise every day after MCAO, the control group (n=30) and sham-operated group (n=6), which were fed in standard cages without any special training exercise. The rats were killed on the third, seventh and fourteenth days and the neurological severity scores were examined for evaluating the neural function. And the neogenetic microvessels around the peri-infarction region were checked with the specific marker CD31. Although neogenetic microvessels in the peri-infarction region were observed in both control group and physical exercise group, which showed the highest signal on the seventh day after ischemia, the number of CD31 positive cells significantly increased in physical exercise group in comparison with those in control group on the seventh and fourteenth days after ischemia (p<0.01). Moreover, the neurological severity scores in the physical exercise group showed more quick declination as compared to those in control group from the seventh day after ischemic. Our results suggested that physical exercise plays an important role in the recovery of damaged neural function and induction of angiogenesis after cerebral infarction in rats.
Interplay between exercise and dietary fat modulates myelinogenesis in the central nervous system.
Yoon, Hyesook; Kleven, Andrew; Paulsen, Alex; Kleppe, Laurel; Wu, Jianmin; Ying, Zhe; Gomez-Pinilla, Fernando; Scarisbrick, Isobel A
2016-04-01
Here we show that the interplay between exercise training and dietary fat regulates myelinogenesis in the adult central nervous system. Mice consuming high fat with coordinate voluntary running wheel exercise for 7weeks showed increases in the abundance of the major myelin membrane proteins, proteolipid (PLP) and myelin basic protein (MBP), in the lumbosacral spinal cord. Expression of MBP and PLP RNA, as well that for Myrf1, a transcription factor driving oligodendrocyte differentiation were also differentially increased under each condition. Furthermore, expression of IGF-1 and its receptor IGF-1R, known to promote myelinogenesis, were also increased in the spinal cord in response to high dietary fat or exercise training. Parallel increases in AKT signaling, a pro-myelination signaling intermediate activated by IGF-1, were also observed in the spinal cord of mice consuming high fat alone or in combination with exercise. Despite the pro-myelinogenic effects of high dietary fat in the context of exercise, high fat consumption in the setting of a sedentary lifestyle reduced OPCs and mature oligodendroglia. Whereas 7weeks of exercise training alone did not alter OPC or oligodendrocyte numbers, it did reverse reductions seen with high fat. Evidence is presented suggesting that the interplay between exercise and high dietary fat increase SIRT1, PGC-1α and antioxidant enzymes which may permit oligodendroglia to take advantage of diet and exercise-related increases in mitochondrial activity to yield increases in myelination despite higher levels of reactive oxygen species. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
2004-01-01
This plot maps the increasing amounts of energy needed to spin Spirit's right front wheel drive, which has been showing signs of age. The wheel has now traveled six times farther than its design life. Since Spirit's 126th day on Mars, this wheel has required additional electric current to run at normal speeds, as indicated with blue diamonds on this graph. Efforts to improve the situation by redistributing the lubricant in the wheel with heat and rest were only mildly successful (pink squares). To cope with the condition, rover planners have come up with a creative solution: they will drive the rover backwards using five of six wheels. The sixth wheel will be activated only when the terrain demands it.Effects of voluntary wheel running on satellite cells in the rat plantaris muscle.
Kurosaka, Mitsutoshi; Naito, Hisashi; Ogura, Yuji; Kojima, Atsushi; Goto, Katsumasa; Katamoto, Shizuo
2009-01-01
This study investigated the effects of voluntary wheel running on satellite cells in the rat plantaris muscle. Seventeen 5-week-old male Wistar rats were assigned to a control (n = 5) or training (n = 12) group. Each rat in the training group ran voluntarily in a running-wheel cage for 8 weeks. After the training period, the animals were anesthetized, and the plantaris muscles were removed, weighed, and analyzed immunohistochemically and biochemically. Although there were no significant differences in muscle weight or fiber area between the groups, the numbers of satellite cells and myonuclei per muscle fiber, percentage of satellite cells, and citrate synthase activity were significantly higher in the training group compared with the control group (p < 0.05). The percentage of satellite cells was also positively correlated with distance run in the training group (r = 0.61, p < 0.05). Voluntary running can induce an increase in the number of satellite cells without changing the mean fiber area in the rat plantaris muscle; this increase in satellite cell content is a function of distance run. Key pointsThere is no study about the effect of voluntary running on satellite cells in the rat plantaris muscle.Voluntary running training causes an increase of citrate synthase activity in the rat plantaris muscle but does not affect muscle weight and mean fiber area in the rat plantaris muscle.Voluntary running can induce an increase in the number of satellite cells without hypertrophy of the rat plantaris muscle.
Ho, Emily V; Klenotich, Stephanie J; McMurray, Matthew S; Dulawa, Stephanie C
2016-01-01
Anorexia nervosa (AN) is a complex eating disorder with severe dysregulation of appetitive behavior. The activity-based anorexia (ABA) paradigm is an animal model in which rodents exposed to both running wheels and scheduled feeding develop aspects of AN including paradoxical hypophagia, dramatic weight loss, and hyperactivity, while animals exposed to only one condition maintain normal body weight. Brain-derived neurotrophic factor (BDNF), an activity-dependent modulator of neuronal plasticity, is reduced in the serum of AN patients, and is a known regulator of feeding and weight maintenance. We assessed the effects of scheduled feeding, running wheel access, or both on the expression of BDNF transcripts within the mesocorticolimbic pathway. We also assessed the expression of neuronal cell adhesion molecule 1 (NCAM1) to explore the specificity of effects on BDNF within the mesocorticolimbic pathway. Scheduled feeding increased the levels of both transcripts in the hippocampus (HPC), increased NCAM1 mRNA expression in the ventral tegmental area (VTA), and decreased BDNF mRNA levels in the medial prefrontal cortex (mPFC). In addition, wheel running increased BDNF mRNA expression in the VTA. No changes in either transcript were observed in the nucleus accumbens (NAc). Furthermore, no changes in either transcript were induced by the combined scheduled feeding and wheel access condition. These data indicate that scheduled feeding or wheel running alter BDNF and NCAM1 expression levels in specific regions of the mesocorticolimbic pathway. These findings contribute to our current knowledge of the molecular alterations induced by ABA and may help elucidate possible mechanisms of AN pathology.
Chen, Yi-Wen; Wable, Gauri Satish; Chowdhury, Tara Gunkali; Aoki, Chiye
2016-06-01
Many, but not all, adolescent female mice that are exposed to a running wheel while food restricted (FR) become excessive wheel runners, choosing to run even during the hours of food availability, to the point of death. This phenomenon is called activity-based anorexia (ABA). We used electron microscopic immunocytochemistry to ask whether individual differences in ABA resilience may correlate with the lengths of axo-somatic contacts made by GABAergic axon terminals onto layer 5 pyramidal neurons (L5P) in the prefrontal cortex. Contact lengths were, on average, 40% greater for the ABA-induced mice, relative to controls. Correspondingly, the proportion of L5P perikaryal plasma membrane contacted by GABAergic terminals was 45% greater for the ABA mice. Contact lengths in the anterior cingulate cortex correlated negatively and strongly with the overall wheel activity after FR (R = -0.87, P < 0.01), whereas those in the prelimbic cortex correlated negatively with wheel running specifically during the hours of food availability of the FR days (R = -0.84, P < 0.05). These negative correlations support the idea that increases in the glutamic acid decarboxylase (GAD) terminal contact lengths onto L5P contribute toward ABA resilience through suppression of wheel running, a behavior that is intrinsically rewarding and helpful for foraging but maladaptive within a cage. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
[Atypical injury pattern of a pedestrian run over by an unimog in the epigastric region].
Guddat, Saskia Sabrina; Müller-Rakow, Peter; Wiedmann, Peter; Püschel, Klaus; Tsokos, Michael
2007-01-01
Strongly intoxicated, a 37-year-old man fell in front of the right back wheel of an emergency vehicle (MB Unimog) and was run over according to eye witnesses. He died in hospital shortly afterwards. The autopsy revealed that he bled to death from a traumatic liver rupture (bursting of the right hepatic lobe and severing of a piece of tissue measuring 17 x 8 x 4 cm). There were no injuries classicaly seen in victims run over by a car. The atypical injury findings in this case are due to the special features of the accident vehicle: The Unimog (an all-wheel vehicle with a fixed rear axle and flat coils) struck the right side of the body lying on the street with its rear wheel and was then lifted over the body by its fixed axle without touching the left side.
Smith, Mark A; Witte, Maryam A
2012-12-01
Previous studies have reported that exercise decreases cocaine self-administration in rats with long-term access (8+ weeks) to activity wheels in the home cage. The purpose of this study was to (a) examine the importance of the temporal relationship between physical activity and initial drug exposure, (b) determine the effects of exercise on responding maintained by a nondrug reinforcer (i.e., food), and (c) investigate the effects of exercise on cocaine-induced increases in locomotor activity. To this end, female rats were obtained at weaning and divided into 4 groups: (a) EXE-SED rats were housed in exercise cages for 6 weeks and then transferred to sedentary cages after the first day of behavioral testing; (b) SED-EXE rats were housed in sedentary cages for 6 weeks and then transferred to exercise cages after the first day of behavioral testing; (c) SED-SED rats remained in sedentary cages for the duration of the study; and (d) EXE-EXE rats remained in exercise cages for the duration of the study. Relative to the sedentary group (SED-SED), exercise reduced cocaine self-administration in both groups with access to activity wheels after initial drug exposure (EXE-EXE, SED-EXE) but did not reduce cocaine self-administration in the group with access to activity wheels only before drug exposure (EXE-SED). Exercise also decreased the effects of cocaine on locomotor activity but did not reduce responding maintained by food. These data suggest that exercise may reduce cocaine use in drug-experienced individuals with no prior history of aerobic activity without decreasing other types of positively reinforced behaviors.
3-Dimensional Analysis of Deformation of Disk Wheels and Transverse Force of Wheel Bolts
NASA Astrophysics Data System (ADS)
Kagiwada, Tadao; Harada, Hiroyuki
Loosening of the wheel nuts, which fix the disk wheels of automobiles to the wheel hub, may be the cause of accidents where the wheel falls off while the automobile is running. When the transverse force of wheel bolts exceeds a certain proportion of the bolt shaft force, the wheel nut begins to loosen. Further, the force on the bolt shaft may also be influenced by the loads acting to the wheel through the moment caused by the offset of the wheel. This study determined the 3-dimensional deformation of the disk wheels and the transverse forces on the wheel bolt by 3-dimensional numerical analysis. The results established that the transverse force was influenced by the bolt shaft force caused by the bolt fastening and was superposed on that due to the load, and that it fluctuated greatly during the revolution of the wheel. This phenomenon may be a large factor in the loosening of wheel nuts.
Code of Federal Regulations, 2010 CFR
2010-07-01
...). The term carriage means a framework mounted on wheels which runs on tracks or in grooves in a... flitches into lumber. (33) Running line. The term running line means any moving rope as distinguished from... damaged shall be removed from service. (f) Running lines. Running lines of hoisting equipment located...
Code of Federal Regulations, 2012 CFR
2012-07-01
...). The term carriage means a framework mounted on wheels which runs on tracks or in grooves in a... flitches into lumber. (33) Running line. The term running line means any moving rope as distinguished from... damaged shall be removed from service. (f) Running lines. Running lines of hoisting equipment located...
Code of Federal Regulations, 2011 CFR
2011-07-01
...). The term carriage means a framework mounted on wheels which runs on tracks or in grooves in a... flitches into lumber. (33) Running line. The term running line means any moving rope as distinguished from... damaged shall be removed from service. (f) Running lines. Running lines of hoisting equipment located...
Code of Federal Regulations, 2014 CFR
2014-07-01
...). The term carriage means a framework mounted on wheels which runs on tracks or in grooves in a... flitches into lumber. (33) Running line. The term running line means any moving rope as distinguished from... damaged shall be removed from service. (f) Running lines. Running lines of hoisting equipment located...
Code of Federal Regulations, 2013 CFR
2013-07-01
...). The term carriage means a framework mounted on wheels which runs on tracks or in grooves in a... flitches into lumber. (33) Running line. The term running line means any moving rope as distinguished from... damaged shall be removed from service. (f) Running lines. Running lines of hoisting equipment located...
