Science.gov

Sample records for whey protein casein

  1. Association of denatured whey proteins with casein micelles in heated reconstituted skim milk and its effect on casein micelle size.

    PubMed

    Anema, Skelte G; Li, Yuming

    2003-02-01

    When skim milk at pH 6.55 was heated (75 to 100 degrees C for up to 60 min), the casein micelle size, as monitored by photon correlation spectroscopy, was found to increase during the initial stages of heating and tended to plateau on prolonged heating. At any particular temperature, the casein micelle size increased with longer holding times, and, at any particular holding time, the casein micelle size increased with increasing temperature. The maximum increase in casein micelle size was about 30-35 nm. The changes in casein micelle size were poorly correlated with the level of whey protein denaturation. However, the changes in casein micelle size were highly correlated with the levels of denatured whey proteins that were associated with the casein micelles. The rate of association of the denatured whey proteins with the casein micelles was considerably slower than the rate of denaturation of the whey proteins. Removal of the whey proteins from the skim milk resulted in only small changes in casein micelle size during heating. Re-addition of beta-lactoglobulin to the whey-protein-depleted milk caused the casein micelle size to increase markedly on heat treatment. The changes in casein micelle size induced by the heat treatment of skim milk may be a consequence of the whey proteins associating with the casein micelles. However, these associated whey proteins would need to occlude a large amount of serum to account for the particle size changes. Separate experiments showed that the viscosity changes of heated milk and the estimated volume fraction changes were consistent with the particle size changes observed. Further studies are needed to determine whether the changes in size are due to the specific association of whey proteins with the micelles or whether a low level of aggregation of the casein micelles accompanies this association behaviour. Preliminary studies indicated lower levels of denatured whey proteins associated with the casein micelles and smaller

  2. Interfacial composition and stability of emulsions made with mixtures of commercial sodium caseinate and whey protein concentrate.

    PubMed

    Ye, Aiqian

    2008-10-15

    The interfacial composition and the stability of oil-in-water emulsion droplets (30% soya oil, pH 7.0) made with mixtures of sodium caseinate and whey protein concentrate (WPC) (1:1 by protein weight) at various total protein concentrations were examined. The average volume-surface diameter (d32) and the total surface protein concentration of emulsion droplets were similar to those of emulsions made with both sodium caseinate alone and WPC alone. Whey proteins were adsorbed in preference to caseins at low protein concentrations (<3%), whereas caseins were adsorbed in preference to whey proteins at high protein concentrations. The creaming stability of the emulsions decreased markedly as the total protein concentration of the system was increased above 2% (sodium caseinate >1%). This was attributed to depletion flocculation caused by the sodium caseinate in these emulsions. Whey proteins did not retard this instability in the emulsions made with mixtures of sodium caseinate and WPC. Copyright © 2008 Elsevier Ltd. All rights reserved.

  3. The balance between caseins and whey proteins in cow's milk determines its allergenicity.

    PubMed

    Lara-Villoslada, F; Olivares, M; Xaus, J

    2005-05-01

    Cow's milk allergy is quite common in the first years of human life. Protein composition plays an important role in this pathology, particularly the casein/whey protein ratio. It is known that milks from different species have different sensitization capacities although their protein sources are quite similar. Thus, the objective of this work was to compare the allergenicity of native cow's milk and milk with a modified ratio of casein and whey proteins in a murine model of atopy. Twenty-four Balb/c mice were orally sensitized to native cow's milk or modified cow's milk with a casein/whey protein ratio of 40:60. During the sensitization period, the number of mice suffering from diarrhea was significantly higher in the native cow's milk-sensitized group than in the modified milk-sensitized group. Once mice were killed, plasma histamine levels were shown to be significantly higher in native cow's milk-sensitized mice. In addition, cow's milk proteins induced a higher lymphocyte sensitization in the native milk-sensitized mice, with a significant increase in the specific proliferation ratio of these cells. These results suggest that the balance between caseins and whey proteins plays an important role in the sensitization capacity of cow's milk, and its modification might be a way to reduce the allergenicity of cow's milk.

  4. Effect of high hydrostatic pressure and whey proteins on the disruption of casein micelle isolates.

    PubMed

    Harte, Federico M; Gurram, Subba Rao; Luedecke, Lloyd O; Swanson, Barry G; Barbosa-Cánovas, Gustavo V

    2007-11-01

    High hydrostatic pressure disruption of casein micelle isolates was studied by analytical ultracentrifugation and transmission electron microscopy. Casein micelles were isolated from skim milk and subjected to combinations of thermal treatment (85 degrees C, 20 min) and high hydrostatic pressure (up to 676 MPa) with and without whey protein added. High hydrostatic pressure promoted extensive disruption of the casein micelles in the 250 to 310 MPa pressure range. At pressures greater than 310 MPa no further disruption was observed. The addition of whey protein to casein micelle isolates protected the micelles from high hydrostatic pressure induced disruption only when the mix was thermally processed before pressure treatment. The more whey protein was added (up to 5 g/l) the more the protection against high hydrostatic pressure induced micelle disruption was observed in thermally treated samples subjected to 310 MPa.

  5. Absolute Quantification of Human Milk Caseins and the Whey/Casein Ratio during the First Year of Lactation.

    PubMed

    Liao, Yalin; Weber, Darren; Xu, Wei; Durbin-Johnson, Blythe P; Phinney, Brett S; Lönnerdal, Bo

    2017-11-03

    Whey proteins and caseins in breast milk provide bioactivities and also have different amino acid composition. Accurate determination of these two major protein classes provides a better understanding of human milk composition and function, and further aids in developing improved infant formulas based on bovine whey proteins and caseins. In this study, we implemented a LC-MS/MS quantitative analysis based on iBAQ label-free quantitation, to estimate absolute concentrations of α-casein, β-casein, and κ-casein in human milk samples (n = 88) collected between day 1 and day 360 postpartum. Total protein concentration ranged from 2.03 to 17.52 with a mean of 9.37 ± 3.65 g/L. Casein subunits ranged from 0.04 to 1.68 g/L (α-), 0.04 to 4.42 g/L (β-), and 0.10 to 1.72 g/L (α-), with β-casein having the highest average concentration among the three subunits. Calculated whey/casein ratio ranged from 45:55 to 97:3. Linear regression analyses show significant decreases in total protein, β-casein, κ-casein, total casein, and a significant increase of whey/casein ratio during the course of lactation. Our study presents a novel and accurate quantitative analysis of human milk casein content, demonstrating a lower casein content than earlier believed, which has implications for improved infants formulas.

  6. Skeletal effect of casein and whey protein intake during catch-up growth in young male Sprague-Dawley rats.

    PubMed

    Masarwi, Majdi; Gabet, Yankel; Dolkart, Oleg; Brosh, Tamar; Shamir, Raanan; Phillip, Moshe; Gat-Yablonski, Galia

    2016-07-01

    The aim of the present study was to determine whether the type of protein ingested influences the efficiency of catch-up (CU) growth and bone quality in fast-growing male rats. Young male Sprague-Dawley rats were either fed ad libitum (controls) or subjected to 36 d of 40 % food restriction followed by 24 or 40 d of re-feeding with either standard rat chow or iso-energetic, iso-protein diets containing milk proteins - casein or whey. In terms of body weight, CU growth was incomplete in all study groups. Despite their similar food consumption, casein-re-fed rats had a significantly higher body weight and longer humerus than whey-re-fed rats in the long term. The height of the epiphyseal growth plate (EGP) in both casein and whey groups was greater than that of rats re-fed normal chow. Microcomputed tomography yielded significant differences in bone microstructure between the casein and whey groups, with the casein-re-fed animals having greater cortical thickness in both the short and long term in addition to a higher trabecular bone fraction in the short term, although this difference disappeared in the long term. Mechanical testing confirmed the greater bone strength in rats re-fed casein. Bone quality during CU growth significantly depends on the type of protein ingested. The higher EGP in the casein- and whey-re-fed rats suggests a better growth potential with milk-based diets. These results suggest that whey may lead to slower bone growth with reduced weight gain and, as such, may serve to circumvent long-term complications of CU growth.

  7. Casein protein results in higher prandial and exercise induced whole body protein anabolism than whey protein in chronic obstructive pulmonary disease.

    PubMed

    Engelen, Mariëlle P K J; Rutten, Erica P A; De Castro, Carmen L N; Wouters, Emiel F M; Schols, Annemie M W J; Deutz, Nicolaas E P

    2012-09-01

    Exercise is known to improve physical functioning and health status in Chronic Obstructive Pulmonary Disease (COPD). Recently, disturbances in protein turnover and amino acid kinetics have been observed after exercise in COPD. The objective was to investigate which dairy protein is able to positively influence the protein metabolic response to exercise in COPD. 8 COPD patients and 8 healthy subjects performed a cycle test on two days while ingesting casein or whey protein. Whole body protein breakdown (WbPB), synthesis (WbPS), splanchnic amino acid extraction (SPE), and NetWbPS (=WbPS-WbPB) were measured using stable isotope methodology during 20 min of exercise (at 50% peak work load of COPD group). The controls performed a second exercise test at the same relative workload. Exercise was followed by 1 h of recovery. In the healthy group, WbPS, SPE, and NetPS were higher during casein than during whey feeding (P<.01). WbPS and NetPS were higher during exercise, independent of exercise intensity (P<.01). NetPS was higher during casein feeding in COPD due to lower WbPB (P<.05). Higher SPE was found during exercise during casein and whey feeding in COPD (P<.05). Lactate levels during exercise were higher in COPD (P<.05) independent of the protein. Post-exercise, lower NetPS values were found independent of protein type in both groups. Casein resulted in more protein anabolism than whey protein which was maintained during and following exercise in COPD. Optimizing protein intake might be of importance for muscle maintenance during daily physical activities in COPD. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. Anticancer activity of cow, sheep, goat, mare, donkey and camel milks and their caseins and whey proteins and in silico comparison of the caseins.

    PubMed

    Shariatikia, Malihe; Behbahani, Mandana; Mohabatkar, Hassan

    2017-06-01

    The present investigation was carried out to evaluate anticancer activity of cow, goat, sheep, mare, donkey and camel milks and their casein and whey proteins against MCF7 cell line. The structure-based properties of the casein proteins were also investigated, using bioinformatics tools to find explanation for their antitumor activities. The effect of different milks and their casein and whey proteins on MCF7 proliferation was measured using MTT assay at different concentrations (0.5, 1 and 2 mg/ml). The results showed that mare, donkey, cow and camel milks and their casein and whey proteins have potent cytotoxic activity against MCF7 cells in a dose dependent manner while sheep and goat milks and their proteins did not reveal any cytotoxic activity. The in silico results demonstrated that mare, donkey and camel caseins had highest positive and negative charges. The secondary structure prediction indicated that mare and donkey caseins had the maximum percentage of α helix and camel casein had the highest percentage of extended strand. This study suggests that there is a striking correlation between anti-cancer activity of milk caseins and their physicochemical properties such as alpha helix structure and positive and negative charges. In conclusion, the results indicated that mare, camel and donkey milks might be good candidates against breast cancer cells.

  9. Chemical and immunochemical characterization of caseins and the major whey proteins of rabbit milk.

    PubMed Central

    Dayal, R; Hurlimann, J; Suard, Y M; Kraehenbuhl, J P

    1982-01-01

    Caseins were separated from whey proteins by acid precipitation of skimmed rabbit milk. Whole casein was resolved by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis into three major bands with apparent relative molecular masses (Mr of 31 000, 29 000 and 25 000. On agarose/urea-gel electrophoresis whole casein gave three bands with electrophoretic mobilities alpha, beta and gamma. The three components were purified by DEAE-cellulose chromatography under denaturing and reducing conditions. Each was shown to have a different amino acid, hexose and phosphorus content, as well as non-identical peptide fragments after proteinase digestion. The 31 000 Da (dalton) protein, of alpha-electrophoretic mobility, had a high phosphorus content (4.38%, w/w); the 29 000 Da peptide, of gamma-mobility, had the highest hexose content (2.2%, w/w), contained 0.8 cysteine residue per 100 amino acid residues and was susceptible to chymosin digestion corresponding thus to kappa-casein; the 25 000 Da protein migrated to the beta-position. The rabbit casein complex is composed of at least three caseins, two of which (alpha- and kappa-caseins) are analogous to the caseins from ruminants. Although caseins are poor immunogens, specific antibodies were raised against total and purified polypeptides. The antiserum directed against whole casein recognized each polypeptide, each casein corresponding to a distinct precipitation line. The antisera directed against each casein polypeptide reacted exclusively with the corresponding casein and no antiserum cross-reaction occurred between the three polypeptides. From whey, several proteins were isolated, characterized and used as antigens to raise specific antibodies. An iron-binding protein with an apparent Mr of 80 000 was shown to be immunologically and structurally identical with serum transferrin. Images Fig. 1. Fig. 2. Fig. 3. Fig. 4. Fig. 5. PMID:6177316

  10. Nutritional evaluation of caseins and whey proteins and their hydrolysates from Protamex*

    PubMed Central

    Sindayikengera, Séverin; Xia, Wen-shui

    2006-01-01

    Whey protein concentrate (WPC 80) and sodium caseinate were hydrolyzed by Protamex to 5%, 10%, 15%, and 20% degree of hydrolysis (DH). WPC 80, sodium caseinate and their hydrolysates were then analyzed, compared and evaluated for their nutritional qualities. Their chemical composition, protein solubility, amino acid composition, essential amino acid index (EAA index), biological value (BV), nutritional index (NI), chemical score, enzymic protein efficiency ratio (E-PER) and in vitro protein digestibility (IVPD) were determined. The results indicated that the enzymatic hydrolysis of WPC 80 and sodium caseinate by Protamex improved the solubility and IVPD of their hydrolysates. WPC 80, sodium caseinate and their hydrolysates were high-quality proteins and had a surplus of essential amino acids compared with the FAO/WHO/UNU (1985) reference standard. The nutritive value of WPC 80 and its hydrolysates was superior to that of sodium caseinate and its hydrolysates as indicated by some nutritional parameters such as the amino acid composition, chemical score, EAA index and predicted BV. However, the E-PER was lower for the WPC hydrolysates as compared to unhydrolyzed WPC 80 but sodium caseinate and its hydrolysates did not differ significantly. The nutritional qualities of WPC 80, sodium caseinate and their hydrolysates were good and make them appropriate for food formulations or as nutritional supplements. PMID:16421963

  11. Role of kappa-casein in the association of denatured whey proteins with casein micelles in heated reconstituted skim milk.

    PubMed

    Anema, Skelte G

    2007-05-02

    Reconstituted skim milk at pH from 6.5 to 7.1 was unheated, preheated (68 degrees C/20 min), or heated at 90 degrees C for 20-30 min. On preheating, the size of the casein micelles decreased by about 5-20 nm, with a greater effect at higher pH. The casein micelle size of the heated milk at pH 6.5 increased by about 30 nm when compared to that of the unheated or preheated milk. As the pH was increased before heating, the particle size gradually decreased so that, at pH 7.1, the size was markedly smaller than that for the unheated milk and slightly smaller than that for the preheated milk. High levels (about 85%) of denatured whey protein associated with the casein micelles at pH 6.5, and this level decreased as the pH increased so that, at pH 7.1, low levels (about 15%) were associated with the micelles. Low levels of alphaS-casein and beta-casein were found in the serum regardless of the heat treatment or the pH of the milk. At pH 6.5, low levels (about 10%) of kappa-casein were also found in the milk serum. In the unheated milk, the level of serum kappa-casein increased slightly with increasing pH; in the heated samples, the level of serum kappa-casein increased markedly and linearly with increasing pH so that, at pH 7.1, about 70% of the kappa-casein was in the serum phase. The results of this study indicate that the pH dependence of the levels of serum phase kappa-casein may be responsible for the change in distribution of the whey proteins between the colloidal and serum phases. This is the first report to demonstrate significant levels of dissociation of kappa-casein from the micelles at pH between 6.5 and 6.7, although this dissociation phenomenon is well known on heating milk at high temperatures at pH above 6.7.

  12. Whey or Casein Hydrolysate with Carbohydrate for Metabolism and Performance in Cycling.

    PubMed

    Oosthuyse, T; Carstens, M; Millen, A M E

    2015-07-01

    The protein type most suitable for ingestion during endurance exercise is undefined. This study compared co-ingestion of either 15 g/h whey or casein hydrolysate with 63 g/h fructose: maltodextrin (0.8:1) on exogenous carbohydrate oxidation, exercise metabolism and performance. 2 h postprandial, 8 male cyclists ingested either: carbohydrate-only, carbohydrate-whey hydrolysate, carbohydrate-casein hydrolysate or placebo-water in a crossover, double-blind design during 2 h of exercise at 60%W max followed by a 16-km time trial. Data were evaluated by magnitude-based inferential statistics. Exogenous carbohydrate oxidation, measured from (13)CO2 breath enrichment, was not substantially influenced by co-ingestion of either protein hydrolysate. However, only co-ingestion of carbohydrate-casein hydrolysate substantially decreased (98% very likely decrease) total carbohydrate oxidation (mean±SD, 242±44; 258±47; 277±33 g for carbohydrate-casein, carbohydrate-whey and carbohydrate-only, respectively) and substantially increased (93% likely increase) total fat oxidation (92±14; 83±27; 73±19 g) compared with carbohydrate-only. Furthermore, only carbohydrate-casein hydrolysate ingestion resulted in a faster time trial (-3.6%; 90% CI: ±3.2%) compared with placebo-water (95% likely benefit). However, neither protein hydrolysate enhanced time trial performance when compared with carbohydrate-only. Under the conditions of this study, ingesting carbohydrate-casein, but not carbohydrate-whey hydrolysate, favourably alters metabolism during prolonged moderate-strenuous cycling without substantially altering cycling performance compared with carbohydrate-only. © Georg Thieme Verlag KG Stuttgart · New York.

  13. Interaction between casein micelles and whey protein/κ-casein complexes during renneting of heat-treated reconstituted skim milk powder and casein micelle/serum mixtures.

    PubMed

    Kethireddipalli, Prashanti; Hill, Arthur R; Dalgleish, Douglas G

    2011-02-23

    Casein micelles were separated from unheated reconstituted skim milk powder (RSMP) and were resuspended in the serum of RSMP that had been heated, with and without dialysis of this serum against unheated RSMP. Using size-exclusion chromatography, it was found that the soluble complexes of whey protein (WP) with κ-casein in the serum of the heated milk bind progressively to unheated casein micelles during renneting, even prior to the onset of clotting. Similar trends were noted when casein micelles from RSMP heated at pH values of 6.7, 7.1, or 6.3, each with different amounts of WP coating the micelles, were renneted in the presence of soluble WP/κ-casein complexes. No matter what was the initial load of micelle-bound WP complexes, all micelle types were capable of binding additional serum protein complexes during renneting. However, it is not clear that this binding of WP/κ-casein complexes to the micellar surface is a direct cause of the impaired rennet clotting of the RSMP.

  14. The impact of the concentration of casein micelles and whey protein-stabilized fat globules on the rennet-induced gelation of milk.

    PubMed

    Gaygadzhiev, Zafir; Corredig, Milena; Alexander, Marcela

    2009-02-01

    The rennet-induced aggregation of skim milk recombined with whey protein-stabilized emulsion droplets was studied using diffusing wave spectroscopy (DSW) and small deformation rheology. The effect of different volume fractions of casein micelles and fat globules was investigated by observing changes in turbidity (1/l*), apparent radius, elastic modulus and mean square displacement (MSD), in addition to confocal imaging of the gels. Skim milk containing different concentration of casein micelles showed comparable light-scattering profiles; a higher volume fraction of caseins led to the development of more elastic gels. By following the development of 1/l* in recombined milks, it was possible to describe the behaviour of the fat globules during the initial stages of rennet coagulation. Increasing the volume fraction of fat globules showed a significant increase in gel elasticity, caused by flocculation of the oil droplets. The presence of flocculated oil globules within the gel structure was confirmed by confocal microscopy observations. Moreover, a lower degree of kappa-casein hydrolysis was needed to initiate casein micelles aggregation in milk containing whey protein-stabilized oil droplets compared to skim milk. This study for the first time clearly describes the impact of a mixture of casein micelles and whey protein-stabilized fat globules on the pre-gelation stages of rennet coagulation, and further highlights the importance of the flocculation state of the emulsion droplets in affecting the structure formation of the gel.

  15. Metabolic responses of healthy or prediabetic adults to bovine whey protein and sodium caseinate do not differ.

    PubMed

    Hoefle, Anja S; Bangert, Adina M; Stamfort, Adelmar; Gedrich, Kurt; Rist, Manuela J; Lee, Yu-Mi; Skurk, Thomas; Daniel, Hannelore

    2015-03-01

    Casein is considered a slowly digestible protein compared with whey protein, and this may cause differences in hormone responses and the kinetics of delivering amino acids into the circulation. We investigated whether postprandial plasma hormone and metabolite responses were different when bovine casein or whey protein was co-administered with carbohydrates in healthy and prediabetic adults. White healthy male adults (n = 15) and white, well-defined male and female prediabetic adults (n = 15) received test drinks randomly on 3 different occasions at least 2 d apart which contained 50 g of maltodextrin19 (MD19) alone or in combination with 50 g of whey protein isolate (WPI) or 50 g of sodium caseinate (SC). Blood samples were collected over a 240-min time period and were analyzed for hormone profiles and defined metabolites. No evidence was found that gastric emptying was different between the 2 protein drinks. Both proteins increased peak plasma insulin concentrations in prediabetic persons by 96% compared with MD19 (each, P < 0.05), which was accompanied by a reduction of peak venous blood glucose by 21% (each, P < 0.0001) without a difference between the 2 proteins. Peak plasma glucagon concentrations increased by 101% in both groups after the protein drinks (P < 0.05). The WPI drink also increased peak plasma glucose-dependent insulinotropic polypeptide concentrations in healthy volunteers by 56% (P < 0.01). Differences in plasma metabolite concentrations in volunteers could be attributed exclusively to the differences in the amino acid composition of the 2 proteins ingested. The WPI and the SC drinks similarly reduced postprandial glucose excursions when ingested with carbohydrates in healthy and prediabetic volunteers. Under our experimental conditions, however, no evidence was found that gastrointestinal processing of the 2 protein varieties differed substantially. This trial was registered at clinicaltrials.gov as DRKS00005682. © 2015 American Society for

  16. Promotion of bone growth by dietary soy protein isolate: Comparision with dietary casein, whey hydrolysate and rice protein isolate in growing female rats

    USDA-ARS?s Scientific Manuscript database

    The effects of different dietary protein sources(casein (CAS), soy protein isolate (SPI), whey protein hydrolysate (WPH) and rice protein isolate (RPI)) on bone were studied in intact growing female rats and in ovarectomized (OVX) rats showing sex steroid deficiency-induced bone loss. In addition, S...

  17. Effect of casein to whey protein ratios on the protein interactions and coagulation properties of low-fat yogurt.

    PubMed

    Zhao, L L; Wang, X L; Tian, Q; Mao, X Y

    2016-10-01

    In this study, we investigated the effect of casein (CN) to whey protein (WP) ratios (4:1, 3:1, 2:1, and 1:1) on gelation properties and microstructure of low-fat yogurt made with reconstituted skim milk with or without addition of whey protein concentrate. The rheological properties (storage modulus, G'; yield stress; and yield strain) of the obtained low-fat yogurt were greatly enhanced, the fermentation period was shortened, and the microstructure became more compact with smaller pores as the CN:WP ratio decreased. When CN:WP was 2:1 or 1:1, the obtained yogurt coagulum showed higher G' and greater yield stress, with more compact crosslinking and smaller pores. In addition, the more of skim milk powder was replaced by whey protein concentrate, the more disulfide bonds were formed and the greater the occurrence of hydrophobic interactions during heat treatment, which can improve the rheological properties and microstructure of low-fat yogurt. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  18. Whey Proteins Are More Efficient than Casein in the Recovery of Muscle Functional Properties following a Casting Induced Muscle Atrophy

    PubMed Central

    Martin, Vincent; Ratel, Sébastien; Siracusa, Julien; Le Ruyet, Pascale; Savary-Auzeloux, Isabelle; Combaret, Lydie; Guillet, Christelle; Dardevet, Dominique

    2013-01-01

    The purpose of this study was to investigate the effect of whey supplementation, as compared to the standard casein diet, on the recovery of muscle functional properties after a casting-induced immobilization period. After an initial (I0) evaluation of the contractile properties of the plantarflexors (isometric torque-frequency relationship, concentric power-velocity relationship and a fatigability test), the ankle of 20 male adult rats was immobilized by casting for 8 days. During this period, rats were fed a standard diet with 13% of casein (CAS). After cast removal, rats received either the same diet or a diet with 13% of whey proteins (WHEY). A control group (n = 10), non-immobilized but pair-fed to the two other experimental groups, was also studied and fed with the CAS diet. During the recovery period, contractile properties were evaluated 7 (R7), 21 (R21) and 42 days (R42) after cast removal. The immobilization procedure induced a homogeneous depression of average isometric force at R7 (CAS: − 19.0±8.2%; WHEY: − 21.7±8.4%; P<0.001) and concentric power (CAS: − 26.8±16.4%, P<0.001; WHEY: − 13.5±21.8%, P<0.05) as compared to I0. Conversely, no significant alteration of fatigability was observed. At R21, isometric force had fully recovered in WHEY, especially for frequencies above 50 Hz, whereas it was still significantly depressed in CAS, where complete recovery occurred only at R42. Similarly, recovery of concentric power was faster at R21 in the 500−700°/s range in the WHEY group. These results suggest that recovery kinetics varied between diets, the diet with the whey proteins promoting a faster recovery of isometric force and concentric power output as compared to the casein diet. These effects were more specifically observed at force level and movement velocities that are relevant for functional abilities, and thus natural locomotion. PMID:24069411

  19. Flavor and Functional Characteristics of Whey Protein Isolates from Different Whey Sources.

    PubMed

    Smith, T J; Foegeding, E A; Drake, M A

    2016-04-01

    This study evaluated flavor and functional characteristics of whey protein isolates (WPIs) from Cheddar, Mozzarella, Cottage cheese, and rennet casein whey. WPIs were manufactured in triplicate. Powders were rehydrated and evaluated in duplicate by descriptive sensory analysis. Volatile compounds were extracted by solid-phase microextraction followed by gas chromatography-mass spectrometry. Functional properties were evaluated by measurement of foam stability, heat stability, and protein solubility. WPI from Cheddar and Cottage cheese whey had the highest cardboard flavor, whereas sweet aromatic flavor was highest in Mozzarella WPI, and rennet casein WPI had the lowest overall flavor and aroma. Distinct sour taste and brothy/potato flavor were also noted in WPI from Cottage cheese whey. Consistent with sensory results, aldehyde concentrations were also highest in Cheddar and Cottage cheese WPI. Overrun, yield stress, and foam stability were not different (P > 0.05) among Cheddar, Mozzarella, and rennet casein WPI, but WPI foams from Cottage cheese whey had a lower overrun and air-phase fraction (P < 0.05). Cottage cheese WPI was more heat stable at pH 7 (P < 0.05) than other WPI in 4% protein solutions, and was the only WPI to not gel at 10% protein. Cottage cheese WPI was less soluble at pH 4.6 compared to other WPI (P < 0.05) and also exhibited higher turbidity loss at pH 3 to 7 compared to other WPI (P < 0.05). This study suggests that WPI produced from nontraditional whey sources could be used in new applications due to distinct functional and flavor characteristics. © 2016 Institute of Food Technologists®

  20. Whey Protein Reduces Early Life Weight Gain in Mice Fed a High-Fat Diet

    PubMed Central

    Tranberg, Britt; Hellgren, Lars I.; Lykkesfeldt, Jens; Sejrsen, Kristen; Jeamet, Aymeric; Rune, Ida; Ellekilde, Merete; Nielsen, Dennis S.; Hansen, Axel Kornerup

    2013-01-01

    An increasing number of studies indicate that dairy products, including whey protein, alleviate several disorders of the metabolic syndrome. Here, we investigated the effects of whey protein isolate (whey) in mice fed a high-fat diet hypothesising that the metabolic effects of whey would be associated with changes in the gut microbiota composition. Five-week-old male C57BL/6 mice were fed a high-fat diet ad libitum for 14 weeks with the protein source being either whey or casein. Faeces were collected at week 0, 7, and 13 and the fecal microbiota was analysed by denaturing gradient gel electrophoresis analyses of PCR-derived 16S rRNA gene (V3-region) amplicons. At the end of the study, plasma samples were collected and assayed for glucose, insulin and lipids. Whey significantly reduced body weight gain during the first four weeks of the study compared with casein (P<0.001–0.05). Hereafter weight gain was similar resulting in a 15% lower final body weight in the whey group relative to casein (34.0±1.0 g vs. 40.2±1.3 g, P<0.001). Food intake was unaffected by protein source throughout the study period. Fasting insulin was lower in the whey group (P<0.01) and glucose clearance was improved after an oral glucose challenge (P<0.05). Plasma cholesterol was lowered by whey compared to casein (P<0.001). The composition of the fecal microbiota differed between high- and low-fat groups at 13 weeks (P<0.05) whereas no difference was seen between whey and casein. In conclusion, whey initially reduced weight gain in young C57BL/6 mice fed a high-fat diet compared to casein. Although the effect on weight gain ceased, whey alleviated glucose intolerance, improved insulin sensitivity and reduced plasma cholesterol. These findings could not be explained by changes in food intake or gut microbiota composition. Further studies are needed to clarify the mechanisms behind the metabolic effects of whey. PMID:23940754

  1. A soy, whey and caseinate blend extends postprandial skeletal muscle protein synthesis in rats.

    PubMed

    Butteiger, D N; Cope, M; Liu, P; Mukherjea, R; Volpi, E; Rasmussen, B B; Krul, E S

    2013-08-01

    Blends of dairy and soy protein are used in commercial sports nutrition products; however, no studies have systematically compared blends to isolated protein sources and their effects on muscle protein synthesis (MPS). Dairy whey protein (WP), soy protein isolate (SP), and two blends (Blend 1 and Blend 2) consisting of ratios of 50:25:25 and 25:50:25 for whey:caseinate:soy, respectively, were evaluated for their ability to affect MPS. Male Sprague-Dawley rats were trained to eat 3 meals/day: a 4 g meal at 0700-0720 hours followed by ad lib feeding at 1300-1400 hours and 1800-1900 hours. After ~5 days of training, fasted rats were administered their respective 4 g meal at 0700-0720 hours and an intravenous flooding dose of (2)H5-phenylalanine 10 min prior to euthanasia. Individual rats were euthanized at designated postprandial time points. Blood and gastrocnemius samples were collected and the latter was used to measure mixed muscle protein fractional synthetic rates (FSR). Plasma leucine concentrations peaked in all groups at 90 min and were still above baseline at 300 min post-meal. FSR tended to increase in all groups post-meal but initial peaks of FSR were different times (45, 90 and 135 min for WP or SP, Blend 1 and Blend 2, respectively). Blend 2 had a significantly higher FSR compared to WP alone at 135 min (P < 0.05). Single source proteins and protein blends all enhance skeletal MPS after a meal, however, Blend 2 had a delayed FSR peak which was significantly higher than whey protein at 135 min. Copyright © 2012 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  2. Growth and metabolic response of premature infants fed whey- or casein-dominant formulas after hospital discharge.

    PubMed

    Bernbaum, J C; Sasanow, S R; Churella, H R; Daft, A

    1989-10-01

    We conducted a double-blind, randomized study to test the hypothesis that a whey-dominant formula permits a growth and metabolic advantage over a casein-dominant formula in preterm infants after hospital discharge. Nineteen low birth weight infants were studied for 6 months from the time of discharge. Ten received a casein-dominant formula, and nine received a whey-dominant formula. Growth (weight, length, head circumference, mid-arm circumference, and skin-fold thickness), biochemical measurements (alkaline phosphatase activity, acid-base status, and hemoglobin, serum total protein, albumin, and urea nitrogen levels), and quantity of formula intake did not differ significantly between the groups over a 6-month study period. Serum transthyretin and urea nitrogen concentrations differed significantly between the two feeding groups at the day of entry into the study only. The results indicate that, after hospital discharge, premature infants fed a whey-dominant formula do not differ in growth or biochemical measurements from those fed a casein-dominant formula.

  3. Enrichment and Purification of Casein Glycomacropeptide from Whey Protein Isolate Using Supercritical Carbon Dioxide Processing and Membrane Ultrafiltration

    PubMed Central

    Bonnaillie, Laetitia M.; Qi, Phoebe; Wickham, Edward; Tomasula, Peggy M.

    2014-01-01

    Whey protein concentrates (WPC) and isolates (WPI), comprised mainly of β-lactoglobulin (β-LG), α-lactalbumin (α-LA) and casein glycomacropeptide (GMP), are added to foods to boost nutritional and functional properties. Supercritical carbon dioxide (SCO2) has been shown to effectively fractionate WPC and WPI to obtain enriched fractions of α-LA and β-LG, thus creating new whey ingredients that exploit the properties of the individual component proteins. In this study, we used SCO2 to further fractionate WPI via acid precipitation of α-LA, β-LG and the minor whey proteins to obtain GMP-enriched solutions. The process was optimized and α-LA precipitation maximized at low pH and a temperature (T) ≥65 °C, where β-LG with 84% purity and GMP with 58% purity were obtained, after ultrafiltration and diafiltration to separate β-LG from the GMP solution. At 70 °C, β-LG also precipitated with α-LA, leaving a GMP-rich solution with up to 94% purity after ultrafiltration. The different protein fractions produced with the SCO2 process will permit the design of new foods and beverages to target specific nutritional needs. PMID:28234306

  4. Recovery of Whey Proteins and Enzymatic Hydrolysis of Lactose Derived from Casein Whey Using a Tangential Flow Ultrafiltration Module

    NASA Astrophysics Data System (ADS)

    Das, Bipasha; Bhattacharjee, Sangita; Bhattacharjee, Chiranjib

    2013-09-01

    In this study, ultrafiltration (UF) of pretreated casein whey was carried out in a cross-flow module fitted with 5 kDa molecular weight cut-off polyethersulfone membrane to recover whey proteins in the retentate and lactose in the permeate. Effects of processing conditions, like transmembrane pressure and pH on permeate flux and rejection were investigated and reported. The polarised layer resistance was found to increase with time during UF even in this high shear device. The lactose concentration in the permeate was measured using dinitro salicylic acid method. Enzymatic kinetic study for lactose hydrolysis was carried out at three different temperatures ranging from 30 to 50 °C using β-galactosidase enzyme. The glucose formed during lactose hydrolysis was analyzed using glucose oxidase-peroxidase method. Kinetics of enzymatic hydrolysis of lactose solution was found to follow Michaelis-Menten model and the model parameters were estimated by Lineweaver-Burk plot. The hydrolysis rate was found to be maximum (with Vmax = 5.5091 mmol/L/min) at 30 °C.

  5. Dietary whey proteins shield murine cecal microbiota from extensive disarray caused by a high-fat diet.

    PubMed

    Monteiro, Naice E S; Roquetto, Aline R; de Pace, Fernanda; Moura, Carolina S; Santos, Andrey Dos; Yamada, Aureo T; Saad, Mário José A; Amaya-Farfan, Jaime

    2016-07-01

    High-fat diets are used to induce adverse alterations in the intestinal microbiota, or dysbiosis, generalized inflammation and metabolic stress, which ultimately may lead to obesity. The influence of dietary whey proteins, whether intact or hydrolyzed, has been reported to improve glucose homeostasis and reduce stress. Therefore, the purpose of this work was to test if dietary milk-whey proteins, both in the intact form and hydrolyzed, could have an effect on the compositional changes of the cecal microbiota that can be induced in mice when receiving a high-fat diet in combination with the standard casein. Male C57BL/6 mice were fed a control casein diet (AIN 93-G); high-fat-casein (HFCAS); high-fat-whey protein concentrate (HFWPC) and high-fat whey-protein hydrolysate (HFWPH) for 9weeks. The intestinal microbiota composition was analyzed by 16S-rRNA of the invariant (V1-V3) gene, potentially endotoxemic lipopolysaccharide (LPS) release was determined colorimetrically, and liver fat infiltration assessed by light microscopy. The high-fat diet proved to induce dysbiosis in the animals by inverting the dominance of the phylum Firmicutes over Bacteroidetes, promoted the increase of LPS and resulted in liver fat infiltration. The whey proteins, whether intact or hydrolyzed, resisted the installation of dysbiosis, prevented the surge of circulating LPS and prevented fat infiltration in the liver. It is concluded that dietary whey proteins exert metabolic actions that tend to preserve the normal microbiota profile, while mitigating liver fat deposition in mice consuming a high-fat diet for nine weeks. Such beneficial effects were not seen when casein was the dietary protein. The hydrolyzed whey protein still differed from the normal whey protein by selectively protecting the Bacteroidetes phylum. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Microstructural, textural, and sensory characteristics of probiotic yogurts fortified with sodium calcium caseinate or whey protein concentrate.

    PubMed

    Akalın, A S; Unal, G; Dinkci, N; Hayaloglu, A A

    2012-07-01

    The influence of milk protein-based ingredients on the textural characteristics, sensory properties, and microstructure of probiotic yogurt during a refrigerated storage period of 28 d was studied. Milk was fortified with 2% (wt/vol) skim milk powder as control, 2% (wt/vol) sodium calcium caseinate (SCaCN), 2% (wt/vol) whey protein concentrate (WPC) or a blend of 1% (wt/vol) SCaCN and 1% (wt/vol) WPC. A commercial yogurt starter culture and Bifidobacterium lactis Bb12 as probiotic bacteria were used for the production. The fortification with SCaCN improved the firmness and adhesiveness. Higher values of viscosity were also obtained in probiotic yogurts with SCaCN during storage. However, WPC enhanced water-holding capacity more than the caseinate. Addition of SCaCN resulted in a coarse, smooth, and more compact protein network; however, WPC gave finer and bunched structures in the scanning electron microscopy micrographs. The use of SCaCN decreased texture scores in probiotic yogurt; probably due to the lower water-holding capacity and higher syneresis values in the caseinate-added yogurt sample. Therefore, the textural characteristics of probiotic yogurts improved depending on the ingredient variety. Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  7. Influence of Whey Peptides on the Surface Activity of k-casein and ß-lactoglobulin

    USDA-ARS?s Scientific Manuscript database

    Whey protein hydrolysate (WPH) was fractionated by reverse-phase chromatography to obtain fractions of varying surface-hydrophobicities. A model oil–water interface (MI) was pre-coated with the WPH or fractions thereof. Contact angle (') of sessile drops of '-casein ('-CN) or ß-lactoglobulin A (ß-LG...

  8. Milk and growth in children: effects of whey and casein.

    PubMed

    Mølgaard, Christian; Larnkjær, Anni; Arnberg, Karina; Michaelsen, Kim F

    2011-01-01

    Consumption of cow's milk is recommended in many countries. Observational and intervention studies show that cow's milk most likely has a positive influence on growth in children. The strongest evidence comes from observational studies and intervention studies in low-income countries, but there are also observational studies from high-income countries showing positive associations between milk intake and growth. Milk seems thus to have a specific stimulating effect on linear growth, not only in developing countries with high rates of malnutrition, but also in industrialized countries. However, it is not known which components in milk stimulate growth. Possible components are proteins, minerals, vitamins or combinations of these. Cow's milk proteins have a high protein quality, and whey has a slightly higher quality than casein, according to some indices based on amino acid composition. Studies, mainly from sport medicine, have suggested that whey protein also has the potential to increase muscle mass. Whether whey improves body composition to a larger extent than other milk proteins is not clear. The mechanism behind a possible growth-stimulating effect of milk and milk components is likely to be through a stimulation of insulin-like growth factor-I synthesis and maybe insulin secretion. In conclusion, there is strong evidence that milk stimulates linear growth. The mechanism is not yet clear, and more intervention studies are needed to understand which components in milk are responsible for the growth stimulation. The effects of milk on linear growth and adult height may have both positive and negative long-term implications. Copyright © 2011 S. Karger AG, Basel.

  9. Whey and Casein Proteins and Medium-Chain Saturated Fatty Acids from Milk Do Not Increase Low-Grade Inflammation in Abdominally Obese Adults.

    PubMed

    Bohl, Mette; Bjørnshave, Ann; Gregersen, Søren; Hermansen, Kjeld

    2016-01-01

    Low-grade inflammation is involved in the development of diabetes and cardiovascular disease (CVD). Inflammation can be modulated by dietary factors. Dairy products are rich in saturated fatty acids (SFA), which are known to possess pro-inflammatory properties. However, different fatty acid compositions may exert different effects. Other components such as milk proteins may exert anti-inflammatory properties which may compensate for the potential negative effects of SFAs. Generally, the available data suggest a neutral role of dairy product consumption on inflammation. To investigate the effects of, and potential interaction between, a dietary supplementation with whey protein and milk fat, naturally enriched in medium-chain SFA (MC-SFA), on inflammatory markers in abdominal obese adults. The study was a 12-week, randomized, double-blinded, intervention study. Sixty-three adults were equally allocated to one of four groups which received a supplement of either 60 g/day whey or 60 g/day casein plus 63 g/day milk fat either high or low in MC-SFA content. Fifty-two subjects completed the study. Before and after the intervention, changes in plasma interleukin-6 (IL-6), interleukin-1 receptor antagonist (IL-1RA), high-sensitive C-reactive protein (hsCRP), adiponectin, and monocyte chemoattractant protein-1 (MCP-1) were measured. Changes in inflammatory genes in the subcutaneous adipose tissue were also documented. There were no differences in circulating inflammatory markers between protein types or fatty acid compositions in abdominally obese subjects, with the exception of an increase in adiponectin in response to high compared to low MC-SFA consumption in women. We found that combined dairy proteins and MC-SFAs influenced inflammatory gene expression in adipose tissue, while no effect was detected by dairy proteins or MC-SFA per se. Whey protein compared with casein and MC-SFA-enriched milk fat did not alter circulating markers of low-grade inflammation in

  10. Reassociation of dissociated caseins upon acidification of heated pH-adjusted skim milk.

    PubMed

    Anema, Skelte G; Li, Yuming

    2015-05-01

    Milk was heated at different pH (pH 6.5-7.1) and temperatures (20-120 °C/10 min). This resulted in different levels of casein and denatured whey proteins to be distributed between the colloidal and serum phases. The milks were subsequently acidified and the distribution of protein between colloidal and serum was monitored at different pH. On acidification to pH 5.4, the serum phase caseins and denatured whey proteins partially reassociated with the caseins, although a complex behaviour was observed at ∼ pH 5.4 where additional casein dissociation occurred in some samples. At pH below 5.4 the caseins and denatured whey proteins rapidly aggregated. No separate aggregation of κ-casein/denatured whey protein complexes or κ-casein depleted micelles was observed. The earlier gelation of milks heated at higher pH was likely to be due to the destabilisation of the entire milk protein system rather than a preferential aggregation of the serum phase proteins. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Specific protein supplementation using soya, casein or whey differentially affects regional gut growth and luminal growth factor bioactivity in rats; implications for the treatment of gut injury and stimulating repair.

    PubMed

    Marchbank, Tania; Mandir, Nikki; Calnan, Denis; Goodlad, Robert A; Podas, Theo; Playford, Raymond J

    2018-01-24

    Modulation of regional growth within specific segments of the bowel may have clinical value for several gastrointestinal conditions. We therefore examined the effects of different dietary protein sources on regional gut growth and luminal growth factor bioactivity as potential therapies. Rats were fed for 14 days on isonitrogenous and isocaloric diets comprising elemental diet (ED) alone (which is known to cause gut atrophy), ED supplemented with casein or whey or a soya protein-rich feed. Effects on regional gut growth and intraluminal growth factor activity were then determined. Despite calorie intake being similar in all groups, soya rich feed caused 20% extra total body weight gain. Stomach weight was highest on soya and casein diets. Soya enhanced diet caused greatest increase in small intestinal weight and preserved luminal growth factor activity at levels sufficient to increase proliferation in vitro. Regional small intestinal proliferation was highest in proximal segment in ED fed animals whereas distal small intestine proliferation was greater in soya fed animals. Colonic weight and proliferation throughout the colon was higher in animals receiving soya or whey supplemented feeds. We conclude that specific protein supplementation with either soya, casein or whey may be beneficial to rest or increase growth in different regions of the bowel through mechanisms that include differentially affecting luminal growth factor bioactivity. These results have implications for targeting specific regions of the bowel for conditions such as Crohn's disease and chemotherapy.

  12. Effects of Whey, Caseinate, or Milk Protein Ingestion on Muscle Protein Synthesis after Exercise

    PubMed Central

    Kanda, Atsushi; Nakayama, Kyosuke; Sanbongi, Chiaki; Nagata, Masashi; Ikegami, Shuji; Itoh, Hiroyuki

    2016-01-01

    Whey protein (WP) is characterized as a “fast” protein and caseinate (CA) as a “slow” protein according to their digestion and absorption rates. We hypothesized that co-ingestion of milk proteins (WP and CA) may be effective for prolonging the muscle protein synthesis response compared to either protein alone. We therefore compared the effect of ingesting milk protein (MP) to either WP or CA alone on muscle protein synthesis after exercise in rats. We also compared the effects of these milk-derived proteins to a control, soy protein (SP). Male Sprague-Dawley rats swam for two hours. Immediately after exercise, one of the following four solutions was administered: WP, CA, MP, or SP. Individual rats were euthanized at designated postprandial time points and triceps muscle samples collected for measurement of the protein fractional synthesis rate (FSR). FSR tended to increase in all groups post-ingestion, although the initial peaks of FSR occurred at different times (WP, peak time = 60 min, FSR = 7.76%/day; MP, peak time = 90 min, FSR = 8.34%/day; CA, peak time = 120 min, FSR = 7.85%/day). Milk-derived proteins caused significantly greater increases (p < 0.05) in FSR compared with SP at different times (WP, 60 min; MP, 90 and 120 min; CA, 120 min). Although statistical analysis could not be performed, the calculated the area under the curve (AUC) values for FSR following this trend were: MP, 534.61; CA, 498.22; WP, 473.46; and SP, 406.18. We conclude that ingestion of MP, CA or WP causes the initial peak time in muscle protein synthesis to occur at different times (WP, fast; MP, intermediate; CA, slow) and the dairy proteins have a superior effect on muscle protein synthesis after exercise compared with SP. PMID:27271661

  13. Effects of Whey, Caseinate, or Milk Protein Ingestion on Muscle Protein Synthesis after Exercise.

    PubMed

    Kanda, Atsushi; Nakayama, Kyosuke; Sanbongi, Chiaki; Nagata, Masashi; Ikegami, Shuji; Itoh, Hiroyuki

    2016-06-03

    Whey protein (WP) is characterized as a "fast" protein and caseinate (CA) as a "slow" protein according to their digestion and absorption rates. We hypothesized that co-ingestion of milk proteins (WP and CA) may be effective for prolonging the muscle protein synthesis response compared to either protein alone. We therefore compared the effect of ingesting milk protein (MP) to either WP or CA alone on muscle protein synthesis after exercise in rats. We also compared the effects of these milk-derived proteins to a control, soy protein (SP). Male Sprague-Dawley rats swam for two hours. Immediately after exercise, one of the following four solutions was administered: WP, CA, MP, or SP. Individual rats were euthanized at designated postprandial time points and triceps muscle samples collected for measurement of the protein fractional synthesis rate (FSR). FSR tended to increase in all groups post-ingestion, although the initial peaks of FSR occurred at different times (WP, peak time = 60 min, FSR = 7.76%/day; MP, peak time = 90 min, FSR = 8.34%/day; CA, peak time = 120 min, FSR = 7.85%/day). Milk-derived proteins caused significantly greater increases (p < 0.05) in FSR compared with SP at different times (WP, 60 min; MP, 90 and 120 min; CA, 120 min). Although statistical analysis could not be performed, the calculated the area under the curve (AUC) values for FSR following this trend were: MP, 534.61; CA, 498.22; WP, 473.46; and SP, 406.18. We conclude that ingestion of MP, CA or WP causes the initial peak time in muscle protein synthesis to occur at different times (WP, fast; MP, intermediate; CA, slow) and the dairy proteins have a superior effect on muscle protein synthesis after exercise compared with SP.

  14. Whey protein lowers blood pressure and improves endothelial function and lipid biomarkers in adults with prehypertension and mild hypertension: results from the chronic Whey2Go randomized controlled trial12

    PubMed Central

    Givens, D Ian

    2016-01-01

    Background: Cardiovascular diseases (CVDs) are the greatest cause of death globally, and their reduction is a key public-health target. High blood pressure (BP) affects 1 in 3 people in the United Kingdom, and previous studies have shown that milk consumption is associated with lower BP. Objective: We investigated whether intact milk proteins lower 24-h ambulatory blood pressure (AMBP) and other risk markers of CVD. Design: The trial was a double-blinded, randomized, 3-way–crossover, controlled intervention study. Forty-two participants were randomly assigned to consume 2 × 28 g whey protein/d, 2 × 28 g Ca caseinate/d, or 2 × 27 g maltodextrin (control)/d for 8 wk separated by a 4-wk washout. The effects of these interventions were examined with the use of a linear mixed-model ANOVA. Results: Thirty-eight participants completed the study. Significant reductions in 24-h BP [for systolic blood pressure (SBP): −3.9 mm Hg; for diastolic blood pressure (DBP): −2.5 mm Hg; P = 0.050 for both)] were observed after whey-protein consumption compared with control intake. After whey-protein supplementation compared with control intake, peripheral and central systolic pressures [−5.7 mm Hg (P = 0.007) and −5.4 mm Hg (P = 0.012), respectively] and mean pressures [−3.7 mm Hg (P = 0.025) and −4.0 mm Hg (P = 0.019), respectively] were also lowered. Flow-mediated dilation (FMD) increased significantly after both whey-protein and calcium-caseinate intakes compared with control intake [1.31% (P < 0.001) and 0.83% (P = 0.003), respectively]. Although both whey protein and calcium caseinate significantly lowered total cholesterol [−0.26 mmol/L (P = 0.013) and −0.20 mmol/L (P = 0.042), respectively], only whey protein decreased triacylglycerol (−0.23 mmol/L; P = 0.025) compared with the effect of the control. Soluble intercellular adhesion molecule 1 and soluble vascular cell adhesion molecule 1 were reduced after whey protein consumption (P = 0.011) and after

  15. Inhibition and Promotion of Heat-Induced Gelation of Whey Proteins in the Presence of Calcium by Addition of Sodium Caseinate.

    PubMed

    Nguyen, Bach T; Balakrishnan, Gireeshkumar; Jacquette, Boris; Nicolai, Taco; Chassenieux, Christophe; Schmitt, Christophe; Bovetto, Lionel

    2016-11-14

    Heat-induced aggregation and gelation of aqueous solutions of whey protein isolate (WPI) in the presence of sodium caseinate (SC) and CaCl 2 was studied at pH 6.6. The effect of adding SC (0-100 g/L) on the structure of the aggregates and the gels was investigated by light scattering and confocal laser scanning microscopy at different CaCl 2 concentration ([CaCl 2 ] = 0-30 mM). The gelation process was studied by oscillatory shear rheology. At the whey protein concentrations studied here (34 and 60 g/L), no gels were formed in the absence of CaCl 2 and SC. However, WPI solutions gelled above a critical CaCl 2 concentration that increased with increasing SC concentration. In the absence of CaCl 2 , WPI gels were formed only above a critical SC concentration. The critical SC concentration needed to induce WPI gelation decreased weakly when CaCl 2 was added. In an intermediate range of CaCl 2 concentrations, gels were formed both at low and high SC concentrations, but not at intermediate SC concentrations. Finally, at high CaCl 2 concentrations gels were formed at all SC concentrations. The gelation rate and the gel structure of the gels formed at low and high casein concentrations were very different. The effect of SC on the thermal gelation of WPI was interpreted by competition for Ca 2+ , a chaperon effect, and microphase separation.

  16. The effect of ultrasound on casein micelle integrity.

    PubMed

    Chandrapala, J; Martin, G J O; Zisu, B; Kentish, S E; Ashokkumar, M

    2012-12-01

    Samples of fresh skim milk, reconstituted micellar casein, and casein powder were sonicated at 20 kHz to investigate the effect of ultrasonication. For fresh skim milk, the average size of the remaining fat globules was reduced by approximately 10 nm after 60 min of sonication; however, the size of the casein micelles was determined to be unchanged. A small increase in soluble whey protein and a corresponding decrease in viscosity also occurred within the first few minutes of sonication, which could be attributed to the breakup of casein-whey protein aggregates. No measurable changes in free casein content could be detected in ultracentrifuged skim milk samples sonicated for up to 60 min. A small, temporary decrease in pH resulted from sonication; however, no measurable change in soluble calcium concentration was observed. Therefore, casein micelles in fresh skim milk were stable during the exposure to ultrasonication. Similar results were obtained for reconstituted micellar casein, whereas larger viscosity changes were observed as whey protein content was increased. Controlled application of ultrasound can be usefully applied to reverse process-induced protein aggregation without affecting the native state of casein micelles. Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  17. Dietary Whey and Casein Differentially Affect Energy Balance, Gut Hormones, Glucose Metabolism, and Taste Preference in Diet-Induced Obese Rats.

    PubMed

    Pezeshki, Adel; Fahim, Andrew; Chelikani, Prasanth K

    2015-10-01

    Dietary whey and casein proteins decrease food intake and body weight and improve glycemic control; however, little is known about the underlying mechanisms. We determined the effects of dietary whey, casein, and a combination of the 2 on energy balance, hormones, glucose metabolism, and taste preference in rats. In Expt. 1, Obesity Prone CD (OP-CD) rats were fed a high-fat control diet (33% fat energy) for 8 wk, and then randomly assigned to 4 isocaloric dietary treatments (n = 12/group): the control treatment (CO; 14% protein energy from egg white), the whey treatment (WH; 26% whey + 14% egg white), the casein treatment (CA; 26% casein + 14% egg white), or the whey plus casein treatment (WHCA; 13% whey + 13% casein + 14% egg white) for 28 d. Measurements included food intake, energy expenditure, body composition, metabolic hormones, glucose tolerance and key tissue markers of glucose and energy metabolism. In Expt. 2, naïve OP-CD rats were randomly assigned to 3 groups (n = 8/group). During an 8 d conditioning period, each group received on alternate days either the CO or WH, CO or CA, or CO or WHCA. Subsequently, preferences for the test diets were assessed on 2 consecutive days with food intake measurements at regular intervals. In Expt. 1, food intake was decreased by 17-37% for the first 14 d in the WH and CA rats, and by 18-34% only for the first 4 d in the WHCA compared with the CO rats. Fat mass decreased by 21-28% for the WH rats and 17-33% for the CA rats from day 14 onward, but by 30% only on day 28 in WHCA rats, relative to CO rats. Thus, food intake, body weight, and fat mass decreased more rapidly in WH and CA rats than in WHCA rats. Energy expenditure in WH rats decreased for the first 4 d compared with CA and WHCA rats, and for the first 7 d compared with the CO rats. Circulating leptin, glucose-dependent insulinotropic polypeptide, interleukin 6, and glucose concentrations were lower in WH, CA, and WHCA rats than in CO rats. Plasma glucagon

  18. Thermal properties of milk fat, xanthine oxidase, caseins and whey proteins in pulsed electric field-treated bovine whole milk.

    PubMed

    Sharma, Pankaj; Oey, Indrawati; Everett, David W

    2016-09-15

    Thermodynamics of milk components (milk fat, xanthine oxidase, caseins and whey proteins) in pulsed electric field (PEF)-treated milk were compared with thermally treated milk (63 °C for 30 min and 73 °C for 15s). PEF treatments were applied at 20 or 26 kV cm(-1) for 34 μs with or without pre-heating of milk (55 °C for 24s), using bipolar square wave pulses in a continuous mode of operation. PEF treatments did not affect the final temperatures of fat melting (Tmelting) or xanthine oxidase denaturation (Tdenaturation), whereas thermal treatments increased both the Tmelting of milk fat and the Tdenaturation for xanthine oxidase by 2-3 °C. Xanthine oxidase denaturation was ∼13% less after PEF treatments compared with the thermal treatments. The enthalpy change (ΔH of denaturation) of whey proteins decreased in the treated-milk, and denaturation increased with the treatment intensity. New endothermic peaks in the calorimetric thermograms of treated milk revealed the formation of complexes due to interactions between MFGM (milk fat globule membrane) proteins and skim milk proteins. Evidence for the adsorption of complexes onto the MFGM surface was obtained from the increase in surface hydrophobicity of proteins, revealing the presence of unfolded hydrophobic regions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Food restriction followed by refeeding with a casein- or whey-based diet differentially affects the gut microbiota of pre-pubertal male rats.

    PubMed

    Masarwi, Majdi; Solnik, Hadas Isaac; Phillip, Moshe; Yaron, Sima; Shamir, Raanan; Pasmanic-Chor, Metsada; Gat-Yablonski, Galia

    2018-01-01

    Researchers are gaining an increasing understanding of host-gut microbiota interactions, but studies of the role of gut microbiota in linear growth are scarce. The aim of this study was to investigate the effect of food restriction and refeeding with different diets on gut microbiota composition in fast-growing rats. Young male Sprague-Dawley rats were fed regular rat chow ad libitum (control group) or subjected to 40% food restriction for 36 days followed by continued restriction or ad libitum refeeding for 24 days. Three different diets were used for refeeding: regular vegetarian protein chow or chow in which the sole source of protein was casein or whey. In the control group, the composition of the microbiota remained stable. Food restriction for 60 days led to a significant change in the gut microbiota at the phylum level, with a reduction in the abundance of Firmicutes and an increase in Bacteroidetes and Proteobacteria. Rats refed with the vegetarian protein diet had a different microbiota composition than rats refed the casein- or whey-based diet. Similarities in the bacterial population were found between rats refed vegetarian protein or a whey-based diet and control rats, and between rats refed a casein-based diet and rats on continued restriction. There was a significant strong correlation between the gut microbiota and growth parameters: humerus length, epiphyseal growth plate height, and levels of insulin-like growth factor 1 and leptin. In conclusion, the type of protein in the diet significantly affects the gut microbiota and, thereby, may affect animal's health. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Acid gelation properties of heated skim milk as a result of enzymatically induced changes in the micelle/serum distribution of the whey protein/kappa-casein aggregates.

    PubMed

    Guyomarc'h, Fanny; Renan, Marie; Chatriot, Marc; Gamerre, Valérie; Famelart, Marie-Hélène

    2007-12-26

    Changes in the acid gelation properties of skim milk as a result of variations in the micelle/serum distribution of the heat-induced whey protein/kappa-casein aggregates, induced by the combination of heat treatment and limited renneting, were investigated. No dramatic change in the zeta potential or the isoelectric point of the casein micelles was suggested, whether the aggregates were all attached to the casein micelle or not. Fluorescence intensity measurement using 8-anilino-1-naphthalenesulfonic acid (ANS) showed that the heat-induced aggregates were highly hydrophobic. Dynamic oscillation viscosimetry showed that acid gelation using glucono-delta-lactone (GDL) started at a higher pH value in prerenneted milk. However, no change in the gelation profile of skim milk could be related to the proportion of aggregates bound to the surface of the casein micelles. The results support the idea of an early interaction between the serum aggregates and the casein micelles on acidification.

  1. Diets enriched in whey or casein improve energy balance and prevent morbidity and renal damage in salt-loaded and high-fat-fed spontaneously hypertensive stroke-prone rats.

    PubMed

    Singh, Arashdeep; Pezeshki, Adel; Zapata, Rizaldy C; Yee, Nicholas J; Knight, Cameron G; Tuor, Ursula I; Chelikani, Prasanth K

    2016-11-01

    High-fat diets induce obesity and increase risks of diabetes and cardiovascular and renal disorders. Whey- or casein-enriched diets decrease food intake and weight gain; however, their cardiovascular and renal benefits are unclear. We determined whether whey- and casein-enriched diets improve energy balance and are protective against renal damage and morbidity associated with stroke in an obesogenic and hypertensive experimental setting. We also assessed whether the hypophagic effects of these diets were due to reduced diet preference. In experiment 1, spontaneously hypertensive stroke-prone rats were randomized to (a) control (CON; 14% kcal protein, 33% fat), (b) whey (WHY; 40% protein, 33% fat), (c) casein (CAS; 40% protein, 33% fat) or (d) chow (CHW; 24% protein, 13% fat) for 12 weeks with 1% salt in drinking water for CON, WHY and CAS groups. Our results demonstrated that both WHY and CAS produced short-term hypophagia, moderately increased energy expenditure and decreased respiratory quotient, body weight and lean mass, with effects of WHY being more prolonged. Further, only WHY decreased fat mass and blood pressure. Importantly, both WHY and CAS prevented morbidity associated with stroke and decreased indices of renal inflammation (tumor necrosis factor-α, interleukin-6) and damage (osteopontin, renal lesions). In experiment 2, following four initial conditioning trials, the preference for CON, WHY or CAS diet was determined. Both WHY and CAS decreased food intake during conditioning and decreased preference. In conclusion, diets enriched in whey or casein improved energy balance, increased survival and prevented renal damage in salt-loaded and high-fat-fed spontaneously hypertensive stroke-prone rats. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Urinary Loss of Tricarboxylic Acid Cycle Intermediates As Revealed by Metabolomics Studies: An Underlying Mechanism to Reduce Lipid Accretion by Whey Protein Ingestion?

    PubMed Central

    2015-01-01

    Whey protein intake is associated with the modulation of energy metabolism and altered body composition both in human subjects and in animals, but the underlying mechanisms are not yet elucidated. We fed obesity-prone C57BL/6J mice high-fat diets with either casein (HF casein) or whey (HF whey) for 6 weeks. At equal energy intake and apparent fat and nitrogen digestibility, mice fed HF whey stored less energy as lipids, evident both as lower white adipose tissue mass and as reduced liver lipids, compared with HF-casein-fed mice. Explorative analyses of 48 h urine, both by 1H NMR and LC–MS metabolomic platforms, demonstrated higher urinary excretion of tricarboxylic acid (TCA) cycle intermediates citric acid and succinic acid (identified by both platforms), and cis-aconitic acid and isocitric acid (identified by LC–MS platform) in the HF whey, relative to in the HF-casein-fed mice. Targeted LC–MS analyses revealed higher citric acid and cis-aconitic acid concentrations in fed state plasma, but not in liver of HF-whey-fed mice. We propose that enhanced urinary loss of TCA cycle metabolites drain available substrates for anabolic processes, such as lipogenesis, thereby leading to reduced lipid accretion in HF-whey-fed compared to HF-casein-fed mice. PMID:24702026

  3. The effects of whey and soy proteins on growth performance, gastrointestinal digestion, and selected physiological responses in rats.

    PubMed

    Wróblewska, B; Juśkiewicz, J; Kroplewski, B; Jurgoński, A; Wasilewska, E; Złotkowska, D; Markiewicz, L

    2018-03-01

    The objective of this work was to identify the nutritional and physiological effects of commercial soy and whey protein preparations. Wistar rats were fed with soy (S), whey (W), or casein (C) preparations as the sole dietary protein source. The nitrogen balance, body composition, changes in caecal microbiota, mucosal and bacterial enzyme activities, and allergenic potential of the preparations were analysed. The whey diet elicited greater skeletal muscle anabolism than the soy diet. Rats from the S group had the lowest values of body weight, fat, and lean mass gain. Compared to casein, soy and whey preparations decreased the protein efficiency ratio, increased N in the urine, and triggered the reduction of ammonia levels in the caecum. Changes in β-glucuronidase and β-galactosidase activities in the small intestine, caecum, and colon between experimental groups were observed. Significant differences were noted in the total counts of anaerobic bacteria and sulphite reducing bacteria during soy and whey treatments. This probably affected the short chain fatty acid level in caecal digesta resulting in the lowest propionic acid and total putrefactive short chain fatty acid levels during S treatment. Generally, whey preparations are a good choice for rapid bodybuilding (skeletal muscles), whereas soy preparations are more helpful during mass reduction.

  4. A novel method for separation of caseins from milk by phosphates precipitation.

    PubMed

    Yen, Chon-Ho; Lin, Yin-Shen; Tu, Ching-Fu

    2015-01-01

    Milk protein of farm animals is difficult to isolate because of the presence of casein micelles, which are hard to separate from whey by using centrifugation or filtration. Insoluble casein micelles also create an obstacle for purification instruments to operate efficiently. The conventional method, to precipitate caseins by lowering pH to 4.6 and then recover the whey fraction for further purification using chromatography techniques, is not applicable to proteins having an isoelectric point similar to caseins. In addition, the acid condition used for casein removal usually leads to significantly poor yields and reduced biological activities. In this study, a novel method of precipitating caseins under neutral or weak acidic conditions is presented. The method employs a phosphate salt and a freeze-thaw procedure to obtain a casein-free whey protein fraction. This fraction contains more than 90% yield with little loss of bioactivity of the target protein, and is readily available for further chromatographic purification. This method was successfully applied to purify recombinant human factor IX and recombinant hirudin from the milk of transgenic pigs in the presented study. It is an efficient pretreatment approach prior to chromatographic purification of milk protein from farm animals and particularly of great value to collect those recombinants secreted from transgenic livestock.

  5. Influence of Bovine Whey Protein Concentrate and Hydrolysate Preparation Methods on Motility in the Isolated Rat Distal Colon

    PubMed Central

    Dalziel, Julie E.; Anderson, Rachel C.; Bassett, Shalome A.; Lloyd-West, Catherine M.; Haggarty, Neill W.; Roy, Nicole C.

    2016-01-01

    Whey protein concentrate (WPC) and hydrolysate (WPH) are protein ingredients used in sports, medical and pediatric formulations. Concentration and hydrolysis methods vary for whey sourced from cheese and casein co-products. The purpose of this research was to investigate the influence of whey processing methods on in vitro gastrointestinal (GI) health indicators for colonic motility, epithelial barrier integrity and immune modulation. WPCs from casein or cheese processing and WPH (11% or 19% degree of hydrolysis, DH) were compared for their effects on motility in a 1 cm section of isolated rat distal colon in an oxygenated tissue bath. Results showed that WPC decreased motility irrespective of whether it was a by-product of lactic acid or mineral acid casein production, or from cheese production. This indicated that regardless of the preparation methodology, the whey protein contained components that modulate aspects of motility within the distal colon. WPH (11% DH) increased contractile frequency by 27% in a delayed manner and WPH (19% DH) had an immediate effect on contractile properties, increasing tension by 65% and frequency by 131%. Increased motility was associated with increased hydrolysis that may be attributed to the abundance of bioactive peptides. Increased frequency of contractions by WPH (19% DH) was inhibited (by 44%) by naloxone, implicating a potential involvement of opioid receptors in modulation of motility. Trans-epithelial electrical resistance and cytokine expression assays revealed that the WPC proteins studied did not alter intestinal barrier integrity or elicit any discernible immune response. PMID:27983629

  6. Distribution of Animal Drugs among Curd, Whey, and Milk Protein Fractions in Spiked Skim Milk and Whey.

    PubMed

    Shappell, Nancy W; Shelver, Weilin L; Lupton, Sara J; Fanaselle, Wendy; Van Doren, Jane M; Hakk, Heldur

    2017-02-01

    It is important to understand the partitioning of drugs in processed milk and milk products, when drugs are present in raw milk, in order to estimate the potential consumer exposure. Radioisotopically labeled erythromycin, ivermectin, ketoprofen, oxytetracycline, penicillin G, sulfadimethoxine, and thiabendazole were used to evaluate the distribution of animal drugs among rennet curd, whey, and protein fractions from skim cow milk. Our previous work reported the distribution of these same drugs between skim and fat fractions of milk. Drug distribution between curd and whey was significantly correlated (R 2 = 0.70) to the drug's lipophilicity (log P), with improved correlation using log D (R 2 = 0.95). Distribution of drugs was concentration independent over the range tested (20-2000 nM). With the exception of thiabendazole and ivermectin, more drug was associated with whey protein than casein on a nmol/g protein basis (oxytetracycline experiment not performed). These results provide insights into the distribution of animal drug residues, if present in cow milk, among milk fractions, with possible extrapolation to milk products.

  7. Biochemical and metabolic mechanisms by which dietary whey protein may combat obesity and Type 2 diabetes.

    PubMed

    Jakubowicz, Daniela; Froy, Oren

    2013-01-01

    Consumption of milk and dairy products has been associated with reduced risk of metabolic disorders and cardiovascular disease. Milk contains two primary sources of protein, casein (80%) and whey (20%). Recently, the beneficial physiological effects of whey protein on the control of food intake and glucose metabolism have been reported. Studies have shown an insulinotropic and glucose-lowering properties of whey protein in healthy and Type 2 diabetes subjects. Whey protein seems to induce these effects via bioactive peptides and amino acids generated during its gastrointestinal digestion. These amino acids and peptides stimulate the release of several gut hormones, such as cholecystokinin, peptide YY and the incretins gastric inhibitory peptide and glucagon-like peptide 1 that potentiate insulin secretion from β-cells and are associated with regulation of food intake. The bioactive peptides generated from whey protein may also serve as endogenous inhibitors of dipeptidyl peptidase-4 (DPP-4) in the proximal gut, preventing incretin degradation. Indeed, recently, DPP-4 inhibitors were identified in whey protein hydrolysates. This review will focus on the emerging properties of whey protein and its potential clinical application for obesity and Type 2 diabetes. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Disulphide bonds in casein micelle from milk.

    PubMed

    Bouguyon, Edwige; Beauvallet, Christian; Huet, Jean-Claude; Chanat, Eric

    2006-05-05

    Mammary epithelial cells synthesised and secreted caseins, the major milk proteins in most mammals, as large aggregates called micelles into the alveolar lumen they surround. We investigated the implication of the highly conserved cysteine(s) of kappa-casein in disulphide bond formation in casein micelles from several species. Dimers were found in all milks studied, confirming previous observation in ruminants. More importantly, the study of interchain disulphide bridges in mouse and rat casein micelles revealed that any casein possessing a cysteine is engaged in disulphide bond interchange; these species express four or five cysteine-containing caseins, respectively. We found that the main rodent caseins form both homo- and heterodimers. Additionally, disulphide bond formation among milk proteins was specific since the interaction of the caseins with cysteine-containing whey proteins was not observed in native casein micelles.

  9. Homo-fermentative production of D-lactic acid by Lactobacillus sp. employing casein whey permeate as a raw feed-stock.

    PubMed

    Prasad, Saurav; Srikanth, Katla; Limaye, Anil M; Sivaprakasam, Senthilkumar

    2014-06-01

    Casein whey permeate (CWP), a lactose-enriched dairy waste effluent, is a viable feed stock for the production of value-added products. Two lactic acid bacteria were cultivated in a synthetic casein whey permeate medium with or without pH control. Lactobacillus lactis ATCC 4797 produced D-lactic acid (DLA) at 12.5 g l(-1) in a bioreactor. The values of Leudking-Piret model parameters suggested that lactate was a growth-associated product. Batch fermentation was also performed employing CWP (35 g lactose l(-1)) with casein hydrolysate as a nitrogen supplement in a bioreactor. After 40 h, L. lactis produced 24.3 g lactic acid l(-1) with an optical purity >98 %. Thus CWP may be regarded as a potential feed-stock for DLA production.

  10. Affinity chromatography matrices for depletion and purification of casein glycomacropeptide from bovine whey.

    PubMed

    Baieli, María F; Urtasun, Nicolás; Martinez, María J; Hirsch, Daniela B; Pilosof, Ana M R; Miranda, María V; Cascone, Osvaldo; Wolman, Federico J

    2017-01-01

    Casein glycomacropeptide (CMP) is a 64- amino acid peptide found in cheese whey, which is released after κ-casein specific cleavage by chymosin. CMP lacks aromatic amino acids, a characteristic that makes it usable as a nutritional supplement for people with phenylketonuria. CMP consists of two nonglycosylated isoforms (aCMP A and aCMP B) and its different glycosylated forms (gCMP A and gCMP B). The most predominant carbohydrate of gCMP is N-acetylneuraminic acid (sialic acid). Here, we developed a CMP purification process based on the affinity of sialic acid for wheat germ agglutinin (WGA). After formation of chitosan beads and adsorption of WGA, the agglutinin was covalently attached with glutaraldehyde. Two matrices with different WGA density were assayed for CMP adsorption. Maximum adsorption capacities were calculated according to the Langmuir model from adsorption isotherms developed at pH 7.0, being 137.0 mg/g for the matrix with the best performance. In CMP reduction from whey, maximum removal percentage was 79% (specifically 33.7% of gCMP A and B, 75.8% of aCMP A, and 93.9% of aCMP B). The CMP was recovered as an aggregate with an overall yield of 64%. Therefore, the matrices developed are promising for CMP purification from cheese whey. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 33:171-180, 2017. © 2016 American Institute of Chemical Engineers.

