Hybrid structure of white layer in high carbon steel - Formation mechanism and its properties.
Hossain, Rumana; Pahlevani, Farshid; Witteveen, Evelien; Banerjee, Amborish; Joe, Bill; Prusty, B Gangadhara; Dippenaar, Rian; Sahajwalla, Veena
2017-10-16
This study identifies for the first time, the hybrid structure of the white layer in high carbon steel and describes its formation mechanism and properties. The so-called 'white layer' in steel forms during high strain rate deformation and appears featureless under optical microscopy. While many researchers have investigated the formation of the white layer, there has been no definitive study, nor is there sufficient evidence to fully explain the formation, structure and properties of the layer. In this study, the formation, morphology and mechanical properties of the white layer was determined following impact testing, using a combination of optical and SE- microscopy, HR-EBSD, TKD and TEM as well as nano-indentation hardness measurements and FE modelling. The phase transformation and recrystallization within and near the white layer was also investigated. The microstructure of the steel in the white layer consisted of nano-sized grains of martensite. A very thin layer of austenite with nano sized grains was identified within the white layer by HR-EBSD techniques, the presence of which is attributed to a thermally-induced reverse phase transformation. Overall, the combination of phase transformations, strain hardening and grain refinement led to a hybrid structure and an increase in hardness of the white layer.
NASA Astrophysics Data System (ADS)
Vasin, Andriy V.; Ishikawa, Yukari; Shibata, Noriyoshi; Salonen, Jarno; Lehto, Vesa-Pekka
2007-05-01
A new approach to development of light-emitting SiO2:C layers on Si wafer is demonstrated. Carbon-incorporated silicon oxide was fabricated by three-step procedure: (1) formation of the porous silicon (por-Si) layer by ordinary anodization in HF:ethanol solution; (2) carbonization at 1000 °C in acetylene flow (formation of por-Si:C layer); (3) oxidation in the flow of moisturized argon at 800 °C (formation of SiO2:C layer). Resulting SiO2:C layer exhibited very strong and stable white photoluminescence at room temperature. It is shown that high reactivity of water vapor with nano-crystalline silicon and inertness with amorphous carbon play a key role in the formation of light-emitting SiO2:C layer.
Experimental Investigation of White Layer formation in Hard Turning
NASA Astrophysics Data System (ADS)
Umbrello, D.; Rotella, G.; Crea, F.
2011-05-01
Hard turning with super hard cutting tools, like PCBN or Ceramics inserts, represents an interesting advance in the manufacturing industry, regarding the finishing of hardened steels. This innovative machining technique is considered an attractive alternative to traditional finish grinding operations because of the high flexibility, the ability to achieve higher metal removal rates, the possibility to operate without the use of coolants, and the capability to achieve comparable workpiece quality. However, the surface integrity effects of hard machining need to be taken into account due to their influence on the life of machined components. In particular, the formation of a usually undesirable white layer at the surface needs further investigation. Three different mechanisms have been proposed as main responsible of the white layer genesis: (i) microstructural phase transformation due to a rapid heating and quenching, (ii) severe plastic deformation resulting in a homogenous structure and/or a very fine grain size microstructure; (iii) surface reaction with the environment. In this research, an experimental campaign was carried out and several experimental techniques were used in order to analyzed the machined surface and to understand which of the above mentioned theories is the main cause of the white layer formation when AISI 52100 hardened steel is machined by PCBN inserts. In particular, the topography characterization has obtained by means of optical and scanning electron microscope (SEM) while microstructural phase composition and chemical characterization have been respectively detected using X-ray Diffraction (XRD) and Energy-dispersive X-ray spectroscopy (EDS) techniques. The results prove that the white layer is the result of microstructural alteration, i.e. the generation of a martensitic structure.
Sexual Biofilm Formation in Candida tropicalis Opaque Cells
Jones, Stephen K.; Hirakawa, Matthew P.; Bennett, Richard J.