Prefrontal cortex NG2 glia undergo a developmental switch in their responsiveness to exercise.
Tomlinson, Lyl; Huang, Po Hsuan; Colognato, Holly
2018-03-22
Aerobic exercise is known to influence brain function, e.g., enhancing executive function in both children and adults, with many of these influences being attributed to alterations in neurogenesis and neuronal function. Yet oligodendroglia in adult brains have also been reported to be highly responsive to exercise, including in the prefrontal cortex (PFC), a late myelinating region implicated in working memory. However, whether exercise affects oligodendroglia or myelination in juveniles, either in the PFC or in other brain regions, remains unknown. To address this, both juvenile and young adult mice were provided free access to running wheels for four weeks followed by an analysis of oligodendrocyte development and myelination in the PFC and the corpus callosum, a major white matter tract. Working memory and PFC NG2+ cell development were both affected by exercise in juvenile mice, yet surprisingly these exercise-mediated effects were distinct in juveniles and young adults. In the PFC, NG2+ cell proliferation was increased in exercising juveniles, but not young adults, whereas newly-born oligodendrocyte production was increased in exercising young adults, but not juveniles. Although no overall changes in myelin genes were found, elevated levels of Monocarboxylate Transporter 1, a glial lactate transporter important during active myelination, were found in the PFC of exercising young adults. Overall our findings reveal that long-term exercise modulates PFC glial development and does so differentially in juvenile and young adult mice, providing insight into the cellular responses that may underlie cognitive benefits to teenagers and young adults in response to exercise. © 2018 Wiley Periodicals, Inc. Develop Neurobiol, 2018. © 2018 Wiley Periodicals, Inc.
Nakajima, Sanae; Ohsawa, Ikuroh; Ohta, Shigeo; Ohno, Makoto; Mikami, Toshio
2010-08-25
Chronic stress impairs cognitive function and hippocampal neurogenesis. This impairment is attributed to increases in oxidative stress, which result in the accumulation of lipid peroxide. On the other hand, voluntary exercise enhances cognitive function, hippocampal neurogenesis, and antioxidant capacity in normal animals. However, the effects of voluntary exercise on cognitive function, neurogenesis, and antioxidants in stressed mice are unclear. This study was designed to investigate whether voluntary exercise cures stress-induced impairment of cognitive function accompanied by improvement of hippocampal neurogenesis and increases in antioxidant capacity. Stressed mice were exposed to chronic restraint stress (CRS), which consisted of 12h immobilization daily and feeding in a small cage, for 8 weeks. Exercised mice were allowed free access to a running wheel during their exposure to CRS. At the 6th week, cognitive function was examined using the Morris water maze (MWM) test. Daily voluntary exercise restored stress-induced impairment of cognitive function and the hippocampal cell proliferation of newborn cells but not cell survival. Voluntary exercise increased insulin-like growth factor 1 (IGF-1) protein and mRNA expression in the cerebral cortex and liver, respectively. In addition, CRS resulted in a significant increase in the number of 4-hydrosynonenal (4-HNE)-positive cells in the hippocampal dentate gyrus; whereas, voluntary exercise inhibited it and enhanced glutathione s-transferases (GST) activity in the brain. These findings suggest that voluntary exercise attenuated the stress-induced impairment of cognitive function accompanied by improvement of cell proliferation in the dentate gyrus. This exercise-induced improvement was attributed to exercise-induced enhancement of IGF-1 protein and GST activity in the brain. Copyright 2010 Elsevier B.V. All rights reserved.
Ieraci, Alessandro; Madaio, Alessandro I; Mallei, Alessandra; Lee, Francis S; Popoli, Maurizio
2016-12-01
Several studies have shown that exercise improves cognitive functions and emotional behaviors. Positive effects of exercise have been associated with enhanced brain plasticity, adult hippocampal neurogenesis, and increased levels of brain-derived neurotrophic factor (BDNF). However, a substantial variability of individual response to exercise has been described, which may be accounted for by individual genetic variants. Here, we have assessed whether and how the common human BDNF Val66Met polymorphism influences the neurobiological effects modulated by exercise in BDNF Val66Met knock-in male mice. Wild-type (BDNF Val/Val ) and homozygous BDNF Val66Met (BDNF Met/Met ) male mice were housed in cages equipped with or without running wheels for 4 weeks. Changes in behavioral phenotype, hippocampal adult neurogenesis, and gene expression were evaluated in exercised and sedentary control mice. We found that exercise reduced the latency to feed in the novelty suppressed feeding and the immobility time in the forced swimming test in BDNF Val/Val but not in BDNF Met/Met mice. Hippocampal neurogenesis was reduced in BDNF Met/Met mice compared with BDNF Val/Val mice. BDNF Met/Met mice had lower basal BDNF protein levels in the hippocampus, which was not recovered following exercise. Moreover, exercise-induced expression of total BDNF, BDNF splice variants 1, 2, 4, 6 and fibronectin type III domain-containing protein 5 (FNDC5) mRNA levels were absent or reduced in the dentate gyrus of BDNF Met/Met mice. Exercise failed to enhance PGC-1α and FNDC5 mRNA levels in the BDNF Met/Met muscle. Overall these results indicate that, in adult male mice, the BDNF Val66Met polymorphism impairs the beneficial behavioral and neuroplasticity effects induced by physical exercise.
Regular Exercise Reduces Endothelial Cortical Stiffness in Western Diet-Fed Female Mice.
Padilla, Jaume; Ramirez-Perez, Francisco I; Habibi, Javad; Bostick, Brian; Aroor, Annayya R; Hayden, Melvin R; Jia, Guanghong; Garro, Mona; DeMarco, Vincent G; Manrique, Camila; Booth, Frank W; Martinez-Lemus, Luis A; Sowers, James R
2016-11-01
We recently showed that Western diet-induced obesity and insulin resistance promotes endothelial cortical stiffness in young female mice. Herein, we tested the hypothesis that regular aerobic exercise would attenuate the development of endothelial and whole artery stiffness in female Western diet-fed mice. Four-week-old C57BL/6 mice were randomized into sedentary (ie, caged confined, n=6) or regular exercise (ie, access to running wheels, n=7) conditions for 16 weeks. Exercise training improved glucose tolerance in the absence of changes in body weight and body composition. Compared with sedentary mice, exercise-trained mice exhibited reduced endothelial cortical stiffness in aortic explants (sedentary 11.9±1.7 kPa versus exercise 5.5±1.0 kPa; P<0.05), as assessed by atomic force microscopy. This effect of exercise was not accompanied by changes in aortic pulse wave velocity (P>0.05), an in vivo measure of aortic stiffness. In comparison, exercise reduced femoral artery stiffness in isolated pressurized arteries and led to an increase in femoral internal artery diameter and wall cross-sectional area (P<0.05), indicative of outward hypertrophic remodeling. These effects of exercise were associated with an increase in femoral artery elastin content and increased number of fenestrae in the internal elastic lamina (P<0.05). Collectively, these data demonstrate for the first time that the aortic endothelium is highly plastic and, thus, amenable to reductions in stiffness with regular aerobic exercise in the absence of changes in in vivo whole aortic stiffness. Comparatively, the same level of exercise caused destiffening effects in peripheral muscular arteries, such as the femoral artery, that perfuse the working limbs. © 2016 American Heart Association, Inc.
Beneficial effects of exercise and its molecular mechanisms on depression in rats
Zheng, Hang; Liu, Yanyou; Li, Wei; Yang, Bo; Chen, Dengbang; Wang, Xiaojia; Jiang, Zhou; Wang, Hongxing; Wang, Zhengrong; Cornelisson, G.; Halberg, F.
2008-01-01
Exercise showed the beneficial effects on mental health in depressed sufferers, whereas, its underlying mechanisms remained unresolved. This study utilized the chronic unpredictable stress (CNS) animal model of depression to evaluate the effects of exercise on depressive behaviors and spatial performance in rats. Furthermore, we tested the hypothesis that the capacity of exercise to reverse the harmful effects of CNS was relative to the hypothalamo–pituitary–adrenal (HPA) system and brain-derived neurotrophic factor (BDNF) in the hippocampus. Animal groups were exposed to CNS for 4 weeks with and without access to voluntary wheel running. Stressed rats consumed significantly less of a 1% sucrose solution during CNS and exhibited a significant decrease in open field behavior. On the other hand, they showed impaired spatial performance in Morris water maze test 2 weeks after the end of CNS. Further, CNS significantly decreased hippocampal BDNF mRNA levels. However, voluntary exercise improved or even reversed these harmful behavioral effects in stressed rats. Furthermore, exercise counteracted a decrease in hippocampal BDNF mRNA caused by CNS. In addition, we also found that CMS alone increased circulating corticosterone (CORT) significantly and decreased hippocampal glucocorticoid receptor (GR) mRNA. At the same time, exercise alone increased CORT moderately and did not affect hippocampal GR mRNA levels. While, when both CNS and exercise were combined, exercise reduced the increase of CORT and the decrease of GR caused by CMS. The results demonstrated that: (1) exercise reversed the harmful effects of CNS on mood and spatial performance in rats and (2) the behavioral changes induced by exercise and/or CNS might be associated with hippocampal BDNF levels, and in addition, the HPA system might play different roles in the two different processes. PMID:16290283
Ieraci, Alessandro; Madaio, Alessandro I; Mallei, Alessandra; Lee, Francis S; Popoli, Maurizio
2016-01-01
Several studies have shown that exercise improves cognitive functions and emotional behaviors. Positive effects of exercise have been associated with enhanced brain plasticity, adult hippocampal neurogenesis, and increased levels of brain-derived neurotrophic factor (BDNF). However, a substantial variability of individual response to exercise has been described, which may be accounted for by individual genetic variants. Here, we have assessed whether and how the common human BDNF Val66Met polymorphism influences the neurobiological effects modulated by exercise in BDNF Val66Met knock-in male mice. Wild-type (BDNFVal/Val) and homozygous BDNF Val66Met (BDNFMet/Met) male mice were housed in cages equipped with or without running wheels for 4 weeks. Changes in behavioral phenotype, hippocampal adult neurogenesis, and gene expression were evaluated in exercised and sedentary control mice. We found that exercise reduced the latency to feed in the novelty suppressed feeding and the immobility time in the forced swimming test in BDNFVal/Val but not in BDNFMet/Met mice. Hippocampal neurogenesis was reduced in BDNFMet/Met mice compared with BDNFVal/Val mice. BDNFMet/Met mice had lower basal BDNF protein levels in the hippocampus, which was not recovered following exercise. Moreover, exercise-induced expression of total BDNF, BDNF splice variants 1, 2, 4, 6 and fibronectin type III domain-containing protein 5 (FNDC5) mRNA levels were absent or reduced in the dentate gyrus of BDNFMet/Met mice. Exercise failed to enhance PGC-1α and FNDC5 mRNA levels in the BDNFMet/Met muscle. Overall these results indicate that, in adult male mice, the BDNF Val66Met polymorphism impairs the beneficial behavioral and neuroplasticity effects induced by physical exercise. PMID:27388329
Predicting the bending properties of long bones: Insights from an experimental mouse model.
Peacock, Sarah J; Coats, Brittney R; Kirkland, J Kyle; Tanner, Courtney A; Garland, Theodore; Middleton, Kevin M
2018-03-01
Analyses of bone cross-sectional geometry are frequently used by anthropologists and paleontologists to infer the loading histories of past populations. To address some underlying assumptions, we investigated the relative roles of genetics and exercise on bone cross-sectional geometry and bending mechanics in three mouse strains: high bone density (C3H/He), low bone density (C57BL/6), and a high-runner strain homozygous for the Myh4 Minimsc allele (MM). Weanlings of each strain were divided into exercise (wheel) or control (sedentary) treatment groups for a 7-week experimental period. Morphometrics of the femoral mid-diaphysis and mechanical testing were used to assess both theoretical and ex vivo bending mechanics. Across all measured morphological and bending traits, we found relatively small effects of exercise treatment compared to larger and more frequent interstrain differences. In the exercised group, total distance run over the experimental period was not a predictor of any morphological or bending traits. Cross-sectional geometry did not accurately predict bone response to loading. Results from this experimental model do not support hypothesized associations among extreme exercise, cross-sectional geometry, and bending mechanics. Our results suggest that analysis of cross-sectional geometry alone is insufficient to predict loading response, and questions the common assumption that cross-sectional geometry differences are indicative of differential loading history. © 2017 Wiley Periodicals, Inc.