  11. Proteomic analysis and cross species comparison of casein fractions from the milk of dairy animals

    PubMed Central

    Wang, Xiaxia; Zhao, Xiaowei; Huang, Dongwei; Pan, Xiaocheng; Qi, Yunxia; Yang, Yongxin; Zhao, Huiling; Cheng, Guanglong

    2017-01-01

    Casein micelles contribute to the physicochemical properties of milk and may also influence its functionality. At present, however, there is an incomplete understanding of the casein micelle associated proteins and its diversity among the milk obtained from different species. Therefore, milk samples were collected from seven dairy animals groups, casein fractions were prepared by ultracentrifugation and their constituent proteins were identified by liquid chromatography tandem mass spectrometry. A total of 193 distinct proteins were identified among all the casein micelle preparations. Protein interaction analysis indicated that caseins could interact with major whey proteins, including β-lactoglobulin, α-lactalbumin, lactoferrin, and serum albumin, and then whey proteins interacted with other proteins. Pathway analysis found that the peroxisome proliferator-activated receptor signaling pathway is shared among the studied animals. Additionally, galactose metabolism pathway is also found to be commonly involved for proteins derived from camel and horse milk. According to the similarity of casein micelle proteomes, two major sample clusters were classified into ruminant animals (Holstein and Jersey cows, buffaloes, yaks, and goats) and non-ruminants (camels and horses). Our results provide new insights into the protein profile associated with casein micelles and the functionality of the casein micelle from the studied animals. PMID:28240229

  12. Functional Foods Containing Whey Proteins

    USDA-ARS?s Scientific Manuscript database

    Whey proteins, modified whey proteins, and whey components are useful as nutrients or supplements for health maintenance. Extrusion modified whey proteins can easily fit into new products such as beverages, confectionery items (e.g., candies), convenience foods, desserts, baked goods, sauces, and in...

  13. At same leucine intake, a whey/plant protein blend is not as effective as whey to initiate a transient post prandial muscle anabolic response during a catabolic state in mini pigs.

    PubMed

    Revel, Aurélia; Jarzaguet, Marianne; Peyron, Marie-Agnès; Papet, Isabelle; Hafnaoui, Noureddine; Migné, Carole; Mosoni, Laurent; Polakof, Sergio; Savary-Auzeloux, Isabelle; Rémond, Didier; Dardevet, Dominique

    2017-01-01

    Muscle atrophy has been explained by an anabolic resistance following food intake and an increase of dietary protein intake is recommended. To be optimal, a dietary protein has to be effective not only to initiate but also to prolong a muscle anabolic response in a catabolic state. To our knowledge, whether or not a dairy or a dairy/plant protein blend fulfills these criterions is unknown in a muscle wasting situation. Our aim was, in a control and a catabolic state, to measure continuously muscle anabolism in term of intensity and duration in response to a meal containing casein (CAS), whey (WHEY) or a whey/ plant protein blend (BLEND) and to evaluate the best protein source to elicit the best post prandial anabolism according to the physio-pathological state. Adult male Yucatan mini pigs were infused with U-13C-Phenylalanine and fed either CAS, WHEY or BLEND. A catabolic state was induced by a glucocorticoid treatment for 8 days (DEX). Muscle protein synthesis, proteolysis and balance were measured with the hind limb arterio-venous differences technique. Repeated time variance analysis were used to assess significant differences. In a catabolic situation, whey proteins were able to initiate muscle anabolism which remained transient in contrast to the stimulated muscle protein accretion with WHEY, CAS or BLEND in healthy conditions. Despite the same leucine intake compared to WHEY, BLEND did not restore a positive protein balance in DEX animals. Even with WHEY, the duration of the anabolic response was not optimal and has to be improved in a catabolic state. The use of BLEND remained of lower efficiency even at same leucine intake than whey.

  14. Distribution of Spiked Drugs between Milk Fat, Skim Milk, Whey, Curd, and Milk Protein Fractions: Expansion of Partitioning Models.

    PubMed

    Lupton, Sara J; Shappell, Nancy W; Shelver, Weilin L; Hakk, Heldur

    2018-01-10

    The distributions of eight drugs (acetaminophen, acetylsalicylic acid/salicylic acid, ciprofloxacin, clarithromycin, flunixin, phenylbutazone, praziquantel, and thiamphenicol) were determined in milk products (skim milk, milk fat, curd, whey, and whey protein) and used to expand a previous model (from 7 drugs to 15 drugs) for predicting drug distribution. Phenylbutazone and praziquantel were found to distribute with the lipid and curd phases (≥50%). Flunixin distribution was lower but similar in direction (12% in milk fat, 39% in curd). Acetaminophen, ciprofloxacin, and praziquantel preferentially associated with casein proteins, whereas thiamphenicol and clarithromycin associated preferentially to whey proteins. Regression analyses for log [milk fat]/[skim milk] and log [curd]/[whey] had r 2 values of 0.63 and 0.67, respectively, with p of <0.001 for 15 drugs (7 previously tested and 8 currently tested). The robustness of the distribution model was enhanced by doubling the number of drugs originally tested.

  15. At same leucine intake, a whey/plant protein blend is not as effective as whey to initiate a transient post prandial muscle anabolic response during a catabolic state in mini pigs

    PubMed Central

    Revel, Aurélia; Jarzaguet, Marianne; Peyron, Marie-Agnès; Papet, Isabelle; Hafnaoui, Noureddine; Migné, Carole; Mosoni, Laurent; Polakof, Sergio; Savary-Auzeloux, Isabelle; Rémond, Didier

    2017-01-01

    Background Muscle atrophy has been explained by an anabolic resistance following food intake and an increase of dietary protein intake is recommended. To be optimal, a dietary protein has to be effective not only to initiate but also to prolong a muscle anabolic response in a catabolic state. To our knowledge, whether or not a dairy or a dairy/plant protein blend fulfills these criterions is unknown in a muscle wasting situation. Objective Our aim was, in a control and a catabolic state, to measure continuously muscle anabolism in term of intensity and duration in response to a meal containing casein (CAS), whey (WHEY) or a whey/ plant protein blend (BLEND) and to evaluate the best protein source to elicit the best post prandial anabolism according to the physio-pathological state. Methods Adult male Yucatan mini pigs were infused with U-13C-Phenylalanine and fed either CAS, WHEY or BLEND. A catabolic state was induced by a glucocorticoid treatment for 8 days (DEX). Muscle protein synthesis, proteolysis and balance were measured with the hind limb arterio-venous differences technique. Repeated time variance analysis were used to assess significant differences. Results In a catabolic situation, whey proteins were able to initiate muscle anabolism which remained transient in contrast to the stimulated muscle protein accretion with WHEY, CAS or BLEND in healthy conditions. Despite the same leucine intake compared to WHEY, BLEND did not restore a positive protein balance in DEX animals. Conclusions Even with WHEY, the duration of the anabolic response was not optimal and has to be improved in a catabolic state. The use of BLEND remained of lower efficiency even at same leucine intake than whey. PMID:29045496

  16. Cysteine-rich whey protein isolate (Immunocal®) ameliorates deficits in the GFAP.HMOX1 mouse model of schizophrenia.

    PubMed

    Song, Wei; Tavitian, Ayda; Cressatti, Marisa; Galindez, Carmela; Liberman, Adrienne; Schipper, Hyman M

    2017-09-01

    Schizophrenia is a neuropsychiatric disorder that features neural oxidative stress and glutathione (GSH) deficits. Oxidative stress is augmented in brain tissue of GFAP.HMOX1 transgenic mice which exhibit schizophrenia-relevant characteristics. The whey protein isolate, Immunocal® serves as a GSH precursor upon oral administration. In this study, we treated GFAP.HMOX1 transgenic mice daily with either Immunocal (33mg/ml drinking water) or equivalent concentrations of casein (control) between the ages of 5 and 6.5 months. Immunocal attenuated many of the behavioral, neurochemical and redox abnormalities observed in GFAP.HMOX1 mice. In addition to restoring GSH homeostasis in the CNS of the transgenic mice, the whey protein isolate augmented GSH reserves in the brains of wild-type animals. These results demonstrate that consumption of whey protein isolate augments GSH stores and antioxidant defenses in the healthy and diseased mammalian brain. Whey protein isolate supplementation (Immunocal) may constitute a safe and effective modality for the management of schizophrenia, an unmet clinical imperative. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Experimental and Modelling Study of the Denaturation of Milk Protein by Heat Treatment

    PubMed Central

    Qian, Fang; Sun, Jiayue; Cao, Di; Tuo, Yanfeng; Jiang, Shujuan; Mu, Guangqing

    2017-01-01

    Heat treatment of milk aims to inhibit the growth of microbes, extend the shelf-life of products and improve the quality of the products. Heat treatment also leads to denaturation of whey protein and the formation of whey protein-casein polymer, which has negative effects on milk product. Hence the milk heat treatment conditions should be controlled in milk processing. In this study, the denaturation degree of whey protein and the combination degree of whey protein and casein when undergoing heat treatment were also determined by using the Native-PAGE and SDS-PAGE analysis. The results showed that the denaturation degree of whey protein and the combination degree of whey protein with casein extended with the increase of the heat-treated temperature and time. The effects of the heat-treated temperature and heat-treated time on the denaturation degree of whey protein and on the combination degree of whey protein and casein were well described using the quadratic regression equation. The analysis strategy used in this study reveals an intuitive and effective measure of the denaturation degree of whey protein, and the changes of milk protein under different heat treatment conditions efficiently and accurately in the dairy industry. It can be of great significance for dairy product proteins following processing treatments applied for dairy product manufacturing. PMID:28316470

  18. High Whey Protein Intake Delayed the Loss of Lean Body Mass in Healthy Old Rats, whereas Protein Type and Polyphenol/Antioxidant Supplementation Had No Effects

    PubMed Central

    Mosoni, Laurent; Gatineau, Eva; Gatellier, Philippe; Migné, Carole; Savary-Auzeloux, Isabelle; Rémond, Didier; Rocher, Emilie; Dardevet, Dominique

    2014-01-01

    Our aim was to compare and combine 3 nutritional strategies to slow down the age-related loss of muscle mass in healthy old rats: 1) increase protein intake, which is likely to stimulate muscle protein anabolism; 2) use leucine rich, rapidly digested whey proteins as protein source (whey proteins are recognized as the most effective proteins to stimulate muscle protein anabolism). 3) Supplement animals with a mixture of chamomile extract, vitamin E, vitamin D (reducing inflammation and oxidative stress is also effective to improve muscle anabolism). Such comparisons and combinations were never tested before. Nutritional groups were: casein 12% protein, whey 12% protein, whey 18% protein and each of these groups were supplemented or not with polyphenols/antioxidants. During 6 months, we followed changes of weight, food intake, inflammation (plasma fibrinogen and alpha-2-macroglobulin) and body composition (DXA). After 6 months, we measured muscle mass, in vivo and ex-vivo fed and post-absorptive muscle protein synthesis, ex-vivo muscle proteolysis, and oxidative stress parameters (liver and muscle glutathione, SOD and total antioxidant activities, muscle carbonyls and TBARS). We showed that although micronutrient supplementation reduced inflammation and oxidative stress, the only factor that significantly reduced the loss of lean body mass was the increase in whey protein intake, with no detectable effect on muscle protein synthesis, and a tendency to reduce muscle proteolysis. We conclude that in healthy rats, increasing protein intake is an effective way to delay sarcopenia. PMID:25268515

  19. Enrichment and purification of casein glycomacropeptide from whey protein isolate using supercritical carbon dioxide processing and membrane filtration

    USDA-ARS?s Scientific Manuscript database

    Whey protein concentrates (WPC) and isolates (WPI), which are dried, concentrated forms of cheese whey, are comprised mainly of beta–lactoglobulin (beta-LG), a–lactalbumin (a-LA), and glycomacropeptide (GLY), and are added to foods to boost their nutritional and functional properties. In previous st...

  20. A diet containing whey protein, glutamine, and TGFbeta modulates gut protein metabolism during chemotherapy-induced mucositis in rats.

    PubMed

    Boukhettala, Nabile; Ibrahim, Ayman; Claeyssens, Sophie; Faure, Magali; Le Pessot, Florence; Vuichoud, Jacques; Lavoinne, Alain; Breuillé, Denis; Déchelotte, Pierre; Coëffier, Moïse

    2010-08-01

    Mucositis, a common side effect of chemotherapy, is characterized by compromised digestive function, barrier integrity and immune competence. Our aim was to evaluate the impact of a specifically designed diet Clinutren Protect (CP), which contains whey proteins, TGFbeta-rich casein, and free glutamine, on mucositis in rats. Mucositis was induced by three consecutive injections (day 0, day 1, day 2) of methotrexate (2.5 mg/kg). Rats had free access to CP or placebo diets from days -7 to 9. In the placebo diet, whey proteins and TGFbeta-rich casein were replaced by TGFbeta-free casein and glutamine by alanine. Intestinal parameters were assessed at day 3 and 9. Values, expressed as mean +/- SEM, were compared using two-way ANOVA. At day 3, villus height was markedly decreased in the placebo (296 +/- 11 microm) and CP groups (360 +/- 10 microm) compared with controls (464 +/- 27 microm), but more markedly in the placebo as compared to CP group. The intestinal damage score was also reduced in the CP compared with the placebo group. Glutathione content increased in the CP compared with the placebo group (2.2 +/- 0.2 vs. 1.7 +/- 0.2 micromol/g tissue). Gut protein metabolism was more affected in the placebo than in the CP group. The fractional synthesis rate was decreased in the placebo group (93.8 +/- 4.9%/day) compared with controls (121.5 +/- 12.1, P < 0.05), but not in the CP group (106.0 +/- 13.1). In addition, at day 9, rats exhibited improved body weight and food intake recovery in the CP compared to the placebo group. Clinutren Protect feeding reduces intestinal injury in the acute phase of methotrexate-induced mucositis in rats and improves recovery.

  1. Influence of using a blend of rennet casein and whey protein concentrate as protein source on the quality of Mozzarella cheese analogue.

    PubMed

    Dhanraj, Padhiyar; Jana, Atanu; Modha, Hiral; Aparnathi, K D

    2017-03-01

    The effect of incorporating whey protein concentrate (WPC) on the quality characteristics of Mozzarella cheese analogue (MCA) based on rennet casein (RC) was studied. The proportion of RC:WPC tried out were 95:5, 90:10, and 85:15 w/w. The formulation of MCA comprised of 23.5% of blend of RC and WPC, 15% specialty vegetable fat, 2.75% trisodium citrate + disodium hydrogen orthophosphate (2.5:1, w/w), 0.07% calcium chloride, 0.6% citric acid, 1.1% NaCl, 1.5% cheese bud flavoring, and rest water. Varying the proportion of RC and WPC had a significant influence on the composition, textural properties, baking qualities and sensory quality of MCA judged as a topping on pizza pie. MCA made using protein blends (RC:WPC-90:10 or 85:15) behaved satisfactorily during pizza baking trials. However, looking at the superiority of MCA made using RC:WPC (90:10) with regard to shred quality and marginal superiority in terms of the total sensory score of cheese, judged as pizza topping, the former blend (i.e. RC:WPC, 90:10) was selected. The MCA obtained employing such protein blend had composition similar to that of Pizza cheese prepared from cheese milk and had requisite baking characteristics needed as a pizza topping. It is recommended to use a blend of RC and WPC (90:10) as the protein source in the formulation of MCA to obtain nutritionally superior cheese product having desired functional properties for its end use in baking applications.

  2. Factors regulating astringency of whey protein beverages.

    PubMed

    Beecher, J W; Drake, M A; Luck, P J; Foegeding, E A

    2008-07-01

    A rapidly growing area of whey protein use is in beverages. There are 2 types of whey protein-containing beverages: those at neutral pH and those at low pH. Astringency is very pronounced at low pH. Astringency is thought to be caused by compounds in foods that bind with and precipitate salivary proteins; however, the mechanism of astringency of whey proteins is not understood. The effect of viscosity and pH on the astringency of a model beverage containing whey protein isolate was investigated. Trained sensory panelists (n = 8) evaluated the viscosity and pH effects on astringency and basic tastes of whey protein beverages containing 6% wt/vol protein. Unlike what has been shown for alum and polyphenols, increasing viscosity (1.6 to 7.7 mPa.s) did not decrease the perception of astringency. In contrast, the pH of the whey protein solution had a major effect on astringency. A pH 6.8 whey protein beverage had a maximum astringency intensity of 1.2 (15-point scale), whereas that of a pH 3.4 beverage was 8.8 (15-point scale). Astringency decreased between pH 3.4 and 2.6, coinciding with an increase in sourness. Decreases in astringency corresponded to decreases in protein aggregation as observed by turbidity. We propose that astringency is related to interactions between positively charged whey proteins and negatively charged saliva proteins. As the pH decreased between 3.4 and 2.6, the negative charge on the saliva proteins decreased, causing the interactions with whey proteins to decrease.

  3. A two-step enzymatic modification method to reduce immuno-reactivity of milk proteins.

    PubMed

    Damodaran, Srinivasan; Li, Yan

    2017-12-15

    A two-step enzymatic approach to reduce immuno-reactivity of whey protein isolate and casein has been studied. The method involves partial hydrolysis of proteins with proteases, followed by repolymerization with microbial transglutaminase. Whey protein isolate partially hydrolyzed with chymotrypsin, trypsin, or thermolysin retained about 80%, 30%, and 20% of the original immuno-reactivity, respectively. Upon repolymerization the immuno-reactivity decreased to 45%, 35%, and 5%, respectively. The immuno-reactivity of hydrolyzed and repolymerized casein was negligible compared to native casein. The repolymerized products were partially resistant to in vitro digestion. Peptides released during digestion of repolymerized thermolysin-whey protein hydrolysate had less than 5% immuno-reactivity, whereas those of whey protein control exhibited a sinusoidal immuno-reactivity ranging from 5 to 20%. Peptides released during digestion of repolymerized thermolysin-casein hydrolysates had no immuno-reactivity. These results indicated that it is possible to produce hypoallergenic milk protein products using the two-step enzymatic modification method involving thermolysin and transglutaminase. Copyright © 2017. Published by Elsevier Ltd.

  4. Short communication: separation and quantification of caseins and casein macropeptide using ion-exchange chromatography.

    PubMed

    Holland, B; Rahimi Yazdi, S; Ion Titapiccolo, G; Corredig, M

    2010-03-01

    The aim of this work was to improve an existing method to separate and quantify the 4 major caseins from milk samples (i.e., containing whey proteins) using ion-exchange chromatography. The separation process was carried out using a mini-preparative cation exchange column (1 or 5mL of column volume), using urea acetate as elution buffer at pH 3.5 with a NaCl gradient. All 4 major caseins were separated, and the purity of each peak was assessed using sodium dodecyl sulfate-PAGE. Purified casein fractions were also added to raw milk to confirm their elution volumes. The quantification was carried out using purified caseins in buffer as well as added directly to fresh skim milk. This method can also be employed to determine the decrease in kappa-casein and the release of the casein-macropeptide during enzymatic hydrolysis using rennet. In this case, the main advantage of using this method is the lack of organic solvents compared with the conventional method for separation of macropeptide (using reversed phase HPLC).

  5. Effect of milk protein composition of a model infant formula on the physicochemical properties of in vivo gastric digestates.

    PubMed

    Tari, N Rafiee; Fan, M Z; Archbold, T; Kristo, E; Guri, A; Arranz, E; Corredig, M

    2018-04-01

    We investigated the effect of protein composition and, in particular, the presence of whey proteins or β-casein on the digestion behavior of a model infant formula using an in vivo piglet model. Three isocaloric diets optimized for piglets were prepared with the same concentrations of protein. For protein source, 1 diet contained only whey proteins and 2 contained a casein:whey protein ratio of 40:60 but differed in the amount of β-casein. To obtain the desired protein compositions, skim milk was microfiltered at 7 or 22°C, and retentates and permeates were combined with whey protein isolate. The diets were optimized to the nutritional needs of the piglets and fed to 24 newborn piglets for 18 d. Eight piglets were also fed ad libitum with sow milk and considered only as reference (not included in the statistical analysis). The study was carried out in 2 blocks, killing the animals 60 and 120 min after the last meal. All gastric contents, regardless of diet, showed a wide range of pH. Postprandial time did not affect the pH or physical properties of the gastric digesta. The digesta from whey protein-casein formulas showed significantly higher viscosity, a higher storage modulus, and a denser microstructure than digesta obtained from piglets fed whey protein formula. The β-casein:total casein ratio at the level used in this study did not significantly affect the physical and chemical properties of the stomach digestate. Although caseins showed extensive gastric hydrolysis, whey proteins remained largely intact at both postprandial times. The results indicate that the presence of different concentrations of milk proteins can be critical to the digestion properties of the food matrix and may affect the nutritional properties of the components. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  6. Protein and nitrogen composition of equine (Equus caballus) milk during early lactation.

    PubMed

    Zicker, S C; Lonnerdal, B

    1994-01-01

    Separation of whey protein from casein in equine milk was achieved by adjustment of pH to 4.3 without addition of calcium, and by ultracentrifugation at 189,000 g for 1 hr. True protein, whey protein, and casein decreased significantly during the first 28 days of lactation with the magnitude of decrease being greatest for whey protein. The proportion of nitrogen in whey protein:casein decreased from 85:15 to 54:46 during the 28 day time period. The concentration of non-protein nitrogen remained relatively constant at 500 mg nitrogen/l but increased in proportion from 2 to 13% of the total nitrogen during the first 28 days of lactation. These results illustrate the unique nitrogen composition of equine milk, which is intermediate between human and ruminant milk, and how it changes during early lactation.

  7. Whey protein fractionation using supercritical carbon dioxide

    USDA-ARS?s Scientific Manuscript database

    Sweet whey, a coproduct of the cheesemaking process, can be concentrated using ultrafiltration and ion-exchange to produce whey protein isolates (WPI). WPI contains approximately 32% alpha-lactalbumin (alpha-LA) and 61% beta-lactoglobulin (beta-LG), plus a small amount of minor whey proteins. Whil...

  8. Separation and partial characterization of guinea-pig caseins.

    PubMed Central

    Craig, R K; McIlreavy, D; Hall, R L

    1978-01-01

    1. Guinea-pig caseins A, B and C were purified free of each other by a combination of ion-exchange chromatography and gel filtration. 2. Determination of the amino acid composition showed all three caseins to contain a high proportion of proline and glutamic acid, but no cysteine. This apart, the amino acid composition of the three caseins was markedly different, though calculated divergence values suggest that some homology may exist between caseins A and B. Molecular-weight estimates based on amino acid composition were in good agreement with those based on sodium dodecyl sulphate/polyacrylamide-gel electrophoresis. 3. N-Terminal analysis showed lysine, methionine and lysine to be the N-terminal residues of caseins A, B and C respectively. 4. Two-dimensional separation of tryptic digests revealed a distinctive pattern for each casein. 5. All caseins were shown to be phosphoproteins. The casein C preparation also contained significant amounts of sialic acid, neutral and amino sugars. 6. The results suggest that each casein represents a separate gene product, and that the low-molecular-weight proteins are not the result of a post-translational cleavage of the largest. All were distinctly different from the whey protein alpha-lactalbumin. Images Fig. 3. Fig. 4. Fig. 5. Fig. 6. PMID:697741

  9. Interactions between whey proteins and salivary proteins as related to astringency of whey protein beverages at low pH.

    PubMed

    Ye, A; Streicher, C; Singh, H

    2011-12-01

    Whey protein beverages have been shown to be astringent at low pH. In the present study, the interactions between model whey proteins (β-lactoglobulin and lactoferrin) and human saliva in the pH range from 7 to 2 were investigated using particle size, turbidity, and ζ-potential measurements and sodium dodecyl sulfate-PAGE. The correlation between the sensory results of astringency and the physicochemical data was discussed. Strong interactions between β-lactoglobulin and salivary proteins led to an increase in the particle size and turbidity of mixtures of both unheated and heated β-lactoglobulin and human saliva at pH ∼3.4. However, the large particle size and high turbidity that occurred at pH 2.0 were the result of aggregation of human salivary proteins. The intense astringency in whey protein beverages may result from these increases in particle size and turbidity at these pH values and from the aggregation and precipitation of human salivary proteins alone at pH <3.0. The involvement of salivary proteins in the interaction is a key factor in the perception of astringency in whey protein beverages. At any pH, the increases in particle size and turbidity were much smaller in mixtures of lactoferrin and saliva, which suggests that aggregation and precipitation may not be the only mechanism linked to the perception of astringency in whey protein. Copyright © 2011 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  10. Whey proteins in the regulation of food intake and satiety.

    PubMed

    Luhovyy, Bohdan L; Akhavan, Tina; Anderson, G Harvey

    2007-12-01

    Whey protein has potential as a functional food component to contribute to the regulation of body weight by providing satiety signals that affect both short-term and long-term food intake regulation. Because whey is an inexpensive source of high nutritional quality protein, the utilization of whey as a physiologically functional food ingredient for weight management is of current interest. At present, the role of individual whey proteins and peptides in contributing to food intake regulation has not been fully defined. However, Whey protein reduces short-term food intake relative to placebo, carbohydrate and other proteins. Whey protein affects satiation and satiety by the actions of: (1) whey protein fractions per se; (2) bioactive peptides; (3) amino-acids released after digestion; (4) combined action of whey protein and/or peptides and/or amino acids with other milk constituents. Whey ingestion activates many components of the food intake regulatory system. Whey protein is insulinotropic, and whey-born peptides affect the renin-angiotensin system. Therefore whey protein has potential as physiologically functional food component for persons with obesity and its co-morbidities (hypertension, type II diabetes, hyper- and dislipidemia). It remains unclear, however, if the favourable effects of whey on food intake, subjective satiety and intake regulatory mechanisms in humans are obtained from usual serving sizes of dairy products. The effects described have been observed in short-term experiments and when whey is consumed in much higher amounts.

  11. Effect of heating strategies on whey protein denaturation--Revisited by liquid chromatography quadrupole time-of-flight mass spectrometry.

    PubMed

    Akkerman, M; Rauh, V M; Christensen, M; Johansen, L B; Hammershøj, M; Larsen, L B

    2016-01-01

    Previous standards in the area of effect of heat treatment processes on milk protein denaturation were based primarily on laboratory-scale analysis and determination of denaturation degrees by, for example, electrophoresis. In this study, whey protein denaturation was revisited by pilot-scale heating strategies and liquid chromatography quadrupole time-of-flight mass spectrometer (LC/MC Q-TOF) analysis. Skim milk was heat treated by the use of 3 heating strategies, namely plate heat exchanger (PHE), tubular heat exchanger (THE), and direct steam injection (DSI), under various heating temperatures (T) and holding times. The effect of heating strategy on the degree of denaturation of β-lactoglobulin and α-lactalbumin was determined using LC/MC Q-TOF of pH 4.5-soluble whey proteins. Furthermore, effect of heating strategy on the rennet-induced coagulation properties was studied by oscillatory rheometry. In addition, rennet-induced coagulation of heat-treated micellar casein concentrate subjected to PHE was studied. For skim milk, the whey protein denaturation increased significantly as T and holding time increased, regardless of heating method. High denaturation degrees were obtained for T >100°C using PHE and THE, whereas DSI resulted in significantly lower denaturation degrees, compared with PHE and THE. Rennet coagulation properties were impaired by increased T and holding time regardless of heating method, although DSI resulted in less impairment compared with PHE and THE. No significant difference was found between THE and PHE for effect on rennet coagulation time, whereas the curd firming rate was significantly larger for THE compared with PHE. Micellar casein concentrate possessed improved rennet coagulation properties compared with skim milk receiving equal heat treatment. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  12. 21 CFR 184.1979c - Whey protein concentrate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Whey protein concentrate. 184.1979c Section 184... the following specifications: (1) The analysis of whey protein concentrate, on a dry product basis.../federal_register/code_of_federal_regulations/ibr_locations.html. (3) The whey protein concentrate shall be...

  13. Comparing the Effects of Whey Extract and Casein Phosphopeptide-Amorphous Calcium Phosphate (CPP-ACP) on Enamel Microhardness

    PubMed Central

    Rezvani, Mohammad Bagher; Karimi, Mehrdad; Akhavan Rasoolzade, Raheleh; Haghgoo, Roza

    2015-01-01

    Statement of the Problem With the recent focus of researches on the development of non-invasive treatment modalities, the non-invasive treatment of early carious lesions by remineralization would bring a major advance in the clinical management of these dental defects. Casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) is considered to be effective in tooth remineralization. Purpose The aim of this in-vitro study was to compare the effects of whey and CPP-ACP in increasing the enamel microhardness. Materials and Method Microhardness of 30 sound human permanent premolars was measured before and after 8-minute immersion of samples in Coca-Cola. The teeth were then randomly divided into 3 groups and were immersed in artificial saliva, whey, and tooth mousse for 10 minutes. The changes of microhardness within each group and among the groups were recorded and analyzed using paired t-test. Results The microhardness increased in each group and between the groups; this increase was statistically significant (p= 0.009). Conclusion The effect of whey on increasing the enamel microhardness was more than that of tooth mousse. PMID:25759858

  14. 21 CFR 184.1979c - Whey protein concentrate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Whey protein concentrate. 184.1979c Section 184... whey protein concentrate meets the following specifications: (1) The analysis of whey protein... the heading “Protein—Official Final Action.” (ii) Fat content, 1 to 10 percent—as determined by the...

  15. 21 CFR 184.1979c - Whey protein concentrate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Whey protein concentrate. 184.1979c Section 184... whey protein concentrate meets the following specifications: (1) The analysis of whey protein... the heading “Protein—Official Final Action.” (ii) Fat content, 1 to 10 percent—as determined by the...

  16. Production and characterisation of whey protein hydrolysate having antioxidant activity from cheese whey.

    PubMed

    Athira, Syamala; Mann, Bimlesh; Saini, Prerna; Sharma, Rajan; Kumar, Rajesh; Singh, Ashish Kumar

    2015-11-01

    Cheese whey is a rich by-product in nutritional terms, possessing components with high biological value, excellent functional properties, and an inert flavour profile. In the present study, mozzarella cheese whey was ultra-filtrated to remove lactose and mineral. The retentate was hydrolysed with food-grade enzyme alcalase and the hydrolysis conditions (pH, temperature and time) were optimised for maximum antioxidant activity using response surface methodology. Whey protein hydrolysed for 8 h at pH 9 and 55 °C showed a maximum antioxidant activity of 1.18 ± 0.015 µmol Trolox mg(-1) protein. The antioxidant peptides were further enriched by ultra-filtration through a 3 kDa membrane. Seven peptides - β-Lg f(123-131), β-Lg f(122-131), β-Lg f(124-131), β-Lg f(123-134), β-Lg f(122-131), β-Lg f(96-100) and β-Lg f(94-100) - were identified by LC-MS/MS in the 3 kDa permeate of the hydrolysate. The incorporation of whey protein hydrolysate (WPH) in lemon whey drink (5-10 g L(-1)) increased the antioxidant activity from 76% to 90% as compared to control. Hydrolysis of ultra-filtrated retentate of whey can be an energy- and cost-effective method for the direct production of WPH from whey compared to the industrial production of WPH from whey protein concentrate. This study suggests that WPH with good nutritional and biological properties can be effectively used in health-promoting foods as a biofunctional ingredient. © 2014 Society of Chemical Industry.

  17. Effect of Dairy Proteins on Appetite, Energy Expenditure, Body Weight, and Composition: a Review of the Evidence from Controlled Clinical Trials1

    PubMed Central

    Bendtsen, Line Q.; Lorenzen, Janne K.; Bendsen, Nathalie T.; Rasmussen, Charlotte; Astrup, Arne

    2013-01-01

    Evidence supports that a high proportion of calories from protein increases weight loss and prevents weight (re)gain. Proteins are known to induce satiety, increase secretion of gastrointestinal hormones, and increase diet-induced thermogenesis, but less is known about whether various types of proteins exert different metabolic effects. In the Western world, dairy protein, which consists of 80% casein and 20% whey, is a large contributor to our daily protein intake. Casein and whey differ in absorption and digestion rates, with casein being a “slow” protein and whey being a “fast” protein. In addition, they differ in amino acid composition. This review examines whether casein, whey, and other protein sources exert different metabolic effects and targets to clarify the underlying mechanisms. Data indicate that whey is more satiating in the short term, whereas casein is more satiating in the long term. In addition, some studies indicate that whey stimulates the secretion of the incretin hormones glucagon-like peptide-1 and glucose-dependent insulinotropic polypeptide more than other proteins. However, for the satiety (cholecystokinin and peptide YY) and hunger-stimulating (ghrelin) hormones, no clear evidence exists that 1 protein source has a greater stimulating effect compared with others. Likewise, no clear evidence exists that 1 protein source results in higher diet-induced thermogenesis and promotes more beneficial changes in body weight and composition compared with other protein sources. However, data indicate that amino acid composition, rate of absorption, and protein/food texture may be important factors for protein-stimulated metabolic effects. PMID:23858091

  18. Disorder in milk proteins: caseins, intrinsically disordered colloids.

    PubMed

    Redwan, Elrashdy M; Xue, Bin; Almehdar, Hussein A; Uversky, Vladimir N

    2015-01-01

    This article opens a series of reviews on the abundance and roles of intrinsic disorder in milk proteins. The focus of this introductory article on caseins is symbolic, since caseins were among the first recognized functional unfolded proteins and since they are definitely the most disordered, the most abundant, and the most studied of all milk proteins. In eutherian milks, the casein family includes at least three and usually four major members (αs1-, αs2-, β-, and κ-caseins) that are unrelated in sequence. However, in some species, two different αS2-casein genes are active, and therefore the total number of caseins can be as high as five. These proteins have found a number of uses in food industry. The functional repertoire of caseins ranges from nutritional function to involvement in the improving and/or maintaining cardiovascular health, to crucial contribution to the milk capacity to transport calcium phosphate, to serve as molecular chaperones, and to protect the mother's mammary gland against amyloidoses and ectopic calcification. An intricate feature of caseins is their ability to assemble to colloidal protein particles, casein micelles, serving to sequester and transport amorphous calcium phosphate. These and many other functions of caseins are obviously dependent on their intrinsically disordered nature and are controlled by various posttranslational modifications. Since various aspects of casein structure and function are rather well studied and since several recent reviews emphasized the functional roles of caseins' intrinsic disorder, the major goal of this article is to show how intrinsic disorder is encoded in the amino acid sequences of these proteins.

  19. Ingestion of Casein in a Milk Matrix Modulates Dietary Protein Digestion and Absorption Kinetics but Does Not Modulate Postprandial Muscle Protein Synthesis in Older Men.

    PubMed

    Churchward-Venne, Tyler A; Snijders, Tim; Linkens, Armand M A; Hamer, Henrike M; van Kranenburg, Janneau; van Loon, Luc J C

    2015-07-01

    The slow digestion and amino acid absorption kinetics of isolated micellar casein have been held responsible for its relatively lower postprandial muscle protein synthetic response compared with rapidly digested proteins such as isolated whey. However, casein is normally consumed within a milk matrix. We hypothesized that protein digestion and absorption kinetics and the subsequent muscle protein synthetic response after micellar casein ingestion are modulated by the milk matrix. The aim of this study was to determine the impact of a milk matrix on casein protein digestion and absorption kinetics and postprandial muscle protein synthesis in older men. In a parallel-group design, 32 healthy older men (aged 71 ± 1 y) received a primed continuous infusion of L-[ring-(2)H5]-phenylalanine, L-[ring-3,5-(2)H2]-tyrosine, and L-[1-(13)C]-leucine, and ingested 25 g intrinsically L-[1-(13)C]-phenylalanine and L-[1-(13)C]-leucine labeled casein dissolved in bovine milk serum (Cas+Serum) or water (Cas). Plasma samples and muscle biopsies were collected in the postabsorptive state and for 300 min in the postprandial period to examine whole-body and skeletal muscle protein metabolism. Casein ingestion increased plasma leucine and phenylalanine concentrations and L-[1-(13)C]-phenylalanine enrichments, with a more rapid rise after Cas vs. Cas+Serum. Nonetheless, dietary protein-derived phenylalanine availability did not differ between Cas+Serum (47 ± 2%, mean ± SEM) and Cas (46 ± 3%) when assessed over the 300-min postprandial period (P = 0.80). The milk matrix did not modulate postprandial myofibrillar protein synthesis rates from 0 to 120 min (0.038 ± 0.005 vs. 0.031 ± 0.007%/h) or from 120 to 300 min (0.052 ± 0.004 vs. 0.067 ± 0.005%/h) after Cas+Serum vs. Cas. Similarly, no treatment differences in muscle protein-bound L-[1-(13)C]-phenylalanine enrichments were observed at 120 min (0.003 ± 0.001 vs. 0.002 ± 0.001) or 300 min (0.015 ± 0.002 vs. 0.016 ± 0.002 mole

  20. Influence of Bleaching on Flavor of 34% Whey Protein Concentrate and Residual Benzoic Acid Concentration in Dried Whey Proteins

    USDA-ARS?s Scientific Manuscript database

    Previous studies have shown that bleaching negatively affects the flavor of 70% whey protein concentrate (WPC70), but bleaching effects on lower-protein products have not been established. Benzoyl peroxide (BP), a whey bleaching agent, degrades to benzoic acid (BA) and may elevate BA concentrations...

  1. Astringency reduction in red wine by whey proteins.

    PubMed

    Jauregi, Paula; Olatujoye, Jumoke B; Cabezudo, Ignacio; Frazier, Richard A; Gordon, Michael H

    2016-05-15

    Whey is a by-product of cheese manufacturing and therefore investigating new applications of whey proteins will contribute towards the valorisation of whey and hence waste reduction. This study shows for the first time a detailed comparison of the effectiveness of gelatin and β-lactoglobulin (β-LG) as fining agents. Gelatin was more reactive than whey proteins to tannic acid as shown by both the astringency method (with ovalbumin as a precipitant) and the tannins determination method (with methylcellulose as a precipitant). The two proteins showed similar selectivity for polyphenols but β-LG did not remove as much catechin. The fining agent was removed completely or to a trace level after centrifugation followed by filtration which minimises its potential allergenicity. In addition, improved understanding of protein-tannin interactions was obtained by fluorescence, size measurement and isothermal titration calorimetry (ITC). Overall this study demonstrates that whey proteins have the potential of reducing astringency in red wine and can find a place in enology. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Effect of fat content and homogenization under conventional or ultra-high-pressure conditions on interactions between proteins in rennet curds.

    PubMed

    Zamora, A; Trujillo, A J; Armaforte, E; Waldron, D S; Kelly, A L

    2012-09-01

    The objective of this study was to investigate the influence of conventional and ultra-high-pressure homogenization on interactions between proteins within drained rennet curds. The effect of fat content of milk (0.0, 1.8, or 3.6%) and homogenization treatment on dissociation of proteins by different chemical agents was thus studied. Increasing the fat content of raw milk increased levels of unbound whey proteins and calcium-bonded caseins in curds; in contrast, hydrophobic interactions and hydrogen bonds were inhibited. Both homogenization treatments triggered the incorporation of unbound whey proteins in the curd, and of caseins through ionic bonds involving calcium salts. Conventional homogenization-pasteurization enhanced interactions between caseins through hydrogen bonds and hydrophobic interactions. In contrast, ultra-high-pressure homogenization impaired hydrogen bonding, led to the incorporation of both whey proteins and caseins through hydrophobic interactions and increased the amount of unbound caseins. Thus, both homogenization treatments provoked changes in the protein interactions within rennet curds; however, the nature of the changes depended on the homogenization conditions. Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  3. Functionality of extrusion--texturized whey proteins.

    PubMed

    Onwulata, C I; Konstance, R P; Cooke, P H; Farrell, H M

    2003-11-01

    Whey, a byproduct of the cheesemaking process, is concentrated by processors to make whey protein concentrates (WPC) and isolates (WPI). Only 50% of whey proteins are used in foods. In order to increase their usage, texturizing WPC, WPI, and whey albumin is proposed to create ingredients with new functionality. Extrusion processing texturizes globular proteins by shearing and stretching them into aligned or entangled fibrous bundles. In this study, WPC, WPI, and whey albumin were extruded in a twin screw extruder at approximately 38% moisture content (15.2 ml/min, feed rate 25 g/min) and, at different extrusion cook temperatures, at the same temperature for the last four zones before the die (35, 50, 75, and 100 degrees C, respectively). Protein solubility, gelation, foaming, and digestibility were determined in extrudates. Degree of extrusion-induced insolubility (denaturation) or texturization, determined by lack of solubility at pH 7 for WPI, increased from 30 to 60, 85, and 95% for the four temperature conditions 35, 50, 75, and 100 degrees C, respectively. Gel strength of extruded isolates increased initially 115% (35 degrees C) and 145% (50 degrees C), but gel strength was lost at 75 and 100 degrees C. Denaturation at these melt temperatures had minimal effect on foaming and digestibility. Varying extrusion cook temperature allowed a new controlled rate of denaturation, indicating that a texturized ingredient with a predetermined functionality based on degree of denaturation can be created.

  4. Developmental effects and health aspects of soy protein isolate, casein, and whey in male and female rats.

    PubMed

    Badger, T M; Ronis, M J; Hakkak, R

    2001-01-01

    Dietary factors other than the traditional nutrients are found in the so-called functional foods. They are becoming increasingly recognized as potentially important for maintaining good health. Soybeans are rich in such factors thought to help prevent certain chronic diseases. Soy protein isolate (SPI) is one of the three major proteins used in infant formulas sold in the United States, with casein (CAS) and whey (WPH) proteins being the others. We have been studying the health effects of these proteins. Safety concerns have developed over the consumption of soy-based infant formula, partly because of the high circulating levels of the total isoflavones (phytoestrogens) during "critical periods of infant development." There is a paucity of data on developmental, physiological, neurophysiological, behavioral, metabolic, or molecular effects of soy phytochemicals in humans, especially during pregnancy and infancy. We have studied the effects of CAS, SPI, and WPH in short-term, long-term, and multigenerational studies in rats. Aside from minor differences in body weight gain profiles, CAS-, SPI- or WPH-fed rats did not differ in development, organ weights, in vitro hepatic metabolism of testosterone (T), or reproductive performance. However, some endocrine-related functions differed between rats fed these proteins. We found that SPI accelerated puberty in female rats (p < .05) and WPH delayed puberty in males and females, as compared with CAS (p < .05). Gender differences were also found in gonadectomy-induced steroid responses. Male rats had normal serum T levels, but female rats fed SPI had reduced serum 17beta-estradiol concentrations and a blunted 17beta-estradiol response to ovariectomy, as compared to rats fed CAS or WHP (p < .05). Female rats fed SPI or WHP or treated with genistein had reduced incidence of chemically induced mammary cancers (p < .05) compared to CAS controls, with WHP reducing tumor incidence by as much as 50%, findings that replicate previous

  5. Improved muscle function and quality after diet intervention with leucine-enriched whey and antioxidants in antioxidant deficient aged mice

    PubMed Central

    van Dijk, Miriam; Dijk, Francina J.; Bunschoten, Annelies; van Dartel, Dorien A.M.; van Norren, Klaske; Walrand, Stephane; Jourdan, Marion; Verlaan, Sjors; Luiking, Yvette

    2016-01-01

    Antioxidant (AOX) deficiencies are commonly observed in older adults and oxidative stress has been suggested to contribute to sarcopenia. Here we investigate if 1) low levels of dietary antioxidants had a negative impact on parameters of muscle mass, function and quality, and 2) to study if nutritional interventions with AOX and/or leucine-enriched whey protein could improve these muscle parameters in aged mice. 18-months-old mice were fed a casein-based antioxidant-deficient (lowox) diet or a casein-based control-diet (CTRL) for 7 months. During the last 3 months, lowox-mice were subjected to either: a) continued lowox, b) supplementation with vitamin A/E, Selenium and Zinc (AOX), c) substitution of casein with leucine-enriched whey protein (PROT) or d) a combination of both AOX and PROT (TOTAL). After 7 months lowox-mice displayed lower muscle strength and more muscle fatigue compared to CTRL. Compared to lowox-mice, PROT-mice showed improved muscle power, grip strength and less muscle fatigue. AOX-mice showed improved oxidative status, less muscle fatigue, improved grip strength and mitochondrial dynamics compared to lowox-mice. The TOTAL-mice showed the combined effects of both interventions compared to lowox-mice. In conclusion, nutritional intervention with AOX and/or leucine-enriched whey protein can play a role in improving muscle health in a AOX-deficient mouse model. PMID:26943770

  6. Optimization of protein fractionation by skim milk microfiltration: Choice of ceramic membrane pore size and filtration temperature.

    PubMed

    Jørgensen, Camilla Elise; Abrahamsen, Roger K; Rukke, Elling-Olav; Johansen, Anne-Grethe; Schüller, Reidar B; Skeie, Siv B

    2016-08-01

    The objective of this study was to investigate how ceramic membrane pore size and filtration temperature influence the protein fractionation of skim milk by cross flow microfiltration (MF). Microfiltration was performed at a uniform transmembrane pressure with constant permeate flux to a volume concentration factor of 2.5. Three different membrane pore sizes, 0.05, 0.10, and 0.20µm, were used at a filtration temperature of 50°C. Furthermore, at pore size 0.10µm, 2 different filtration temperatures were investigated: 50 and 60°C. The transmission of proteins increased with increasing pore size, giving the permeate from MF with the 0.20-µm membrane a significantly higher concentration of native whey proteins compared with the permeates from the 0.05- and 0.10-µm membranes (0.50, 0.24, and 0.39%, respectively). Significant amounts of caseins permeated the 0.20-µm membrane (1.4%), giving a permeate with a whitish appearance and a casein distribution (αS2-CN: αS1-CN: κ-CN: β-CN) similar to that of skim milk. The 0.05- and 0.10-µm membranes were able to retain all caseins (only negligible amounts were detected). A permeate free from casein is beneficial in the production of native whey protein concentrates and in applications where transparency is an important functional characteristic. Microfiltration of skim milk at 50°C with the 0.10-µm membrane resulted in a permeate containing significantly more native whey proteins than the permeate from MF at 60°C. The more rapid increase in transmembrane pressure and the significantly lower concentration of caseins in the retentate at 60°C indicated that a higher concentration of caseins deposited on the membrane, and consequently reduced the native whey protein transmission. Optimal protein fractionation of skim milk into a casein-rich retentate and a permeate with native whey proteins were obtained by 0.10-µm MF at 50°C. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All

  7. Effect of high-pressure treatment at various temperatures on indigenous proteolytic enzymes and whey protein denaturation in bovine milk.

    PubMed

    Moatsou, Golfo; Bakopanos, Constantinos; Katharios, Dimitis; Katsaros, George; Kandarakis, Ioannis; Taoukis, Petros; Politis, Ioannis

    2008-08-01

    The objective of the present study was to determine the effect of high pressure (HP) processing (200, 450 and 650 MPa) at various temperatures (20, 40 and 55 degrees C) on the total plasmin plus plasminogen-derived activity (PL), plasminogen activator(s) (PA) and cathepsin D activities and on denaturation of major whey proteins in bovine milk. Data indicated that transfer of both PL and PA from the casein micelles to milk serum occurred at all pressures utilized at room temperature (20 degrees C). In addition to the transfer of PL and PA from micelles, there were reductions in activities of PL (16-18%) and PA (38-62%) for the pressures 450 and 650 MPa, at room temperature. There were synergistic negative effects between pressure and temperature on residual PL activity at 450 and 650 MPa and on residual PA activity only at 450 MPa. Cathepsin D activity in the acid whey from HP-treated milk was in general baroresistant at room temperature. The residual activity of cathepsin D decreased significantly at 650 MPa and 40 degrees C and at the pressures 450 and 650 MPa at 55 degrees C. Synergistic negative effects on the amount of native beta-lactoglobulin were observed at 450 and 650 MPa and on the amount of native alpha-lactalbumin at 650 MPa. There were significant correlations between enzymatic activities (PL, PA and cathepsin D) and the residual native beta-lactoglobulin and alpha-lactalbumin in bovine milk. In conclusion, HP significantly affected the activity of indigenous proteolytic enzymes and whey protein denaturation in bovine milk. Reduction in activity of indigenous enzymes (PL, PA and cathepsin D) and transfer of PL and PA from the casein to milk serum induced by HP is expected to have a profound effect on cheese yield, proteolysis during cheese ripening and quality of UHT milk during storage.

  8. Rapid quantification of casein in skim milk using Fourier transform infrared spectroscopy, enzymatic perturbation, and multiway partial least squares regression: Monitoring chymosin at work.

    PubMed

    Baum, A; Hansen, P W; Nørgaard, L; Sørensen, John; Mikkelsen, J D

    2016-08-01

    In this study, we introduce enzymatic perturbation combined with Fourier transform infrared (FTIR) spectroscopy as a concept for quantifying casein in subcritical heated skim milk using chemometric multiway analysis. Chymosin is a protease that cleaves specifically caseins. As a result of hydrolysis, all casein proteins clot to form a creamy precipitate, and whey proteins remain in the supernatant. We monitored the cheese-clotting reaction in real time using FTIR and analyzed the resulting evolution profiles to establish calibration models using parallel factor analysis and multiway partial least squares regression. Because we observed casein-specific kinetic changes, the retrieved models were independent of the chemical background matrix and were therefore robust against possible covariance effects. We tested the robustness of the models by spiking the milk solutions with whey, calcium, and cream. This method can be used at different stages in the dairy production chain to ensure the quality of the delivered milk. In particular, the cheese-making industry can benefit from such methods to optimize production control. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  9. [Antioxidant activity of cationic whey protein isolate].

    PubMed

    titova, M E; Komolov, S A; Tikhomirova, N A

    2012-01-01

    The process of lipid peroxidation (LPO) in biological membranes of cells is carried out by free radical mechanism, a feature of which is the interaction of radicals with other molecules. In this work we investigated the antioxidant activity of cationic whey protein isolate, obtained by the cation-exchange chromatography on KM-cellulose from raw cow's milk, in vitro and in vivo. In biological liquids, which are milk, blood serum, fetal fluids, contains a complex of biologically active substances with a unique multifunctional properties, and which are carrying out a protective, antimicrobial, regenerating, antioxidant, immunomodulatory, regulatory and others functions. Contents of the isolate were determined electrophoretically and by its biological activity. Cationic whey protein isolate included lactoperoxidase, lactoferrin, pancreatic RNase, lysozyme and angeogenin. The given isolate significantly has an antioxidant effect in model experimental systems in vitro and therefore may be considered as a factor that can adjust the intensity of lipid oxidation. In model solutions products of lipid oxidation were obtained by oxidation of phosphatidylcholine by hydrogen peroxide in the presence of a source of iron. The composition of the reaction mixture: 0,4 mM H2O2; 50 mcM of hemin; 2 mg/ml L-alpha-phosphatidylcholine from soybean (Sigma, German). Lipid peroxidation products were formed during the incubation of the reaction mixture for two hours at 37 degrees C. In our studies rats in the adaptation period immediately after isolation from the nest obtained from food given orally native cationic whey protein isolate at the concentration three times higher than in fresh cow's milk. On the manifestation of the antioxidant activity of cationic whey protein isolate in vivo evidence decrease of lipid peroxidation products concentration in the blood of rats from the experimental group receipt whey protein isolate in dos 0,6 mg/g for more than 20% (p<0,05) with oral feeding. Thus

  10. 9 CFR 319.700 - Margarine or oleomargarine. 1

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... liquid, condensed, or dry form of whey, reduced lactose whey, reduced minerals whey, or whey protein concentrate, non-lactose-containing whey components, casein, or caseinate; or other suitable edible protein...

  11. 9 CFR 319.700 - Margarine or oleomargarine. 1

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... liquid, condensed, or dry form of whey, reduced lactose whey, reduced minerals whey, or whey protein concentrate, non-lactose-containing whey components, casein, or caseinate; or other suitable edible protein...

  12. Crosslinking with transglutaminase does not change metabolic effects of sodium caseinate in model beverage in healthy young individuals.

    PubMed

    Juvonen, Kristiina R; Lille, Martina E; Laaksonen, David E; Mykkänen, Hannu M; Niskanen, Leo K; Herzig, Karl-Heinz; Poutanen, Kaisa S; Karhunen, Leila J

    2012-06-01

    Postprandial metabolic and appetitive responses of proteins are dependent on protein source and processing technique prior to ingestion. Studies on the postprandial effects of enzymatic crosslinking of milk proteins are sparse. Our aim was to study the effect of transglutaminase (TG)-induced crosslinking of sodium caseinate on postprandial metabolic and appetite responses. Whey protein was included as reference protein. Thirteen healthy individuals (23.3 ± 1.1 y, BMI 21.7 ± 0.4 kg/m2) participated in a single-blind crossover design experiment in which the subjects consumed three different isovolumic (500 g) pourable beverages containing either sodium caseinate (Cas, 29 g), TG-treated sodium caseinate (Cas-TG, 29 g) or whey protein (Wh, 30 g) in a randomized order. Blood samples were collected at baseline and for 4 h postprandially for the determination of plasma glucose, insulin and amino acid (AA) concentrations. Gastric emptying (GE) was measured using the 13 C-breath test method. Appetite was assessed using visual analogue scales. All examined postprandial responses were comparable with Cas and Cas-TG. The protein type used in the beverages was reflected as differences in plasma AA concentrations between Wh and Cas, but there were no differences in plasma glucose or insulin responses. A tendency for faster GE rate after Wh was detected. Appetite ratings or subsequent energy intake did not differ among the protein beverages. Our results indicate that the metabolic responses of enzymatically crosslinked and native sodium caseinate in a liquid matrix are comparable, suggesting similar digestion and absorption rates and first pass metabolism despite the structural modification of Cas-TG.

  13. Effect of homogenisation in formation of thermally induced aggregates in a non- and low- fat milk model system with microparticulated whey proteins.

    PubMed

    Torres, Isabel Celigueta; Nieto, Gema; Nylander, Tommy; Simonsen, Adam Cohen; Tolkach, Alexander; Ipsen, Richard

    2017-05-01

    The objective of the research presented in this paper was to investigate how different characteristics of whey protein microparticles (MWP) added to milk as fat replacers influence intermolecular interactions occurring with other milk proteins during homogenisation and heating. These interactions are responsible for the formation of heat-induced aggregates that influence the texture and sensory characteristics of the final product. The formation of heat-induced complexes was studied in non- and low-fat milk model systems, where microparticulated whey protein (MWP) was used as fat replacer. Five MWP types with different particle characteristics were utilised and three heat treatments used: 85 °C for 15 min, 90 °C for 5 min and 95 °C for 2 min. Surface characteristics of the protein aggregates were expressed as the number of available thiol groups and the surface net charge. Intermolecular interactions involved in the formation of protein aggregates were studied by polyacrylamide gel electrophoresis and the final complexes visualised by darkfield microscopy. Homogenisation of non-fat milk systems led to partial adsorption of caseins onto microparticles, independently of the type of microparticle. On the contrary, homogenisation of low-fat milk resulted in preferential adsorption of caseins onto fat globules, rather than onto microparticles. Further heating of the milk, led to the formation of heat induced complexes with different sizes and characteristics depending on the type of MWP and the presence or not of fat. The results highlight the importance of controlling homogenisation and heat processing in yoghurt manufacture in order to induce desired changes in the surface reactivity of the microparticles and thereby promote effective protein interactions.

  14. PRODUCTION OF FUNGAL MYCELIAL PROTEIN IN SUBMERGED CULTURE OF SOYBEAN WHEY.

    PubMed

    FALANGHE, H; SMITH, A K; RACKIS, J J

    1964-07-01

    Various soybean whey media were tested as substrate for seven species of fungi in submerged culture. Very little mycelial growth was obtained with Morchella hybrida, Collybia velutipes, Cantharellus cibarius, and Xylaria polymorpha. Agaricus campestris failed to grow. Tricholoma nudum and Boletus indecisus showed the greatest rate of growth and production of mycelial protein and the best utilization of soybean whey solids, with much shorter incubation times compared with those of the other species. T. nudum developed as spheres having diameters of about 5 to 8 mm, instead of the usual slurry or yeastlike form, in the presence of added ammonium acetate. B. indecisus always developed as spheres. Mycelial yields and production of protein by T. nudum greatly decreased with the addition of more than 1% glucose to soybean whey, whereas with B. indecisus the yield of protein almost doubled when up to 3% glucose was added. The effect of minerals on mycelial growth was determined. With soybean whey concentrated to 50%, the rate of mycelial growth of T. nudum was nearly doubled, but protein content of mycelia was greatly reduced. Mycelial growth and yield of protein of B. indecisus grown in concentrated whey were increased greatly. About 4 to 6 g of mycelial protein per liter can be obtained from fermentation in soybean whey, depending upon the medium used. Utilization of soybean whey by fungal fermentation may have economic value in whey disposal and in the production of products of high protein content.

  15. Production of Fungal Mycelial Protein in Submerged Culture of Soybean Whey

    PubMed Central

    Falanghe, Helcio; Smith, A. K.; Rackis, J. J.

    1964-01-01

    Various soybean whey media were tested as substrate for seven species of fungi in submerged culture. Very little mycelial growth was obtained with Morchella hybrida, Collybia velutipes, Cantharellus cibarius, and Xylaria polymorpha. Agaricus campestris failed to grow. Tricholoma nudum and Boletus indecisus showed the greatest rate of growth and production of mycelial protein and the best utilization of soybean whey solids, with much shorter incubation times compared with those of the other species. T. nudum developed as spheres having diameters of about 5 to 8 mm, instead of the usual slurry or yeastlike form, in the presence of added ammonium acetate. B. indecisus always developed as spheres. Mycelial yields and production of protein by T. nudum greatly decreased with the addition of more than 1% glucose to soybean whey, whereas with B. indecisus the yield of protein almost doubled when up to 3% glucose was added. The effect of minerals on mycelial growth was determined. With soybean whey concentrated to 50%, the rate of mycelial growth of T. nudum was nearly doubled, but protein content of mycelia was greatly reduced. Mycelial growth and yield of protein of B. indecisus grown in concentrated whey were increased greatly. About 4 to 6 g of mycelial protein per liter can be obtained from fermentation in soybean whey, depending upon the medium used. Utilization of soybean whey by fungal fermentation may have economic value in whey disposal and in the production of products of high protein content. PMID:14199023

  16. Mesoscale crystallization of calcium phosphate nanostructures in protein (casein) micelles

    NASA Astrophysics Data System (ADS)

    Thachepan, Surachai; Li, Mei; Mann, Stephen

    2010-11-01

    Aqueous micelles of the multi-protein calcium phosphate complex, casein, were treated at 60 °C and pH 7 over several months. Although partial dissociation of the micelles into 12 nm sized amorphous calcium phosphate (ACP)/protein nanoparticles occurred within a period of 14 days, crystallization of the ACP nanoclusters into bundles of hydroxyapatite (HAP) nanofilaments was not observed until after 12 weeks. The HAP nanofilaments were formed specifically within the partially disrupted protein micelles suggesting a micelle-mediated pathway of mesoscale crystallization. Similar experiments using ACP-containing synthetic micelles prepared from β-casein protein alone indicated that co-aligned bundles of HAP nanofilaments were produced within the protein micelle interior after 24 hours at temperatures as low as 35 °C. The presence of Mg2+ ions in the casein micelles, as well as a possible synergistic effect associated with the multi-protein nature of the native aggregates, could account for the marked inhibition in mesoscale crystallization observed in the casein micelles compared with the single-component β-casein constructs.Aqueous micelles of the multi-protein calcium phosphate complex, casein, were treated at 60 °C and pH 7 over several months. Although partial dissociation of the micelles into 12 nm sized amorphous calcium phosphate (ACP)/protein nanoparticles occurred within a period of 14 days, crystallization of the ACP nanoclusters into bundles of hydroxyapatite (HAP) nanofilaments was not observed until after 12 weeks. The HAP nanofilaments were formed specifically within the partially disrupted protein micelles suggesting a micelle-mediated pathway of mesoscale crystallization. Similar experiments using ACP-containing synthetic micelles prepared from β-casein protein alone indicated that co-aligned bundles of HAP nanofilaments were produced within the protein micelle interior after 24 hours at temperatures as low as 35 °C. The presence of Mg2+ ions in

  17. Cheese whey: A potential resource to transform into bioprotein, functional/nutritional proteins and bioactive peptides.

    PubMed

    Yadav, Jay Shankar Singh; Yan, Song; Pilli, Sridhar; Kumar, Lalit; Tyagi, R D; Surampalli, R Y

    2015-11-01

    The byproduct of cheese-producing industries, cheese whey, is considered as an environmental pollutant due to its high BOD and COD concentrations. The high organic load of whey arises from the presence of residual milk nutrients. As demand for milk-derived products is increasing, it leads to increased production of whey, which poses a serious management problem. To overcome this problem, various technological approaches have been employed to convert whey into value-added products. These technological advancements have enhanced whey utilization and about 50% of the total produced whey is now transformed into value-added products such as whey powder, whey protein, whey permeate, bioethanol, biopolymers, hydrogen, methane, electricity bioprotein (single cell protein) and probiotics. Among various value-added products, the transformation of whey into proteinaceous products is attractive and demanding. The main important factor which is attractive for transformation of whey into proteinaceous products is the generally recognized as safe (GRAS) regulatory status of whey. Whey and whey permeate are biotransformed into proteinaceous feed and food-grade bioprotein/single cell protein through fermentation. On the other hand, whey can be directly processed to obtain whey protein concentrate, whey protein isolate, and individual whey proteins. Further, whey proteins are also transformed into bioactive peptides via enzymatic or fermentation processes. The proteinaceous products have applications as functional, nutritional and therapeutic commodities. Whey characteristics, and its transformation processes for proteinaceous products such as bioproteins, functional/nutritional protein and bioactive peptides are covered in this review. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Behavior of whey protein concentrates under extreme storage conditions

    USDA-ARS?s Scientific Manuscript database

    The overseas demand for whey protein concentrates (WPC) has increased steadily in recent years. Emergency aid foods often include WPC, but shelf-life studies of whey proteins under different shipment and storage conditions have not been conducted in the last 50 yr. Microbial quality, compound form...

  19. Consumption of Milk Protein or Whey Protein Results in a Similar Increase in Muscle Protein Synthesis in Middle Aged Men

    PubMed Central

    Mitchell, Cameron J.; McGregor, Robin A.; D’Souza, Randall F.; Thorstensen, Eric B.; Markworth, James F.; Fanning, Aaron C.; Poppitt, Sally D.; Cameron-Smith, David

    2015-01-01

    The differential ability of various milk protein fractions to stimulate muscle protein synthesis (MPS) has been previously described, with whey protein generally considered to be superior to other fractions. However, the relative ability of a whole milk protein to stimulate MPS has not been compared to whey. Sixteen healthy middle-aged males ingested either 20 g of milk protein (n = 8) or whey protein (n = 8) while undergoing a primed constant infusion of ring 13C6 phenylalanine. Muscle biopsies were obtained 120 min prior to consumption of the protein and 90 and 210 min afterwards. Resting myofibrillar fractional synthetic rates (FSR) were 0.019% ± 0.009% and 0.021% ± 0.018% h−1 in the milk and whey groups respectively. For the first 90 min after protein ingestion the FSR increased (p < 0.001) to 0.057% ± 0.018% and 0.052% ± 0.024% h−1 in the milk and whey groups respectively with no difference between groups (p = 0.810). FSR returned to baseline in both groups between 90 and 210 min after protein ingestion. Despite evidence of increased rate of digestion and leucine availability following the ingestion of whey protein, there was similar activation of MPS in middle-aged men with either 20 g of milk protein or whey protein. PMID:26506377

  20. Crosslinking with transglutaminase does not change metabolic effects of sodium caseinate in model beverage in healthy young individuals

    PubMed Central

    2012-01-01

    Background Postprandial metabolic and appetitive responses of proteins are dependent on protein source and processing technique prior to ingestion. Studies on the postprandial effects of enzymatic crosslinking of milk proteins are sparse. Our aim was to study the effect of transglutaminase (TG)-induced crosslinking of sodium caseinate on postprandial metabolic and appetite responses. Whey protein was included as reference protein. Methods Thirteen healthy individuals (23.3 ± 1.1 y, BMI 21.7 ± 0.4 kg/m2) participated in a single-blind crossover design experiment in which the subjects consumed three different isovolumic (500 g) pourable beverages containing either sodium caseinate (Cas, 29 g), TG-treated sodium caseinate (Cas-TG, 29 g) or whey protein (Wh, 30 g) in a randomized order. Blood samples were collected at baseline and for 4 h postprandially for the determination of plasma glucose, insulin and amino acid (AA) concentrations. Gastric emptying (GE) was measured using the 13 C-breath test method. Appetite was assessed using visual analogue scales. Results All examined postprandial responses were comparable with Cas and Cas-TG. The protein type used in the beverages was reflected as differences in plasma AA concentrations between Wh and Cas, but there were no differences in plasma glucose or insulin responses. A tendency for faster GE rate after Wh was detected. Appetite ratings or subsequent energy intake did not differ among the protein beverages. Conclusions Our results indicate that the metabolic responses of enzymatically crosslinked and native sodium caseinate in a liquid matrix are comparable, suggesting similar digestion and absorption rates and first pass metabolism despite the structural modification of Cas-TG. PMID:22657838

  1. NUTRALYS® pea protein: characterization of in vitro gastric digestion and in vivo gastrointestinal peptide responses relevant to satiety

    PubMed Central

    Overduin, Joost; Guérin-Deremaux, Laetitia; Wils, Daniel; Lambers, Tim T.

    2015-01-01

    Background Pea protein (from Pisum sativum) is under consideration as a sustainable, satiety-inducing food ingredient. Objective In the current study, pea-protein-induced physiological signals relevant to satiety were characterized in vitro via gastric digestion kinetics and in vivo by monitoring post-meal gastrointestinal hormonal responses in rats. Design Under in vitro simulated gastric conditions, the digestion of NUTRALYS® pea protein was compared to that of two dairy proteins, slow-digestible casein and fast-digestible whey. In vivo, blood glucose and gastrointestinal hormonal (insulin, ghrelin, cholecystokinin [CCK], glucagon-like peptide 1 [GLP-1], and peptide YY [PYY]) responses were monitored in nine male Wistar rats following isocaloric (11 kcal) meals containing 35 energy% of either NUTRALYS® pea protein, whey protein, or carbohydrate (non-protein). Results In vitro, pea protein transiently aggregated into particles, whereas casein formed a more enduring protein network and whey protein remained dissolved. Pea-protein particle size ranged from 50 to 500 µm, well below the 2 mm threshold for gastric retention in humans. In vivo, pea-protein and whey-protein meals induced comparable responses for CCK, GLP-1, and PYY, that is, the anorexigenic hormones. Pea protein induced weaker initial, but equal 3-h integrated ghrelin and insulin responses than whey protein, possibly due to the slower gastric breakdown of pea protein observed in vitro. Two hours after meals, CCK levels were more elevated in the case of protein meals compared to that of non-protein meals. Conclusions These results indicate that 1) pea protein transiently aggregates in the stomach and has an intermediately fast intestinal bioavailability in between that of whey and casein; 2) pea-protein- and dairy-protein-containing meals were comparably efficacious in triggering gastrointestinal satiety signals. PMID:25882536

  2. Effects of whey protein supplements on metabolism: evidence from human intervention studies.

    PubMed

    Graf, Sonja; Egert, Sarah; Heer, Martina

    2011-11-01

    Epidemiological studies indicate that the consumption of milk and dairy products is inversely associated with a lower risk of metabolic disorders and cardiovascular diseases. In particular, whey protein seems to induce these effects because of bioactive compounds such as lactoferrin, immunoglobulins, glutamine and lactalbumin. In addition, it is an excellent source of branch chained amino acids. This review summarizes recent findings on the effects of whey protein on metabolic disorders and the musculoskeletal system. We identified 25 recently published intervention trials examining chronic and/or acute effects of whey protein supplementation on lipid and glucose metabolism, blood pressure, vascular function and on the musculoskeletal system. Whey protein appears to have a blood glucose and/or insulin lowering effect partly mediated by incretins. In addition, whey protein may increase muscle protein synthesis. In contrast there are no clear-cut effects shown on blood lipids and lipoproteins, blood pressure and vascular function. For bone metabolism the data are scarce. In summary, whey protein may affect glucose metabolism and muscle protein synthesis. However, the evidence for a clinical efficacy is not strong enough to make final recommendations with respect to a specific dose and the duration of supplementation.

  3. Mesoscale crystallization of calcium phosphate nanostructures in protein (casein) micelles.

    PubMed

    Thachepan, Surachai; Li, Mei; Mann, Stephen

    2010-11-01

    Aqueous micelles of the multi-protein calcium phosphate complex, casein, were treated at 60°C and pH 7 over several months. Although partial dissociation of the micelles into 12 nm sized amorphous calcium phosphate (ACP)/protein nanoparticles occurred within a period of 14 days, crystallization of the ACP nanoclusters into bundles of hydroxyapatite (HAP) nanofilaments was not observed until after 12 weeks. The HAP nanofilaments were formed specifically within the partially disrupted protein micelles suggesting a micelle-mediated pathway of mesoscale crystallization. Similar experiments using ACP-containing synthetic micelles prepared from ß-casein protein alone indicated that co-aligned bundles of HAP nanofilaments were produced within the protein micelle interior after 24 hours at temperatures as low as 35°C. The presence of Mg²(+) ions in the casein micelles, as well as a possible synergistic effect associated with the multi-protein nature of the native aggregates, could account for the marked inhibition in mesoscale crystallization observed in the casein micelles compared with the single-component b-casein constructs.

  4. Whey protein: The “whey” forward for treatment of type 2 diabetes?

    PubMed Central

    Mignone, Linda E; Wu, Tongzhi; Horowitz, Michael; Rayner, Christopher K

    2015-01-01

    A cost-effective nutritional approach to improve postprandial glycaemia is attractive considering the rising burden of diabetes throughout the world. Whey protein, a by-product of the cheese-making process, can be used to manipulate gut function in order to slow gastric emptying and stimulate incretin hormone secretion, thereby attenuating postprandial glycaemic excursions. The function of the gastrointestinal tract plays a pivotal role in glucose homeostasis, particularly during the postprandial period, and this review will discuss the mechanisms by which whey protein slows gastric emptying and stimulates release of gut peptides, including the incretins. Whey protein is also a rich source of amino acids, and these can directly stimulate beta cells to secrete insulin, which contributes to the reduction in postprandial glycaemia. Appetite is suppressed with consumption of whey, due to its effects on the gut-brain axis and the hypothalamus. These properties of whey protein suggest its potential in the management of type 2 diabetes. However, the optimal dose and timing of whey protein ingestion are yet to be defined, and studies are required to examine the long-term benefits of whey consumption for overall glycaemic control. PMID:26516411

  5. Synergistic enhancement in the co-gelation of salt-soluble pea proteins and whey proteins.

    PubMed

    Wong, Douglas; Vasanthan, Thava; Ozimek, Lech

    2013-12-15

    This paper investigated the enhancement of thermal gelation properties when salt-soluble pea proteins were co-gelated with whey proteins in NaCl solutions, using different blend ratios, total protein concentrations, pH, and salt concentrations. Results showed that the thermal co-gelation of pea/whey proteins blended in ratio of 2:8 in NaCl solutions showed synergistic enhancement in storage modulus, gel hardness, paste viscosity and minimum gelation concentrations. The highest synergistic enhancement was observed at pH 6.0 as compared with pH 4.0 and 8.0, and at the lower total protein concentration of 10% as compared with 16% and 22% (w/v), as well as in lower NaCl concentrations of 0.5% and 1.0% as compared with 1.5%, 2.0%, 2.5%, and 3.0% (w/v). The least gelation concentrations were also lower in the different pea/whey protein blend ratios than in pure pea or whey proteins, when dissolved in 1.0% or 2.5% (w/v) NaCl aqueous solutions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Viscoelastic behavior and microstructure of protein solutions

    USDA-ARS?s Scientific Manuscript database

    Twenty percent solutions of calcium caseinate (CC), egg albumin (EA), fish protein isolate (FPI), soy protein isolate (SPI), wheat gluten (WG), and whey protein isolate (WPI) were examined during heating by small amplitude oscillatory shear measurements, which provided an indication of protein behav...

  7. Invited review: Whey proteins as antioxidants and promoters of cellular antioxidant pathways.

    PubMed

    Corrochano, Alberto R; Buckin, Vitaly; Kelly, Phil M; Giblin, Linda

    2018-06-01

    Oxidative stress contributes to cell injury and aggravates several chronic diseases. Dietary antioxidants help the body to fight against free radicals and, therefore, avoid or reduce oxidative stress. Recently, proteins from milk whey liquid have been described as antioxidants. This review summarizes the evidence that whey products exhibit radical scavenging activity and reducing power. It examines the processing and treatment attempts to increase the antioxidant bioactivity and identifies 1 enzyme, subtilisin, which consistently produces the most potent whey fractions. The review compares whey from different milk sources and puts whey proteins in the context of other known food antioxidants. However, for efficacy, the antioxidant activity of whey proteins must not only survive processing, but also upper gut transit and arrival in the bloodstream, if whey products are to promote antioxidant levels in target organs. Studies reveal that direct cell exposure to whey samples increases intracellular antioxidants such as glutathione. However, the physiological relevance of these in vitro assays is questionable, and evidence is conflicting from dietary intervention trials, with both rats and humans, that whey products can boost cellular antioxidant biomarkers. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  8. The association of low-molecular-weight hydrophobic compounds with native casein micelles in bovine milk

    PubMed Central

    Cheema, M.; Mohan, M. S.; Campagna, S. R.; Jurat-Fuentes, J. L.; Harte, F. M.

