Sample records for whey

  1. Cheese whey: A potential resource to transform into bioprotein, functional/nutritional proteins and bioactive peptides.

    PubMed

    Yadav, Jay Shankar Singh; Yan, Song; Pilli, Sridhar; Kumar, Lalit; Tyagi, R D; Surampalli, R Y

    2015-11-01

    The byproduct of cheese-producing industries, cheese whey, is considered as an environmental pollutant due to its high BOD and COD concentrations. The high organic load of whey arises from the presence of residual milk nutrients. As demand for milk-derived products is increasing, it leads to increased production of whey, which poses a serious management problem. To overcome this problem, various technological approaches have been employed to convert whey into value-added products. These technological advancements have enhanced whey utilization and about 50% of the total produced whey is now transformed into value-added products such as whey powder, whey protein, whey permeate, bioethanol, biopolymers, hydrogen, methane, electricity bioprotein (single cell protein) and probiotics. Among various value-added products, the transformation of whey into proteinaceous products is attractive and demanding. The main important factor which is attractive for transformation of whey into proteinaceous products is the generally recognized as safe (GRAS) regulatory status of whey. Whey and whey permeate are biotransformed into proteinaceous feed and food-grade bioprotein/single cell protein through fermentation. On the other hand, whey can be directly processed to obtain whey protein concentrate, whey protein isolate, and individual whey proteins. Further, whey proteins are also transformed into bioactive peptides via enzymatic or fermentation processes. The proteinaceous products have applications as functional, nutritional and therapeutic commodities. Whey characteristics, and its transformation processes for proteinaceous products such as bioproteins, functional/nutritional protein and bioactive peptides are covered in this review. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. 40 CFR 405.110 - Applicability; description of the condensed whey subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... condensed whey subcategory. 405.110 Section 405.110 Protection of Environment ENVIRONMENTAL PROTECTION... Condensed Whey Subcategory § 405.110 Applicability; description of the condensed whey subcategory. The... whey and condensed acid whey. ...

  3. Whey proteins in the regulation of food intake and satiety.

    PubMed

    Luhovyy, Bohdan L; Akhavan, Tina; Anderson, G Harvey

    2007-12-01

    Whey protein has potential as a functional food component to contribute to the regulation of body weight by providing satiety signals that affect both short-term and long-term food intake regulation. Because whey is an inexpensive source of high nutritional quality protein, the utilization of whey as a physiologically functional food ingredient for weight management is of current interest. At present, the role of individual whey proteins and peptides in contributing to food intake regulation has not been fully defined. However, Whey protein reduces short-term food intake relative to placebo, carbohydrate and other proteins. Whey protein affects satiation and satiety by the actions of: (1) whey protein fractions per se; (2) bioactive peptides; (3) amino-acids released after digestion; (4) combined action of whey protein and/or peptides and/or amino acids with other milk constituents. Whey ingestion activates many components of the food intake regulatory system. Whey protein is insulinotropic, and whey-born peptides affect the renin-angiotensin system. Therefore whey protein has potential as physiologically functional food component for persons with obesity and its co-morbidities (hypertension, type II diabetes, hyper- and dislipidemia). It remains unclear, however, if the favourable effects of whey on food intake, subjective satiety and intake regulatory mechanisms in humans are obtained from usual serving sizes of dairy products. The effects described have been observed in short-term experiments and when whey is consumed in much higher amounts.

  4. Review: elimination of bacteriophages in whey and whey products

    PubMed Central

    Atamer, Zeynep; Samtlebe, Meike; Neve, Horst; J. Heller, Knut; Hinrichs, Joerg

    2013-01-01

    As the cheese market faces strong international competition, the optimization of production processes becomes more important for the economic success of dairy companies. In dairy productions, whey from former cheese batches is frequently re-used to increase the yield, to improve the texture and to increase the nutrient value of the final product. Recycling of whey cream and particulated whey proteins is also routinely performed. Most bacteriophages, however, survive pasteurization and may re-enter the cheese manufacturing process. There is a risk that phages multiply to high numbers during the production. Contamination of whey samples with bacteriophages may cause problems in cheese factories because whey separation often leads to aerosol-borne phages and thus contamination of the factory environment. Furthermore, whey cream or whey proteins used for recycling into cheese matrices may contain thermo-resistant phages. Drained cheese whey can be contaminated with phages as high as 109 phages mL-1. When whey batches are concentrated, phage titers can increase significantly by a factor of 10 hindering a complete elimination of phages. To eliminate the risk of fermentation failure during recycling of whey, whey treatments assuring an efficient reduction of phages are indispensable. This review focuses on inactivation of phages in whey by thermal treatment, ultraviolet (UV) light irradiation, and membrane filtration. Inactivation by heat is the most common procedure. However, application of heat for inactivation of thermo-resistant phages in whey is restricted due to negative effects on the functional properties of native whey proteins. Therefore an alternative strategy applying combined treatments should be favored – rather than heating the dairy product at extreme temperature/time combinations. By using membrane filtration or UV treatment in combination with thermal treatment, phage numbers in whey can be reduced sufficiently to prevent subsequent phage accumulations. PMID:23882262

  5. 9 CFR 319.700 - Margarine or oleomargarine. 1

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... liquid, condensed, or dry form of whey, reduced lactose whey, reduced minerals whey, or whey protein concentrate, non-lactose-containing whey components, casein, or caseinate; or other suitable edible protein...

  6. 9 CFR 319.700 - Margarine or oleomargarine. 1

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... liquid, condensed, or dry form of whey, reduced lactose whey, reduced minerals whey, or whey protein concentrate, non-lactose-containing whey components, casein, or caseinate; or other suitable edible protein...

  7. The foaming properties of camel and bovine whey: The impact of pH and heat treatment.

    PubMed

    Lajnaf, Roua; Picart-Palmade, Laetitia; Cases, Eliane; Attia, Hamadi; Marchesseau, Sylvie; Ayadi, M A

    2018-02-01

    The effect of heat treatment (70°C or 90°C for 30min) on the foaming and interfacial properties of acid and sweet whey obtained from bovine and camel fresh milk was examined. The maximum foamability and foam stability were observed for acid whey when compared to sweet whey for both milks, with higher values for the camel whey. This behavior for acid whey was explained by the proximity of the pI of whey protein (4.9-5.2), where proteins were found to carry the lowest negative charge as confirmed by the zeta potential measurements. Interfacial properties of acid camel whey and acid bovine whey were preserved at air water interface even after a heat treatment at 90°C. These results confirmed the pronounced foaming and interfacial properties of acid camel whey, even if acid and sweet bovine whey exhibited the highest viscoelastic modulus after heating. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Functional Foods Containing Whey Proteins

    USDA-ARS?s Scientific Manuscript database

    Whey proteins, modified whey proteins, and whey components are useful as nutrients or supplements for health maintenance. Extrusion modified whey proteins can easily fit into new products such as beverages, confectionery items (e.g., candies), convenience foods, desserts, baked goods, sauces, and in...

  9. Physicochemical characterization of mozzarella cheese wheys and stretchwaters in comparison with several other sweet wheys.

    PubMed

    Gernigon, G; Piot, M; Beaucher, E; Jeantet, R; Schuck, P

    2009-11-01

    To better understand the origins of the problems occurring during mozzarella cheese whey concentration, lactose crystallization, and spray-drying steps, a physicochemical characterization was achieved. For this purpose, mozzarella cheese wheys were sampled and their content in different compounds such as total nitrogen, noncasein nitrogen, nonprotein nitrogen, lactate, citrate, chloride, sulfate, phosphate anions, calcium, magnesium, potassium, sodium cations, and the sugars glucose and galactose were measured. In a second step, the results were compared with the corresponding content in cheddar cheese wheys, raclette cheese wheys, soft cheese wheys, and Swiss-type cheese wheys. At the end of this survey, it was shown that mozzarella cheese wheys were more concentrated in lactate and in minerals--especially phosphate, calcium, and magnesium--than the other cheese wheys and that they contained galactose. These constituents are known to be hygroscopic. Complementary surveys are now necessary to compare the hygroscopicity of galactose and lactate and discover whether the amounts of these compounds found in mozzarella cheese wheys are a factor in the problems encountered during the concentration, lactose crystallization, and spray-drying steps.

  10. 7 CFR 58.717 - Whey.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Whey. 58.717 Section 58.717 Agriculture Regulations of....717 Whey. Whey used in cheese products should meet the requirements equivalent to USDA Extra Grade except that the moisture requirement for dry whey may be waived. ...

  11. UTILIZATION OF CHEESE WHEY FOR WINE PRODUCTION

    EPA Science Inventory

    Wine was successfully produced in the laboratory from cheese whey. The method used involves the deproteinization of either sweet (cheddar cheese) whey or acid (cottage cheese) whey by heat or ultrafiltration, the addition of sulfur dioxide to stabilize the whey by Kruyveromyces f...

  12. 7 CFR 58.808 - Whey.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Whey. 58.808 Section 58.808 Agriculture Regulations of....808 Whey. Whey for processing shall be fresh and originate from the processing of products made from... by the Food and Drug Administration may be added to the whey for processing, except when restricted...

  13. 7 CFR 58.813 - Dry whey.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Dry whey. 58.813 Section 58.813 Agriculture... Products Bearing Usda Official Identification § 58.813 Dry whey. The quality requirements for dry whey shall be in accordance with the U.S. Standards for Dry Whey. Supplemental Specifications for Plants...

  14. Biological treatment of whey by Tetrahymena pyriformis and impact study on laboratory-scale wastewater lagoon process.

    PubMed

    Bonnet, J L; Bogaerts, P; Bohatier, J

    1999-06-01

    A procedure based on a biological treatment of whey was tested as part of research on waste treatment at the scale of small cheesemaking units. We studied the potential biodegradation of whey by a protozoan ciliate, Tetrahymena pyriformis, and evaluated the functional, microbiological and physiological disturbances caused by crude whey and the biodegraded whey in laboratory-scale pilots mimicking a natural lagoon treatment. The results show that T. pyriformis can strongly reduce the pollutant load of whey. In the lagoon pilots serving as example of receptor media, crude whey gradually but completely arrested operation, whereas with the biodegraded whey adverse effects were only temporary, and normal operation versus a control was gradually recovered in a few days.

  15. The influence of bleaching agent and temperature on bleaching efficacy and volatile components of fluid whey and whey retentate.

    PubMed

    Fox, A J; Smith, T J; Gerard, P D; Drake, M A

    2013-10-01

    Fluid whey or retentate are often bleached to remove residual annatto Cheddar cheese colorant, and this process causes off-flavors in dried whey proteins. This study determined the impact of temperature and bleaching agent on bleaching efficacy and volatile components in fluid whey and fluid whey retentate. Freshly manufactured liquid whey (6.7% solids) or concentrated whey protein (retentate) (12% solids, 80% protein) were bleached using benzoyl peroxide (BP) at 100 mg/kg (w/w) or hydrogen peroxide (HP) at 250 mg/kg (w/w) at 5 °C for 16 h or 50 °CC for 1 h. Unbleached controls were subjected to a similar temperature profile. The experiment was replicated three times. Annatto destruction (bleaching efficacy) among treatments was compared, and volatile compounds were extracted and separated using solid phase microextraction gas chromatography mass spectrometry (SPME GC-MS). Bleaching efficacy of BP was higher than HP (P < 0.05) for fluid whey at both 5 and 50 °C. HP bleaching efficacy was increased in retentate compared to liquid whey (P < 0.05). In whey retentate, there was no difference between bleaching with HP or BP at 50 or 5 °C (P > 0.05). Retentate bleached with HP at either temperature had higher relative abundances of pentanal, hexanal, heptanal, and octanal than BP bleached retentate (P < 0.05). Liquid wheys generally had lower concentrations of selected volatiles compared to retentates. These results suggest that the highest bleaching efficacy (within the parameters evaluated) in liquid whey is achieved using BP at 5 or 50 °C and at 50 °C with HP or BP in whey protein retentate. © 2013 Institute of Food Technologists®

  16. Performance of broiler chickens given whey in the food and/or drinking water.

    PubMed

    Shariatmadari, F; Forbes, J M

    2005-08-01

    1. The effects on food intake and weight gain of offering broiler chickens (2 to 7 weeks of age) dry food, wet food, wet food containing whey, whey as drinking liquid and combinations of two of these were studied in 5 experiments. 2. Wet feed generally improved both weight gain and feed efficiencies significantly. Feeding whey also improved weight gain and feed conversion efficiency, but whey offered as a drinking fluid had an adverse effect on broiler performance. 3. When whey was offered both as drinking liquid and added to the food it had a deleterious effect. 4. When whey was offered from 4 or 6 weeks of age, it had a better effect than when offered from 2 weeks of age. 5. There was better performance when whey in the drinking water was diluted and/or offered on alternate days or half-days. 6. Broilers allowed to choose between wet and dry feed when water was freely available chose mostly dry feed; in the absence of drinking water they chose mostly wet food. Birds offered water and liquid whey avoided whey completely. 7. It is concluded that whey can be used in diets for broiler chickens by incorporating it in the food as long as drinking water is offered ad libitum. Whey may be offered as a drink if the food is mixed with 1.8 times its weight of water but it is better to dilute the whey with an equal volume of water whether it is added to food or given as drink. Good results can also be obtained when undiluted whey is offered alternately with water, either in half-day or full-day periods.

  17. Effect of temperature and bleaching agent on bleaching of liquid Cheddar whey.

    PubMed

    Listiyani, M A D; Campbell, R E; Miracle, R E; Barbano, D M; Gerard, P D; Drake, M A

    2012-01-01

    The use of whey protein as an ingredient in foods and beverages is increasing, and thus demand for colorless and mild-tasting whey protein is rising. Bleaching is commonly applied to fluid colored cheese whey to decrease color, and different temperatures and bleach concentrations are used. The objectives of this study were to compare the effects of hot and cold bleaching, the point of bleaching (before or after fat separation), and bleaching agent on bleaching efficacy and volatile components of liquid colored and uncolored Cheddar whey. First, Cheddar whey was manufactured, pasteurized, fat-separated, and subjected to one of a number of hot (68°C) or cold (4°C) bleaching applications [hydrogen peroxide (HP) 50 to 500 mg/kg; benzoyl peroxide (BP) 25 to 100 mg/kg] followed by measurement of residual norbixin and color by reflectance. Bleaching agent concentrations were then selected for the second trial. Liquid colored Cheddar whey was manufactured in triplicate and pasteurized. Part of the whey was collected (no separation, NSE) and the rest was subjected to fat separation (FSE). The NSE and FSE wheys were then subdivided and bleaching treatments (BP 50 or 100 mg/kg and HP 250 or 500 mg/kg) at 68°C for 30 min or 4°C for 16 h were applied. Control NSE and FSE with no added bleach were also subjected to each time-temperature combination. Volatile compounds from wheys were evaluated by gas chromatography-mass spectrometry, and norbixin (annatto) was extracted and quantified to compare bleaching efficacy. Proximate analysis, including total solids, protein, and fat contents, was also conducted. Liquid whey subjected to hot bleaching at both concentrations of HP or at 100mg/kg BP had greater lipid oxidation products (aldehydes) compared with unbleached wheys, 50mg/kg BP hot-bleached whey, or cold-bleached wheys. No effect was detected between NSE and FSE liquid Cheddar whey on the relative abundance of volatile lipid oxidation products. Wheys bleached with BP had lower norbixin content compared with wheys bleached with HP. Bleaching efficacy of HP was decreased at 4°C compared with 68°C, whereas that of BP was not affected by temperature. These results suggest that fat separation of liquid Cheddar whey has no effect on bleaching efficacy or lipid oxidation and that hot bleaching may result in increased lipid oxidation in fluid whey. Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  18. 21 CFR 184.1979a - Reduced lactose whey.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Reduced lactose whey. 184.1979a Section 184.1979a... Listing of Specific Substances Affirmed as GRAS § 184.1979a Reduced lactose whey. (a) Reduced lactose whey is the substance obtained by the removal of lactose from whey. The lactose content of the finished...

  19. 21 CFR 184.1979a - Reduced lactose whey.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Reduced lactose whey. 184.1979a Section 184.1979a... Listing of Specific Substances Affirmed as GRAS § 184.1979a Reduced lactose whey. (a) Reduced lactose whey is the substance obtained by the removal of lactose from whey. The lactose content of the finished...

  20. 21 CFR 184.1979b - Reduced minerals whey.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Reduced minerals whey. 184.1979b Section 184.1979b... Listing of Specific Substances Affirmed as GRAS § 184.1979b Reduced minerals whey. (a) Reduced minerals whey is the substance obtained by the removal of a portion of the minerals from whey. The dry product...

  1. 21 CFR 184.1979b - Reduced minerals whey.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Reduced minerals whey. 184.1979b Section 184.1979b... Listing of Specific Substances Affirmed as GRAS § 184.1979b Reduced minerals whey. (a) Reduced minerals whey is the substance obtained by the removal of a portion of the minerals from whey. The dry product...

  2. Processing of whey modulates proliferative and immune functions in intestinal epithelial cells.

    PubMed

    Nguyen, Duc Ninh; Sangild, Per T; Li, Yanqi; Bering, Stine B; Chatterton, Dereck E W

    2016-02-01

    Whey protein concentrate (WPC) is often subjected to heat treatment during industrial processing, resulting in protein denaturation and loss of protein bioactivity. We hypothesized that WPC samples subjected to different degrees of thermal processing are associated with different levels of bioactive proteins and effects on proliferation and immune response in intestinal epithelial cells (IEC). The results showed that low-heat-treated WPC had elevated levels of lactoferrin and transforming growth factor-β2 compared with that of standard WPC. The level of aggregates depended on the source of whey, with the lowest level being found in WPC derived from acid whey. Following acid activation, WPC from acid whey enhanced IEC proliferation compared with WPC from sweet whey or nonactivated WPC. Low-heat-treated WPC from acid whey induced greater secretion of IL-8 in IEC than either standard WPC from acid whey or low-heat-treated WPC from sweet whey. Following acid activation (to activate growth factors), low-heat-treated WPC from sweet whey induced higher IL-8 levels in IEC compared with standard WPC from sweet whey. In conclusion, higher levels of bioactive proteins in low-heat-treated WPC, especially from acid whey, may enhance proliferation and cytokine responses of IEC. These considerations could be important to maintain optimal bioactivity of infant formulas, including their maturational and immunological effects on the developing intestine. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  3. 21 CFR 184.1979b - Reduced minerals whey.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Reduced minerals whey. 184.1979b Section 184.1979b... GRAS § 184.1979b Reduced minerals whey. (a) Reduced minerals whey is the substance obtained by the removal of a portion of the minerals from whey. The dry product shall not contain more than 7 percent ash...

  4. Invited review: Whey proteins as antioxidants and promoters of cellular antioxidant pathways.

    PubMed

    Corrochano, Alberto R; Buckin, Vitaly; Kelly, Phil M; Giblin, Linda

    2018-06-01

    Oxidative stress contributes to cell injury and aggravates several chronic diseases. Dietary antioxidants help the body to fight against free radicals and, therefore, avoid or reduce oxidative stress. Recently, proteins from milk whey liquid have been described as antioxidants. This review summarizes the evidence that whey products exhibit radical scavenging activity and reducing power. It examines the processing and treatment attempts to increase the antioxidant bioactivity and identifies 1 enzyme, subtilisin, which consistently produces the most potent whey fractions. The review compares whey from different milk sources and puts whey proteins in the context of other known food antioxidants. However, for efficacy, the antioxidant activity of whey proteins must not only survive processing, but also upper gut transit and arrival in the bloodstream, if whey products are to promote antioxidant levels in target organs. Studies reveal that direct cell exposure to whey samples increases intracellular antioxidants such as glutathione. However, the physiological relevance of these in vitro assays is questionable, and evidence is conflicting from dietary intervention trials, with both rats and humans, that whey products can boost cellular antioxidant biomarkers. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  5. Resistance Training and Co-supplementation with Creatine and Protein in Older Subjects with Frailty.

    PubMed

    Collins, J; Longhurst, G; Roschel, H; Gualano, B

    2016-01-01

    Studies assessing the effects co-supplementation with creatine and protein, along with resistance training, in older individuals with frailty are lacking. This is an exploratory trial from the Pro-Elderly study ("Protein Intake and Resistance Training in Aging") aimed at gathering knowledge on the feasibility, safety, and efficacy of co-supplementation with creatine and protein supplementation, combined with resistance training, in older individuals with frailty. A 14-week, double-blind, randomized, parallel-group, placebo controlled exploratory trial. The subjects were randomly assigned to whey protein and creatine co-supplementation (WHEY+CR) or whey protein supplementation (WHEY) group. All subjects undertook a supervised exercise training program and were assessed at baseline and after 14 weeks. Muscle function, body composition, blood parameters, and self-reported adverse events were assessed. No interaction effects (between-group differences) were observed for any dependent variables (p > 0.05 for all). However, there were main time-effects in handgrip (WHEY+CR = 26.65 ± 31.29; WHEY = 13.84 ± 14.93 Kg; p = 0.0005), timed-up-and-go (WHEY+CR = -11.20 ± 9.37; WHEY = -17.76 ± 21.74 sec; p = 0.006), and timed-stands test (WHEY+CR = 47.50 ± 35.54; WHEY = 46.87 ± 24.23 reps; p = 0.0001), suggesting that WHEY+CR and WHEY were similarly effective in improving muscle function. All of the subjects showed improvements in at least two of the three functional tests, regardless of their treatments. Body composition and blood parameters were not changed (p > 0.05). No severe adverse effects were observed. Co-supplementation with creatine and whey protein was well-tolerable and free of adverse events in older subjects with frailty undertaking resistance training. Creatine supplementation did not augment the adaptive effects of resistance training along with whey protein on body composition or muscle function in this population. Clinicaltrials.gov: NCT01890382.

  6. Whey cheese: membrane technology to increase yields.

    PubMed

    Riera, Francisco; González, Pablo; Muro, Claudia

    2016-02-01

    Sweet cheese whey has been used to obtain whey cheese without the addition of milk. Pre-treated whey was concentrated by nanofiltration (NF) at different concentration ratios (2, 2.5 and 2.8) or by reverse osmosis (RO) (2-3 times). After the concentration, whey was acidified with lactic acid until a final pH of 4.6-4.8, and heated to temperatures between 85 and 90 °C. The coagulated fraction (supernatant) was collected and freely drained over 4 h. The cheese-whey yield and protein, fat, lactose and ash recoveries in the final product were calculated. The membrane pre-concentration step caused an increase in the whey-cheese yield. The final composition of products was compared with traditional cheese-whey manufacture products (without membrane concentration). Final cheese yields found were to be between 5 and 19.6%, which are higher than those achieved using the traditional 'Requesón' process.

  7. The effect of addition of skimmed milk on the characteristics of Myzithra cheeses.

    PubMed

    Kaminarides, S; Ilias-Dimopoulos, E; Zoidou, E; Moatsou, G

    2015-08-01

    Myzithra cheese is a traditional Greek whey cheese. Three types of Myzithra cheese were produced from A: 100% whey; B: 90% whey+10% ovine milk and C: 90% whey+10% skimmed ovine milk and were evaluated. The addition of skimmed milk to whey resulted in a new dietary product, containing 9.24% fat, with good quality, a harder texture and higher levels of ash, Ca, Mg and K than those of experimental cheeses A and B. Electrophoretic patterns and HPLC chromatograms of the proteins of Myzithra cheeses revealed the presence or not of αs-CN to the whey cheeses. In addition, SDS-electrophoresis of proteins under special preparation of samples permitted for first time the separation of whey-cheese protein (WP) components that had been denatured during cooking of the whey. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. In-Depth Characterization of Sheep (Ovis aries) Milk Whey Proteome and Comparison with Cow (Bos taurus)

    PubMed Central

    Ha, Minh; Sabherwal, Manya; Duncan, Elizabeth; Stevens, Stewart; Stockwell, Peter; McConnell, Michelle; Bekhit, Alaa El-Din; Carne, Alan

    2015-01-01

    An in-depth proteomic study of sheep milk whey is reported and compared to the data available in the literature for the cow whey proteome. A combinatorial peptide ligand library kit (ProteoMiner) was used to normalize protein abundance in the sheep whey proteome followed by an in-gel digest of a 1D-PAGE display and an in-solution digestion followed by OFFGEL isoelectric focusing fractionation. The peptide fractions obtained were then analyzed by LC-MS/MS. This enabled identification of 669 proteins in sheep whey that, to our knowledge, is the largest inventory of sheep whey proteins identified to date. A comprehensive list of cow whey proteins currently available in the literature (783 proteins from unique genes) was assembled and compared to the sheep whey proteome data obtained in this study (606 proteins from unique genes). This comparison revealed that while the 233 proteins shared by the two species were significantly enriched for immune and inflammatory responses in gene ontology analysis, proteins only found in sheep whey in this study were identified that take part in both cellular development and immune responses, whereas proteins only found in cow whey in this study were identified to be associated with metabolism and cellular growth. PMID:26447763

  9. Whey-derived valuable products obtained by microbial fermentation.

    PubMed

    Pescuma, Micaela; de Valdez, Graciela Font; Mozzi, Fernanda

    2015-08-01

    Whey, the main by-product of the cheese industry, is considered as an important pollutant due to its high chemical and biological oxygen demand. Whey, often considered as waste, has high nutritional value and can be used to obtain value-added products, although some of them need expensive enzymatic synthesis. An economical alternative to transform whey into valuable products is through bacterial or yeast fermentations and by accumulation during algae growth. Fermentative processes can be applied either to produce individual compounds or to formulate new foods and beverages. In the first case, a considerable amount of research has been directed to obtain biofuels able to replace those derived from petrol. In addition, the possibility of replacing petrol-derived plastics by biodegradable polymers synthesized during bacterial fermentation of whey has been sought. Further, the ability of different organisms to produce metabolites commonly used in the food and pharmaceutical industries (i.e., lactic acid, lactobionic acid, polysaccharides, etc.) using whey as growth substrate has been studied. On the other hand, new low-cost functional whey-based foods and beverages leveraging the high nutritional quality of whey have been formulated, highlighting the health-promoting effects of fermented whey-derived products. This review aims to gather the multiple uses of whey as sustainable raw material for the production of individual compounds, foods, and beverages by microbial fermentation. This is the first work to give an overview on the microbial transformation of whey as raw material into a large repertoire of industrially relevant foods and products.

  10. Effects of combined β-hydroxy-β-methylbutyrate (HMB) and whey protein ingestion on symptoms of eccentric exercise-induced muscle damage.

    PubMed

    Shirato, Minayuki; Tsuchiya, Yosuke; Sato, Teruyuki; Hamano, Saki; Gushiken, Takeshi; Kimura, Naoto; Ochi, Eisuke

    2016-01-01

    The purpose of this study was to examine the effects of combined β-hydroxy-β-methylbutyrate (HMB) and whey protein ingestion on muscle strength and damage following a single bout of eccentric exercise. Eighteen untrained male subjects were assigned to HMB and Whey protein (HMB + Whey; 3 g/day HMB and 36.6 g/day whey protein, n = 6), HMB (3 g/day, n = 6), or whey protein (36.6 g/day, n = 6) groups. Ingestion commenced 7 days before non-dominant elbow flexor eccentric exercise (30 deg/sec, 6 reps × 7 sets) and continued until 4 days post-exercise. The maximal isometric strength, muscle soreness, plasma creatine kinase (CK), lactate dehydrogenase (LDH) were assessed pre-exercise, and at 1, 2, 3, and 5 days after exercise. The change scores of maximal isometric strength significantly decreased at day 1, 2, and 5 in the whey protein group compared to pre value and that in HMB + Whey protein and HMB groups decreased at day 1 and 5. The muscle soreness significantly increased in the whey and HMB + Whey protein groups at day 3 compared to pre value (p < 0.05). CK and LDH significantly increased (time effect: p < 0.05) after exercise. However, all data were not significant difference among the groups. These results suggest that ingestion of combined HMB and whey protein does not have a role to inhibit muscle strength loss and soreness, and decrease in muscle damage markers after eccentric exercise in comparison with HMB and whey protein alone.

  11. Inhibition of bacterial growth in sweet cheese whey by carbon dioxide as determined by culture-independent community profiling.

    PubMed

    Lo, Raquel; Xue, Tian; Weeks, Mike; Turner, Mark S; Bansal, Nidhi

    2016-01-18

    Whey is a valuable co-product from cheese making that serves as a raw material for a wide range of products. Its rich nutritional content lends itself to rapid spoilage, thus it typically needs to be pasteurised and refrigerated promptly. Despite the extensive literature on milk spoilage bacteria, little is known about the spoilage bacteria of whey. The utility of carbon dioxide (CO2) to extend the shelf-life of raw milk and cottage cheese has been well established, but its application in whey preservation has not yet been explored. This study aims to characterise the microbial populations of fresh and spoiled sweet whey by culture-independent community profiling using 454 pyrosequencing of 16S rRNA gene amplicons and to determine whether carbonation is effective in inhibiting bacterial growth in sweet whey. The microbiota of raw Cheddar and Mozzarella whey was dominated by cheese starter bacteria. After pasteurisation, two out of the three samples studied became dominated by diverse environmental bacteria from various phyla, with Proteobacteria being the most dominant. Diverse microbial profiles were maintained until spoilage occurred, when the entire population was dominated by just one or two genera. Whey spoilage bacteria were found to be similar to those of milk. Pasteurised Cheddar and Mozzarella whey was spoiled by Bacillus sp. or Pseudomonas sp., and raw Mozzarella whey was spoiled by Pseudomonas sp., Serratia sp., and other members of the Enterobacteriaceae family. CO2 was effective in inhibiting bacterial growth of pasteurised Cheddar and Mozzarella whey stored at 15°C and raw Mozzarella whey stored at 4°C. The spoilage bacteria of the carbonated samples were similar to those of the non-carbonated controls. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Authentication of Whey Protein Powders by Portable Mid-Infrared Spectrometers Combined with Pattern Recognition Analysis.

    PubMed

    Wang, Ting; Tan, Siow Ying; Mutilangi, William; Aykas, Didem P; Rodriguez-Saona, Luis E

    2015-10-01

    The objective of this study was to develop a simple and rapid method to differentiate whey protein types (WPC, WPI, and WPH) used for beverage manufacturing by combining the spectral signature collected from portable mid-infrared spectrometers and pattern recognition analysis. Whey protein powders from different suppliers are produced using a large number of processing and compositional variables, resulting in variation in composition, concentration, protein structure, and thus functionality. Whey protein powders including whey protein isolates, whey protein concentrates and whey protein hydrolysates were obtained from different suppliers and their spectra collected using portable mid-infrared spectrometers (single and triple reflection) by pressing the powder onto an Attenuated Total Reflectance (ATR) diamond crystal with a pressure clamp. Spectra were analyzed by soft independent modeling of class analogy (SIMCA) generating a classification model showing the ability to differentiate whey protein types by forming tight clusters with interclass distance values of >3, considered to be significantly different from each other. The major bands centered at 1640 and 1580 cm(-1) were responsible for separation and were associated with differences in amide I and amide II vibrations of proteins, respectively. Another important band in whey protein clustering was associated with carboxylate vibrations of acidic amino acids (∼1570 cm(-1)). The use of a portable mid-IR spectrometer combined with pattern recognition analysis showed potential for discriminating whey protein ingredients that can help to streamline the analytical procedure so that it is more applicable for field-based screening of ingredients. A rapid, simple and accurate method was developed to authenticate commercial whey protein products by using portable mid-infrared spectrometers combined with chemometrics, which could help ensure the functionality of whey protein ingredients in food applications. © 2015 Institute of Food Technologists®

  13. Influence of storage, heat treatment, and solids composition on the bleaching of whey with hydrogen peroxide.

    PubMed

    Li, Xiaomeng E; Campbell, Rachel E; Fox, Aaron J; Gerard, Patrick D; Drake, MaryAnne

    2012-07-01

    The residual annatto colorant in liquid whey is bleached to provide a desired neutral color in dried whey ingredients. This study evaluated the influence of starter culture, whey solids and composition, and spray drying on bleaching efficacy. Cheddar cheese whey with annatto was manufactured with starter culture or by addition of lactic acid and rennet. Pasteurized fat-separated whey was ultrafiltered (retentate) and spray dried to 34% whey protein concentrate (WPC34). Aliquots were bleached at 60 °C for 1 h (hydrogen peroxide, 250 ppm), before pasteurization, after pasteurization, after storage at 3 °C and after freezing at -20 °C. Aliquots of retentate were bleached analogously immediately and after storage at 3 or -20 °C. Freshly spray dried WPC34 was rehydrated to 9% (w/w) solids and bleached. In a final experiment, pasteurized fat-separated whey was ultrafiltered and spray dried to WPC34 and WPC80. The WPC34 and WPC80 retentates were diluted to 7 or 9% solids (w/w) and bleached at 50 °C for 1 h. Freshly spray-dried WPC34 and WPC80 were rehydrated to 9 or 12% solids and bleached. Bleaching efficacy was measured by extraction and quantification of norbixin. Each experiment was replicated 3 times. Starter culture, fat separation, or pasteurization did not impact bleaching efficacy (P > 0.05) while cold or frozen storage decreased bleaching efficacy (P < 0.05). Bleaching efficacy of 80% (w/w) protein liquid retentate was higher than liquid whey or 34% (w/w) protein liquid retentate (P < 0.05). Processing steps, particularly holding times and solids composition, influence bleaching efficacy of whey. Optimization of whey bleaching conditions is important to reduce the negative effects of bleaching on the flavor of dried whey ingredients. This study established that liquid storage and whey composition are critical processing points that influence bleaching efficacy. © 2012 Institute of Food Technologists®

  14. 40 CFR 405.120 - Applicability; description of the dry whey subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... whey subcategory. 405.120 Section 405.120 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS DAIRY PRODUCTS PROCESSING POINT SOURCE CATEGORY Dry Whey Subcategory § 405.120 Applicability; description of the dry whey subcategory. The provisions of this subpart...

  15. Whey protein fractionation using supercritical carbon dioxide

    USDA-ARS?s Scientific Manuscript database

    Sweet whey, a coproduct of the cheesemaking process, can be concentrated using ultrafiltration and ion-exchange to produce whey protein isolates (WPI). WPI contains approximately 32% alpha-lactalbumin (alpha-LA) and 61% beta-lactoglobulin (beta-LG), plus a small amount of minor whey proteins. Whil...

  16. Determination of whey adulteration in milk powder by using laser induced breakdown spectroscopy.

    PubMed

    Bilge, Gonca; Sezer, Banu; Eseller, Kemal Efe; Berberoglu, Halil; Topcu, Ali; Boyaci, Ismail Hakki

    2016-12-01

    A rapid and in situ method has been developed to detect and quantify adulterated milk powder through adding whey powder by using laser induced breakdown spectroscopy (LIBS). The methodology is based on elemental composition differences between milk and whey products. Milk powder, sweet and acid whey powders were produced as standard samples, and milk powder was adulterated with whey powders. Based on LIBS spectra of standard samples and commercial products, species was identified using principle component analysis (PCA) method, and discrimination rate of milk and whey powders was found as 80.5%. Calibration curves were obtained with partial least squares regression (PLS). Correlation coefficient (R(2)) and limit of detection (LOD) values were 0.981 and 1.55% for adulteration with sweet whey powder, and 0.985 and 0.55% for adulteration with acid whey powder, respectively. The results were found to be consistent with the data from inductively coupled plasma - mass spectrometer (ICP-MS) method. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Alternative bleaching methods for Cheddar cheese whey.

    PubMed

    Kang, E J; Smith, T J; Drake, M A

    2012-07-01

    Residual annatto colorant (norbixin) in fluid Cheddar cheese whey can be bleached. The 2 approved chemical bleaching agents for whey, hydrogen peroxide (HP) and benzoyl peroxide (BP), negatively impact the flavor of dried whey protein. The objective of this study was to evaluate alternative methods for bleaching liquid whey: ultraviolet radiation (UV), acid-activated bentonite (BT), and ozone (OZ). Colored Cheddar cheese whey was manufactured followed by pasteurization and fat separation. Liquid whey was subjected to one of 5 treatments: control (CT) (no bleaching; 50 °C, 1 h), HP (250 mg/kg; 50 °C, 1 h), UV (1 min exposure; 50 °C), BT (0.5% w/w; 50 °C, 1 h), or OZ (2.2g/h, 50 °C, 1 h). The treated whey was then ultrafiltered, diafiltered, and spray-dried to 80% whey protein concentrate (WPC80). The entire experiment was replicated 3 times. Color (norbixin extraction and measurement), descriptive sensory, and instrumental volatile analyses were conducted on WPC80. Norbixin elimination was 28%, 79%, 39%, and 15% for HP, BT, UV, and OZ treatments, respectively. WPC80 from bleached whey, regardless of bleaching agent, had lower sweet aromatic and cooked/milky flavors compared to unbleached CT (P < 0.05). The HP and BT WPC80 had higher fatty flavor compared to the CT WPC80 (P < 0.05), and the UV and OZ WPC80 had distinct mushroom/burnt and animal flavors. Volatile compound results were consistent with sensory results and confirmed higher relative abundances of volatile aldehydes in UV, HP, and OZ WPC80 compared to CT and BT WPC80. Based on bleaching efficacy and flavor, BT may be an alternative to chemical bleaching of fluid whey. The 2 approved chemical bleaching agents for whey, hydrogen peroxide (HP) and benzoyl peroxide (BP), negatively impact flavor of dried whey protein, and restrictions on these agents are increasing. This study evaluated 3 alternatives to chemical bleaching of fluid whey: UV radiation, ozone, and bentonite. © 2012 Institute of Food Technologists®

  18. Whey Protein Reduces Early Life Weight Gain in Mice Fed a High-Fat Diet

    PubMed Central

    Tranberg, Britt; Hellgren, Lars I.; Lykkesfeldt, Jens; Sejrsen, Kristen; Jeamet, Aymeric; Rune, Ida; Ellekilde, Merete; Nielsen, Dennis S.; Hansen, Axel Kornerup

    2013-01-01

    An increasing number of studies indicate that dairy products, including whey protein, alleviate several disorders of the metabolic syndrome. Here, we investigated the effects of whey protein isolate (whey) in mice fed a high-fat diet hypothesising that the metabolic effects of whey would be associated with changes in the gut microbiota composition. Five-week-old male C57BL/6 mice were fed a high-fat diet ad libitum for 14 weeks with the protein source being either whey or casein. Faeces were collected at week 0, 7, and 13 and the fecal microbiota was analysed by denaturing gradient gel electrophoresis analyses of PCR-derived 16S rRNA gene (V3-region) amplicons. At the end of the study, plasma samples were collected and assayed for glucose, insulin and lipids. Whey significantly reduced body weight gain during the first four weeks of the study compared with casein (P<0.001–0.05). Hereafter weight gain was similar resulting in a 15% lower final body weight in the whey group relative to casein (34.0±1.0 g vs. 40.2±1.3 g, P<0.001). Food intake was unaffected by protein source throughout the study period. Fasting insulin was lower in the whey group (P<0.01) and glucose clearance was improved after an oral glucose challenge (P<0.05). Plasma cholesterol was lowered by whey compared to casein (P<0.001). The composition of the fecal microbiota differed between high- and low-fat groups at 13 weeks (P<0.05) whereas no difference was seen between whey and casein. In conclusion, whey initially reduced weight gain in young C57BL/6 mice fed a high-fat diet compared to casein. Although the effect on weight gain ceased, whey alleviated glucose intolerance, improved insulin sensitivity and reduced plasma cholesterol. These findings could not be explained by changes in food intake or gut microbiota composition. Further studies are needed to clarify the mechanisms behind the metabolic effects of whey. PMID:23940754

  19. Short communication: Effect of whey protein addition and transglutaminase treatment on the physical and sensory properties of reduced-fat ice cream.

    PubMed

    Danesh, Erfan; Goudarzi, Mostafa; Jooyandeh, Hossein

    2017-07-01

    The effects of whey protein addition and transglutaminase treatment, alone and in combination, on the physical and sensory properties of reduced-fat ice cream were investigated. Adding whey protein with or without enzyme treatment decreased melting rate, overrun, and hardness of the reduced-fat ice cream; however, the enzyme-treated sample had a higher melting rate and overrun and softer texture. Whey protein-fortified samples showed higher melting resistance, but lower overrun and firmer texture compared with the enzyme-treated sample without added whey protein. Whey protein addition with or without transglutaminase treatment caused an increase in apparent viscosity and a decrease in flow index of the reduced-fat ice cream; nevertheless, the flow behavior of full-fat sample was most similar to the enzyme-treated reduced-fat sample with no added whey protein. Descriptive sensory analyses showed that neither whey protein addition nor transglutaminase treatment significantly influenced the flavor and odor of reduced-fat ice cream, but they both noticeably improved the color and texture of the final product. The results of this study suggest that whey protein addition with transglutaminase treatment improves the physical and sensory properties of reduced-fat ice cream more favorably than does whey protein addition or transglutaminase treatment alone. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  20. 7 CFR 58.443 - Whey handling.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Whey handling. 58.443 Section 58.443 Agriculture... Procedures § 58.443 Whey handling. (a) Adequate sanitary facilities shall be provided for the handling of whey. If outside, necessary precautions shall be taken to minimize flies, insects and development of...

  1. 7 CFR 1170.8 - Price reporting specifications.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...) Specifications for Dry Whey Prices: (1) Variety: Edible nonhygroscopic. (2) Age: No more than 180 days. (3) Grade..., or tanker. (5) Exclude: Sales of Grade A dry whey, intra-company sales, resales of purchased dry whey... transaction was completed), dry whey produced under faith-based close supervision and marketed at a higher...

  2. 21 CFR 184.1979c - Whey protein concentrate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Whey protein concentrate. 184.1979c Section 184... the following specifications: (1) The analysis of whey protein concentrate, on a dry product basis.../federal_register/code_of_federal_regulations/ibr_locations.html. (3) The whey protein concentrate shall be...

  3. 21 CFR 184.1979c - Whey protein concentrate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Whey protein concentrate. 184.1979c Section 184... whey protein concentrate meets the following specifications: (1) The analysis of whey protein... the heading “Protein—Official Final Action.” (ii) Fat content, 1 to 10 percent—as determined by the...

  4. 21 CFR 184.1979c - Whey protein concentrate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Whey protein concentrate. 184.1979c Section 184... whey protein concentrate meets the following specifications: (1) The analysis of whey protein... the heading “Protein—Official Final Action.” (ii) Fat content, 1 to 10 percent—as determined by the...

  5. A Multi-Omics Approach to Evaluate the Quality of Milk Whey Used in Ricotta Cheese Production

    PubMed Central

    Sattin, Eleonora; Andreani, Nadia A.; Carraro, Lisa; Lucchini, Rosaria; Fasolato, Luca; Telatin, Andrea; Balzan, Stefania; Novelli, Enrico; Simionati, Barbara; Cardazzo, Barbara

    2016-01-01

    In the past, milk whey was only a by-product of cheese production, but currently, it has a high commercial value for use in the food industries. However, the regulation of whey management (i.e., storage and hygienic properties) has not been updated, and as a consequence, its microbiological quality is very challenging for food safety. The Next Generation Sequencing (NGS) technique was applied to several whey samples used for Ricotta production to evaluate the microbial community composition in depth using both RNA and DNA as templates for NGS library construction. Whey samples demonstrating a high microbial and aerobic spore load contained mostly Firmicutes; although variable, some samples contained a relevant amount of Gammaproteobacteria. Several lots of whey acquired as raw material for Ricotta production presented defective organoleptic properties. To define the volatile compounds in normal and defective whey samples, a headspace gas chromatography/mass spectrometry (GC/MS) analysis was conducted. The statistical analysis demonstrated that different microbial communities resulted from DNA or cDNA library sequencing, and distinguishable microbiota composed the communities contained in the organoleptic-defective whey samples. PMID:27582735

  6. Intestinal anti-inflammatory effects of goat whey on DNBS-induced colitis in mice

    PubMed Central

    Araújo, Daline F. S.; Guerra, Gerlane C. B.; Pintado, Maria Manuela E.; Sousa, Yasmim R. F.; Algieri, Francesca; Rodriguez-Nogales, Alba; Araújo, Raimundo F.; Gálvez, Julio; Queiroga, Rita de Cássia R. E.; Rodriguez-Cabezas, Maria Elena

    2017-01-01

    This study evaluated the intestinal anti-inflammatory effects of goat whey in a mouse model of colitis induced by 2,4-dinitrobenzenesulfonic acid that resembles human IBD. At a concentration of 4 g/kg/day, the goat whey improved the symptoms of intestinal inflammation, namely by decreasing the disease activity index, colonic weight/length, and leukocyte infiltration. Moreover, goat whey inhibited NF-κB p65 and p38 MAPK signaling pathways and consequently down-regulated the gene expression of various proinflammatory markers such as IL-1β, IL-6, IL-17, TNF-α, iNOS, MMP-9, ICAM-1. Also, goat whey increased the expression of proteins such as mucins, occludin proteins and cytokine signalling suppressors. The immunomodulatory properties of goat whey were also evaluated in vitro using the murine macrophage cell line Raw 264 and CMT-93 cells derived from mouse rectum carcinomas. The results revealed the ability of goat whey to inhibit the production of NO and reduce IL-6 production in LPS-stimulated cells. In conclusion, goat whey exhibited anti-inflammatory effects in the DNBS model of intestinal inflammation, and these observations were confirmed by its immunomodulatory properties in vitro. Together, our results indicate that goat whey could have applications for the treatment of IBD. PMID:28957373

  7. Intestinal anti-inflammatory effects of goat whey on DNBS-induced colitis in mice.

    PubMed

    Araújo, Daline F S; Guerra, Gerlane C B; Pintado, Maria Manuela E; Sousa, Yasmim R F; Algieri, Francesca; Rodriguez-Nogales, Alba; Araújo, Raimundo F; Gálvez, Julio; Queiroga, Rita de Cássia R E; Rodriguez-Cabezas, Maria Elena

    2017-01-01

    This study evaluated the intestinal anti-inflammatory effects of goat whey in a mouse model of colitis induced by 2,4-dinitrobenzenesulfonic acid that resembles human IBD. At a concentration of 4 g/kg/day, the goat whey improved the symptoms of intestinal inflammation, namely by decreasing the disease activity index, colonic weight/length, and leukocyte infiltration. Moreover, goat whey inhibited NF-κB p65 and p38 MAPK signaling pathways and consequently down-regulated the gene expression of various proinflammatory markers such as IL-1β, IL-6, IL-17, TNF-α, iNOS, MMP-9, ICAM-1. Also, goat whey increased the expression of proteins such as mucins, occludin proteins and cytokine signalling suppressors. The immunomodulatory properties of goat whey were also evaluated in vitro using the murine macrophage cell line Raw 264 and CMT-93 cells derived from mouse rectum carcinomas. The results revealed the ability of goat whey to inhibit the production of NO and reduce IL-6 production in LPS-stimulated cells. In conclusion, goat whey exhibited anti-inflammatory effects in the DNBS model of intestinal inflammation, and these observations were confirmed by its immunomodulatory properties in vitro. Together, our results indicate that goat whey could have applications for the treatment of IBD.

  8. Technological optimization of manufacture of probiotic whey cheese matrices.

    PubMed

    Madureira, Ana R; Brandão, Teresa; Gomes, Ana M; Pintado, Manuela E; Malcata, F Xavier

    2011-03-01

    In attempts to optimize their manufacture, whey cheese matrices obtained via thermal processing of whey (leading to protein precipitation) and inoculated with probiotic cultures were tested. A central composite, face-centered design was followed, so a total of 16 experiments were run using fractional addition of bovine milk to feedstock whey, homogenization time, and storage time of whey cheese as processing parameters. Probiotic whey cheese matrices were inoculated with Lactobacillus casei LAFTIL26 at 10% (v/v), whereas control whey cheese matrices were added with skim milk previously acidified with lactic acid to the same level. All whey cheeses were stored at 7 °C up to 14 d. Chemical and sensory analyses were carried out for all samples, as well as rheological characterization by oscillatory viscometry and textural profiling. As expected, differences were found between control and probiotic matrices: fractional addition of milk and storage time were the factors accounting for the most important effects. Estimation of the best operating parameters was via response surface analysis: milk addition at a rate of 10% to 15% (v/v), and homogenization for 5 min led to the best probiotic whey cheeses in terms of texture and organoleptic properties, whereas the best time for consumption was found to be by 9 d of storage following manufacture.

  9. Experimental and Modelling Study of the Denaturation of Milk Protein by Heat Treatment

    PubMed Central

    Qian, Fang; Sun, Jiayue; Cao, Di; Tuo, Yanfeng; Jiang, Shujuan; Mu, Guangqing

    2017-01-01

    Heat treatment of milk aims to inhibit the growth of microbes, extend the shelf-life of products and improve the quality of the products. Heat treatment also leads to denaturation of whey protein and the formation of whey protein-casein polymer, which has negative effects on milk product. Hence the milk heat treatment conditions should be controlled in milk processing. In this study, the denaturation degree of whey protein and the combination degree of whey protein and casein when undergoing heat treatment were also determined by using the Native-PAGE and SDS-PAGE analysis. The results showed that the denaturation degree of whey protein and the combination degree of whey protein with casein extended with the increase of the heat-treated temperature and time. The effects of the heat-treated temperature and heat-treated time on the denaturation degree of whey protein and on the combination degree of whey protein and casein were well described using the quadratic regression equation. The analysis strategy used in this study reveals an intuitive and effective measure of the denaturation degree of whey protein, and the changes of milk protein under different heat treatment conditions efficiently and accurately in the dairy industry. It can be of great significance for dairy product proteins following processing treatments applied for dairy product manufacturing. PMID:28316470

  10. Short communication: Potential of Fresco-style cheese whey as a source of protein fractions with antioxidant and angiotensin-I-converting enzyme inhibitory activities.

    PubMed

    Tarango-Hernández, S; Alarcón-Rojo, A D; Robles-Sánchez, M; Gutiérrez-Méndez, N; Rodríguez-Figueroa, J C

    2015-11-01

    Recently, traditional Mexican Fresco-style cheese production has been increasing, and the volume of cheese whey generated represents a problem. In this study, we investigated the chemical composition of Fresco-style cheese wheys and their potential as a source of protein fractions with antioxidant and angiotensin-I-converting enzyme (ACE)-inhibitory activities. Three samples from Fresco, Panela, and Ranchero cheeses whey were physicochemically characterized. Water-soluble extracts were fractionated to obtain whey fractions with different molecular weights: 10-5, 5-3, 3-1 and <1 kDa. The results indicated differences in the lactose, protein, ash, and dry matter contents (% wt/wt) in the different Fresco-style cheese wheys. All whey fractions had antioxidant and ACE-inhibitory activities. The 10-5 kDa whey fraction of Ranchero cheese had the highest Trolox equivalent antioxidant capacity (0.62 ± 0.00 mM), and the 3-1 kDa Panela and Fresco cheese whey fractions showed the highest ACE-inhibitory activity (0.57 ± 0.02 and 0.59 ± 0.04 μg/mL 50%-inhibitory concentration values, respectively). These results suggest that Fresco-style cheese wheys may be a source of protein fractions with bioactivity, and thus could be useful ingredients in the manufacture of functional foods with increased nutritional value. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  11. At same leucine intake, a whey/plant protein blend is not as effective as whey to initiate a transient post prandial muscle anabolic response during a catabolic state in mini pigs

    PubMed Central

    Revel, Aurélia; Jarzaguet, Marianne; Peyron, Marie-Agnès; Papet, Isabelle; Hafnaoui, Noureddine; Migné, Carole; Mosoni, Laurent; Polakof, Sergio; Savary-Auzeloux, Isabelle; Rémond, Didier

    2017-01-01

    Background Muscle atrophy has been explained by an anabolic resistance following food intake and an increase of dietary protein intake is recommended. To be optimal, a dietary protein has to be effective not only to initiate but also to prolong a muscle anabolic response in a catabolic state. To our knowledge, whether or not a dairy or a dairy/plant protein blend fulfills these criterions is unknown in a muscle wasting situation. Objective Our aim was, in a control and a catabolic state, to measure continuously muscle anabolism in term of intensity and duration in response to a meal containing casein (CAS), whey (WHEY) or a whey/ plant protein blend (BLEND) and to evaluate the best protein source to elicit the best post prandial anabolism according to the physio-pathological state. Methods Adult male Yucatan mini pigs were infused with U-13C-Phenylalanine and fed either CAS, WHEY or BLEND. A catabolic state was induced by a glucocorticoid treatment for 8 days (DEX). Muscle protein synthesis, proteolysis and balance were measured with the hind limb arterio-venous differences technique. Repeated time variance analysis were used to assess significant differences. Results In a catabolic situation, whey proteins were able to initiate muscle anabolism which remained transient in contrast to the stimulated muscle protein accretion with WHEY, CAS or BLEND in healthy conditions. Despite the same leucine intake compared to WHEY, BLEND did not restore a positive protein balance in DEX animals. Conclusions Even with WHEY, the duration of the anabolic response was not optimal and has to be improved in a catabolic state. The use of BLEND remained of lower efficiency even at same leucine intake than whey. PMID:29045496

  12. At same leucine intake, a whey/plant protein blend is not as effective as whey to initiate a transient post prandial muscle anabolic response during a catabolic state in mini pigs.

    PubMed

    Revel, Aurélia; Jarzaguet, Marianne; Peyron, Marie-Agnès; Papet, Isabelle; Hafnaoui, Noureddine; Migné, Carole; Mosoni, Laurent; Polakof, Sergio; Savary-Auzeloux, Isabelle; Rémond, Didier; Dardevet, Dominique

    2017-01-01

    Muscle atrophy has been explained by an anabolic resistance following food intake and an increase of dietary protein intake is recommended. To be optimal, a dietary protein has to be effective not only to initiate but also to prolong a muscle anabolic response in a catabolic state. To our knowledge, whether or not a dairy or a dairy/plant protein blend fulfills these criterions is unknown in a muscle wasting situation. Our aim was, in a control and a catabolic state, to measure continuously muscle anabolism in term of intensity and duration in response to a meal containing casein (CAS), whey (WHEY) or a whey/ plant protein blend (BLEND) and to evaluate the best protein source to elicit the best post prandial anabolism according to the physio-pathological state. Adult male Yucatan mini pigs were infused with U-13C-Phenylalanine and fed either CAS, WHEY or BLEND. A catabolic state was induced by a glucocorticoid treatment for 8 days (DEX). Muscle protein synthesis, proteolysis and balance were measured with the hind limb arterio-venous differences technique. Repeated time variance analysis were used to assess significant differences. In a catabolic situation, whey proteins were able to initiate muscle anabolism which remained transient in contrast to the stimulated muscle protein accretion with WHEY, CAS or BLEND in healthy conditions. Despite the same leucine intake compared to WHEY, BLEND did not restore a positive protein balance in DEX animals. Even with WHEY, the duration of the anabolic response was not optimal and has to be improved in a catabolic state. The use of BLEND remained of lower efficiency even at same leucine intake than whey.

  13. The impact of iron on the bleaching efficacy of hydrogen peroxide in liquid whey systems.

    PubMed

    Jervis, Suzanne M; Drake, MaryAnne

    2013-02-01

    Whey is a value-added product that is utilized in many food and beverage applications for its nutritional and functional properties. Whey and whey products are generally utilized in dried ingredient applications. One of the primary sources of whey is from colored Cheddar cheese manufacture that contains the pigment annatto resulting in a characteristic yellow colored Cheddar cheese. The colorant is also present in the liquid cheese whey and must be bleached so that it can be used in ingredient applications without imparting a color. Hydrogen peroxide and benzoyl peroxide are 2 commercially approved chemical bleaching agents for liquid whey. Concerns regarding bleaching efficacy, off-flavor development, and functionality changes have been previously reported for whey bleached with hydrogen peroxide and benzoyl peroxide. It is very important for the dairy industry to understand how bleaching can impact flavor and functionality of dried ingredients. Currently, the precise mechanisms of off-flavor development and functionality changes are not entirely understood. Iron reactions in a bleached liquid whey system may play a key role. Reactions between iron and hydrogen peroxide have been widely studied since the reaction between these 2 relatively stable species can cause great destruction in biological and chemical systems. The actual mechanism of the reaction of iron with hydrogen peroxide has been a controversy in the chemistry and biological community. The precise mechanism for a given reaction can vary greatly based upon the concentration of reactants, temperature, pH, and addition of biological material. In this review, some hypotheses for the mechanisms of iron reactions that may occur in fluid whey that may impact bleaching efficacy, off-flavor development, and changes in functionality are presented. Cheese whey is bleached to remove residual carotenoid cheese colorant. Concerns regarding bleaching efficacy, off-flavor development, and functionality changes have been reported for whey proteins bleached with hydrogen peroxide and benzoyl peroxide. It is very important for the dairy industry to understand how whey bleaching can impact flavor and functionality of dried ingredients. Proposed mechanisms of off-flavor development and functionality changes are discussed in this hypothesis paper. © 2013 Institute of Food Technologists®

  14. Effects of the conjugation of whey proteins with gellan polysaccharides on surfactant-induced competitive displacement from the air-water interface.

    PubMed

    Cai, B; Ikeda, S

    2016-08-01

    Whey proteins can be used to stabilize foams and emulsions against coalescence because of their ability to form viscoelastic films at the interface that resist film rupture on collision between colloidal particles. However, whey proteins are competitively displaced from the interface if small-molecule surfactants are added, leading to destabilization of the entire system. This is because surfactants are more effective in molecular packing at the interface, and they lower interfacial tension to a greater degree than whey proteins do, but their interfacial films are poor in viscoelasticity. We hypothesized that whey proteins would become more resistant to surfactant-induced competitive displacement if they were conjugated with network-forming polysaccharides. The protein moiety of the conjugate would be expected to enable its adsorption to the interface, and the polysaccharide moiety would be expected to form self-assembled networks, strengthening the interfacial film as a whole. In this study, whey proteins were conjugated with gellan polysaccharides using the Maillard reaction. Atomic force microscopy images of interfacial films formed by the whey protein-gellan conjugate at the air-water interface and transferred onto mica sheets using the Langmuir-Blodgett method revealed that gellan did form self-assembled networks at the interface and that interfacial films also contained a large number of unconjugated whey protein molecules. Following the addition of a small-molecule surfactant (Tween 20) to the sub-phase, surface pressure increased, indicating spontaneous adsorption of surfactants to the interface. Atomic force microscopy images showed decreases in interfacial area coverage by whey proteins as surface pressure increased. At a given surface pressure, the interfacial area coverage by whey protein-gellan conjugates was greater than coverage by unconjugated whey proteins, confirming that whey proteins became more resistant to surfactant-induced displacement after conjugation with gellan. Furthermore, gellan molecules added to the sub-phase after the formation of a monolayer of whey proteins at the air-water interface did not adsorb to the interfacial protein film. These results provide a molecular basis for designing interfacial structures to enhance the stability of colloidal systems. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  15. Short-Term Effects of Lupin vs. Whey Supplementation on Glucose and Insulin Responses to a Standardized Meal in a Randomized Cross-Over Trial

    PubMed Central

    Schopen, Kathrin; Ewald, Ann C.; Johannes, Bernd W.; Bloch, Wilhelm; Rittweger, Jörn; Frings-Meuthen, Petra

    2017-01-01

    Background: Whey protein is known to reduce postprandial glycaemia in people with type 2 diabetes mellitus. Lupin as a vegetable source of protein could be considered as an alternative, as the percentage of vegetarian and vegan consumers is raising. The present study compares the acute glycemic effects of whey and lupin in healthy volunteers following a carbohydrate-rich reference meal. Methods In cross-over design, three standardized meals (reference meal; reference meal + whey; reference meal + lupin) were provided to 12 healthy male and female volunteers, aged between 23 and 33, in a balanced, randomized order. Volunteers' blood glucose and insulin concentrations were analyzed at baseline and at seven time points following the ingestion of the meals. Results: The supplementation of whey or lupin significantly blunted the postprandial increase in blood glucose concentrations compared to the reference meal (p < 0.001). In the overall statistical analysis, this effect was comparable for whey and lupin [Δ AUC whey-lupin = 8%, 0–60 min area under the curve (0–60 min AUC), p = 0.937], with a blunting effect of −46% by whey (p = 0.005, 0–60 min AUC) and of −54% by lupin (p < 0.001, 0–60 min AUC). When comparing whey and lupin data only, the insulin increase was found to be more pronounced for whey protein than for lupin supplementation (Δ AUC whey-lupin = 39%, 0–60 min AUC, p = 0.022). However, when comparing the insulin response of each supplementation to the one of the reference meal, no differences could be detected (whey p = 0.259, 0–60 min AUC; lupin p = 0.275, 0–60 min AUC). Conclusions: Results suggest that lupin and whey can both lower the increase of postprandial blood glucose concentrations to a comparable extent, implying the usability of lupin to reduce postprandial glycaemia. However, the insulin response following the supplementations to a carbohydrate-rich meal seems to differ for these two protein sources. PMID:28443026

  16. Short-Term Effects of Lupin vs. Whey Supplementation on Glucose and Insulin Responses to a Standardized Meal in a Randomized Cross-Over Trial.

    PubMed

    Schopen, Kathrin; Ewald, Ann C; Johannes, Bernd W; Bloch, Wilhelm; Rittweger, Jörn; Frings-Meuthen, Petra

    2017-01-01

    Background: Whey protein is known to reduce postprandial glycaemia in people with type 2 diabetes mellitus. Lupin as a vegetable source of protein could be considered as an alternative, as the percentage of vegetarian and vegan consumers is raising. The present study compares the acute glycemic effects of whey and lupin in healthy volunteers following a carbohydrate-rich reference meal. Methods In cross-over design, three standardized meals (reference meal; reference meal + whey; reference meal + lupin) were provided to 12 healthy male and female volunteers, aged between 23 and 33, in a balanced, randomized order. Volunteers' blood glucose and insulin concentrations were analyzed at baseline and at seven time points following the ingestion of the meals. Results: The supplementation of whey or lupin significantly blunted the postprandial increase in blood glucose concentrations compared to the reference meal ( p < 0.001). In the overall statistical analysis, this effect was comparable for whey and lupin [Δ AUC whey-lupin = 8%, 0-60 min area under the curve (0-60 min AUC), p = 0.937], with a blunting effect of -46% by whey ( p = 0.005, 0-60 min AUC) and of -54% by lupin ( p < 0.001, 0-60 min AUC). When comparing whey and lupin data only, the insulin increase was found to be more pronounced for whey protein than for lupin supplementation (Δ AUC whey-lupin = 39%, 0-60 min AUC, p = 0.022). However, when comparing the insulin response of each supplementation to the one of the reference meal, no differences could be detected (whey p = 0.259, 0-60 min AUC; lupin p = 0.275, 0-60 min AUC). Conclusions: Results suggest that lupin and whey can both lower the increase of postprandial blood glucose concentrations to a comparable extent, implying the usability of lupin to reduce postprandial glycaemia. However, the insulin response following the supplementations to a carbohydrate-rich meal seems to differ for these two protein sources.

  17. Effect of temperature and concentration on benzoyl peroxide bleaching efficacy and benzoic acid levels in whey protein concentrate.

    PubMed

    Smith, T J; Gerard, P D; Drake, M A

    2015-11-01

    Much of the fluid whey produced in the United States is a by-product of Cheddar cheese manufacture and must be bleached. Benzoyl peroxide (BP) is currently 1 of only 2 legal chemical bleaching agents for fluid whey in the United States, but benzoic acid is an unavoidable by-product of BP bleaching. Benzoyl peroxide is typically a powder, but new liquid BP dispersions are available. A greater understanding of the bleaching characteristics of BP is necessary. The objective of the study was to compare norbixin destruction, residual benzoic acid, and flavor differences between liquid whey and 80% whey protein concentrates (WPC80) bleached at different temperatures with 2 different benzoyl peroxides (soluble and insoluble). Two experiments were conducted in this study. For experiment 1, 3 factors (temperature, bleach type, bleach concentration) were evaluated for norbixin destruction using a response surface model-central composite design in liquid whey. For experiment 2, norbixin concentration, residual benzoic acid, and flavor differences were explored in WPC80 from whey bleached by the 2 commercially available BP (soluble and insoluble) at 5 mg/kg. In liquid whey, soluble BP bleached more norbixin than insoluble BP, especially at lower concentrations (5 and 10 mg/kg) at both cold (4°C) and hot (50°C) temperatures. The WPC80 from liquid whey bleached with BP at 50°C had lower norbixin concentration, benzoic acid levels, cardboard flavor, and aldehyde levels than WPC80 from liquid whey bleached with BP at 4°C. Regardless of temperature, soluble BP destroyed more norbixin at lower concentrations than insoluble BP. The WPC80 from soluble-BP-bleached wheys had lower cardboard flavor and lower aldehyde levels than WPC80 from insoluble-BP-bleached whey. This study suggests that new, soluble (liquid) BP can be used at lower concentrations than insoluble BP to achieve equivalent bleaching and that less residual benzoic acid remains in WPC80 powder from liquid whey bleached hot (50°C) than cold (4°C), which may provide opportunities to reduce benzoic acid residues in dried whey ingredients, expanding their marketability. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  18. Influence of Bleaching on Flavor of 34% Whey Protein Concentrate and Residual Benzoic Acid Concentration in Dried Whey Proteins

    USDA-ARS?s Scientific Manuscript database

    Previous studies have shown that bleaching negatively affects the flavor of 70% whey protein concentrate (WPC70), but bleaching effects on lower-protein products have not been established. Benzoyl peroxide (BP), a whey bleaching agent, degrades to benzoic acid (BA) and may elevate BA concentrations...

  19. Influence of bleaching on flavor of 34% whey protein concentrate and residual benzoic acid concentration in dried whey products

    USDA-ARS?s Scientific Manuscript database

    Previous studies have shown that bleaching negatively affects the flavor of 70% whey protein concentrate (WPC70), but bleaching effects on lower-protein products have not been established. Benzoyl peroxide (BP), a whey bleaching agent, degrades to benzoic acid (BA) and may elevate BA concentrations...

  20. Production of High-Viscosity Whey Broths by a Lactose-Utilizing Xanthomonas campestris Strain.

    PubMed

    Schwartz, R D; Bodie, E A

    1985-12-01

    Xanthomonas campestris BB-1L was isolated by enrichment and selection by serial passage in a lactose-minimal medium. When BB-1L was subsequently grown in medium containing only 4% whey and 0.05% yeast extract, the lactose was consumed and broth viscosities greater than 500 cps at a 12 s shear rate were produced. Prolonged maintenance in whey resulted in the loss of the ability of BB-1L to produce viscous broths in whey, indicating a reversion to preferential growth on whey protein, like the parent strain.

  1. Production and characterisation of whey protein hydrolysate having antioxidant activity from cheese whey.

    PubMed

    Athira, Syamala; Mann, Bimlesh; Saini, Prerna; Sharma, Rajan; Kumar, Rajesh; Singh, Ashish Kumar

    2015-11-01

    Cheese whey is a rich by-product in nutritional terms, possessing components with high biological value, excellent functional properties, and an inert flavour profile. In the present study, mozzarella cheese whey was ultra-filtrated to remove lactose and mineral. The retentate was hydrolysed with food-grade enzyme alcalase and the hydrolysis conditions (pH, temperature and time) were optimised for maximum antioxidant activity using response surface methodology. Whey protein hydrolysed for 8 h at pH 9 and 55 °C showed a maximum antioxidant activity of 1.18 ± 0.015 µmol Trolox mg(-1) protein. The antioxidant peptides were further enriched by ultra-filtration through a 3 kDa membrane. Seven peptides - β-Lg f(123-131), β-Lg f(122-131), β-Lg f(124-131), β-Lg f(123-134), β-Lg f(122-131), β-Lg f(96-100) and β-Lg f(94-100) - were identified by LC-MS/MS in the 3 kDa permeate of the hydrolysate. The incorporation of whey protein hydrolysate (WPH) in lemon whey drink (5-10 g L(-1)) increased the antioxidant activity from 76% to 90% as compared to control. Hydrolysis of ultra-filtrated retentate of whey can be an energy- and cost-effective method for the direct production of WPH from whey compared to the industrial production of WPH from whey protein concentrate. This study suggests that WPH with good nutritional and biological properties can be effectively used in health-promoting foods as a biofunctional ingredient. © 2014 Society of Chemical Industry.

  2. Factors regulating astringency of whey protein beverages.

    PubMed

    Beecher, J W; Drake, M A; Luck, P J; Foegeding, E A

    2008-07-01

    A rapidly growing area of whey protein use is in beverages. There are 2 types of whey protein-containing beverages: those at neutral pH and those at low pH. Astringency is very pronounced at low pH. Astringency is thought to be caused by compounds in foods that bind with and precipitate salivary proteins; however, the mechanism of astringency of whey proteins is not understood. The effect of viscosity and pH on the astringency of a model beverage containing whey protein isolate was investigated. Trained sensory panelists (n = 8) evaluated the viscosity and pH effects on astringency and basic tastes of whey protein beverages containing 6% wt/vol protein. Unlike what has been shown for alum and polyphenols, increasing viscosity (1.6 to 7.7 mPa.s) did not decrease the perception of astringency. In contrast, the pH of the whey protein solution had a major effect on astringency. A pH 6.8 whey protein beverage had a maximum astringency intensity of 1.2 (15-point scale), whereas that of a pH 3.4 beverage was 8.8 (15-point scale). Astringency decreased between pH 3.4 and 2.6, coinciding with an increase in sourness. Decreases in astringency corresponded to decreases in protein aggregation as observed by turbidity. We propose that astringency is related to interactions between positively charged whey proteins and negatively charged saliva proteins. As the pH decreased between 3.4 and 2.6, the negative charge on the saliva proteins decreased, causing the interactions with whey proteins to decrease.

  3. Novel products and new technologies for use of a familiar carbohydrate, milk lactose.

    PubMed

    Yang, S T; Silva, E M

    1995-11-01

    The cheese industry produces large amounts of lactose in the form of cheese whey and whey permeate, generating approximately 27 million tonnes/yr in the US alone. Many uses have been found for whey and lactose, including uses in infant formula; bakery, dairy, and confectionery products; animal feed; and feedstocks for lactose derivatives and several industrial fermentations. Lactose use in food products, however, is somewhat limited because of its low solubility and indigestibility in many individuals. For this reason, lactose is often hydrolyzed before use. Still, demand is insufficient to use all available whey lactose. The result is a low market value for lactose; almost half of the whey produced each year remains unused and is a significant waste disposal problem. Several approaches are possible for transforming lactose into value-added products. For example, galactooligosaccharides can be produce through enzymatic treatments of lactose and may be used as a probiotic food ingredient. Organic acids or xanthan gum may be produced via whey fermentation, and the fermented whey product can be used as a food ingredient with special functionality. This paper reviews the physical characteristics, production techniques, and current uses of lactose, whey, and lactose derivatives. Also examined are novel fermentation and separation technologies developed in our laboratory for the production of lactate, propionate, acetate, and xanthan gum from whey.

  4. Fermented probiotic beverages based on acid whey.

    PubMed

    Skryplonek, Katarzyna; Jasińska, Małgorzata

    2015-01-01

    Production of fermented probiotic beverages can be a good method for acid whey usage. The obtained products combine a high nutritional value of whey with health benefits claimed for probiotic bacteria. The aim of the study was to define quality properties of beverages based on fresh acid whey and milk with addition of buttermilk powder or sweet whey powder. Samples were inoculated with two strains of commercial probiotic cultures: Lactobacillus acidophilus La-5 or Bifidobacterium animalis Bb-12. After fermentation, samples were stored at refrigerated conditions. After 1, 4, 7, 14 and 21 days sensory characteristics, hardness, acetaldehyde content, titratable acidity, pH acidity and count of bacteria cells were evaluated. Throughout all storage period, the number of bacteria was higher than 8 log cfu/ml in the all samples. Beverages with La-5 strain had higher hardness and acidity, whilst samples with Bb-12 contained more acetaldehyde. Samples with buttermilk powder had better sensory properties than with sweet whey powder. Obtained products made of acid whey combined with milk and fortified with buttermilk powder or sweet whey powder, are good medium for growth and survival of examined probiotic bacteria strains. The level of bacteria was sufficient to provide health benefits to consumers.

  5. Whey protein: The “whey” forward for treatment of type 2 diabetes?

    PubMed Central

    Mignone, Linda E; Wu, Tongzhi; Horowitz, Michael; Rayner, Christopher K

    2015-01-01

    A cost-effective nutritional approach to improve postprandial glycaemia is attractive considering the rising burden of diabetes throughout the world. Whey protein, a by-product of the cheese-making process, can be used to manipulate gut function in order to slow gastric emptying and stimulate incretin hormone secretion, thereby attenuating postprandial glycaemic excursions. The function of the gastrointestinal tract plays a pivotal role in glucose homeostasis, particularly during the postprandial period, and this review will discuss the mechanisms by which whey protein slows gastric emptying and stimulates release of gut peptides, including the incretins. Whey protein is also a rich source of amino acids, and these can directly stimulate beta cells to secrete insulin, which contributes to the reduction in postprandial glycaemia. Appetite is suppressed with consumption of whey, due to its effects on the gut-brain axis and the hypothalamus. These properties of whey protein suggest its potential in the management of type 2 diabetes. However, the optimal dose and timing of whey protein ingestion are yet to be defined, and studies are required to examine the long-term benefits of whey consumption for overall glycaemic control. PMID:26516411

  6. Quantitative proteomic analysis of whey proteins in the colostrum and mature milk of yak (Bos grunniens).

    PubMed

    Yang, Yongxin; Zhao, Xiaowei; Yu, Shumin; Cao, Suizhong

    2015-02-01

    Yak (Bos grunniens) is an important natural resource in mountainous regions. To date, few studies have addressed the differences in the protein profiles of yak colostrum and milk. We used quantitative proteomics to compare the protein profiles of whey from yak colostrum and milk. Milk samples were collected from 21 yaks after calving (1 and 28 d). Whey protein profiles were generated through isobaric tag for relative and absolute quantification (iTRAQ)-labelled proteomics. We identified 183 proteins in milk whey; of these, the expression levels of 86 proteins differed significantly between the whey from colostrum and milk. Haemoglobin expression showed the greatest change; its levels were significantly higher in the whey from colostrum than in mature milk whey. Functional analysis revealed that many of the differentially expressed proteins were associated with biological regulation and response to stimuli. Further, eight differentially expressed proteins involved in the complement and coagulation cascade pathway were enriched in milk whey. These findings add to the general understanding of the protein composition of yak milk, suggest potential functions of the differentially expressed proteins, and provide novel information on the role of colostral components in calf survival. © 2014 Society of Chemical Industry.

  7. Biochemical and metabolic mechanisms by which dietary whey protein may combat obesity and Type 2 diabetes.

    PubMed

    Jakubowicz, Daniela; Froy, Oren

    2013-01-01

    Consumption of milk and dairy products has been associated with reduced risk of metabolic disorders and cardiovascular disease. Milk contains two primary sources of protein, casein (80%) and whey (20%). Recently, the beneficial physiological effects of whey protein on the control of food intake and glucose metabolism have been reported. Studies have shown an insulinotropic and glucose-lowering properties of whey protein in healthy and Type 2 diabetes subjects. Whey protein seems to induce these effects via bioactive peptides and amino acids generated during its gastrointestinal digestion. These amino acids and peptides stimulate the release of several gut hormones, such as cholecystokinin, peptide YY and the incretins gastric inhibitory peptide and glucagon-like peptide 1 that potentiate insulin secretion from β-cells and are associated with regulation of food intake. The bioactive peptides generated from whey protein may also serve as endogenous inhibitors of dipeptidyl peptidase-4 (DPP-4) in the proximal gut, preventing incretin degradation. Indeed, recently, DPP-4 inhibitors were identified in whey protein hydrolysates. This review will focus on the emerging properties of whey protein and its potential clinical application for obesity and Type 2 diabetes. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Minimising generation of acid whey during Greek yoghurt manufacturing.

    PubMed

    Uduwerella, Gangani; Chandrapala, Jayani; Vasiljevic, Todor

    2017-08-01

    Greek yoghurt, a popular dairy product, generates large amounts of acid whey as a by-product during manufacturing. Post-processing treatment of this stream presents one of the main concerns for the industry. The objective of this study was to manipulate initial milk total solids content (15, 20 or 23 g/100 g) by addition of milk protein concentrate, thus reducing whey expulsion. Such an adjustment was investigated from the technological standpoint including starter culture performance, chemical and physical properties of manufactured Greek yoghurt and generated acid whey. A comparison was made to commercially available products. Increasing protein content in regular yoghurt reduced the amount of acid whey during whey draining. This protein fortification also enhanced the Lb. bulgaricus growth rate and proteolytic activity. Best structural properties including higher gel strength and lower syneresis were observed in the Greek yoghurt produced with 20 g/100 g initial milk total solid compared to manufactured or commercially available products, while acid whey generation was lowered due to lower drainage requirement.

  9. Decolorization of Cheddar cheese whey by activated carbon.

    PubMed

    Zhang, Yue; Campbell, Rachel; Drake, MaryAnne; Zhong, Qixin

    2015-05-01

    Colored Cheddar whey is a source for whey protein recovery and is decolorized conventionally by bleaching, which affects whey protein quality. Two activated carbons were studied in the present work as physical means of removing annatto (norbixin) in Cheddar cheese whey. The color and residual norbixin content of Cheddar whey were reduced by a higher level of activated carbon at a higher temperature between 25 and 55°C and a longer time. Activated carbon applied at 40g/L for 2h at 30°C was more effective than bleaching by 500mg/L of hydrogen peroxide at 68°C. The lowered temperature in activated-carbon treatments had less effect on protein structure as investigated for fluorescence spectroscopy and volatile compounds, particularly oxidation products, based on gas chromatography-mass spectrometry. Activated carbon was also reusable, removing more than 50% norbixin even after 10 times of regeneration, which showed great potential for decolorizing cheese whey. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  10. Cultivability of Streptococcus thermophilus in Grana Padano cheese whey starters.

    PubMed

    Fornasari, Maria Emanuela; Rossetti, Lia; Carminati, Domenico; Giraffa, Giorgio

    2006-04-01

    The application of a culture-independent approach, that of reverse transcriptase-length heterogeneity-PCR coupled with epifluorescence microscopy, allowed us to observe that Streptococcus thermophilus is metabolically active, but only partially cultivable in Grana Padano cheese whey starters. A short preincubation of the starters in sterile skimmed whey was followed by cultivation in sterile skimmed whey-enriched M17. This procedure restored the cultivability of S. thermophilus and enabled us to detect S. thermophilus at ranges (10(7)-10(8) CFU mL(-1)) which have rarely been reported in these cultures. The use of cheese whey as a cultivation-revitalization substrate can be useful to obtain an unbiased picture of the microbial composition of whey starters for Grana Padano cheese, thus avoiding an underestimation of S. thermophilus in these cultures.

  11. Production of High-Viscosity Whey Broths by a Lactose-Utilizing Xanthomonas campestris Strain

    PubMed Central

    Schwartz, Robert D.; Bodie, Elizabeth A.

    1985-01-01

    Xanthomonas campestris BB-1L was isolated by enrichment and selection by serial passage in a lactose-minimal medium. When BB-1L was subsequently grown in medium containing only 4% whey and 0.05% yeast extract, the lactose was consumed and broth viscosities greater than 500 cps at a 12 s−1 shear rate were produced. Prolonged maintenance in whey resulted in the loss of the ability of BB-1L to produce viscous broths in whey, indicating a reversion to preferential growth on whey protein, like the parent strain. PMID:16346946

  12. Evaluation of whey, milk, and delactosed permeates as salt substitutes.

    PubMed

    Smith, S T; Metzger, L; Drake, M A

    2016-11-01

    Whey and milk permeates are by-products of high-protein dairy powder manufacture. Previous work has shown that these permeates contribute to salty taste without contributing significantly to sodium content. The objective of this study was to explore the sensory characteristics and compositional analysis of permeates from different milk and whey streams and a low-sodium product application made from them. Skim milk, Cheddar, cottage, and Mozzarella cheese whey permeates were manufactured in triplicate, and delactosed whey permeate was obtained in triplicate. Composition (protein, fat, solids, minerals) was conducted on permeates. Organic acid composition was determined using HPLC. Volatile compounds were extracted from permeates by solid phase microextraction with gas chromatography-mass spectrometry. A trained sensory panel documented sensory attributes of permeates and cream of broccoli soups with and without salt or permeates followed by consumer acceptance testing (n=105) on the soups. Cottage cheese whey permeate contained a higher lactic acid content than other permeates, which has been shown to contribute to a higher salty taste. Cottage cheese whey permeate also contained potato or brothy and caramel flavors and sour and salty tastes, whereas delactosed whey permeate had high intensities of cardboard and beefy or brothy flavors and salty taste. Milk, Cheddar, and Mozzarella cheese whey permeates were characterized by sweet taste and cooked milky flavor. Permeates with higher cardboard flavor had higher levels of aldehydes. All permeates contributed to salty taste and to salty taste perception in soups; although the control soup with added salt was perceived as saltier and was preferred by consumers over permeate soups. Soup with permeate from cottage cheese was the least liked of all soups, likely due to its sour taste. All other permeate soups scored at parity for liking. These results demonstrate the potential for milk, whey, and delactosed permeates from different whey streams to be used as salt substitutes in product applications. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  13. 21 CFR 135.140 - Sherbet.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... sweet cream buttermilk, skim milk that has been concentrated and from which part of the lactose has been removed by crystallization, and whey and those modified whey products (e.g., reduced lactose whey, reduced...