2014-01-01
Summary Candida albicans and Candida tropicalis are opportunistic fungal pathogens that can transition between white and opaque phenotypic states. White and opaque cells differ both morphologically and in their responses to environmental signals. In C. albicans, opaque cells respond to sexual pheromones by undergoing conjugation, while white cells are induced by pheromones to form sexual biofilms. Here, we show that sexual biofilm formation also occurs in C. tropicalis but, unlike C. albicans, biofilms are formed exclusively by opaque cells. C. tropicalis biofilm formation was dependent on the pheromone receptors Ste2 and Ste3, confirming the role of pheromone signaling in sexual biofilm development. Structural analysis of C. tropicalis sexual biofilms revealed stratified communities consisting of a basal layer of yeast cells and an upper layer of filamentous cells, together with an extracellular matrix. Transcriptional profiling showed that genes involved in pheromone signaling and conjugation were upregulated in sexual biofilms. Furthermore, FGR23, which encodes an agglutinin-like protein, was found to enhance both mating and sexual biofilm formation. Together, these studies reveal that C. tropicalis opaque cells form sexual biofilms with a complex architecture, and suggest a conserved role for sexual agglutinins in mediating mating, cell cohesion and biofilm formation. PMID:24612417
Mine, Ichiro; Kinoshita, Urara; Kawashima, Shigetaka; Sekida, Satoko
2018-01-22
The cells in the foliose thallus of trebouxiophycean alga Prasiola japonica apparently develop into 2 × 2 cell groups composed of two two-celled groups, each of which is a pair of derivative cells of the latest cell division. In the present study, the structural features of cell walls of the alga P. japonica concerning the formation of the cell groups were investigated using histochemical methods. Thin cell layers stained by Calcofluor White appeared to envelope the two-celled and four-celled groups separately and, hence, separated them from neighboring cell groups, and the Calcofluor White-negative gaps between neighboring four-celled groups were specifically stained by lectins, such as soybean agglutinin, jacalin, and Vicia villosa lectin conjugated with fluorescein. These results indicated that the Calcofluor White-positive cell wall layer of parent cell that existed during two successive cell divisions structurally distinguished two-celled and four-celled groups from others in this alga. Moreover, the results suggested that the cell wall components of the Calcofluor White-negative gaps would possibly contribute to the formation of the planar thallus through lateral union of the cell groups.
Interactions of natural resins and pigments in works of art.
Poli, Tommaso; Piccirillo, Anna; Nervo, Marco; Chiantore, Oscar
2017-10-01
The degradation process involving the formation of metal soaps in drying oils is a well-known problem due to cations from pigments reacting with free fatty acids from the oil. The aggregation of these carboxylates in semi-crystalline structures can lead to eruptions through the paint layers and 'blooming' on the surface. In this work, the metal soaps formation in presence of natural resins has been assessed and studied by means of Fourier transform infrared spectroscopy with experiments concerning the ageing of drying oil and different natural resins (shellac, dammar and colophony) in the presence of common historic pigments (smalt, ochre, umber, azurite, lead white, zinc white and titanium white). Mixtures of resins and pigments have been exposed to photo-ageing in solar box up to 1000h, thermal ageing at 50°C up to 1100h and 6month of room conditions exposure as reference. The decrease in the intensity of the carbonyl band in the spectra, as well as the contemporary increase of the metal carboxylates (in the range from 1500 to 1650cm -1 ) absorption bands, were used as the main indicators of metal soap formation. It has been observed that some pigments, particularly zinc white and smalt, present a 'catalytic' effect favouring the simultaneous formation of associated oxalates. The formation of oxalates and different degradation products from natural resins in the presence of pigments is particularly important, as it deeply affects the removability of varnishes and, more generally, the cleaning processes. Moreover, it permanently modifies the interface between painting and varnish layers as well as the aesthetic aspects of the painted surfaces. The influence of natural resins reactivity with pigments and their role in the oxalate formation is an issue still unexplored. Copyright © 2017 Elsevier Inc. All rights reserved.
The Origin and Evolution of the White-Dwarf Stars
NASA Astrophysics Data System (ADS)
Clemens, J. C.