    2015-01-01

    The agreed biological function of the casein micelles in milk is to carry minerals (calcium, magnesium, and phosphorus) from mother to young along with amino acids for growth and development. Recently, native and modified casein micelles were used as encapsulating and delivery agents for various hydrophobic low-molecular-weight probes. The ability of modified casein micelles to bind certain probes may derive from the binding affinity of native casein micelles. Hence, a study with milk from single cows was conducted to further elucidate the association of hydrophobic molecules into native casein micelles and further understand their biological function. Hydrophobic and hydrophilic extraction followed by ultraperformance liquid chromatography-high resolution mass spectrometry analysis were performed over protein fractions obtained from size exclusion fractionation of raw skim milk. Hydrophobic compounds, including phosphatidylcholine, lyso-phosphatidylcholine, phosphatidylethanolamine, and sphingomyelin, showed strong association exclusively to casein micelles as compared with whey proteins, whereas hydrophilic compounds did not display any preference for their association among milk proteins. Further analysis using liquid chromatography-tandem mass spectrometry detected 42 compounds associated solely with the casein-micelles fraction. Mass fragments in tandem mass spectrometry identified 4 of these compounds as phosphatidylcholine with fatty acid composition of 16:0/18:1, 14:0/16:0, 16:0/16:0, and 18:1/18:0. These results support that transporting low-molecular-weight hydrophobic molecules is also a biological function of the casein micelles in milk. PMID:26074238

  9. Acne located on the trunk, whey protein supplementation: Is there any association?

    PubMed Central

    Cengiz, Fatma Pelin; Cevirgen Cemil, Bengu; Emiroglu, Nazan; Gulsel Bahali, Anil; Onsun, Nahide

    2017-01-01

    Whey protein is a source of protein that was isolated from milk. Whey proteins are composed of higher levels of essential amino acids. The role of diet in acne etiology has been investigated for several years. It was established that milk and milk products can trigger acneiform lesions, and recent evidence supports the role of whey protein supplements in acne. Herein, we report 6 healthy male adolescent patients developing acne located only to the trunk after the consumption of whey protein supplements for faster bodybuilding. This is the first observation which specified the location of acneiform lesions among bodybuilders. In our opinion, a trendy and common health problem is beginning among adolescents in the gyms. PMID:28326292

  10. Acne located on the trunk, whey protein supplementation: Is there any association?

    PubMed

    Cengiz, Fatma Pelin; Cevirgen Cemil, Bengu; Emiroglu, Nazan; Gulsel Bahali, Anil; Onsun, Nahide

    2017-01-01

    Whey protein is a source of protein that was isolated from milk. Whey proteins are composed of higher levels of essential amino acids. The role of diet in acne etiology has been investigated for several years. It was established that milk and milk products can trigger acneiform lesions, and recent evidence supports the role of whey protein supplements in acne. Herein, we report 6 healthy male adolescent patients developing acne located only to the trunk after the consumption of whey protein supplements for faster bodybuilding. This is the first observation which specified the location of acneiform lesions among bodybuilders. In our opinion, a trendy and common health problem is beginning among adolescents in the gyms.

  11. Pilot-scale fractionation of whey proteins with supercritical CO2

    USDA-ARS?s Scientific Manuscript database

    A new pilot-scale process is being developed and optimized for the separation of whey proteins into two enriched, highly functional fractions that are free of contaminants. The fractionation of whey protein isolate (WPI), which contains approximately 32% alpha-lactalbumin (alpha-LA) and 61% beta-lac...

  12. Flow behavior of mixed-protein incipient gels

    USDA-ARS?s Scientific Manuscript database

    Strong protein gel networks may result from synergistic interactions with other proteins or food materials above that achievable with a single protein alone. We determined varying flow and viscoelastic behavior of calcium caseinate (CC) or whey protein isolate (WPI) mixed with egg albumin (EA), fish...

  13. Role of protein concentration and protein-saliva interactions in the astringency of whey proteins at low pH.

    PubMed

    Kelly, M; Vardhanabhuti, B; Luck, P; Drake, M A; Osborne, J; Foegeding, E A

    2010-05-01

    Whey protein beverages are adjusted to pH <4.5 to enhance clarity and stability, but this pH level is also associated with increased astringency. The goal of this investigation was to determine the effects of protein concentration on astringency and interactions between whey and salivary proteins. Whey protein beverages containing 0.25 to 13% (wt/wt) beta-lactoglobulin and 0.017% (wt/wt) sucralose at pH 2.6 to 4.2 were examined using descriptive sensory analysis. Controls were similar pH phosphate buffers at phosphate concentrations equivalent to the amount of phosphoric acid required to adjust the pH of the protein solution. Changes in astringency with protein concentration depended on pH. At pH 3.5, astringency significantly increased with protein concentration from 0.25 to 4% (wt/wt) and then remained constant from 4 to 13% (wt/wt). Conversely, at pH 2.6, astringency decreased with an increase in protein concentration [0.5-10% (wt/wt)]. This suggests a complex relationship that includes pH and buffering capacity of the beverages. Furthermore, saliva flow rates increased with increasing protein concentrations, showing that the physiological conditions in the mouth change with protein concentration. Maximum turbidity of whey protein-saliva mixtures was observed between pH 4.6 and 5.2. Both sensory evaluation and in vitro study of interactions between beta-LG and saliva indicate that astringency of whey proteins is a complex process determined by the extent of aggregation occurring in the mouth, which depends on the whey protein beverage pH and buffering capacity in addition to saliva flow rate. Copyright 2010 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  14. Influence of bleaching on flavor of 34% whey protein concentrate and residual benzoic acid concentration in dried whey products

    USDA-ARS?s Scientific Manuscript database

    Previous studies have shown that bleaching negatively affects the flavor of 70% whey protein concentrate (WPC70), but bleaching effects on lower-protein products have not been established. Benzoyl peroxide (BP), a whey bleaching agent, degrades to benzoic acid (BA) and may elevate BA concentrations...

  15. Authentication of Whey Protein Powders by Portable Mid-Infrared Spectrometers Combined with Pattern Recognition Analysis.

    PubMed

    Wang, Ting; Tan, Siow Ying; Mutilangi, William; Aykas, Didem P; Rodriguez-Saona, Luis E

    2015-10-01

    The objective of this study was to develop a simple and rapid method to differentiate whey protein types (WPC, WPI, and WPH) used for beverage manufacturing by combining the spectral signature collected from portable mid-infrared spectrometers and pattern recognition analysis. Whey protein powders from different suppliers are produced using a large number of processing and compositional variables, resulting in variation in composition, concentration, protein structure, and thus functionality. Whey protein powders including whey protein isolates, whey protein concentrates and whey protein hydrolysates were obtained from different suppliers and their spectra collected using portable mid-infrared spectrometers (single and triple reflection) by pressing the powder onto an Attenuated Total Reflectance (ATR) diamond crystal with a pressure clamp. Spectra were analyzed by soft independent modeling of class analogy (SIMCA) generating a classification model showing the ability to differentiate whey protein types by forming tight clusters with interclass distance values of >3, considered to be significantly different from each other. The major bands centered at 1640 and 1580 cm(-1) were responsible for separation and were associated with differences in amide I and amide II vibrations of proteins, respectively. Another important band in whey protein clustering was associated with carboxylate vibrations of acidic amino acids (∼1570 cm(-1)). The use of a portable mid-IR spectrometer combined with pattern recognition analysis showed potential for discriminating whey protein ingredients that can help to streamline the analytical procedure so that it is more applicable for field-based screening of ingredients. A rapid, simple and accurate method was developed to authenticate commercial whey protein products by using portable mid-infrared spectrometers combined with chemometrics, which could help ensure the functionality of whey protein ingredients in food applications. © 2015

  16. Emerging trends in nutraceutical applications of whey protein and its derivatives.

    PubMed

    Patel, Seema

    2015-11-01

    The looming food insecurity demands the utilization of nutrient-rich residues from food industries as value-added products. Whey, a dairy industry waste has been characterized to be excellent nourishment with an array of bioactive components. Whey protein comprises 20 % of total milk protein and it is rich in branched and essential amino acids, functional peptides, antioxidants and immunoglobulins. It confers benefits against a wide range of metabolic diseases such as cardiovascular complications, hypertension, obesity, diabetes, cancer and phenylketonuria. The protein has been validated to boost recovery from resistance exercise-injuries, stimulate gut physiology and protect skin against detrimental radiations. Apart from health invigoration, whey protein has proved its suitability as fat replacer and emulsifier. Further, its edible and antimicrobial packaging potential renders its highly desirable in food as well as pharmaceutical sectors. Considering the enormous nutraceutical worth of whey protein, this review emphasizes on its established and emerging biological roles. Present and future scopes in food processing and dietary supplement formulation are discussed. Associated hurdles are identified and how technical advancement might augment its applications are explored. This review is expected to provide valuable insight on whey protein-fortified functional foods, associated technical hurdles and scopes of improvement.

  17. The association of low-molecular-weight hydrophobic compounds with native casein micelles in bovine milk.

    PubMed

    Cheema, M; Mohan, M S; Campagna, S R; Jurat-Fuentes, J L; Harte, F M

    2015-08-01

    The agreed biological function of the casein micelles in milk is to carry minerals (calcium, magnesium, and phosphorus) from mother to young along with amino acids for growth and development. Recently, native and modified casein micelles were used as encapsulating and delivery agents for various hydrophobic low-molecular-weight probes. The ability of modified casein micelles to bind certain probes may derive from the binding affinity of native casein micelles. Hence, a study with milk from single cows was conducted to further elucidate the association of hydrophobic molecules into native casein micelles and further understand their biological function. Hydrophobic and hydrophilic extraction followed by ultraperformance liquid chromatography-high resolution mass spectrometry analysis were performed over protein fractions obtained from size exclusion fractionation of raw skim milk. Hydrophobic compounds, including phosphatidylcholine, lyso-phosphatidylcholine, phosphatidylethanolamine, and sphingomyelin, showed strong association exclusively to casein micelles as compared with whey proteins, whereas hydrophilic compounds did not display any preference for their association among milk proteins. Further analysis using liquid chromatography-tandem mass spectrometry detected 42 compounds associated solely with the casein-micelles fraction. Mass fragments in tandem mass spectrometry identified 4 of these compounds as phosphatidylcholine with fatty acid composition of 16:0/18:1, 14:0/16:0, 16:0/16:0, and 18:1/18:0. These results support that transporting low-molecular-weight hydrophobic molecules is also a biological function of the casein micelles in milk. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  18. Impact of Lipid and Protein Co-oxidation on Digestibility of Dairy Proteins in Oil-in-Water (O/W) Emulsions.

    PubMed

    Obando, Mónica; Papastergiadis, Antonios; Li, Shanshan; De Meulenaer, Bruno

    2015-11-11

    Enrichment of polyunsaturated fatty acids (PUFAs) is a growing trend in the food industry. However, PUFAs are known to be susceptible to lipid oxidation. It has been shown that oxidizing lipids react with proteins present in the food and that as a result polymeric protein complexes are produced. Therefore, the aim of this work was to investigate the impact of lipid and protein co-oxidation on protein digestibility. Casein and whey protein (6 mg/mL) based emulsions with 1% oil with different levels of PUFAs were subjected to respectively autoxidation and photo-oxidation. Upon autoxidation at 70 °C, protein digestibility of whey protein based emulsions containing fish oil decreased to 47.7 ± 0.8% after 48 h, whereas in the controls without oil 67.8 ± 0.7% was observed. Upon photo-oxidation at 4 °C during 30 days, mainly casein-based emulsions containing fish oil were affected: the digestibility amounted to 43.9 ± 1.2%, whereas in the control casein solutions without oil, 72.6 ± 0.2% of the proteins were digestible. Emulsions containing oils with high PUFA levels were more prone to lipid oxidation and thus upon progressive oxidation showed a higher impact on protein digestibility.

  19. Interaction of milk whey protein with common phenolic acids

    NASA Astrophysics Data System (ADS)

    Zhang, Hao; Yu, Dandan; Sun, Jing; Guo, Huiyuan; Ding, Qingbo; Liu, Ruihai; Ren, Fazheng

    2014-01-01

    Phenolics-rich foods such as fruit juices and coffee are often consumed with milk. In this study, the interactions of α-lactalbumin and β-lactoglobulin with the phenolic acids (chlorogenic acid, caffeic acid, ferulic acid, and coumalic acid) were examined. Fluorescence, CD, and FTIR spectroscopies were used to analyze the binding modes, binding constants, and the effects of complexation on the conformation of whey protein. The results showed that binding constants of each whey protein-phenolic acid interaction ranged from 4 × 105 to 7 × 106 M-n and the number of binding sites n ranged from 1.28 ± 0.13 to 1.54 ± 0.34. Because of these interactions, the conformation of whey protein was altered, with a significant reduction in the amount of α-helix and an increase in the amounts of β-sheet and turn structures.

  20. Soy-Dairy Protein Blend or Whey Protein Isolate Ingestion Induces Similar Postexercise Muscle Mechanistic Target of Rapamycin Complex 1 Signaling and Protein Synthesis Responses in Older Men.

    PubMed

    Borack, Michael S; Reidy, Paul T; Husaini, Syed H; Markofski, Melissa M; Deer, Rachel R; Richison, Abigail B; Lambert, Bradley S; Cope, Mark B; Mukherjea, Ratna; Jennings, Kristofer; Volpi, Elena; Rasmussen, Blake B

    2016-12-01

    Previous work demonstrated that a soy-dairy protein blend (PB) prolongs hyperaminoacidemia and muscle protein synthesis in young adults after resistance exercise. We investigated the effect of PB in older adults. We hypothesized that PB would prolong hyperaminoacidemia, enhancing mechanistic target of rapamycin complex 1 (mTORC1) signaling and muscle protein anabolism compared with a whey protein isolate (WPI). This double-blind, randomized controlled trial studied men 55-75 y of age. Subjects consumed 30 g protein from WPI or PB (25% soy, 25% whey, and 50% casein) 1 h after leg extension exercise (8 sets of 10 repetitions at 70% one-repetition maximum). Blood and muscle amino acid concentrations and basal and postexercise muscle protein turnover were measured by using stable isotopic methods. Muscle mTORC1 signaling was assessed by immunoblotting. Both groups increased amino acid concentrations (P < 0.05) and mTORC1 signaling after protein ingestion (P < 0.05). Postexercise fractional synthesis rate (FSR; P ≥ 0.05), fractional breakdown rate (FBR; P ≥ 0.05), and net balance (P = 0.08) did not differ between groups. WPI increased FSR by 67% (mean ± SEM: rest: 0.05% ± 0.01%; postexercise: 0.09% ± 0.01%; P < 0.05), decreased FBR by 46% (rest: 0.17% ± 0.01%; postexercise: 0.09% ± 0.03%; P < 0.05), and made net balance less negative (P < 0.05). PB ingestion did not increase FSR (rest: 0.07% ± 0.03%; postexercise: 0.09% ± 0.01%; P ≥ 0.05), tended to decrease FBR by 42% (rest: 0.25% ± 0.08%; postexercise: 0.15% ± 0.08%; P = 0.08), and made net balance less negative (P < 0.05). Within-group percentage of change differences were not different between groups for FSR, FBR, or net balance (P ≥ 0.05). WPI and PB ingestion after exercise in older men induced similar responses in hyperaminoacidemia, mTORC1 signaling, muscle protein synthesis, and breakdown. These data add new evidence for the use of whey or soy-dairy PBs as targeted nutritional interventions to

  1. Improved Functional Characteristics of Whey Protein Hydrolysates in Food Industry

    PubMed Central

    Jeewanthi, Renda Kankanamge Chaturika; Lee, Na-Kyoung; Paik, Hyun-Dong

    2015-01-01

    This review focuses on the enhanced functional characteristics of enzymatic hydrolysates of whey proteins (WPHs) in food applications compared to intact whey proteins (WPs). WPs are applied in foods as whey protein concentrates (WPCs), whey protein isolates (WPIs), and WPHs. WPs are byproducts of cheese production, used in a wide range of food applications due to their nutritional validity, functional activities, and cost effectiveness. Enzymatic hydrolysis yields improved functional and nutritional benefits in contrast to heat denaturation or native applications. WPHs improve solubility over a wide range of pH, create viscosity through water binding, and promote cohesion, adhesion, and elasticity. WPHs form stronger but more flexible edible films than WPC or WPI. WPHs enhance emulsification, bind fat, and facilitate whipping, compared to intact WPs. Extensive hydrolyzed WPHs with proper heat applications are the best emulsifiers and addition of polysaccharides improves the emulsification ability of WPHs. Also, WPHs improve the sensorial properties like color, flavor, and texture but impart a bitter taste in case where extensive hydrolysis (degree of hydrolysis greater than 8%). It is important to consider the type of enzyme, hydrolysis conditions, and WPHs production method based on the nature of food application. PMID:26761849

  2. Improved Functional Characteristics of Whey Protein Hydrolysates in Food Industry.

    PubMed

    Jeewanthi, Renda Kankanamge Chaturika; Lee, Na-Kyoung; Paik, Hyun-Dong

    2015-01-01

    This review focuses on the enhanced functional characteristics of enzymatic hydrolysates of whey proteins (WPHs) in food applications compared to intact whey proteins (WPs). WPs are applied in foods as whey protein concentrates (WPCs), whey protein isolates (WPIs), and WPHs. WPs are byproducts of cheese production, used in a wide range of food applications due to their nutritional validity, functional activities, and cost effectiveness. Enzymatic hydrolysis yields improved functional and nutritional benefits in contrast to heat denaturation or native applications. WPHs improve solubility over a wide range of pH, create viscosity through water binding, and promote cohesion, adhesion, and elasticity. WPHs form stronger but more flexible edible films than WPC or WPI. WPHs enhance emulsification, bind fat, and facilitate whipping, compared to intact WPs. Extensive hydrolyzed WPHs with proper heat applications are the best emulsifiers and addition of polysaccharides improves the emulsification ability of WPHs. Also, WPHs improve the sensorial properties like color, flavor, and texture but impart a bitter taste in case where extensive hydrolysis (degree of hydrolysis greater than 8%). It is important to consider the type of enzyme, hydrolysis conditions, and WPHs production method based on the nature of food application.

  3. Ingestion of Wheat Protein Increases In Vivo Muscle Protein Synthesis Rates in Healthy Older Men in a Randomized Trial.

    PubMed

    Gorissen, Stefan Hm; Horstman, Astrid Mh; Franssen, Rinske; Crombag, Julie Jr; Langer, Henning; Bierau, Jörgen; Respondek, Frederique; van Loon, Luc Jc

    2016-09-01

    Muscle mass maintenance is largely regulated by basal muscle protein synthesis and the capacity to stimulate muscle protein synthesis after food intake. The postprandial muscle protein synthetic response is modulated by the amount, source, and type of protein consumed. It has been suggested that plant-based proteins are less potent in stimulating postprandial muscle protein synthesis than animal-derived proteins. However, few data support this contention. We aimed to assess postprandial plasma amino acid concentrations and muscle protein synthesis rates after the ingestion of a substantial 35-g bolus of wheat protein hydrolysate compared with casein and whey protein. Sixty healthy older men [mean ± SEM age: 71 ± 1 y; body mass index (in kg/m(2)): 25.3 ± 0.3] received a primed continuous infusion of l-[ring-(13)C6]-phenylalanine and ingested 35 g wheat protein (n = 12), 35 g wheat protein hydrolysate (WPH-35; n = 12), 35 g micellar casein (MCas-35; n = 12), 35 g whey protein (Whey-35; n = 12), or 60 g wheat protein hydrolysate (WPH-60; n = 12). Plasma and muscle samples were collected at regular intervals. The postprandial increase in plasma essential amino acid concentrations was greater after ingesting Whey-35 (2.23 ± 0.07 mM) than after MCas-35 (1.53 ± 0.08 mM) and WPH-35 (1.50 ± 0.04 mM) (P < 0.01). Myofibrillar protein synthesis rates increased after ingesting MCas-35 (P < 0.01) and were higher after ingesting MCas-35 (0.050% ± 0.005%/h) than after WPH-35 (0.032% ± 0.004%/h) (P = 0.03). The postprandial increase in plasma leucine concentrations was greater after ingesting Whey-35 than after WPH-60 (peak value: 580 ± 18 compared with 378 ± 10 μM, respectively; P < 0.01), despite similar leucine contents (4.4 g leucine). Nevertheless, the ingestion of WPH-60 increased myofibrillar protein synthesis rates above basal rates (0.049% ± 0.007%/h; P = 0.02). The myofibrillar protein synthetic response to the ingestion of 35 g casein is greater than after an

  4. A novel protein mixture containing vegetable proteins renders enteral nutrition products non-coagulating after in vitro gastric digestion.

    PubMed

    van den Braak, Claudia C M; Klebach, Marianne; Abrahamse, Evan; Minor, Marcel; Hofman, Zandrie; Knol, Jan; Ludwig, Thomas

    2013-10-01

    Non-coagulation of protein from enteral nutrition (EN) in the stomach is considered to improve gastric emptying and may result in reduced upper gastrointestinal complications such as reflux and aspiration pneumonia. For the development of a new EN protein mixture with reduced gastric coagulation, the coagulating properties of individual proteins, a novel blend of four proteins (P4 protein blend) and commercial EN products were investigated. A semi-dynamic, computer controlled setup was developed to mimic gastric digestion. The coagulation behaviour of 150 ml protein solutions and EN products was investigated. These were heat-treated calcium caseinate, sodium caseinate, whey, soy and pea protein, and the P4 protein blend comprising of the latter four (all solutions 6% w/v protein), four new enteral nutrition product varieties (New Nutrison® .0 or 1.5 kcal/ml, with and without MultiFibre MF6™) based on the P4 protein blend and two other commercially available casein dominant EN products (T1 and T2). Calcium caseinate and sodium caseinate yielded a total wet coagulate of 43.5 ± 0.7 g and 52.7 ± 6.2 g, respectively. Whey, soy, pea and the P4 protein blend did not produce any measurable coagulate. T1 and T2 resulted in a total wet coagulate of 37.5 ± 0.8 g and 57.3 ± 0.8 g, respectively, while all new EN product varieties based on the P4 protein blend did not produce any measurable coagulate. The P4 protein blend renders EN product varieties non-coagulating after in vitro gastric digestion. Copyright © 2012 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  5. Rheological and structural characterization of agar/whey proteins insoluble complexes.

    PubMed

    Rocha, Cristina M R; Souza, Hiléia K S; Magalhães, Natália F; Andrade, Cristina T; Gonçalves, Maria Pilar

    2014-09-22

    Complex coacervation between whey proteins and carboxylated or highly sulphated polysaccharides has been widely studied. The aim of this work was to characterise a slightly sulphated polysaccharide (agar) and whey protein insoluble complexes in terms of yield, composition and physicochemical properties as well as to study their rheological behaviour for better understanding their structure. Unlike other sulphated polysaccharides, complexation of agar and whey protein at pH 3 in the absence of a buffering agent resulted in a coacervate that was a gel at 20°C with rheological properties and structure similar to those of simple agar gels, reinforced by proteins electrostatically aggregated to the agar network. The behaviour towards heat treatment was similar to that of agar alone, with a high thermal hysteresis and almost full reversibility. In the presence of citrate buffer, the result was a "flocculated solid", with low water content (75-81%), whose properties were governed by protein behaviour. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Whey Protein Components - Lactalbumin and Lactoferrin - Improve Energy Balance and Metabolism.

    PubMed

    Zapata, Rizaldy C; Singh, Arashdeep; Pezeshki, Adel; Nibber, Traj; Chelikani, Prasanth K

    2017-08-30

    Whey protein promotes weight loss and improves diabetic control, however, less is known of its bioactive components that produce such benefits. We compared the effects of normal protein (control) diet with high protein diets containing whey, or its fractions lactalbumin and lactoferrin, on energy balance and metabolism. Diet-induced obese rats were randomized to isocaloric diets: Control, Whey, Lactalbumin, Lactoferrin, or pair-fed to lactoferrin. Whey and lactalbumin produced transient hypophagia, whereas lactoferrin caused prolonged hypophagia; the hypophagia was likely due to decreased preference. Lactalbumin decreased weight and fat gain. Notably, lactoferrin produced sustained weight and fat loss, and attenuated the reduction in energy expenditure associated with calorie restriction. Lactalbumin and lactoferrin decreased plasma leptin and insulin, and lactalbumin increased peptide YY. Whey, lactalbumin and lactoferrin improved glucose clearance partly through differential upregulation of glucoregulatory transcripts in the liver and skeletal muscle. Interestingly, lactalbumin and lactoferrin decreased hepatic lipidosis partly through downregulation of lipogenic and/or upregulation of β-oxidation transcripts, and differentially modulated cecal bacterial populations. Our findings demonstrate that protein quantity and quality are important for improving energy balance. Dietary lactalbumin and lactoferrin improved energy balance and metabolism, and decreased adiposity, with the effects of lactoferrin being partly independent of caloric intake.

  7. Preheated milk proteins improve the stability of grape skin anthocyanins extracts.

    PubMed

    He, Zhiyong; Xu, Mingzhu; Zeng, Maomao; Qin, Fang; Chen, Jie

    2016-11-01

    The effects of casein and whey proteins, preheated at 40-100°C and 45-60°C for 15min, respectively, on color loss and anthocyanins degradation in grape skin anthocyanins extracts (GSAE) at pH 3.2 and 6.3 were evaluated. Preheating milk proteins effectively improved their protective effects against color loss and anthocyanins degradation in GSAE solutions during thermal treatment (at 80°C for 2h), H2O2 oxidation (0.005% H2O2 for 1h) and illumination (at 5000lx for 5 d). Whey proteins and casein, preheated at 50°C and 60°C for 15min, respectively, demonstrated the optimal protective effects. However, preheated whey proteins had a better protective effect on the thermal, oxidation and photo stability of GSAE, decreasing the thermal, oxidative and photo degradation of anthocyanins in GSAE 71.59%, 32.22% and 56.92% at pH 3.2 and 54.91%, 22.89% and 46.68% at pH 6.3, respectively. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Quantitative proteomic analysis of whey proteins in the colostrum and mature milk of yak (Bos grunniens).

    PubMed

    Yang, Yongxin; Zhao, Xiaowei; Yu, Shumin; Cao, Suizhong

    2015-02-01

    Yak (Bos grunniens) is an important natural resource in mountainous regions. To date, few studies have addressed the differences in the protein profiles of yak colostrum and milk. We used quantitative proteomics to compare the protein profiles of whey from yak colostrum and milk. Milk samples were collected from 21 yaks after calving (1 and 28 d). Whey protein profiles were generated through isobaric tag for relative and absolute quantification (iTRAQ)-labelled proteomics. We identified 183 proteins in milk whey; of these, the expression levels of 86 proteins differed significantly between the whey from colostrum and milk. Haemoglobin expression showed the greatest change; its levels were significantly higher in the whey from colostrum than in mature milk whey. Functional analysis revealed that many of the differentially expressed proteins were associated with biological regulation and response to stimuli. Further, eight differentially expressed proteins involved in the complement and coagulation cascade pathway were enriched in milk whey. These findings add to the general understanding of the protein composition of yak milk, suggest potential functions of the differentially expressed proteins, and provide novel information on the role of colostral components in calf survival. © 2014 Society of Chemical Industry.

  9. Supercritical carbon dioxide fractionation of whey protein isolate for new food-grade ingredients

    USDA-ARS?s Scientific Manuscript database

    A new, environmentally benign whey protein fractionation process was developed using supercritical CO2 (SCO2) as an acid aggregating agent to separate a-lactalbumin (a-LA) aggregates from soluble beta-lactoglobulin (beta-LG) protein in concentrated whey protein isolate (WPI) solutions. The process e...

  10. The bioactive effects of casein proteins on enteroendocrine cell health, proliferation and incretin hormone secretion.

    PubMed

    Gillespie, Anna L; Green, Brian D

    2016-11-15

    Previous studies suggest that casein exerts various anti-diabetic effects. However, it is not known which casein proteins are bioactive, nor their effects on enteroendocrine cells. This study evaluated the effects of intact whole casein, intact individual proteins (alpha, beta and kappa casein) and hydrolysates on an enteroendocrine cell line. High content analysis accurately monitored changes in cell health and intracellular glucagon-like peptide-1 (GLP-1) content. Cheese ripening duration and GLP-1 secretory responses were also considered. Beta casein significantly stimulated enteroendocrine cell proliferation and all caseins were potent GLP-1 secretagogues (except kappa casein). Interestingly the GLP-1 secretory activity was almost always lost or significantly reduced upon hydrolysis with proteolytic enzymes. Only pepsin-derived beta casein hydrolysates had significantly increased potency compared with the intact protein, but this was diminished with prolonged hydrolysis. In conclusion casein proteins are not detrimental to enteroendocrine cells, and alpha and beta casein are particularly beneficial stimulating proliferation and GLP-1 secretion. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Characterization of casein and alpha lactalbumin of African elephant (Loxodonta africana) milk.

    PubMed

    Madende, M; Osthoff, G; Patterton, H-G; Patterton, H E; Martin, P; Opperman, D J

    2015-12-01

    The current research reports partial characterization of the caseins and α-lactalbumin (α-LA) of the African elephant with proposed unique structure-function properties. Extensive research has been carried out to understand the structure of the casein micelles. Crystallographic structure elucidation of caseins and casein micelles is not possible. Consequently, several models have been developed in an effort to describe the casein micelle, specifically of cow milk. Here we report the characterization of African elephant milk caseins. The κ-caseins and β-caseins were investigated, and their relative ratio was found to be approximately 1:8.5, whereas α-caseins were not detected. The gene sequence of β-casein in the NCBI database was revisited, and a different sequence in the N-terminal region is proposed. Amino acid sequence alignment and hydropathy plots showed that the κ-casein of African elephant milk is similar to that of other mammals, whereas the β-casein is similar to the human protein, and displayed a section of unique AA composition and additional hydrophilic regions compared with bovine caseins. Elephant milk is destabilized by 62% alcohol, and it is speculated that the β-casein characteristics may allow maintenance of the colloidal nature of the casein micelle, a role that was previously only associated with κ-casein. The oligosaccharide content of milk was reported to be low in dairy animals but high in some other species such as humans and elephants. In the milk of the African elephant, lactose and oligosaccharides both occur at high levels. These levels are typically related to the content of α-LA in the mammary gland and thus point to a specialized carbohydrate synthesis, where the whey protein α-LA plays a role. We report the characterization of African elephant α-LA. Homology modeling of the α-LA showed that it is structurally similar to crystal structures of other mammalian species, which in turn may be an indication that its functional

  12. Whey proteins protect more than red meat against azoxymethane induced ACF in Wistar rats.

    PubMed

    Belobrajdic, D P; McIntosh, G H; Owens, J A

    2003-07-30

    Protein type and density have been shown to influence colon cancer risk using a carcinogen-induced rat model. It is suggested that red meat may promote colon cancer risk more than whey proteins. The aim of this study was to evaluate the influence of red meat, whey protein and their density in the diet on the number of aberrant crypt foci (ACF), preneoplastic markers in Wistar rats. The sources of protein, red meat as barbecued kangaroo muscle meat, and whey protein concentrate were fed to rats to provide 8, 16 and 32% protein by weight in a modified AIN-93 diet with low fiber, low calcium and high polyunsaturated fat. Adult Wistar rats (13 weeks of age) were fed these diets for 4 weeks and then two s.c. injections of azoxymethane, 15 mg/kg BW, were administered 1 week apart. Diets were fed for a further 8 weeks, rats were then killed, their colons fixed in formalin saline and stained with methylene blue to quantify ACF number. Fecal samples were collected and the fecal water was isolated for quantification of heme and thiobarbituric acid reactive substances. Increasing red meat density correlated positively, while increasing dairy protein density correlated negatively with rate of weight gain (p<0.05). Dietary intake was not significantly affected by protein type or density. The 32% whey protein group had significantly less ACF in the proximal colon in comparison to the 16 and 32% red meat groups (p<0.05). This reduction in ACF number in the whey protein group may be caused by hormones associated with the reduction in weight gain, and/or by components of whey protein concentrate such as cysteine, lactose and conjugated linoleic acid which have been shown to have anti-cancer effects. Using ACF number as an index, whey protein appeared to be more protective than red meat.

  13. Protein composition of different sized casein micelles in milk after the binding of lactoferrin or lysozyme.

    PubMed

    Anema, Skelte G; de Kruif, C G Kees

    2013-07-24

    Casein micelles with bound lactoferrin or lysozyme were fractionated into sizes ranging in radius from ∼50 to 100 nm. The κ-casein content decreased markedly and the αS-casein/β-casein content increased slightly as micelle size increased. For lactoferrin, higher levels were bound to smaller micelles. The lactoferrin/κ-casein ratio was constant for all micelle sizes, whereas the lactoferrin/αS-casein and lactoferrin/β-casein ratio decreased with increasing micelle size. This indicates that the lactoferrin was binding to the surface of the casein micelles. For lysozyme, higher levels bound to larger casein micelles. The lysozyme/αS-casein and lysozyme/β-casein ratios were nearly constant, whereas the lysozyme/κ-casein ratio increased with increasing micelle size, indicating that lysozyme bound to αS-casein and β-casein in the micelle core. Lactoferrin is a large protein that cannot enter the casein protein mesh; therefore, it binds to the micelle surface. The smaller lysozyme can enter the protein mesh and therefore binds to the more charged αS-casein and β-casein.

  14. Review: elimination of bacteriophages in whey and whey products

    PubMed Central

    Atamer, Zeynep; Samtlebe, Meike; Neve, Horst; J. Heller, Knut; Hinrichs, Joerg

    2013-01-01

    As the cheese market faces strong international competition, the optimization of production processes becomes more important for the economic success of dairy companies. In dairy productions, whey from former cheese batches is frequently re-used to increase the yield, to improve the texture and to increase the nutrient value of the final product. Recycling of whey cream and particulated whey proteins is also routinely performed. Most bacteriophages, however, survive pasteurization and may re-enter the cheese manufacturing process. There is a risk that phages multiply to high numbers during the production. Contamination of whey samples with bacteriophages may cause problems in cheese factories because whey separation often leads to aerosol-borne phages and thus contamination of the factory environment. Furthermore, whey cream or whey proteins used for recycling into cheese matrices may contain thermo-resistant phages. Drained cheese whey can be contaminated with phages as high as 109 phages mL-1. When whey batches are concentrated, phage titers can increase significantly by a factor of 10 hindering a complete elimination of phages. To eliminate the risk of fermentation failure during recycling of whey, whey treatments assuring an efficient reduction of phages are indispensable. This review focuses on inactivation of phages in whey by thermal treatment, ultraviolet (UV) light irradiation, and membrane filtration. Inactivation by heat is the most common procedure. However, application of heat for inactivation of thermo-resistant phages in whey is restricted due to negative effects on the functional properties of native whey proteins. Therefore an alternative strategy applying combined treatments should be favored – rather than heating the dairy product at extreme temperature/time combinations. By using membrane filtration or UV treatment in combination with thermal treatment, phage numbers in whey can be reduced sufficiently to prevent subsequent phage accumulations

  15. Whey protein hydrolysate increases translocation of GLUT-4 to the plasma membrane independent of insulin in wistar rats.

    PubMed

    Morato, Priscila Neder; Lollo, Pablo Christiano Barboza; Moura, Carolina Soares; Batista, Thiago Martins; Camargo, Rafael Ludemann; Carneiro, Everardo Magalhães; Amaya-Farfan, Jaime

    2013-01-01

    Whey protein (WP) and whey protein hydrolysate (WPH) have the recognized capacity to increase glycogen stores. The objective of this study was to verify if consuming WP and WPH could also increase the concentration of the glucose transporters GLUT-1 and GLUT-4 in the plasma membrane (PM) of the muscle cells of sedentary and exercised animals. Forty-eight Wistar rats were divided into 6 groups (n = 8 per group), were treated and fed with experimental diets for 9 days as follows: a) control casein (CAS); b) WP; c) WPH; d) CAS exercised; e) WP exercised; and f) WPH exercised. After the experimental period, the animals were sacrificed, muscle GLUT-1 and GLUT-4, p85, Akt and phosphorylated Akt were analyzed by western blotting, and the glycogen, blood amino acids, insulin levels and biochemical health indicators were analyzed using standard methods. Consumption of WPH significantly increased the concentrations of GLUT-4 in the PM and glycogen, whereas the GLUT-1 and insulin levels and the health indicators showed no alterations. The physical exercise associated with consumption of WPH had favorable effects on glucose transport into muscle. These results should encourage new studies dealing with the potential of both WP and WPH for the treatment or prevention of type II diabetes, a disease in which there is reduced translocation of GLUT-4 to the plasma membrane.

  16. How is an ideal satiating yogurt described? A case study with added-protein yogurts.

    PubMed

    Morell, P; Piqueras-Fiszman, B; Hernando, I; Fiszman, S

    2015-12-01

    Protein is recognized as the macronutrient with the highest satiating ability. Yogurt can be an excellent basis for designing satiating food as it is protein-based food product. Five different set-type yogurts were formulated by adding extra skim milk powder (MP), whey protein concentrate (WPC), calcium caseinate (CAS) or a blend of whey protein concentrate with calcium caseinate (CAS-WPC). A control yogurt without extra protein content was also prepared. Differences in sensory perceptions (through CATA questions) were related to the consumers' expected satiating ability and liking scores (of several modalities). In addition, an "Ideal satiating yogurt" was included in the CATA question to perform a penalty analysis to show potential directions for yogurt reformulation and to relate sensory and non-sensory yogurt characteristics to satiating capacity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. The Young's Modulus, Fracture Stress, and Fracture Strain of Gellan Hydrogels Filled with Whey Protein Microparticles.

    PubMed

    Lam, Cherry Wing Yu; Ikeda, Shinya

    2017-05-01

    Texture modifying abilities of whey protein microparticles are expected to be dependent on pH during heat-induced aggregation of whey protein in the microparticulation process. Therefore, whey protein microparticles were prepared at either pH 5.5 or 6.8 and their effects on small and large deformation properties of gellan gels containing whey protein microparticles as fillers were investigated. The majority of whey protein microparticles had diameters around 2 μm. Atomic force microscopy images showed that whey protein microparticles prepared at pH 6.8 partially collapsed and flatted by air-drying, while those prepared at pH 5.5 did not. The Young's modulus of filled gels adjusted to pH 5.5 decreased by the addition of whey protein microparticles, while those of filled gels adjusted to pH 6.8 increased with increasing volume fraction of filler particles. These results suggest that filler particles were weakly bonded to gel matrices at pH 5.5 but strongly at pH 6.8. Whey protein microparticles prepared at pH 5.5 showed more enhanced increases in the Young's modulus than those prepared at pH 6.8 at volume fractions between 0.2 and 0.4, indicating that microparticles prepared at pH 5.5 were mechanically stronger. The fracture stress of filled gels showed trends somewhat similar to those of the Young's modulus, while their fracture strains decreased by the addition of whey protein microparticles in all examined conditions, indicating that the primary effect of these filler particles was to enhance the brittleness of filled gels. © 2017 Institute of Food Technologists®.

  18. Whey Protein Improves Marathon-Induced Injury and Exercise Performance in Elite Track Runners

    PubMed Central

    Huang, Wen-Ching; Chang, Yung-Cheng; Chen, Yi-Ming; Hsu, Yi-Ju; Huang, Chi-Chang; Kan, Nai-Wen; Chen, Sheng-Shih

    2017-01-01

    Whey protein has been widely applied to athletes and the fitness field for muscle growth and performance improvement. Limited studies focused on the beneficial effects of whey on aerobic exercise according to biochemical assessments. In the current study, 12 elite male track runners were randomly assigned to whey and maltodextrin groups for 5 weeks' supplementation. The aim of this study was to investigate the effect of whey protein on physiological adaptions and exercise performance. During this period, three time points (pre-, post-, and end-test) were used to evaluate related biochemical parameters, body composition, and performance. The post-test was set 1 day after a marathon for injury status evaluation and the end-test was also assessed after 1-week recovery from endurance test. The results showed that the whey group exhibited significantly lower aspartate aminotransferase, alanine aminotransferase, lactate dehydrogenase, and creatine kinase indicators after the marathon (post-test), as well as at the end-test (p<0.016). The endurance performance in twelve-minute walk/run was also significantly elevated (p<0.012) possibly due to an increase in the muscle mass and amelioration of exercise injuries. In the current study, we demonstrated that whey protein can also be used for aerobic exercise for better physiological adaptation, in addition to resistance training. Whey protein could be also a potential nutrient supplement with a variety of benefits for amateur runners. PMID:28824296

  19. Effect of chitosan on the heat stability of whey protein solution as a function of pH.

    PubMed

    Zhao, Zhengtao; Xiao, Qian

    2017-03-01

    Chitosan was reported to interact with proteins through electrostatic interactions. Their interaction was influenced by pH, which was not fully characterized. Further research on the interactions between protein and chitosan at different pH and their influence on the thermal denaturation of proteins is necessary. In this research, the effect of chitosan on the heat stability of whey protein solution at pH 4.0-6.0 was studied. At pH 4.0, a small amount chitosan was able to prevent the heat-induced denaturation and aggregation of whey protein molecules. At higher pH values (5.5 and 6.0), whey proteins complexed with chitosan through electrostatic attraction. The formation of chitosan-whey protein complexes at pH 5.5 improved the heat stability of dispersions and no precipitation could be detected up to 20 days. The dispersion with a medium amount of chitosan (chitosan:whey protein 1:5) produced the most stable particles, which had an average radius of 135 ± 14 nm and a zeta potential value of 36 ± 1 mV. In contrast, at pH 6.0 only the dispersion with a high amount of chitosan (chitosan:whey protein 1:2) showed good shelf stability up to 20 days. It was possible to produce heat-stable whey protein beverages by regulating the interaction between chitosan and whey protein molecules. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  20. Impact of casein and egg white proteins on the structure of wheat gluten-based protein-rich food.

    PubMed

    Wouters, Arno G B; Rombouts, Ine; Lagrain, Bert; Delcour, Jan A

    2016-02-01

    There is a growing interest in texturally and nutritionally satisfying vegetable alternatives to meat. Wheat gluten proteins have unique functional properties but a poor nutritional value in comparison to animal proteins. This study investigated the potential of egg white and bovine milk casein with well-balanced amino acid composition to increase the quality of wheat gluten-based protein-rich foods. Heating a wheat gluten (51.4 g)-water (100.0 mL) blend for 120 min at 100 °C increased its firmness less than heating a wheat gluten (33.0 g)-freeze-dried egg white (16.8 g)-water (100.0 mL) blend. In contrast, the addition of casein to the gluten-water blend negatively impacted firmness after heating. Firmness was correlated with loss of protein extractability in sodium dodecyl sulfate containing medium during heating, which was higher with egg white than with casein. Even more, heat-induced polymerization of the gluten-water blend with egg white but not with casein was greater than expected from the losses in extractability of gluten and egg white on their own. Structure formation was favored by mixing gluten with egg white but not with casein. These observations were linked to the intrinsic polymerization behavior of egg white and casein, but also to their interaction with gluten. Thus not all nutritionally suitable proteins can be used for enrichment of gluten-based protein-rich foods. © 2015 Society of Chemical Industry.

  1. /sup 54/Mn absorption and excretion in rats fed soy protein and casein diets

    SciTech Connect

    Lee, D.Y.; Johnson, P.E.

    1989-02-01

    Rats were fed diets containing either soy protein or casein and different levels of manganese, methionine, phytic acid, or arginine for 7 days and then fed test meals labeled with 2 microCi of 54Mn after an overnight fast. Retention of 54Mn in each rat was measured every other day for 21 days using a whole-body counter. Liver manganese was higher (P less than 0.0001) in soy protein-fed rats (8.8 micrograms/g) than in casein-fed rats (5.2 micrograms/g); manganese superoxide dismutase activity also was higher in soy protein-fed rats than in casein-fed rats (P less than 0.01). There was a significant interactionmore » between manganese and protein which affected manganese absorption and biologic half-life of 54Mn. In a second experiment, rats fed soy protein-test meals retained more 54Mn (P less than 0.001) than casein-fed rats. Liver manganese (8.3 micrograms/g) in the soy protein group was also higher than that (5.7 micrograms/g) in the casein group (P less than 0.0001), but manganese superoxide dismutase activity was unaffected by protein. Supplementation with methionine increased 54Mn retention from both soy and casein diets (P less than 0.06); activity of manganese superoxide dismutase increased (P less than 0.05) but liver manganese did not change. The addition of arginine to casein diets had little effect on manganese bioavailability. Phytic acid affected neither manganese absorption nor biologic half-life in two experiments, but it depressed liver manganese in one experiment. These results suggest that neither arginine nor phytic acid was the component in soy protein which made manganese more available from soy protein diets than casein diets.« less

  2. Review: Milk Proteins as Nanocarrier Systems for Hydrophobic Nutraceuticals.

    PubMed

    Kimpel, Florian; Schmitt, Joachim J

    2015-11-01

    Milk proteins and milk protein aggregates are among the most important nanovehicles in food technology. Milk proteins have various functional properties that facilitate their ability to carry hydrophobic nutraceutical substances. The main functional transport properties that were examined in the reviewed studies are binding of molecules or ions, surface activity, aggregation, gelation, and interaction with other polymers. Hydrophobic binding has been investigated using caseins and isolated β-casein as well as whey proteins. Surface activity of caseins has been used to create emulsion-based carrier systems. Furthermore, caseins are able to self-assemble into micelles, which can incorporate molecules. Gelation and interaction with other polymers can be used to encapsulate molecules into protein networks. The release of transported substances mainly depends on pH and swelling behavior of the proteins. The targeted use of nanocarrier systems requires specific knowledge about the binding mechanisms between the proteins and the carried substances in a certain food matrix. © 2015 Institute of Food Technologists®

  3. Whey protein stories - An experiment in writing a multidisciplinary biography.

    PubMed

    Jensen, Tenna; Bechshoeft, Rasmus L; Giacalone, Davide; Otto, Marie Haulund; Castro-Mejía, Josue; Bin Ahmad, Hajar Fauzan; Reitelseder, Søren; Jespersen, Astrid Pernille

    2016-12-01

    This is an experimental, dual-purpose article about whey protein and how to conduct interdisciplinary analyses and writings. On the one hand, this article is a multidisciplinary commodity biography, which consists of five descriptions of whey protein written by the five different research groups involved in the interdisciplinary research project CALM(Counteracting Age-related loss of Skeletal Muscle Mass). On the other hand, it is a meta-analysis, which aims to uncover and highlight examples of how the five descriptions contribute to each other with insights into the contextualisation of knowledge, contrasts between the descriptions and the new dimensions they bring to established fields of interest. The meta-analysis also contains a discussion of interdisciplinary study objects and the usefulness of the multidisciplinary commodity biography as a format for interdisciplinary publications. The article contributes to the field of food studies with a multidisciplinary biography of whey protein - including its sensory qualities and challenges, insights into its cultural history, its nutritional value and effects on the human body and an analysis of how it is perceived by people who consume it. The biography thereby expands upon existing understandings of whey protein while discussing the usefulness of employing the commodity biography format in interdisciplinary writing. Moreover, the article contributes to the field of interdisciplinary research by providing a practical example of a joint publication and reflections upon the existence, interaction and possibilities of monodisciplinary knowledge structures within interdisciplinary studies and publications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Casein Hydrolysate with Glycemic Control Properties: Evidence from Cells, Animal Models, and Humans.

    PubMed

    Drummond, Elaine; Flynn, Sarah; Whelan, Helena; Nongonierma, Alice B; Holton, Thérèse A; Robinson, Aisling; Egan, Thelma; Cagney, Gerard; Shields, Denis C; Gibney, Eileen R; Newsholme, Philip; Gaudel, Celine; Jacquier, Jean-Christophe; Noronha, Nessa; FitzGerald, Richard J; Brennan, Lorraine

    2018-05-02

    Evidence exists to support the role of dairy derived proteins whey and casein in glycemic management. The objective of the present study was to use a cell screening method to identify a suitable casein hydrolysate and to examine its ability to impact glycemia related parameters in an animal model and in humans. Following screening for the ability to stimulate insulin secretion in pancreatic beta cells, a casein hydrolysate was selected and further studied in the ob/ob mouse model. An acute postprandial study was performed in 62 overweight and obese adults. Acute and long-term supplementation with the casein hydrolysate in in vivo studies in mice revealed a glucose lowering effect and a lipid reducing effect of the hydrolysate (43% reduction in overall liver fat). The postprandial human study revealed a significant increase in insulin secretion ( p = 0.04) concomitant with a reduction in glucose ( p = 0.03). The area under the curve for the change in glucose decreased from 181.84 ± 14.6 to 153.87 ± 13.02 ( p = 0.009). Overall, the data supports further work on the hydrolysate to develop into a functional food product.

  5. Formation and characterization of chitosan-protein particles with fractal whey protein aggregates.

    PubMed

    Ahmed, Khouloud Fekih; Aschi, Adel; Nicolai, Taco

    2018-05-15

    Hybrid protein-polysaccharide particles were formed by complexation of fractal whey protein aggregates and the cationic polysaccharide chitosan. The fractal aggregates were preformed by heating native whey protein isolate at pH 7 and subsequently mixed with chitosan at pH 3 where these proteins and polysaccharides don't interact with each other. Stable dispersions of protein-polysaccharide particles were formed spontaneously when the pH was gradually increased between 4.1 and 6.8, whereas in the absence of chitosan the fractal aggregates precipitated between pH 4.1 and 5.4. Potentiometric titration of the mixtures showed that deprotonation of both components was affected by complexation. With increasing pH, the size of the complexes increased sharply between pH 4.1. and pH 4.5, remained constant up to pH 5.6 and then increased again. A minimum amount of chitosan was needed to form stable complexes at pH 5.0 and the size of the complexes decreased with increasing chitosan concentration. Light scattering showed that the complexes were stable to dilution and had a self similar structure with a fractal dimensions close to two. The effect of changing the pH on the size and stability of the complexes was investigated. Suspensions of complexes of preformed whey protein aggregates and chitosan are more stable up to high pH (6.8) than complexes between native WPI and chitosan as reported in the literature. Copyright © 2018. Published by Elsevier B.V.

  6. [In vitro availability of minerals in infant foods with different protein source].

    PubMed

    Pérez-Llamas, F; Larqué, E; Marín, J F; Zamora, S

    2001-01-01

    As the result of the digestion process, it is produced at gastrointestinal level interactions between proteins-minerals and minerals-minerals that might modify the bioavailability of the nutrients initially designed for an adequate nutrition in infant formulas. The aim of the present study is to compare the in vitro availability of some minerals and trace elements (calcium, phosphorus, magnesium, iron and zinc) in infant formulas of initiation elaborated with different protein sources: formulas based on cow milk protein (whey-casein) versus vegetal protein (soy-based infant formulas). Also, for evaluating the effects of the different mineral supplementation in the availability of minerals, it was used infant formulas from two different manufacturers. Milk-protein based infant formulas showed for both manufacturers higher dialysis percentage (%) of phosphorus and zinc than the soy-protein based formulas. The availability of iron in the soy formula of the manufacturer A lowered significantly (P < 0.05) respect to the whey-casein based formula (9.6 +/- 2.3 versus 4.6 +/- 0.8), but not respect to the whey-casein formula of manufacturer B (9.6 +/- 1.1 versus 9.0 +/- 0.7), which might be due to the lowest proportion of phytic acid in this last commercial formula. Dialysability of all the minerals analysed from soy-protein based formulas showed significant differences depending on the manufacturer. The purification processes of the soy protein have a high repercussion in the mineral availability of soy-based infant formulas. It could be more interesting to use soy proteins more purified, with low level of phytic acid, in the elaboration of soy infants formulas, than the supplementation them with high amounts of minerals.

  7. Designing dairy desserts for weight management: Structure, physical properties and in vitro gastric digestion.

    PubMed

    Borreani, Jennifer; Llorca, Empar; Quiles, Amparo; Hernando, Isabel

    2017-04-01

    The first aim of this study was to observe the effect of adding dairy proteins and reducing the cream content in order to obtain healthier dairy desserts for use in weight management. The extra-whey protein low-cream sample had the densest, firmest matrix, which is related to increased satiety. The second aim was to investigate the in vitro gastric digestion behavior of whey and casein proteins in a heat-treated semisolid real food. The extra-casein protein sample matrix broke down more slowly than the others because the caseins clotted at the gastric pH. Despite being heated, the whey proteins in the panna cottas were more resistant to pepsin digestion than caseins; this is related with a higher satiety capacity. These findings suggest that the combination of reducing fat content (to obtain a reduced energy density product) and adding whey protein (to increase satiety capacity) allows obtaining dairy desserts for weight management. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. The binding of orally dosed hydrophobic active pharmaceutical ingredients to casein micelles in milk.

    PubMed

    Cheema, M; Hristov, A N; Harte, F M

    2017-11-01

    Casein proteins (α S1 -, α S2 -, β- and κ-casein) account for 80% of the total protein content in bovine milk and form casein micelles (average diameter = 130 nm, approximately 10 15 micelles/mL). The affinity of native casein micelles with the 3 hydrophobic active pharmaceutical ingredients (API), meloxicam [351.4 g/mol; log P = 3.43; acid dissociation constant (pK a ) = 4.08], flunixin (296.2 g/mol; log P = 4.1; pK a = 5.82), and thiabendazole (201.2 g/mol; log P = 2.92; pK a = 4.64), was evaluated in bovine milk collected from dosed Holstein cows. Native casein micelles were separated from raw bovine milk by mild techniques such as ultracentrifugation, diafiltration, isoelectric point precipitation (pH 4.6), and size exclusion chromatography. Acetonitrile extraction of hydrophobic API was then done, followed by quantification using HPLC-UV. For the API or metabolites meloxicam, 5-hyroxy flunixin and 5-hydroxy thiabendazole, 31 ± 3.90, 31 ± 1.3, and 28 ± 0.5% of the content in milk was associated with casein micelles, respectively. Less than ∼5.0% of the recovered hydrophobic API were found in the milk fat fraction, and the remaining ∼65% were associated with the whey/serum fraction. A separate in vitro study showed that 66 ± 6.4% of meloxicam, 29 ± 0.58% of flunixin, 34 ± 0.21% of the metabolite 5-hyroxy flunixin, 50 ± 4.5% of thiabendazole, and 33 ± 3.8% of metabolite 5-hydroxy thiabendazole was found partitioned into casein micelles. Our study supports the hypothesis that casein micelles are native carriers for hydrophobic compounds in bovine milk. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  9. Production of calcium- and magnesium-enriched caseins and caseinates by an ecofriendly technology.

    PubMed

    Masson, Félix-André; Mikhaylin, Sergey; Bazinet, Laurent

    2018-05-09

    Finding new green ways of producing proteins has never been of such critical public interest, both to meet consumers' needs and to preserve the environment. Milk proteins are among the most attractive protein types due to their high nutritional value and attractive functional properties. In this work, the separation of caseins by conventional chemical acidification was compared with electrodialysis with bipolar membrane coupled to an ultrafiltration module (EDBM-UF), a green process that allows the precipitation of caseins by H + generated in situ by the bipolar membrane and, simultaneously, the production of a separated NaOH stream from OH - electrogenerated by the bipolar membrane. Caseinate production using this NaOH stream by-product and the quantity of NaOH needed to produce caseinates from both methods were also investigated. Hence, the purity and composition of caseins and caseinates were compared in terms of protein, ash, and lactose contents as well as mineral composition. The results showed for the first time that caseinates can be produced by solubilizing caseins with NaOH stream from the EDBM process. Furthermore, the caseins and caseinates produced by EDBM-UF were equivalent in terms of lactose and protein contents to their respective caseins and caseinates that were chemically produced but presented slightly lower sodium content and 3 to 4 times higher magnesium and calcium contents. The fact that calcium and magnesium are likely bound to milk caseins would ensure their favorable absorbability. These caseins or caseinates from the new EDBM-UF process could be suitable as an improved protein-based calcium or magnesium supplement, both for their enhanced nutritional quality and because they are produced by a green process. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  10. Compositional and sensory differences of products of sweet-cream and whey buttermilk produced by microfiltration, diafiltration, and supercritical CO2.

    PubMed

    Olabi, A; Jinjarak, S; Jiménez-Flores, R; Walker, J H; Daroub, Hamza

    2015-06-01

    The objectives of this work were to assess the compositional properties and sensory characteristics of ingredients produced by treating sweet-cream and whey-cream buttermilks with microfiltration (MF), diafiltration (DF), and supercritical CO2 (SFE) extraction. Sweet-cream buttermilk (CBM) and buttermilk resulting from churning the residual fat from whey processing (whey buttermilk, WBM) were used. Using MF or microfiltration followed by diafiltration (MF-DF), we obtained resulting retentates that were dried and then were subjected to SFE treatment. Control buttermilks, SFE resulting products, and MF and MF-DF SFE and all treated retentates products totaled 16 samples (2 types×4 treatments×2 batches). Eleven trained panelists assessed samples using descriptive analysis. Sweet-cream buttermilk was higher in protein and lactose, whereas the WBM had similar total protein, mainly β-LG and α-LA but very low lactose. The resulting samples in order of concentration for fat and lactose were control samples>SFE treated>MF treated>DF=MF-SFE and DF-SFE. Sodium dodecyl sulfate-PAGE protein profiling showed negligible casein for WBM versus CBM and less whey proteins for CBM versus WBM, as expected. Whey buttermilk was more yellow, salty, sour, and rancid than CBM. Regarding the treatments, significant differences were obtained on homogeneity, opacity, rancid odor, cardboard and sour flavors, sweet and salty tastes, viscosity, and mouthcoating, where SFE-treated samples showed lowest rancid odor and cardboard flavor. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  11. Stability of lutein encapsulated whey protein nano-emulsion during storage

    PubMed Central

    Guo, Mingruo

    2018-01-01

    Lutein is a hydrophobic carotenoid that has multiple health functions. However, the application of lutein is limited due to its poor solubility in water and instability under certain conditions during storage. Hereby we generated lutein loaded nano-emulsions using whey protein isolate (WPI) or polymerized whey protein isolate (PWP) with assistance of high intensity ultrasound and evaluate their stability during storage at different conditions. We measured the particle size, zeta-potential, physical stability and lutein content change. Results showed that the PWP based nano-emulsion system was not stable in the tested Oil/Water/Ethanol system indicated by the appearance of stratification within only one week. The WPI based nano-emulsion system showed stable physiochemical stability during the storage at 4°C. The lutein content of the system was reduced by only 4% after four weeks storage at 4°C. In conclusion, our whey protein based nano-emulsion system provides a promising strategy for encapsulation of lutein or other hydrophobic bioactive molecules to expand their applications. PMID:29415071

  12. Transglutaminase-mediated protein immobilization to casein nanolayers created on a plastic surface.

    PubMed

    Kamiya, Noriho; Doi, Satoshi; Tominaga, Jo; Ichinose, Hirofumi; Goto, Masahiro

    2005-01-01

    An enzymatic method for covalent and site-specific immobilization of recombinant proteins on a plastic surface was explored. Using Escherichia coli alkaline phosphatase (AP) with a specific peptide tag (MKHKGS) genetically incorporated at the N-terminus as a model (NK-AP), microbial transglutaminase (MTG)-mediated protein immobilization was demonstrated. To generate a reactive surface for MTG, a 96-well polystyrene microtiter plate was physically coated with casein, a good MTG substrate. Successful immobilization of recombinant AP to the nanolayer of casein on the surface of the microtiter plate was verified by the detection of enzymatic activity. Since little activity was observed when wild-type AP was used, immobilization of NK-AP was likely directed by the specific peptide tag. When polymeric casein prepared by MTG was used as a matrix on the plate, the loading capacity of AP was increased about 2-fold compared to when casein was used as the matrix. Transglutaminase-mediated site-specific posttranslational modification of proteins offers one way of generating a variety of protein-based solid formulations for biotechnological applications.

  13. Whey protein supplementation accelerates satellite cell proliferation during recovery from eccentric exercise.

    PubMed

    Farup, Jean; Rahbek, Stine Klejs; Knudsen, Inge Skovgaard; de Paoli, Frank; Mackey, Abigail L; Vissing, Kristian

    2014-11-01

    Human skeletal muscle satellite cells (SCs) are essential for muscle regeneration and remodeling processes in healthy and clinical conditions involving muscle breakdown. However, the potential influence of protein supplementation on post-exercise SC regulation in human skeletal muscle has not been well investigated. In a comparative human study, we investigated the effect of hydrolyzed whey protein supplementation following eccentric exercise on fiber type-specific SC accumulation. Twenty-four young healthy subjects received either hydrolyzed whey protein + carbohydrate (whey, n = 12) or iso-caloric carbohydrate (placebo, n = 12) during post-exercise recovery from 150 maximal unilateral eccentric contractions. Prior to and 24, 48 and 168 h post-exercise, muscle biopsies were obtained from the exercise leg and analyzed for fiber type-specific SC content. Maximal voluntary contraction (MVC) and serum creatine kinase (CK) were evaluated as indices of recovery from muscle damage. In type II fiber-associated SCs, the whey group increased SCs/fiber from 0.05 [0.02; 0.07] to 0.09 [0.06; 0.12] (p < 0.05) and 0.11 [0.06; 0.16] (p < 0.001) at 24 and 48 h, respectively, and exhibited a difference from the placebo group (p < 0.05) at 48 h. The whey group increased SCs/myonuclei from 4 % [2; 5] to 10 % [4; 16] (p < 0.05) at 48 h, whereas the placebo group increased from 5 % [2; 7] to 9 % [3; 16] (p < 0.01) at 168 h. MVC decreased (p < 0.001) and muscle soreness and CK increased (p < 0.001), irrespective of supplementation. In conclusion, whey protein supplementation may accelerate SC proliferation as part of the regeneration or remodeling process after high-intensity eccentric exercise.

  14. Effect of proteins from beef, pork, and turkey meat on plasma and liver lipids of rats compared with casein and soy protein.

    PubMed

    Brandsch, Corinna; Shukla, Anjali; Hirche, Frank; Stangl, Gabriele I; Eder, Klaus

    2006-01-01

    We assessed the effect of dietary proteins isolated from beef, pork, and turkey meat on concentrations of cholesterol and triacylglycerols in plasma, lipoproteins, and liver and the composition of the microsomal membrane (fatty acids, phosphatidylcholine/phosphatidylethanolamine ratio) compared with that of casein and soy protein in rats. Five groups of 12 rats each were fed semisynthetic diets for 20 d that contained 200 g/kg of proteins isolated from beef, pork, or turkey meat or, as controls, casein or soy protein. Rats fed beef, pork, or turkey proteins did not differ in cholesterol concentrations of plasma, lipoproteins, and liver and in composition of microsomal membrane from rats fed the casein diet. All groups fed a protein from an animal source had higher very low-density lipoprotein (VLDL) and liver cholesterol concentrations than did rats fed soy protein. However, rats fed pork protein had lower concentrations of triacylglycerols in liver, plasma, and VLDL and lower mRNA concentrations of sterol regulatory element binding protein-1 and glucose-6-phosphate dehydrogenase than did rats fed casein. However, concentrations of plasma and VLDL triacylglycerols in rats fed pork protein were not as low as those observed in rats fed soy protein. Proteins isolated from beef, pork, or turkey meat do not differ from casein in their effects on cholesterol metabolism. Pork protein decreases plasma triacylglycerol concentrations compared with casein but not compared with soy protein. The triacylglycerol-lowering effect of pork protein compared with casein is suggested to be caused by decreased hepatic fatty acid synthesis.

  15. Whey Protein Attenuates Angiotensin II-Primed Premature Senescence of Vascular Smooth Muscle Cells through Upregulation of SIRT1

    PubMed Central

    2017-01-01

    Whey protein, a by-product of milk curdling, exhibits diverse biological activities and is used as a dietary supplement. However, its effects on stress-induced vascular aging have not yet been elucidated. In this study, we found that whey protein significantly inhibited the Ang II-primed premature senescence of vascular smooth muscle cells (VSMCs). In addition, we observed a marked dose- and time-dependent increase in SIRT1 promoter activity and mRNA in VSMCs exposed to whey protein, accompanied by elevated SIRT1 protein expression. Ang II-mediated repression of SIRT1 level was dose-dependently reversed in VSMCs treated with whey protein, suggesting that SIRT1 is involved in preventing senescence in response to this treatment. Furthermore, resveratrol, a well-defined activator of SIRT1, potentiated the effects of whey protein on Ang II-primed premature senescence, whereas sirtinol, an inhibitor of SIRT1, exerted the opposite. Taken together, these results indicated that whey protein-mediated upregulation of SIRT1 exerts an anti-senescence effect, and can thus ameliorate Ang IIinduced vascular aging as a dietary supplement. PMID:29725214

  16. Functional Biomaterials: Solution Electrospinning and Gelation of Whey Protein and Pullulan

    NASA Astrophysics Data System (ADS)

    Sullivan, Stephanie Tolstedt

    Utilizing biomaterials that are biodegradable, biocompatible and edible serve well for food products as well as biomedical applications. Biomaterials whey protein and pullulan both have these characteristics. Whey proteins (WP) have been used in food products for many years and more recently in pharmaceutical products. They have the ability to form both gels and stable foams. Pullulan (PULL) has also been used in both food and pharmaceutical products, and is a highly water soluble, non-gelling polysaccharide and has been used primarily as a film former. Herein, we investigate the ability of whey protein and pullulan to form nanofibers and gels. Combining their distinct properties allows the ability to uniquely manipulate nanofiber and gel characteristics and behavior for a variety of applications, from food to even tissue scaffolding. First, we determined the electrospinnability of aqueous whey protein solutions. Both whey protein isolate (WPI) and one of its major components beta--lactoglobulin (BLG), either in native or denatured form, yielded interesting micro and nanostructures when electrosprayed; while nanofiber production required blending with a spinnable polymer, poly(ethylene oxide) (PEO). WP:PEO solutions were also successfully electrospun at acidic pH (2≤pH≤3), which could improve shelf life. Fourier Transform Infrared Reflectance (FTIR) analysis of WP:PEO fiber mat indicated some variation in WP secondary structure with varying WPI concentration (as WPI increased, % alpha-helix increased and beta-turn decreased) and pH (as pH decreased from neutral (7.5) to acidic (2), % beta-sheet decreased and alpha-helix increased). X-ray Photoelectron Spectroscopy (XPS) also confirmed the presence of WP on the surface of the blend fibers, augmenting the FTIR analysis. Interestingly, WP:PEO composite nanofibers maintained its fibrous morphology at temperatures as high as 100 °C, above the 60 °C PEO melting point. Further, we show that the blend mats retained a

  17. Fractionation of sheep cheese whey by a scalable method to sequentially isolate bioactive proteins.

    PubMed

    Pilbrow, Jodi; Bekhit, Alaa El-Din A; Carne, Alan

    2016-07-15

    This study reports a procedure for the simultaneous purification of glyco(caseino)macropeptide, immunoglobulin, lactoperoxidase, lactoferrin, α-lactalbumin and β-lactoglobulin from sheep cheese sweet whey, an under-utilized by-product of cheese manufacture generated by an emerging sheep dairy industry in New Zealand. These proteins have recognized value in the nutrition, biomedical and health-promoting supplements industries. A sequential fractionation procedure using economical anion and cation exchange chromatography on HiTrap resins was evaluated. The whey protein fractionation is performed under mild conditions, requires only the adjustment of pH between ion exchange chromatography steps, does not require buffer exchange and uses minimal amounts of chemicals. The purity of the whey protein fractions generated were analyzed by reversed phase-high performance liquid chromatography and the identity of the proteins was confirmed by mass spectrometry. This scalable procedure demonstrates that several proteins of recognized value can be fractionated in reasonable yield and purity from sheep cheese whey in one streamlined process. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Effect of whey protein agglomeration on spray dried microcapsules containing Saccharomyces boulardii.

    PubMed

    Duongthingoc, Diep; George, Paul; Katopo, Lita; Gorczyca, Elizabeth; Kasapis, Stefan

    2013-12-01

    This work investigates the effect of whey protein agglomeration on the survivability of Saccharomyces boulardii within spray dried microcapsules. It attempts to go beyond phenomenological observations by establishing a relationship between physicochemical characteristics of the polymeric matrix and its effect on probiotic endurance upon spray drying. It is well known that this type of thermal shock has lethal consequences on the yeast cells. To avoid such undesirable outcome, we take advantage of the early agglomeration phenomenon observed for whey protein by adjusting the pH value of preparations close to isoelectric point (pH 4-5). During the subsequent process of spray drying, development of whey protein agglomerates induces formation of an early crust, and the protein in this molten globular state creates a cohesive network encapsulating the yeast cells. It appears that the early crust formation at a given sample pH and temperature regime during spray drying benefits the survivability of S. boulardii within microcapsules. Copyright © 2013. Published by Elsevier Ltd.

  19. The Influence of 8 Weeks of Whey-Protein and Leucine Supplementation on Physical and Cognitive Performance

    DTIC Science & Technology

    2010-01-01

    Influence of 8 Weeks of Whey Protein and Leucine Supplementation on Physical and Cognitive Performance 5a. GONTRAGT NUMBER FA8650-04-D-6472 5b. GRANT NUMBER...investigate the ability of whey -protein and leucine supplementation to enhance physical and cognitive performance and body composition. Thirty moderately fit...composition before and after supplementing their daily diet for 8 wk with either 19.7 g of whey protein and 6.2 g leucine (WPL) or a calorie-equivalent placebo

  20. Effects of combined β-hydroxy-β-methylbutyrate (HMB) and whey protein ingestion on symptoms of eccentric exercise-induced muscle damage.

    PubMed

    Shirato, Minayuki; Tsuchiya, Yosuke; Sato, Teruyuki; Hamano, Saki; Gushiken, Takeshi; Kimura, Naoto; Ochi, Eisuke

    2016-01-01

    The purpose of this study was to examine the effects of combined β-hydroxy-β-methylbutyrate (HMB) and whey protein ingestion on muscle strength and damage following a single bout of eccentric exercise. Eighteen untrained male subjects were assigned to HMB and Whey protein (HMB + Whey; 3 g/day HMB and 36.6 g/day whey protein, n = 6), HMB (3 g/day, n = 6), or whey protein (36.6 g/day, n = 6) groups. Ingestion commenced 7 days before non-dominant elbow flexor eccentric exercise (30 deg/sec, 6 reps × 7 sets) and continued until 4 days post-exercise. The maximal isometric strength, muscle soreness, plasma creatine kinase (CK), lactate dehydrogenase (LDH) were assessed pre-exercise, and at 1, 2, 3, and 5 days after exercise. The change scores of maximal isometric strength significantly decreased at day 1, 2, and 5 in the whey protein group compared to pre value and that in HMB + Whey protein and HMB groups decreased at day 1 and 5. The muscle soreness significantly increased in the whey and HMB + Whey protein groups at day 3 compared to pre value (p < 0.05). CK and LDH significantly increased (time effect: p < 0.05) after exercise. However, all data were not significant difference among the groups. These results suggest that ingestion of combined HMB and whey protein does not have a role to inhibit muscle strength loss and soreness, and decrease in muscle damage markers after eccentric exercise in comparison with HMB and whey protein alone.

  1. Beta-carotene encapsulated in food protein nanoparticles reduces peroxyl radical oxidation in Caco-2 cells

    USDA-ARS?s Scientific Manuscript database

    Beta-carotene (BC) was encapsulated by sodium caseinate (SC), whey protein isolate (WPI), and soybean protein isolate (SPI) by the homogenization-evaporation method forming nanoparticles of 78, 90 and 370 nm diameter. Indices of the chemical antioxidant assays, the reducing power, DPPH radical scave...

  2. Consumer perception of astringency in clear acidic whey protein beverages.

    PubMed

    Childs, Jessica L; Drake, MaryAnne

    2010-01-01

    Acidic whey protein beverages are a growing component of the functional food and beverage market. These beverages are also astringent, but astringency is an expected and desirable attribute of many beverages (red wine, tea, coffee) and may not necessarily be a negative attribute of acidic whey protein beverages. The goal of this study was to define the consumer perception of astringency in clear acidic whey protein beverages. Six focus groups (n=49) were held to gain understanding of consumer knowledge of astringency. Consumers were presented with beverages and asked to map them based on astringent mouthfeel and liking. Orthonasal thresholds for whey protein isolate (WPI) in water and flavored model beverages were determined using a 7-series ascending forced choice method. Mouthfeel/basic taste thresholds were determined for WPI in water. Acceptance tests on model beverages were conducted using consumers (n=120) with and without wearing nose clips. Consumers in focus groups were able to identify astringency in beverages. Astringency intensity was not directly related to dislike. The orthonasal threshold for WPI in water was lower (P < 0.05) than the mouthfeel/basic taste threshold of WPI in water. Consumer acceptance of beverages containing WPI was lower (P < 0.05) when consumers were not wearing nose clips compared to acceptance scores of beverages when consumers were wearing nose clips. These results suggest that flavors contributed by WPI in acidic beverages are more objectionable than the astringent mouthfeel and that both flavor and astringency should be the focus of ongoing studies to improve the palatability of these products. © 2010 Institute of Food Technologists®

  3. Milk proteins interact with goat Binder of SPerm (BSP) proteins and decrease their binding to sperm.

    PubMed

    de Menezes, Erika Bezerra; van Tilburg, Mauricio; Plante, Geneviève; de Oliveira, Rodrigo V; Moura, Arlindo A; Manjunath, Puttaswamy

    2016-11-01

    Seminal plasma Binder of SPerm (BSP) proteins bind to sperm at ejaculation and promote capacitation. When in excess, however, BSP proteins damage the sperm membrane. It has been suggested that milk components of semen extenders associate with BSP proteins, potentially protecting sperm. Thus, this study was conducted to investigate if milk proteins interact with BSP proteins and reduce BSP binding to goat sperm. Using gel filtration chromatography, milk was incubated with goat seminal plasma proteins and loaded onto columns with and without calcium. Milk was also fractionated into parts containing mostly whey proteins or mostly caseins, incubated with seminal plasma proteins and subjected to gel filtration. Eluted fractions were evaluated by immunoblot using anti-goat BSP antibodies, confirming milk protein-BSP protein interactions. As determined by ELISA, milk proteins coated on polystyrene wells bound to increasing of goat BSP proteins. Far-western dot blots confirmed that BSP proteins bound to caseins and β-lactoglobulin in a concentration-dependent manner. Then, cauda epididymal sperm from five goats was incubated with seminal plasma; seminal plasma followed by milk; and milk followed by seminal plasma. Sperm membrane proteins were extracted and evaluated by immunoblotting. The pattern of BSP binding to sperm membrane proteins was reduced by 59.3 % when epididymal sperm were incubated with seminal plasma and then with skimmed milk (p < 0.05). When epididymal sperm were treated with milk followed by seminal plasma, coating of sperm with BSP proteins was not significantly reduced (57.6 %; p > 0.05). In conclusion, goat BSP proteins have an affinity for caseins and whey proteins. Milk reduces BSP binding to goat sperm, depending whether or not sperm had been previously exposed to seminal plasma. Such events may explain the protective effect of milk during goat sperm preservation.