  14. 21 CFR 135.140 - Sherbet.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... sweet cream buttermilk, skim milk that has been concentrated and from which part of the lactose has been removed by crystallization, and whey and those modified whey products (e.g., reduced lactose whey, reduced...

  15. The Young's Modulus, Fracture Stress, and Fracture Strain of Gellan Hydrogels Filled with Whey Protein Microparticles.

    PubMed

    Lam, Cherry Wing Yu; Ikeda, Shinya

    2017-05-01

    Texture modifying abilities of whey protein microparticles are expected to be dependent on pH during heat-induced aggregation of whey protein in the microparticulation process. Therefore, whey protein microparticles were prepared at either pH 5.5 or 6.8 and their effects on small and large deformation properties of gellan gels containing whey protein microparticles as fillers were investigated. The majority of whey protein microparticles had diameters around 2 μm. Atomic force microscopy images showed that whey protein microparticles prepared at pH 6.8 partially collapsed and flatted by air-drying, while those prepared at pH 5.5 did not. The Young's modulus of filled gels adjusted to pH 5.5 decreased by the addition of whey protein microparticles, while those of filled gels adjusted to pH 6.8 increased with increasing volume fraction of filler particles. These results suggest that filler particles were weakly bonded to gel matrices at pH 5.5 but strongly at pH 6.8. Whey protein microparticles prepared at pH 5.5 showed more enhanced increases in the Young's modulus than those prepared at pH 6.8 at volume fractions between 0.2 and 0.4, indicating that microparticles prepared at pH 5.5 were mechanically stronger. The fracture stress of filled gels showed trends somewhat similar to those of the Young's modulus, while their fracture strains decreased by the addition of whey protein microparticles in all examined conditions, indicating that the primary effect of these filler particles was to enhance the brittleness of filled gels. © 2017 Institute of Food Technologists®.

  16. 7 CFR 58.805 - Meaning of words.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... constituents, except moisture, in the same relative proportions as in the whey. (c) Dry Sweet Whey. Dry whey... regulations of the Food and Drug Administration. (g) Lactose (milk sugar). That food product defined by...

  17. 7 CFR 58.805 - Meaning of words.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... constituents, except moisture, in the same relative proportions as in the whey. (c) Dry Sweet Whey. Dry whey... regulations of the Food and Drug Administration. (g) Lactose (milk sugar). That food product defined by...

  18. 7 CFR 58.805 - Meaning of words.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... constituents, except moisture, in the same relative proportions as in the whey. (c) Dry Sweet Whey. Dry whey... regulations of the Food and Drug Administration. (g) Lactose (milk sugar). That food product defined by...

  19. Effect of acid whey-fortified breads on caecal fermentation processes and blood lipid profile in rats.

    PubMed

    Wronkowska, Małgorzata; Soral-Śmietana, Maria; Zduńczyk, Zenon; Juśkiewicz, Jerzy; Jadacka, Monika; Majkowska, Anna; Dajnowiec, Fabian J

    2017-08-01

    Two types of diet - standard and atherogenic - were used to study the effect of wheat or wheat-rye breads supplemented with 20 % acid whey concentrate after ultrafiltration on the physiological response of growing rats. The acid whey concentrate after ultrafiltration used in rat diets caused reduced weight gain (for atherogenic diet with wheat bread); growth of caecum tissue and digesta weight; a decrease in the pH of caecum digesta (for atherogenic diet); reduced activity of bacterial glycolytic enzymes; and a significant increase in total SCFA for both types of diet with wheat-rye breads containing acid whey concentrate. For wheat bread with acid whey, in standard diet, a statistically significant increase was found in the population of bifidobacteria. The results showed that the acid whey concentrates could be used as a valuable food ingredient.

  20. Microbial fuel cell coupled to biohydrogen reactor: a feasible technology to increase energy yield from cheese whey.

    PubMed

    Wenzel, J; Fuentes, L; Cabezas, A; Etchebehere, C

    2017-06-01

    An important pollutant produced during the cheese making process is cheese whey which is a liquid by-product with high content of organic matter, composed mainly by lactose and proteins. Hydrogen can be produced from cheese whey by dark fermentation but, organic matter is not completely removed producing an effluent rich in volatile fatty acids. Here we demonstrate that this effluent can be further used to produce energy in microbial fuel cells. Moreover, current production was not feasible when using raw cheese whey directly to feed the microbial fuel cell. A maximal power density of 439 mW/m 2 was obtained from the reactor effluent which was 1000 times more than when using raw cheese whey as substrate. 16S rRNA gene amplicon sequencing showed that potential electroactive populations (Geobacter, Pseudomonas and Thauera) were enriched on anodes of MFCs fed with reactor effluent while fermentative populations (Clostridium and Lactobacillus) were predominant on the MFC anode fed directly with raw cheese whey. This result was further demonstrated using culture techniques. A total of 45 strains were isolated belonging to 10 different genera including known electrogenic populations like Geobacter (in MFC with reactor effluent) and known fermentative populations like Lactobacillus (in MFC with cheese whey). Our results show that microbial fuel cells are an attractive technology to gain extra energy from cheese whey as a second stage process during raw cheese whey treatment by dark fermentation process.

  1. Effect of chitosan on the heat stability of whey protein solution as a function of pH.

    PubMed

    Zhao, Zhengtao; Xiao, Qian

    2017-03-01

    Chitosan was reported to interact with proteins through electrostatic interactions. Their interaction was influenced by pH, which was not fully characterized. Further research on the interactions between protein and chitosan at different pH and their influence on the thermal denaturation of proteins is necessary. In this research, the effect of chitosan on the heat stability of whey protein solution at pH 4.0-6.0 was studied. At pH 4.0, a small amount chitosan was able to prevent the heat-induced denaturation and aggregation of whey protein molecules. At higher pH values (5.5 and 6.0), whey proteins complexed with chitosan through electrostatic attraction. The formation of chitosan-whey protein complexes at pH 5.5 improved the heat stability of dispersions and no precipitation could be detected up to 20 days. The dispersion with a medium amount of chitosan (chitosan:whey protein 1:5) produced the most stable particles, which had an average radius of 135 ± 14 nm and a zeta potential value of 36 ± 1 mV. In contrast, at pH 6.0 only the dispersion with a high amount of chitosan (chitosan:whey protein 1:2) showed good shelf stability up to 20 days. It was possible to produce heat-stable whey protein beverages by regulating the interaction between chitosan and whey protein molecules. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  2. PRODUCTION OF FUNGAL MYCELIAL PROTEIN IN SUBMERGED CULTURE OF SOYBEAN WHEY.

    PubMed

    FALANGHE, H; SMITH, A K; RACKIS, J J

    1964-07-01

    Various soybean whey media were tested as substrate for seven species of fungi in submerged culture. Very little mycelial growth was obtained with Morchella hybrida, Collybia velutipes, Cantharellus cibarius, and Xylaria polymorpha. Agaricus campestris failed to grow. Tricholoma nudum and Boletus indecisus showed the greatest rate of growth and production of mycelial protein and the best utilization of soybean whey solids, with much shorter incubation times compared with those of the other species. T. nudum developed as spheres having diameters of about 5 to 8 mm, instead of the usual slurry or yeastlike form, in the presence of added ammonium acetate. B. indecisus always developed as spheres. Mycelial yields and production of protein by T. nudum greatly decreased with the addition of more than 1% glucose to soybean whey, whereas with B. indecisus the yield of protein almost doubled when up to 3% glucose was added. The effect of minerals on mycelial growth was determined. With soybean whey concentrated to 50%, the rate of mycelial growth of T. nudum was nearly doubled, but protein content of mycelia was greatly reduced. Mycelial growth and yield of protein of B. indecisus grown in concentrated whey were increased greatly. About 4 to 6 g of mycelial protein per liter can be obtained from fermentation in soybean whey, depending upon the medium used. Utilization of soybean whey by fungal fermentation may have economic value in whey disposal and in the production of products of high protein content.

  3. Production of Fungal Mycelial Protein in Submerged Culture of Soybean Whey

    PubMed Central

    Falanghe, Helcio; Smith, A. K.; Rackis, J. J.

    1964-01-01

    Various soybean whey media were tested as substrate for seven species of fungi in submerged culture. Very little mycelial growth was obtained with Morchella hybrida, Collybia velutipes, Cantharellus cibarius, and Xylaria polymorpha. Agaricus campestris failed to grow. Tricholoma nudum and Boletus indecisus showed the greatest rate of growth and production of mycelial protein and the best utilization of soybean whey solids, with much shorter incubation times compared with those of the other species. T. nudum developed as spheres having diameters of about 5 to 8 mm, instead of the usual slurry or yeastlike form, in the presence of added ammonium acetate. B. indecisus always developed as spheres. Mycelial yields and production of protein by T. nudum greatly decreased with the addition of more than 1% glucose to soybean whey, whereas with B. indecisus the yield of protein almost doubled when up to 3% glucose was added. The effect of minerals on mycelial growth was determined. With soybean whey concentrated to 50%, the rate of mycelial growth of T. nudum was nearly doubled, but protein content of mycelia was greatly reduced. Mycelial growth and yield of protein of B. indecisus grown in concentrated whey were increased greatly. About 4 to 6 g of mycelial protein per liter can be obtained from fermentation in soybean whey, depending upon the medium used. Utilization of soybean whey by fungal fermentation may have economic value in whey disposal and in the production of products of high protein content. PMID:14199023

  4. Restructured low-fat cooked ham containing liquid whey fortified with lactulose.

    PubMed

    Oliveira, Cristiane A; Massingue, Armando A; Moura, Ana Paula R; Fontes, Paulo Rogério; Ramos, Alcinéia Ls; Ramos, Eduardo M

    2018-01-01

    Current health concerns have driven consumers to request products with nutritional and physiological advantages, which can be achieved by using prebiotic ingredients. Lactulose is a prebiotic with excellent functional properties and can be easily incorporated into meat products through the addition of liquid whey. This study investigated the technological and sensorial quality of restructured cooked ham elaborated without liquid whey added (control) and with liquid whey containing different contents (0, 30, 60 and 100 g kg -1 ) of lactulose. Liquid whey did not change any technological or sensorial characteristics of the product, but the general acceptability decreased due to addition of lactulose. Samples with higher lactulose concentrations had lower moisture content, pH and refreezing loss and increased carbohydrate content. Control and whey added samples had higher lightness and lower intense color than samples with lactulose. Liquid whey additions with higher lactulose content increased hardness and chewiness of the samples. Restructured cooked hams formulated with liquid whey and 30 g kg -1 of lactulose had minimal effects on the technological properties and sensory characteristics and, due to the possible benefits conferred by the prebiotic, is a potential alternative to provide meat products with prebiotic activity. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  5. Characteristic of Fermented Whey Beverage with Addition of Tomato Juice (Lycopersicum esculentum)

    NASA Astrophysics Data System (ADS)

    Nursiwi, A.; Nurhartadi, E.; Utami, R.; Sari, A. M.; Laksono, P. W.; Aprilia, E. N.

    2017-04-01

    Whey is the liquid resulting from the coagulation of milk from cheese manufacture. The availability of lactose in whey and presence of other essential nutrients for the growth of microorganisms makes it one of the potential substrate for the production of different bio-products through fermentation process. Lactic acid production through fermentation from lactic acid bacteria could be an alternative processing route for whey lactose utilization. However, a problem with such approaches is the low total solids content. Sucrose and tomato juice added to increases the total solids content. The aim of this work was to study the characteristic of fermented whey beverage with different tomato juice concentration (5, 10, 15%) using probiotic bacteria Lactobacillus acidophilus and Lactobacillus plantarum. Lactic acid content, pH, antioxidant activity, and sensory properties of fermented whey beverage samples were examined after 18hours fermentation. Fermented whey beverage with 5% tomato juice obtained the highest scores for color, aroma, flavor, texture and overall attributes. The lactic acid content and pH of fermented whey beverage ranged from 0.326 to 0.437% and from 4.13 to 4.64, respectively. The highest antioxidant activity (9.073%) was found in sample with 15% tomato juice concentration. The best formulation is the sample with 5% of tomato juice concentration.

  6. Comparative proteomic exploration of whey proteins in human and bovine colostrum and mature milk using iTRAQ-coupled LC-MS/MS.

    PubMed

    Yang, Mei; Cao, Xueyan; Wu, Rina; Liu, Biao; Ye, Wenhui; Yue, Xiqing; Wu, Junrui

    2017-09-01

    Whey, an essential source of dietary nutrients, is widely used in dairy foods for infants. A total of 584 whey proteins in human and bovine colostrum and mature milk were identified and quantified by the isobaric tag for relative and absolute quantification (iTRAQ) proteomic method. The 424 differentially expressed whey proteins were identified and analyzed according to gene ontology (GO) annotation, Kyoto encyclopedia of genes and genomes (KEGG) pathway, and multivariate statistical analysis. Biological processes principally involved biological regulation and response to stimulus. Major cellular components were extracellular region part and extracellular space. The most prevalent molecular function was protein binding. Twenty immune-related proteins and 13 proteins related to enzyme regulatory activity were differentially expressed in human and bovine milk. Differentially expressed whey proteins participated in many KEGG pathways, including major complement and coagulation cascades and in phagosomes. Whey proteins show obvious differences in expression in human and bovine colostrum and mature milk, with consequences for biological function. The results here increase our understanding of different whey proteomes, which could provide useful information for the development and manufacture of dairy products and nutrient food for infants. The advanced iTRAQ proteomic approach was used to analyze differentially expressed whey proteins in human and bovine colostrum and mature milk.

  7. Whey Protein Attenuates Angiotensin II-Primed Premature Senescence of Vascular Smooth Muscle Cells through Upregulation of SIRT1

    PubMed Central

    2017-01-01

    Whey protein, a by-product of milk curdling, exhibits diverse biological activities and is used as a dietary supplement. However, its effects on stress-induced vascular aging have not yet been elucidated. In this study, we found that whey protein significantly inhibited the Ang II-primed premature senescence of vascular smooth muscle cells (VSMCs). In addition, we observed a marked dose- and time-dependent increase in SIRT1 promoter activity and mRNA in VSMCs exposed to whey protein, accompanied by elevated SIRT1 protein expression. Ang II-mediated repression of SIRT1 level was dose-dependently reversed in VSMCs treated with whey protein, suggesting that SIRT1 is involved in preventing senescence in response to this treatment. Furthermore, resveratrol, a well-defined activator of SIRT1, potentiated the effects of whey protein on Ang II-primed premature senescence, whereas sirtinol, an inhibitor of SIRT1, exerted the opposite. Taken together, these results indicated that whey protein-mediated upregulation of SIRT1 exerts an anti-senescence effect, and can thus ameliorate Ang IIinduced vascular aging as a dietary supplement. PMID:29725214

  8. Valorization of Cheese and Tofu Whey through Enzymatic Synthesis of Lactosucrose.

    PubMed

    Corzo-Martinez, Marta; Luscher, Alice; de Las Rivas, Blanca; Muñoz, Rosario; Moreno, F Javier

    2015-01-01

    This work deals with the development of a new bioprocess for the efficient synthesis of lactosucrose, a potential prebiotic oligosaccharide with a high value-added, from two important and inexpensive agro-industrial by-products such as tofu whey and cheese whey permeate. The bioconversion is driven by the ability of the enzyme levansucrase SacB from Bacillus subtilis CECT 39 to transfructosylate lactose contained in the cheese whey permeate by using not only sucrose but also raffinose and stachyose, which are present in considerable amounts in the tofu whey, as suitable donors of fructosyl moieties. The maximum lactosucrose concentration obtained from both by-products was 80.1 g L-1 after a short reaction time 120 min at 37°C, leading to productivity and specific productivity values of 40.1 g lactosucrose L-1 h-1 and 80.1 mg lactosucrose U enzyme-1 h-1, respectively. Findings contained in this work could provide a new strategy to valorize agro-industrial by-products as cheese whey permeate and, specially, tofu whey by means of their use as renewable resources in the enzymatic synthesis of bioactive oligosaccharides.

  9. Effect of yogurt and bifidus yogurt fortified with skim milk powder, condensed whey and lactose-hydrolysed condensed whey on serum cholesterol and triacylglycerol levels in rats.

    PubMed

    Beena, A; Prasad, V

    1997-08-01

    The possible hypocholesterolaemic properties of milk and fermented milk products have been investigated in groups of albino rats given a basal diet, basal diet plus cholesterol, and basal diet plus cholesterol together with whole milk or standard or bifidus yogurt. The yogurts were fortified with skim milk powder, condensed whey or lactose-hydrolysed condensed whey. After 30 d, triacylglycerols, total cholesterol, HDL-cholesterol and LDL-cholesterol were measured in serum. Whole milk and ordinary yogurt had no hypocholesterolaemic effect, but standard yogurt containing lactose-hydrolysed condensed whey and all bifidus yogurts lowered serum cholesterol. In general, yogurts changed HDL-cholesterol little, but tended to raise triacylglycerols. There was marked lowering of LDL-cholesterol in rats given either type of yogurt fortified with whey proteins. This study has demonstrated in a rat model that bifidus yogurts and yogurts fortified with whey proteins can reduce total and LDL-cholesterol, and suggests that if they have the same effect in human subjects they have potential value in cholesterol-lowering diets.

  10. Simultaneous hydrolysis and co-fermentation of whey lactose with wheat for ethanol production.

    PubMed

    Jin, Yiqiong; Parashar, Archana; Mason, Beth; Bressler, David C

    2016-12-01

    Whey permeate was used as a co-substrate to replace part of the wheat for ethanol production by Saccharomyces cerevisiae. The simultaneous saccharification and fermentation was achieved with β-galactosidase added at the onset of the fermentation to promote whey lactose hydrolysis. Aspergillus oryzae and Kluyveromyces lactis β-galactosidases were two enzymes selected and used in the co-fermentation of wheat and whey permeate for the comparison of their effectiveness on lactose hydrolysis. The possibility of co-fermentations in both STARGEN and jet cooking systems was investigated in 5L bioreactors. Ethanol yields from the co-fermentations of wheat and whey permeate were evaluated. It was found that A. oryzae β-galactosidase was more efficient for lactose hydrolysis during the co-fermentation and that whey permeate supplementation can contribute to ethanol yield in co-fermentations with wheat. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Cheese whey: A cost-effective alternative for hyaluronic acid production by Streptococcus zooepidemicus.

    PubMed

    Amado, Isabel R; Vázquez, José A; Pastrana, Lorenzo; Teixeira, José A

    2016-05-01

    This study focuses on the optimisation of cheese whey formulated media for the production of hyaluronic acid (HA) by Streptococcus zooepidemicus. Culture media containing whey (W; 2.1g/L) or whey hydrolysate (WH; 2.4 g/L) gave the highest HA productions. Both W and WH produced high yields on protein consumed, suggesting cheese whey is a good nitrogen source for S. zooepidemicus production of HA. Polysaccharide concentrations of 4.0 g/L and 3.2g/L were produced in W and WH in a further scale-up to 5L bioreactors, confirming the suitability of the low-cost nitrogen source. Cheese whey culture media provided high molecular weight (>3000 kDa) HA products. This study revealed replacing the commercial peptone by the low-cost alternative could reduce HA production costs by up to a 70% compared to synthetic media. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. The effect of bleaching agents on the degradation of vitamins and carotenoids in spray-dried whey protein concentrate.

    PubMed

    Stout, M A; Park, C W; Drake, M A

    2017-10-01

    Previous research has shown that bleaching affects flavor and functionality of whey proteins. The role of different bleaching agents on vitamin and carotenoid degradation is unknown. The objective of this study was to determine the effects of bleaching whey with traditional annatto (norbixin) by hydrogen peroxide (HP), benzoyl peroxide (BP), or native lactoperoxidase (LP) on vitamin and carotenoid degradation in spray-dried whey protein concentrate 80% protein (WPC80). An alternative colorant was also evaluated. Cheddar whey colored with annatto (15 mL/454 L of milk) was manufactured, pasteurized, and fat separated and then assigned to bleaching treatments of 250 mg/kg HP, 50 mg/kg BP, or 20 mg/kg HP (LP system) at 50°C for 1 h. In addition to a control (whey with norbixin, whey from cheese milk with an alternative colorant (AltC) was evaluated. The control and AltC wheys were also heated to 50°C for 1 h. Wheys were concentrated to 80% protein by ultrafiltration and spray dried. The experiment was replicated in triplicate. Samples were taken after initial milk pasteurization, initial whey formation, after fat separation, after whey pasteurization, after bleaching, and after spray drying for vitamin and carotenoid analyses. Concentrations of retinol, a-tocopherol, water-soluble vitamins, norbixin, and other carotenoids were determined by HPLC, and volatile compounds were measured by gas chromatography-mass spectrometry. Sensory attributes of the rehydrated WPC80 were documented by a trained panel. After chemical or enzymatic bleaching, WPC80 displayed 7.0 to 33.3% reductions in retinol, β-carotene, ascorbic acid, thiamin, α-carotene, and α-tocopherol. The WPC80 bleached with BP contained significantly less of these compounds than the HP- or LP-bleached WPC80. Riboflavin, pantothenic acid, pyridoxine, nicotinic acid, and cobalamin concentrations in fluid whey were not affected by bleaching. Fat-soluble vitamins were reduced in all wheys by more than 90% following curd formation and fat separation. With the exception of cobalamin and ascorbic acid, water-soluble vitamins were reduced by less than 20% throughout processing. Norbixin destruction, volatile compound, and sensory results were consistent with previous studies on bleached WPC80. The WPC80 colored with AltC had a similar sensory profile, volatile compound profile, and vitamin concentration as the control WPC80. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  13. Cold enzymatic bleaching of fluid whey.

    PubMed

    Campbell, R E; Drake, M A

    2013-01-01

    Chemical bleaching of fluid whey and retentate with hydrogen peroxide (HP) alone requires high concentrations (100-500 mg of HP/kg) and recent studies have demonstrated that off-flavors are generated during chemical bleaching that carry through to spray-dried whey proteins. Bleaching of fluid whey and retentate with enzymes such as naturally present lactoperoxidase or an exogenous commercial peroxidase (EP) at cold temperatures (4°C) may be a viable alternative to traditional chemical bleaching of whey. The objective of this study was to determine the optimum level of HP for enzymatic bleaching (both lactoperoxidase and EP) at 4°C and to compare bleaching efficacy and sensory characteristics to HP chemical bleaching at 4°C. Selected treatments were subsequently applied for whey protein concentrate with 80% protein (WPC80) manufacture. Fluid Cheddar whey and retentate (80% protein) were manufactured in triplicate from pasteurized whole milk. The optimum concentration of HP (0 to 250 mg/kg) to activate enzymatic bleaching at 4°C was determined by quantifying the loss of norbixin. In subsequent experiments, bleaching efficacy, descriptive sensory analysis, and volatile compounds were monitored at selected time points. A control with no bleaching was also evaluated. Enzymatic bleaching of fluid whey and retentate at 4°C resulted in faster bleaching and higher bleaching efficacy (color loss) than bleaching with HP alone at 250 mg/kg. Due to concentrated levels of naturally present lactoperoxidase, retentate bleached to completion (>80% norbixin destruction in 30 min) faster than fluid whey at 4°C (>80% norbixin destruction in 12h). In fluid whey, the addition of EP decreased bleaching time. Spray-dried WPC80 from bleached wheys, regardless of bleaching treatment, were characterized by a lack of sweet aromatic and buttery flavors, and the presence of cardboard flavor concurrent with higher relative abundance of 1-octen-3-ol and 1-octen-3-one. Among enzymatically bleached WPC80, lactoperoxidase-bleached WPC80 contained higher relative abundance of 2,3-octadienone, 2-pentyl furan, and hexanal than those bleached with added EP. Bleach times, bleaching efficacy, and flavor results suggest that enzymatic bleaching may be a viable and desirable alternative to HP bleaching of fluid whey or retentate. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  14. Acne located on the trunk, whey protein supplementation: Is there any association?

    PubMed

    Cengiz, Fatma Pelin; Cevirgen Cemil, Bengu; Emiroglu, Nazan; Gulsel Bahali, Anil; Onsun, Nahide

    2017-01-01

    Whey protein is a source of protein that was isolated from milk. Whey proteins are composed of higher levels of essential amino acids. The role of diet in acne etiology has been investigated for several years. It was established that milk and milk products can trigger acneiform lesions, and recent evidence supports the role of whey protein supplements in acne. Herein, we report 6 healthy male adolescent patients developing acne located only to the trunk after the consumption of whey protein supplements for faster bodybuilding. This is the first observation which specified the location of acneiform lesions among bodybuilders. In our opinion, a trendy and common health problem is beginning among adolescents in the gyms.

  15. Consumption of Milk Protein or Whey Protein Results in a Similar Increase in Muscle Protein Synthesis in Middle Aged Men

    PubMed Central

    Mitchell, Cameron J.; McGregor, Robin A.; D’Souza, Randall F.; Thorstensen, Eric B.; Markworth, James F.; Fanning, Aaron C.; Poppitt, Sally D.; Cameron-Smith, David

    2015-01-01

    The differential ability of various milk protein fractions to stimulate muscle protein synthesis (MPS) has been previously described, with whey protein generally considered to be superior to other fractions. However, the relative ability of a whole milk protein to stimulate MPS has not been compared to whey. Sixteen healthy middle-aged males ingested either 20 g of milk protein (n = 8) or whey protein (n = 8) while undergoing a primed constant infusion of ring 13C6 phenylalanine. Muscle biopsies were obtained 120 min prior to consumption of the protein and 90 and 210 min afterwards. Resting myofibrillar fractional synthetic rates (FSR) were 0.019% ± 0.009% and 0.021% ± 0.018% h−1 in the milk and whey groups respectively. For the first 90 min after protein ingestion the FSR increased (p < 0.001) to 0.057% ± 0.018% and 0.052% ± 0.024% h−1 in the milk and whey groups respectively with no difference between groups (p = 0.810). FSR returned to baseline in both groups between 90 and 210 min after protein ingestion. Despite evidence of increased rate of digestion and leucine availability following the ingestion of whey protein, there was similar activation of MPS in middle-aged men with either 20 g of milk protein or whey protein. PMID:26506377

  16. Urinary Loss of Tricarboxylic Acid Cycle Intermediates As Revealed by Metabolomics Studies: An Underlying Mechanism to Reduce Lipid Accretion by Whey Protein Ingestion?

    PubMed Central

    2015-01-01

    Whey protein intake is associated with the modulation of energy metabolism and altered body composition both in human subjects and in animals, but the underlying mechanisms are not yet elucidated. We fed obesity-prone C57BL/6J mice high-fat diets with either casein (HF casein) or whey (HF whey) for 6 weeks. At equal energy intake and apparent fat and nitrogen digestibility, mice fed HF whey stored less energy as lipids, evident both as lower white adipose tissue mass and as reduced liver lipids, compared with HF-casein-fed mice. Explorative analyses of 48 h urine, both by 1H NMR and LC–MS metabolomic platforms, demonstrated higher urinary excretion of tricarboxylic acid (TCA) cycle intermediates citric acid and succinic acid (identified by both platforms), and cis-aconitic acid and isocitric acid (identified by LC–MS platform) in the HF whey, relative to in the HF-casein-fed mice. Targeted LC–MS analyses revealed higher citric acid and cis-aconitic acid concentrations in fed state plasma, but not in liver of HF-whey-fed mice. We propose that enhanced urinary loss of TCA cycle metabolites drain available substrates for anabolic processes, such as lipogenesis, thereby leading to reduced lipid accretion in HF-whey-fed compared to HF-casein-fed mice. PMID:24702026

  17. Utilization of Cheese Whey Using Synergistic Immobilization of β-Galactosidase and Saccharomyces cerevisiae Cells in Dual Matrices.

    PubMed

    Kokkiligadda, Anusha; Beniwal, Arun; Saini, Priyanka; Vij, Shilpa

    2016-08-01

    Whey is a byproduct of the dairy industry, which has prospects of using as a source for production of various valuable compounds. The lactose present in whey is considered as an environmental pollutant and its utilization for enzyme and fuel production, may be effective for whey bioremediation. The dairy yeast Kluyveromyces marxianus have the ability to utilize lactose sharply as the major carbon source for the production of the enzyme. Five strains were tested for the production of the β-galactosidase using whey. The maximum β-galactosidase activity of 1.74 IU/mg dry weight was achieved in whey using K. marxianus MTCC 1389. The biocatalyst was further immobilized on chitosan macroparticles and exhibited excellent functional activity at 35 °C. Almost 89 % lactose hydrolysis was attained for concentrated whey (100 g/L) and retained 89 % catalytic activity after 15 cycles of reuse. Finally, β-galactosidase was immobilized on chitosan and Saccharomyces cerevisiae on calcium alginate, and both were used together for the production of ethanol from concentrated whey. Maximal ethanol titer of 28.9 g/L was achieved during fermentation at 35 °C. The conclusions generated by employing two different matrices will be beneficial for the future modeling using engineered S. cerevisiae in scale-up studies.

  18. Whey Protein Improves Marathon-Induced Injury and Exercise Performance in Elite Track Runners

    PubMed Central

    Huang, Wen-Ching; Chang, Yung-Cheng; Chen, Yi-Ming; Hsu, Yi-Ju; Huang, Chi-Chang; Kan, Nai-Wen; Chen, Sheng-Shih

    2017-01-01

    Whey protein has been widely applied to athletes and the fitness field for muscle growth and performance improvement. Limited studies focused on the beneficial effects of whey on aerobic exercise according to biochemical assessments. In the current study, 12 elite male track runners were randomly assigned to whey and maltodextrin groups for 5 weeks' supplementation. The aim of this study was to investigate the effect of whey protein on physiological adaptions and exercise performance. During this period, three time points (pre-, post-, and end-test) were used to evaluate related biochemical parameters, body composition, and performance. The post-test was set 1 day after a marathon for injury status evaluation and the end-test was also assessed after 1-week recovery from endurance test. The results showed that the whey group exhibited significantly lower aspartate aminotransferase, alanine aminotransferase, lactate dehydrogenase, and creatine kinase indicators after the marathon (post-test), as well as at the end-test (p<0.016). The endurance performance in twelve-minute walk/run was also significantly elevated (p<0.012) possibly due to an increase in the muscle mass and amelioration of exercise injuries. In the current study, we demonstrated that whey protein can also be used for aerobic exercise for better physiological adaptation, in addition to resistance training. Whey protein could be also a potential nutrient supplement with a variety of benefits for amateur runners. PMID:28824296

  19. Effect of Incubation Time and Sucrose Addition on the Characteristics of Cheese Whey Yoghurt

    NASA Astrophysics Data System (ADS)

    Nurhartadi, E.; Utami, R.; Nursiwi, A.; Sari, A. M.; Widowati, E.; Sanjaya, A. P.; Esnadewi, E. A.

    2017-04-01

    The effect of incubation time and concentration of sucrose addition on the characteristics of cheese whey yogurt (lactic acid content, pH, total lactic acid bacteria, antioxidant activity, viscosity) and sensory characteristics (color, odor, flavor, consistency, and overalls) were investigated. The cheese whey yogurt fermentation process was carried out for 24h and 36h with the addition of sucrose 8, 10, and 12% (w/w) of total solid, respectively. The results showed that the lactic acid content, total lactic acid bacteria, antioxidant activity, and viscosity of cheese whey yogurt were affected by the incubation time and sucrose addition. The level of pH of yogurt which was incubated at 24h and 36h were relatively in the same levels, which were 4.51 up to 4.63. Due the sensory characteristic of cheese whey yogurt the panellists gave the high score for the cheese whey yogurt which was incubated at 24h and sucrose addition 12% (w/w) of total solid. The cheese whey yogurt has 0.41% lactic acid content; pH 4.51; 7.09 log total lactic acid bacteria cells / ml; 5.78% antioxidant activity; and 5.97 cP viscosity. The best sensory and physico-chemical characteristic of cheese whey yogurt was achieved by 24h incubation time and 12% concentration of sucrose addition.

  20. Nil Whey Protein Effect on Glycemic Control after Intense Mixed-Mode Training in Type 2 Diabetes.

    PubMed

    Gaffney, Kim Alexander; Lucero, Adam; Stoner, Lee; Faulkner, James; Whitfield, Patricia; Krebs, Jeremy; Rowlands, David Stephen

    2018-01-01

    Although intense endurance and resistance exercise training and whey protein supplementation have both been shown to independently improve glycemic control, no known studies have examined the effect of high-intensity mixed-mode interval training (MMIT) and whey supplementation in adults with Type 2 diabetes (T2D). This study aimed to determine if peritraining whey protein supplementation combined with MMIT can improve glycemic control. In a double-blind, randomized, placebo-controlled trial, 24 men (55.7 ± 5.6 yr) with T2D performed MMIT with whey (20 g) or placebo control for 10 wk. Glycemic control was assessed via glucose disposal rate during a euglycemic insulin clamp, fasting blood glucose concentration, and homeostatic model assessment of insulin resistance. Changes in peak oxygen consumption, 1-repetition maximum strength, vastus lateralis muscle, and subcutaneous adipose thicknesses, and waist circumference were also assessed. Ten weeks of MMIT substantially improved glucose disposal rate by 27.5% (90% confidence interval, 1.2%-60.7%) and 24.8% (-5.4% to 64.8%) in the whey and control groups, respectively. There were likely and possible reductions in fasting blood glucose by -17.4% (-30.6% to -1.6%) and homeostatic model assessment of insulin resistance by -14.1% (-25.3% to 1.08%) in the whey group; however, whey effects were not clearly beneficial to glycemic outcomes relative to the control. MMIT also clearly substantially improved 1-repetition maximum by 20.6% (16.3%-24.9%) and 22.7% (18.4%-27.2%), peak oxygen consumption by 22.6% (12.0%-26.2%) and 18.5% (10.5%-27.4%), and vastus lateralis muscle thickness by 18.9% (12.0%-26.2%) and 18.6% (10.5%-27.4%) and possibly reduced waist circumference by -2.1% (-3.1% to -1.0%) and -1.9% (-3.7% to -0.1%) in the control and whey groups, respectively, but the whey-control outcome was trivial or unclear. A clinically meaningful enhancement in glycemic control after 10 wk of MMIT was not clearly advanced with peritraining whey protein supplementation in middle-age men with T2D.

  1. Association of denatured whey proteins with casein micelles in heated reconstituted skim milk and its effect on casein micelle size.

    PubMed

    Anema, Skelte G; Li, Yuming

    2003-02-01

    When skim milk at pH 6.55 was heated (75 to 100 degrees C for up to 60 min), the casein micelle size, as monitored by photon correlation spectroscopy, was found to increase during the initial stages of heating and tended to plateau on prolonged heating. At any particular temperature, the casein micelle size increased with longer holding times, and, at any particular holding time, the casein micelle size increased with increasing temperature. The maximum increase in casein micelle size was about 30-35 nm. The changes in casein micelle size were poorly correlated with the level of whey protein denaturation. However, the changes in casein micelle size were highly correlated with the levels of denatured whey proteins that were associated with the casein micelles. The rate of association of the denatured whey proteins with the casein micelles was considerably slower than the rate of denaturation of the whey proteins. Removal of the whey proteins from the skim milk resulted in only small changes in casein micelle size during heating. Re-addition of beta-lactoglobulin to the whey-protein-depleted milk caused the casein micelle size to increase markedly on heat treatment. The changes in casein micelle size induced by the heat treatment of skim milk may be a consequence of the whey proteins associating with the casein micelles. However, these associated whey proteins would need to occlude a large amount of serum to account for the particle size changes. Separate experiments showed that the viscosity changes of heated milk and the estimated volume fraction changes were consistent with the particle size changes observed. Further studies are needed to determine whether the changes in size are due to the specific association of whey proteins with the micelles or whether a low level of aggregation of the casein micelles accompanies this association behaviour. Preliminary studies indicated lower levels of denatured whey proteins associated with the casein micelles and smaller changes in casein micelle size occurred as the pH of the milk was increased from pH 6.5 to pH 6.7.

  2. 7 CFR 58.809 - Pasteurization.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ..., modified whey products, and lactose shall be pasteurized prior to condensing. When the condensing and... transported to another plant for further processing into dry whey, dry whey products or lactose without... procedure unpasteurized ingredients are added (except those necessary for lactose crystallization), or...

  3. 7 CFR 58.809 - Pasteurization.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ..., modified whey products, and lactose shall be pasteurized prior to condensing. When the condensing and... transported to another plant for further processing into dry whey, dry whey products or lactose without... procedure unpasteurized ingredients are added (except those necessary for lactose crystallization), or...

  4. Development of β-lactoglobulin-specific chimeric human IgEκ monoclonal antibodies for in vitro safety assessment of whey hydrolysates.

    PubMed

    Knipping, Karen; Simons, Peter J; Buelens-Sleumer, Laura S; Cox, Linda; den Hartog, Marcel; de Jong, Niels; Teshima, Reiko; Garssen, Johan; Boon, Louis; Knippels, Léon M J

    2014-01-01

    Cow's milk-derived whey hydrolysates are nutritional substitutes for allergic infants. Safety or residual allergenicity assessment of these whey hydrolysates is crucial. Currently, rat basophilic leukemia RBL-2H3 cells expressing the human IgE receptor α-chain (huFcεRIα-RBL-2H3), sensitized with serum IgE from cow's milk allergic children, are being employed to assess in vitro residual allergenicity of these whey hydrolysates. However, limited availability and inter-lot variation of these allergic sera impede standardization of whey hydrolysate safety testing in degranulation assays. An oligoclonal pool of chimeric human (chu)IgE antibodies against bovine β-lactoglobulin (a major allergen in whey) was generated to increase sensitivity, specificity, and reproducibility of existing degranulation assays. Mice were immunized with bovine β-lactoglobulin, and subsequently the variable domains of dissimilar anti-β-lactoglobulin mouse IgG antibodies were cloned and sequenced. Six chimeric antibodies were generated comprising mouse variable domains and human constant IgE/κ domains. After sensitization with this pool of anti-β-lactoglobulin chuIgEs, huFcεRIα-expressing RBL-2H3 cells demonstrated degranulation upon cross-linking with whey, native 18 kDa β-lactoglobulin, and 5-10 kDa whey hydrolysates, whereas a 3 kDa whey hydrolysate and cow's milk powder (mainly casein) showed no degranulation. In parallel, allergic serum IgEs were less sensitive. In addition, our pool anti-β-lactoglobulin chuIgEs recognized multiple allergenic immunodominant regions on β-lactoglobulin, which were also recognized by serum IgEs from cow's milk allergic children. Usage of our 'unlimited' source and well-defined pool of β-lactoglobulin-specific recombinant chuIgEs to sensitize huFcεRIα on RBL-2H3 cells showed to be a relevant and sensitive alternative for serum IgEs from cow's milk allergic patients to assess safety of whey-based non-allergic hydrolyzed formula.

  5. Succinic Acid Production from Cheese Whey using Actinobacillus succinogenes 130 Z

    NASA Astrophysics Data System (ADS)

    Wan, Caixia; Li, Yebo; Shahbazi, Abolghasem; Xiu, Shuangning

    Actinobacillus succinogenes 130 Z was used to produce succinic acid from cheese whey in this study. At the presence of external CO2 supply, the effects of initial cheese whey concentration, pH, and inoculum size on the succinic acid production were studied. The by-product formation during the fermentation process was also analyzed. The highest succinic acid yield of 0.57 was obtained at initial cheese whey concentration of 50 g/L, while the highest succinic acid productivity of 0.58 g h-1 L-1 was obtained at initial cheese whey concentration of 100 g/L. Increase in pH and inoculum size caused higher succinic acid yield and productivity. At the preferred fermentation condition of pH 6.8, inoculum size of 5% and initial cheese whey concentration of 50 g/L, succinic acid yield of 0.57, and productivity of 0.44 g h-1 L-1 were obtained. Acetic acid and formic acid were the main by-products throughout the fermentation run of 48 h. It is feasible to produce succinic acid using lactose from cheese whey as carbon resource by A. succinogenes 130 Z.

  6. Valorization of Cheese and Tofu Whey through Enzymatic Synthesis of Lactosucrose

    PubMed Central

    Corzo-Martinez, Marta; Luscher, Alice; de las Rivas, Blanca; Muñoz, Rosario; Moreno, F. Javier

    2015-01-01

    This work deals with the development of a new bioprocess for the efficient synthesis of lactosucrose, a potential prebiotic oligosaccharide with a high value-added, from two important and inexpensive agro-industrial by-products such as tofu whey and cheese whey permeate. The bioconversion is driven by the ability of the enzyme levansucrase SacB from Bacillus subtilis CECT 39 to transfructosylate lactose contained in the cheese whey permeate by using not only sucrose but also raffinose and stachyose, which are present in considerable amounts in the tofu whey, as suitable donors of fructosyl moieties. The maximum lactosucrose concentration obtained from both by-products was 80.1 g L-1 after a short reaction time 120 min at 37°C, leading to productivity and specific productivity values of 40.1 g lactosucrose L-1 h-1 and 80.1 mg lactosucrose U enzyme−1 h−1, respectively. Findings contained in this work could provide a new strategy to valorize agro-industrial by-products as cheese whey permeate and, specially, tofu whey by means of their use as renewable resources in the enzymatic synthesis of bioactive oligosaccharides. PMID:26406885

  7. Effects of whey protein supplements on metabolism: evidence from human intervention studies.

    PubMed

    Graf, Sonja; Egert, Sarah; Heer, Martina

    2011-11-01

    Epidemiological studies indicate that the consumption of milk and dairy products is inversely associated with a lower risk of metabolic disorders and cardiovascular diseases. In particular, whey protein seems to induce these effects because of bioactive compounds such as lactoferrin, immunoglobulins, glutamine and lactalbumin. In addition, it is an excellent source of branch chained amino acids. This review summarizes recent findings on the effects of whey protein on metabolic disorders and the musculoskeletal system. We identified 25 recently published intervention trials examining chronic and/or acute effects of whey protein supplementation on lipid and glucose metabolism, blood pressure, vascular function and on the musculoskeletal system. Whey protein appears to have a blood glucose and/or insulin lowering effect partly mediated by incretins. In addition, whey protein may increase muscle protein synthesis. In contrast there are no clear-cut effects shown on blood lipids and lipoproteins, blood pressure and vascular function. For bone metabolism the data are scarce. In summary, whey protein may affect glucose metabolism and muscle protein synthesis. However, the evidence for a clinical efficacy is not strong enough to make final recommendations with respect to a specific dose and the duration of supplementation.

  8. The Influence of 8 Weeks of Whey-Protein and Leucine Supplementation on Physical and Cognitive Performance

    DTIC Science & Technology

    2010-01-01

    Influence of 8 Weeks of Whey Protein and Leucine Supplementation on Physical and Cognitive Performance 5a. GONTRAGT NUMBER FA8650-04-D-6472 5b. GRANT NUMBER...investigate the ability of whey -protein and leucine supplementation to enhance physical and cognitive performance and body composition. Thirty moderately fit...composition before and after supplementing their daily diet for 8 wk with either 19.7 g of whey protein and 6.2 g leucine (WPL) or a calorie-equivalent placebo

  9. Ingestion of soy-whey blended protein augments sports performance and ameliorates exercise-induced fatigue in a rat exercise model.

    PubMed

    Ren, Guangxu; Yi, Suqing; Zhang, Hongru; Wang, Jing

    2017-02-22

    This study sought to determine the effects of soy-whey blended protein supplementation on sports performance and related biochemical parameters after long-term training. After a week of adaptation, eighteen 6-week-old male Wistar rats were randomly assigned to 3 groups: the standard chow diet plus whey protein (Whey) group, the standard chow diet plus soy-whey blended protein (BP) group and the standard chow diet only (control) group. Each group included 6 rats for the seven-week experiment. Before the experiment, the baseline values of body weight, grasping force and time to exhaustion due to the loaded-swimming test were recorded for each group. During the experimental period, all rats performed the loaded-swimming test until exhaustion five days each week. The results showed that the mean maximum grasping force of the BP group significantly increased between the 5 th and the 7 th week (p < 0.05) compared with the other groups. The ingestion of blended protein for 7 weeks significantly increased the mean time to exhaustion due to swimming by 1.5-fold and 1.2-fold compared with the control and Whey groups, respectively. The plasma levels of leucine, isoleucine and valine were significantly higher at 60 min after the blended protein intervention compared with the Whey and control interventions (p < 0.05). Furthermore, the ingestion of soy-whey blended protein enhanced the activities of lactate dehydrogenase and superoxide dismutase and decreased the levels of malondialdehyde in serum. These results collectively suggest that soy-whey blended protein ingestion with resistance exercise can improve sports performance and ameliorate exercise-induced fatigue in rats.

  10. Dietary whey proteins shield murine cecal microbiota from extensive disarray caused by a high-fat diet.

    PubMed

    Monteiro, Naice E S; Roquetto, Aline R; de Pace, Fernanda; Moura, Carolina S; Santos, Andrey Dos; Yamada, Aureo T; Saad, Mário José A; Amaya-Farfan, Jaime

    2016-07-01

    High-fat diets are used to induce adverse alterations in the intestinal microbiota, or dysbiosis, generalized inflammation and metabolic stress, which ultimately may lead to obesity. The influence of dietary whey proteins, whether intact or hydrolyzed, has been reported to improve glucose homeostasis and reduce stress. Therefore, the purpose of this work was to test if dietary milk-whey proteins, both in the intact form and hydrolyzed, could have an effect on the compositional changes of the cecal microbiota that can be induced in mice when receiving a high-fat diet in combination with the standard casein. Male C57BL/6 mice were fed a control casein diet (AIN 93-G); high-fat-casein (HFCAS); high-fat-whey protein concentrate (HFWPC) and high-fat whey-protein hydrolysate (HFWPH) for 9weeks. The intestinal microbiota composition was analyzed by 16S-rRNA of the invariant (V1-V3) gene, potentially endotoxemic lipopolysaccharide (LPS) release was determined colorimetrically, and liver fat infiltration assessed by light microscopy. The high-fat diet proved to induce dysbiosis in the animals by inverting the dominance of the phylum Firmicutes over Bacteroidetes, promoted the increase of LPS and resulted in liver fat infiltration. The whey proteins, whether intact or hydrolyzed, resisted the installation of dysbiosis, prevented the surge of circulating LPS and prevented fat infiltration in the liver. It is concluded that dietary whey proteins exert metabolic actions that tend to preserve the normal microbiota profile, while mitigating liver fat deposition in mice consuming a high-fat diet for nine weeks. Such beneficial effects were not seen when casein was the dietary protein. The hydrolyzed whey protein still differed from the normal whey protein by selectively protecting the Bacteroidetes phylum. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Manufacture of a beverage from cheese whey using a "tea fungus" fermentation.

    PubMed

    Belloso-Morales, Genette; Hernández-Sánchez, Humberto

    2003-01-01

    Kombucha is a sour beverage reported to have potential health effects prepared from the fermentation of black tea and sugar with a "tea fungus", a symbiotic culture of acetic acid bacteria and yeasts. Although black tea is the preferred substrate for Kombucha fermentation, other beverages have also been tested as substrates with fair results. Cheese whey is a by-product with a good amount of fermentable lactose that has been used before in the production of beverages, so the objective of this study was to test three types of whey (fresh sweet, fresh acid and reconstituted sweet) in the elaboration of a fermented beverage using a kombucha culture as inoculum. The isolation and identification of bacteria and yeasts from the fermented tea and wheys was done along with the study of the rates of change in sugar consumption, acid production and pH decrease. Several species of acetic acid bacteria (Acetobacter aceti subsp. aceti, Gluconobacter oxydans subsp. industrius, subsp. oxydans and Gluconoacetobacter xylinus) were isolated from the different kombuchas along with the yeasts Saccharomyces cerevisiae, Kluyveromyces marxianus, and Brettanomyces bruxelensis. The main metabolic products in the fermented wheys included ethanol, lactic and acetic acids. A good growth was obtained in both sweet wheys in which a pH of 3.3 and a total acid content (mainly lactic and acetic acids) of 0.07 mol/l was reached after 96 h. The sweet whey fermented beverages contained a relatively low lactose concentration (< 12 g/l). The final ethanol content was low (5 g/l) in all the fermented wheys. The whey products were strongly sour and salty non sparkling beverages.

  12. Effects of combination of whey protein intake and rehabilitation on muscle strength and daily movements in patients with hip fracture in the early postoperative period.

    PubMed

    Niitsu, Masaya; Ichinose, Daisuke; Hirooka, Taku; Mitsutomi, Kazuhiko; Morimoto, Yoshitaka; Sarukawa, Junichiro; Nishikino, Shoichi; Yamauchi, Katsuya; Yamazaki, Kaoru

    2016-08-01

    Elderly patients can be at risk of protein catabolism and malnutrition in the early postoperative period. Whey protein includes most essential amino acids and stimulates the synthesis of muscle protein. The purpose of this study was to investigate the effect of resistance training in combination with whey protein intake in the early postoperative period. We randomized patients to a whey protein group or a control group. The former group received 32.2 g of whey protein pre- and post-rehabilitation in the early postoperative period for two weeks. Outcomes were knee extension strength on either side by Biodex 4.0, and the ability of transfer, walking, toilet use and stair use by the Barthel Index (BI). We performed initial and final assessments in the second and tenth rehabilitation sessions. A total of 38 patients were recruited: 20 in the whey protein group and 18 in the control group. Participants in the whey protein group showed significantly greater improvement in knee extension strength in the operated limb compared with the control group (F = 6.11, P = 0.02). The non-operated limb also showed a similar tendency (F = 3.51, P = 0.07). The abilities of transfer, walking and toilet use showed greater improvements in the whey protein group than in the control group by BI (P < 0.05). The combination of whey protein intake and rehabilitation for two weeks in the early postoperative period has a beneficial effect on knee extension strength in both lower limbs and BI (transfer, walking and toilet use) scores in patients with hip fracture. Copyright © 2015 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  13. Acne located on the trunk, whey protein supplementation: Is there any association?

    PubMed Central

    Cengiz, Fatma Pelin; Cevirgen Cemil, Bengu; Emiroglu, Nazan; Gulsel Bahali, Anil; Onsun, Nahide

    2017-01-01

    Whey protein is a source of protein that was isolated from milk. Whey proteins are composed of higher levels of essential amino acids. The role of diet in acne etiology has been investigated for several years. It was established that milk and milk products can trigger acneiform lesions, and recent evidence supports the role of whey protein supplements in acne. Herein, we report 6 healthy male adolescent patients developing acne located only to the trunk after the consumption of whey protein supplements for faster bodybuilding. This is the first observation which specified the location of acneiform lesions among bodybuilders. In our opinion, a trendy and common health problem is beginning among adolescents in the gyms. PMID:28326292

  14. Development of newly enriched bread with quinoa flour and whey

    NASA Astrophysics Data System (ADS)

    Salazar, D. M.; Naranjo, M.; Pérez, L. V.; Valencia, A. F.; Acurio, L. P.; Gallegos, L. M.; Alvarez, F. C.; Amancha, P. I.; Valencia, M. P.; Rodriguez, C. A.; Arancibia, M. Y.

    2017-07-01

    Ecuador, Bolivia, and Peru are countries with the highest amount of quinoa production in the world due to the proximity to the Andes. Further, Ecuador has a high production of dairy products, particularly fresh cheese of which production gives a high volume of whey, without further use, with the consequent loss of their nutritional value. The present study was performed to develop a new fortified bread through the incorporation of quinoa flour and whey at three different concentrations. The use of quinoa and whey improved the texture, shelf life and sensory characteristics of bread, compared to those prepared with wheat flour. This study shows the potential of quinoa flour and whey as ingredients in the development of baked products.

  15. Astringency reduction in red wine by whey proteins.

    PubMed

    Jauregi, Paula; Olatujoye, Jumoke B; Cabezudo, Ignacio; Frazier, Richard A; Gordon, Michael H

    2016-05-15

    Whey is a by-product of cheese manufacturing and therefore investigating new applications of whey proteins will contribute towards the valorisation of whey and hence waste reduction. This study shows for the first time a detailed comparison of the effectiveness of gelatin and β-lactoglobulin (β-LG) as fining agents. Gelatin was more reactive than whey proteins to tannic acid as shown by both the astringency method (with ovalbumin as a precipitant) and the tannins determination method (with methylcellulose as a precipitant). The two proteins showed similar selectivity for polyphenols but β-LG did not remove as much catechin. The fining agent was removed completely or to a trace level after centrifugation followed by filtration which minimises its potential allergenicity. In addition, improved understanding of protein-tannin interactions was obtained by fluorescence, size measurement and isothermal titration calorimetry (ITC). Overall this study demonstrates that whey proteins have the potential of reducing astringency in red wine and can find a place in enology. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Biotransformation of soy whey into soy alcoholic beverage by four commercial strains of Saccharomyces cerevisiae.

    PubMed

    Chua, Jian-Yong; Lu, Yuyun; Liu, Shao-Quan

    2017-12-04

    Soy whey is a liquid waste stream generated from tofu and soy protein manufacturing, and is commonly disposed of into the drainage system in food industry. Instead of disposing of soy whey as a waste, it could be used to produce alcoholic beverages. This study investigated the feasibility of converting soy whey into soy alcoholic beverage using four commercial Saccharomyces cerevisiae strains as a zero-waste approach to tackle the soy whey disposal issue. The four Saccharomyces yeasts grew by approximately 2logCFU/mL and produced approximately 7-8% (v/v) of ethanol. Isoflavone glucosides were hydrolyzed and transformed into isoflavone aglycones, increasing the antioxidant capacity. New aroma-active volatiles, especially esters and higher alcohols, were produced and imparted fruity and floral notes to the soy alcoholic beverage. Therefore, alcoholic fermentation would serve as a solution toward zero-waste manufacturing by biotransforming soy whey into a world's first novel functional alcoholic beverage naturally enriched with free isoflavones. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Mass spectrometry detection of fraudulent use of cow whey in water buffalo, sheep, or goat Italian ricotta cheese.

    PubMed

    Camerini, Serena; Montepeloso, Emanuela; Casella, Marialuisa; Crescenzi, Marco; Marianella, Rosa Maria; Fuselli, Fabio

    2016-04-15

    Ricotta cheese is a typical Italian product, made with whey from various species, including cow, buffalo, sheep, and goat. Ricotta cheese nominally manufactured from the last three species may be fraudulently produced using the comparatively cheaper cow whey. Exposing such food frauds requires a reliable analytical method. Despite the extensive similarities shared by whey proteins of the four species, a mass spectrometry-based analytical method was developed that exploits three species-specific peptides derived from β-lactoglobulin and α-lactalbumin. This method can detect as little as 0.5% bovine whey in ricotta cheese from the other three species. Furthermore, a tight correlation was found (R(2)>0.99) between cow whey percentages and mass spectrometry measurements throughout the 1-50% range. Thus, this method can be used for forensic detection of ricotta cheese adulteration and, if properly validated, to provide quantitative evaluations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Whey utilization in furrow irrigation: effects on aggregate stability and erosion.

    PubMed

    Lehrsch, Gary A; Robbins, Charles W; Brown, Melvin J

    2008-11-01

    Improving soil structure often reduces furrow erosion and maintains adequate infiltration. Cottage cheese whey, the liquid byproduct from cottage cheese manufacture, was utilized to stabilize soil aggregates and reduce sediment losses from furrow irrigation. We applied either 2.4 or 1.9L of whey per meter of furrow (3.15 or 2.49Lm(-2), respectively) by gravity flow without incorporation to two fields of Portneuf silt loam (Durinodic Xeric Haplocalcid) near Kimberly, ID. Furrows were irrigated with water beginning four days later. We measured sediment losses with furrow flumes during each irrigation and measured aggregate stability by wet sieving about 10 days after the last irrigation. Overall, whey significantly increased aggregate stability 25% at the 0-15mm depth and 14% at 15-30mm, compared to controls. On average, whey reduced sediment losses by 75% from furrows sloped at 2.4%. Whey increased the aggregate stability of structurally degraded calcareous soil in irrigation furrows.

  19. Comparative Analysis of Whey N-Glycoproteins in Human Colostrum and Mature Milk Using Quantitative Glycoproteomics.

    PubMed

    Cao, Xueyan; Song, Dahe; Yang, Mei; Yang, Ning; Ye, Qing; Tao, Dongbing; Liu, Biao; Wu, Rina; Yue, Xiqing

    2017-11-29

    Glycosylation is a ubiquitous post-translational protein modification that plays a substantial role in various processes. However, whey glycoproteins in human milk have not been completely profiled. Herein, we used quantitative glycoproteomics to quantify whey N-glycosylation sites and their alteration in human milk during lactation; 110 N-glycosylation sites on 63 proteins and 91 N-glycosylation sites on 53 proteins were quantified in colostrum and mature milk whey, respectively. Among these, 68 glycosylation sites on 38 proteins were differentially expressed in human colostrum and mature milk whey. These differentially expressed N-glycoproteins were highly enriched in "localization", "extracellular region part", and "modified amino acid binding" according to gene ontology annotation and mainly involved in complement and coagulation cascades pathway. These results shed light on the glycosylation sites, composition and biological functions of whey N-glycoproteins in human colostrum and mature milk, and provide substantial insight into the role of protein glycosylation during infant development.

  20. From by-product to valuable components: Efficient enzymatic conversion of lactose in whey using β-galactosidase from Streptococcus thermophilus.

    PubMed

    Geiger, Barbara; Nguyen, Hoang-Minh; Wenig, Stefanie; Nguyen, Hoang Anh; Lorenz, Cindy; Kittl, Roman; Mathiesen, Geir; Eijsink, Vincent G H; Haltrich, Dietmar; Nguyen, Thu-Ha

    2016-12-15

    β-Galactosidase from Streptococcus thermophilus was overexpressed in a food-grade organism, Lactobacillus plantarum WCFS1. Laboratory cultivations yielded 11,000 U of β-galactosidase activity per liter of culture corresponding to approximately 170 mg of enzyme. Crude cell-free enzyme extracts obtained by cell disruption and subsequent removal of cell debris showed high stability and were used for conversion of lactose in whey permeate. The enzyme showed high transgalactosylation activity. When using an initial concentration of whey permeate corresponding to 205 g L -1 lactose, the maximum yield of galacto-oligosaccharides (GOS) obtained at 50°C reached approximately 50% of total sugar at 90% lactose conversion, meaning that efficient valorization of the whey lactose was obtained. GOS are of great interest for both human and animal nutrition; thus, efficient conversion of lactose in whey into GOS using an enzymatic approach will not only decrease the environmental impact of whey disposal, but also create additional value.

  1. 7 CFR 58.443 - Whey handling.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ..., GENERAL SPECIFICATIONS FOR APPROVED PLANTS AND STANDARDS FOR GRADES OF DAIRY PRODUCTS 1 General Specifications for Dairy Plants Approved for USDA Inspection and Grading Service 1 Operations and Operating... objectionable odors. (b) Whey or whey products intended for human food shall at all times be handled in a...

  2. Behavior of whey protein concentrates under extreme storage conditions

    USDA-ARS?s Scientific Manuscript database

    The overseas demand for whey protein concentrates (WPC) has increased steadily in recent years. Emergency aid foods often include WPC, but shelf-life studies of whey proteins under different shipment and storage conditions have not been conducted in the last 50 yr. Microbial quality, compound form...

  3. 77 FR 8717 - Dairy Product Mandatory Reporting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-15

    ... cheddar cheese, butter, dry whey, and nonfat dry milk (NFDM) on a weekly basis. NASS began publishing cheddar cheese sales information in 1997 and butter, nonfat dry milk (NFDM), and dry whey sales..., cheese, NFDM, and dry whey with the precise specifications included in the mandatory reporting...

  4. Fractionation of whey protein isolate with supercritical carbon dioxide – process modeling and cost estimation

    USDA-ARS?s Scientific Manuscript database

    An economical and environmentally friendly whey protein fractionation process was developed using supercritical carbon dioxide (sCO2) as an acid to produce enriched fractions of alpha-lactalbumin (alpha-La) and beta-lactoglobulin (beta-Lg) from a commercial whey protein isolate (WPI) containing 55% ...

  5. Pilot-scale fractionation of whey proteins with supercritical CO2

    USDA-ARS?s Scientific Manuscript database

    A new pilot-scale process is being developed and optimized for the separation of whey proteins into two enriched, highly functional fractions that are free of contaminants. The fractionation of whey protein isolate (WPI), which contains approximately 32% alpha-lactalbumin (alpha-LA) and 61% beta-lac...

  6. Supercritical carbon dioxide fractionation of whey protein isolate for new food-grade ingredients

    USDA-ARS?s Scientific Manuscript database

    A new, environmentally benign whey protein fractionation process was developed using supercritical CO2 (SCO2) as an acid aggregating agent to separate a-lactalbumin (a-LA) aggregates from soluble beta-lactoglobulin (beta-LG) protein in concentrated whey protein isolate (WPI) solutions. The process e...

  7. In-situ Substrate Addition to Create Reactive Zones for Treatment of Chlorinated Aliphatic Hydrocarbons: Cost and Performance Report

    DTIC Science & Technology

    2007-03-01

    subsurface. The substrate is typically molasses, but other substrates can be used, including high fructose corn syrup , whey, etc. Through subsurface...solution, typically consisting of a carbohydrate such as molasses, whey, high fructose corn syrup , lactate, butyrate, or benzoate. The technology alters...lb of PCE Treated Molasses 0.20 – 0.35 0.16 Sugar ( corn syrup ) 0.25 – 0.30 0.4 Sodium Lactate 1.25 – 1.46 NA Whey (powdered, dry) 1.17 NA Whey

  8. Incorporation of whey permeate, a dairy effluent, in ethanol fermentation to provide a zero waste solution for the dairy industry.

    PubMed

    Parashar, Archana; Jin, Yiqiong; Mason, Beth; Chae, Michael; Bressler, David C

    2016-03-01

    This study proposes a novel alternative for utilization of whey permeate, a by-product stream from the dairy industry, in wheat fermentation for ethanol production using Saccharomyces cerevisiae. Whey permeates were hydrolyzed using enzymes to release fermentable sugars. Hydrolyzed whey permeates were integrated into wheat fermentation as a co-substrate or to partially replace process water. Cold starch hydrolysis-based simultaneous saccharification and fermentation was done as per the current industrial protocol for commercial wheat-to-ethanol production. Ethanol production was not affected; ethanol yield efficiency did not change when up to 10% of process water was replaced. Lactic acid bacteria in whey permeate did not negatively affect the co-fermentation or reduce ethanol yield. Whey permeate could be effectively stored for up to 4 wk at 4 °C with little change in lactose and lactic acid content. Considering the global abundance and nutrient value of whey permeate, the proposed strategy could improve economics of the dairy and biofuel sectors, and reduce environmental pollution. Furthermore, our research may be applied to fermentation strategies designed to produce value-added products other than ethanol. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  9. Use of cheese whey for biomass production and spray drying of probiotic lactobacilli.

    PubMed

    Lavari, Luisina; Páez, Roxana; Cuatrin, Alejandra; Reinheimer, Jorge; Vinderola, Gabriel

    2014-08-01

    The double use of cheese whey (culture medium and thermoprotectant for spray drying of lactobacilli) was explored in this study for adding value to this wastewater. In-house formulated broth (similar to MRS) and dairy media (cheese and ricotta whey and whey permeate) were assessed for their capacity to produce biomass of Lactobacillus paracasei JP1, Lb. rhamnosus 64 and Lb. gasseri 37. Simultaneously, spray drying of cheese whey-starch solution (without lactobacilli cells) was optimised using surface response methodology. Cell suspensions of the lactobacilli, produced in in house-formulated broth, were spray-dried in cheese whey-starch solution and viability monitored throughout the storage of powders for 2 months. Lb. rhamnosus 64 was able to grow satisfactorily in at least two of the in-house formulated culture media and in the dairy media assessed. It also performed well in spray drying. The performance of the other strains was less satisfactory. The growth capacity, the resistance to spray drying in cheese whey-starch solution and the negligible lost in viability during the storage (2 months), makes Lb. rhamnosus 64 a promising candidate for further technological studies for developing a probiotic dehydrated culture for foods, utilising wastewaters of the dairy industry (as growth substrate and protectant) and spray drying (a low-cost widely-available technology).

  10. The effects of whey and soy proteins on growth performance, gastrointestinal digestion, and selected physiological responses in rats.

    PubMed

    Wróblewska, B; Juśkiewicz, J; Kroplewski, B; Jurgoński, A; Wasilewska, E; Złotkowska, D; Markiewicz, L

    2018-03-01

    The objective of this work was to identify the nutritional and physiological effects of commercial soy and whey protein preparations. Wistar rats were fed with soy (S), whey (W), or casein (C) preparations as the sole dietary protein source. The nitrogen balance, body composition, changes in caecal microbiota, mucosal and bacterial enzyme activities, and allergenic potential of the preparations were analysed. The whey diet elicited greater skeletal muscle anabolism than the soy diet. Rats from the S group had the lowest values of body weight, fat, and lean mass gain. Compared to casein, soy and whey preparations decreased the protein efficiency ratio, increased N in the urine, and triggered the reduction of ammonia levels in the caecum. Changes in β-glucuronidase and β-galactosidase activities in the small intestine, caecum, and colon between experimental groups were observed. Significant differences were noted in the total counts of anaerobic bacteria and sulphite reducing bacteria during soy and whey treatments. This probably affected the short chain fatty acid level in caecal digesta resulting in the lowest propionic acid and total putrefactive short chain fatty acid levels during S treatment. Generally, whey preparations are a good choice for rapid bodybuilding (skeletal muscles), whereas soy preparations are more helpful during mass reduction.

  11. Prolonged ingestion of prehydrolyzed whey protein induces little or no change in digestive enzymes, but decreases glutaminase activity in exercising rats.

    PubMed

    Nery-Diez, Ana Cláudia C; Carvalho, Iara R; Amaya-Farfán, Jaime; Abecia-Soria, Maria Inés; Miyasaka, Célio K; Ferreira, Clécio da S

    2010-08-01

    Because consumption of whey protein hydrolysates is on the increase, the possibility that prolonged ingestion of whey protein hydrolysates affect the digestive system of mammals has prompted us to evaluate the enzymatic activities of pepsin, leucine-aminopeptidase, chymotrypsin, trypsin, and glutaminase in male Wistar rats fed diets containing either a commercial whey isolate or a whey protein hydrolysate with medium degree of hydrolysis and to compare the results with those produced by physical training (sedentary, sedentary-exhausted, trained, and trained-exhausted) in the treadmill for 4 weeks. The enzymatic activities were determined by classical procedures in all groups. No effect due to the form of the whey protein in the diet was seen in the activities of pepsin, trypsin, chymotrypsin, and leucine-aminopeptidase. Training tended to increase the activity of glutaminase, but exhaustion promoted a decrease in the trained animals, and consumption of the hydrolysate decreased it even further. The results are consistent with the conclusion that chronic consumption of a whey protein hydrolysate brings little or no modification of the proteolytic digestive system and that the lowering of glutaminase activity may be associated with an antistress effect, counteracting the effect induced by training in the rat.

  12. The effect of microfiltration on color, flavor, and functionality of 80% whey protein concentrate.

    PubMed

    Qiu, Y; Smith, T J; Foegeding, E A; Drake, M A

    2015-09-01

    The residual annatto colorant in fluid Cheddar cheese whey is bleached to provide a neutral-colored final product. Currently, hydrogen peroxide (HP) and benzoyl peroxide are used for bleaching liquid whey. However, previous studies have shown that chemical bleaching causes off-flavor formation, mainly due to lipid oxidation and protein degradation. The objective of this study was to evaluate the efficacy of microfiltration (MF) on norbixin removal and to compare flavor and functionality of 80% whey protein concentrate (WPC80) from MF whey to WPC80 from whey bleached with HP or lactoperoxidase (LP). Cheddar cheese whey was manufactured from colored, pasteurized milk. The fluid whey was pasteurized and fat separated. Liquid whey was subjected to 4 different treatments: control (no bleaching; 50°C, 1 h), HP (250 mg of HP/kg; 50°C, 1 h), and LP (20 mg of HP/kg; 50°C, 1 h), or MF (microfiltration; 50°C, 1 h). The treated whey was then ultrafiltered, diafiltered, and spray-dried to 80% concentrate. The entire experiment was replicated 3 times. Proximate analyses, color, functionality, descriptive sensory and instrumental volatile analysis were conducted on WPC80. The MF and HP- and LP-bleached WPC80 displayed a 39.5, 40.9, and 92.8% norbixin decrease, respectively. The HP and LP WPC80 had higher cardboard flavors and distinct cabbage flavor compared with the unbleached and MF WPC80. Volatile compound results were consistent with sensory results. The HP and LP WPC80 were higher in lipid oxidation compounds (especially heptanal, hexanal, pentanal, 1-hexen-3-one, 2-pentylfuran, and octanal) compared with unbleached and MF WPC80. All WPC80 had >85% solubility across the pH range of 3 to 7. The microstructure of MF gels determined by confocal laser scanning showed an increased protein particle size in the gel network. MF WPC80 also had larger storage modulus values, indicating higher gel firmness. Based on bleaching efficacy comparable to chemical bleaching with HP, flavor, and functionality results, MF is a viable alternative to chemical or enzymatic bleaching of fluid whey. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  13. Contribution to the production of lactulose-rich whey by in situ electro-isomerization of lactose and effect on whey proteins after electro-activation as confirmed by matrix-assisted laser desorption/ionization time-of-flight-mass spectrometry and sodium dodecyl sulfate-polyacrylamide gel electrophoresis.

    PubMed

    Kareb, Ourdia; Champagne, Claude P; Aïder, Mohammed

    2016-04-01

    Cheese-whey, a major co-product of the dairy industry, has recently been the subject of many technological applications. We studied the bioconversion of whey into valuable bio-products such as a potential lactulose prebiotic and compounds with antioxidant properties. This paper examines efficiency, safety, and economics of electro-activation as an eco-friendly technology for a maximum valorization of whey. Thus, a bottom-up approach was therefore addressed. The effect of 4 experimental parameters--low working temperatures (0, 10, and 25 °C), current intensities (400, 600, and 800 mA), volume conditions (100, 200, and 300 mL), and feed concentrations [7, 14, and 28% (wt/vol)]--on lactose-whey isomerization to lactulose under electro-activation process were studied. Structural characteristics of whey proteins and antioxidant functionality were also investigated. The results showed a compromise to be reached between both parameters. Therefore, the maximum yield of 35% of lactulose was achieved after 40 min of reaction at the working temperature of 10 °C under 400 mA electric current field and 100-mL volume conditions with using feed solution at 7% (wt/vol). The isomerization of lactose to lactulose is accomplished by subsequent degradation to galactose, but only at a very small amount. Additionally, whey electro-activation showed significantly elevated antioxidant capacity compared with the untreated samples. The enhancement of antioxidant functionality of whey electro-activation resulted from the synergistic effect of its partial hydrolysis and the formation of antioxidant components that were able to scavenge free radicals. In conclusion, the findings of this study reveal that the whey treated by the safety electro-activation technology has both lactulose-prebiotic and antioxidant properties and could have a substantial application in the manufacture of pharmaceutical and functional foods. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  14. Development of β-Lactoglobulin-Specific Chimeric Human IgEκ Monoclonal Antibodies for In Vitro Safety Assessment of Whey Hydrolysates

    PubMed Central

    Buelens-Sleumer, Laura S.; Cox, Linda; den Hartog, Marcel; de Jong, Niels; Teshima, Reiko; Garssen, Johan; Boon, Louis; Knippels, Léon M. J.

    2014-01-01

    Background Cow’s milk-derived whey hydrolysates are nutritional substitutes for allergic infants. Safety or residual allergenicity assessment of these whey hydrolysates is crucial. Currently, rat basophilic leukemia RBL-2H3 cells expressing the human IgE receptor α-chain (huFcεRIα-RBL-2H3), sensitized with serum IgE from cow’s milk allergic children, are being employed to assess in vitro residual allergenicity of these whey hydrolysates. However, limited availability and inter-lot variation of these allergic sera impede standardization of whey hydrolysate safety testing in degranulation assays. Objective An oligoclonal pool of chimeric human (chu)IgE antibodies against bovine β-lactoglobulin (a major allergen in whey) was generated to increase sensitivity, specificity, and reproducibility of existing degranulation assays. Methods Mice were immunized with bovine β-lactoglobulin, and subsequently the variable domains of dissimilar anti-β-lactoglobulin mouse IgG antibodies were cloned and sequenced. Six chimeric antibodies were generated comprising mouse variable domains and human constant IgE/κ domains. Results After sensitization with this pool of anti-β-lactoglobulin chuIgEs, huFcεRIα-expressing RBL-2H3 cells demonstrated degranulation upon cross-linking with whey, native 18 kDa β-lactoglobulin, and 5–10 kDa whey hydrolysates, whereas a 3 kDa whey hydrolysate and cow’s milk powder (mainly casein) showed no degranulation. In parallel, allergic serum IgEs were less sensitive. In addition, our pool anti-β-lactoglobulin chuIgEs recognized multiple allergenic immunodominant regions on β-lactoglobulin, which were also recognized by serum IgEs from cow’s milk allergic children. Conclusion Usage of our ‘unlimited’ source and well-defined pool of β-lactoglobulin-specific recombinant chuIgEs to sensitize huFcεRIα on RBL-2H3 cells showed to be a relevant and sensitive alternative for serum IgEs from cow’s milk allergic patients to assess safety of whey-based non-allergic hydrolyzed formula. PMID:25153680

  15. Flavor and Functional Characteristics of Whey Protein Isolates from Different Whey Sources.

    PubMed

    Smith, T J; Foegeding, E A; Drake, M A

    2016-04-01

    This study evaluated flavor and functional characteristics of whey protein isolates (WPIs) from Cheddar, Mozzarella, Cottage cheese, and rennet casein whey. WPIs were manufactured in triplicate. Powders were rehydrated and evaluated in duplicate by descriptive sensory analysis. Volatile compounds were extracted by solid-phase microextraction followed by gas chromatography-mass spectrometry. Functional properties were evaluated by measurement of foam stability, heat stability, and protein solubility. WPI from Cheddar and Cottage cheese whey had the highest cardboard flavor, whereas sweet aromatic flavor was highest in Mozzarella WPI, and rennet casein WPI had the lowest overall flavor and aroma. Distinct sour taste and brothy/potato flavor were also noted in WPI from Cottage cheese whey. Consistent with sensory results, aldehyde concentrations were also highest in Cheddar and Cottage cheese WPI. Overrun, yield stress, and foam stability were not different (P > 0.05) among Cheddar, Mozzarella, and rennet casein WPI, but WPI foams from Cottage cheese whey had a lower overrun and air-phase fraction (P < 0.05). Cottage cheese WPI was more heat stable at pH 7 (P < 0.05) than other WPI in 4% protein solutions, and was the only WPI to not gel at 10% protein. Cottage cheese WPI was less soluble at pH 4.6 compared to other WPI (P < 0.05) and also exhibited higher turbidity loss at pH 3 to 7 compared to other WPI (P < 0.05). This study suggests that WPI produced from nontraditional whey sources could be used in new applications due to distinct functional and flavor characteristics. © 2016 Institute of Food Technologists®

  16. Production of bioethanol from effluents of the dairy industry by Kluyveromyces marxianus.

    PubMed

    Zoppellari, Francesca; Bardi, Laura

    2013-09-25

    Whey and scotta are effluents coming from cheese and ricotta processing respectively. Whey contains minerals, lipids, lactose and proteins; scotta contains mainly lactose. Whey can be reused in several ways, such as protein extraction or animal feeding, while nowadays scotta is just considered as a waste; moreover, due to very high volumes of whey produced in the world, it poses serious environmental and disposal problems. Alternative destinations of these effluents, such as biotechnological transformations, can be a way to reach both goals of improving the added value of the agroindustrial processes and reducing their environmental impact. In this work we investigated the way to produce bioethanol from lactose of whey and scotta and to optimize the fermentation yields. Kluyveromyces marxianus var. marxianus was chosen as lactose-fermenting yeast. Batch, aerobic and anaerobic, fermentations and semicontinuous fermentations in dispersed phase and in packed bed reactor were carried out of row whey, scotta and mix 1:1 whey:scotta at a laboratory scale. Different temperatures (28-40°C) were also tested to check whether the thermotolerance of the chosen yeast could be useful to improve the ethanol yield. The best performances were reached at low temperatures (28°C); high temperatures are also compatible with good ethanol yields in whey fermentations, but not in scotta fermentations. Semicontinuous fermentations in dispersed phase gave the best fermentation performances, particularly with scotta. Then both effluents can be considered suitable for ethanol production. The good yields obtained from scotta allow us to transform this waste in a source. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Impact of whey proteins on the systemic and local intestinal level of mice with diet induced obesity.

    PubMed

    Swiątecka, D; Złotkowska, D; Markiewicz, L H; Szyc, A M; Wróblewska, B

    2017-04-19

    Obesity is a serious public health problem and being multifactorial is difficult to tackle. Since the intestinal ecosystem's homeostasis is, at least partially, diet-dependent, its modulation may be triggered by food components that are designed to exert a modulatory action leading to a health-promoting effect. Milk whey proteins, are considered as such promising factors since they influence satiation as well as body weight and constitute the source of biologically active peptides which may modulate health status locally and systemically. This way, whey proteins are associated with obesity. Therefore, this paper is aimed at the estimation of the impact of whey proteins using a commercially available whey protein isolate on the physiological response of mice with diet-induced obesity. The physiological response was evaluated on the local-intestinal level, scrutinizing intestinal microbiota as one of the important factors in obesity and on the systemic level, analyzing the response of the organism. Whey proteins brought about the decrease of the fat mass with a simultaneous increase of the lean mass of animals with diet induced obesity, which is a promising, health-promoting effect. Whey proteins also proved to act beneficially helping restore the number of beneficial bifidobacteria in obese animals and decreasing the calorie intake and fat mass as well as the LDL level. Overall, supplementation of the high fat diet with whey proteins acted locally by restoration of the intestinal ecosystem, thus preventing dysbiosis and its effects and also acted systemically by strengthening the organism increasing the lean mass and thus hindering obesity-related detrimental effects.

  18. Pasting and extrusion properties of mixed carbohydrates and whey protein isolate matrices

    USDA-ARS?s Scientific Manuscript database

    Mixed systems of whey protein isolate (WPI) or texturized WPI (tWPI) and different starches may form weak or strong gel pastes or rigid matrices depending on interactions. The paste viscoelasticity of starches from amioca, barley, corn starch, Hylon VII, plantain, and pea starch, mixed with whey pro...

  19. In Situ Bioremediation of Energetic Compounds in Groundwater

    DTIC Science & Technology

    2012-05-01

    42  Figure 16. Semi-passive bioremediation alternative with cheese whey for whole plume treatment...cheese whey for plume cutoff. ............. 46  Figure 18. Passive biobarrier alternative with EVO for plume cutoff... whey was utilized as a cosubstrate during the project based on extensive treatability testing. The overall performance of this design for remediation

  20. Enrichment and purification of casein glycomacropeptide from whey protein isolate using supercritical carbon dioxide processing and membrane filtration

    USDA-ARS?s Scientific Manuscript database

    Whey protein concentrates (WPC) and isolates (WPI), which are dried, concentrated forms of cheese whey, are comprised mainly of beta–lactoglobulin (beta-LG), a–lactalbumin (a-LA), and glycomacropeptide (GLY), and are added to foods to boost their nutritional and functional properties. In previous st...

  1. Fractionation of whey protein isolate with supercritical carbon dioxide to produce enriched alpha-lactalbumin and beta-lactoglobulin food ingredients

    USDA-ARS?s Scientific Manuscript database

    A potentially economical and environmentally friendly whey protein fractionation process was developed using supercritical carbon dioxide (SCO2) as an acid to produce enriched fractions of alpha-lactalbumin (a-LA) and beta-lactoglobulin (b-LG) from whey protein isolate. To prepare the fractions, so...

  2. 21 CFR 184.1979 - Whey.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... lactose is converted to lactic acid, or from the curd formation by direct acidification of milk, is known... lactic acid is known as sweet whey. Sweet whey has a maximum titratable acidity of not more than 0.16 percent, calculated as lactic acid, and an alkalinity of ash of not more than 225 milliliters of 0.1N...

  3. 21 CFR 184.1979 - Whey.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... a significant amount of lactose is converted to lactic acid, or from the curd formation by direct... conversion of lactose to lactic acid is known as sweet whey. Sweet whey has a maximum titratable acidity of not more than 0.16 percent, calculated as lactic acid, and an alkalinity of ash of not more than 225...