Hopkins, Michael E.; Nitecki, Roni; Bucci, David J.
2011-01-01
It is well established that physical exercise can enhance hippocampal-dependent forms of learning and memory in laboratory animals, commensurate with increases in hippocampal neural plasticity (BDNF mRNA/protein, neurogenesis, LTP). However, very little is known about the effects of exercise on other, non-spatial forms of learning and memory. In addition, there has been little investigation of the duration of the effects of exercise on behavior or plasticity. Likewise, few studies have compared the effects of exercising during adulthood versus adolescence. This is particularly important since exercise may capitalize on the peak of neural plasticity observed during adolescence, resulting in a different pattern of behavioral and neurobiological effects. The present study addressed these gaps in the literature by comparing the effects of 4 weeks of voluntary exercise (wheel running) during adulthood or adolescence on novel object recognition and BDNF levels in the perirhinal cortex (PER) and hippocampus (HP). Exercising during adulthood improved object recognition memory when rats were tested immediately after 4 weeks of exercise, an effect that was accompanied by increased BDNF levels in PER and HP. When rats were tested again 2 weeks after exercise ended, the effects of exercise on recognition memory and BDNF levels were no longer present. Exercising during adolescence had a very different pattern of effects. First, both exercising and non-exercising rats could discriminate between novel and familiar objects immediately after the exercise regimen ended; furthermore there was no group difference in BDNF levels. Two or four weeks later, however, rats that had previously exercised as adolescents could still discriminate between novel and familiar objects, while non-exercising rats could not. Moreover, the formerly exercising rats exhibited higher levels of BDNF in PER compared to HP, while the reverse was true in the non-exercising rats. These findings reveal a novel interaction between exercise, development, and medial temporal lobe memory systems. PMID:21839807
Baltgalvis, Kristen A; White, Kathy; Li, Wei; Claypool, Mark D; Lang, Wayne; Alcantara, Raniel; Singh, Baljit K; Friera, Annabelle M; McLaughlin, John; Hansen, Derek; McCaughey, Kelly; Nguyen, Henry; Smith, Ira J; Godinez, Guillermo; Shaw, Simon J; Goff, Dane; Singh, Rajinder; Markovtsov, Vadim; Sun, Tian-Qiang; Jenkins, Yonchu; Uy, Gerald; Li, Yingwu; Pan, Alison; Gururaja, Tarikere; Lau, David; Park, Gary; Hitoshi, Yasumichi; Payan, Donald G; Kinsella, Todd M
2014-04-15
Intermittent claudication is a form of exercise intolerance characterized by muscle pain during walking in patients with peripheral artery disease (PAD). Endothelial cell and muscle dysfunction are thought to be important contributors to the etiology of this disease, but a lack of preclinical models that incorporate these elements and measure exercise performance as a primary end point has slowed progress in finding new treatment options for these patients. We sought to develop an animal model of peripheral vascular insufficiency in which microvascular dysfunction and exercise intolerance were defining features. We further set out to determine if pharmacological activation of 5'-AMP-activated protein kinase (AMPK) might counteract any of these functional deficits. Mice aged on a high-fat diet demonstrate many functional and molecular characteristics of PAD, including the sequential development of peripheral vascular insufficiency, increased muscle fatigability, and progressive exercise intolerance. These changes occur gradually and are associated with alterations in nitric oxide bioavailability. Treatment of animals with an AMPK activator, R118, increased voluntary wheel running activity, decreased muscle fatigability, and prevented the progressive decrease in treadmill exercise capacity. These functional performance benefits were accompanied by improved mitochondrial function, the normalization of perfusion in exercising muscle, increased nitric oxide bioavailability, and decreased circulating levels of the endogenous endothelial nitric oxide synthase inhibitor asymmetric dimethylarginine. These data suggest that aged, obese mice represent a novel model for studying exercise intolerance associated with peripheral vascular insufficiency, and pharmacological activation of AMPK may be a suitable treatment for intermittent claudication associated with PAD.
Santos, Mery; Rodríguez-González, Guadalupe L; Ibáñez, Carlos; Vega, Claudia C; Nathanielsz, Peter W; Zambrano, Elena
2015-02-01
Exercise improves health but few data are available regarding benefits of exercise in offspring exposed to developmental programming. There is currently a worldwide epidemic of obesity. Obesity in pregnant women predisposes offspring to obesity. Maternal obesity has well documented effects on offspring reproduction. Few studies address ability of offspring exercise to reduce adverse outcomes. We observed increased oxidative stress and impaired sperm function in rat offspring of obese mothers. We hypothesized that regular offspring exercise reverses adverse effects of maternal obesity on offspring sperm quality and fertility. Female Wistar rats ate chow (C) or high-energy, obesogenic diet (MO) from weaning through lactation, bred at postnatal day (PND) 120, and ate their pregnancy diet until weaning. All offspring ate C diet from weaning. Five male offspring (different litters) ran on a wheel for 15 min, 5 times/week from PND 330 to 450 and were euthanized at PND 450. Average distance run per session was lower in MO offspring who had higher body weight, adiposity index, and gonadal fat and showed increases in testicular oxidative stress biomarkers. Sperm from MO offspring had reduced antioxidant enzyme activity, lower sperm quality, and fertility. Exercise in MO offspring decreased testicular oxidative stress, increased sperm antioxidant activity and sperm quality, and improved fertility. Exercise intervention has beneficial effects on adiposity index, gonadal fat, oxidative stress markers, sperm quality, and fertility. Thus regular physical exercise in male MO offspring recuperates key male reproductive functions even at advanced age: it's never too late. Copyright © 2015 the American Physiological Society.
Galanin Mediates Features of Neural and Behavioral Stress Resilience Afforded by Exercise
Sciolino, N. R.; Smith, J.M.; Stranahan, A.M.; Freeman, K.G.; Edwards, G. L.; Weinshenker, D.; Holmes, P.V.
2014-01-01
Exercise promotes resilience to stress and increases galanin in the locus coeruleus (LC), but the question of whether changes in galanin signaling mediate the stress-buffering effects of exercise has never been addressed. To test the contributions of galanin to stress resilience, male Sprague Dawley rats received intracerebroventricular (ICV) cannulation for drug delivery and frontocortical cannulation for microdialysis, and were housed with or without a running wheel for 21d. Rats were acutely injected with vehicle or the galanin receptor antagonist M40 and exposed to a single session of either footshock or no stress. Other groups received galanin, the galanin receptor antagonist M40, or vehicle chronically for 21d prior to the stress session. Microdialysis sampling occurred during stress exposure and anxiety-related behavior was measured on the following day in the elevated plus maze. Dendritic spines were visualized by Golgi impregnation in medial prefrontal cortex (mPFC) pyramidal neurons and quantified. Exercise increased galanin levels in the LC. Under non-stressed conditions, anxiety-related behavior and dopamine levels were comparable between exercised and sedentary rats. In contrast, exposure to stress reduced open arm exploration in sedentary rats but not in exercise rats or those treated chronically with ICV galanin, indicating improved resilience. Both exercise and chronic, ICV galanin prevented the increased dopamine overflow and loss of dendritic spines observed after stress in sedentary rats. Chronic, but not acute M40 administration blocked the resilience-promoting effects of exercise. The results indicate that increased galanin levels promote features of resilience at both behavioral and neural levels. PMID:25301278
Jud, Corinne; Schmutz, Isabelle; Hampp, Gabriele; Oster, Henrik
2005-01-01
Most behavioral experiments within circadian research are based on the analysis of locomotor activity. This paper introduces scientists to chronobiology by explaining the basic terminology used within the field. Furthermore, it aims to assist in designing, carrying out, and evaluating wheel-running experiments with rodents, particularly mice. Since light is an easily applicable stimulus that provokes strong effects on clock phase, the paper focuses on the application of different lighting conditions. PMID:16136228
Hsueh, Shih-Chang; Lai, Jing-Huei; Wu, Chung-Che; Yu, Yu-Wen; Luo, Yu; Hsieh, Tsung-Hsun; Chiang, Yung-Hsiao
2018-01-01
Background: Parkinson’s disease (PD) is typically characterized by impairment of motor function. Gait disturbances similar to those observed in patients with PD can be observed in animals after injection of neurotoxin 6-hydroxydopamine (6-OHDA) to induce unilateral nigrostriatal dopamine depletion. Exercise has been shown to be a promising non-pharmacological approach to reduce the risk of neurodegenerative disease. Methods: In this study, we investigated the long-term effects of voluntary running wheel exercise on gait phenotypes, depression, cognitive, rotational behaviors as well as histology in a 6-OHDA-lesioned rat model of PD. Results: We observed that, when compared with the non-exercise controls, five-week voluntary exercise alleviated and postponed the 6-OHDA-induced gait deficits, including a significantly improved walking speed, step/stride length, base of support and print length. In addition, we found that the non-motor functions, such as novel object recognition and forced swim test, were also ameliorated by voluntary exercise. However, the rotational behavior of the exercise group did not show significant differences when compared with the non-exercise group. Conclusions: We first analyzed the detailed spatiotemporal changes of gait pattern to investigate the potential benefits after long-term exercise in the rat model of PD, which could be useful for future objective assessment of locomotor function in PD or other neurological animal models. Furthermore, these results suggest that short-term voluntary exercise is sufficient to alleviate cognition deficits and depressive behavior in 6-OHDA lesioned rats and long-term treatment reduces the progression of motor symptoms and elevates tyrosine hydroxylase (TH), Brain-derived neurotrophic factor (BDNF), bone marrow tyrosine kinase in chromosome X (BMX) protein expression level without affecting dopaminergic (DA) neuron loss in this PD rat model. PMID:29419747
The Impact of Exercise on Statin-Associated Skeletal Muscle Myopathy
Chung, Hae R.; Vakil, Mayand; Munroe, Michael; Parikh, Alay; Meador, Benjamin M.; Wu, Pei T.; Jeong, Jin H.; Woods, Jeffrey A.; Wilund, Kenneth R.; Boppart, Marni D.
2016-01-01
HMG-CoA reductase inhibitors (statins) are the most effective pharmacological means of reducing cardiovascular disease risk. The most common side effect of statin use is skeletal muscle myopathy, which may be exacerbated by exercise. Hypercholesterolemia and training status are factors that are rarely considered in the progression of myopathy. The purpose of this study was to determine the extent to which acute and chronic exercise can influence statin-induced myopathy in hypercholesterolemic (ApoE-/-) mice. Mice either received daily injections of saline or simvastatin (20 mg/kg) while: 1) remaining sedentary (Sed), 2) engaging in daily exercise for two weeks (novel, Nov), or 3) engaging in daily exercise for two weeks after a brief period of training (accustomed, Acct) (2x3 design, n = 60). Cholesterol, activity, strength, and indices of myofiber damage and atrophy were assessed. Running wheel activity declined in both exercise groups receiving statins (statin x time interaction, p<0.05). Cholesterol, grip strength, and maximal isometric force were significantly lower in all groups following statin treatment (statin main effect, p<0.05). Mitochondrial content and myofiber size were increased and 4-HNE was decreased by exercise (statin x exercise interaction, p<0.05), and these beneficial effects were abrogated by statin treatment. Exercise (Acct and Nov) increased atrogin-1 mRNA in combination with statin treatment, yet enhanced fiber damage or atrophy was not observed. The results from this study suggest that exercise (Nov, Acct) does not exacerbate statin-induced myopathy in ApoE-/- mice, yet statin treatment reduces activity in a manner that prevents muscle from mounting a beneficial adaptive response to training. PMID:27936249
Forward conditioning with wheel running causes place aversion in rats.
Masaki, Takahisa; Nakajima, Sadahiko
2008-09-01
Backward pairings of a distinctive chamber as a conditioned stimulus and wheel running as an unconditioned stimulus (i.e., running-then-chamber) can produce a conditioned place preference in rats. The present study explored whether a forward conditioning procedure with these stimuli (i.e., chamber-then-running) would yield place preference or aversion. Confinement of a rat in one of two distinctive chambers was followed by a 20- or 60-min running opportunity, but confinement in the other was not. After four repetitions of this treatment (i.e., differential conditioning), a choice preference test was given in which the rat had free access to both chambers. This choice test showed that the rats given 60-min running opportunities spent less time in the running-paired chamber than in the unpaired chamber. Namely, a 60-min running opportunity after confinement in a distinctive chamber caused conditioned aversion to that chamber after four paired trials. This result was discussed with regard to the opponent-process theory of motivation.