  4. Pasting and extrusion properties of mixed carbohydrates and whey protein isolate matrices

    USDA-ARS?s Scientific Manuscript database

    Mixed systems of whey protein isolate (WPI) or texturized WPI (tWPI) and different starches may form weak or strong gel pastes or rigid matrices depending on interactions. The paste viscoelasticity of starches from amioca, barley, corn starch, Hylon VII, plantain, and pea starch, mixed with whey pro...

  5. Rheology and microstructure of kefiran and whey protein mixed gels.

    PubMed

    Kazazi, Hosayn; Khodaiyan, Faramarz; Rezaei, Karamatollah; Pishvaei, Malihe; Mohammadifar, Mohammad Amin; Moieni, Sohrab

    2017-04-01

    The effect of kefiran on cold-set gelation of whey protein isolate (WPI) at 25 °C was studied using rheological measurements and environmental scanning electron microscopy (ESEM). The gelation of samples was induced by the addition of glucono-δ-lactone to the dispersions. WPI concentration was maintained at 8% (w/v) and the concentration of kefiran varied from 0 to 0.08% (w/v). According to rheological measurements, the addition of kefiran into WPI dispersions resulted in a significant increase in the gel strength, the yield stress, and the shear stress values at the flowing point. The gelling point and gelation pH of samples decreased significantly with an increase in kefiran concentration. ESEM micrographs showed that the presence of kefiran played an important role in the microstructure formation of gels. The microstructure of kefiran-WPI mixed gels was more compact and dense, compared to the WPI gel. Depletion interactions between kefiran and whey protein aggregates can be regarded as the chief factor which was responsible for these effects. The present work demonstrated that rheological and microstructural properties of acid-induced whey protein gels were improved by the addition of kefiran.

  6. Analysis of the endogenous peptide profile of milk: identification of 248 mainly casein-derived peptides.

    PubMed

    Baum, Florian; Fedorova, Maria; Ebner, Jennifer; Hoffmann, Ralf; Pischetsrieder, Monika

    2013-12-06

    Milk is an excellent source of bioactive peptides. However, the composition of the native milk peptidome has only been partially elucidated. The present study applied matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) directly or after prefractionation of the milk peptides by reverse-phase high-performance liquid chromatography (RP-HPLC) or OFFGEL fractionation for the comprehensive analysis of the peptide profile of raw milk. The peptide sequences were determined by MALDI-TOF/TOF or nano-ultra-performance liquid chromatography-nanoelectrospray ionization-LTQ-Orbitrap-MS. Direct MALDI-TOF-MS analysis led to the assignment of 57 peptides. Prefractionation by both complementary methods led to the assignment of another 191 peptides. Most peptides originate from α(S1)-casein, followed by β-casein, and α(S2)-casein. κ-Casein and whey proteins seem to play only a minor role as peptide precursors. The formation of many, but not all, peptides could be explained by the activity of the endogenous peptidases, plasmin or cathepsin D, B, and G. Database searches revealed the presence of 22 peptides with established physiological function, including those with angiotensin-converting-enzyme (ACE) inhibitory, immunomodulating, or antimicrobial activity.

  7. Effects of carbohydrate/protein ratio on the microstructure and the barrier and sorption properties of wheat starch-whey protein blend edible films.

    PubMed

    Basiak, Ewelina; Lenart, Andrzej; Debeaufort, Frédéric

    2017-02-01

    Starch and whey protein isolate and their mixtures were used for making edible films. Moisture sorption isotherms, water vapour permeability, sorption of aroma compounds, microstructure, water contact angle and surface properties were investigated. With increasing protein content, the microstructure changes became more homogeneous. The water vapour permeability increases with both the humidity gradient and the starch content. For all films, the hygroscopicity increases with starch content. Surface properties change according to the starch/whey protein ratio and are mainly related to the polar component of the surface tension. Films composed of 80% starch and 20% whey proteins have more hydrophobic surfaces than the other films due to specific interactions. The effect of carbohydrate/protein ratio significantly influences the microstructure, the surface wettability and the barrier properties of wheat starch-whey protein blend films. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  8. Effects of the conjugation of whey proteins with gellan polysaccharides on surfactant-induced competitive displacement from the air-water interface.

    PubMed

    Cai, B; Ikeda, S

    2016-08-01

    Whey proteins can be used to stabilize foams and emulsions against coalescence because of their ability to form viscoelastic films at the interface that resist film rupture on collision between colloidal particles. However, whey proteins are competitively displaced from the interface if small-molecule surfactants are added, leading to destabilization of the entire system. This is because surfactants are more effective in molecular packing at the interface, and they lower interfacial tension to a greater degree than whey proteins do, but their interfacial films are poor in viscoelasticity. We hypothesized that whey proteins would become more resistant to surfactant-induced competitive displacement if they were conjugated with network-forming polysaccharides. The protein moiety of the conjugate would be expected to enable its adsorption to the interface, and the polysaccharide moiety would be expected to form self-assembled networks, strengthening the interfacial film as a whole. In this study, whey proteins were conjugated with gellan polysaccharides using the Maillard reaction. Atomic force microscopy images of interfacial films formed by the whey protein-gellan conjugate at the air-water interface and transferred onto mica sheets using the Langmuir-Blodgett method revealed that gellan did form self-assembled networks at the interface and that interfacial films also contained a large number of unconjugated whey protein molecules. Following the addition of a small-molecule surfactant (Tween 20) to the sub-phase, surface pressure increased, indicating spontaneous adsorption of surfactants to the interface. Atomic force microscopy images showed decreases in interfacial area coverage by whey proteins as surface pressure increased. At a given surface pressure, the interfacial area coverage by whey protein-gellan conjugates was greater than coverage by unconjugated whey proteins, confirming that whey proteins became more resistant to surfactant-induced displacement after

  9. Ingestion of partially hydrolyzed whey protein suppresses epicutaneous sensitization to β-lactoglobulin in mice.

    PubMed

    Matsubara, Takeshi; Iwamoto, Hiroshi; Nakazato, Yuki; Okamoto, Tomoyuki; Ehara, Tatsuya; Izumi, Hirohisa; Takeda, Yasuhiro

    2018-03-08

    Epicutaneous sensitization to food allergens can occur through defective skin barriers. However, the relationship between oral tolerance and epicutaneous sensitization remains to be elucidated. We aimed to determine whether prior oral exposure to whey proteins or their hydrolysates prevents epicutaneous sensitization and subsequent food-allergic reaction to the whey protein, β-lactoglobulin (β-LG), and investigated the underlying mechanisms. BALB/c mice were given whey protein concentrate (WPC), two kinds of partial whey protein hydrolysate (PWH1 or PWH2), or extensive whey protein hydrolysate (EWH) in drinking water for 21 days. The mice were then epicutaneously sensitized with β-LG on tape-stripped skin. Sensitization was assessed by basophil activation tests and by measuring the level of serum β-LG-specific antibodies and cytokines secreted from β-LG-restimulated spleen and mesenteric lymph node (MLN) cells. Development of an allergic reaction was assessed by monitoring body temperature and by measuring mast cell protease-1 level in plasma after the β-LG oral challenge. Activated T-cell population among β-LG-restimulated MLN cells was also analyzed. In mice fed with WPC, PWH1, or PWH2, sensitization and the development of an allergic reaction were totally reduced. The acceleration of cytokine release from the spleen and MLN cells or T-cell activation was not evident after β-LG restimulation. In EWH-fed mice, a suppressive effect, though milder than that in WPC-, PWH1-, or PWH2-fed mice, was observed during the development of the allergic reaction. Prior oral exposure to partially hydrolyzed whey protein prevents epicutaneous sensitization and subsequent allergic response to β-LG in mice. © 2018 EAACI and John Wiley and Sons A/S. Published by John Wiley and Sons Ltd.

  10. Fractionation of whey protein isolate with supercritical carbon dioxide – process modeling and cost estimation

    USDA-ARS?s Scientific Manuscript database

    An economical and environmentally friendly whey protein fractionation process was developed using supercritical carbon dioxide (sCO2) as an acid to produce enriched fractions of alpha-lactalbumin (alpha-La) and beta-lactoglobulin (beta-Lg) from a commercial whey protein isolate (WPI) containing 55% ...

  11. Identification of dipeptidyl peptidase-IV inhibitory peptides from mare whey protein hydrolysates.

    PubMed

    Song, J J; Wang, Q; Du, M; Ji, X M; Mao, X Y

    2017-09-01

    Inhibition of dipeptidyl peptidase-IV (DPP-IV) activity is a promising strategy for treatment of type 2 diabetes. In the current study, DPP-IV inhibitory peptides were identified from mare whey protein hydrolysates obtained by papain. The results showed that all the mare whey protein hydrolysates obtained at various hydrolysis durations possessed more potent DPP-IV inhibitory activity compared with intact whey protein. The 4-h hydrolysates showed the greatest DPP-IV inhibitory activity with half-maximal inhibitory concentration of 0.18 mg/mL. The 2 novel peptides from 4-h hydrolysate fractions separated by successive chromatographic steps were characterized by liquid chromatography-electrospray ionization tandem mass spectrometry. The novel peptides Asn-Leu-Glu-Ile-Ile-Leu-Arg and Thr-Gln-Met-Val-Asp-Glu-Glu-Ile-Met-Glu-Lys-Phe-Arg, which corresponded to β-lactoglobulin 1 f(71-77) and β-lactoglobulin 1 f(143-155), demonstrated DPP-IV inhibitory activity with half-maximal inhibitory concentrations of 86.34 and 69.84 μM, respectively. The DPP-IV inhibitory activity of the 2 peptides was retained or even improved after simulated gastrointestinal digestion in vitro. Our findings indicate that mare whey protein-derived peptides may possess potential as functional food ingredients in the management of type 2 diabetes. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  12. Impact of whey proteins on the systemic and local intestinal level of mice with diet induced obesity.

    PubMed

    Swiątecka, D; Złotkowska, D; Markiewicz, L H; Szyc, A M; Wróblewska, B

    2017-04-19

    Obesity is a serious public health problem and being multifactorial is difficult to tackle. Since the intestinal ecosystem's homeostasis is, at least partially, diet-dependent, its modulation may be triggered by food components that are designed to exert a modulatory action leading to a health-promoting effect. Milk whey proteins, are considered as such promising factors since they influence satiation as well as body weight and constitute the source of biologically active peptides which may modulate health status locally and systemically. This way, whey proteins are associated with obesity. Therefore, this paper is aimed at the estimation of the impact of whey proteins using a commercially available whey protein isolate on the physiological response of mice with diet-induced obesity. The physiological response was evaluated on the local-intestinal level, scrutinizing intestinal microbiota as one of the important factors in obesity and on the systemic level, analyzing the response of the organism. Whey proteins brought about the decrease of the fat mass with a simultaneous increase of the lean mass of animals with diet induced obesity, which is a promising, health-promoting effect. Whey proteins also proved to act beneficially helping restore the number of beneficial bifidobacteria in obese animals and decreasing the calorie intake and fat mass as well as the LDL level. Overall, supplementation of the high fat diet with whey proteins acted locally by restoration of the intestinal ecosystem, thus preventing dysbiosis and its effects and also acted systemically by strengthening the organism increasing the lean mass and thus hindering obesity-related detrimental effects.

  13. Short communication: Effect of whey protein addition and transglutaminase treatment on the physical and sensory properties of reduced-fat ice cream.

    PubMed

    Danesh, Erfan; Goudarzi, Mostafa; Jooyandeh, Hossein

    2017-07-01

    The effects of whey protein addition and transglutaminase treatment, alone and in combination, on the physical and sensory properties of reduced-fat ice cream were investigated. Adding whey protein with or without enzyme treatment decreased melting rate, overrun, and hardness of the reduced-fat ice cream; however, the enzyme-treated sample had a higher melting rate and overrun and softer texture. Whey protein-fortified samples showed higher melting resistance, but lower overrun and firmer texture compared with the enzyme-treated sample without added whey protein. Whey protein addition with or without transglutaminase treatment caused an increase in apparent viscosity and a decrease in flow index of the reduced-fat ice cream; nevertheless, the flow behavior of full-fat sample was most similar to the enzyme-treated reduced-fat sample with no added whey protein. Descriptive sensory analyses showed that neither whey protein addition nor transglutaminase treatment significantly influenced the flavor and odor of reduced-fat ice cream, but they both noticeably improved the color and texture of the final product. The results of this study suggest that whey protein addition with transglutaminase treatment improves the physical and sensory properties of reduced-fat ice cream more favorably than does whey protein addition or transglutaminase treatment alone. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  14. Cellular uptake of beta-carotene from protein stabilized solid lipid nano-particles prepared by homogenization-evaporation method

    USDA-ARS?s Scientific Manuscript database

    Using a homogenization-evaporation method, beta-carotene (BC) loaded nano-particles were prepared with different ratios of food-grade sodium caseinate (SC), whey protein isolate (WPI), or soy protein isolate (SPI) to BC and evaluated for their physiochemical stability, in vitro cytotoxicity, and cel...

  15. Structural changes induced by high-pressure processing in micellar casein and milk protein concentrates.

    PubMed

    Cadesky, Lee; Walkling-Ribeiro, Markus; Kriner, Kyle T; Karwe, Mukund V; Moraru, Carmen I

    2017-09-01

    Reconstituted micellar casein concentrates and milk protein concentrates of 2.5 and 10% (wt/vol) protein concentration were subjected to high-pressure processing at pressures from 150 to 450 MPa, for 15 min, at ambient temperature. The structural changes induced in milk proteins by high-pressure processing were investigated using a range of physical, physicochemical, and chemical methods, including dynamic light scattering, rheology, mid-infrared spectroscopy, scanning electron microscopy, proteomics, and soluble mineral analyses. The experimental data clearly indicate pressure-induced changes of casein micelles, as well as denaturation of serum proteins. Calcium-binding α S1 - and α S2 -casein levels increased in the soluble phase after all pressure treatments. Pressurization up to 350 MPa also increased levels of soluble calcium and phosphorus, in all samples and concentrations, whereas treatment at 450 MPa reduced the levels of soluble Ca and P. Experimental data suggest dissociation of calcium phosphate and subsequent casein micelle destabilization as a result of pressure treatment. Treatment of 10% micellar casein concentrate and 10% milk protein concentrate samples at 450 MPa resulted in weak, physical gels, which featured aggregates of uniformly distributed, casein substructures of 15 to 20 nm in diameter. Serum proteins were significantly denatured by pressures above 250 MPa. These results provide information on pressure-induced changes in high-concentration protein systems, and may inform the development on new milk protein-based foods with novel textures and potentially high nutritional quality, of particular interest being the soft gel structures formed at high pressure levels. The Authors. Published by the Federation of Animal Science Societies and Elsevier Inc. on behalf of the American Dairy Science Association®. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).

  16. Crystal structure of casein kinase-1, a phosphate-directed protein kinase.

    PubMed Central

    Xu, R M; Carmel, G; Sweet, R M; Kuret, J; Cheng, X

    1995-01-01

    The structure of a truncated variant of casein kinase-1 from Schizosaccharomyces pombe, has been determined in complex with MgATP at 2.0 A resolution. The model resembles the 'closed', ATP-bound conformations of the cyclin-dependent kinase 2 and the cAMP-dependent protein kinase, with clear differences in the structure of surface loops that impart unique features to casein kinase-1. The structure is of unphosphorylated, active conformation of casein kinase-1 and the peptide-binding site is fully accessible to substrate. Images PMID:7889932

  17. Antihypertensive and cardioprotective effects of the dipeptide isoleucine-tryptophan and whey protein hydrolysate.

    PubMed

    Martin, M; Kopaliani, I; Jannasch, A; Mund, C; Todorov, V; Henle, T; Deussen, A

    2015-12-01

    Angiotensin-converting enzyme inhibitors are treatment of choice in hypertensive patients. Clinically used inhibitors exhibit a structural similarity to naturally occurring peptides. This study evaluated antihypertensive and cardioprotective effects of ACE-inhibiting peptides derived from food proteins in spontaneously hypertensive rats. Isoleucine-tryptophan (in vitro IC50 for ACE = 0.7 μm), a whey protein hydrolysate containing an augmented fraction of isoleucine-tryptophan, or captopril was given to spontaneously hypertensive rats (n = 60) over 14 weeks. Two further groups, receiving either no supplement (Placebo) or intact whey protein, served as controls. Systolic blood pressure age-dependently increased in the Placebo group, whereas the blood pressure rise was effectively blunted by isoleucine-tryptophan, whey protein hydrolysate and captopril (-42 ± 3, -38 ± 5, -55 ± 4 mm Hg vs. Placebo). At study end, myocardial mass was lower in isoleucine-tryptophan and captopril groups but only partially in the hydrolysate group. Coronary flow reserve (1 μm adenosine) was improved in isoleucine-tryptophan and captopril groups. Plasma ACE activity was significantly decreased in isoleucine-tryptophan, hydrolysate and captopril groups, but in aortic tissue only after isoleucine-tryptophan or captopril treatment. This was associated with lowered expression and activity of matrix metalloproteinase-2. Following isoleucine-tryptophan and captopril treatments, gene expression of renin was significantly increased indicating an active feedback within renin-angiotensin system. Whey protein hydrolysate and isoleucine-tryptophan powerfully inhibit plasma ACE resulting in antihypertensive effects. Moreover, isoleucine-tryptophan blunts tissue ACE activity, reduces matrix metalloproteinase-2 activity and improves coronary flow reserve. Thus, whey protein hydrolysate and particularly isoleucine-tryptophan may serve as innovative food additives with the goal of attenuating

  18. Alpha casein micelles show not only molecular chaperone-like aggregation inhibition properties but also protein refolding activity from the denatured state.

    PubMed

    Sakono, Masafumi; Motomura, Konomi; Maruyama, Tatsuo; Kamiya, Noriho; Goto, Masahiro

    2011-01-07

    Casein micelles are a major component of milk proteins. It is well known that casein micelles show chaperone-like activity such as inhibition of protein aggregation and stabilization of proteins. In this study, it was revealed that casein micelles also possess a high refolding activity for denatured proteins. A buffer containing caseins exhibited higher refolding activity for denatured bovine carbonic anhydrase than buffers including other proteins. In particular, a buffer containing α-casein showed about a twofold higher refolding activity compared with absence of α-casein. Casein properties of surface hydrophobicity, a flexible structure and assembly formation are thought to contribute to this high refolding activity. Our results indicate that casein micelles stabilize milk proteins by both chaperone-like activity and refolding properties. Copyright © 2010 Elsevier Inc. All rights reserved.

  19. Sensory and Functionality Differences of Whey Protein Isolate Bleached by Hydrogen or Benzoyl Peroxide.

    PubMed

    Smith, Tucker J; Foegeding, E Allen; Drake, MaryAnne

    2015-10-01

    Whey protein is a highly functional food ingredient used in a wide variety of applications. A large portion of fluid whey produced in the United States is derived from Cheddar cheese manufacture and contains annatto (norbixin), and therefore must be bleached. The objective of this study was to compare sensory and functionality differences between whey protein isolate (WPI) bleached by benzoyl peroxide (BP) or hydrogen peroxide (HP). HP and BP bleached WPI and unbleached controls were manufactured in triplicate. Descriptive sensory analysis and gas chromatography-mass spectrometry were conducted to determine flavor differences between treatments. Functionality differences were evaluated by measurement of foam stability, protein solubility, SDS-PAGE, and effect of NaCl concentration on gelation relative to an unbleached control. HP bleached WPI had higher concentrations of lipid oxidation and sulfur containing volatile compounds than both BP and unbleached WPI (P < 0.05). HP bleached WPI was characterized by high aroma intensity, cardboard, cabbage, and fatty flavors, while BP bleached WPI was differentiated by low bitter taste. Overrun and yield stress were not different among WPI (P < 0.05). Soluble protein loss at pH 4.6 of WPI decreased by bleaching with either hydrogen peroxide or benzoyl peroxide (P < 0.05), and the heat stability of WPI was also distinct among WPI (P < 0.05). SDS PAGE results suggested that bleaching of whey with either BP or HP resulted in protein degradation, which likely contributed to functionality differences. These results demonstrate that bleaching has flavor effects as well as effects on many of the functionality characteristics of whey proteins. Whey protein isolate (WPI) is often used for its functional properties, but the effect of oxidative bleaching chemicals on the functional properties of WPI is not known. This study identifies the effects of hydrogen peroxide and benzoyl peroxide on functional and flavor characteristics of WPI

  20. Properties of Cast Films Made from Different Ratios of Whey Protein Isolate, Hydrolysed Whey Protein Isolate and Glycerol

    PubMed Central

    Schmid, Markus

    2013-01-01

    Whey protein isolate (WPI)-based cast films are very brittle, due to several chain interactions caused by a large amount of different functional groups. In order to overcome film brittleness, plasticizers, like glycerol, are commonly used. As a result of adding plasticizers, the free volume between the polymer chains increases, leading to higher permeability values. The objective of this study was to investigate the effect of partially substituting glycerol by hydrolysed whey protein isolate (h-WPI) in WPI-based cast films on their mechanical, optical and barrier properties. As recently published by the author, it is proven that increasing the h-WPI content in WPI-based films at constant glycerol concentrations significantly increases film flexibility, while maintaining the barrier properties. The present study considered these facts in order to increase the barrier performance, while maintaining film flexibility. Therefore glycerol was partially replaced by h-WPI in WPI-based cast films. The results clearly indicate that partially replacing glycerol by h-WPI reduces the oxygen permeability and the water vapor transmission rate, while the mechanical properties did not change significantly. Thus, film flexibility was maintained, even though the plasticizer concentration was decreased. PMID:28811434

  1. Soluble Milk Proteins Improve Muscle Mass Recovery after Immobilization-Induced Muscle Atrophy in Old Rats but Do not Improve Muscle Functional Property Restoration.

    PubMed

    Verney, J; Martin, V; Ratel, S; Chavanelle, V; Bargetto, M; Etienne, M; Chaplais, E; Le Ruyet, P; Bonhomme, C; Combaret, L; Guillet, C; Boisseau, N; Sirvent, P; Dardevet, D

    2017-01-01

    Effect of 3 different dairy protein sources on the recovery of muscle function after limb immobilization in old rats. Longitudinal animal study. Institut National de la Recherche Agronomique (INRA). The study took part in a laboratory setting. Old rats were subjected to unilateral hindlimb immobilization for 8 days and then allowed to recover with 3 different dietary proteins: casein, soluble milk proteins or whey proteins for 49 days. Body weight, muscle mass, muscle fibre size, isometric, isokinetic torque, muscle fatigability and muscle oxidative status were measured before and at the end of the immobilization period and during the recovery period i.e 7, 21, 35 and 49 days post immobilization. In contrast to the casein diet, soluble milk proteins and whey proteins were efficient to favor muscle mass recovery after cast immobilization during aging. By contrast, none of the 3 diary proteins was able to improve muscle strength, power and fatigability showing a discrepancy between the recovery of muscle mass and function. However, the soluble milk proteins allowed a better oxidative capacity in skeletal muscle during the rehabilitation period. Whey proteins and soluble milk proteins improve muscle mass recovery after immobilization-induced muscle atrophy in old rats but do not allow muscle functional property restoration.

  2. The effect of microfiltration on color, flavor, and functionality of 80% whey protein concentrate.

    PubMed

    Qiu, Y; Smith, T J; Foegeding, E A; Drake, M A

    2015-09-01

    The residual annatto colorant in fluid Cheddar cheese whey is bleached to provide a neutral-colored final product. Currently, hydrogen peroxide (HP) and benzoyl peroxide are used for bleaching liquid whey. However, previous studies have shown that chemical bleaching causes off-flavor formation, mainly due to lipid oxidation and protein degradation. The objective of this study was to evaluate the efficacy of microfiltration (MF) on norbixin removal and to compare flavor and functionality of 80% whey protein concentrate (WPC80) from MF whey to WPC80 from whey bleached with HP or lactoperoxidase (LP). Cheddar cheese whey was manufactured from colored, pasteurized milk. The fluid whey was pasteurized and fat separated. Liquid whey was subjected to 4 different treatments: control (no bleaching; 50°C, 1 h), HP (250 mg of HP/kg; 50°C, 1 h), and LP (20 mg of HP/kg; 50°C, 1 h), or MF (microfiltration; 50°C, 1 h). The treated whey was then ultrafiltered, diafiltered, and spray-dried to 80% concentrate. The entire experiment was replicated 3 times. Proximate analyses, color, functionality, descriptive sensory and instrumental volatile analysis were conducted on WPC80. The MF and HP- and LP-bleached WPC80 displayed a 39.5, 40.9, and 92.8% norbixin decrease, respectively. The HP and LP WPC80 had higher cardboard flavors and distinct cabbage flavor compared with the unbleached and MF WPC80. Volatile compound results were consistent with sensory results. The HP and LP WPC80 were higher in lipid oxidation compounds (especially heptanal, hexanal, pentanal, 1-hexen-3-one, 2-pentylfuran, and octanal) compared with unbleached and MF WPC80. All WPC80 had >85% solubility across the pH range of 3 to 7. The microstructure of MF gels determined by confocal laser scanning showed an increased protein particle size in the gel network. MF WPC80 also had larger storage modulus values, indicating higher gel firmness. Based on bleaching efficacy comparable to chemical bleaching with HP

  3. Evidence Supports the Use of Soy Protein to Promote Cardiometabolic Health and Muscle Development.

    PubMed

    Paul, Greg; Mendelson, Garry J

    2015-01-01

    Consumption of adequate amounts of dietary protein can help individuals maintain a healthy body composition, especially when combined with resistance exercise and during weight loss. It is well established that dietary protein intake supports muscle development and helps reduce loss of lean body mass during weight loss. Numerous studies have demonstrated the efficacy of soy protein intake for promoting fat loss while preserving muscle mass and supporting lean body mass gains. In fact, soy protein and animal-based proteins both support weight loss and weight maintenance equally as part of an energy-restricted diet; however, soy protein offers additional cardiometabolic advantages. Key teaching points: Soy protein is a high-quality, plant-based protein that can be consumed throughout the life span. More human clinical studies have been conducted to assess the cholesterol-lowering effects of soy protein than any other cholesterol-lowering food ingredient. Ingestion of proteins with unique and complementary characteristics like soy, whey, and casein helps resistance-trained individuals achieve significant muscle growth. Recent research supports the efficacy of consuming a combination of soy, whey, and casein after resistance exercise to extend the time period that muscle building occurs.

  4. Cow's milk proteins in human milk.

    PubMed

    Coscia, A; Orrù, S; Di Nicola, P; Giuliani, F; Rovelli, I; Peila, C; Martano, C; Chiale, F; Bertino, E

    2012-01-01

    Cow's milk proteins (CMPs) are among the best characterized food allergens. Cow's milk contains more than twenty five different proteins, but only whey proteins alpha-lactalbumin, beta-lactoglobulin, bovine serum albumin (BSA), and lactoferrin, as well as the four caseins, have been identified as allergens. Aim of this study was to investigate by proteomics techniques cow's milk allergens in human colostrum of term and preterm newborns' mothers, not previously detected, in order to understand if such allergens could be cause of sensitization during lactation. Term colostrum samples from 62 healthy mothers and preterm colostrum samples from 11 healthy mothers were collected for this purpose. The most relevant finding was the detection of the intact bovine alpha-S1-casein in both term and preterm colostrum. Using this method, which allows direct proteins identification, beta-lactoglobulin was not detected in any of colostrum samples. According to our results bovine alpha 1 casein that is considered a major cow's milk allergen is readily secreted in human milk: further investigations are needed in order to clarify if alpha-1-casein has a major role in sensitization or tolerance to cow's milk of exclusively breastfed predisposed infants.

  5. High-Pressure-High-Temperature Processing Reduces Maillard Reaction and Viscosity in Whey Protein-Sugar Solutions.

    PubMed

    Avila Ruiz, Geraldine; Xi, Bingyan; Minor, Marcel; Sala, Guido; van Boekel, Martinus; Fogliano, Vincenzo; Stieger, Markus

    2016-09-28

    The aim of the study was to determine the influence of pressure in high-pressure-high-temperature (HPHT) processing on Maillard reactions and protein aggregation of whey protein-sugar solutions. Solutions of whey protein isolate containing either glucose or trehalose at pH 6, 7, and 9 were treated by HPHT processing or conventional high-temperature (HT) treatments. Browning was reduced, and early and advanced Maillard reactions were retarded under HPHT processing at all pH values compared to HT treatment. HPHT induced a larger pH drop than HT treatments, especially at pH 9, which was not associated with Maillard reactions. After HPHT processing at pH 7, protein aggregation and viscosity of whey protein isolate-glucose/trehalose solutions remained unchanged. It was concluded that HPHT processing can potentially improve the quality of protein-sugar-containing foods, for which browning and high viscosities are undesired, such as high-protein beverages.

  6. Comparison of the orogenic displacement of sodium caseinate with the caseins from the air-water interface by nonionic surfactants.

    PubMed

    Woodward, N C; Gunning, A P; Mackie, A R; Wilde, P J; Morris, V J

    2009-06-16

    Displacement of sodium caseinate from the air-water interface by nonionic surfactants Tween 20 and Tween 60 was observed by atomic force microscopy (AFM). The interfacial structure was sampled by Langmuir-Blodgett deposition onto freshly cleaved mica substrates. Protein displacement occurred through an orogenic mechanism: it involved the nucleation and growth of surfactant domains within the protein network, followed by failure of the protein network. The surface pressure at which failure of the protein network occurred was essentially independent of the type of surfactant. The major component of sodium caseinate is beta-casein, and previous studies at the air-water interface have shown that beta-casein networks are weak, failing at surface pressures below that observed for sodium caseinate. The other components of sodium caseinate are alpha(s)- and kappa-caseins. Studies of the displacement of alpha(s)-caseins from air-water interfaces show that these proteins also form weak networks that fail at surface pressures below that observed for sodium caseinate. However, kappa-casein was found to form strong networks that resisted displacement and failed at surface pressures comparable to those observed for sodium caseinate. The AFM images of the displacement suggest that, despite kappa-casein being a minor component, it dominates the failure of sodium caseinate networks: alpha(s)-casein and beta-casein are preferentially desorbed at lower surface pressures, allowing the residual kappa-casein to control the breakdown of the sodium caseinate network at higher surface pressures.

  7. Influence of casein as a percentage of true protein and protein level on color and texture of milks containing 1 and 2% fat.

    PubMed

    Misawa, Noriko; Barbano, David M; Drake, MaryAnne

    2016-07-01

    Combinations of fresh liquid microfiltration retentate of skim milk, ultrafiltered retentate and permeate produced from microfiltration permeate, cream, and dried lactose monohydrate were used to produce a matrix of 20 milks. The milks contained 5 levels of casein as a percentage of true protein of about 5, 25, 50, 75, and 80% and 4 levels of true protein of 3.0, 3.76, 4.34, and 5.0% with constant lactose percentage of 5%. The experiment was replicated twice and repeated for both 1 and 2% fat content. Hunter color measurements, relative viscosity, and fat globule size distribution were measured, and a trained panel documented appearance and texture attributes on all milks. Overall, casein as a percentage of true protein had stronger effects than level of true protein on Hunter L, a, b values, relative viscosity, and fat globule size when using fresh liquid micellar casein concentrates and milk serum protein concentrates produced by a combination of microfiltration and ultrafiltration. As casein as a percentage of true protein increased, the milks became more white (higher L value), less green (lower negative a value), and less yellow (lower b value). Relative viscosity increased and d(0.9) generally decreased with increasing casein as a percentage of true protein. Panelists perceived milks with increasing casein as a percentage of true protein as more white, more opaque, and less yellow. Panelists were able to detect increased throat cling and mouthcoating with increased casein as a percentage of true protein in 2% milks, even when differences in appearance among milks were masked. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  8. Contrarily to whey and high protein diets, dietary free leucine supplementation cannot reverse the lack of recovery of muscle mass after prolonged immobilization during ageing.

    PubMed

    Magne, Hugues; Savary-Auzeloux, Isabelle; Migné, Carole; Peyron, Marie-Agnès; Combaret, Lydie; Rémond, Didier; Dardevet, Dominique

    2012-04-15

    During ageing, immobilization periods increase and are partially responsible of sarcopaenia by inducing a muscle atrophy which is hardly recovered from. Immobilization-induced atrophy is due to an increase of muscle apoptotic and proteolytic processes and decreased protein synthesis. Moreover, previous data suggested that the lack of muscle mass recovery might be due to a defect in protein synthesis response during rehabilitation. This study was conducted to explore protein synthesis during reloading and leucine supplementation effect as a nutritional strategy for muscle recovery. Old rats (22–24 months old) were subjected to unilateral hindlimb casting for 8 days (I8) and allowed to recover for 10–40 days (R10–R40). They were fed a casein (±leucine) diet during the recovery. Immobilized gastrocnemius muscles atrophied by 20%, and did not recover even at R40. Amount of polyubiquitinated conjugates and chymotrypsin- and trypsin-like activities of the 26S proteasome increased. These changes paralleled an ‘anabolic resistance' of the protein synthesis at the postprandial state (decrease of protein synthesis, P-S6 and P-4E-BP1). During the recovery, proteasome activities remained elevated until R10 before complete normalization and protein synthesis was slightly increased. With free leucine supplementation during recovery, if proteasome activities were normalized earlier and protein synthesis was higher during the whole recovery, it nevertheless failed in muscle mass gain. This discrepancy could be due to a ‘desynchronization' between the leucine signal and the availability of amino acids coming from casein digestion. Thus, when supplemented with leucine-rich proteins (i.e. whey) and high protein diets, animals partially recovered the muscle mass loss.

  9. Contrarily to whey and high protein diets, dietary free leucine supplementation cannot reverse the lack of recovery of muscle mass after prolonged immobilization during ageing

    PubMed Central

    Magne, Hugues; Savary-Auzeloux, Isabelle; Migné, Carole; Peyron, Marie-Agnès; Combaret, Lydie; Rémond, Didier; Dardevet, Dominique

    2012-01-01

    During ageing, immobilization periods increase and are partially responsible of sarcopaenia by inducing a muscle atrophy which is hardly recovered from. Immobilization-induced atrophy is due to an increase of muscle apoptotic and proteolytic processes and decreased protein synthesis. Moreover, previous data suggested that the lack of muscle mass recovery might be due to a defect in protein synthesis response during rehabilitation. This study was conducted to explore protein synthesis during reloading and leucine supplementation effect as a nutritional strategy for muscle recovery. Old rats (22–24 months old) were subjected to unilateral hindlimb casting for 8 days (I8) and allowed to recover for 10–40 days (R10–R40). They were fed a casein (±leucine) diet during the recovery. Immobilized gastrocnemius muscles atrophied by 20%, and did not recover even at R40. Amount of polyubiquitinated conjugates and chymotrypsin- and trypsin-like activities of the 26S proteasome increased. These changes paralleled an ‘anabolic resistance’ of the protein synthesis at the postprandial state (decrease of protein synthesis, P-S6 and P-4E-BP1). During the recovery, proteasome activities remained elevated until R10 before complete normalization and protein synthesis was slightly increased. With free leucine supplementation during recovery, if proteasome activities were normalized earlier and protein synthesis was higher during the whole recovery, it nevertheless failed in muscle mass gain. This discrepancy could be due to a ‘desynchronization’ between the leucine signal and the availability of amino acids coming from casein digestion. Thus, when supplemented with leucine-rich proteins (i.e. whey) and high protein diets, animals partially recovered the muscle mass loss. PMID:22351629

  10. Caseins from bovine colostrum and milk strongly bind piscidin-1, an antimicrobial peptide from fish.

    PubMed

    Kütt, Mary-Liis; Stagsted, Jan

    2014-09-01

    A model system of bovine colostrum and piscidin, a fish-derived antimicrobial peptide, was developed to study potential interactions of antimicrobial peptides in colostrum. We did not detect any antimicrobial activity of colostrum using the radial plate diffusion assay; in fact colostrum completely abrogated activity of added piscidin. This could not be explained by degradation of piscidin by colostrum, which was less than ten percent. We found that colostrum even protected piscidin against degradation by added proteases. We further observed that colostrum and milk rapidly quenched the fluorescence of fluorescein-piscidin but not that of fluorescein. This effect was not seen with BSA and the specific quenching of fluorescein-piscidin by colostrum was saturably inhibited with unlabeled piscidin. Size exclusion chromatography indicated that fluorescein-piscidin bound to casein micelles with no apparent binding to IgG or whey proteins. Further, addition of pure caseins was able to quench fluorescence of fluorescein-piscidin and to inhibit the antimicrobial activity of piscidin. The interaction between caseins and piscidin could be dissociated by guanidine hydrochloride and recovered piscidin had antimicrobial activity against bacteria. Based on our results we propose that caseins could be carriers for antimicrobial peptides in colostrum and milk. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Brown pigment formation in heated sugar-protein mixed suspensions containing unmodified and peptically modified whey protein concentrates.

    PubMed

    Rongsirikul, Narumol; Hongsprabhas, Parichat

    2016-01-01

    Commercial whey protein concentrate (WPC) was modified by heating the acidified protein suspensions (pH 2.0) at 80 °C for 30 min and treating with pepsin at 37 °C for 60 min. Prior to spray-drying, such modification did not change the molecular weights (MWs) of whey proteins determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). After spray-drying the modified whey protein concentrate with trehalose excipient (MWPC-TH), it was found that the α-lactalbumin (α-La) was the major protein that was further hydrolyzed the most. The reconstituted MWPC-TH contained β-lactoglobulin (β-Lg) as the major protein and small molecular weight (MW) peptides of less than 6.5 kDa. The reconstituted MWPC-TH had higher NH2 group, Trolox equivalent antioxidant capacity (TEAC), lower exposed aromatic ring and thiol (SH) contents than did the commercial WPC. Kinetic studies revealed that the addition of MWPC-TH in fructose-glycine solution was able to reduce brown pigment formation in the mixtures heated at 80 to 95 °C by increasing the activation energy (Ea) of brown pigment formation due to the retardation of fluoresced advanced glycation end product (AGEs) formation. The addition of MWPC to reducing sugar-glycine/commercial WPC was also able to lower brown pigment formation in the sterilized (121 °C, 15 min) mixed suspensions containing 0.1 M reducing sugar and 0.5-1.0 % glycine and/or commercial (P < 0.05). It was demonstrated that the modification investigated in this study selectively hydrolyzed α-La and retained β-Lg for the production of antibrowning whey protein concentrate.

  12. Reduced protein carbonylation of cube steak and catfish fillet using antioxidative coatings containing cheddar whey, casein hydrolyzate and oolong tea extract

    USDA-ARS?s Scientific Manuscript database

    Hydrolysis of casein using chymotrypsin results in the formation of polypeptides (casein hydrolyzate, CH) with a hydrophobic aromatic amino acid on one end of the chain because the enzyme selectively cleaves the adjacent peptide-bond. Due to resonance of the aromatic micro-domain, thiols become redo...

  13. Ingestion of soy-whey blended protein augments sports performance and ameliorates exercise-induced fatigue in a rat exercise model.

    PubMed

    Ren, Guangxu; Yi, Suqing; Zhang, Hongru; Wang, Jing

    2017-02-22

    This study sought to determine the effects of soy-whey blended protein supplementation on sports performance and related biochemical parameters after long-term training. After a week of adaptation, eighteen 6-week-old male Wistar rats were randomly assigned to 3 groups: the standard chow diet plus whey protein (Whey) group, the standard chow diet plus soy-whey blended protein (BP) group and the standard chow diet only (control) group. Each group included 6 rats for the seven-week experiment. Before the experiment, the baseline values of body weight, grasping force and time to exhaustion due to the loaded-swimming test were recorded for each group. During the experimental period, all rats performed the loaded-swimming test until exhaustion five days each week. The results showed that the mean maximum grasping force of the BP group significantly increased between the 5 th and the 7 th week (p < 0.05) compared with the other groups. The ingestion of blended protein for 7 weeks significantly increased the mean time to exhaustion due to swimming by 1.5-fold and 1.2-fold compared with the control and Whey groups, respectively. The plasma levels of leucine, isoleucine and valine were significantly higher at 60 min after the blended protein intervention compared with the Whey and control interventions (p < 0.05). Furthermore, the ingestion of soy-whey blended protein enhanced the activities of lactate dehydrogenase and superoxide dismutase and decreased the levels of malondialdehyde in serum. These results collectively suggest that soy-whey blended protein ingestion with resistance exercise can improve sports performance and ameliorate exercise-induced fatigue in rats.

  14. Including whey protein and whey permeate in ready-to-use supplementary food improves recovery rates in children with moderate acute malnutrition: a randomized, double-blind clinical trial.

    PubMed

    Stobaugh, Heather C; Ryan, Kelsey N; Kennedy, Julie A; Grise, Jennifer B; Crocker, Audrey H; Thakwalakwa, Chrissie; Litkowski, Patricia E; Maleta, Kenneth M; Manary, Mark J; Trehan, Indi

    2016-03-01

    The utility of dairy ingredients in the supplementary foods used in the treatment of childhood moderate acute malnutrition (MAM) remains unsettled. We evaluated the effectiveness of a peanut-based ready-to-use supplementary food (RUSF) with soy protein compared with a novel RUSF containing dairy ingredients in the form of whey permeate and whey protein concentrate in the treatment of children with MAM. We conducted a randomized, double-blind clinical effectiveness trial involving rural Malawian and Mozambican children 6-59 mo of age with MAM treated with either soy RUSF or a novel whey RUSF treatment of ~75 kcal · kg(-1) · d(-1) for up to 12 wk. The proportion of children that recovered from MAM was significantly higher in the group that received whey RUSF (960 of 1144; 83.9%) than in the group that received soy RUSF (874 of 1086; 80.5%; P < 0.04; risk difference 3.4%, 95% CI: 0.3%, 6.6%). Children who consumed whey RUSF also demonstrated better growth markers, with a higher mean midupper arm circumference (MUAC) at the time of discharge (P < 0.009), greater MUAC gain during the course of treatment (P < 0.003), higher mean weight-for-height z score at discharge (P < 0.008), and greater weight gain (P < 0.05). No significant differences were identified in length gain or time to recovery between the 2 groups. This study highlights the importance of milk protein in the treatment of MAM, because the use of a novel whey RUSF resulted in higher recovery rates and improved growth than did soy RUSF, although the whey RUSF supplement provided less total protein and energy than the soy RUSF. This study was registered at clinicaltrials.gov as NCT01790048. © 2016 American Society for Nutrition.

  15. The chaperone action of bovine milk αS1- and αS2-caseins and their associated form αS-casein.

    PubMed

    Treweek, Teresa M; Thorn, David C; Price, William E; Carver, John A

    2011-06-01

    α(S)-Casein, the major milk protein, comprises α(S1)- and α(S2)-casein and acts as a molecular chaperone, stabilizing an array of stressed target proteins against precipitation. Here, we report that α(S)-casein acts in a similar manner to the unrelated small heat-shock proteins (sHsps) and clusterin in that it does not preserve the activity of stressed target enzymes. However, in contrast to sHsps and clusterin, α-casein does not bind target proteins in a state that facilitates refolding by Hsp70. α(S)-Casein was also separated into α- and α-casein, and the chaperone abilities of each of these proteins were assessed with amorphously aggregating and fibril-forming target proteins. Under reduction stress, all α-casein species exhibited similar chaperone ability, whereas under heat stress, α-casein was a poorer chaperone. Conversely, α(S2)-casein was less effective at preventing fibril formation by modified κ-casein, whereas α- and α(S1)-casein were comparably potent inhibitors. In the presence of added salt and heat stress, α(S1)-, α- and α(S)-casein were all significantly less effective. We conclude that α(S1)- and α-casein stabilise each other to facilitate optimal chaperone activity of α(S)-casein. This work highlights the interdependency of casein proteins for their structural stability. Copyright © 2011 Elsevier Inc. All rights reserved.

  16. Comparative proteomic exploration of whey proteins in human and bovine colostrum and mature milk using iTRAQ-coupled LC-MS/MS.

    PubMed

    Yang, Mei; Cao, Xueyan; Wu, Rina; Liu, Biao; Ye, Wenhui; Yue, Xiqing; Wu, Junrui

    2017-09-01

    Whey, an essential source of dietary nutrients, is widely used in dairy foods for infants. A total of 584 whey proteins in human and bovine colostrum and mature milk were identified and quantified by the isobaric tag for relative and absolute quantification (iTRAQ) proteomic method. The 424 differentially expressed whey proteins were identified and analyzed according to gene ontology (GO) annotation, Kyoto encyclopedia of genes and genomes (KEGG) pathway, and multivariate statistical analysis. Biological processes principally involved biological regulation and response to stimulus. Major cellular components were extracellular region part and extracellular space. The most prevalent molecular function was protein binding. Twenty immune-related proteins and 13 proteins related to enzyme regulatory activity were differentially expressed in human and bovine milk. Differentially expressed whey proteins participated in many KEGG pathways, including major complement and coagulation cascades and in phagosomes. Whey proteins show obvious differences in expression in human and bovine colostrum and mature milk, with consequences for biological function. The results here increase our understanding of different whey proteomes, which could provide useful information for the development and manufacture of dairy products and nutrient food for infants. The advanced iTRAQ proteomic approach was used to analyze differentially expressed whey proteins in human and bovine colostrum and mature milk.

  17. Spray dried microparticles of chia oil using emulsion stabilized by whey protein concentrate and pectin by electrostatic deposition.

    PubMed

    Noello, C; Carvalho, A G S; Silva, V M; Hubinger, M D

    2016-11-01

    Chia seed oil has a high content of α-linolenic acid (60%) and linoleic acid (20%). Use of this oil in different products is limited due to its liquid state, and the presence of insaturation is a trigger for oxidation. In this context, to facilitate the incorporation of chia oil in food products and increase its protection against oxidation, the aim of this work was to produce chia oil microparticles by spray drying using emulsions stabilized by whey protein concentrate (ζ-potential +13.4 at pH3.8) and pectin (ζ-potential -40.4 at pH3.8) through the electrostatic layer-by-layer deposition technique and emulsions prepared with only whey protein concentrate. Emulsions stabilized by whey protein concentrate and stabilized by whey protein concentrate-pectin were prepared using maltodextrin (10 DE) and modified starch (Hi-Cap® 100). They were characterized in relation to stability, droplet size, ζ-Potential and optical microscopy. The microparticles were characterized in relation to moisture content, water activity, particle size, microstructure and oxidative stability by the Rancimat method. Emulsions stabilized by whey protein concentrate-pectin with added maltodextrin 10 DE and emulsions stabilized by whey protein concentrate with added modified starch (Hi-Cap® 100) were stable after 24h. Emulsions stabilized by whey protein concentrate and by whey protein concentrate-pectin showed droplets with mean diameter ranging from 0.80 to 1.31μm, respectively and ζ-potential varying from -6.9 to -27.43mV, respectively. After spray drying, the microparticles showed an mean diameter ranging from 7.00 to 9.00μm. All samples presented high encapsulation efficiency values, above 99%. Microparticles produced with modified starch showed a smoother spherical surface than particles with maltodextrin 10 DE, which presented a wrinkled surface. All microparticles exhibited higher oxidative stability than chia oil in pure form. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Toward Separating Alpha-lactalbumin and Beta-lactoglobulin Proteins from Whey through Cation-exchange Adsorption

    NASA Astrophysics Data System (ADS)

    El-Sayed, Mayyada; Chase, Howard

    2009-05-01

    This paper describes the cation-exchange adsorption of the two major whey proteins, alpha-lactalbumin (ALA) and beta-lactoglobulin (BLG) with the purpose of establishing a process for isolating them from cow's milk whey. The single- and two-component adsorption of 1.5 mg/ml ALA and 3 mg/ml BLG to the cation-exchanger SP Sepharose FF at 20° C using 0.1 M acetate buffer of pH 3.7 was studied. Langmuir isotherm parameters were determined for the pure proteins. In two-component systems, BLG breakthrough curve exhibited an overshoot phenomenon that gave evidence for the presence of a competitive adsorption between the two proteins. Complete separation occurred and it was possible to obtain each of the two proteins in a pure form. The process was then applied to a whey concentrate mixture where incomplete separation took place. However, BLG was produced with 95% purity and a recovery of 80%, while ALA showed an 84% recovery with low purity.

  19. Soluble Milk Protein Supplementation with Moderate Physical Activity Improves Locomotion Function in Aging Rats.

    PubMed

    Lafoux, Aude; Baudry, Charlotte; Bonhomme, Cécile; Le Ruyet, Pascale; Huchet, Corinne

    2016-01-01

    Aging is associated with a loss of muscle mass and functional capacity. Present study was designed to compare the impact of specific dairy proteins on muscular function with or without a low-intensity physical activity program on a treadmill in an aged rat model. We investigated the effects of nutritional supplementation, five days a week over a 2-month period with a slow digestible protein, casein or fast digestible proteins, whey or soluble milk protein, on strength and locomotor parameters in sedentary or active aged Wistar RjHan rats (17-19 months of age). An extensive gait analysis was performed before and after protein supplementation. After two months of protein administration and activity program, muscle force was evaluated using a grip test, spontaneous activity using an open-field and muscular mass by specific muscle sampling. When aged rats were supplemented with proteins without exercise, only minor effects of different diets on muscle mass and locomotion were observed: higher muscle mass in the casein group and improvement of stride frequencies with soluble milk protein. By contrast, supplementation with soluble milk protein just after physical activity was more effective at improving overall skeletal muscle function in old rats compared to casein. For active old rats supplemented with soluble milk protein, an increase in locomotor activity in the open field and an enhancement of static and dynamic gait parameters compared to active groups supplemented with casein or whey were observed without any differences in muscle mass and forelimb strength. These results suggest that consumption of soluble milk protein as a bolus immediately after a low intensity physical activity may be a suitable nutritional intervention to prevent decline in locomotion in aged rats and strengthen the interest to analyze the longitudinal aspect of locomotion in aged rodents.

  20. Soluble Milk Protein Supplementation with Moderate Physical Activity Improves Locomotion Function in Aging Rats

    PubMed Central

    Lafoux, Aude; Baudry, Charlotte; Bonhomme, Cécile; Le Ruyet, Pascale; Huchet, Corinne

    2016-01-01

    Aging is associated with a loss of muscle mass and functional capacity. Present study was designed to compare the impact of specific dairy proteins on muscular function with or without a low-intensity physical activity program on a treadmill in an aged rat model. We investigated the effects of nutritional supplementation, five days a week over a 2-month period with a slow digestible protein, casein or fast digestible proteins, whey or soluble milk protein, on strength and locomotor parameters in sedentary or active aged Wistar RjHan rats (17–19 months of age). An extensive gait analysis was performed before and after protein supplementation. After two months of protein administration and activity program, muscle force was evaluated using a grip test, spontaneous activity using an open-field and muscular mass by specific muscle sampling. When aged rats were supplemented with proteins without exercise, only minor effects of different diets on muscle mass and locomotion were observed: higher muscle mass in the casein group and improvement of stride frequencies with soluble milk protein. By contrast, supplementation with soluble milk protein just after physical activity was more effective at improving overall skeletal muscle function in old rats compared to casein. For active old rats supplemented with soluble milk protein, an increase in locomotor activity in the open field and an enhancement of static and dynamic gait parameters compared to active groups supplemented with casein or whey were observed without any differences in muscle mass and forelimb strength. These results suggest that consumption of soluble milk protein as a bolus immediately after a low intensity physical activity may be a suitable nutritional intervention to prevent decline in locomotion in aged rats and strengthen the interest to analyze the longitudinal aspect of locomotion in aged rodents. PMID:27973615

  1. Whey protein concentrate storage at elevated temperature and humidity

    USDA-ARS?s Scientific Manuscript database

    Dairy processors are finding new export markets for whey protein concentrate (WPC), a byproduct of cheesemaking, but they need to know if full-sized bags of this powder will withstand high temperature and relative humidity (RH) levels during unrefrigerated storage under tropical conditions. To answ...

  2. Fractionation of whey proteins with high-capacity superparamagnetic ion-exchangers.

    PubMed

    Heebøll-Nielsen, Anders; Justesen, Sune F L; Thomas, Owen R T

    2004-09-30

    In this study we describe the design, preparation and testing of superparamagnetic anion-exchangers, and their use together with cation-exchangers in the fractionation of bovine whey proteins as a model study for high-gradient magnetic fishing. Adsorbents prepared by attachment of trimethyl amine to particles activated in sequential reactions with allyl bromide and N-bromosuccinimide yielded a maximum bovine serum albumin binding capacity of 156 mg g(-1) combined with a dissociation constant of 0.60 microM, whereas ion-exchangers created by linking polyethylene imine through superficial aldehydes bound up to 337 mg g(-1) with a dissociation constant of 0.042 microM. The latter anion-exchanger was selected for studies of whey protein fractionation. In these, crude bovine whey was treated with a superparamagnetic cation-exchanger to adsorb basic protein species, and the supernatant arising from this treatment was then contacted with the anion-exchanger. For both adsorbent classes of ion-exchanger, desorption selectivity was subsequently studied by sequentially increasing the concentration of NaCl in the elution buffer. In the initial cation-exchange step quantitative removal of lactoferrin (LF) and lactoperoxidase (LPO) was achieved with some simultaneous binding of immunoglobulins (Ig). The immunoglobulins were separated from the other two proteins by desorbing with a low concentration of NaCl (< or = 0.4 M), whereas lactoferrin and lactoperoxidase were co-eluted in significantly purer form, e.g. lactoperoxidase was purified 28-fold over the starting material, when the NaCl concentration was increased to 0.4-1 M. The anion-exchanger adsorbed beta-lactoglobulin (beta-LG) selectively allowing separation from the remaining protein.

  3. New insight on the formation of whey protein microbeads by a microfluidic system

    NASA Astrophysics Data System (ADS)

    Andoyo, Robi; Guyomarc'h, Fanny; Tabuteau, Hervé; Famelart, Marie-Hélène

    2018-02-01

    The current paper describes the formation of whey protein microbeads (WPM) having a spherical shape and a monodispersed size distribution. A microfluidic flow-focusing geometry was used to control the production of whey protein microdroplets in a hydrophobic phase. The microfluidic system consists of two inlet channels where the WPI solution and the lipophilic phase were separately injected towards the flow-focusing (FF) junction where they eventually meet, then co-flow. A whey protein isolate (WPI) solution of 150 g/kg protein and two types of hydrophobic phases, i.e. sunflower oil and n-dodecane, were tested as the continuous phase. The formation of WPM was observed microscopically. The aim of the present study was to describe the production of stable monodisperse WPM in suspension in milk ultrafiltrate using a microfluidic system. Hints to perform the control of the running parameters, i.e. choice of the hydrophobic phase or fluids flowrates, are provided. The results showed that in the sunflower oil, microdroplets had a large polydisperse size distribution, while in n-dodecane, microdroplets with narrow size distribution were obtained. Stabilization of the whey protein microdroplets through heat-gelation at 75 °C for 20 min in n-dodecane produced WPM and no change in shape nor size is observed. Meanwhile replacing the n-dodecane by MUF using centrifugation and washing caused the swelling of the WPM, but dispersity remained low. From this study, microfluidic system seemed to be a suitable method to be used for producing small quantities of monodisperse WPM.

  4. The effect of chitosan and whey proteins-chitosan films on the growth of Penicillium expansum in apples.

    PubMed

    Simonaitiene, Dovile; Brink, Ieva; Sipailiene, Ausra; Leskauskaite, Daiva

    2015-05-01

    Penicillium expansum causes a major post-harvest disease of apples. The aim of this study was to investigate the inhibition effect of chitosan and whey proteins-chitosan films containing different amounts of quince and cranberry juice against P. expansum on the simulation medium and on apples. The mechanical properties of films were also evaluated. The presence of cranberry and quince juice in the composition of chitosan and whey proteins-chitosan films caused a significant (P ≤ 0.05) increase in elasticity and decrease in tensile strength of films. Chitosan and whey proteins-chitosan films with quince and cranberry juice demonstrated a significant (P ≤ 0.05) inhibition effect against P. expansum growth on the simulated medium and apples. The presence of cranberry juice in the composition of chitosan and whey proteins-chitosan films resulted in a longer lag phase and a lower P. expansum growth rate on the simulation medium in comparison with films made with the addition of quince juice. These differences were not evident when experiment was conducted with apples. Addition of quince and cranberry juice to the chitosan and whey proteins-chitosan films as natural antifungal agents has some potential for prolonging the shelf life of apples. © 2014 Society of Chemical Industry.

  5. Hydrolyzed whey protein prevents the development of food allergy to β-lactoglobulin in sensitized mice.

    PubMed

    Gomes-Santos, Ana Cristina; Fonseca, Roberta Cristelli; Lemos, Luisa; Reis, Daniela Silva; Moreira, Thaís Garcias; Souza, Adna Luciana; Silva, Mauro Ramalho; Silvestre, Marialice Pinto Coelho; Cara, Denise Carmona; Faria, Ana Maria Caetano

    2015-01-01

    Food allergy is an adverse immune response to dietary proteins. Hydrolysates are frequently used for children with milk allergy. However, hydrolysates effects afterwards are poorly studied. The aim of this study was to investigate the immunological consequences of hydrolyzed whey protein in allergic mice. For that, we developed a novel model of food allergy in BALB/c mice sensitized with alum-adsorbed β-lactoglobulin. These mice were orally challenged with either whey protein or whey hydrolysate. Whey-challenged mice had elevated levels of specific IgE and lost weight. They also presented gut inflammation, enhanced levels of SIgA and IL-5 as well as decreased production of IL-4 and IL-10 in the intestinal mucosa. Conversely, mice challenged with hydrolyzate maintained normal levels of IgE, IL-4 and IL-5 and showed no sign of gut inflammation probably due to increased IL-12 production in the gut. Thus, consumption of hydrolysate prevented the development of clinical signs of food allergy in mice. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. The effects of whey protein with or without carbohydrates on resistance training adaptations.

    PubMed

    Hulmi, Juha J; Laakso, Mia; Mero, Antti A; Häkkinen, Keijo; Ahtiainen, Juha P; Peltonen, Heikki

    2015-01-01

    Nutrition intake in the context of a resistance training (RT) bout may affect body composition and muscle strength. However, the individual and combined effects of whey protein and carbohydrates on long-term resistance training adaptations are poorly understood. A four-week preparatory RT period was conducted in previously untrained males to standardize the training background of the subjects. Thereafter, the subjects were randomized into three groups: 30 g of whey proteins (n = 22), isocaloric carbohydrates (maltodextrin, n = 21), or protein + carbohydrates (n = 25). Within these groups, the subjects were further randomized into two whole-body 12-week RT regimens aiming either for muscle hypertrophy and maximal strength or muscle strength, hypertrophy and power. The post-exercise drink was always ingested immediately after the exercise bout, 2-3 times per week depending on the training period. Body composition (by DXA), quadriceps femoris muscle cross-sectional area (by panoramic ultrasound), maximal strength (by dynamic and isometric leg press) and serum lipids as basic markers of cardiovascular health, were analysed before and after the intervention. Twelve-week RT led to increased fat-free mass, muscle size and strength independent of post-exercise nutrient intake (P < 0.05). However, the whey protein group reduced more total and abdominal area fat when compared to the carbohydrate group independent of the type of RT (P < 0.05). Thus, a larger relative increase (per kg bodyweight) in fat-free mass was observed in the protein vs. carbohydrate group (P < 0.05) without significant differences to the combined group. No systematic effects of the interventions were found for serum lipids. The RT type did not have an effect on the adaptations in response to different supplementation paradigms. Post-exercise supplementation with whey proteins when compared to carbohydrates or combination of proteins and carbohydrates did not have a major

  7. Rheology and microstructure of binary mixed gel of rice bran protein-whey: effect of heating rate and whey addition.

    PubMed

    Rafe, Ali; Vahedi, Elnaz; Hasan-Sarei, Azadeh Ghorbani

    2016-08-01

    Rice bran protein (RBP) is a valuable plant protein which has unique nutritional and hypoallergenic properties. Whey proteins have wide applications in the food industry, such as in dairy, meat and bakery products. Whey protein concentrate (WPC), RBP and their mixtures at different ratios (1:1, 1:2, 1:5 and 1:10 w/w) were heated from 20 to 90 °C at different heating rates (0.5, 1, 5 and 10 °C min(-1) ). The storage modulus (G') and gelling point (Tgel ) of WPC were higher than those of RBP, indicating the good ability of WPC to develop stiffer networks. By increasing the proportion of WPC in mixed systems, G' was increased and Tgel was reduced. Nevertheless, the elasticity of all binary mixtures was lower than that of WPC alone. Tgel and the final G' of RBP-WPC blends were increased by raising the heating rate. The RBP-WPC mixtures developed more elastic gels than RBP alone at different heating rates. RBP had a fibrillar and lentil-like structure whose fibril assembly had smaller structures than those of WPC. The gelling structure of the mixed gel of WPC-RBP was improved by adding WPC. Indeed, by adding WPC, gels tended to show syneresis and had lower water-holding capacity. Furthermore, the gel structure was produced by adding WPC to the non-gelling RBP, which is compatible with whey and can be applied as a functional food for infants and/or adults. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  8. Relative efficacy of casein or soya protein combined with palm or safflower-seed oil on hyperuricaemia in rats.

    PubMed

    Lo, Hui-Chen; Wang, Yao-Horng; Chiou, Hue-Ying; Lai, Shan-Hu; Yang, Yu

    2010-07-01

    Diets that ameliorate the adverse effects of uric acid (UA) on renal damage deserve attention. The effects of casein or soya protein combined with palm or safflower-seed oil on various serum parameters and renal histology were investigated on hyperuricaemic rats. Male Wistar rats administered with oxonic acid and UA to induce hyperuricaemia were fed with casein or soya protein plus palm- or safflower-seed oil-supplemented diets. Normal rats and hyperuricaemic rats with or without allopurinol treatment (150 mg/l in drinking water) were fed with casein plus maize oil-supplemented diets. After 8 weeks, allopurinol treatment and soya protein plus safflower-seed oil-supplemented diet significantly decreased serum UA in hyperuricaemic rats (one-way ANOVA; P < 0.05). In addition, soya protein and casein attenuated hyperuricaemia-induced decreases in serum albumin and insulin, respectively (two-way ANOVA; P < 0.05). Safflower-seed oil significantly decreased serum TAG and UA, whereas palm oil significantly increased serum cholesterol, TAG, blood urea N and creatinine. However, soya protein significantly decreased renal NO and nitrotyrosine and palm oil significantly decreased renal nitrotyrosine, TNF-alpha and interferon-gamma and increased renal transforming growth factor-beta. Casein with safflower-seed oil significantly attenuated renal tubulointerstitial nephritis, crystals and fibrosis. Comparing casein v. soya protein combined with palm or safflower-seed oil, the results support that casein with safflower-seed oil may be effective in attenuating hyperuricaemia-associated renal damage, while soya protein with safflower-seed oil may be beneficial in lowering serum UA and TAG.

  9. Structure modification and functionality of whey proteins: quantitative structure-activity relationship approach.

    PubMed

    Nakai, S; Li-Chan, E

    1985-10-01

    According to the original idea of quantitative structure-activity relationship, electric, hydrophobic, and structural parameters should be taken into consideration for elucidating functionality. Changes in these parameters are reflected in the property of protein solubility upon modification of whey proteins by heating. Although solubility is itself a functional property, it has been utilized to explain other functionalities of proteins. However, better correlations were obtained when hydrophobic parameters of the proteins were used in conjunction with solubility. Various treatments reported in the literature were applied to whey protein concentrate in an attempt to obtain whipping and gelling properties similar to those of egg white. Mapping simplex optimization was used to search for the best results. Improvement in whipping properties by pepsin hydrolysis may have been due to higher protein solubility, and good gelling properties resulting from polyphosphate treatment may have been due to an increase in exposable hydrophobicity. However, the results of angel food cake making were still unsatisfactory.

  10. Obtention and characterization of dried gels prepared with whey proteins, honey and hydrocolloids mixture.

    PubMed

    Rodriguez, Ana C; Torrez Irigoyen, Martín R; Navarro, Alba S; Yamul, Diego K

    2017-11-01

    Large amounts of honey and liquid whey derived from the dairy industry are produced in Argentina. Honey is exported in bulk and whey is transformed into whey protein concentrates and isolates. The objective of this work was to investigate the effect of pH, composition and storage time on the properties of dried gels with honey, whey proteins and hydrocolloids. Color properties varied according to pH and composition. The fracture stress of dried gels prepared with corn starch was higher than that of gels prepared with guar gum in all conditions assayed. Young's modulus was higher at pH 7 for both compositions and increased with storage time. Rubbery characteristics were found in dried gels with guar gum, while both corn starch and guar gum made the microstructure rougher. Multivariate analysis showed that samples could be grouped by pH. Panelists preferred pH 7 products over acidic ones, and no significant differences in sensory properties were found using either corn starch or guar gum in the formulation. The results demonstrated that it is possible to generate a new product, which may open new applications for honey and whey in food formulations. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  11. Functional properties of whey protein and its application in nanocomposite materials and functional foods

    NASA Astrophysics Data System (ADS)

    Walsh, Helen

    Whey is a byproduct of cheese making; whey proteins are globular proteins which can be modified and polymerized to add functional benefits, these benefits can be both nutritional and structural in foods. Modified proteins can be used in non-foods, being of particular interest in polymer films and coatings. Food packaging materials, including plastics, can linings, interior coatings of paper containers, and beverage cap sealing materials, are generally made of synthetic petroleum based compounds. These synthetic materials may pose a potential human health risk due to presence of certain chemicals such as Bisphenol A (BPA). They also add to environmental pollution, being difficult to degrade. Protein-based materials do not have the same issues as synthetics and so can be used as alternatives in many packaging types. As proteins are generally hydrophilic they must be modified structurally and their performance enhanced by the addition of waterproofing agents. Polymerization of whey proteins results in a network, adding both strength and flexibility. The most interesting of the food-safe waterproofing agents are the (large aspect ratio) nanoclays. Nanoclays are relatively inexpensive, widely available and have low environmental impact. The clay surface can be modified to make it organophilic and so compatible with organic polymers. The objective of this study is the use of polymerized whey protein (PWP), with reinforcing nanoclays, to produce flexible surface coatings which limit the transfer of contents while maintaining food safety. Four smectite and kaolin type clays, one treated and three natural were assessed for strengthening qualities and the potential waterproofing and plasticizing benefits of other additives were also analyzed. The nutritional benefits of whey proteins can also be used to enhance the protein content of various foodstuffs. Drinkable yogurt is a popular beverage in the US and other countries and is considered a functional food, especially when

  12. Characterization and evaluation of whey protein-based biofilms as substrates for in vitro cell cultures.

    PubMed

    Gilbert, Vanessa; Rouabhia, Mahmoud; Wang, Hongxum; Arnould, Anne-Lise; Remondetto, Gabriel; Subirade, Muriel

    2005-12-01

    Whey proteins-based biofilms were prepared using different plasticizers in order to obtain a biomaterial for the human keratinocytes and fibroblasts in vitro culture. The film properties were evaluated by Fourier Transform Infrared Spectroscopy (FTIR) technique and mechanical tests. A relationship was found between the decrease of intermolecular hydrogen bond strength and film mechanical behavior changes, expressed by a breaking stress and Young modulus values diminishing. These results allow stating that the film molecular configuration could induce dissimilarities in its mechanical properties. The films toxicity was assessed by evaluating the cutaneous cells adherence, growth, proliferation and structural stratification. Microscopic observation demonstrated that both keratinocytes and fibroblasts adhered to the biofilms. The trypan blue exclusion test showed that keratinocytes grew at a significantly high rate on all the biofilms. Structural analysis demonstrated that keratinocytes stratified when cultured on the whey protein-based biofilms and gave rise to multi-layered epidermal structures. The most organized epidermis was obtained with whey protein isolate/DEG biofilm. This structure had a well-organized basal layer under supra-basal and corneous layers. This study demonstrated that whey proteins, an inexpensive renewable resource which can be obtained readily, were non-toxic to cutaneous cells and thus they could be useful substrates for a variety of biomedical applications, including tissue engineering.

  13. Short communication: The effect of liquid storage on the flavor of whey protein concentrate.

    PubMed

    Park, Curtis W; Parker, Megan; Drake, MaryAnne

    2016-06-01

    Unit operations in dried dairy ingredient manufacture significantly influence sensory properties and, consequently, their use and consumer acceptance in a variety of ingredient applications. In whey protein concentrate (WPC) manufacture, liquid can be stored as whey or WPC before spray drying. The objective of this study was to determine the effect of storage, composition, and bleaching on the flavor of spray-dried WPC80. Liquid whey was manufactured and subjected to the following treatments: bleached or unbleached and liquid whey or liquid WPC storage. The experiment was replicated 3 times and included a no-storage control. All liquid storage was performed at 4°C for 24h. Flavor of the final spray-dried WPC80 was evaluated by a trained panel and volatile compound analyses. Storage of liquids increased cardboard flavor, decreased sweet aromatic flavor, and resulted in increased volatile lipid oxidation products. Bleaching altered the effect of liquid storage. Storage of unbleached liquid whey decreased sweet aromatic flavor and increased cardboard flavor and volatile lipid oxidation products compared with liquid WPC80 and no storage. In contrast, storage of bleached liquid WPC decreased sweet aromatic flavor and increased cardboard flavor and associated volatile lipid oxidation products compared with bleached liquid whey or no storage. These results confirm that liquid storage increases off-flavors in spray-dried protein but to a variable degree, depending on whether bleaching has been applied. If liquid storage is necessary, bleached WPC80 should be stored as liquid whey and unbleached WPC80 should be stored as liquid WPC to mitigate off-flavors. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  14. Effects of whey protein supplement in the elderly submitted to resistance training: systematic review and meta-analysis.

    PubMed

    Colonetti, Tamy; Grande, Antonio Jose; Milton, Karen; Foster, Charlie; Alexandre, Maria Cecilia Manenti; Uggioni, Maria Laura Rodrigues; Rosa, Maria Inês da

    2017-05-01

    We performed a systematic review to map the evidence and analyze the effect of whey protein supplementation in the elderly submitted to resistance training. A comprehensive search on Medline, LILACS, EMBASE, and the Cochrane Library for relevant publications was conducted until August 2015. The terms used in the search were: "Resistance training"; "Whey protein"; "Elderly". A total of 632 studies were screened. Five studies were included composing a sample of 391 patients. The supplement whey protein was associated with higher total protein ingestion 9.40 (95% CI: 4.03-14.78), and with an average change in plasma leucine concentration. The supplementation was also associated with increased mixed muscle protein synthesis 1.26 (95% CI: 0.46-2.07) compared to the control group. We observed an increase in total protein intake, resulting in increased concentration of leucine and mixed muscle protein fractional synthesis rate.