  4. 21 CFR 184.1979 - Whey.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... a significant amount of lactose is converted to lactic acid, or from the curd formation by direct... conversion of lactose to lactic acid is known as sweet whey. Sweet whey has a maximum titratable acidity of not more than 0.16 percent, calculated as lactic acid, and an alkalinity of ash of not more than 225...

  5. 21 CFR 184.1979 - Whey.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... a significant amount of lactose is converted to lactic acid, or from the curd formation by direct... conversion of lactose to lactic acid is known as sweet whey. Sweet whey has a maximum titratable acidity of...” under the heading “Dried Milk, Nonfat Dry Milk, and Malted Milk.” (iv) Lactose content, 61 to 75 percent...

  6. 21 CFR 184.1979 - Whey.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... a significant amount of lactose is converted to lactic acid, or from the curd formation by direct... conversion of lactose to lactic acid is known as sweet whey. Sweet whey has a maximum titratable acidity of...” under the heading “Dried Milk, Nonfat Dry Milk, and Malted Milk.” (iv) Lactose content, 61 to 75 percent...

  7. Inhibitory Effect of Autoclaving Whey-Based Medium on Propionic Acid Production by Propionibacterium shermanii.

    PubMed

    Anderson, T M; Bodie, E A; Goodman, N; Schwartz, R D

    1986-02-01

    Propionic acid production by Propionibacterium shermanii was compared in pasteurized and autoclaved whey-based media. Propionic acid production decreased with increasing whey concentration in autoclaved media but not in pasteurized media. Increasing the yeast extract concentration from 5 to 10 g/liter greatly reduced the inhibitory effect of autoclaving.

  8. Capillary zone electrophoresis for fatty acids with chemometrics for the determination of milk adulteration by whey addition.

    PubMed

    de Oliveira Mendes, Thiago; Porto, Brenda Lee Simas; Bell, Maria José Valenzuela; Perrone, Ítalo Tuler; de Oliveira, Marcone Augusto Leal

    2016-12-15

    Adulteration of milk with whey is difficult to detect because these two have similar physical and chemical characteristics. The traditional methodologies to monitor this fraud are based on the analysis of caseinomacropeptide. The present study proposes a new approach to detect and quantify this fraud using the fatty acid profiles of milk and whey. Fatty acids C14:0, C16:0, C18:0, C18:1, C18:2 and C18:3 were selected by gas chromatography associated with discriminant analysis to differentiate milk and whey, as they are present in quite different amounts. These six fatty acids were quantified within a short time by capillary zone electrophoresis in a set of adulterated milk samples. The correlation coefficient between the true values of whey addition and the experimental values obtained by this technique was 0.973. The technique is thus useful for the evaluation of milk adulteration with whey, contributing to the quality control of milk in the dairy industry. Copyright © 2016. Published by Elsevier Ltd.

  9. Anaerobic co-digestion of cheese whey and the screened liquid fraction of dairy manure in a single continuously stirred tank reactor process: Limits in co-substrate ratios and organic loading rate.

    PubMed

    Rico, Carlos; Muñoz, Noelia; Rico, José Luis

    2015-01-01

    Mesophilic anaerobic co-digestion of cheese whey and the screened liquid fraction of dairy manure was investigated with the aim of determining the treatment limits in terms of the cheese whey fraction in feed and the organic loading rate. The results of a continuous stirred tank reactor that was operated with a hydraulic retention time of 15.6 days showed that the co-digestion process was possible with a cheese whey fraction as high as 85% in the feed. The efficiency of the process was similar within the range of the 15-85% cheese whey fraction. To study the effect of the increasing loading rate, the HRT was progressively shortened with the 65% cheese whey fraction in the feed. The reactor efficiency dropped as the HRT decreased but enabled a stable operation over 8.7 days of HRT. At these operating conditions, a volumetric methane production rate of 1.37 m(3) CH4 m(-3) d(-1) was achieved. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Spray dried microparticles of chia oil using emulsion stabilized by whey protein concentrate and pectin by electrostatic deposition.

    PubMed

    Noello, C; Carvalho, A G S; Silva, V M; Hubinger, M D

    2016-11-01

    Chia seed oil has a high content of α-linolenic acid (60%) and linoleic acid (20%). Use of this oil in different products is limited due to its liquid state, and the presence of insaturation is a trigger for oxidation. In this context, to facilitate the incorporation of chia oil in food products and increase its protection against oxidation, the aim of this work was to produce chia oil microparticles by spray drying using emulsions stabilized by whey protein concentrate (ζ-potential +13.4 at pH3.8) and pectin (ζ-potential -40.4 at pH3.8) through the electrostatic layer-by-layer deposition technique and emulsions prepared with only whey protein concentrate. Emulsions stabilized by whey protein concentrate and stabilized by whey protein concentrate-pectin were prepared using maltodextrin (10 DE) and modified starch (Hi-Cap® 100). They were characterized in relation to stability, droplet size, ζ-Potential and optical microscopy. The microparticles were characterized in relation to moisture content, water activity, particle size, microstructure and oxidative stability by the Rancimat method. Emulsions stabilized by whey protein concentrate-pectin with added maltodextrin 10 DE and emulsions stabilized by whey protein concentrate with added modified starch (Hi-Cap® 100) were stable after 24h. Emulsions stabilized by whey protein concentrate and by whey protein concentrate-pectin showed droplets with mean diameter ranging from 0.80 to 1.31μm, respectively and ζ-potential varying from -6.9 to -27.43mV, respectively. After spray drying, the microparticles showed an mean diameter ranging from 7.00 to 9.00μm. All samples presented high encapsulation efficiency values, above 99%. Microparticles produced with modified starch showed a smoother spherical surface than particles with maltodextrin 10 DE, which presented a wrinkled surface. All microparticles exhibited higher oxidative stability than chia oil in pure form. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Including whey protein and whey permeate in ready-to-use supplementary food improves recovery rates in children with moderate acute malnutrition: a randomized, double-blind clinical trial.

    PubMed

    Stobaugh, Heather C; Ryan, Kelsey N; Kennedy, Julie A; Grise, Jennifer B; Crocker, Audrey H; Thakwalakwa, Chrissie; Litkowski, Patricia E; Maleta, Kenneth M; Manary, Mark J; Trehan, Indi

    2016-03-01

    The utility of dairy ingredients in the supplementary foods used in the treatment of childhood moderate acute malnutrition (MAM) remains unsettled. We evaluated the effectiveness of a peanut-based ready-to-use supplementary food (RUSF) with soy protein compared with a novel RUSF containing dairy ingredients in the form of whey permeate and whey protein concentrate in the treatment of children with MAM. We conducted a randomized, double-blind clinical effectiveness trial involving rural Malawian and Mozambican children 6-59 mo of age with MAM treated with either soy RUSF or a novel whey RUSF treatment of ~75 kcal · kg(-1) · d(-1) for up to 12 wk. The proportion of children that recovered from MAM was significantly higher in the group that received whey RUSF (960 of 1144; 83.9%) than in the group that received soy RUSF (874 of 1086; 80.5%; P < 0.04; risk difference 3.4%, 95% CI: 0.3%, 6.6%). Children who consumed whey RUSF also demonstrated better growth markers, with a higher mean midupper arm circumference (MUAC) at the time of discharge (P < 0.009), greater MUAC gain during the course of treatment (P < 0.003), higher mean weight-for-height z score at discharge (P < 0.008), and greater weight gain (P < 0.05). No significant differences were identified in length gain or time to recovery between the 2 groups. This study highlights the importance of milk protein in the treatment of MAM, because the use of a novel whey RUSF resulted in higher recovery rates and improved growth than did soy RUSF, although the whey RUSF supplement provided less total protein and energy than the soy RUSF. This study was registered at clinicaltrials.gov as NCT01790048. © 2016 American Society for Nutrition.

  12. [Not Available].

    PubMed

    Reyna, Nadia; Moreno-Rojas, Rafael; Mendoza, Laura; Parra, Karla; Linares, Sergia; Reyna, Eduardo; Cámara-Martos, Fernando

    2016-02-16

    It has been studied the effect of three kinds of supplements (whey, casein and maltodextrin, as control) in the regulation of food intake and satiety of 60 overweight women. After 10 weeks, significant differences (p < 0.001) were found with regard to reduction of weight, IMC, % fat and waist circumference in the whey group against casein and control groups. A higher decrease of energy intake (-383 kcal/day) was also found in women who ate whey supplements, while in the casein and control group the decrease was only -144 and -70 kcal/day respectively. Finally, satiety effect was more efficiently promoted by whey against casein and maltodextrins.

  13. Effect of Whey Supplementation on Circulating C-Reactive Protein: A Meta-Analysis of Randomized Controlled Trials

    PubMed Central

    Zhou, Ling-Mei; Xu, Jia-Ying; Rao, Chun-Ping; Han, Shufen; Wan, Zhongxiao; Qin, Li-Qiang

    2015-01-01

    Whey supplementation is beneficial for human health, possibly by reducing the circulating C-reactive protein (CRP) level, a sensitive marker of inflammation. Thus, a meta-analysis of randomized controlled trials was conducted to evaluate their relationship. A systematic literature search was conducted in July, 2014, to identify eligible studies. Either a fixed-effects model or a random-effects model was used to calculate pooled effects. The meta-analysis results of nine trials showed a slight, but no significant, reduction of 0.42 mg/L (95% CI −0.96, 0.13) in CRP level with the supplementation of whey protein and its derivates. Relatively high heterogeneity across studies was observed. Subgroup analyses showed that whey significantly lowered CRP by 0.72 mg/L (95% CI −0.97, −0.47) among trials with a daily whey dose ≥20 g/day and by 0.67 mg/L (95% CI −1.21, −0.14) among trials with baseline CRP ≥3 mg/L. Meta-regression analysis revealed that the baseline CRP level was a potential effect modifier of whey supplementation in reducing CRP. In conclusion, our meta-analysis did not find sufficient evidence that whey and its derivates elicited a beneficial effect in reducing circulating CRP. However, they may significantly reduce CRP among participants with highly supplemental doses or increased baseline CRP levels. PMID:25671415

  14. Intensified recovery of valuable products from whey by use of ultrasound in processing steps - A review.

    PubMed

    Gajendragadkar, Chinmay N; Gogate, Parag R

    2016-09-01

    The current review focuses on the analysis of different aspects related to intensified recovery of possible valuable products from cheese whey using ultrasound. Ultrasound can be used for process intensification in processing steps such as pre-treatment, ultrafiltration, spray drying and crystallization. The combination of low-frequency, high intensity ultrasound with the pre-heat treatment minimizes the thickening or gelling of protein containing whey solutions. These characteristics of whey after the ultrasound assisted pretreatment helps in improving the efficacy of ultrafiltration used for separation and also helps in preventing the blockage of orifice of spray dryer atomizing device. Further, the heat stability of whey proteins is increased. In the subsequent processing step, use of ultrasound assisted atomization helps to reduce the treatment times as well as yield better quality whey protein concentrate (WPC) powder. After the removal of proteins from the whey, lactose is a major constituent remaining in the solution which can be efficiently recovered by sonocrystallization based on the use of anti-solvent as ethanol. The scale-up parameters to be considered during designing the process for large scale applications are also discussed along with analysis of various reactor designs. Overall, it appears that use of ultrasound can give significant process intensification benefits that can be harnessed even at commercial scale applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Direct spray drying and microencapsulation of probiotic Lactobacillus reuteri from slurry fermentation with whey.

    PubMed

    Jantzen, M; Göpel, A; Beermann, C

    2013-10-01

    Formulations of dietary probiotics have to be robust against process conditions and have to maintain a sufficient survival rate during gastric transit. To increase efficiency of the encapsulation process and the viability of applied bacteria, this study aimed at developing spray drying and encapsulation of Lactobacillus reuteri with whey directly from slurry fermentation. Lactobacillus reuteri was cultivated in watery 20% (w/v) whey solution with or without 0·5% (w/v) yeast extract supplementation in a submerged slurry fermentation. Growth enhancement with supplement was observed. Whey slurry containing c. 10(9)  CFU g(-1) bacteria was directly spray-dried. Cell counts in achieved products decreased by 2 log cycles after drying and 1 log cycle during 4 weeks of storage. Encapsulated bacteria were distinctively released in intestinal milieu. Survival rate of encapsulated bacteria was 32% higher compared with nonencapsulated ones exposed to artificial digestive juice. Probiotic L. reuteri proliferate in slurry fermentation with yeast-supplemented whey and enable a direct spray drying in whey. The resulting microcapsules remain stable during storage and reveal adequate survival in simulated gastric juices and a distinct release in intestinal juices. Exploiting whey as a bacterial substrate and encapsulation matrix within a coupled fermentation and spray-drying process offers an efficient option for industrial production of vital probiotics. © 2013 The Society for Applied Microbiology.

  16. Efficacy of whey protein supplementation on resistance exercise-induced changes in muscle strength, lean mass, and function in mobility-limited older adults

    USDA-ARS?s Scientific Manuscript database

    Whey protein supplementation may augment resistance exercise-induced increases in muscle strength and mass. Further studies are required to determine whether this effect extends to functionally compromised older adults. The objectives of the study were to compare the effects of whey protein concent...

  17. 40 CFR 405.122 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Whey Subcategory § 405.122 Effluent limitations guidelines representing the degree of effluent... application of the best practicable control technology currently available (BPT): (a) For whey drying plants with an input equivalent to more than 57,000 lb/day of 40 percent solids whey (22,800 lb/day of solids...

  18. 7 CFR 58.810 - Temperature requirements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 3 2012-01-01 2012-01-01 false Temperature requirements. 58.810 Section 58.810... Procedures § 58.810 Temperature requirements. (a) Unless processed within 2 hours, all whey or condensed whey, except acid type whey with a titratable acidity of 0.40 percent or above, or a pH of 4.6 or below, shall...

  19. 7 CFR 58.810 - Temperature requirements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 3 2014-01-01 2014-01-01 false Temperature requirements. 58.810 Section 58.810... Procedures § 58.810 Temperature requirements. (a) Unless processed within 2 hours, all whey or condensed whey, except acid type whey with a titratable acidity of 0.40 percent or above, or a pH of 4.6 or below, shall...

  20. 7 CFR 58.810 - Temperature requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Temperature requirements. 58.810 Section 58.810... Procedures § 58.810 Temperature requirements. (a) Unless processed within 2 hours, all whey or condensed whey, except acid type whey with a titratable acidity of 0.40 percent or above, or a pH of 4.6 or below, shall...

  1. 7 CFR 58.810 - Temperature requirements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 3 2013-01-01 2013-01-01 false Temperature requirements. 58.810 Section 58.810... Procedures § 58.810 Temperature requirements. (a) Unless processed within 2 hours, all whey or condensed whey, except acid type whey with a titratable acidity of 0.40 percent or above, or a pH of 4.6 or below, shall...

  2. Inhibitory Effect of Autoclaving Whey-Based Medium on Propionic Acid Production by Propionibacterium shermanii

    PubMed Central

    Anderson, Thomas M.; Bodie, Elizabeth A.; Goodman, Nelson; Schwartz, Robert D.

    1986-01-01

    Propionic acid production by Propionibacterium shermanii was compared in pasteurized and autoclaved whey-based media. Propionic acid production decreased with increasing whey concentration in autoclaved media but not in pasteurized media. Increasing the yeast extract concentration from 5 to 10 g/liter greatly reduced the inhibitory effect of autoclaving. PMID:16346998

  3. Anaerobic in situ biodegradation of TNT using whey as an electron donor: a case study.

    PubMed

    Innemanová, Petra; Velebová, Radka; Filipová, Alena; Čvančarová, Monika; Pokorný, Petr; Němeček, Jan; Cajthaml, Tomáš

    2015-12-25

    Contamination by 2,4,6-trinitrotoluene (TNT), an explosive extensively used by the military, represents a serious environmental problem. In this study, whey has been selected as the most technologically and economically suitable primary substrate for anaerobic in situ biodegradation of TNT. Under laboratory conditions, various additions of whey, molasses, acetate and activated sludge as an inoculant were tested and the process was monitored using numerous chemical analyses including phospholipid fatty acid analysis. The addition of whey resulted in the removal of more than 90% of the TNT in real contaminated soil (7 mg kg(-1) and 12 mg kg(-1) of TNT). The final bioremediation strategy was suggested on the basis of the laboratory results and tested under real conditions at a TNT contaminated site in the Czech Republic. During the pilot test, three repeated injections of whey suspension into the sandy aquifer were performed over a 10-month period. In total, approximately 5m(3) of whey were used. A substantial decrease in the TNT groundwater concentration from the original levels (equalling 1.49 mg l(-1) to 8.58 mg l(-1)) was observed in most of the injection wells, while the concentrations of the TNT biotransformation products were found to be elevated. Pilot-scale application results showed that the anoxic and/or anaerobic conditions in the aquifer were sufficient for TNT bio-reduction by autochthonous microorganisms. Whey application was not accompanied by undesirable effects such as a substantial decrease in the pH or clogging of the wells. The results of the study document the suitability of application of whey to bioremediate TNT contaminated sites in situ. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Production and partial purification of proteases from Aspergillus oryzae grown in a medium based on whey protein as an exclusive nitrogen source.

    PubMed

    Kumura, H; Ishido, T; Shimazaki, K

    2011-02-01

    Several attempts have been made to incorporate whey proteins into curd to increase cheese yield. For some types of cheese, degradation of whey proteins that have been incorporated into the curd would be required to obtain acceptable flavor and texture. On the basis of the high potential for protease synthesis in Aspergillus oryzae, sodium nitrate as a nitrogen source in a minimal medium for fungi, known as Czapek-Dox medium, was replaced with whey protein isolate to induce the protease to hydrolyze whey protein using A. oryzae AHU7146. A solid-phase medium adjusted to pH 6 was suitable for this purpose when incubation was carried out at 25°C for 2 wk. The application of column chromatography enabled the resolution of 3 proteolytic components (1, 2, and 3). With respect to optimal temperature and zymographic analysis, component 1 was similar to component 3. In contrast, component 2 was less abundant than the other components and exhibited activity in the alkaline pH region. The degradation of β-lactoglobulin and α-lactalbumin in whey protein isolate solution by the crude enzyme was primarily attributed to the action of components 1 and 3, based on HPLC analysis and the N-terminal amino acid sequences; however, zymography demonstrated evident proteolysis due to component 2. Because heat-denatured whey protein aggregates were digestible by the crude enzyme, the proteolytic system from A. oryzae has the potential as an additive to stimulate the ripening of cheese enriched with whey protein. Copyright © 2011 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  5. Short communication: The effect of liquid storage on the flavor of whey protein concentrate.

    PubMed

    Park, Curtis W; Parker, Megan; Drake, MaryAnne

    2016-06-01

    Unit operations in dried dairy ingredient manufacture significantly influence sensory properties and, consequently, their use and consumer acceptance in a variety of ingredient applications. In whey protein concentrate (WPC) manufacture, liquid can be stored as whey or WPC before spray drying. The objective of this study was to determine the effect of storage, composition, and bleaching on the flavor of spray-dried WPC80. Liquid whey was manufactured and subjected to the following treatments: bleached or unbleached and liquid whey or liquid WPC storage. The experiment was replicated 3 times and included a no-storage control. All liquid storage was performed at 4°C for 24h. Flavor of the final spray-dried WPC80 was evaluated by a trained panel and volatile compound analyses. Storage of liquids increased cardboard flavor, decreased sweet aromatic flavor, and resulted in increased volatile lipid oxidation products. Bleaching altered the effect of liquid storage. Storage of unbleached liquid whey decreased sweet aromatic flavor and increased cardboard flavor and volatile lipid oxidation products compared with liquid WPC80 and no storage. In contrast, storage of bleached liquid WPC decreased sweet aromatic flavor and increased cardboard flavor and associated volatile lipid oxidation products compared with bleached liquid whey or no storage. These results confirm that liquid storage increases off-flavors in spray-dried protein but to a variable degree, depending on whether bleaching has been applied. If liquid storage is necessary, bleached WPC80 should be stored as liquid whey and unbleached WPC80 should be stored as liquid WPC to mitigate off-flavors. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  6. Effects of carbohydrate/protein ratio on the microstructure and the barrier and sorption properties of wheat starch-whey protein blend edible films.

    PubMed

    Basiak, Ewelina; Lenart, Andrzej; Debeaufort, Frédéric

    2017-02-01

    Starch and whey protein isolate and their mixtures were used for making edible films. Moisture sorption isotherms, water vapour permeability, sorption of aroma compounds, microstructure, water contact angle and surface properties were investigated. With increasing protein content, the microstructure changes became more homogeneous. The water vapour permeability increases with both the humidity gradient and the starch content. For all films, the hygroscopicity increases with starch content. Surface properties change according to the starch/whey protein ratio and are mainly related to the polar component of the surface tension. Films composed of 80% starch and 20% whey proteins have more hydrophobic surfaces than the other films due to specific interactions. The effect of carbohydrate/protein ratio significantly influences the microstructure, the surface wettability and the barrier properties of wheat starch-whey protein blend films. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  7. In Situ Bioremediation of Chlorinated Solvents Source Areas with Enhanced Mass Transfer

    DTIC Science & Technology

    2009-11-01

    cells within NAPL Area 3 ................................. 22 Figure 6. Impact of whey injection on pH in the treatment cells...locations following 1% and 10% whey injections. ............................ 39 Figure 12. Total chlorinated ethene concentration contours at select time...points. ................ 40 Figure 13. Relationship between interfacial tension reduction and enhanced solubility of TCE DNAPL as a function of whey

  8. 78 FR 24334 - Milk in the Northeast and Other Marketing Areas; Order Amending the Orders

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-25

    ...) allowances for cheese, butter, nonfat dry milk (NFDM) and dry whey contained in the Class III and Class IV....1715 per pound); NFDM ($0.1678 per pound); and dry whey ($0.1991 per pound). In addition, the butterfat... dry whey continues to be $0.1991 per pound (initially increased from $0.1956 per pound). Finally, the...

  9. 40 CFR 405.112 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Condensed Whey Subcategory § 405.112 Effluent limitations guidelines representing the degree of effluent... application of the best practicable control technology currently available (BPT): (a) For whey condensing plants with over 300,000 lb/day of fluid raw whey input (over 20,700 lb/day of solids or 14,160 lb/day of...

  10. Whey Peptide-Based Formulas With ω-3 Fatty Acids Are Protective in Lipopolysaccharide-Mediated Sepsis.

    PubMed

    Tsutsumi, Rie; Horikawa, Yousuke T; Kume, Katsuyoshi; Tanaka, Katsuya; Kasai, Asuka; Kadota, Takako; Tsutsumi, Yasuo M

    2015-07-01

    Sepsis and septic shock syndrome are among the leading causes of death in critically ill patients. Lipopolysaccharide (LPS) released by bacteria within the colon may translocate across a compromised epithelium, leading to oxidative stress, inflammation, sepsis, and eventually death. We examined the effects of a whey-based enteral formula high in cysteine (antioxidant precursor) and the addition of ω-3 fatty acids, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), against a mouse model of LPS-induced sepsis. Mice were fed either a whey-based diet with EPA-DHA (PAF), a whey-based diet without EPA-DHA (PSTD), or a casein-based control diet (CONT). Mice fed PAF or PSTD were protected against LPS-induced weight loss. Whey-based diets suppressed inflammatory cytokine release and oxidative stress damage. Furthermore, PAF and PSTD were able to inhibit autophagy, a mechanism in which the cell recycles damaged organelles. These anti-inflammatory and antioxidative effects of PSTD and PAF resulted in decreased liver inflammation and intestinal damage and promoted protective microbiota within the intestines. These data suggest a clinical role for whey peptide-based diets in promoting healing and recovery in critically ill patients. © 2014 American Society for Parenteral and Enteral Nutrition.

  11. Whey Protein Components - Lactalbumin and Lactoferrin - Improve Energy Balance and Metabolism.

    PubMed

    Zapata, Rizaldy C; Singh, Arashdeep; Pezeshki, Adel; Nibber, Traj; Chelikani, Prasanth K

    2017-08-30

    Whey protein promotes weight loss and improves diabetic control, however, less is known of its bioactive components that produce such benefits. We compared the effects of normal protein (control) diet with high protein diets containing whey, or its fractions lactalbumin and lactoferrin, on energy balance and metabolism. Diet-induced obese rats were randomized to isocaloric diets: Control, Whey, Lactalbumin, Lactoferrin, or pair-fed to lactoferrin. Whey and lactalbumin produced transient hypophagia, whereas lactoferrin caused prolonged hypophagia; the hypophagia was likely due to decreased preference. Lactalbumin decreased weight and fat gain. Notably, lactoferrin produced sustained weight and fat loss, and attenuated the reduction in energy expenditure associated with calorie restriction. Lactalbumin and lactoferrin decreased plasma leptin and insulin, and lactalbumin increased peptide YY. Whey, lactalbumin and lactoferrin improved glucose clearance partly through differential upregulation of glucoregulatory transcripts in the liver and skeletal muscle. Interestingly, lactalbumin and lactoferrin decreased hepatic lipidosis partly through downregulation of lipogenic and/or upregulation of β-oxidation transcripts, and differentially modulated cecal bacterial populations. Our findings demonstrate that protein quantity and quality are important for improving energy balance. Dietary lactalbumin and lactoferrin improved energy balance and metabolism, and decreased adiposity, with the effects of lactoferrin being partly independent of caloric intake.

  12. Emerging trends in nutraceutical applications of whey protein and its derivatives.

    PubMed

    Patel, Seema

    2015-11-01

    The looming food insecurity demands the utilization of nutrient-rich residues from food industries as value-added products. Whey, a dairy industry waste has been characterized to be excellent nourishment with an array of bioactive components. Whey protein comprises 20 % of total milk protein and it is rich in branched and essential amino acids, functional peptides, antioxidants and immunoglobulins. It confers benefits against a wide range of metabolic diseases such as cardiovascular complications, hypertension, obesity, diabetes, cancer and phenylketonuria. The protein has been validated to boost recovery from resistance exercise-injuries, stimulate gut physiology and protect skin against detrimental radiations. Apart from health invigoration, whey protein has proved its suitability as fat replacer and emulsifier. Further, its edible and antimicrobial packaging potential renders its highly desirable in food as well as pharmaceutical sectors. Considering the enormous nutraceutical worth of whey protein, this review emphasizes on its established and emerging biological roles. Present and future scopes in food processing and dietary supplement formulation are discussed. Associated hurdles are identified and how technical advancement might augment its applications are explored. This review is expected to provide valuable insight on whey protein-fortified functional foods, associated technical hurdles and scopes of improvement.

  13. Short communication: Development of a novel method for the extraction of norbixin from whey and its subsequent quantification via high performance liquid chromatography.

    PubMed

    Campbell, R E; Boogers, I A L A; Drake, M A

    2014-03-01

    Norbixin is the primary carotenoid in annatto coloring, which imparts the desired orange color in Cheddar cheese. However, a portion of the colorant remains in the cheese whey and is undesirable; therefore, a bleaching step is often applied. Restrictions exist for norbixin concentrations in products destined for infant formula. As such, evaluation of norbixin concentrations in whey and whey ingredients is desirable. Current extraction methods are laborious and require solvents that are banned in many countries. The objective of this study was to develop a fast and inexpensive norbixin extraction and quantitation technique using approved solvents with similar sensitivity to current established methods. Instead of solvent extraction and column purification, acetonitrile was added directly to fluid wheys, retentates, and rehydrated whey protein concentrates. An isocratic mobile phase [70% acetonitrile and 30% water with 0.1% (wt/vol) formic acid] was used and, to increase sensitivity, a large volume (50 μL) was injected onto the column. The column used was a C18 column with a particle size of 2.6 μm and column length of 10 cm. The column inner diameter was 4.6mm and the pore size was 100 Ǻ. All of the previously described conditions allowed the run time to be only 4 min. The sample was sent through a photodiode array detector and quantified at 482 nm. Norbixin was quantified using external standard curves. The developed method had a >90% norbixin recovery in both milk and whey (9.39 μg/L-2.35 mg/L). The limit of detection of norbixin in fluid whey was 2.7 μg/kg and the limit of quantitation was 3.5 μg/kg, both of which are significantly lower than in previously described methods. The extracts were stable over 30 min at 21°C and stable over 24h at 4°C. Repeatability and precision of the method had relative standard deviations of less than 13%. The developed method provides time and cost savings for evaluation of norbixin concentration in whey and whey products. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  14. Short communication: Conversion of lactose and whey into lactic acid by engineered yeast.

    PubMed

    Turner, Timothy L; Kim, Eunbee; Hwang, ChangHoon; Zhang, Guo-Chang; Liu, Jing-Jing; Jin, Yong-Su

    2017-01-01

    Lactose is often considered an unwanted and wasted byproduct, particularly lactose trapped in acid whey from yogurt production. But using specialized microbial fermentation, the surplus wasted acid whey could be converted into value-added chemicals. The baker's yeast Saccharomyces cerevisiae, which is commonly used for industrial fermentation, cannot natively ferment lactose. The present study describes how an engineered S. cerevisiae yeast was constructed to produce lactic acid from purified lactose, whey, or dairy milk. Lactic acid is an excellent proof-of-concept chemical to produce from lactose, because lactic acid has many food, pharmaceutical, and industrial uses, and over 250,000 t are produced for industrial use annually. To ferment the milk sugar lactose, a cellodextrin transporter (CDT-1, which also transports lactose) and a β-glucosidase (GH1-1, which also acts as a β-galactosidase) from Neurospora crassa were expressed in a S. cerevisiae strain. A heterologous lactate dehydrogenase (encoded by ldhA) from the fungus Rhizopus oryzae was integrated into the CDT-1/GH1-1-expressing strain of S. cerevisiae. As a result, the engineered strain was able to produce lactic acid from purified lactose, whey, and store-bought milk. A lactic acid yield of 0.358g/g of lactose was achieved from whey fermentation, providing an initial proof of concept for the production of value-added chemicals from excess industrial whey using engineered yeast. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  15. Interactions between whey proteins and salivary proteins as related to astringency of whey protein beverages at low pH.

    PubMed

    Ye, A; Streicher, C; Singh, H

    2011-12-01

    Whey protein beverages have been shown to be astringent at low pH. In the present study, the interactions between model whey proteins (β-lactoglobulin and lactoferrin) and human saliva in the pH range from 7 to 2 were investigated using particle size, turbidity, and ζ-potential measurements and sodium dodecyl sulfate-PAGE. The correlation between the sensory results of astringency and the physicochemical data was discussed. Strong interactions between β-lactoglobulin and salivary proteins led to an increase in the particle size and turbidity of mixtures of both unheated and heated β-lactoglobulin and human saliva at pH ∼3.4. However, the large particle size and high turbidity that occurred at pH 2.0 were the result of aggregation of human salivary proteins. The intense astringency in whey protein beverages may result from these increases in particle size and turbidity at these pH values and from the aggregation and precipitation of human salivary proteins alone at pH <3.0. The involvement of salivary proteins in the interaction is a key factor in the perception of astringency in whey protein beverages. At any pH, the increases in particle size and turbidity were much smaller in mixtures of lactoferrin and saliva, which suggests that aggregation and precipitation may not be the only mechanism linked to the perception of astringency in whey protein. Copyright © 2011 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  16. Denitrification-Efficiencies of Alternate Carbon Sources

    DTIC Science & Technology

    1984-07-01

    carbon source evaluated, while sweet whey, corn steep liquor , acid whey and soluble potato solids followed in order of decreasing efficiency. Three of...denitrification and total organic carbon removal with ’I. sweet whey 11 3. Percent denitrification and total organic carbon removal with corn steep liquor ...and total organic carbon removal with hydrolyzed sludge 18 10. Percent denitrification and total organic carbon removal with fish stick 19 11

  17. Short communication: The influence of solids concentration and bleaching agent on bleaching efficacy and flavor of sweet whey powder.

    PubMed

    Jervis, M G; Smith, T J; Drake, M A

    2015-04-01

    Recent studies have demonstrated the effect of bleaching conditions and bleaching agent on flavor and functional properties of whey protein ingredients. Solids concentration at bleaching significantly affected bleaching efficacy and flavor effects of different bleaching agents. It is not known if these parameters influence quality of sweet whey powder (SWP). The purpose of this study was to determine the effects of solids concentration and bleaching agent on the flavor and bleaching efficacy of SWP. Colored cheddar whey was manufactured, fat separated, and pasteurized. Subsequently, the whey (6.7% solids) was bleached, concentrated using reverse osmosis (RO) to 14% solids, and then spray dried, or whey was concentrated before bleaching and then spray dried. Bleaching treatments included a control (no bleaching, 50 °C, 60 min), hydrogen peroxide (HP; 250 mg/kg, 50 °C, 60 min), benzoyl peroxide (50 mg/kg, 50 °C, 60 min), lactoperoxidase (20 mg/kg of HP, 50 °C, 30 min), and external peroxidase (MaxiBright, DSM Food Specialties, Delft, the Netherlands; 2 dairy bleaching units/mL, 50 °C, 30 min). The experiment was repeated in triplicate. Sensory properties and volatile compounds of SWP were evaluated by a trained panel and gas chromatography-mass spectrometry, respectively. Bleaching efficacy (norbixin destruction) and benzoic acid were measured by HPLC. Differences in bleaching efficacy, sensory and volatile compound profiles, and benzoic acid were observed with different bleaching agents, consistent with previous studies. Solids concentration affected bleaching efficacy of HP, but not other bleaching agents. The SWP from whey bleached with HP or lactoperoxidase following RO had increased cardboard and fatty flavors and higher concentrations of lipid oxidation compounds compared with SWP from whey bleached before RO. The SWP bleached with benzoyl peroxide after RO contained less benzoic acid than SWP from whey bleached before RO. These results indicate that solids concentration at bleaching and bleaching agent affect quality of SWP. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  18. A Specific Mixture of Fructo-Oligosaccharides and Bifidobacterium breve M-16V Facilitates Partial Non-Responsiveness to Whey Protein in Mice Orally Exposed to β-Lactoglobulin-Derived Peptides

    PubMed Central

    Kostadinova, Atanaska I.; Meulenbroek, Laura A. P. M.; van Esch, Betty C. A. M.; Hofman, Gerard A.; Garssen, Johan; Willemsen, Linette E. M.; Knippels, Léon M. J.

    2017-01-01

    Oral tolerance is a promising approach for allergy prevention in early life, but it strongly depends on allergen exposure and proper immune environment. Small tolerance-inducing peptides and dietary immunomodulatory components may comprise an attractive method for allergy prevention in at-risk infants. This study aimed to investigate whether early oral exposure to β-lactoglobulin-derived peptides (BLG-peptides) and a specific synbiotic mixture of short- and long- chain fructo-oligosaccharides (scFOS/lcFOS, FF) and Bifidobacterium breve (Bb) M-16V (FF/Bb) can prevent cow’s milk allergy (CMA). Three-week-old female C3H/HeOuJ mice were orally exposed to phosphate buffered saline (PBS), whey protein, or a mixture of four synthetic BLG-peptides combined with a FF/Bb-enriched diet prior to intragastric sensitization with whey protein and cholera toxin. To assess the acute allergic skin response and clinical signs of allergy, mice were challenged intradermally with whole whey protein. Serum immunoglobulins were analyzed after a whey protein oral challenge. Cytokine production by allergen-reactivated splenocytes was measured and changes in T cells subsets in the spleen, mesenteric lymph nodes, and intestinal lamina propria were investigated. Pre-exposing mice to a low dosage of BLG-peptides and a FF/Bb-enriched diet prior to whey protein sensitization resulted in a significant reduction of the acute allergic skin response to whey compared to PBS-pretreated mice fed a control diet. Serum immunoglobulins were not affected, but anaphylactic symptom scores remained low and splenocytes were non-responsive in whey-induced cytokine production. In addition, preservation of the Th1/Th2 balance in the small intestine lamina propria was a hallmark of the mechanism underlying the protective effect of the BLG-peptides–FF/Bb intervention. Prior exposure to BLG-peptides and a FF/Bb-enriched diet is a promising approach for protecting the intestinal Th1/Th2 balance and reducing the allergic response to whole whey protein. Therefore, it might have implications for developing successful nutritional strategies for CMA prevention. PMID:28127297

  19. Whey Proteins Are More Efficient than Casein in the Recovery of Muscle Functional Properties following a Casting Induced Muscle Atrophy

    PubMed Central

    Martin, Vincent; Ratel, Sébastien; Siracusa, Julien; Le Ruyet, Pascale; Savary-Auzeloux, Isabelle; Combaret, Lydie; Guillet, Christelle; Dardevet, Dominique

    2013-01-01

    The purpose of this study was to investigate the effect of whey supplementation, as compared to the standard casein diet, on the recovery of muscle functional properties after a casting-induced immobilization period. After an initial (I0) evaluation of the contractile properties of the plantarflexors (isometric torque-frequency relationship, concentric power-velocity relationship and a fatigability test), the ankle of 20 male adult rats was immobilized by casting for 8 days. During this period, rats were fed a standard diet with 13% of casein (CAS). After cast removal, rats received either the same diet or a diet with 13% of whey proteins (WHEY). A control group (n = 10), non-immobilized but pair-fed to the two other experimental groups, was also studied and fed with the CAS diet. During the recovery period, contractile properties were evaluated 7 (R7), 21 (R21) and 42 days (R42) after cast removal. The immobilization procedure induced a homogeneous depression of average isometric force at R7 (CAS: − 19.0±8.2%; WHEY: − 21.7±8.4%; P<0.001) and concentric power (CAS: − 26.8±16.4%, P<0.001; WHEY: − 13.5±21.8%, P<0.05) as compared to I0. Conversely, no significant alteration of fatigability was observed. At R21, isometric force had fully recovered in WHEY, especially for frequencies above 50 Hz, whereas it was still significantly depressed in CAS, where complete recovery occurred only at R42. Similarly, recovery of concentric power was faster at R21 in the 500−700°/s range in the WHEY group. These results suggest that recovery kinetics varied between diets, the diet with the whey proteins promoting a faster recovery of isometric force and concentric power output as compared to the casein diet. These effects were more specifically observed at force level and movement velocities that are relevant for functional abilities, and thus natural locomotion. PMID:24069411

  20. Carbohydrates Alone or Mixing With Beef or Whey Protein Promote Similar Training Outcomes in Resistance Training Males: A Double-Blind, Randomized Controlled Clinical Trial.

    PubMed

    Naclerio, Fernando; Seijo-Bujia, Marco; Larumbe-Zabala, Eneko; Earnest, Conrad P

    2017-10-01

    Beef powder is a new high-quality protein source scarcely researched relative to exercise performance. The present study examined the impact of ingesting hydrolyzed beef protein, whey protein, and carbohydrate on strength performance (1RM), body composition (via plethysmography), limb circumferences and muscular thickness (via ultrasonography), following an 8-week resistance-training program. After being randomly assigned to one of the following groups: Beef, Whey, or Carbohydrate, twenty four recreationally physically active males (n = 8 per treatment) ingested 20 g of supplement, mixed with orange juice, once a day (immediately after workout or before breakfast). Post intervention changes were examined as percent change and 95% CIs. Beef (2.0%, CI, 0.2-2.38%) and Whey (1.4%, CI, 0.2-2.6%) but not Carbohydrate (0.0%, CI, -1.2-1.2%) increased fat-free mass. All groups increased vastus medialis thickness: Beef (11.1%, CI, 6.3-15.9%), Whey (12.1%, CI, 4.0, -20.2%), Carbohydrate (6.3%, CI, 1.9-10.6%). Beef (11.2%, CI, 5.9-16.5%) and Carbohydrate (4.5%, CI, 1.6-7.4%), but not Whey (1.1%, CI, -1.7-4.0%), increased biceps brachialis thickness, while only Beef increased arm (4.8%, CI, 2.3-7.3%) and thigh (11.2%, 95%CI 0.4-5.9%) circumferences. Although the three groups significantly improved 1RM Squat (Beef 21.6%, CI 5.5-37.7%; Whey 14.6%, CI, 5.9-23.3%; Carbohydrate 19.6%, CI, 2.2-37.1%), for the 1RM bench press the improvements were significant for Beef (15.8% CI 7.0-24.7%) and Whey (5.8%, CI, 1.7-9.8%) but not for carbohydrate (11.4%, CI, -0.9-23.6%). Protein-carbohydrate supplementation supports fat-free mass accretion and lower body hypertrophy. Hydrolyzed beef promotes upper body hypertrophy along with similar performance outcomes as observed when supplementing with whey isolate or maltodextrin.

  1. Whey protein supplementation does not alter plasma branched-chained amino acid profiles but results in unique metabolomics patterns in obese women enrolled in an 8-week weight loss trial.

    PubMed

    Piccolo, Brian D; Comerford, Kevin B; Karakas, Sidika E; Knotts, Trina A; Fiehn, Oliver; Adams, Sean H

    2015-04-01

    It has been suggested that perturbations in branched-chain amino acid (BCAA) catabolism are associated with insulin resistance and contribute to elevated systemic BCAAs. Evidence in rodents suggests dietary protein rich in BCAAs can increase BCAA catabolism, but there is limited evidence in humans. We hypothesize that a diet rich in BCAAs will increase BCAA catabolism, which will manifest in a reduction of fasting plasma BCAA concentrations. The metabolome of 27 obese women with metabolic syndrome before and after weight loss was investigated to identify changes in BCAA metabolism using GC-time-of-flight mass spectrometry. Subjects were enrolled in an 8-wk weight-loss study including either a 20-g/d whey (whey group, n = 16) or gelatin (gelatin group, n = 11) protein supplement. When matched for total protein by weight, whey protein has 3 times the amount of BCAAs compared with gelatin protein. Postintervention plasma abundances of Ile (gelatin group: 637 ± 18, quantifier ion peak height ÷ 100; whey group: 744 ± 65), Leu (gelatin group: 1210 ± 33; whey group: 1380 ± 79), and Val (gelatin group: 2080 ± 59; whey group: 2510 ± 230) did not differ between treatment groups. BCAAs were significantly correlated with homeostasis model assessment of insulin resistance at baseline (r = 0.52, 0.43, and 0.49 for Leu, Ile, and Val, respectively; all, P < 0.05), but correlations were no longer significant at postintervention. Pro- and Cys-related pathways were found discriminant of whey protein vs. gelatin protein supplementation in multivariate statistical analyses. These findings suggest that BCAA metabolism is, at best, only modestly affected at a whey protein supplementation dose of 20 g/d. Furthermore, the loss of an association between postintervention BCAA and homeostasis model assessment suggests that factors associated with calorie restriction or protein intake affect how plasma BCAAs relate to insulin sensitivity. This trial was registered at clinicaltrials.gov as NCT00739479. © 2015 American Society for Nutrition.

  2. Fractionation of sheep cheese whey by a scalable method to sequentially isolate bioactive proteins.

    PubMed

    Pilbrow, Jodi; Bekhit, Alaa El-Din A; Carne, Alan

    2016-07-15

    This study reports a procedure for the simultaneous purification of glyco(caseino)macropeptide, immunoglobulin, lactoperoxidase, lactoferrin, α-lactalbumin and β-lactoglobulin from sheep cheese sweet whey, an under-utilized by-product of cheese manufacture generated by an emerging sheep dairy industry in New Zealand. These proteins have recognized value in the nutrition, biomedical and health-promoting supplements industries. A sequential fractionation procedure using economical anion and cation exchange chromatography on HiTrap resins was evaluated. The whey protein fractionation is performed under mild conditions, requires only the adjustment of pH between ion exchange chromatography steps, does not require buffer exchange and uses minimal amounts of chemicals. The purity of the whey protein fractions generated were analyzed by reversed phase-high performance liquid chromatography and the identity of the proteins was confirmed by mass spectrometry. This scalable procedure demonstrates that several proteins of recognized value can be fractionated in reasonable yield and purity from sheep cheese whey in one streamlined process. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Fermented whey as poultry feed additive to prevent fungal contamination.

    PubMed

    Londero, Alejandra; León Peláez, María A; Diosma, Gabriela; De Antoni, Graciela L; Abraham, Analía G; Garrote, Graciela L

    2014-12-01

    Fungal contamination of poultry feed causes economic losses to industry and represents a potential risk to animal health. The aim of the present study was to analyze the effectiveness of whey fermented with kefir grains as additive to reduce fungal incidence, thus improving feed safety. Whey fermented for 24 h at 20 °C with kefir grains (100 g L(-1) ) reduced conidial germination of Aspergillus flavus, Aspergillus parasiticus, Aspergillus terreus, Aspergillus fumigatus, Penicillium crustosum, Trichoderma longibrachiatum and Rhizopus sp. Poultry feed supplemented with fermented whey (1 L kg(-1) ) was two to four times more resistant to fungal contamination than control feed depending on the fungal species. Additionally, it contained kefir microorganisms at levels of 1 × 10(8) colony-forming units (CFU) kg(-1) of lactic acid bacteria and 6 × 10(7) CFU kg(-1) of yeasts even after 30 days of storage. Fermented whey added to poultry feed acted as a biopreservative, improving its resistance to fungal contamination and increasing its shelf life. © 2014 Society of Chemical Industry.

  4. Production of fermented cheese whey-based beverage using kefir grains as starter culture: evaluation of morphological and microbial variations.

    PubMed

    Magalhães, Karina Teixeira; Pereira, Maria Alcina; Nicolau, Ana; Dragone, Giuliano; Domingues, Lucília; Teixeira, José António; de Almeida Silva, João Batista; Schwan, Rosane Freitas

    2010-11-01

    Whey valorization concerns have led to recent interest on the production of whey beverage simulating kefir. In this study, the structure and microbiota of Brazilian kefir grains and beverages obtained from milk and whole/deproteinised whey was characterized using microscopy and molecular techniques. The aim was to evaluate its stability and possible shift of probiotic bacteria to the beverages. Fluorescence staining in combination with Confocal Laser Scanning Microscopy showed distribution of yeasts in macro-clusters among the grain's matrix essentially composed of polysaccharides (kefiran) and bacteria. Denaturing gradient gel electrophoresis displayed communities included yeast affiliated to Kluyveromyces marxianus, Saccharomyces cerevisiae, Kazachatania unispora, bacteria affiliated to Lactobacillus kefiranofaciens subsp. Kefirgranum, Lactobacillus kefiranofaciens subsp. Kefiranofaciens and an uncultured bacterium also related to the genus Lactobacillus. A steady structure and dominant microbiota, including probiotic bacteria, was detected in the analyzed kefir beverages and grains. This robustness is determinant for future implementation of whey-based kefir beverages.

  5. Distribution of Spiked Drugs between Milk Fat, Skim Milk, Whey, Curd, and Milk Protein Fractions: Expansion of Partitioning Models.

    PubMed

    Lupton, Sara J; Shappell, Nancy W; Shelver, Weilin L; Hakk, Heldur

    2018-01-10

    The distributions of eight drugs (acetaminophen, acetylsalicylic acid/salicylic acid, ciprofloxacin, clarithromycin, flunixin, phenylbutazone, praziquantel, and thiamphenicol) were determined in milk products (skim milk, milk fat, curd, whey, and whey protein) and used to expand a previous model (from 7 drugs to 15 drugs) for predicting drug distribution. Phenylbutazone and praziquantel were found to distribute with the lipid and curd phases (≥50%). Flunixin distribution was lower but similar in direction (12% in milk fat, 39% in curd). Acetaminophen, ciprofloxacin, and praziquantel preferentially associated with casein proteins, whereas thiamphenicol and clarithromycin associated preferentially to whey proteins. Regression analyses for log [milk fat]/[skim milk] and log [curd]/[whey] had r 2 values of 0.63 and 0.67, respectively, with p of <0.001 for 15 drugs (7 previously tested and 8 currently tested). The robustness of the distribution model was enhanced by doubling the number of drugs originally tested.

  6. Interfacial composition and stability of emulsions made with mixtures of commercial sodium caseinate and whey protein concentrate.

    PubMed

    Ye, Aiqian

    2008-10-15

    The interfacial composition and the stability of oil-in-water emulsion droplets (30% soya oil, pH 7.0) made with mixtures of sodium caseinate and whey protein concentrate (WPC) (1:1 by protein weight) at various total protein concentrations were examined. The average volume-surface diameter (d32) and the total surface protein concentration of emulsion droplets were similar to those of emulsions made with both sodium caseinate alone and WPC alone. Whey proteins were adsorbed in preference to caseins at low protein concentrations (<3%), whereas caseins were adsorbed in preference to whey proteins at high protein concentrations. The creaming stability of the emulsions decreased markedly as the total protein concentration of the system was increased above 2% (sodium caseinate >1%). This was attributed to depletion flocculation caused by the sodium caseinate in these emulsions. Whey proteins did not retard this instability in the emulsions made with mixtures of sodium caseinate and WPC. Copyright © 2008 Elsevier Ltd. All rights reserved.

  7. Maillard Conjugation of Sodium Alginate to Whey Protein for Enhanced Resistance to Surfactant-Induced Competitive Displacement from Air-Water Interfaces.

    PubMed

    Cai, Bingqing; Saito, Anna; Ikeda, Shinya

    2018-01-24

    Whey protein adsorbed to an interface forms a viscoelastic interfacial film but is displaced competitively from the interface by a small-molecule surfactant added afterward. The present study evaluated the impact of the covalent conjugation of high- or low-molecular-weight sodium alginate (HA or LA) to whey protein isolate (WPI) via the Maillard reaction on the ability of whey protein to resist surfactant-induced competitive displacement from the air-water interface. Surfactant added after the pre-adsorption of conjugate to the interface increased surface pressure. At a given surface pressure, the WPI-LA conjugate showed a significantly higher interfacial area coverage and lower interfacial film thickness compared to those of the WPI-HA conjugate or unconjugated WPI. The addition of LA to the aqueous phase had little effect on the interfacial area and thickness of pre-adsorbed WPI. These results suggest the importance of the molecular weight of the polysaccharide moiety in determining interfacial properties of whey protein-alginate conjugates.

  8. Evaluation of Consideration and Incorporation of Green and Sustainable Remediation (GSR) Practices in Army Environmental Remediation. Volume 1

    DTIC Science & Technology

    2012-08-27

    materials Examples: - Cheese whey , molasses, compost, or off-spec food products for inducing anaerobic conditions - Crushed concrete for use as...place of refined chemicals or materials Examples: - Cheese whey , molasses, compost, or off-spec food products for inducing anaerobic conditions... whey , molasses, compost, or off-spec food products for inducing anaerobic conditions - Crushed concrete for use as fill - Concrete from coal

  9. Obtention and characterization of dried gels prepared with whey proteins, honey and hydrocolloids mixture.

    PubMed

    Rodriguez, Ana C; Torrez Irigoyen, Martín R; Navarro, Alba S; Yamul, Diego K

    2017-11-01

    Large amounts of honey and liquid whey derived from the dairy industry are produced in Argentina. Honey is exported in bulk and whey is transformed into whey protein concentrates and isolates. The objective of this work was to investigate the effect of pH, composition and storage time on the properties of dried gels with honey, whey proteins and hydrocolloids. Color properties varied according to pH and composition. The fracture stress of dried gels prepared with corn starch was higher than that of gels prepared with guar gum in all conditions assayed. Young's modulus was higher at pH 7 for both compositions and increased with storage time. Rubbery characteristics were found in dried gels with guar gum, while both corn starch and guar gum made the microstructure rougher. Multivariate analysis showed that samples could be grouped by pH. Panelists preferred pH 7 products over acidic ones, and no significant differences in sensory properties were found using either corn starch or guar gum in the formulation. The results demonstrated that it is possible to generate a new product, which may open new applications for honey and whey in food formulations. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  10. Encapsulated whey-native yeast Kluyveromyces marxianus as a feed additive for animal production.

    PubMed

    Díaz-Vergara, Ladislao; Pereyra, Carina Maricel; Montenegro, Mariana; Pena, Gabriela Alejandra; Aminahuel, Carla Ayelen; Cavaglieri, Lilia R

    2017-05-01

    Whey is the main byproduct of the cheese industry. While the composition is variable, it retains up to 55% of milk nutrients. The beneficial features of whey indicates a promising source of new potentially probiotic strains for the development of food additives destined for animal production. The aim of this study was to identify Kluyveromyces spp. isolated from whey, to study some probiotic properties and to select the best strain to be encapsulated using derivatised chitosan. Kluyveromyces marxianus strains (VM003, VM004 and VM005) were isolated from whey and identified by phenotypic and molecular techniques. These three yeast strains were able to survive under gastrointestinal conditions. Moreover, they exhibited weak auto-aggregation and co-aggregation with pathogenic bacteria (Salmonella sp., Serratia sp., Escherichia coli and Salmonella typhimurium). In general the K. marxianus strains had a strong antimicrobial activity against pathogenic bacteria. The potential probiotic K. marxianus VM004 strain was selected for derivatised-chitosan encapsulation. Material treated with native chitosan exhibited a strong antimicrobial activity of K. marxianus, showing a total growth inhibition at 10 min exposure. However, derivatised-chitosan encapsulation showed a reduced antimicrobial activity. This is the first study to show some probiotic properties of whey-native K. marxianus, in vitro. An encapsulation strategy was applied using derivatised chitosan.

  11. Sequential application of waste whey as a medium component for Kluyveromyces lactis cultivation and a co-feeder for lipase immobilization by CLEA method.

    PubMed

    Veteikytė, Aušra; Šiekštelė, Rimantas; Tvaska, Bronius; Matijošytė, Inga

    2017-05-01

    Currently, much attention is paid to technologies which can be drivers of the circular economy across different sectors, in particular, to develop technologies for utilization or reusability of biocompatible materials from industrial waste. One of such is the milk whey, which is a cheap biobased raw material, the disposal of which is a major problem for the dairy industry. Our proposed and investigated technology is based on a continuous exploitation of the whey combining microbiology and biotechnology. Primarily, whey was used as a nutrition source for the cultivation of Kluyveromyces lactis with the aim to produce the targeted biocatalyst-lipase. During cultivation, the whey was transformed into the hydrolyzed form, which was further successfully applied as a protein feeder (external linker) for immobilization of lipase by cross-linked enzyme aggregate (CLEA) method. The first time use of whey as a co-feeder for immobilization of enzymes by CLEA method has shown promising results and increased the stability of lipases for temperature and organic solvents. Hydrolysis of rapeseed oil catalyzed with immobilized derivatives was obtained with 45-96% efficiency at non-optimized conditions. Additionally, the determined kinetic parameters indicated that the rate of p-nitrophenyl palmitate hydrolysis was not changed drastically after immobilization.

  12. Lactose Hydrolysis in Milk and Dairy Whey Using Microbial β-Galactosidases

    PubMed Central

    Dutra Rosolen, Michele; Gennari, Adriano; Volpato, Giandra; Volken de Souza, Claucia Fernanda

    2015-01-01

    This work aimed at evaluating the influence of enzyme concentration, temperature, and reaction time in the lactose hydrolysis process in milk, cheese whey, and whey permeate, using two commercial β-galactosidases of microbial origins. We used Aspergillus oryzae (at temperatures of 10 and 55°C) and Kluyveromyces lactis (at temperatures of 10 and 37°C) β-galactosidases, both in 3, 6, and 9 U/mL concentrations. In the temperature of 10°C, the K. lactis β-galactosidase enzyme is more efficient in the milk, cheese whey, and whey permeate lactose hydrolysis when compared to A. oryzae. However, in the enzyme reaction time and concentration conditions evaluated, 100% lactose hydrolysis was not reached using the K. lactis β-galactosidase. The total lactose hydrolysis in whey and permeate was obtained with the A. oryzae enzyme, when using its optimum temperature (55°C), at the end of a 12 h reaction, regardless of the enzyme concentration used. For the lactose present in milk, this result occurred in the concentrations of 6 and 9 U/mL, with the same time and temperature conditions. The studied parameters in the lactose enzymatic hydrolysis are critical for enabling the application of β-galactosidases in the food industry. PMID:26587283

  13. Lactose Hydrolysis in Milk and Dairy Whey Using Microbial β-Galactosidases.

    PubMed

    Dutra Rosolen, Michele; Gennari, Adriano; Volpato, Giandra; Volken de Souza, Claucia Fernanda

    2015-01-01

    This work aimed at evaluating the influence of enzyme concentration, temperature, and reaction time in the lactose hydrolysis process in milk, cheese whey, and whey permeate, using two commercial β-galactosidases of microbial origins. We used Aspergillus oryzae (at temperatures of 10 and 55°C) and Kluyveromyces lactis (at temperatures of 10 and 37°C) β-galactosidases, both in 3, 6, and 9 U/mL concentrations. In the temperature of 10°C, the K. lactis β-galactosidase enzyme is more efficient in the milk, cheese whey, and whey permeate lactose hydrolysis when compared to A. oryzae. However, in the enzyme reaction time and concentration conditions evaluated, 100% lactose hydrolysis was not reached using the K. lactis β-galactosidase. The total lactose hydrolysis in whey and permeate was obtained with the A. oryzae enzyme, when using its optimum temperature (55°C), at the end of a 12 h reaction, regardless of the enzyme concentration used. For the lactose present in milk, this result occurred in the concentrations of 6 and 9 U/mL, with the same time and temperature conditions. The studied parameters in the lactose enzymatic hydrolysis are critical for enabling the application of β-galactosidases in the food industry.

  14. The effect of chitosan and whey proteins-chitosan films on the growth of Penicillium expansum in apples.

    PubMed

    Simonaitiene, Dovile; Brink, Ieva; Sipailiene, Ausra; Leskauskaite, Daiva

    2015-05-01

    Penicillium expansum causes a major post-harvest disease of apples. The aim of this study was to investigate the inhibition effect of chitosan and whey proteins-chitosan films containing different amounts of quince and cranberry juice against P. expansum on the simulation medium and on apples. The mechanical properties of films were also evaluated. The presence of cranberry and quince juice in the composition of chitosan and whey proteins-chitosan films caused a significant (P ≤ 0.05) increase in elasticity and decrease in tensile strength of films. Chitosan and whey proteins-chitosan films with quince and cranberry juice demonstrated a significant (P ≤ 0.05) inhibition effect against P. expansum growth on the simulated medium and apples. The presence of cranberry juice in the composition of chitosan and whey proteins-chitosan films resulted in a longer lag phase and a lower P. expansum growth rate on the simulation medium in comparison with films made with the addition of quince juice. These differences were not evident when experiment was conducted with apples. Addition of quince and cranberry juice to the chitosan and whey proteins-chitosan films as natural antifungal agents has some potential for prolonging the shelf life of apples. © 2014 Society of Chemical Industry.

  15. Goat whey ameliorates intestinal inflammation on acetic acid-induced colitis in rats.

    PubMed

    Araújo, Daline Fernandes de Souza; Guerra, Gerlane Coelho Bernardo; Júnior, Raimundo Fernandes de Araújo; Antunes de Araújo, Aurigena; Antonino de Assis, Paloma Oliveira; Nunes de Medeiros, Ariosvaldo; Formiga de Sousa, Yasmim Regis; Pintado, Maria Manuela Estevez; Gálvez, Julio; Queiroga, Rita de Cássia Ramos do Egypto

    2016-12-01

    Complementary or alternative medicine is of great interest for the treatment of inflammatory bowel disease, with the aim of ameliorating the side effects of the drugs commonly used or improving their efficacy. In this study, we evaluated the ability of goat whey to prevent intestinal inflammation in the experimental model of acetic acid-induced rats and compared it to sulfasalazine. Pretreatment with goat whey (1, 2, and 4g/kg) and sulfasalazine (250mg/kg) on colitic rats improved colonic inflammatory markers, including myeloperoxidase activity, leukotriene B 4 levels, as well as the production of proinflammatory cytokines IL-1β and tumor necrosis factor-α. Furthermore, the administration of goat whey significantly reduced the colonic oxidative stress by reducing malondialdehyde levels and increased total glutathione content, a potent antioxidant peptide. The histological evaluation of the colonic specimens from colitic rats confirmed these beneficial effects, as goat whey preserved the colonic tissue, especially in those rats treated with the highest dose of goat whey or with sulfasalazine. The immunohistochemistry analysis of the colonic tissue evaluation also revealed a reduction in the expression of cyclooxygenase-2, inducible nitric oxide synthase, and matrix metalloproteinase-9, together with an increased expression of suppressor of cytokine signaling-1. These results suggest that goat whey exerted a preventive effect against the intestinal damage induced by acetic acid, showing a similar efficacy to that shown by sulfasalazine, therefore making it a potential treatment for human inflammatory bowel disease. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  16. Whey proteins protect more than red meat against azoxymethane induced ACF in Wistar rats.

    PubMed

    Belobrajdic, D P; McIntosh, G H; Owens, J A

    2003-07-30

    Protein type and density have been shown to influence colon cancer risk using a carcinogen-induced rat model. It is suggested that red meat may promote colon cancer risk more than whey proteins. The aim of this study was to evaluate the influence of red meat, whey protein and their density in the diet on the number of aberrant crypt foci (ACF), preneoplastic markers in Wistar rats. The sources of protein, red meat as barbecued kangaroo muscle meat, and whey protein concentrate were fed to rats to provide 8, 16 and 32% protein by weight in a modified AIN-93 diet with low fiber, low calcium and high polyunsaturated fat. Adult Wistar rats (13 weeks of age) were fed these diets for 4 weeks and then two s.c. injections of azoxymethane, 15 mg/kg BW, were administered 1 week apart. Diets were fed for a further 8 weeks, rats were then killed, their colons fixed in formalin saline and stained with methylene blue to quantify ACF number. Fecal samples were collected and the fecal water was isolated for quantification of heme and thiobarbituric acid reactive substances. Increasing red meat density correlated positively, while increasing dairy protein density correlated negatively with rate of weight gain (p<0.05). Dietary intake was not significantly affected by protein type or density. The 32% whey protein group had significantly less ACF in the proximal colon in comparison to the 16 and 32% red meat groups (p<0.05). This reduction in ACF number in the whey protein group may be caused by hormones associated with the reduction in weight gain, and/or by components of whey protein concentrate such as cysteine, lactose and conjugated linoleic acid which have been shown to have anti-cancer effects. Using ACF number as an index, whey protein appeared to be more protective than red meat.

  17. Comparative studies of two methods for miRNA isolation from milk whey.

    PubMed

    Jin, Xiao-lu; Wei, Zi-hai; Liu, Lan; Liu, Hong-yun; Liu, Jian-xin

    2015-06-01

    MicroRNAs (miRNAs) from milk whey have been considered for their potential as noninvasive biomarkers for milk quality control and disease diagnosis. However, standard protocols for miRNA isolation and quantification from milk whey are not well established. The objective of this study was to compare two methods for the isolation of miRNAs from milk whey. These two methods were modified phenol-based technique (Trizol LS(®) followed by phenol precipitation, the TP method) and combined phenol and column-based approach (Trizol LS(®) followed by cleanup using the miRNeasy kit, the TM method). Yield and quality of RNA were rigorously measured using a NanoDrop ND-1000 spectrophotometer and then the distribution of RNA was precisely detected in a Bioanalyzer 2100 instrument by microchip gel electrophoresis. Several endogenous miRNAs (bta-miR-141, bta-miR-146a, bta-miR-148a, bta-miR-200c, bta-miR-362, and bta-miR-375) and an exogenous spike-in synthetic control miRNA (cel-miR-39) were quantified by real-time polymerase chain reaction (PCR) to examine the apparent recovery efficiency of milk whey miRNAs. Both methods could successfully isolate sufficient small RNA (<200 nt) from milk whey, and their yields were quite similar. However, the quantification results show that the total miRNA recovery efficiency by the TM method is superior to that by the TP method. The TM method performed better than the TP for recovery of milk whey miRNA due to its consistency and good repeatability in endogenous and spike-in miRNA recovery. Additionally, quantitative recovery analysis of a spike-in miRNA may be more accurate to reflect the milk whey miRNA recovery efficiency than using traditional RNA quality analysis instruments (NanoDrop or Bioanalyzer 2100).

  18. Comparative studies of two methods for miRNA isolation from milk whey*

    PubMed Central

    Jin, Xiao-lu; Wei, Zi-hai; Liu, Lan; Liu, Hong-yun; Liu, Jian-xin

    2015-01-01

    MicroRNAs (miRNAs) from milk whey have been considered for their potential as noninvasive biomarkers for milk quality control and disease diagnosis. However, standard protocols for miRNA isolation and quantification from milk whey are not well established. The objective of this study was to compare two methods for the isolation of miRNAs from milk whey. These two methods were modified phenol-based technique (Trizol LS® followed by phenol precipitation, the TP method) and combined phenol and column-based approach (Trizol LS® followed by cleanup using the miRNeasy kit, the TM method). Yield and quality of RNA were rigorously measured using a NanoDrop ND-1000 spectrophotometer and then the distribution of RNA was precisely detected in a Bioanalyzer 2100 instrument by microchip gel electrophoresis. Several endogenous miRNAs (bta-miR-141, bta-miR-146a, bta-miR-148a, bta-miR-200c, bta-miR-362, and bta-miR-375) and an exogenous spike-in synthetic control miRNA (cel-miR-39) were quantified by real-time polymerase chain reaction (PCR) to examine the apparent recovery efficiency of milk whey miRNAs. Both methods could successfully isolate sufficient small RNA (<200 nt) from milk whey, and their yields were quite similar. However, the quantification results show that the total miRNA recovery efficiency by the TM method is superior to that by the TP method. The TM method performed better than the TP for recovery of milk whey miRNA due to its consistency and good repeatability in endogenous and spike-in miRNA recovery. Additionally, quantitative recovery analysis of a spike-in miRNA may be more accurate to reflect the milk whey miRNA recovery efficiency than using traditional RNA quality analysis instruments (NanoDrop or Bioanalyzer 2100). PMID:26055915

  19. Recyclability of PET/WPI/PE Multilayer Films by Removal of Whey Protein Isolate-Based Coatings with Enzymatic Detergents.

    PubMed

    Cinelli, Patrizia; Schmid, Markus; Bugnicourt, Elodie; Coltelli, Maria Beatrice; Lazzeri, Andrea

    2016-06-14

    Multilayer plastic films provide a range of properties, which cannot be obtained from monolayer films but, at present, their recyclability is an open issue and should be improved. Research to date has shown the possibility of using whey protein as a layer material with the property of acting as an excellent barrier against oxygen and moisture, replacing petrochemical non-recyclable materials. The innovative approach of the present research was to achieve the recyclability of the substrate films by separating them, with a simple process compatible with industrial procedures, in order to promote recycling processes leading to obtain high value products that will beneficially impact the packaging and food industries. Hence, polyethyleneterephthalate (PET)/polyethylene (PE) multi-layer film was prepared based on PET coated with a whey protein layer, and then the previous structure was laminated with PE. Whey proteins, constituting the coating, can be degraded by enzymes so that the coating films can be washed off from the plastic substrate layer. Enzyme types, dosage, time, and temperature optima, which are compatible with procedures adopted in industrial waste recycling, were determined for a highly-efficient process. The washing of samples based on PET/whey and PET/whey/PE were efficient when performed with enzymatic detergent containing protease enzymes, as an alternative to conventional detergents used in recycling facilities. Different types of enzymatic detergents tested presented positive results in removing the protein layer from the PET substrate and from the PET/whey/PE multilayer films at room temperature. These results attested to the possibility of organizing the pre-treatment of the whey-based multilayer film by washing with different available commercial enzymatic detergents in order to separate PET and PE, thus allowing a better recycling of the two different polymers. Mechanical properties of the plastic substrate, such as stress at yield, stress and elongation at break, evaluated by tensile testing on films before and after cleaning, were are not significantly affected by washing with enzymatic detergents.

  20. Whey protein lowers blood pressure and improves endothelial function and lipid biomarkers in adults with prehypertension and mild hypertension: results from the chronic Whey2Go randomized controlled trial12

    PubMed Central

    Givens, D Ian

    2016-01-01

    Background: Cardiovascular diseases (CVDs) are the greatest cause of death globally, and their reduction is a key public-health target. High blood pressure (BP) affects 1 in 3 people in the United Kingdom, and previous studies have shown that milk consumption is associated with lower BP. Objective: We investigated whether intact milk proteins lower 24-h ambulatory blood pressure (AMBP) and other risk markers of CVD. Design: The trial was a double-blinded, randomized, 3-way–crossover, controlled intervention study. Forty-two participants were randomly assigned to consume 2 × 28 g whey protein/d, 2 × 28 g Ca caseinate/d, or 2 × 27 g maltodextrin (control)/d for 8 wk separated by a 4-wk washout. The effects of these interventions were examined with the use of a linear mixed-model ANOVA. Results: Thirty-eight participants completed the study. Significant reductions in 24-h BP [for systolic blood pressure (SBP): −3.9 mm Hg; for diastolic blood pressure (DBP): −2.5 mm Hg; P = 0.050 for both)] were observed after whey-protein consumption compared with control intake. After whey-protein supplementation compared with control intake, peripheral and central systolic pressures [−5.7 mm Hg (P = 0.007) and −5.4 mm Hg (P = 0.012), respectively] and mean pressures [−3.7 mm Hg (P = 0.025) and −4.0 mm Hg (P = 0.019), respectively] were also lowered. Flow-mediated dilation (FMD) increased significantly after both whey-protein and calcium-caseinate intakes compared with control intake [1.31% (P < 0.001) and 0.83% (P = 0.003), respectively]. Although both whey protein and calcium caseinate significantly lowered total cholesterol [−0.26 mmol/L (P = 0.013) and −0.20 mmol/L (P = 0.042), respectively], only whey protein decreased triacylglycerol (−0.23 mmol/L; P = 0.025) compared with the effect of the control. Soluble intercellular adhesion molecule 1 and soluble vascular cell adhesion molecule 1 were reduced after whey protein consumption (P = 0.011) and after calcium-caseinate consumption (P = 0.039), respectively, compared with after control intake. Conclusions: The consumption of unhydrolyzed milk proteins (56 g/d) for 8 wk improved vascular reactivity, biomarkers of endothelial function, and lipid risk factors. Whey-protein supplementation also lowered 24-h ambulatory SBP and DBP. These results may have important implications for public health. This trial was registered at clinicaltrials.gov as NCT02090842. PMID:27797709

  1. Protein supplements after weight loss do not improve weight maintenance compared with recommended dietary protein intake despite beneficial effects on appetite sensation and energy expenditure: a randomized, controlled, double-blinded trial.

    PubMed

    Kjølbæk, Louise; Sørensen, Lone Brinkmann; Søndertoft, Nadja Buus; Rasmussen, Carrie Klestrup; Lorenzen, Janne Kunchel; Serena, Anja; Astrup, Arne; Larsen, Lesli Hingstrup

    2017-08-01

    Background : High-protein diets increase weight loss (WL) during energy restriction; therefore, it has been suggested that additional protein intake may improve weight maintenance (WM) after WL. Objective: We investigated the effect of protein supplements from either whey with or without calcium or soy on WM success after WL compared with that of a control. Design: In a randomized, controlled, double-blinded trial, 220 participants aged 18-60 y with body mass index (in kg/m 2 ) from 27.6 to 40.4 were included. The study was initiated with an 8-wk WL period followed by a 24-wk WM period. During WM, participants consumed the following isocaloric supplements (45-48 g/d): whey and calcium (whey+), whey, soy, or maltodextrin (control). Data were collected at baseline, before WM, and after WM (weeks 0, 8, and 32, respectively) and included body composition, blood biochemistry, and blood pressure. Meal tests were performed to investigate diet-induced-thermogenesis (DIT) and appetite sensation. Compliance was tested by 24-h urinary nitrogen excretion. Results: A total of 151 participants completed the WM period. The control and 3 protein supplements did not result in different mean ± SD weight regains (whey+: 2.19 ± 4.6 kg; whey: 2.01 ± 4.6 kg; soy: 1.76 ± 4.7 kg; and control: 2.23 ± 3.8 kg; P = 0.96), fat mass regains (whey+: 0.46 ± 4.5 kg; whey: 0.11 ± 4.1 kg; soy: 0.15 ± 4.1 kg; and control: 0.54 ± 3.3 kg; P = 0.96), or improvements in lean body mass (whey+: 1.87 ± 1.7 kg; whey: 1.94 ± 1.3 kg; soy: 1.58 ± 1.4 kg; and control: 1.74 ± 1.4 kg; P = 0.50) during WM. Changes in blood pressure and blood biochemistry were not different between groups. Compared with the control, protein supplementation resulted in higher DIT (∼30 kJ/2.5 h) and resting energy expenditure (243 kJ/d) and an anorexigenic appetite-sensation profile. Conclusion: Protein supplementation does not result in improved WM success, or blood biochemistry after WL compared with the effects of normal dietary protein intake (0.8-1.0 g · kg -1 · d -1 ). This trial was registered at clinicaltrials.gov as NCT01561131. © 2017 American Society for Nutrition.

  2. In-situ Substrate Addition to Create Reactive Zones for Treatment of Chlorinated Aliphatic Hydrocarbons: Hanscom Air Force Base

    DTIC Science & Technology

    2003-04-04

    processes in the subsurface. This substrate is typically molasses although these substrates can include high fructose corn syrup , whey, etc. (Suthersan...typically comprised of a carbohydrate such as molasses, whey, high fructose corn syrup , lactate, butyrate, or benzoate). Through periodic subsurface...this purpose; other carbohydrates such as high fructose corn syrup and whey can also be effective. This approach has been accepted by regulators and

  3. Sustainable treatment of different high-strength cheese whey wastewaters: an innovative approach for atmospheric CO2 mitigation and fertilizer production.

    PubMed

    Prazeres, Ana R; Rivas, Javier; Paulo, Úrsula; Ruas, Filipa; Carvalho, Fátima

    2016-07-01

    Raw cheese whey wastewater (CWW) has been treated by means of FeCl3 coagulation-flocculation, NaOH precipitation, and Ca(OH)2 precipitation. Three different types of CWW were considered: without cheese whey recovery (CWW0), 60 % cheese whey recovery (CWW60), and 80 % cheese whey recovery (CWW80). Cheese whey recovery significantly influenced the characteristics of the wastewater to be treated: organic matter, solids, turbidity, conductivity, sodium, chloride, calcium, nitrogen, potassium, and phosphorus. Initial organic load was reduced to values in the interval of 60-70 %. Application of FeCl3, NaOH, or Ca(OH)2 involved additional chemical oxygen demand (COD) depletions regardless of the CWW used. Under optimum conditions, the combination of 80 % cheese whey recovery and lime application led to 90 % reduction in COD. Turbidity (99.8%), total suspended solids (TSS) (98-99 %), oils and fats (82-96 %), phosphorus (98-99 %), potassium (96-97 %), and total coliforms (100 %) were also reduced. Sludge generated in the latter process showed excellent settling properties. This solid after filtration and natural evaporation can be used as fertilizer with limitations due to its saline nature. In an innovative, low-cost, and environmentally friendly technology, supernatant coming from the Ca(OH)2 addition was naturally neutralized in 4-6 days by atmospheric CO2 absorption without reagent addition. Consequently, a final aerobic biodegradation step can be applied for effluent polishing. This technology also allows for some atmospheric CO2 mitigation. Time requirement for the natural carbonation depends on the effluent characteristics. A precipitate rich in organic matter and nutrients and depletions of solids, sodium, phosphorus, magnesium, Kjeldahl, and ammoniacal nitrogen were also achieved during the natural carbonation.

  4. Ingestion of partially hydrolyzed whey protein suppresses epicutaneous sensitization to β-lactoglobulin in mice.

    PubMed

    Matsubara, Takeshi; Iwamoto, Hiroshi; Nakazato, Yuki; Okamoto, Tomoyuki; Ehara, Tatsuya; Izumi, Hirohisa; Takeda, Yasuhiro

    2018-03-08

    Epicutaneous sensitization to food allergens can occur through defective skin barriers. However, the relationship between oral tolerance and epicutaneous sensitization remains to be elucidated. We aimed to determine whether prior oral exposure to whey proteins or their hydrolysates prevents epicutaneous sensitization and subsequent food-allergic reaction to the whey protein, β-lactoglobulin (β-LG), and investigated the underlying mechanisms. BALB/c mice were given whey protein concentrate (WPC), two kinds of partial whey protein hydrolysate (PWH1 or PWH2), or extensive whey protein hydrolysate (EWH) in drinking water for 21 days. The mice were then epicutaneously sensitized with β-LG on tape-stripped skin. Sensitization was assessed by basophil activation tests and by measuring the level of serum β-LG-specific antibodies and cytokines secreted from β-LG-restimulated spleen and mesenteric lymph node (MLN) cells. Development of an allergic reaction was assessed by monitoring body temperature and by measuring mast cell protease-1 level in plasma after the β-LG oral challenge. Activated T-cell population among β-LG-restimulated MLN cells was also analyzed. In mice fed with WPC, PWH1, or PWH2, sensitization and the development of an allergic reaction were totally reduced. The acceleration of cytokine release from the spleen and MLN cells or T-cell activation was not evident after β-LG restimulation. In EWH-fed mice, a suppressive effect, though milder than that in WPC-, PWH1-, or PWH2-fed mice, was observed during the development of the allergic reaction. Prior oral exposure to partially hydrolyzed whey protein prevents epicutaneous sensitization and subsequent allergic response to β-LG in mice. © 2018 EAACI and John Wiley and Sons A/S. Published by John Wiley and Sons Ltd.

  5. Whey protein hydrolysates decrease IL-8 secretion in lipopolysaccharide (LPS)-stimulated respiratory epithelial cells by affecting LPS binding to Toll-like receptor 4.

    PubMed

    Iskandar, Michèle M; Dauletbaev, Nurlan; Kubow, Stan; Mawji, Nadir; Lands, Larry C

    2013-07-14

    Whey proteins (WP) exert anti-inflammatory and antioxidant effects. Hyperbaric pressurisation of whey increases its digestibility and changes the spectrum of peptides released during digestion. We have shown that dietary supplementation with pressurised whey improves nutritional status and systemic inflammation in patients with cystic fibrosis (CF). Both clinical indices are largely affected by airway processes, to which respiratory epithelial cells actively contribute. Here, we tested whether peptides released from the digestion of pressurised whey can attenuate the inflammatory responses of CF respiratory epithelial cells. Hydrolysates of pressurised WP (pWP) and native WP (nWP, control) were generated in vitro and tested for anti-inflammatory properties judged by the suppression of IL-8 production in CF and non-CF respiratory epithelial cell lines (CFTE29o- and 1HAEo-, respectively). We observed that, in both cell lines, pWP hydrolysate suppressed IL-8 production stimulated by lipopolysaccharide (LPS) to a greater magnitude compared with nWP hydrolysate. Neither hydrolysate suppressed IL-8 production induced by TNF-α or IL-1β, suggesting an effect on the Toll-like receptor (TLR) 4 pathway, the cellular sensor for LPS. Further, neither hydrolysate affected TLR4 expression or neutralised LPS. Both pWP and nWP hydrolysates similarly reduced LPS binding to surface TLR4, while pWP tended to more potently increase extracellular antioxidant capacity. (1) anti-inflammatory properties of whey are enhanced by pressurisation; (2) suppression of IL-8 production may contribute to the clinical effects of pressurised whey supplementation on CF; (3) this effect may be partly explained by a combination of reduced LPS binding to TLR4 and enhanced extracellular antioxidant capacity.

  6. Impact of Interfacial Composition on Lipid and Protein Co-Oxidation in Oil-in-Water Emulsions Containing Mixed Emulisifers.

    PubMed

    Zhu, Zhenbao; Zhao, Cui; Yi, Jianhua; Liu, Ning; Cao, Yuangang; Decker, Eric A; McClements, David Julian

    2018-05-02

    The impact of interfacial composition on lipid and protein co-oxidation in oil-in-water emulsions containing a mixture of proteins and surfactants was investigated. The emulsions consisted of 5% v/v walnut oil, 0.5% w/v whey protein isolate (WPI), and 0 to 0.4% w/v Tween 20 (pH 3 and pH 7). The protein surface load, magnitude of the ξ-potential, and mean particle diameter of the emulsions decreased as the Tween 20 concentration was increased, indicating the whey proteins were displaced by this nonionic surfactant. The whey proteins were displaced from the lipid droplet surfaces more readily at pH 3 than at pH 7, which may have been due to differences in the conformation or interactions of the proteins at the droplet surfaces at different pH values. Emulsions stabilized by whey proteins alone had relatively low lipid oxidation rates when incubated in the dark at 45 °C for up to 8 days, as determined by measuring lipid hydroperoxides and 2-thiobarbituric acid-reactive substances (TBARS). Conversely, the whey proteins themselves were rapidly oxidized, as shown by carbonyl formation, intrinsic fluorescence, sulfhydryl group loss, and electrophoresis measurements. Displacement of whey proteins from the interface by Tween 20 reduced protein oxidation but promoted lipid oxidation. These results indicated that the adsorbed proteins were more prone to oxidation than the nonadsorbed proteins, and therefore, they could act as better antioxidants. Protein oxidation was faster, while lipid oxidation was slower at pH 3 than at pH 7, which was attributed to a higher antioxidant activity of whey proteins under acidic conditions. These results highlight the importance of interfacial composition and solution pH on the oxidative stability of emulsions containing mixed emulsifiers.