1994-12-01
The secret of how white dwarf stars form and evolve is hidden in their interiors. There, gravity separates the constituent elements into layers; the lighter elements float to the top and the heavier ones sink. Consequently, a white dwarf's structure depends on the quantity of the elements present. Measuring that structure can tell us about the processes which formed white dwarfs and allow us to calculate how fast they cool. The latter is indispensable for measuring the age of our galaxy using the oldest white dwarfs as chronometers. Because some white dwarfs pulsate, we can exploit the resulting luminosity variations to measure their internal structure using "asteroseismology," a procedure analogous to terrestrial seismology. Exploring white dwarf structure via asteroseismology poses a difficult observational task: acquiring essentially uninterrupted time series measurements of the brightness changes of pulsating white dwarf stars. We have accomplished this task using an instrument we developed for this purpose, the Whole Earth Telescope. By combining data from the Whole Earth Telescope with published measurements, we have detected a common pattern in the pulsation spectra of all the variable, hydrogen spectra white dwarfs (DAVs), implying that they have similar surface hydrogen layer masses. Because we have identified the degree (l) and the radial overtone (k) of the modes in the pattern detected, we have been able to compare their periods to published pulsation models to find the mass of the hydrogen layer; it is about 10^-4 times the total stellar mass. This result will require adjustments to published estimates of the age of the galaxy which use theoretical cooling times of the oldest white dwarfs as a time standard; the theoretical models typically assume much thinner hydrogen layers. We have also investigated the two classes of pulsating helium spectra white dwarfs (DOVs and DBVs). From their pulsation properties, and the mass of the hydrogen layer measured for the DAVs, we have concluded that the helium surface white dwarfs do not form via the same process as the hydrogen surface stars. There must be at least two separate channels for white dwarf formation. (SECTION: Dissertation Summary)
The Origin and Evolution of the White Dwarf Stars
NASA Astrophysics Data System (ADS)
Clemens, J. C.
1994-05-01
The secret of how white dwarf stars form and evolve is hidden in their interiors. There, gravity separates the constituent elements into layers; the lighter elements float to the top and the heavier ones sink. Consequently, a white dwarf's structure depends on the quantity of the elements present. Measuring that structure can tell us about the processes which formed white dwarfs and allow us to calculate how fast they cool. The latter is indispensable for measuring the age of our galaxy using the oldest white dwarfs as chronometers. Because some white dwarfs pulsate, we can exploit the resulting luminosity variations to measure their internal structure using asteroseismology. Exploring white dwarf structure via asteroseismology poses a difficult observational task: acquiring essentially uninterrupted time series measurements of the brightness changes of pulsating white dwarf stars. We have accomplished this task using an instrument we call the Whole Earth Telescope (WET). By combining data from the WET with published measurements, we have detected a common pattern in the pulsation spectra of all the variable, hydrogen spectra white dwarfs (DAVs), implying that they have similar surface hydrogen layer masses. Because we have identified the degree (l) and the radial overtone (k) of the modes in the pattern detected, we have been able to compare their periods to published pulsation models to find the mass of the hydrogen layer; it is about 10(-4) times the total stellar mass. This result will require adjustments to published estimates of the age of the galaxy which use theoretical cooling times of the oldest white dwarfs as a time standard; the theoretical models typically assume much thinner hydrogen layers. We have also investigated the two classes of pulsating helium spectra white dwarfs (DOVs and DBVs). From their pulsation properties, and the mass of the hydrogen layer measured for the DAVs, we have concluded that the helium surface white dwarfs do not form via the same process as the hydrogen surface stars. There must be at least two separate channels for white dwarf formation.