Sadeghi, Mahsa; Peeri, Maghsoud; Hosseini, Mir-Jamal
2016-09-01
Early life stressful events have detrimental effects on the brain and behavior, which are associated with the development of depression. Immune-inflammatory responses have been reported to contribute in the pathophysiology of depression. Many studies have reported on the beneficial effects of exercise against stress. However, underlying mechanisms through which exercise exerts its effects were poorly studied. Therefore, it applied maternal separation (MS), as a valid animal model of early-life adversity, in rats from postnatal day (PND) 2 to 14 for 180min per day. At PND 28, male Wistar albino rats were subjected to 5 experimental groups; 1) controls 2) MS rats 3) MS rats treated with fluoxetine 5mg/kg to PND 60, 4) MS rats that were subjected to voluntary running wheel (RW) exercise and 5) MS rats that were subjected to mandatory treadmill (TM) exercise until adulthood. At PND 60, depressive-like behaviors were assessed by using forced swimming test (FST), splash test, and sucrose preference test (SPT). Our results revealed that depressive-like behaviors following MS stress were associated with an increase in expression of toll-like receptor 4 (Tlr-4) and its main signaling protein, Myd88, in the hippocampal formation. Also, we found that voluntary (and not mandatory) physical exercise during adolescence is protected against depressant effects of early-life stress at least partly through mitigating the innate immune responses in the hippocampus. Copyright © 2016. Published by Elsevier Inc.
McMahon, C D; Chai, R; Radley-Crabb, H G; Watson, T; Matthews, K G; Sheard, P W; Soffe, Z; Grounds, M D; Shavlakadze, T
2014-12-01
The age-related loss of skeletal muscle mass and function is termed sarcopenia and has been attributed to a decline in concentrations of insulin-like growth factor-1 (IGF-1). We hypothesized that constitutively expressed IGF-1 within skeletal muscles with or without exercise would prevent sarcopenia. Male transgenic mice that overexpress IGF-1 Ea in skeletal muscles were compared with wild-type littermates. Four-month-old mice were assigned to be sedentary, or had access to free-running wheels, until 18 or 28 months of age. In wild-type mice, the mass of the quadriceps muscles was reduced at 28 months and exercise prevented such loss, without affecting the diameter of myofibers. Conversely, increased IGF-1 alone was ineffective, whereas the combination of exercise and IGF-1 was additive in maintaining the diameter of myofibers in the quadriceps muscles. For other muscles, the combination of IGF-1 and exercise was variable and either increased or decreased the mass at 18 months of age, but was ineffective thereafter. Despite an increase in the diameter of myofibers, grip strength was not improved. In conclusion, our data show that exercise and IGF-1 have a modest effect on reducing aged-related wasting of skeletal muscle, but that there is no improvement in muscle function when assessed by grip strength. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Haydari, Sakineh; Miladi-Gorji, Hossein; Mokhtari, Amin; Safari, Manouchehr
2014-08-22
Exposure to morphine during pregnancy produced long-term effects in offspring behaviors. Recent studies have shown that voluntary exercise decreases the severity of anxiety behaviors in both morphine-dependent and withdrawn rats. Thus, the aims of the present study were to examine whether maternal exercise decreases prenatal dependence-induced anxiety and also, voluntary consumption of morphine in animal models of craving in rat pups. Pregnant rats were made dependent by chronic administration of morphine in drinking water simultaneously with access to a running wheel that lasted at least 21 days. Then, anxiety-like behaviors using the elevated plus-maze (EPM) and voluntary consumption of morphine using a two-bottle choice paradigm (TBC) were tested in male rat pups. The results showed that the rat pups borne from exercising morphine-dependent mothers exhibited an increase in EPM open arm time (P<0.0001) and entries (P<0.05) as compared with the sedentary groups. In animal models of craving showed that voluntary consumption of morphine in the rat pups borne from exercising morphine-dependent mothers was less in the second (P<0.032) and third (P<0.014) periods of intake as compared with the sedentary group. This study showed that maternal exercise decreases the severity of the anxiogenic-like behaviors and voluntary consumption of morphine in rat pups. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Dopaminergic dysregulation in mice selectively bred for excessive exercise or obesity.
Mathes, Wendy Foulds; Nehrenberg, Derrick L; Gordon, Ryan; Hua, Kunjie; Garland, Theodore; Pomp, Daniel
2010-07-11
Dysregulation of the dopamine system is linked to various aberrant behaviors, including addiction, compulsive exercise, and hyperphagia leading to obesity. The goal of the present experiments was to determine how dopamine contributes to the expression of opposing phenotypes, excessive exercise and obesity. We hypothesized that similar alterations in dopamine and dopamine-related gene expression may underly obesity and excessive exercise, as competing traits for central reward pathways. Moreover, we hypothesized that selective breeding for high levels of exercise or obesity may have influenced genetic variation controlling these pathways, manifesting as opposing complex traits. Dopamine, dopamine-related peptide concentrations, and gene expression were evaluated in dorsal striatum (DS) and nucleus accumbens (NA) of mice from lines selectively bred for high rates of wheel running (HR) or obesity (M16), and the non-selected ICR strain from which these lines were derived. HPLC analysis showed significantly greater neurotransmitter concentrations in DS and NA of HR mice compared to M16 and ICR. Microarray analysis showed significant gene expression differences between HR and M16 compared to ICR in both brain areas, with changes revealed throughout the dopamine pathway including D1 and D2 receptors, associated G-proteins (e.g., Golf), and adenylate cyclase (e.g., Adcy5). The results suggest that similar modifications within the dopamine system may contribute to the expression of opposite phenotypes in mice, demonstrating that alterations within central reward pathways can contribute to both obesity and excessive exercise. Copyright 2010 Elsevier B.V. All rights reserved.
Dopaminergic Dysregulation in Mice Selectively Bred for Excessive Exercise or Obesity
Nehrenberg, Derrick L.; Gordon, Ryan; Hua, Kunjie; Garland, Theodore; Pomp, Daniel
2010-01-01
Dysregulation of the dopamine system is linked to various aberrant behaviors, including addiction, compulsive exercise, and hyperphagia leading to obesity. The goal of the present experiments was to determine how dopamine contributes to the expression of opposing phenotypes, excessive exercise and obesity. We hypothesized that similar alterations in dopamine and dopamine-related gene expression may underly obesity and excessive exercise, as competing traits for central reward pathways. Moreover, we hypothesized that selective breeding for high levels of exercise or obesity may have influenced genetic variation controlling these pathways, manifesting as opposing complex traits. Dopamine, dopamine-related peptide concentrations, and gene expression were evaluated in dorsal striatum (DS) and nucleus accumbens (NA) of mice from lines selectively bred for high rates of wheel running (HR) or obesity (M16), and the non-selected ICR strain from which these lines were derived. HPLC analysis showed significantly greater neurotransmitter concentrations in DS and NA of HR mice compared to M16 and ICR. Microarray analysis showed significant gene expression differences between HR and M16 compared to ICR in both brain areas, with changes revealed throughout the dopamine pathway including D1 and D2 receptors, associated G-proteins (eg. Golf), and adenylate cyclase (eg. Adcy5). The results suggest similar modifications within the dopamine system may contribute to the expression of opposite phenotypes in mice, demonstrating that alterations within central reward pathways can contribute to both obesity and excessive exercise. PMID:20156488
14 CFR 25.231 - Longitudinal stability and control.
Code of Federal Regulations, 2010 CFR
2010-01-01
... takeoff. In addition— (1) Wheel brakes must operate smoothly and may not cause any undue tendency to nose over; and (2) If a tail-wheel landing gear is used, it must be possible, during the takeoff ground run...
Martens, Christopher R; Kuczmarski, James M; Kim, Jahyun; Guers, John J; Harris, M Brennan; Lennon-Edwards, Shannon; Edwards, David G
2014-08-15
Reduced nitric oxide (NO) synthesis contributes to risk for cardiovascular disease in chronic kidney disease (CKD). Vascular uptake of the NO precursor l-arginine (ARG) is attenuated in rodents with CKD, resulting in reduced substrate availability for NO synthesis and impaired vascular function. We tested the effect of 4 wk of voluntary wheel running (RUN) and/or ARG supplementation on endothelium-dependent relaxation (EDR) in rats with CKD. Twelve-week-old male Sprague-Dawley rats underwent ⅚ ablation infarction surgery to induce CKD, or SHAM surgery as a control. Beginning 4 wk following surgery, CKD animals either remained sedentary (SED) or received one of the following interventions: supplemental ARG, RUN, or combined RUN+ARG. Animals were euthanized 8 wk after surgery, and EDR was assessed. EDR was significantly impaired in SED vs. SHAM animals after 8 wk, in response to ACh (10(-9)-10(-5) M) as indicated by a reduced area under the curve (AUC; 44.56 ± 9.01 vs 100 ± 4.58, P < 0.05) and reduced maximal response (Emax; 59.9 ± 9.67 vs. 94.31 ± 1.27%, P < 0.05). AUC was not improved by ARG treatment but was significantly improved above SED animals in both RUN and RUN+ARG-treated animals. Maximal relaxation was elevated above SED in RUN+ARG animals only. l-[(3)H]arginine uptake was impaired in both SED and ARG animals and was improved in RUN and RUN+ARG animals. The results suggest that voluntary wheel running is an effective therapy to improve vascular function in CKD and may be more beneficial when combined with l-arginine. Copyright © 2014 the American Physiological Society.
Diane, Abdoulaye; Vine, Donna F.; Russell, James C.; Heth, C. Donald; Proctor, Spencer D.
2014-01-01
We hypothesized the cannabinoid-1 receptor and leptin receptor (ObR) operate synergistically to modulate metabolic, neuroendocrine, and behavioral responses of animals exposed to a survival challenge (food restriction and wheel running). Obese-prone (OP) JCR:LA-cp rats, lacking functional ObR, and lean-prone (LP) JCR:LA-cp rats (intact ObR) were assigned to OP-C and LP-C (control) or CBR1-antagonized (SR141716, 10 mg/kg body wt in food) OP-A and LP-A groups. After 32 days, all rats were exposed to 1.5-h daily meals without the drug and 22.5-h voluntary wheel running, a survival challenge that normally culminates in activity-based anorexia (ABA). Rats were removed from the ABA protocol when body weight reached 75% of entry weight (starvation criterion) or after 14 days (survival criterion). LP-A rats starved faster (6.44 ± 0.24 days) than LP-C animals (8.00 ± 0.29 days); all OP rats survived the ABA challenge. LP-A rats lost weight faster than animals in all other groups (P < 0.001). Consistent with the starvation results, LP-A rats increased the rate of wheel running more rapidly than LP-C rats (P = 0.001), with no difference in hypothalamic and primary neural reward serotonin levels. In contrast, OP-A rats showed suppression of wheel running compared with the OP-C group (days 6–14 of ABA challenge, P < 0.001) and decreased hypothalamic and neural reward serotonin levels (P < 0.01). Thus there is an interrelationship between cannabinoid-1 receptor and ObR pathways in regulation of energy balance and physical activity. Effective clinical measures to prevent and treat a variety of disorders will require understanding of the mechanisms underlying these effects. PMID:24903921
Banu, J; Orhii, P B; Okafor, M C; Wang, L; Kalu, D N
2001-06-01
The aim of this study is to determine the effects of growth hormone (GH), exercise (EX), GH+EX and food restriction on cancellous bone in middle-aged female rats. Female F344 rats aged 13 months were divided into (1) age-matched controls; (2) GH treated (2.5 mg/kg. 5 day/week); (3) EX (voluntary wheel running); (4) GH+EX; and (5) food restricted (FR) (fed 60% of the ad libitum food intake). The animals were treated for 18 weeks, at the end of which they were sacrificed. Cancellous bone and cortical bone in the fourth lumbar vertebra, proximal tibial metaphysis (PTM), distal femoral metaphysis (DFM) and femoral neck (NF) were analyzed using peripheral quantitative computerized tomography (pQCT) densitometry. Growth hormone increased cancellous bone area, cancellous bone mineral content, cortical bone area and cortical bone mineral content in the vertebra, PTM, DFM and NF. The tibial muscle wet weight was increased significantly after GH treatment. Exercise increased the cancellous bone area in the vertebra, PTM and DFM. Cortical bone area and cortical bone mineral content increased after EX in the vertebra, PTM, DFM and NF. No significant change was seen in the tibial muscle wet weight after EX. Growth hormone+EX increased cancellous bone area in the vertebra PTM and DFM but had no effect in neck of the femur. Cancellous bone mineral content, cortical bone area and cortical bone mineral content increased with GH+EX in the vertebra, PTM, DFM and NF. The tibial muscle wet weight was increased significantly with GH+EX. Food restriction decreased cancellous bone area and cancellous bone mineral content in all the bones studied. The decrease was statistically significant only at the distal femoral metaphysis. The tibial muscle wet weight decreased when compared with the age-matched control, but this decrease was not statistically significant. We conclude that the effect of the dose of GH used and the levels of voluntary wheel running EX used increased cancellous bone in intact rats; the effect of GH is much greater and different bones respond with varying intensities. The effects of combined treatment of GH and EX on cancellous bone are not always significantly higher than those of GH alone. FR at the level studied has a mostly negative effect on cancellous bone.