  7. Skeletal effect of casein and whey protein intake during catch-up growth in young male Sprague-Dawley rats.

    PubMed

    Masarwi, Majdi; Gabet, Yankel; Dolkart, Oleg; Brosh, Tamar; Shamir, Raanan; Phillip, Moshe; Gat-Yablonski, Galia

    2016-07-01

    The aim of the present study was to determine whether the type of protein ingested influences the efficiency of catch-up (CU) growth and bone quality in fast-growing male rats. Young male Sprague-Dawley rats were either fed ad libitum (controls) or subjected to 36 d of 40 % food restriction followed by 24 or 40 d of re-feeding with either standard rat chow or iso-energetic, iso-protein diets containing milk proteins - casein or whey. In terms of body weight, CU growth was incomplete in all study groups. Despite their similar food consumption, casein-re-fed rats had a significantly higher body weight and longer humerus than whey-re-fed rats in the long term. The height of the epiphyseal growth plate (EGP) in both casein and whey groups was greater than that of rats re-fed normal chow. Microcomputed tomography yielded significant differences in bone microstructure between the casein and whey groups, with the casein-re-fed animals having greater cortical thickness in both the short and long term in addition to a higher trabecular bone fraction in the short term, although this difference disappeared in the long term. Mechanical testing confirmed the greater bone strength in rats re-fed casein. Bone quality during CU growth significantly depends on the type of protein ingested. The higher EGP in the casein- and whey-re-fed rats suggests a better growth potential with milk-based diets. These results suggest that whey may lead to slower bone growth with reduced weight gain and, as such, may serve to circumvent long-term complications of CU growth.

  8. Novel method for metalloproteins determination in human breast milk by size exclusion chromatography coupled to inductively coupled plasma mass spectrometry.

    PubMed

    Acosta, Mariano; Torres, Sabier; Mariño-Repizo, Leonardo; Martinez, Luis D; Gil, Raúl A

    2018-06-02

    Levels of essential metals in human breast milk (HBM) have been determined by different analytical techniques, but there is few woks about human whey milk fractions. However, the current trend lies in metalloproteomic and identification of different metalloproteins. In this sense, native separative techniques (N-PAGE and SEC) coupled to ICP-MS provide us with valuable information. Besides it is necessary the development of new methodologies in order to determine with accuracy and precision the profile of such metals and metalloproteins in the different whey protein fractions of HBM. Thus, the aim of this work was to develop a new method for metals and metalloproteins determination by SEC-ICP-MS in whey protein fractions of HBM. Human whey fractions were obtained of HBM samples by ultracentrifugation. Then, protein fractions of whey milk were separated by SEC coupled to ICP-MS for metalloproteins and Mn, Co, Cu and Se quantification. Besides, protein profile of whey milk was determined by N-PAGE and computer assisted image analysis. SEC-ICP-MS results indicated that first and second protein fractions showed detectable levels of the Mn, Co, Cu, and Se. Protein profile determined by N-PAGE and image analysis showed that molecular weight of protein fractions ranged between 68,878-1,228.277 Da. In this work, metalloproteins were analyzed by SEC coupled to ICP-MS, with adequate sensitivity and accuracy. Our study has shown the presence of Mn, Co, Cu and Se bound to two protein fractions in whey milk of HBM. Metals levels analyzed were within the ranges reported in the literature. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Role of protein concentration and protein-saliva interactions in the astringency of whey proteins at low pH.

    PubMed

    Kelly, M; Vardhanabhuti, B; Luck, P; Drake, M A; Osborne, J; Foegeding, E A

    2010-05-01

    Whey protein beverages are adjusted to pH <4.5 to enhance clarity and stability, but this pH level is also associated with increased astringency. The goal of this investigation was to determine the effects of protein concentration on astringency and interactions between whey and salivary proteins. Whey protein beverages containing 0.25 to 13% (wt/wt) beta-lactoglobulin and 0.017% (wt/wt) sucralose at pH 2.6 to 4.2 were examined using descriptive sensory analysis. Controls were similar pH phosphate buffers at phosphate concentrations equivalent to the amount of phosphoric acid required to adjust the pH of the protein solution. Changes in astringency with protein concentration depended on pH. At pH 3.5, astringency significantly increased with protein concentration from 0.25 to 4% (wt/wt) and then remained constant from 4 to 13% (wt/wt). Conversely, at pH 2.6, astringency decreased with an increase in protein concentration [0.5-10% (wt/wt)]. This suggests a complex relationship that includes pH and buffering capacity of the beverages. Furthermore, saliva flow rates increased with increasing protein concentrations, showing that the physiological conditions in the mouth change with protein concentration. Maximum turbidity of whey protein-saliva mixtures was observed between pH 4.6 and 5.2. Both sensory evaluation and in vitro study of interactions between beta-LG and saliva indicate that astringency of whey proteins is a complex process determined by the extent of aggregation occurring in the mouth, which depends on the whey protein beverage pH and buffering capacity in addition to saliva flow rate. Copyright 2010 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  10. [Microbiological rationale for using whey on salting salmon caviar].

    PubMed

    Kim, I N; Shtan'ko, T I

    2011-01-01

    The paper provides a rationale for the use of whey to salt salmon fishes instead of traditional preservatives, including those exported from low industrial potential countries, which do not undergo comprehensive sanitary and hygienic tests. On the basis of the performed studies, the authors recommend to use whey to salt salmon caviar, which ensures the ecological purity of the product containing the minimum amount of preservatives and other substances that fail to affect its organoleptic properties.

  11. Functionality of extrusion--texturized whey proteins.

    PubMed

    Onwulata, C I; Konstance, R P; Cooke, P H; Farrell, H M

    2003-11-01

    Whey, a byproduct of the cheesemaking process, is concentrated by processors to make whey protein concentrates (WPC) and isolates (WPI). Only 50% of whey proteins are used in foods. In order to increase their usage, texturizing WPC, WPI, and whey albumin is proposed to create ingredients with new functionality. Extrusion processing texturizes globular proteins by shearing and stretching them into aligned or entangled fibrous bundles. In this study, WPC, WPI, and whey albumin were extruded in a twin screw extruder at approximately 38% moisture content (15.2 ml/min, feed rate 25 g/min) and, at different extrusion cook temperatures, at the same temperature for the last four zones before the die (35, 50, 75, and 100 degrees C, respectively). Protein solubility, gelation, foaming, and digestibility were determined in extrudates. Degree of extrusion-induced insolubility (denaturation) or texturization, determined by lack of solubility at pH 7 for WPI, increased from 30 to 60, 85, and 95% for the four temperature conditions 35, 50, 75, and 100 degrees C, respectively. Gel strength of extruded isolates increased initially 115% (35 degrees C) and 145% (50 degrees C), but gel strength was lost at 75 and 100 degrees C. Denaturation at these melt temperatures had minimal effect on foaming and digestibility. Varying extrusion cook temperature allowed a new controlled rate of denaturation, indicating that a texturized ingredient with a predetermined functionality based on degree of denaturation can be created.

  12. Hydrolysis of whey lactose by immobilized β-galactosidase in a bioreactor with a spirally wound membrane.

    PubMed

    Vasileva, Nastya; Ivanov, Yavor; Damyanova, Stanka; Kostova, Iliana; Godjevargova, Tzonka

    2016-01-01

    The β-galactosidase was covalently immobilized onto a modified polypropylene membrane, using glutaraldehyde. The optimal conditions for hydrolysis of lactose (4.7%) by immobilized β-galactosidase in a batch process were determined 13.6 U enzyme activity, 40°C, pH 6.8 and 10h. The obtained degree of hydrolysis was compared with results received by a free enzyme. It was found, that the lactose hydrolysis by an immobilized enzyme was 1.6 times more effective than the lactose hydrolysis by a free enzyme. It was determined that the stability of the immobilized enzyme was 2 times higher in comparison with the stability of free enzyme. The obtained immobilized system β-galactosidase/polypropylene membrane was applied to produce glucose-galactose syrup from waste whey. The whey characteristics and the different preliminary treatments of the whey were investigated. Then the whey lactose hydrolysis in a bioreactor by an immobilized enzyme on a spirally wound membrane was performed. The optimal membrane surface and the optimal flow rate of the whey through the membrane module were determined, respectively 100 cm(2) and 1.0 mL min(-1). After 10h, the degree of lactose hydrolysis was increased to 91%. The operation stability was studied. After 20th cycle the yield of bioreactor was 69.7%. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Time-Dependent Expression Profiles of microRNAs and mRNAs in Rat Milk Whey

    PubMed Central

    Izumi, Hirohisa; Kosaka, Nobuyoshi; Shimizu, Takashi; Sekine, Kazunori; Ochiya, Takahiro; Takase, Mitsunori

    2014-01-01

    Functional RNAs, such as microRNA (miRNA) and mRNA, are present in milk, but their roles are unknown. To clarify the roles of milk RNAs, further studies using experimental animals such as rats are needed. However, it is unclear whether rat milk also contains functional RNAs and what their time dependent expression profiles are. Thus, we prepared total RNA from whey isolated from rat milk collected on days 2, 9, and 16 postpartum and analyzed using microarrays and quantitative PCR. The concentration of RNA in colostrum whey (day 2) was markedly higher than that in mature milk whey (days 9 and 16). Microarray analysis detected 161 miRNAs and 10,948 mRNA transcripts. Most of the miRNAs and mRNA transcripts were common to all tested milks. Finally, we selected some immune- and development-related miRNAs and mRNAs, and analysed them by quantitative PCR (in equal sample volumes) to determine their time-dependent changes in expression in detail. Some were significantly more highly expressed in colostrum whey than in mature milk whey, but some were expressed equally. And mRNA expression levels of some cytokines and hormones did not reflect the protein levels. It is still unknown whether RNAs in milk play biological roles in neonates. However, our data will help guide future in vivo studies using experimental animals such as rats. PMID:24533154

  14. Effect of Sodium Sulfite, Sodium Dodecyl Sulfate, and Urea on the Molecular Interactions and Properties of Whey Protein Isolate-Based Films

    PubMed Central

    Schmid, Markus; Prinz, Tobias K.; Stäbler, Andreas; Sängerlaub, Sven

    2017-01-01

    Whey protein coatings and cast films are promising for use as food packaging materials. Ongoing research is endeavoring to reduce their permeability. The intention of this study was to evaluate the effect of the reactive additives sodium sulfite, sodium dodecyl sulfate (SDS), and urea on the oxygen barrier, water vapor barrier, and protein solubility of whey protein cast films. The concentration of the reactive additives was 1 to 20 wt.-%. Dried whey protein cast films were used as substrate materials. The water vapor transmission rate, the oxygen permeability, and the protein solubility were measured. Effective diffusion coefficients and effective sorption coefficients were calculated from the results of the water vapor sorption experiments. The presence of sodium sulfite resulted in an increased number of hydrophobic interactions and hydrogen bonds and a slightly decreased number of disulfide bonds. The oxygen permeability decreased from 68 to 46 cm3 (STP/standard temperature and pressure) 100 μm (m2 d bar)−1 for 1 wt.-% SDS in the whey protein cast film. The water vapor transmission rate decreased from 165 to 44 g 100 μm (m2 d)−1 measured at 50 to 0% r. h. for 20 wt.-% SDS in the whey protein cast film. The reduction in the water vapor transmission rate correlated with the lower effective diffusion coefficient. PMID:28149835

  15. Physiochemical, texture properties, and the microstructure of set yogurt using whey protein-sodium tripolyphosphate aggregates as thickening agents.

    PubMed

    Cheng, Jianjun; Xie, Siyu; Yin, Yuan; Feng, Xianmin; Wang, Shuai; Guo, Mingruo; Ni, Chunlei

    2017-07-01

    Polymerized whey protein-sodium tripolyphosphate can be induced to gel in an acidic environment provided during fermentation. The variety of thickening agent has an influence on texture that is an essential aspect of yogurt quality affecting consumer preference. Similar to polysaccharide stabilizers, the cold gelation properties of whey proteins can improve the body texture of yogurt products. Polymerized whey protein-sodium tripolyphosphate could be a favorable and interesting thickening agent for making set yogurt. The effects of whey protein isolate (WPI), heat-treated whey protein-sodium tripolyphosphate (WPI-STPP), heat-treated WPI and pectin on the storage properties and microstructure of yogurt were investigated. All samples were analyzed for syneresis, pH, titratable acidity, viscosity, texture profile and microstructure during storage. The results showed that incorporating heat-treated WPI-STPP had a significant impact on syneresis (32.22 ± 0.60), viscosity (10 956.67 ± 962.1) and hardness (209.24 ± 12.48) (p < 0.05) with uniform body texture. Yogurt fermented with modified WPI-STPP had higher levels of protein and better hardness compared with yogurt using pectin. The microstructure was observed to be a uniform and denser, complicated network. Heat-treated WPI-STPP may be useful for improving yogurt texture. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  16. Effect of sodium sulfite, sodium dodecyl sulfate, and urea on the molecular interactions and properties of whey protein isolate-based films

    NASA Astrophysics Data System (ADS)

    Schmid, Markus; Prinz, Tobias K.; Stäbler, Andreas; Sängerlaub, Sven

    2016-12-01

    Whey protein coatings and cast films are promising for use as food packaging materials. Ongoing research is endeavoring to reduce their permeability. The intention of this study was to evaluate the effect of the reactive additives sodium sulfite, sodium dodecyl sulfate (SDS), and urea on the oxygen barrier, water vapor barrier, and protein solubility of whey protein cast films. The concentration of the reactive additives was 1 to 20 wt.-%. Dried whey protein cast films were used as substrate materials. The water vapor transmission rate, the oxygen permeability, and the protein solubility were measured. Effective diffusion coefficients and effective sorption coefficients were calculated from the results of the water vapor sorption experiments. The presence of sodium sulfite resulted in an increased number of hydrophobic interactions and hydrogen bonds and a slightly decreased number of disulfide bonds. The oxygen permeability decreased from 68 to 46 cm³ (STP / standard temperature and pressure) 100 µm (m² d bar)-1 for 1 wt.-% SDS in the whey protein cast film. The water vapor transmission rate decreased from 165 to 44 g 100 µm (m² d)-1 measured at 50 to 0 % r. h. for 20 wt.-% SDS in the whey protein cast film. The reduction in the water vapor transmission rate correlated with the lower effective diffusion coefficient.

  17. Synergistic enhancement in the co-gelation of salt-soluble pea proteins and whey proteins.

    PubMed

    Wong, Douglas; Vasanthan, Thava; Ozimek, Lech

    2013-12-15

    This paper investigated the enhancement of thermal gelation properties when salt-soluble pea proteins were co-gelated with whey proteins in NaCl solutions, using different blend ratios, total protein concentrations, pH, and salt concentrations. Results showed that the thermal co-gelation of pea/whey proteins blended in ratio of 2:8 in NaCl solutions showed synergistic enhancement in storage modulus, gel hardness, paste viscosity and minimum gelation concentrations. The highest synergistic enhancement was observed at pH 6.0 as compared with pH 4.0 and 8.0, and at the lower total protein concentration of 10% as compared with 16% and 22% (w/v), as well as in lower NaCl concentrations of 0.5% and 1.0% as compared with 1.5%, 2.0%, 2.5%, and 3.0% (w/v). The least gelation concentrations were also lower in the different pea/whey protein blend ratios than in pure pea or whey proteins, when dissolved in 1.0% or 2.5% (w/v) NaCl aqueous solutions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Effect of ultrasound-enhanced fat separation on whey powder phospholipid composition and stability.

    PubMed

    Torkamani, Amir E; Juliano, Pablo; Fagan, Peter; Jiménez-Flores, Rafael; Ajlouni, Said; Singh, Tanoj K

    2016-06-01

    Fat from freshly pasteurized liquid whey was partially separated by gravity for 5, 10, and 30min, with and without simultaneous application of ultrasound. Ultrasound treatments were carried out at 400 and 1,000 kHz at different specific energy inputs (23-390 kJ/kg). The fat-enriched top layers (L1) and the fat-depleted bottom layers (L2) were separately removed and freeze-dried. Nonsonicated and sonicated L2 powders were stored for 14d at ambient temperature to assess their oxidative stability. Creaming was enhanced at both frequencies and fat separation increased with higher ultrasonic energy, extended sonication, or both. The oxidative volatile compound content decreased in defatted whey powders below published odor detection threshold values for all cases. Sonication had a minor influence on the partitioning of phospholipids with fat separation. The current study suggested that ultrasonication at high frequency enhanced fat separation from freshly pasteurized whey while improving whey powder oxidative stability. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  19. Whey powders are a rich source and excellent storage matrix for dairy bacteriophages.

    PubMed

    Wagner, Natalia; Brinks, Erik; Samtlebe, Meike; Hinrichs, Jörg; Atamer, Zeynep; Kot, Witold; Franz, Charles M A P; Neve, Horst; Heller, Knut J

    2017-01-16

    Thirteen whey powders and 5 whey powder formulations were screened for the presence of dairy bacteriophages using a representative set of 8 acid-producing Lactococcus lactis and 5 Streptococcus thermophilus, and 8 flavour-producing Leuconostoc pseudomesenteroides and Leuconostoc mesenteroides strains. Lytic L. lactis phages were detected in all samples, while S. thermophilus and Leuconostoc phages were present in 50% or 40% of the samples, respectively. Maximal phage titers were 6×10 7 plaque-forming units (pfu)/g of whey powder for L. lactis phages, 1×10 7 pfu/g for Leuconostoc phages and 1×10 5 pfu/g for S. thermophilus phages. In total, 55 phages were isolated and characterized. Thirty one of the 33 lactococcal phages tested belonged to the wide-spread 936 phage group. In the course of this study, a PCR detection method for Leuconostoc phages (Ali et al., 2013) was adapted to new phage isolates. Furthermore, a remarkably high stability of phages in whey powder samples was documented during a long-term storage period of 4 years. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Electro-activation of sweet defatted whey: Impact on the induced Maillard reaction products and bioactive peptides.

    PubMed

    Kareb, Ourdia; Gomaa, Ahmed; Champagne, Claude P; Jean, Julie; Aïder, Mohammed

    2017-04-15

    Electro-activation was used to add value to sweet defatted whey. This study aimed to investigate and to characterize the bioactive compounds formed under different electro-activation conditions by molecular and proteomic approaches. The effects of electric current intensity (400, 500 or 600mA) and whey concentration (7, 14 or 21% (w/v)) as a function of the electro-activation time (0, 15, 30 or 45min) were evaluated. The targeted dependent variables were the formation of Maillard reaction products (MRPs), protein hydrolysates and glycated compounds. It was shown that the MRPs derived from electro-activated whey at a concentration of 14% had the highest potential of biological activity. SDS-PAGE analyses indicated the formation of hydrolysates and glycated compounds with different molecular weight distributions. FTIR indicated the predominance of intermediate MRPs, such as the Schiff base compounds. LC-MS/MS and proteomics analysis showed the production of multi-functional bioactive peptides due to the hydrolysis of whey proteins. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  1. Hydrolyzed whey protein prevents the development of food allergy to β-lactoglobulin in sensitized mice.

    PubMed

    Gomes-Santos, Ana Cristina; Fonseca, Roberta Cristelli; Lemos, Luisa; Reis, Daniela Silva; Moreira, Thaís Garcias; Souza, Adna Luciana; Silva, Mauro Ramalho; Silvestre, Marialice Pinto Coelho; Cara, Denise Carmona; Faria, Ana Maria Caetano

    2015-01-01

    Food allergy is an adverse immune response to dietary proteins. Hydrolysates are frequently used for children with milk allergy. However, hydrolysates effects afterwards are poorly studied. The aim of this study was to investigate the immunological consequences of hydrolyzed whey protein in allergic mice. For that, we developed a novel model of food allergy in BALB/c mice sensitized with alum-adsorbed β-lactoglobulin. These mice were orally challenged with either whey protein or whey hydrolysate. Whey-challenged mice had elevated levels of specific IgE and lost weight. They also presented gut inflammation, enhanced levels of SIgA and IL-5 as well as decreased production of IL-4 and IL-10 in the intestinal mucosa. Conversely, mice challenged with hydrolyzate maintained normal levels of IgE, IL-4 and IL-5 and showed no sign of gut inflammation probably due to increased IL-12 production in the gut. Thus, consumption of hydrolysate prevented the development of clinical signs of food allergy in mice. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Distribution of Animal Drugs among Curd, Whey, and Milk Protein Fractions in Spiked Skim Milk and Whey.

    PubMed

    Shappell, Nancy W; Shelver, Weilin L; Lupton, Sara J; Fanaselle, Wendy; Van Doren, Jane M; Hakk, Heldur

    2017-02-01

    It is important to understand the partitioning of drugs in processed milk and milk products, when drugs are present in raw milk, in order to estimate the potential consumer exposure. Radioisotopically labeled erythromycin, ivermectin, ketoprofen, oxytetracycline, penicillin G, sulfadimethoxine, and thiabendazole were used to evaluate the distribution of animal drugs among rennet curd, whey, and protein fractions from skim cow milk. Our previous work reported the distribution of these same drugs between skim and fat fractions of milk. Drug distribution between curd and whey was significantly correlated (R 2 = 0.70) to the drug's lipophilicity (log P), with improved correlation using log D (R 2 = 0.95). Distribution of drugs was concentration independent over the range tested (20-2000 nM). With the exception of thiabendazole and ivermectin, more drug was associated with whey protein than casein on a nmol/g protein basis (oxytetracycline experiment not performed). These results provide insights into the distribution of animal drug residues, if present in cow milk, among milk fractions, with possible extrapolation to milk products.

  3. Oral intake of Lactobacillus helveticus-fermented milk whey decreased transepidermal water loss and prevented the onset of sodium dodecylsulfate-induced dermatitis in mice.

    PubMed

    Baba, Hidehiko; Masuyama, Akihiro; Yoshimura, Chiaki; Aoyama, Yoshiko; Takano, Toshiaki; Ohki, Kohji

    2010-01-01

    We investigated the effects of oral intake of Lactobacillus helveticus-fermented milk whey on the intact and sodium dodecylsulfate (SDS)-exposed skin of Hos:HR-1 hairless mice. The mice were allowed to drink 10% L. helveticus-fermented milk whey in distilled water ad libitum for 5 weeks. SDS solution was topically applied to the dorsal skin at 4 weeks, leading to the development of dermatitis. The skin moisture content, transepidermal water loss, and sizes of the dermatitis areas were periodically measured. Compared with oral intake of water alone, oral intake of water containing L. helveticus-fermented milk whey for 4 weeks significantly lowered transepidermal water loss from intact skin, significantly reduced in size the areas of early SDS-induced dermatitis, and ameliorated both the SDS-induced decrease in moisture content and the increase in transepidermal water loss. These results suggest that oral intake of L. helveticus-fermented milk whey might be effective in promoting the epidermal barrier function and in preventing the onset of dermatitis.

  4. Cysteine-rich whey protein isolate (Immunocal®) ameliorates deficits in the GFAP.HMOX1 mouse model of schizophrenia.

    PubMed

    Song, Wei; Tavitian, Ayda; Cressatti, Marisa; Galindez, Carmela; Liberman, Adrienne; Schipper, Hyman M

    2017-09-01

    Schizophrenia is a neuropsychiatric disorder that features neural oxidative stress and glutathione (GSH) deficits. Oxidative stress is augmented in brain tissue of GFAP.HMOX1 transgenic mice which exhibit schizophrenia-relevant characteristics. The whey protein isolate, Immunocal® serves as a GSH precursor upon oral administration. In this study, we treated GFAP.HMOX1 transgenic mice daily with either Immunocal (33mg/ml drinking water) or equivalent concentrations of casein (control) between the ages of 5 and 6.5 months. Immunocal attenuated many of the behavioral, neurochemical and redox abnormalities observed in GFAP.HMOX1 mice. In addition to restoring GSH homeostasis in the CNS of the transgenic mice, the whey protein isolate augmented GSH reserves in the brains of wild-type animals. These results demonstrate that consumption of whey protein isolate augments GSH stores and antioxidant defenses in the healthy and diseased mammalian brain. Whey protein isolate supplementation (Immunocal) may constitute a safe and effective modality for the management of schizophrenia, an unmet clinical imperative. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Effects of sodium chloride salting and substitution with potassium chloride on whey expulsion of Cheddar cheese.

    PubMed

    Lu, Y; McMahon, D J

    2015-01-01

    A challenge in manufacturing reduced-sodium cheese is that whey expulsion after salting decreases when less salt is applied. Our objectives were (1) to determine whether changing the salting method would increase whey syneresis when making a lower sodium cheese and (2) to better understand factors contributing to salt-induced curd syneresis. Unsalted milled Cheddar curds were salted using different salting intervals (5 or 10 min), different salting levels (20, 25, or 30g/kg), different numbers of applications when using only 20g/kg salt (1, 2, or 3 applications), and salting with the equivalent of 30g/kg NaCl using a 2:1 molar ratio of NaCl and KCl. Whey from these curds was collected every 5 or 10 min until 30 or 40 min after the start of salting, and curds were subsequently pressed for 3h. Additional trials were conducted in which salted milled Cheddar cheese curd was immersed at 22°C for 6h in various solutions to determine how milled curd pieces respond to different levels of salt and Ca. The use of 10-min intervals delayed whey syneresis without influencing total whey expulsion or cheese composition after pressing. Lowering the salt level reduced whey expulsion, resulting in cheeses with higher moisture and slightly lower pH. Adding salt faster did not increase whey expulsion in reduced-salt cheese. Partial substitution with KCl restored the extent of whey expulsion. When salted milled curd was immersed in a 30g/L salt solution, there was a net influx of salt solution into the curd and curd weight increased. When curd was immersed in 60g/L salt solution, a contraction of curd occurred. Curd shrinkage was more pronounced as the salt solution concentration was increased to 90 and 120g/L. Increasing the Ca concentration in test solutions (such that both serum and total Ca in the curd increased) also promoted curd contraction, resulting in lower curd moisture and pH and less weight gain by the curd. The proportion of Ca in the curd that was bound to the para-casein protein matrix changed with the Ca content of the test solution. Compared with test solutions containing 10g/L Ca, at low Ca levels (i.e., 1 and 5g/L) the proportion of bound Ca was lower, whereas at 20g/L Ca, the proportion of bound Ca was higher. Both Ca and salt concentration influence the physicochemical properties of the protein matrix such that at low concentrations the curd expands, whereas at high concentrations the curd contracts and expels whey. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  6. 7 CFR 58.805 - Meaning of words.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... for Plants Manufacturing, Processing, and Packaging Whey, Whey Products and Lactose § 58.805 Meaning... regulations of the Food and Drug Administration. (g) Lactose (milk sugar). That food product defined by...

  7. 7 CFR 58.805 - Meaning of words.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... for Plants Manufacturing, Processing, and Packaging Whey, Whey Products and Lactose § 58.805 Meaning... regulations of the Food and Drug Administration. (g) Lactose (milk sugar). That food product defined by...

  8. Recyclability of PET/WPI/PE Multilayer Films by Removal of Whey Protein Isolate-Based Coatings with Enzymatic Detergents

    PubMed Central

    Cinelli, Patrizia; Schmid, Markus; Bugnicourt, Elodie; Coltelli, Maria Beatrice; Lazzeri, Andrea

    2016-01-01

    Multilayer plastic films provide a range of properties, which cannot be obtained from monolayer films but, at present, their recyclability is an open issue and should be improved. Research to date has shown the possibility of using whey protein as a layer material with the property of acting as an excellent barrier against oxygen and moisture, replacing petrochemical non-recyclable materials. The innovative approach of the present research was to achieve the recyclability of the substrate films by separating them, with a simple process compatible with industrial procedures, in order to promote recycling processes leading to obtain high value products that will beneficially impact the packaging and food industries. Hence, polyethyleneterephthalate (PET)/polyethylene (PE) multi-layer film was prepared based on PET coated with a whey protein layer, and then the previous structure was laminated with PE. Whey proteins, constituting the coating, can be degraded by enzymes so that the coating films can be washed off from the plastic substrate layer. Enzyme types, dosage, time, and temperature optima, which are compatible with procedures adopted in industrial waste recycling, were determined for a highly-efficient process. The washing of samples based on PET/whey and PET/whey/PE were efficient when performed with enzymatic detergent containing protease enzymes, as an alternative to conventional detergents used in recycling facilities. Different types of enzymatic detergents tested presented positive results in removing the protein layer from the PET substrate and from the PET/whey/PE multilayer films at room temperature. These results attested to the possibility of organizing the pre-treatment of the whey-based multilayer film by washing with different available commercial enzymatic detergents in order to separate PET and PE, thus allowing a better recycling of the two different polymers. Mechanical properties of the plastic substrate, such as stress at yield, stress and elongation at break, evaluated by tensile testing on films before and after cleaning, were are not significantly affected by washing with enzymatic detergents. PMID:28773592

  9. Effects of Whey Protein Alone or as Part of a Multi-ingredient Formulation on Strength, Fat-Free Mass, or Lean Body Mass in Resistance-Trained Individuals: A Meta-analysis.

    PubMed

    Naclerio, Fernando; Larumbe-Zabala, Eneko

    2016-01-01

    Even though the positive effects of whey protein-containing supplements for optimizing the anabolic responses and adaptations process in resistance-trained individuals have been supported by several investigations, their use continues to be controversial. Additionally, the administration of different multi-ingredient formulations where whey proteins are combined with carbohydrates, other protein sources, creatine, and amino acids or derivatives, has been extensively proposed as an effective strategy to maximize strength and muscle mass gains in athletes. We aimed to systematically summarize and quantify whether whey protein-containing supplements, administered alone or as a part of a multi-ingredient, could improve the effects of resistance training on fat-free mass or lean body mass, and strength in resistance-trained individuals when compared with other iso-energetic supplements containing carbohydrates or other sources of proteins. A structured literature search was conducted on PubMed, Science Direct, Web of Science, Cochrane Libraries, US National Institutes of Health clinicaltrials.gov, SPORTDiscus, and Google Scholar databases. Main inclusion criteria comprised randomized controlled trial study design, adults (aged 18 years and over), resistance-trained individuals, interventions (a resistance training program for a period of 6 weeks or longer, combined with whey protein supplementation administered alone or as a part of a multi-ingredient), and a calorie equivalent contrast supplement from carbohydrates or other non-whey protein sources. Continuous data on fat-free mass and lean body mass, and maximal strength were pooled using a random-effects model. Data from nine randomized controlled trials were included, involving 11 treatments and 192 participants. Overall, with respect to the ingestion of contrast supplements, whey protein supplementation, administered alone or as part of a multi-ingredient, in combination with resistance training, was associated with small extra gains in fat-free mass or lean body mass, resulting in an effect size of g = 0.301, 95% confidence interval (CI) 0.032-0.571. Subgroup analyses showed less clear positive trends resulting in small to moderate effect size g = 0.217 (95% CI -0.113 to 0.547) and g = 0.468 (95% CI 0.003-0.934) in favor of whey and multi-ingredient, respectively. Additionally, a positive overall extra effect was also observed to maximize lower (g = 0.316, 95% CI 0.045-0.588) and upper body maximal strength (g = 0.458, 95% CI 0.161-0.755). Subgroup analyses showed smaller superiority to maximize strength gains with respect to the contrast groups for lower body (whey protein: g = 0.343, 95% CI -0.016 to 0.702, multi-ingredient: g = 0.281, 95% CI -0.135 to 0.697) while in the upper body, multi-ingredient (g = 0.612, 95% CI 0.157-1.068) seemed to produce more clear effects than whey protein alone (g = 0.343, 95% CI -0.048 to 0.735). Studies involving interventions of more than 6 weeks on resistance-training individuals are scarce and account for a small number of participants. Furthermore, no studies with an intervention longer than 12 weeks have been found. The variation regarding the supplementation protocol, namely the different doses criteria or timing of ingestion also add some concerns to the studies comparison. Whey protein alone or as a part of a multi-ingredient appears to maximize lean body mass or fat-free mass gain, as well as upper and lower body strength improvement with respect to the ingestion of an iso-energetic equivalent carbohydrate or non-whey protein supplement in resistance-training individuals. This enhancement effect seems to be more evident when whey proteins are consumed within a multi-ingredient containing creatine.

  10. 7 CFR 58.807 - General construction, repair and installation.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... utensils necessary for the manufacture of whey, whey products and lactose shall meet the same general... cleanable. (b) Lactose. Equipment used in the further processing of lactose following its separation from...

  11. Interaction of milk whey protein with common phenolic acids

    NASA Astrophysics Data System (ADS)

    Zhang, Hao; Yu, Dandan; Sun, Jing; Guo, Huiyuan; Ding, Qingbo; Liu, Ruihai; Ren, Fazheng

    2014-01-01

    Phenolics-rich foods such as fruit juices and coffee are often consumed with milk. In this study, the interactions of α-lactalbumin and β-lactoglobulin with the phenolic acids (chlorogenic acid, caffeic acid, ferulic acid, and coumalic acid) were examined. Fluorescence, CD, and FTIR spectroscopies were used to analyze the binding modes, binding constants, and the effects of complexation on the conformation of whey protein. The results showed that binding constants of each whey protein-phenolic acid interaction ranged from 4 × 105 to 7 × 106 M-n and the number of binding sites n ranged from 1.28 ± 0.13 to 1.54 ± 0.34. Because of these interactions, the conformation of whey protein was altered, with a significant reduction in the amount of α-helix and an increase in the amounts of β-sheet and turn structures.

  12. Protein and nitrogen composition of equine (Equus caballus) milk during early lactation.

    PubMed

    Zicker, S C; Lonnerdal, B

    1994-01-01

    Separation of whey protein from casein in equine milk was achieved by adjustment of pH to 4.3 without addition of calcium, and by ultracentrifugation at 189,000 g for 1 hr. True protein, whey protein, and casein decreased significantly during the first 28 days of lactation with the magnitude of decrease being greatest for whey protein. The proportion of nitrogen in whey protein:casein decreased from 85:15 to 54:46 during the 28 day time period. The concentration of non-protein nitrogen remained relatively constant at 500 mg nitrogen/l but increased in proportion from 2 to 13% of the total nitrogen during the first 28 days of lactation. These results illustrate the unique nitrogen composition of equine milk, which is intermediate between human and ruminant milk, and how it changes during early lactation.

  13. Biodiversity of Lactobacillus helveticus bacteriophages isolated from cheese whey starters.

    PubMed

    Zago, Miriam; Bonvini, Barbara; Rossetti, Lia; Meucci, Aurora; Giraffa, Giorgio; Carminati, Domenico

    2015-05-01

    Twenty-one Lactobacillus helveticus bacteriophages, 18 isolated from different cheese whey starters and three from CNRZ collection, were phenotypically and genetically characterised. A biodiversity between phages was evidenced both by host range and molecular (RAPD-PCR) typing. A more detailed characterisation of six phages showed similar structural protein profiles and a relevant genetic biodiversity, as shown by restriction enzyme analysis of total DNA. Latent period, burst time and burst size data evidenced that phages were active and virulent. Overall, data highlighted the biodiversity of Lb. helveticus phages isolated from cheese whey starters, which were confirmed to be one of the most common phage contamination source in dairy factories. More research is required to further unravel the ecological role of Lb. helveticus phages and to evaluate their impact on the dairy fermentation processes where whey starter cultures are used.

  14. Effect of N-Ethylmaleimide as a Blocker of Disulfide Crosslinks Formation on the Alkali-Cold Gelation of Whey Proteins

    PubMed Central

    Lei, Zhao; Chen, Xiao Dong

    2016-01-01

    N-ethylmaleimide (NEM) was used to verify that no new disulfide crosslinks were formed during the fascinating rheology of the alkali cold-gelation of whey proteins, which show Sol-Gel-Sol transitions with time at pH > 11.5. These dynamic transitions involve the formation and subsequent destruction of non-covalent interactions between soluble whey aggregates. Therefore, incubation of aggregates with NEM was expected not to affect much the rheology. Experiments show that very little additions of NEM, such as 0.5 mol per mol of protein, delayed and significantly strengthened the metastable gels formed. Interactions between whey protein aggregates were surprisingly enhanced during incubation with NEM as inferred from oscillatory rheometry at different protein concentrations, dynamic swelling, Trp fluorescence and SDS-PAGE measurements. PMID:27732644

  15. Whey Protein Supplementation Improves Nutritional Status, Glutathione Levels, and Immune Function in Cancer Patients: A Randomized, Double-Blind Controlled Trial.

    PubMed

    Bumrungpert, Akkarach; Pavadhgul, Patcharanee; Nunthanawanich, Pornpimon; Sirikanchanarod, Anchalee; Adulbhan, Araya

    2018-06-01

    Clinical side effects from medical therapy play an important role in causing malnutrition among cancer patients. Whey protein isolates (WPIs) have the potential to improve the nutritional status of cancer patients. The present study determined the effects of whey protein supplementation on nutritional status, glutathione (GSH) levels, immunity, and inflammatory markers in cancer patients in Thailand. A total of 42 cancer patients (41-63 years old) who received intravenous chemotherapy were randomized in a double-blind controlled trial at the National Cancer Institute in Thailand. Patients received 40 g of WPI plus zinc and selenium (intervention group, n = 23) or a maltodextrin oral snack (control group, n = 19) every day during the daytime for 12 weeks. Nutritional status, GSH levels, immunity, and inflammatory markers were assessed at baseline, 6, and 12 weeks. Whey protein supplementation significantly increased albumin (2.9%) and immunoglobulin G (4.8%) levels compared to the control group at week 12. Controls showed a significantly lower percent change in GSH levels (6.0%), whereas there was a significant time-dependent increase in the intervention group (11.7%). Whey protein supplementation improved nutrition status scores in the intervention group compared to the control. These data indicate that whey protein supplementation can increase GSH levels and improve nutritional status and immunity in cancer patients undergoing chemotherapy. These results will facilitate implementation of malnutrition risk prevention strategies and improve protein status, including immune function, during chemotherapy.

  16. Buffalo Cheese Whey Proteins, Identification of a 24 kDa Protein and Characterization of Their Hydrolysates: In Vitro Gastrointestinal Digestion.

    PubMed

    Bassan, Juliana C; Goulart, Antonio J; Nasser, Ana L M; Bezerra, Thaís M S; Garrido, Saulo S; Rustiguel, Cynthia B; Guimarães, Luis H S; Monti, Rubens

    2015-01-01

    Milk whey proteins are well known for their high biological value and versatile functional properties, characteristics that allow its wide use in the food and pharmaceutical industries. In this work, a 24 kDa protein from buffalo cheese whey was analyzed by mass spectrometry and presented homology with Bos taurus beta-lactoglobulin. In addition, the proteins present in buffalo cheese whey were hydrolyzed with pepsin and with different combinations of trypsin, chymotrypsin and carboxypeptidase-A. When the TNBS method was used the obtained hydrolysates presented DH of 55 and 62% for H1 and H2, respectively. Otherwise for the OPA method the DH was 27 and 43% for H1 and H2, respectively. The total antioxidant activities of the H1 and H2 samples with and without previous enzymatic hydrolysis, determined by DPPH using diphenyl-p-picrylhydrazyl radical, was 4.9 and 12 mM of Trolox equivalents (TE) for H2 and H2Dint, respectively. The increased concentrations for H1 and H2 samples were approximately 99% and 75%, respectively. The in vitro gastrointestinal digestion efficiency for the samples that were first hydrolyzed was higher compared with samples not submitted to previous hydrolysis. After in vitro gastrointestinal digestion, several amino acids were released in higher concentrations, and most of which were essential amino acids. These results suggest that buffalo cheese whey is a better source of bioavailable amino acids than bovine cheese whey.

  17. Buffalo Cheese Whey Proteins, Identification of a 24 kDa Protein and Characterization of Their Hydrolysates: In Vitro Gastrointestinal Digestion

    PubMed Central

    Bassan, Juliana C.; Goulart, Antonio J.; Nasser, Ana L. M.; Bezerra, Thaís M. S.; Garrido, Saulo S.; Rustiguel, Cynthia B.; Guimarães, Luis H. S.; Monti, Rubens

    2015-01-01

    Milk whey proteins are well known for their high biological value and versatile functional properties, characteristics that allow its wide use in the food and pharmaceutical industries. In this work, a 24 kDa protein from buffalo cheese whey was analyzed by mass spectrometry and presented homology with Bos taurus beta-lactoglobulin. In addition, the proteins present in buffalo cheese whey were hydrolyzed with pepsin and with different combinations of trypsin, chymotrypsin and carboxypeptidase-A. When the TNBS method was used the obtained hydrolysates presented DH of 55 and 62% for H1 and H2, respectively. Otherwise for the OPA method the DH was 27 and 43% for H1 and H2, respectively. The total antioxidant activities of the H1 and H2 samples with and without previous enzymatic hydrolysis, determined by DPPH using diphenyl-p-picrylhydrazyl radical, was 4.9 and 12 mM of Trolox equivalents (TE) for H2 and H2Dint, respectively. The increased concentrations for H1 and H2 samples were approximately 99% and 75%, respectively. The in vitro gastrointestinal digestion efficiency for the samples that were first hydrolyzed was higher compared with samples not submitted to previous hydrolysis. After in vitro gastrointestinal digestion, several amino acids were released in higher concentrations, and most of which were essential amino acids. These results suggest that buffalo cheese whey is a better source of bioavailable amino acids than bovine cheese whey. PMID:26465145

  18. Improved Functional Characteristics of Whey Protein Hydrolysates in Food Industry

    PubMed Central

    Jeewanthi, Renda Kankanamge Chaturika; Lee, Na-Kyoung; Paik, Hyun-Dong

    2015-01-01

    This review focuses on the enhanced functional characteristics of enzymatic hydrolysates of whey proteins (WPHs) in food applications compared to intact whey proteins (WPs). WPs are applied in foods as whey protein concentrates (WPCs), whey protein isolates (WPIs), and WPHs. WPs are byproducts of cheese production, used in a wide range of food applications due to their nutritional validity, functional activities, and cost effectiveness. Enzymatic hydrolysis yields improved functional and nutritional benefits in contrast to heat denaturation or native applications. WPHs improve solubility over a wide range of pH, create viscosity through water binding, and promote cohesion, adhesion, and elasticity. WPHs form stronger but more flexible edible films than WPC or WPI. WPHs enhance emulsification, bind fat, and facilitate whipping, compared to intact WPs. Extensive hydrolyzed WPHs with proper heat applications are the best emulsifiers and addition of polysaccharides improves the emulsification ability of WPHs. Also, WPHs improve the sensorial properties like color, flavor, and texture but impart a bitter taste in case where extensive hydrolysis (degree of hydrolysis greater than 8%). It is important to consider the type of enzyme, hydrolysis conditions, and WPHs production method based on the nature of food application. PMID:26761849

  19. Identification of immunoreactive extracellular proteins of Streptococcus agalactiae in bovine mastitis.

    PubMed

    Trigo, Gabriela; Ferreira, Paula; Ribeiro, Niza; Dinis, Márcia; Andrade, Elva Bonifácio; Melo-Cristino, José; Ramirez, Mário; Tavares, Delfina

    2008-11-01

    Streptococcus agalactiae is a common pathogen that causes bovine mastitis. The aims of this study were to evaluate the antibody response against S. agalactiae extracellular proteins in the whey and serum of naturally infected bovines and to identify possible immunodominant extracellular antigens. IgG1 antibodies against S. agalactiae extracellular proteins were elevated in the whey and serum of naturally infected bovines. In the whey, the levels of IgG1 specific for S. agalactiae extracellular proteins were similar in infected and noninfected milk quarters from the same cow, and the production of antibodies specific for S. agalactiae extracellular proteins was induced only by infection with this bacterium. The immunoreactivity of extracellular proteins with bovine whey was clearly different in infected versus control animals. Group B protective surface protein and 5'-nucleotidase family protein were 2 major immunoreactive proteins that were detected only in the whey of infected cows, suggesting that these proteins may be important in the pathogenesis of S. agalactiae-induced mastitis. This information could be used to diagnose S. agalactiae infection. In addition, these antigens may be useful as carrier proteins for serotype-specific polysaccharides in conjugate vaccines.

  20. Improved Functional Characteristics of Whey Protein Hydrolysates in Food Industry.

    PubMed

    Jeewanthi, Renda Kankanamge Chaturika; Lee, Na-Kyoung; Paik, Hyun-Dong

    2015-01-01

    This review focuses on the enhanced functional characteristics of enzymatic hydrolysates of whey proteins (WPHs) in food applications compared to intact whey proteins (WPs). WPs are applied in foods as whey protein concentrates (WPCs), whey protein isolates (WPIs), and WPHs. WPs are byproducts of cheese production, used in a wide range of food applications due to their nutritional validity, functional activities, and cost effectiveness. Enzymatic hydrolysis yields improved functional and nutritional benefits in contrast to heat denaturation or native applications. WPHs improve solubility over a wide range of pH, create viscosity through water binding, and promote cohesion, adhesion, and elasticity. WPHs form stronger but more flexible edible films than WPC or WPI. WPHs enhance emulsification, bind fat, and facilitate whipping, compared to intact WPs. Extensive hydrolyzed WPHs with proper heat applications are the best emulsifiers and addition of polysaccharides improves the emulsification ability of WPHs. Also, WPHs improve the sensorial properties like color, flavor, and texture but impart a bitter taste in case where extensive hydrolysis (degree of hydrolysis greater than 8%). It is important to consider the type of enzyme, hydrolysis conditions, and WPHs production method based on the nature of food application.

  1. 7 CFR 58.405 - Meaning of words.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... related cheese products (21 CFR part 133). (b) Milkfat from whey. The fat obtained from the separation of cheese whey. [40 FR 47911, Oct. 10, 1975. Redesignated at 42 FR 32514, June 27, 1977, and further...

  2. Eating Well with Scleroderma

    MedlinePlus

    ... smoothies using fruit, yogurt, 2-percent milk, Carnation ® Instant Breakfast and/or whey protein powder. • Include soft, ... to three tea- spoons of canola oil, Carnation ® Instant Breakfast and/or whey protein powder. • Include a ...

  3. Effect of milk protein composition of a model infant formula on the physicochemical properties of in vivo gastric digestates.

    PubMed

    Tari, N Rafiee; Fan, M Z; Archbold, T; Kristo, E; Guri, A; Arranz, E; Corredig, M

    2018-04-01

    We investigated the effect of protein composition and, in particular, the presence of whey proteins or β-casein on the digestion behavior of a model infant formula using an in vivo piglet model. Three isocaloric diets optimized for piglets were prepared with the same concentrations of protein. For protein source, 1 diet contained only whey proteins and 2 contained a casein:whey protein ratio of 40:60 but differed in the amount of β-casein. To obtain the desired protein compositions, skim milk was microfiltered at 7 or 22°C, and retentates and permeates were combined with whey protein isolate. The diets were optimized to the nutritional needs of the piglets and fed to 24 newborn piglets for 18 d. Eight piglets were also fed ad libitum with sow milk and considered only as reference (not included in the statistical analysis). The study was carried out in 2 blocks, killing the animals 60 and 120 min after the last meal. All gastric contents, regardless of diet, showed a wide range of pH. Postprandial time did not affect the pH or physical properties of the gastric digesta. The digesta from whey protein-casein formulas showed significantly higher viscosity, a higher storage modulus, and a denser microstructure than digesta obtained from piglets fed whey protein formula. The β-casein:total casein ratio at the level used in this study did not significantly affect the physical and chemical properties of the stomach digestate. Although caseins showed extensive gastric hydrolysis, whey proteins remained largely intact at both postprandial times. The results indicate that the presence of different concentrations of milk proteins can be critical to the digestion properties of the food matrix and may affect the nutritional properties of the components. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  4. PLGA nanoparticles loaded with beta-lactoglobulin-derived peptides modulate mucosal immunity and may facilitate cow's milk allergy prevention.

    PubMed

    Kostadinova, Atanaska I; Middelburg, Jim; Ciulla, Michele; Garssen, Johan; Hennink, Wim E; Knippels, Leon M J; van Nostrum, Cornelus F; Willemsen, Linette E M

    2018-01-05

    Beta-lactoglobulin (BLG)-derived peptides may facilitate oral tolerance to whey and prevent cow's milk allergy (CMA). Loading of BLG-peptides in poly(lactic-co-glycolic acid) (PLGA) nanoparticles (Pep-NP) may improve this. Here we studied the uptake of NP and the capacity of NP and Pep-NP to activate bone marrow dendritic cells (BMDC). Furthermore, CMA prevention was evaluated by orally exposing three-week-old female C3H/HeOuJ mice to Pep-NP, NP or free peptides (PepMix) for 6 days before oral sensitization with whole whey protein and effects on the spleen and small intestine lamina propria (SI-LP) were studied. In BMDC, NP and Pep-NP enhanced CD40 expression and IL-6 and TNF-α secretion, while tended to decrease CD80 expression and prevented PepMix-induced IL-12 secretion. In vivo, oral exposure to Pep-NP, but not NP or PepMix, prior to whey sensitization tended to partially prevent the acute allergic skin response to whole whey protein. Splenocytes of NP-pre-exposed mice secreted increased levels of whey-specific IL-6, but this was silenced in Pep-NP-pre-exposed mice which also showed reduced TNF-α and IFN-γ secretion. In the SI-LP, Pep-NP pre-exposure reduced the CD4 + T cell frequency in CMA mice compared to PBS pre-exposure. In addition, while NP increased whey-specific IL-6 secretion in the SI-LP, Pep-NP did not and maintained regulatory TGF-β secretion. This study presents a proof-of-concept that PLGA nanoparticles facilitate the capacity of BLG peptides to suppress the allergic response to whole whey protein. Hence, PLGA nanoparticles may be further developed as an adjunct strategy for BLG-peptide-based oral tolerance induction and CMA prevention. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  5. Whey protein supplementation accelerates satellite cell proliferation during recovery from eccentric exercise.

    PubMed

    Farup, Jean; Rahbek, Stine Klejs; Knudsen, Inge Skovgaard; de Paoli, Frank; Mackey, Abigail L; Vissing, Kristian

    2014-11-01

    Human skeletal muscle satellite cells (SCs) are essential for muscle regeneration and remodeling processes in healthy and clinical conditions involving muscle breakdown. However, the potential influence of protein supplementation on post-exercise SC regulation in human skeletal muscle has not been well investigated. In a comparative human study, we investigated the effect of hydrolyzed whey protein supplementation following eccentric exercise on fiber type-specific SC accumulation. Twenty-four young healthy subjects received either hydrolyzed whey protein + carbohydrate (whey, n = 12) or iso-caloric carbohydrate (placebo, n = 12) during post-exercise recovery from 150 maximal unilateral eccentric contractions. Prior to and 24, 48 and 168 h post-exercise, muscle biopsies were obtained from the exercise leg and analyzed for fiber type-specific SC content. Maximal voluntary contraction (MVC) and serum creatine kinase (CK) were evaluated as indices of recovery from muscle damage. In type II fiber-associated SCs, the whey group increased SCs/fiber from 0.05 [0.02; 0.07] to 0.09 [0.06; 0.12] (p < 0.05) and 0.11 [0.06; 0.16] (p < 0.001) at 24 and 48 h, respectively, and exhibited a difference from the placebo group (p < 0.05) at 48 h. The whey group increased SCs/myonuclei from 4 % [2; 5] to 10 % [4; 16] (p < 0.05) at 48 h, whereas the placebo group increased from 5 % [2; 7] to 9 % [3; 16] (p < 0.01) at 168 h. MVC decreased (p < 0.001) and muscle soreness and CK increased (p < 0.001), irrespective of supplementation. In conclusion, whey protein supplementation may accelerate SC proliferation as part of the regeneration or remodeling process after high-intensity eccentric exercise.

  6. High hydrostatic pressure modification of whey protein concentrate for improved body and texture of lowfat ice cream.

    PubMed

    Lim, S-Y; Swanson, B G; Ross, C F; Clark, S

    2008-04-01

    Previous research demonstrated that application of high hydrostatic pressure (HHP), particularly at 300 MPa for 15 min, can enhance foaming properties of whey protein concentrate (WPC). The purpose of this research was to determine the practical impact of HHP-treated WPC on the body and texture of lowfat ice cream. Washington State University (WSU)-WPC was produced by ultrafiltration of fresh separated whey received from the WSU creamery. Commercial whey protein concentrate 35 (WPC 35) powder was reconstituted to equivalent total solids as WSU-WPC (8.23%). Three batches of lowfat ice cream mix were produced to contain WSU-WPC without HHP, WSU-WPC with HHP (300 MPa for 15 min), and WPC 35 without HHP. All lowfat ice cream mixes contained 10% WSU-WPC or WPC 35. Overrun and foam stability of ice cream mixes were determined after whipping for 15 min. Ice creams were produced using standard ice cream ingredients and processing. The hardness of ice creams was determined with a TA-XT2 texture analyzer. Sensory evaluation by balanced reference duo-trio test was carried out using 52 volunteers. The ice cream mix containing HHP-treated WSU-WPC exhibited the greatest overrun and foam stability, confirming the effect of HHP on foaming properties of whey proteins in a complex system. Ice cream containing HHP-treated WSU-WPC exhibited significantly greater hardness than ice cream produced with untreated WSU-WPC or WPC 35. Panelists were able to distinguish between ice cream containing HHP-treated WSU-WPC and ice cream containing untreated WPC 35. Improvements of overrun and foam stability were observed when HHP-treated whey protein was used at a concentration as low as 10% (wt/wt) in ice cream mix. The impact of HHP on the functional properties of whey proteins was more pronounced than the impact on sensory properties.

  7. Production of Viscous Dextran-Containing Whey-Sucrose Broths by Leuconostoc mesenteroides ATCC 14935.

    PubMed

    Schwartz, R D; Bodie, E A

    1984-09-01

    Viscous broths were produced by growing Leuconostoc mesenteroides on a medium containing whey supplemented with sucrose. When combined with similarly produced xanthan-containing broths, a synergistic increase in viscosity was observed.

  8. A model of proteolysis and amino acid biosynthesis for Lactobacillus delbrueckii subsp. bulgaricus in whey.

    PubMed

    Liu, Enuo; Zheng, Huajun; Hao, Pei; Konno, Tomonobu; Yu, Yao; Kume, Hisae; Oda, Munehiro; Ji, Zai-Si

    2012-12-01

    Lactobacillus delbrueckii subsp. bulgaricus 2038 (L. bulgaricus 2038) is a bacterium that is used as a starter for dairy products by Meiji Co., Ltd of Japan. Culturing L. bulgaricus 2038 with whey as the sole nitrogen source results in a shorter lag phase than other milk proteins under the same conditions (carbon source, minerals, and vitamins). Microarray results of gene expression revealed characteristics of amino acid anabolism with whey as the nitrogen source and established a model of proteolysis and amino acid biosynthesis for L. bulgaricus. Whey peptides and free amino acids are readily metabolized, enabling rapid entry into the logarithmic growth phase. The oligopeptide transport system is the primary pathway for obtaining amino acids. Amino acid biosynthesis maintains the balance between amino acids required for cell growth and the amount obtained from environment. The interconversion of amino acids is also important for L. bulgaricus 2038 growth.

  9. d-Tagatose production by permeabilized and immobilized Lactobacillus plantarum using whey permeate.

    PubMed

    Jayamuthunagai, J; Srisowmeya, G; Chakravarthy, M; Gautam, P

    2017-07-01

    The aim of the work is to produce d-Tagatose by direct addition of alginate immobilized Lactobacillus plantarum cells to lactose hydrolysed whey permeate. The cells were untreated and immobilized (UIC), permeabilized and immobilized (PIC) and the relative activities were compared with purified l-arabinose isomerase (l-AI) for d-galactose isomerization. Successive lactose hydrolysis by β-galactosidase from Escherichia coli and d-galactose isomerization using l-AI from Lactobacillus plantarum was performed to investigate the in vivo production of d-tagatose in whey permeate. In whey permeate, maximum conversion of 38% and 33% (w/w) d-galactose isomerization by PIC and UIC has been obtained. 162mg/g and 141mg/g of d-tagatose production was recorded in a 48h reaction time at 50°C, pH 7.0 with 5mM Mn 2+ ion concentration in the initial substrate mixture. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Effects of whey protein supplement in the elderly submitted to resistance training: systematic review and meta-analysis.

    PubMed

    Colonetti, Tamy; Grande, Antonio Jose; Milton, Karen; Foster, Charlie; Alexandre, Maria Cecilia Manenti; Uggioni, Maria Laura Rodrigues; Rosa, Maria Inês da

    2017-05-01

    We performed a systematic review to map the evidence and analyze the effect of whey protein supplementation in the elderly submitted to resistance training. A comprehensive search on Medline, LILACS, EMBASE, and the Cochrane Library for relevant publications was conducted until August 2015. The terms used in the search were: "Resistance training"; "Whey protein"; "Elderly". A total of 632 studies were screened. Five studies were included composing a sample of 391 patients. The supplement whey protein was associated with higher total protein ingestion 9.40 (95% CI: 4.03-14.78), and with an average change in plasma leucine concentration. The supplementation was also associated with increased mixed muscle protein synthesis 1.26 (95% CI: 0.46-2.07) compared to the control group. We observed an increase in total protein intake, resulting in increased concentration of leucine and mixed muscle protein fractional synthesis rate.

  11. Treatment of Atopic Dermatitis From the Perspective of Traditional Persian Medicine

    PubMed Central

    Choopani, Rasool; Mehrbani, Mehrzad; Fekri, Alireza; Mehrabani, Mitra

    2015-01-01

    There is a strong current trend for using complementary and alternative medications to treat atopic dermatitis. Atopic dermatitis is a common, chronic, pruritic, and inflammatory skin disease. It can have a profound, negative effect on patients’ quality of life. Mild cases of atopic dermatitis can be controlled by the application of moisturizers and topical corticosteroids. However, in severe cases, application of immunosuppressive medication is unavoidable but it can have adverse effects. In traditional Persian medicine, diseases similar to resistant atopic dermatitis are treated with whey in combination with decoction of field dodder. Both whey and field dodder have anti-inflammatory properties. Consumption of whey can also aid skin repair, mitigate pruritus, and help combat the high level of stress experienced by patients. Therefore, it is hypothesized that consumption of traditional medicinal treatment of whey with decoction of field dodder can be applied as a complementary treatment for atopic dermatitis. PMID:26260045

  12. Effect of high hydrostatic pressure and whey proteins on the disruption of casein micelle isolates.

    PubMed

    Harte, Federico M; Gurram, Subba Rao; Luedecke, Lloyd O; Swanson, Barry G; Barbosa-Cánovas, Gustavo V

    2007-11-01

    High hydrostatic pressure disruption of casein micelle isolates was studied by analytical ultracentrifugation and transmission electron microscopy. Casein micelles were isolated from skim milk and subjected to combinations of thermal treatment (85 degrees C, 20 min) and high hydrostatic pressure (up to 676 MPa) with and without whey protein added. High hydrostatic pressure promoted extensive disruption of the casein micelles in the 250 to 310 MPa pressure range. At pressures greater than 310 MPa no further disruption was observed. The addition of whey protein to casein micelle isolates protected the micelles from high hydrostatic pressure induced disruption only when the mix was thermally processed before pressure treatment. The more whey protein was added (up to 5 g/l) the more the protection against high hydrostatic pressure induced micelle disruption was observed in thermally treated samples subjected to 310 MPa.

  13. High-Pressure-High-Temperature Processing Reduces Maillard Reaction and Viscosity in Whey Protein-Sugar Solutions.

    PubMed

    Avila Ruiz, Geraldine; Xi, Bingyan; Minor, Marcel; Sala, Guido; van Boekel, Martinus; Fogliano, Vincenzo; Stieger, Markus

    2016-09-28

    The aim of the study was to determine the influence of pressure in high-pressure-high-temperature (HPHT) processing on Maillard reactions and protein aggregation of whey protein-sugar solutions. Solutions of whey protein isolate containing either glucose or trehalose at pH 6, 7, and 9 were treated by HPHT processing or conventional high-temperature (HT) treatments. Browning was reduced, and early and advanced Maillard reactions were retarded under HPHT processing at all pH values compared to HT treatment. HPHT induced a larger pH drop than HT treatments, especially at pH 9, which was not associated with Maillard reactions. After HPHT processing at pH 7, protein aggregation and viscosity of whey protein isolate-glucose/trehalose solutions remained unchanged. It was concluded that HPHT processing can potentially improve the quality of protein-sugar-containing foods, for which browning and high viscosities are undesired, such as high-protein beverages.

  14. Improved ethanol production from cheese whey, whey powder, and sugar beet molasses by "Vitreoscilla hemoglobin expressing" Escherichia coli.

    PubMed

    Akbas, Meltem Yesilcimen; Sar, Taner; Ozcelik, Busra

    2014-01-01

    This work investigated the improvement of ethanol production by engineered ethanologenic Escherichia coli to express the hemoglobin from the bacterium Vitreoscilla (VHb). Ethanologenic E. coli strain FBR5 and FBR5 transformed with the VHb gene in two constructs (strains TS3 and TS4) were grown in cheese whey (CW) medium at small and large scales, at both high and low aeration, or with whey powder (WP) or sugar beet molasses hydrolysate (SBMH) media at large scale and low aeration. Culture pH, cell growth, VHb levels, and ethanol production were evaluated after 48 h. VHb expression in TS3 and TS4 enhanced their ethanol production in CW (21-419%), in WP (17-362%), or in SBMH (48-118%) media. This work extends the findings that "VHb technology" may be useful for improving the production of ethanol from waste and byproducts of various sources.

  15. Inhibitory activity of cheese whey fermented with kefir grains.

    PubMed

    Londero, A; Quinta, R; Abraham, A G; Sereno, R; De Antoni, G; Garrote, G L

    2011-01-01

    We investigated the chemical and microbiological compositions of three types of whey to be used for kefir fermentation as well as the inhibitory capacity of their subsequent fermentation products against 100 Salmonella sp. and 100 Escherichia coli pathogenic isolates. All the wheys after fermentation with 10% (wt/vol) kefir grains showed inhibition against all 200 isolates. The content of lactic acid bacteria in fermented whey ranged from 1.04 × 10(7) to 1.17 × 10(7) CFU/ml and the level of yeasts from 2.05 × 10(6) to 4.23 × 10(6) CFU/ml. The main changes in the chemical composition during fermentation were a decrease in lactose content by 41 to 48% along with a corresponding lactic acid production to a final level of 0.84 to 1.20% of the total reaction products. The MIC was a 30% dilution of the fermentation products for most of the isolates, while the MBC varied between 40 and 70%, depending on the isolate. The pathogenic isolates Salmonella enterica serovar Enteritidis 2713 and E. coli 2710 in the fermented whey lost their viability after 2 to 7 h of incubation. When pathogens were deliberately inoculated into whey before fermentation, the CFU were reduced by 2 log cycles for E. coli and 4 log cycles for Salmonella sp. after 24 h of incubation. The inhibition was mainly related to lactic acid production. This work demonstrated the possibility of using kefir grains to ferment an industrial by-product in order to obtain a natural acidic preparation with strong bacterial inhibitory properties that also contains potentially probiotic microorganisms.

  16. Nisin production in realkalized fed-batch cultures in whey with feeding with lactose- or glucose-containing substrates.

    PubMed

    Costas Malvido, Mónica; Alonso González, Elisa; Pérez Guerra, Nelson

    2016-09-01

    Nisin production by Lactococcus lactis CECT 539 was followed in batch cultures in whey supplemented with different concentrations of glucose and in two realkalized fed-batch fermentations in unsupplemented whey, which were fed, respectively, with concentrated solutions of lactose and glucose. In the batch fermentations, supplementation of whey with glucose inhibited both the growth and bacteriocin production. However, fed-batch cultures were characterized with high productions of biomass (1.34 and 1.51 g l(-1)) and nisin (50.6 and 60.3 BU ml(-1)) in comparison to the batch fermentations in unsupplemented whey (0.48 g l(-1) and 22.5 BU ml(-1)) and MRS broth (1.59 g l(-1) and 50.0 BU ml(-1)). In the two realkalized fed-batch fermentations, the increase in bacteriocin production parallels both the biomass production and pH drop generated in each realkalization and feeding cycle, suggesting that nisin was synthesized as a pH-dependent primary metabolite. A shift from homolactic to heterolactic fermentation was observed at the 108 h of incubation, and other metabolites (acetic acid and butane-2,3-diol) in addition to lactic acid accumulated in the medium. On the other hand, the feeding with glucose improved the efficiencies in glucose, nitrogen, and phosphorus consumption as compared to the batch cultures. The realkalized fed-batch fermentations showed to be an effective strategy to enhance nisin production in whey by using an appropriate feeding strategy to avoid the substrate inhibition.

  17. Compositional and sensory differences of products of sweet-cream and whey buttermilk produced by microfiltration, diafiltration, and supercritical CO2.

    PubMed

    Olabi, A; Jinjarak, S; Jiménez-Flores, R; Walker, J H; Daroub, Hamza

    2015-06-01

    The objectives of this work were to assess the compositional properties and sensory characteristics of ingredients produced by treating sweet-cream and whey-cream buttermilks with microfiltration (MF), diafiltration (DF), and supercritical CO2 (SFE) extraction. Sweet-cream buttermilk (CBM) and buttermilk resulting from churning the residual fat from whey processing (whey buttermilk, WBM) were used. Using MF or microfiltration followed by diafiltration (MF-DF), we obtained resulting retentates that were dried and then were subjected to SFE treatment. Control buttermilks, SFE resulting products, and MF and MF-DF SFE and all treated retentates products totaled 16 samples (2 types×4 treatments×2 batches). Eleven trained panelists assessed samples using descriptive analysis. Sweet-cream buttermilk was higher in protein and lactose, whereas the WBM had similar total protein, mainly β-LG and α-LA but very low lactose. The resulting samples in order of concentration for fat and lactose were control samples>SFE treated>MF treated>DF=MF-SFE and DF-SFE. Sodium dodecyl sulfate-PAGE protein profiling showed negligible casein for WBM versus CBM and less whey proteins for CBM versus WBM, as expected. Whey buttermilk was more yellow, salty, sour, and rancid than CBM. Regarding the treatments, significant differences were obtained on homogeneity, opacity, rancid odor, cardboard and sour flavors, sweet and salty tastes, viscosity, and mouthcoating, where SFE-treated samples showed lowest rancid odor and cardboard flavor. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  18. High Whey Protein Intake Delayed the Loss of Lean Body Mass in Healthy Old Rats, whereas Protein Type and Polyphenol/Antioxidant Supplementation Had No Effects

    PubMed Central

    Mosoni, Laurent; Gatineau, Eva; Gatellier, Philippe; Migné, Carole; Savary-Auzeloux, Isabelle; Rémond, Didier; Rocher, Emilie; Dardevet, Dominique

    2014-01-01

    Our aim was to compare and combine 3 nutritional strategies to slow down the age-related loss of muscle mass in healthy old rats: 1) increase protein intake, which is likely to stimulate muscle protein anabolism; 2) use leucine rich, rapidly digested whey proteins as protein source (whey proteins are recognized as the most effective proteins to stimulate muscle protein anabolism). 3) Supplement animals with a mixture of chamomile extract, vitamin E, vitamin D (reducing inflammation and oxidative stress is also effective to improve muscle anabolism). Such comparisons and combinations were never tested before. Nutritional groups were: casein 12% protein, whey 12% protein, whey 18% protein and each of these groups were supplemented or not with polyphenols/antioxidants. During 6 months, we followed changes of weight, food intake, inflammation (plasma fibrinogen and alpha-2-macroglobulin) and body composition (DXA). After 6 months, we measured muscle mass, in vivo and ex-vivo fed and post-absorptive muscle protein synthesis, ex-vivo muscle proteolysis, and oxidative stress parameters (liver and muscle glutathione, SOD and total antioxidant activities, muscle carbonyls and TBARS). We showed that although micronutrient supplementation reduced inflammation and oxidative stress, the only factor that significantly reduced the loss of lean body mass was the increase in whey protein intake, with no detectable effect on muscle protein synthesis, and a tendency to reduce muscle proteolysis. We conclude that in healthy rats, increasing protein intake is an effective way to delay sarcopenia. PMID:25268515

  19. Effect of Dairy Proteins on Appetite, Energy Expenditure, Body Weight, and Composition: a Review of the Evidence from Controlled Clinical Trials1

    PubMed Central

    Bendtsen, Line Q.; Lorenzen, Janne K.; Bendsen, Nathalie T.; Rasmussen, Charlotte; Astrup, Arne

    2013-01-01

    Evidence supports that a high proportion of calories from protein increases weight loss and prevents weight (re)gain. Proteins are known to induce satiety, increase secretion of gastrointestinal hormones, and increase diet-induced thermogenesis, but less is known about whether various types of proteins exert different metabolic effects. In the Western world, dairy protein, which consists of 80% casein and 20% whey, is a large contributor to our daily protein intake. Casein and whey differ in absorption and digestion rates, with casein being a “slow” protein and whey being a “fast” protein. In addition, they differ in amino acid composition. This review examines whether casein, whey, and other protein sources exert different metabolic effects and targets to clarify the underlying mechanisms. Data indicate that whey is more satiating in the short term, whereas casein is more satiating in the long term. In addition, some studies indicate that whey stimulates the secretion of the incretin hormones glucagon-like peptide-1 and glucose-dependent insulinotropic polypeptide more than other proteins. However, for the satiety (cholecystokinin and peptide YY) and hunger-stimulating (ghrelin) hormones, no clear evidence exists that 1 protein source has a greater stimulating effect compared with others. Likewise, no clear evidence exists that 1 protein source results in higher diet-induced thermogenesis and promotes more beneficial changes in body weight and composition compared with other protein sources. However, data indicate that amino acid composition, rate of absorption, and protein/food texture may be important factors for protein-stimulated metabolic effects. PMID:23858091

  20. Production of Viscous Dextran-Containing Whey-Sucrose Broths by Leuconostoc mesenteroides ATCC 14935

    PubMed Central

    Schwartz, Robert D.; Bodie, Elizabeth A.

    1984-01-01

    Viscous broths were produced by growing Leuconostoc mesenteroides on a medium containing whey supplemented with sucrose. When combined with similarly produced xanthan-containing broths, a synergistic increase in viscosity was observed. PMID:16346633

  1. Izumoring: a novel and complete strategy for bioproduction of rare sugars.

    PubMed

    Granström, Tom Birger; Takata, Goro; Tokuda, Masaaki; Izumori, Ken

    2004-01-01

    Starch, whey or hemicellulosic waste can be used as a raw material for the industrial production of rare sugars. D-glucose from starch, whey and hemicellulose, D-galactose from whey, and D-xylose from hemicellulose are the main starting monosaccharides for production of rare sugars. We can produce all monosaccharides; tetroses, pentoses and hexoses, from these raw materials. This is achieved by using D-tagatose 3-epimerase, aldose isomerase, aldose reductase, and oxidoreductase enzymes or whole cells as biocatalysts. Bioproduction strategies for all rare sugars are illustrated using ring form structures given the name Izumoring.

  2. Characterization and evaluation of whey protein-based biofilms as substrates for in vitro cell cultures.

    PubMed

    Gilbert, Vanessa; Rouabhia, Mahmoud; Wang, Hongxum; Arnould, Anne-Lise; Remondetto, Gabriel; Subirade, Muriel

    2005-12-01

    Whey proteins-based biofilms were prepared using different plasticizers in order to obtain a biomaterial for the human keratinocytes and fibroblasts in vitro culture. The film properties were evaluated by Fourier Transform Infrared Spectroscopy (FTIR) technique and mechanical tests. A relationship was found between the decrease of intermolecular hydrogen bond strength and film mechanical behavior changes, expressed by a breaking stress and Young modulus values diminishing. These results allow stating that the film molecular configuration could induce dissimilarities in its mechanical properties. The films toxicity was assessed by evaluating the cutaneous cells adherence, growth, proliferation and structural stratification. Microscopic observation demonstrated that both keratinocytes and fibroblasts adhered to the biofilms. The trypan blue exclusion test showed that keratinocytes grew at a significantly high rate on all the biofilms. Structural analysis demonstrated that keratinocytes stratified when cultured on the whey protein-based biofilms and gave rise to multi-layered epidermal structures. The most organized epidermis was obtained with whey protein isolate/DEG biofilm. This structure had a well-organized basal layer under supra-basal and corneous layers. This study demonstrated that whey proteins, an inexpensive renewable resource which can be obtained readily, were non-toxic to cutaneous cells and thus they could be useful substrates for a variety of biomedical applications, including tissue engineering.

  3. Self-similar assemblies of globular whey proteins at the air-water interface: effect of the structure.

    PubMed

    Mahmoudi, Najet; Gaillard, Cédric; Boué, François; Axelos, Monique A V; Riaublanc, Alain

    2010-05-01

    We investigated the structure of heat-induced assemblies of whey globular proteins using small angle neutron scattering (SANS), static and dynamic light scattering (SLS and DLS), and cryogenic transmission electron microscopy (Cryo-TEM). Whey protein molecules self-assemble in fractal aggregates with a structure density depending on the electrostatic interactions. We determined the static and dynamic properties of interfacial layer formed by the protein assemblies, upon adsorption and spreading at the air-water interface using surface film balance and interfacial dilatational rheology. Upon spreading, all whey protein systems show a power-law scaling behavior of the surface pressure versus concentration in the semi-dilute surface concentration regime, with an exponent ranging from 5.5 to 9 depending on the electrostatic interactions and the aggregation state. The dilatational modulus derived from surface pressure isotherms shows a main peak at 6-8 mN/m, generally considered to be the onset of a conformational change in the monolayer, and a second peak or a shoulder at 15 mN/m. Long-time adsorption kinetics give similar results for both the native whey proteins and the corresponding self-similar assemblies, with a systematic effect of the ionic strength. Copyright 2010 Elsevier Inc. All rights reserved.

  4. The mycotoxin deoxynivalenol facilitates allergic sensitization to whey in mice.

    PubMed

    Bol-Schoenmakers, M; Braber, S; Akbari, P; de Graaff, P; van Roest, M; Kruijssen, L; Smit, J J; van Esch, B C A M; Jeurink, P V; Garssen, J; Fink-Gremmels, J; Pieters, R H H

    2016-11-01

    Intestinal epithelial stress or damage may contribute to allergic sensitization against certain food antigens. Hence, the present study investigated whether impairment of intestinal barrier integrity by the mycotoxin deoxynivalenol (DON) contributes to the development of whey-induced food allergy in a murine model. C3H/HeOuJ mice, orally exposed to DON plus whey once a week for 5 consecutive weeks, showed whey-specific IgG1 and IgE in serum and an acute allergic skin response upon intradermal whey challenge, although early initiating mechanisms of sensitization in the intestine appeared to be different compared with the widely used mucosal adjuvant cholera toxin (CT). Notably, DON exposure modulated tight-junction mRNA and protein levels, and caused an early increase in IL-33, whereas CT exposure affected intestinal γδ T cells. On the other hand, both DON- and CT-sensitized mice induced a time-dependent increase in the soluble IL-33 receptor ST2 (IL-1R1) in serum, and enhanced local innate lymphoid cells type 2 cell numbers. Together, these results demonstrate that DON facilitates allergic sensitization to food proteins and that development of sensitization can be induced by different molecular mechanisms and local immune responses. Our data illustrate the possible contribution of food contaminants in allergic sensitization in humans.

  5. The balance between caseins and whey proteins in cow's milk determines its allergenicity.

    PubMed

    Lara-Villoslada, F; Olivares, M; Xaus, J

    2005-05-01

    Cow's milk allergy is quite common in the first years of human life. Protein composition plays an important role in this pathology, particularly the casein/whey protein ratio. It is known that milks from different species have different sensitization capacities although their protein sources are quite similar. Thus, the objective of this work was to compare the allergenicity of native cow's milk and milk with a modified ratio of casein and whey proteins in a murine model of atopy. Twenty-four Balb/c mice were orally sensitized to native cow's milk or modified cow's milk with a casein/whey protein ratio of 40:60. During the sensitization period, the number of mice suffering from diarrhea was significantly higher in the native cow's milk-sensitized group than in the modified milk-sensitized group. Once mice were killed, plasma histamine levels were shown to be significantly higher in native cow's milk-sensitized mice. In addition, cow's milk proteins induced a higher lymphocyte sensitization in the native milk-sensitized mice, with a significant increase in the specific proliferation ratio of these cells. These results suggest that the balance between caseins and whey proteins plays an important role in the sensitization capacity of cow's milk, and its modification might be a way to reduce the allergenicity of cow's milk.

  6. Whey-cheese production using freeze-dried kefir culture as a starter.

    PubMed

    Dimitrellou, D; Kourkoutas, Y; Banat, I M; Marchant, R; Koutinas, A A

    2007-10-01

    The aim of the present study was to evaluate the use of a freeze-dried kefir culture in the production of a novel type of whey-cheese similar to traditional Greek Myzithra-cheese, to achieve improvement of the quality characteristics of the final product and the extension of shelf-life. The use of kefir culture as a starter led to increased lactic acid concentrations and decreased pH values in the final product compared with whey-cheese without starter culture. The effect of the starter culture on production of aroma-related compounds responsible for cheese flavour was also studied using the solid phase microextraction gas chromatography/mass spectrometry technique. Spoilage in unsalted kefir-whey-cheese was observed on the thirteenth and the twentieth day of preservation at 10 and 5 degrees C, respectively, while the corresponding times for unsalted whey-cheese preservation were 11 and 14 days. The cheeses produced were characterized as high-quality products during the preliminary sensory evaluation. An indication of increased preservation time was attributed to the freeze-dried kefir culture, which also seemed to suppress growth of pathogens. The results suggested the use of kefir culture as a means to extend the shelf-life of dairy products with reduced or no salt content.

  7. Utilization of concentrated cheese whey for the production of protein concentrate fuel alcohol and alcoholic beverages

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krishnamurti, R.

    The objective of this investigation was to recover the major components of whey and to develop food applications for their incorporation/conversion into acceptable products of commercial value. Reconstituted dried sweet whey with 36% solids was ultrafiltered to yield a protein concentrate (WPC) and a permeate containing 24% lactose and 3.7% ash. Orange juice fortified up to 2.07% and chocolate milks fortified up to 5.88% total protein levels with WPC containing 45% total protein were acceptable to about 90% of a panel of 24 individuals. Fermentation of demineralized permeate at 30/sup 0/C with Kluyveromyces fragilis NRRL Y 2415 adapted to 24%more » lactose levels, led to 13.7% (v/v) ethanol in the medium at the end of 34 hours. Batch productivity was 3.2 gms. ethanol per liter per hour and conversion efficiency was 84.26% of the theoretical maximum. Alcoholic fermentation of permeate and subsequent distillation produced compounds with desirable aroma characters in such products. This study suggests that there is potential for the production of protein fortified non-alcoholic products and alcoholic beverages of commercial value from whey, thus providing a cost effective solution to the whey utilization problem.« less

  8. A qualified presumption of safety approach for the safety assessment of Grana Padano whey starters.

    PubMed

    Rossetti, Lia; Carminati, Domenico; Zago, Miriam; Giraffa, Giorgio

    2009-03-15

    A Qualified Presumption of Safety (QPS) approach was applied to dominant lactic acid bacteria (LAB) associated with Grana Padano cheese whey starters. Thirty-two strains belonging to Lactobacillus helveticus, Lactobacillus delbrueckii subsp. lactis, Streptococcus thermophilus, and Lactobacillus fermentum, and representing the overall genotypic LAB diversity associated with 24 previously collected whey starters [Rossetti, L., Fornasari, M.E., Gatti, M., Lazzi, C., Neviani, E., Giraffa, G., 2008. Grana Padano cheese whey starters: microbial composition and strain distribution. International Journal of Food Microbiology 127, 168-171], were analyzed. All L. helveticus, L. delbrueckii subsp. lactis, and S. thermophilus isolates were susceptible to four (i.e. vancomycin, gentamicin, tetracycline, and erythromycin) of the clinically most relevant antibiotics. One L. fermentum strain displayed phenotypic resistance to tetracycline (Tet(R)), with MIC of 32 microg/ml, and gentamycin (Gm(R)), with MIC of 32 microg/ml. PCR was applied to this strain to test the presence of genes tet(L), tet(M), tet(S), and aac(6')-aph(2')-Ia, which are involved in horizontal transfer of Tet(R) and Gm(R), respectively but no detectable amplification products were observed. According to QPS criteria, we conclude that Grana cheese whey starters do not present particular safety concerns.

  9. Physicochemical Properties of Whey-Protein-Stabilized Astaxanthin Nanodispersion and Its Transport via a Caco-2 Monolayer.

    PubMed

    Shen, Xue; Zhao, Changhui; Lu, Jing; Guo, Mingruo

    2018-02-14

    Astaxanthin nanodispersion was prepared using whey protein isolate (WPI) and polymerized whey protein (PWP) through an emulsification-evaporation technique. The physicochemical properties of the astaxanthin nanodispersion were evaluated, and the transport of astaxanthin was assessed using a Caco-2 cell monolayer model. The astaxanthin nanodispersions stabilized by WPI and PWP (2.5%, w/w) had a small particle size (121 ± 4.9 and 80.4 ± 5.9 nm, respectively), negative ζ potential (-19.3 ± 1.5 and -35.0 ± 2.2 mV, respectively), and high encapsulation efficiency (92.1 ± 2.9 and 93.5 ± 2.4%, respectively). Differential scanning calorimetry curves indicated that amorphous astaxanthin existed in both astaxanthin nanodispersions. Whey-protein-stabilized astaxanthin nanodispersion showed resistance to pepsin digestion but readily released astaxanthin after trypsin digestion. The nanodispersions showed no cytotoxicity to Caco-2 cells at a protein concentration below 10 mg/mL. WPI- and PWP-stabilized nanodispersions improved the apparent permeability coefficient (P app ) of Caco-2 cells to astaxanthin by 10.3- and 16.1-fold, respectively. The results indicated that whey-protein-stabilized nanodispersion is a good vehicle to deliver lipophilic bioactive compounds, such as astaxanthin, and to improve their bioavailability.