The origin and evolution of the white dwarf stars
NASA Astrophysics Data System (ADS)
Clemens, James Christopher
1994-01-01
The secret of how white dwarf stars form and evolve is hidden in their interiors. There, gravity separates the constituent elements into layers; the lighter elements float to the top and the heavier ones sink. Consequently, a white dwarf's structure depends on the quantity of the elements present. Measuring that structure can tell Us about the processes which formed white dwarfs and allow us to calculate how fast they cool. The latter is indispensable for measuring the age of our galaxy using the oldest white dwarfs as chronometers. Because some white dwarfs pulsate, we can exploit the resulting luminosity variations to measure their internal structure using 'asteroseismology', a procedure analogous to terrestrial seismology. Exploring white dwarf structure via asteroseismology poses a difficult observational task: acquiring essentially uninterrupted time series measurements of the brightness changes of pulsating white dwarf stars. We have accomplished this task using an instrument we developed for this purpose, the Whole Earth Telescope. By combining data from the Whole Earth Telescope with published measurements, we have detected a common pattern in the pulsation spectra of all the variable, hydrogen spectra white dwarfs (DAVs), implying that they have similar surface hydrogen layer masses. Because we have identified the degree (l) and the radial overtone (k) of the modes in the pattern detected, we have been able to compare their periods to published pulsation models to find the mass of the hydrogen layer, it is about 10-4 times the total stellar mass. This result will require adjustments to published estimates of the age of the galaxy which use theoretical cooling times of the oldest white dwarfs as a time standard; the theoretical models typically assume much thinner hydrogen layers. We have also investigated the two classes of pulsating helium spectra white dwarfs (DOVs and DBVs). From their pulsation properties and the mass of the hydrogen layer measured for the DAVs, we have concluded that the helium surface white dwarfs do not form via the same process as the hydrogen surface stars. There must be at least two separate channels for white dwarf formation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sankar, M. S. Ravi, E-mail: rameshg.phy@pondiuni.edu; Gangineni, Ramesh Babu, E-mail: rameshg.phy@pondiuni.edu
The present work reveals soft lithography strategy based on self assembly and replica molding for carrying out micro and nanofabrication. It provides a convenient, effective and very low cost method for the formation and manufacturing of micro and nano structures. Al-layer of compact disc (sony CD-R) used as a stamp with patterned relief structures to generate patterns and structures with pattern size of 100nm height, 1.7 μm wide. In literature, PDMS (Polydimethylsiloxane) solution is widely used to get negative copy of the Al-layer. In this work, we have used inexpensive white glue (Polyvinylacetate + water), 15gm (□5) and PVDF (Polyvinylidenemore » difluoride) spin coated films and successfully transferred the nano patterns of Al layer on to white glue and PVDF films.« less
Formation mechanism of complex pattern on fishes' skin
NASA Astrophysics Data System (ADS)
Li, Xia; Liu, Shuhua
2009-10-01
In this paper, the formation mechanism of the complex patterns observed on the skin of fishes has been investigated by a two-coupled reaction diffusion model. The effects of coupling strength between two layers play an important role in the pattern-forming process. It is found that only the epidermis layer can produce complicated patterns that have structures on more than one length scale. These complicated patterns including super-stripe pattern, mixture of spots and stripe, and white-eye pattern are similar to the pigmentation patterns on fishes' skin.
White centered retinal hemorrhages in vitamin b(12) deficiency anemia.
Zehetner, Claus; Bechrakis, Nikolaos E
2011-05-01
To report a case of severe vitamin B(12) deficiency anemia presenting with white centered retinal hemorrhages. Interventional case report. A 40-year-old man, general practitioner himself, presented with a 1-day history of diminished left visual acuity and a drop-shaped central scotoma. The corrected visual acuities were 20/20, OD and 20/100, OS. Ophthalmic examination revealed bilaterally pale tarsal conjunctiva, discretely icteric bulbar conjunctiva and disseminated white centered intraretinal hemorrhages with foveal involvement. OCT imaging through these lesions revealed a retinal thickening caused by a sub-ILM accumulation of hyperreflective and inhomogeneous deposits within the nerve fiber layer. Immediate laboratory work-up showed severe megaloblastic anemia caused by vitamin B(12) deficiency requiring erythrocyte transfusions. Most reports of white centered retinal hemorrhages have been described in patients with leukemic retinopathy and bacterial endocarditis. It is interesting that this case of vitamin B(12) deficiency anemia retinopathy has a clinically indistinguishable fundus appearance. This is probably due to the common pathology of capillary disruption and subsequent hemostatic fibrin plug formation. In megaloblastic anemia, direct anoxia results in endothelial dysfunction. The loss of impermeability allows extrusion of whole blood and subsequent diffusion from the disrupted site throughout and above the nerve fiber layer. Therefore the biomicroscopic pattern of white centered hemorrhages observed in anemic retinopathy is most likely due to the clot formation as the reparative sequence after capillary rupture.