  15. Influence of heat and shear induced protein aggregation on the in vitro digestion rate of whey proteins.

    PubMed

    Singh, Tanoj K; Øiseth, Sofia K; Lundin, Leif; Day, Li

    2014-11-01

    Protein intake is essential for growth and repair of body cells, the normal functioning of muscles, and health related immune functions. Most food proteins are consumed after undergoing various degrees of processing. Changes in protein structure and assembly as a result of processing impact the digestibility of proteins. Research in understanding to what extent the protein structure impacts the rate of proteolysis under human physiological conditions has gained considerable interest. In this work, four whey protein gels were prepared using heat processing at two different pH values, 6.8 and 4.6, with and without applied shear. The gels showed different protein network microstructures due to heat induced unfolding (at pH 6.8) or lack of unfolding, thus resulting in fine stranded protein networks. When shear was applied during heating, particulate protein networks were formed. The differences in the gel microstructures resulted in considerable differences in their rheological properties. An in vitro gastric and intestinal model was used to investigate the resulting effects of these different gel structures on whey protein digestion. In addition, the rate of digestion was monitored by taking samples at various time points throughout the in vitro digestion process. The peptides in the digesta were profiled using SDS-polyacrylamide gel electrophoresis, reversed-phase-HPLC and LC-MS. Under simulated gastric conditions, whey proteins in structured gels were hydrolysed faster than native proteins in solution. The rate of peptides released during in vitro digestion differed depending on the structure of the gels and extent of protein aggregation. The outcomes of this work highlighted that changes in the network structure of the protein can influence the rate and pattern of its proteolysis under gastrointestinal conditions. Such knowledge could assist the food industry in designing novel food formulations to control the digestion kinetics and the release of biologically

  16. Nil Whey Protein Effect on Glycemic Control after Intense Mixed-Mode Training in Type 2 Diabetes.

    PubMed

    Gaffney, Kim Alexander; Lucero, Adam; Stoner, Lee; Faulkner, James; Whitfield, Patricia; Krebs, Jeremy; Rowlands, David Stephen

    2018-01-01

    Although intense endurance and resistance exercise training and whey protein supplementation have both been shown to independently improve glycemic control, no known studies have examined the effect of high-intensity mixed-mode interval training (MMIT) and whey supplementation in adults with Type 2 diabetes (T2D). This study aimed to determine if peritraining whey protein supplementation combined with MMIT can improve glycemic control. In a double-blind, randomized, placebo-controlled trial, 24 men (55.7 ± 5.6 yr) with T2D performed MMIT with whey (20 g) or placebo control for 10 wk. Glycemic control was assessed via glucose disposal rate during a euglycemic insulin clamp, fasting blood glucose concentration, and homeostatic model assessment of insulin resistance. Changes in peak oxygen consumption, 1-repetition maximum strength, vastus lateralis muscle, and subcutaneous adipose thicknesses, and waist circumference were also assessed. Ten weeks of MMIT substantially improved glucose disposal rate by 27.5% (90% confidence interval, 1.2%-60.7%) and 24.8% (-5.4% to 64.8%) in the whey and control groups, respectively. There were likely and possible reductions in fasting blood glucose by -17.4% (-30.6% to -1.6%) and homeostatic model assessment of insulin resistance by -14.1% (-25.3% to 1.08%) in the whey group; however, whey effects were not clearly beneficial to glycemic outcomes relative to the control. MMIT also clearly substantially improved 1-repetition maximum by 20.6% (16.3%-24.9%) and 22.7% (18.4%-27.2%), peak oxygen consumption by 22.6% (12.0%-26.2%) and 18.5% (10.5%-27.4%), and vastus lateralis muscle thickness by 18.9% (12.0%-26.2%) and 18.6% (10.5%-27.4%) and possibly reduced waist circumference by -2.1% (-3.1% to -1.0%) and -1.9% (-3.7% to -0.1%) in the control and whey groups, respectively, but the whey-control outcome was trivial or unclear. A clinically meaningful enhancement in glycemic control after 10 wk of MMIT was not clearly advanced with

  17. Self-similar assemblies of globular whey proteins at the air-water interface: effect of the structure.

    PubMed

    Mahmoudi, Najet; Gaillard, Cédric; Boué, François; Axelos, Monique A V; Riaublanc, Alain

    2010-05-01

    We investigated the structure of heat-induced assemblies of whey globular proteins using small angle neutron scattering (SANS), static and dynamic light scattering (SLS and DLS), and cryogenic transmission electron microscopy (Cryo-TEM). Whey protein molecules self-assemble in fractal aggregates with a structure density depending on the electrostatic interactions. We determined the static and dynamic properties of interfacial layer formed by the protein assemblies, upon adsorption and spreading at the air-water interface using surface film balance and interfacial dilatational rheology. Upon spreading, all whey protein systems show a power-law scaling behavior of the surface pressure versus concentration in the semi-dilute surface concentration regime, with an exponent ranging from 5.5 to 9 depending on the electrostatic interactions and the aggregation state. The dilatational modulus derived from surface pressure isotherms shows a main peak at 6-8 mN/m, generally considered to be the onset of a conformational change in the monolayer, and a second peak or a shoulder at 15 mN/m. Long-time adsorption kinetics give similar results for both the native whey proteins and the corresponding self-similar assemblies, with a systematic effect of the ionic strength. Copyright 2010 Elsevier Inc. All rights reserved.

  18. Physicochemical Properties of Whey-Protein-Stabilized Astaxanthin Nanodispersion and Its Transport via a Caco-2 Monolayer.

    PubMed

    Shen, Xue; Zhao, Changhui; Lu, Jing; Guo, Mingruo

    2018-02-14

    Astaxanthin nanodispersion was prepared using whey protein isolate (WPI) and polymerized whey protein (PWP) through an emulsification-evaporation technique. The physicochemical properties of the astaxanthin nanodispersion were evaluated, and the transport of astaxanthin was assessed using a Caco-2 cell monolayer model. The astaxanthin nanodispersions stabilized by WPI and PWP (2.5%, w/w) had a small particle size (121 ± 4.9 and 80.4 ± 5.9 nm, respectively), negative ζ potential (-19.3 ± 1.5 and -35.0 ± 2.2 mV, respectively), and high encapsulation efficiency (92.1 ± 2.9 and 93.5 ± 2.4%, respectively). Differential scanning calorimetry curves indicated that amorphous astaxanthin existed in both astaxanthin nanodispersions. Whey-protein-stabilized astaxanthin nanodispersion showed resistance to pepsin digestion but readily released astaxanthin after trypsin digestion. The nanodispersions showed no cytotoxicity to Caco-2 cells at a protein concentration below 10 mg/mL. WPI- and PWP-stabilized nanodispersions improved the apparent permeability coefficient (P app ) of Caco-2 cells to astaxanthin by 10.3- and 16.1-fold, respectively. The results indicated that whey-protein-stabilized nanodispersion is a good vehicle to deliver lipophilic bioactive compounds, such as astaxanthin, and to improve their bioavailability.

  19. Dietary protein level and origin (casein and highly purified soybean protein) affect hepatic storage, plasma lipid transport, and antioxidative defense status in the rat.

    PubMed

    Madani, S; Prost, J; Belleville, J

    2000-05-01

    The effects of different proportions (10, 20, and 30%) of dietary casein or highly purified soybean protein on lipid metabolism were studied in growing Wistar rats. Hepatic, plasma and lipoprotein lipid, and protein concentrations, plasma thiobarbituric acid-reactive substance (TBARS) levels, and resistance of red blood cells against free-radical attack were determined after a 4-wk dietary regimen. Compared with the 20% casein diet, the 20% soybean protein diet exhibited similar cholesterolemia but lower plasma triacylglycerol concentrations and very-low-density lipoprotein (VLDL) particle number, as measured by diminished contents of VLDL-triacylglycerol, VLDL-protein, and VLDL-apolipoprotein (Apo) B (B-100 and B-48). The soybean protein diet raised high-density lipoprotein (HDL)(2-3) particle number, as measured by enhanced concentrations of HDL(2-3) cholesterol, HDL-phospholipid, and HDL-ApoA-I. Increasing casein or soybean protein level (from 10 to 30%) in the diet involved higher VLDL-ApoB (B-100 and B-48), indicating an increase in the number of VLDL particles. Feeding the 30% casein or 30% soybean protein diet enhanced LDL-HDL(1) cholesterol contents. Despite similar HDL(2-3)-ApoA-I levels, the 30% casein diet enhanced the HDL(2-3) mass and its cholesterol concentrations. In contrast, feeding either the 10 or 30% soybean protein diet significantly lowered HDL(2-3) cholesterol and ApoA-I levels. These effects on cholesterol distribution in lipoprotein fractions occurred despite unchanged total cholesterol concentrations in plasma. Feeding 20% soybean protein versus 20% casein involved lower plasma TBARS concentrations. Decreasing casein or soybean protein levels in the diet were associated with higher plasma TBARS concentrations and had a lower resistance of red blood cells against free-radical attack. The present study shows that dietary protein level and origin play an important role in lipoprotein metabolism and the antioxidative defense status but do not

  20. Buffalo Cheese Whey Proteins, Identification of a 24 kDa Protein and Characterization of Their Hydrolysates: In Vitro Gastrointestinal Digestion.

    PubMed

    Bassan, Juliana C; Goulart, Antonio J; Nasser, Ana L M; Bezerra, Thaís M S; Garrido, Saulo S; Rustiguel, Cynthia B; Guimarães, Luis H S; Monti, Rubens

    2015-01-01

    Milk whey proteins are well known for their high biological value and versatile functional properties, characteristics that allow its wide use in the food and pharmaceutical industries. In this work, a 24 kDa protein from buffalo cheese whey was analyzed by mass spectrometry and presented homology with Bos taurus beta-lactoglobulin. In addition, the proteins present in buffalo cheese whey were hydrolyzed with pepsin and with different combinations of trypsin, chymotrypsin and carboxypeptidase-A. When the TNBS method was used the obtained hydrolysates presented DH of 55 and 62% for H1 and H2, respectively. Otherwise for the OPA method the DH was 27 and 43% for H1 and H2, respectively. The total antioxidant activities of the H1 and H2 samples with and without previous enzymatic hydrolysis, determined by DPPH using diphenyl-p-picrylhydrazyl radical, was 4.9 and 12 mM of Trolox equivalents (TE) for H2 and H2Dint, respectively. The increased concentrations for H1 and H2 samples were approximately 99% and 75%, respectively. The in vitro gastrointestinal digestion efficiency for the samples that were first hydrolyzed was higher compared with samples not submitted to previous hydrolysis. After in vitro gastrointestinal digestion, several amino acids were released in higher concentrations, and most of which were essential amino acids. These results suggest that buffalo cheese whey is a better source of bioavailable amino acids than bovine cheese whey.

  1. Buffalo Cheese Whey Proteins, Identification of a 24 kDa Protein and Characterization of Their Hydrolysates: In Vitro Gastrointestinal Digestion

    PubMed Central

    Bassan, Juliana C.; Goulart, Antonio J.; Nasser, Ana L. M.; Bezerra, Thaís M. S.; Garrido, Saulo S.; Rustiguel, Cynthia B.; Guimarães, Luis H. S.; Monti, Rubens

    2015-01-01

    Milk whey proteins are well known for their high biological value and versatile functional properties, characteristics that allow its wide use in the food and pharmaceutical industries. In this work, a 24 kDa protein from buffalo cheese whey was analyzed by mass spectrometry and presented homology with Bos taurus beta-lactoglobulin. In addition, the proteins present in buffalo cheese whey were hydrolyzed with pepsin and with different combinations of trypsin, chymotrypsin and carboxypeptidase-A. When the TNBS method was used the obtained hydrolysates presented DH of 55 and 62% for H1 and H2, respectively. Otherwise for the OPA method the DH was 27 and 43% for H1 and H2, respectively. The total antioxidant activities of the H1 and H2 samples with and without previous enzymatic hydrolysis, determined by DPPH using diphenyl-p-picrylhydrazyl radical, was 4.9 and 12 mM of Trolox equivalents (TE) for H2 and H2Dint, respectively. The increased concentrations for H1 and H2 samples were approximately 99% and 75%, respectively. The in vitro gastrointestinal digestion efficiency for the samples that were first hydrolyzed was higher compared with samples not submitted to previous hydrolysis. After in vitro gastrointestinal digestion, several amino acids were released in higher concentrations, and most of which were essential amino acids. These results suggest that buffalo cheese whey is a better source of bioavailable amino acids than bovine cheese whey. PMID:26465145

  2. Physiochemical, texture properties, and the microstructure of set yogurt using whey protein-sodium tripolyphosphate aggregates as thickening agents.

    PubMed

    Cheng, Jianjun; Xie, Siyu; Yin, Yuan; Feng, Xianmin; Wang, Shuai; Guo, Mingruo; Ni, Chunlei

    2017-07-01

    Polymerized whey protein-sodium tripolyphosphate can be induced to gel in an acidic environment provided during fermentation. The variety of thickening agent has an influence on texture that is an essential aspect of yogurt quality affecting consumer preference. Similar to polysaccharide stabilizers, the cold gelation properties of whey proteins can improve the body texture of yogurt products. Polymerized whey protein-sodium tripolyphosphate could be a favorable and interesting thickening agent for making set yogurt. The effects of whey protein isolate (WPI), heat-treated whey protein-sodium tripolyphosphate (WPI-STPP), heat-treated WPI and pectin on the storage properties and microstructure of yogurt were investigated. All samples were analyzed for syneresis, pH, titratable acidity, viscosity, texture profile and microstructure during storage. The results showed that incorporating heat-treated WPI-STPP had a significant impact on syneresis (32.22 ± 0.60), viscosity (10 956.67 ± 962.1) and hardness (209.24 ± 12.48) (p < 0.05) with uniform body texture. Yogurt fermented with modified WPI-STPP had higher levels of protein and better hardness compared with yogurt using pectin. The microstructure was observed to be a uniform and denser, complicated network. Heat-treated WPI-STPP may be useful for improving yogurt texture. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  3. Toll-like receptor mediated activation is possibly involved in immunoregulating properties of cow's milk hydrolysates

    PubMed Central

    Kiewiet, M. B. Gea; Dekkers, Renske; Gros, Marjan; van Neerven, R. J. Joost; Groeneveld, Andre; de Vos, Paul; Faas, Marijke M.

    2017-01-01

    Immunomodulating proteins and peptides are formed during the hydrolysis of cow’s milk proteins. These proteins are potential ingredients in functional foods used for the management of a range of immune related problems, both in infants and adults. However, the mechanism behind these effects is unknown. We hypothesize that the interaction of peptides with Toll-like receptors (TLRs) can induce immune effects, since these receptors are known to sample many dietary molecules in the intestine in order to regulate immune effects. To investigate this, we compared the immune effects and TLR activation and inhibition by whey and casein hydrolysates with different hydrolysis levels. We first measured cytokine production in primary peripheral blood mononuclear cells stimulated with either whey, casein, or their hydrolysates. IL-10 and TNFα were induced by whey hydrolysates (decreasing with increasing hydrolysis level), but not by casein hydrolysates. Next, the activation of TLR 2, 3, 5 and 9 receptors were observed by intact and mildly hydrolysed whey proteins only and not by casein hydrolysates in TLR reporter cell lines. Many casein hydrolysates inhibited TLR signaling (mainly TLR 5 and 9). These results demonstrate that the effects of cow’s milk proteins on the immune system are protein type and hydrolysis dependent. TLR signaling is suggested as a possible mechanism for differences in effect. This knowledge contributes to a better understanding of the immune effects of hydrolysates and the design of infant formula, and nutrition in general, with specific immunoregulatory effects. PMID:28594834

  4. The influence of bleaching agent and temperature on bleaching efficacy and volatile components of fluid whey and whey retentate.

    PubMed

    Fox, A J; Smith, T J; Gerard, P D; Drake, M A

    2013-10-01

    Fluid whey or retentate are often bleached to remove residual annatto Cheddar cheese colorant, and this process causes off-flavors in dried whey proteins. This study determined the impact of temperature and bleaching agent on bleaching efficacy and volatile components in fluid whey and fluid whey retentate. Freshly manufactured liquid whey (6.7% solids) or concentrated whey protein (retentate) (12% solids, 80% protein) were bleached using benzoyl peroxide (BP) at 100 mg/kg (w/w) or hydrogen peroxide (HP) at 250 mg/kg (w/w) at 5 °C for 16 h or 50 °CC for 1 h. Unbleached controls were subjected to a similar temperature profile. The experiment was replicated three times. Annatto destruction (bleaching efficacy) among treatments was compared, and volatile compounds were extracted and separated using solid phase microextraction gas chromatography mass spectrometry (SPME GC-MS). Bleaching efficacy of BP was higher than HP (P < 0.05) for fluid whey at both 5 and 50 °C. HP bleaching efficacy was increased in retentate compared to liquid whey (P < 0.05). In whey retentate, there was no difference between bleaching with HP or BP at 50 or 5 °C (P > 0.05). Retentate bleached with HP at either temperature had higher relative abundances of pentanal, hexanal, heptanal, and octanal than BP bleached retentate (P < 0.05). Liquid wheys generally had lower concentrations of selected volatiles compared to retentates. These results suggest that the highest bleaching efficacy (within the parameters evaluated) in liquid whey is achieved using BP at 5 or 50 °C and at 50 °C with HP or BP in whey protein retentate. © 2013 Institute of Food Technologists®

  5. The effect of bleaching agents on the degradation of vitamins and carotenoids in spray-dried whey protein concentrate.

    PubMed

    Stout, M A; Park, C W; Drake, M A

    2017-10-01

    Previous research has shown that bleaching affects flavor and functionality of whey proteins. The role of different bleaching agents on vitamin and carotenoid degradation is unknown. The objective of this study was to determine the effects of bleaching whey with traditional annatto (norbixin) by hydrogen peroxide (HP), benzoyl peroxide (BP), or native lactoperoxidase (LP) on vitamin and carotenoid degradation in spray-dried whey protein concentrate 80% protein (WPC80). An alternative colorant was also evaluated. Cheddar whey colored with annatto (15 mL/454 L of milk) was manufactured, pasteurized, and fat separated and then assigned to bleaching treatments of 250 mg/kg HP, 50 mg/kg BP, or 20 mg/kg HP (LP system) at 50°C for 1 h. In addition to a control (whey with norbixin, whey from cheese milk with an alternative colorant (AltC) was evaluated. The control and AltC wheys were also heated to 50°C for 1 h. Wheys were concentrated to 80% protein by ultrafiltration and spray dried. The experiment was replicated in triplicate. Samples were taken after initial milk pasteurization, initial whey formation, after fat separation, after whey pasteurization, after bleaching, and after spray drying for vitamin and carotenoid analyses. Concentrations of retinol, a-tocopherol, water-soluble vitamins, norbixin, and other carotenoids were determined by HPLC, and volatile compounds were measured by gas chromatography-mass spectrometry. Sensory attributes of the rehydrated WPC80 were documented by a trained panel. After chemical or enzymatic bleaching, WPC80 displayed 7.0 to 33.3% reductions in retinol, β-carotene, ascorbic acid, thiamin, α-carotene, and α-tocopherol. The WPC80 bleached with BP contained significantly less of these compounds than the HP- or LP-bleached WPC80. Riboflavin, pantothenic acid, pyridoxine, nicotinic acid, and cobalamin concentrations in fluid whey were not affected by bleaching. Fat-soluble vitamins were reduced in all wheys by more than 90

  6. The Biological Value of Protein.

    PubMed

    Moore, Daniel R; Soeters, Peter B

    2015-01-01

    The biological value of a protein extends beyond its amino-acid composition and digestibility, and can be influenced by additional factors in a tissue-specific manner. In healthy individuals, the slow appearance of dietary amino acids in the portal vein and subsequently in the systemic circulation in response to bolus protein ingestion improves nitrogen retention and decreases urea production. This is promoted by slow absorption when only protein is ingested (e.g. casein). When a full meal is ingested, whey achieves slightly better nitrogen retention than soy or casein, which is very likely achieved by its high content of essential amino acids (especially leucine). Elderly people exhibit 'anabolic resistance' implying that more protein is required to reach maximal rates of muscle protein synthesis compared to young individuals. Protein utilization in inflammatory or traumatic conditions increases substantially in the splanchnic tissues containing most of the immune system, and in wounds and growing tissues. This happens especially in the elderly, which often suffer from chronic inflammatory activity due to disease, physical inactivity and/or the aging process itself. Consequently, the proportion of protein absorbed in the gut and utilized for muscle protein synthesis decreases in these situations. This compromises dietary-protein-induced stimulation of muscle protein synthesis and ultimately results in increased requirements of protein (∼1.2 g/kg body weight/day) to limit gradual muscle loss with age. To optimally preserve muscle mass, physical exercise is required. Exercise has both direct effects on muscle mass and health, and indirect effects by increasing the utilization of dietary protein (especially whey) to enhance rates of muscle protein synthesis. © 2015 Nestec Ltd., Vevey/S. Karger AG, Basel.

  7. Physiochemical properties, microstructure, and probiotic survivability of nonfat goats' milk yogurt using heat-treated whey protein concentrate as fat replacer.

    PubMed

    Zhang, Tiehua; McCarthy, James; Wang, Guorong; Liu, Yanyan; Guo, Mingruo

    2015-04-01

    There is a market demand for nonfat fermented goats' milk products. A nonfat goats' milk yogurt containing probiotics (Lactobacillus acidophilus, and Bifidobacterium spp.) was developed using heat-treated whey protein concentrate (HWPC) as a fat replacer and pectin as a thickening agent. Yogurts containing untreated whey protein concentrate (WPC) and pectin, and the one with only pectin were also prepared. Skim cows' milk yogurt with pectin was also made as a control. The yogurts were analyzed for chemical composition, water holding capacity (syneresis), microstructure, changes in pH and viscosity, mold, yeast and coliform counts, and probiotic survivability during storage at 4 °C for 10 wk. The results showed that the nonfat goats' milk yogurt made with 1.2% HWPC (WPC solution heated at 85 °C for 30 min at pH 8.5) and 0.35% pectin had significantly higher viscosity (P < 0.01) than any of the other yogurts and lower syneresis than the goats' yogurt with only pectin (P < 0.01). Viscosity and pH of all the yogurt samples did not change much throughout storage. Bifidobacterium spp. remained stable and was above 10(6) CFU g(-1) during the 10-wk storage. However, the population of Lactobacillus acidophilus dropped to below 10(6) CFU g(-1) after 2 wk of storage. Microstructure analysis of the nonfat goats' milk yogurt by scanning electron microscopy revealed that HWPC interacted with casein micelles to form a relatively compact network in the yogurt gel. The results indicated that HWPC could be used as a fat replacer for improving the consistency of nonfat goats' milk yogurt and other similar products. © 2015 Institute of Food Technologists®

  8. Prolonged ingestion of prehydrolyzed whey protein induces little or no change in digestive enzymes, but decreases glutaminase activity in exercising rats.

    PubMed

    Nery-Diez, Ana Cláudia C; Carvalho, Iara R; Amaya-Farfán, Jaime; Abecia-Soria, Maria Inés; Miyasaka, Célio K; Ferreira, Clécio da S

    2010-08-01

    Because consumption of whey protein hydrolysates is on the increase, the possibility that prolonged ingestion of whey protein hydrolysates affect the digestive system of mammals has prompted us to evaluate the enzymatic activities of pepsin, leucine-aminopeptidase, chymotrypsin, trypsin, and glutaminase in male Wistar rats fed diets containing either a commercial whey isolate or a whey protein hydrolysate with medium degree of hydrolysis and to compare the results with those produced by physical training (sedentary, sedentary-exhausted, trained, and trained-exhausted) in the treadmill for 4 weeks. The enzymatic activities were determined by classical procedures in all groups. No effect due to the form of the whey protein in the diet was seen in the activities of pepsin, trypsin, chymotrypsin, and leucine-aminopeptidase. Training tended to increase the activity of glutaminase, but exhaustion promoted a decrease in the trained animals, and consumption of the hydrolysate decreased it even further. The results are consistent with the conclusion that chronic consumption of a whey protein hydrolysate brings little or no modification of the proteolytic digestive system and that the lowering of glutaminase activity may be associated with an antistress effect, counteracting the effect induced by training in the rat.

  9. Purification and characterization of a casein kinase 2-type protein kinase from pea nuclei

    NASA Technical Reports Server (NTRS)

    Li, H.; Roux, S. J.

    1992-01-01

    Almost all the polyamine-stimulated protein kinase activity associated with the chromatin fraction of nuclei purified from etiolated pea (Pisum sativum L.) plumules is present in a single enzyme that can be extracted from chromatin by 0.35 molar NaCl. This protein kinase can be further purified over 2000-fold by salt fractionation and anion-exchange and casein-agarose column chromatography, after which it is more than 90% pure. The purified kinase has a specific activity of about 650 nanomoles per minute per milligram protein in the absence of polyamines, with either ATP or GTP as phosphoryl donor. Spermidine can stimulate its activity fourfold, with half-maximal activation at about 2 millimolar. Spermine and putrescine also stimulate activity, although somewhat less effectively. This kinase has a tetrameric alpha 2 beta 2 structure with a native molecular weight of 130,000, and subunit molecular weights of 36,000 for the catalytic subunit (alpha) and 29,000 for the regulatory subunit (beta). In western blot analyses, only the alpha subunit reacts strongly with polyclonal antibodies to a Drosophila casein kinase II. The pea kinase can use casein and phosvitin as artificial substrates, phosphorylating both the serine and threonine residues of casein. It has a pH optimum near 8.0, a Vmax of 1.5 micromoles per minute per milligram protein, and a Km for ATP of approximately 75 micromolar. Its activity can be almost completely inhibited by heparin at 5 micrograms per milliliter, but is relatively insensitive to concentrations of staurosporine, K252a, and chlorpromazine that strongly antagonize Ca(2+) -regulated protein kinases. These results are discussed in relation to recent findings that casein kinase 2-type kinases may phosphorylate trans-acting factors that bind to light-regulated promoters in plants.

  10. Supramolecular structure of the casein micelle.

    PubMed

    McMahon, D J; Oommen, B S

    2008-05-01

    The supramolecular structure of colloidal casein micelles in milk was investigated by using a sample preparation protocol based on adsorption of proteins onto a poly-l-lysine and parlodion-coated copper grid, staining of proteins and calcium phosphate by uranyl oxalate, instantaneous freezing, and drying under a high vacuum. High-resolution transmission electron microscopy stereo-images were obtained showing the interior structure of casein micelles. On the basis of our interpretation of these images, an interlocked lattice model was developed in which both casein-calcium phosphate aggregates and casein polymer chains act together to maintain casein micelle integrity. The caseins form linear and branched chains (2 to 5 proteins long) interlocked by the casein-stabilized calcium phosphate nanoclusters. This model suggests that stabilization of calcium phosphate nanoclusters by phosphoserine domains of alpha(s1)-, alpha(s2)-, or beta-casein, or their combination, would orient their hydrophobic domains outward, allowing interaction and binding to other casein molecules. Other interactions between the caseins, such as calcium bridging, could also occur and further stabilize the supramolecule. The combination of having an interlocked lattice structure and multiple interactions results in an open, sponge-like colloidal supramolecule that is resistant to spatial changes and disintegration. Hydrophobic interactions between caseins surrounding a calcium phosphate nanocluster would prevent complete dissociation of casein micelles when the calcium phosphate nanoclusters are solubilized. Likewise, calcium bridging and other electrostatic interactions between caseins would prevent dissociation of the casein micelles into casein-calcium phosphate nanocluster aggregates when milk is cooled or urea is added to milk, and hydrophobic interactions are reduced. The appearance of both polymer chains and small aggregate particles during milk synthesis would also be expected based on

  11. High hydrostatic pressure modification of whey protein concentrate for improved body and texture of lowfat ice cream.

    PubMed

    Lim, S-Y; Swanson, B G; Ross, C F; Clark, S

    2008-04-01

    Previous research demonstrated that application of high hydrostatic pressure (HHP), particularly at 300 MPa for 15 min, can enhance foaming properties of whey protein concentrate (WPC). The purpose of this research was to determine the practical impact of HHP-treated WPC on the body and texture of lowfat ice cream. Washington State University (WSU)-WPC was produced by ultrafiltration of fresh separated whey received from the WSU creamery. Commercial whey protein concentrate 35 (WPC 35) powder was reconstituted to equivalent total solids as WSU-WPC (8.23%). Three batches of lowfat ice cream mix were produced to contain WSU-WPC without HHP, WSU-WPC with HHP (300 MPa for 15 min), and WPC 35 without HHP. All lowfat ice cream mixes contained 10% WSU-WPC or WPC 35. Overrun and foam stability of ice cream mixes were determined after whipping for 15 min. Ice creams were produced using standard ice cream ingredients and processing. The hardness of ice creams was determined with a TA-XT2 texture analyzer. Sensory evaluation by balanced reference duo-trio test was carried out using 52 volunteers. The ice cream mix containing HHP-treated WSU-WPC exhibited the greatest overrun and foam stability, confirming the effect of HHP on foaming properties of whey proteins in a complex system. Ice cream containing HHP-treated WSU-WPC exhibited significantly greater hardness than ice cream produced with untreated WSU-WPC or WPC 35. Panelists were able to distinguish between ice cream containing HHP-treated WSU-WPC and ice cream containing untreated WPC 35. Improvements of overrun and foam stability were observed when HHP-treated whey protein was used at a concentration as low as 10% (wt/wt) in ice cream mix. The impact of HHP on the functional properties of whey proteins was more pronounced than the impact on sensory properties.

  12. Fractionation of whey protein isolate with supercritical carbon dioxide to produce enriched alpha-lactalbumin and beta-lactoglobulin food ingredients

    USDA-ARS?s Scientific Manuscript database

    A potentially economical and environmentally friendly whey protein fractionation process was developed using supercritical carbon dioxide (SCO2) as an acid to produce enriched fractions of alpha-lactalbumin (a-LA) and beta-lactoglobulin (b-LG) from whey protein isolate. To prepare the fractions, so...

  13. Utilization of concentrated cheese whey for the production of protein concentrate fuel alcohol and alcoholic beverages

    SciTech Connect

    Krishnamurti, R.

    The objective of this investigation was to recover the major components of whey and to develop food applications for their incorporation/conversion into acceptable products of commercial value. Reconstituted dried sweet whey with 36% solids was ultrafiltered to yield a protein concentrate (WPC) and a permeate containing 24% lactose and 3.7% ash. Orange juice fortified up to 2.07% and chocolate milks fortified up to 5.88% total protein levels with WPC containing 45% total protein were acceptable to about 90% of a panel of 24 individuals. Fermentation of demineralized permeate at 30/sup 0/C with Kluyveromyces fragilis NRRL Y 2415 adapted to 24%more » lactose levels, led to 13.7% (v/v) ethanol in the medium at the end of 34 hours. Batch productivity was 3.2 gms. ethanol per liter per hour and conversion efficiency was 84.26% of the theoretical maximum. Alcoholic fermentation of permeate and subsequent distillation produced compounds with desirable aroma characters in such products. This study suggests that there is potential for the production of protein fortified non-alcoholic products and alcoholic beverages of commercial value from whey, thus providing a cost effective solution to the whey utilization problem.« less

  14. Casein polymorphism heterogeneity influences casein micelle size in milk of individual cows.

    PubMed

    Day, L; Williams, R P W; Otter, D; Augustin, M A

    2015-06-01

    Milk samples from individual cows producing small (148-155 nm) or large (177-222 nm) casein micelles were selected to investigate the relationship between the individual casein proteins, specifically κ- and β-casein phenotypes, and casein micelle size. Only κ-casein AA and β-casein A1A1, A1A2 and A2A2 phenotypes were found in the large casein micelle group. Among the small micelle group, both κ-casein and β-casein phenotypes were more diverse. κ-Casein AB was the dominant phenotype, and 3 combinations (AA, AB, and BB) were present in the small casein micelle group. A considerable mix of β-casein phenotypes was found, including B and I variants, which were only found in the small casein micelle group. The relative amount of κ-casein to total casein was significantly higher in the small micelle group, and the nonglycosylated and glycosylated κ-casein contents were higher in the milks with small casein micelles (primarily with κ-casein AB and BB variants) compared with the large micelle group. The ratio of glycosylated to nonglycosylated κ-casein was higher in the milks with small casein micelles compared with the milks with large casein micelles. This suggests that although the amount of κ-casein (both glycosylated and nonglycosylated) is associated with micelle size, an increased proportion of glycosylated κ-casein could be a more important and favorable factor for small micelle size. This suggests that the increased spatial requirement due to addition of the glycosyl group with increasing extent of glycosylation of κ-casein is one mechanism that controls casein micelle assembly and growth. In addition, increased electrostatic repulsion due to the sialyl residues on the glycosyl group could be a contributory factor. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  15. Effect of Whey Supplementation on Circulating C-Reactive Protein: A Meta-Analysis of Randomized Controlled Trials

    PubMed Central

    Zhou, Ling-Mei; Xu, Jia-Ying; Rao, Chun-Ping; Han, Shufen; Wan, Zhongxiao; Qin, Li-Qiang

    2015-01-01

    Whey supplementation is beneficial for human health, possibly by reducing the circulating C-reactive protein (CRP) level, a sensitive marker of inflammation. Thus, a meta-analysis of randomized controlled trials was conducted to evaluate their relationship. A systematic literature search was conducted in July, 2014, to identify eligible studies. Either a fixed-effects model or a random-effects model was used to calculate pooled effects. The meta-analysis results of nine trials showed a slight, but no significant, reduction of 0.42 mg/L (95% CI −0.96, 0.13) in CRP level with the supplementation of whey protein and its derivates. Relatively high heterogeneity across studies was observed. Subgroup analyses showed that whey significantly lowered CRP by 0.72 mg/L (95% CI −0.97, −0.47) among trials with a daily whey dose ≥20 g/day and by 0.67 mg/L (95% CI −1.21, −0.14) among trials with baseline CRP ≥3 mg/L. Meta-regression analysis revealed that the baseline CRP level was a potential effect modifier of whey supplementation in reducing CRP. In conclusion, our meta-analysis did not find sufficient evidence that whey and its derivates elicited a beneficial effect in reducing circulating CRP. However, they may significantly reduce CRP among participants with highly supplemental doses or increased baseline CRP levels. PMID:25671415

  16. The rationale for consuming protein blends in sports nutrition.

    PubMed

    Paul, Gregory L

    2009-08-01

    Protein is considered by many to be the most important macronutrient for humans because of the numerous roles protein plays in the body. Protein needs have been compared across several population groups, including athletes and other exercising individuals. Many researchers have compared the effects of ingesting animal and vegetable protein sources and their implications on sports performance. Recently, blends of dairy protein and soy protein have appeared in commercial sports nutrition products such as nutrition bars and ready-to-drink and powdered beverages. This review will focus on the potential nutritional advantages of combining whey protein, casein, and isolated soy protein.

  17. Production and partial purification of proteases from Aspergillus oryzae grown in a medium based on whey protein as an exclusive nitrogen source.

    PubMed

    Kumura, H; Ishido, T; Shimazaki, K

    2011-02-01

    Several attempts have been made to incorporate whey proteins into curd to increase cheese yield. For some types of cheese, degradation of whey proteins that have been incorporated into the curd would be required to obtain acceptable flavor and texture. On the basis of the high potential for protease synthesis in Aspergillus oryzae, sodium nitrate as a nitrogen source in a minimal medium for fungi, known as Czapek-Dox medium, was replaced with whey protein isolate to induce the protease to hydrolyze whey protein using A. oryzae AHU7146. A solid-phase medium adjusted to pH 6 was suitable for this purpose when incubation was carried out at 25°C for 2 wk. The application of column chromatography enabled the resolution of 3 proteolytic components (1, 2, and 3). With respect to optimal temperature and zymographic analysis, component 1 was similar to component 3. In contrast, component 2 was less abundant than the other components and exhibited activity in the alkaline pH region. The degradation of β-lactoglobulin and α-lactalbumin in whey protein isolate solution by the crude enzyme was primarily attributed to the action of components 1 and 3, based on HPLC analysis and the N-terminal amino acid sequences; however, zymography demonstrated evident proteolysis due to component 2. Because heat-denatured whey protein aggregates were digestible by the crude enzyme, the proteolytic system from A. oryzae has the potential as an additive to stimulate the ripening of cheese enriched with whey protein. Copyright © 2011 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  18. Genetic variability of the equine casein genes.

    PubMed

    Brinkmann, J; Jagannathan, V; Drögemüller, C; Rieder, S; Leeb, T; Thaller, G; Tetens, J

    2016-07-01

    The casein genes are known to be highly variable in typical dairy species, such as cattle and goat, but the knowledge about equine casein genes is limited. Nevertheless, mare milk production and consumption is gaining importance because of its high nutritive value, use in naturopathy, and hypoallergenic properties with respect to cow milk protein allergies. In the current study, the open reading frames of the 4 casein genes CSN1S1 (αS1-casein), CSN2 (β-casein), CSN1S2 (αS2-casein), and CSN3 (κ-casein) were resequenced in 253 horses of 14 breeds. The analysis revealed 21 nonsynonymous nucleotide exchanges, as well as 11 synonymous nucleotide exchanges, leading to a total of 31 putative protein isoforms predicted at the DNA level, 26 of which considered novel. Although the majority of the alleles need to be confirmed at the transcript and protein level, a preliminary nomenclature was established for the equine casein alleles. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  19. Effect of N-Ethylmaleimide as a Blocker of Disulfide Crosslinks Formation on the Alkali-Cold Gelation of Whey Proteins

    PubMed Central

    Lei, Zhao; Chen, Xiao Dong

    2016-01-01

    N-ethylmaleimide (NEM) was used to verify that no new disulfide crosslinks were formed during the fascinating rheology of the alkali cold-gelation of whey proteins, which show Sol-Gel-Sol transitions with time at pH > 11.5. These dynamic transitions involve the formation and subsequent destruction of non-covalent interactions between soluble whey aggregates. Therefore, incubation of aggregates with NEM was expected not to affect much the rheology. Experiments show that very little additions of NEM, such as 0.5 mol per mol of protein, delayed and significantly strengthened the metastable gels formed. Interactions between whey protein aggregates were surprisingly enhanced during incubation with NEM as inferred from oscillatory rheometry at different protein concentrations, dynamic swelling, Trp fluorescence and SDS-PAGE measurements. PMID:27732644

  20. Interactions of fat globule surface proteins during concentration of whole milk in a pilot-scale multiple-effect evaporator.

    PubMed

    Ye, Aiqian; Singh, Harjinder; Taylor, Michael W; Anema, Skelte G

    2004-11-01

    The changes in milk fat globules and fat globule surface proteins during concentration of whole milk using a pilot-scale multiple-effect evaporator were examined. The effects of heat treatment of milk at 95 degrees C for 20 s, prior to evaporation, on fat globule size and the milk fat globule membrane (MFGM) proteins were also determined. In both non-preheated and preheated whole milk, the size of milk fat globules decreased while the amount of total surface proteins at the fat globules increased as the milk passed through each effect of the evaporator. In non-preheated samples, the amount of caseins at the surface of fat globules increased markedly during evaporation with a relatively small increase in whey proteins. In preheated samples, both caseins and whey proteins were observed at the surface of fat globules and the amounts of these proteins increased during subsequent steps of evaporation. The major original MFGM proteins, xanthine oxidase, butyrophilin, PAS 6 and PAS 7, did not change during evaporation, however, PAS 6 and PAS 7 decreased during preheating. These results indicate that the proteins from the skim milk were adsorbed onto the fat globule surface when the milk fat globules were disrupted during evaporation.

  1. Uptake of divalent ions (Mn+2 and Ca+2) by heat-set whey protein gels.

    PubMed

    Oztop, Mecit H; McCarthy, Kathryn L; McCarthy, Michael J; Rosenberg, Moshe

    2012-02-01

    Divalent salts are used commonly for gelation of polymer molecules. Calcium, Ca(+2), is one of the most common divalent ions that is used in whey protein gels. Manganese, Mn(+2), is also divalent, but paramagnetic, enhancing relaxation decay rates in magnetic resonance imaging (MRI) and can be used as a probe to understand the behavior of Ca(+2) in whey protein gels. The objective of this study was to investigate the diffusion of Ca(+2) and Mn(+2) ions in heat-set whey protein gels by using MRI and nuclear magnetic resonance (NMR) relaxometry. Whey protein gels were immersed in solutions containing MnCl(2) and CaCl(2) at neutral pH. Images obtained with gels immersed in MnCl(2) solution revealed a relaxation sink region in the gel's surface and the thickness of the region increased with time. These "no signal" regions in the MR images were attributed to uptake of Mn(+2) by the gel. Results obtained with CaCl(2) solution indicated that since Ca(+2) did not have the paramagnetic effect, the regions where Ca(+2) diffused into the gel exhibited a slight decrease in signal intensity. The relaxation spectrums exhibited 3 populations of protons, for gels immersed in MnCl(2) solution, and 2 populations for gels in CaCl(2) solution. No significant change in T(2) distributions was observed for the gels immersed in CaCl(2) solution. The results demonstrated that MRI and NMR relaxometry can be used to understand the diffusion of ions into the whey protein gel, which is useful for designing gels of different physical properties for controlled release applications. Design of food systems for delivery of bioactive compounds requires knowledge of diffusion rates and structure. Utilizing magnetic resonance imaging the diffusion rates of ions can be measured. Relaxation spectra could yield information concerning molecular interactions. © 2012 Institute of Food Technologists®

  2. Whey Protein Supplementation Enhances Whole Body Protein Metabolism and Performance Recovery after Resistance Exercise: A Double-Blind Crossover Study

    PubMed Central

    West, Daniel W. D.; Abou Sawan, Sidney; Mazzulla, Michael; Williamson, Eric; Moore, Daniel R.

    2017-01-01

    No study has concurrently measured changes in free-living whole body protein metabolism and exercise performance during recovery from an acute bout of resistance exercise. We aimed to determine if whey protein ingestion enhances whole body net protein balance and recovery of exercise performance during overnight (10 h) and 24 h recovery after whole body resistance exercise in trained men. In a double-blind crossover design, 12 trained men (76 ± 8 kg, 24 ± 4 years old, 14% ± 5% body fat; means ± standard deviation (SD)) performed resistance exercise in the evening prior to consuming either 25 g of whey protein (PRO; MuscleTech 100% Whey) or an energy-matched placebo (CHO) immediately post-exercise (0 h), and again the following morning (~10 h of recovery). A third randomized trial, completed by the same participants, involving no exercise and no supplement served as a rested control trial (Rest). Participants ingested [15N]glycine to determine whole body protein kinetics and net protein balance over 10 and 24 h of recovery. Performance was assessed pre-exercise and at 0, 10, and 24 h of recovery using a battery of tests. Net protein balance tended to improve in PRO (P = 0.064; effect size (ES) = 0.61, PRO vs. CHO) during overnight recovery. Over 24 h, net balance was enhanced in PRO (P = 0.036) but not in CHO (P = 0.84; ES = 0.69, PRO vs. CHO), which was mediated primarily by a reduction in protein breakdown (PRO < CHO; P < 0.01. Exercise decreased repetitions to failure (REP), maximal strength (MVC), peak and mean power, and countermovement jump performance (CMJ) at 0 h (all P < 0.05 vs. Pre). At 10 h, there were small-to-moderate effects for enhanced recovery of the MVC (ES = 0.56), mean power (ES = 0.49), and CMJ variables (ES: 0.27–0.49) in PRO. At 24 h, protein supplementation improved MVC (ES = 0.76), REP (ES = 0.44), and peak power (ES = 0.55). In conclusion, whey protein supplementation enhances whole body anabolism, and may improve acute recovery of

  3. Chemical, Physiochemical, and Microstructural Properties, and Probiotic Survivability of Fermented Goat Milk Using Polymerized Whey Protein and Starter Culture Kefir Mild 01.

    PubMed

    Wang, Hao; Wang, Cuina; Wang, Mu; Guo, Mingruo

    2017-11-01

    A set-type fermented goat milk (FGM) using polymerized whey protein (PWP) as main thickening agent and Kefir Mild 01 as starter culture was developed. The FGM with PWP (0.3%, w/v) and pectin (0.2%, w/v) had low syneresis (5.44 ± 0.92%), desirable viscosity (952.86 ± 61.52 mPa⋅s), and hardness (112.57 ± 3.23 g), which were comparable to a fermented cow milk. Sensory evaluation data showed that the FGM with PWP and pectin had higher scores of both flavor (4.41 ± 0.39) and taste (3.72 ± 0.34) than the sample without PWP. Chemical composition of both fermented goat and cow milk were analyzed. The protein content of goat and cow milk samples were 3.50% ± 0.12% and 3.28% ± 0.09% (w/w), respectively. Lactobacillus acidophilus population in both FGM samples remained above 10 6 CFU/g during the 1st 4-wk storage. There was a slight but no significant (P > 0.05) decrease in pH and TA during storage. Scanning electron microscopy micrographs displayed a compact and homogeneous protein network of the FGM with PWP and pectin. Polymerized whey protein may be a novel protein-based thickening agent for formulation of a set-type FGM with starter culture Kefir Mild 01. Fermented goat milk is an increasingly popular dairy product in the world. However, it is difficult to make set type fermented goat milk due to the smaller size and lower content of casein micelles in goat milk. A fermented goat milk with PWP (0.3%, w/v) and pectin (0.2%, w/v) was successfully developed in this study. The product fermented by Kefir Mild 01 starter culture had a similar taste with Kefir but no yeast or alcoholic exists. The new product would be a promising food in the market. © 2017 Institute of Food Technologists®.

  4. Oral supplementation with whey proteins increases plasma glutathione levels of HIV-infected patients.

    PubMed

    Micke, P; Beeh, K M; Schlaak, J F; Buhl, R

    2001-02-01

    HIV infection is characterized by an enhanced oxidant burden and a systemic deficiency of the tripeptide glutathione (GSH), a major antioxidant. The semi-essential amino acid cysteine is the main source of the free sulfhydryl group of GSH and limits its synthesis. Therefore, different strategies to supplement cysteine supply have been suggested to increase glutathione levels in HIV-infected individuals. The aim of this study was to evaluate the effect of oral supplementation with two different cysteine-rich whey protein formulas on plasma GSH levels and parameters of oxidative stress and immune status in HIV-infected patients. In a prospective double blind clinical trial, 30 patients (25 male, 5 female; mean age (+/- SD) 42 +/- 9.8 years) with stable HIV infection (221 +/- 102 CD4 + lymphocytes L-1) were randomized to a supplemental diet with a daily dose of 45 g whey proteins of either Protectamin (Fresenius Kabi, Bad Hamburg, Germany) or Immunocal (Immunotec, Vandreuil, Canada) for two weeks. Plasma concentrations of total, reduced and oxidized GSH, superoxide anion (O2-) release by blood mononuclear cells, plasma levels of TNF-alpha and interleukins 2 and 12 were quantified with standard methods at baseline and after therapy. Pre-therapy, plasma GSH levels (Protectamin: 1.92 +/- 0.6 microM; Immunocal: 1.98 +/- 0.9 microM) were less than normal (2.64 +/- 0.7 microM, P = 0.03). Following two weeks of oral supplementation with whey proteins, plasma GSH levels increased in the Protectamin group by 44 +/- 56% (2.79 +/- 1.2 microM, P = 0.004) while the difference in the Immunocal group did not reach significance (+ 24.5 +/- 59%, 2.51 +/- 1.48 microM, P = 0.43). Spontaneous O2- release by blood mononuclear cells was stable (20.1 +/- 14.2 vs. 22.6 +/- 16.1 nmol h-1 10-6 cells, P = 0.52) whereas PMA-induced O2- release decreased in the Protectamin group (53.7 +/- 19 vs. 39.8 +/- 18 nmol h-1 10-6 cells, P = 0.04). Plasma concentrations of TNF-alpha and interleukins 2 and

  5. Niosome-loaded cold-set whey protein hydrogels.

    PubMed

    Abaee, Arash; Madadlou, Ashkan

    2016-04-01

    The α-tocopherol-carrying niosomes with mean diameter of 5.7 μm were fabricated and charged into a transglutaminase-cross-linked whey protein solution that was subsequently gelled with glucono delta-lactone. Encapsulation efficiency of α-tocopherol within niosomes was ≈80% and encapsulation did not influence the radical scavenging activity of α-tocopherol. Fourier transform infrared (FTIR) spectroscopy suggested formation of ε-(γ-glutamyl) lysine cross-linkages by transglutaminase and that enzymatic cross-linking increased proteins hydrophobicity. FTIR also proposed hydrogen bonding between niosomes and proteins. Dynamic rheometry indicated that transglutaminase cross-linking and niosomes charging of the protein solution enhanced the gelation process. However, charging the cross-linked protein solution with niosomal suspension resulted in lower elastic modulus (G') of the subsequently formed gel compared with both non-cross-linked niosome-loaded and cross-linked niosome-free counterparts. Electron microscopy indicated a discontinuous network for the niosome-loaded cross-linked sample. Niosome loading into the protein gel matrix increased its swelling extent in the enzyme-free simulated gastric fluid. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. κ-Casein terminates casein micelle build-up by its "soft" secondary structure.

    PubMed

    Nagy, Krisztina; Váró, György; Szalontai, Balázs

    2012-11-01

    In our previous paper (Nagy et al. in J Biol Chem 285:38811-38817, 2010) by using a multilayered model system, we showed that, from α-casein, aggregates (similar to natural casein micelles) can be built up step by step if Ca-phosphate nanocluster incorporation is ensured between the protein adsorption steps. It remained, however, an open question whether the growth of the aggregates can be terminated, similarly to in nature with casein micelles. Here, we show that, in the presence of Ca-phosphate nanoclusters, upon adsorbing onto earlier α-casein surfaces, the secondary structure of α-casein remains practically unaffected, but κ-casein exhibits considerable changes in its secondary structure as manifested by a shift toward having more β-structures. In the absence of Ca-phosphate, only κ-casein can still adsorb onto the underlying casein surface; this κ-casein also expresses considerable shift toward β-structures. In addition, this κ-casein cover terminates casein aggregation; no further adsorption of either α- or κ-casein can be achieved. These results, while obtained on a model system, may show that the Ca-insensitive κ-casein can, indeed, be the outer layer of the casein micelles, not only because of its "hairy" extrusion into the water phase, but because of its "softer" secondary structure, which can "occlude" the interacting motifs serving casein aggregation. We think that the revealed nature of the molecular interactions, and the growth mechanism found here, might be useful to understand the aggregation process of casein micelles also in vivo.

  7. Invited review: Caseins and the casein micelle: their biological functions, structures, and behavior in foods.

    PubMed

    Holt, C; Carver, J A; Ecroyd, H; Thorn, D C

    2013-10-01

    A typical casein micelle contains thousands of casein molecules, most of which form thermodynamically stable complexes with nanoclusters of amorphous calcium phosphate. Like many other unfolded proteins, caseins have an actual or potential tendency to assemble into toxic amyloid fibrils, particularly at the high concentrations found in milk. Fibrils do not form in milk because an alternative aggregation pathway is followed that results in formation of the casein micelle. As a result of forming micelles, nutritious milk can be secreted and stored without causing either pathological calcification or amyloidosis of the mother's mammary tissue. The ability to sequester nanoclusters of amorphous calcium phosphate in a stable complex is not unique to caseins. It has been demonstrated using a number of noncasein secreted phosphoproteins and may be of general physiological importance in preventing calcification of other biofluids and soft tissues. Thus, competent noncasein phosphoproteins have similar patterns of phosphorylation and the same type of flexible, unfolded conformation as caseins. The ability to suppress amyloid fibril formation by forming an alternative amorphous aggregate is also not unique to caseins and underlies the action of molecular chaperones such as the small heat-shock proteins. The open structure of the protein matrix of casein micelles is fragile and easily perturbed by changes in its environment. Perturbations can cause the polypeptide chains to segregate into regions of greater and lesser density. As a result, the reliable determination of the native structure of casein micelles continues to be extremely challenging. The biological functions of caseins, such as their chaperone activity, are determined by their composition and flexible conformation and by how the casein polypeptide chains interact with each other. These same properties determine how caseins behave in the manufacture of many dairy products and how they can be used as functional

  8. Phosphorylation of varicella-zoster virus glycoprotein gpI by mammalian casein kinase II and casein kinase I

    SciTech Connect

    Grose, C.; Jackson, W.; Traugh, J.A.

    1989-09-01

    Varicella-zoster virus (VZV) glycoprotein gpI is the predominant viral glycoprotein within the plasma membranes of infected cells. This viral glycoprotein is phosphorylated on its polypeptide backbone during biosynthesis. In this report, the authors investigated the protein kinases which participate in the phosphorylation events. Under in vivo conditions, VZV gpI was phosphorylated on its serine and threonine residues by protein kinases present within lysates of either VZV-infected or uninfected cells. Because this activity was diminished by heparin, a known inhibitor of casein kinase II, isolated gpI was incubated with purified casein kinase II and shown to be phosphorylated in an inmore » vitro assay containing ({gamma}-{sup 32}P)ATP. The same glycoprotein was phosphorylated when ({sup 32}P)GTP was substituted for ({sup 32}P)ATP in the protein kinase assay. They also tested whether VZV gpI was phosphorylated by two other ubiquitous mammalian protein kinases--casein kinase I and cyclic AMP-dependent kinase--and found that only casein kinase I modified gpI. When the predicted 623-amino-acid sequence of gpI was examined, two phosphorylation sites known to be optimal for casein kinase II were observed. In summary, this study showed that VZV gpI was phosphorylated by each of two mammalian protein kinases (casein kinase I and casein kinase II) and that potential serine-threonine phosphorylation sites for each of these two kinases were present in the viral glycoprotein.« less

  9. Proteomic Profiling Comparing the Effects of Different Heat Treatments on Camel (Camelus dromedarius) Milk Whey Proteins

    PubMed Central

    Benabdelkamel, Hicham; Masood, Afshan; Alanazi, Ibrahim O.; Alzahrani, Dunia A.; Alrabiah, Deema K.; AlYahya, Sami A.; Alfadda, Assim A.

    2017-01-01

    Camel milk is consumed in the Middle East because of its high nutritional value. Traditional heating methods and the duration of heating affect the protein content and nutritional quality of the milk. We examined the denaturation of whey proteins in camel milk by assessing the effects of temperature on the whey protein profile at room temperature (RT), moderate heating at 63 °C, and at 98 °C, for 1 h. The qualitative and quantitative variations in the whey proteins before and after heat treatments were determined using quantitative 2D-difference in gel electrophoresis (DIGE)-mass spectrometry. Qualitative gel image analysis revealed a similar spot distribution between samples at RT and those heated at 63 °C, while the spot distribution between RT and samples heated at 98 °C differed. One hundred sixteen protein spots were determined to be significantly different (p < 0.05 and a fold change of ≥1.2) between the non-heated and heated milk samples. Eighty protein spots were decreased in common in both the heat-treated samples and an additional 25 spots were further decreased in the 98 °C sample. The proteins with decreased abundance included serum albumin, lactadherin, fibrinogen β and γ chain, lactotransferrin, active receptor type-2A, arginase-1, glutathione peroxidase-1 and, thiopurine S, etc. Eight protein spots were increased in common to both the samples when compared to RT and included α-lactalbumin, a glycosylation-dependent cell adhesion molecule. Whey proteins present in camel milk were less affected by heating at 63 °C than at 98 °C. This experimental study showed that denaturation increased significantly as the temperature increased from 63 to 98 °C. PMID:28350354

  10. Dynamic gastric digestion of a commercial whey protein concentrate†.

    PubMed

    Miralles, Beatriz; Del Barrio, Roberto; Cueva, Carolina; Recio, Isidra; Amigo, Lourdes

    2018-03-01

    A dynamic gastrointestinal simulator, simgi ® , has been applied to assess the gastric digestion of a whey protein concentrate. Samples collected from the outlet of the stomach have been compared to those resulting from the static digestion protocol INFOGEST developed on the basis of physiologically inferred conditions. Progress of digestion was followed by SDS-PAGE and LC-MS/MS. By SDS-PAGE, serum albumin and α-lactalbumin were no longer detectable at 30 and 60 min, respectively. On the contrary, β-lactoglobulin was visible up to 120 min, although in decreasing concentrations in the dynamic model due to the gastric emptying and the addition of gastric fluids. Moreover, β-lactoglobulin was partly hydrolysed by pepsin probably due to the presence of heat-denatured forms and the peptides released using both digestion models were similar. Under dynamic conditions, a stepwise increase in number of peptides over time was observed, while the static protocol generated a high number of peptides from the beginning of digestion. Whey protein digestion products using a dynamic stomach are consistent with those generated with the static protocol but the kinetic behaviour of the peptide profile emphasises the effect of the sequential pepsin addition, peristaltic shaking, and gastric emptying on protein digestibility. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  11. Short communication: milk protein genetic variation and casein haplotype structure in the Original Pinzgauer cattle.

    PubMed

    Caroli, A; Rizzi, R; Lühken, G; Erhardt, G

    2010-03-01

    Milk protein genetic polymorphisms are often used for characterizing domesticated mammalian species and breeds, and for studying associations with economic traits. The aim of this work was to analyze milk protein genetic variation in the Original Pinzgauer, a dual-purpose (dairy and beef) cattle breed of European origin that was influenced in the past by human movements from different regions as well as by crossbreeding with Red Holstein. A total of 485 milk samples from Original Pinzgauer from Austria (n=275) and Germany (n=210) were typed at milk proteins alpha(S1)-casein, beta-casein, kappa-casein, alpha-lactalbumin, and beta-lactoglobulin by isoelectrofocusing to analyze the genetic variation affecting the protein amino acid charge. The Original Pinzgauer breed is characterized by a rather high genetic variation affecting the amino acid charge of milk proteins, with a total of 15 alleles, 12 of which were found at a frequency >0.05. The most polymorphic protein was beta-casein with 4 alleles detected. The prevalent alleles were CSN1S1*B, CSN2*A(2), CSN1S2*A, CSN3*A, LGB*A, and LAA*B. A relatively high frequency of CSN1S2*B (0.202 in the whole data set) was found, mainly occurring within the C-A(2)-B-A haplotype (in the order CSN1S1-CSN2-CSN1S2-CSN3), which seems to be peculiar to the Original Pinzgauer, possibly because the survival of an ancestral haplotype or the introgression of Bos indicus.

  12. Maillard Conjugation of Sodium Alginate to Whey Protein for Enhanced Resistance to Surfactant-Induced Competitive Displacement from Air-Water Interfaces.

    PubMed

    Cai, Bingqing; Saito, Anna; Ikeda, Shinya

    2018-01-24

    Whey protein adsorbed to an interface forms a viscoelastic interfacial film but is displaced competitively from the interface by a small-molecule surfactant added afterward. The present study evaluated the impact of the covalent conjugation of high- or low-molecular-weight sodium alginate (HA or LA) to whey protein isolate (WPI) via the Maillard reaction on the ability of whey protein to resist surfactant-induced competitive displacement from the air-water interface. Surfactant added after the pre-adsorption of conjugate to the interface increased surface pressure. At a given surface pressure, the WPI-LA conjugate showed a significantly higher interfacial area coverage and lower interfacial film thickness compared to those of the WPI-HA conjugate or unconjugated WPI. The addition of LA to the aqueous phase had little effect on the interfacial area and thickness of pre-adsorbed WPI. These results suggest the importance of the molecular weight of the polysaccharide moiety in determining interfacial properties of whey protein-alginate conjugates.

  13. Effect of water content on thermal behavior of freeze-dried soy whey and their isolated proteins.

    PubMed

    Sobral, Pablo A; Palazolo, Gonzalo G; Wagner, Jorge R

    2011-04-27

    Thermal behavior of lyophilized soy whey (LSW) and whey soy proteins (WSP) at different water contents (WC) was studied by DSC. In anhydrous condition, Kunitz trypsin inhibitor (KTI) and lectin (L) were more heat stable for WSP with respect to LSW sample. The increase of WC destabilized both proteins but differently depending on the sample analyzed. Thermal stability inversion of KTI and L was observed for WSP and LSW at 50.0% and 17.0% WC, respectively, which correspond to the same water-protein content mass ratio (W/P ≈ 1.9). At W/P < 1.9, KTI was more heat stable than L. Before the inversion point, WC strongly modified the peak temperatures (T(p)) of KTI and L for WSP, whereas this behavior was not observed for LSW. The high sugar content was responsible for the thermal behavior of KTI and L in LSW under anhydrous condition and low WC. These results have important implications for the soy whey processing and inactivation of antinutritional factors.

  14. No Difference Between the Effects of Supplementing With Soy Protein Versus Animal Protein on Gains in Muscle Mass and Strength in Response to Resistance Exercise.

    PubMed

    Messina, Mark; Lynch, Heidi; Dickinson, Jared M; Reed, Katharine E

    2018-05-03

    Much attention has been given to determining the influence of total protein intake and protein source on gains in lean body mass (LBM) and strength in response to resistance exercise training (RET). Acute studies indicate that whey protein, likely related to its higher leucine content, stimulates muscle protein synthesis (MPS) to a greater extent than proteins such as soy and casein. Less clear is the extent to which the type of protein supplemented impacts strength and LBM in longer term studies (≥6 weeks). Therefore, a meta-analysis was conducted to compare the effect of supplementation with soy protein to animal protein supplementation on strength and LBM in response to RET. Nine studies involving 266 participants suitable for inclusion in the meta-analysis were identified. Five studies compared whey with soy protein and four compared soy protein with other proteins (beef, milk or dairy protein). Meta-analysis showed that supplementing RET with whey or soy protein resulted in significant increases in strength but found no difference between groups (bench press Chi 2 = 0.02, p=0.90; squat Chi 2 =0.22, p =0.64). There was no significant effect of whey or soy alone (n=5) on LBM change, and no differences between groups (Chi 2 =0.00, p=0.96). Strength and LBM both increased significantly in the 'other protein' and the soy groups (n=9), but there were no between group differences (bench Chi 2 =0.02, p=0.88; squat Chi 2 =0.78, p=0.38 and LBM Chi 2 =0.06, p=0.80). The results of this meta-analysis indicate that soy protein supplementation produces similar gains in strength and LBM in response to RET as whey protein.

  15. Bodybuilding protein supplements and cow's milk allergy in adult.

    PubMed

    Sousa, M J C S; Reis Ferreira, A L; Moreira da Silva, J P

    2018-01-01

    We report a case of a previously healthy 24-year-old man with a 3-month history of gastrointestinal symptoms during exercise and also few minutes after the ingestion of cow's milk (CM) without exercise. He reported the ingestion of a blend of hydrolyzed whey and casein proteins for bodybuilding for the last 2 years. The in vivo tests showed positivity to CM, α-lactalbumin, β-lactoglobulin and casein extracts, and also to the protein supplement. The serum specific IgE was positive for CM, β-lactoglobulin and α-lactalbumin. The in vivo and in vitro tests results suggested an IgE-mediated CMA. Adult-onset CMA has been rarely reported, and to our knowledge this is the first case possibly related to bodybuilding supplements. The authors theorize that the presentation of large amounts of proteins in the gastrointestinal tract may favor sensitization.

  16. The effect of a whey protein supplement dose on satiety and food intake in resistance training athletes.

    PubMed

    MacKenzie-Shalders, Kristen L; Byrne, Nuala M; Slater, Gary J; King, Neil A

    2015-09-01

    Many athletes perform resistance training and consume dietary protein as a strategy to promote anabolic adaptation. Due to its high satiety value, the regular addition of supplemented dietary protein could plausibly displace other key macronutrients such as carbohydrate in an athlete's diet. This effect will be influenced by the form and dose of protein. Therefore, this study assessed the impact of liquid whey protein dose manipulation on subjective sensations of appetite and food intake in a cohort of athletes. Ten male athletes who performed both resistance and aerobic (endurance) training (21.2 ± 2.3 years; 181.7 ± 5.7 cm and 80.8 ± 6.1 kg) were recruited. In four counter-balanced testing sessions they consumed a manipulated whey protein supplement (20, 40, 60 or 80 g protein) 1 hour after a standardised breakfast. Subsequent energy intake was measured 3 hours after the protein supplement using an ad libitum test meal. Subjective appetite sensations were measured periodically during the test day using visual analogue scales. All conditions resulted in a significant decrease in ratings of hunger (50-65%; P < 0.05) at the time of supplement consumption. However, there were no significant differences between the conditions at any time point for subjective appetite sensations or for energy consumed in the ad libitum meal: 4382 ± 1004, 4643 ± 982, 4514 ± 1112, 4177 ± 1494 kJ respectively. Increasing whey protein supplement dose above 20 g did not result in a measurable increase in satiety or decrease in food intake. However, the inclusion of additional whey protein supplementation where not otherwise consumed could plausibly reduce dietary intake. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Effect of Sodium Sulfite, Sodium Dodecyl Sulfate, and Urea on the Molecular Interactions and Properties of Whey Protein Isolate-Based Films

    PubMed Central

    Schmid, Markus; Prinz, Tobias K.; Stäbler, Andreas; Sängerlaub, Sven

    2017-01-01

    Whey protein coatings and cast films are promising for use as food packaging materials. Ongoing research is endeavoring to reduce their permeability. The intention of this study was to evaluate the effect of the reactive additives sodium sulfite, sodium dodecyl sulfate (SDS), and urea on the oxygen barrier, water vapor barrier, and protein solubility of whey protein cast films. The concentration of the reactive additives was 1 to 20 wt.-%. Dried whey protein cast films were used as substrate materials. The water vapor transmission rate, the oxygen permeability, and the protein solubility were measured. Effective diffusion coefficients and effective sorption coefficients were calculated from the results of the water vapor sorption experiments. The presence of sodium sulfite resulted in an increased number of hydrophobic interactions and hydrogen bonds and a slightly decreased number of disulfide bonds. The oxygen permeability decreased from 68 to 46 cm3 (STP/standard temperature and pressure) 100 μm (m2 d bar)−1 for 1 wt.-% SDS in the whey protein cast film. The water vapor transmission rate decreased from 165 to 44 g 100 μm (m2 d)−1 measured at 50 to 0% r. h. for 20 wt.-% SDS in the whey protein cast film. The reduction in the water vapor transmission rate correlated with the lower effective diffusion coefficient. PMID:28149835

  18. Effect of sodium sulfite, sodium dodecyl sulfate, and urea on the molecular interactions and properties of whey protein isolate-based films

    NASA Astrophysics Data System (ADS)

    Schmid, Markus; Prinz, Tobias K.; Stäbler, Andreas; Sängerlaub, Sven

    2016-12-01

    Whey protein coatings and cast films are promising for use as food packaging materials. Ongoing research is endeavoring to reduce their permeability. The intention of this study was to evaluate the effect of the reactive additives sodium sulfite, sodium dodecyl sulfate (SDS), and urea on the oxygen barrier, water vapor barrier, and protein solubility of whey protein cast films. The concentration of the reactive additives was 1 to 20 wt.-%. Dried whey protein cast films were used as substrate materials. The water vapor transmission rate, the oxygen permeability, and the protein solubility were measured. Effective diffusion coefficients and effective sorption coefficients were calculated from the results of the water vapor sorption experiments. The presence of sodium sulfite resulted in an increased number of hydrophobic interactions and hydrogen bonds and a slightly decreased number of disulfide bonds. The oxygen permeability decreased from 68 to 46 cm³ (STP / standard temperature and pressure) 100 µm (m² d bar)-1 for 1 wt.-% SDS in the whey protein cast film. The water vapor transmission rate decreased from 165 to 44 g 100 µm (m² d)-1 measured at 50 to 0 % r. h. for 20 wt.-% SDS in the whey protein cast film. The reduction in the water vapor transmission rate correlated with the lower effective diffusion coefficient.

  19. Investigating rennet coagulation properties of recombined highly concentrated micellar casein concentrate and cream for use in cheese making.

    PubMed

    Lu, Y; McMahon, D J; Vollmer, A H

    2017-02-01

    Highly concentrated micellar casein concentrate (HC-MCC) contains ∼18% casein with ∼70% of whey proteins removed by microfiltration and diafiltration of skim milk, followed by vacuum evaporation for further concentration. When blended with cream, HC-MCC forms recombined concentrated milk (RCM), which could be used as a starting material in cheese making. Our objective was to investigate the rennet coagulation properties of RCM while varying parameters such as casein level, pH, rennet level, and coagulation temperature. The HC-MCC was mixed with cream using low shear at 50°C for 10 min, followed by cooling to 31, 28, or 25°C and adding rennet, and rheological properties were determined. Rennet coagulation time [RCT, the time at which storage modulus (G') = loss modulus (G″)] decreased from 8.7 to 7.4 min as casein level increased from 3.2 to 5.7%, without a significant additional difference in RCT at casein levels >5.7%. The initial G″ (G″ 0 ) increased about 10-fold when casein levels were increased from 3.2 to 10.9%, whereas no change in initial G' (G' 0 ) was observed. When G' was measured relative to RCT (i.e., 1, 1.5, or 2 times RCT after RCT was reached, and expressed as G' 1 , G' 1.5 , and G' 2 ), log relationship was found between relative G' and casein level (R 2 > 0.94). Lowering coagulation temperature from 31 to 25°C increased G″ 0 by 6 fold and extended RCT from 7.4 to 9.5 min. After coagulation, relative G' was initially higher at the lower temperature with G' 1 of 3.6 Pa at 25°C and 2.0 Pa at 31°C, but delayed in further development with G' 2 of 0.8 kPa at 25°C and 1.1 kPa at 31°C. Lowering pH of RCM from 6.6 to 6.2 resulted in reduced RCT from 11.9 to 6.5 min with increased relative G' after coagulation. When less rennet was used, RCT increased in a linear inverse relationship without changes in relative G' or G″. The microstructure of RCM coagulum (∼11% casein), observed using transmission electron microscopy, confirmed that

  20. Influence of heating and acidification on the flavor of whey protein isolate.

    PubMed

    White, S S; Fox, K M; Jervis, S M; Drake, M A

    2013-03-01

    Previous studies have established that whey protein manufacture unit operations influence the flavor of dried whey proteins. Additionally, manufacturers generally instantize whey protein isolate (WPI; ≥ 90% protein) by agglomeration with lecithin to increase solubility and wettability. Whey protein isolate is often subjected to additional postprocessing steps in beverage manufacturing, including acidification and heat treatment. These postprocessing treatments may further influence formation or release of flavors. The objective of the first study was to characterize the effect of 2 processing steps inherent to manufacturing of acidic protein beverages (acidification and heat treatment) on the flavor of non-instant WPI. The second study sought to determine the effect of lecithin agglomeration, a common form of instantized (INST) WPI used in beverage manufacturing, on the flavor of WPI after acidification and heat treatment. In the first experiment, commercial non-instantized (NI) WPI were rehydrated and evaluated as is (control); acidified to pH 3.2; heated to 85°C for 5 min in a benchtop high temperature, short time (HTST) pasteurizer; or acidified to 3.2 and heated to 85°C for 30s (AH-HTST). In the second experiment, INST and NI commercial WPI were subsequently evaluated as control, acidified, heated, or AH-HTST. All samples were evaluated by descriptive sensory analysis, solid-phase microextraction (SPME), and gas chromatography-mass spectrometry. Acidification of NI WPI produced higher concentrations of dimethyl disulfide (DMDS) and sensory detection of potato/brothy flavors, whereas heating increased cooked/sulfur flavors. Acidification and heating increased cardboard, potato/brothy, and malty flavors and produced higher concentrations of aldehydes, ketones, and sulfur compounds. Differences between INST and NI WPI existed before treatment; INST WPI displayed cucumber flavors not present in NI WPI. After acidification, INST WPI were distinguished by higher

  1. Alternative bleaching methods for Cheddar cheese whey.

    PubMed

    Kang, E J; Smith, T J; Drake, M A

    2012-07-01

    Residual annatto colorant (norbixin) in fluid Cheddar cheese whey can be bleached. The 2 approved chemical bleaching agents for whey, hydrogen peroxide (HP) and benzoyl peroxide (BP), negatively impact the flavor of dried whey protein. The objective of this study was to evaluate alternative methods for bleaching liquid whey: ultraviolet radiation (UV), acid-activated bentonite (BT), and ozone (OZ). Colored Cheddar cheese whey was manufactured followed by pasteurization and fat separation. Liquid whey was subjected to one of 5 treatments: control (CT) (no bleaching; 50 °C, 1 h), HP (250 mg/kg; 50 °C, 1 h), UV (1 min exposure; 50 °C), BT (0.5% w/w; 50 °C, 1 h), or OZ (2.2g/h, 50 °C, 1 h). The treated whey was then ultrafiltered, diafiltered, and spray-dried to 80% whey protein concentrate (WPC80). The entire experiment was replicated 3 times. Color (norbixin extraction and measurement), descriptive sensory, and instrumental volatile analyses were conducted on WPC80. Norbixin elimination was 28%, 79%, 39%, and 15% for HP, BT, UV, and OZ treatments, respectively. WPC80 from bleached whey, regardless of bleaching agent, had lower sweet aromatic and cooked/milky flavors compared to unbleached CT (P < 0.05). The HP and BT WPC80 had higher fatty flavor compared to the CT WPC80 (P < 0.05), and the UV and OZ WPC80 had distinct mushroom/burnt and animal flavors. Volatile compound results were consistent with sensory results and confirmed higher relative abundances of volatile aldehydes in UV, HP, and OZ WPC80 compared to CT and BT WPC80. Based on bleaching efficacy and flavor, BT may be an alternative to chemical bleaching of fluid whey. The 2 approved chemical bleaching agents for whey, hydrogen peroxide (HP) and benzoyl peroxide (BP), negatively impact flavor of dried whey protein, and restrictions on these agents are increasing. This study evaluated 3 alternatives to chemical bleaching of fluid whey: UV radiation, ozone, and bentonite. © 2012 Institute of Food

  2. Low inorganic arsenic in hydrolysed-rice formula used for cow's milk protein allergy.

    PubMed

    Meyer, Rosan; Carey, Manus P; Turner, Paul; Meharg, Andrew A

    2018-04-27

    Hypoallergenic formulas are recommended for use in young children with cow's milk protein allergy (CMPA), where breastmilk is not available, 1 with the choice between both extensively hydrolysed casein/whey or amino acid-based products. More recently, hydrolysed rice protein-based formulas (HRF) have become available and are now commonly used in Europe for CMPA This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  3. Development of casein microgels from cross-linking of casein micelles by genipin.