Ludlow, Andrew T; Gratidão, Laila; Ludlow, Lindsay W; Spangenburg, Espen E; Roth, Stephen M
2017-04-01
What is the central question of this study? A positive association between telomere length and exercise training has been shown in cardiac tissue of mice. It is currently unknown how each bout of exercise influences telomere-length-regulating proteins. We sought to determine how a bout of exercise altered the expression of telomere-length-regulating genes and a related signalling pathway in cardiac tissue of mice. What is the main finding and its importance? Acute exercise altered the expression of telomere-length-regulating genes in cardiac tissue and might be related to altered mitogen-activated protein kinase signalling. These findings are important in understanding how exercise provides a cardioprotective phenotype with ageing. Age is the greatest risk factor for cardiovascular disease. Telomere length is shorter in the hearts of aged mice compared with young mice, and short telomere length has been associated with an increased risk of cardiovascular disease. One year of voluntary wheel-running exercise attenuates the age-associated loss of telomere length and results in altered gene expression of telomere-length-maintaining and genome-stabilizing proteins in heart tissue of mice. Understanding the early adaptive response of the heart to an endurance exercise bout is paramount to understanding the impact of endurance exercise on heart tissue and cells. To this end, we studied mice before (BL), immediately after (TP1) and 1 h after a treadmill running bout (TP2). We measured the changes in expression of telomere-related genes (shelterin components), DNA-damage-sensing (p53 and Chk2) and DNA-repair genes (Ku70 and Ku80) and mitogen-activated protein kinase (MAPK) signalling. The TP1 animals had increased TRF1 and TRF2 protein and mRNA levels, greater expression of DNA-repair and -response genes (Chk2 and Ku80) and greater protein content of phosphorylated p38 MAPK compared with both BL and TP2 animals. These data provide insights into how physiological stressors remodel the heart tissue and how an early adaptive response mediated by exercise may be maintaining telomere length and/or stabilizing the heart genome through the upregulation of telomere-protective genes. © 2017 The Authors. Experimental Physiology © 2017 The Physiological Society.
Li, Lihui; Chen, Xi; Lv, Shuang; Dong, Miaomiao; Zhang, Li; Tu, Jiaheng; Yang, Jie; Zhang, Lingli; Song, Yinan; Xu, Leiting; Zou, Jun
2014-01-01
This study aims to explore the effects of exercise on postmenopausal osteoporosis and the mechanisms by which exercise affects bone remodeling. Sixty-three Wistar female rats were randomly divided into five groups: (1) control group, (2) sham-operated group, (3) OVX (Ovariectomy) group, (4) DES-OVX (Diethylstilbestrol-OVX) group, and (5) Ex-OVX (Exercise-OVX) group. The rat osteoporosis model was established through ovariectomy. The Ex-OVX rats were made to run 251.2 meters every day, 6 d/wk for 3 months in a running wheel. Trabecular bone volume (TBV%), total resorption surface (TRS%), trabecular formation surface (TFS%), mineralization rate (MAR), bone cortex mineralization rate (mAR), and osteoid seam width (OSW) were determined by bone histomorphometry. The mRNA and protein levels of interleukin-1β (IL-1β2), interleukin-6 (IL-6), and cyclooxygenase-2 (Cox-2) were determined by in situ hybridization and immunohistochemistry, respectively. Serum levels of estrogen estradiol (E2), calcitonin (CT), osteocalcin (BGP), and parathyroid hormone (PTH) were determined by ELISA assays. The investigation revealed that compared to the control and the sham-operated groups, the OVX group showed significantly lower levels of TBV%, E2, and CT, but much higher levels of TRS%, TFS%, MAR, OSW, BGP, and PTH. The Ex-OVX group showed increased TBV% and serum levels of E2 and CT compared to the OVX group. Ovariectomy also led to a significant increase in IL-1β mRNA and protein levels in the bone marrow and IL-6 and Cox-2 protein levels in tibias. In addition, the Ex-OVX group showed lower levels of IL-1 mRNA and protein, IL-6 mRNA, and Cox-2 mRNA and protein than those in the OVX group. The upshot of the study suggests that exercise can significantly increase bone mass in postmenopausal osteoporosis rat models by inhibiting bone resorption and increasing bone formation, especially in trabecular bones.
Refining the modelling of vehicle-track interaction
NASA Astrophysics Data System (ADS)
Kaiser, Ingo
2012-01-01
An enhanced model of a passenger coach running on a straight track is developed. This model includes wheelsets modelled as rotating flexible bodies, a track consisting of flexible rails supported on discrete sleepers and wheel-rail contact modules, which can describe non-elliptic contact patches based on a boundary element method (BEM). For the scenarios of undisturbed centred running and permanent hunting, the impact of the structural deformations of the wheelsets and the rails on the stress distribution in the wheel-rail contact is investigated.
Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) onboard calibration system
NASA Technical Reports Server (NTRS)
Chrien, Thomas G.; Eastwood, Mike; Green, Robert O.; Sarture, Charles; Johnson, Howell; Chovit, Chris; Hajek, Pavel
1995-01-01
The AVIRIS instrument uses an onboard calibration system to provide auxiliary calibration data. The system consist of a tungsten halogen cycle lamp imaged onto a fiber bundle through an eight position filter wheel. The fiber bundle illuminates the back side of the foreoptics shutter during a pre-run and post-run calibration sequence. The filter wheel contains two neutral density filters, five spectral filters and one blocked position. This paper reviews the general workings of the onboard calibrator system and discusses recent modifications.
Motivational wheel running reverses cueing behavioural inflexibility in rodents.
Chomiak, Taylor; Brown, Andrew R; Teskey, G Campbell; Hu, Bin
2017-12-01
Behavioural inflexibility and associated atypical learning behaviours are common clinical manifestations of the autism spectrum disorder (ASD) phenotype. Despite advances in our understanding of ASD, little research has been devoted to experimental interventions that might help to circumvent behavioural inflexibility in ASD. The current paper suggests that motivational locomotion in the form of wheel running can reduce behavioural inflexibility and learning impairments in an ASD rat model, and discusses how the strategy of reward-coupled locomotor activity may lead to clinical interventions for children with ASD.
Isolation of Flaws by Use of Thermal Differentials on a Tire Under Mild Loading Conditions
DOT National Transportation Integrated Search
1972-02-01
Twenty-six used and rebuilt solid rubber road wheels were examined by an infrared temperature profiling technique during drum test exercise. The IR method was evaluated as a nondestructive means of predicting road wheel integrity by analysis of the c...
Force and power characteristics of a resistive exercise device for use in space
NASA Astrophysics Data System (ADS)
Berg, Hans E.; Tesch, Per A.
We have developed a non-gravity dependent mechanical device, which provides resistance during coupled concentric and eccentric muscle actions, through the inertia of a spinning fly-wheel (Fly-Wheel Ergometry; FWE). Our research shows that lower-limb FWE exercise can produce forces and thus muscular stress comparable to what is typical of advanced resistance training using free weights. FWE also offers greater training stimuli during eccentric relative to concentric muscle actions, as evidenced by force and electromyographic (EMG) measurements. Muscle use of specific muscle groups, as assessed by the exercise-induced contrast shift of magnetic resonance images, is similar during lower-limb FWE and the barbell squat. Unlike free-weight exercise, FWE allows for maximal voluntary effort in each repetition of an exercise bout. Likewise, FWE exercise, not unassisted free-weight exercise, produces eccentric "overload". Collectively, the inherent features of this resistive exercise device and the results of the physiological evaluations we have performed, suggest that resistance exercise using FWE could be used as an effective exercise counter-measure in space. The flywheel principle can be employed to any exercise configuration and designed into a compact device allowing for exercises stressing those muscles and bone structures, which are thought to be most affected by long-duration spaceflight.
Toedebusch, Ryan G; Ruegsegger, Gregory N; Braselton, Joshua F; Heese, Alexander J; Hofheins, John C; Childs, Tom E; Thyfault, John P; Booth, Frank W
2016-02-01
There has never been an outcome measure for human health more important than peak oxygen consumption (V̇o2 peak), yet little is known regarding the molecular triggers for its lifetime decline with aging. We examined the ability of physical activity or 5 wk of 5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside (AICAR) administration to delay the initial aging-induced decline in lifetime-apex V̇o2 peak and potential underlying molecular mechanisms. Experiment 1 consisted of female rats with (RUN) and without (NO RUN) running wheels, while experiment 2 consisted of female nonrunning rats getting the AMPK agonist AICAR (0.5 mg/g/day) subcutaneously for 5 wk beginning at 17 wk of age. All rats underwent frequent, weekly or biweekly V̇o2 peak tests beginning at 10 wk of age. In experiment 1, lifetime-apex V̇o2 peak occurred at 19 wk of age in both RUN and NO RUN and decreased thereafter. V̇o2 peak measured across experiment 1 was ∼25% higher in RUN than in NO RUN. In experiment 2, AICAR delayed the chronological age observed in experiment 1 by 1 wk, from 19 wk to 20 wk of age. RUN and NO RUN showed different skeletal muscle transcriptomic profiles both pre- and postapex. Additionally, growth and development pathways are differentially regulated between RUN and NO RUN. Angiomotin mRNA was downregulated postapex in RUN and NO RUN. Furthermore, strong significant correlations to V̇o2 peak and trends for decreased protein concentration supports angiomotin's potential importance in our model. Contrary to our primary hypothesis, wheel running was not sufficient to delay the chronological age of lifetime-apex V̇o2 peak decline, whereas AICAR delayed it 1 wk. Copyright © 2016 the American Physiological Society.
Central and peripheral effects of physical exercise without weight reduction in obese and lean mice
de Carvalho, Francine Pereira; Moretto, Thaís Ludmilla; Benfato, Izabelle Dias; Barthichoto, Marcela; Ferreira, Sandra Mara; Costa-Júnior, José Maria; de Oliveira, Camila Aparecida Machado
2018-01-01
To investigate the central (hypothalamic) and peripheral effects of exercise without body weight change in diet-induced obesity (DIO). Twelve-week-old male C57Bl/6 mice received a control (C) or a high-fat diet (H). Half of them had free access to running wheels for 5 days/week for 10 weeks (CE) and HE, respectively). Hypothalamic expression of genes related to energy homeostasis, and leptin (Stat3 and p-Stat3) and insulin (Akt and p-Akt) signaling were evaluated. Glucose and leptin tolerance, peripheral insulin sensitivity, and plasma insulin, leptin and adiponectin were determined. Perigonadal and retroperitoneal fat depots were increased by diet but reduced by exercise despite lack of effect of exercise on body weight. Blood glucose during intraperitoneal glucose tolerance test (ipGTT) was higher and glucose decay during intraperitoneal insulin tolerance test (ipITT) was lower in H and HE compared with C and CE. Exercise increased liver p-Akt expression and reduced fast glycemia. High-fat diet increased plasma insulin and leptin. Exercise had no effect on insulin but decreased leptin and increased adiponectin. Leptin inhibited food intake in all groups. Hypothalamic total and p-Stat3 and Akt were similar amongst the groups despite higher plasma levels of leptin and insulin in H and HE mice. High-fat diet modulated gene expression favoring a positive energy balance. Exercise only marginally changed the gene expression. Exercise induced positive changes (decreased fast glycemia and fat depots; increased liver insulin signaling and adiponectin concentration) without weight loss. Thus, despite reducing body weight could bring additional benefits, the effects of exercise must not be overlooked when weight reduction is not achieved. PMID:29371411
Techniques for establishing schedules with wheel running as reinforcement in rats.