Li, Hai-Gang; Shen, Jian-Bo; Zhang, Fu-Suo; Lambers, Hans
2010-01-01
Background and Aims Phosphorus (P) is a major factor controlling cluster-root formation. Cluster-root proliferation tends to concentrate in organic matter (OM)-rich surface-soil layers, but the nature of this response of cluster-root formation to OM is not clear. Cluster-root proliferation in response to localized application of OM was characterized in Lupinus albus (white lupin) grown in stratified soil columns to test if the stimulating effect of OM on cluster-root formation was due to (a) P release from breakdown of OM; (b) a decrease in soil density; or (c) effects of micro-organisms other than releasing P from OM. Methods Lupin plants were grown in three-layer stratified soil columns where P was applied at 0 or 330 mg P kg−1 to create a P-deficient or P-sufficient background, and OM, phytate mixed with OM, or perlite was applied to the top or middle layers with or without sterilization. Key Results Non-sterile OM stimulated cluster-root proliferation and root length, and this effect became greater when phytate was supplied in the presence of OM. Both sterile OM and perlite significantly decreased cluster-root formation in the localized layers. The OM position did not change the proportion of total cluster roots to total roots in dry biomass among no-P treatments, but more cluster roots were concentrated in the OM layers with a decreased proportion in other places. Conclusions Localized application of non-sterile OM or phytate plus OM stimulated cluster-root proliferation of L. albus in the localized layers. This effect is predominantly accounted for by P release from breakdown of OM or phytate, but not due to a change in soil density associated with OM. No evidence was found for effects of micro-organisms in OM other than those responsible for P release. PMID:20150198
The laser radiation action on the crystal formation processes in the biological fluids
NASA Astrophysics Data System (ADS)
Malov, Alexander N.; Vaichas, Andrey A.; Novikova, Evgeniya A.
2016-11-01
The results of an experimental study of the laser radiation effect on the crystal`s formation in the volume of biological fluids that are complex multi-component solutions have been discussing. Are investigated white and natural bile in vitro. The qualitative changes were observed. Thus, at the bottom of the cell in which bile is not exposed to the laser radiation, the crystals are formed. In the irradiated bile gallstone has a thin layer of a homogeneous viscous colloidal liquid with very small, visible in polarized light crystalline formations was got. Irradiated laser bile's gallstone was covered evenly white deposit without surface defect unlike gallstone in bile without radiation exposure. A possible mechanism to explain the laser radiation action on the mineral formation in biological fluids and also practical application of this effect have been suggesting too.
Depositional and diagenetic models of some miocene evaporites on the Red Sea coast, Egypt
NASA Astrophysics Data System (ADS)
El Sayed A. A., Youssef
1986-06-01
The Miocene evaporites on the Red Sea coast, Egypt, are interpreted as a sabkha-chenier complex, which includes deposition in shallow water as well as in supratidal environments Costal sabkhas and shallow subaqueous evaporite sequences are recognised. The subaqueous sequence is represented by nodular mosaic and massive crystalline gypsum covered by a surface layer of nodular, white, dense powdery anhydrite. The sabkha sequences are represented by (a) small mounds overlying the older rock unit (Gebel El Rusas Formation) composed of fenestral stromatolitic and nodular dolomites overlain by a dolomitic limestone layer, (b) thin layer overlying the subaqueous evaporite sequence and composed of fenestral stromatolitic dolomite overlain by a nodular anhydrite layer. The nodular structure in the subaqueous as well as the sabkha sequences is formed diagenetically by transformation and recrystallization process. The dolomites in both sabkha sequences (a and b) are characterised by low Na + concentrations (143 to 755 ppm) and low values of δ 18O (- 1.85 to -8.7‰ PDB). This indicates that the dolomites were formed from saline water mixed with fresh water. These dolomites are also characterised by a low δ 13C (-12.95 to -27.1‰ PDB). This shows that the light carbon produced by the degradation of organic matter through the sulphate reduction process has played a significant role in the formation of these dolomites. Both microcrystalline and megacrystalline white dolomites are recognised in sabkha sequences. Relatively high concentrations of lead, zinc and copper are associated with the high percent of megacrystalline white dolomite.