  10. Use of immobilised biocatalysts in the processing of cheese whey.

    PubMed

    Kosseva, Maria R; Panesar, Parmjit S; Kaur, Gurpreet; Kennedy, John F

    2009-12-01

    Food processing industry operations need to comply with increasingly more stringent environmental regulations related to the disposal or utilisation of by-products and wastes. These include growing restrictions on land spraying with agro-industrial wastes, and on disposal within landfill operations, and the requirements to produce end products that are stabilised and hygienic. Much of the material generated as wastes by the dairy processing industries contains components that could be utilised as substrates and nutrients in a variety of microbial/enzymatic processes, to give rise to added-value products. A good example of a waste that has received considerable attention as a source of added-value products is cheese whey. The carbohydrate reservoir of lactose (4-5%) in whey and the presence of other essential nutrients make it a good natural medium for the growth of microorganisms and a potential substrate for bioprocessing through microbial fermentation. Immobilised cell and enzyme technology has also been applied to whey bioconversion processes to improve the economics of such processes. This review focuses upon the elaboration of a range of immobilisation techniques that have been applied to produce valuable whey-based products. A comprehensive literature survey is also provided to illustrate numerous immobilisation procedures with particular emphasis upon lactose hydrolysis, and ethanol and lactic acid production using immobilised biocatalysts.

  11. Antihypertensive and cardioprotective effects of the dipeptide isoleucine-tryptophan and whey protein hydrolysate.

    PubMed

    Martin, M; Kopaliani, I; Jannasch, A; Mund, C; Todorov, V; Henle, T; Deussen, A

    2015-12-01

    Angiotensin-converting enzyme inhibitors are treatment of choice in hypertensive patients. Clinically used inhibitors exhibit a structural similarity to naturally occurring peptides. This study evaluated antihypertensive and cardioprotective effects of ACE-inhibiting peptides derived from food proteins in spontaneously hypertensive rats. Isoleucine-tryptophan (in vitro IC50 for ACE = 0.7 μm), a whey protein hydrolysate containing an augmented fraction of isoleucine-tryptophan, or captopril was given to spontaneously hypertensive rats (n = 60) over 14 weeks. Two further groups, receiving either no supplement (Placebo) or intact whey protein, served as controls. Systolic blood pressure age-dependently increased in the Placebo group, whereas the blood pressure rise was effectively blunted by isoleucine-tryptophan, whey protein hydrolysate and captopril (-42 ± 3, -38 ± 5, -55 ± 4 mm Hg vs. Placebo). At study end, myocardial mass was lower in isoleucine-tryptophan and captopril groups but only partially in the hydrolysate group. Coronary flow reserve (1 μm adenosine) was improved in isoleucine-tryptophan and captopril groups. Plasma ACE activity was significantly decreased in isoleucine-tryptophan, hydrolysate and captopril groups, but in aortic tissue only after isoleucine-tryptophan or captopril treatment. This was associated with lowered expression and activity of matrix metalloproteinase-2. Following isoleucine-tryptophan and captopril treatments, gene expression of renin was significantly increased indicating an active feedback within renin-angiotensin system. Whey protein hydrolysate and isoleucine-tryptophan powerfully inhibit plasma ACE resulting in antihypertensive effects. Moreover, isoleucine-tryptophan blunts tissue ACE activity, reduces matrix metalloproteinase-2 activity and improves coronary flow reserve. Thus, whey protein hydrolysate and particularly isoleucine-tryptophan may serve as innovative food additives with the goal of attenuating hypertension. © 2015 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.

  12. NUTRALYS® pea protein: characterization of in vitro gastric digestion and in vivo gastrointestinal peptide responses relevant to satiety

    PubMed Central

    Overduin, Joost; Guérin-Deremaux, Laetitia; Wils, Daniel; Lambers, Tim T.

    2015-01-01

    Background Pea protein (from Pisum sativum) is under consideration as a sustainable, satiety-inducing food ingredient. Objective In the current study, pea-protein-induced physiological signals relevant to satiety were characterized in vitro via gastric digestion kinetics and in vivo by monitoring post-meal gastrointestinal hormonal responses in rats. Design Under in vitro simulated gastric conditions, the digestion of NUTRALYS® pea protein was compared to that of two dairy proteins, slow-digestible casein and fast-digestible whey. In vivo, blood glucose and gastrointestinal hormonal (insulin, ghrelin, cholecystokinin [CCK], glucagon-like peptide 1 [GLP-1], and peptide YY [PYY]) responses were monitored in nine male Wistar rats following isocaloric (11 kcal) meals containing 35 energy% of either NUTRALYS® pea protein, whey protein, or carbohydrate (non-protein). Results In vitro, pea protein transiently aggregated into particles, whereas casein formed a more enduring protein network and whey protein remained dissolved. Pea-protein particle size ranged from 50 to 500 µm, well below the 2 mm threshold for gastric retention in humans. In vivo, pea-protein and whey-protein meals induced comparable responses for CCK, GLP-1, and PYY, that is, the anorexigenic hormones. Pea protein induced weaker initial, but equal 3-h integrated ghrelin and insulin responses than whey protein, possibly due to the slower gastric breakdown of pea protein observed in vitro. Two hours after meals, CCK levels were more elevated in the case of protein meals compared to that of non-protein meals. Conclusions These results indicate that 1) pea protein transiently aggregates in the stomach and has an intermediately fast intestinal bioavailability in between that of whey and casein; 2) pea-protein- and dairy-protein-containing meals were comparably efficacious in triggering gastrointestinal satiety signals. PMID:25882536

  13. Evaluation of dairy powder products implicates thermophilic sporeformers as the primary organisms of interest.

    PubMed

    Watterson, M J; Kent, D J; Boor, K J; Wiedmann, M; Martin, N H

    2014-01-01

    Dairy powder products (e.g., sweet whey, nonfat dry milk, acid whey, and whey protein concentrate-80) are of economic interest to the dairy industry. According to the US Dairy Export Council, customers have set strict tolerances (<500 to <1,000/g) for thermophilic and mesophilic spores in dairy powders; therefore, understanding proliferation and survival of sporeforming organisms within dairy powder processing plants is necessary to control and reduce sporeformer counts. Raw, work-in-process, and finished product samples were collected from 4 dairy powder processing facilities in the northeastern United States over a 1-yr period. Two separate spore treatments: (1) 80°C for 12min (to detect sporeformers) and (2) 100°C for 30min (to detect highly heat resistant sporeformers) were applied to samples before microbiological analyses. Raw material, work-in-process, and finished product samples were analyzed for thermophilic, mesophilic, and psychrotolerant sporeformers, with 77.5, 71.0, and 4.6% of samples being positive for those organisms, respectively. Work-in-process and finished product samples were also analyzed for highly heat resistant thermophilic and mesophilic sporeformers, with 63.7 and 42.6% of samples being positive, respectively. Sporeformer prevalence and counts varied considerably by product and plant; sweet whey and nonfat dry milk showed a higher prevalence of thermophilic and mesophilic sporeformers compared with acid whey and whey protein concentrate-80. Unlike previous reports, we found limited evidence for increased spore counts toward the end of processing runs. Our data provide important insight into spore contamination patterns associated with production of different types of dairy powders and support that thermophilic sporeformers are the primary organism of concern in dairy powders. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  14. Enzymatically modified isoquercitrin supplementation intensifies plantaris muscle fiber hypertrophy in functionally overloaded mice.

    PubMed

    Kohara, Akiko; Machida, Masanao; Setoguchi, Yuko; Ito, Ryouichi; Sugitani, Masanori; Maruki-Uchida, Hiroko; Inagaki, Hiroyuki; Ito, Tatsuhiko; Omi, Naomi; Takemasa, Tohru

    2017-01-01

    Enzymatically modified isoquercitrin (EMIQ) is produced from rutin using enzymatic hydrolysis followed by treatment with glycosyltransferase in the presence of dextrin to add glucose residues. EMIQ is absorbed in the same way as quercetin, a powerful antioxidant reported to prevent disused muscle atrophy by targeting mitochondria and to have ergogenic effects. The present study investigated the effect of EMIQ on skeletal muscle hypertrophy induced by functional overload. In Study 1, 6-week-old ICR male mice were divided into 4 groups: sham-operated control, sham-operated EMIQ, overload-operated control, and overload-operated EMIQ groups. In Study 2, mice were divided into 3 groups: overload-operated whey control, overload-operated whey/EMIQ (low dose), and overload-operated whey/EMIQ (high dose) groups. The functional overload of the plantaris muscle was induced by ablation of the synergist (gastrocnemius and soleus) muscles. EMIQ and whey protein were administered with food. Three weeks after the operation, the cross-sectional area and minimal fiber diameter of the plantaris muscle fibers were measured. In Study 1, functional overload increased the cross-sectional area and minimal fiber diameter of the plantaris muscle. EMIQ supplementation significantly increased the cross-sectional area and minimal fiber diameter of the plantaris muscle in both the sham-operated and overload-operated groups. In Study 2, EMIQ supplementation combined with whey protein administration significantly increased the cross-sectional area and minimal fiber diameter of the plantaris muscle. EMIQ, even when administered as an addition to whey protein supplementation, significantly intensified the fiber hypertrophy of the plantaris muscle in functionally overloaded mice. EMIQ supplementation also induced fiber hypertrophy of the plantaris in sham-operated mice.

  15. The acute effects of four protein meals on insulin, glucose, appetite and energy intake in lean men.

    PubMed

    Pal, Sebely; Ellis, Vanessa

    2010-10-01

    Different dietary proteins vary in their ability to influence satiety and reduce food intake. The present study compared the effects of four protein meals, whey, tuna, turkey and egg albumin, on postprandial glucose and insulin concentrations as well as on appetite measures and energy intake in twenty-two lean, healthy men. This was a randomised, cross-over design study where participants consumed four liquid test meals on separate occasions followed by the collection of regular blood samples (fasting, +30, 60, 90, 120, 180 and 240 min). They were then offered a buffet meal 4 h later. The blood glucose response after the consumption of the test meal, as an incremental area under the curve (AUC), was significantly lower with the whey meal than with the turkey (P < 0.023) and egg (P < 0.001) meals, but it was not lower than with the tuna meal (P < 0.34). The AUC blood insulin after the consumption of the test meal was significantly higher with the whey meal than with the tuna, turkey and egg meals (all P < 0.001). The AUC rating of hunger was significantly lower with the whey meal than with the tuna (P < 0.033), turkey (P < 0.001) and egg (P < 0.001) meals. Mean energy intake at the ad libitum meal was significantly lower (P < 0.001) with the whey meal than with the tuna, egg and turkey meals. There was a strong relationship between self-rated appetite, postprandial insulin response and energy intake at lunch. Whey protein meal produced a greater insulin response, reduced appetite and decreased ad libitum energy intake at a subsequent meal compared with the other protein meals, indicating a potential for appetite suppression and weight loss in overweight or obese individuals.

  16. The glycemic, insulinemic and plasma amino acid responses to equi-carbohydrate milk meals, a pilot- study of bovine and human milk.

    PubMed

    Gunnerud, Ulrika; Holst, Jens J; Östman, Elin; Björck, Inger

    2012-10-12

    Dairy proteins, in particular the whey fraction, exert insulinogenic properties and facilitate glycemic regulation through a mechanism involving elevation of certain plasma amino acids, and stimulation of incretins. Human milk is rich in whey protein and has not been investigated in this respect. Nine healthy volunteers were served test meals consisting of human milk, bovine milk, reconstituted bovine whey- or casein protein in random order. All test meals contributed with 25 g intrinsic or added lactose, and a white wheat bread (WWB) meal was used as reference, providing 25 g starch. Post-prandial levels in plasma of glucose, insulin, incretins and amino acids were investigated at time intervals for up to 2 h. All test meals elicited lower postprandial blood glucose responses, expressed as iAUC 0-120 min compared with the WWB (P < 0.05). The insulin response was increased following all test meals, although only significantly higher after whey. Plasma amino acids were correlated to insulin and incretin secretion (iAUC 0-60 min) (P ≤ 0.05). The lowered glycemia with the test meals (iAUC 0-90 min) was inversely correlated to GLP-1 (iAUC 0-30 min) (P ≤ 0.05). This study shows that the glycemic response was significantly lower following all milk/milk protein based test meals, in comparison with WWB. The effect appears to originate from the protein fraction and early phase plasma amino acids and incretins were involved in the insulin secretion. Despite its lower protein content, the human milk was a potent GLP-1 secretagogue and showed insulinogenic properties similar to that seen with reconstituted bovine whey-protein, possibly due to the comparatively high proportion of whey in human milk.

  17. 75 FR 14500 - National Organic Program, Sunset Review (2012)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-26

    ...; Turkish bay leaves; Wakame seaweed (Undaria pinnatifida); and Whey protein concentrate. The exemptions and...; Turkish bay leaves; Wakame seaweed (Undaria pinnatifida); and Whey protein concentrate, currently allowed... may be critical to the production and handling of a wide array of raw and processed organic...

  18. Role of pH in the recovery of bovine milk oligosaccharides from colostrum whey permeate by nanofiltration

    PubMed Central

    Cohen, Joshua L.; Barile, Daniela; Liu, Yan; de Moura Bell, Juliana M. L. N.

    2016-01-01

    Milk oligosaccharides are associated with improved health outcomes in infants. Nanofiltration (NF) is used for isolation of bovine milk oligosaccharides (BMO). The study aim was to improve the recovery of BMO from lactose-hydrolyzed colostrum whey permeate. The retention factors of carbohydrates at various pH and transmembrane pressures were determined for a nanofiltration membrane, which was used at pilot scale to purify BMO. Carbohydrates were quantified by liquid chromatography and characterized using nano-LC-Chip-QToF mass spectrometry. BMO purity was improved from an initial 4% in colostrum whey permeate to 98%, with 99.8% permeation of monosaccharides and 96% recovery of oligosaccharides, represented by 23 unique BMO compounds identified in the final retentate. The pH during NF was a determining factor in the selectivity of carbohydrate separation. This NF method can be applied to conventional cheese-whey permeate and other milk types for extraction of bioactive oligosaccharides providing new options for the dairy industry. PMID:28652648

  19. Enhanced physicochemical properties of chitosan/whey protein isolate composite film by sodium laurate-modified TiO2 nanoparticles.

    PubMed

    Zhang, Wei; Chen, Jiwang; Chen, Yue; Xia, Wenshui; Xiong, Youling L; Wang, Hongxun

    2016-03-15

    Chitosan/whey protein isolate film incorporated with sodium laurate-modified TiO2 nanoparticles was developed. The nanocomposite film was characterized by scanning electron microscopy, X-ray diffraction and differential scanning calorimetry, and investigated in physicochemical properties as color, tensile strength, elongation at break, water vapor permeability and water adsorption isotherm. Our results showed that the nanoparticles improved the compatibility of whey protein isolate and chitosan. Addition of nanoparticles increased the whiteness of chitosan/whey protein isolate film, but decreased its transparency. Compared with binary film, the tensile strength and elongation at break of nanocomposite film were increased by 11.51% and 12.01%, respectively, and water vapor permeability was decreased by 7.60%. The equilibrium moisture of nanocomposite film was lower than binary film, and its water sorption isotherm of the nanocomposite film fitted well to Guggenheim-Anderson-deBoer model. The findings contributed to the development of novel food packaging materials. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Stability of lutein encapsulated whey protein nano-emulsion during storage

    PubMed Central

    Guo, Mingruo

    2018-01-01

    Lutein is a hydrophobic carotenoid that has multiple health functions. However, the application of lutein is limited due to its poor solubility in water and instability under certain conditions during storage. Hereby we generated lutein loaded nano-emulsions using whey protein isolate (WPI) or polymerized whey protein isolate (PWP) with assistance of high intensity ultrasound and evaluate their stability during storage at different conditions. We measured the particle size, zeta-potential, physical stability and lutein content change. Results showed that the PWP based nano-emulsion system was not stable in the tested Oil/Water/Ethanol system indicated by the appearance of stratification within only one week. The WPI based nano-emulsion system showed stable physiochemical stability during the storage at 4°C. The lutein content of the system was reduced by only 4% after four weeks storage at 4°C. In conclusion, our whey protein based nano-emulsion system provides a promising strategy for encapsulation of lutein or other hydrophobic bioactive molecules to expand their applications. PMID:29415071

  1. Strawberry-flavored yogurts and whey beverages: What is the sensory profile of the ideal product?

    PubMed

    Janiaski, D R; Pimentel, T C; Cruz, A G; Prudencio, S H

    2016-07-01

    This study aimed to evaluate the sensory profile and Brazilian consumers' liking of strawberry-flavored yogurts and whey beverages (fermented or nonfermented) with different fat contents that were sweetened with sugar or nonsugar sweeteners. We also determined the influence of sensory attributes on consumer preferences and the profile of the ideal product. Nonfermented whey beverages (NFWB) and "light" yogurt were less liked. The NFWB were less acidic, less viscous, and with lower smoothness of mouthcoating, sweeter and with a more intense artificial strawberry aroma (ASA) than the fermented products. Low-fat yogurts were more liked, more viscous, and had higher smoothness of mouthcoating than nonfat yogurts. Fermented-whey beverages were as liked as yogurts. Viscosity and smoothness of mouthcoating positively influenced consumer liking. The ideal product had higher levels of brightness, artificial strawberry taste, artificial strawberry aroma, and sweet taste; intermediate smoothness of mouthcoating, color, and viscosity; and low particles, acid taste, and aroma. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  2. Effect of whey protein agglomeration on spray dried microcapsules containing Saccharomyces boulardii.

    PubMed

    Duongthingoc, Diep; George, Paul; Katopo, Lita; Gorczyca, Elizabeth; Kasapis, Stefan

    2013-12-01

    This work investigates the effect of whey protein agglomeration on the survivability of Saccharomyces boulardii within spray dried microcapsules. It attempts to go beyond phenomenological observations by establishing a relationship between physicochemical characteristics of the polymeric matrix and its effect on probiotic endurance upon spray drying. It is well known that this type of thermal shock has lethal consequences on the yeast cells. To avoid such undesirable outcome, we take advantage of the early agglomeration phenomenon observed for whey protein by adjusting the pH value of preparations close to isoelectric point (pH 4-5). During the subsequent process of spray drying, development of whey protein agglomerates induces formation of an early crust, and the protein in this molten globular state creates a cohesive network encapsulating the yeast cells. It appears that the early crust formation at a given sample pH and temperature regime during spray drying benefits the survivability of S. boulardii within microcapsules. Copyright © 2013. Published by Elsevier Ltd.

  3. An investigation of the efficacy of biological additives for the suppression of pyritic sulphur during simulated froth flotation of coal.

    PubMed

    Stainthorpe, A C

    1989-02-05

    The biological molecule responsible for the suppression of pyritic sulfur in fine coal simulated froth flotation treated with bacteria was identified. Protein was found to be the most effective agent in pyrite suppression of the three cell components (protein, lipid, and carbohydrate) assayed. Coal recovery and ash removal of the flotation process were only slightly reduced by this treatment. Other protein-containing materials were evaluated for their ability to suppress pyrite flotation. Whey was found to be the most cost-effective flotation additive of those assayed. The sulfur content of the whey-treated float was reduced by 84.0% in a synthetically prepared fractionated coal (10.7% sulfur), by a raw whey dosage of 20 microL/g coal. The inorganic sulfur component of a natural high sulfur coal fraction (10.9%) was completely depressed by this whey addition. The effect of particle size and pulp density upon the process were investigated.

  4. Effect of water content on thermal behavior of freeze-dried soy whey and their isolated proteins.

    PubMed

    Sobral, Pablo A; Palazolo, Gonzalo G; Wagner, Jorge R

    2011-04-27

    Thermal behavior of lyophilized soy whey (LSW) and whey soy proteins (WSP) at different water contents (WC) was studied by DSC. In anhydrous condition, Kunitz trypsin inhibitor (KTI) and lectin (L) were more heat stable for WSP with respect to LSW sample. The increase of WC destabilized both proteins but differently depending on the sample analyzed. Thermal stability inversion of KTI and L was observed for WSP and LSW at 50.0% and 17.0% WC, respectively, which correspond to the same water-protein content mass ratio (W/P ≈ 1.9). At W/P < 1.9, KTI was more heat stable than L. Before the inversion point, WC strongly modified the peak temperatures (T(p)) of KTI and L for WSP, whereas this behavior was not observed for LSW. The high sugar content was responsible for the thermal behavior of KTI and L in LSW under anhydrous condition and low WC. These results have important implications for the soy whey processing and inactivation of antinutritional factors.

  5. Is it possible to screen for milk or whey protein adulteration with melamine, urea and ammonium sulphate, combining Kjeldahl and classical spectrophotometric methods?

    PubMed

    Finete, Virgínia de Lourdes Mendes; Gouvêa, Marcos Martins; Marques, Flávia Ferreira de Carvalho; Netto, Annibal Duarte Pereira

    2013-12-15

    The Kjeldahl method and four classic spectrophotometric methods (Biuret, Lowry, Bradford and Markwell) were applied to evaluate the protein content of samples of UHT whole milk deliberately adulterated with melamine, ammonium sulphate or urea, which can be used to defraud milk protein and whey contents. Compared with the Kjeldahl method, the response of the spectrophotometric methods was unaffected by the addition of the nitrogen compounds to milk or whey. The methods of Bradford and Markwell were most robust and did not exhibit interference subject to composition. However, the simultaneous interpretation of results obtained using these methods with those obtained using the Kjeldahl method indicated the addition of nitrogen-rich compounds to milk and/or whey. Therefore, this work suggests a combination of results of Kjeldahl and spectrophotometric methods should be used to screen for milk adulteration by these compounds. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Characteristics of activated carbon and carbon nanotubes as adsorbents to remove annatto (norbixin) in cheese whey.

    PubMed

    Zhang, Yue; Pan, Kang; Zhong, Qixin

    2013-09-25

    Removing annatto from cheese whey without bleaching has potential to improve whey protein quality. In this work, the potential of two activated carbon products and multiwalled carbon nanotubes (CNT) was studied for extracting annatto (norbixin) in aqueous solutions. Batch adsorption experiments were studied for the effects of solution pH, adsorbent mass, contact duration, and ionic strength. The equilibrium adsorption data were observed to fit both Langmuir and Freundlich isotherm models. The thermodynamic parameters estimated from adsorption isotherms demonstrated that the adsorption of norbixin on three adsorbents is exothermic, and the entropic contribution differs with adsorbent structure. The adsorption kinetics, with CNT showing a higher rate than activated carbon, followed the pseudo first order and second order rate expressions and demonstrated the significance of intraparticle diffusion. Electrostatic interactions were observed to be significant in the adsorption. The established adsorption parameters may be used in the dairy industry to decolorize cheese whey without applying bleaching agents.

  7. Rheological and structural characterization of agar/whey proteins insoluble complexes.

    PubMed

    Rocha, Cristina M R; Souza, Hiléia K S; Magalhães, Natália F; Andrade, Cristina T; Gonçalves, Maria Pilar

    2014-09-22

    Complex coacervation between whey proteins and carboxylated or highly sulphated polysaccharides has been widely studied. The aim of this work was to characterise a slightly sulphated polysaccharide (agar) and whey protein insoluble complexes in terms of yield, composition and physicochemical properties as well as to study their rheological behaviour for better understanding their structure. Unlike other sulphated polysaccharides, complexation of agar and whey protein at pH 3 in the absence of a buffering agent resulted in a coacervate that was a gel at 20°C with rheological properties and structure similar to those of simple agar gels, reinforced by proteins electrostatically aggregated to the agar network. The behaviour towards heat treatment was similar to that of agar alone, with a high thermal hysteresis and almost full reversibility. In the presence of citrate buffer, the result was a "flocculated solid", with low water content (75-81%), whose properties were governed by protein behaviour. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. A two-step enzymatic modification method to reduce immuno-reactivity of milk proteins.

    PubMed

    Damodaran, Srinivasan; Li, Yan

    2017-12-15

    A two-step enzymatic approach to reduce immuno-reactivity of whey protein isolate and casein has been studied. The method involves partial hydrolysis of proteins with proteases, followed by repolymerization with microbial transglutaminase. Whey protein isolate partially hydrolyzed with chymotrypsin, trypsin, or thermolysin retained about 80%, 30%, and 20% of the original immuno-reactivity, respectively. Upon repolymerization the immuno-reactivity decreased to 45%, 35%, and 5%, respectively. The immuno-reactivity of hydrolyzed and repolymerized casein was negligible compared to native casein. The repolymerized products were partially resistant to in vitro digestion. Peptides released during digestion of repolymerized thermolysin-whey protein hydrolysate had less than 5% immuno-reactivity, whereas those of whey protein control exhibited a sinusoidal immuno-reactivity ranging from 5 to 20%. Peptides released during digestion of repolymerized thermolysin-casein hydrolysates had no immuno-reactivity. These results indicated that it is possible to produce hypoallergenic milk protein products using the two-step enzymatic modification method involving thermolysin and transglutaminase. Copyright © 2017. Published by Elsevier Ltd.

  9. Growth and metabolic response of premature infants fed whey- or casein-dominant formulas after hospital discharge.

    PubMed

    Bernbaum, J C; Sasanow, S R; Churella, H R; Daft, A

    1989-10-01

    We conducted a double-blind, randomized study to test the hypothesis that a whey-dominant formula permits a growth and metabolic advantage over a casein-dominant formula in preterm infants after hospital discharge. Nineteen low birth weight infants were studied for 6 months from the time of discharge. Ten received a casein-dominant formula, and nine received a whey-dominant formula. Growth (weight, length, head circumference, mid-arm circumference, and skin-fold thickness), biochemical measurements (alkaline phosphatase activity, acid-base status, and hemoglobin, serum total protein, albumin, and urea nitrogen levels), and quantity of formula intake did not differ significantly between the groups over a 6-month study period. Serum transthyretin and urea nitrogen concentrations differed significantly between the two feeding groups at the day of entry into the study only. The results indicate that, after hospital discharge, premature infants fed a whey-dominant formula do not differ in growth or biochemical measurements from those fed a casein-dominant formula.

  10. Toward Separating Alpha-lactalbumin and Beta-lactoglobulin Proteins from Whey through Cation-exchange Adsorption

    NASA Astrophysics Data System (ADS)

    El-Sayed, Mayyada; Chase, Howard

    2009-05-01

    This paper describes the cation-exchange adsorption of the two major whey proteins, alpha-lactalbumin (ALA) and beta-lactoglobulin (BLG) with the purpose of establishing a process for isolating them from cow's milk whey. The single- and two-component adsorption of 1.5 mg/ml ALA and 3 mg/ml BLG to the cation-exchanger SP Sepharose FF at 20° C using 0.1 M acetate buffer of pH 3.7 was studied. Langmuir isotherm parameters were determined for the pure proteins. In two-component systems, BLG breakthrough curve exhibited an overshoot phenomenon that gave evidence for the presence of a competitive adsorption between the two proteins. Complete separation occurred and it was possible to obtain each of the two proteins in a pure form. The process was then applied to a whey concentrate mixture where incomplete separation took place. However, BLG was produced with 95% purity and a recovery of 80%, while ALA showed an 84% recovery with low purity.

  11. Designing dairy desserts for weight management: Structure, physical properties and in vitro gastric digestion.

    PubMed

    Borreani, Jennifer; Llorca, Empar; Quiles, Amparo; Hernando, Isabel

    2017-04-01

    The first aim of this study was to observe the effect of adding dairy proteins and reducing the cream content in order to obtain healthier dairy desserts for use in weight management. The extra-whey protein low-cream sample had the densest, firmest matrix, which is related to increased satiety. The second aim was to investigate the in vitro gastric digestion behavior of whey and casein proteins in a heat-treated semisolid real food. The extra-casein protein sample matrix broke down more slowly than the others because the caseins clotted at the gastric pH. Despite being heated, the whey proteins in the panna cottas were more resistant to pepsin digestion than caseins; this is related with a higher satiety capacity. These findings suggest that the combination of reducing fat content (to obtain a reduced energy density product) and adding whey protein (to increase satiety capacity) allows obtaining dairy desserts for weight management. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Sensory and Functionality Differences of Whey Protein Isolate Bleached by Hydrogen or Benzoyl Peroxide.

    PubMed

    Smith, Tucker J; Foegeding, E Allen; Drake, MaryAnne

    2015-10-01

    Whey protein is a highly functional food ingredient used in a wide variety of applications. A large portion of fluid whey produced in the United States is derived from Cheddar cheese manufacture and contains annatto (norbixin), and therefore must be bleached. The objective of this study was to compare sensory and functionality differences between whey protein isolate (WPI) bleached by benzoyl peroxide (BP) or hydrogen peroxide (HP). HP and BP bleached WPI and unbleached controls were manufactured in triplicate. Descriptive sensory analysis and gas chromatography-mass spectrometry were conducted to determine flavor differences between treatments. Functionality differences were evaluated by measurement of foam stability, protein solubility, SDS-PAGE, and effect of NaCl concentration on gelation relative to an unbleached control. HP bleached WPI had higher concentrations of lipid oxidation and sulfur containing volatile compounds than both BP and unbleached WPI (P < 0.05). HP bleached WPI was characterized by high aroma intensity, cardboard, cabbage, and fatty flavors, while BP bleached WPI was differentiated by low bitter taste. Overrun and yield stress were not different among WPI (P < 0.05). Soluble protein loss at pH 4.6 of WPI decreased by bleaching with either hydrogen peroxide or benzoyl peroxide (P < 0.05), and the heat stability of WPI was also distinct among WPI (P < 0.05). SDS PAGE results suggested that bleaching of whey with either BP or HP resulted in protein degradation, which likely contributed to functionality differences. These results demonstrate that bleaching has flavor effects as well as effects on many of the functionality characteristics of whey proteins. Whey protein isolate (WPI) is often used for its functional properties, but the effect of oxidative bleaching chemicals on the functional properties of WPI is not known. This study identifies the effects of hydrogen peroxide and benzoyl peroxide on functional and flavor characteristics of WPI bleached by hydrogen and benzoyl peroxide and provides insights for the product applications which may benefit from bleaching. © 2015 Institute of Food Technologists®

  13. [Antioxidant activity of cationic whey protein isolate].

    PubMed

    titova, M E; Komolov, S A; Tikhomirova, N A

    2012-01-01

    The process of lipid peroxidation (LPO) in biological membranes of cells is carried out by free radical mechanism, a feature of which is the interaction of radicals with other molecules. In this work we investigated the antioxidant activity of cationic whey protein isolate, obtained by the cation-exchange chromatography on KM-cellulose from raw cow's milk, in vitro and in vivo. In biological liquids, which are milk, blood serum, fetal fluids, contains a complex of biologically active substances with a unique multifunctional properties, and which are carrying out a protective, antimicrobial, regenerating, antioxidant, immunomodulatory, regulatory and others functions. Contents of the isolate were determined electrophoretically and by its biological activity. Cationic whey protein isolate included lactoperoxidase, lactoferrin, pancreatic RNase, lysozyme and angeogenin. The given isolate significantly has an antioxidant effect in model experimental systems in vitro and therefore may be considered as a factor that can adjust the intensity of lipid oxidation. In model solutions products of lipid oxidation were obtained by oxidation of phosphatidylcholine by hydrogen peroxide in the presence of a source of iron. The composition of the reaction mixture: 0,4 mM H2O2; 50 mcM of hemin; 2 mg/ml L-alpha-phosphatidylcholine from soybean (Sigma, German). Lipid peroxidation products were formed during the incubation of the reaction mixture for two hours at 37 degrees C. In our studies rats in the adaptation period immediately after isolation from the nest obtained from food given orally native cationic whey protein isolate at the concentration three times higher than in fresh cow's milk. On the manifestation of the antioxidant activity of cationic whey protein isolate in vivo evidence decrease of lipid peroxidation products concentration in the blood of rats from the experimental group receipt whey protein isolate in dos 0,6 mg/g for more than 20% (p<0,05) with oral feeding. Thus, significantly cationic whey protein isolate has an antioxidant effect in model experimental systems, and so can be considered as a factor that can regulate the intensity of lipid oxidation.

  14. Whey protein concentrate storage at elevated temperature and humidity

    USDA-ARS?s Scientific Manuscript database

    Dairy processors are finding new export markets for whey protein concentrate (WPC), a byproduct of cheesemaking, but they need to know if full-sized bags of this powder will withstand high temperature and relative humidity (RH) levels during unrefrigerated storage under tropical conditions. To answ...

  15. Identification of dipeptidyl peptidase-IV inhibitory peptides from mare whey protein hydrolysates.

    PubMed

    Song, J J; Wang, Q; Du, M; Ji, X M; Mao, X Y

    2017-09-01

    Inhibition of dipeptidyl peptidase-IV (DPP-IV) activity is a promising strategy for treatment of type 2 diabetes. In the current study, DPP-IV inhibitory peptides were identified from mare whey protein hydrolysates obtained by papain. The results showed that all the mare whey protein hydrolysates obtained at various hydrolysis durations possessed more potent DPP-IV inhibitory activity compared with intact whey protein. The 4-h hydrolysates showed the greatest DPP-IV inhibitory activity with half-maximal inhibitory concentration of 0.18 mg/mL. The 2 novel peptides from 4-h hydrolysate fractions separated by successive chromatographic steps were characterized by liquid chromatography-electrospray ionization tandem mass spectrometry. The novel peptides Asn-Leu-Glu-Ile-Ile-Leu-Arg and Thr-Gln-Met-Val-Asp-Glu-Glu-Ile-Met-Glu-Lys-Phe-Arg, which corresponded to β-lactoglobulin 1 f(71-77) and β-lactoglobulin 1 f(143-155), demonstrated DPP-IV inhibitory activity with half-maximal inhibitory concentrations of 86.34 and 69.84 μM, respectively. The DPP-IV inhibitory activity of the 2 peptides was retained or even improved after simulated gastrointestinal digestion in vitro. Our findings indicate that mare whey protein-derived peptides may possess potential as functional food ingredients in the management of type 2 diabetes. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  16. Treatability of cheese whey for single-cell protein production in nonsterile systems: Part II. The application of aerobic sequencing batch reactor (aerobic SBR) to produce high biomass of Dioszegia sp. TISTR 5792.

    PubMed

    Monkoondee, Sarawut; Kuntiya, Ampin; Chaiyaso, Thanongsak; Leksawasdi, Noppol; Techapun, Charin; Kawee-Ai, Arthitaya; Seesuriyachan, Phisit

    2016-07-03

    This study aimed to investigate the efficiency of an aerobic sequencing batch reactor (aerobic SBR) in a nonsterile system using the application of an experimental design via central composite design (CCD). The acidic whey obtained from lactic acid fermentation by immobilized Lactobacillus plantarum sp. TISTR 2265 was fed into the bioreactor of the aerobic SBR in an appropriate ratio between acidic whey and cheese whey to produce an acidic environment below 4.5 and then was used to support the growth of Dioszegia sp. TISTR 5792 by inhibiting bacterial contamination. At the optimal condition for a high yield of biomass production, the system was run with a hydraulic retention time (HRT) of 4 days, a solid retention time (SRT) of 8.22 days, and an acidic whey concentration of 80% feeding. The chemical oxygen demand (COD) decreased from 25,230 mg/L to 6,928 mg/L, which represented a COD removal of 72.15%. The yield of biomass production and lactose utilization by Dioszegia sp. TISTR 5792 were 13.14 g/L and 33.36%, respectively, with a long run of up to 180 cycles and the pH values of effluent were rose up to 8.32 without any pH adjustment.

  17. Production of a biodegradable plastic-degrading enzyme from cheese whey by the phyllosphere yeast Pseudozyma antarctica GB-4(1)W.

    PubMed

    Watanabe, Takashi; Shinozaki, Yukiko; Suzuki, Ken; Koitabashi, Motoo; Yoshida, Shigenobu; Sameshima-Yamashita, Yuka; Kuze Kitamoto, Hiroko

    2014-08-01

    Cheese whey is a by-product of cheese production and has high concentrations of lactose (about 5%) and other nutrients. Pseudozyma antarctica produces a unique cutinase-like enzyme, named PaE, that efficiently degrades biodegradable plastics. A previous study showed that a combination of 1% oil and 0.5% lactose increased cutinase-like enzyme production by another species of yeast. In this study, to produce PaE from cheese whey, we investigated the effects of soybean oil on PaE production (expressed as biodegradable plastic-degrading activity) by P. antarctica growing on lactose or cheese whey. In flask cultures, the final PaE activity was only 0.03 U/ml when soybean oil was used as the sole carbon source, but increased to 1.79 U/ml when a limited amount of soybean oil (under 0.5%) was combined with a relatively high concentration of lactose (6%). Using a 5-L jar fermentor with lactose fed-batch cultivation and periodic soybean oil addition, about 14.6 U/ml of PaE was obtained after 5 days of cultivation. When the lactose was replaced with cheese whey, PaE production was 10.8 U/ml after 3 days of cultivation. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  18. Acid whey powder modification of gari from cassava

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Okezie, B.O.; Kosikowski, F.V.

    1981-01-01

    Gari, a staple food consumed in Nigeria, is made from peeled and ground cassava tubers. The ground material is pressed with a stone slab for 2-4 days to remove moisture, and the partially fermented product is then baked over an open fire. Since gari mainly contributes energy to the diet, attempts were made to develop a more nutritious product without altering organoleptic and textural properties. In laboratory tests, ground cassava was fermented in stainless steel cheese vats for 4 days (to produce gari flavour) and then partially dehydrated by pressing in cheese cloth. A reduction in HCN content from 6.2more » to 3.4 mg/100 g resulted. Various combinations of spray-dried acid whey, soya protein and freeze-dried Candida tropicalis were added to the fermented cassava, which was then pressure-cooked for 10 minutes at 121 degrees Celcius, dried and ground in a hammer mill. Product (i), made with gari fortified with 15% soya concentrate and 5% dried acid whey, was as acceptable as traditional gari and had a protein score of 75.8 vs. 9.91 for traditional gari. Product (ii), gari fortified with 20% yeast and 10% dried acid whey, had significantly lower scores for flavour and texture than traditional gari and the protein score was only 29.45. Supplementing gari with relatively inexpensive whey concentrates appears to be a means of overcoming protein energy malnutrition in children.« less

  19. Absolute Quantification of Human Milk Caseins and the Whey/Casein Ratio during the First Year of Lactation.

    PubMed

    Liao, Yalin; Weber, Darren; Xu, Wei; Durbin-Johnson, Blythe P; Phinney, Brett S; Lönnerdal, Bo

    2017-11-03

    Whey proteins and caseins in breast milk provide bioactivities and also have different amino acid composition. Accurate determination of these two major protein classes provides a better understanding of human milk composition and function, and further aids in developing improved infant formulas based on bovine whey proteins and caseins. In this study, we implemented a LC-MS/MS quantitative analysis based on iBAQ label-free quantitation, to estimate absolute concentrations of α-casein, β-casein, and κ-casein in human milk samples (n = 88) collected between day 1 and day 360 postpartum. Total protein concentration ranged from 2.03 to 17.52 with a mean of 9.37 ± 3.65 g/L. Casein subunits ranged from 0.04 to 1.68 g/L (α-), 0.04 to 4.42 g/L (β-), and 0.10 to 1.72 g/L (α-), with β-casein having the highest average concentration among the three subunits. Calculated whey/casein ratio ranged from 45:55 to 97:3. Linear regression analyses show significant decreases in total protein, β-casein, κ-casein, total casein, and a significant increase of whey/casein ratio during the course of lactation. Our study presents a novel and accurate quantitative analysis of human milk casein content, demonstrating a lower casein content than earlier believed, which has implications for improved infants formulas.

  20. Effect of Oyster Shell Calcium Powder on the Quality of Restructured Pork Ham.

    PubMed

    Choi, Jung-Seok; Lee, Hyun-Jin; Jin, Sang-Keun; Lee, Hyun-Joo; Choi, Yang-Il

    2014-01-01

    This study was conducted to evaluate the effects of oyster shell calcium powder (OSCP) as a substitute for phosphates in curing agent, on the quality of restructured pork ham. Restructured pork ham was processed under six treatment conditions: T1 (no additives), T2 (0.3% sodium tripolyphosphate), T3 (1.5% NaCl+0.5% whey protein), T4 (1.5% NaCl+0.5% whey protein+0.15% OSCP), T5 (1.5% NaCl+0.5% whey protein+0.3% OSCP), and T6 (1.5% NaCl+0.5% whey protein+0.5% OSCP). Addition of OSCP significantly increased the ash content and pH of restructured pork ham (p<0.05), but did not affect the cooking loss and water holding capacity values of restructured pork ham. Addition of OSCP had no effect on Hunter a and b surface color values of restructured pork ham, but did decrease the Hunter L surface color value (p<0.05). The addition of 0.5% OSCP showed significantly higher chewiness and springiness values of restructured pork ham, compared with the addition of phosphates (p<0.05). In conclusion, the addition of OSCP combined with low NaCl and 0.5% whey protein can be considered a viable substitute for phosphates in the curing agent, when processing restructured pork ham.

  1. SIGNALING PATHWAYS REGULATED BY BRASSICACEAE EXTRACT INHIBIT THE FORMATION OF ADVANCED GLYCATED END PRODUCTS IN RAT BRAIN.

    PubMed

    Al-Malki, Abdulrahman L; Barbour, Elie K; Ea, Huwait; Moselhy, Said S; ALZahrani, Anas Hassan Saeed; Kumosani, Taha A

    2017-01-01

    The goal of this study was identification signaling molecules mediated the formation of AGEs in brain of rats injected with CdCl2 and the role of camel whey proteins and Brassicaceae extract on formation of AGEs in brain. Ninety male rats were randomly grouped into five groups; Normal control (GpI) and the other rats (groups II-V) were received a single dose of cadmium chloride i.p (5 μg/kg/b.w) for induction of neurodegeneration. Rats in groups III-V were treated daily with whey protein (1g/kg b.w) or Brassicaceae extract (1mg/kg b.w) or combined respectively for 12 weeks. It was found that whey protein combined with Brassicaceae extract prevented the formation of AGEs and enhance the antioxidant activity compared with untreated group (p <0.001). Serum tumor necrosis factor (TNF-α) and interleukine (IL-6) levels were significantly decreased (p<0.01) in rats treated with whey protein and Brassicaceae extract formation compared with untreated. The combined treatment showed a better impact than individual ones (p<0.001). The level of cAMP but not cGMP were lowered in combined treatment than individual (p<0.01). It can be postulated that Whey protein + Brassicaceae extract formation could have potential benefits in the prevention of the onset and progression of neuropathy in patients.

  2. SIGNALING PATHWAYS REGULATED BY BRASSICACEAE EXTRACT INHIBIT THE FORMATION OF ADVANCED GLYCATED END PRODUCTS IN RAT BRAIN

    PubMed Central

    Al-Malki, Abdulrahman L.; Barbour, Elie K.; EA, Huwait; Moselhy, Said S.; ALZahrani, Anas Hassan Saeed; Kumosani, Taha A.

    2017-01-01

    Background: The goal of this study was identification signaling molecules mediated the formation of AGEs in brain of rats injected with CdCl2 and the role of camel whey proteins and Brassicaceae extract on formation of AGEs in brain. Methods: Ninety male rats were randomly grouped into five groups; Normal control (GpI) and the other rats (groups II-V) were received a single dose of cadmium chloride i.p (5 μg/kg/b.w) for induction of neurodegeneration. Rats in groups III-V were treated daily with whey protein (1g/kg b.w) or Brassicaceae extract (1mg/kg b.w) or combined respectively for 12 weeks. Results: It was found that whey protein combined with Brassicaceae extract prevented the formation of AGEs and enhance the antioxidant activity compared with untreated group (p <0.001). Serum tumor necrosis factor (TNF-α) and interleukine (IL-6) levels were significantly decreased (p<0.01) in rats treated with whey protein and Brassicaceae extract formation compared with untreated. The combined treatment showed a better impact than individual ones (p<0.001). The level of cAMP but not cGMP were lowered in combined treatment than individual (p<0.01). Conclusion: It can be postulated that Whey protein + Brassicaceae extract formation could have potential benefits in the prevention of the onset and progression of neuropathy in patients. PMID:28573240

  3. Comparative Analysis of the miRNome of Bovine Milk Fat, Whey and Cells.

    PubMed

    Li, Ran; Dudemaine, Pier-Luc; Zhao, Xin; Lei, Chuzhao; Ibeagha-Awemu, Eveline Mengwi

    2016-01-01

    Abundant miRNAs have been identified in milk and mammary gland tissues of different species. Typically, RNA in milk can be extracted from different fractions including fat, whey and cells and the mRNA transcriptome of milk could serve as an indicator of the transcriptome of mammary gland tissue. However, it has not been adequately validated if the miRNA transcriptome of any milk fraction could be representative of that of mammary gland tissue. The objectives of this study were to (1) characterize the miRNA expression spectra from three milk fractions- fat, whey and cells; (2) compare miRNome profiles of milk fractions (fat, whey and cells) with mammary gland tissue miRNome, and (3) determine which milk fraction miRNome profile could be a better representative of the miRNome profile of mammary gland tissue. Milk from four healthy Canadian Holstein cows in mid lactation was collected and fractionated. Total RNA extracted from each fraction was used for library preparation followed by small RNA sequencing. In addition, miRNA transcripts of mammary gland tissues from twelve Holstein cows in our previous study were used to compare our data. We identified 210, 200 and 249 known miRNAs from milk fat, whey and cells, respectively, with 188 universally expressed in the three fractions. In addition, 33, 31 and 36 novel miRNAs from milk fat, whey and cells were identified, with 28 common in the three fractions. Among 20 most highly expressed miRNAs in each fraction, 14 were expressed in common and 11 were further shared with mammary gland tissue. The three milk fractions demonstrated a clear separation from each other using a hierarchical cluster analysis with milk fat and whey being most closely related. The miRNome correlation between milk fat and mammary gland tissue (rmean = 0.866) was significantly higher than the other two pairs (p < 0.01), whey/mammary gland tissue (rmean = 0.755) and milk cell/mammary gland tissue (rmean = 0.75), suggesting that milk fat could be an alternative non-invasive source of RNA in assessing miRNA activities in bovine mammary gland. Predicted target genes (1802) of 14 highly expressed miRNAs in milk fractions were enriched in fundamental cellular functions, infection, organ and tissue development. Furthermore, some miRNAs were highly enriched (FDR <0.05) in milk whey (3), cells (11) and mammary gland tissue (14) suggesting specific regulatory functions in the various fractions. In conclusion, we have obtained a comprehensive miRNA profile of the different milk fractions using high throughput sequencing. Our comparative analysis showed that miRNAs from milk fat accurately portrayed the miRNome of mammary gland tissue. Functional annotation of the top expressed miRNAs in milk confirmed their critical regulatory roles in mammary gland functions and potentially to milk recipients.

  4. Comparative Analysis of the miRNome of Bovine Milk Fat, Whey and Cells

    PubMed Central

    Li, Ran; Dudemaine, Pier-Luc; Zhao, Xin; Lei, Chuzhao; Ibeagha-Awemu, Eveline Mengwi

    2016-01-01

    Abundant miRNAs have been identified in milk and mammary gland tissues of different species. Typically, RNA in milk can be extracted from different fractions including fat, whey and cells and the mRNA transcriptome of milk could serve as an indicator of the transcriptome of mammary gland tissue. However, it has not been adequately validated if the miRNA transcriptome of any milk fraction could be representative of that of mammary gland tissue. The objectives of this study were to (1) characterize the miRNA expression spectra from three milk fractions- fat, whey and cells; (2) compare miRNome profiles of milk fractions (fat, whey and cells) with mammary gland tissue miRNome, and (3) determine which milk fraction miRNome profile could be a better representative of the miRNome profile of mammary gland tissue. Milk from four healthy Canadian Holstein cows in mid lactation was collected and fractionated. Total RNA extracted from each fraction was used for library preparation followed by small RNA sequencing. In addition, miRNA transcripts of mammary gland tissues from twelve Holstein cows in our previous study were used to compare our data. We identified 210, 200 and 249 known miRNAs from milk fat, whey and cells, respectively, with 188 universally expressed in the three fractions. In addition, 33, 31 and 36 novel miRNAs from milk fat, whey and cells were identified, with 28 common in the three fractions. Among 20 most highly expressed miRNAs in each fraction, 14 were expressed in common and 11 were further shared with mammary gland tissue. The three milk fractions demonstrated a clear separation from each other using a hierarchical cluster analysis with milk fat and whey being most closely related. The miRNome correlation between milk fat and mammary gland tissue (rmean = 0.866) was significantly higher than the other two pairs (p < 0.01), whey/mammary gland tissue (rmean = 0.755) and milk cell/mammary gland tissue (rmean = 0.75), suggesting that milk fat could be an alternative non-invasive source of RNA in assessing miRNA activities in bovine mammary gland. Predicted target genes (1802) of 14 highly expressed miRNAs in milk fractions were enriched in fundamental cellular functions, infection, organ and tissue development. Furthermore, some miRNAs were highly enriched (FDR <0.05) in milk whey (3), cells (11) and mammary gland tissue (14) suggesting specific regulatory functions in the various fractions. In conclusion, we have obtained a comprehensive miRNA profile of the different milk fractions using high throughput sequencing. Our comparative analysis showed that miRNAs from milk fat accurately portrayed the miRNome of mammary gland tissue. Functional annotation of the top expressed miRNAs in milk confirmed their critical regulatory roles in mammary gland functions and potentially to milk recipients. PMID:27100870

  5. Changes in volatile compounds in whey protein concentrate stored at elevated temperature and humidity

    USDA-ARS?s Scientific Manuscript database

    Whey protein concentrate (WPC) has been recommended for use in emergency aid programs, but it is often stored overseas without temperature and relative humidity (RH) control, which may cause it to be rejected because of yellowing, off-flavors, or clumping. Therefore, the volatile compounds present ...

  6. Distribution of animal drugs among curd, whey, and milk protein fractions in spiked skim milk and whey

    USDA-ARS?s Scientific Manuscript database

    It is important to understand the partitioning of drugs in processed milk and milk products, when drugs are present in raw milk, in order to estimate the potential consumer exposure. Radioisotopically labelled erythromycin, ivermectin, ketoprofen, oxytetracycline, penicillin G, sulfadimethoxine, and...

  7. Quality of whey powders stored under adverse conditions

    USDA-ARS?s Scientific Manuscript database

    Whey protein concentrate powder (WPC) is exported by the U.S. and is included in emergency aid foods, but the bags sent overseas are usually stored without refrigeration and under elevated temperature and relative humidity (RH). The shelf life of WPC under adverse conditions must be known to preven...

  8. Efficacy of sweet whey containing final dips in reducing protein oxidation in retail-cut cubed beefsteak

    USDA-ARS?s Scientific Manuscript database

    Oxidative degradation results in extensive deterioration of shelf-life and quality of retail-cut muscle foods. Use of antioxidants, especially the ones of natural origin, can markedly reduce this process without adverse health consequences to the consumer. Sweet whey originating from Cheddar (CW) an...

  9. Butanol production from concentrated lactose/whey permeate: Use of pervaporation membrane to recover and concentrate product

    USDA-ARS?s Scientific Manuscript database

    In these studies butanol (acetone butanol ethanol, or ABE) was produced from concentrated lactose/whey permeate containing 211 gL-1 lactose. Fermentation of such a highly concentrated lactose solution was possible due to simultaneous product removal using a pervaporation membrane. In this system a p...

  10. 7 CFR 58.735 - Quality specifications for raw materials.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... wholesome quality and except for smaller eyes and sharper flavor shall meet the same requirements as for... in § 58.132 of this subpart. (f) Nonfat dry milk. Nonfat dry milk used in officially identified... in excess of that specified for the particular grade. (g) Whey. Condensed or dry whey used in...

  11. Native whey induces higher and faster leucinemia than other whey protein supplements and milk: A randomized controlled trial

    USDA-ARS?s Scientific Manuscript database

    Resistance exercise and protein intake are both strong stimuli for muscle protein synthesis. The potential for a protein to acutely increase muscle protein synthesis seems partly dependent on absorption kinetics and the amino acid composition. The aim of this double-blinded randomized cross-over stu...

  12. Influence of Whey Peptides on the Surface Activity of k-casein and ß-lactoglobulin

    USDA-ARS?s Scientific Manuscript database

    Whey protein hydrolysate (WPH) was fractionated by reverse-phase chromatography to obtain fractions of varying surface-hydrophobicities. A model oil–water interface (MI) was pre-coated with the WPH or fractions thereof. Contact angle (') of sessile drops of '-casein ('-CN) or ß-lactoglobulin A (ß-LG...

  13. Effect of homogenization and pasteurization on the structure and thermal stability of whey protein in milk

    USDA-ARS?s Scientific Manuscript database

    The effect of homogenization alone or in combination with high temperature, short time (HTST) pasteurization or UHT processing on the whey fraction of milk was investigated using highly sensitive spectroscopic techniques. In pilot plant trials, 1-L quantities of whole milk were homogenized in a two-...

  14. Application of Kevin-Voigt Model in Quantifying Whey Protein Adsorption on Polyethersulfone Using QCM-D

    USDA-ARS?s Scientific Manuscript database

    The study of protein adsorption on the membrane surface is of great importance to cheese-making processors that use polymeric membrane-based processes to recover whey protein from the process waste streams. Quartz crystal microbalance with dissipation (QCM-D) is a lab-scale, fast analytical techniq...

  15. Generation and stabilization of whey-based monodisperse naoemulsions using ultra-high pressure homogenization and small amphipathic co-emulsifier combinations

    USDA-ARS?s Scientific Manuscript database

    Ultra-high-pressure homogenization (UHPH) was used to generate monodisperse stable peanut oil nanoemulsions within a desired nanosize range (<100 nm) (DNR) stabilized using combinations of whey protein concentrate (WPC), sodium dodecyl sulfate, Triton X-100 (X100), and zwitterionic sulfobetaine-base...

  16. Comparing the Effects of Whey Extract and Casein Phosphopeptide-Amorphous Calcium Phosphate (CPP-ACP) on Enamel Microhardness

    PubMed Central

    Rezvani, Mohammad Bagher; Karimi, Mehrdad; Akhavan Rasoolzade, Raheleh; Haghgoo, Roza

    2015-01-01

    Statement of the Problem With the recent focus of researches on the development of non-invasive treatment modalities, the non-invasive treatment of early carious lesions by remineralization would bring a major advance in the clinical management of these dental defects. Casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) is considered to be effective in tooth remineralization. Purpose The aim of this in-vitro study was to compare the effects of whey and CPP-ACP in increasing the enamel microhardness. Materials and Method Microhardness of 30 sound human permanent premolars was measured before and after 8-minute immersion of samples in Coca-Cola. The teeth were then randomly divided into 3 groups and were immersed in artificial saliva, whey, and tooth mousse for 10 minutes. The changes of microhardness within each group and among the groups were recorded and analyzed using paired t-test. Results The microhardness increased in each group and between the groups; this increase was statistically significant (p= 0.009). Conclusion The effect of whey on increasing the enamel microhardness was more than that of tooth mousse. PMID:25759858

  17. Production and characterization of poly(3-hydroxybutyrate) generated by Alcaligenes latus using lactose and whey after acid protein precipitation process.

    PubMed

    Berwig, Karina Hammel; Baldasso, Camila; Dettmer, Aline

    2016-10-01

    Whey after acid protein precipitation was used as substrate for PHB production in orbital shaker using Alcaligenes latus. Statistical analysis determined the most appropriate hydroxide for pH neutralization of whey after protein precipitation among NH4OH, KOH and NaOH 10%w/v. The results were compared to those of commercial lactose. A scale-up test in a 4L bioreactor was done at 35°C, 750rpm, 7L/min air flow, and 6.5 pH. The PHB was characterized through Fourier Transform Infrared Spectroscopy, thermogravimetry and differential scanning calorimetry. NH4OH provided the best results for productivity (p), 0.11g/L.h, and for polymer yield, (YP/S), 1.08g/g. The bioreactor experiment resulted in lower p and YP/S. PHB showed maximum degradation temperature (291°C), melting temperature (169°C), and chemical properties similar to those of standard PHB. The use of whey as a substrate for PHB production did not affect significantly the final product quality. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Recovery of Whey Proteins and Enzymatic Hydrolysis of Lactose Derived from Casein Whey Using a Tangential Flow Ultrafiltration Module

    NASA Astrophysics Data System (ADS)

    Das, Bipasha; Bhattacharjee, Sangita; Bhattacharjee, Chiranjib

    2013-09-01

    In this study, ultrafiltration (UF) of pretreated casein whey was carried out in a cross-flow module fitted with 5 kDa molecular weight cut-off polyethersulfone membrane to recover whey proteins in the retentate and lactose in the permeate. Effects of processing conditions, like transmembrane pressure and pH on permeate flux and rejection were investigated and reported. The polarised layer resistance was found to increase with time during UF even in this high shear device. The lactose concentration in the permeate was measured using dinitro salicylic acid method. Enzymatic kinetic study for lactose hydrolysis was carried out at three different temperatures ranging from 30 to 50 °C using β-galactosidase enzyme. The glucose formed during lactose hydrolysis was analyzed using glucose oxidase-peroxidase method. Kinetics of enzymatic hydrolysis of lactose solution was found to follow Michaelis-Menten model and the model parameters were estimated by Lineweaver-Burk plot. The hydrolysis rate was found to be maximum (with Vmax = 5.5091 mmol/L/min) at 30 °C.

  19. Dynamics of yeast immobilized-cell fluidized-bed bioreactors systems in ethanol fermentation from lactose-hydrolyzed whey and whey permeate.

    PubMed

    Gabardo, Sabrina; Pereira, Gabriela Feix; Klein, Manuela P; Rech, Rosane; Hertz, Plinho F; Ayub, Marco Antônio Záchia

    2016-01-01

    We studied the dynamics of ethanol production on lactose-hydrolyzed whey (LHW) and lactose-hydrolyzed whey permeate (LHWP) in batch fluidized-bed bioreactors using single and co-cultures of immobilized cells of industrial strains of Saccharomyces cerevisiae and non-industrial strains of Kluyveromyces marxianus. Although the co-culture of S. cerevisiae CAT-1 and K. marxianus CCT 4086 produced two- to fourfold the ethanol productivity of single cultures of S. cerevisiae, the single cultures of the K. marxianus CCT 4086 produced the best results in both media (Y EtOH/S = 0.47-0.49 g g(-1) and Q P = 1.39-1.68 g L(-1) h(-1), in LHW and LHWP, respectively). Ethanol production on concentrated LHWP (180 g L(-1)) reached 79.1 g L(-1), with yields of 0.46 g g(-1) for K. marxianus CCT 4086 cultures. Repeated batches of fluidized-bed bioreactor on concentrated LHWP led to increased ethanol productivity, reaching 2.8 g L(-1) h(-1).

  20. Reassociation of dissociated caseins upon acidification of heated pH-adjusted skim milk.

    PubMed

    Anema, Skelte G; Li, Yuming

    2015-05-01

    Milk was heated at different pH (pH 6.5-7.1) and temperatures (20-120 °C/10 min). This resulted in different levels of casein and denatured whey proteins to be distributed between the colloidal and serum phases. The milks were subsequently acidified and the distribution of protein between colloidal and serum was monitored at different pH. On acidification to pH 5.4, the serum phase caseins and denatured whey proteins partially reassociated with the caseins, although a complex behaviour was observed at ∼ pH 5.4 where additional casein dissociation occurred in some samples. At pH below 5.4 the caseins and denatured whey proteins rapidly aggregated. No separate aggregation of κ-casein/denatured whey protein complexes or κ-casein depleted micelles was observed. The earlier gelation of milks heated at higher pH was likely to be due to the destabilisation of the entire milk protein system rather than a preferential aggregation of the serum phase proteins. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Effect of heat, pH, ultrasonication and ethanol on the denaturation of whey protein isolate using a newly developed approach in the analysis of difference-UV spectra.

    PubMed

    Nikolaidis, Athanasios; Andreadis, Marios; Moschakis, Thomas

    2017-10-01

    A newly developed method of analysis of difference-UV spectra was successfully implemented in the study of the effect of heat, pH, ultrasonication and ethanol on the denaturation of whey protein isolate. It was found that whey proteins exhibit their highest stability against heat denaturation at pH 3.75. At very low pH values, i.e. 2.5, they exhibited considerable cold denaturation, while after heating at this pH value, the supplementary heat denaturation rate was lower compared to that at neutral pH. The highest heat denaturation rates were observed at pH values higher than neutral. High power sonication on whey proteins, previously heated at 90°C for 30min, resulted in a rather small reduction of the fraction of the heat denatured protein aggregates. Finally, when ethanol was used as a cosolvent in the concentration range 20-50%, a sharp increase in the degree of denaturation, compared to the native protein solution, was observed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Heterotrophic growth and lipid accumulation of Chlorella protothecoides in whey permeate, a dairy by-product stream, for biofuel production.

    PubMed

    Espinosa-Gonzalez, Isabel; Parashar, Archana; Bressler, David C

    2014-03-01

    This study proposes a novel alternative for the utilization of whey permeate, a by-product stream from the dairy industry, as the feedstock for the biomass and lipid production of the microalgae Chlorella protothecoides. Glucose and galactose from the pre-hydrolyzed whey permeate were used as main carbon sources in a base mineral media for establishing batch and fed batch cultures. Batch cultures reached a biomass production of 9.1±0.2g/L with a total lipid accumulation of 42.0±6.6% (dry weight basis), while in the fed batch cultures 17.2±1.3g/L of biomass with 20.5±0.3% lipid accumulation (dry weight basis) were obtained. A third strategy for the direct utilization of whey permeate was investigated by simultaneous saccharification and fermentation (SSF), wherein, 7.3±1.3g/L of biomass with 49.9±3.3% lipid accumulation (dry weight basis) was obtained in batch mode using immobilized enzyme. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Effect of casein to whey protein ratios on the protein interactions and coagulation properties of low-fat yogurt.

    PubMed

    Zhao, L L; Wang, X L; Tian, Q; Mao, X Y

    2016-10-01

    In this study, we investigated the effect of casein (CN) to whey protein (WP) ratios (4:1, 3:1, 2:1, and 1:1) on gelation properties and microstructure of low-fat yogurt made with reconstituted skim milk with or without addition of whey protein concentrate. The rheological properties (storage modulus, G'; yield stress; and yield strain) of the obtained low-fat yogurt were greatly enhanced, the fermentation period was shortened, and the microstructure became more compact with smaller pores as the CN:WP ratio decreased. When CN:WP was 2:1 or 1:1, the obtained yogurt coagulum showed higher G' and greater yield stress, with more compact crosslinking and smaller pores. In addition, the more of skim milk powder was replaced by whey protein concentrate, the more disulfide bonds were formed and the greater the occurrence of hydrophobic interactions during heat treatment, which can improve the rheological properties and microstructure of low-fat yogurt. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  4. Whey protein stories - An experiment in writing a multidisciplinary biography.

    PubMed

    Jensen, Tenna; Bechshoeft, Rasmus L; Giacalone, Davide; Otto, Marie Haulund; Castro-Mejía, Josue; Bin Ahmad, Hajar Fauzan; Reitelseder, Søren; Jespersen, Astrid Pernille

    2016-12-01

    This is an experimental, dual-purpose article about whey protein and how to conduct interdisciplinary analyses and writings. On the one hand, this article is a multidisciplinary commodity biography, which consists of five descriptions of whey protein written by the five different research groups involved in the interdisciplinary research project CALM(Counteracting Age-related loss of Skeletal Muscle Mass). On the other hand, it is a meta-analysis, which aims to uncover and highlight examples of how the five descriptions contribute to each other with insights into the contextualisation of knowledge, contrasts between the descriptions and the new dimensions they bring to established fields of interest. The meta-analysis also contains a discussion of interdisciplinary study objects and the usefulness of the multidisciplinary commodity biography as a format for interdisciplinary publications. The article contributes to the field of food studies with a multidisciplinary biography of whey protein - including its sensory qualities and challenges, insights into its cultural history, its nutritional value and effects on the human body and an analysis of how it is perceived by people who consume it. The biography thereby expands upon existing understandings of whey protein while discussing the usefulness of employing the commodity biography format in interdisciplinary writing. Moreover, the article contributes to the field of interdisciplinary research by providing a practical example of a joint publication and reflections upon the existence, interaction and possibilities of monodisciplinary knowledge structures within interdisciplinary studies and publications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Effect of whey protein supplementation on long and short term appetite: A meta-analysis of randomized controlled trials.

    PubMed

    Mollahosseini, Mehdi; Shab-Bidar, Sakineh; Rahimi, Mohammad Hossein; Djafarian, Kurosh

    2017-08-01

    Specific components of dairy, such as whey proteins may have beneficial effects on body composition by suppressing appetite, although the findings of existing studies have been inconsistent. Therefore, a meta-analysis of randomized controlled trials was performed to investigate effect of whey protein supplementation on long and short term appetite. A systematic search was conducted to identify eligible publications. Means and SDs for hunger, fullness, satiety, desire to eat and prospective consumption of food, before and after intervention, were extracted and then composite appetite score (CAS) calculated. To pool data, either a fixed-effects model or a random-effects model and for assessing heterogeneity, Cochran's Q and I 2 tests were used. Eight publications met inclusion criteria that 5 records were on short term and 3 records on long term appetite. The meta-analysis showed a significant reduction in long term appetite by 4.13 mm in combined appetite score (CAS) (95% Confidence interval (CI): -6.57, -1.96; p = 0.001). No significant reduction in short term appetite was also seen (Mean difference (MD) = -0.39 95% CI = -2.07, 1.30; p = 0.653). Subgroup analyses by time showed that compared with carbohydrate, the reduction in appetite following consumption of whey consumption was not significant (MD = -0.39, 95% CI = -2.07, 1.3, p = 0.65, I 2  = 0.0%.)A significant reduction in prospective food consumption was seen (MD = -2.17, 95% CI = -3.86, -0.48). The results of our meta-analysis showed that whey protein may reduce the long and short term appetite, but our finding did not show any significant difference in appetite reduction between whey protein and carbohydrate in short duration. Copyright © 2017 European Society for Clinical Nutrition and Metabolism. Published by Elsevier Ltd. All rights reserved.

  6. Acetate production from whey lactose using co-immobilized cells of homolactic and homoacetic bacteria in a fibrous-bed bioreactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Y.; Yang, S.T.

    1998-11-20

    Acetate was produced from whey lactose in batch and fed-batch fermentations using co-immobilized cells of Clostridium formicoaceticum and Lactococcus lactis. The cells were immobilized in a spirally wound fibrous sheet packed in a 0.45-L column reactor, with liquid circulated through a 5-L stirred-tank fermentor. Industrial-grade nitrogen sources, including corn steep liquor, casein hydrolysate, and yeast hydrolysate, were studied as inexpensive nutrient supplements to whey permeate and acid whey. Supplementation with either 2.5% (v/v) corn steep liquor or 1.5 g/L casein hydrolysate was adequate for the cocultured fermentation. The overall acetic acid yield from lactose was 0.9 g/g, and the productivitymore » was 0.25 g/(L h). Both lactate and acetate at high concentrations inhibited the homoacetic fermentation. To overcome these inhibitions, fed-batch fermentations were used to keep lactate concentration low and to adapt cells to high-concentration acetate. The final acetate concentration obtained in the fed-batch fermentations were used to keep lactate concentration low and to adapt cells to high-concentration acetate. The final acetate concentration obtained in the fed-batch fermentation was 75 g/L, which was the highest acetate concentration ever produced by C. formicoaceticum. Even at this high acetate concentration, the overall productivity was 0.18 g/(L h) based on the total medium volume and 1.23 g/(L h) based on the fibrous-bed reactor volume. The cells isolated from the fibrous-bed bioreactor at the end of this study were more tolerant to acetic acid than the original culture used to seed the bioreactor, indicating that adaptation and natural selection of acetate-tolerant strains occurred. This cocultured fermentation process could be used to produce a low-cost acetate deicer from whey permeate and acid whey.« less

  7. Growth kinetics and physiological behavior of co-cultures of Saccharomyces cerevisiae and Kluyveromyces lactis, fermenting carob sugars extracted with whey.

    PubMed

    Rodrigues, B; Lima-Costa, M E; Constantino, A; Raposo, S; Felizardo, C; Gonçalves, D; Fernandes, T; Dionísio, L; Peinado, J M

    2016-10-01

    Alcoholic fermentation of carob waste sugars (sucrose, glucose and fructose) extracted with cheese whey, by co-cultures of Saccharomyces cerevisiae and Kluyveromyces lactis has been analyzed. Growth and fermentation of S. cerevisiae in the carob-whey medium showed an inhibition of about 30% in comparison with water-extracted carob. The inhibition of K. lactis on carob-whey was greater (70%) when compared with the whey medium alone, due to osmolarity problems. Oxygen availability was a very important factor for K. lactis, influencing its fermentation performance. When K. lactis was grown alone on carob-whey medium, lactose was always consumed first, and glucose and fructose were consumed afterwards, only at high aeration conditions. In co-culture with S. cerevisiae, K. lactis was completely inhibited and, at low aeration, died after 3 days; at high aeration this culture could survive but growth and lactose fermentation were only recovered after S. cerevisiae became stationary. To overcome the osmolarity and K. lactis' oxygen problems, the medium had to be diluted and a sequential fermentative process was designed in a STR-3l reactor. K. lactis was inoculated first and, with low aeration (0.13vvm), consumed all the lactose in 48h. Then S. cerevisiae was inoculated, consuming the total of the carob sugars, and producing ethanol in a fed-batch regime. The established co-culture with K. lactis increased S. cerevisiae ethanol tolerance. This fermentation process produced ethanol with good efficiency (80g/l final concentration and a conversion factor of 0.4g ethanol/g sugar), eliminating all the sugars of the mixed waste. These efficient fermentative results pointed to a new joint treatment of agro-industrial wastes which may be implemented successfully, with economic and environmental sustainability for a bioethanol industrial proposal. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Oral treatment with β-lactoglobulin peptides prevents clinical symptoms in a mouse model for cow's milk allergy.

    PubMed

    Meulenbroek, Laura A P M; van Esch, Betty C A M; Hofman, Gerard A; den Hartog Jager, Constance F; Nauta, Alma J; Willemsen, Linette E M; Bruijnzeel-Koomen, Carla A F M; Garssen, Johan; van Hoffen, Els; Knippels, Léon M J

    2013-11-01

    Prior exposure to partial whey hydrolysates has been shown to reduce the allergic response to whey in mice. This effect was more pronounced in combination with a diet containing non-digestible oligosaccharides (scGOS/lcFOS/pAOS). It is unknown which fractions/epitopes are responsible for this effect. Therefore, the prophylactic ability of synthetic peptides of β-lactoglobulin with/without a scGOS/lcFOS/pAOS-containing diet to reduce the allergic response in a mouse model for cow's milk allergy was investigated. Of 31 peptides, nine peptides were selected based on human T cell data. Mice were pre-treated orally with three peptide mixtures or single peptides for six consecutive days. During this period, they received a control or scGOS/lcFOS/pAOS-containing diet. Subsequently, mice were orally sensitized to whey and received an intradermal and oral challenge. After sacrifice, serum and mesenteric lymph nodes (MLN) were collected for further analysis. Prior exposure to peptide mixtures 1 and 3 significantly reduced the acute allergic skin response to whey. Mixture 2 showed no effect. An additive effect of the scGOS/lcFOS/pAOS-containing diet was only observed for mixture 1. Of the peptides in mixture 1, one peptide (LLDAQSAPLRVYVEELKP) showed the strongest effect on the acute allergic skin response. This peptide also tended to decrease whey-specific antibody levels and to increase the percentages of CD11b+CD103+ dendritic cells and CD25+Foxp3+ T cells in the MLN. Prior exposure to specific peptides of β-lactoglobulin reduces the allergic response to whey, which may involve regulatory dendritic and T cells. Combining peptides with a sGOS/lcFOS/pAOS-containing diet enhances this effect. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. Grana Padano cheese whey starters: microbial composition and strain distribution.

    PubMed

    Rossetti, Lia; Fornasari, Maria Emanuela; Gatti, Monica; Lazzi, Camilla; Neviani, Erasmo; Giraffa, Giorgio

    2008-09-30

    The aim of this work was to evaluate the species composition and the genotypic strain heterogeneity of dominant lactic acid bacteria (LAB) isolated from whey starter cultures used to manufacture Grana Padano cheese. Twenty-four Grana Padano cheese whey starters collected from dairies located over a wide geographic production area in the north of Italy were analyzed. Total thermophilic LAB streptococci and lactobacilli were quantified by agar plate counting. Population structure of the dominant and metabolically active LAB species present in the starters was profiled by reverse transcriptase, length heterogeneity-PCR (RT-LH-PCR), a culture-independent technique successfully applied to study whey starter ecosystems. The dominant bacterial species were Lactobacillus helveticus, Lactobacillus delbrueckii subsp. lactis, Streptococcus thermophilus, and Lactobacillus fermentum. Diversity in the species composition allowed the whey cultures to be grouped into four main typologies, the one containing L. helveticus, L. delbrueckii subsp. lactis, and S. thermophilus being the most frequent one (45% of the cultures analyzed), followed by that containing only the two lactobacilli (40%). Only a minor fraction of the cultures contained L. helveticus alone (4%) or all the four LAB species (11%). Five hundred and twelve strains were isolated from the 24 cultures and identified by M13-PCR fingerprinting coupled with 16S rRNA gene sequencing. Most of the strains were L. helveticus (190 strains; 37% of the total), L delbrueckii subsp. lactis (90 strains; 18%) and S. thermophilus (215 strains; 42%). This result was in good agreement with the qualitative whey starter composition observed by RT-LH-PCR. M13-PCR fingerprinting indicated a markedly low infra-species diversity, i.e. the same biotypes were often found in more than one culture. The distribution of the biotypes into the different cultures was mainly dairy plant-specific rather than correlated with the different production areas.

  10. The glycemic, insulinemic and plasma amino acid responses to equi-carbohydrate milk meals, a pilot- study of bovine and human milk

    PubMed Central

    2012-01-01

    Background Dairy proteins, in particular the whey fraction, exert insulinogenic properties and facilitate glycemic regulation through a mechanism involving elevation of certain plasma amino acids, and stimulation of incretins. Human milk is rich in whey protein and has not been investigated in this respect. Method Nine healthy volunteers were served test meals consisting of human milk, bovine milk, reconstituted bovine whey- or casein protein in random order. All test meals contributed with 25g intrinsic or added lactose, and a white wheat bread (WWB) meal was used as reference, providing 25g starch. Post-prandial levels in plasma of glucose, insulin, incretins and amino acids were investigated at time intervals for up to 2 h. Results All test meals elicited lower postprandial blood glucose responses, expressed as iAUC 0–120 min compared with the WWB (P < 0.05). The insulin response was increased following all test meals, although only significantly higher after whey. Plasma amino acids were correlated to insulin and incretin secretion (iAUC 0–60 min) (P ≤ 0.05). The lowered glycemia with the test meals (iAUC 0–90 min) was inversely correlated to GLP-1 (iAUC 0–30 min) (P ≤ 0.05). Conclusion This study shows that the glycemic response was significantly lower following all milk/milk protein based test meals, in comparison with WWB. The effect appears to originate from the protein fraction and early phase plasma amino acids and incretins were involved in the insulin secretion. Despite its lower protein content, the human milk was a potent GLP-1 secretagogue and showed insulinogenic properties similar to that seen with reconstituted bovine whey-protein, possibly due to the comparatively high proportion of whey in human milk. PMID:23057765

  11. Uptake of divalent ions (Mn+2 and Ca+2) by heat-set whey protein gels.

    PubMed

    Oztop, Mecit H; McCarthy, Kathryn L; McCarthy, Michael J; Rosenberg, Moshe

    2012-02-01

    Divalent salts are used commonly for gelation of polymer molecules. Calcium, Ca(+2), is one of the most common divalent ions that is used in whey protein gels. Manganese, Mn(+2), is also divalent, but paramagnetic, enhancing relaxation decay rates in magnetic resonance imaging (MRI) and can be used as a probe to understand the behavior of Ca(+2) in whey protein gels. The objective of this study was to investigate the diffusion of Ca(+2) and Mn(+2) ions in heat-set whey protein gels by using MRI and nuclear magnetic resonance (NMR) relaxometry. Whey protein gels were immersed in solutions containing MnCl(2) and CaCl(2) at neutral pH. Images obtained with gels immersed in MnCl(2) solution revealed a relaxation sink region in the gel's surface and the thickness of the region increased with time. These "no signal" regions in the MR images were attributed to uptake of Mn(+2) by the gel. Results obtained with CaCl(2) solution indicated that since Ca(+2) did not have the paramagnetic effect, the regions where Ca(+2) diffused into the gel exhibited a slight decrease in signal intensity. The relaxation spectrums exhibited 3 populations of protons, for gels immersed in MnCl(2) solution, and 2 populations for gels in CaCl(2) solution. No significant change in T(2) distributions was observed for the gels immersed in CaCl(2) solution. The results demonstrated that MRI and NMR relaxometry can be used to understand the diffusion of ions into the whey protein gel, which is useful for designing gels of different physical properties for controlled release applications. Design of food systems for delivery of bioactive compounds requires knowledge of diffusion rates and structure. Utilizing magnetic resonance imaging the diffusion rates of ions can be measured. Relaxation spectra could yield information concerning molecular interactions. © 2012 Institute of Food Technologists®

  12. Thermogenic Blend Alone or in Combination with Whey Protein Supplement Stimulates Fat Metabolism and Improves Body Composition in Mice.

    PubMed

    Vieira-Brock, Paula de Lima; Vaughan, Brent M; Vollmer, David L

    2018-01-01

    Certain food ingredients promote thermogenesis and fat loss. Similarly, whey protein improves body composition. Due to this potential synergistic effect, a blend of thermogenic food ingredients containing African mango, citrus fruit extract, Coleus forskohlii , dihydrocapsiate, and red pepper was tested alone and in combination with a whey protein supplement for its effects on body composition in sedentary mice during high-fat diet. The objective of this study was to evaluate the interaction of thermogenic foods on improving body composition during consumption of an unhealthy diet. C57BL/6J young adult male mice ( n = 12) were placed on a 60% high-fat diet for 4 weeks and subsequently randomly assigned to receive daily dosing by oral gavage of vehicle, the novel blend alone or with whey protein supplement for another 4 weeks. Body composition, thermal imaging of brown adipose tissue (BAT), mitochondrial BAT uncoupling protein 1 (UCP1), and plasma levels of leptin were assessed. Novel blend alone and in combination with protein supplement attenuated body weight gain, fat, and increased surface BAT temperature in comparison to vehicle control and to baseline ( P < 0.5). The combination of novel blend and whey protein supplement also significantly increased UCP1 protein expression in BAT mitochondria in comparison to vehicle control and novel blend alone ( P < 0.5). These data indicate that this novel blend stimulates thermogenesis and attenuates the gain in body weight and fat in response to high-fat diet in mice and these effects were improved when administered in combination with whey protein supplement. 30 days oral administration to mice of a novel blend containing African mango seed extract, citrus fruits extract, Coleus forskohlii root extract, dihydrocapsiate and red pepper fruit extract reduced body weight and fat gain in response to high-fat diet without impairing muscle mass.The novel blend stimulated thermogenesis as shown by the increased thermal imaging and UCP1 protein expression in brown adipose tissue, indicating that improvement in body composition potentially occurred due to a fat-burning effect.The positive effects on body weight, fat, and thermogenesis were improved when the novel blend was administered in combination with a whey protein supplement suggesting that protein provides a synergistic fat-burning effect. Abbreviations Used: BAT: Brown adipose tissue, UCP1: Uncoupling protein 1, DEXA: Dual-energy X-ray absorptiometry.

  13. Changes in physical, chemical and functional properties of whey protein isolate (WPI) and sugar beet pectin (SBP) conjugates formed by controlled dry-heating

    USDA-ARS?s Scientific Manuscript database

    A Maillard type reaction in the dry state was utilized to create conjugates between whey protein isolate (WPI) and sugar beet pectin (SBP) to achieve improved functional properties including solubility, colloidal stability and oil-in-water emulsion stability. To optimize the reaction conditions, mi...

  14. Bovine milk proteome: Quantitative changes in normal milk exosomes, milk fat globule membranes and whey proteomes resulting from Staphylococcus aureus mastitis

    USDA-ARS?s Scientific Manuscript database

    Knowledge of milk protein composition/expression in healthy cows and cows with mastitis will provide information important for the dairy food industry, mammary biology and immune function in the mammary gland. To facilitate maximum protein discovery, milk was fractioned into whey, milk fat globule ...