    PubMed

    Silva, Naaman F Nogueira; Saint-Jalmes, Arnaud; de Carvalho, Antônio F; Gaucheron, Frédéric

    2014-09-02

    Casein micelles are porous colloidal particles, constituted of casein molecules, water, and minerals. The vulnerability of the supramolecular structure of casein micelles face to changes in the environmental conditions restrains their applications in other domains besides food. Thus, redesigning casein micelles is a challenge to create new functionalities for these biosourced particles. The objective of this work was to create stable casein microgels from casein micelles using a natural cross-linker, named genipin. Suspensions of purified casein micelles (25 g L(-1)) were mixed with genipin solutions to have final concentrations of 5, 10, and 20 mM genipin. Covalently linked casein microgels were formed via cross-linking of lysyl and arginyl residues of casein molecules. The reacted products exhibited blue color. The cross-linking reaction induced gradual changes on the colloidal properties of the particles. The casein microgels were smaller and more negatively charged and presented smoother surfaces than casein micelles. These results were explained based on the cross-linking of free NH2 present in an external layer of κ-casein. Light scattering and rheological measurements showed that the reaction between genipin and casein molecules was intramicellar, as one single population of particles was observed and the values of viscosity (and, consequently, the volume fraction of the particles) were reduced. Contrary to the casein micelles, the casein microgels were resistant to the presence of dissociating agents, e.g., citrate (calcium chelating) and urea, but swelled as a consequence of internal electrostatic repulsion and the disruption of hydrophobic interactions between protein chains. The casein microgels did not dissociate at the air-solution interface and formed solid-like interfaces rather than a viscoelastic gel. The potential use of casein microgels as adaptable nanocarriers is proposed in the article.

  4. Recyclability of PET/WPI/PE Multilayer Films by Removal of Whey Protein Isolate-Based Coatings with Enzymatic Detergents

    PubMed Central

    Cinelli, Patrizia; Schmid, Markus; Bugnicourt, Elodie; Coltelli, Maria Beatrice; Lazzeri, Andrea

    2016-01-01

    Multilayer plastic films provide a range of properties, which cannot be obtained from monolayer films but, at present, their recyclability is an open issue and should be improved. Research to date has shown the possibility of using whey protein as a layer material with the property of acting as an excellent barrier against oxygen and moisture, replacing petrochemical non-recyclable materials. The innovative approach of the present research was to achieve the recyclability of the substrate films by separating them, with a simple process compatible with industrial procedures, in order to promote recycling processes leading to obtain high value products that will beneficially impact the packaging and food industries. Hence, polyethyleneterephthalate (PET)/polyethylene (PE) multi-layer film was prepared based on PET coated with a whey protein layer, and then the previous structure was laminated with PE. Whey proteins, constituting the coating, can be degraded by enzymes so that the coating films can be washed off from the plastic substrate layer. Enzyme types, dosage, time, and temperature optima, which are compatible with procedures adopted in industrial waste recycling, were determined for a highly-efficient process. The washing of samples based on PET/whey and PET/whey/PE were efficient when performed with enzymatic detergent containing protease enzymes, as an alternative to conventional detergents used in recycling facilities. Different types of enzymatic detergents tested presented positive results in removing the protein layer from the PET substrate and from the PET/whey/PE multilayer films at room temperature. These results attested to the possibility of organizing the pre-treatment of the whey-based multilayer film by washing with different available commercial enzymatic detergents in order to separate PET and PE, thus allowing a better recycling of the two different polymers. Mechanical properties of the plastic substrate, such as stress at yield, stress and

  5. Recyclability of PET/WPI/PE Multilayer Films by Removal of Whey Protein Isolate-Based Coatings with Enzymatic Detergents.

    PubMed

    Cinelli, Patrizia; Schmid, Markus; Bugnicourt, Elodie; Coltelli, Maria Beatrice; Lazzeri, Andrea

    2016-06-14

    Multilayer plastic films provide a range of properties, which cannot be obtained from monolayer films but, at present, their recyclability is an open issue and should be improved. Research to date has shown the possibility of using whey protein as a layer material with the property of acting as an excellent barrier against oxygen and moisture, replacing petrochemical non-recyclable materials. The innovative approach of the present research was to achieve the recyclability of the substrate films by separating them, with a simple process compatible with industrial procedures, in order to promote recycling processes leading to obtain high value products that will beneficially impact the packaging and food industries. Hence, polyethyleneterephthalate (PET)/polyethylene (PE) multi-layer film was prepared based on PET coated with a whey protein layer, and then the previous structure was laminated with PE. Whey proteins, constituting the coating, can be degraded by enzymes so that the coating films can be washed off from the plastic substrate layer. Enzyme types, dosage, time, and temperature optima, which are compatible with procedures adopted in industrial waste recycling, were determined for a highly-efficient process. The washing of samples based on PET/whey and PET/whey/PE were efficient when performed with enzymatic detergent containing protease enzymes, as an alternative to conventional detergents used in recycling facilities. Different types of enzymatic detergents tested presented positive results in removing the protein layer from the PET substrate and from the PET/whey/PE multilayer films at room temperature. These results attested to the possibility of organizing the pre-treatment of the whey-based multilayer film by washing with different available commercial enzymatic detergents in order to separate PET and PE, thus allowing a better recycling of the two different polymers. Mechanical properties of the plastic substrate, such as stress at yield, stress and

  6. Short communication: Potential of Fresco-style cheese whey as a source of protein fractions with antioxidant and angiotensin-I-converting enzyme inhibitory activities.

    PubMed

    Tarango-Hernández, S; Alarcón-Rojo, A D; Robles-Sánchez, M; Gutiérrez-Méndez, N; Rodríguez-Figueroa, J C

    2015-11-01

    Recently, traditional Mexican Fresco-style cheese production has been increasing, and the volume of cheese whey generated represents a problem. In this study, we investigated the chemical composition of Fresco-style cheese wheys and their potential as a source of protein fractions with antioxidant and angiotensin-I-converting enzyme (ACE)-inhibitory activities. Three samples from Fresco, Panela, and Ranchero cheeses whey were physicochemically characterized. Water-soluble extracts were fractionated to obtain whey fractions with different molecular weights: 10-5, 5-3, 3-1 and <1 kDa. The results indicated differences in the lactose, protein, ash, and dry matter contents (% wt/wt) in the different Fresco-style cheese wheys. All whey fractions had antioxidant and ACE-inhibitory activities. The 10-5 kDa whey fraction of Ranchero cheese had the highest Trolox equivalent antioxidant capacity (0.62 ± 0.00 mM), and the 3-1 kDa Panela and Fresco cheese whey fractions showed the highest ACE-inhibitory activity (0.57 ± 0.02 and 0.59 ± 0.04 μg/mL 50%-inhibitory concentration values, respectively). These results suggest that Fresco-style cheese wheys may be a source of protein fractions with bioactivity, and thus could be useful ingredients in the manufacture of functional foods with increased nutritional value. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  7. Whey Protein Supplementation Improves Nutritional Status, Glutathione Levels, and Immune Function in Cancer Patients: A Randomized, Double-Blind Controlled Trial.

    PubMed

    Bumrungpert, Akkarach; Pavadhgul, Patcharanee; Nunthanawanich, Pornpimon; Sirikanchanarod, Anchalee; Adulbhan, Araya

    2018-06-01

    Clinical side effects from medical therapy play an important role in causing malnutrition among cancer patients. Whey protein isolates (WPIs) have the potential to improve the nutritional status of cancer patients. The present study determined the effects of whey protein supplementation on nutritional status, glutathione (GSH) levels, immunity, and inflammatory markers in cancer patients in Thailand. A total of 42 cancer patients (41-63 years old) who received intravenous chemotherapy were randomized in a double-blind controlled trial at the National Cancer Institute in Thailand. Patients received 40 g of WPI plus zinc and selenium (intervention group, n = 23) or a maltodextrin oral snack (control group, n = 19) every day during the daytime for 12 weeks. Nutritional status, GSH levels, immunity, and inflammatory markers were assessed at baseline, 6, and 12 weeks. Whey protein supplementation significantly increased albumin (2.9%) and immunoglobulin G (4.8%) levels compared to the control group at week 12. Controls showed a significantly lower percent change in GSH levels (6.0%), whereas there was a significant time-dependent increase in the intervention group (11.7%). Whey protein supplementation improved nutrition status scores in the intervention group compared to the control. These data indicate that whey protein supplementation can increase GSH levels and improve nutritional status and immunity in cancer patients undergoing chemotherapy. These results will facilitate implementation of malnutrition risk prevention strategies and improve protein status, including immune function, during chemotherapy.

  8. Cold enzymatic bleaching of fluid whey.

    PubMed

    Campbell, R E; Drake, M A

    2013-01-01

    Chemical bleaching of fluid whey and retentate with hydrogen peroxide (HP) alone requires high concentrations (100-500 mg of HP/kg) and recent studies have demonstrated that off-flavors are generated during chemical bleaching that carry through to spray-dried whey proteins. Bleaching of fluid whey and retentate with enzymes such as naturally present lactoperoxidase or an exogenous commercial peroxidase (EP) at cold temperatures (4°C) may be a viable alternative to traditional chemical bleaching of whey. The objective of this study was to determine the optimum level of HP for enzymatic bleaching (both lactoperoxidase and EP) at 4°C and to compare bleaching efficacy and sensory characteristics to HP chemical bleaching at 4°C. Selected treatments were subsequently applied for whey protein concentrate with 80% protein (WPC80) manufacture. Fluid Cheddar whey and retentate (80% protein) were manufactured in triplicate from pasteurized whole milk. The optimum concentration of HP (0 to 250 mg/kg) to activate enzymatic bleaching at 4°C was determined by quantifying the loss of norbixin. In subsequent experiments, bleaching efficacy, descriptive sensory analysis, and volatile compounds were monitored at selected time points. A control with no bleaching was also evaluated. Enzymatic bleaching of fluid whey and retentate at 4°C resulted in faster bleaching and higher bleaching efficacy (color loss) than bleaching with HP alone at 250 mg/kg. Due to concentrated levels of naturally present lactoperoxidase, retentate bleached to completion (>80% norbixin destruction in 30 min) faster than fluid whey at 4°C (>80% norbixin destruction in 12h). In fluid whey, the addition of EP decreased bleaching time. Spray-dried WPC80 from bleached wheys, regardless of bleaching treatment, were characterized by a lack of sweet aromatic and buttery flavors, and the presence of cardboard flavor concurrent with higher relative abundance of 1-octen-3-ol and 1-octen-3-one. Among enzymatically

  9. Effects of combination of whey protein intake and rehabilitation on muscle strength and daily movements in patients with hip fracture in the early postoperative period.

    PubMed

    Niitsu, Masaya; Ichinose, Daisuke; Hirooka, Taku; Mitsutomi, Kazuhiko; Morimoto, Yoshitaka; Sarukawa, Junichiro; Nishikino, Shoichi; Yamauchi, Katsuya; Yamazaki, Kaoru

    2016-08-01

    Elderly patients can be at risk of protein catabolism and malnutrition in the early postoperative period. Whey protein includes most essential amino acids and stimulates the synthesis of muscle protein. The purpose of this study was to investigate the effect of resistance training in combination with whey protein intake in the early postoperative period. We randomized patients to a whey protein group or a control group. The former group received 32.2 g of whey protein pre- and post-rehabilitation in the early postoperative period for two weeks. Outcomes were knee extension strength on either side by Biodex 4.0, and the ability of transfer, walking, toilet use and stair use by the Barthel Index (BI). We performed initial and final assessments in the second and tenth rehabilitation sessions. A total of 38 patients were recruited: 20 in the whey protein group and 18 in the control group. Participants in the whey protein group showed significantly greater improvement in knee extension strength in the operated limb compared with the control group (F = 6.11, P = 0.02). The non-operated limb also showed a similar tendency (F = 3.51, P = 0.07). The abilities of transfer, walking and toilet use showed greater improvements in the whey protein group than in the control group by BI (P < 0.05). The combination of whey protein intake and rehabilitation for two weeks in the early postoperative period has a beneficial effect on knee extension strength in both lower limbs and BI (transfer, walking and toilet use) scores in patients with hip fracture. Copyright © 2015 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  10. Comparison of the principal proteins in bovine, caprine, buffalo, equine and camel milk.

    PubMed

    Hinz, Katharina; O'Connor, Paula M; Huppertz, Thom; Ross, R Paul; Kelly, Alan L

    2012-05-01

    Proteomic analysis of bovine, caprine, buffalo, equine and camel milk highlighted significant interspecies differences. Camel milk was found to be devoid of β-lactoglobulin, whereas β-lactoglobulin was the major whey protein in bovine, buffalo, caprine, and equine milk. Five different isoforms of κ-casein were found in camel milk, analogous to the micro-heterogeneity observed for bovine κ-casein. Several spots observed in 2D-electrophoretograms of milk of all species could tentatively be identified as polypeptides arising from the enzymatic hydrolysis of caseins. The understanding gained from the proteomic comparison of these milks may be of relevance both in terms of identifying sources of hypoallergenic alternatives to bovine milk and detection of adulteration of milk samples and products.

  11. Iron binding to caseins in the presence of orthophosphate.

    PubMed

    Mittal, V A; Ellis, A; Ye, A; Edwards, P J B; Das, S; Singh, H

    2016-01-01

    As adding >5mM ferric chloride to sodium caseinate solutions results in protein precipitation, the effects of orthophosphate (0-64 mM) addition to sodium caseinate solution (2% w/v protein) on iron-induced aggregation of the caseins were studied at pH 6.8. Up to 20mM ferric chloride could be added to sodium caseinate solution containing 32 mM orthophosphate without any protein precipitation. The addition of iron to sodium caseinate solution containing orthophosphate reduced the diffusible phosphorus content in a concentration-dependent manner. Added iron appeared to interact simultaneously with phosphoserine on the caseins and inorganic phosphorus. The relative sizes of the casein aggregates were governed by the concentration of orthophosphate and the aggregates consisted of all casein fractions, even at the lowest level of ferric chloride addition (5mM). It is hypothesised that the addition of iron to caseins in the presence of orthophosphate results in the formation of colloidal structures involving casein-iron-orthophosphate interactions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Milk composition and lactation of beta-casein-deficient mice.

    PubMed Central

    Kumar, S; Clarke, A R; Hooper, M L; Horne, D S; Law, A J; Leaver, J; Springbett, A; Stevenson, E; Simons, J P

    1994-01-01

    beta-Casein is a major protein component of milk and, in conjunction with the other caseins, it is assembled into micelles. The casein micelles determine many of the physical characteristics of milk, which are important for stability during storage and for milk-processing properties. There is evidence that suggests that beta-casein may also possess other, nonnutritional functions. To address the function of beta-casein, the mouse beta-casein gene was disrupted by gene targeting in embryonic stem cells. Homozygous beta-casein mutant mice are viable and fertile; females can lactate and successfully rear young. beta-Casein was expressed at a reduced level in heterozygotes and was completely absent from the milk of homozygous mutant mice. Despite the deficiency of beta-casein, casein micelles were assembled in heterozygous and homozygous mutants, albeit with reduced diameters. The absence of beta-casein expression was reflected in a reduced total protein concentration in milk, although this was partially compensated for by an increased concentration of other proteins. The growth of pups feeding on the milk of homozygous mutants was reduced relative to those feeding on the milk of wild-type mice. Various genetic manipulations of caseins have been proposed for the qualitative improvement of cow's milk composition. The results presented here demonstrate that beta-casein has no essential function and that the casein micelle is remarkably tolerant of changes in composition. Images PMID:8016126

  13. Proteomic analysis of cow, yak, buffalo, goat and camel milk whey proteins: quantitative differential expression patterns.

    PubMed

    Yang, Yongxin; Bu, Dengpan; Zhao, Xiaowei; Sun, Peng; Wang, Jiaqi; Zhou, Lingyun

    2013-04-05

    To aid in unraveling diverse genetic and biological unknowns, a proteomic approach was used to analyze the whey proteome in cow, yak, buffalo, goat, and camel milk based on the isobaric tag for relative and absolute quantification (iTRAQ) techniques. This analysis is the first to produce proteomic data for the milk from the above-mentioned animal species: 211 proteins have been identified and 113 proteins have been categorized according to molecular function, cellular components, and biological processes based on gene ontology annotation. The results of principal component analysis showed significant differences in proteomic patterns among goat, camel, cow, buffalo, and yak milk. Furthermore, 177 differentially expressed proteins were submitted to advanced hierarchical clustering. The resulting clustering pattern included three major sample clusters: (1) cow, buffalo, and yak milk; (2) goat, cow, buffalo, and yak milk; and (3) camel milk. Certain proteins were chosen as characterization traits for a given species: whey acidic protein and quinone oxidoreductase for camel milk, biglycan for goat milk, uncharacterized protein (Accession Number: F1MK50 ) for yak milk, clusterin for buffalo milk, and primary amine oxidase for cow milk. These results help reveal the quantitative milk whey proteome pattern for analyzed species. This provides information for evaluating adulteration of specific specie milk and may provide potential directions for application of specific milk protein production based on physiological differences among animal species.

  14. The effect of acidification of liquid whey protein concentrate on the flavor of spray-dried powder.

    PubMed

    Park, Curtis W; Bastian, Eric; Farkas, Brian; Drake, MaryAnne

    2014-07-01

    Off-flavors in whey protein negatively influence consumer acceptance of whey protein ingredient applications. Clear acidic beverages are a common application of whey protein, and recent studies have demonstrated that beverage processing steps, including acidification, enhance off-flavor production from whey protein. The objective of this study was to determine the effect of preacidification of liquid ultrafiltered whey protein concentrate (WPC) before spray drying on flavor of dried WPC. Two experiments were performed to achieve the objective. In both experiments, Cheddar cheese whey was manufactured, fat-separated, pasteurized, bleached (250 mg/kg of hydrogen peroxide), and ultrafiltered (UF) to obtain liquid WPC that was 13% solids (wt/wt) and 80% protein on a solids basis. In experiment 1, the liquid retentate was then acidified using a blend of phosphoric and citric acids to the following pH values: no acidification (control; pH 6.5), pH 5.5, or pH 3.5. The UF permeate was used to normalize the protein concentration of each treatment. The retentates were then spray dried. In experiment 2, 150 μg/kg of deuterated hexanal (D₁₂-hexanal) was added to each treatment, followed by acidification and spray drying. Both experiments were replicated 3 times. Flavor properties of the spray-dried WPC were evaluated by sensory and instrumental analyses in experiment 1 and by instrumental analysis in experiment 2. Preacidification to pH 3.5 resulted in decreased cardboard flavor and aroma intensities and an increase in soapy flavor, with decreased concentrations of hexanal, heptanal, nonanal, decanal, dimethyl disulfide, and dimethyl trisulfide compared with spray drying at pH 6.5 or 5.5. Adjustment to pH 5.5 before spray drying increased cabbage flavor and increased concentrations of nonanal at evaluation pH values of 3.5 and 5.5 and dimethyl trisulfide at all evaluation pH values. In general, the flavor effects of preacidification were consistent regardless of the pH to

  15. Micelle-mediated extraction of elderberry blossom by whey protein and naturally derived surfactants.

    PubMed

    Śliwa, Karolina; Tomaszkiewicz-Potępa, Anna; Sikora, Elżbieta; Ogonowski, Jan

    2013-01-01

    Classical methods of the extraction of active ingredients from the plant material are expensive, complicated and often environmentally unfriendly. The micelle-mediated extraction method (MME) seems to be a good alternative. In this work, extractions of elderberry blossoms (Flos Sambuci) were performed using MME methods. Several popular surfactants and whey protein concentrate (WPC) was applied in the process. The obtained results were compared with those obtained in extraction by means of water. Antioxidant properties of the extracts were analyzed by using two different methods: reaction with di(phenyl)-(2,4,6-trinitrophenyl)iminoazanium (DPPH) reagent and Follin's method. Furthermore, the flavonoid content in the extracts was determined. The results confirmed that the MME method with using whey protein might be an alternative method for obtaining, rich in natural antioxidants, plant extracts.

  16. Detecting β-Casein Variation in Bovine Milk.

    PubMed

    Caroli, Anna Maria; Savino, Salvatore; Bulgari, Omar; Monti, Eugenio

    2016-01-25

    In bovine species, β-casein (β-CN) is characterized by genetic polymorphism. The two most common protein variants are β-CN A² (the original one) and A¹, differing from A² for one amino acid substitution (Pro67 to His67). Several bioactive peptides affecting milk nutritional properties can originate from β-CN. Among them, β-casomorphin-7 (BCM7) ranging from amino acid 60 to 66 can be released more easily from β-CN variants carrying His67 (A¹ type) instead of Pro67 (A² type). Nowadays, "A2 milk" is produced in different countries claiming its potential benefits in human health. The aim of this study was to further develop and apply an isoelectric focusing electrophoresis (IEF) method to bulk and individual milk samples in order to improve its use for β-CN studies. We succeeded in identifying A2 milk samples correctly and quantifying the percentage of A², A¹, and B variants in bulk samples not derived from A2 milk as well as in individual milk samples. The method allows us to quantify the relative proportion of β-CN variants in whole milk without eliminating whey protein by acid or enzymatic precipitation of caseins. The aim of this study was also to study the different behavior of β-CN and β-lactoglobulin (β-LG) in the presence of trichloroacetic acid (TCA). The higher sensitivity of β-CN to TCA allows quantifying β-CN variants after TCA fixation because β-LG is not visible. Monitoring β-CN variation in cattle breeds is important in order to maintain a certain balance between Pro67 and His67 in dairy products. Overall, the debate between A1 and A2 milk needs further investigation.

  17. Thermogenic Blend Alone or in Combination with Whey Protein Supplement Stimulates Fat Metabolism and Improves Body Composition in Mice.

    PubMed

    Vieira-Brock, Paula de Lima; Vaughan, Brent M; Vollmer, David L

    2018-01-01

    Certain food ingredients promote thermogenesis and fat loss. Similarly, whey protein improves body composition. Due to this potential synergistic effect, a blend of thermogenic food ingredients containing African mango, citrus fruit extract, Coleus forskohlii , dihydrocapsiate, and red pepper was tested alone and in combination with a whey protein supplement for its effects on body composition in sedentary mice during high-fat diet. The objective of this study was to evaluate the interaction of thermogenic foods on improving body composition during consumption of an unhealthy diet. C57BL/6J young adult male mice ( n = 12) were placed on a 60% high-fat diet for 4 weeks and subsequently randomly assigned to receive daily dosing by oral gavage of vehicle, the novel blend alone or with whey protein supplement for another 4 weeks. Body composition, thermal imaging of brown adipose tissue (BAT), mitochondrial BAT uncoupling protein 1 (UCP1), and plasma levels of leptin were assessed. Novel blend alone and in combination with protein supplement attenuated body weight gain, fat, and increased surface BAT temperature in comparison to vehicle control and to baseline ( P < 0.5). The combination of novel blend and whey protein supplement also significantly increased UCP1 protein expression in BAT mitochondria in comparison to vehicle control and novel blend alone ( P < 0.5). These data indicate that this novel blend stimulates thermogenesis and attenuates the gain in body weight and fat in response to high-fat diet in mice and these effects were improved when administered in combination with whey protein supplement. 30 days oral administration to mice of a novel blend containing African mango seed extract, citrus fruits extract, Coleus forskohlii root extract, dihydrocapsiate and red pepper fruit extract reduced body weight and fat gain in response to high-fat diet without impairing muscle mass.The novel blend stimulated thermogenesis as shown by the increased thermal imaging

  18. Thermogenic Blend Alone or in Combination with Whey Protein Supplement Stimulates Fat Metabolism and Improves Body Composition in Mice

    PubMed Central

    Vieira-Brock, Paula de Lima; Vaughan, Brent M.; Vollmer, David L.

    2018-01-01

    Background: Certain food ingredients promote thermogenesis and fat loss. Similarly, whey protein improves body composition. Due to this potential synergistic effect, a blend of thermogenic food ingredients containing African mango, citrus fruit extract, Coleus forskohlii, dihydrocapsiate, and red pepper was tested alone and in combination with a whey protein supplement for its effects on body composition in sedentary mice during high-fat diet. Objective: The objective of this study was to evaluate the interaction of thermogenic foods on improving body composition during consumption of an unhealthy diet. Materials and Methods: C57BL/6J young adult male mice (n = 12) were placed on a 60% high-fat diet for 4 weeks and subsequently randomly assigned to receive daily dosing by oral gavage of vehicle, the novel blend alone or with whey protein supplement for another 4 weeks. Body composition, thermal imaging of brown adipose tissue (BAT), mitochondrial BAT uncoupling protein 1 (UCP1), and plasma levels of leptin were assessed. Results: Novel blend alone and in combination with protein supplement attenuated body weight gain, fat, and increased surface BAT temperature in comparison to vehicle control and to baseline (P < 0.5). The combination of novel blend and whey protein supplement also significantly increased UCP1 protein expression in BAT mitochondria in comparison to vehicle control and novel blend alone (P < 0.5). Conclusions: These data indicate that this novel blend stimulates thermogenesis and attenuates the gain in body weight and fat in response to high-fat diet in mice and these effects were improved when administered in combination with whey protein supplement. SUMMARY 30 days oral administration to mice of a novel blend containing African mango seed extract, citrus fruits extract, Coleus forskohlii root extract, dihydrocapsiate and red pepper fruit extract reduced body weight and fat gain in response to high-fat diet without impairing muscle mass.The novel

  19. Physical and chemical changes in whey protein concentrate stored at elevated temperature and humidity

    USDA-ARS?s Scientific Manuscript database

    The chemistry of whey protein concentrate (WPC) under adverse storage conditions was monitored to provide information on shelf life in hot, humid areas. WPC34 (34.9 g protein/100 g) and WPC80 (76.8 g protein/100 g) were stored for up to 18 mo under ambient conditions and at elevated temperature and...

  20. Efficacy of whey protein supplementation on resistance exercise-induced changes in muscle strength, lean mass, and function in mobility-limited older adults

    USDA-ARS?s Scientific Manuscript database

    Whey protein supplementation may augment resistance exercise-induced increases in muscle strength and mass. Further studies are required to determine whether this effect extends to functionally compromised older adults. The objectives of the study were to compare the effects of whey protein concent...

  1. Decolorization of Cheddar cheese whey by activated carbon.

    PubMed

    Zhang, Yue; Campbell, Rachel; Drake, MaryAnne; Zhong, Qixin

    2015-05-01

    Colored Cheddar whey is a source for whey protein recovery and is decolorized conventionally by bleaching, which affects whey protein quality. Two activated carbons were studied in the present work as physical means of removing annatto (norbixin) in Cheddar cheese whey. The color and residual norbixin content of Cheddar whey were reduced by a higher level of activated carbon at a higher temperature between 25 and 55°C and a longer time. Activated carbon applied at 40g/L for 2h at 30°C was more effective than bleaching by 500mg/L of hydrogen peroxide at 68°C. The lowered temperature in activated-carbon treatments had less effect on protein structure as investigated for fluorescence spectroscopy and volatile compounds, particularly oxidation products, based on gas chromatography-mass spectrometry. Activated carbon was also reusable, removing more than 50% norbixin even after 10 times of regeneration, which showed great potential for decolorizing cheese whey. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  2. Contribution of Molecular Allergen Analysis in Diagnosis of Milk Allergy.

    PubMed

    Bartuzi, Zbigniew; Cocco, Renata Rodrigues; Muraro, Antonella; Nowak-Węgrzyn, Anna

    2017-07-01

    We sought to describe the available evidence supporting the utilization of the molecular allergen analysis (MAA) for diagnosis and management of cow milk protein allergy (CMPA). Cow milk proteins are among the most common food allergens in IgE- and non-IgE-mediated food allergic disorders in children. Most individuals with CMPA are sensitized to both caseins and whey proteins. Caseins are more resistant to high temperatures compared to whey proteins. MAA is not superior to the conventional diagnostic tests based on the whole allergen extracts for diagnosis of CMPA. However, MAA can be useful in diagnosing tolerance to extensively heated milk proteins in baked foods. Children with CMPA and high levels of casein IgE are less likely to tolerate baked milk compared to children with low levels of casein IgE. Specific IgE-binding patterns to casein and betalactoglobulin peptides may predict the natural course of CMPA and differentiate subjects who are more likely to develop CMPA at a younger age versus those with a more persistent CMPA. Specific IgE-binding patterns to casein and beta-lactoglobulin peptides may also predict response to milk OITand identify patientsmost likely to benefit fromOIT.

  3. Pea proteins oral supplementation promotes muscle thickness gains during resistance training: a double-blind, randomized, Placebo-controlled clinical trial vs. Whey protein.

    PubMed

    Babault, Nicolas; Païzis, Christos; Deley, Gaëlle; Guérin-Deremaux, Laetitia; Saniez, Marie-Hélène; Lefranc-Millot, Catherine; Allaert, François A

    2015-01-01

    The effects of protein supplementation on muscle thickness and strength seem largely dependent on its composition. The current study aimed at comparing the impact of an oral supplementation with vegetable Pea protein (NUTRALYS®) vs. Whey protein and Placebo on biceps brachii muscle thickness and strength after a 12-week resistance training program. One hundred and sixty one males, aged 18 to 35 years were enrolled in the study and underwent 12 weeks of resistance training on upper limb muscles. According to randomization, they were included in the Pea protein (n = 53), Whey protein (n = 54) or Placebo (n = 54) group. All had to take 25 g of the proteins or placebo twice a day during the 12-week training period. Tests were performed on biceps muscles at inclusion (D0), mid (D42) and post training (D84). Muscle thickness was evaluated using ultrasonography, and strength was measured on an isokinetic dynamometer. Results showed a significant time effect for biceps brachii muscle thickness (P < 0.0001). Thickness increased from 24.9 ± 3.8 mm to 26.9 ± 4.1 mm and 27.3 ± 4.4 mm at D0, D42 and D84, respectively, with only a trend toward significant differences between groups (P = 0.09). Performing a sensitivity study on the weakest participants (with regards to strength at inclusion), thickness increases were significantly different between groups (+20.2 ± 12.3%, +15.6 ± 13.5% and +8.6 ± 7.3% for Pea, Whey and Placebo, respectively; P < 0.05). Increases in thickness were significantly greater in the Pea group as compared to Placebo whereas there was no difference between Whey and the two other conditions. Muscle strength also increased with time with no statistical difference between groups. In addition to an appropriate training, the supplementation with pea protein promoted a greater increase of muscle thickness as compared to Placebo and especially for people starting or returning to a muscular strengthening

  4. Optimization of mold wheat bread fortified with soy flour, pea flour and whey protein concentrate.

    PubMed

    Erben, Melina; Osella, Carlos A

    2017-07-01

    The objective of this work was to study the effect of replacing a selected wheat flour for defatted soy flour, pea flour and whey protein concentrate on both dough rheological characteristics and the performance and nutritional quality of bread. A mixture design was used to analyze the combination of the ingredients. The optimization process suggested that a mixture containing 88.8% of wheat flour, 8.2% of defatted soy flour, 0.0% of pea flour and 3.0% of whey protein concentrate could be a good combination to achieve the best fortified-bread nutritional quality. The fortified bread resulted in high protein concentration, with an increase in dietary fiber content and higher calcium levels compared with those of control (wheat flour 100%). Regarding protein quality, available lysine content was significantly higher, thus contributing with the essential amino acid requirement.

  5. Moisture Sensitivity, Optical, Mechanical and Structural Properties of Whey Protein-Based Edible Films Incorporated with Rapeseed Oil.

    PubMed

    Galus, Sabina; Kadzińska, Justyna

    2016-03-01

    The objective of this work is to study the effect of the rapeseed oil content on the physical properties of whey protein emulsion films. For this purpose, whey protein films with the addition of 0, 1, 2 and 3% of rapeseed oil, and glycerol as a plasticizer were obtained by the casting method. Film-forming emulsions were evaluated and compared using light scattering granulometry. The Sauter mean diameters ( d 32 ) of lipid droplets in film-forming solutions showed an increasing trend when increasing the oil volume fractions. The inclusion of rapeseed oil enhanced the hydrophobic character of whey protein films, reducing moisture content and film solubility in water. All emulsified films showed high lightness ( L* ≈90). Parameter a * decreased and parameter b* and total colour difference (∆ E ) increased with the increase of the volume fractions of oil. These results were consistent with visual observations; control films were transparent and those containing oil opaque. Water vapour sorption experimental data at the full range of water activity values from 0.11 to 0.93 were well described with Peleg's equation (R 2 ≥0.99). The tensile strength, Young's modulus and elongation at break increased with the increase of rapeseed oil volume fraction, which could be explained by interactions between lipids and the protein matrix. These results revealed that rapeseed oil has enormous potential to be incorporated into whey protein to make edible film or coating for some food products. The mechanical resistance decreased with the addition of the lipids, and the opacity and soluble matter content increased.

  6. Moisture Sensitivity, Optical, Mechanical and Structural Properties of Whey Protein-Based Edible Films Incorporated with Rapeseed Oil

    PubMed Central

    Kadzińska, Justyna

    2016-01-01

    Summary The objective of this work is to study the effect of the rapeseed oil content on the physical properties of whey protein emulsion films. For this purpose, whey protein films with the addition of 0, 1, 2 and 3% of rapeseed oil, and glycerol as a plasticizer were obtained by the casting method. Film-forming emulsions were evaluated and compared using light scattering granulometry. The Sauter mean diameters (d32) of lipid droplets in film-forming solutions showed an increasing trend when increasing the oil volume fractions. The inclusion of rapeseed oil enhanced the hydrophobic character of whey protein films, reducing moisture content and film solubility in water. All emulsified films showed high lightness (L*≈90). Parameter a* decreased and parameter b* and total colour difference (∆E) increased with the increase of the volume fractions of oil. These results were consistent with visual observations; control films were transparent and those containing oil opaque. Water vapour sorption experimental data at the full range of water activity values from 0.11 to 0.93 were well described with Peleg’s equation (R2≥0.99). The tensile strength, Young’s modulus and elongation at break increased with the increase of rapeseed oil volume fraction, which could be explained by interactions between lipids and the protein matrix. These results revealed that rapeseed oil has enormous potential to be incorporated into whey protein to make edible film or coating for some food products. The mechanical resistance decreased with the addition of the lipids, and the opacity and soluble matter content increased. PMID:27904396

  7. Whey protein enhances normal inflammatory responses during cutaneous wound healing in diabetic rats

    PubMed Central

    2011-01-01

    Background Prolonged wound healing is a complication of diabetes that contributes to mortality. Impaired wound healing occurs as a consequence of excessive reactive oxygen species (ROS) production. Whey protein (WP) is able to reduce the oxygen radicals and increase the levels of the antioxidant glutathione. Thus, the aim of this study was to determine whether dietary supplementation with WP could enhance normal inflammatory responses during wound healing in diabetic rats. Animals were assigned into a wounded control group (WN), a wounded diabetic group (WD) and a wounded diabetic group orally supplemented with whey protein (WDWP) at a dose of 100 mg/kg body weight. Results Whey protein was found to significantly decrease the levels of malondialdehyde (MDA), nitric oxide (NO) and ROS. A significant restoration of the glutathione level was observed in WDWP rats. During the early wound healing stage, IL-1β, TNF-α, IL-6, IL-4 and neutrophil infiltration were significantly decreased in WD mice. WP supplementation was found to restore the levels of these inflammatory markers to the levels observed in control animals. In addition, the time required for wound healing was significantly prolonged in diabetic rats. WP was found to significantly decrease the time required for wound healing in WDWP rats. Conclusion In conclusion, dietary supplementation with WP enhances the normal inflammatory responses during wound healing in diabetic mice by restoring the levels of oxidative stress and inflammatory cytokines. PMID:22168406

  8. Whey protein concentrate and gum tragacanth as fat replacers in nonfat yogurt: chemical, physical, and microstructural properties.

    PubMed

    Aziznia, S; Khosrowshahi, A; Madadlou, A; Rahimi, J

    2008-07-01

    The effect of whey protein concentrate (WPC) and gum tragacanth (GT) as fat replacers on the chemical, physical, and microstructural properties of nonfat yogurt was investigated. The WPC (7.5, 15, and 20 g/L) and GT (0.25, 0.5, 0.75, and 1 g/L) were incorporated into the skim milk slowly at 40 to 45 degrees C with agitation. The yogurt mixes were pasteurized at 90 degrees C for 10 min, inoculated with 0.1% starter culture, and incubated at 42 degrees C to pH 4.6, then refrigerated overnight at 5 degrees C. A control nonfat yogurt and control full fat yogurt were prepared as described, but without addition of WPC and GT. Increasing amount of WPC led to the increase in total solids, total protein, acidity, and ash content, whereas GT did not affect chemical parameters. Increasing WPC caused a more compact structure consisting of robust casein particles and large aggregates. Firmness was increased and susceptibility to syneresis was decreased as WPC increased. No significant difference was observed for firmness and syneresis of yogurt fortified with GT up to 0.5 g/L compared with control nonfat yogurt. Increasing the amount of gum above 0.5 g/L produced softer gels with a greater tendency for syneresis than the ones prepared without it. Addition of GT led to the coarser and more open structure compared with control yogurt.

  9. Whey Peptide-Based Formulas With ω-3 Fatty Acids Are Protective in Lipopolysaccharide-Mediated Sepsis.

    PubMed

    Tsutsumi, Rie; Horikawa, Yousuke T; Kume, Katsuyoshi; Tanaka, Katsuya; Kasai, Asuka; Kadota, Takako; Tsutsumi, Yasuo M

    2015-07-01

    Sepsis and septic shock syndrome are among the leading causes of death in critically ill patients. Lipopolysaccharide (LPS) released by bacteria within the colon may translocate across a compromised epithelium, leading to oxidative stress, inflammation, sepsis, and eventually death. We examined the effects of a whey-based enteral formula high in cysteine (antioxidant precursor) and the addition of ω-3 fatty acids, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), against a mouse model of LPS-induced sepsis. Mice were fed either a whey-based diet with EPA-DHA (PAF), a whey-based diet without EPA-DHA (PSTD), or a casein-based control diet (CONT). Mice fed PAF or PSTD were protected against LPS-induced weight loss. Whey-based diets suppressed inflammatory cytokine release and oxidative stress damage. Furthermore, PAF and PSTD were able to inhibit autophagy, a mechanism in which the cell recycles damaged organelles. These anti-inflammatory and antioxidative effects of PSTD and PAF resulted in decreased liver inflammation and intestinal damage and promoted protective microbiota within the intestines. These data suggest a clinical role for whey peptide-based diets in promoting healing and recovery in critically ill patients. © 2014 American Society for Parenteral and Enteral Nutrition.

  10. Dietary whey protein lessens several risk factors for metabolic diseases: a review

    PubMed Central

    2012-01-01

    Obesity and type 2 diabetes mellitus (DM) have grown in prevalence around the world, and recently, related diseases have been considered epidemic. Given the high cost of treatment of obesity/DM-associated diseases, strategies such as dietary manipulation have been widely studied; among them, the whey protein diet has reached popularity because it has been suggested as a strategy for the prevention and treatment of obesity and DM in both humans and animals. Among its main actions, the following activities stand out: reduction of serum glucose in healthy individuals, impaired glucose tolerance in DM and obese patients; reduction in body weight; maintenance of muscle mass; increases in the release of anorectic hormones such as cholecystokinin, leptin, and glucagon like-peptide 1 (GLP-1); and a decrease in the orexigenic hormone ghrelin. Furthermore, studies have shown that whey protein can also lead to reductions in blood pressure, inflammation, and oxidative stress. PMID:22676328

  11. Substitution of soy protein for casein prevents oxidative modification and inflammatory response induced in rats fed high fructose diet.

    PubMed

    Sreeja, S; Geetha, Rajagopalan; Priyadarshini, Emayavaramban; Bhavani, Krishnamoorthy; Anuradha, Carani Venkatraman

    2014-01-01

    Fructose-rich diet is known to cause metabolic dysregulation, oxidative stress, and inflammation. We aimed to compare the effects of two dietary proteins of animal and plant origins on fructose-induced oxidative stress and inflammatory changes in liver. Wistar rats were fed either starch or fructose (60%) diet with casein or soy protein (20%) as the protein source for 8 weeks. Glucose and insulin, glycated hemoglobin and fructosamine, AOPP, and FRAP were determined in circulation. Intracellular ROS, oxidatively modified proteins (4-HNE and 3-NT adducts), adiponectin, TNF- α , IL-6 and PAI-1 mRNA expression, phosphorylation and activation of JNK and IKK β , and NF- κ B binding activity were assayed in liver. In comparison with starch fed group, fructose + casein group registered significant decline in antioxidant potential and increase in plasma glucose, insulin, and glycated proteins. Increased ROS production, 4-HNE and 3-NT modified proteins, JNK and IKK β activation, and NF- κ B binding activity were observed in them along with increased gene expression of PAI-1, IL-6, and TNF- α and decreased adiponectin expression. Substitution of soy protein for casein reduced oxidative modification and inflammatory changes in fructose-fed rats. These data suggest that soy protein but not casein can avert the adverse effects elicited by chronic consumption of fructose.

  12. Processing of whey modulates proliferative and immune functions in intestinal epithelial cells.

    PubMed

    Nguyen, Duc Ninh; Sangild, Per T; Li, Yanqi; Bering, Stine B; Chatterton, Dereck E W

    2016-02-01

    Whey protein concentrate (WPC) is often subjected to heat treatment during industrial processing, resulting in protein denaturation and loss of protein bioactivity. We hypothesized that WPC samples subjected to different degrees of thermal processing are associated with different levels of bioactive proteins and effects on proliferation and immune response in intestinal epithelial cells (IEC). The results showed that low-heat-treated WPC had elevated levels of lactoferrin and transforming growth factor-β2 compared with that of standard WPC. The level of aggregates depended on the source of whey, with the lowest level being found in WPC derived from acid whey. Following acid activation, WPC from acid whey enhanced IEC proliferation compared with WPC from sweet whey or nonactivated WPC. Low-heat-treated WPC from acid whey induced greater secretion of IL-8 in IEC than either standard WPC from acid whey or low-heat-treated WPC from sweet whey. Following acid activation (to activate growth factors), low-heat-treated WPC from sweet whey induced higher IL-8 levels in IEC compared with standard WPC from sweet whey. In conclusion, higher levels of bioactive proteins in low-heat-treated WPC, especially from acid whey, may enhance proliferation and cytokine responses of IEC. These considerations could be important to maintain optimal bioactivity of infant formulas, including their maturational and immunological effects on the developing intestine. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  13. High Hydrostatic Pressure Pretreatment of Whey Protein Isolates Improves Their Digestibility and Antioxidant Capacity

    PubMed Central

    Iskandar, Michèle M.; Lands, Larry C.; Sabally, Kebba; Azadi, Behnam; Meehan, Brian; Mawji, Nadir; Skinner, Cameron D.; Kubow, Stan

    2015-01-01

    Whey proteins have well-established antioxidant and anti-inflammatory bioactivities. High hydrostatic pressure processing of whey protein isolates increases their in vitro digestibility resulting in enhanced antioxidant and anti-inflammatory effects. This study compared the effects of different digestion protocols on the digestibility of pressurized (pWPI) and native (nWPI) whey protein isolates and the antioxidant and anti-inflammatory properties of the hydrolysates. The pepsin-pancreatin digestion protocol was modified to better simulate human digestion by adjusting temperature and pH conditions, incubation times, enzymes utilized, enzyme-to-substrate ratio and ultrafiltration membrane molecular weight cut-off. pWPI showed a significantly greater proteolysis rate and rate of peptide appearance regardless of digestion protocol. Both digestion methods generated a greater relative abundance of eluting peptides and the appearance of new peptide peaks in association with pWPI digestion in comparison to nWPI hydrolysates. Hydrolysates of pWPI from both digestion conditions showed enhanced ferric-reducing antioxidant power relative to nWPI hydrolysates. Likewise, pWPI hydrolysates from both digestion protocols showed similar enhanced antioxidant and anti-inflammatory effects in a respiratory epithelial cell line as compared to nWPI hydrolysates. These findings indicate that regardless of considerable variations of in vitro digestion protocols, pressurization of WPI leads to more efficient digestion that improves its antioxidant and anti-inflammatory properties. PMID:28231198

  14. High Hydrostatic Pressure Pretreatment of Whey Protein Isolates Improves Their Digestibility and Antioxidant Capacity.

    PubMed

    Iskandar, Michèle M; Lands, Larry C; Sabally, Kebba; Azadi, Behnam; Meehan, Brian; Mawji, Nadir; Skinner, Cameron D; Kubow, Stan

    2015-05-28

    Whey proteins have well-established antioxidant and anti-inflammatory bioactivities. High hydrostatic pressure processing of whey protein isolates increases their in vitro digestibility resulting in enhanced antioxidant and anti-inflammatory effects. This study compared the effects of different digestion protocols on the digestibility of pressurized (pWPI) and native (nWPI) whey protein isolates and the antioxidant and anti-inflammatory properties of the hydrolysates. The pepsin-pancreatin digestion protocol was modified to better simulate human digestion by adjusting temperature and pH conditions, incubation times, enzymes utilized, enzyme-to-substrate ratio and ultrafiltration membrane molecular weight cut-off. pWPI showed a significantly greater proteolysis rate and rate of peptide appearance regardless of digestion protocol. Both digestion methods generated a greater relative abundance of eluting peptides and the appearance of new peptide peaks in association with pWPI digestion in comparison to nWPI hydrolysates. Hydrolysates of pWPI from both digestion conditions showed enhanced ferric-reducing antioxidant power relative to nWPI hydrolysates. Likewise, pWPI hydrolysates from both digestion protocols showed similar enhanced antioxidant and anti-inflammatory effects in a respiratory epithelial cell line as compared to nWPI hydrolysates. These findings indicate that regardless of considerable variations of in vitro digestion protocols, pressurization of WPI leads to more efficient digestion that improves its antioxidant and anti-inflammatory properties.

  15. Liquid and vapour water transfer through whey protein/lipid emulsion films.

    PubMed

    Kokoszka, Sabina; Debeaufort, Frederic; Lenart, Andrzej; Voilley, Andree

    2010-08-15

    Edible films and coatings based on protein/lipid combinations are among the new products being developed in order to reduce the use of plastic packaging polymers for food applications. This study was conducted to determine the effect of rapeseed oil on selected physicochemical properties of cast whey protein films. Films were cast from heated (80 degrees C for 30 min) aqueous solutions of whey protein isolate (WPI, 100 g kg(-1) of water) containing glycerol (50 g kg(-1) of WPI) as a plasticiser and different levels of added rapeseed oil (0, 1, 2, 3 and 4% w/w of WPI). Measurements of film microstructure, laser light-scattering granulometry, differential scanning calorimetry, wetting properties and water vapour permeability (WVP) were made. The emulsion structure in the film suspension changed significantly during drying, with oil creaming and coalescence occurring. Increasing oil concentration led to a 2.5-fold increase in surface hydrophobicity and decreases in WVP and denaturation temperature (T(max)). Film structure and surface properties explain the moisture absorption and film swelling as a function of moisture level and time and consequently the WVP behaviour. Small amounts of rapeseed oil favourably affect the WVP of WPI films, particularly at higher humidities. Copyright (c) 2010 Society of Chemical Industry.

  16. Composition and functionality of whey protein phospholipid concentrate and delactosed permeate.

    PubMed

    Levin, M A; Burrington, K J; Hartel, R W

    2016-09-01

    Whey protein phospholipid concentrate (WPPC) and delactosed permeate (DLP) are 2 coproducts of cheese whey processing that are currently underused. Past research has shown that WPPC and DLP can be used together as a functional dairy ingredient in foods such as ice cream, soup, and caramel. However, the scope of the research has been limited to 1 WPPC supplier. The objective of this research was to fully characterize a range of WPPC. Four WPPC samples and 1 DLP sample were analyzed for chemical composition and functionality. This analysis showed that WPPC composition was highly variable between suppliers and lots. In addition, the functionality of the WPPC varies depending on the supplier and testing pH, and cannot be correlated with fat or protein content because of differences in processing. The addition of DLP to WPPC affects functionality. In general, WPPC has a high water-holding capacity, is relatively heat stable, has low foamability, and does not aid in emulsion stability. The gel strength and texture are highly dependent on the amount of protein. To be able to use these 2 dairy products, the composition and functionality must be fully understood. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  17. Enhanced physicochemical properties of chitosan/whey protein isolate composite film by sodium laurate-modified TiO2 nanoparticles.

    PubMed

    Zhang, Wei; Chen, Jiwang; Chen, Yue; Xia, Wenshui; Xiong, Youling L; Wang, Hongxun

    2016-03-15

    Chitosan/whey protein isolate film incorporated with sodium laurate-modified TiO2 nanoparticles was developed. The nanocomposite film was characterized by scanning electron microscopy, X-ray diffraction and differential scanning calorimetry, and investigated in physicochemical properties as color, tensile strength, elongation at break, water vapor permeability and water adsorption isotherm. Our results showed that the nanoparticles improved the compatibility of whey protein isolate and chitosan. Addition of nanoparticles increased the whiteness of chitosan/whey protein isolate film, but decreased its transparency. Compared with binary film, the tensile strength and elongation at break of nanocomposite film were increased by 11.51% and 12.01%, respectively, and water vapor permeability was decreased by 7.60%. The equilibrium moisture of nanocomposite film was lower than binary film, and its water sorption isotherm of the nanocomposite film fitted well to Guggenheim-Anderson-deBoer model. The findings contributed to the development of novel food packaging materials. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. THE ANTIGENIC PROPERTIES OF GLOBIN CASEINATE

    PubMed Central

    Gay, Frederick P.; Robertson, T. Brailsford

    1913-01-01

    This study of globin and its compound with casein (globin caseinate) shows that globin fails to produce fixation antibodies in rabbits after repeated injections, thus agreeing with our own work and with that of others with similar histon bodies which are primarily toxic. When globin is combined with casein, however, it gives rise to antibodies that react not only with globin caseinate and casein but also with globin. The antibodies in antiglobin casein serum are apparently separate, one for globin and one for casein. In other words, the change in globin undergone on combination with casein has apparently rendered it antigenic. We did not succeed in demonstrating the genesis of this new antigenic property by anaphylaxis experiments. A further investigation of similar and more complex combined proteins is indicated and gives promise of more light on the nature of biological specificity. PMID:19867665

  19. In Vitro Proliferation and Anti-Apoptosis of the Papain-Generated Casein and Soy Protein Hydrolysates towards Osteoblastic Cells (hFOB1.19).

    PubMed

    Pan, Xiao-Wen; Zhao, Xin-Huai

    2015-06-17

    Casein and soy protein were digested by papain to three degrees of hydrolysis (DH) 7.3%-13.3%, to obtain respective six casein and soy protein hydrolysates, aiming to clarify their in vitro proliferation and anti-apoptosis towards a human osteoblastic cell line (hFOB1.19 cells). Six casein and soy protein hydrolysates at five levels (0.01-0.2 mg/mL) mostly showed proliferation as positive 17β-estradiol did, because they conferred the osteoblasts with cell viability of 100%-114% and 104%-123%, respectively. The hydrolysates of higher DH values had stronger proliferation. Casein and soy protein hydrolysates of the highest DH values altered cell cycle progression, and enhanced cell proportion of S-phase from 50.5% to 56.5% and 60.5%. The two also antagonized etoposide- and NaF-induced osteoblast apoptosis. In apoptotic prevention, apoptotic cells were decreased from 31.6% to 22.6% and 15.6% (etoposide treatment), or from 19.5% to 17.7% and 12.4% (NaF treatment), respectively. In apoptotic reversal, soy protein hydrolysate decreased apoptotic cells from 13.3% to 11.7% (etoposide treatment), or from 14.5% to 11.0% (NaF treatment), but casein hydrolysate showed no reversal effect. It is concluded that the hydrolysates of two kinds had estradiol-like action on the osteoblasts, and soy protein hydrolysates had stronger proliferation and anti-apoptosis on the osteoblasts than casein hydrolysates.

  20. Effect of homogenization and pasteurization on the structure and stability of whey protein in milk.

    PubMed

    Qi, Phoebe X; Ren, Daxi; Xiao, Yingping; Tomasula, Peggy M

    2015-05-01

    The effect of homogenization alone or in combination with high-temperature, short-time (HTST) pasteurization or UHT processing on the whey fraction of milk was investigated using highly sensitive spectroscopic techniques. In pilot plant trials, 1-L quantities of whole milk were homogenized in a 2-stage homogenizer at 35°C (6.9 MPa/10.3 MPa) and, along with skim milk, were subjected to HTST pasteurization (72°C for 15 s) or UHT processing (135°C for 2 s). Other whole milk samples were processed using homogenization followed by either HTST pasteurization or UHT processing. The processed skim and whole milk samples were centrifuged further to remove fat and then acidified to pH 4.6 to isolate the corresponding whey fractions, and centrifuged again. The whey fractions were then purified using dialysis and investigated using the circular dichroism, Fourier transform infrared, and Trp intrinsic fluorescence spectroscopic techniques. Results demonstrated that homogenization combined with UHT processing of milk caused not only changes in protein composition but also significant secondary structural loss, particularly in the amounts of apparent antiparallel β-sheet and α-helix, as well as diminished tertiary structural contact. In both cases of homogenization alone and followed by HTST treatments, neither caused appreciable chemical changes, nor remarkable secondary structural reduction. But disruption was evident in the tertiary structural environment of the whey proteins due to homogenization of whole milk as shown by both the near-UV circular dichroism and Trp intrinsic fluorescence. In-depth structural stability analyses revealed that even though processing of milk imposed little impairment on the secondary structural stability, the tertiary structural stability of whey protein was altered significantly. The following order was derived based on these studies: raw whole>HTST, homogenized, homogenized and pasteurized>skimmed and pasteurized, and skimmed UHT

  1. The effect of a low-fat, high-protein or high-carbohydrate ad libitum diet on weight loss maintenance and metabolic risk factors.

    PubMed

    Claessens, M; van Baak, M A; Monsheimer, S; Saris, W H M

    2009-03-01

    High-protein (HP) diets are often advocated for weight reduction and weight loss maintenance. The aim was to compare the effect of low-fat, high-carbohydrate (HC) and low-fat, HP ad libitum diets on weight maintenance after weight loss induced by a very low-calorie diet, and on metabolic and cardiovascular risk factors in healthy obese subjects. Forty-eight subjects completed the study that consisted of an energy restriction period of 5-6 weeks followed by a weight maintenance period of 12 weeks. During weight maintenance subjects received maltodextrin (HC group) or protein (HP group) (casein (HPC subgroup) or whey (HPW subgroup)) supplements (2 x 25 g per day), respectively and consumed a low-fat diet. Subjects in the HP diet group showed significantly better weight maintenance after weight loss (2.3 kg difference, P=0.04) and fat mass reduction (2.2 kg difference, P=0.02) than subjects in the HC group. Triglyceride (0.6 mM difference, P=0.01) and glucagon (9.6 pg ml(-1) difference, P=0.02) concentrations increased more in the HC diet group, while glucose (0.3 mM difference, P=0.02) concentration increased more in the HP diet group. Changes in total cholesterol, low-density lipoprotein-cholesterol, high-density lipoprotein-cholesterol, insulin, HOMAir index, HbA1c, leptin and adiponectin concentrations did not differ between the diets. No differences were found between the casein- or whey-supplemented HP groups. These results show that low-fat, high-casein or whey protein weight maintenance diets are more effective for weight control than low-fat, HC diets and do not adversely affect metabolic and cardiovascular risk factors in weight-reduced moderately obese subjects without metabolic or cardiovascular complications.

  2. The effect of addition of selected milk protein preparations on the growth of Lactobacillus acidophilus and physicochemical properties of fermented milk.

    PubMed

    Gustaw, Waldemar; Kozioł, Justyna; Radzki, Wojciech; Skrzypczak, Katarzyna; Michalak-Majewska, Monika; Sołowiej, Bartosz; Sławińska, Aneta; Jabłońska-Ryś, Ewa

    2016-01-01

    The intake of fermented milk products, especially yoghurts, has been systematically increasing for a few decades. The purpose of this work was to obtain milk products fermented with a mix of bacterial cultures (yoghurt bacteria and Lactobacillus acidophillus LA-5) and enriched with selected milk protein preparations. Secondly, the aim of the work was to determine physiochemical and rheological properties of the obtained products. The following additives were applied in the experiment: whey protein concentrate (WPC 65), whey protein isolate (WPI), demineralised whey powder (SPD), caseinoglycomacropeptide (CGMP), α-lactalbumin (α-la), sodium caseinate (KNa) and calcium caseinate (KCa). Milk was fermented using probiotic strain Lactobacillus acidophillus LA-5 and a typical yoghurt culture. The products were analysed in terms of the survivability of bacterial cells during refrigerated storage, rheological properties and syneresis. Fermented milk products were obtained using blends of bacterial strains: ST-B01:Lb-12 (1:1), ST-B01:Lb-12:LA-5 (1:1:2). Milk beverages fermented with typical yoghurt bacteria and LA-5 strain showed intensive syneresis. The addition of LA-5 strain caused formation of harder acid gels, comparing to typical yoghurts. Milk products which were prepared from skimmed milk possessed higher values of hardness and consistency coefficient. The increase of concentrations of milk preparations (except of WPI) did not cause significant differences in the hardness of acidic gels obtained by fermentation of mixed culture with a probiotic strain. The applied preparations improved physiochemical properties of the milk beverages which were prepared with a probiotic strain. The increase of protein milk preparations concentration resulted in a gradual decrease of the secreted whey. Among the products that were made of full milk powder and were subjected to three weeks of refrigerated storage the highest survivability of Lb. acidophilus LA-5 was noticed in the

  3. Minimising generation of acid whey during Greek yoghurt manufacturing.

    PubMed

    Uduwerella, Gangani; Chandrapala, Jayani; Vasiljevic, Todor

    2017-08-01

    Greek yoghurt, a popular dairy product, generates large amounts of acid whey as a by-product during manufacturing. Post-processing treatment of this stream presents one of the main concerns for the industry. The objective of this study was to manipulate initial milk total solids content (15, 20 or 23 g/100 g) by addition of milk protein concentrate, thus reducing whey expulsion. Such an adjustment was investigated from the technological standpoint including starter culture performance, chemical and physical properties of manufactured Greek yoghurt and generated acid whey. A comparison was made to commercially available products. Increasing protein content in regular yoghurt reduced the amount of acid whey during whey draining. This protein fortification also enhanced the Lb. bulgaricus growth rate and proteolytic activity. Best structural properties including higher gel strength and lower syneresis were observed in the Greek yoghurt produced with 20 g/100 g initial milk total solid compared to manufactured or commercially available products, while acid whey generation was lowered due to lower drainage requirement.

  4. Application of Kevin-Voigt Model in Quantifying Whey Protein Adsorption on Polyethersulfone Using QCM-D

    USDA-ARS?s Scientific Manuscript database

    The study of protein adsorption on the membrane surface is of great importance to cheese-making processors that use polymeric membrane-based processes to recover whey protein from the process waste streams. Quartz crystal microbalance with dissipation (QCM-D) is a lab-scale, fast analytical techniq...

  5. Use of surface plasmon resonance (SPR) to study the dissociation and polysaccharide binding of casein micelles and caseins.

    PubMed

    Thompson, Abby K; Singh, Harjinder; Dalgleish, Douglas G

    2010-11-24

    Tests were made to determine whether surface plasmon resonance (SPR) could be used as a technique to study the dissociation properties of bovine casein micelles or of sodium caseinate and the interactions between these protein particles and different polysaccharides. Surfaces of bound micelles or caseinate were made, and the changes in refractive index of these layers were used to define changes in the structures of the chemisorbed material. The technique appears to have some potential for studying details of the dissociation of casein micelles and of the binding of different polysaccharides to caseins.

  6. Binding of vitamin A with milk α- and β-caseins.

    PubMed

    Bourassa, P; N'soukpoé-Kossi, C N; Tajmir-Riahi, H A

    2013-05-01

    The binding sites of retinol and retinoic acid with milk α- and β-caseins were determined, using constant protein concentration and various retinoid contents. FTIR, UV-visible and fluorescence spectroscopic methods as well as molecular modelling were used to analyse retinol and retinoic acid binding sites, the binding constant and the effect of retinoid complexation on the stability and conformation of caseins. Structural analysis showed that retinoids bind caseins via both hydrophilic and hydrophobic contacts with overall binding constants of K(retinol-)(α)(-caseins)=1.21 (±0.4)×10(5) M(-1) and K(retinol-)(β)(-caseins)=1.11 (±0.5)×10(5) M(-1) and K(retinoic acid-)(α)(-caseins)=6.2 (±0.6)×10(4) M(-1) and K(retinoic acid-)(β)(-caseins)=6.3 (±0.6)×10(4) M(-1). The number of bound retinol molecules per protein (n) was 1.5 (±0.1) for α-casein and 1.0 (±0.1) for β-casein, while 1 molecule of retinoic acid was bound in the α- and β-casein complexes. Molecular modelling showed different binding sites for retinol and retinoic acid on α- and β-caseins with more stable complexes formed with α-casein. Retinoid-casein complexation induced minor alterations of protein conformation. Caseins might act as carriers for transportation of retinoids to target molecules. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Effect of hydrogen peroxide on improving the heat stability of whey protein isolate solutions.

    PubMed

    Sutariya, Suresh; Patel, Hasmukh

    2017-05-15

    Whey protein isolate (WPI) solutions (12.8%w/w protein) were treated with varying concentrations of H 2 O 2 in the range of 0-0.144 H 2 O 2 to protein ratios (HTPR) by the addition of the required quantity of H 2 O 2 and deionized water. The samples were analyzed for heat stability, rheological properties, denaturation level of β-lactoglobulin (β-LG) and α-lactalbumin (α-LA). The samples treated with H 2 O 2 concentration >0.072 (HTPR) showed significant improvement in the heat stability, and decreased whey protein denaturation and aggregation. The WPI solution treated with H 2 O 2 (>0.072 HTPR) remained in the liquid state after heat treatment at 120°C, whereas the control samples formed gel upon heat treatment. Detailed analysis of these samples suggested that the improvement in the heat stability of H 2 O 2 treated WPI solution was attributed to the significant reduction in the sulfhydryl-disulfide interchange reaction during denaturation of β-LG and α-LA. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Milk Lacking α-Casein Leads to Permanent Reduction in Body Size in Mice

    PubMed Central

    Kolb, Andreas F.; Huber, Reinhard C.; Lillico, Simon G.; Carlisle, Ailsa; Robinson, Claire J.; Neil, Claire; Petrie, Linda; Sorensen, Dorte B.; Olsson, I. Anna S.; Whitelaw, C. Bruce A.

    2011-01-01

    The major physiological function of milk is the transport of amino acids, carbohydrates, lipids and minerals to mammalian offspring. Caseins, the major milk proteins, are secreted in the form of a micelle consisting of protein and calcium-phosphate. We have analysed the role of the milk protein α-casein by inactivating the corresponding gene in mice. Absence of α-casein protein significantly curtails secretion of other milk proteins and calcium-phosphate, suggesting a role for α-casein in the establishment of casein micelles. In contrast, secretion of albumin, which is not synthesized in the mammary epithelium, into milk is not reduced. The absence of α-casein also significantly inhibits transcription of the other casein genes. α-Casein deficiency severely delays pup growth during lactation and results in a life-long body size reduction compared to control animals, but has only transient effects on physical and behavioural development of the pups. The data support a critical role for α-casein in casein micelle assembly. The results also confirm lactation as a critical window of metabolic programming and suggest milk protein concentration as a decisive factor in determining adult body weight. PMID:21789179

  9. Effects of sodium chloride salting and substitution with potassium chloride on whey expulsion of Cheddar cheese.

    PubMed

    Lu, Y; McMahon, D J

    2015-01-01

    A challenge in manufacturing reduced-sodium cheese is that whey expulsion after salting decreases when less salt is applied. Our objectives were (1) to determine whether changing the salting method would increase whey syneresis when making a lower sodium cheese and (2) to better understand factors contributing to salt-induced curd syneresis. Unsalted milled Cheddar curds were salted using different salting intervals (5 or 10 min), different salting levels (20, 25, or 30g/kg), different numbers of applications when using only 20g/kg salt (1, 2, or 3 applications), and salting with the equivalent of 30g/kg NaCl using a 2:1 molar ratio of NaCl and KCl. Whey from these curds was collected every 5 or 10 min until 30 or 40 min after the start of salting, and curds were subsequently pressed for 3h. Additional trials were conducted in which salted milled Cheddar cheese curd was immersed at 22°C for 6h in various solutions to determine how milled curd pieces respond to different levels of salt and Ca. The use of 10-min intervals delayed whey syneresis without influencing total whey expulsion or cheese composition after pressing. Lowering the salt level reduced whey expulsion, resulting in cheeses with higher moisture and slightly lower pH. Adding salt faster did not increase whey expulsion in reduced-salt cheese. Partial substitution with KCl restored the extent of whey expulsion. When salted milled curd was immersed in a 30g/L salt solution, there was a net influx of salt solution into the curd and curd weight increased. When curd was immersed in 60g/L salt solution, a contraction of curd occurred. Curd shrinkage was more pronounced as the salt solution concentration was increased to 90 and 120g/L. Increasing the Ca concentration in test solutions (such that both serum and total Ca in the curd increased) also promoted curd contraction, resulting in lower curd moisture and pH and less weight gain by the curd. The proportion of Ca in the curd that was bound to the para-casein

  10. Characterisation of monotreme caseins reveals lineage-specific expansion of an ancestral casein locus in mammals.

    PubMed

    Lefèvre, Christophe M; Sharp, Julie A; Nicholas, Kevin R

    2009-01-01

    Using a milk-cell cDNA sequencing approach we characterised milk-protein sequences from two monotreme species, platypus (Ornithorhynchus anatinus) and echidna (Tachyglossus aculeatus) and found a full set of caseins and casein variants. The genomic organisation of the platypus casein locus is compared with other mammalian genomes, including the marsupial opossum and several eutherians. Physical linkage of casein genes has been seen in the casein loci of all mammalian genomes examined and we confirm that this is also observed in platypus. However, we show that a recent duplication of beta-casein occurred in the monotreme lineage, as opposed to more ancient duplications of alpha-casein in the eutherian lineage, while marsupials possess only single copies of alpha- and beta-caseins. Despite this variability, the close proximity of the main alpha- and beta-casein genes in an inverted tail-tail orientation and the relative orientation of the more distant kappa-casein genes are similar in all mammalian genome sequences so far available. Overall, the conservation of the genomic organisation of the caseins indicates the early, pre-monotreme development of the fundamental role of caseins during lactation. In contrast, the lineage-specific gene duplications that have occurred within the casein locus of monotremes and eutherians but not marsupials, which may have lost part of the ancestral casein locus, emphasises the independent selection on milk provision strategies to the young, most likely linked to different developmental strategies. The monotremes therefore provide insight into the ancestral drivers for lactation and how these have adapted in different lineages.

  11. Acetate production from whey lactose using co-immobilized cells of homolactic and homoacetic bacteria in a fibrous-bed bioreactor

    SciTech Connect

    Huang, Y.; Yang, S.T.

    1998-11-20

    Acetate was produced from whey lactose in batch and fed-batch fermentations using co-immobilized cells of Clostridium formicoaceticum and Lactococcus lactis. The cells were immobilized in a spirally wound fibrous sheet packed in a 0.45-L column reactor, with liquid circulated through a 5-L stirred-tank fermentor. Industrial-grade nitrogen sources, including corn steep liquor, casein hydrolysate, and yeast hydrolysate, were studied as inexpensive nutrient supplements to whey permeate and acid whey. Supplementation with either 2.5% (v/v) corn steep liquor or 1.5 g/L casein hydrolysate was adequate for the cocultured fermentation. The overall acetic acid yield from lactose was 0.9 g/g, and the productivitymore » was 0.25 g/(L h). Both lactate and acetate at high concentrations inhibited the homoacetic fermentation. To overcome these inhibitions, fed-batch fermentations were used to keep lactate concentration low and to adapt cells to high-concentration acetate. The final acetate concentration obtained in the fed-batch fermentations were used to keep lactate concentration low and to adapt cells to high-concentration acetate. The final acetate concentration obtained in the fed-batch fermentation was 75 g/L, which was the highest acetate concentration ever produced by C. formicoaceticum. Even at this high acetate concentration, the overall productivity was 0.18 g/(L h) based on the total medium volume and 1.23 g/(L h) based on the fibrous-bed reactor volume. The cells isolated from the fibrous-bed bioreactor at the end of this study were more tolerant to acetic acid than the original culture used to seed the bioreactor, indicating that adaptation and natural selection of acetate-tolerant strains occurred. This cocultured fermentation process could be used to produce a low-cost acetate deicer from whey permeate and acid whey.« less

  12. Soy-dairy protein blend and whey protein ingestion after resistance exercise increases amino acid transport and transporter expression in human skeletal muscle.

    PubMed

    Reidy, P T; Walker, D K; Dickinson, J M; Gundermann, D M; Drummond, M J; Timmerman, K L; Cope, M B; Mukherjea, R; Jennings, K; Volpi, E; Rasmussen, B B

    2014-06-01

    Increasing amino acid availability (via infusion or ingestion) at rest or postexercise enhances amino acid transport into human skeletal muscle. It is unknown whether alterations in amino acid availability, from ingesting different dietary proteins, can enhance amino acid transport rates and amino acid transporter (AAT) mRNA expression. We hypothesized that the prolonged hyperaminoacidemia from ingesting a blend of proteins with different digestion rates postexercise would enhance amino acid transport into muscle and AAT expression compared with the ingestion of a rapidly digested protein. In a double-blind, randomized clinical trial, we studied 16 young adults at rest and after acute resistance exercise coupled with postexercise (1 h) ingestion of either a (soy-dairy) protein blend or whey protein. Phenylalanine net balance and transport rate into skeletal muscle were measured using stable isotopic methods in combination with femoral arteriovenous blood sampling and muscle biopsies obtained at rest and 3 and 5 h postexercise. Phenylalanine transport into muscle and mRNA expression of select AATs [system L amino acid transporter 1/solute-linked carrier (SLC) 7A5, CD98/SLC3A2, system A amino acid transporter 2/SLC38A2, proton-assisted amino acid transporter 1/SLC36A1, cationic amino acid transporter 1/SLC7A1] increased to a similar extent in both groups (P < 0.05). However, the ingestion of the protein blend resulted in a prolonged and positive net phenylalanine balance during postexercise recovery compared with whey protein (P < 0.05). Postexercise myofibrillar protein synthesis increased similarly between groups. We conclude that, while both protein sources enhanced postexercise AAT expression, transport into muscle, and myofibrillar protein synthesis, postexercise ingestion of a protein blend results in a slightly prolonged net amino acid balance across the leg compared with whey protein. Copyright © 2014 the American Physiological Society.

  13. Soy-dairy protein blend and whey protein ingestion after resistance exercise increases amino acid transport and transporter expression in human skeletal muscle

    PubMed Central

    Reidy, P. T.; Walker, D. K.; Dickinson, J. M.; Gundermann, D. M.; Drummond, M. J.; Timmerman, K. L.; Cope, M. B.; Mukherjea, R.; Jennings, K.; Volpi, E.

    2014-01-01

    Increasing amino acid availability (via infusion or ingestion) at rest or postexercise enhances amino acid transport into human skeletal muscle. It is unknown whether alterations in amino acid availability, from ingesting different dietary proteins, can enhance amino acid transport rates and amino acid transporter (AAT) mRNA expression. We hypothesized that the prolonged hyperaminoacidemia from ingesting a blend of proteins with different digestion rates postexercise would enhance amino acid transport into muscle and AAT expression compared with the ingestion of a rapidly digested protein. In a double-blind, randomized clinical trial, we studied 16 young adults at rest and after acute resistance exercise coupled with postexercise (1 h) ingestion of either a (soy-dairy) protein blend or whey protein. Phenylalanine net balance and transport rate into skeletal muscle were measured using stable isotopic methods in combination with femoral arteriovenous blood sampling and muscle biopsies obtained at rest and 3 and 5 h postexercise. Phenylalanine transport into muscle and mRNA expression of select AATs [system L amino acid transporter 1/solute-linked carrier (SLC) 7A5, CD98/SLC3A2, system A amino acid transporter 2/SLC38A2, proton-assisted amino acid transporter 1/SLC36A1, cationic amino acid transporter 1/SLC7A1] increased to a similar extent in both groups (P < 0.05). However, the ingestion of the protein blend resulted in a prolonged and positive net phenylalanine balance during postexercise recovery compared with whey protein (P < 0.05). Postexercise myofibrillar protein synthesis increased similarly between groups. We conclude that, while both protein sources enhanced postexercise AAT expression, transport into muscle, and myofibrillar protein synthesis, postexercise ingestion of a protein blend results in a slightly prolonged net amino acid balance across the leg compared with whey protein. PMID:24699854

  14. Casein infusion rate influences feed intake differently depending on metabolizable protein balance in dairy cows: A multilevel meta-analysis.