Cho, Seungho; Jung, Sungwook; Jeong, Sanghwa; Bang, Jiwon; Park, Joonhyuck; Park, Youngrong; Kim, Sungjee
2013-01-08
Layered double hydroxide-quantum dot (LDH-QD) composites are synthesized via a room temperature LDH formation reaction in the presence of QDs. InP/ZnS (core/shell) QD, a heavy metal free QD, is used as a model constituent. Interactions between QDs (with negative zeta potentials), decorated with dihydrolipoic acids, and inherently positively charged metal hydroxide layers of LDH during the LDH formations are induced to form the LDH-QD composites. The formation of the LDH-QD composites affords significantly enhanced photoluminescence quantum yields and thermal- and photostabilities compared to their QD counterparts. In addition, the fluorescence from the solid LDH-QD composite preserved the initial optical properties of the QD colloid solution without noticeable deteriorations such as red-shift or deep trap emission. Based on their advantageous optical properties, we also demonstrate the pseudo white light emitting diode, down-converted by the LDH-QD composites.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lv, Lifen; Chen, Zhen; Liu, Guokui
2015-01-01
The formation mechanism for red phosphors K 2TiF 6:Mn 4+synthesized at room temperature has been discussed. The luminescence intensity has been improved by optimizing the synthetic process. Encapsulation of the red phosphor K 2TiF 6:Mn 4+with YAG:Ce on a GaN layer produces “warm” white LEDs with color rendering 86 at 3251 K.
Cost and Performance Report of Electrical Resistance Heating (ERH) for Source Treatment. Addendum
2008-09-29
and clay. The Upper Cretaceous Severn, Matawan, and Magothy Formations underlie the Brightseat Formation. The groundwater table at the site is...Table 1, the aquifers include, in descending order, the Aquia, the Monmouth, the Magothy , the Upper and Lower Patapsco and the Patuxent. The... Magothy Magothy Aquifer Sand, light-gray to white, with interbedded thin layers of organic clay. _-300(1) Confining Unit _-360(1) Upper Patapsco
Visser, Peter; Liu, Yanwen; Zhou, Xiaorong; Hashimoto, Teruo; Thompson, George E; Lyon, Stuart B; van der Ven, Leendert G J; Mol, Arjan J M C; Terryn, Herman A
2015-01-01
Lithium carbonate and lithium oxalate were incorporated as leachable corrosion inhibitors in model organic coatings for the protection of AA2024-T3. The coated samples were artificially damaged with a scribe. It was found that the lithium-salts are able to leach from the organic coating and form a protective layer in the scribe on AA2024-T3 under neutral salt spray conditions. The present paper shows the first observation and analysis of these corrosion protective layers, generated from lithium-salt loaded organic coatings. The scribed areas were examined by scanning and transmission electron microscopy before and after neutral salt spray exposure (ASTM-B117). The protective layers typically consist of three different layered regions, including a relatively dense layer near the alloy substrate, a porous middle layer and a flake-shaped outer layer, with lithium uniformly distributed throughout all three layers. Scanning electron microscopy and white light interferometry surface roughness measurements demonstrate that the formation of the layer occurs rapidly and, therefore provides an effective inhibition mechanism. Based on the observation of this work, a mechanism is proposed for the formation of these protective layers.
Iyigundogdu, Ilkin; Derle, Eda; Asena, Leyla; Kural, Feride; Kibaroglu, Seda; Ocal, Ruhsen; Akkoyun, Imren; Can, Ufuk
2018-02-01
Aim To compare the relationship between white matter hyperintensities (WMH) on brain magnetic resonance imaging and retinal nerve fiber layer (RNFL), choroid, and ganglion cell layer (GCL) thicknesses in migraine patients and healthy subjects. We also assessed the role of cerebral hypoperfusion in the formation of these WMH lesions. Methods We enrolled 35 migraine patients without WMH, 37 migraine patients with WMH, and 37 healthy control subjects examined in the Neurology outpatient clinic of our tertiary center from May to December 2015. RFNL, choroid, and GCL thicknesses were measured by optic coherence tomography. Results There were no differences in the RFNL, choroid, or GCL thicknesses between migraine patients with and without WMH ( p > 0.05). Choroid layer thicknesses were significantly lower in migraine patients compared to control subjects ( p < 0.05), while there were no differences in RFNL and GCL thicknesses ( p > 0.05). Conclusions The 'only cerebral hypoperfusion' theory was insufficient to explain the pathophysiology of WMH lesions in migraine patients. In addition, the thinning of the choroid thicknesses in migraine patients suggests a potential causative role for cerebral hypoperfusion and decreased perfusion pressure of the choroid layer.