  15. Effect of storage temperature on survival and recovery of thermal and extrusion injured Escherichia coli populations in whey protein concentrate and corn meal

    USDA-ARS?s Scientific Manuscript database

    In a previous study, we reported viability loss of Escherichia coli populations in corn (CP) and whey protein products (WPP) extruded at different temperatures. However, information on the effect of storage temperatures on injured bacterial populations was not addressed. The objective of this study ...

  16. Physicochemical stability and in vitro bioaccessibility of ß-carotene nanoemulsions stabilized with whey protein-dextran conjugates

    USDA-ARS?s Scientific Manuscript database

    In this study, ß-carotene (BC)-loaded nanoemulsions encapsulated with native whey protein isolate (WPI) and WPI-dextran (DT, 5 kDa, 20 kDa, and 70 kDa) conjugates were prepared and the effects of glycosylation with various molecular weight DTs on the physicochemical property, lipolysis, and BC bioac...

  17. Moisture Sensitivity, Optical, Mechanical and Structural Properties of Whey Protein-Based Edible Films Incorporated with Rapeseed Oil.

    PubMed

    Galus, Sabina; Kadzińska, Justyna

    2016-03-01

    The objective of this work is to study the effect of the rapeseed oil content on the physical properties of whey protein emulsion films. For this purpose, whey protein films with the addition of 0, 1, 2 and 3% of rapeseed oil, and glycerol as a plasticizer were obtained by the casting method. Film-forming emulsions were evaluated and compared using light scattering granulometry. The Sauter mean diameters ( d 32 ) of lipid droplets in film-forming solutions showed an increasing trend when increasing the oil volume fractions. The inclusion of rapeseed oil enhanced the hydrophobic character of whey protein films, reducing moisture content and film solubility in water. All emulsified films showed high lightness ( L* ≈90). Parameter a * decreased and parameter b* and total colour difference (∆ E ) increased with the increase of the volume fractions of oil. These results were consistent with visual observations; control films were transparent and those containing oil opaque. Water vapour sorption experimental data at the full range of water activity values from 0.11 to 0.93 were well described with Peleg's equation (R 2 ≥0.99). The tensile strength, Young's modulus and elongation at break increased with the increase of rapeseed oil volume fraction, which could be explained by interactions between lipids and the protein matrix. These results revealed that rapeseed oil has enormous potential to be incorporated into whey protein to make edible film or coating for some food products. The mechanical resistance decreased with the addition of the lipids, and the opacity and soluble matter content increased.

  18. Influence of Bovine Whey Protein Concentrate and Hydrolysate Preparation Methods on Motility in the Isolated Rat Distal Colon

    PubMed Central

    Dalziel, Julie E.; Anderson, Rachel C.; Bassett, Shalome A.; Lloyd-West, Catherine M.; Haggarty, Neill W.; Roy, Nicole C.

    2016-01-01

    Whey protein concentrate (WPC) and hydrolysate (WPH) are protein ingredients used in sports, medical and pediatric formulations. Concentration and hydrolysis methods vary for whey sourced from cheese and casein co-products. The purpose of this research was to investigate the influence of whey processing methods on in vitro gastrointestinal (GI) health indicators for colonic motility, epithelial barrier integrity and immune modulation. WPCs from casein or cheese processing and WPH (11% or 19% degree of hydrolysis, DH) were compared for their effects on motility in a 1 cm section of isolated rat distal colon in an oxygenated tissue bath. Results showed that WPC decreased motility irrespective of whether it was a by-product of lactic acid or mineral acid casein production, or from cheese production. This indicated that regardless of the preparation methodology, the whey protein contained components that modulate aspects of motility within the distal colon. WPH (11% DH) increased contractile frequency by 27% in a delayed manner and WPH (19% DH) had an immediate effect on contractile properties, increasing tension by 65% and frequency by 131%. Increased motility was associated with increased hydrolysis that may be attributed to the abundance of bioactive peptides. Increased frequency of contractions by WPH (19% DH) was inhibited (by 44%) by naloxone, implicating a potential involvement of opioid receptors in modulation of motility. Trans-epithelial electrical resistance and cytokine expression assays revealed that the WPC proteins studied did not alter intestinal barrier integrity or elicit any discernible immune response. PMID:27983629

  19. Rheology and microstructure of binary mixed gel of rice bran protein-whey: effect of heating rate and whey addition.

    PubMed

    Rafe, Ali; Vahedi, Elnaz; Hasan-Sarei, Azadeh Ghorbani

    2016-08-01

    Rice bran protein (RBP) is a valuable plant protein which has unique nutritional and hypoallergenic properties. Whey proteins have wide applications in the food industry, such as in dairy, meat and bakery products. Whey protein concentrate (WPC), RBP and their mixtures at different ratios (1:1, 1:2, 1:5 and 1:10 w/w) were heated from 20 to 90 °C at different heating rates (0.5, 1, 5 and 10 °C min(-1) ). The storage modulus (G') and gelling point (Tgel ) of WPC were higher than those of RBP, indicating the good ability of WPC to develop stiffer networks. By increasing the proportion of WPC in mixed systems, G' was increased and Tgel was reduced. Nevertheless, the elasticity of all binary mixtures was lower than that of WPC alone. Tgel and the final G' of RBP-WPC blends were increased by raising the heating rate. The RBP-WPC mixtures developed more elastic gels than RBP alone at different heating rates. RBP had a fibrillar and lentil-like structure whose fibril assembly had smaller structures than those of WPC. The gelling structure of the mixed gel of WPC-RBP was improved by adding WPC. Indeed, by adding WPC, gels tended to show syneresis and had lower water-holding capacity. Furthermore, the gel structure was produced by adding WPC to the non-gelling RBP, which is compatible with whey and can be applied as a functional food for infants and/or adults. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  20. Inhibitory substances production by Lactobacillus plantarum ST16Pa cultured in hydrolyzed cheese whey supplemented with soybean flour and their antimicrobial efficiency as biopreservatives on fresh chicken meat.

    PubMed

    da Silva Sabo, Sabrina; Pérez-Rodríguez, Noelia; Domínguez, José Manuel; de Souza Oliveira, Ricardo Pinheiro

    2017-09-01

    Cheese whey, the main byproduct of the dairy industry, is one of the most worrisome types of industrial waste, not only because of its abundant annual global production but also because it is a notable source of environmental pollution. However, cheese whey can serve as a raw material for the production of biocomposites. In this context, in this study, we assayed the production of a bacteriocin-like inhibitory substance (BLIS) and lactate by culturing Lactobacillus plantarum ST16Pa in hydrolyzed fresh cheese whey. The process was improved by studying the enzymatic hydrolysis of cheese whey as well as its supplementation with soybean flour under microaerophilic or anaerobic conditions. Thus, the highest values of BLIS (7367.23 arbitrary units [AU]/mL) and lactate yield (Y lactate/lactose =1.39g/g) were achieved after addition of 10g/L soybean flour in microaerophilia. These conditions were successfully scaled up in a bioreactor because during complete anaerobiosis at 150rpm, L. plantarum ST16Pa attained considerable cell growth (3.14g/L), lactate concentration (14.33g/L), and BLIS activity (8082.56AU/mL). In addition, the cell-free supernatant resulting from this bioprocess showed high biopreservative efficiency in chicken breast fillets artificially contaminated with Enterococcus faecium 711 during 7days of refrigerated storage, thus indicating the potential use of this BLIS as a biopreservative in the food industry. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Longitudinal analysis of Prototheca zopfii-specific immune responses: correlation with disease progression and carriage in dairy cows.

    PubMed

    Roesler, Uwe; Hensel, Andreas

    2003-03-01

    In order to characterize the humoral and cellular immune responses to bovine mammary protothecosis, serum and whey samples obtained from 72 dairy cows assigned to four different clinical stages of infection were examined for specific antibodies by indirect enzyme-linked immunosorbent assay techniques. Milk samples were analyzed for the total numbers of excreted algal cells and somatic cells. After characterization of the course of immune induction in bovine protothecal mastitis, a long-term sentinel study was performed in an affected herd in order to investigate disease progression. A total of 61 dairy cows with protothecal mastitis were examined for shedding of algae cells and for local immune responses three times in 6-month intervals. During acute and chronic stages of protothecosis, significantly elevated specific antibody activities in sera were detected. A strong correlation of whey immunoglobulin A (IgA) and whey IgG1 antibody activity with the total counts of somatic cells in milk was observed, whereas only a weak correlation of whey IgA and whey IgG1 concentrations to the number of algal cells excreted with the milk was seen. Our results from the sentinel long-term study of infected cows revealed that 70.5% of the persistently infected animals were continuously shedding the pathogen. About 4.9% of the animals showed an intermittent shedding, whereas 18% of the cows were tested culturally negative throughout the study. It can be assumed that Prototheca zopfii mastitis in dairy cows is maintained on the herd level by subclinically infected alga-shedding cows.

  2. Longitudinal Analysis of Prototheca zopfii-Specific Immune Responses: Correlation with Disease Progression and Carriage in Dairy Cows

    PubMed Central

    Roesler, Uwe; Hensel, Andreas

    2003-01-01

    In order to characterize the humoral and cellular immune responses to bovine mammary protothecosis, serum and whey samples obtained from 72 dairy cows assigned to four different clinical stages of infection were examined for specific antibodies by indirect enzyme-linked immunosorbent assay techniques. Milk samples were analyzed for the total numbers of excreted algal cells and somatic cells. After characterization of the course of immune induction in bovine protothecal mastitis, a long-term sentinel study was performed in an affected herd in order to investigate disease progression. A total of 61 dairy cows with protothecal mastitis were examined for shedding of algae cells and for local immune responses three times in 6-month intervals. During acute and chronic stages of protothecosis, significantly elevated specific antibody activities in sera were detected. A strong correlation of whey immunoglobulin A (IgA) and whey IgG1 antibody activity with the total counts of somatic cells in milk was observed, whereas only a weak correlation of whey IgA and whey IgG1 concentrations to the number of algal cells excreted with the milk was seen. Our results from the sentinel long-term study of infected cows revealed that 70.5% of the persistently infected animals were continuously shedding the pathogen. About 4.9% of the animals showed an intermittent shedding, whereas 18% of the cows were tested culturally negative throughout the study. It can be assumed that Prototheca zopfii mastitis in dairy cows is maintained on the herd level by subclinically infected alga-shedding cows. PMID:12624049

  3. Whey or Casein Hydrolysate with Carbohydrate for Metabolism and Performance in Cycling.

    PubMed

    Oosthuyse, T; Carstens, M; Millen, A M E

    2015-07-01

    The protein type most suitable for ingestion during endurance exercise is undefined. This study compared co-ingestion of either 15 g/h whey or casein hydrolysate with 63 g/h fructose: maltodextrin (0.8:1) on exogenous carbohydrate oxidation, exercise metabolism and performance. 2 h postprandial, 8 male cyclists ingested either: carbohydrate-only, carbohydrate-whey hydrolysate, carbohydrate-casein hydrolysate or placebo-water in a crossover, double-blind design during 2 h of exercise at 60%W max followed by a 16-km time trial. Data were evaluated by magnitude-based inferential statistics. Exogenous carbohydrate oxidation, measured from (13)CO2 breath enrichment, was not substantially influenced by co-ingestion of either protein hydrolysate. However, only co-ingestion of carbohydrate-casein hydrolysate substantially decreased (98% very likely decrease) total carbohydrate oxidation (mean±SD, 242±44; 258±47; 277±33 g for carbohydrate-casein, carbohydrate-whey and carbohydrate-only, respectively) and substantially increased (93% likely increase) total fat oxidation (92±14; 83±27; 73±19 g) compared with carbohydrate-only. Furthermore, only carbohydrate-casein hydrolysate ingestion resulted in a faster time trial (-3.6%; 90% CI: ±3.2%) compared with placebo-water (95% likely benefit). However, neither protein hydrolysate enhanced time trial performance when compared with carbohydrate-only. Under the conditions of this study, ingesting carbohydrate-casein, but not carbohydrate-whey hydrolysate, favourably alters metabolism during prolonged moderate-strenuous cycling without substantially altering cycling performance compared with carbohydrate-only. © Georg Thieme Verlag KG Stuttgart · New York.

  4. Consumer perception of astringency in clear acidic whey protein beverages.

    PubMed

    Childs, Jessica L; Drake, MaryAnne

    2010-01-01

    Acidic whey protein beverages are a growing component of the functional food and beverage market. These beverages are also astringent, but astringency is an expected and desirable attribute of many beverages (red wine, tea, coffee) and may not necessarily be a negative attribute of acidic whey protein beverages. The goal of this study was to define the consumer perception of astringency in clear acidic whey protein beverages. Six focus groups (n=49) were held to gain understanding of consumer knowledge of astringency. Consumers were presented with beverages and asked to map them based on astringent mouthfeel and liking. Orthonasal thresholds for whey protein isolate (WPI) in water and flavored model beverages were determined using a 7-series ascending forced choice method. Mouthfeel/basic taste thresholds were determined for WPI in water. Acceptance tests on model beverages were conducted using consumers (n=120) with and without wearing nose clips. Consumers in focus groups were able to identify astringency in beverages. Astringency intensity was not directly related to dislike. The orthonasal threshold for WPI in water was lower (P < 0.05) than the mouthfeel/basic taste threshold of WPI in water. Consumer acceptance of beverages containing WPI was lower (P < 0.05) when consumers were not wearing nose clips compared to acceptance scores of beverages when consumers were wearing nose clips. These results suggest that flavors contributed by WPI in acidic beverages are more objectionable than the astringent mouthfeel and that both flavor and astringency should be the focus of ongoing studies to improve the palatability of these products. © 2010 Institute of Food Technologists®

  5. Application of acid whey and set milk to marinate beef with reference to quality parameters and product safety.

    PubMed

    Wójciak, Karolina M; Krajmas, Paweł; Solska, Elżbieta; Dolatowski, Zbigniew J

    2015-01-01

    The aim of the study was to evaluate the potential of acid whey and set milk as a marinade in the traditional production of fermented eye round. Studies involved assaying pH value, water activity (aw), oxidation-reduction potential and TBARS value, colour parameters in CIE system (L*, a*, b*), assaying the number of lactic acid bacteria and certain pathogenic bacteria after ripening process and after 60-day storing in cold storage. Sensory analysis and analysis of the fatty acids profile were performed after completion of the ripening process. Analysis of pH value in the products revealed that application of acid whey to marinate beef resulted in increased acidity of ripening eye round (5.14). The highest value of the colour parameter a* after ripening process and during storage was observed in sample AW (12.76 and 10.07 respectively), the lowest on the other hand was observed in sample SM (10.06 and 7.88 respectively). The content of polyunsaturated fatty acids (PUFA) was higher in eye round marinated in acid whey by approx. 4% in comparison to other samples. Application of acid whey to marinade beef resulted in increased share of red colour in general colour tone as well as increased oxidative stability of the product during storage. It also increased the content of polyunsaturated fatty acids (PUFA) in the product. All model products had high content of lactic acid bacteria and there were no pathogenic bacteria such as: L. monocytogenes, Y. enterocolitica, S. aureus, Clostridium sp.

  6. New insight on the formation of whey protein microbeads by a microfluidic system

    NASA Astrophysics Data System (ADS)

    Andoyo, Robi; Guyomarc'h, Fanny; Tabuteau, Hervé; Famelart, Marie-Hélène

    2018-02-01

    The current paper describes the formation of whey protein microbeads (WPM) having a spherical shape and a monodispersed size distribution. A microfluidic flow-focusing geometry was used to control the production of whey protein microdroplets in a hydrophobic phase. The microfluidic system consists of two inlet channels where the WPI solution and the lipophilic phase were separately injected towards the flow-focusing (FF) junction where they eventually meet, then co-flow. A whey protein isolate (WPI) solution of 150 g/kg protein and two types of hydrophobic phases, i.e. sunflower oil and n-dodecane, were tested as the continuous phase. The formation of WPM was observed microscopically. The aim of the present study was to describe the production of stable monodisperse WPM in suspension in milk ultrafiltrate using a microfluidic system. Hints to perform the control of the running parameters, i.e. choice of the hydrophobic phase or fluids flowrates, are provided. The results showed that in the sunflower oil, microdroplets had a large polydisperse size distribution, while in n-dodecane, microdroplets with narrow size distribution were obtained. Stabilization of the whey protein microdroplets through heat-gelation at 75 °C for 20 min in n-dodecane produced WPM and no change in shape nor size is observed. Meanwhile replacing the n-dodecane by MUF using centrifugation and washing caused the swelling of the WPM, but dispersity remained low. From this study, microfluidic system seemed to be a suitable method to be used for producing small quantities of monodisperse WPM.

  7. Physical and chemical changes in whey protein concentrate stored at elevated temperature and humidity

    USDA-ARS?s Scientific Manuscript database

    The chemistry of whey protein concentrate (WPC) under adverse storage conditions was monitored to provide information on shelf life in hot, humid areas. WPC34 (34.9 g protein/100 g) and WPC80 (76.8 g protein/100 g) were stored for up to 18 mo under ambient conditions and at elevated temperature and...

  8. Changes in microbial populations of WPC34 and WPC80 whey protein during long term storage

    USDA-ARS?s Scientific Manuscript database

    The use of whey protein (WPC34 and WPC80) as a food ingredient and as a base for making biodegradable products is increasing. The need to alleviate world hunger in arid and semi-arid regions demands that we investigate the behavior of native bacteria in these products, especially during long term st...

  9. Tolerance, bone mineral content, and serum vitamin D concentration of term infants fed partially hydrolyzed whey-based infant formula

    USDA-ARS?s Scientific Manuscript database

    The objective of the study was to assess the tolerance (intake, incidence of spit up/vomit, and stool patterns), bone mineral status, and vitamin D status of healthy, term infants fed one of two partially hydrolyzed bovine whey protein infant formulas from birth to 56 or 84 days of age. The control ...

  10. Behavior of native microbial populations of WPC-34 and WPC-80 whey protein stored at different temperatures

    USDA-ARS?s Scientific Manuscript database

    Whey protein (WPC34 and 80) has been used as food ingredients and as a base for making biodegradable product. However, there is limited information on the behavior of native microflora associated with these products. WPC 34 and WPC80 were obtained from the manufacturer, and were stored at 5, 10, 15,...

  11. Fuzzy Clustering-Based Modeling of Surface Interactions and Emulsions of Selected Whey Protein Concentrate Combined to i-Carrageenan and Gum Arabic Solutions

    USDA-ARS?s Scientific Manuscript database

    Gums and proteins are valuable ingredients with a wide spectrum of applications. Surface properties (surface tension, interfacial tension, emulsion activity index “EAI” and emulsion stability index “ESI”) of 4% whey protein concentrate (WPC) in a combination with '- carrageenan (0.05%, 0.1%, and 0.5...

  12. Promotion of bone growth by dietary soy protein isolate: Comparision with dietary casein, whey hydrolysate and rice protein isolate in growing female rats

    USDA-ARS?s Scientific Manuscript database

    The effects of different dietary protein sources(casein (CAS), soy protein isolate (SPI), whey protein hydrolysate (WPH) and rice protein isolate (RPI)) on bone were studied in intact growing female rats and in ovarectomized (OVX) rats showing sex steroid deficiency-induced bone loss. In addition, S...

  13. Technical Protocol for Using Soluble Carbohydrates to Enhance Reductive Dechlorination of Chlorinated Aliphatic Hydrocarbons

    DTIC Science & Technology

    2002-12-19

    High -Density Polyethylene HFCS High Fructose Corn Syrup HRC Hydrogen Release Compound HAS Hollow Stem...subsurface injection of a soluble electron donor solution (typically comprised of a carbohydrate such as molasses, whey, high fructose corn syrup (HFCS...whey, high fructose corn syrup (HFCS), glucose, lactate, butyrate, benzoate). Other approaches to enhanced anaerobic bioremediation exist, but

  14. Properties of Cast Films Made from Different Ratios of Whey Protein Isolate, Hydrolysed Whey Protein Isolate and Glycerol

    PubMed Central

    Schmid, Markus

    2013-01-01

    Whey protein isolate (WPI)-based cast films are very brittle, due to several chain interactions caused by a large amount of different functional groups. In order to overcome film brittleness, plasticizers, like glycerol, are commonly used. As a result of adding plasticizers, the free volume between the polymer chains increases, leading to higher permeability values. The objective of this study was to investigate the effect of partially substituting glycerol by hydrolysed whey protein isolate (h-WPI) in WPI-based cast films on their mechanical, optical and barrier properties. As recently published by the author, it is proven that increasing the h-WPI content in WPI-based films at constant glycerol concentrations significantly increases film flexibility, while maintaining the barrier properties. The present study considered these facts in order to increase the barrier performance, while maintaining film flexibility. Therefore glycerol was partially replaced by h-WPI in WPI-based cast films. The results clearly indicate that partially replacing glycerol by h-WPI reduces the oxygen permeability and the water vapor transmission rate, while the mechanical properties did not change significantly. Thus, film flexibility was maintained, even though the plasticizer concentration was decreased. PMID:28811434

  15. Relationship between mozzarella yield and milk composition, processing factors, and recovery of whey constituents.

    PubMed

    Sales, D C; Rangel, A H N; Urbano, S A; Freitas, Alfredo R; Tonhati, Humberto; Novaes, L P; Pereira, M I B; Borba, L H F

    2017-06-01

    Our aim was to identify the relationship between mozzarella cheese yield and buffalo milk composition, processing factors, and recovery of whey constituents. A production of 30 batches of mozzarella cheese at a dairy industry in northeast Brazil (Rio Grande do Norte) was monitored between March and November 2015. Mozzarella yield and 32 other variables were observed for each batch, and divided into 3 groups: milk composition variables (12); variables involved in the cheesemaking process (14); and variables for recovery of whey constituents (6). Data were analyzed using descriptive statistics, Pearson correlation, and principal component analysis. Most of the correlations between milk composition variables and between the variables of the manufacturing processes were not significant. Significant correlations were mostly observed between variables for recovery of whey constituents. Yield only showed significant correlation with time elapsed between curd cuttings and age of the starter culture, and it showed greater association with age of the starter culture, time elapsed between curd cuttings, and during stretching, as well as with milk pH and density. Thus, processing factors and milk characteristics are closely related to dairy efficiency in mozzarella manufacturing. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  16. Detection of fraudulent addition of bovine whey in water buffalo ricotta cheese by isoelectric focusing.

    PubMed

    Fuselli, Fabio; Deluca, Anna; Montepeloso, Emanuela A; Ibba, Giulia; Tidona, Flavio; Longo, Lucia; Marianella, Rosa M

    2015-10-01

    Prevention of food fraud in the dairy field is a difficult issue for researchers, industries and policy makers, both for commercial and health reasons. Currently, no analytical method allows detection of the addition of bovine whey to water buffalo ricotta, so this fraudulent practice cannot be prevented. The authors' aim was to develop such a method. The conditions for extraction and purification of denatured ricotta whey proteins, which are unfolded and coagulated by heating during the production process, were optimized. The optimal composition of the polyacrylamide gel (pH range, type and concentration of chemical separator) was first evaluated and then the best conditions to perform the separation by isoelectric focusing were established. The performance of the method (precision, selectivity, robustness, sensibility) was determined. The method was shown to be reliable and robust for detection of the presence of bovine whey added to water buffalo Ricotta at percentages above 5% (v/v). The results suggest that the differences observed between bovine and water buffalo electrophoretic profiles are due to bovine β-lactoglobulin isoform A, which is never detected in water buffalo samples. © 2014 Society of Chemical Industry.

  17. Rheology and microstructure of kefiran and whey protein mixed gels.

    PubMed

    Kazazi, Hosayn; Khodaiyan, Faramarz; Rezaei, Karamatollah; Pishvaei, Malihe; Mohammadifar, Mohammad Amin; Moieni, Sohrab

    2017-04-01

    The effect of kefiran on cold-set gelation of whey protein isolate (WPI) at 25 °C was studied using rheological measurements and environmental scanning electron microscopy (ESEM). The gelation of samples was induced by the addition of glucono-δ-lactone to the dispersions. WPI concentration was maintained at 8% (w/v) and the concentration of kefiran varied from 0 to 0.08% (w/v). According to rheological measurements, the addition of kefiran into WPI dispersions resulted in a significant increase in the gel strength, the yield stress, and the shear stress values at the flowing point. The gelling point and gelation pH of samples decreased significantly with an increase in kefiran concentration. ESEM micrographs showed that the presence of kefiran played an important role in the microstructure formation of gels. The microstructure of kefiran-WPI mixed gels was more compact and dense, compared to the WPI gel. Depletion interactions between kefiran and whey protein aggregates can be regarded as the chief factor which was responsible for these effects. The present work demonstrated that rheological and microstructural properties of acid-induced whey protein gels were improved by the addition of kefiran.

  18. Nutrition and Inflammation in Older Individuals: Focus on Vitamin D, n-3 Polyunsaturated Fatty Acids and Whey Proteins.

    PubMed

    Ticinesi, Andrea; Meschi, Tiziana; Lauretani, Fulvio; Felis, Giovanna; Franchi, Fabrizio; Pedrolli, Carlo; Barichella, Michela; Benati, Giuseppe; Di Nuzzo, Sergio; Ceda, Gian Paolo; Maggio, Marcello

    2016-03-29

    Chronic activation of the inflammatory response, defined as inflammaging, is the key physio-pathological substrate for anabolic resistance, sarcopenia and frailty in older individuals. Nutrients can theoretically modulate this phenomenon. The underlying molecular mechanisms reducing the synthesis of pro-inflammatory mediators have been elucidated, particularly for vitamin D, n-3 polyunsaturated fatty acids (PUFA) and whey proteins. In this paper, we review the current evidence emerging from observational and intervention studies, performed in older individuals, either community-dwelling or hospitalized with acute disease, and evaluating the effects of intake of vitamin D, n-3 PUFA and whey proteins on inflammatory markers, such as C-Reactive Protein (CRP), interleukin-1 (IL-1), interleukin-6 (IL-6) and tumor necrosis factor α (TNF-α). After the analysis, we conclude that there is sufficient evidence for an anti-inflammatory effect in aging only for n-3 PUFA intake, while the few existing intervention studies do not support a similar activity for vitamin D and whey supplements. There is need in the future of large, high-quality studies testing the effects of combined dietary interventions including the above mentioned nutrients on inflammation and health-related outcomes.

  19. Nutrition and Inflammation in Older Individuals: Focus on Vitamin D, n-3 Polyunsaturated Fatty Acids and Whey Proteins

    PubMed Central

    Ticinesi, Andrea; Meschi, Tiziana; Lauretani, Fulvio; Felis, Giovanna; Franchi, Fabrizio; Pedrolli, Carlo; Barichella, Michela; Benati, Giuseppe; Di Nuzzo, Sergio; Ceda, Gian Paolo; Maggio, Marcello

    2016-01-01

    Chronic activation of the inflammatory response, defined as inflammaging, is the key physio-pathological substrate for anabolic resistance, sarcopenia and frailty in older individuals. Nutrients can theoretically modulate this phenomenon. The underlying molecular mechanisms reducing the synthesis of pro-inflammatory mediators have been elucidated, particularly for vitamin D, n-3 polyunsaturated fatty acids (PUFA) and whey proteins. In this paper, we review the current evidence emerging from observational and intervention studies, performed in older individuals, either community-dwelling or hospitalized with acute disease, and evaluating the effects of intake of vitamin D, n-3 PUFA and whey proteins on inflammatory markers, such as C-Reactive Protein (CRP), interleukin-1 (IL-1), interleukin-6 (IL-6) and tumor necrosis factor α (TNF-α). After the analysis, we conclude that there is sufficient evidence for an anti-inflammatory effect in aging only for n-3 PUFA intake, while the few existing intervention studies do not support a similar activity for vitamin D and whey supplements. There is need in the future of large, high-quality studies testing the effects of combined dietary interventions including the above mentioned nutrients on inflammation and health-related outcomes. PMID:27043616

  20. Effects of milk powder and its components on texture, yield, and color of a lean poultry meat model system.

    PubMed

    Barbut, S

    2010-06-01

    The effects of whole milk powder, 2 skim milk powders, caseinate, and 2 modified whey proteins (2% protein level in the final product) were evaluated in lean chicken meat batters and compared with controls with and without added lactose. All dairy proteins significantly (P<0.05) reduced cook losses when compared against the controls, with the 2 skim milk powders and modified whey-I showing the best results. Hardness and fracturability were also higher for all test batters compared with controls. Skim milk-II showed the highest fracturability value (21.9 vs. 7.1 N for the control) and was also found to be the most cost-effective ingredient for improving moisture binding and texture; skim milk-I and modified whey-I followed behind. Springiness and fracture distance were higher for all of the dairy proteins, except caseinate, indicating a positive contribution to the lean meat system's elasticity. In terms of color, adding the skim milk powders, modified whey-II, and whole milk powder resulted in lighter cooked meat batters as evidenced by the higher L* values and higher spectra curves.

  1. Performance of microbial fuel cell double chamber using mozzarella cheese whey substrate

    NASA Astrophysics Data System (ADS)

    Darmawan, M. D.; Hawa, L. C.; Argo, B. D.

    2018-03-01

    Nowadays the availability of electric energy is decreasing, hence there is a need for innovation of electric energy producer alternative; one of them is microbial fuel cell (MFC). MFC is a bioelectrochemical system generated by bacterial metabolism that utilizes organic substrate. One of the substrates that can be used is whey, a waste generated from cheese production. Therefore, this study aimed to determine the power of potential current and voltage generated from the use of whey cheese as a substrate for bacterial metabolism. In this research, double chamber system was used in microbial fuel cell reactor by using cheese whey as substrate at anode and potassium permanganate as cathode and utilizing membrane nafion 212 as membrane of proton exchange. The variable of experiment was bacteria type. The types of bacteria used in this study were Lactobacillus bulgaricus, Streptococcus thermophillus and Lactobacillus casei. While the operating time used was 100 hours. The highest current produced was 74.6 μA and the highest voltage was 529.3 mV produced by Lactobacillus bulgaricus bacteria. In this study, it was also found that the death phase of the three bacteria was at 70-80 hours.

  2. Effect of nutrient supplements addition on ethanol production from cheese whey using Candida psuedotropicalis under batch condition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghaly, A.E.; El-Taweel, A.A.

    1995-05-01

    Candida psuedotropicalis ATCC 8619 was selected among nine strains of lactose fermenting yeast for the production of ethanol from cheese whey. The effects of three nutrients (ammonium sulfate (NH{sub 4}){sub 2}SO{sub 4}, dipotassium hydrogen phosphate K{sub 2}HPO{sub 4}, yeast extract, and combination of them) on the ethanol yield from cheese whey were investigated. The results indicated that no addition of nutrient supplement is necessary to achieve complete lactose utilization during the cheese whey ethanol fermentation. However, addition of a small concentration (0.005% w/v) of these supplements reduced the lag period and the total fermentation time and increased the specific growthmore » rate of the yeast. Higher concentrations (0.01 and 0.015% w/v) of ammonium sulfate and dipotassium hydrogen phosphate inhibited the cell growth rate of the yeast. The highest ethanol (21.7% g/L) was achieved using yeast extract at a concentration of 0.01% w/v, given a conversion efficiency of 98.3%. No indication of alcohol inhibition was observed in this study. 60 refs., 9 figs., 3 tabs.« less

  3. Cheese whey management: a review.

    PubMed

    Prazeres, Ana R; Carvalho, Fátima; Rivas, Javier

    2012-11-15

    Cheese whey is simultaneously an effluent with nutritional value and a strong organic and saline content. Cheese whey management has been focused in the development of biological treatments without valorization; biological treatments with valorization; physicochemical treatments and direct land application. In the first case, aerobic digestion is reported. In the second case, six main processes are described in the literature: anaerobic digestion, lactose hydrolysis, fermentation to ethanol, hydrogen or lactic acid and direct production of electricity through microbial fuel cells. Thermal and isoelectric precipitation, thermocalcic precipitation, coagulation/flocculation, acid precipitation, electrochemical and membrane technologies have been considered as possible and attractive physicochemical processes to valorize or treat cheese whey. The direct land application is a common and longstanding practice, although some precautions are required. In this review, these different solutions are analyzed. The paper describes the main reactors used, the influence of the main operating variables, the microorganisms or reagents employed and the characterizations of the final effluent principally in terms of chemical oxygen demand. In addition, the experimental conditions and the main results reported in the literature are compiled. Finally, the comparison between the different treatment alternatives and the presentation of potential treatment lines are postulated. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Enrichment and Purification of Casein Glycomacropeptide from Whey Protein Isolate Using Supercritical Carbon Dioxide Processing and Membrane Ultrafiltration

    PubMed Central

    Bonnaillie, Laetitia M.; Qi, Phoebe; Wickham, Edward; Tomasula, Peggy M.

    2014-01-01

    Whey protein concentrates (WPC) and isolates (WPI), comprised mainly of β-lactoglobulin (β-LG), α-lactalbumin (α-LA) and casein glycomacropeptide (GMP), are added to foods to boost nutritional and functional properties. Supercritical carbon dioxide (SCO2) has been shown to effectively fractionate WPC and WPI to obtain enriched fractions of α-LA and β-LG, thus creating new whey ingredients that exploit the properties of the individual component proteins. In this study, we used SCO2 to further fractionate WPI via acid precipitation of α-LA, β-LG and the minor whey proteins to obtain GMP-enriched solutions. The process was optimized and α-LA precipitation maximized at low pH and a temperature (T) ≥65 °C, where β-LG with 84% purity and GMP with 58% purity were obtained, after ultrafiltration and diafiltration to separate β-LG from the GMP solution. At 70 °C, β-LG also precipitated with α-LA, leaving a GMP-rich solution with up to 94% purity after ultrafiltration. The different protein fractions produced with the SCO2 process will permit the design of new foods and beverages to target specific nutritional needs. PMID:28234306

  5. Viability and growth promotion of starter and probiotic bacteria in yogurt supplemented with whey protein hydrolysate during refrigerated storage.

    PubMed

    Dąbrowska, Anna; Babij, Konrad; Szołtysik, Marek; Chrzanowska, Józefa

    2017-11-22

    The effect of whey protein hydrolysate (WPH) addition on growth of standard yoghurt cultures and Bifidobacterium adolescentis during co-fermentation and its viability during storage at 4ºC in yoghurts has been evaluated. WPH was obtained with the use of serine protease from Y. lipolytica yeast. Stirred probiotic yoghurts were prepared by using whole milk standardized to 16% of dry matter with the addition of either whey protein concentrate, skim milk powder (SMP), WPH-SMP (ratio 1:1), WPH. The hydrolysate increased the yoghurt culture counts at the initial stage of fermentation and significantly inhibited the decrease in population viability throughout the storage at 4ºC in comparison to the control. The post-fermentation acidification was also retarded by the addition of WPH. The hydrolysate did not increase the Bifidobacterium adolescentis counts at the initial stage. However, the WPH significantly improved its viability. After 21 days of storage, in the yogurts supplemented with WPH, the population of these bacteria oscillated around 3.04 log10 CFU/g, while in samples where SMP or whey protein concentrate was used, the bacteria were no longer detected.

  6. Utilization of whey powder as substrate for low-cost preparation of β-galactosidase as main product, and ethanol as by-product, by a litre-scale integrated process.

    PubMed

    You, Shengping; Chang, Hongxing; Yin, Qingdian; Qi, Wei; Wang, Mengfan; Su, Rongxin; He, Zhimin

    2017-12-01

    Whey powder, a by-product of dairy industry, is an attractive raw material for value-added products. In this study, utilization of whey powder as substrate for low-cost preparation of β-galactosidase as main product and ethanol as by-product were investigated by a litre-scale integrated strategy, encompassing fermentation, isolation, permeabilization and spray drying. Firstly, through development of low-cost industrial culture and fed-batch strategies by Kluyveromyces lactis, 119.30U/mL β-galactosidase activity and 16.96mg/mL by-product ethanol were achieved. Afterward, an up-dated mathematic model for the recycling permeabilization was established successfully and 30.4g cells sediment isolated from 5L fermentation broth were permeabilized completely by distilled ethanol from broth supernatant. Then β-galactosidase product with 5.15U/mg from protection of gum acacia by spray drying was obtained. Furthermore, by-product ethanol with 31.08% (v/v) was achieved after permeabilization. Therefore, the integrated strategy using whey powder as substrate is a feasible candidate for industrial-scale implementation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Biomethanation of a mixture of salty cheese whey and poultry waste or cattle dung - a study of effect of temperature and retention time

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patel, C.; Madamwar, D.

    1996-08-01

    This paper describes the results of a study aimed at improving the efficiency of anaerobic digestion of salty cheese whey in combination with poultry waste or cattle dung. Best results were obtained when salty cheese whey was mixed with poultry waste in the ratio of 7:3, or cattle dung in the ratio of 1:1, both on dry weight basis giving maximum gas production of 1.2 L/L of digester/d with enriched methane content of 64% and 1.3 L/L of digester/d having methane content of 63% respectively. Various conditions such as temperature and retention time have been optimized for maximum process performance.more » 16 refs., 3 figs.« less

  8. Semicontinuous Production of Lactic Acid From Cheese Whey Using Integrated Membrane Reactor

    NASA Astrophysics Data System (ADS)

    Li, Yebo; Shahbazi, Abolghasem; Coulibaly, Sekou; Mims, Michele M.

    Semicontinuous production of lactic acid from cheese whey using free cells of Bifidobacterium longum with and without nanofiltration was studied. For the semicontinuous fermentation without membrane separation, the lactic acid productivity of the second and third runs is much lower than the first run. The semicontinuous fermentation with nanoseparation was run semicontinuously for 72 h with lactic acid to be harvested every 24 h using a nanofiltration membrane unit. The cells and unutilized lactose were kept in the reactor and mixed with newly added cheese whey in the subsequent runs. Slight increase in the lactic acid productivity was observed in the second and third runs during the semicontinuous fermentation with nanofiltration. It can be concluded that nanoseparation could improve the lactic acid productivity of the semicontinuous fermentation process.

  9. Claudins, dietary milk proteins, and intestinal barrier regulation.

    PubMed

    Kotler, Belinda M; Kerstetter, Jane E; Insogna, Karl L

    2013-01-01

    The family of claudin proteins plays an important role in regulating the intestinal barrier by modulating the permeability of tight junctions. The impact of dietary protein on claudin biology has not been studied extensively. Whey proteins have been reported to improve intestinal barrier function, but their mechanism of action is not clear. Recent studies, however, have demonstrated increased intestinal claudin expression in response to milk protein components. Reviewed here are new findings suggesting that whey-protein-derived transforming growth factor β transcriptionally upregulates claudin-4 expression via a Smad-4-dependent pathway. These and other data, including limited clinical studies, are summarized below and, in the aggregate, suggest a therapeutic role for whey protein in diseases of intestinal barrier dysfunction, perhaps, in part, by regulating claudin expression. © 2013 International Life Sciences Institute.

  10. The efficacy of whey associated with dodder seed extract on moderate-to-severe atopic dermatitis in adults: A randomized, double-blind, placebo-controlled clinical trial.

    PubMed

    Mehrbani, Mehrzad; Choopani, Rasool; Fekri, Alireza; Mehrabani, Mitra; Mosaddegh, Mahmoud; Mehrabani, Mehrnaz

    2015-08-22

    Atopic dermatitis is a common chronic inflammatory skin condition that is on the rise and adversely affects quality of life of the affected individual. Dry skin and pruritus, major characteristics of this disease, are associated with the dysfunction of the skin barrier. Though mild cases of the disease can be controlled with antihistamines and topical corticosteroids, moderate-to-severe cases often require treatment with immunomodulatory drugs, which have many side effects. It is now more common to use complementary and alternative medicines in the treatment of atopic dermatitis. In traditional Iranian medicine, the use of whey with the aqueous extract of field dodder (Cuscuta campestris Yunck.) seeds in severe and refractory cases of atopic dermatitis is common and has no side effects. The aim of this study was to assess the efficacy and safety of whey associated with dodder seed extract in the treatment of moderate-to-severe atopic dermatitis in adults. The study was a randomized, double-blind placebo control trial that was conducted on 52 patients with moderate-to-severe atopic dermatitis for 30 days. In this study patients received freeze dried whey powder with spray dried water extract of field dodder or the placebo for 15 days. At baseline (week zero), after the end of the 15 day treatment period (week three) and 15 days after stopping the drug or placebo (follow-up/week five), patients were evaluated in terms of skin moisture, elasticity, pigmentation, surface pH and sebum content on the forearm with Multi Skin Test Center® MC1000 (Courage & Khazaka, Germany) and the degree of pruritus and sleep disturbance in patients were also recorded. 42 patients completed 30 days of treatment with the medicine and the follow-up period. At the end of the follow-up period a significant increase in skin moisture and elasticity in the group receiving whey with dodder was observed compared with the placebo group (p<0.001). There was a significant difference between the two groups regarding the pruritus after 15 days of receiving treatment or the placebo (p<0.05), and at the end of the 30-day study period the difference was clearly significant (p<0.001). Sleep disturbance showed significant changes at the end of follow-up period (p<0.05). There was no significant difference between the two groups concerning changes in skin pigmentation, however, a significant decrease was observed in the group receiving whey associated with dodder seed extract over time (p<0.001). There were no significant alterations in skin surface pH and the amount of sebum between the two groups. Temporary side effects were reported including anorexia and mild gastrointestinal problems in drug use. It is noteworthy that in this study despite the fact that patients received whey with dodder for just 15 days, moisture and elasticity of the skin continued to increase in the second half of the study (follow-up period). This shows that the effect of whey with dodder is not transient and this drug really helped skin barrier reconstruction and accelerated the healing process of skin. This positively influenced the skin parameters and consequently the improvement of pruritus and sleep disturbance. The results indicate that whey associated with dodder seed extract can serve as a promising alternative for the treatment of moderate-to-severe atopic dermatitis. Iranian Registry of Clinical Trials IRCT2013121415790N1. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  11. Thermogenic Blend Alone or in Combination with Whey Protein Supplement Stimulates Fat Metabolism and Improves Body Composition in Mice

    PubMed Central

    Vieira-Brock, Paula de Lima; Vaughan, Brent M.; Vollmer, David L.

    2018-01-01

    Background: Certain food ingredients promote thermogenesis and fat loss. Similarly, whey protein improves body composition. Due to this potential synergistic effect, a blend of thermogenic food ingredients containing African mango, citrus fruit extract, Coleus forskohlii, dihydrocapsiate, and red pepper was tested alone and in combination with a whey protein supplement for its effects on body composition in sedentary mice during high-fat diet. Objective: The objective of this study was to evaluate the interaction of thermogenic foods on improving body composition during consumption of an unhealthy diet. Materials and Methods: C57BL/6J young adult male mice (n = 12) were placed on a 60% high-fat diet for 4 weeks and subsequently randomly assigned to receive daily dosing by oral gavage of vehicle, the novel blend alone or with whey protein supplement for another 4 weeks. Body composition, thermal imaging of brown adipose tissue (BAT), mitochondrial BAT uncoupling protein 1 (UCP1), and plasma levels of leptin were assessed. Results: Novel blend alone and in combination with protein supplement attenuated body weight gain, fat, and increased surface BAT temperature in comparison to vehicle control and to baseline (P < 0.5). The combination of novel blend and whey protein supplement also significantly increased UCP1 protein expression in BAT mitochondria in comparison to vehicle control and novel blend alone (P < 0.5). Conclusions: These data indicate that this novel blend stimulates thermogenesis and attenuates the gain in body weight and fat in response to high-fat diet in mice and these effects were improved when administered in combination with whey protein supplement. SUMMARY 30 days oral administration to mice of a novel blend containing African mango seed extract, citrus fruits extract, Coleus forskohlii root extract, dihydrocapsiate and red pepper fruit extract reduced body weight and fat gain in response to high-fat diet without impairing muscle mass.The novel blend stimulated thermogenesis as shown by the increased thermal imaging and UCP1 protein expression in brown adipose tissue, indicating that improvement in body composition potentially occurred due to a fat-burning effect.The positive effects on body weight, fat, and thermogenesis were improved when the novel blend was administered in combination with a whey protein supplement suggesting that protein provides a synergistic fat-burning effect. Abbreviations Used: BAT: Brown adipose tissue, UCP1: Uncoupling protein 1, DEXA: Dual-energy X-ray absorptiometry PMID:29568185

  12. Including whey protein and whey permeate in ready-to-use supplementary food improves recovery rates in children with moderate acute malnutrition: A randomized, double-blind clinical trial

    USDA-ARS?s Scientific Manuscript database

    The utility of dairy ingredients in the supplementary foods used in the treatment of childhood moderate acute malnutrition (MAM) remains unsettled. We evaluated the effectiveness of a peanut-based ready-to-use supplementary food (RUSF) with soy protein compared with a novel RUSF containing dairy in...

  13. Bone mineral content (BMC) and serum vitamin D concentrations of infants fed partially hydrolyzed infant formulas

    USDA-ARS?s Scientific Manuscript database

    The purpose of the study was to compare the bone status of healthy, term infants fed partially hydrolyzed whey formulas during the first 3 mo of life. Between 0 and 8 d of age, 89 infants were randomized to Good Start Supreme (GSS) or an experimental whey-based formula (EF) to 84 d of age. BMC was a...

  14. A reagent for specific recognition of cysteine in aqueous buffer and in natural milk: imaging studies, enzymatic reaction and analysis of whey protein.

    PubMed

    A, Anila H; G, Upendar Reddy; Ali, Firoj; Taye, Nandaraj; Chattopadhyay, Samit; Das, Amitava

    2015-11-04

    We report a new chemodosimetric probe () for specific recognition of cysteine (Cys) in aqueous buffer and in whey protein isolated from fresh cow's milk. Using this reagent we could develop a luminescence-based methodology for estimation of Cys released from a commercially available Cys-supplement drug by aminoacylase-1 in live cells.

  15. The effects of whey protein with or without carbohydrates on resistance training adaptations.

    PubMed

    Hulmi, Juha J; Laakso, Mia; Mero, Antti A; Häkkinen, Keijo; Ahtiainen, Juha P; Peltonen, Heikki

    2015-01-01

    Nutrition intake in the context of a resistance training (RT) bout may affect body composition and muscle strength. However, the individual and combined effects of whey protein and carbohydrates on long-term resistance training adaptations are poorly understood. A four-week preparatory RT period was conducted in previously untrained males to standardize the training background of the subjects. Thereafter, the subjects were randomized into three groups: 30 g of whey proteins (n = 22), isocaloric carbohydrates (maltodextrin, n = 21), or protein + carbohydrates (n = 25). Within these groups, the subjects were further randomized into two whole-body 12-week RT regimens aiming either for muscle hypertrophy and maximal strength or muscle strength, hypertrophy and power. The post-exercise drink was always ingested immediately after the exercise bout, 2-3 times per week depending on the training period. Body composition (by DXA), quadriceps femoris muscle cross-sectional area (by panoramic ultrasound), maximal strength (by dynamic and isometric leg press) and serum lipids as basic markers of cardiovascular health, were analysed before and after the intervention. Twelve-week RT led to increased fat-free mass, muscle size and strength independent of post-exercise nutrient intake (P < 0.05). However, the whey protein group reduced more total and abdominal area fat when compared to the carbohydrate group independent of the type of RT (P < 0.05). Thus, a larger relative increase (per kg bodyweight) in fat-free mass was observed in the protein vs. carbohydrate group (P < 0.05) without significant differences to the combined group. No systematic effects of the interventions were found for serum lipids. The RT type did not have an effect on the adaptations in response to different supplementation paradigms. Post-exercise supplementation with whey proteins when compared to carbohydrates or combination of proteins and carbohydrates did not have a major effect on muscle size or strength when ingested two to three times a week. However, whey proteins may increase abdominal fat loss and relative fat-free mass adaptations in response to resistance training when compared to fast-acting carbohydrates.

  16. Production of Antilisterial Bacteriocins from Lactic Acid Bacteria in Dairy-Based Media: A Comparative Study.

    PubMed

    Ünlü, Gülhan; Nielsen, Barbara; Ionita, Claudia

    2015-12-01

    One hundred and eight strains of lactic acid bacteria (LAB) were screened for bacteriocin production by the modified deferred antagonism and agar well diffusion methods. When the modified deferred antagonism method was employed, 82 LAB strains showed inhibitory action against Listeria monocytogenes v7 ½a, whereas 26 LAB strains expressed no inhibition. Only 12 LAB strains exhibited inhibitory activity when the agar well diffusion method was used, 11 of which had been previously recognized as bacteriocin production positive (Bac(+)). Lactobacillus viridescens NRRL B-1951 was determined, for the first time, to produce an inhibitory compound with a proteinaceous nature. The inhibitory activity was observed in the presence of lipase, α-chymotrypsin, and trypsin, but no inhibition zone could be detected in the presence of proteinase K, indicating the proteinaceous nature of the inhibitory compound. The inhibitory compound was active against Lact. sake ATCC 15521 and Lact. plantarum NCDO 995. Bacteriocin production by the Bac(+) LAB strains was assessed in Lactobacillus MRS Broth as well as in dairy-based media such as nonfat milk, demineralized whey powder, and cheddar cheese whey supplemented with complex nutrient sources that are rich in nitrogen. Lact. sake ATCC 15521 and L. monocytogenes CWD 1002, CWD 1092, CWD 1157, CWD 1198, and v7 ½a were used as indicators. The inhibitory activities of the bacteriocins varied depending on the indicator strains and the growth media used. The LAB indicator strains were found to be more sensitive to inhibition by bacteriocins when compared to the listerial indicator strains. Among the listerial indicators, L. monocytogenes CWD 1002 and CWD 1198 were the most sensitive strains to the bacteriocins investigated in this study. Media composition had a significant influence on bacteriocin production and activity. When compared to demineralized whey powder medium and cheddar cheese whey medium supplemented with whey protein concentrate, cheddar cheese whey medium supplemented with complex nutrient sources such as yeast extract, polypeptone, proteose peptone nr. 3, or soytone appeared to be more supportive of bacteriocin production.

  17. Effect of drinking compared with eating sugars or whey protein on short-term appetite and food intake.

    PubMed

    Akhavan, T; Luhovyy, B L; Anderson, G H

    2011-04-01

    It is hypothesized that a solid form of food or food components suppresses subjective appetite and short-term food intake (FI) more than a liquid form. To compare the effect of eating solid vs drinking liquid forms of gelatin, sucrose and its component mixtures, and whey protein, on subjective appetite and FI in young men. A randomized crossover design was used in three experiments in which the subjects were healthy males of normal weight. Solid and liquid forms of gelatin (6 g) (experiment 1, n=14), sucrose (75 g) and a mixture of 50% glucose/50% fructose (G50:F50) (experiment 2, n=15), and acid and sweet whey protein (50 g) (experiment 3, n=14) were compared. The controls were water (experiments 1 and 3) and calorie-free sweetened water with gelatin (sweet gelatin, experiment 1) or calorie-free sweetened water (sweet control, experiment 2). Subjective average appetite was measured by visual analog scales over 1 h and ad libitum FI was measured 1 h after treatment consumption. Average appetite area under the curve was not different between solid and liquid forms of sugars, but was larger, indicating greater satiety for solid compared with liquid forms of gelatin and sweet, but not acid whey protein. The FI was not different from that of control because of solid or liquid sugars or gelatin treatments. However, both solid and liquid forms of whey protein, with no difference among them, suppressed FI compared with control (P<0.05). Macronutrient composition is more important than physical state of foods in determining subjective appetite and FI.

  18. The effect of a whey protein supplement dose on satiety and food intake in resistance training athletes.

    PubMed

    MacKenzie-Shalders, Kristen L; Byrne, Nuala M; Slater, Gary J; King, Neil A

    2015-09-01

    Many athletes perform resistance training and consume dietary protein as a strategy to promote anabolic adaptation. Due to its high satiety value, the regular addition of supplemented dietary protein could plausibly displace other key macronutrients such as carbohydrate in an athlete's diet. This effect will be influenced by the form and dose of protein. Therefore, this study assessed the impact of liquid whey protein dose manipulation on subjective sensations of appetite and food intake in a cohort of athletes. Ten male athletes who performed both resistance and aerobic (endurance) training (21.2 ± 2.3 years; 181.7 ± 5.7 cm and 80.8 ± 6.1 kg) were recruited. In four counter-balanced testing sessions they consumed a manipulated whey protein supplement (20, 40, 60 or 80 g protein) 1 hour after a standardised breakfast. Subsequent energy intake was measured 3 hours after the protein supplement using an ad libitum test meal. Subjective appetite sensations were measured periodically during the test day using visual analogue scales. All conditions resulted in a significant decrease in ratings of hunger (50-65%; P < 0.05) at the time of supplement consumption. However, there were no significant differences between the conditions at any time point for subjective appetite sensations or for energy consumed in the ad libitum meal: 4382 ± 1004, 4643 ± 982, 4514 ± 1112, 4177 ± 1494 kJ respectively. Increasing whey protein supplement dose above 20 g did not result in a measurable increase in satiety or decrease in food intake. However, the inclusion of additional whey protein supplementation where not otherwise consumed could plausibly reduce dietary intake. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Brown pigment formation in heated sugar-protein mixed suspensions containing unmodified and peptically modified whey protein concentrates.

    PubMed

    Rongsirikul, Narumol; Hongsprabhas, Parichat

    2016-01-01

    Commercial whey protein concentrate (WPC) was modified by heating the acidified protein suspensions (pH 2.0) at 80 °C for 30 min and treating with pepsin at 37 °C for 60 min. Prior to spray-drying, such modification did not change the molecular weights (MWs) of whey proteins determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). After spray-drying the modified whey protein concentrate with trehalose excipient (MWPC-TH), it was found that the α-lactalbumin (α-La) was the major protein that was further hydrolyzed the most. The reconstituted MWPC-TH contained β-lactoglobulin (β-Lg) as the major protein and small molecular weight (MW) peptides of less than 6.5 kDa. The reconstituted MWPC-TH had higher NH2 group, Trolox equivalent antioxidant capacity (TEAC), lower exposed aromatic ring and thiol (SH) contents than did the commercial WPC. Kinetic studies revealed that the addition of MWPC-TH in fructose-glycine solution was able to reduce brown pigment formation in the mixtures heated at 80 to 95 °C by increasing the activation energy (Ea) of brown pigment formation due to the retardation of fluoresced advanced glycation end product (AGEs) formation. The addition of MWPC to reducing sugar-glycine/commercial WPC was also able to lower brown pigment formation in the sterilized (121 °C, 15 min) mixed suspensions containing 0.1 M reducing sugar and 0.5-1.0 % glycine and/or commercial (P < 0.05). It was demonstrated that the modification investigated in this study selectively hydrolyzed α-La and retained β-Lg for the production of antibrowning whey protein concentrate.

  20. Diets enriched in whey or casein improve energy balance and prevent morbidity and renal damage in salt-loaded and high-fat-fed spontaneously hypertensive stroke-prone rats.

    PubMed

    Singh, Arashdeep; Pezeshki, Adel; Zapata, Rizaldy C; Yee, Nicholas J; Knight, Cameron G; Tuor, Ursula I; Chelikani, Prasanth K

    2016-11-01

    High-fat diets induce obesity and increase risks of diabetes and cardiovascular and renal disorders. Whey- or casein-enriched diets decrease food intake and weight gain; however, their cardiovascular and renal benefits are unclear. We determined whether whey- and casein-enriched diets improve energy balance and are protective against renal damage and morbidity associated with stroke in an obesogenic and hypertensive experimental setting. We also assessed whether the hypophagic effects of these diets were due to reduced diet preference. In experiment 1, spontaneously hypertensive stroke-prone rats were randomized to (a) control (CON; 14% kcal protein, 33% fat), (b) whey (WHY; 40% protein, 33% fat), (c) casein (CAS; 40% protein, 33% fat) or (d) chow (CHW; 24% protein, 13% fat) for 12 weeks with 1% salt in drinking water for CON, WHY and CAS groups. Our results demonstrated that both WHY and CAS produced short-term hypophagia, moderately increased energy expenditure and decreased respiratory quotient, body weight and lean mass, with effects of WHY being more prolonged. Further, only WHY decreased fat mass and blood pressure. Importantly, both WHY and CAS prevented morbidity associated with stroke and decreased indices of renal inflammation (tumor necrosis factor-α, interleukin-6) and damage (osteopontin, renal lesions). In experiment 2, following four initial conditioning trials, the preference for CON, WHY or CAS diet was determined. Both WHY and CAS decreased food intake during conditioning and decreased preference. In conclusion, diets enriched in whey or casein improved energy balance, increased survival and prevented renal damage in salt-loaded and high-fat-fed spontaneously hypertensive stroke-prone rats. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Hyperconcentrated Sweet Whey, a New Culture Medium That Enhances Propionibacterium freudenreichii Stress Tolerance.

    PubMed

    Huang, Song; Rabah, Houem; Jardin, Julien; Briard-Bion, Valérie; Parayre, Sandrine; Maillard, Marie-Bernadette; Le Loir, Yves; Chen, Xiao Dong; Schuck, Pierre; Jeantet, Romain; Jan, Gwénaël

    2016-08-01

    Propionibacterium freudenreichii is used as a cheese-ripening starter and as a probiotic. Its reported physiological effects at the gut level, including modulation of bifidobacteria, colon epithelial cell proliferation and apoptosis, and intestinal inflammation, rely on active metabolism in situ Survival and activity are thus key factors determining its efficacy, creating stress adaptation and tolerance bottlenecks for probiotic applications. Growth media and growth conditions determine tolerance acquisition. We investigated the possibility of using sweet whey, a dairy by-product, to sustain P. freudenreichii growth. It was used at different concentrations (dry matter) as a culture medium. Using hyperconcentrated sweet whey led to enhanced multistress tolerance acquisition, overexpression of key stress proteins, and accumulation of intracellular storage molecules and compatible solutes, as well as enhanced survival upon spray drying. A simplified process from growth to spray drying of propionibacteria was developed using sweet whey as a 2-in-1 medium to both culture P. freudenreichii and protect it from heat and osmotic injury without harvesting and washing steps. As spray drying is far cheaper and more energy efficient than freeze-drying, this work opens new perspectives for the sustainable development of new starter and probiotic preparations with enhanced robustness. In this study, we demonstrate that sweet whey, a dairy industry by-product, not only allows the growth of probiotic dairy propionibacteria, but also triggers a multitolerance response through osmoadaptation and general stress response. We also show that propionibacteria accumulate compatible solutes under these culture conditions, which might account for the limited loss of viability after spray drying. This work opens new perspectives for more energy-efficient production of dairy starters and probiotics. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  2. Hyperconcentrated Sweet Whey, a New Culture Medium That Enhances Propionibacterium freudenreichii Stress Tolerance

    PubMed Central

    Huang, Song; Rabah, Houem; Jardin, Julien; Briard-Bion, Valérie; Parayre, Sandrine; Maillard, Marie-Bernadette; Le Loir, Yves; Schuck, Pierre; Jeantet, Romain

    2016-01-01

    ABSTRACT Propionibacterium freudenreichii is used as a cheese-ripening starter and as a probiotic. Its reported physiological effects at the gut level, including modulation of bifidobacteria, colon epithelial cell proliferation and apoptosis, and intestinal inflammation, rely on active metabolism in situ. Survival and activity are thus key factors determining its efficacy, creating stress adaptation and tolerance bottlenecks for probiotic applications. Growth media and growth conditions determine tolerance acquisition. We investigated the possibility of using sweet whey, a dairy by-product, to sustain P. freudenreichii growth. It was used at different concentrations (dry matter) as a culture medium. Using hyperconcentrated sweet whey led to enhanced multistress tolerance acquisition, overexpression of key stress proteins, and accumulation of intracellular storage molecules and compatible solutes, as well as enhanced survival upon spray drying. A simplified process from growth to spray drying of propionibacteria was developed using sweet whey as a 2-in-1 medium to both culture P. freudenreichii and protect it from heat and osmotic injury without harvesting and washing steps. As spray drying is far cheaper and more energy efficient than freeze-drying, this work opens new perspectives for the sustainable development of new starter and probiotic preparations with enhanced robustness. IMPORTANCE In this study, we demonstrate that sweet whey, a dairy industry by-product, not only allows the growth of probiotic dairy propionibacteria, but also triggers a multitolerance response through osmoadaptation and general stress response. We also show that propionibacteria accumulate compatible solutes under these culture conditions, which might account for the limited loss of viability after spray drying. This work opens new perspectives for more energy-efficient production of dairy starters and probiotics. PMID:27235433

  3. Kinetic characterization of a novel endo-β-N-acetylglucosaminidase on concentrated bovine colostrum whey to release bioactive glycans.

    PubMed

    Karav, Sercan; Parc, Annabelle Le; de Moura Bell, Juliana Maria Leite Nobrega; Rouquié, Camille; Mills, David A; Barile, Daniela; Block, David E

    2015-09-01

    EndoBI-1 is a recently isolated endo-β-N-acetylglucosaminidase, which cleaves the N-N'-diacetyl chitobiose moiety found in the N-glycan core of high mannose, hybrid and complex N-glycans. These N-glycans have selective prebiotic activity for a key infant gut microbe, Bifidobacterium longum subsp. infantis. The broad specificity of EndoBI-1 suggests the enzyme may be useful for many applications, particularly for deglycosylating milk glycoproteins in dairy processing. To facilitate its commercial use, we determined kinetic parameters for EndoBI-1 on the model substrates ribonuclease B and bovine lactoferrin, as well as on concentrated bovine colostrum whey. Km values ranging from 0.25 to 0.49, 0.43 to 1.00 and 0.90 to 3.18 mg/mL and Vmax values ranging from 3.5×10(-3) to 5.09×10(-3), 4.5×10(-3) to 7.75×10(-3) and 1.9×10(-2)to 5.2×10(-2) mg/mL×min were determined for ribonuclease B, lactoferrin and whey, respectively. In general, EndoBI-1 showed the highest apparent affinity for ribonuclease B, while the maximum reaction rate was the highest for concentrated whey. EndoBI-1-released N-glycans were quantified by a phenol-sulphuric total carbohydrate assay and the resultant N-glycan structures monitored by nano-LC-Chip-Q-TOF MS. The kinetic parameters and structural characterization of glycans released suggest EndoBI-1 can facilitate large-scale release of complex, bioactive glycans from a variety of glycoprotein substrates. Moreover, these results suggest that whey, often considered as a waste product, can be used effectively as a source of prebiotic N-glycans. Copyright © 2015. Published by Elsevier Inc.

  4. Fermented whey-based product improves the quality of life of males with moderate lower urinary tract symptoms: A randomized double-blind study.

    PubMed

    Ausmees, Kristo; Ehrlich-Peets, Kersti; Vallas, Mirjam; Veskioja, Andre; Rammul, Kadi; Rehema, Aune; Zilmer, Mihkel; Songisepp, Epp; Kullisaar, Tiiu

    2018-01-01

    The purpose of this research was to evaluate the effect of a specific fermented whey product on lower urinary tract symptoms, main prostate related indices and oxidative stress/inflammatory markers in urine and seminal plasma in men with moderate dysuric symptoms. An additional purpose was to clarify associations between different parameters with special emphasis on pain. This was a prospective randomized double-blind 4-weeks study on men with moderate lower urinary tract symptoms who underwent the evaluation for quality of life at the baseline and at the end of the study. The symptoms were characterized by International Prostate Symptom Score (I-PSS) and National Institutes of Health Chronic Prostatitis Symptom Index (NIH-PSI), the maximum urinary flow and the main prostate-related indices. In order to obtain more comprehensive information about the effects of fermented whey product on systemic oxidative stress marker 8-EPI and seminal plasma inflammatory markers (interleukin-6 and interleukin-8) were also measured. After 4 weeks consumption of fermented whey product there was a statistically significant decrease of prostate-specific antigen level in serum and systemic stress marker 8-EPI in urine compared to control group. Maximum urinary flow and NIH-PSI all studied scores and sub-scores had also significant improvement. In addition, seminal plasma interleukin-8 level substantially decreased. The consumption of special fermented whey product improved urinary function, reduced lower urinary tract symptoms, systemic oxidative stress marker and seminal plasma inflammatory status. Thus it contributed to an improvement of the quality of life in men with moderate lower urinary tract symptoms.

  5. Fermentation of lactose to ethanol in cheese whey permeate and concentrated permeate by engineered Escherichia coli.

    PubMed

    Pasotti, Lorenzo; Zucca, Susanna; Casanova, Michela; Micoli, Giuseppina; Cusella De Angelis, Maria Gabriella; Magni, Paolo

    2017-06-02

    Whey permeate is a lactose-rich effluent remaining after protein extraction from milk-resulting cheese whey, an abundant dairy waste. The lactose to ethanol fermentation can complete whey valorization chain by decreasing dairy waste polluting potential, due to its nutritional load, and producing a biofuel from renewable source at the same time. Wild type and engineered microorganisms have been proposed as fermentation biocatalysts. However, they present different drawbacks (e.g., nutritional supplements requirement, high transcriptional demand of recombinant genes, precise oxygen level, and substrate inhibition) which limit the industrial attractiveness of such conversion process. In this work, we aim to engineer a new bacterial biocatalyst, specific for dairy waste fermentation. We metabolically engineered eight Escherichia coli strains via a new expression plasmid with the pyruvate-to-ethanol conversion genes, and we carried out the selection of the best strain among the candidates, in terms of growth in permeate, lactose consumption and ethanol formation. We finally showed that the selected engineered microbe (W strain) is able to efficiently ferment permeate and concentrated permeate, without nutritional supplements, in pH-controlled bioreactor. In the conditions tested in this work, the selected biocatalyst could complete the fermentation of permeate and concentrated permeate in about 50 and 85 h on average, producing up to 17 and 40 g/l of ethanol, respectively. To our knowledge, this is the first report showing efficient ethanol production from the lactose contained in whey permeate with engineered E. coli. The selected strain is amenable to further metabolic optimization and represents an advance towards efficient biofuel production from industrial waste stream.

  6. Proteomic Profiling Comparing the Effects of Different Heat Treatments on Camel (Camelus dromedarius) Milk Whey Proteins

    PubMed Central

    Benabdelkamel, Hicham; Masood, Afshan; Alanazi, Ibrahim O.; Alzahrani, Dunia A.; Alrabiah, Deema K.; AlYahya, Sami A.; Alfadda, Assim A.

    2017-01-01

    Camel milk is consumed in the Middle East because of its high nutritional value. Traditional heating methods and the duration of heating affect the protein content and nutritional quality of the milk. We examined the denaturation of whey proteins in camel milk by assessing the effects of temperature on the whey protein profile at room temperature (RT), moderate heating at 63 °C, and at 98 °C, for 1 h. The qualitative and quantitative variations in the whey proteins before and after heat treatments were determined using quantitative 2D-difference in gel electrophoresis (DIGE)-mass spectrometry. Qualitative gel image analysis revealed a similar spot distribution between samples at RT and those heated at 63 °C, while the spot distribution between RT and samples heated at 98 °C differed. One hundred sixteen protein spots were determined to be significantly different (p < 0.05 and a fold change of ≥1.2) between the non-heated and heated milk samples. Eighty protein spots were decreased in common in both the heat-treated samples and an additional 25 spots were further decreased in the 98 °C sample. The proteins with decreased abundance included serum albumin, lactadherin, fibrinogen β and γ chain, lactotransferrin, active receptor type-2A, arginase-1, glutathione peroxidase-1 and, thiopurine S, etc. Eight protein spots were increased in common to both the samples when compared to RT and included α-lactalbumin, a glycosylation-dependent cell adhesion molecule. Whey proteins present in camel milk were less affected by heating at 63 °C than at 98 °C. This experimental study showed that denaturation increased significantly as the temperature increased from 63 to 98 °C. PMID:28350354

  7. Supplementing formula-fed piglets with a low molecular weight fraction of bovine colostrum whey results in an improved intestinal barrier.

    PubMed

    De Vos, M; Huygelen, V; Van Raemdonck, G; Willemen, S; Fransen, E; Van Ostade, X; Casteleyn, C; Van Cruchten, S; Van Ginneken, C

    2014-08-01

    To test the hypothesis that a low molecular weight fraction of colostral whey could affect the morphology and barrier function of the small intestine, 30 3-d-old piglets (normal or low birth weight) were suckled (n = 5), artificially fed with milk formula (n = 5), or artificially fed with milk formula with a low molecular weight fraction of colostral whey (n = 5) until 10 d of age. The small intestine was sampled for histology (haematoxylin and eosin stain; anti-KI67 immunohistochemistry) and enzyme activities (aminopeptidase A, aminopeptidase N, dipeptidylpeptidase IV, lactase, maltase, and sucrase). In addition, intestinal permeability was evaluated via a dual sugar absorption test and via the measurement of occludin abundance. Artificially feeding of piglets reduced final BW (P < 0.001), villus height (P < 0.001), lactase (P < 0.001), and dipeptidylpeptidase IV activities (P < 0.07), whereas crypt depth (P < 0.001) was increased. No difference was observed with regard to the permeability measurements when comparing artificially fed with naturally suckling piglets. Supplementing piglets with the colostral whey fraction did not affect BW, enzyme activities, or the outcome of the dual sugar absorption test. On the contrary, the small intestines of supplemented piglets had even shorter villi (P = 0.001) than unsupplemented piglets and contained more occludin (P = 0.002). In conclusion, at 10 d of age, no differences regarding intestinal morphology and permeability measurements were observed between the 2 BW categories. In both weight categories, the colostral whey fraction affected the morphology of the small intestine but did not improve the growth performances or the in vivo permeability. These findings should be acknowledged when developing formulated milk for neonatal animals with the aim of improving the performance of low birth weight piglets.

  8. No Difference Between the Effects of Supplementing With Soy Protein Versus Animal Protein on Gains in Muscle Mass and Strength in Response to Resistance Exercise.

    PubMed

    Messina, Mark; Lynch, Heidi; Dickinson, Jared M; Reed, Katharine E

    2018-05-03

    Much attention has been given to determining the influence of total protein intake and protein source on gains in lean body mass (LBM) and strength in response to resistance exercise training (RET). Acute studies indicate that whey protein, likely related to its higher leucine content, stimulates muscle protein synthesis (MPS) to a greater extent than proteins such as soy and casein. Less clear is the extent to which the type of protein supplemented impacts strength and LBM in longer term studies (≥6 weeks). Therefore, a meta-analysis was conducted to compare the effect of supplementation with soy protein to animal protein supplementation on strength and LBM in response to RET. Nine studies involving 266 participants suitable for inclusion in the meta-analysis were identified. Five studies compared whey with soy protein and four compared soy protein with other proteins (beef, milk or dairy protein). Meta-analysis showed that supplementing RET with whey or soy protein resulted in significant increases in strength but found no difference between groups (bench press Chi 2 = 0.02, p=0.90; squat Chi 2 =0.22, p =0.64). There was no significant effect of whey or soy alone (n=5) on LBM change, and no differences between groups (Chi 2 =0.00, p=0.96). Strength and LBM both increased significantly in the 'other protein' and the soy groups (n=9), but there were no between group differences (bench Chi 2 =0.02, p=0.88; squat Chi 2 =0.78, p=0.38 and LBM Chi 2 =0.06, p=0.80). The results of this meta-analysis indicate that soy protein supplementation produces similar gains in strength and LBM in response to RET as whey protein.

  9. Cow milk allergy symptoms are reduced in mice fed dietary synbiotics during oral sensitization with whey.

    PubMed

    Schouten, Bastiaan; van Esch, Betty C A M; Hofman, Gerard A; van Doorn, Suzan A C M; Knol, Jan; Nauta, Alma J; Garssen, Johan; Willemsen, Linette E M; Knippels, Léon M J

    2009-07-01

    Cow milk allergy is the most common food allergy in children. So far, no effective treatment is available to prevent or cure food allergy. The purpose of this study was to compare effects of dietary supplementation with a prebiotic mixture (Immunofortis), a probiotic strain [Bifidobacterium breve M-16V], or a synbiotic diet combining both on the outcome of the allergic response when provided during oral sensitization with whey in mice. Mice were fed diets containing 2% (wt:wt) Immunofortis and/or the B. breve M-16V (n = 6/group). The acute allergic skin response was determined by measuring ear swelling. Antigen-induced anaphylaxis was scored. Furthermore, whey-specific serum immunoglobulins and mouse mast cell protease-1 (mMCP-1) were determined. In mice fed the synbiotic mixture, the allergic skin response and the anaphylactic reaction were strongly reduced compared with whey-sensitized mice fed the control diet (P < 0.01). Immunofortis or B. breve M-16V alone were significantly less effective in reducing the allergic skin response than the synbiotic diet and did not reduce the anaphylactic reaction. The whey-specific IgE and IgG(1) responses were not affected; however, IgG(2a) was greater in all treated groups than in the control group (P < 0.05). Serum mMCP-1 concentrations, reflecting mucosal mast cell degranulation, were lower in mice fed synbiotics compared with those fed the control diet (P < 0.01). Dietary supplementation with Immunofortis, B. breve M-16V, and particularly the synbiotic mixture, provided during sensitization, reduces the allergic effector response in a murine model of IgE-mediated hypersensitivity that mimics the human route of sensitization. This model shows the potential for dietary intervention with synbiotics in reducing the allergic response to food allergens.

  10. Enzymatic treatment of whey proteins in cow's milk results in differential inhibition of IgE-mediated mast cell activation compared to T-cell activation.

    PubMed

    Knipping, Karen; van Esch, Betty C A M; van Ieperen-van Dijk, Adrie G; van Hoffen, Els; van Baalen, Ton; Knippels, Léon M J; van der Heide, Sicco; Dubois, Anthony E J; Garssen, Johan; Knol, Edward F

    2012-01-01

    Cow's milk (CM) hydrolysates are frequently used as milk substitutes for children with CM allergy. In hydrolysates, allergenic epitopes within CM proteins are diminished by enzymatic treatment. The aim of this study was to examine the allergenic and immunogenic properties of whey proteins during hydrolysis. During hydrolysis, samples were obtained at 0, 10, 15, 30, 45, 60, 75 and 90 min. Degradation was checked by HPLC and SDS-PAGE. Allergenic potential was analyzed by IgE crosslinking capacity of human Fcε receptor type 1-transduced rat basophilic leukemia cells sensitized with serum of CM-allergic patients. Whey-sensitized C3H/HeOuJ mice were ear challenged intracutaneously with the hydrolysates. Immunogenicity was tested using whey-specific human T-cell clones and T-cell lines at the level of proliferation and release of IL-4, IL-10, IL-13 and IFN-γ. After 15 min of hydrolysis, the majority of the proteins were degraded. Hydrolysis for 15 min resulted in 92% inhibition of mast cell degranulation and in 82% reduction of ear swelling in the mouse model. In contrast, T-cell-stimulatory capacity was less affected by hydrolysis: reduction of human T-cell proliferation was only 9%. This was further reduced to 57 and 74% after 30 and 45 min of hydrolysis, respectively. Cytokine production followed the pattern of T-cell proliferation. Via differential analysis of allergenic versus immunogenic properties of the time kinetics of hydrolysis of whey proteins, we have demonstrated specific hydrolysis conditions with reduced IgE-crosslinking responses but retained T-cell activating properties. This approach might be useful in better defining CM hydrolysates. Copyright © 2012 S. Karger AG, Basel.

  11. Performance assessment of membrane distillation for skim milk and whey processing.

    PubMed

    Hausmann, Angela; Sanciolo, Peter; Vasiljevic, Todor; Kulozik, Ulrich; Duke, Mikel

    2014-01-01

    Membrane distillation is an emerging membrane process based on evaporation of a volatile solvent. One of its often stated advantages is the low flux sensitivity toward concentration of the processed fluid, in contrast to reverse osmosis. In the present paper, we looked at 2 high-solids applications of the dairy industry: skim milk and whey. Performance was assessed under various hydrodynamic conditions to investigate the feasibility of fouling mitigation by changing the operating parameters and to compare performance to widespread membrane filtration processes. Whereas filtration processes are hydraulic pressure driven, membrane distillation uses vapor pressure from heat to drive separation and, therefore, operating parameters have a different bearing on the process. Experimental and calculated results identified factors influencing heat and mass transfer under various operating conditions using polytetrafluoroethylene flat-sheet membranes. Linear velocity was found to influence performance during skim milk processing but not during whey processing. Lower feed and higher permeate temperature was found to reduce fouling in the processing of both dairy solutions. Concentration of skim milk and whey by membrane distillation has potential, as it showed high rejection (>99%) of all dairy components and can operate using low electrical energy and pressures (<10 kPa). At higher cross-flow velocities (around 0.141 m/s), fluxes were comparable to those found with reverse osmosis, achieving a sustainable flux of approximately 12 kg/h·m(2) for skim milk of 20% dry matter concentration and approximately 20 kg/h·m(2) after 18 h of operation with whey at 20% dry matter concentration. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  12. Biodegradation of free cyanide and subsequent utilisation of biodegradation by-products by Bacillus consortia: optimisation using response surface methodology.

    PubMed

    Mekuto, Lukhanyo; Ntwampe, Seteno Karabo Obed; Jackson, Vanessa Angela

    2015-07-01

    A mesophilic alkali-tolerant bacterial consortium belonging to the Bacillus genus was evaluated for its ability to biodegrade high free cyanide (CN(-)) concentration (up to 500 mg CN(-)/L), subsequent to the oxidation of the formed ammonium and nitrates in a continuous bioreactor system solely supplemented with whey waste. Furthermore, an optimisation study for successful cyanide biodegradation by this consortium was evaluated in batch bioreactors (BBs) using response surface methodology (RSM). The input variables, that is, pH, temperature and whey-waste concentration, were optimised using a numerical optimisation technique where the optimum conditions were found to be as follows: pH 9.88, temperature 33.60 °C and whey-waste concentration of 14.27 g/L, under which 206.53 mg CN(-)/L in 96 h can be biodegraded by the microbial species from an initial cyanide concentration of 500 mg CN(-)/L. Furthermore, using the optimised data, cyanide biodegradation in a continuous mode was evaluated in a dual-stage packed-bed bioreactor (PBB) connected in series to a pneumatic bioreactor system (PBS) used for simultaneous nitrification, including aerobic denitrification. The whey-supported Bacillus sp. culture was not inhibited by the free cyanide concentration of up to 500 mg CN(-)/L, with an overall degradation efficiency of ≥ 99 % with subsequent nitrification and aerobic denitrification of the formed ammonium and nitrates over a period of 80 days. This is the first study to report free cyanide biodegradation at concentrations of up to 500 mg CN(-)/L in a continuous system using whey waste as a microbial feedstock. The results showed that the process has the potential for the bioremediation of cyanide-containing wastewaters.

  13. Casein protein results in higher prandial and exercise induced whole body protein anabolism than whey protein in chronic obstructive pulmonary disease.

    PubMed

    Engelen, Mariëlle P K J; Rutten, Erica P A; De Castro, Carmen L N; Wouters, Emiel F M; Schols, Annemie M W J; Deutz, Nicolaas E P

    2012-09-01

    Exercise is known to improve physical functioning and health status in Chronic Obstructive Pulmonary Disease (COPD). Recently, disturbances in protein turnover and amino acid kinetics have been observed after exercise in COPD. The objective was to investigate which dairy protein is able to positively influence the protein metabolic response to exercise in COPD. 8 COPD patients and 8 healthy subjects performed a cycle test on two days while ingesting casein or whey protein. Whole body protein breakdown (WbPB), synthesis (WbPS), splanchnic amino acid extraction (SPE), and NetWbPS (=WbPS-WbPB) were measured using stable isotope methodology during 20 min of exercise (at 50% peak work load of COPD group). The controls performed a second exercise test at the same relative workload. Exercise was followed by 1 h of recovery. In the healthy group, WbPS, SPE, and NetPS were higher during casein than during whey feeding (P<.01). WbPS and NetPS were higher during exercise, independent of exercise intensity (P<.01). NetPS was higher during casein feeding in COPD due to lower WbPB (P<.05). Higher SPE was found during exercise during casein and whey feeding in COPD (P<.05). Lactate levels during exercise were higher in COPD (P<.05) independent of the protein. Post-exercise, lower NetPS values were found independent of protein type in both groups. Casein resulted in more protein anabolism than whey protein which was maintained during and following exercise in COPD. Optimizing protein intake might be of importance for muscle maintenance during daily physical activities in COPD. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Moisture Sensitivity, Optical, Mechanical and Structural Properties of Whey Protein-Based Edible Films Incorporated with Rapeseed Oil

    PubMed Central

    Kadzińska, Justyna

    2016-01-01

    Summary The objective of this work is to study the effect of the rapeseed oil content on the physical properties of whey protein emulsion films. For this purpose, whey protein films with the addition of 0, 1, 2 and 3% of rapeseed oil, and glycerol as a plasticizer were obtained by the casting method. Film-forming emulsions were evaluated and compared using light scattering granulometry. The Sauter mean diameters (d32) of lipid droplets in film-forming solutions showed an increasing trend when increasing the oil volume fractions. The inclusion of rapeseed oil enhanced the hydrophobic character of whey protein films, reducing moisture content and film solubility in water. All emulsified films showed high lightness (L*≈90). Parameter a* decreased and parameter b* and total colour difference (∆E) increased with the increase of the volume fractions of oil. These results were consistent with visual observations; control films were transparent and those containing oil opaque. Water vapour sorption experimental data at the full range of water activity values from 0.11 to 0.93 were well described with Peleg’s equation (R2≥0.99). The tensile strength, Young’s modulus and elongation at break increased with the increase of rapeseed oil volume fraction, which could be explained by interactions between lipids and the protein matrix. These results revealed that rapeseed oil has enormous potential to be incorporated into whey protein to make edible film or coating for some food products. The mechanical resistance decreased with the addition of the lipids, and the opacity and soluble matter content increased. PMID:27904396

  15. Influence of exercise contraction mode and protein supplementation on human skeletal muscle satellite cell content and muscle fiber growth.