    PubMed

    Martineau, R; Ouellet, D R; Kebreab, E; Lapierre, H

    2016-04-01

    The effects of casein infusion have been investigated extensively in ruminant species. Its effect on responses in dry matter intake (DMI) has been reviewed and indicated no significant effect. The literature reviewed in the current meta-analysis is more extensive and limited to dairy cows fed ad libitum. A total of 51 studies were included in the meta-analysis and data were fitted to a multilevel model adjusting for the correlated nature of some studies. The effect size was the mean difference calculated by subtracting the means for the control from the casein-infused group. Overall, casein infusion [average of 333 g of dry matter (DM)/d; range: 91 to 1,092 g of DM/d] tended to increase responses in DMI by 0.18 kg/d (n=48 studies; 3 outliers). However, an interaction was observed between the casein infusion rate (IR) and the initial metabolizable protein (MP) balance [i.e., supply minus requirements (NRC, 2001)]. When control cows were in negative MP balance (n=27 studies), responses in DMI averaged 0.28 kg/d at mean MP balance (-264 g/d) and casein IR (336 g/d), and a 100g/d increment in the casein IR from its mean increased further responses by 0.14 kg/d (MP balance being constant), compared with cows not infused with casein. In contrast, when control cows were in positive MP balance (n=22 studies; 2 outliers), responses in DMI averaged -0.20 kg/d at mean casein IR (339 g/d), and a 100g/d increment in the casein IR from its mean further decreased responses by 0.33 kg/d, compared with cows not infused with casein. Responses in milk true protein yield at mean casein IR were greater (109 vs. 65 g/d) for cows in negative vs. positive MP balance, respectively, and the influence of the casein IR on responses was significant only for cows in negative MP balance. A 100g/d increment in the casein IR from its mean increased further responses in milk true protein yield by 25 g/d, compared with cows not infused with casein. Responses in blood urea concentration increased in

  15. Properties of whey protein isolates extruded under acidic and alkaline conditions.

    PubMed

    Onwulata, C I; Isobe, S; Tomasula, P M; Cooke, P H

    2006-01-01

    Whey proteins have wide acceptance and use in many products due to their beneficial nutritional properties. To further increase the amount of whey protein isolates (WPI) that may be added to products such as extruded snacks and meats, texturization of WPI is necessary. Texturization changes the folding of globular proteins to improve interaction with other ingredients and create new functional ingredients. In this study, WPI pastes (60% solids) were extruded in a twin-screw extruder at 100 degrees C with 4 pH-adjusted water streams: acidic (pH 2.0 +/- 0.2) and alkaline (pH 12.4 +/- 0.4) streams from 2 N HCl and 2 N NaOH, respectively, and acidic (pH 2.5 +/- 0.2) and alkaline (pH 11.5 +/- 0.4) electrolyzed water streams; these were compared with WPI extruded with deionized water. The effects of water acidity on WPI solubility at pH 7, color, microstructure, Rapid Visco Analyzer pasting properties, and physical structure were determined. Alkaline conditions increased insolubility caused yellowing and increased pasting properties significantly. Acidic conditions increased solubility and decreased WPI pasting properties. Subtle structural changes occurred under acidic conditions, but were more pronounced under alkaline conditions. Overall, alkaline conditions increased denaturation in the extruded WPI resulting in stringy texturized WPI products, which could be used in meat applications.

  16. Secretion of whey acidic protein and cystatin is down regulated at mid-lactation in the red kangaroo (Macropus rufus)

    USGS Publications Warehouse

    Nicholas, K.R.; Fisher, J.A.; Muths, E.; Trott, J.; Janssens, P.A.; Reich, C.; Shaw, D.C.

    2001-01-01

    Milk collected from the red kangaroo (Macropus rufus) between day 100 and 260 of lactation showed major changes in milk composition at around day 200 of lactation, the time at which the pouch young begins to temporarily exit the pouch and eat herbage. The carbohydrate content of milk declined abruptly at this time and although there was only a small increase in total protein content, SDS PAGE analysis of milk revealed asynchrony in the secretory pattern of individual proteins. The levels of α-lactalbumin, β-lactoglobulin, serum albumin and transferrin remain unchanged during lactation. In contrast, the protease inhibitor cystatin, and the putative protease inhibitor whey acidic protein (WAP) first appeared in milk at elevated concentrations after approximately 150 days of lactation and then ceased to be secreted at approximately 200 days. In addition, a major whey protein, late lactation protein, was first detected in milk around the time whey acidic protein and cystatin cease to be secreted and was present at least until day 260 of lactation. The co-ordinated, but asynchronous secretion of putative protease inhibitors in milk may have several roles during lactation including tissue remodelling in the mammary gland and protecting specific proteins in milk required for physiological development of the dependent young.

  17. Secretion of whey acidic protein and cystatin is down regulated at mid-lactation in the red kangaroo (Macropus rufus)

    USGS Publications Warehouse

    Nicholas, K.R.; Fisher, J.A.; Muths, E.; Trott, J.; Janssens, P.A.; Reich, C.; Shaw, D.C.

    2001-01-01

    Milk collected from the red kangaroo (Macropus rufus) between day 100 and 260 of lactation showed major changes in milk composition at around day 200 of lactation, the time at which the pouch young begins to temporarily exit the pouch and eat herbage. The carbohydrate content of milk declined abruptly at this time and although there was only a small increase in total protein content, SDS PAGE analysis of milk revealed asynchrony in the secretory pattern of individual proteins. The levels of ??-lactalbumin, ??-lactoglobulin, serum albumin and transferrin remain unchanged during lactation. In contrast, the protease inhibitor cystatin, and the putative protease inhibitor whey acidic protein (WAP) first appeared in milk at elevated concentrations after approximately 150 days of lactation and then ceased to be secreted at approximately 200 days. In addition, a major whey protein, late lactation protein, was first detected in milk around the time whey acidic protein and cystatin cease to be secreted and was present at least until day 260 of lactation. The co-ordinated, but asynchronous secretion of putative protease inhibitors in milk may have several roles during lactation including tissue remodelling in the mammary gland and protecting specific proteins in milk required for physiological development of the dependent young. ?? 2001 Elsevier Science Inc.

  18. Glycation Reactions of Casein Micelles.

    PubMed

    Moeckel, Ulrike; Duerasch, Anja; Weiz, Alexander; Ruck, Michael; Henle, Thomas

    2016-04-13

    After suspensions of micellar casein or nonmicellar sodium caseinate had been heated, respectively, in the presence and absence of glucose for 0-4 h at 100 °C, glycation compounds were quantitated. The formation of Amadori products as indicators for the "early" Maillard reaction were in the same range for both micellar and nonmicellar caseins, indicating that reactive amino acid side chains within the micelles are accessible for glucose in a comparable way as in nonmicellar casein. Significant differences, however, were observed concerning the formation of the advanced glycation end products (AGEs), namely, N(ε)-carboxymethyllysine (CML), pyrraline, pentosidine, and glyoxal-lysine dimer (GOLD). CML could be observerd in higher amounts in nonmicellar casein, whereas in the micelles the pyrraline formation was increased. Pentosidine and GOLD were formed in comparable amounts. Furthermore, the extent of protein cross-linking was significantly higher in the glycated casein micelles than in the nonmicellar casein samples. Dynamic light scattering and scanning electron microscopy showed that glycation has no influence on the size of the casein micelles, indicating that cross-linking occurs only in the interior of the micelles, but altered the surface morphology. Studies on glycation and nonenzymatic cross-linking can contribute to the understanding of the structure of casein micelles.

  19. Production of a protein-rich extruded snack base using tapioca starch, sorghum flour and casein.

    PubMed

    Patel, Jiral R; Patel, Ashok A; Singh, Ashish K

    2016-01-01

    A protein-rich puffed snack was produced using a twin screw extruder and the effects of varying levels of tapioca starch (11 to 40 parts), rennet casein (6 to 20 parts) and sorghum flour (25 to 75 parts) on physico-chemical properties and sensory attributes of the product studied. An increasing level of sorghum flour resulted in a decreasing whiteness (Hunter L* value) of the snack. Although the starch also generally tended to make the product increasingly darker, both starch and casein showed redness parameter (a* value) was not significantly influenced by the ingredients levels, the yellow hue (b* value) generally declined with the increasing sorghum level. Tapioca starch significantly increased the expansion ratio and decreased the bulk density and hardness value of the snack, whereas the opposite effects seen in case of sorghum flour. While the water solubility index was enhanced by starch, water absorption index was appreciably improved by sorghum. Incorporation of casein (up to 25 %) improved the sensory color and texture scores, and so also the overall acceptability rating of the product. Sorghum flour had an adverse impact on all the sensory attributes whereas starch only on the color score. The casein or starch level had no perceivable effect on the product's flavor score. The response surface data enabled optimization of the snack-base formulation for the desired protein level or desired sensory characteristics.

  20. Effect of drinking compared with eating sugars or whey protein on short-term appetite and food intake.

    PubMed

    Akhavan, T; Luhovyy, B L; Anderson, G H

    2011-04-01

    It is hypothesized that a solid form of food or food components suppresses subjective appetite and short-term food intake (FI) more than a liquid form. To compare the effect of eating solid vs drinking liquid forms of gelatin, sucrose and its component mixtures, and whey protein, on subjective appetite and FI in young men. A randomized crossover design was used in three experiments in which the subjects were healthy males of normal weight. Solid and liquid forms of gelatin (6 g) (experiment 1, n=14), sucrose (75 g) and a mixture of 50% glucose/50% fructose (G50:F50) (experiment 2, n=15), and acid and sweet whey protein (50 g) (experiment 3, n=14) were compared. The controls were water (experiments 1 and 3) and calorie-free sweetened water with gelatin (sweet gelatin, experiment 1) or calorie-free sweetened water (sweet control, experiment 2). Subjective average appetite was measured by visual analog scales over 1 h and ad libitum FI was measured 1 h after treatment consumption. Average appetite area under the curve was not different between solid and liquid forms of sugars, but was larger, indicating greater satiety for solid compared with liquid forms of gelatin and sweet, but not acid whey protein. The FI was not different from that of control because of solid or liquid sugars or gelatin treatments. However, both solid and liquid forms of whey protein, with no difference among them, suppressed FI compared with control (P<0.05). Macronutrient composition is more important than physical state of foods in determining subjective appetite and FI.

  1. Knock-in of Enhanced Green Fluorescent Protein or/and Human Fibroblast Growth Factor 2 Gene into β-Casein Gene Locus in the Porcine Fibroblasts to Produce Therapeutic Protein.

    PubMed

    Lee, Sang Mi; Kim, Ji Woo; Jeong, Young-Hee; Kim, Se Eun; Kim, Yeong Ji; Moon, Seung Ju; Lee, Ji-Hye; Kim, Keun-Jung; Kim, Min-Kyu; Kang, Man-Jong

    2014-11-01

    Transgenic animals have become important tools for the production of therapeutic proteins in the domestic animal. Production efficiencies of transgenic animals by conventional methods as microinjection and retrovirus vector methods are low, and the foreign gene expression levels are also low because of their random integration in the host genome. In this study, we investigated the homologous recombination on the porcine β-casein gene locus using a knock-in vector for the β-casein gene locus. We developed the knock-in vector on the porcine β-casein gene locus and isolated knock-in fibroblast for nuclear transfer. The knock-in vector consisted of the neomycin resistance gene (neo) as a positive selectable marker gene, diphtheria toxin-A gene as negative selection marker, and 5' arm and 3' arm from the porcine β-casein gene. The secretion of enhanced green fluorescent protein (EGFP) was more easily detected in the cell culture media than it was by western blot analysis of cell extract of the HC11 mouse mammary epithelial cells transfected with EGFP knock-in vector. These results indicated that a knock-in system using β-casein gene induced high expression of transgene by the gene regulatory sequence of endogenous β-casein gene. These fibroblasts may be used to produce transgenic pigs for the production of therapeutic proteins via the mammary glands.

  2. Knock-in of Enhanced Green Fluorescent Protein or/and Human Fibroblast Growth Factor 2 Gene into β-Casein Gene Locus in the Porcine Fibroblasts to Produce Therapeutic Protein

    PubMed Central

    Lee, Sang Mi; Kim, Ji Woo; Jeong, Young-Hee; Kim, Se Eun; Kim, Yeong Ji; Moon, Seung Ju; Lee, Ji-Hye; Kim, Keun-Jung; Kim, Min-Kyu; Kang, Man-Jong

    2014-01-01

    Transgenic animals have become important tools for the production of therapeutic proteins in the domestic animal. Production efficiencies of transgenic animals by conventional methods as microinjection and retrovirus vector methods are low, and the foreign gene expression levels are also low because of their random integration in the host genome. In this study, we investigated the homologous recombination on the porcine β-casein gene locus using a knock-in vector for the β-casein gene locus. We developed the knock-in vector on the porcine β-casein gene locus and isolated knock-in fibroblast for nuclear transfer. The knock-in vector consisted of the neomycin resistance gene (neo) as a positive selectable marker gene, diphtheria toxin-A gene as negative selection marker, and 5′ arm and 3′ arm from the porcine β-casein gene. The secretion of enhanced green fluorescent protein (EGFP) was more easily detected in the cell culture media than it was by western blot analysis of cell extract of the HC11 mouse mammary epithelial cells transfected with EGFP knock-in vector. These results indicated that a knock-in system using β-casein gene induced high expression of transgene by the gene regulatory sequence of endogenous β-casein gene. These fibroblasts may be used to produce transgenic pigs for the production of therapeutic proteins via the mammary glands. PMID:25358326

  3. Association of lipids with milk α- and β-caseins.

    PubMed

    Bourassa, P; Bekale, L; Tajmir-Riahi, H A

    2014-09-01

    We report the molecular interaction and the binding sites of cholesterol (CHOL), 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP), dioctadecyldimethyl-ammoniumbromide (DDAB), and dioleoylphosphatidylethanolamine (DOPE) with milk α- and β-caseins in aquous solution at physiological conditions. Fourier transform infrared (FTIR), fluorescence spectroscopic methods and molecular modeling were used to determine the binding sites of lipid-protein complexes and the effect of lipid interaction on the stability and conformation of α- and β-caseins. Structural analysis showed that lipids bind casein via mainly hydrophobic contact with association constants of KCHOL-α-casein=1.0 (±0.1)×10(4) M(-1), KDOPE-α-casein=5.0 (±0.07)×10(3) M(-1), KDDAB-α-casein=2.0 (±0.06)×10(4) M(-1), KDOTAP-α-casein=1.5 (±0.6)×10(4) M(-1), KCHOL-β-casein=1.0 (±0.3)×10(4) M(-1), KDOPE-β-casein=1.5 (±0.06)×10(3) M(-1), KDDAB-β-casein=1.7 (±0.3)×10(4) M(-1) and KDOTAP-β-casein=2.1 (±0.5)×10(4) M(-1). The average number of binding sites occupied by lipid molecules on protein (n) were from 0.7 to 1.1. Docking showed different binding sites for α- and β-caseins toward lipid complexation with the free binding energies from -10 to -13 kcal/mol. Casein conformation was altered by lipid interaction with a reduction of α-helix and β-sheet and an increase of random coil and turn structure suggesting a partial protein unfolding. Cascasein; CHOLcholesterol; DOTAP1,2-dioleoyl-3-trimethylammonium-propane; DDABdioctadecyldimethylammonium bromide; DOPEdioleoylphosphatidylethanolamine; FTIRFourier transform infrared spectroscopy; CDcircular dichroism. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Effects of milk powder and its components on texture, yield, and color of a lean poultry meat model system.

    PubMed

    Barbut, S

    2010-06-01

    The effects of whole milk powder, 2 skim milk powders, caseinate, and 2 modified whey proteins (2% protein level in the final product) were evaluated in lean chicken meat batters and compared with controls with and without added lactose. All dairy proteins significantly (P<0.05) reduced cook losses when compared against the controls, with the 2 skim milk powders and modified whey-I showing the best results. Hardness and fracturability were also higher for all test batters compared with controls. Skim milk-II showed the highest fracturability value (21.9 vs. 7.1 N for the control) and was also found to be the most cost-effective ingredient for improving moisture binding and texture; skim milk-I and modified whey-I followed behind. Springiness and fracture distance were higher for all of the dairy proteins, except caseinate, indicating a positive contribution to the lean meat system's elasticity. In terms of color, adding the skim milk powders, modified whey-II, and whole milk powder resulted in lighter cooked meat batters as evidenced by the higher L* values and higher spectra curves.

  5. In-Depth Characterization of Sheep (Ovis aries) Milk Whey Proteome and Comparison with Cow (Bos taurus)

    PubMed Central

    Ha, Minh; Sabherwal, Manya; Duncan, Elizabeth; Stevens, Stewart; Stockwell, Peter; McConnell, Michelle; Bekhit, Alaa El-Din; Carne, Alan

    2015-01-01

    An in-depth proteomic study of sheep milk whey is reported and compared to the data available in the literature for the cow whey proteome. A combinatorial peptide ligand library kit (ProteoMiner) was used to normalize protein abundance in the sheep whey proteome followed by an in-gel digest of a 1D-PAGE display and an in-solution digestion followed by OFFGEL isoelectric focusing fractionation. The peptide fractions obtained were then analyzed by LC-MS/MS. This enabled identification of 669 proteins in sheep whey that, to our knowledge, is the largest inventory of sheep whey proteins identified to date. A comprehensive list of cow whey proteins currently available in the literature (783 proteins from unique genes) was assembled and compared to the sheep whey proteome data obtained in this study (606 proteins from unique genes). This comparison revealed that while the 233 proteins shared by the two species were significantly enriched for immune and inflammatory responses in gene ontology analysis, proteins only found in sheep whey in this study were identified that take part in both cellular development and immune responses, whereas proteins only found in cow whey in this study were identified to be associated with metabolism and cellular growth. PMID:26447763

  6. Casein hydrolysate augments antimicrobial and antioxidative efficacy of cheddar whey based edible coating of retail-cut beefsteak

    USDA-ARS?s Scientific Manuscript database

    Hydrolysis of casein using chymotrypsin results in the formation of polypeptides (casein hydrolyzate, CH) with a hydrophobic aromatic amino acid on one end of the chain because the enzyme selectively cleaves the adjacent peptide-bond. Due to resonance of the aromatic micro-domain, thiols become redo...

  7. Effects of addition of hydrocolloids on the textural and structural properties of high-protein intermediate moisture food model systems containing sodium caseinate.

    PubMed

    Li, J; Wu, Y; Ma, Y; Lu, N; Regenstein, J M; Zhou, P

    2017-08-01

    High-protein intermediate moisture food (HPIMF) containing sodium caseinate (NaCN) often gave a harder texture compared with that made from whey proteins or soy proteins, due to the aggregation of protein particles. The objectives of this study were to explore whether the addition of hydrocolloids could soften the texture and illustrate the possible mechanism. Three kinds of hydrocolloids, xanthan gum, κ-carrageenan, and gum arabic were chosen, and samples including of these three kinds of hydrocolloids were studied through texture analysis using a TPA test and microstructure observation by confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM). The texture analysis results showed that xanthan gum was more effective at softening the HPIMF containing NaCN compared to κ-carrageenan and gum arabic. In addition, with the increase of xanthan gum concentration from 0.2 to 2%, the HPIMF matrix became softer, and fractures were observed during the compression for samples with xanthan gum added at low concentrations but not 2%. Microstructure observation suggested that the matrix originally dominated by the network formed through the aggregation of swollen protein particles was inhibited by the addition of xanthan gum, resulting in the softening of the texture and also contributing to the fracture during compression. With the increase of xanthan gum concentration up to 2%, the protein dominating network would be gradually replaced with a matrix dominated by the newly formed network of xanthan gum with protein particles as fillers. Furthermore, this formation of a xanthan gum dominating network structure also resulted in changes in small molecule distribution, as observed using low-field NMR.

  8. Locating the binding sites of folic acid with milk α- and β-caseins.

    PubMed

    Bourassa, P; Tajmir-Riahi, H A

    2012-01-12

    We located the binding sites of folic acid with milk α- and β-caseins at physiological conditions, using constant protein concentration and various folic acid contents. FTIR, UV-visible, and fluorescence spectroscopic methods as well as molecular modeling were used to analyze folic acid binding sites, the binding constant, and the effect of folic acid interaction on the stability and conformation of caseins. Structural analysis showed that folic acid binds caseins via both hydrophilic and hydrophobic contacts with overall binding constants of K(folic acid-α-caseins) = 4.8 (±0.6) × 10(4) M(-1) and K(folic acid-β-caseins) = 7.0 (±0.9) × 10(4) M(-1). The number of bound acid molecules per protein was 1.5 (±0.4) for α-casein and 1.4 (±0.3) for β-casein complexes. Molecular modeling showed different binding sites for folic acid on α- and β-caseins. The participation of several amino acids in folic acid-protein complexes was observed, which was stabilized by hydrogen bonding network and the free binding energy of -7.7 kcal/mol (acid-α-casein) and -8.1 kcal/mol (acid-β-casein). Folic acid complexation altered protein secondary structure by the reduction of α-helix from 35% (free α-casein) to 33% (acid-complex) and 32% (free β-casein) to 26% (acid-complex) indicating a partial protein destabilization. Caseins might act as carriers for transportation of folic acid to target molecules.

  9. Whey cheese: membrane technology to increase yields.

    PubMed

    Riera, Francisco; González, Pablo; Muro, Claudia

    2016-02-01

    Sweet cheese whey has been used to obtain whey cheese without the addition of milk. Pre-treated whey was concentrated by nanofiltration (NF) at different concentration ratios (2, 2.5 and 2.8) or by reverse osmosis (RO) (2-3 times). After the concentration, whey was acidified with lactic acid until a final pH of 4.6-4.8, and heated to temperatures between 85 and 90 °C. The coagulated fraction (supernatant) was collected and freely drained over 4 h. The cheese-whey yield and protein, fat, lactose and ash recoveries in the final product were calculated. The membrane pre-concentration step caused an increase in the whey-cheese yield. The final composition of products was compared with traditional cheese-whey manufacture products (without membrane concentration). Final cheese yields found were to be between 5 and 19.6%, which are higher than those achieved using the traditional 'Requesón' process.

  10. Effects of an amylopectin and chromium complex on the anabolic response to a suboptimal dose of whey protein.

    PubMed

    Ziegenfuss, T N; Lopez, H L; Kedia, A; Habowski, S M; Sandrock, J E; Raub, B; Kerksick, C M; Ferrando, A A

    2017-01-01

    Previous research has demonstrated the permissive effect of insulin on muscle protein kinetics, and the enhanced insulin sensitizing effect of chromium. In the presence of adequate whole protein and/or essential amino acids (EAA), insulin has a stimulatory effect on muscle protein synthesis, whereas in conditions of lower blood EAA concentrations, insulin has an inhibitory effect on protein breakdown. In this study, we determined the effect of an amylopectin/chromium (ACr) complex on changes in plasma concentrations of EAA, insulin, glucose, and the fractional rate of muscle protein synthesis (FSR). Using a double-blind, cross-over design, ten subjects (six men, four women) consumed 6 g whey protein + 2 g of the amylopectin-chromium complex (WPACr) or 6 g whey protein (WP) after an overnight fast. FSR was measured using a primed, continuous infusion of ring-d 5 -phenylalanine with serial muscle biopsies performed at 2, 4, and 8 h. Plasma EAA and insulin were assayed by ion-exchange chromatography and ELISA, respectively. After the biopsy at 4 h, subjects ingested their respective supplement, completed eight sets of bilateral isotonic leg extensions at 80% of their estimated 1-RM, and a final biopsy was obtained 4 h later. Both trials increased EAA similarly, with peak levels noted 30 min after ingestion. Insulin tended ( p  = 0.09) to be higher in the WPACr trial. Paired samples t-tests using baseline and 4-h post-ingestion FSR data separately for each group revealed significant increases in the WPACr group (+0.0197%/h, p  = 0.0004) and no difference in the WP group (+0.01215%/hr, p  = 0.23). Independent t-tests confirmed significant ( p  = 0.045) differences in post-treatment FSR between trials. These data indicate that the addition of ACr to a 6 g dose of whey protein (WPACr) increases the FSR response beyond what is seen with a suboptimal dose of whey protein alone.

  11. αS1-casein, which is essential for efficient ER-to-Golgi casein transport, is also present in a tightly membrane-associated form

    PubMed Central

    2010-01-01

    Background Caseins, the main milk proteins, aggregate in the secretory pathway of mammary epithelial cells into large supramolecular structures, casein micelles. The role of individual caseins in this process and the mesostructure of the casein micelle are poorly known. Results In this study, we investigate primary steps of casein micelle formation in rough endoplasmic reticulum-derived vesicles prepared from rat or goat mammary tissues. The majority of both αS1- and β-casein which are cysteine-containing casein was dimeric in the endoplasmic reticulum. Saponin permeabilisation of microsomal membranes in physico-chemical conditions believed to conserve casein interactions demonstrated that rat immature β-casein is weakly aggregated in the endoplasmic reticulum. In striking contrast, a large proportion of immature αS1-casein was recovered in permeabilised microsomes when incubated in conservative conditions. Furthermore, a substantial amount of αS1-casein remained associated with microsomal or post-ER membranes after saponin permeabilisation in non-conservative conditions or carbonate extraction at pH11, all in the presence of DTT. Finally, we show that protein dimerisation via disulfide bond is involved in the interaction of αS1-casein with membranes. Conclusions These experiments reveal for the first time the existence of a membrane-associated form of αS1-casein in the endoplasmic reticulum and in more distal compartments of the secretory pathway of mammary epithelial cells. Our data suggest that αS1-casein, which is required for efficient export of the other caseins from the endoplasmic reticulum, plays a key role in early steps of casein micelle biogenesis and casein transport in the secretory pathway. PMID:20704729

  12. Effect of temperature and concentration on benzoyl peroxide bleaching efficacy and benzoic acid levels in whey protein concentrate.

    PubMed

    Smith, T J; Gerard, P D; Drake, M A

    2015-11-01

    Much of the fluid whey produced in the United States is a by-product of Cheddar cheese manufacture and must be bleached. Benzoyl peroxide (BP) is currently 1 of only 2 legal chemical bleaching agents for fluid whey in the United States, but benzoic acid is an unavoidable by-product of BP bleaching. Benzoyl peroxide is typically a powder, but new liquid BP dispersions are available. A greater understanding of the bleaching characteristics of BP is necessary. The objective of the study was to compare norbixin destruction, residual benzoic acid, and flavor differences between liquid whey and 80% whey protein concentrates (WPC80) bleached at different temperatures with 2 different benzoyl peroxides (soluble and insoluble). Two experiments were conducted in this study. For experiment 1, 3 factors (temperature, bleach type, bleach concentration) were evaluated for norbixin destruction using a response surface model-central composite design in liquid whey. For experiment 2, norbixin concentration, residual benzoic acid, and flavor differences were explored in WPC80 from whey bleached by the 2 commercially available BP (soluble and insoluble) at 5 mg/kg. In liquid whey, soluble BP bleached more norbixin than insoluble BP, especially at lower concentrations (5 and 10 mg/kg) at both cold (4°C) and hot (50°C) temperatures. The WPC80 from liquid whey bleached with BP at 50°C had lower norbixin concentration, benzoic acid levels, cardboard flavor, and aldehyde levels than WPC80 from liquid whey bleached with BP at 4°C. Regardless of temperature, soluble BP destroyed more norbixin at lower concentrations than insoluble BP. The WPC80 from soluble-BP-bleached wheys had lower cardboard flavor and lower aldehyde levels than WPC80 from insoluble-BP-bleached whey. This study suggests that new, soluble (liquid) BP can be used at lower concentrations than insoluble BP to achieve equivalent bleaching and that less residual benzoic acid remains in WPC80 powder from liquid whey

  13. Considerations in meeting protein needs of the human milk-fed preterm infant.

    PubMed

    Wagner, Julie; Hanson, Corrine; Anderson-Berry, Ann

    2014-08-01

    Preterm infants provided with sufficient nutrition to achieve intrauterine growth rates have the greatest potential for optimal neurodevelopment. Although human milk is the preferred feeding for preterm infants, unfortified human milk provides insufficient nutrition for the very low-birth-weight infant. Even after fortification with human milk fortifier, human milk often fails to meet the high protein needs of the smallest preterm infants, and additional protein supplementation must be provided. Although substantial evidence exists to support quantitative protein goals for human milk-fed preterm infants, the optimal type of protein for use in human milk fortification remains uncertain. This question was addressed through a PubMed literature search of prospective clinical trials conducted since 1990 in preterm or low-birth-weight infant populations. The following 3 different aspects of protein quality were evaluated: whey-to-casein ratio, hydrolyzed versus intact protein, and bovine milk protein versus human milk protein. Because of a scarcity of current studies conducted with fortified human milk, studies examining protein quality using preterm infant formulas were included to address certain components of the clinical question. Twenty-six studies were included in the review study. No definite advantage was found for any specific whey-to-casein ratio. Protein hydrolyzate products with appropriate formulations can support adequate growth and biochemical indicators of nutrition status and may reduce gastrointestinal transit time, gastroesophageal reflux events, and later incidence of atopic dermatitis in some infants. Plasma amino acid levels similar to those of infants fed exclusive human milk-based diets can be achieved with products composed of a mixture of bovine proteins, peptides, and amino acids formulated to replicate the amino acid composition of human milk. Growth and biochemical indicators of nutrition status are similar for infants fed human milk

  14. Changes in volatile compounds in whey protein concentrate stored at elevated temperature and humidity

    USDA-ARS?s Scientific Manuscript database

    Whey protein concentrate (WPC) has been recommended for use in emergency aid programs, but it is often stored overseas without temperature and relative humidity (RH) control, which may cause it to be rejected because of yellowing, off-flavors, or clumping. Therefore, the volatile compounds present ...

  15. Effect of whey protein supplementation on long and short term appetite: A meta-analysis of randomized controlled trials.

    PubMed

    Mollahosseini, Mehdi; Shab-Bidar, Sakineh; Rahimi, Mohammad Hossein; Djafarian, Kurosh

    2017-08-01

    Specific components of dairy, such as whey proteins may have beneficial effects on body composition by suppressing appetite, although the findings of existing studies have been inconsistent. Therefore, a meta-analysis of randomized controlled trials was performed to investigate effect of whey protein supplementation on long and short term appetite. A systematic search was conducted to identify eligible publications. Means and SDs for hunger, fullness, satiety, desire to eat and prospective consumption of food, before and after intervention, were extracted and then composite appetite score (CAS) calculated. To pool data, either a fixed-effects model or a random-effects model and for assessing heterogeneity, Cochran's Q and I 2 tests were used. Eight publications met inclusion criteria that 5 records were on short term and 3 records on long term appetite. The meta-analysis showed a significant reduction in long term appetite by 4.13 mm in combined appetite score (CAS) (95% Confidence interval (CI): -6.57, -1.96; p = 0.001). No significant reduction in short term appetite was also seen (Mean difference (MD) = -0.39 95% CI = -2.07, 1.30; p = 0.653). Subgroup analyses by time showed that compared with carbohydrate, the reduction in appetite following consumption of whey consumption was not significant (MD = -0.39, 95% CI = -2.07, 1.3, p = 0.65, I 2  = 0.0%.)A significant reduction in prospective food consumption was seen (MD = -2.17, 95% CI = -3.86, -0.48). The results of our meta-analysis showed that whey protein may reduce the long and short term appetite, but our finding did not show any significant difference in appetite reduction between whey protein and carbohydrate in short duration. Copyright © 2017 European Society for Clinical Nutrition and Metabolism. Published by Elsevier Ltd. All rights reserved.

  16. Cryo-transmission electron tomography of native casein micelles from bovine milk

    PubMed Central

    Trejo, R.; Dokland, T.; Jurat-Fuentes, J.; Harte, F.

    2013-01-01

    Caseins are the principal protein components in milk and an important ingredient in the food industry. In liquid milk, caseins are found as micelles of casein proteins and colloidal calcium nanoclusters. Casein micelles were isolated from raw skim milk by size exclusion chromatography and suspended in milk protein-free serum produced by ultrafiltration (molecular weight cut-off of 3 kDa) of raw skim milk. The micelles were imaged by cryo-electron microscopy and subjected to tomographic reconstruction methods to visualize the 3-dimensional and internal organization of native casein micelles. This provided new insights into the internal architecture of the casein micelle that had not been apparent from prior cryo-transmission electron microscopy studies. This analysis demonstrated the presence of water-filled cavities (~20 to 30 nm in diameter), channels (diameter greater than ~5 nm), and several hundred high-density nanoclusters (6 to 12 nm in diameter) within the interior of the micelles. No spherical protein submicellar structures were observed. PMID:22118067

  17. Epigenetic Modifications Unlock the Milk Protein Gene Loci during Mouse Mammary Gland Development and Differentiation

    PubMed Central

    Rijnkels, Monique; Freeman-Zadrowski, Courtneay; Hernandez, Joseph; Potluri, Vani; Wang, Liguo; Li, Wei; Lemay, Danielle G.

    2013-01-01

    Background Unlike other tissues, development and differentiation of the mammary gland occur mostly after birth. The roles of systemic hormones and local growth factors important for this development and functional differentiation are well-studied. In other tissues, it has been shown that chromatin organization plays a key role in transcriptional regulation and underlies epigenetic regulation during development and differentiation. However, the role of chromatin organization in mammary gland development and differentiation is less well-defined. Here, we have studied the changes in chromatin organization at the milk protein gene loci (casein, whey acidic protein, and others) in the mouse mammary gland before and after functional differentiation. Methodology/Principal Findings Distal regulatory elements within the casein gene cluster and whey acidic protein gene region have an open chromatin organization after pubertal development, while proximal promoters only gain open-chromatin marks during pregnancy in conjunction with the major induction of their expression. In contrast, other milk protein genes, such as alpha-lactalbumin, already have an open chromatin organization in the mature virgin gland. Changes in chromatin organization in the casein gene cluster region that are present after puberty persisted after lactation has ceased, while the changes which occurred during pregnancy at the gene promoters were not maintained. In general, mammary gland expressed genes and their regulatory elements exhibit developmental stage- and tissue-specific chromatin organization. Conclusions/Significance A progressive gain of epigenetic marks indicative of open/active chromatin on genes marking functional differentiation accompanies the development of the mammary gland. These results support a model in which a chromatin organization is established during pubertal development that is then poised to respond to the systemic hormonal signals of pregnancy and lactation to achieve the

  18. RNA-sequencing data analysis of uterus in ovariectomized rats fed with soy protein isolate,17B-estradiol and casein

    USDA-ARS?s Scientific Manuscript database

    This data file describes the bioinformatics analysis of uterine RNA-seq data comparing genome wide effects of feeding soy protein isolate compared to casein to ovariectomized female rats age 64 days relative to treatment of casein fed rats with 5 ug/kg/d estradiol and relative to rats treated with e...

  19. A sialic acid assay in isolation and purification of bovine k-casein glycomacropeptide: a review.

    PubMed

    Nakano, Takuo; Ozimek, Lech

    2014-01-01

    Sialic acid is a carbohydrate moiety of k-casein glycomacropeptide (GMP), which is a 64 amino acid residue C-terminal sialylated phosphorylated glycopeptide released from k-casein by the action of chymosin during cheese making. GMP lacks aromatic amino acids including phenylalanine, tyrosine, and tryptophan. Because of its unique amino acid composition and various biological activities, GMP is thought to be a potential ingredient for dietetic foods (e.g., a food for PKU patients) and pharmaceuticals. Thus, increased attention has been given to the development of techniques to purify GMP. In this review, techniques of GMP purification described in patents and scientific research papers were introduced. A sialic acid assay is the important method to track GMP isolation and purification processes, for which the thiobarbituric acid reaction with 1-propanol as a chromophore extracting solvent is an inexpensive, practical and specific technique. Sephacryl S-200 gel filtration chromatography, cellulose acetate electrophoresis, and sodium dodecyl sulfate polyacrylamide gel electrophoresis are the major techniques to identify sialic acid specific to GMP. Sephacryl S-200 chromatography and cellulose acetate electrophoresis are also used to detect GMP sialic acid in whey pearmeate and whey added commercial margarine samples. Future research includes development of an economical industrial scale method to produce high purity GMP.

  20. Haptoglobin and serum amyloid A in bulk tank milk in relation to raw milk quality.

    PubMed

    Akerstedt, Maria; Waller, Karin Persson; Sternesjö, Ase

    2009-11-01

    The aim of the present study was to evaluate relationships between the presence of the two major bovine acute phase proteins haptoglobin (Hp) and serum amyloid A (SAA) and raw milk quality parameters in bulk tank milk samples. Hp and SAA have been suggested as specific markers of mastitis but recently also as markers for raw milk quality. Since mastitis has detrimental effects on milk quality, it is important to investigate whether the presence of Hp or SAA indicates such changes in the composition and properties of the milk. Bulk tank milk samples (n=91) were analysed for Hp, SAA, total protein, casein, whey protein, proteolysis, fat, lactose, somatic cell count and coagulating properties. Samples with detectable levels of Hp had lower casein content, casein number and lactose content, but higher proteolysis than samples without Hp. Samples with detectable levels of SAA had lower casein number and lactose content, but higher whey protein content than samples without SAA. The presence of acute phase proteins in bulk tank milk is suggested as an indicator for unfavourable changes in the milk composition, e.g. protein quality, due to udder health disturbances, with economical implications for the dairy industry.

  1. Cocoa and Whey Protein Differentially Affect Markers of Lipid and Glucose Metabolism and Satiety.

    PubMed

    Campbell, Caroline L; Foegeding, E Allen; Harris, G Keith

    2016-03-01

    Food formulation with bioactive ingredients is a potential strategy to promote satiety and weight management. Whey proteins are high in leucine and are shown to decrease hunger ratings and increase satiety hormone levels; cocoa polyphenolics moderate glucose levels and slow digestion. This study examined the effects of cocoa and whey proteins on lipid and glucose metabolism and satiety in vitro and in a clinical trial. In vitro, 3T3-L1 preadipocytes were treated with 0.5-100 μg/mL cocoa polyphenolic extract (CPE) and/or 1-15 mM leucine (Leu) and assayed for lipid accumulation and leptin production. In vivo, a 6-week clinical trial consisted of nine panelists (age: 22.6 ± 1.7; BMI: 22.3 ± 2.1) consuming chocolate-protein beverages once per week, including placebo, whey protein isolate (WPI), low polyphenolic cocoa (LP), high polyphenolic cocoa (HP), LP-WPI, and HP-WPI. Measurements included blood glucose and adiponectin levels, and hunger ratings at baseline and 0.5-4.0 h following beverage consumption. At levels of 50 and 100 μg/mL, CPE significantly inhibited preadipocyte lipid accumulation by 35% and 50%, respectively, and by 22% and 36% when combined with 15 mM Leu. Leu treatment increased adipocyte leptin production by 26-37%. In the clinical trial, all beverages significantly moderated blood glucose levels 30 min postconsumption. WPI beverages elicited lowest peak glucose levels and HP levels were significantly lower than LP. The WPI and HP beverage treatments significantly increased adiponectin levels, but elicited no significant changes in hunger ratings. These trends suggest that combinations of WPI and cocoa polyphenols may improve markers of metabolic syndrome and satiety.

  2. The effects of 8 weeks of whey or rice protein supplementation on body composition and exercise performance

    PubMed Central

    2013-01-01

    Background Consumption of moderate amounts of animal-derived protein has been shown to differently influence skeletal muscle hypertrophy during resistance training when compared with nitrogenous and isoenergetic amounts of plant-based protein administered in small to moderate doses. Therefore, the purpose of the study was to determine if the post-exercise consumption of rice protein isolate could increase recovery and elicit adequate changes in body composition compared to equally dosed whey protein isolate if given in large, isocaloric doses. Methods 24 college-aged, resistance trained males were recruited for this study. Subjects were randomly and equally divided into two groups, either consuming 48 g of rice or whey protein isolate (isocaloric and isonitrogenous) on training days. Subjects trained 3 days per week for 8 weeks as a part of a daily undulating periodized resistance-training program. The rice and whey protein supplements were consumed immediately following exercise. Ratings of perceived recovery, soreness, and readiness to train were recorded prior to and following the first training session. Ultrasonography determined muscle thickness, dual emission x-ray absorptiometry determined body composition, and bench press and leg press for upper and lower body strength were recorded during weeks 0, 4, and 8. An ANOVA model was used to measure group, time, and group by time interactions. If any main effects were observed, a Tukey post-hoc was employed to locate where differences occurred. Results No detectable differences were present in psychometric scores of perceived recovery, soreness, or readiness to train (p > 0.05). Significant time effects were observed in which lean body mass, muscle mass, strength and power all increased and fat mass decreased; however, no condition by time interactions were observed (p > 0.05). Conclusion Both whey and rice protein isolate administration post resistance exercise improved indices of body composition and

  3. Characterization of the translation products of the major mRNA species from rabbit lactating mammary glands and construction of bacterial recombinants containing casein and alpha-lactalbumin complementary DNA.

    PubMed Central

    Suard, Y M; Tosi, M; Kraehenbuhl, J P

    1982-01-01

    Total cytoplasmic polyadenylated RNA from lactating rabbit mammary glands was analysed on methylmercury hydroxide-agarose gels. The size of the most abundant mRNA species ranged between 0.5 and 5.0 kb (kilobases), with major bands at 0.55, 0.84, 0.92, 1.18 and 2.4 kb and discrete minor bands of 1.5, 1.7, 3.0 and 3.9 kb. Translation in vitro of total mRNA with [3H]leucine or [35S]methionine as precursor yielded four major bands with apparent Mr values of 16 000, 25 000, 26 000 and 29 000. The four protein bands were identified by immunoprecipitation by using specific antisera as alpha-lactalbumin and x-, kappa- and alpha-caseins, respectively. Labelling with (35S]cysteine followed by immunoprecipitation with anti-transferrin or anti-alpha-lactalbumin sera allowed the identification of two whey proteins. Translated transferrin was resolved as an 80 000-dalton band and alpha-lactalbumin appeared as a 16 000-dalton protein. A library of recombinant plasmids containing cDNA (complementary DNA) sequences representing cytoplasmic polyadenylated RNA was used to isolate clones for the major rabbit caseins and alpha-lactalbumin. A preliminary characterization of these cDNA clones was achieved by colony hybridization with enriched RNA fractions as probes. Positive clones were identified by use of hybrid-promoted translation in vitro and immunoprecipitation of the translation products. The corresponding mRNA species were further identified by hybridizing RNA blots with radioactively labelled cDNA clones. We present the restriction map of alpha-casein and kappa-casein cDNA clones. Images Fig. 1. Fig. 2. Fig. 3. Fig. 4. Fig. 5. Fig. 6. PMID:6123313

  4. Nutrition and Inflammation in Older Individuals: Focus on Vitamin D, n-3 Polyunsaturated Fatty Acids and Whey Proteins.

    PubMed

    Ticinesi, Andrea; Meschi, Tiziana; Lauretani, Fulvio; Felis, Giovanna; Franchi, Fabrizio; Pedrolli, Carlo; Barichella, Michela; Benati, Giuseppe; Di Nuzzo, Sergio; Ceda, Gian Paolo; Maggio, Marcello

    2016-03-29

    Chronic activation of the inflammatory response, defined as inflammaging, is the key physio-pathological substrate for anabolic resistance, sarcopenia and frailty in older individuals. Nutrients can theoretically modulate this phenomenon. The underlying molecular mechanisms reducing the synthesis of pro-inflammatory mediators have been elucidated, particularly for vitamin D, n-3 polyunsaturated fatty acids (PUFA) and whey proteins. In this paper, we review the current evidence emerging from observational and intervention studies, performed in older individuals, either community-dwelling or hospitalized with acute disease, and evaluating the effects of intake of vitamin D, n-3 PUFA and whey proteins on inflammatory markers, such as C-Reactive Protein (CRP), interleukin-1 (IL-1), interleukin-6 (IL-6) and tumor necrosis factor α (TNF-α). After the analysis, we conclude that there is sufficient evidence for an anti-inflammatory effect in aging only for n-3 PUFA intake, while the few existing intervention studies do not support a similar activity for vitamin D and whey supplements. There is need in the future of large, high-quality studies testing the effects of combined dietary interventions including the above mentioned nutrients on inflammation and health-related outcomes.

  5. Nutrition and Inflammation in Older Individuals: Focus on Vitamin D, n-3 Polyunsaturated Fatty Acids and Whey Proteins

    PubMed Central

    Ticinesi, Andrea; Meschi, Tiziana; Lauretani, Fulvio; Felis, Giovanna; Franchi, Fabrizio; Pedrolli, Carlo; Barichella, Michela; Benati, Giuseppe; Di Nuzzo, Sergio; Ceda, Gian Paolo; Maggio, Marcello

    2016-01-01

    Chronic activation of the inflammatory response, defined as inflammaging, is the key physio-pathological substrate for anabolic resistance, sarcopenia and frailty in older individuals. Nutrients can theoretically modulate this phenomenon. The underlying molecular mechanisms reducing the synthesis of pro-inflammatory mediators have been elucidated, particularly for vitamin D, n-3 polyunsaturated fatty acids (PUFA) and whey proteins. In this paper, we review the current evidence emerging from observational and intervention studies, performed in older individuals, either community-dwelling or hospitalized with acute disease, and evaluating the effects of intake of vitamin D, n-3 PUFA and whey proteins on inflammatory markers, such as C-Reactive Protein (CRP), interleukin-1 (IL-1), interleukin-6 (IL-6) and tumor necrosis factor α (TNF-α). After the analysis, we conclude that there is sufficient evidence for an anti-inflammatory effect in aging only for n-3 PUFA intake, while the few existing intervention studies do not support a similar activity for vitamin D and whey supplements. There is need in the future of large, high-quality studies testing the effects of combined dietary interventions including the above mentioned nutrients on inflammation and health-related outcomes. PMID:27043616

  6. Effect of whey protein hydrolysates with different molecular weight on fatigue induced by swimming exercise in mice.

    PubMed

    Liu, Jing; Wang, Xinxia; Zhao, Zheng

    2014-01-15

    In order to improve the antioxidant and anti-fatigue capacities of whey protein for wider utilization, it was hydrolyzed by chymotrypsin (EC 3.4.21.1) to produce whey protein hydrolysate (WPH). Fractions of WPH with different molecular weight (MW) were separated by ultrafiltration. Kunming mice in various treatment groups were orally administered (1.5 g kg(-1) body weight) whey protein isolate (WPI), WPH or WPHs with different MW (<5, 5-10, 10-30 or >30 kDa) for 6 weeks to explore whether different MW fractions of WPH affected mice fatigue. Compared with the control group (orally administered 9 g kg(-1) saline) or the WPI group, low-MW (<10 kDa) WPH groups showed prolonged swimming time (P < 0.05) and had higher concentrations (P < 0.05) of glucose, non-esterfied fatty acid, liver glycogen, superoxide dismutase and glutathione peroxidase and lower concentration of lactate. Low-MW (<10 kDa) WPHs had higher hydroxyl- and α,α-diphenyl-β-picrylhydrazyl-scavenging abilities and ferrous-chelating capacity than WPI. The results proved that low-MW (<10 kDa) WPHs with higher anti-fatigue capacity showed higher free radical-scavenging and ferrous-chelating activities. © 2013 Society of Chemical Industry.

  7. Apical-to-basolateral transepithelial transport of cow's milk caseins by intestinal Caco-2 cell monolayers: MS-based quantitation of cellularly degraded α- and β-casein fragments.

    PubMed

    Sakurai, Nao; Nishio, Shunsuke; Akiyama, Yuka; Miyata, Shinji; Oshima, Kenzi; Nadano, Daita; Matsuda, Tsukasa

    2018-02-27

    Casein is the major milk protein to nourish infants but, in certain population, it causes cow's milk allergy, indicating the uptake of antigenic casein and their peptides through the intestinal epithelium. Using human intestinal Caco-2 cell monolayers, the apical-to-basal transepithelial transport of casein was investigated. Confocal microscopy using component-specific antibodies showed that αs1-casein antigens became detectable as punctate signals at the apical-side cytoplasm and reached to the cytoplasm at a tight-junction level within a few hours. Such intracellular casein signals were more remarkable than those of the other antigens, β-lactoglobulin and ovalbumin, colocalized in part with an early endosome marker protein, EEA1, and decreased in the presence of cytochalasin D or sodium azide and also at lowered temperature at 4 °C. LC-MS analysis of the protein fraction in the basal-side medium identified the αs1-casein fragment including the N-terminal region and the αs2-casein fragment containing the central part of polypeptide at 100∼1000 fmol per well levels. Moreover, β-casein C-terminal overlapping peptides were identified in the peptide fraction below 10 kDa of the basal medium. These results suggest that caseins are partially degraded by cellular proteases and/or peptidases and immunologically active casein fragments are transported to basal side of the cell monolayers.

  8. Lupin protein isolate versus casein modifies cholesterol excretion and mRNA expression of intestinal sterol transporters in a pig model

    PubMed Central

    2014-01-01

    Background Lupin proteins exert hypocholesterolemic effects in man and animals, although the underlying mechanism remains uncertain. Herein we investigated whether lupin proteins compared to casein modulate sterol excretion and mRNA expression of intestinal sterol transporters by use of pigs as an animal model with similar lipid metabolism as humans, and cellular cholesterol-uptake by Caco-2 cells. Methods Two groups of pigs were fed cholesterol-containing diets with either 230 g/kg of lupin protein isolate from L. angustifolius or 230 g/kg casein, for 4 weeks. Faeces were collected quantitatively over a 5 d period for analysis of neutral sterols and bile acids by gas chromatographically methods. The mRNA abundances of intestinal lipid transporters were analysed by real-time RT-PCR. Cholesterol-uptake studies were performed with Caco-2 cells that were incubated with lupin conglutin γ, phytate, ezetimibe or albumin in the presence of labelled [4-14C]-cholesterol. Results Pigs fed the lupin protein isolate revealed lower cholesterol concentrations in total plasma, LDL and HDL than pigs fed casein (P < 0.05). Analysis of faeces revealed a higher output of cholesterol in pigs that were fed lupin protein isolate compared to pigs that received casein (+57.1%; P < 0.05). Relative mRNA concentrations of intestinal sterol transporters involved in cholesterol absorption (Niemann-Pick C1-like 1, scavenger receptor class B, type 1) were lower in pigs fed lupin protein isolate than in those who received casein (P < 0.05). In vitro data showed that phytate was capable of reducing the uptake of labelled [4-14C]-cholesterol into the Caco-2 cells to the same extend as ezetimibe when compared to control (−20.5% vs. −21.1%; P < 0.05). Conclusions Data reveal that the cholesterol-lowering effect of lupin protein isolate is attributable to an increased faecal output of cholesterol and a reduced intestinal uptake of cholesterol. The findings indicate phytate as a

  9. Carbohydrates Alone or Mixing With Beef or Whey Protein Promote Similar Training Outcomes in Resistance Training Males: A Double-Blind, Randomized Controlled Clinical Trial.

    PubMed

    Naclerio, Fernando; Seijo-Bujia, Marco; Larumbe-Zabala, Eneko; Earnest, Conrad P

    2017-10-01

    Beef powder is a new high-quality protein source scarcely researched relative to exercise performance. The present study examined the impact of ingesting hydrolyzed beef protein, whey protein, and carbohydrate on strength performance (1RM), body composition (via plethysmography), limb circumferences and muscular thickness (via ultrasonography), following an 8-week resistance-training program. After being randomly assigned to one of the following groups: Beef, Whey, or Carbohydrate, twenty four recreationally physically active males (n = 8 per treatment) ingested 20 g of supplement, mixed with orange juice, once a day (immediately after workout or before breakfast). Post intervention changes were examined as percent change and 95% CIs. Beef (2.0%, CI, 0.2-2.38%) and Whey (1.4%, CI, 0.2-2.6%) but not Carbohydrate (0.0%, CI, -1.2-1.2%) increased fat-free mass. All groups increased vastus medialis thickness: Beef (11.1%, CI, 6.3-15.9%), Whey (12.1%, CI, 4.0, -20.2%), Carbohydrate (6.3%, CI, 1.9-10.6%). Beef (11.2%, CI, 5.9-16.5%) and Carbohydrate (4.5%, CI, 1.6-7.4%), but not Whey (1.1%, CI, -1.7-4.0%), increased biceps brachialis thickness, while only Beef increased arm (4.8%, CI, 2.3-7.3%) and thigh (11.2%, 95%CI 0.4-5.9%) circumferences. Although the three groups significantly improved 1RM Squat (Beef 21.6%, CI 5.5-37.7%; Whey 14.6%, CI, 5.9-23.3%; Carbohydrate 19.6%, CI, 2.2-37.1%), for the 1RM bench press the improvements were significant for Beef (15.8% CI 7.0-24.7%) and Whey (5.8%, CI, 1.7-9.8%) but not for carbohydrate (11.4%, CI, -0.9-23.6%). Protein-carbohydrate supplementation supports fat-free mass accretion and lower body hypertrophy. Hydrolyzed beef promotes upper body hypertrophy along with similar performance outcomes as observed when supplementing with whey isolate or maltodextrin.

  10. Whey protein supplementation does not alter plasma branched-chained amino acid profiles but results in unique metabolomics patterns in obese women enrolled in an 8-week weight loss trial.

    PubMed

    Piccolo, Brian D; Comerford, Kevin B; Karakas, Sidika E; Knotts, Trina A; Fiehn, Oliver; Adams, Sean H

    2015-04-01

    It has been suggested that perturbations in branched-chain amino acid (BCAA) catabolism are associated with insulin resistance and contribute to elevated systemic BCAAs. Evidence in rodents suggests dietary protein rich in BCAAs can increase BCAA catabolism, but there is limited evidence in humans. We hypothesize that a diet rich in BCAAs will increase BCAA catabolism, which will manifest in a reduction of fasting plasma BCAA concentrations. The metabolome of 27 obese women with metabolic syndrome before and after weight loss was investigated to identify changes in BCAA metabolism using GC-time-of-flight mass spectrometry. Subjects were enrolled in an 8-wk weight-loss study including either a 20-g/d whey (whey group, n = 16) or gelatin (gelatin group, n = 11) protein supplement. When matched for total protein by weight, whey protein has 3 times the amount of BCAAs compared with gelatin protein. Postintervention plasma abundances of Ile (gelatin group: 637 ± 18, quantifier ion peak height ÷ 100; whey group: 744 ± 65), Leu (gelatin group: 1210 ± 33; whey group: 1380 ± 79), and Val (gelatin group: 2080 ± 59; whey group: 2510 ± 230) did not differ between treatment groups. BCAAs were significantly correlated with homeostasis model assessment of insulin resistance at baseline (r = 0.52, 0.43, and 0.49 for Leu, Ile, and Val, respectively; all, P < 0.05), but correlations were no longer significant at postintervention. Pro- and Cys-related pathways were found discriminant of whey protein vs. gelatin protein supplementation in multivariate statistical analyses. These findings suggest that BCAA metabolism is, at best, only modestly affected at a whey protein supplementation dose of 20 g/d. Furthermore, the loss of an association between postintervention BCAA and homeostasis model assessment suggests that factors associated with calorie restriction or protein intake affect how plasma BCAAs relate to insulin sensitivity. This trial was registered at clinicaltrials

  11. Whey protein hydrolysate augments tendon and muscle hypertrophy independent of resistance exercise contraction mode.

    PubMed

    Farup, J; Rahbek, S K; Vendelbo, M H; Matzon, A; Hindhede, J; Bejder, A; Ringgard, S; Vissing, K

    2014-10-01

    In a comparative study, we investigated the effects of maximal eccentric or concentric resistance training combined with whey protein or placebo on muscle and tendon hypertrophy. 22 subjects were allocated into either a high-leucine whey protein hydrolysate + carbohydrate group (WHD) or a carbohydrate group (PLA). Subjects completed 12 weeks maximal knee extensor training with one leg using eccentric contractions and the other using concentric contractions. Before and after training cross-sectional area (CSA) of m. quadriceps and patellar tendon CSA was quantified with magnetic resonance imaging and a isometric strength test was used to assess maximal voluntary contraction (MVC) and rate of force development (RFD). Quadriceps CSA increased by 7.3 ± 1.0% (P < 0.001) in WHD and 3.4 ± 0.8% (P < 0.01) in PLA, with a greater increase in WHD compared to PLA (P < 0.01). Proximal patellar tendon CSA increased by 14.9 ± 3.1% (P < 0.001) and 8.1 ± 3.2% (P = 0.054) for WHD and PLA, respectively, with a greater increase in WHD compared to PLA (P < 0.05), with no effect of contraction mode. MVC and RFD increased by 15.6 ± 3.5% (P < 0.001) and 12-63% (P < 0.05), respectively, with no group or contraction mode effects. In conclusion, high-leucine whey protein hydrolysate augments muscle and tendon hypertrophy following 12 weeks of resistance training - irrespective of contraction mode. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. The effect of calcium on the composition and physical properties of whey protein particles prepared using emulsification.

    PubMed

    Westerik, Nieke; Scholten, Elke; Corredig, Milena

    2015-06-15

    Protein microparticles were formed through emulsification of 25% (w/w) whey protein isolate (WPI) solutions containing various concentrations of calcium (0.0-400.0mM) in an oil phase stabilized by polyglycerol polyricinoleate (PGPR). The emulsions were heated (at 80°C) and the microparticles subsequently re-dispersed in an aqueous phase. Light microscopy and scanning electron microscopy (SEM) images revealed that control particles and those prepared with 7.4mM calcium were spherical and smooth. Particles prepared with 15.0mM calcium gained an irregular, cauliflower-like structure, and at concentrations larger than 30.0mM, shells formed and the particles were no longer spherical. These results describe, for the first time, the potential of modulating the properties of dense whey protein particles by using calcium, and may be used as structuring agents for the design of functional food matrices with increased protein and calcium content. Copyright © 2015. Published by Elsevier Ltd.

  13. Cryo-transmission electron tomography of native casein micelles from bovine milk.

    PubMed

    Trejo, R; Dokland, T; Jurat-Fuentes, J; Harte, F

    2011-12-01

    Caseins are the principal protein components in milk and an important ingredient in the food industry. In liquid milk, caseins are found as micelles of casein proteins and colloidal calcium nanoclusters. Casein micelles were isolated from raw skim milk by size exclusion chromatography and suspended in milk protein-free serum produced by ultrafiltration (molecular weight cut-off of 3 kDa) of raw skim milk. The micelles were imaged by cryo-electron microscopy and subjected to tomographic reconstruction methods to visualize the 3-dimensional and internal organization of native casein micelles. This provided new insights into the internal architecture of the casein micelle that had not been apparent from prior cryo-transmission electron microscopy studies. This analysis demonstrated the presence of water-filled cavities (∼20 to 30 nm in diameter), channels (diameter greater than ∼5 nm), and several hundred high-density nanoclusters (6 to 12 nm in diameter) within the interior of the micelles. No spherical protein submicellar structures were observed. Copyright © 2011 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  14. α-Lactalbumin and casein-glycomacropeptide do not affect iron absorption from formula in healthy term infants.

    PubMed

    Szymlek-Gay, Ewa A; Lönnerdal, Bo; Abrams, Steven A; Kvistgaard, Anne S; Domellöf, Magnus; Hernell, Olle

    2012-07-01

    Iron absorption from infant formula is relatively low. α-Lactalbumin and casein-glycomacropeptide have been suggested to enhance mineral absorption. We therefore assessed the effect of α-lactalbumin and casein-glycomacropeptide on iron absorption from infant formula in healthy term infants. Thirty-one infants were randomly assigned to receive 1 of 3 formulas (4 mg iron/L, 13.1 g protein/L) from 4-8 wk to 6 mo of age: commercially available whey-predominant standard infant formula (standard formula), α-lactalbumin-enriched infant formula (α-LAC), or α-lactalbumin-enriched/casein-glycomacropeptide-reduced infant formula (α-LAC/RGMP). Nine breast-fed infants served as a reference. At 5.5 mo of age, (58)Fe was administered to all infants in a meal. Blood samples were collected 14 d later for iron absorption and iron status indices. Iron deficiency was defined as depleted iron stores, iron-deficient erythropoiesis, or iron deficiency anemia. Iron absorption (mean ± SD) was 10.3 ± 7.0% from standard formula, 8.6 ± 3.8% from α-LAC, 9.2 ± 6.5% from α-LAC/RGMP, and 12.9 ± 6.5% from breast milk, with no difference between the formula groups (P = 0.79) or all groups (P = 0.44). In the formula-fed infants only, iron absorption was negatively correlated with serum ferritin (r = -0.49; P = 0.005) and was higher (P = 0.023) in iron-deficient infants (16.4 ± 12.4%) compared with those with adequate iron status (8.6 ± 4.4%). Our findings indicate that α-lactalbumin and casein-glycomacropeptide do not affect iron absorption from infant formula in infants. Low serum ferritin concentrations are correlated with increased iron absorption from infant formula.

  15. Competing processes of micellization and fibrillization in native and reduced casein proteins.

    PubMed

    Portnaya, Irina; Avni, Sharon; Kesselman, Ellina; Boyarski, Yoav; Sukenik, Shahar; Harries, Daniel; Dan, Nily; Cogan, Uri; Danino, Dganit

    2016-08-10

    Kappa-casein (κCN) and beta-casein (βCN) are disordered proteins present in mammalian milk. In vitro, βCN self-assembles into core-shell micelles. κCN self assembles into similar micelles, as well as into amyloid-like fibrils. Recent studies indicate that fibrillization can be suppressed by mixing βCN and κCN, but the mechanism of fibril inhibition has not been identified. Examining the interactions of native and reduced kappa-caseins (N-κCN and R-κCN) with βCN, we expose a competition between two different self-assembly processes: micellization and fibrillization. Quite surprisingly, however, we find significant qualitative and quantitative differences in the self-assembly between the native and reduced κCN forms. Specifically, thermodynamic analysis reveals exothermic demicellization for βCN and its mixtures with R-κCN, as opposed to endothermic demicellization of N-κCN and its mixtures with βCN at the same temperature. Furthermore, with time, R-κCN/βCN mixtures undergo phase separation into pure βCN micelles and R-κCN fibrils, while in the N-κCN/βCN mixtures fibril formation is considerably delayed and mixed micelles persist for longer periods of time. Fibrils formed in N-κCN/βCN mixtures are shorter and more flexible than those formed in R-κCN/βCN systems. Interestingly, in the N-κCN/βCN mixtures, the sugar moieties of N-κCN oligomers seem to organize on the mixed micelles surface in a manner similar to the organization of κCN in milk casein micelles.

  16. Consumption of a whey protein-enriched diet may prevent hepatic steatosis associated with weight gain in elderly women.

    PubMed

    Ooi, E M; Adams, L A; Zhu, K; Lewis, J R; Kerr, D A; Meng, X; Solah, V; Devine, A; Binns, C W; Prince, R L

    2015-04-01

    Protein consumption has been associated with cardio-metabolic benefits, including weight loss and improved insulin sensitivity, and may have potential benefits for individuals with fatty liver disease (FLD). We investigated the effect of increasing dietary protein intake from whey relative to carbohydrate on hepatic steatosis. A two-year randomized, double-blind, placebo-controlled trial of 30 g/day whey protein-supplemented beverage (protein) or an energy-matched low-protein high-carbohydrate beverage (control) for cardio-metabolic and bone health in 219 healthy elderly women, recruited from the Western Australian general population. Hepatic steatosis was quantified using computed tomographic liver-to-spleen (L/S) ratio. FLD was defined as liver-to-spleen difference <10 Hounsfield units. At baseline, FLD prevalence was 11.4%. Control and protein groups were similar in body mass index (BMI), insulin resistance, L/S ratio and FLD prevalence at baseline. At two-years, dietary protein increased by 20 g in the protein, but not the control, group. Total energy intake and physical activity remained similar between groups. At two-years, BMI and FLD prevalence increased in both groups, with no between group differences. L/S ratio increased in control, but not protein, group at two-years, with no between group differences. In a within group comparison, change in BMI correlated with changes in L/S ratio in control (r = 0.37, P = 0.0007), but not with protein group (r = 0.04, P = 0.73). Increasing dietary protein intake from whey relative to carbohydrate does not reduce weight, hepatic steatosis or the prevalence of FLD in elderly women. However, it may prevent worsening of hepatic steatosis associated with weight gain. Australian New Zealand Clinical Trials Registry (Registration no. ACTRN012607000163404). Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Commercial Milk Enzyme-Linked Immunosorbent Assay (ELISA) Kit Reactivities to Purified Milk Proteins and Milk-Derived Ingredients.

    PubMed

    Ivens, Katherine O; Baumert, Joseph L; Taylor, Steve L

    2016-07-01

    Numerous commercial enzyme-linked immunosorbent assay (ELISA) kits exist to quantitatively detect bovine milk residues in foods. Milk contains many proteins that can serve as ELISA targets including caseins (α-, β-, or κ-casein) and whey proteins (α-lactalbumin or β-lactoglobulin). Nine commercially-available milk ELISA kits were selected to compare the specificity and sensitivity with 5 purified milk proteins and 3 milk-derived ingredients. All of the milk kits were capable of quantifying nonfat dry milk (NFDM), but did not necessarily detect all individual protein fractions. While milk-derived ingredients were detected by the kits, their quantitation may be inaccurate due to the use of different calibrators, reference materials, and antibodies in kit development. The establishment of a standard reference material for the calibration of milk ELISA kits is increasingly important. The appropriate selection and understanding of milk ELISA kits for food analysis is critical to accurate quantification of milk residues and informed risk management decisions. © 2016 Institute of Food Technologists®

  18. [Non-enzymatic glycosylation of dietary protein in vitro].

    PubMed

    Bednykh, B S; Evdokimov, I A; Sokolov, A I

    2015-01-01

    Non-enzymatic glycosylation of proteins, based on discovered by Mayarn reaction of carbohydrate aldehyde group with a free amino group of a protein molecule, is well known to experts in biochemistry of food industry. Generated brown solid in some cases give the product marketable qualities--crackling bread--in others conversely, worsen the product. The biological effects of far-advanced products of non-enzymatic protein glycosylation reaction have not been studied enough, although it was reported previously that they are not split by digestive enzymes and couldn't be absorbed by animals. The objective of this work was to compare the depth of glycosylation of different food proteins of animal and vegetable origin. The objects of the study were proteins of animal (casein, lactoglobulin, albumin) and vegetable (soy isolate, proteins of rice flour, buckwheat, oatmeal) origin, glucose and fructose were selected as glycosylation agents, exposure 15 days at 37 degrees C. Lactoglobulin was glycosylated to a lesser extent among the proteins of animal origin while protein of oatmeal was glycosylated in the least degree among vegetable proteins. Conversely, such proteins as casein and soya isolate protein bound rather large amounts of carbohydrates. Fructose binding with protein was generally higher than the binding of glucose. The only exception was a protein of oatmeal. When of glucose and fructose simultaneously presented in the incubation medium, glucose binding usually increased while binding of fructose, in contrast, reduced. According to the total amount of carbohydrate (mcg), which is able to attach a protein (mg) the studied food proteins located in the following order: albumin (38) > soy protein isolate (23) > casein (15,) > whey protein rice flour protein (6) > protein from buckwheat flour (3) > globulin (2) > protein of oatmeal (0.3). The results obtained are to be used to select the optimal combination of proteins and carbohydrates, in which the glycosylation

  19. Casein kinase 1 regulates sterol regulatory element-binding protein (SREBP) to control sterol homeostasis.

    PubMed

    Brookheart, Rita T; Lee, Chih-Yung S; Espenshade, Peter J

    2014-01-31

    Sterol homeostasis is tightly controlled by the sterol regulatory element-binding protein (SREBP) transcription factor that is highly conserved from fungi to mammals. In fission yeast, SREBP functions in an oxygen-sensing pathway to promote adaptation to decreased oxygen supply that limits oxygen-dependent sterol synthesis. Low oxygen stimulates proteolytic cleavage of the SREBP homolog Sre1, generating the active transcription factor Sre1N that drives expression of sterol biosynthetic enzymes. In addition, low oxygen increases the stability and DNA binding activity of Sre1N. To identify additional signals controlling Sre1 activity, we conducted a genetic overexpression screen. Here, we describe our isolation and characterization of the casein kinase 1 family member Hhp2 as a novel regulator of Sre1N. Deletion of Hhp2 increases Sre1N protein stability and ergosterol levels in the presence of oxygen. Hhp2-dependent Sre1N degradation by the proteasome requires Hhp2 kinase activity, and Hhp2 binds and phosphorylates Sre1N at specific residues. Our results describe a role for casein kinase 1 as a direct regulator of sterol homeostasis. Given the role of mammalian Hhp2 homologs, casein kinase 1δ and 1ε, in regulation of the circadian clock, these findings may provide a mechanism for coordinating circadian rhythm and lipid metabolism.

  20. Physiological and Physical Effects of Different Milk Protein Supplements in Elite Soccer Players

    PubMed Central

    Lollo, Pablo Christiano Barboza; Amaya-Farfan, Jaime; de Carvalho-Silva, Luciano Bruno

    2011-01-01

    Brazilian soccer championships involve a large number of teams and are known to cause stress and loss of muscle mass besides other negative physical consequences. This study was designed to compare the effects produced by three types of protein supplements on body composition, biochemical parameters and performance of a top Brazilian professional soccer team during an actual tournament. Twenty-four athletes assessed as having a normal nutrient intake were divided into three groups according to supplementation. Immediately after each daily training, the athletes received 1 g × kg−1 of body weight × day−1 of either whey protein (WP), hydrolyzed whey protein (HWP) or casein (CAS) for eight weeks. Before and after the experimental period, anthropometric characteristics, physical performance by the yo-yo and 3000m tests, and several biochemical variables in blood (uric acid, total cholesterol, HDL-cholesterol, creatinine, glucose) were measured. While no improvement in physical performance was observed with regard to the applied treatments, casein supplementation resulted in muscle mass increase (p<0.039), while WP and HWP favoured the maintenance of the initial muscle mass. Moreover, the eight-week intervention was found to cause no abnormalities in biochemical and anthropometric variables monitored, but instead, the intervention showed to be positive in comparison to the adverse anthropometric changes, when no supplementation was made. It was concluded that supplementation immediately after training sessions with any of the three sources of protein during the competitive period is beneficial and safe, as well as capable of sustaining or even increasing muscle mass. PMID:23486231

  1. Viability and growth promotion of starter and probiotic bacteria in yogurt supplemented with whey protein hydrolysate during refrigerated storage.

    PubMed

    Dąbrowska, Anna; Babij, Konrad; Szołtysik, Marek; Chrzanowska, Józefa

    2017-11-22

    The effect of whey protein hydrolysate (WPH) addition on growth of standard yoghurt cultures and Bifidobacterium adolescentis during co-fermentation and its viability during storage at 4ºC in yoghurts has been evaluated. WPH was obtained with the use of serine protease from Y. lipolytica yeast. Stirred probiotic yoghurts were prepared by using whole milk standardized to 16% of dry matter with the addition of either whey protein concentrate, skim milk powder (SMP), WPH-SMP (ratio 1:1), WPH. The hydrolysate increased the yoghurt culture counts at the initial stage of fermentation and significantly inhibited the decrease in population viability throughout the storage at 4ºC in comparison to the control. The post-fermentation acidification was also retarded by the addition of WPH. The hydrolysate did not increase the Bifidobacterium adolescentis counts at the initial stage. However, the WPH significantly improved its viability. After 21 days of storage, in the yogurts supplemented with WPH, the population of these bacteria oscillated around 3.04 log10 CFU/g, while in samples where SMP or whey protein concentrate was used, the bacteria were no longer detected.

  2. A Specific Mixture of Fructo-Oligosaccharides and Bifidobacterium breve M-16V Facilitates Partial Non-Responsiveness to Whey Protein in Mice Orally Exposed to β-Lactoglobulin-Derived Peptides

    PubMed Central

    Kostadinova, Atanaska I.; Meulenbroek, Laura A. P. M.; van Esch, Betty C. A. M.; Hofman, Gerard A.; Garssen, Johan; Willemsen, Linette E. M.; Knippels, Léon M. J.