Iversen, I H
1993-07-01
In three experiments, access to wheel running was contingent on lever pressing. In each experiment, the duration of access to running was reduced gradually to 4, 5, or 6 s, and the schedule parameters were expanded gradually. The sessions lasted 2 hr. In Experiment 1, a fixed-ratio 20 schedule controlled a typical break-and-run pattern of lever pressing that was maintained throughout the session for 3 rats. In Experiment 2, a fixed-interval schedule of 6 min maintained lever pressing throughout the session for 3 rats, and for 1 rat, the rate of lever pressing was positively accelerated between reinforcements. In Experiment 3, a variable-ratio schedule of 20 or 35 was in effect and maintained lever pressing at a very stable pace throughout the session for 2 of 3 rats; for 1 rat, lever pressing was maintained at an irregular rate. When the session duration was extended to successive 24-hr periods, with food and water accessible in Experiment 3, lever pressing settled into a periodic pattern occurring at a high rate at approximately the same time each day. In each experiment, the rats that developed the highest local rates of running during wheel access also maintained the most stable and highest rates of lever pressing.
Kumar, Anil; Singh, Barinder; Mishra, Jitendriya; Sah, Sangeeta Pilkhwal; Pottabathini, Raghavender
2015-12-01
Potential role of angiotensin-II and cyclooxygenase have been suggested in the pathophysiology of chronic fatigue stress. The present study has been designed to evaluate the neuroprotective effect of losartan and its interaction with nimesulide against chronic fatigue stress and related complications in mice. In the present study, male Laca mice (20-30 g) were subjected to running wheel activity test session (RWATS) for 6 min daily for 21 days. Losartan, nimesulide and their combinations were administered daily for 21 days, 45 min before being subjected to RWATS. Various behavioral and biochemical and neuroinflammatory mediators were assessed subsequently. 21 days RWATS treatment significantly decreased number of wheel rotations/6 min indicating fatigue stress like behaviors as compared to naive group. 21 days treatment with losartan (10 and 20 mg/kg, ip), nimesulide (5 and 10 mg/kg, po) and their combinations significantly improved behavior [increased number of wheel rotations, reversal of post-exercise fatigue, locomotor activity, antianxiety-like behavior (number of entries, latency to enter and time spent in mirror chamber), and memory performance (transfer latency in plus-maze performance task)], biochemical parameters (reduced serum corticosterone, brain lipid peroxidation, nitrite concentration, acetylcholinesterase activity, restored reduced glutathione levels and catalase activity) as compared to RWATS control. Besides, TNF-α, CRP levels were significantly attenuated by these drugs and their combinations as compared to control. The present study highlights the role of cyclooxygenase modulation in the neuroprotective effect of losartan against chronic fatigue stress-induced behavioral, biochemical and cellular alterations in mice.
Wong, Kari E.; Mikus, Catherine R.; Slentz, Dorothy H.; Seiler, Sarah E.; DeBalsi, Karen L.; Ilkayeva, Olga R.; Crain, Karen I.; Kinter, Michael T.; Kien, C. Lawrence; Stevens, Robert D.
2015-01-01
This study used mice with muscle-specific overexpression of PGC-1α, a transcriptional coactivator that promotes mitochondrial biogenesis, to determine whether increased oxidative potential facilitates metabolic improvements in response to lifestyle modification. MCK-PGC1α mice and nontransgenic (NT) littermates were fed a high-fat diet (HFD) for 10 weeks, followed by stepwise exposures to voluntary wheel running (HFD+Ex) and then 25% caloric restriction with exercise (Ex/CR), each for an additional 10 weeks with continued HFD. Running and CR improved weight and glucose control similarly in MCK-PGC1α and NT mice. Sedentary MCK-PGC1α mice were more susceptible to diet-induced glucose intolerance, and insulin action measured in isolated skeletal muscles remained lower in the transgenic compared with the NT group, even after Ex/CR. Comprehensive profiling of >200 metabolites and lipid intermediates revealed dramatic group-specific responses to the intervention but did not produce a lead candidate that tracked with changes in glucose tolerance irrespective of genotype. Instead, principal components analysis identified a chemically diverse metabolite cluster that correlated with multiple measures of insulin responsiveness. These findings challenge the notion that increased oxidative capacity defends whole-body energy homeostasis and suggest that the interplay between mitochondrial performance, lipotoxicity, and insulin action is more complex than previously proposed. PMID:25422105
Cudmore, Robert H; Dougherty, Sarah E; Linden, David J
2017-12-01
The cerebral vasculature provides blood flow throughout the brain, and local changes in blood flow are regulated to match the metabolic demands of the active brain regions. This neurovascular coupling is mediated by real-time changes in vessel diameter and depends on the underlying vascular network structure. Neurovascular structure is configured during development by genetic and activity-dependent factors. In adulthood, it can be altered by experiences such as prolonged hypoxia, sensory deprivation and seizure. Here, we have sought to determine whether exercise could alter cerebral vascular structure in the adult mouse. We performed repeated in vivo two-photon imaging in the motor cortex of adult transgenic mice expressing membrane-anchored green fluorescent protein in endothelial cells (tyrosine endothelial kinase 2 receptor (Tie2)-Cre:mTmG). This strategy allows for high-resolution imaging of the vessel walls throughout the lifespan. Vascular structure, as measured by capillary branch point number and position, segment diameter and length remained stable over a time scale of months as did pericyte number and position. Furthermore, we compared the vascular structure before, during, and after periods of voluntary wheel running and found no alterations in these same parameters. In both running and control mice, we observed a low rate of capillary segment subtraction. Interestingly, these rare subtraction events preferentially remove short vascular loops.
Hamilton, G F; Bucko, P J; Miller, D S; DeAngelis, R S; Krebs, C P; Rhodes, J S
2016-11-01
Prenatal alcohol exposure can produce permanent alterations in brain structure and profound behavioral deficits. Mouse models can help discover mechanisms and identify potentially useful interventions. This study examined long-term influences of either a single or repeated alcohol exposure during the third-trimester equivalent on survival of new neurons in the hippocampus, behavioral performance on the Passive avoidance and Rotarod tasks, and the potential role of exercise as a therapeutic intervention. C57BL/6J male mice received either saline or 5g/kg ethanol split into two s.c. injections, two hours apart, on postnatal day (PD)7 (Experiment 1) or on PD5, 7 and 9 (Experiment 2). All mice were weaned on PD21 and received either a running wheel or remained sedentary from PD35-PD80/81. From PD36-45, mice received i.p. injections of 50mg/kg bromodeoxyuridine (BrdU) to label dividing cells. Behavioral testing occurred between PD72-79. Number of surviving BrdU+ cells and immature neurons (doublecortin; DCX+) was measured at PD80-81. Alcohol did not affect number of BrdU+ or DCX+ cells in either experiment. Running significantly increased number of BrdU+ and DCX+ cells in both treatment groups. Alcohol-induced deficits on Rotarod performance and acquisition of the Passive avoidance task (Day 1) were evident only in Experiment 2 and running rescued these deficits. These data suggest neonatal alcohol exposure does not result in long-term impairments in adult hippocampal neurogenesis in the mouse model. Three doses of ethanol were necessary to induce behavioral deficits. Finally, the mechanisms by which exercise ameliorated the neonatal alcohol induced behavioral deficits remain unknown. Copyright © 2016 Elsevier B.V. All rights reserved.
24 CFR 3280.902 - Definitions.
Code of Federal Regulations, 2010 CFR
2010-04-01
... provides a platform for securement of the running gear assembly, the drawbar and coupling mechanism. (d) Running gear assembly means the subsystem consisting of suspension springs, axles, bearings, wheels, hubs... mechanism, frame, running gear assembly, and lights. (b) Drawbar and coupling mechanism means the rigid...
NASA Astrophysics Data System (ADS)
Correa, Nekane; Vadillo, Ernesto G.; Santamaria, Javier; Blanco-Lorenzo, Julio
2018-01-01
This study investigates the influence on the wheel-rail contact forces of the running speed and the shape and position of weld defects along the track. For this purpose, a vertical dynamic model in the space domain is used. The model is obtained from the transformation between the domains of frequency and space using a Rational Fraction Polynomials (RFP) method, which is modified with multiobjective genetic algorithms in order to improve the fitting of track receptance and to assist integration during simulations. This produces a precise model with short calculation times, which is essential to this study. The wheel-rail contact is modelled using a non-linear Hertz spring. The contact forces are studied for several types of characteristic welds. The way in which forces vary as a function of weld position and running speed is studied for each type of weld. This paper studies some of the factors that affect the maximum forces when the vehicle moves over a rail weld, such as weld geometry, parametric excitation and contact stiffness. It is found that the maximum force in the wheel-rail contact when the vehicle moves over a weld is not always proportional to the running speed. The paper explains why it is not proportional in specific welds.
Haskins, Morgan; Jones, Terry E; Lu, Qun; Bareiss, Sonja K
2016-01-01
Exercise has been shown to protect against cognitive decline and Alzheimer's disease (AD) progression, however the dose of exercise required to protect against AD is unknown. Recent studies show that the pathological processes leading to AD cause characteristic alterations in blood and brain inflammatory proteins that are associated with the progression of AD, suggesting that these markers could be used to diagnosis and monitor disease progression. The purpose of this study was to determine the impact of exercise frequency on AD blood chemokine profiles, and correlate these findings with chemokine brain expression changes in the triple transgenic AD (3xTg-AD) mouse model. Three month old 3xTg-AD mice were subjected to 12 weeks of moderate intensity wheel running at a frequency of either 1×/week or 3×/week. Blood and cortical tissue were analyzed for expression of monocyte chemotactic protein-1 (MCP-1) and regulated and normal T cell expressed and secreted (RANTES). Alterations in blood RANTES and MCP-1 expression were evident at 3 and 6 month old animals compared to WT animals. Three times per week exercise but not 1×/week exercise was effective at reversing serum and brain RANTES and MCP-1 expression to the levels of WT controls, revealing a dose dependent response to exercise. Analysis of these chemokines showed a strong negative correlation between blood and brain expression of RANTES. The results indicate that alterations in serum and brain inflammatory chemokines are evident as early signs of Alzheimer's disease pathology and that higher frequency exercise was necessary to restore blood and brain inflammatory expression levels in this AD mouse model. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Marchianti, Ancah Caesarina Novi; Arimura, Emi; Ushikai, Miharu; Horiuchi, Masahisa
2014-09-01
Exercise is effective for preventing the onset and development of type 2 diabetes mellitus (T2DM) in human cases; however, the effect of exercise on the pathophysiology using animal models of T2DM has not been fully evaluated. We applied voluntary exercise under pair-fed (P) conditions in db mice, an animal model of T2DM. Exercising (Ex) and sedentary (Se) mice were placed in a cage, equipped with a free or locked running wheel, for 4 weeks, respectively. The amount of food consumed by ad libitum-fed wild-type mice under the Se condition (ad-WT) was supplied to all mice, except ad libitum db mice (ad-db). Blood parameters and expression of the genes involved in nutrient metabolism were analyzed. PEx-db (pair-fed and exercising) mice showed significantly lower HbA1c, body weight and liver weight than PSe-db and ad-db mice. Decreased hepatic triglycerides in PEx-db mice corresponded to a lower expression of lipogenic enzyme genes in the liver. Moreover, PEx-db mice showed significantly lower plasma branched-chain amino acids (BCAA), arginine, proline, and tyrosine, in addition to increased skeletal muscle (SM) weight, than PSe-db and ad-db mice, in spite of little influence on the expression of the BCAA transaminase gene, in SM and WAT. We found that exercise under a food restriction condition decreases several amino acids, including BCAA, and may improve insulin sensitivity more than mere food restriction. We propose that the decreased concentration of blood amino acids may be a valuable marker evaluating the effects of exercise on diabetic conditions.