NASA Astrophysics Data System (ADS)
Lee, Ju.-Woon; Seo, Ji.-Hyun; Kim, Jae.-Hun; Lee, Soo.-Young; Kim, Kwan.-Soo; Byun, Myung.-Woo
2005-04-01
Changes of the antigenicity and allergenicity of a hen's egg albumin (ovalbumin, OVA) in white layer cakes containing egg white gamma-irradiated with 10 or 20 kGy were monitored by an enzyme-linked immunosorbent assay (ELISA), individually formatted with mouse anti-OVA IgG (mouse IgG) and with egg allergic patients' IgE. Mouse IgG recognized OVA in the cakes with irradiated egg white better than that in the control with a non-irradiated one. Whereas, the detected concentrations of intact OVA in the control significantly decreased in the treatments, when determined by IgE-based ELISA. The results appeared to indicate that the antigenicity of the OVA increased, but that the allergenicity was decreased by irradiation and processing. Egg white irradiated for reducing the egg allergy could be used for producing a safer cake from the egg allergy.
Savvichev, A S; Demidenko, N A; Krasnova, E D; Kalmatskaya, O V; Kharcheva, A N; Ivanov, M V
2017-05-01
Sings of meromixis are found by means of microbiological and biogeochemical investigations in the southernn part of the Kanda Bay, an artificial water body separated front the White Sea with a railway dam. The concentration of oxygen in the bottom layer attained 1.9 mmol/L, intensity of the process of microbial sulfate reduction, 3.0 μmol of sulfur/(L day). The concentration of dissolved methane, 3.7 μmol/L. Isotopic composition of carbon in methane (δ 13 C (CH 4 ) =-79.2‰) indicates to its microbial genesis. At present, Kanda Bay is a sole in Russia man-made marine water body for which there are data on the rate of microbial processes responsible for formation of bottom water layer containing hydrogen sulfide and methane.
Protective layer formation on magnesium in cell culture medium.
Wagener, V; Virtanen, S
2016-06-01
In the past, different studies showed that hydroxyapatite (HA) or similar calcium phosphates can be precipitated on Mg during immersion in simulated body fluids. However, at the same time, in most cases a dark grey or black layer is built under the white HA crystals. This layer seems to consist as well of calcium phosphates. Until now, neither the morphology nor its influence on Mg corrosion have been investigated in detail. In this work commercially pure magnesium (cp) was immersed in cell culture medium for one, three and five days at room temperature and in the incubator (37 °C, 5% CO2). In addition, the influence of proteins on the formation of a corrosion layer was investigated by adding 20% of fetal calf serum (FCS) to the cell culture medium in the incubator. In order to analyze the formed layers, SEM images of cross sections, X-ray Photoelectron Spectroscopy (XPS), X-ray diffraction (XRD), Energy Dispersive X-ray Spectroscopy (EDX) and Fourier Transformed Infrared Spectroscopy (FTIR) measurements were carried out. Characterization of the corrosion behavior was achieved by electrochemical impedance spectroscopy (EIS) and by potentio-dynamic polarization in Dulbecco's Modified Eagle's Medium (DMEM) at 37°C. Surface analysis showed that all formed layers consist mainly of amorphous calcium phosphate compounds. For the immersion at room temperature the Ca/P ratio indicates the formation of HA, while in the incubator probably pre-stages to HA are formed. The different immersion conditions lead to a variation in layer thicknesses. However, electrochemical characterization shows that the layer thickness does not influence the corrosion resistance of magnesium. The main influencing factor for the corrosion behavior is the layer morphology. Thus, immersion at room temperature leads to the highest corrosion protection due to the formation of a compact outer layer. Layers formed in the incubator show much worse performances due to completely porous structures. The existence of proteins in DMEM seems to hinder the formation of a corrosion layer. However, protein adsorption leads to similar results as concerns corrosion protection as the formed calcium phosphate layer. Copyright © 2016 Elsevier B.V. All rights reserved.