    2017-01-01

    Oral tolerance is a promising approach for allergy prevention in early life, but it strongly depends on allergen exposure and proper immune environment. Small tolerance-inducing peptides and dietary immunomodulatory components may comprise an attractive method for allergy prevention in at-risk infants. This study aimed to investigate whether early oral exposure to β-lactoglobulin-derived peptides (BLG-peptides) and a specific synbiotic mixture of short- and long- chain fructo-oligosaccharides (scFOS/lcFOS, FF) and Bifidobacterium breve (Bb) M-16V (FF/Bb) can prevent cow’s milk allergy (CMA). Three-week-old female C3H/HeOuJ mice were orally exposed to phosphate buffered saline (PBS), whey protein, or a mixture of four synthetic BLG-peptides combined with a FF/Bb-enriched diet prior to intragastric sensitization with whey protein and cholera toxin. To assess the acute allergic skin response and clinical signs of allergy, mice were challenged intradermally with whole whey protein. Serum immunoglobulins were analyzed after a whey protein oral challenge. Cytokine production by allergen-reactivated splenocytes was measured and changes in T cells subsets in the spleen, mesenteric lymph nodes, and intestinal lamina propria were investigated. Pre-exposing mice to a low dosage of BLG-peptides and a FF/Bb-enriched diet prior to whey protein sensitization resulted in a significant reduction of the acute allergic skin response to whey compared to PBS-pretreated mice fed a control diet. Serum immunoglobulins were not affected, but anaphylactic symptom scores remained low and splenocytes were non-responsive in whey-induced cytokine production. In addition, preservation of the Th1/Th2 balance in the small intestine lamina propria was a hallmark of the mechanism underlying the protective effect of the BLG-peptides–FF/Bb intervention. Prior exposure to BLG-peptides and a FF/Bb-enriched diet is a promising approach for protecting the intestinal Th1/Th2 balance and reducing the

  3. Hypoallergenic and Physicochemical Properties of the A2 β-Casein Fractionof Goat Milk.

    PubMed

    Jung, Tae-Hwan; Hwang, Hyo-Jeong; Yun, Sung-Seob; Lee, Won-Jae; Kim, Jin-Wook; Ahn, Ji-Yun; Jeon, Woo-Min; Han, Kyoung-Sik

    2017-01-01

    Goat milk has a protein composition similar to that of breast milk and contains abundant nutrients, but its use in functional foods is rather limited in comparison to milk from other sources. The aim of this study was to prepare a goat A2 β-casein fraction with improved digestibility and hypoallergenic properties. We investigated the optimal conditions for the separation of A2 β-casein fraction from goat milk by pH adjustment to pH 4.4 and treating the casein suspension with calcium chloride (0.05 M for 1 h at 25°C). Selective reduction of β-lactoglobulin and α s -casein was confirmed using sodium dodecyl sulphate-polyacrylamide gel electrophoresis and reverse-phase high-performance liquid chromatography. The hypoallergenic property of A2 β-casein fraction was examined by measuring the release of histamine and tumor necrosis factor alpha from HMC-1 human mast cells exposed to different proteins, including A2 β-casein fraction. There was no significant difference in levels of both indicators between A2 β-casein treatment and the control (no protein treatment). The A2 β-casein fraction is abundant in essential amino acids, especially, branched-chain amino acids (leucine, valine, and isoleucine). The physicochemical properties of A2 β-casein fraction, including protein solubility and viscosity, are similar to those of bovine whole casein which is widely used as a protein source in various foods. Therefore, the goat A2 β-casein fraction may be useful as a food material with good digestibility and hypoallergenic properties for infants, the elderly, and people with metabolic disorders.

  4. Physicochemical characterization of native and modified sodium caseinate- Vitamin A complexes.

    PubMed

    Gupta, Chitra; Arora, Sumit; Syama, M A; Sharma, Apurva

    2018-04-01

    Native and modified sodium caseinate- Vitamin A complexes {Sodium caseinate- Vit A complex by stirring (NaCas-VA ST), succinylated sodium caseinate- Vit A complex by stirring (SNaCas-VA ST), reassembled sodium caseinate- Vit A complex (RNaCas-VA) and reassembled succinylated sodium caseinate- Vit A complex (RSNaCas-VA)} were prepared and characterized for their physicochemical characteristics e.g. particle size, zeta potential, turbidity analysis and tryptophan intensities which confirmed structural modification of both native (NaCas-VA ST) and modified (SNaCas-VA ST, RNaCas-VA and RSNaCas- VA) proteins upon complex formation with vitamin A. Binding of vitamin A to milk protein reduced the turbidity caused by vitamin A, however, the particle size and zeta potential of milk protein increased after complexation. Microstructure details of NaCas (spray dried) showed uniform spherical structure, however, other milk proteins and milk protein- Vit A complexes (freeze dried) showed broken glass and flaky structures. Tiny particles were observed on the surface of reassembled protein and reassembled protein- Vit A complexes. Binding of vitamin A to milk protein did not have an influence on the electrophoretic mobility and elution profile (RP-HPLC). Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Adsorption of hydrophobin/β-casein mixtures at the solid-liquid interface.

    PubMed

    Tucker, I M; Petkov, J T; Penfold, J; Thomas, R K; Cox, A R; Hedges, N

    2016-09-15

    The adsorption behaviour of mixtures of the proteins β-casein and hydrophobin at the hydrophilic solid-liquid surface have been studied by neutron reflectivity. The results of measurements from sequential adsorption and co-adsorption from solution are contrasted. The adsorption properties of protein mixtures are important for a wide range of applications. Because of competing factors the adsorption behaviour of protein mixtures at interfaces is often difficult to predict. This is particularly true for mixtures containing hydrophobin as hydrophobin possesses some unusual surface properties. At β-casein concentrations ⩾0.1wt% β-casein largely displaces a pre-adsorbed layer of hydrophobin at the interface, similar to that observed in hydrophobin-surfactant mixtures. In the composition and concentration range studied here for the co-adsorption of β-casein-hydrophobin mixtures the adsorption is dominated by the β-casein adsorption. The results provide an important insight into how the competitive adsorption in protein mixtures of hydrophobin and β-casein can impact upon the modification of solid surface properties and the potential for a wide range of colloid stabilisation applications. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Effects of Whey Protein Alone or as Part of a Multi-ingredient Formulation on Strength, Fat-Free Mass, or Lean Body Mass in Resistance-Trained Individuals: A Meta-analysis.

    PubMed

    Naclerio, Fernando; Larumbe-Zabala, Eneko

    2016-01-01

    Even though the positive effects of whey protein-containing supplements for optimizing the anabolic responses and adaptations process in resistance-trained individuals have been supported by several investigations, their use continues to be controversial. Additionally, the administration of different multi-ingredient formulations where whey proteins are combined with carbohydrates, other protein sources, creatine, and amino acids or derivatives, has been extensively proposed as an effective strategy to maximize strength and muscle mass gains in athletes. We aimed to systematically summarize and quantify whether whey protein-containing supplements, administered alone or as a part of a multi-ingredient, could improve the effects of resistance training on fat-free mass or lean body mass, and strength in resistance-trained individuals when compared with other iso-energetic supplements containing carbohydrates or other sources of proteins. A structured literature search was conducted on PubMed, Science Direct, Web of Science, Cochrane Libraries, US National Institutes of Health clinicaltrials.gov, SPORTDiscus, and Google Scholar databases. Main inclusion criteria comprised randomized controlled trial study design, adults (aged 18 years and over), resistance-trained individuals, interventions (a resistance training program for a period of 6 weeks or longer, combined with whey protein supplementation administered alone or as a part of a multi-ingredient), and a calorie equivalent contrast supplement from carbohydrates or other non-whey protein sources. Continuous data on fat-free mass and lean body mass, and maximal strength were pooled using a random-effects model. Data from nine randomized controlled trials were included, involving 11 treatments and 192 participants. Overall, with respect to the ingestion of contrast supplements, whey protein supplementation, administered alone or as part of a multi-ingredient, in combination with resistance training, was associated

  7. Use of calcium caseinate in association with lecithin for masking the bitterness of acetaminophen--comparative study with sodium caseinate.

    PubMed

    Hoang Thi, Thanh Huong; Lemdani, Mohamed; Flament, Marie-Pierre

    2013-11-18

    Owing to a variety of structural and functional properties, milk proteins are steadily studied for food and pharmaceutical applications. In the present study, calcium caseinate in association with lecithin was firstly investigated in order to encapsulate the acetaminophen through spray-drying for taste-masking purpose for pediatric medicines. A 2(4)-full factorial design revealed that the spray flow, the calcium caseinate amount and the lecithin amount had significant effects on the release of drug during the first 2 min. Indeed, increasing the spray flow and/or the calcium caseinate amount led to increase the released amount, whereas increasing the lecithin amount decreased the released amount. The "interaction" between the calcium caseinate amount and the lecithin amount was also shown to be statistically significant. The second objective was to compare the efficiency of two caseinate-based formulations, i.e. sodium caseinate and calcium caseinate, on the taste-masking effect. The characteristics of spray-dried powders determined by SEM and DSC were shown to depend on the caseinate/lecithin proportion rather than the type of caseinate. Interestingly, calcium caseinate-based formulations were found to lower the released amount of drug during the early time to a higher extent than sodium caseinate-based formulations, which indicates better taste-masking efficiency. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Monte Carlo simulations of flexible polyanions complexing with whey proteins at their isoelectric point

    NASA Astrophysics Data System (ADS)

    de Vries, R.

    2004-02-01

    Electrostatic complexation of flexible polyanions with the whey proteins α-lactalbumin and β-lactoglobulin is studied using Monte Carlo simulations. The proteins are considered at their respective isoelectric points. Discrete charges on the model polyelectrolytes and proteins interact through Debye-Hückel potentials. Protein excluded volume is taken into account through a coarse-grained model of the protein shape. Consistent with experimental results, it is found that α-lactalbumin complexes much more strongly than β-lactoglobulin. For α-lactalbumin, strong complexation is due to localized binding to a single large positive "charge patch," whereas for β-lactoglobulin, weak complexation is due to diffuse binding to multiple smaller charge patches.

  9. Comparison between pre-exercise casein peptide and intact casein supplementation on glucose tolerance in mice fed a high-fat diet.

    PubMed

    Matsunaga, Yutaka; Tamura, Yuki; Sakata, Yasuyuki; Nonaka, Yudai; Saito, Noriko; Nakamura, Hirohiko; Shimizu, Takashi; Takeda, Yasuhiro; Terada, Shin; Hatta, Hideo

    2018-04-01

    We hypothesized that along with exercise, casein peptide supplementation would have a higher impact on improving glucose tolerance than intact casein. Male 6-week-old ICR mice were provided a high-fat diet to induce obesity and glucose intolerance. The mice were randomly divided into 4 treatment groups: control (Con), endurance training (Tr), endurance training with intact casein supplementation (Cas+Tr), and endurance training with casein peptide supplementation (CP+Tr). The mice in each group were orally administrated water, intact casein, or casein peptide (1.0 mg/g body weight, every day), and then subjected to endurance training (15-25 m/min, 60 min, 5 times/week for 4 weeks) on a motor-driven treadmill 30 min after ingestion. Our results revealed that total intra-abdominal fat was significantly lower in CP+Tr than in Con (p < 0.05). Following an oral glucose tolerance test, the blood glucose area under the curve (AUC) was found to be significantly smaller for CP+Tr than for Con (p < 0.05). Moreover, in the soleus muscle, glucose transporter 4 (GLUT4) protein levels were significantly higher in CP+Tr than in Con (p < 0.01). However, intra-abdominal fat, blood glucose AUC, and GLUT4 protein content in the soleus muscle did not alter in Tr and Cas+Tr when compared with Con. These observations suggest that pre-exercise casein peptide supplementation has a higher effect on improving glucose tolerance than intact casein does in mice fed a high-fat diet.

  10. Individualized protein fortification of human milk for preterm infants: comparison of ultrafiltrated human milk protein and a bovine whey fortifier.

    PubMed

    Polberger, S; Räihä, N C; Juvonen, P; Moro, G E; Minoli, I; Warm, A

    1999-09-01

    To improve the nutritional management of pre-term infants, a new individualized human milk fortification system based on presupplementation milk protein analyses was evaluated. In an open, prospective, randomized multicenter study, 32 healthy preterm infants (birth weights, 920-1750 g) were enrolled at a mean of 21 days of age (range, 9-36 days) when tolerating exclusive enteral feedings of 150 ml/kg per day. All infants were fed human milk and were randomly allocated to fortification with a bovine whey protein fortifier (n = 16) or ultrafiltrated human milk protein (n = 16). All human milk was analyzed for protein content before fortification with the goal of a daily protein intake of 3.5 g/kg. During the study period (mean, 24 days) daily aliquots of the fortified milk were obtained for subsequent analyses of the protein content. Both fortifiers were well tolerated, and growth gain in weight, length, and head circumference, as well as final preprandial concentrations of serum urea, transthyretin, transferrin, and albumin were similar in both groups. The ultimate estimated protein intake was equivalent in both groups (mean 3.1+/-0.1 g/kg per day). Serum amino acid profiles were similar in both feeding groups, except for threonine (significantly higher in the bovine fortifier group) and proline and ornithine (significantly higher in the human milk protein group). Protein analyses of the milk before individual fortification provides a new tool for an individualized feeding system of the preterm infant. The bovine whey protein fortifier attained biochemical and growth results similar to those found in infants fed human milk protein exclusively with the corresponding protein intakes.

  11. Methionine sulfoxide profiling of milk proteins to assess the influence of lipids on protein oxidation in milk.

    PubMed

    Wüst, Johannes; Pischetsrieder, Monika

    2016-06-15

    Thermal treatment of milk and milk products leads to protein oxidation, mainly the formation of methionine sulfoxide. Reactive oxygen species, responsible for the oxidation, can be generated by Maillard reaction, autoxidation of sugars, or lipid peroxidation. The present study investigated the influence of milk fat on methionine oxidation in milk. For this purpose, quantitative methionine sulfoxide profiling of all ten methionine residues of β-lactoglobulin, α-lactalbumin, and αs1-casein was carried out by ultrahigh-performance liquid chromatography-electrospray ionization tandem mass spectrometry with scheduled multiple reaction monitoring (UHPLC-ESI-MS/MS-sMRM). Analysis of defatted and regular raw milk samples after heating for up to 8 min at 120 °C and analysis of ultrahigh-temperature milk samples with 0.1%, 1.5%, and 3.5% fat revealed that methionine oxidation of the five residues of the whey proteins and of residues M 123, M 135, and M 196 of αs1-casein was not affected or even suppressed in the presence of milk fat. Only the oxidation of residues M 54 and M 60 of αs1-casein was promoted by lipids. In evaporated milk samples, formation of methionine sulfoxide was hardly influenced by the fat content of the samples. Thus, it can be concluded that lipid oxidation products are not the major cause of methionine oxidation in milk.

  12. Immediate and residual effects of heat stress and restricted intake on milk protein and casein composition and energy metabolism.

    PubMed

    Cowley, F C; Barber, D G; Houlihan, A V; Poppi, D P

    2015-04-01

    The effects of heat stress on dairy production can be separated into 2 distinct causes: those effects that are mediated by the reduced voluntary feed intake associated with heat stress, and the direct physiological and metabolic effects of heat stress. To distinguish between these, and identify their effect on milk protein and casein concentration, mid-lactation Holstein-Friesian cows (n = 24) were housed in temperature-controlled chambers and either subjected to heat stress [HS; temperature-humidity index (THI) ~78] or kept in a THI<70 environment and pair-fed with heat-stressed cows (TN-R) for 7 d. A control group of cows was kept in a THI<70 environment with ad libitum feeding (TN-AL). A subsequent recovery period (7 d), with THI<70 and ad libitum feeding followed. Intake accounted for only part of the effects of heat stress. Heat stress reduced the milk protein concentration, casein number, and casein concentration and increased the urea concentration in milk beyond the effects of restriction of intake. Under HS, the proportion in total casein of αS1-casein increased and the proportion of αS2-casein decreased. Because no effect of HS on milk fat or lactose concentration was found, these effects appeared to be the result of specific downregulation of mammary protein synthesis, and not a general reduction in mammary activity. No residual effects were found of HS or TN-R on milk production or composition after THI<70 and ad libitum intake were restored. Heat-stressed cows had elevated blood concentrations of urea and Ca, compared with TN-R and TN-AL. Cows in TN-R had higher serum nonesterified fatty acid concentrations than cows in HS. It was proposed that HS and TN-R cows may mobilize different tissues as endogenous sources of energy. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  13. Effect of technological factors on water activity of extruded corn product with an addition of whey proteins.

    PubMed

    Makowska, Agnieszka; Cais-Sokolińska, Dorota; Lasik, Agata

    2014-01-01

    The value of water activity in extruded products constitutes a significant indicator of their quality and stability. The state, in which water is found in extruded products, is an indicator of the conducted extrusion process and the used raw material. The aim of the study was to assess water activity in extruded products made from a mixture of com grits with 12.5 and 15.0% moisture contents and different level of addition of whey proteins. It was shown that the degree of mixture moisture content did not have an effect on the value of aw in produced puffs. The greatest difference was recorded when introducing 3% proteins in comparison to aw of puffs produced solely from corn grits. Δaw = 0.023. The greater the content of whey proteins, the lower the aw value. A 3-month storage at a temperature of 18 ±0.5°C influenced aw of snacks produced from a mixture with a higher moisture content.

  14. Interactions in micellar solutions of β-casein

    NASA Astrophysics Data System (ADS)

    Leclerc, E.; Calmettes, P.

    1997-02-01

    β-casein is a protein which forms micelles in aqueous solvents. The magnitude and the range of the weight-average interactions between the diverse solute particles are infrared from small-angle neutron scattering measurements made on various β-casein solutions. Well above the critical micelle concentration (CMC), these interactions are repulsive. They weaken with decreasing protein concentration, and finally become strongly attractive near the CMC. Although indispensable for micelle formation this fact has never been reported so far.

  15. Milk Intolerance, Beta-Casein and Lactose.

    PubMed

    Pal, Sebely; Woodford, Keith; Kukuljan, Sonja; Ho, Suleen

    2015-08-31

    True lactose intolerance (symptoms stemming from lactose malabsorption) is less common than is widely perceived, and should be viewed as just one potential cause of cows' milk intolerance. There is increasing evidence that A1 beta-casein, a protein produced by a major proportion of European-origin cattle but not purebred Asian or African cattle, is also associated with cows' milk intolerance. In humans, digestion of bovine A1 beta-casein, but not the alternative A2 beta-casein, releases beta-casomorphin-7, which activates μ-opioid receptors expressed throughout the gastrointestinal tract and body. Studies in rodents show that milk containing A1 beta-casein significantly increases gastrointestinal transit time, production of dipeptidyl peptidase-4 and the inflammatory marker myeloperoxidase compared with milk containing A2 beta-casein. Co-administration of the opioid receptor antagonist naloxone blocks the myeloperoxidase and gastrointestinal motility effects, indicating opioid signaling pathway involvement. In humans, a double-blind, randomized cross-over study showed that participants consuming A1 beta-casein type cows' milk experienced statistically significantly higher Bristol stool values compared with those receiving A2 beta-casein milk. Additionally, a statistically significant positive association between abdominal pain and stool consistency was observed when participants consumed the A1 but not the A2 diet. Further studies of the role of A1 beta-casein in milk intolerance are needed.

  16. Milk Intolerance, Beta-Casein and Lactose

    PubMed Central

    Pal, Sebely; Woodford, Keith; Kukuljan, Sonja; Ho, Suleen

    2015-01-01

    True lactose intolerance (symptoms stemming from lactose malabsorption) is less common than is widely perceived, and should be viewed as just one potential cause of cows’ milk intolerance. There is increasing evidence that A1 beta-casein, a protein produced by a major proportion of European-origin cattle but not purebred Asian or African cattle, is also associated with cows’ milk intolerance. In humans, digestion of bovine A1 beta-casein, but not the alternative A2 beta-casein, releases beta-casomorphin-7, which activates μ-opioid receptors expressed throughout the gastrointestinal tract and body. Studies in rodents show that milk containing A1 beta-casein significantly increases gastrointestinal transit time, production of dipeptidyl peptidase-4 and the inflammatory marker myeloperoxidase compared with milk containing A2 beta-casein. Co-administration of the opioid receptor antagonist naloxone blocks the myeloperoxidase and gastrointestinal motility effects, indicating opioid signaling pathway involvement. In humans, a double-blind, randomized cross-over study showed that participants consuming A1 beta-casein type cows’ milk experienced statistically significantly higher Bristol stool values compared with those receiving A2 beta-casein milk. Additionally, a statistically significant positive association between abdominal pain and stool consistency was observed when participants consumed the A1 but not the A2 diet. Further studies of the role of A1 beta-casein in milk intolerance are needed. PMID:26404362

  17. Disruption and reassociation of casein micelles under high pressure: influence of milk serum composition and casein micelle concentration.

    PubMed

    Huppertz, Thom; de Kruif, Cornelis G

    2006-08-09

    In this study, factors influencing the disruption and aggregation of casein micelles during high-pressure (HP) treatment at 250 MPa for 40 min were studied in situ in serum protein-free casein micelle suspensions. In control milk, light transmission increased with treatment time for approximately 15 min, after which a progressive partial reversal of the HP-induced increase in light transmission occurred, indicating initial HP-induced disruption of casein micelles, followed by reformation of casein aggregates from micellar fragments. The extent of HP-induced micellar disruption was negatively correlated with the concentration of casein micelles, milk pH, and levels of added ethanol, calcium chloride, or sodium chloride and positively correlated with the level of added sodium phosphate. The reformation of casein aggregates during prolonged HP treatment did not occur when HP-induced disruption of casein micelles was limited (<60%) or very extensive (>95%) and was promoted by a low initial milk pH or added sodium phosphate, sodium chloride, or ethanol. On the basis of these findings, a mechanism for HP-induced disruption of casein micelles and subsequent aggregation of micellar fragments is proposed, in which the main element appears to be HP-induced solubilization of micellar calcium phosphate.

  18. Bitterness in sodium caseinate hydrolysates: role of enzyme preparation and degree of hydrolysis.

    PubMed

    O'Sullivan, Dara; Nongonierma, Alice B; FitzGerald, Richard J

    2017-10-01

    Enzymatic hydrolysis of sodium caseinate (NaCas) may lead to the development of bitterness. Careful selection of hydrolysis conditions (i.e. enzyme preparation and duration) yielding different degrees of hydrolysis (DH) may aid in the development of low bitterness. Eighteen NaCas hydrolysates were generated with four enzyme preparations (Alcalase 2.4L, Prolyve 1000, FlavorPro Whey and pepsin) to different DH values. Hydrolysate bitterness score, assessed using a trained panel (ten assessors), generally increased at higher DH values for Alcalase, Prolyve and pepsin hydrolysates. However, all FlavorPro Whey hydrolysates (DH 0.38-10.62%) displayed low bitterness score values (<26.0%) comparable to that of intact NaCas (13.8 ± 2.0%, P > 0.05). Enzyme preparation and DH affect the bitterness of NaCas hydrolysates. The results are relevant for the generation of NaCas hydrolysates with reduced bitterness. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  19. Interaction of sucralose with whey protein: Experimental and molecular modeling studies

    NASA Astrophysics Data System (ADS)

    Zhang, Hongmei; Sun, Shixin; Wang, Yanqing; Cao, Jian

    2017-12-01

    The objective of this research was to study the interactions of sucralose with whey protein isolate (WPI) by using the three-dimensional fluorescence spectroscopy, circular dichroism spectroscopy and molecular modeling. The results showed that the peptide strands structure of WPI had been changed by sucralose. Sucralose binding induced the secondary structural changes and increased content of aperiodic structure of WPI. Sucralose decreased the thermal stability of WPI and acted as a structure destabilizer during the thermal unfolding process of protein. In addition, the existence of sucralose decreased the reversibility of the unfolding of WPI. Nonetheless, sucralose-WPI complex was less stable than protein alone. The molecular modeling result showed that van der Waals and hydrogen bonding interactions contribute to the complexation free binding energy. There are more than one possible binding sites of WPI with sucralose by surface binding mode.

  20. Effect of temperature and bleaching agent on bleaching of liquid Cheddar whey.

    PubMed

    Listiyani, M A D; Campbell, R E; Miracle, R E; Barbano, D M; Gerard, P D; Drake, M A

    2012-01-01

    The use of whey protein as an ingredient in foods and beverages is increasing, and thus demand for colorless and mild-tasting whey protein is rising. Bleaching is commonly applied to fluid colored cheese whey to decrease color, and different temperatures and bleach concentrations are used. The objectives of this study were to compare the effects of hot and cold bleaching, the point of bleaching (before or after fat separation), and bleaching agent on bleaching efficacy and volatile components of liquid colored and uncolored Cheddar whey. First, Cheddar whey was manufactured, pasteurized, fat-separated, and subjected to one of a number of hot (68°C) or cold (4°C) bleaching applications [hydrogen peroxide (HP) 50 to 500 mg/kg; benzoyl peroxide (BP) 25 to 100 mg/kg] followed by measurement of residual norbixin and color by reflectance. Bleaching agent concentrations were then selected for the second trial. Liquid colored Cheddar whey was manufactured in triplicate and pasteurized. Part of the whey was collected (no separation, NSE) and the rest was subjected to fat separation (FSE). The NSE and FSE wheys were then subdivided and bleaching treatments (BP 50 or 100 mg/kg and HP 250 or 500 mg/kg) at 68°C for 30 min or 4°C for 16 h were applied. Control NSE and FSE with no added bleach were also subjected to each time-temperature combination. Volatile compounds from wheys were evaluated by gas chromatography-mass spectrometry, and norbixin (annatto) was extracted and quantified to compare bleaching efficacy. Proximate analysis, including total solids, protein, and fat contents, was also conducted. Liquid whey subjected to hot bleaching at both concentrations of HP or at 100mg/kg BP had greater lipid oxidation products (aldehydes) compared with unbleached wheys, 50mg/kg BP hot-bleached whey, or cold-bleached wheys. No effect was detected between NSE and FSE liquid Cheddar whey on the relative abundance of volatile lipid oxidation products. Wheys bleached with BP had

  1. The study of zinc ions binding to casein.

    PubMed

    Pomastowski, P; Sprynskyy, M; Buszewski, B

    2014-08-01

    The presented research was focused on physicochemical study of casein properties and the kinetics of zinc ions binding to the protein. Moreover, a fast and simple method of casein extraction from cow's milk has been proposed. Casein isoforms, zeta potential (ζ) and particle size of the separated caseins were characterized with the use of capillary electrophoresis, zeta potential analysis and field flow fractionation (FFF) technique, respectively. The kinetics of the metal-binding process was investigated in batch adsorption experiments. Intraparticle diffusion model, first-order and zero-order kinetic models were applied to test the kinetic experimental data. Analysis of changes in infrared bands registered for casein before and after zinc binding was also performed. The obtained results showed that the kinetic process of zinc binding to casein is not homogeneous but is expressed with an initial rapid stage with about 70% of zinc ions immobilized by casein and with a much slower second step. Maximum amount of bound zinc in the experimental conditions was 30.04mgZn/g casein. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Binding of vitamin A by casein micelles in commercial skim milk.

    PubMed

    Mohan, M S; Jurat-Fuentes, J L; Harte, F

    2013-02-01

    Recent studies have shown that reassembled micelles formed by caseinates and purified casein fractions (α(s)- and β-casein) bind to hydrophobic compounds, including curcumin, docosahexaenoic acid, and vitamin D. However, limited research has been done on the binding of hydrophobic compounds by unmodified casein micelles in skim milk. In the present study, we investigated the ability of casein micelles in commercial skim milk to associate with vitamin A (retinyl palmitate), a fat-soluble vitamin commonly used to fortify milk. Milk protein fractions from different commercially available skim milk samples subjected to different processing treatments, including pasteurized, ultrapasteurized, organic pasteurized, and organic ultrapasteurized milks, were separated by fast protein liquid chromatography. The fractions within each peak were combined and freeze-dried. Sodium dodecyl sulfate-PAGE with silver staining was used to identify the proteins present in each of the fractions. The skim milk samples and fractions were extracted for retinyl palmitate and quantified against a standard using normal phase-HPLC. Retinyl palmitate was found to associate with the fraction of skim milk containing caseins, whereas the other proteins (BSA, β-lactoglobulin, α-lactalbumin) did not show any binding. The retinyl palmitate content in the various samples ranged from 1.59 to 2.48 µg of retinyl palmitate per mL of milk. The casein fractions contained between 14 and 40% of total retinyl palmitate in the various milks tested. The variation in the retention of vitamin A by caseins was probably explained by differences in the processing of different milk samples, including thermal treatment, the form of vitamin A emulsion used for fortification, and the point of fortification during processing. Unmodified casein micelles have a strong intrinsic affinity toward the binding of vitamin A used to fortify commercially available skim milks. Copyright © 2013 American Dairy Science Association

  3. Binding of vitamin A by casein micelles in commercial skim milk

    PubMed Central

    Mohan, M. S.; Jurat-Fuentes, J. L.; Harte, F.

    2015-01-01

    Recent studies have shown that reassembled micelles formed by caseinates and purified casein fractions (αs- and β-casein) bind to hydrophobic compounds, including curcumin, docosahexaenoic acid, and vitamin D. However, limited research has been done on the binding of hydrophobic compounds by unmodified casein micelles in skim milk. In the present study, we investigated the ability of casein micelles in commercial skim milk to associate with vitamin A (retinyl palmitate), a fat-soluble vitamin commonly used to fortify milk. Milk protein fractions from different commercially available skim milk samples subjected to different processing treatments, including pasteurized, ultrapasteurized, organic pasteurized, and organic ultrapasteurized milks, were separated by fast protein liquid chromatography. The fractions within each peak were combined and freeze-dried. Sodium dodecyl sulfate-PAGE with silver staining was used to identify the proteins present in each of the fractions. The skim milk samples and fractions were extracted for retinyl palmitate and quantified against a standard using normal phase-HPLC. Retinyl palmitate was found to associate with the fraction of skim milk containing caseins, whereas the other proteins (BSA, β-lactoglobulin, α-lactalbumin) did not show any binding. The retinyl palmitate content in the various samples ranged from 1.59 to 2.48 μg of retinyl palmitate per mL of milk. The casein fractions contained between 14 and 40% of total retinyl palmitate in the various milks tested. The variation in the retention of vitamin A by caseins was probably explained by differences in the processing of different milk samples, including thermal treatment, the form of vitamin A emulsion used for fortification, and the point of fortification during processing. Unmodified casein micelles have a strong intrinsic affinity toward the binding of vitamin A used to fortify commercially available skim milks. PMID:23261375

  4. Effect of yogurt and bifidus yogurt fortified with skim milk powder, condensed whey and lactose-hydrolysed condensed whey on serum cholesterol and triacylglycerol levels in rats.

    PubMed

    Beena, A; Prasad, V

    1997-08-01

    The possible hypocholesterolaemic properties of milk and fermented milk products have been investigated in groups of albino rats given a basal diet, basal diet plus cholesterol, and basal diet plus cholesterol together with whole milk or standard or bifidus yogurt. The yogurts were fortified with skim milk powder, condensed whey or lactose-hydrolysed condensed whey. After 30 d, triacylglycerols, total cholesterol, HDL-cholesterol and LDL-cholesterol were measured in serum. Whole milk and ordinary yogurt had no hypocholesterolaemic effect, but standard yogurt containing lactose-hydrolysed condensed whey and all bifidus yogurts lowered serum cholesterol. In general, yogurts changed HDL-cholesterol little, but tended to raise triacylglycerols. There was marked lowering of LDL-cholesterol in rats given either type of yogurt fortified with whey proteins. This study has demonstrated in a rat model that bifidus yogurts and yogurts fortified with whey proteins can reduce total and LDL-cholesterol, and suggests that if they have the same effect in human subjects they have potential value in cholesterol-lowering diets.

  5. Monte Carlo simulations of flexible polyanions complexing with whey proteins at their isoelectric point.

    PubMed

    de Vries, R

    2004-02-15

    Electrostatic complexation of flexible polyanions with the whey proteins alpha-lactalbumin and beta-lactoglobulin is studied using Monte Carlo simulations. The proteins are considered at their respective isoelectric points. Discrete charges on the model polyelectrolytes and proteins interact through Debye-Huckel potentials. Protein excluded volume is taken into account through a coarse-grained model of the protein shape. Consistent with experimental results, it is found that alpha-lactalbumin complexes much more strongly than beta-lactoglobulin. For alpha-lactalbumin, strong complexation is due to localized binding to a single large positive "charge patch," whereas for beta-lactoglobulin, weak complexation is due to diffuse binding to multiple smaller charge patches. Copyright 2004 American Institute of Physics

  6. Comparative Analysis of Whey N-Glycoproteins in Human Colostrum and Mature Milk Using Quantitative Glycoproteomics.

    PubMed

    Cao, Xueyan; Song, Dahe; Yang, Mei; Yang, Ning; Ye, Qing; Tao, Dongbing; Liu, Biao; Wu, Rina; Yue, Xiqing

    2017-11-29

    Glycosylation is a ubiquitous post-translational protein modification that plays a substantial role in various processes. However, whey glycoproteins in human milk have not been completely profiled. Herein, we used quantitative glycoproteomics to quantify whey N-glycosylation sites and their alteration in human milk during lactation; 110 N-glycosylation sites on 63 proteins and 91 N-glycosylation sites on 53 proteins were quantified in colostrum and mature milk whey, respectively. Among these, 68 glycosylation sites on 38 proteins were differentially expressed in human colostrum and mature milk whey. These differentially expressed N-glycoproteins were highly enriched in "localization", "extracellular region part", and "modified amino acid binding" according to gene ontology annotation and mainly involved in complement and coagulation cascades pathway. These results shed light on the glycosylation sites, composition and biological functions of whey N-glycoproteins in human colostrum and mature milk, and provide substantial insight into the role of protein glycosylation during infant development.

  7. The foaming properties of camel and bovine whey: The impact of pH and heat treatment.

    PubMed

    Lajnaf, Roua; Picart-Palmade, Laetitia; Cases, Eliane; Attia, Hamadi; Marchesseau, Sylvie; Ayadi, M A

    2018-02-01

    The effect of heat treatment (70°C or 90°C for 30min) on the foaming and interfacial properties of acid and sweet whey obtained from bovine and camel fresh milk was examined. The maximum foamability and foam stability were observed for acid whey when compared to sweet whey for both milks, with higher values for the camel whey. This behavior for acid whey was explained by the proximity of the pI of whey protein (4.9-5.2), where proteins were found to carry the lowest negative charge as confirmed by the zeta potential measurements. Interfacial properties of acid camel whey and acid bovine whey were preserved at air water interface even after a heat treatment at 90°C. These results confirmed the pronounced foaming and interfacial properties of acid camel whey, even if acid and sweet bovine whey exhibited the highest viscoelastic modulus after heating. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Using temperature sweeps to investigate rheology of bioplastics

    USDA-ARS?s Scientific Manuscript database

    As part of research on extrusion of proteins for food fortification, the viscoelastic properties and microstructure of 20 percent solutions of calcium caseinate (CC), egg albumin (EA), fish protein isolate (FPI), soy protein isolate (SPI), wheat gluten (WG), and whey protein isolate (WPI) were deter...

  9. Caseoperoxidase, Mixed β-Casein-SDS-Hemin-Imidazole Complex: A Nano Artificial Enzyme

    PubMed Central

    Moosavi-Movahedi, Zainab; Gharibi, Hussein; Hadi-Alijanvand, Hamid; Akbarzadeh, Mohammad; Esmaili, Mansoore; Atri, Maliheh S.; Sefidbakht, Yahya; Bohlooli, Mousa; Nazari, Khodadad; Javadian, Soheila; Hong, Jun; Saboury, Ali A.; Sheibani, Nader; Moosavi-Movahedi, Ali A.

    2016-01-01

    A novel peroxidase-like artificial enzyme, named “caseoperoxidase”, was biomimetically designed using a nano artificial amino acid apo-protein hydrophobic pocket. This four-component nano artificial enzyme containing heme-imidazole-β-casein-SDS exhibited high activity growth and kcat performance towards the native horseradish peroxidase (HRP) demonstrated by the steady state kinetics using UV-Vis spectrophotometry. The hydrophobicity and secondary structure of the caseoperoxidase were studied by ANS fluorescence and circular dichroism spectroscopy. Camel β-casein (Cβ-casein), with a flexible structure and exalted hydrophobicity, was selected as an appropriate apo-protein for the heme active site using a homology modeling method. Heme docking into the newly obtained Cβ-casein structure indicated one heme was mainly incorporated with Cβ-casein. The presence of a main electrostatic site for the active site in the Cβ-casein was also confirmed by experimental methods through Wyman binding potential and isothermal titration calorimetry. The existence of Cβ-casein protein in this biocatalyst lowered the suicide inactivation, and indicated that the obtained structure has a good protective role for the heme active-site. Additional further experiments confirmed the retention of caseoperoxidase structure and function as an artificial enzyme. PMID:25562503

  10. Caseoperoxidase, mixed β-casein-SDS-hemin-imidazole complex: a nano artificial enzyme.

    PubMed

    Moosavi-Movahedi, Zainab; Gharibi, Hussein; Hadi-Alijanvand, Hamid; Akbarzadeh, Mohammad; Esmaili, Mansoore; Atri, Maliheh S; Sefidbakht, Yahya; Bohlooli, Mousa; Nazari, Khodadad; Javadian, Soheila; Hong, Jun; Saboury, Ali A; Sheibani, Nader; Moosavi-Movahedi, Ali A

    2015-01-01

    A novel peroxidase-like artificial enzyme, named "caseoperoxidase", was biomimetically designed using a nano artificial amino acid apo-protein hydrophobic pocket. This four-component nano artificial enzyme containing heme-imidazole-β-casein-SDS exhibited high activity growth and k(cat) performance toward the native horseradish peroxidase demonstrated by the steady state kinetics using UV-vis spectrophotometry. The hydrophobicity and secondary structure of the caseoperoxidase were studied by ANS fluorescence and circular dichroism spectroscopy. Camel β-casein (Cβ-casein) was selected as an appropriate apo-protein for the heme active site because of its innate flexibility and exalted hydrophobicity. This selection was confirmed by homology modeling method. Heme docking into the newly obtained Cβ-casein structure indicated one heme was mainly incorporated with Cβ-casein. The presence of a main electrostatic site for the active site in the Cβ-casein was also confirmed by experimental methods through Wyman binding potential and isothermal titration calorimetry. The existence of Cβ-casein protein in this biocatalyst lowered the suicide inactivation and provided a suitable protective role for the heme active-site. Additional experiments confirmed the retention of caseoperoxidase structure and function as an artificial enzyme.

  11. Interaction of lactoferrin and lysozyme with casein micelles.

    PubMed

    Anema, Skelte G; de Kruif, C G Kees

    2011-11-14

    On addition of lactoferrin (LF) to skim milk, the turbidity decreases. The basic protein binds to the caseins in the casein micelles, which is then followed by a (partial) disintegration of the casein micelles. The amount of LF initially binding to casein micelles follows a Langmuir adsorption isotherm. The kinetics of the binding of LF could be described by first-order kinetics and similarly the disintegration kinetics. The disintegration was, however, about 10 times slower than the initial adsorption, which allowed investigating both phenomena. Kinetic data were also obtained from turbidity measurements, and all data could be described with one equation. The disintegration of the casein micelles was further characterized by an activation energy of 52 kJ/mol. The initial increase in hydrodynamic size of the casein micelles could be accounted for by assuming that it would go as the cube root of the mass using the adsorption and disintegration kinetics as determined from gel electrophoresis. The results show that LF binds to casein micelles and that subsequently the casein micelles partly disintegrate. All micelles behave in a similar manner as average particle size decreases. Lysozyme also bound to the casein micelles, and this binding followed a Langmuir adsorption isotherm. However, lysozyme did not cause the disintegration of the casein micelles.

  12. The decrease in the IgG-binding capacity of intensively dry heated whey proteins is associated with intense Maillard reaction, structural changes of the proteins and formation of RAGE-ligands.

    PubMed

    Liu, Fahui; Teodorowicz, Małgorzata; van Boekel, Martinus A J S; Wichers, Harry J; Hettinga, Kasper A

    2016-01-01

    Heat treatment is the most common way of milk processing, inducing structural changes as well as chemical modifications in milk proteins. These modifications influence the immune-reactivity and allergenicity of milk proteins. This study shows the influence of dry heating on the solubility, particle size, loss of accessible thiol and amino groups, degree of Maillard reaction, IgG-binding capacity and binding to the receptor for advanced glycation end products (RAGE) of thermally treated and glycated whey proteins. A mixture of whey proteins and lactose was dry heated at 130 °C up to 20 min to mimic the baking process in two different water activities, 0.23 to mimic the heating in the dry state and 0.59 for the semi-dry state. The dry heating was accompanied by a loss of soluble proteins and an increase in the size of dissolved aggregates. Most of the Maillard reaction sites were found to be located in the reported conformational epitope area on whey proteins. Therefore the structural changes, including exposure of the SH group, SH-SS exchange, covalent cross-links and the loss of available lysine, subsequently resulted in a decreased IgG-binding capacity (up to 33%). The binding of glycation products to RAGE increased with the heating time, which was correlated with the stage of the Maillard reaction and the decrease in the IgG-binding capacity. The RAGE-binding capacity was higher in samples with a lower water activity (0.23). These results indicate that the intensive dry heating of whey proteins as it occurs during baking may be of importance to the immunological properties of allergens in cow's milk, both due to chemical modifications of the allergens and formation of AGEs.

  13. THE ANTIGENIC PROPERTIES OF SPLIT PRODUCTS OF CASEIN

    PubMed Central

    Gay, Frederick P.; Robertson, T. Brailsford

    1912-01-01

    We draw the following conclusions from our experiments on the antigenic properties of chemically pure casein and some of its split products. Casein and paranuclein have distinct antigenic properties, particularly as shown by their ability to sensitize guinea pigs for subsequent anaphylactic intoxication by each other or by milk. This sensitizing ability and a corresponding ability to intoxicate are indistinguishably equivalent, under the conditions employed. On immunizing rabbits by repeated injections of paranuclein or of casein, and subsequently testing their sera for precipitins and fixation antibodies, it was found that casein apparently produces them much more readily, giving an antiserum that reacted (fixation) in very high dilution with casein (0.000,000,1 of a 1 per cent. solution), but much less strongly with paranuclein. Only one of two antiparanuclein sera showed the presence of antibodies to paranuclein by the delicate fixation reaction, and that in relatively small amounts. The two antibodies to casein and to paranuclein are, in the case of casein quantitatively, and in the case of paranuclein absolutely specific. A solution of the products of complete peptic digestion of casein fails to sensitize to paranuclein and gives no fixation reaction with an anticasein or antiparanuclein serum. It intoxicates animals sensitized to paranuclein but no more markedly than it does normal animals. It also fails to show specific intoxication in an animal that has been sensitized by the same substance. The amino acids, glutamic acid, and leucin, the principal components of their kind in casein, and in the same proportion therein present, likewise failed to show antigenic properties. They do not sensitize animals to milk intoxication or to intoxication by themselves, and likewise failed to produce precipitins in rabbits in a preliminary experiment. These experiments are regarded as a fairly systematic analysis of the antigenic properties of split products of a single

  14. Cross-linking proteins by laccase: Effects on the droplet size and rheology of emulsions stabilized by sodium caseinate.

    PubMed

    Sato, A C K; Perrechil, F A; Costa, A A S; Santana, R C; Cunha, R L

    2015-09-01

    The aim of this work was to evaluate the influence of laccase and ferulic acid on the characteristics of oil-in-water emulsions stabilized by sodium caseinate at different pH (3, 5 and 7). Emulsions were prepared by high pressure homogenization of soybean oil with sodium caseinate solution containing varied concentrations of laccase (0, 1 and 5mg/mL) and ferulic acid (5 and 10mM). Laccase treatment and pH exerted a strong influence on the properties with a consequent effect on stability, structure and rheology of emulsions stabilized by Na-caseinate. At pH7, O/W emulsions were kinetically stable due to the negative protein charge which enabled electrostatic repulsion between oil droplets resulting in an emulsion with small droplet size, low viscosity, pseudoplasticity and viscoelastic properties. The laccase treatment led to emulsions showing shear-thinning behavior as a result of a more structured system. O/W emulsions at pH5 and 3 showed phase separation due to the proximity to protein pI, but the laccase treatment improved their stability of emulsions especially at pH3. At pH3, the addition of ferulic acid and laccase produced emulsions with larger droplet size but with narrower droplet size distribution, increased viscosity, pseudoplasticity and viscoelastic properties (gel-like behavior). Comparing laccase treatments, the combined addition of laccase and ferulic acid generally produced emulsions with lower stability (pH5), larger droplet size (pH3, 5 and 7) and higher pseudoplasticity (pH5 and 7) than emulsion with only ferulic acid. The results suggested that the cross-linking of proteins by laccase and ferulic acid improved protein emulsifying properties by changing functional mechanisms of the protein on emulsion structure and rheology, showing that sodium caseinate can be successfully used in acid products when treated with laccase. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Whey protein solution coating for fat-uptake reduction in deep-fried chicken breast strips.

    PubMed

    Dragich, Ann M; Krochta, John M

    2010-01-01

    This study investigated the use of whey protein, as an additional coating, in combination with basic, well-described predust, batter, and breading ingredients, for fat-uptake reduction in fried chicken. Chicken breasts were cut into strips (1 x 5 x 10 cm) and coated with wheat flour (WF) as a predust, dipped in batter, coated with WF as a breading, then dipped in 10% denatured whey protein isolate (DWPI) aqueous solution (wet basis). A WF-batter-WF treatment with no DWPI solution dip was included as a control. Coated chicken strips were deep-fried at 160 degrees C for 5 min. A Soxhlet-type extraction was performed to determine the fat content of the meat fraction of fried samples, the coating fraction of fried samples, raw chicken, and raw coating ingredients. The WF-batter-WF-10% DWPI solution had significantly lower fat uptake than the WF-batter-WF control, by 30.67% (dry basis). This article describes applied research involving fat reduction in coated deep-fried chicken. The methods used in this article were intended to achieve maximized fat reduction while maintaining a simple procedure applicable to actual food processing lines.

  16. [Nutritional evaluation of protein quality of cassava leaf combined with casein by plastein reaction].

    PubMed

    Peluzio, M do C; de Miranda, L C; de Moraes, G H; Peluzio, L E

    1998-12-01

    The present work was conducted to obtain a proteic product and to evaluate its biological value in order to be used for human and/or domestic animal consumption. Thus, it were used cassava leaves as a non conventional source of protein. It was produced a freeze-dried, fat-free and colourless proteic isolated from those leaves (CLPI). This was mixed with casein and after the mixture as enzymatically hydrolyzed and resynthesized (Plastein reaction) to obtain a precipitated (PP) and a soluble plastein (SP) fractions. The protein contents observed were 64.39% (PS), 61.36% (PP) and 51.97% (CLPI). Trypsin inhibitor activities values showed a 41% reduction in the PP fraction suggesting that the heat treatment used to inactivated the enzyme also inactiveted partially the inhibitor or the reduction was due to the casein dilution. The amino acid composition of the frations obtained showed values close to the standards established. It can be concluded:--the utilization of non-conventional source should be stimulated when the proteins from those sources have an amino acidic profile that allow them to be used as an amino acid supplementation in food with low level of essential amino acids;--the fractions obtained by the plastein reaction showed satisfactory protein contents and their amino acid profiles were comparable with the FAO/OMS/UNU (1985) recommendations;--the plastein reaction can be utilized in food processing, after industrial scale adaptation remove compounds responsible to bitter taste, fetidness and to discolour protein products.

  17. Sequence of rat alpha- and gamma-casein mRNAs: evolutionary comparison of the calcium-dependent rat casein multigene family.

    PubMed Central

    Hobbs, A A; Rosen, J M

    1982-01-01

    The complete sequences of rat alpha- and gamma-casein mRNAs have been determined. The 1402-nucleotide alpha- and 864-nucleotide gamma-casein mRNAs both encode 15 amino acid signal peptides and mature proteins of 269 and 164 residues, respectively. Considerable homology between the 5' non-coding regions, and the regions encoding the signal peptides and the phosphorylation sites, in these mRNAs as compared to several other rodent casein mRNAs, was observed. Significant homology was also detected between rat alpha- and bovine alpha s1-casein. Comparison of the rodent and bovine sequences suggests that the caseins evolved at about the time of the appearance of the primitive mammals. This may have occurred by intragenic duplication of a nucleotide sequence encoding a primitive phosphorylation site, -(Ser)n-Glu-Glu-, and intergenic duplication resulting in the small casein multigene family. A unique feature of the rat alpha-casein sequence is an insertion in the coding region containing 10 repeated elements of 18 nucleotides each. This insertion appears to have occurred 7-12 million years ago, just prior to the divergence of rat and mouse. Images PMID:6298707

  18. [Not Available].

    PubMed

    Reyna, Nadia; Moreno-Rojas, Rafael; Mendoza, Laura; Parra, Karla; Linares, Sergia; Reyna, Eduardo; Cámara-Martos, Fernando

    2016-02-16

    It has been studied the effect of three kinds of supplements (whey, casein and maltodextrin, as control) in the regulation of food intake and satiety of 60 overweight women. After 10 weeks, significant differences (p < 0.001) were found with regard to reduction of weight, IMC, % fat and waist circumference in the whey group against casein and control groups. A higher decrease of energy intake (-383 kcal/day) was also found in women who ate whey supplements, while in the casein and control group the decrease was only -144 and -70 kcal/day respectively. Finally, satiety effect was more efficiently promoted by whey against casein and maltodextrins.

  19. Production and characterization of poly(3-hydroxybutyrate) generated by Alcaligenes latus using lactose and whey after acid protein precipitation process.

    PubMed

    Berwig, Karina Hammel; Baldasso, Camila; Dettmer, Aline

    2016-10-01

    Whey after acid protein precipitation was used as substrate for PHB production in orbital shaker using Alcaligenes latus. Statistical analysis determined the most appropriate hydroxide for pH neutralization of whey after protein precipitation among NH4OH, KOH and NaOH 10%w/v. The results were compared to those of commercial lactose. A scale-up test in a 4L bioreactor was done at 35°C, 750rpm, 7L/min air flow, and 6.5 pH. The PHB was characterized through Fourier Transform Infrared Spectroscopy, thermogravimetry and differential scanning calorimetry. NH4OH provided the best results for productivity (p), 0.11g/L.h, and for polymer yield, (YP/S), 1.08g/g. The bioreactor experiment resulted in lower p and YP/S. PHB showed maximum degradation temperature (291°C), melting temperature (169°C), and chemical properties similar to those of standard PHB. The use of whey as a substrate for PHB production did not affect significantly the final product quality. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Acid whey powder modification of gari from cassava

    SciTech Connect

    Okezie, B.O.; Kosikowski, F.V.

    1981-01-01

    Gari, a staple food consumed in Nigeria, is made from peeled and ground cassava tubers. The ground material is pressed with a stone slab for 2-4 days to remove moisture, and the partially fermented product is then baked over an open fire. Since gari mainly contributes energy to the diet, attempts were made to develop a more nutritious product without altering organoleptic and textural properties. In laboratory tests, ground cassava was fermented in stainless steel cheese vats for 4 days (to produce gari flavour) and then partially dehydrated by pressing in cheese cloth. A reduction in HCN content from 6.2more » to 3.4 mg/100 g resulted. Various combinations of spray-dried acid whey, soya protein and freeze-dried Candida tropicalis were added to the fermented cassava, which was then pressure-cooked for 10 minutes at 121 degrees Celcius, dried and ground in a hammer mill. Product (i), made with gari fortified with 15% soya concentrate and 5% dried acid whey, was as acceptable as traditional gari and had a protein score of 75.8 vs. 9.91 for traditional gari. Product (ii), gari fortified with 20% yeast and 10% dried acid whey, had significantly lower scores for flavour and texture than traditional gari and the protein score was only 29.45. Supplementing gari with relatively inexpensive whey concentrates appears to be a means of overcoming protein energy malnutrition in children.« less

  1. Monitoring the progression of calcium and protein solubilisation as affected by calcium chelators during small-scale manufacture of casein-based food matrices.

    PubMed

    McIntyre, Irene; O'Sullivan, Michael; O'Riordan, Dolores

    2017-12-15

    Calcium and protein solubilisation during small-scale manufacture of semi-solid casein-based food matrices was investigated and found to be very different in the presence or absence of calcium chelating salts. Calcium concentrations in the dispersed phase increased and calcium-ion activity (A Ca ++ ) decreased during manufacture of the matrices containing calcium chelating salts; with ∼23% of total calcium solubilised by the end of manufacture. In the absence of calcium chelating salts, these concentrations were significantly lower at equivalent processing times and remained unchanged as did A Ca ++ , throughout manufacture. The protein content of the dispersed phase was low (≤3% of total protein), but was significantly higher for matrices containing calcium chelating salts. This study elucidates the critical role of calcium chelating salts in modulating casein hydration and dispersion and gives an indication of the levels of soluble calcium and protein required to allow matrix formation during manufacture of casein-based food structures e.g. processed and analogue cheese. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Binding sites of resveratrol, genistein, and curcumin with milk α- and β-caseins.

    PubMed

    Bourassa, P; Bariyanga, J; Tajmir-Riahi, H A

    2013-02-07

    The binding sites of antioxidant polyphenols resveratrol, genistein, and curcumin are located with milk α- and β-caseins in aqueous solution. FTIR, CD, and fluorescence spectroscopic methods and molecular modeling were used to analyze polyphenol binding sites, the binding constant, and the effects of complexation on casein stability and conformation. Structural analysis showed that polyphenols bind casein via hydrophilic and hydrophobic interactions with the number of bound polyphenol molecules (n) 1.20 for resveratrol, 1.42 for genistein, and 1.43 for curcumin with α-casein and 1.14 for resveratrol, 1.27 for genistein, and 1.27 for curcumin with β-casein. The overall binding constants of the complexes formed are K(res-α-casein) = 1.9 (±0.6) × 10(4) M(-1), K(gen-α-casein) = 1.8 (±0.4) × 10(4) M(-1), and K(cur-α-casein) = 2.8 (±0.8) × 10(4) M(-1) with α-casein and K(res-β-casein) = 2.3 (±0.3) × 10(4) M(-1), K(gen-β-casein) = 3.0 (±0.5) × 10(4) M(-1), and K(cur-β-casein) = 3.1 (±0.5) × 10(4) M(-1) for β-casein. Molecular modeling showed the participation of several amino acids in polyphenol-protein complexes, which were stabilized by the hydrogen bonding network with the free binding energy of -11.56 (resveratrol-α-casein), -12.35 (resveratrol-β-casein), -9.68 (genistein-α-casein), -9.97 (genistein-β-casein), -8.89 (curcumin-α-casein), and -10.70 kcal/mol (curcumin-β-casein). The binding sites of polyphenols are different with α- and β-caseins. Polyphenol binding altered casein conformation with reduction of α-helix, indicating a partial protein destabilization. Caseins might act as carriers to transport polyphenol in vitro.

  3. Using an enzymatic galactose assay to detect lactose glycation extents of two proteins caseinate and soybean protein isolate via the Maillard reaction.

    PubMed

    Wang, Xiao-Peng; Zhao, Xin-Huai

    2017-06-01

    Glycation of food proteins via the Maillard reaction has been widely studied in the recent years; however, the amount of saccharide connected to proteins is usually not determined. An enzymatic galactose assay was proposed firstly in this study to detect lactose glycation extents of caseinate and soybean protein isolate (SPI) during the Maillard reaction at two temperatures and different times. The separated glycated proteins were hydrolysed to release galactose necessary for the enzymatic assay and glycation calculation. Caseinate and SPI both obtained the highest lactose glycation extents at 100 °C or 121 °C by a reaction time of 180 or 20 min. Short- and long-time reaction resulted in lower glycation extents. During the reaction, three chemical indices (absorbences at 294/490 nm and fluorescence intensities) of reaction mixtures increased continually, but another index reactable NH 2 of glycated proteins showed the opposite trend. In general, changing profiles of the four indices were inconsistent with those profiles of lactose glycation extents of glycated proteins, implying practical limitation of the four indices in studies. This proposed enzymatic assay could directly detect lactose glycation of the two proteins, and thus was more useful than the four chemical indices to monitor glycation of the two proteins. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  4. Effect of whey protein hydrolysate on performance and recovery of top-class orienteering runners.

    PubMed

    Hansen, Mette; Bangsbo, Jens; Jensen, Jørgen; Bibby, Bo Martin; Madsen, Klavs

    2015-04-01

    This trial aimed to examine the effect of whey protein hydrolysate intake before and after exercise sessions on endurance performance and recovery in elite orienteers during a training camp. Eighteen elite orienteers participated in a randomized controlled intervention trial during a 1-week training camp (13 exercise sessions). Half of the runners (PRO-CHO) ingested a protein drink before (0.3 g kg(-1)) and a protein-carbohydrate drink after (0.3 g protein kg(-1) and 1 g carbohydrate kg(-1)) each exercise session. The others ingested energy and time-matched carbohydrate drinks (CHO). A 4-km run-test with 20 control points was performed before and on the last day of the intervention. Blood and saliva were obtained in the mornings, before and after run-tests, and after the last training session. During the intervention, questionnaires were fulfilled regarding psychological sense of performance capacity and motivation. PRO-CHO and not CHO improved performance in the 4-km run-test (interaction p < .05). An increase in serum creatine kinase was observed during the week, which was greater in CHO than PRO-CHO (interaction p < .01). Lactate dehydrogenase (p < .001) and cortisol (p = .057) increased during the week, but the change did not differ between groups. Reduction in sense of performance capacity during the intervention was greater in CHO (p < .05) than PRO-CHO. In conclusion, ingestion of whey protein hydrolysate before and after each exercise session improves performance and reduces markers of muscle damage during a strenuous 1-week training camp. The results indicate that protein supplementation in conjunction with each exercise session facilitates the recovery from strenuous training in elite orienteers.

  5. Detection and identification of a soy protein component that cross-reacts with caseins from cow's milk

    PubMed Central

    ROZENFELD, P; DOCENA, G H; AÑÓN, M C; FOSSATI, C A

    2002-01-01

    Soy-based formulas are the most employed cow's milk substitutes in the treatment of cow's milk allergy in our country. Since adverse reactions have been reported in allergic patients as a consequence of exposure to soy proteins, we have investigated the possible cross-reactivity between components from soybean and cow's milk. A cow's milk specific polyclonal antiserum and casein specific monoclonal antibodies were used in immunoblotting and competitive ELISA studies to identify a 30-kD component from soybean that cross-reacts with cow's milk caseins. Its IgE binding capacity was tested by EAST, employing sera from cow's milk allergic patients, not previously exposed to soy proteins. The 30 kD protein was isolated and partially sequenced. It is constituted by two polypeptides (A5 and B3) linked by a disulphide bond. The protein's capacity to bind to the different antibodies relies on the B3 poly-peptide. These results indicate that soy-based formula, which contains the A5-B3 glycinin molecule, could be involved in allergic reactions observed in cow's milk allergic patients exposed to soy-containing foods. PMID:12296853

  6. Both cell substratum regulation and hormonal regulation of milk protein gene expression are exerted primarily at the posttranscriptional level

    SciTech Connect

    Eisenstein, R.S.; Rosen, J.M.

    The mechanism by which individual peptide and steroid hormones and cell-substratum interactions regulate milk protein gene expression has been studied in the COMMA-D mammary epithelial cell line. In the presence of insulin, hydrocortisone, and prolactin, growth of COMMA-D cells on floating collagen gels in comparison with that on a plastic substratum resulted in a 2.5- to 3-fold increase in the relative rate of ..beta..-casein gene transcription but a 37-fold increase in ..beta..-casein mRNA accumulation. In contrast, whey acidic protein gene transcription was constitutive in COMMA-D cells grown on either substratum, but its mRNA was unstable and little intact mature mRNAmore » was detected. Culturing COMMA-D cells on collagen also promoted increased expression of other genes expressed in differentiated mammary epithelial cells, including those encoding ..cap alpha..- and ..gamma..-casein, transferrin, malic enzyme, and phosphoenolpyruvate carboxykinase but decreased the expression of actin and histone genes. Using COMMA-D cells, the authors defined further the role of individual hormones in influencing ..beta..-casein gene transcription. With insulin alone, a basal level of ..beta..-casein gene transcription was detected in COMMA-D cells grown on floating collagen gels. Addition of prolactin but not hydrocortisone resulted in a 2.5- to 3.0-fold increase in ..beta..-casein gene transcription, but both hormones were required to elicit the maximal 73-fold induction in mRNA accumulation. The posttranscriptional effect of hormones on casein mRNA accummulation preceded any detectable changes in the relative rate of transcription. Thus, regulation by both hormones and cell substratum of casein gene expression is exerted primarily at the post transcriptional level.« less

  7. Magnetic resonance imaging (MRI) and relaxation spectrum analysis as methods to investigate swelling in whey protein gels.

    PubMed

    Oztop, Mecit H; Rosenberg, Moshe; Rosenberg, Yael; McCarthy, Kathryn L; McCarthy, Michael J

    2010-10-01

    Effective means for controlled delivery of nutrients and nutraceuticals are needed. Whey protein-based gels, as a model system and as a potential delivery system, exhibit pH-dependent swelling when placed in aqueous solutions. Understanding the physics that govern gel swelling is thus important when designing gel-based delivery platforms. The extent of swelling over time was monitored gravimetrically. In addition to gravimetric measurements, magnetic resonance imaging (MRI) a real-time noninvasive imaging technique that quantified changes in geometry and water content of these gels was utilized. Heat-set whey protein gels were prepared at pH 7 and swelling was monitored in aqueous solutions with pH values of 2.5, 7, and 10. Changes in dimension over time, as characterized by the number of voxels in an image, were correlated to gravimetric measurements. Excellent correlations between mass uptake and volume change (R(2)= 0.99) were obtained for the gels in aqueous solutions at pH 7 and 10, but not for gels in the aqueous solution at pH 2.5. To provide insight into the mechanisms for water uptake, nuclear magnetic resonance (NMR) relaxation times were measured in independent experiments. The relaxation spectrum for the spin-spin relaxation time (T(2)) showed the presence of 3 proton pools for pH 7 and 10 trials and 4 proton pools for pH 2.5 trials. Results demonstrate that MRI and NMR relaxation measurements provided information about swelling in whey protein gels that can constitute a new means for investigating and developing effective delivery systems for foods.

  8. Reformation of casein particles from alkaline-disrupted casein micelles.

    PubMed

    Huppertz, Thom; Vaia, Betsy; Smiddy, Mary A

    2008-02-01

    In this study, the properties of casein particles reformed from alkaline disrupted casein micelles were studied. For this purpose, micelles were disrupted completely by increasing milk pH to 10.0, and subsequently reformed by decreasing milk pH to 6.6. Reformed casein particles were smaller than native micelles and had a slightly lower zeta-potential. Levels of ionic and serum calcium, as well as rennet coagulation time did not differ between milk containing native micelles or reformed casein particles. Ethanol stability and heat stability, >pH 7.0, were lower for reformed casein particles than native micelles. Differences in heat stability, ethanol stability and zeta-potential can be explained in terms of the influence of increased concentrations of sodium and chloride ions in milk containing reformed casein particles. Hence, these results indicate that, if performed in a controlled manner, casein particles with properties closely similar to those of native micelles can be reformed from alkaline disrupted casein micelles.

  9. Physicochemical stability and in vitro bioaccessibility of ß-carotene nanoemulsions stabilized with whey protein-dextran conjugates

    USDA-ARS?s Scientific Manuscript database

    In this study, ß-carotene (BC)-loaded nanoemulsions encapsulated with native whey protein isolate (WPI) and WPI-dextran (DT, 5 kDa, 20 kDa, and 70 kDa) conjugates were prepared and the effects of glycosylation with various molecular weight DTs on the physicochemical property, lipolysis, and BC bioac...

  10. Removal of High Concentration Chromium by a Foam-separating Technique Using Casein Proteins as a Foaming Reagent

    NASA Astrophysics Data System (ADS)

    Sugimoto, Futoshi

    Foam separation of high concentration chromium in leather tanning wastewater was investigated using casein protein as a foaming reagent5mL of5w/v% ammonium acetate buffer was added to the sample chromium water. After adjusting the pH to 9.0,4g/L concentrations of casein and gelatin solution were added to recovery the coagulating flocs of chromium resulting foam separation. The sample water containing chromium flocs was incased in reactor, then mixed with distilled water and 1mL of ethanol to sum 200mL total. The foam separation was performed at time intervals of 3min with an air flow rate of 300mL/min. With casein reagent, the removal rate of chromium was not influenced by the presence of NaCl, however, the rate decreased tendency using with the use of gelatin. The proposed method, utilizing 4g/L of casein solution with water, was not influenced by the presence of calcium (<34mM), magnesium (<1mM), carbonate (<0.5mM), bicarbonate (<1.2mM) nor sulfate (<350mM) ions, and is ideal for foam separation in chromium concentrations of about 100mgCr/L.

  11. Ultrafiltration of skimmed goat milk increases its nutritional value by concentrating nonfat solids such as proteins, Ca, P, Mg, and Zn.

    PubMed

    Moreno-Montoro, Miriam; Olalla, Manuel; Giménez-Martínez, Rafael; Bergillos-Meca, Triana; Ruiz-López, María Dolores; Cabrera-Vique, Carmen; Artacho, Reyes; Navarro-Alarcón, Miguel

    2015-11-01

    Goat milk has been reported to possess good nutritional and health-promoting properties. Usually, it must be concentrated before fermented products can be obtained. The aim of this study was to compare physicochemical and nutritional variables among raw (RM), skimmed (SM), and ultrafiltration-concentrated skimmed (UFM) goat milk. The density, acidity, ash, protein, casein, whey protein, Ca, P, Mg, and Zn values were significantly higher in UFM than in RM or SM. Dry extract and fat levels were significantly higher in UFM than in SM, and Mg content was significantly higher in UFM than in RM. Ultrafiltration also increased the solubility of Ca and Mg, changing their distribution in the milk. The higher concentrations of minerals and proteins, especially caseins, increase the nutritional value of UFM, which may therefore be more appropriate for goat milk yogurt manufacturing in comparison to RM or SM. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  12. Technological optimization of manufacture of probiotic whey cheese matrices.

    PubMed

    Madureira, Ana R; Brandão, Teresa; Gomes, Ana M; Pintado, Manuela E; Malcata, F Xavier

    2011-03-01

    In attempts to optimize their manufacture, whey cheese matrices obtained via thermal processing of whey (leading to protein precipitation) and inoculated with probiotic cultures were tested. A central composite, face-centered design was followed, so a total of 16 experiments were run using fractional addition of bovine milk to feedstock whey, homogenization time, and storage time of whey cheese as processing parameters. Probiotic whey cheese matrices were inoculated with Lactobacillus casei LAFTIL26 at 10% (v/v), whereas control whey cheese matrices were added with skim milk previously acidified with lactic acid to the same level. All whey cheeses were stored at 7 °C up to 14 d. Chemical and sensory analyses were carried out for all samples, as well as rheological characterization by oscillatory viscometry and textural profiling. As expected, differences were found between control and probiotic matrices: fractional addition of milk and storage time were the factors accounting for the most important effects. Estimation of the best operating parameters was via response surface analysis: milk addition at a rate of 10% to 15% (v/v), and homogenization for 5 min led to the best probiotic whey cheeses in terms of texture and organoleptic properties, whereas the best time for consumption was found to be by 9 d of storage following manufacture.

  13. Hypochlorous and peracetic acid induced oxidation of dairy proteins.

    PubMed

    Kerkaert, Barbara; Mestdagh, Frédéric; Cucu, Tatiana; Aedo, Philip Roger; Ling, Shen Yan; De Meulenaer, Bruno

    2011-02-09

    Hypochlorous and peracetic acids, both known disinfectants in the food industry, were compared for their oxidative capacity toward dairy proteins. Whey proteins and caseins were oxidized under well controlled conditions at pH 8 as a function of the sanitizing concentration. Different markers for protein oxidation were monitored. The results established that the protein carbonyl content was a rather unspecific marker for protein oxidation, which did not allow one to differentiate the oxidant used especially at the lower concentrations. Cysteine, tryptophan, and methionine were proven to be the most vulnerable amino acids for degradation upon hypochlorous and peracetic acid treatment, while tyrosine was only prone to degradation in the presence of hypochlorous acid. Hypochlorous acid induced oxidation gave rise to protein aggregation, while during peracetic acid induced oxidation, no high molecular weight aggregates were observed. Protein aggregation upon hypochlorous acid oxidation could primarily be linked to tryptophan and tyrosine degradation.

  14. The evolution of milk casein genes from tooth genes before the origin of mammals.

    PubMed

    Kawasaki, Kazuhiko; Lafont, Anne-Gaelle; Sire, Jean-Yves

    2011-07-01

    Caseins are among cardinal proteins that evolved in the lineage leading to mammals. In milk, caseins and calcium phosphate (CaP) form a huge complex called casein micelle. By forming the micelle, milk maintains high CaP concentrations, which help altricial mammalian neonates to grow bone and teeth. Two types of caseins are known. Ca-sensitive caseins (α(s)- and β-caseins) bind Ca but precipitate at high Ca concentrations, whereas Ca-insensitive casein (κ-casein) does not usually interact with Ca but instead stabilizes the micelle. Thus, it is thought that these two types of caseins are both necessary for stable micelle formation. Both types of caseins show high substitution rates, which make it difficult to elucidate the evolution of caseins. Yet, recent studies have revealed that all casein genes belong to the secretory calcium-binding phosphoprotein (SCPP) gene family that arose by gene duplication. In the present study, we investigated exon-intron structures and phylogenetic distributions of casein and other SCPP genes, particularly the odontogenic ameloblast-associated (ODAM) gene, the SCPP-Pro-Gln-rich 1 (SCPPPQ1) gene, and the follicular dendritic cell secreted peptide (FDCSP) gene. The results suggest that contemporary Ca-sensitive casein genes arose from a putative common ancestor, which we refer to as CSN1/2. The six putative exons comprising CSN1/2 are all found in SCPPPQ1, although ODAM also shares four of these exons. By contrast, the five exons of the Ca-insensitive casein gene are all reminiscent of FDCSP. The phylogenetic distribution of these genes suggests that both SCPPPQ1 and FDCSP arose from ODAM. We thus argue that all casein genes evolved from ODAM via two different pathways; Ca-sensitive casein genes likely originated directly from SCPPPQ1, whereas the Ca-insensitive casein genes directly differentiated from FDCSP. Further, expression of ODAM, SCPPPQ1, and FDCSP was detected in dental tissues, supporting the idea that both types of caseins

  15. Casein phosphopeptides drastically increase the secretion of extracellular proteins in Aspergillus awamori. Proteomics studies reveal changes in the secretory pathway

    PubMed Central

    2012-01-01

    Background The secretion of heterologous animal proteins in filamentous fungi is usually limited by bottlenecks in the vesicle-mediated secretory pathway. Results Using the secretion of bovine chymosin in Aspergillus awamori as a model, we found a drastic increase (40 to 80-fold) in cells grown with casein or casein phosphopeptides (CPPs). CPPs are rich in phosphoserine, but phosphoserine itself did not increase the secretion of chymosin. The stimulatory effect is reduced about 50% using partially dephosphorylated casein and is not exerted by casamino acids. The phosphopeptides effect was not exerted at transcriptional level, but instead, it was clearly observed on the secretion of chymosin by immunodetection analysis. Proteomics studies revealed very interesting metabolic changes in response to phosphopeptides supplementation. The oxidative metabolism was reduced, since enzymes involved in fermentative processes were overrepresented. An oxygen-binding hemoglobin-like protein was overrepresented in the proteome following phosphopeptides addition. Most interestingly, the intracellular pre-protein enzymes, including pre-prochymosin, were depleted (most of them are underrepresented in the intracellular proteome after the addition of CPPs), whereas the extracellular mature form of several of these secretable proteins and cell-wall biosynthetic enzymes was greatly overrepresented in the secretome of phosphopeptides-supplemented cells. Another important 'moonlighting' protein (glyceraldehyde-3-phosphate dehydrogenase), which has been described to have vesicle fusogenic and cytoskeleton formation modulating activities, was clearly overrepresented in phosphopeptides-supplemented cells. Conclusions In summary, CPPs cause the reprogramming of cellular metabolism, which leads to massive secretion of extracellular proteins. PMID:22234238

  16. Casein phosphopeptides drastically increase the secretion of extracellular proteins in Aspergillus awamori. Proteomics studies reveal changes in the secretory pathway.

    PubMed

    Kosalková, Katarina; García-Estrada, Carlos; Barreiro, Carlos; Flórez, Martha G; Jami, Mohammad S; Paniagua, Miguel A; Martín, Juan F

    2012-01-10

    The secretion of heterologous animal proteins in filamentous fungi is usually limited by bottlenecks in the vesicle-mediated secretory pathway. Using the secretion of bovine chymosin in Aspergillus awamori as a model, we found a drastic increase (40 to 80-fold) in cells grown with casein or casein phosphopeptides (CPPs). CPPs are rich in phosphoserine, but phosphoserine itself did not increase the secretion of chymosin. The stimulatory effect is reduced about 50% using partially dephosphorylated casein and is not exerted by casamino acids. The phosphopeptides effect was not exerted at transcriptional level, but instead, it was clearly observed on the secretion of chymosin by immunodetection analysis. Proteomics studies revealed very interesting metabolic changes in response to phosphopeptides supplementation. The oxidative metabolism was reduced, since enzymes involved in fermentative processes were overrepresented. An oxygen-binding hemoglobin-like protein was overrepresented in the proteome following phosphopeptides addition. Most interestingly, the intracellular pre-protein enzymes, including pre-prochymosin, were depleted (most of them are underrepresented in the intracellular proteome after the addition of CPPs), whereas the extracellular mature form of several of these secretable proteins and cell-wall biosynthetic enzymes was greatly overrepresented in the secretome of phosphopeptides-supplemented cells. Another important 'moonlighting' protein (glyceraldehyde-3-phosphate dehydrogenase), which has been described to have vesicle fusogenic and cytoskeleton formation modulating activities, was clearly overrepresented in phosphopeptides-supplemented cells. In summary, CPPs cause the reprogramming of cellular metabolism, which leads to massive secretion of extracellular proteins.

  17. Changes in microbial populations of WPC34 and WPC80 whey protein during long term storage

    USDA-ARS?s Scientific Manuscript database

    The use of whey protein (W