Schroeder, Mariana; Shbiro, Liat; Gelber, Vered; Weller, Aron
2010-04-01
Given the alarming increase in childhood, adolescent and adult obesity there is an imperative need for understanding the early factors affecting obesity and for treatments that may help prevent or at least moderate it. Exercise is frequently considered as an effective treatment for obesity however the empirical literature includes many conflicting findings. In the present study, we used the OLETF rat model of early-onset hyperphagia-induced obesity to examine the influence of early exercise on peripheral adiposity-related parameters in both males and females. Rats were provided voluntary access to running wheels from postnatal day (PND) 22 until PND45. We examined fat pad weight (brown, retroperitoneal, inguinal and epididymal); inguinal adipocyte size and number; and leptin, adiponectin, corticosterone and creatinine levels. We also examined body weight, feeding efficiency and spontaneous intake. Early voluntary exercise reduced intake, adiposity and leptin in the OLETF males following a sharp reduction in adipocyte size despite a significant increase in fat cell number. Exercising males from the lean LETO control strain presented stable intake, but reduced body fat, feeding efficiency and increased plasma creatinine, suggesting an increment in muscle mass. OLETF females showed reduced feeding efficiency and liver fat, and a significant increase in brown fat. Exercising LETO control females increased intake, body weight and creatinine, but no changes in body fat. Overall, OLETF rats presented higher adiponectin levels than controls in both basal and post-exercise conditions. The results suggest an effective early time frame, when OLETF males can be successfully "re-programmed" through voluntary exercise; in OLETF females the effect is much more moderate. Findings expose sex-dependent peripheral mechanisms in coping with energy challenges. Copyright 2010 Elsevier Inc. All rights reserved.
Tyrankiewicz, Urszula; Olkowicz, Mariola; Skórka, Tomasz; Jablonska, Magdalena; Orzylowska, Anna; Bar, Anna; Gonet, Michal; Berkowicz, Piotr; Jasinski, Krzysztof; Zoladz, Jerzy A; Smolenski, Ryszard T; Chlopicki, Stefan
2018-01-01
Here, we analyzed systemic (plasma) and local (heart/aorta) changes in ACE/ACE-2 balance in Tgαq*44 mice in course of heart failure (HF). Tgαq*44 mice with cardiomyocyte-specific Gαq overexpression and late onset of HF were analyzed at different age for angiotensin pattern in plasma, heart, and aorta using liquid chromatography/mass spectrometry, for progression of HF by in vivo magnetic resonance imaging under isoflurane anesthesia, and for physical activity by voluntary wheel running. Six-month-old Tgαq*44 mice displayed decreased ventricle radial strains and impaired left atrial function. At 8-10 mo, Tgαq*44 mice showed impaired systolic performance and reduced voluntary wheel running but exhibited preserved inotropic reserve. At 12 mo, Tgαq*44 mice demonstrated a severe impairment of basal cardiac performance and modestly compromised inotropic reserve with reduced voluntary wheel running. Angiotensin analysis in plasma revealed an increase in concentration of angiotensin-(1-7) in 6- to 10-mo-old Tgαq*44 mice. However, in 12- to 14-mo-old Tgαq*44 mice, increased angiotensin II was noted with a concomitant increase in Ang III, Ang IV, angiotensin A, and angiotensin-(1-10). The pattern of changes in the heart and aorta was also compatible with activation of ACE2, followed by activation of the ACE pathway. In conclusion, mice with cardiomyocyte Gαq protein overexpression develop HF that is associated with activation of the systemic and the local ACE/Ang II pathway. However, it is counterbalanced by a prominent ACE2/Ang-(1-7) activation, possibly allowing to delay decompensation. NEW & NOTEWORTHY Changes in ACE/ACE-2 balance were analyzed based on measurements of a panel of nine angiotensins in plasma, heart, and aorta of Tgαq*44 mice in relation to progression of heart failure (HF) characterized by multiparametric MRI and exercise performance. The early stage of HF was associated with upregulation of the ACE2/angiotensin-(1-7) pathway, whereas the end-stage HF was associated with downregulation of ACE2/angiotensin-(1-7) and upregulation of the ACE/Ang II pathway. ACE/ACE-2 balance seems to determine the decompensation of HF in this model.
Wang, D; Zhai, X; Chen, P; Yang, M; Zhao, J; Dong, J; Liu, H
2014-09-26
Uncoupling protein-2 (UCP2) reduces oxidative stress by facilitating the influx of protons into mitochondrial matrix, thus dissociating mitochondrial oxidation from ATP synthesis. UCP2 is expressed abundantly in brain areas and plays a key role in neuroprotection. Here, we sought to determine if UCP2 deficiency produces cognitive impairment and anxiety in young mice, and to determine if hippocampal UCP2 is essential for the beneficial effects of voluntary exercise. Antisense oligonucleotide (ASO) was used to produce UCP2 knockdown in mice. Our results firstly showed that UCP2-targeted ASO significantly reduced UCP2 mRNA and protein expression in the hippocampus. ASO treatment impaired learning and memory of the mice in Y-maze, T-maze, and object recognition tests (ORT). ASO-treated mice exhibited more anxiously in OPT, light/dark box test, and elevated plus maze (EPM) than the control mice. We also found that wheel running ameliorated cognitive dysfunction and anxiety-like behaviors in ASO-treated mice. Furthermore, voluntary exercise reversed ASO-induced changes in hippocampal levels of serotonin (5-HT), dopamine (DA), and norepinephrine (NE). However, UCP2 protein in the hippocampus was not correlated with cognitive and anxiolytic benefits of exercise. These findings suggest that hippocampal UCP2 is essential for cognitive function and the resistance to anxiety of mice, but not required for the beneficial effects of exercise. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.
6. FLOOR 1; LOOKING WEST; SHOWS UNDERDRIFT SYSTEM, FOUR POSTS ...
6. FLOOR 1; LOOKING WEST; SHOWS UNDERDRIFT SYSTEM, FOUR POSTS SUPPORT BRIDGE BEAM FOR FOOT BEARING OF UPRIGHT SHAFT, SPUR PINION STONE NUTS SLIDE DOWN STONE SPINDLE TO ENGAGE, CENTRIFUGAL GOVERNOR IS MOUNTED ON A SEPARATE SPINDLE DRIVEN BY A BELT FROM THE STONE SPINDLE; ALSO SHOWN ARE THE GREAT SPUR WHEEL AND A LAYSHAFT RUNNING OFF A CROWN WHEEL JUST ABOVE THE GREAT SPUR WHEEL - Gardiner Windmill, East Hampton, Suffolk County, NY
Schreiber, Saskia; Klaus, Susanne; Kanzleiter, Isabel
2017-01-01
Scope We investigated the long-term effects of maternal high-fat consumption and post-weaning exercise on offspring obesity susceptibility and insulin resistance. Methods C57BL/6J dams were fed either a high-fat (HFD, 40% kcal fat) or low-fat (LFD, 10% kcal fat) semi-synthetic diet during pregnancy and lactation. After weaning, male offspring of both maternal diet groups (mLFD; mHFD) received a LFD. At week 7, half of the mice got access to a running wheel (+RW) as voluntary exercise training. To induce obesity, all offspring groups (mLFD +/-RW and mHFD +/-RW) received HFD from week 15 until week 25. Results Compared to mLFD, mHFD offspring were more prone to HFD-induced body fat gain and exhibited an increased liver mass which was not due to increased hepatic triglyceride levels. RW improved the endurance capacity in mLFD, but not in mHFD offspring. Additionally, mHFD offspring +RW exhibited higher plasma insulin levels during glucose tolerance test and an elevated basal pancreatic insulin production compared to mLFD offspring. Conclusion Taken together, maternal HFD reduced offspring responsiveness to the beneficial effects of voluntary exercise training regarding the improvement of endurance capacity, reduction of fat mass gain, and amelioration of HFD-induced insulin resistance. PMID:28235071
ERIC Educational Resources Information Center
Levy, Lawrence C.
1976-01-01
Adelphi University has awarded 76 Masters in Business Administration degrees to people in the New York City area who attended its Classroom on Wheels, one specially equipped car on each of four commuter train lines. The program, reaching over 1000 people since 1971 is run and promoted solely on tuition. (JT)
Kelly, Scott A.; Hua, Kunjie; Pomp, Daniel
2012-01-01
Driven by the recent obesity epidemic, interest in understanding the complex genetic and environmental basis of body weight and composition is great. We investigated this by searching for quantitative trait loci (QTLs) affecting a number of weight and adiposity traits in a G10 advanced intercross population produced from crosses of mice in inbred strain C57BL/6J with those in a strain selected for high voluntary wheel running. The mice in this population were fed either a high-fat or a control diet throughout the study and also measured for four exercise traits prior to death, allowing us to test for pre- and postexercise QTLs as well as QTL-by-diet and QTL-by-exercise interactions. Our genome scan uncovered a number of QTLs, of which 40% replicated QTLs previously found for similar traits in an earlier (G4) generation. For those replicated QTLs, the confidence intervals were reduced from an average of 19 Mb in the G4 to 8 Mb in the G10. Four QTLs on chromosomes 3, 8, 13, and 18 were especially prominent in affecting the percentage of fat in the mice. About of all QTLs showed interactions with diet, exercise, or both, their genotypic effects on the traits showing a variety of patterns depending on the diet or level of exercise. It was concluded that the indirect effects of these QTLs provide an underlying genetic basis for the considerable variability in weight or fat loss typically found among individuals on the same diet and/or exercise regimen. PMID:23048196
46 CFR 115.113 - Passengers permitted.
Code of Federal Regulations, 2010 CFR
2010-10-01
... sail booms, running rigging, or paddle wheels, or along pulpits; (ii) Rail space on stairways; and (iii... equipment, anchor handling equipment or line handling gear, or in the way of sail booms or running rigging...
46 CFR 176.113 - Passengers permitted.
Code of Federal Regulations, 2011 CFR
2011-10-01
... or line handling gear, in the way of sail booms, running rigging, or paddle wheels, or along pulpits... of sail booms or running rigging; (v) Spaces below deck that are unsuitable for passengers or that...
46 CFR 176.113 - Passengers permitted.
Code of Federal Regulations, 2010 CFR
2010-10-01
... or line handling gear, in the way of sail booms, running rigging, or paddle wheels, or along pulpits... of sail booms or running rigging; (v) Spaces below deck that are unsuitable for passengers or that...
46 CFR 115.113 - Passengers permitted.
Code of Federal Regulations, 2011 CFR
2011-10-01
... sail booms, running rigging, or paddle wheels, or along pulpits; (ii) Rail space on stairways; and (iii... equipment, anchor handling equipment or line handling gear, or in the way of sail booms or running rigging...
Simple and conditional visual discrimination with wheel running as reinforcement in rats.
Iversen, I H
1998-09-01
Three experiments explored whether access to wheel running is sufficient as reinforcement to establish and maintain simple and conditional visual discriminations in nondeprived rats. In Experiment 1, 2 rats learned to press a lit key to produce access to running; responding was virtually absent when the key was dark, but latencies to respond were longer than for customary food and water reinforcers. Increases in the intertrial interval did not improve the discrimination performance. In Experiment 2, 3 rats acquired a go-left/go-right discrimination with a trial-initiating response and reached an accuracy that exceeded 80%; when two keys showed a steady light, pressing the left key produced access to running whereas pressing the right key produced access to running when both keys showed blinking light. Latencies to respond to the lights shortened when the trial-initiation response was introduced and became much shorter than in Experiment 1. In Experiment 3, 1 rat acquired a conditional discrimination task (matching to sample) with steady versus blinking lights at an accuracy exceeding 80%. A trial-initiation response allowed self-paced trials as in Experiment 2. When the rat was exposed to the task for 19 successive 24-hr periods with access to food and water, the discrimination performance settled in a typical circadian pattern and peak accuracy exceeded 90%. When the trial-initiation response was under extinction, without access to running, the circadian activity pattern determined the time of spontaneous recovery. The experiments demonstrate that wheel-running reinforcement can be used to establish and maintain simple and conditional visual discriminations in nondeprived rats.