    PubMed

    Farup, Jean; Rahbek, Stine Klejs; Riis, Simon; Vendelbo, Mikkel Holm; Paoli, Frank de; Vissing, Kristian

    2014-10-15

    Skeletal muscle satellite cells (SCs) are involved in remodeling and hypertrophy processes of skeletal muscle. However, little knowledge exists on extrinsic factors that influence the content of SCs in skeletal muscle. In a comparative human study, we investigated the muscle fiber type-specific association between emergence of satellite cells (SCs), muscle growth, and remodeling in response to 12 wk unilateral resistance training performed as eccentric (Ecc) or concentric (Conc) resistance training ± whey protein (Whey, 19.5 g protein + 19.5 g glucose) or placebo (Placebo, 39 g glucose) supplementation. Muscle biopsies (vastus lateralis) were analyzed for fiber type-specific SCs, myonuclei, and fiber cross-sectional area (CSA). Following training, SCs increased with Conc in both type I and type II fibers (P < 0.01) and exhibited a group difference from Ecc (P < 0.05), which did not increase. Myonuclei content in type I fibers increased in all groups (P < 0.01), while a specific accretion of myonuclei in type II fibers was observed in the Whey-Conc (P < 0.01) and Placebo-Ecc (P < 0.01) groups. Similarly, whereas type I fiber CSA increased independently of intervention (P < 0.001), type II fiber CSA increased exclusively with Whey-Conc (P < 0.01) and type II fiber hypertrophy correlated with whole muscle hypertrophy exclusively following Conc training (P < 0.01). In conclusion, isolated concentric knee extensor resistance training appears to constitute a stronger driver of SC content than eccentric resistance training while type II fiber hypertrophy was accentuated when combining concentric resistance training with whey protein supplementation. Copyright © 2014 the American Physiological Society.

  16. Effects of Substitution, and Adding of Carbohydrate and Fat to Whey-Protein on Energy Intake, Appetite, Gastric Emptying, Glucose, Insulin, Ghrelin, CCK and GLP-1 in Healthy Older Men—A Randomized Controlled Trial

    PubMed Central

    Lange, Kylie; Hatzinikolas, Seva; Hausken, Trygve; Jones, Karen L.; Horowitz, Michael; Chapman, Ian; Soenen, Stijn

    2018-01-01

    Protein-rich supplements are used widely for the management of malnutrition in the elderly. We reported previously that the suppression of energy intake by whey protein is less in older than younger adults. The aim was to determine the effects of substitution, and adding of carbohydrate and fat to whey protein, on ad libitum energy intake from a buffet meal (180–210 min), gastric emptying (3D-ultrasonography), plasma gut hormone concentrations (0–180 min) and appetite (visual analogue scales), in healthy older men. In a randomized, double-blind order, 13 older men (75 ± 2 years) ingested drinks (~450 mL) containing: (i) 70 g whey protein (280 kcal; ‘P280’); (ii) 14 g protein, 28 g carbohydrate, 12.4 g fat (280 kcal; ‘M280’); (iii) 70 g protein, 28 g carbohydrate, 12.4 g fat (504 kcal; ‘M504’); or (iv) control (~2 kcal). The caloric drinks, compared to a control, did not suppress appetite or energy intake; there was an increase in total energy intake (drink + meal, p < 0.05), which was increased most by the M504-drink. P280- and M504-drink ingestion were associated with slower a gastric-emptying time (n = 9), lower ghrelin, and higher cholecystokinin (CCK) and glucagon-like peptide-1 (GLP-1) than M280 (p < 0.05). Glucose and insulin were increased most by the mixed-macronutrient drinks (p < 0.05). In conclusion, energy intake was not suppressed, compared to a control, and particularly whey protein, affected gastric emptying and gut hormone responses. PMID:29360778

  17. Effect of lactose concentration on batch production of ethanol from cheese whey using Candida pseudotropicalis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghaly, A.E.; El-Taweel, A.A.

    1995-07-01

    The effect of lactose concentration on growth of Candida pseudotropicalis and ethanol production from cheese whey under batch conditions was investigated. Four initial lactose concentrations ranging from 50 to 200 g/L (5 to 20% wt/vol) were used. High concentration of lactose had an inhibitory effect on the specific growth rate, lactose utilization rate, and ethanol production rate. The maximum cell concentration was influenced by the initial substrate concentration as well as ethanol concentration. Inhibition of ethanol production was more pronounced at higher initial lactose concentrations. The maximum ethanol yield (96.6% of the theoretical yield) was achieved with the 100 g/Lmore » initial substrate concentration. The results indicated that pH control during alcohol fermentation of cheese whey is not necessary. 41 refs., 12 figs., 1 tab.« less

  18. Micelle-mediated extraction of elderberry blossom by whey protein and naturally derived surfactants.

    PubMed

    Śliwa, Karolina; Tomaszkiewicz-Potępa, Anna; Sikora, Elżbieta; Ogonowski, Jan

    2013-01-01

    Classical methods of the extraction of active ingredients from the plant material are expensive, complicated and often environmentally unfriendly. The micelle-mediated extraction method (MME) seems to be a good alternative. In this work, extractions of elderberry blossoms (Flos Sambuci) were performed using MME methods. Several popular surfactants and whey protein concentrate (WPC) was applied in the process. The obtained results were compared with those obtained in extraction by means of water. Antioxidant properties of the extracts were analyzed by using two different methods: reaction with di(phenyl)-(2,4,6-trinitrophenyl)iminoazanium (DPPH) reagent and Follin's method. Furthermore, the flavonoid content in the extracts was determined. The results confirmed that the MME method with using whey protein might be an alternative method for obtaining, rich in natural antioxidants, plant extracts.

  19. Secretion of whey acidic protein and cystatin is down regulated at mid-lactation in the red kangaroo (Macropus rufus)

    USGS Publications Warehouse

    Nicholas, K.R.; Fisher, J.A.; Muths, E.; Trott, J.; Janssens, P.A.; Reich, C.; Shaw, D.C.

    2001-01-01

    Milk collected from the red kangaroo (Macropus rufus) between day 100 and 260 of lactation showed major changes in milk composition at around day 200 of lactation, the time at which the pouch young begins to temporarily exit the pouch and eat herbage. The carbohydrate content of milk declined abruptly at this time and although there was only a small increase in total protein content, SDS PAGE analysis of milk revealed asynchrony in the secretory pattern of individual proteins. The levels of α-lactalbumin, β-lactoglobulin, serum albumin and transferrin remain unchanged during lactation. In contrast, the protease inhibitor cystatin, and the putative protease inhibitor whey acidic protein (WAP) first appeared in milk at elevated concentrations after approximately 150 days of lactation and then ceased to be secreted at approximately 200 days. In addition, a major whey protein, late lactation protein, was first detected in milk around the time whey acidic protein and cystatin cease to be secreted and was present at least until day 260 of lactation. The co-ordinated, but asynchronous secretion of putative protease inhibitors in milk may have several roles during lactation including tissue remodelling in the mammary gland and protecting specific proteins in milk required for physiological development of the dependent young.

  20. Examination of Incubation Conditions for Production of HERICIUM ERINACEUM

    NASA Astrophysics Data System (ADS)

    Okumura, Ryosuke; Sasaki, Chizuru; Asada, Chikako; Nakamura, Yoshitoshi

    Basidiomycetes has recently attracted considerable attention for its various physiological activities, such as antitumor, antioxidant and immunostimulating activities. Compounds isolated from fruit body of Hericium erinaceum, commonly called Yamabushitake in Japan, have interesting biological activities such as cytotoxic effectors on cancer cell (HeLa cells) and stimulators of synthesis of nerve growth factor. It is necessary for the cultivation of the fruit body of mushroom to control light, temperature, humidity. Otherwise, mycelia cultivation needs only temperature control. H. erinaceum cultivated by submerged culture have similar physiological activities to the fruit body of H. erinaceum, which suggests cultured mycelia can potentially become a promoter of synthesis of nerve growth factor. In this study, we used whey which is by-products of cheese-making process as an alternative nitrogen source in submerged cultivation of H. erinaceum mycelia, and then dry cell weight (DCW) and DCW productivity of whey medium were compared with those of chemical nutrient medium. When whey was used as a nitrogen source, DCW and DCW productivity are 1.5 times higher than those of chemical nutrient medium, 5.99 g/L and 0.60 g/L/day, respectively. It was suggested that whey could be used as an alternative nitrogen source and a growth promoting factor in H. erinaceum mycelia cultivation.

  1. Quantification of whey in fluid milk using confocal Raman microscopy and artificial neural network.

    PubMed

    Alves da Rocha, Roney; Paiva, Igor Moura; Anjos, Virgílio; Furtado, Marco Antônio Moreira; Bell, Maria José Valenzuela

    2015-06-01

    In this work, we assessed the use of confocal Raman microscopy and artificial neural network as a practical method to assess and quantify adulteration of fluid milk by addition of whey. Milk samples with added whey (from 0 to 100%) were prepared, simulating different levels of fraudulent adulteration. All analyses were carried out by direct inspection at the light microscope after depositing drops from each sample on a microscope slide and drying them at room temperature. No pre- or posttreatment (e.g., sample preparation or spectral correction) was required in the analyses. Quantitative determination of adulteration was performed through a feed-forward artificial neural network (ANN). Different ANN configurations were evaluated based on their coefficient of determination (R2) and root mean square error values, which were criteria for selecting the best predictor model. In the selected model, we observed that data from both training and validation subsets presented R2>99.99%, indicating that the combination of confocal Raman microscopy and ANN is a rapid, simple, and efficient method to quantify milk adulteration by whey. Because sample preparation and postprocessing of spectra were not required, the method has potential applications in health surveillance and food quality monitoring. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  2. Secretion of whey acidic protein and cystatin is down regulated at mid-lactation in the red kangaroo (Macropus rufus)

    USGS Publications Warehouse

    Nicholas, K.R.; Fisher, J.A.; Muths, E.; Trott, J.; Janssens, P.A.; Reich, C.; Shaw, D.C.

    2001-01-01

    Milk collected from the red kangaroo (Macropus rufus) between day 100 and 260 of lactation showed major changes in milk composition at around day 200 of lactation, the time at which the pouch young begins to temporarily exit the pouch and eat herbage. The carbohydrate content of milk declined abruptly at this time and although there was only a small increase in total protein content, SDS PAGE analysis of milk revealed asynchrony in the secretory pattern of individual proteins. The levels of ??-lactalbumin, ??-lactoglobulin, serum albumin and transferrin remain unchanged during lactation. In contrast, the protease inhibitor cystatin, and the putative protease inhibitor whey acidic protein (WAP) first appeared in milk at elevated concentrations after approximately 150 days of lactation and then ceased to be secreted at approximately 200 days. In addition, a major whey protein, late lactation protein, was first detected in milk around the time whey acidic protein and cystatin cease to be secreted and was present at least until day 260 of lactation. The co-ordinated, but asynchronous secretion of putative protease inhibitors in milk may have several roles during lactation including tissue remodelling in the mammary gland and protecting specific proteins in milk required for physiological development of the dependent young. ?? 2001 Elsevier Science Inc.

  3. Effect of whey protein hydrolysates with different molecular weight on fatigue induced by swimming exercise in mice.

    PubMed

    Liu, Jing; Wang, Xinxia; Zhao, Zheng

    2014-01-15

    In order to improve the antioxidant and anti-fatigue capacities of whey protein for wider utilization, it was hydrolyzed by chymotrypsin (EC 3.4.21.1) to produce whey protein hydrolysate (WPH). Fractions of WPH with different molecular weight (MW) were separated by ultrafiltration. Kunming mice in various treatment groups were orally administered (1.5 g kg(-1) body weight) whey protein isolate (WPI), WPH or WPHs with different MW (<5, 5-10, 10-30 or >30 kDa) for 6 weeks to explore whether different MW fractions of WPH affected mice fatigue. Compared with the control group (orally administered 9 g kg(-1) saline) or the WPI group, low-MW (<10 kDa) WPH groups showed prolonged swimming time (P < 0.05) and had higher concentrations (P < 0.05) of glucose, non-esterfied fatty acid, liver glycogen, superoxide dismutase and glutathione peroxidase and lower concentration of lactate. Low-MW (<10 kDa) WPHs had higher hydroxyl- and α,α-diphenyl-β-picrylhydrazyl-scavenging abilities and ferrous-chelating capacity than WPI. The results proved that low-MW (<10 kDa) WPHs with higher anti-fatigue capacity showed higher free radical-scavenging and ferrous-chelating activities. © 2013 Society of Chemical Industry.

  4. The modeling of ethanol production by Kluyveromyces marxianus using whey as substrate in continuous A-Stat bioreactors.

    PubMed

    Gabardo, Sabrina; Pereira, Gabriela Feix; Rech, Rosane; Ayub, Marco Antônio Záchia

    2015-09-01

    We investigated the kinetics of whey bioconversion into ethanol by Kluyveromyces marxianus in continuous bioreactors using the "accelerostat technique" (A-stat). Cultivations using free and Ca-alginate immobilized cells were evaluated using two different acceleration rates (a). The kinetic profiles of these systems were modeled using four different unstructured models, differing in the expressions for the specific growth (μ) and substrate consumption rates (r s), taking into account substrate limitation and product inhibition. Experimental data showed that the dilution rate (D) directly affected cell physiology and metabolism. The specific growth rate followed the dilution rate (μ≈D) for the lowest acceleration rate (a = 0.0015 h(-2)), condition in which the highest ethanol yield (0.52 g g(-1)) was obtained. The highest acceleration rate (a = 0.00667 h(-2)) led to a lower ethanol yield (0.40 g g(-1)) in the system where free cells were used, whereas with immobilized cells ethanol yields increased by 23 % (0.49 g g(-1)). Among the evaluated models, Monod and Levenspiel combined with Ghose and Tyagi models were found to be more appropriate for describing the kinetics of whey bioconversion into ethanol. These results may be useful in scaling up the process for ethanol production from whey.

  5. Optoelectronic and photonic sensors of mastitis in cow milk

    NASA Astrophysics Data System (ADS)

    Borecki, M.; Niemiec, T.; Korwin-Pawlowski, M. L.; Kuczyńska, B.; Doroz, P.; Urbańska, K.; Szmidt, M.; Szmidt, J.

    2013-07-01

    Mastitis is the inflammation of the mammary gland in animals under the influence of micro-organisms causing functional disorder of udder. Mastitis causes a variety of qualitative changes in the milk, which classified as mastitis milk, has a reduced value. A number of chemical procedures and lab instruments were developed to test for mastitis, of which the widest used are the California mastitis test and the somatic cell counter. This work presents the progress in development of new photonic sensors of mastitis using a conductometer, a spectrometer and a capillary head with local heating with improved measuring procedures. We showed that the significant increase in mastitis detection sensitivity is achieved by measuring the whey acidic instead of milk. The whey can be obtained from milk in a relatively simple and inexpensive chemical process. We correlated the conductivity measurement and the measurement of the number of somatic cells in the milk. The application of the measurement of optical transmission absorption in whey instead of the classic milk measurement increases the resolution of resistance measuring more than 3 times. However, the application of the method of capillary phase-transition to whey examination increases the resolution of measurement 15 times. The changes in resistance and time of the phase transitions are linearly correlated with the number of somatic cells.

  6. Functional Biomaterials: Solution Electrospinning and Gelation of Whey Protein and Pullulan

    NASA Astrophysics Data System (ADS)

    Sullivan, Stephanie Tolstedt

    Utilizing biomaterials that are biodegradable, biocompatible and edible serve well for food products as well as biomedical applications. Biomaterials whey protein and pullulan both have these characteristics. Whey proteins (WP) have been used in food products for many years and more recently in pharmaceutical products. They have the ability to form both gels and stable foams. Pullulan (PULL) has also been used in both food and pharmaceutical products, and is a highly water soluble, non-gelling polysaccharide and has been used primarily as a film former. Herein, we investigate the ability of whey protein and pullulan to form nanofibers and gels. Combining their distinct properties allows the ability to uniquely manipulate nanofiber and gel characteristics and behavior for a variety of applications, from food to even tissue scaffolding. First, we determined the electrospinnability of aqueous whey protein solutions. Both whey protein isolate (WPI) and one of its major components beta--lactoglobulin (BLG), either in native or denatured form, yielded interesting micro and nanostructures when electrosprayed; while nanofiber production required blending with a spinnable polymer, poly(ethylene oxide) (PEO). WP:PEO solutions were also successfully electrospun at acidic pH (2≤pH≤3), which could improve shelf life. Fourier Transform Infrared Reflectance (FTIR) analysis of WP:PEO fiber mat indicated some variation in WP secondary structure with varying WPI concentration (as WPI increased, % alpha-helix increased and beta-turn decreased) and pH (as pH decreased from neutral (7.5) to acidic (2), % beta-sheet decreased and alpha-helix increased). X-ray Photoelectron Spectroscopy (XPS) also confirmed the presence of WP on the surface of the blend fibers, augmenting the FTIR analysis. Interestingly, WP:PEO composite nanofibers maintained its fibrous morphology at temperatures as high as 100 °C, above the 60 °C PEO melting point. Further, we show that the blend mats retained a fibrous structure after the heat treatment. Our second goal was to evaluate the ability of aqueous blends of whey protein and pullulan to form gels. We first looked at WP-PULL blend solutions at room temperature, finding an increasing linear trend in low shear viscosity as the relative concentration of pullulan increased. Blend solution samples were then heated to determine the ability of the blend solutions to form a gelled network. Starting with a homogeneous WP gel, adding PULL, at native mix or alkaline pH, maintained a transparent homogeneous microstructure, but resulted in weaker gels based on its response to stress. At WP isoelectric point (IEP) pH, both protein and blend gels became opaque due to protein aggregation, forming a particulate gel. All gels at the IEP were weaker, yielding at much lower stress and corresponding strain, due to the protein aggregation. The addition of transglutaminase enzyme yielded a stronger network than the native samples, while the addition of sodium trimetaphosphate salt yielded weaker gels and also induced relevant particle and/or course stranded microstructure in both pH 8 and IEP cases. The third part of this study demonstrated the ability of pullulan to form nanofibers in the solution electrospinning process. Aqueous pullulan solutions were able to form defect-free nanofibers with a minimum concentration of 15 w/w%. Pullulan and PULL:hydroxypropyl-beta- cyclodextrin (HPBCD) blend fibers were chemically crosslinked to form insoluble fibers using ethylene glycol diglycidyl ether (EGDGE), a chemical used in food contact coating applications. Next, solution blends of pullulan with whey protein were prepared and also electrospun at varying pH and relative biomaterial concentrations at 17 total w/w%. PULL-WP blend nanofiber mats were crosslinked via heat treatment and found to be both swellable and insoluble. When dried, the mats did not return to their original fiber state and instead appear to be gelatinous fibers in nature after soaking, and thereby making them potentially useful for tissue scaffolding applications. A fourth accomplishment was to utilize Near Infrared Reflectance (NIR) Spectroscopy and Chemometrics techniques to analyze commercial whey protein powder characteristics such as protein, fat and moisture content as well as pH. NIR has been utilized in the food and pharmaceutical industries for quality control as a valuable compliment to or replacement for more expensive testing such as High Performance Liquid Chromatography. Analysis resulted in the development of quantitative, linear regression models to correlate whey protein powder characteristics to NIR data. Whey protein's ability to form gels and pullulan's electrospinnability to form nanofibers is combined herein to form blends of both that can be changed with varying concentration, pH, temperature and supplementation with food-safe additives. The study correlates mechanical properties and microstructure of blend gels and nanofibers and provides a foundation for further study of swellable network for tissue application specifically in the use of pullulan-whey protein heat treated nanofiber mats.

  7. Optimization of mold wheat bread fortified with soy flour, pea flour and whey protein concentrate.

    PubMed

    Erben, Melina; Osella, Carlos A

    2017-07-01

    The objective of this work was to study the effect of replacing a selected wheat flour for defatted soy flour, pea flour and whey protein concentrate on both dough rheological characteristics and the performance and nutritional quality of bread. A mixture design was used to analyze the combination of the ingredients. The optimization process suggested that a mixture containing 88.8% of wheat flour, 8.2% of defatted soy flour, 0.0% of pea flour and 3.0% of whey protein concentrate could be a good combination to achieve the best fortified-bread nutritional quality. The fortified bread resulted in high protein concentration, with an increase in dietary fiber content and higher calcium levels compared with those of control (wheat flour 100%). Regarding protein quality, available lysine content was significantly higher, thus contributing with the essential amino acid requirement.

  8. Effect of pH and lactose concentration on solvent production from whey permeate using Clostridium acetobutylicum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ennis, B.M.; Maddox, I.S.

    1987-02-20

    A study was performed to optimize the production of solvents from whey permeate in batch fermentation using Clostridium acetobutylicum P262. Fermentations performed at relatively low pH values resulted in high solvent yields and productivities, but lactose utilization was incomplete. At higher pH values, lactose-utilization was improved but acid production dominated over solvent production. When operating at the higher pH values, an increase in the initial lactose concentration of the whey permeate resulted in lower rates of lactose utilization, and this was accompanied by increased solvent production and decreased acid production. Analysis of data from several experiments revealed a strong inversemore » relationship between solvent yield and lactose utilization rate. Thus, conditions which minimize the lactose utilization rate such as low culture pH values or high initial lactose concentrations, favor solventogenesis at the expense of acid production. 12 references.« less

  9. Dietary whey protein lessens several risk factors for metabolic diseases: a review

    PubMed Central

    2012-01-01

    Obesity and type 2 diabetes mellitus (DM) have grown in prevalence around the world, and recently, related diseases have been considered epidemic. Given the high cost of treatment of obesity/DM-associated diseases, strategies such as dietary manipulation have been widely studied; among them, the whey protein diet has reached popularity because it has been suggested as a strategy for the prevention and treatment of obesity and DM in both humans and animals. Among its main actions, the following activities stand out: reduction of serum glucose in healthy individuals, impaired glucose tolerance in DM and obese patients; reduction in body weight; maintenance of muscle mass; increases in the release of anorectic hormones such as cholecystokinin, leptin, and glucagon like-peptide 1 (GLP-1); and a decrease in the orexigenic hormone ghrelin. Furthermore, studies have shown that whey protein can also lead to reductions in blood pressure, inflammation, and oxidative stress. PMID:22676328

  10. Effective ethanol production from whey powder through immobilized E. coli expressing Vitreoscilla hemoglobin.

    PubMed

    Sar, Taner; Stark, Benjamin C; Yesilcimen Akbas, Meltem

    2017-03-04

    Ethanol production from whey powder was investigated by using free as well as alginate immobilized E. coli and E. coli expressing Vitreoscilla hemoglobin (VHb) in both shake flask and fermenter cultures. Media with varying levels of whey (lactose contents of 3%, 5%, 8% or 15%) and yeast extract (0.3% or 0.5%) were evaluated with fermentation times of 48-96 h. Immobilization and VHb expression resulted in higher ethanol production with all media; the increases ranged from 2% to 89% for immobilization and from 2% to 182% for VHb expression. It was determined that growth medium containing 8% lactose with 0.5% yeast extract yielded the highest ethanol production for free or immobilized strains, with or without VHb expression, in both shake flask and fermenter cultures. Immobilization with alginate was found to be a promising process for ethanol production by VHb-expressing ethanologenic E. coli.

  11. Effective ethanol production from whey powder through immobilized E. coli expressing Vitreoscilla hemoglobin

    PubMed Central

    Sar, Taner; Stark, Benjamin C.; Yesilcimen Akbas, Meltem

    2017-01-01

    ABSTRACT Ethanol production from whey powder was investigated by using free as well as alginate immobilized E. coli and E. coli expressing Vitreoscilla hemoglobin (VHb) in both shake flask and fermenter cultures. Media with varying levels of whey (lactose contents of 3%, 5%, 8% or 15%) and yeast extract (0.3% or 0.5%) were evaluated with fermentation times of 48–96 h. Immobilization and VHb expression resulted in higher ethanol production with all media; the increases ranged from 2% to 89% for immobilization and from 2% to 182% for VHb expression. It was determined that growth medium containing 8% lactose with 0.5% yeast extract yielded the highest ethanol production for free or immobilized strains, with or without VHb expression, in both shake flask and fermenter cultures. Immobilization with alginate was found to be a promising process for ethanol production by VHb-expressing ethanologenic E. coli. PMID:27579556

  12. Homo-fermentative production of D-lactic acid by Lactobacillus sp. employing casein whey permeate as a raw feed-stock.

    PubMed

    Prasad, Saurav; Srikanth, Katla; Limaye, Anil M; Sivaprakasam, Senthilkumar

    2014-06-01

    Casein whey permeate (CWP), a lactose-enriched dairy waste effluent, is a viable feed stock for the production of value-added products. Two lactic acid bacteria were cultivated in a synthetic casein whey permeate medium with or without pH control. Lactobacillus lactis ATCC 4797 produced D-lactic acid (DLA) at 12.5 g l(-1) in a bioreactor. The values of Leudking-Piret model parameters suggested that lactate was a growth-associated product. Batch fermentation was also performed employing CWP (35 g lactose l(-1)) with casein hydrolysate as a nitrogen supplement in a bioreactor. After 40 h, L. lactis produced 24.3 g lactic acid l(-1) with an optical purity >98 %. Thus CWP may be regarded as a potential feed-stock for DLA production.

  13. Technical note: Vitamin D-fortified Cheddar type cheese produced from concentrated milk.

    PubMed

    Boivin-Piché, Jonathan; Vuillemard, Jean-Christophe; St-Gelais, Daniel

    2016-06-01

    The technological challenge related to cheese fortification with vitamin D is the loss of a large proportion of vitamin D during the wheying-off step. The use of ultrafiltration (UF) to concentrate the milk before vitamin D enrichment and cheese manufacturing could be a way to reduce the volume of whey and consequently the vitamin D losses in cheese whey. Control (1.0×) and concentrated milks (1.4× and 1.8×) were fortified with vitamin D at a concentration of 450 IU per gram of milk. The 1.8× cheese milk concentration reduced slightly the vitamin D loss during the draining step (19.8%) compared with the control cheese (25.5%) and vitamin D remained stable during Cheddar cheese processing and ripening. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  14. Effects of nutritional supplementation for HIV patients starting antiretroviral treatment: randomised controlled trial in Ethiopia.

    PubMed

    Olsen, Mette F; Abdissa, Alemseged; Kæstel, Pernille; Tesfaye, Markos; Yilma, Daniel; Girma, Tsinuel; Wells, Jonathan C K; Ritz, Christian; Mølgaard, Christian; Michaelsen, Kim F; Zerfu, Dilnesaw; Brage, Søren; Andersen, Ase B; Friis, Henrik

    2014-05-15

    To determine the effects of lipid based nutritional supplements with either whey or soy protein in patients with HIV during the first three months of antiretroviral treatment (ART) and to explore effects of timing by comparing supplementation at the start of ART and after three months delay. Randomised controlled trial. Three public ART facilities in Jimma, Oromia region, Ethiopia. Adults with HIV eligible for ART with body mass index (BMI) >16. Daily supplementation with 200 g (4600 kJ) of supplement containing whey or soy during either the first three or the subsequent three months of ART. Primary: lean body mass assessed with deuterium dilution, grip strength measured with dynamometers, and physical activity measured with accelerometer and heart rate monitors. Secondary: viral load and CD4 counts. Auxiliary: weight and CD3 and CD8 counts. Of 318 patients enrolled, 210 (66%) were women, mean age was 33 (SD 9), and mean BMI was 19.5 (SD 2.4). At three months, participants receiving the supplements containing whey or soy had increased their lean body mass by 0.85 kg (95% confidence interval 0.16 kg to 1.53 kg) and 0.97 kg (0.29 kg to 1.64 kg), respectively, more than controls. This was accompanied by an increased gain of grip strength of 0.68 kg (-0.11 kg to 1.46 kg) for the whey supplement group and 0.93 kg (0.16 kg to 1.70 kg) for the soy supplement group. There were no effects on physical activity. Total weight gain increased by 2.05 kg (1.12 kg to 2.99 kg) and 2.06 kg (1.14 kg to 2.97 kg) for the whey and soy groups, respectively. In addition, in the whey supplement group overall CD3 counts improved by 150 cells/µL (24 to 275 cells/µL), of which 112 cells/µL (15 to 209 cells/µL) were CD8 and 25 cells/µL (-2 to 53 cells/µL) were CD4. Effects of the soy containing supplement on immune recovery were not significant. The effects of the two supplements, however, were not significantly different in direct comparison. Exploratory analysis showed that relatively more lean body mass was gained by patients with undetectable viral load at three months. Patients receiving delayed supplementation had higher weight gain but lower gains in functional outcomes. Lipid based nutritional supplements improved gain of weight, lean body mass, and grip strength in patients with HIV starting ART. Supplements containing whey were associated with improved immune recovery. Trial registration Controlled-trials.com ISRCTN32453477. © Olsen et al 2014.

  15. The effect of acidification of liquid whey protein concentrate on the flavor of spray-dried powder.

    PubMed

    Park, Curtis W; Bastian, Eric; Farkas, Brian; Drake, MaryAnne

    2014-07-01

    Off-flavors in whey protein negatively influence consumer acceptance of whey protein ingredient applications. Clear acidic beverages are a common application of whey protein, and recent studies have demonstrated that beverage processing steps, including acidification, enhance off-flavor production from whey protein. The objective of this study was to determine the effect of preacidification of liquid ultrafiltered whey protein concentrate (WPC) before spray drying on flavor of dried WPC. Two experiments were performed to achieve the objective. In both experiments, Cheddar cheese whey was manufactured, fat-separated, pasteurized, bleached (250 mg/kg of hydrogen peroxide), and ultrafiltered (UF) to obtain liquid WPC that was 13% solids (wt/wt) and 80% protein on a solids basis. In experiment 1, the liquid retentate was then acidified using a blend of phosphoric and citric acids to the following pH values: no acidification (control; pH 6.5), pH 5.5, or pH 3.5. The UF permeate was used to normalize the protein concentration of each treatment. The retentates were then spray dried. In experiment 2, 150 μg/kg of deuterated hexanal (D₁₂-hexanal) was added to each treatment, followed by acidification and spray drying. Both experiments were replicated 3 times. Flavor properties of the spray-dried WPC were evaluated by sensory and instrumental analyses in experiment 1 and by instrumental analysis in experiment 2. Preacidification to pH 3.5 resulted in decreased cardboard flavor and aroma intensities and an increase in soapy flavor, with decreased concentrations of hexanal, heptanal, nonanal, decanal, dimethyl disulfide, and dimethyl trisulfide compared with spray drying at pH 6.5 or 5.5. Adjustment to pH 5.5 before spray drying increased cabbage flavor and increased concentrations of nonanal at evaluation pH values of 3.5 and 5.5 and dimethyl trisulfide at all evaluation pH values. In general, the flavor effects of preacidification were consistent regardless of the pH to which the solutions were adjusted after spray drying. Preacidification to pH 3.5 increased recovery of D₁₂-hexanal in liquid WPC and decreased recovery of D₁₂-hexanal in the resulting powder when evaluated at pH 6.5 or 5.5. These results demonstrate that acidification of liquid WPC80 to pH 3.5 before spray drying decreases off-flavors in spray-dried WPC and suggest that the mechanism for off-flavor reduction is the decreased protein interactions with volatile compounds at low pH in liquid WPC or the increased interactions between protein and volatile compounds in the resulting powder. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  16. The suitability of different probiotic strains for the production of fruit-whey beverages.

    PubMed

    Sady, Marek; Najgebauer-Lejko, Dorota; Domagała, Jacek

    2017-01-01

    When designing new probiotic products, one of the most important aspects is the selection of bacterial strains with high survival rates in the matrix of the product concerned. The aim of the present research was to evaluate the potential of selected strains of probiotic bacteria for the production of fruit-whey beverages. Orange, apple and blackcurrant whey beverages were produced, and each was inoculated with one of the following probiotic strains: Bifidobacterium lactis HN019TM; Lactobacillus aci- dophilus NCFM®; Lactobacillus paracasei Lpc-37TM; Lactobacillus rhamnosus HN001TM. The count of probiotic bacteria as well as pH and total acidity were evaluated at the 1st, 7th, 14th, 21st and 28th day of storage. Beverages containing L. paracasei Lpc-37TM or L. rhamnosus HN001TM were characterized by a sig- nificantly higher average number of viable cells (7.02 or 7.05 log cfu/g, respectively) than products with lactis HN019TM or L. acidophilus NCFM® (6.43 or 6.37 log cfu/g, respectively). The use of L. paracasei Lpc-37 and L. rhamnosus HN001 strains in orange and apple drinks allows the recommended count for probiotic products, 106 cfu/g for 28 days of storage, to be exceeded. Survival of the B. lactis HN019 strain fulfills the above requirements only in the orange drink. The L. acidophilus NCFM® strain was found to be the least suitable for the production of beverages, as it did not reach 6 log cfu/g in any products after 28 days of stor- age. The highest average number of bacteria was found in the orange beverages (7.14 log cfu/g). In terms of bacteria viability, blackcurrant juice was the least suitable for the production of whey probiotic drinks, due to its high acidity. The results of the present study indicate that careful selection of the fruit juice component, especially in terms of its acidity, is key to designing successful probiotic fruit-whey beverages. Other factors which should be taken into account to ensure a sufficient number of live probiotic cells, i.e. their therapeutic level in fruit-whey drinks, are the choice of probiotic strain and determination of the maximal shelf life.

  17. Effect of homogenization and pasteurization on the structure and stability of whey protein in milk.

    PubMed

    Qi, Phoebe X; Ren, Daxi; Xiao, Yingping; Tomasula, Peggy M

    2015-05-01

    The effect of homogenization alone or in combination with high-temperature, short-time (HTST) pasteurization or UHT processing on the whey fraction of milk was investigated using highly sensitive spectroscopic techniques. In pilot plant trials, 1-L quantities of whole milk were homogenized in a 2-stage homogenizer at 35°C (6.9 MPa/10.3 MPa) and, along with skim milk, were subjected to HTST pasteurization (72°C for 15 s) or UHT processing (135°C for 2 s). Other whole milk samples were processed using homogenization followed by either HTST pasteurization or UHT processing. The processed skim and whole milk samples were centrifuged further to remove fat and then acidified to pH 4.6 to isolate the corresponding whey fractions, and centrifuged again. The whey fractions were then purified using dialysis and investigated using the circular dichroism, Fourier transform infrared, and Trp intrinsic fluorescence spectroscopic techniques. Results demonstrated that homogenization combined with UHT processing of milk caused not only changes in protein composition but also significant secondary structural loss, particularly in the amounts of apparent antiparallel β-sheet and α-helix, as well as diminished tertiary structural contact. In both cases of homogenization alone and followed by HTST treatments, neither caused appreciable chemical changes, nor remarkable secondary structural reduction. But disruption was evident in the tertiary structural environment of the whey proteins due to homogenization of whole milk as shown by both the near-UV circular dichroism and Trp intrinsic fluorescence. In-depth structural stability analyses revealed that even though processing of milk imposed little impairment on the secondary structural stability, the tertiary structural stability of whey protein was altered significantly. The following order was derived based on these studies: raw whole>HTST, homogenized, homogenized and pasteurized>skimmed and pasteurized, and skimmed UHT>homogenized UHT. The methodology demonstrated in this study can be used to gain insight into the behavior of milk proteins when processed and provides a new empirical and comparative approach for analyzing and assessing the effect of processing schemes on the nutrition and quality of milk and dairy product without the need for extended separation and purification, which can be both time-consuming and disruptive to protein structures. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  18. Evolution of free amino acids, biogenic amines and n-nitrosoamines throughout ageing in organic fermented beef.

    PubMed

    Wójciak, Karolina M; Solska, Elżbieta

    2016-01-01

    In recent years, interest in uncured meat products has grown and studies were carried out on the use of substances which could replace nitrites, such as acid whey. In spite of this problem in fermented meat products, there is no information regarding the effects of prolonged ageing on the formation of chemical (nitrosoamines, biogenic amines, secondary lipid oxidation products) and microbiological (L. monocytogenes, S. aureus, OLD) toxicants in fermented beef marinated with acid whey. The aim of this study was to determine the selected pathogenic bacteria, biogenic amines, N-nitrosamines contents in fermented beef subjected to extended ageing. In this study, selected pathogenic bacteria, N-nitrosamines, biogenic amines, amino acids, TBARS values changes during the ageing of fermented beef marinated with acid whey were analyzed in 0-, 2- and 36-month-old samples. The pH values of fermented beef aged for 2 months (5.68, 5.49 and 5.68 respectively) were significantly lower (p < 0.05) than those obtained after the end of the manufacturing ripening period (5.96, 5.97 and 5.74 respectively), which confirmed the effectiveness of the fermentation process of acidification on beef. The high Lactic Acid Bacteria content (5.64-6.30 log cfu/g) confirmed this finding. Histamine was not detected in either of the products. The highest concentration of total biogenic amine (i.e. 1159.0 mg/kg) was found in fermented beef marinated with acid whey, whereas a total of only 209.8 mg/kg, was observed in control beef with nitrate and nitrite. N-nitrosamines were not detected in any of the ageing beef samples. In this study, marinating beef in acid whey did not inhibit the production of biogenic amines in the samples analyzed. The high concentration of FAAs, the potential precursor of BA, could lead to intense peptidase activity. The results obtained indicate that biogenic amines are not direct precursors for nitrosamines formation in fermented beef. The LAB strain from acid whey reduced the pH value during the first stages of ageing and ensured the microbiological safety of the product not only in the first stage of fermentation but also at the end of ageing (36 months).

  19. Effects of dry whey powder and calcium butyrate supplementation of corn/soybean-based diets on productive performance, duodenal histological integrity, and Campylobacter colonization in broilers.

    PubMed

    Ocejo, Medelin; Oporto, Beatriz; Juste, Ramón A; Hurtado, Ana

    2017-06-26

    Campylobacter is the main cause of gastroenteritis in humans in industrialized countries, and poultry is its principal reservoir and source of human infections. Dietary supplementation of broiler feed with additives could improve productive performance and elicit health benefits that might reduce Campylobacter contamination during primary production. The aim of this study was to assess the effect of dietary supplementation with whey (a prebiotic) and calcium butyrate (a salt of a short-chain fatty acid) on productive traits, duodenal histological integrity, and Campylobacter colonization and dissemination in broiler chickens during the 42-day rearing period. Six hundred one-day-old Ross-308 chickens were placed into 20 ground pens and assigned to one of 4 corn/soybean-based dietary treatments (5 replicates of 30 chicks per treatment) following a randomized complete block design: 1) basal diet with no supplementation as the control, 2) diet supplemented with 6% dry whey powder, 3) diet containing 0.1% coated calcium butyrate, and 4) diet containing 6% whey and 0.1% calcium butyrate. At age 15 days, 6 chickens per pen were experimentally inoculated with Campylobacter jejuni. The results showed that supplementation of the corn/soybean-based diet with 6% whey alone or, preferably, in combination with 0.1% coated calcium butyrate improved growth and feed efficiency, had a beneficial effect on duodenal villus integrity, and decreased mortality. These favourable effects were particularly significant during the starter period. Six days after oral challenge, Campylobacter was widespread in the flock, and the birds remained positive until the end of the rearing period. Although Campylobacter was not isolated from environmental samples, it was detected by real-time polymerase chain reaction (PCR) in dust, air filters, and drinkers while birds shed culturable C. jejuni cells. No differences (p > 0.050) in colonization or shedding levels that could be attributed to the diet were observed during the assay. Beneficial effects on performance and intestinal health were observed, particularly during the starter period, when chickens were fed a diet supplemented with both whey and coated calcium butyrate. However, none of the tested diets provided the chicks any differential degree of protection against Campylobacter infection.

  20. In-situ Substrate Addition to Create Reactive Zones for Treatment of Chlorinated Aliphatic Hydrocarbons: Vandenberg Air Force Base

    DTIC Science & Technology

    2004-12-17

    other substrates can also be used, including high fructose corn syrup , whey, etc. Through this subsurface molasses injection, the existing aerobic or...is not the only carbohydrate material that can be used for this purpose; other carbohydrates such as high fructose corn syrup and whey can also be... fructose corn syrup , lactate, butyrate, or benzoate). Through periodic subsurface substrate injection, the ERD technology alters existing aerobic or mildly

  1. [Production and partial characterization of beta-galactosidase from Kluyveromyces lactis grown in deproteinized whey].

    PubMed

    Ramírez Matheus, Alejandra O; Rivas, Nilo

    2003-06-01

    The purpose of this work was to optimize the beta-galactosidase production by Kluyveromyces lactis, applying the Surface Response Methodology (SRM) and using deproteinized whey as fermentation medium. An Orthogonal Central Compound Design (OCCD) was used without repetition, with four factors: temperature, pH, agitation speed and fermentation time. Then, enzyme activity (U/ml) as response variable was used. Thirty trials in twenty-five treatments, with six repetitions at the central point, were carried out, in a New Brunswick Bioflo 2000 fermentor with a volume of 2 liters. The deproteinized whey obtained by thermocoagulation was chemically analyzed. The results were: moisture 93.83%, total solids 6.17%, protein 0.44%, lactose 4.85%, acidity 0.43% and pH 4.58. The best conditions in the enzyme production were: temperature 30.3 degrees C, pH 4.68, agitation speed 191 r.p.m. and fermentation time 18.5 h. with an enzyme production of 8.3 U/ml. The degree of purification obtained was 7.4 times and the yield was 50.8%. The purified enzyme had an optimum temperature of 60 degrees C and a pH of 6.2. This work shows that the yeast Kluyveromyces lactis grown in deproteinized whey is able to produce the enzyme beta-galactosidase and SRM can be used in the fermentology processes, specifically in determining the best suitable operation conditions.

  2. Effect of incubation time, inoculum size, temperature, pasteurization time, goat milk powder and whey powder on ACE inhibitory activity in fermented milk by L. plantarum LP69.

    PubMed

    Shu, Guowei; Yang, Hui; Chen, He; Zhang, Qiuhong; Tian, Yue

    2015-01-01

    Angiotensin I converting enzyme (ACE) plays an important physiological role in regulating hypertension. Lactic acid bacteria are known to produce ACE inhibitory peptides which can lower hypertension during fermentation. The effect of incubation time (0~36 h), inoculum size (3, 4, 5, 6 and 7%, v/v), temperature (25, 30, 35, 40 and 45°C), sterilization time (5, 10, 15, 20 and 25 min), concentration of goat milk powder (8, 10, 12, 14 and 16%, w/v) and whey powder (0.5, 0.6, 0.7, 0.8 and 0.9%, w/v) on ACE inhibitory peptides fermented from goat milk by Lactobacillus plantarum LP69 was investigated using single factor experiment. The optimal incubation time, inoculum size, temperature, pasteurization time, goat milk powder and whey powder in fermented milk by L. plantarum LP69 was 14 h, 3.0%, 35°C, 20 min, 14% and 0.70% for ACE inhibitory activity and 22 h, 3.0%, 40°C, 25 min, 16% and 0.60% for viable cell counts, respectively. The incubation time, inoculum size, temperature, pasteurization time, goat milk powder and whey powder had a significant influence on ACE inhibitory activity in fermented milk by Lactobacillus plantarum LP69, the results are beneficial for further screening of main factors by using fractional factorial designs.

  3. Novel Functional Whey-Based Drinks with Great Potential in the Dairy Industry

    PubMed Central

    Pereira, Carlos; Gomes, David; Gomez-Zavaglia, Andrea; de Antoni, Graciela

    2015-01-01

    Summary This work focuses on the production of liquid whey protein concentrates by ultrafiltration followed by thermal denaturation and homogenization of the ultrafiltrated concentrate, as well as on the production of ultrafiltrated permeates concentrated by reverse osmosis. Kefir grains (fresh and thawed) and/or commercial probiotic bacteria were inoculated in both liquid whey protein concentrates and concentrated ultrafiltrated permeates and grown at 25 °C for 24 h for the manufacture of fermented drinks. The physicochemical characterization (pH, titratable acidity, viscosity, and content of total solids, ash, fat and proteins) of the obtained drinks was then assessed and compared. Enumeration of viable microorganisms was carried out immediately after inoculation (at 0 h), during the fermentation period (at 12 and 24 h) and during refrigerated storage (at 48, 168 and 336 h). The fermented drinks showed acceptable physicochemical and sensorial properties, and contained above 7 log CFU/mL of lactococci and lactobacilli and 6 log CFU/mL of yeasts after 14 days of refrigerated storage, which is in agreement with the standards required by international organizations like European Food Safety Authority (EFSA) and Food and Drug Administration (FDA) for products containing probiotics. In summary, the strategy developed in this work contributes to the expansion of the applications of products derived from whey fractionation for the design of novel functional foods. PMID:27904362

  4. Affinity chromatography matrices for depletion and purification of casein glycomacropeptide from bovine whey.

    PubMed

    Baieli, María F; Urtasun, Nicolás; Martinez, María J; Hirsch, Daniela B; Pilosof, Ana M R; Miranda, María V; Cascone, Osvaldo; Wolman, Federico J

    2017-01-01

    Casein glycomacropeptide (CMP) is a 64- amino acid peptide found in cheese whey, which is released after κ-casein specific cleavage by chymosin. CMP lacks aromatic amino acids, a characteristic that makes it usable as a nutritional supplement for people with phenylketonuria. CMP consists of two nonglycosylated isoforms (aCMP A and aCMP B) and its different glycosylated forms (gCMP A and gCMP B). The most predominant carbohydrate of gCMP is N-acetylneuraminic acid (sialic acid). Here, we developed a CMP purification process based on the affinity of sialic acid for wheat germ agglutinin (WGA). After formation of chitosan beads and adsorption of WGA, the agglutinin was covalently attached with glutaraldehyde. Two matrices with different WGA density were assayed for CMP adsorption. Maximum adsorption capacities were calculated according to the Langmuir model from adsorption isotherms developed at pH 7.0, being 137.0 mg/g for the matrix with the best performance. In CMP reduction from whey, maximum removal percentage was 79% (specifically 33.7% of gCMP A and B, 75.8% of aCMP A, and 93.9% of aCMP B). The CMP was recovered as an aggregate with an overall yield of 64%. Therefore, the matrices developed are promising for CMP purification from cheese whey. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 33:171-180, 2017. © 2016 American Institute of Chemical Engineers.

  5. Proteomic analysis of cow, yak, buffalo, goat and camel milk whey proteins: quantitative differential expression patterns.

    PubMed

    Yang, Yongxin; Bu, Dengpan; Zhao, Xiaowei; Sun, Peng; Wang, Jiaqi; Zhou, Lingyun

    2013-04-05

    To aid in unraveling diverse genetic and biological unknowns, a proteomic approach was used to analyze the whey proteome in cow, yak, buffalo, goat, and camel milk based on the isobaric tag for relative and absolute quantification (iTRAQ) techniques. This analysis is the first to produce proteomic data for the milk from the above-mentioned animal species: 211 proteins have been identified and 113 proteins have been categorized according to molecular function, cellular components, and biological processes based on gene ontology annotation. The results of principal component analysis showed significant differences in proteomic patterns among goat, camel, cow, buffalo, and yak milk. Furthermore, 177 differentially expressed proteins were submitted to advanced hierarchical clustering. The resulting clustering pattern included three major sample clusters: (1) cow, buffalo, and yak milk; (2) goat, cow, buffalo, and yak milk; and (3) camel milk. Certain proteins were chosen as characterization traits for a given species: whey acidic protein and quinone oxidoreductase for camel milk, biglycan for goat milk, uncharacterized protein (Accession Number: F1MK50 ) for yak milk, clusterin for buffalo milk, and primary amine oxidase for cow milk. These results help reveal the quantitative milk whey proteome pattern for analyzed species. This provides information for evaluating adulteration of specific specie milk and may provide potential directions for application of specific milk protein production based on physiological differences among animal species.

  6. Improved muscle function and quality after diet intervention with leucine-enriched whey and antioxidants in antioxidant deficient aged mice

    PubMed Central

    van Dijk, Miriam; Dijk, Francina J.; Bunschoten, Annelies; van Dartel, Dorien A.M.; van Norren, Klaske; Walrand, Stephane; Jourdan, Marion; Verlaan, Sjors; Luiking, Yvette

    2016-01-01

    Antioxidant (AOX) deficiencies are commonly observed in older adults and oxidative stress has been suggested to contribute to sarcopenia. Here we investigate if 1) low levels of dietary antioxidants had a negative impact on parameters of muscle mass, function and quality, and 2) to study if nutritional interventions with AOX and/or leucine-enriched whey protein could improve these muscle parameters in aged mice. 18-months-old mice were fed a casein-based antioxidant-deficient (lowox) diet or a casein-based control-diet (CTRL) for 7 months. During the last 3 months, lowox-mice were subjected to either: a) continued lowox, b) supplementation with vitamin A/E, Selenium and Zinc (AOX), c) substitution of casein with leucine-enriched whey protein (PROT) or d) a combination of both AOX and PROT (TOTAL). After 7 months lowox-mice displayed lower muscle strength and more muscle fatigue compared to CTRL. Compared to lowox-mice, PROT-mice showed improved muscle power, grip strength and less muscle fatigue. AOX-mice showed improved oxidative status, less muscle fatigue, improved grip strength and mitochondrial dynamics compared to lowox-mice. The TOTAL-mice showed the combined effects of both interventions compared to lowox-mice. In conclusion, nutritional intervention with AOX and/or leucine-enriched whey protein can play a role in improving muscle health in a AOX-deficient mouse model. PMID:26943770

  7. Characterization of flaxseed oil emulsions.

    PubMed

    Lee, Pei-En; Choo, Wee-Sim

    2015-07-01

    The emulsifying capacity of surfactants (polysorbate 20, polysorbate 80 and soy lecithin) and proteins (soy protein isolate and whey protein isolate) in flaxseed oil was measured based on 1 % (w/w) of emulsifier. Surfactants showed significantly higher emulsifying capacity compared to the proteins (soy protein isolate and whey protein isolate) in flaxseed oil. The emulsion stability of the flaxseed oil emulsions with whey protein isolate (10 % w/w) prepared using a mixer was ranked in the following order: 1,000 rpm (58 min) ≈ 1,000 rpm (29 min) ≈ 2,000 rpm (35 min) >2,000 rpm (17.5 min). The emulsion stability of the flaxseed oil emulsions with whey protein isolate (10 % w/w) prepared using a homogenizer (Ultra Turrax) was independent of the speed and mixing time. The mean particle size of the flaxseed oil emulsions prepared using the two mixing devices ranged from 23.99 ± 1.34 μm to 47.22 ± 1.99 μm where else the particle size distribution and microstructure of the flaxseed oil emulsions demonstrated using microscopic imaging were quite similar. The flaxseed oil emulsions had a similar apparent viscosity and exhibited shear thinning (pseudoplastic) behavior. The flaxseed oil emulsions had L* value above 70 and was in the red-yellow color region (positive a* and b* values).

  8. High Hydrostatic Pressure Pretreatment of Whey Protein Isolates Improves Their Digestibility and Antioxidant Capacity

    PubMed Central

    Iskandar, Michèle M.; Lands, Larry C.; Sabally, Kebba; Azadi, Behnam; Meehan, Brian; Mawji, Nadir; Skinner, Cameron D.; Kubow, Stan

    2015-01-01

    Whey proteins have well-established antioxidant and anti-inflammatory bioactivities. High hydrostatic pressure processing of whey protein isolates increases their in vitro digestibility resulting in enhanced antioxidant and anti-inflammatory effects. This study compared the effects of different digestion protocols on the digestibility of pressurized (pWPI) and native (nWPI) whey protein isolates and the antioxidant and anti-inflammatory properties of the hydrolysates. The pepsin-pancreatin digestion protocol was modified to better simulate human digestion by adjusting temperature and pH conditions, incubation times, enzymes utilized, enzyme-to-substrate ratio and ultrafiltration membrane molecular weight cut-off. pWPI showed a significantly greater proteolysis rate and rate of peptide appearance regardless of digestion protocol. Both digestion methods generated a greater relative abundance of eluting peptides and the appearance of new peptide peaks in association with pWPI digestion in comparison to nWPI hydrolysates. Hydrolysates of pWPI from both digestion conditions showed enhanced ferric-reducing antioxidant power relative to nWPI hydrolysates. Likewise, pWPI hydrolysates from both digestion protocols showed similar enhanced antioxidant and anti-inflammatory effects in a respiratory epithelial cell line as compared to nWPI hydrolysates. These findings indicate that regardless of considerable variations of in vitro digestion protocols, pressurization of WPI leads to more efficient digestion that improves its antioxidant and anti-inflammatory properties. PMID:28231198

  9. High Hydrostatic Pressure Pretreatment of Whey Protein Isolates Improves Their Digestibility and Antioxidant Capacity.

    PubMed

    Iskandar, Michèle M; Lands, Larry C; Sabally, Kebba; Azadi, Behnam; Meehan, Brian; Mawji, Nadir; Skinner, Cameron D; Kubow, Stan

    2015-05-28

    Whey proteins have well-established antioxidant and anti-inflammatory bioactivities. High hydrostatic pressure processing of whey protein isolates increases their in vitro digestibility resulting in enhanced antioxidant and anti-inflammatory effects. This study compared the effects of different digestion protocols on the digestibility of pressurized (pWPI) and native (nWPI) whey protein isolates and the antioxidant and anti-inflammatory properties of the hydrolysates. The pepsin-pancreatin digestion protocol was modified to better simulate human digestion by adjusting temperature and pH conditions, incubation times, enzymes utilized, enzyme-to-substrate ratio and ultrafiltration membrane molecular weight cut-off. pWPI showed a significantly greater proteolysis rate and rate of peptide appearance regardless of digestion protocol. Both digestion methods generated a greater relative abundance of eluting peptides and the appearance of new peptide peaks in association with pWPI digestion in comparison to nWPI hydrolysates. Hydrolysates of pWPI from both digestion conditions showed enhanced ferric-reducing antioxidant power relative to nWPI hydrolysates. Likewise, pWPI hydrolysates from both digestion protocols showed similar enhanced antioxidant and anti-inflammatory effects in a respiratory epithelial cell line as compared to nWPI hydrolysates. These findings indicate that regardless of considerable variations of in vitro digestion protocols, pressurization of WPI leads to more efficient digestion that improves its antioxidant and anti-inflammatory properties.

  10. Stabilization of water in oil in water (W/O/W) emulsion using whey protein isolate-conjugated durian seed gum: enhancement of interfacial activity through conjugation process.

    PubMed

    Tabatabaee Amid, Bahareh; Mirhosseini, Hamed

    2014-01-01

    The present work was conducted to investigate the effect of purification and conjugation processes on functional properties of durian seed gum (DSG) used for stabilization of water in oil in water (W/O/W) emulsion. Whey protein isolate (WPI) was conjugated to durian seed gum through the covalent linkage. In order to prepare WPI-DSG conjugate, covalent linkage of whey protein isolate to durian seed gum was obtained by Maillard reaction induced by heating at 60 °C and 80% (±1%) relative humidity. SDS-polyacrylamide gel electrophoresis was used to test the formation of the covalent linkage between whey protein isolate and durian seed gum after conjugation process. In this study, W/O/W stabilized by WPI-conjugated DSG A showed the highest interface activity and lowest creaming layer among all prepared emulsions. This indicated that the partial conjugation of WPI to DSG significantly improved its functional characteristics in W/O/W emulsion. The addition of WPI-conjugated DSG to W/O/W emulsion increased the viscosity more than non-conjugated durian seed gum (or control). This might be due to possible increment of the molecular weight after linking the protein fraction to the structure of durian seed gum through the conjugation process. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Evaluation of bacterial communities belonging to natural whey starters for Grana Padano cheese by length heterogeneity-PCR.

    PubMed

    Lazzi, C; Rossetti, L; Zago, M; Neviani, E; Giraffa, G

    2004-01-01

    To detect bacteria present in controlled dairy ecosystems with defined composition by length-heterogeneity (LH)-PCR. LH-PCR allows to distinguish different organisms on the basis of natural variations in the length of 16S rRNA gene sequences. LH-PCR was applied to depict population structure of the lactic acid bacteria (LAB) species recoverable from Grana Padano cheese whey starters. Typical bacterial species present in the LAB community were evidenced and well discriminated. Small differences in species composition, e.g. the frequent finding of Streptococcus thermophilus and the constant presence of thermophilic lactobacilli (Lactobacillus helveticus, Lact. delbrueckii subsp. lactis/bulgaricus and Lact. fermentum) were reliably highlighted. Specificity of LH-PCR was confirmed by species-specific PCR from total DNA of the cultures. LH-PCR is a useful tool to monitor microbial composition and population dynamics in dairy starter cultures. When present, non-dominant bacterial species present in the whey starters, such as Strep. thermophilus, can easily be visualized and characterized without isolating and cultivating single strains. A similar approach can be applied to more complex dairy ecosystems such as milk or cheese curd. Community members and differences in population structure of controlled dairy ecosystems such as whey starters for hard cheeses can be evaluated and compared in a relative easy, fast, reliable and highly reproducible way.

  12. Redox properties of transitional milk from mothers of preterm infants.

    PubMed

    Minić, Simeon; Ješić, Miloš; Đurović, Dijana; Miletić, Srdjan; Lugonja, Nikoleta; Marinković, Vesna; Nikolić-Kokić, Aleksandra; Spasić, Snežana; Vrvić, Miroslav M

    2018-02-01

    There is a discrepancy between the amount of transitional milk produced by mothers of preterm infants and the low capacity of premature infants to consume it. This milk can be used in milk banks, but previous studies found that there are large variations in the level of host-defence proteins in individual samples of milk from mothers of premature infants, which implies that large individual variations in antioxidative defence composition are also possible. Milk samples were collected from 20 healthy mothers of preterm infants. We determined the values for non-enzymatic antioxidative capacity parameters (oxygen radical absorbance capacity (ORAC)), static oxidation-reduction potential (ORP), activities of antioxidant defence enzymes and the amount of vitamin C in whole milk, skim and whey fractions of transitional milk. The main low-molecular-weight antioxidant in transitional milk is vitamin C and most of it is contained in whey. ORAC is higher in whole transitional milk than in skim milk and whey, and ORP is lower in whole transitional milk than that in skim milk and whey. Antioxidative enzyme activities are similar in all individual samples of transitional milk from mothers of preterm infants. Our results indicate that transitional milk of mothers of preterm infants shows slow individual variations in antioxidative defence composition; therefore, it can be used in human milk banks. © 2017 Paediatrics and Child Health Division (The Royal Australasian College of Physicians).

  13. Novel Functional Whey-Based Drinks with Great Potential in the Dairy Industry.

    PubMed

    Pereira, Carlos; Henriques, Marta; Gomes, David; Gomez-Zavaglia, Andrea; de Antoni, Graciela

    2015-09-01

    This work focuses on the production of liquid whey protein concentrates by ultrafiltration followed by thermal denaturation and homogenization of the ultrafiltrated concentrate, as well as on the production of ultrafiltrated permeates concentrated by reverse osmosis. Kefir grains (fresh and thawed) and/or commercial probiotic bacteria were inoculated in both liquid whey protein concentrates and concentrated ultrafiltrated permeates and grown at 25 °C for 24 h for the manufacture of fermented drinks. The physicochemical characterization (pH, titratable acidity, viscosity, and content of total solids, ash, fat and proteins) of the obtained drinks was then assessed and compared. Enumeration of viable microorganisms was carried out immediately after inoculation (at 0 h), during the fermentation period (at 12 and 24 h) and during refrigerated storage (at 48, 168 and 336 h). The fermented drinks showed acceptable physicochemical and sensorial properties, and contained above 7 log CFU/mL of lactococci and lactobacilli and 6 log CFU/mL of yeasts after 14 days of refrigerated storage, which is in agreement with the standards required by international organizations like European Food Safety Authority (EFSA) and Food and Drug Administration (FDA) for products containing probiotics. In summary, the strategy developed in this work contributes to the expansion of the applications of products derived from whey fractionation for the design of novel functional foods.

  14. Anticancer activity of cow, sheep, goat, mare, donkey and camel milks and their caseins and whey proteins and in silico comparison of the caseins.

    PubMed

    Shariatikia, Malihe; Behbahani, Mandana; Mohabatkar, Hassan

    2017-06-01

    The present investigation was carried out to evaluate anticancer activity of cow, goat, sheep, mare, donkey and camel milks and their casein and whey proteins against MCF7 cell line. The structure-based properties of the casein proteins were also investigated, using bioinformatics tools to find explanation for their antitumor activities. The effect of different milks and their casein and whey proteins on MCF7 proliferation was measured using MTT assay at different concentrations (0.5, 1 and 2 mg/ml). The results showed that mare, donkey, cow and camel milks and their casein and whey proteins have potent cytotoxic activity against MCF7 cells in a dose dependent manner while sheep and goat milks and their proteins did not reveal any cytotoxic activity. The in silico results demonstrated that mare, donkey and camel caseins had highest positive and negative charges. The secondary structure prediction indicated that mare and donkey caseins had the maximum percentage of α helix and camel casein had the highest percentage of extended strand. This study suggests that there is a striking correlation between anti-cancer activity of milk caseins and their physicochemical properties such as alpha helix structure and positive and negative charges. In conclusion, the results indicated that mare, camel and donkey milks might be good candidates against breast cancer cells.

  15. Thermophilic aeration of cattle slurry with whey and/or jam wastes.

    PubMed

    Heinonen-Tanski, Helvi; Kiuru, Tapio; Ruuskanen, Juhani; Korhonen, Kari; Koivunen, Jari; Ruokojärvi, Arja

    2005-01-01

    Thermophilic aeration of cattle slurry and food industrial by-products was studied with the aim to improve hygienic qualities of the slurry so that it could be used as a safe fertiliser for berries to be eaten raw. We also wanted to study if the process would be energetically favourable in an arctic climate. Cattle slurry alone or with whey and/or jam waste was treated. The tests were done in a well heat-insulated reactor with a 10 m(3) volume. Temperature increases up to over 70 degrees C could be recorded in 19 days even though some processes were carried out in winter time when the ambient air temperature was less than 0 degrees C. The heat energy formed was higher than the electrical energy needed to carry out the aeration. The hygienic qualities of the aerated product were good with only minor nitrogen losses. The end product could be useful as a fertiliser and soil improving compound to increase the organic matter content of agricultural soil. Cattle slurry alone was well suited as the raw material if attaining a high temperature was the main goal. A part of slurry could be replaced with food-industrial side products. Whey waste suited better for co-composting than jam waste but the mixture of whey, jam waste, and slurry was optimal for composting.

  16. Synthesis and characterization of a potential prebiotic trisaccharide from cheese whey permeate and sucrose by Leuconostoc mesenteroides dextransucrase.

    PubMed

    Díez-Municio, Marina; Montilla, Antonia; Jimeno, M Luisa; Corzo, Nieves; Olano, Agustín; Moreno, F Javier

    2012-02-29

    The production of new bioactive oligosaccharides is currently garnering much attention for their potential use as functional ingredients. This work addresses the enzymatic synthesis and NMR structural characterization of 2-α-D-glucopyranosyl-lactose derived from sucrose:lactose and sucrose:cheese whey permeate mixtures by using a Leuconostoc mesenteroides B-512F dextransucrase. The effect of synthesis conditions, including concentration of substrates, molar ratio of donor/acceptor, enzyme concentration, reaction time, and temperature, on the formation of transfer products is evaluated. Results indicated that cheese whey permeate is a suitable material for the synthesis of 2-α-D-glucopyranosyl-lactose, giving rise to yields around 50% (in weight respect to the initial amount of lactose) under the optimum reaction conditions. According to its structure, this trisaccharide is an excellent candidate for a new prebiotic ingredient, due to the reported high resistance of α-(1→2) linkages to the digestive enzymes in humans and animals, as well as to its potential selective stimulation of beneficial bacteria in the large intestine mainly attributed to the two linked glucose units located at the reducing end that reflects the disaccharide kojibiose (2-α-D-glucopyranosyl-D-glucose). These findings could contribute to broadening the use of important agricultural raw materials, such as sucrose or cheese whey permeates, as renewable substrates for enzymatic synthesis of oligosaccharides of nutritional interest.

  17. Dietary Whey and Casein Differentially Affect Energy Balance, Gut Hormones, Glucose Metabolism, and Taste Preference in Diet-Induced Obese Rats.

    PubMed

    Pezeshki, Adel; Fahim, Andrew; Chelikani, Prasanth K

    2015-10-01

    Dietary whey and casein proteins decrease food intake and body weight and improve glycemic control; however, little is known about the underlying mechanisms. We determined the effects of dietary whey, casein, and a combination of the 2 on energy balance, hormones, glucose metabolism, and taste preference in rats. In Expt. 1, Obesity Prone CD (OP-CD) rats were fed a high-fat control diet (33% fat energy) for 8 wk, and then randomly assigned to 4 isocaloric dietary treatments (n = 12/group): the control treatment (CO; 14% protein energy from egg white), the whey treatment (WH; 26% whey + 14% egg white), the casein treatment (CA; 26% casein + 14% egg white), or the whey plus casein treatment (WHCA; 13% whey + 13% casein + 14% egg white) for 28 d. Measurements included food intake, energy expenditure, body composition, metabolic hormones, glucose tolerance and key tissue markers of glucose and energy metabolism. In Expt. 2, naïve OP-CD rats were randomly assigned to 3 groups (n = 8/group). During an 8 d conditioning period, each group received on alternate days either the CO or WH, CO or CA, or CO or WHCA. Subsequently, preferences for the test diets were assessed on 2 consecutive days with food intake measurements at regular intervals. In Expt. 1, food intake was decreased by 17-37% for the first 14 d in the WH and CA rats, and by 18-34% only for the first 4 d in the WHCA compared with the CO rats. Fat mass decreased by 21-28% for the WH rats and 17-33% for the CA rats from day 14 onward, but by 30% only on day 28 in WHCA rats, relative to CO rats. Thus, food intake, body weight, and fat mass decreased more rapidly in WH and CA rats than in WHCA rats. Energy expenditure in WH rats decreased for the first 4 d compared with CA and WHCA rats, and for the first 7 d compared with the CO rats. Circulating leptin, glucose-dependent insulinotropic polypeptide, interleukin 6, and glucose concentrations were lower in WH, CA, and WHCA rats than in CO rats. Plasma glucagon-like peptide 1 concentrations were greater in WH than in CA or WHCA rats. The improvements in glucose tolerance were greater in WH than in WHCA rats. The plasma membrane glucose transporter 4 (GLUT4)-to-total GLUT4 ratio in skeletal muscle was greater in CA and WHCA rats than in CO rats; other markers of glucose and energy metabolism in the adipose and cardiac tissues did not differ. In Expt. 2, during 4 conditioning trials, daily food intake was decreased in WH, CA, and WHCA rats by 26-37%, 30-43%, and 23-33%, respectively, compared with CO rats. Preferences for WH and CA rats were 45% and 31% lower, respectively, than those for CO rats, but that for WHCA rats did not differ. Together, these data demonstrate that in obese rats, whey, casein, and their combination improve energy balance through differential effects on food intake, taste preference, energy expenditure, glucose tolerance, and gut hormone secretion. © 2015 American Society for Nutrition.

  18. A Protein Preload Enhances the Glucose-Lowering Efficacy of Vildagliptin in Type 2 Diabetes.

    PubMed

    Wu, Tongzhi; Little, Tanya J; Bound, Michelle J; Borg, Malcolm; Zhang, Xiang; Deacon, Carolyn F; Horowitz, Michael; Jones, Karen L; Rayner, Christopher K

    2016-04-01

    Nutrient "preloads" given before meals can attenuate postprandial glycemic excursions, at least partly by slowing gastric emptying and stimulating secretion of the incretins (i.e., glucagon-like peptide-1 [GLP-1] and glucose-dependent insulinotropic polypeptide [GIP]). This study was designed to evaluate whether a protein preload could improve the efficacy of the dipeptidyl peptidase-4 (DPP-4) inhibitor vildagliptin to increase incretin concentrations, slow gastric emptying, and lower postprandial glycemia in type 2 diabetes. Twenty-two patients with type 2 diabetes treated with metformin were studied on four occasions, receiving either 50 mg vildagliptin (VILD) or placebo (PLBO) on both the evening before and the morning of each study day. The latter dose was followed after 60 min by a preload drink containing either 25 g whey protein (WHEY) or control flavoring (CTRL), and after another 30 min by a (13)C-octanoate-labeled mashed potato meal. Plasma glucose and hormones, and gastric emptying, were evaluated. Compared with PLBO/CTRL, PLBO/WHEY reduced postprandial peak glycemia, increased plasma insulin, glucagon, and incretin hormones (total and intact), and slowed gastric emptying, whereas VILD/CTRL reduced both the peak and area under the curve for glucose, increased plasma intact incretins, and slowed gastric emptying but suppressed plasma glucagon and total incretins (P < 0.05 each). Compared with both PLBO/WHEY and VILD/CTRL, VILD/WHEY was associated with higher plasma intact GLP-1 and GIP, slower gastric emptying, and lower postprandial glycemia (P < 0.05 each). In metformin-treated type 2 diabetes, a protein preload has the capacity to enhance the efficacy of vildagliptin to slow gastric emptying, increase plasma intact incretins, and reduce postprandial glycemia. © 2016 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  19. The effects of 8 weeks of whey or rice protein supplementation on body composition and exercise performance

    PubMed Central

    2013-01-01

    Background Consumption of moderate amounts of animal-derived protein has been shown to differently influence skeletal muscle hypertrophy during resistance training when compared with nitrogenous and isoenergetic amounts of plant-based protein administered in small to moderate doses. Therefore, the purpose of the study was to determine if the post-exercise consumption of rice protein isolate could increase recovery and elicit adequate changes in body composition compared to equally dosed whey protein isolate if given in large, isocaloric doses. Methods 24 college-aged, resistance trained males were recruited for this study. Subjects were randomly and equally divided into two groups, either consuming 48 g of rice or whey protein isolate (isocaloric and isonitrogenous) on training days. Subjects trained 3 days per week for 8 weeks as a part of a daily undulating periodized resistance-training program. The rice and whey protein supplements were consumed immediately following exercise. Ratings of perceived recovery, soreness, and readiness to train were recorded prior to and following the first training session. Ultrasonography determined muscle thickness, dual emission x-ray absorptiometry determined body composition, and bench press and leg press for upper and lower body strength were recorded during weeks 0, 4, and 8. An ANOVA model was used to measure group, time, and group by time interactions. If any main effects were observed, a Tukey post-hoc was employed to locate where differences occurred. Results No detectable differences were present in psychometric scores of perceived recovery, soreness, or readiness to train (p > 0.05). Significant time effects were observed in which lean body mass, muscle mass, strength and power all increased and fat mass decreased; however, no condition by time interactions were observed (p > 0.05). Conclusion Both whey and rice protein isolate administration post resistance exercise improved indices of body composition and exercise performance; however, there were no differences between the two groups. PMID:23782948

  20. Optimized batch fermentation of cheese whey. Supplemented feedlot waste filtrate to produce a nitrogen-rich feed supplement for ruminants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erdman, M.D.; Reddy, C.A.

    1986-03-01

    An optimized batch fermentation process for the conversion of cattle feedlot waste filtrate, supplemented with cheese whey, into a nitrogenous feed supplement for ruminants is described. Feedlot waste filtrate supplemented with cheese whey (5 g of whey per 100 ml) was fermented by the indigenous microbial flora in the feedlot waste filtrate. Ammonium hydroxide was added to the fermentation not only to maintain a constant pH but also to produce ammonium salts of organic acids, which have been shown to be valuable as nitrogenous feed supplements for ruminants. The utilization of substrate carbohydrate at pH 7.0 and 43 degrees Cmore » was greater than 94% within 8 h, and the crude protein (total N X 6.25) content of the product was 70 to 78% (dry weight basis). About 66 to 69% of the crude protein was in the form of ammonia nitrogen. Lactate and acetate were the predominant acids during the first 6 to 8 hours of fermentation, but after 24 hours, appreciable levels of propionate and butyrate were also present. The rate of fermentation and the crude protein content of the product were optimal at pH 7.0 and decreased at a lower pH. For example, fermentation did not go to completion even after 24 hours at pH 4.5. Fermentation proceeded optimally at 43 degrees C, less so at 37 degrees C, and considerably more slowly at 23 and 50 degrees C. Concentrations of up to 15 g of cheese whey per 100 ml of feedlot waste filtrate were fermented efficiently. Fermentation of feedlot waste filtrate obtained from animals fed low silage-high grain, high silage-low grain, or dairy rations resulted in similar products in terms of total nitrogen and organic acid composition.« less

  1. Fate of ivermectin residues in ewes' milk and derived products.

    PubMed

    Cerkvenik, Vesna; Perko, Bogdan; Rogelj, Irena; Doganoc, Darinka Z; Skubic, Valentin; Beek, Wim M J; Keukens, Henk J

    2004-02-01

    The fate of ivermectin (IVM) residues was studied throughout the processing of daily bulk milk from 30 ewes (taken up to 33 d following subcutaneous administration of 0.2 mg IVM/kg b.w.) in the following milk products: yoghurt made from raw and pasteurized milk; cheese after pressing; 30- and 60-day ripened cheese; and whey, secondary whey and whey proteins obtained after cheese-making (albumin cheese). The concentration of the H2B1a component of IVM was analysed in these dairy products using an HPLC method with fluorescence detection. The mean recovery of the method was, depending on the matrix, between 87 and 100%. Limits of detection in the order of only 0.1 microg H2B1a/kg of product were achieved. Maximum concentrations of IVM were detected mostly at 2 d after drug administration to the ewes. The highest concentration of IVM was found on day 2 in 60-day ripened cheese (96 microg H2B1a/kg cheese). Secondary whey was the matrix with the lowest concentration of IVM (<0.6 microg H2B1a/ kg). Residue levels fell below the limits of detection between day 5 (for secondary whey) and day 25 (for all cheese samples). In the matrices investigated, linear correlations between daily concentrations of IVM, milk fat and solid content were evident. During yoghurt production, fermentation and thermal stability of IVM was observed. During cheese production, approximately 35% of the IVM, present in the raw (bulk) milk samples, was lost. From the results it was concluded that the processing of ewes' milk did not eliminate the drug residues under investigation. The consequences of IVM in the human diet were discussed. Milk from treated animals should be excluded from production of fat products like cheese for longer after treatment with IVM than for lower fat products.

  2. The decrease in the IgG-binding capacity of intensively dry heated whey proteins is associated with intense Maillard reaction, structural changes of the proteins and formation of RAGE-ligands.

    PubMed

    Liu, Fahui; Teodorowicz, Małgorzata; van Boekel, Martinus A J S; Wichers, Harry J; Hettinga, Kasper A

    2016-01-01

    Heat treatment is the most common way of milk processing, inducing structural changes as well as chemical modifications in milk proteins. These modifications influence the immune-reactivity and allergenicity of milk proteins. This study shows the influence of dry heating on the solubility, particle size, loss of accessible thiol and amino groups, degree of Maillard reaction, IgG-binding capacity and binding to the receptor for advanced glycation end products (RAGE) of thermally treated and glycated whey proteins. A mixture of whey proteins and lactose was dry heated at 130 °C up to 20 min to mimic the baking process in two different water activities, 0.23 to mimic the heating in the dry state and 0.59 for the semi-dry state. The dry heating was accompanied by a loss of soluble proteins and an increase in the size of dissolved aggregates. Most of the Maillard reaction sites were found to be located in the reported conformational epitope area on whey proteins. Therefore the structural changes, including exposure of the SH group, SH-SS exchange, covalent cross-links and the loss of available lysine, subsequently resulted in a decreased IgG-binding capacity (up to 33%). The binding of glycation products to RAGE increased with the heating time, which was correlated with the stage of the Maillard reaction and the decrease in the IgG-binding capacity. The RAGE-binding capacity was higher in samples with a lower water activity (0.23). These results indicate that the intensive dry heating of whey proteins as it occurs during baking may be of importance to the immunological properties of allergens in cow's milk, both due to chemical modifications of the allergens and formation of AGEs.

  3. Combined nano-biotechnology for in-situ remediation of mixed contamination of groundwater by hexavalent chromium and chlorinated solvents.

    PubMed

    Němeček, Jan; Pokorný, Petr; Lhotský, Ondřej; Knytl, Vladislav; Najmanová, Petra; Steinová, Jana; Černík, Miroslav; Filipová, Alena; Filip, Jan; Cajthaml, Tomáš

    2016-09-01

    The present report describes a 13month pilot remediation study that consists of a combination of Cr(VI) (4.4 to 57mg/l) geofixation and dechlorination of chlorinated ethenes (400 to 6526μg/l), achieved by the sequential use of nanoscale zerovalent iron (nZVI) particles and in situ biotic reduction supported by whey injection. The remediation process was monitored using numerous techniques, including physical-chemical analyses and molecular biology approaches which enabled both the characterization of the mechanisms involved in pollutant transformation and the description of the overall background processes of the treatment. The results revealed that nZVI was efficient toward Cr(VI) by itself and completely removed it from the groundwater (LOQ 0.05mg/l) and the subsequent application of whey resulted in a high removal of chlorinated ethenes (97 to 99%). The persistence of the reducing conditions, even after the depletion of the organic substrates, indicated a complementarity between nZVI and the whey phases in the combined technology as the subsequent application of whey phase partially assisted the microbial regeneration of the spent nZVI by promoting its reduction into Fe(II), which further supported remediation conditions at the site. Illumina sequencing and the detection of functional vcrA and bvcA genes documented a development in the reducing microbes (iron-reducing, sulfate-reducing and chlororespiring bacteria) that benefited under the conditions of the site and that was probably responsible for the high dechlorination and/or Cr(VI) reduction. The results of this study demonstrate the feasibility and high efficiency of the combined nano-biotechnological approach of nZVI and whey application in-situ for the removal of Cr(VI) and chlorinated ethenes from the groundwater of the contaminated site. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Acceptable low-phenylalanine foods and beverages can be made with glycomacropeptide from cheese whey for individuals with PKU

    PubMed Central

    Lim, Kyungwha; van Calcar, Sandra C.; Nelson, Kathryn L.; Gleason, Sally T.; Ney, Denise M.

    2007-01-01

    Glycomacropeptide (GMP) is a whey protein that contains no aromatic amino acids including phenylalanine (phe). The objective of this study was to make a variety of palatable, low-phe foods and beverages with GMP and to assess their acceptability by conducting consumer sensory studies in individuals with PKU. Results demonstrate acceptability of products made with GMP. GMP supplemented with limiting indispensable amino acids could provide an alternative protein source for individuals with PKU. PMID:17644019

  5. A combination of whey protein and potassium bicarbonate supplements during head-down-tilt bed rest: Presentation of a multidisciplinary randomized controlled trial (MEP study)

    NASA Astrophysics Data System (ADS)

    Buehlmeier, Judith; Mulder, Edwin; Noppe, Alexandra; Frings-Meuthen, Petra; Angerer, Oliver; Rudwill, Floriane; Biolo, Gianni; Smith, Scott M.; Blanc, Stéphane; Heer, Martina

    2014-02-01

    Inactivity, as it appears during space flight and in bed rest, induces reduction of lean body and bone mass, glucose intolerance, and weakening of the cardiovascular system. Increased protein intake, whey protein in particular, has been proposed to counteract some of these effects, but has also been associated with negative effects on bone, likely caused by a correspondingly high ratio of acid to alkali precursors in the diet.