Koteja, P; Swallow, J G; Carter, P A; Garland, T
1999-01-01
Laboratory house mice (Mus domesticus) that had experienced 10 generations of artificial selection for high levels of voluntary wheel running ran about 70% more total revolutions per day than did mice from random-bred control lines. The difference resulted primarily from increased average velocities rather than from increased time spent running. Within all eight lines (four selected, four control), females ran more than males. Average daily running distances ranged from 4.4 km in control males to 11.6 km in selected females. Whole-animal food consumption was statistically indistinguishable in the selected and control lines. However, mice from selected lines averaged approximately 10% smaller in body mass, and mass-adjusted food consumption was 4% higher in selected lines than in controls. The incremental cost of locomotion (grams food/revolution), computed as the partial regression slope of food consumption on revolutions run per day, did not differ between selected and control mice. On a 24-h basis, the total incremental cost of running (covering a distance) amounted to only 4.4% of food consumption in the control lines and 7.5% in the selected ones. However, the daily incremental cost of time active is higher (15.4% and 13.1% of total food consumption in selected and control lines, respectively). If wheel running in the selected lines continues to increase mainly by increases in velocity, then constraints related to energy acquisition are unlikely to be an important factor limiting further selective gain. More generally, our results suggest that, in small mammals, a substantial evolutionary increase in daily movement distances can be achieved by increasing running speed, without remarkable increases in total energy expenditure.
Running reorganizes the circuitry of one-week-old adult-born hippocampal neurons.
Sah, Nirnath; Peterson, Benjamin D; Lubejko, Susan T; Vivar, Carmen; van Praag, Henriette
2017-09-07
Adult hippocampal neurogenesis is an important form of structural and functional plasticity in the mature mammalian brain. The existing consensus is that GABA regulates the initial integration of adult-born neurons, similar to neuronal development during embryogenesis. Surprisingly, virus-based anatomical tracing revealed that very young, one-week-old, new granule cells in male C57Bl/6 mice receive input not only from GABAergic interneurons, but also from multiple glutamatergic cell types, including mature dentate granule cells, area CA1-3 pyramidal cells and mossy cells. Consistently, patch-clamp recordings from retrovirally labeled new granule cells at 7-8 days post retroviral injection (dpi) show that these cells respond to NMDA application with tonic currents, and that both electrical and optogenetic stimulation can evoke NMDA-mediated synaptic responses. Furthermore, new dentate granule cell number, morphology and excitatory synaptic inputs at 7 dpi are modified by voluntary wheel running. Overall, glutamatergic and GABAergic innervation of newly born neurons in the adult hippocampus develops concurrently, and excitatory input is reorganized by exercise.
Hiramatsu, Layla; Kay, Jarren C; Thompson, Zoe; Singleton, Jennifer M; Claghorn, Gerald C; Albuquerque, Ralph L; Ho, Brittany; Ho, Brett; Sanchez, Gabriela; Garland, Theodore
2017-10-01
Some human diseases, including obesity, Type II diabetes, and numerous cancers, are thought to be influenced by environments experienced in early life, including in utero. Maternal diet during the perinatal period may be especially important for adult offspring energy balance, potentially affecting both body composition and physical activity. This effect may be mediated by the genetic background of individuals, including, for example, potential "protective" mechanisms for individuals with inherently high levels of physical activity or high basal metabolic rates. To examine some of the genetic and environmental factors that influence adult activity levels, we used an ongoing selection experiment with 4 replicate lines of mice bred for high voluntary wheel running (HR) and 4 replicate, non-selected control lines (C). Dams (half HR and half C) were fed a "Western" diet (WD, high in fat and sucrose) or a standard diet (SD) from 2weeks prior to mating until their pups could feed on solid food (14days of age). We analyzed dam and litter characteristics from birth to weaning, and offspring mass and physical activity into adulthood. One male offspring from each litter received additional metabolic and behavioral tests. Maternal WD caused pups to eat solid food significantly earlier for C litters, but not for HR litters (interaction of maternal environment and genotype). With dam mass as a covariate, mean pup mass was increased by maternal WD but litter size was unaffected. HR dams had larger litters and tended to have smaller pups than C dams. Home-cage activity of juvenile focal males was increased by maternal WD. Juvenile lean mass, fat mass, and fat percent were also increased by maternal WD, but food consumption (with body mass as a covariate) was unaffected (measured only for focal males). Behavior in an elevated plus maze, often used to indicate anxiety, was unaffected by maternal WD. Maximal aerobic capacity (VO 2 max) was also unaffected by maternal WD, but HR had higher VO 2 max than C mice. Adult lean, fat, and total body masses were significantly increased by maternal WD, with greater increase for fat than for lean mass. Overall, no aspect of adult wheel running (total distance, duration, average running speed, maximum speed) or home-cage activity was statistically affected by maternal WD. However, analysis of the 8 individual lines revealed that maternal WD significantly increased wheel running in one of the 4 HR lines. On average, all groups lost fat mass after 6days of voluntary wheel running, but the absolute amount lost was greater for mice with maternal WD resulting in no effect of maternal WD on absolute or % body fat after wheel access. All groups gained lean and total body mass during wheel access, regardless of maternal WD or linetype. Measured after wheel access, circulating leptin, adiponectin, and corticosterone concentrations were unaffected by maternal WD and did not differ between HR and C mice. With body mass as a covariate, heart ventricle mass was increased by maternal WD in both HR and C mice, but fat pads, liver, spleen, and brain masses were unaffected. As found previously, HR mice had larger brains than C mice. Body mass of grand-offspring was unaffected by grand-maternal WD, but grand-offspring wheel running was significantly increased for one HR line and decreased for another HR line by grand-maternal WD. In summary, maternal Western diet had long-lasting and general effects on offspring adult morphology, but effects on adult behavior were limited and contingent on sex and genetic background. Copyright © 2017 Elsevier Inc. All rights reserved.
Boggs, Katelyn N; Kakalec, Peter A; Smith, Meghann L; Howell, Stefanie N; Flinn, Jane M
2017-12-01
Circadian rhythms are altered in several diseases associated with aging, one of which is Alzheimer's disease (AD). One example of a circadian rhythm is the rest-activity cycle, which can be measured in mice by monitoring their wheel-running. The present study sought to investigate differences in light phase/dark phase activity between a mouse model of late onset AD (APP/E4) and control (C57Bl6J) mice, in both the pre-plaque and post-plaques stages of the disease. To assess activity level, 24-h wheel running behavior was monitored at six months (pre-plaque) and twelve months (post-plaque) for a period of nine days. The following measures were analyzed: counts (wheel rotations) during the dark phase, counts during the light phase, hour of activity onset, and hour of activity offset. Key findings indicate that activity onset is delayed in APP/E4 mice at six and twelve months, and activity profiles for APP/E4 and C57Bl6J mice differ during the light and dark phase in such a way that APP/E4 mice run less in the early hours of the dark phase and more in the later hours of the dark phase compared to C57Bl6J mice. These findings imply that rest-activity cycle is altered in the pre-plaque stages of AD in APP/E4 mice, as they show impairments as early as six months of age. Copyright © 2017 Elsevier Inc. All rights reserved.
Company, Joseph M.; Roberts, Michael D.; Toedebusch, Ryan G.; Cruthirds, Clayton L.
2013-01-01
The cessation of physical activity in rodents and humans initiates obesogenic mechanisms. The overall purpose of the current study was to determine how the cessation of daily physical activity in rats at 49–56 days of age and at 70–77 days of age via wheel lock (WL) affects adipose tissue characteristics. Male Wistar rats began voluntary running at 28 days old and were either killed at 49–56 days old or at 70–77 days old. Two cohorts of rats always had wheel access (RUN), a second two cohorts of rats had wheel access restricted during the last 7 days (7d-WL), and a third two cohorts of rats did not have access to a voluntary running wheel after the first 6 days of (SED). We observed more robust changes with WL in the 70- to 77-day-old rats. Compared with RUN rats, 7d-WL rats exhibited greater rates of gain in fat mass and percent body fat, increased adipocyte number, higher percentage of small adipocytes, and greater cyclin A1 mRNA in epididymal and perirenal adipose tissue. In contrast, 49- to 56-day-old rats had no change in most of the same characteristics. There was no increase in inflammatory mRNA expression in either cohort with WL. These findings suggest that adipose tissue in 70- to 77-day-old rats is more protected from WL than 49- to 56-day-old rats and responds by expansion via hyperplasia. PMID:24089381
40 CFR 86.1228-85 - Transmissions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... than one minute in length shall be run with automatic transmissions in “Drive” and the wheels braked..., shall be run in a manner representative of in-use operation, and where appropriate, according to the... and idle modes longer than one minute in length shall be run with automatic transmissions in “Neutral...
Physical exercise protects against Alzheimer's disease in 3xTg-AD mice.
García-Mesa, Yoelvis; López-Ramos, Juan Carlos; Giménez-Llort, Lydia; Revilla, Susana; Guerra, Rafael; Gruart, Agnès; Laferla, Frank M; Cristòfol, Rosa; Delgado-García, José M; Sanfeliu, Coral
2011-01-01
Physical exercise is considered to exert a positive neurophysiological effect that helps to maintain normal brain activity in the elderly. Expectations that it could help to fight Alzheimer's disease (AD) were recently raised. This study analyzed the effects of different patterns of physical exercise on the 3xTg-AD mouse. Male and female 3xTg-AD mice at an early pathological stage (4-month-old) have had free access to a running wheel for 1 month, whereas mice at a moderate pathological stage(7-month-old) have had access either during 1 or 6 months. The non-transgenic mouse strain was used as a control. Parallel animal groups were housed in conventional conditions. Cognitive loss and behavioral and psychological symptoms of dementia (BPSD)-like behaviors were present in the 3xTg-AD mice along with alteration in synaptic function and ong-term potentiation impairment in vivo. Brain tissue showed AD-pathology and oxidative-related changes. Disturbances were more severe at the older age tested. Oxidative stress was higher in males but other changes were similar or higher in females. Exercise treatment ameliorated cognitive deterioration and BPSD-like behaviors such as anxiety and the startle response. Synaptic changes were partially protected by exercise. Oxidative stress was reduced. The best neuroprotection was generally obtained after 6 months of exercise in 7-month-old 3xTg-AD mice. Improved sensorimotor function and brain tissue antioxidant defence were induced in both 3xTg-AD and NonTg mice. Therefore, the benefits of aerobic physical exercise on synapse, redox homeostasis, and general brain function demonstrated in the 3xTg-AD mouse further support the value of this healthy life-style against neurodegeneration.
Haskell-Luevano, Carrie; Schaub, Jay W; Andreasen, Amy; Haskell, Kim R; Moore, Marcus C; Koerper, Lorraine M; Rouzaud, Francois; Baker, Henry V; Millard, William J; Walter, Glenn; Litherland, S A; Xiang, Zhimin
2009-02-01
Exercise is a mechanism for maintenance of body weight in humans. Morbidly obese human patients have been shown to possess single nucleotide polymorphisms in the melanocortin-4 receptor (MC4R). MC4R knockout mice have been well characterized as a genetic model that possesses phenotypic metabolic disorders, including obesity, hyperphagia, hyperinsulinemia, and hyperleptinemia, similar to those observed in humans possessing dysfunctional hMC4Rs. Using this model, we examined the effect of voluntary exercise of MC4R knockout mice that were allowed access to a running wheel for a duration of 8 wk. Physiological parameters that were measured included body weight, body composition of fat and lean mass, food consumption, body length, and blood levels of cholesterol and nonfasted glucose, insulin, and leptin. At the termination of the experiment, hypothalamic mRNA expression levels of neuropeptide Y (NPY), agouti-related protein (AGRP), proopiomelanocortin (POMC), cocaine- and amphetamine-regulated transcript (CART), orexin, brain-derived neurotropic factor (BDNF), phosphatase with tensin homology (Pten), melanocortin-3 receptor (MC3R), and NPY-Y1R were determined. In addition, islet cell distribution and function in the pancreas were examined. In the exercising MC4R knockout mice, the pancreatic islet cell morphology and other physiological parameters resembled those observed in the wild-type littermate controls. Gene expression profiles identified exercise as having a significant effect on hypothalamic POMC, orexin, and MC3R levels. Genotype had a significant effect on AGRP, POMC, CART, and NPY-Y1R, with an exercise and genotype interaction effect on NPY gene expression. These data support the hypothesis that voluntary exercise can prevent the genetic predisposition of melanocortin-4 receptor-associated obesity and diabetes.