  6. Functional properties of whey protein and its application in nanocomposite materials and functional foods

    NASA Astrophysics Data System (ADS)

    Walsh, Helen

    Whey is a byproduct of cheese making; whey proteins are globular proteins which can be modified and polymerized to add functional benefits, these benefits can be both nutritional and structural in foods. Modified proteins can be used in non-foods, being of particular interest in polymer films and coatings. Food packaging materials, including plastics, can linings, interior coatings of paper containers, and beverage cap sealing materials, are generally made of synthetic petroleum based compounds. These synthetic materials may pose a potential human health risk due to presence of certain chemicals such as Bisphenol A (BPA). They also add to environmental pollution, being difficult to degrade. Protein-based materials do not have the same issues as synthetics and so can be used as alternatives in many packaging types. As proteins are generally hydrophilic they must be modified structurally and their performance enhanced by the addition of waterproofing agents. Polymerization of whey proteins results in a network, adding both strength and flexibility. The most interesting of the food-safe waterproofing agents are the (large aspect ratio) nanoclays. Nanoclays are relatively inexpensive, widely available and have low environmental impact. The clay surface can be modified to make it organophilic and so compatible with organic polymers. The objective of this study is the use of polymerized whey protein (PWP), with reinforcing nanoclays, to produce flexible surface coatings which limit the transfer of contents while maintaining food safety. Four smectite and kaolin type clays, one treated and three natural were assessed for strengthening qualities and the potential waterproofing and plasticizing benefits of other additives were also analyzed. The nutritional benefits of whey proteins can also be used to enhance the protein content of various foodstuffs. Drinkable yogurt is a popular beverage in the US and other countries and is considered a functional food, especially when produced with probiotic bacteria. Carbonation was applied to a drinkable yogurt to enhance its benefits. This process helps reduce the oxygen levels in the foodstuff thus potentially being advantageous to the microaerophilic probiotic bacteria while simultaneously producing a product, somewhat similar to kefir, which has the potential to fill a niche in the functional foods market. Yogurt was combined with a syrup to reduce its viscosity, making it drinkable, and also to allow infusion of CO2. This dilution reduced the protein content of the drink and so whey protein concentrate was added to increase levels in the final product. High-methoxyl pectins were used to provide stability by reducing the tendency of the proteins to sediment out. The objectives of this study were to develop a manufacturing technology for drinkable carbonated symbiotic yogurts, and to evaluate their physicochemical properties. Two flavors of yogurt drink, pomegranate and vanilla, were formulated containing inulin as prebiotic, along with probiotic bacteria, producing symbiotic dairy beverages.

  7. Effect of technological factors on water activity of extruded corn product with an addition of whey proteins.

    PubMed

    Makowska, Agnieszka; Cais-Sokolińska, Dorota; Lasik, Agata

    2014-01-01

    The value of water activity in extruded products constitutes a significant indicator of their quality and stability. The state, in which water is found in extruded products, is an indicator of the conducted extrusion process and the used raw material. The aim of the study was to assess water activity in extruded products made from a mixture of com grits with 12.5 and 15.0% moisture contents and different level of addition of whey proteins. It was shown that the degree of mixture moisture content did not have an effect on the value of aw in produced puffs. The greatest difference was recorded when introducing 3% proteins in comparison to aw of puffs produced solely from corn grits. Δaw = 0.023. The greater the content of whey proteins, the lower the aw value. A 3-month storage at a temperature of 18 ±0.5°C influenced aw of snacks produced from a mixture with a higher moisture content.

  8. Structure modification and functionality of whey proteins: quantitative structure-activity relationship approach.

    PubMed

    Nakai, S; Li-Chan, E

    1985-10-01

    According to the original idea of quantitative structure-activity relationship, electric, hydrophobic, and structural parameters should be taken into consideration for elucidating functionality. Changes in these parameters are reflected in the property of protein solubility upon modification of whey proteins by heating. Although solubility is itself a functional property, it has been utilized to explain other functionalities of proteins. However, better correlations were obtained when hydrophobic parameters of the proteins were used in conjunction with solubility. Various treatments reported in the literature were applied to whey protein concentrate in an attempt to obtain whipping and gelling properties similar to those of egg white. Mapping simplex optimization was used to search for the best results. Improvement in whipping properties by pepsin hydrolysis may have been due to higher protein solubility, and good gelling properties resulting from polyphosphate treatment may have been due to an increase in exposable hydrophobicity. However, the results of angel food cake making were still unsatisfactory.

  9. Construction of a lactose-assimilating strain of baker's yeast.

    PubMed

    Adam, A C; Prieto, J A; Rubio-Texeira, M; Polaina, J

    1999-09-30

    A recombinant strain of baker's yeast has been constructed which can assimilate lactose efficiently. This strain has been designed to allow its propagation in whey, the byproduct resulting from cheese-making. The ability to metabolize lactose is conferred by the functional expression of two genes from Kluyveromyces lactis, LAC12 and LAC4, which encode a lactose permease and a beta-galactosidase, respectively. To make the recombinant strain more acceptable for its use in bread-making, the genetic transformation of the host baker's yeast was carried out with linear fragments of DNA of defined sequence, carrying as the only heterologous material the coding regions of the two K. lactis genes. Growth of the new strain on cheese whey affected neither the quality of bread nor the yeast gassing power. The significance of the newly developed strain is two-fold: it affords a cheap alternative to the procedure generally used for the propagation of baker's yeast, and it offers a profitable use for cheese whey. Copyright 1999 John Wiley & Sons, Ltd.

  10. Growth of healthy term infants fed partially hydrolyzed whey-based infant formula: a randomized, blinded, controlled trial.

    PubMed

    Borschel, Marlene W; Choe, Yong S; Kajzer, Janice A

    2014-12-01

    Partially hydrolyzed formulas (pHF) represent a significant percentage of the infant formula market. A new whey-based, palm olein oil (PO)-free pHF was developed and a masked, randomized, parallel growth study was conducted in infants fed this formula or a commercially available whey-based pHF with PO. Infants between 0 and 8 days were to be enrolled and studied to 119 days of age. Growth and tolerance of infants were evaluated. Mean weight gain from 14 to 119 days of age was similar between groups. There were no significant differences between groups in weight, length, head circumference (HC), or length or HC gains. Infants fed the new PO-free pHF had significantly softer stools than those fed the PO-containing formula except at 119 days of age. This study demonstrates that whereas growth of infants fed different formulas during the first 4 months of life may be similar, infants may tolerate individual formulas differently. © The Author(s) 2014.

  11. The effect of calcium on the composition and physical properties of whey protein particles prepared using emulsification.

    PubMed

    Westerik, Nieke; Scholten, Elke; Corredig, Milena

    2015-06-15

    Protein microparticles were formed through emulsification of 25% (w/w) whey protein isolate (WPI) solutions containing various concentrations of calcium (0.0-400.0mM) in an oil phase stabilized by polyglycerol polyricinoleate (PGPR). The emulsions were heated (at 80°C) and the microparticles subsequently re-dispersed in an aqueous phase. Light microscopy and scanning electron microscopy (SEM) images revealed that control particles and those prepared with 7.4mM calcium were spherical and smooth. Particles prepared with 15.0mM calcium gained an irregular, cauliflower-like structure, and at concentrations larger than 30.0mM, shells formed and the particles were no longer spherical. These results describe, for the first time, the potential of modulating the properties of dense whey protein particles by using calcium, and may be used as structuring agents for the design of functional food matrices with increased protein and calcium content. Copyright © 2015. Published by Elsevier Ltd.

  12. Profiles of non-essential trace elements in ewe and goat milk and their yoghurt, Torba yoghurt and whey.

    PubMed

    Sanal, Hasan; Güler, Zehra; Park, Young W

    2011-01-01

    The objectives of this study were to determine the profiles of non-essential trace elements in ewes' and goats' milk and manufactured products, such as yoghurt, torba yoghurt and whey, as well as changes in trace element content during Torba yoghurt-making processes. Concentrations of non-essential trace elements in ewe (Awassi) and goat (Damascus) milk and their yoghurt, torba yoghurt and whey were quantitatively determined by simultaneous inductively coupled plasma optical emission spectrometer (ICP-OES), after microwave digestion. Aluminium, antimony, arsenic, boron, beryllium, cadmium, nickel, lead, silver, titanium, thallium and vanadium were determined for both types of milk and their products. Barium was not detected in goats' milk or their products. Among all trace elements, boron was the most abundant and beryllium was least present in milk and the manufactured products. The results showed that goats' and ewes' milk and their manufactured products may be a source of 13 non-essential trace elements.

  13. Lactobacillus helveticus-fermented milk improves learning and memory in mice.

    PubMed

    Ohsawa, Kazuhito; Uchida, Naoto; Ohki, Kohji; Nakamura, Yasunori; Yokogoshi, Hidehiko

    2015-07-01

    To investigate the effects of Calpis sour milk whey, a Lactobacillus helveticus-fermented milk product, on learning and memory. We evaluated improvement in scopolamine-induced memory impairment using the spontaneous alternation behaviour test, a measure of short-term memory. We also evaluated learning and working memory in mice using the novel object recognition test, which does not involve primary reinforcement (food or electric shocks). A total of 195 male ddY mice were used in the spontaneous alternation behaviour test and 60 in the novel object recognition test. Forced orally administered Calpis sour milk whey powder (200 and 2000 mg/kg) significantly improved scopolamine-induced cognitive impairments (P < 0.05 and P < 0.01, respectively) and object recognition memory (2000 mg/kg; P < 0.05). These results suggest that Calpis sour milk whey may be useful for the prevention of neurodegenerative disorders, such as Alzheimer's disease, and enhancing learning and memory in healthy human subjects; however, human clinical studies are necessary.

  14. Anti–odor activity of milk kefir on organosulphur polysulfide cyclic compounds in petai (parkia speciosa hassk)

    NASA Astrophysics Data System (ADS)

    Kurniati, T.; Windayani, N.; Listiawati, M.

    2018-05-01

    This study aims to assess the activity of milk kefir whey in neutralizing odor-causing cyclic polysulfide compounds in petai (Parkia speciosa Hassk.). RAL designs used to determine the optimum fermentation conditions. The data obtained were processed using SPSS 20. Results showed the characteristics of the microbes in the kefir grains include lactic acid bacteria consisting of genus Lactobacillus and yeast of the genus Candida and Saccharomyces. The optimum fermentation conditions using cow’s milk kefir grain starter obtained in the fermentation time of 24 hours at a concentration of 5% kefir grain. Whey kefir which is produced have high levels of fat, protein, carbohydrates, fiber and lactic acid respectively 1.81; 4.35; 5.59; 0.26 and 0.16%, pH 4.4; a density of 1.0628 g/mL and 7.9368 cP viscosity. Kefir milk whey actively reduced the level of petai smell significantly different at the level of α = 0.05.

  15. Toll-like receptor mediated activation is possibly involved in immunoregulating properties of cow's milk hydrolysates

    PubMed Central

    Kiewiet, M. B. Gea; Dekkers, Renske; Gros, Marjan; van Neerven, R. J. Joost; Groeneveld, Andre; de Vos, Paul; Faas, Marijke M.

    2017-01-01

    Immunomodulating proteins and peptides are formed during the hydrolysis of cow’s milk proteins. These proteins are potential ingredients in functional foods used for the management of a range of immune related problems, both in infants and adults. However, the mechanism behind these effects is unknown. We hypothesize that the interaction of peptides with Toll-like receptors (TLRs) can induce immune effects, since these receptors are known to sample many dietary molecules in the intestine in order to regulate immune effects. To investigate this, we compared the immune effects and TLR activation and inhibition by whey and casein hydrolysates with different hydrolysis levels. We first measured cytokine production in primary peripheral blood mononuclear cells stimulated with either whey, casein, or their hydrolysates. IL-10 and TNFα were induced by whey hydrolysates (decreasing with increasing hydrolysis level), but not by casein hydrolysates. Next, the activation of TLR 2, 3, 5 and 9 receptors were observed by intact and mildly hydrolysed whey proteins only and not by casein hydrolysates in TLR reporter cell lines. Many casein hydrolysates inhibited TLR signaling (mainly TLR 5 and 9). These results demonstrate that the effects of cow’s milk proteins on the immune system are protein type and hydrolysis dependent. TLR signaling is suggested as a possible mechanism for differences in effect. This knowledge contributes to a better understanding of the immune effects of hydrolysates and the design of infant formula, and nutrition in general, with specific immunoregulatory effects. PMID:28594834

  16. Why semicarbazide (SEM) is not an appropriate marker for the usage of nitrofurazone on agricultural animals.

    PubMed

    Stadler, Richard H; Verzegnassi, Ludovica; Seefelder, Walburga; Racault, Lucie

    2015-01-01

    A comprehensive global database on semicarbazide (SEM) in foodstuffs and food ingredients is presented, with over 4000 data collected in foods such as seafood (crustaceans, fish powders), meat (beef, chicken powders), dairy products (e.g. raw milk, milk powders, whey, sweet buttermilk powder, caseinate, yoghurt, cheese), honey and other ingredients. The results provide evidence that the presence of SEM in certain dairy ingredients (whey, milk protein concentrates) is a by-product of chemical reactions taking place during the manufacturing process. Of the dairy ingredients tested (c. 2000 samples), 5.3% showed traces of SEM > 0.5 µg/kg. The highest incidence of SEM-positive samples in the dairy category were whey (powders, liquid) and milk protein concentrates (35% positive), with up to 13 µg/kg measured in a whey powder. Sweet buttermilk powder and caseinate followed, with 27% and 9.3% positives, respectively. SEM was not detected in raw milk, or in yoghurt or cheese. Of the crustacean products (shrimp and prawn powders) tested, 44% were positive for SEM, the highest value measured at 284 µg/kg. Fish powders revealed an unexpectedly high incidence of positive samples (25%); in this case, fraudulent addition of shellfish shells or carry-over during processing cannot be excluded. Overall, the data provide new insights into the occurrence of SEM (for dairy products and fish powders), substantially strengthening the arguments that SEM in certain food categories is not a conclusive marker of the use of the illegal antibiotic nitrofurazone.

  17. Safe intake of an oral supplement containing carbohydrates and whey protein shortly before sedation to gastroscopy; a double blind, randomized trial.

    PubMed

    de Aguilar-Nascimento, José Eduardo; Caporossi, Cervantes; Metelo, José Sebastião; Tanajura, Guilherme Henrique; Canevari-de-Oliveira, Mariana; da Cunha Costa, Rodrigo

    2014-03-01

    To investigate the gastric emptying of an oral supplement containing carbohydrate plus whey protein drunk before sedation for gastroscopy. This is a randomized double-blind trial including adult patients (ages 18-65) with a chief complaint of epigastric burning and who were candidates to elective gastroscopy. After overnight fast subjects were randomized to drink 200 mL of an oral nutritional supplement containing maltodextrine in addition to whey protein 150 to 210 min before the gastroscopy (intervention group, n = 12) or to undergo the endoscopic procedure with no supplement (control group, n = 12). The residual gastric volume (RGV) suctioned and measured during the exam was the main endpoint of the study. There were no complications during all exams. The median (range) fasting time was greater (P < 0.001) in control group (770 min, ranging from 660-917 min) than in the study group (175 min ranging from 150 to 210 min). The median (range) RGV was similar in between the two groups (control group: 25 (10-70) mL versus intervention group: 10 (0-100) mL; p = 0.32). Gastric emptying 150-210 min after the ingestion of an oral supplement containing carbohydrate plus whey protein is similar to an overnight fasting condition. Although limited by the number of cases, the sedation for endoscopic procedures is safe with this fasting protocol. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.

  18. The impact of the concentration of casein micelles and whey protein-stabilized fat globules on the rennet-induced gelation of milk.

    PubMed

    Gaygadzhiev, Zafir; Corredig, Milena; Alexander, Marcela

    2009-02-01

    The rennet-induced aggregation of skim milk recombined with whey protein-stabilized emulsion droplets was studied using diffusing wave spectroscopy (DSW) and small deformation rheology. The effect of different volume fractions of casein micelles and fat globules was investigated by observing changes in turbidity (1/l*), apparent radius, elastic modulus and mean square displacement (MSD), in addition to confocal imaging of the gels. Skim milk containing different concentration of casein micelles showed comparable light-scattering profiles; a higher volume fraction of caseins led to the development of more elastic gels. By following the development of 1/l* in recombined milks, it was possible to describe the behaviour of the fat globules during the initial stages of rennet coagulation. Increasing the volume fraction of fat globules showed a significant increase in gel elasticity, caused by flocculation of the oil droplets. The presence of flocculated oil globules within the gel structure was confirmed by confocal microscopy observations. Moreover, a lower degree of kappa-casein hydrolysis was needed to initiate casein micelles aggregation in milk containing whey protein-stabilized oil droplets compared to skim milk. This study for the first time clearly describes the impact of a mixture of casein micelles and whey protein-stabilized fat globules on the pre-gelation stages of rennet coagulation, and further highlights the importance of the flocculation state of the emulsion droplets in affecting the structure formation of the gel.

  19. Functional redundancy ensures performance robustness in 3-stage PHA-producing mixed cultures under variable feed operation.

    PubMed

    Carvalho, Gilda; Pedras, Inês; Karst, Soren M; Oliveira, Catarina S S; Duque, Anouk F; Nielsen, Per H; Reis, Maria A M

    2018-01-25

    Polyhydroxyalkanoates (PHA) are biopolymers that can be produced by mixed microbial cultures using wastes or industrial by-products, which represent an economical and environmental advantage over pure culture processes. The use of alternate feedstocks enables using seasonal by-products, providing that the process is resilient to transient conditions. The mixed microbial communities of a 3-stage PHA producing system fed initially with molasses and then cheese whey were investigated through amplicon sequencing of the 16S rRNA gene. The transition in feedstock resulted in an adaptation of the acidogenic community, where Actinobacteria dominated with sugarcane molasses (up to 93% of the operational taxonomic units) and Firmicutes, with cheese whey (up to 97%). The resulting fermentation products profile also changed, with a higher fraction of HV precursors obtained with molasses than cheese whey (7.1±0.5 and 1.7±0.7 gCOD/L, respectively). As for the PHA storing culture, the genera Azoarcus, Thauera and Paracoccus were enriched with fermented molasses (average 89% of Bacteria). Later, fermented cheese whey fostered a higher diversity, including some less characterised PHA-storers such as the genera Paenibacillus and Lysinibacillus. Although the microbial community structure was significantly affected by the feedstock shift, the acidogenic and PHA storing performance of the 3-stage system was very similar once a pseudo steady state was attained, showing that a reliable level of functional redundancy was attained in both mixed cultures. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Whey protein enhances normal inflammatory responses during cutaneous wound healing in diabetic rats

    PubMed Central

    2011-01-01

    Background Prolonged wound healing is a complication of diabetes that contributes to mortality. Impaired wound healing occurs as a consequence of excessive reactive oxygen species (ROS) production. Whey protein (WP) is able to reduce the oxygen radicals and increase the levels of the antioxidant glutathione. Thus, the aim of this study was to determine whether dietary supplementation with WP could enhance normal inflammatory responses during wound healing in diabetic rats. Animals were assigned into a wounded control group (WN), a wounded diabetic group (WD) and a wounded diabetic group orally supplemented with whey protein (WDWP) at a dose of 100 mg/kg body weight. Results Whey protein was found to significantly decrease the levels of malondialdehyde (MDA), nitric oxide (NO) and ROS. A significant restoration of the glutathione level was observed in WDWP rats. During the early wound healing stage, IL-1β, TNF-α, IL-6, IL-4 and neutrophil infiltration were significantly decreased in WD mice. WP supplementation was found to restore the levels of these inflammatory markers to the levels observed in control animals. In addition, the time required for wound healing was significantly prolonged in diabetic rats. WP was found to significantly decrease the time required for wound healing in WDWP rats. Conclusion In conclusion, dietary supplementation with WP enhances the normal inflammatory responses during wound healing in diabetic mice by restoring the levels of oxidative stress and inflammatory cytokines. PMID:22168406

  1. Formation and characterization of chitosan-protein particles with fractal whey protein aggregates.

    PubMed

    Ahmed, Khouloud Fekih; Aschi, Adel; Nicolai, Taco

    2018-05-15

    Hybrid protein-polysaccharide particles were formed by complexation of fractal whey protein aggregates and the cationic polysaccharide chitosan. The fractal aggregates were preformed by heating native whey protein isolate at pH 7 and subsequently mixed with chitosan at pH 3 where these proteins and polysaccharides don't interact with each other. Stable dispersions of protein-polysaccharide particles were formed spontaneously when the pH was gradually increased between 4.1 and 6.8, whereas in the absence of chitosan the fractal aggregates precipitated between pH 4.1 and 5.4. Potentiometric titration of the mixtures showed that deprotonation of both components was affected by complexation. With increasing pH, the size of the complexes increased sharply between pH 4.1. and pH 4.5, remained constant up to pH 5.6 and then increased again. A minimum amount of chitosan was needed to form stable complexes at pH 5.0 and the size of the complexes decreased with increasing chitosan concentration. Light scattering showed that the complexes were stable to dilution and had a self similar structure with a fractal dimensions close to two. The effect of changing the pH on the size and stability of the complexes was investigated. Suspensions of complexes of preformed whey protein aggregates and chitosan are more stable up to high pH (6.8) than complexes between native WPI and chitosan as reported in the literature. Copyright © 2018. Published by Elsevier B.V.

  2. Pea proteins oral supplementation promotes muscle thickness gains during resistance training: a double-blind, randomized, Placebo-controlled clinical trial vs. Whey protein.

    PubMed

    Babault, Nicolas; Païzis, Christos; Deley, Gaëlle; Guérin-Deremaux, Laetitia; Saniez, Marie-Hélène; Lefranc-Millot, Catherine; Allaert, François A

    2015-01-01

    The effects of protein supplementation on muscle thickness and strength seem largely dependent on its composition. The current study aimed at comparing the impact of an oral supplementation with vegetable Pea protein (NUTRALYS®) vs. Whey protein and Placebo on biceps brachii muscle thickness and strength after a 12-week resistance training program. One hundred and sixty one males, aged 18 to 35 years were enrolled in the study and underwent 12 weeks of resistance training on upper limb muscles. According to randomization, they were included in the Pea protein (n = 53), Whey protein (n = 54) or Placebo (n = 54) group. All had to take 25 g of the proteins or placebo twice a day during the 12-week training period. Tests were performed on biceps muscles at inclusion (D0), mid (D42) and post training (D84). Muscle thickness was evaluated using ultrasonography, and strength was measured on an isokinetic dynamometer. Results showed a significant time effect for biceps brachii muscle thickness (P < 0.0001). Thickness increased from 24.9 ± 3.8 mm to 26.9 ± 4.1 mm and 27.3 ± 4.4 mm at D0, D42 and D84, respectively, with only a trend toward significant differences between groups (P = 0.09). Performing a sensitivity study on the weakest participants (with regards to strength at inclusion), thickness increases were significantly different between groups (+20.2 ± 12.3%, +15.6 ± 13.5% and +8.6 ± 7.3% for Pea, Whey and Placebo, respectively; P < 0.05). Increases in thickness were significantly greater in the Pea group as compared to Placebo whereas there was no difference between Whey and the two other conditions. Muscle strength also increased with time with no statistical difference between groups. In addition to an appropriate training, the supplementation with pea protein promoted a greater increase of muscle thickness as compared to Placebo and especially for people starting or returning to a muscular strengthening. Since no difference was obtained between the two protein groups, vegetable pea proteins could be used as an alternative to Whey-based dietary products. The present trial has been registered at ClinicalTrials.gov (NCT02128516).

  3. Oral supplementation with whey proteins increases plasma glutathione levels of HIV-infected patients.

    PubMed

    Micke, P; Beeh, K M; Schlaak, J F; Buhl, R

    2001-02-01

    HIV infection is characterized by an enhanced oxidant burden and a systemic deficiency of the tripeptide glutathione (GSH), a major antioxidant. The semi-essential amino acid cysteine is the main source of the free sulfhydryl group of GSH and limits its synthesis. Therefore, different strategies to supplement cysteine supply have been suggested to increase glutathione levels in HIV-infected individuals. The aim of this study was to evaluate the effect of oral supplementation with two different cysteine-rich whey protein formulas on plasma GSH levels and parameters of oxidative stress and immune status in HIV-infected patients. In a prospective double blind clinical trial, 30 patients (25 male, 5 female; mean age (+/- SD) 42 +/- 9.8 years) with stable HIV infection (221 +/- 102 CD4 + lymphocytes L-1) were randomized to a supplemental diet with a daily dose of 45 g whey proteins of either Protectamin (Fresenius Kabi, Bad Hamburg, Germany) or Immunocal (Immunotec, Vandreuil, Canada) for two weeks. Plasma concentrations of total, reduced and oxidized GSH, superoxide anion (O2-) release by blood mononuclear cells, plasma levels of TNF-alpha and interleukins 2 and 12 were quantified with standard methods at baseline and after therapy. Pre-therapy, plasma GSH levels (Protectamin: 1.92 +/- 0.6 microM; Immunocal: 1.98 +/- 0.9 microM) were less than normal (2.64 +/- 0.7 microM, P = 0.03). Following two weeks of oral supplementation with whey proteins, plasma GSH levels increased in the Protectamin group by 44 +/- 56% (2.79 +/- 1.2 microM, P = 0.004) while the difference in the Immunocal group did not reach significance (+ 24.5 +/- 59%, 2.51 +/- 1.48 microM, P = 0.43). Spontaneous O2- release by blood mononuclear cells was stable (20.1 +/- 14.2 vs. 22.6 +/- 16.1 nmol h-1 10-6 cells, P = 0.52) whereas PMA-induced O2- release decreased in the Protectamin group (53.7 +/- 19 vs. 39.8 +/- 18 nmol h-1 10-6 cells, P = 0.04). Plasma concentrations of TNF-alpha and interleukins 2 and 12 (P > 0.08, all comparisons) as well as routine clinical parameters remained unchanged. Therapy was well tolerated. In glutathione-deficient patients with advanced HIV-infection, short-term oral supplementation with whey proteins increases plasma glutathione levels. A long-term clinical trial is clearly warranted to see if this "biochemical efficacy" of whey proteins translates into a more favourable course of the disease.

  4. Conversion of beet molasses and cheese whey into fatty acid methyl esters by the yeast Cryptococcus curvatus.

    PubMed

    Takakuwa, Naoya; Saito, Katsuichi

    2010-01-01

    Eighty-one yeast isolates from raw milk were surveyed for the production of fatty acid methyl esters (FAME). Only one species, identified as Cryptococcus curvatus, produced FAME at a detectable level. Cr. curvatus TYC-19 produced more FAME from beet molasses and cheese whey medium than other strains of the same species. In both media, the major FAME produced were linoleic and oleic acid methyl esters. Sequence analysis of the internal transcribed spacer region of ribosomal DNA indicated that TYC-19 diverged from the same species.

  5. Significantly enhanced biomass production of a novel bio-therapeutic strain Lactobacillus plantarum (AS-14) by developing low cost media cultivation strategy.

    PubMed

    Manzoor, Asma; Qazi, Javed Iqbal; Haq, Ikram Ul; Mukhtar, Hamid; Rasool, Akhtar

    2017-01-01

    Probiotic bacteria are becoming an important tool for improving human health, controlling diseases and enhancing immune responses. The availability of a cost effective cultivation conditions has profound effect on the efficiency and role of probiotic bacteria. Therefore the current study was conducted with an objective to develop a low cost growth medium for enhancing the biomass production of a bio-therapeutic bacterial strain Lactobacillus plantarum AS-14. In this work the isolation of Lactobacillus plantarum AS-14 bacterial strain was carried out from brinjal using cheese whey as a main carbon source. Moreover, the effect of four other nutritional factors besides cheese whey was investigated on the enhanced cell mass production by using response surface methodology (RSM). The best culture medium contained 60 g/l cheese whey, 15 g/l glucose and 15 g/l corn steep liquor in addition to other minor ingredients and it resulted in maximum dry cell mass (15.41 g/l). The second-order polynomial regression model determined that the maximum cell mass production (16.02 g/l) would be obtained at temperature 40°C and pH 6.2. Comparative studies showed that cultivation using cheese whey and corn steep liquor with other components of the selected medium generated higher biomass with lower cost than that of De Man, Rogosa and Sharpe (MRS) medium under similar cultivation conditions (pH 6.2 and temperature 40°C). It is evident that the cell biomass of L. Plantarum AS-14 was enhanced by low cost cultivation conditions. Moreover, corn steep liquor and ammonium bisulphate were perceived as low-cost nitrogen sources in combination with other components to substitute yeast extract. Of all these factors, cheese whey, corn steep liquor, yeast extract and two operating conditions (temperature and pH) were found to be the most significant parameters. Thus the cost effective medium developed in this research might be used for large-scale commercial application where economics is quite likely important.

  6. Development of a multiplex real time PCR to detect thermophilic lactic acid bacteria in natural whey starters.

    PubMed

    Bottari, Benedetta; Agrimonti, Caterina; Gatti, Monica; Neviani, Erasmo; Marmiroli, Nelson

    2013-01-01

    A multiplex real time PCR (mRealT-PCR) useful to rapidly screen microbial composition of thermophilic starter cultures for hard cooked cheeses and to compare samples with potentially different technological properties was developed. Novel primers directed toward pheS gene were designed and optimized for multiple detection of Lactobacillus helveticus, Lactobacillus delbrueckii, Streptococcus thermophilus and Lactobacillus fermentum. The assay was based on SYBR Green chemistry followed by melting curves analysis. The method was then evaluated for applications in the specific detection of the 4 lactic acid bacteria (LAB) in 29 different natural whey starters for Parmigiano Reggiano cheese production. The results obtained by mRealT-PCR were also compared with those obtained on the same samples by Fluorescence in Situ Hybridization (FISH) and Length-Heterogeneity PCR (LH-PCR). The mRealT-PCR developed in this study, was found to be effective for analyzing species present in the samples with an average sensitivity down to less than 600 copies of DNA and therefore sensitive enough to detect even minor LAB community members of thermophilic starter cultures. The assay was able to describe the microbial population of all the different natural whey starter samples analyzed, despite their natural variability. A higher number of whey starter samples with S. thermophilus and L. fermentum present in their microbial community were revealed, suggesting that these species could be more frequent in Parmigiano Reggiano natural whey starter samples than previously shown. The method was more effective than LH-PCR and FISH and, considering that these two techniques have to be used in combination to detect the less abundant species, the mRealT-PCR was also faster. Providing a single step sensitive detection of L. helveticus, L. delbrueckii, S. thermophilus and L. fermentum, the developed mRealT-PCR could be used for screening thermophilic starter cultures and to follow the presence of those species during ripening of derived dairy products. A major increase in understanding the starter culture contribution to cheese ecosystem could be harnessed to control cheese ripening and flavor formation. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. A Double-Blind Clinical Study to Investigate the Effects of a Fungal Protease Enzyme System on Metabolic, Hepato-renal, and Cardiovascular Parameters Following 30 Days of Supplementation in Active, Healthy Men.

    PubMed

    Anderson, Mark L

    2013-05-01

    Research on the role of digestion in overall health has driven increasing interest in the use of digestive enzymes, which may improve nutrient absorption and reduce gastrointestinal symptoms. Sales of digestive aids and enzymes have grown over 8% in 2009, with enzymes accounting for $69 million of this growing category. Recent clinical research reported that acute dosing of Aminogen®, a patented blend of digestive protease enzymes isolated from Aspergillus and blended with whey protein concentrate, increased the rate of protein absorption. The results indicated a faster rate of amino acid absorption reflected in significantly higher blood levels of amino acids, increased nitrogen retention, and significantly reduced levels of C-reactive protein. Few studies, however, have examined the safety of repeated dosing of oral enzymes with an appropriate substrate. The purpose of this study, therefore, was to evaluate basic measures of clinical safety during 30 days of continuous, repeated dosing of Aminogen® and whey protein supplementation in healthy, active men maintaining a regimen of resistance training. Parameters evaluated include various markers of general physical health, metabolic function, hepato-renal function, and cardiovascular health including fasting blood lipids. Forty healthy, resistance-trained men (27.1 ± 7.9 years) were recruited for this double-blind, randomized study. Group A ingested two 40-g doses of whey protein per day containing Aminogen®. Group B ingested two 40-g doses of whey protein per day. No significant changes were noted in measures of general physical health, metabolic function, cardiovascular health, and hepato-renal function within or between groups. However, total cholesterol, LDL cholesterol, and serum calcium significantly increased ( P  < 0.05) in group B. In group A, whey protein containing Aminogen® was well tolerated with no adverse reactions reported. No differences in serum markers of clinical safety and an improved blood lipid profile are also reported.

  8. Metagenomic Analysis of Dairy Bacteriophages: Extraction Method and Pilot Study on Whey Samples Derived from Using Undefined and Defined Mesophilic Starter Cultures

    PubMed Central

    Muhammed, Musemma K.; Kot, Witold; Neve, Horst; Mahony, Jennifer; Castro-Mejía, Josué L.; Krych, Lukasz; Hansen, Lars H.; Nielsen, Dennis S.; Sørensen, Søren J.; Heller, Knut J.; van Sinderen, Douwe

    2017-01-01

    ABSTRACT Despite being potentially highly useful for characterizing the biodiversity of phages, metagenomic studies are currently not available for dairy bacteriophages, partly due to the lack of a standard procedure for phage extraction. We optimized an extraction method that allows the removal of the bulk protein from whey and milk samples with losses of less than 50% of spiked phages. The protocol was applied to extract phages from whey in order to test the notion that members of Lactococcus lactis 936 (now Sk1virus), P335, c2 (now C2virus) and Leuconostoc phage groups are the most frequently encountered in the dairy environment. The relative abundance and diversity of phages in eight and four whey mixtures from dairies using undefined mesophilic mixed-strain cultures containing Lactococcus lactis subsp. lactis biovar diacetylactis and Leuconostoc species (i.e., DL starter cultures) and defined cultures, respectively, were assessed. Results obtained from transmission electron microscopy and high-throughput sequence analyses revealed the dominance of Lc. lactis 936 phages (order Caudovirales, family Siphoviridae) in dairies using undefined DL starter cultures and Lc. lactis c2 phages (order Caudovirales, family Siphoviridae) in dairies using defined cultures. The 936 and Leuconostoc phages demonstrated limited diversity. Possible coinduction of temperate P335 prophages and satellite phages in one of the whey mixtures was also observed. IMPORTANCE The method optimized in this study could provide an important basis for understanding the dynamics of the phage community (abundance, development, diversity, evolution, etc.) in dairies with different sizes, locations, and production strategies. It may also enable the discovery of previously unknown phages, which is crucial for the development of rapid molecular biology-based methods for phage burden surveillance systems. The dominance of only a few phage groups in the dairy environment signifies the depth of knowledge gained over the past decades, which served as the basis for designing current phage control strategies. The presence of a correlation between phages and the type of starter cultures being used in dairies might help to improve the selection and/or design of suitable, custom, and cost-efficient phage control strategies. PMID:28754704

  9. Effects of an amylopectin and chromium complex on the anabolic response to a suboptimal dose of whey protein.

    PubMed

    Ziegenfuss, T N; Lopez, H L; Kedia, A; Habowski, S M; Sandrock, J E; Raub, B; Kerksick, C M; Ferrando, A A

    2017-01-01

    Previous research has demonstrated the permissive effect of insulin on muscle protein kinetics, and the enhanced insulin sensitizing effect of chromium. In the presence of adequate whole protein and/or essential amino acids (EAA), insulin has a stimulatory effect on muscle protein synthesis, whereas in conditions of lower blood EAA concentrations, insulin has an inhibitory effect on protein breakdown. In this study, we determined the effect of an amylopectin/chromium (ACr) complex on changes in plasma concentrations of EAA, insulin, glucose, and the fractional rate of muscle protein synthesis (FSR). Using a double-blind, cross-over design, ten subjects (six men, four women) consumed 6 g whey protein + 2 g of the amylopectin-chromium complex (WPACr) or 6 g whey protein (WP) after an overnight fast. FSR was measured using a primed, continuous infusion of ring-d 5 -phenylalanine with serial muscle biopsies performed at 2, 4, and 8 h. Plasma EAA and insulin were assayed by ion-exchange chromatography and ELISA, respectively. After the biopsy at 4 h, subjects ingested their respective supplement, completed eight sets of bilateral isotonic leg extensions at 80% of their estimated 1-RM, and a final biopsy was obtained 4 h later. Both trials increased EAA similarly, with peak levels noted 30 min after ingestion. Insulin tended ( p  = 0.09) to be higher in the WPACr trial. Paired samples t-tests using baseline and 4-h post-ingestion FSR data separately for each group revealed significant increases in the WPACr group (+0.0197%/h, p  = 0.0004) and no difference in the WP group (+0.01215%/hr, p  = 0.23). Independent t-tests confirmed significant ( p  = 0.045) differences in post-treatment FSR between trials. These data indicate that the addition of ACr to a 6 g dose of whey protein (WPACr) increases the FSR response beyond what is seen with a suboptimal dose of whey protein alone.

  10. Optimization of protein fractionation by skim milk microfiltration: Choice of ceramic membrane pore size and filtration temperature.

    PubMed

    Jørgensen, Camilla Elise; Abrahamsen, Roger K; Rukke, Elling-Olav; Johansen, Anne-Grethe; Schüller, Reidar B; Skeie, Siv B

    2016-08-01

    The objective of this study was to investigate how ceramic membrane pore size and filtration temperature influence the protein fractionation of skim milk by cross flow microfiltration (MF). Microfiltration was performed at a uniform transmembrane pressure with constant permeate flux to a volume concentration factor of 2.5. Three different membrane pore sizes, 0.05, 0.10, and 0.20µm, were used at a filtration temperature of 50°C. Furthermore, at pore size 0.10µm, 2 different filtration temperatures were investigated: 50 and 60°C. The transmission of proteins increased with increasing pore size, giving the permeate from MF with the 0.20-µm membrane a significantly higher concentration of native whey proteins compared with the permeates from the 0.05- and 0.10-µm membranes (0.50, 0.24, and 0.39%, respectively). Significant amounts of caseins permeated the 0.20-µm membrane (1.4%), giving a permeate with a whitish appearance and a casein distribution (αS2-CN: αS1-CN: κ-CN: β-CN) similar to that of skim milk. The 0.05- and 0.10-µm membranes were able to retain all caseins (only negligible amounts were detected). A permeate free from casein is beneficial in the production of native whey protein concentrates and in applications where transparency is an important functional characteristic. Microfiltration of skim milk at 50°C with the 0.10-µm membrane resulted in a permeate containing significantly more native whey proteins than the permeate from MF at 60°C. The more rapid increase in transmembrane pressure and the significantly lower concentration of caseins in the retentate at 60°C indicated that a higher concentration of caseins deposited on the membrane, and consequently reduced the native whey protein transmission. Optimal protein fractionation of skim milk into a casein-rich retentate and a permeate with native whey proteins were obtained by 0.10-µm MF at 50°C. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  11. Specific protein supplementation using soya, casein or whey differentially affects regional gut growth and luminal growth factor bioactivity in rats; implications for the treatment of gut injury and stimulating repair.

    PubMed

    Marchbank, Tania; Mandir, Nikki; Calnan, Denis; Goodlad, Robert A; Podas, Theo; Playford, Raymond J

    2018-01-24

    Modulation of regional growth within specific segments of the bowel may have clinical value for several gastrointestinal conditions. We therefore examined the effects of different dietary protein sources on regional gut growth and luminal growth factor bioactivity as potential therapies. Rats were fed for 14 days on isonitrogenous and isocaloric diets comprising elemental diet (ED) alone (which is known to cause gut atrophy), ED supplemented with casein or whey or a soya protein-rich feed. Effects on regional gut growth and intraluminal growth factor activity were then determined. Despite calorie intake being similar in all groups, soya rich feed caused 20% extra total body weight gain. Stomach weight was highest on soya and casein diets. Soya enhanced diet caused greatest increase in small intestinal weight and preserved luminal growth factor activity at levels sufficient to increase proliferation in vitro. Regional small intestinal proliferation was highest in proximal segment in ED fed animals whereas distal small intestine proliferation was greater in soya fed animals. Colonic weight and proliferation throughout the colon was higher in animals receiving soya or whey supplemented feeds. We conclude that specific protein supplementation with either soya, casein or whey may be beneficial to rest or increase growth in different regions of the bowel through mechanisms that include differentially affecting luminal growth factor bioactivity. These results have implications for targeting specific regions of the bowel for conditions such as Crohn's disease and chemotherapy.

  12. Dehalococcoides abundance and alternate electron acceptor effects on large, flow-through trichloroethene dechlorinating columns.

    PubMed

    Mirza, Babur S; Sorensen, Darwin L; Dupont, R Ryan; McLean, Joan E

    2016-03-01

    Trichloroethene (TCE) in groundwater is a major health concern and biostimulation/bioaugmentation-based strategies have been evaluated to achieve complete reductive dechlorination with varying success. Different carbon sources were hypothesized to stimulate different extents of TCE reductive dechlorination. Ecological conditions that developed different dechlorination stages were investigated by quantitating Dehalococcoides 16S rRNA (Dhc) and reductive dehalogenase gene abundance, and by describing biogeochemical properties of laboratory columns in response to this biostimulation. Eight large columns (183 cm × 15.2 cm), packed with aquifer material from Hill AFB, Utah, that were continuously fed TCE for 7.5 years. Duplicate columns were biostimulated with whey or one of two different Newman Zone® emulsified oil formulations containing either nonionic surfactant (EOLN) or standard surfactant (EOL). Two columns were non-stimulated controls. Complete (whey amended), partial (EOLN amended), limited (EOL), and non-TCE dehalogenating systems (controls) developed over the course of the study. Bioaugmentation of half of the columns with Bachman Road culture 3 years prior to dismantling did not influence the extent of TCE dehalogenation. Multivariate analysis clustered samples by biostimulation treatments and extent of TCE dehalogenation. Dhc, tceA, and bvcA gene concentrations did not show a consistent relationship with TCE dehalogenation but the vcrA gene was more abundant in completely dehalogenating, whey-treated columns. The whey columns developed strongly reducing conditions producing Fe(II), sulfide, and methane. Biostimulation with different carbon and energy sources can support high concentrations of diverse Dhc, but carbon addition has a major influence on biogeochemical processes effecting the extent of TCE dehalogenation.

  13. Demonstration of a strategy for product purification by high-gradient magnetic fishing: recovery of superoxide dismutase from unconditioned whey.

    PubMed

    Meyer, Andrea; Hansen, Dennis B; Gomes, Cláudia S G; Hobley, Timothy J; Thomas, Owen R T; Franzreb, Matthias

    2005-01-01

    A systematic approach for the design of a bioproduct recovery process employing magnetic supports and the technique of high-gradient magnetic fishing (HGMF) is described. The approach is illustrated for the separation of superoxide dismutase (SOD), an antioxidant protein present in low concentrations (ca. 0.15-0.6 mg L(-1)) in whey. The first part of the process design consisted of ligand screening in which metal chelate supports charged with copper(II) ions were found to be the most suitable. The second stage involved systematic and sequential optimization of conditions for the following steps: product adsorption, support washing, and product elution. Next, the capacity of a novel high-gradient magnetic separator (designed for biotechnological applications) for trapping and holding magnetic supports was determined. Finally, all of the above elements were assembled to deliver a HGMF process for the isolation of SOD from crude sweet whey, which consisted of (i) binding SOD using Cu2+ -charged magnetic metal chelator particles in a batch reactor with whey; (ii) recovery of the "SOD-loaded" supports by high-gradient magnetic separation (HGMS); (iii) washing out loosely bound and entrained proteins and solids; (iv) elution of the target protein; and (v) recovery of the eluted supports from the HGMF rig. Efficient recovery of SOD was demonstrated at approximately 50-fold increased scale (cf magnetic rack studies) in three separate HGMF experiments, and in the best of these (run 3) an SOD yield of >85% and purification factor of approximately 21 were obtained.

  14. Why whey? Camel whey protein as a new dietary approach to the management of free radicals and for the treatment of different health disorders

    PubMed Central

    Badr, Gamal; Ramadan, Nancy K; Sayed, Leila H; Badr, Badr M; Omar, Hossam M; Selamoglu, Zeliha

    2017-01-01

    The balance between free radicals and antioxidants is an important factor for maintaining health and slowing disease progression. The use of antioxidants, particularly natural antioxidants, has become an important strategy for dealing with this cause of widespread diseases. Natural antioxidants have been used as therapeutic tools against many diseases because they are safe, effective, and inexpensive and are among the most commonly used adjuvants in the treatment of several diseases. Camel whey protein (CWP) is considered a strong natural antioxidant because it decreases oxidative stress, enhances immune system function, and increases glutathione levels. The structure of CWP is very similar to that of other types of whey protein from different types of milk. CWP contains many components, such as lactoferrin (LF), lactalbumin, lactoglobulins, lactoperoxidase, and lysozyme, and is rich in immunoglobulins. However, in contrast to other WPs, CWP lacks β-lactoglobulin, the main cause of milk allergies in children. The components of CWP have many beneficial effects, including stimulation of both innate and adaptive immunity and anti-inflammatory, anticancer, antibacterial, and antiviral activities. Recently, it has been shown that CWP and its unique components can facilitate the treatment of impaired diabetic wound healing. However, the molecular mechanisms underlying the protective effects of CWP in human and other animal disorders are not fully understood. Therefore, the current review presents a concise summary of the scientific evidence of the beneficial effects of CWP to support its therapeutic use in disease treatment and nutritional intervention. PMID:28804604

  15. A nonchromatographic process for purification of secretory immunoglobulins from caprine whey.

    PubMed

    Matlschweiger, Alexander; Himmler, Gottfried; Linhart, Clemens; Harasek, Michael; Hahn, Rainer

    2017-05-01

    Secretory immunoglobulins are an important antibody class being primarily responsible for immunoprotection of mucosal surfaces. A simple, non-chromatographic purification process for secretory immunoglobulins from caprine whey was developed. In the first process step whey was concentrated 30-40-fold on a 500 kDa membrane, thereby increasing the purity from 3% to 15%. The second step consisted of a fractionated PEG precipitation, in which high molecular weight impurities were removed first and in the second stage the secretory immunoglobulins were precipitated, leaving a majority of the low molecular weight proteins in solution. The re-dissolved secretory immunoglobulin fraction had a purity of 43% which could then be increased to 72% by diafiltration at a volume exchange factor of 10. Further increase of purity was only possible at the expense of very high buffer consumption. If diafiltration was performed directly after ultrafiltration, followed by precipitation, the yield was higher but purity was only 54%. Overall, filtration performance was characterized by high concentration polarization, therefore process conditions were set to low trans-membrane pressure and moderate protein concentration. As such purity and to a lesser extent throughput were the major objectives rather than yield, since whey, as a by-product of the dairy industry, is a cheap raw material of almost unlimited supply. Ultra-/diafiltration performance was described well by correlations using dimensionless numbers. Compared with a theoretical model (Graetz/Leveque solution) the flux was slightly overestimated. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:642-653, 2017. © 2017 American Institute of Chemical Engineers.

  16. The use of whey or skimmed milk powder in fortified blended foods for vulnerable groups.

    PubMed

    Hoppe, Camilla; Andersen, Gregers S; Jacobsen, Stine; Mølgaard, Christian; Friis, Henrik; Sangild, Per T; Michaelsen, Kim F

    2008-01-01

    Fortified blended foods (FBF), especially corn soy blend, are used as food aid for millions of people worldwide, especially malnourished individuals and vulnerable groups. There are only a few studies evaluating the effect of FBF on health outcomes, and the potential negative effect of antinutrients has not been examined. Different lines of evidence suggest that dairy proteins have beneficial effects on vulnerable groups. Here we review the evidence on the effects of adding whey or skimmed milk powder to FBF used for malnourished infants and young children or people living with HIV or AIDS. Adding whey or skimmed milk powder to FBF improves the protein quality, allowing a reduction in total amount of protein, which could have potential metabolic advantages. It also allows for a reduced content of soy and cereal and thereby a reduction of potential antinutrients. It is possible that adding milk could improve weight gain, linear growth, and recovery from malnutrition, but this needs to be confirmed. Bioactive factors in whey might have beneficial effects on the immune system and muscle synthesis, but evidence from vulnerable groups is lacking. Milk proteins will improve flavor, which is important for acceptability in vulnerable groups. The most important disadvantage is a considerable increase in price. Adding 10-15% milk powder would double the price, which means that such a product should be used only in well-defined vulnerable groups with special needs. The potential beneficial effects of adding milk protein and lack of evidence in vulnerable groups call for randomized intervention studies.

  17. Thyroid status, insulin sensitivity and glucose tolerance in overweight and obese adults before and after 36 weeks of whey protein supplementation and exercise training.

    PubMed

    Wright, Christian S; Craddock, Amy; Weinheimer-Haus, Eileen M; Lim, Eunjung; Conley, Travis B; Janle, Elsa M; Campbell, Wayne W

    2016-05-01

    Research suggests that subclinical hypothyroidism (SHT) influences insulin sensitivity and glucose tolerance. Reductions in thyroid stimulating hormone (TSH) concentrations are associated with exercise training (ExTr), which improves insulin sensitivity and glucose uptake. A secondary analysis of previously published data was conducted to examine the relationship between SHT, TSH and glucose homeostatic control at baseline and to assess the impact of ExTr on thyroid status and how SHT affects changes in insulin sensitivity after ExTr. Data were obtained from a 36-week ExTr and whey protein supplementation intervention trial. Subjects (n = 304, 48 ± 7 years, females = 186) were randomized to a specific whey protein group (0, 20, 40, or 60 g per day) and all subjects participated in a resistance (2 d/wk) and aerobic (1 d/wk) training program. Testing was conducted at baseline and post-intervention. At baseline, 36% (n = 110) and 12% (n = 35) of subjects were classified with SHT based on the TSH ≥ 3 µIU/L or TSH ≥ 4.5 µIU/L cut-offs, respectively. No association was found between baseline TSH and baseline measures of glucose homeostatic control. Whey protein supplementation did not influence intervention outcomes. Post-intervention (n = 164), no change was observed in TSH. SHT did not affect changes in insulin sensitivity following ExTr. These results support that the health benefits of ExTr for the management of insulin resistance (IR) are not blunted by SHT.

  18. Milk and growth in children: effects of whey and casein.

    PubMed

    Mølgaard, Christian; Larnkjær, Anni; Arnberg, Karina; Michaelsen, Kim F

    2011-01-01

    Consumption of cow's milk is recommended in many countries. Observational and intervention studies show that cow's milk most likely has a positive influence on growth in children. The strongest evidence comes from observational studies and intervention studies in low-income countries, but there are also observational studies from high-income countries showing positive associations between milk intake and growth. Milk seems thus to have a specific stimulating effect on linear growth, not only in developing countries with high rates of malnutrition, but also in industrialized countries. However, it is not known which components in milk stimulate growth. Possible components are proteins, minerals, vitamins or combinations of these. Cow's milk proteins have a high protein quality, and whey has a slightly higher quality than casein, according to some indices based on amino acid composition. Studies, mainly from sport medicine, have suggested that whey protein also has the potential to increase muscle mass. Whether whey improves body composition to a larger extent than other milk proteins is not clear. The mechanism behind a possible growth-stimulating effect of milk and milk components is likely to be through a stimulation of insulin-like growth factor-I synthesis and maybe insulin secretion. In conclusion, there is strong evidence that milk stimulates linear growth. The mechanism is not yet clear, and more intervention studies are needed to understand which components in milk are responsible for the growth stimulation. The effects of milk on linear growth and adult height may have both positive and negative long-term implications. Copyright © 2011 S. Karger AG, Basel.

  19. Fractionation of whey proteins with high-capacity superparamagnetic ion-exchangers.

    PubMed

    Heebøll-Nielsen, Anders; Justesen, Sune F L; Thomas, Owen R T

    2004-09-30

    In this study we describe the design, preparation and testing of superparamagnetic anion-exchangers, and their use together with cation-exchangers in the fractionation of bovine whey proteins as a model study for high-gradient magnetic fishing. Adsorbents prepared by attachment of trimethyl amine to particles activated in sequential reactions with allyl bromide and N-bromosuccinimide yielded a maximum bovine serum albumin binding capacity of 156 mg g(-1) combined with a dissociation constant of 0.60 microM, whereas ion-exchangers created by linking polyethylene imine through superficial aldehydes bound up to 337 mg g(-1) with a dissociation constant of 0.042 microM. The latter anion-exchanger was selected for studies of whey protein fractionation. In these, crude bovine whey was treated with a superparamagnetic cation-exchanger to adsorb basic protein species, and the supernatant arising from this treatment was then contacted with the anion-exchanger. For both adsorbent classes of ion-exchanger, desorption selectivity was subsequently studied by sequentially increasing the concentration of NaCl in the elution buffer. In the initial cation-exchange step quantitative removal of lactoferrin (LF) and lactoperoxidase (LPO) was achieved with some simultaneous binding of immunoglobulins (Ig). The immunoglobulins were separated from the other two proteins by desorbing with a low concentration of NaCl (< or = 0.4 M), whereas lactoferrin and lactoperoxidase were co-eluted in significantly purer form, e.g. lactoperoxidase was purified 28-fold over the starting material, when the NaCl concentration was increased to 0.4-1 M. The anion-exchanger adsorbed beta-lactoglobulin (beta-LG) selectively allowing separation from the remaining protein.

  20. Magnetic resonance imaging (MRI) and relaxation spectrum analysis as methods to investigate swelling in whey protein gels.

    PubMed

    Oztop, Mecit H; Rosenberg, Moshe; Rosenberg, Yael; McCarthy, Kathryn L; McCarthy, Michael J

    2010-10-01

    Effective means for controlled delivery of nutrients and nutraceuticals are needed. Whey protein-based gels, as a model system and as a potential delivery system, exhibit pH-dependent swelling when placed in aqueous solutions. Understanding the physics that govern gel swelling is thus important when designing gel-based delivery platforms. The extent of swelling over time was monitored gravimetrically. In addition to gravimetric measurements, magnetic resonance imaging (MRI) a real-time noninvasive imaging technique that quantified changes in geometry and water content of these gels was utilized. Heat-set whey protein gels were prepared at pH 7 and swelling was monitored in aqueous solutions with pH values of 2.5, 7, and 10. Changes in dimension over time, as characterized by the number of voxels in an image, were correlated to gravimetric measurements. Excellent correlations between mass uptake and volume change (R(2)= 0.99) were obtained for the gels in aqueous solutions at pH 7 and 10, but not for gels in the aqueous solution at pH 2.5. To provide insight into the mechanisms for water uptake, nuclear magnetic resonance (NMR) relaxation times were measured in independent experiments. The relaxation spectrum for the spin-spin relaxation time (T(2)) showed the presence of 3 proton pools for pH 7 and 10 trials and 4 proton pools for pH 2.5 trials. Results demonstrate that MRI and NMR relaxation measurements provided information about swelling in whey protein gels that can constitute a new means for investigating and developing effective delivery systems for foods.

  1. Principal component similarity analysis of Raman spectra to study the effects of pH, heating, and kappa-carrageenan on whey protein structure.

    PubMed

    Alizadeh-Pasdar, Nooshin; Nakai, Shuryo; Li-Chan, Eunice C Y

    2002-10-09

    Raman spectroscopy was used to elucidate structural changes of beta-lactoglobulin (BLG), whey protein isolate (WPI), and bovine serum albumin (BSA), at 15% concentration, as a function of pH (5.0, 7.0, and 9.0), heating (80 degrees C, 30 min), and presence of 0.24% kappa-carrageenan. Three data-processing techniques were used to assist in identifying significant changes in Raman spectral data. Analysis of variance showed that of 12 characteristics examined in the Raman spectra, only a few were significantly affected by pH, heating, kappa-carrageenan, and their interactions. These included amide I (1658 cm(-1)) for WPI and BLG, alpha-helix for BLG and BSA, beta-sheet for BSA, CH stretching (2880 cm(-1)) for BLG and BSA, and CH stretching (2930 cm(-1)) for BSA. Principal component analysis reduced dimensionality of the characteristics. Heating and its interaction with kappa-carrageenan were identified as the most influential in overall structure of the whey proteins, using principal component similarity analysis.

  2. Continuous anaerobic co-digestion of Ulva biomass and cheese whey at varying substrate mixing ratios: Different responses in two reactors with different operating regimes.

    PubMed

    Jung, Heejung; Kim, Jaai; Lee, Changsoo

    2016-12-01

    The feasibility of co-digestion of Ulva with whey was investigated at varying substrate mixing ratios in two continuous reactors run with increasing and decreasing proportions of Ulva, respectively. Co-digestion with whey proved beneficial to the biomethanation of Ulva, with the methane yield being greater by up to 1.6-fold in co-digestion phases than in the Ulva mono-digestion phases. The experimental reactors responded differently, in terms of process performance and community structure, to the changes in the substrate mixing ratio. This can be attributed to the different operating regimes between two reactors, which may have caused the microbial communities to develop in different ways to acclimate. Methanosaeta-related populations were the predominant methanogens responsible for the production of methane regardless of different substrate mixing ratios in both reactors. Considering the methane recovery and the Ulva treatment capacity, the optimal fraction of Ulva in the substrate mixture is suggested to be 50-75%. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Effect of hydrogen peroxide on improving the heat stability of whey protein isolate solutions.

    PubMed

    Sutariya, Suresh; Patel, Hasmukh

    2017-05-15

    Whey protein isolate (WPI) solutions (12.8%w/w protein) were treated with varying concentrations of H 2 O 2 in the range of 0-0.144 H 2 O 2 to protein ratios (HTPR) by the addition of the required quantity of H 2 O 2 and deionized water. The samples were analyzed for heat stability, rheological properties, denaturation level of β-lactoglobulin (β-LG) and α-lactalbumin (α-LA). The samples treated with H 2 O 2 concentration >0.072 (HTPR) showed significant improvement in the heat stability, and decreased whey protein denaturation and aggregation. The WPI solution treated with H 2 O 2 (>0.072 HTPR) remained in the liquid state after heat treatment at 120°C, whereas the control samples formed gel upon heat treatment. Detailed analysis of these samples suggested that the improvement in the heat stability of H 2 O 2 treated WPI solution was attributed to the significant reduction in the sulfhydryl-disulfide interchange reaction during denaturation of β-LG and α-LA. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Rapid Screening of Bovine Milk Oligosaccharides in a Whey Permeate Product and Domestic Animal Milks by Accurate Mass Database and Tandem Mass Spectral Library.

    PubMed

    Lee, Hyeyoung; Cuthbertson, Daniel J; Otter, Don E; Barile, Daniela

    2016-08-17

    A bovine milk oligosaccharide (BMO) library, prepared from cow colostrum, with 34 structures was generated and used to rapidly screen oligosaccharides in domestic animal milks and a whey permeate powder. The novel library was entered into a custom Personal Compound Database and Library (PCDL) and included accurate mass, retention time, and tandem mass spectra. Oligosaccharides in minute-sized samples were separated using nanoliquid chromatography (nanoLC) coupled to a high resolution and sensitive quadrupole-Time of Flight (Q-ToF) MS system. Using the PCDL, 18 oligosaccharides were found in a BMO-enriched product obtained from whey permeate processing. The usefulness of the analytical system and BMO library was further validated using milks from domestic sheep and buffaloes. Through BMO PCDL searching, 15 and 13 oligosaccharides in the BMO library were assigned in sheep and buffalo milks, respectively, thus demonstrating significant overlap between oligosaccharides in bovine (cow and buffalo) and ovine (sheep) milks. This method was shown to be an efficient, reliable, and rapid tool to identify oligosaccharide structures using automated spectral matching.

  5. Empirical and bioinformatic characterization of buffalo (Bubalus bubalis) colostrum whey peptides & their angiotensin I-converting enzyme inhibition.

    PubMed

    Ashok, N R; Aparna, H S

    2017-08-01

    Whey based peptides are well known for their nutritional and multifunctional properties. In this context, whey proteins from buffalo colostrum & milk were digested by in vitro simulation digestion and analyzed by nano-LC-MS/MS. Functional protein association networks, gene annotations and localization of identified proteins were carried out. An ACE inhibitory peptide sorted from the library was custom synthesized and an in vitro ACE assay was performed. The study led to the identification of 74 small peptides which were clustered into 5 gene functional groups and majority of them were secretory proteins. Among the identified peptides, majority of them were found identical to angiotensin I-converting enzyme (ACE) inhibitors, antioxidant, antimicrobial, immunomodulatory and opioidal peptides. An octapeptide (m/z - 902.51, IQKVAGTW) synthesized was found to inhibit ACE with an IC 50 of 300±2µM. The present investigation thus establishes newer vista for food derived peptides having ACE inhibitory potential for nutraceutical or therapeutic applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Rapid Screening of Bovine Milk Oligosaccharides in a Whey Permeate Product and Domestic Animal Milks by Accurate Mass Database and Tandem Mass Spectral Library

    PubMed Central

    Lee, Hyeyoung; Cuthbertson, Daniel J.; Otter, Don E.; Barile, Daniela

    2018-01-01

    A bovine milk oligosaccharide (BMO) library, prepared from cow colostrum, with 34 structures was generated and used to rapidly screen oligosaccharides in domestic animal milks and a whey permeate powder. The novel library was entered into a custom Personal Compound Database and Library (PCDL) and included accurate mass, retention time, and tandem mass spectra. Oligosaccharides in minute-sized samples were separated using nanoliquid chromatography (nanoLC) coupled to a high resolution and sensitive quadrupole-Time of Flight (Q-ToF) MS system. Using the PCDL, 18 oligosaccharides were found in a BMO-enriched product obtained from whey permeate processing. The usefulness of the analytical system and BMO library was further validated using milks from domestic sheep and buffaloes. Through BMO PCDL searching, 15 and 13 oligosaccharides in the BMO library were assigned in sheep and buffalo milks, respectively, thus demonstrating significant overlap between oligosaccharides in bovine (cow and buffalo) and ovine (sheep) milks. This method was shown to be an efficient, reliable, and rapid tool to identify oligosaccharide structures using automated spectral matching. PMID:27428379

  7. Whey acerola-flavoured drink submitted Ohmic Heating: Bioactive compounds, antioxidant capacity, thermal behavior, water mobility, fatty acid profile and volatile compounds.

    PubMed

    Cappato, Leandro P; Ferreira, Marcus Vinicius S; Moraes, Jeremias; Pires, Roberto P S; Rocha, Ramon S; Silva, Ramon; Neto, Roberto P C; Tavares, Maria Inês B; Freitas, Mônica Q; Rodrigues, Flavio N; Calado, Veronica M A; Raices, Renata S L; Silva, Marcia C; Cruz, Adriano G

    2018-10-15

    Whey acerola-flavoured drink was subjected to Ohmic Heating (OH) under different operational conditions (45, 60, 80 V at 60 Hz and 10, 100, 1000 Hz with 25 V, 65 °C/30 min) and conventional pasteurization (65 °C/30 min). Bioactive compounds (total phenolics, DPPH, FRAP, ACE levels), fatty acid profile, volatile compounds (CG-MS), thermal behaviors (DSC) and water mobility (TD-NMR) were performed. Reduction of frequency (1000-10 Hz) resulted in a lower bioactive compounds and antioxidant capacity of the samples, except for the DPPH values. Concerning the thermal behaviors, fatty acids profile and volatile compounds, different findings were observed as a function of the parameters used (voltage and frequency). In respect of TD-NMR parameters, OH led to a slightly reduction of the relaxation time when compared to the conventional treatment, suggesting more viscous beverages. Overall, OH may be interesting option to whey acerola-flavoured drink processing. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Properties of sweetened Indian yogurt (mishti dohi) as affected by added tryptic whey protein hydrolysate.

    PubMed

    Chatterjee, Alok; Kanawjia, S K; Khetra, Yogesh

    2016-01-01

    Utilization of Indian sweetened yogurt (colloquially termed as Mishti Dohi), as vehicle for ACE inhibition and antioxidant activity, by added tryptic whey protein hydrolysate (TWPH) (@ 1, 2, 3 % v/milk), was attempted. Yogurt with 3 % TWPH exhibited non-significant (p > 0.05) difference for sensory attributes; but for body & texture; and maximum biofunctional properties, electing it for storage study (5 ± 1 °C). Flavor and body & texture scores registered significant (p < 0.05) decline under 14 days storage. ACE inhibition and antioxidant activity of control increased by 47.95 and 13.18 % and of experimental 24.58 and 13.43 %, correspondingly. Acidity rose to 1.18 % LA. Control samples conveyed 18.07 % and experimental of 20.77 % escalation for wheying-off. Tyrosine value was 27.04 μg.mL(-1). Among rheological attributes, firmness, quantified by texture analyzer TA-XT2i, dropped (p < 0.05), due to decrease of gel rigidity whereas work of adhesion revealed non-significant difference (p > 0.05), throughout.

  9. Functional and in vitro gastric digestibility of the whey protein hydrogel loaded with nanostructured lipid carriers and gelled via citric acid-mediated crosslinking.

    PubMed

    Hashemi, Behnaz; Madadlou, Ashkan; Salami, Maryam

    2017-12-15

    Nanostructured lipid carriers (NLCs) with mean size of 347nm were fabricated and added into a heat-denatured whey protein solution. The subsequent crosslinking of proteins by citric acid or CaCl 2 resulted in the formation of cold-set hydrogels. Fourier transform infrared spectroscopy (FTIR) proposed formation of more hydrogen bonds in gel due to NLC loading or citric acid-mediated gelation. It was also found based on FITR spectroscopy that citric acid crosslinking disordered whey proteins. Scanning electron microscopy (SEM) imaging showed a non-porous and finely meshed microstructure for the crosslinked gels compared to non-crosslinked counterparts. Crosslinking also increased the firmness and water-holding capacity of gels. In pepsin-free fluid, a strong correlation existed between reduction in gel swellability and digestibility over periods up to 60min due to NLC loading and citric acid gelation. However, in peptic fluid, NLC loading and citric acid crosslinking brought about much higher decrease in digestibility than swellability. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Preheated milk proteins improve the stability of grape skin anthocyanins extracts.

    PubMed

    He, Zhiyong; Xu, Mingzhu; Zeng, Maomao; Qin, Fang; Chen, Jie

    2016-11-01

    The effects of casein and whey proteins, preheated at 40-100°C and 45-60°C for 15min, respectively, on color loss and anthocyanins degradation in grape skin anthocyanins extracts (GSAE) at pH 3.2 and 6.3 were evaluated. Preheating milk proteins effectively improved their protective effects against color loss and anthocyanins degradation in GSAE solutions during thermal treatment (at 80°C for 2h), H2O2 oxidation (0.005% H2O2 for 1h) and illumination (at 5000lx for 5 d). Whey proteins and casein, preheated at 50°C and 60°C for 15min, respectively, demonstrated the optimal protective effects. However, preheated whey proteins had a better protective effect on the thermal, oxidation and photo stability of GSAE, decreasing the thermal, oxidative and photo degradation of anthocyanins in GSAE 71.59%, 32.22% and 56.92% at pH 3.2 and 54.91%, 22.89% and 46.68% at pH 6.3, respectively. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Production of Bakers' Yeast in Cheese Whey Ultrafiltrate †

    PubMed Central

    Champagne, C. P.; Goulet, J.; Lachance, R. A.

    1990-01-01

    A process for the production of bakers' yeast in whey ultrafiltrate (WU) is described. Lactose in WU was converted to lactic acid and galactose by fermentation. Streptococcus thermophilus was selected for this purpose. Preculturing of S. thermophilus in skim milk considerably reduced its lag. Lactic fermentation in 2.3×-concentrated WU was delayed compared with that in unconcentrated whey, and fermentation could not be completed within 60 h. The growth rate of bakers' yeast in fermented WU differed among strains. The rate of galactose utilization was similar for all strains, but differences in lactic acid utilization occurred. Optimal pH ranges for galactose and lactic acid utilization were 5.5 to 6.0 and 5.0 to 5.5, respectively. The addition of 4 g of corn steep liquor per liter to fermented WU increased cell yields. Two sources of nitrogen were available for growth of Saccharomyces cerevisiae: amino acids (corn steep liquor) and ammonium (added during the lactic acid fermentation). Ammonium was mostly assimilated during growth on lactic acid. This process could permit the substitution of molasses by WU for the industrial production of bakers' yeast. PMID:16348117

  12. Efficient production of lactulose from whey powder by cellobiose 2-epimerase in an enzymatic membrane reactor.

    PubMed

    Wu, Lingtian; Xu, Cen; Li, Sha; Liang, Jinfeng; Xu, Hong; Xu, Zheng

    2017-06-01

    In this study, the gene encoding cellobiose 2-epimerase from Caldicellulosiruptor saccharolyticus (CsCE) was successfully expressed in Bacillus subtilis WB800. After the fermentation medium optimization, the activity of recombinant strain was 4.5-fold higher than the original medium in a 7.5L fermentor. The optimal catalytic pH and temperature of crude CsCE were 7.0 and 80°C, respectively. An enzymatic synthesis of lactulose was developed using cheese-whey lactose as its substrate. The maximum conversion rate of whey powder obtained was 58.5% using 7.5 U/mL CsCE. The enzymatic membrane reactor system exhibited a great operational stability, confirmed with the higher lactose conversion (42.4%) after 10 batches. To our best knowledge, this is the first report of lactulose synthesis in food grade strain, which improve the food safety, and we not only realize the biological production of lactulose, but also make good use of industrial waste, which have positive impact on environment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Total phenolic content and antioxidant activities of pomegranate juice and whey based novel beverage fermented by kefir grains.

    PubMed

    Sabokbar, Nayereh; Khodaiyan, Faramarz

    2016-01-01

    Mixture of pomegranate juice and whey was evaluated as a potential substrate for production of a novel beverage by kefir grains. The effects of two different variables, fermentation, temperature (19 and 25 °C) and kefir grain amount (5 %w/v and 8 %w/v), on total phenolic content (TPC) and antioxidant activities of beverage were examined during a fermentation time of 32 h. TPC and antioxidant activities including 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging, reducing power, inhibition effect upon linoleic acid autoxidation and inhibition effect upon ascorbate autoxidation increased significantly (p < 0.05) during fermentation, but metal chelating effect showed no significant difference. The highest increases were observed when the temperature of 25 °C and kefir grain amount of 8 %w/v were applied. Results proved antioxidant activities of beverages were desirable and fermentation by kefir grains has the ability to enhance these antioxidant activities, as compared with unfermented beverage. Also pomegranate juice and whey were suitable media for producing a novel dairy-juice beverage.

  14. Characterization of pomegranate juice and whey based novel beverage fermented by kefir grains.

    PubMed

    Sabokbar, Nayereh; Khodaiyan, Faramarz

    2015-06-01

    Mixture of pomegranate juice and whey was evaluated as a potential substrate for production of a novel probiotic beverage by kefir grains. Different fermentation conditions were used as viz: two fermentation temperature (19 ºC and 25 ºC) and two levels of kefir grains inoculum (5 % and 8%w/v). pH, acidity, lactose consumption as well as organic acids formation were determined during 32 hours of fermentation. Results showed that kefir grains were able to utilize lactose and decrease pH, increase acidity, produce lactic acid and acetic acid, while the level of citric acid decreased. It was observed these change depended on temperature and level of kefir grains with the highest changes at the temperature of 25 ºC and kefir grains inoculum of 8%w/v. Pomegranate juice and whey mixture therefore may serve as a suitable substrate for the production of novel probiotic dairy-fruit juice beverage by kefir grains and the sensory characteristics of this beverage were shown desirable results.

  15. Serum Immunoglobulins in Newborn Calves Before and After Colostrum Feeding

    PubMed Central

    Merriman, Mohendra J. G. S.

    1971-01-01

    Pre-colostral and post-colostral sera of seven Holstein calves and colostral whey were analyzed immunoelectrophoretically. IgM, IgG1 (fast), and IgG2 (slow) were demonstrated while IgA was not detected in serum of new-born calves before colostrum feeding. In post-colostral serum IgG, IgM, in relatively higher levels, and IgA were present which corresponded with the classes of immunoglobulins found in whey. These observations suggest that the developing bovine fetus may be capable of independent immune response. ImagesFig. 1.Fig. 2.Fig. 3.Fig. 4. PMID:4260939

  16. Reformulating cereal bars: high resistant starch reduces in vitro digestibility but not in vivo glucose or insulin response; whey protein reduces glucose but disproportionately increases insulin.

    PubMed

    Wolever, Thomas Ms; van Klinken, B Jan-Willem; Bordenave, Nicolas; Kaczmarczyk, Melissa; Jenkins, Alexandra L; Chu, YiFang; Harkness, Laura

    2016-10-01

    Resistant starch (RS) and whey protein are thought to be effective nutrients for reducing glycemic responses. We aimed to determine the effect of varying the sucrose, RS, and whey protein content of cereal bars on glucose and insulin responses. Twelve healthy subjects [mean ± SD age: 36 ± 12 y; mean ± SD body mass index (in kg/m 2 ): 24.9 ± 2.7] consumed 40 g available-carbohydrate (avCHO) portions of 5 whole-grain cereal bars that contained varying amounts of RS and whey protein concentrate [WPC; 70% protein; RS:WPC, %wt:wt: 15:0 (Bar15/0); 15:0, low in sucrose (Bar15/0LS); 15:5 (Bar15/5); 10:5 (Bar10/5); and 10:10 (Bar10/10)] and 2 portion sizes of a control bar low in whole grains, protein, and RS [control 1 contained 40 g avCHO (Control1); control 2 contained total carbohydrate equal to Bar15/0LS (Control2)] on separate days by using a randomized crossover design. Glucose and insulin responses in vivo and carbohydrate digestibility in vitro were measured over 3 h. Incremental area under the curve (iAUC) over 0-3 h for glucose (min × mmol/L) differed significantly between treatments (P < 0.001) [Bar15/0LS (mean ± SEM), 169 ± 14; Control2, 164 ± 20; Bar15/0, 144 ± 15; Control1, 140 ± 17; Bar10/5, 117 ± 12; Bar15/5, 116 ± 9; and Bar10/10, 100 ± 9; Tukey's least significant difference = 42, P < 0.05], but insulin iAUC did not differ significantly. Higher protein content was associated with a lower glucose iAUC (P = 0.028) and a higher insulin-to-glucose iAUC ratio (P = 0.002) All 5 RS-containing bars were digested in vitro ∼30% more slowly than the control bars (P < 0.05); however, in vivo responses were not related to digestibility in vitro. Glucose and insulin responses elicited by high-RS, whey protein-free bars were similar to those elicited from control bars. The inclusion of RS in cereal bar formulations did not reduce glycemic responses despite slower starch digestion in vitro. Thus, caution is required when extrapolating in vitro starch digestibility to in vivo glycemic response. The inclusion of whey protein in cereal bar formulations to reduce glycemic response requires caution because this may be associated with a disproportionate increase in insulin as judged by an increased insulin-to-glucose iAUC ratio. This trial was registered at clinicaltrials.gov as NCT02537587. © 2016 American Society for Nutrition.

  17. Consumption of a whey protein-enriched diet may prevent hepatic steatosis associated with weight gain in elderly women.

    PubMed

    Ooi, E M; Adams, L A; Zhu, K; Lewis, J R; Kerr, D A; Meng, X; Solah, V; Devine, A; Binns, C W; Prince, R L

    2015-04-01

    Protein consumption has been associated with cardio-metabolic benefits, including weight loss and improved insulin sensitivity, and may have potential benefits for individuals with fatty liver disease (FLD). We investigated the effect of increasing dietary protein intake from whey relative to carbohydrate on hepatic steatosis. A two-year randomized, double-blind, placebo-controlled trial of 30 g/day whey protein-supplemented beverage (protein) or an energy-matched low-protein high-carbohydrate beverage (control) for cardio-metabolic and bone health in 219 healthy elderly women, recruited from the Western Australian general population. Hepatic steatosis was quantified using computed tomographic liver-to-spleen (L/S) ratio. FLD was defined as liver-to-spleen difference <10 Hounsfield units. At baseline, FLD prevalence was 11.4%. Control and protein groups were similar in body mass index (BMI), insulin resistance, L/S ratio and FLD prevalence at baseline. At two-years, dietary protein increased by 20 g in the protein, but not the control, group. Total energy intake and physical activity remained similar between groups. At two-years, BMI and FLD prevalence increased in both groups, with no between group differences. L/S ratio increased in control, but not protein, group at two-years, with no between group differences. In a within group comparison, change in BMI correlated with changes in L/S ratio in control (r = 0.37, P = 0.0007), but not with protein group (r = 0.04, P = 0.73). Increasing dietary protein intake from whey relative to carbohydrate does not reduce weight, hepatic steatosis or the prevalence of FLD in elderly women. However, it may prevent worsening of hepatic steatosis associated with weight gain. Australian New Zealand Clinical Trials Registry (Registration no. ACTRN012607000163404). Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Effect of whey protein supplementation on body composition changes in women: a systematic review and meta-analysis.

    PubMed

    Bergia, Robert E; Hudson, Joshua L; Campbell, Wayne W

    2018-04-23

    A preponderance of evidence supports the beneficial effects of whey protein (WP) supplementation on body composition in men; however, there is currently insufficient evidence to make an equivalent claim in women. This systematic review and meta-analysis assessed the effects of WP supplementation with or without energy restriction (ER) and resistance training (RT) on changes in body mass, lean mass, and fat mass in women. Pubmed, Scopus, Cochrane, and CINAHL were searched using the keywords "whey protein," "body composition," and "lean mass." Two researchers independently screened 1845 abstracts and extracted 276 articles. Thirteen randomized controlled trials with 28 groups met the inclusion criteria. Globally, WP supplementation increased lean mass (WMD, 0.37 kg; 95% confidence interval [CI], 0.06 to 0.67) while not influencing changes in fat mass (-0.20 kg; 95%CI, -0.67 to 0.27) relative to non-WP control. The beneficial effect of WP on lean mass was lost when only studies with RT were included in the analysis (n = 7 comparisons; 0.23 kg; 95%CI, -0.17 to 0.63). The beneficial effect of WP on lean mass was more robust when only studies with an ER component were included (n = 6 comparisons; 0.90 kg; 95%CI, 0.31 to 1.49). There was no effect of WP on lean mass in studies without ER (n = 9 comparisons; 0.22 kg; 95%CI, -0.12 to 0.57). Whey protein supplementation improves body composition by modestly increasing lean mass without influencing changes in fat mass. Body composition improvements from WP are more robust when combined with ER .

  19. Preparation, characterization and in vitro antioxidative potential of synbiotic fermented dairy products.

    PubMed

    Shah, C; Mokashe, N; Mishra, V

    2016-04-01

    The present study, evaluates the antioxidative potential of two synbiotic dairy products viz. synbiotic lassi with honey and whey based synbiotic drink with inulin and orange juice, along with their physicochemical and microbiological activity during storage period. Antioxidative potential of raw ingredients and probiotic cultures used to prepare synbiotic products was also evaluated. Synbiotic lassi with honey was prepared using Streptococcus thermophilus MTCC 5460 (MD2) and Lactobacillus helveticus MTCC 5463 (V3) as probiotics and honey as prebiotic. For preparation of whey based synbiotic drink, Lactobacillus helveticus MTCC 5463 and inulin were used as probiotic and prebiotic, respectively and orange juice was also incorporated. Titratable acidity and pH of both synbiotic products followed a similar pattern of increase or decrease during storage. Furthermore, no major changes were observed in viability of probiotic cultures under storage conditions adapted. The hydroxyl radical scavenging activity of synbiotic lassi with honey was found to significantly decrease from 107.76 to 79.41 % at the end of storage whereas, the activity of whey based synbiotic drink was 100.32 % which declined sharply to 79.21 % on 7th day but further increased to 102.59 % on 14th day. The DPPH (α, α-Diphenyl-β-Picrylhydrazyl) radical scavenging activity of freshly prepared synbiotic lassi with honey was 28.43 % which decreased to 23.03 % on 7th day while for whey based synbiotic drink decreased from 26.85 % (0 day) to 17.12 % (7th day) and continued to decline. Moreover, probiotic strains used for synbiotic preparation also demonstrated good antioxidative activity.

  20. Food restriction followed by refeeding with a casein- or whey-based diet differentially affects the gut microbiota of pre-pubertal male rats.

    PubMed

    Masarwi, Majdi; Solnik, Hadas Isaac; Phillip, Moshe; Yaron, Sima; Shamir, Raanan; Pasmanic-Chor, Metsada; Gat-Yablonski, Galia

    2018-01-01

    Researchers are gaining an increasing understanding of host-gut microbiota interactions, but studies of the role of gut microbiota in linear growth are scarce. The aim of this study was to investigate the effect of food restriction and refeeding with different diets on gut microbiota composition in fast-growing rats. Young male Sprague-Dawley rats were fed regular rat chow ad libitum (control group) or subjected to 40% food restriction for 36 days followed by continued restriction or ad libitum refeeding for 24 days. Three different diets were used for refeeding: regular vegetarian protein chow or chow in which the sole source of protein was casein or whey. In the control group, the composition of the microbiota remained stable. Food restriction for 60 days led to a significant change in the gut microbiota at the phylum level, with a reduction in the abundance of Firmicutes and an increase in Bacteroidetes and Proteobacteria. Rats refed with the vegetarian protein diet had a different microbiota composition than rats refed the casein- or whey-based diet. Similarities in the bacterial population were found between rats refed vegetarian protein or a whey-based diet and control rats, and between rats refed a casein-based diet and rats on continued restriction. There was a significant strong correlation between the gut microbiota and growth parameters: humerus length, epiphyseal growth plate height, and levels of insulin-like growth factor 1 and leptin. In conclusion, the type of protein in the diet significantly affects the gut microbiota and, thereby, may affect animal's health. Copyright © 2017 Elsevier Inc. All rights reserved.

Top