How do Kakortokites form? Additional evidence from the Ilimaussaq Complex, S. Greenland
NASA Astrophysics Data System (ADS)
Hunt, E. J.; Finch, A. A.; Donaldson, C. H.
2012-04-01
The Ilímaussaq Complex, South Greenland, contains some of the most evolved igneous rocks in the world and is widely considered to represent one of the largest deposits of rare-earth elements, Ta, Nb and Zr. Our work is focused on the kakortokite layered series at the base of the complex. The layered series is composed of 29 repetitive 3-layer units (named -11 to +17, Bohse et al. 1971), successively enriched in arfvedsonite, eudialyte and nepheline. Despite a large body of work on the development of the kakortokite series, no consensus on the process/processes that produced the layering has been forthcoming. We present the preliminary findings of a combined petrographical, quantitative textural and geochemical analysis on the kakortokite series, initially focused on layer 0. Although many of the hypotheses for the formation of these rocks invoke a pressure change, the enrichment of the series in volatile constituents (CH4 and H; Konnerup-Madsen, 2001) has led many authors to suggest crystallisation occurred in a closed system, with processes of gravitational settling formed the layering. Crystal size distribution (CSD) analysis, performed on hand-digitised photomicrographs, provides insight into processes of crystal nucleation and growth. The results indicate that simple cumulate settling is untenable for layer 0. Instead the plot gradients indicate that the arfvedsonite in the black kakortokite crystallised in situ above a sharp boundary to the white kakortokite. The CSD plots for the alkali feldspars indicate secondary nucleation occurred, with the small crystal size fraction forming in situ. The feldspar phenocrysts also exhibit embayment textures indicating partial resorption. These graphs are consistent with a model whereby an influx of hotter magma results in the partial thermal erosion of the underlying white kakortokite, followed by in situ crystallisation of arfvedsonite above the melt infiltration boundary, followed by in situ crystallisation of eudialyte. Then nepheline and alkali feldspar crystallised through multiple modes of nucleation, developing the characteristic layering. Geochemical trends described by Pfaff et al. (2008) support an open system replenishment model during the formation of layer 0, and potentially also layers +4 and +8. To further this work we intend to apply this combined approach to investigate the formation of individual layers, scaling these processes into a model for the development of the Ilímaussaq complex. Bohse et al. (1971). Rapport Grønlands Geologiske Undergesølgelse, 36, 43 pp. Konnerup-Madsen (2001). Geology Greenland Surv. Bull., 190, 159-166. Pfaff et al. (2008). Lithos, 106, 280-296.
NASA Astrophysics Data System (ADS)
Li, Mingtao; Li, Wenlian; Chen, Lili; Kong, Zhiguo; Chu, Bei; Li, Bin; Hu, Zhizhi; Zhang, Zhiqiang
2006-02-01
Electroluminescent colors of organic light-emitting diodes (OLEDs) can be tuned by modulating the thickness of gadolinium (Gd) complex layer sandwiched between an electron-transporting layer (ETL) and a hole-transporting layer (HTL). The emission colors, which originate from the two interfacial exciplexes simultaneously, can be tuned from green to orange by increasing the thickness of the Gd-complex layer. The atom force microscope images have proved that there are many gaps in the thinner Gd-complex layers. Therefore, besides the exciplex formation between Gd complex and HTL, the exciplex between ETL and HTL is also formed. The results demonstrate that a simple way of color tuning can be realized by inserting a thin layer of color tuning material between HTL with lower ionization potentials and ETL with higher electron affinities. Moreover, photovoltaic device and white OLED based on the two exciplexes are also discussed.
Effects of cell wall components on the functionality of wheat gluten.
Autio, K
2006-01-01
Normal white wheat flours and especially whole meal flour contain solids from the inner endosperm cell walls, from germ, aleurone layer and the outer layers of cereal grains. These solids can prevent either gluten formation or gas cell structure. The addition of small amounts of pericarp layers (1-2%) to wheat flour had a marked detrimental effect on loaf volume. Microstructural studies indicated that in particular the epicarp hairs appeared to disturb the gas cell structure. The detrimental effects of insoluble cell walls can be prevented by using endoxylanases. It has been shown that some oxidative enzymes, naturally present in flour or added to the dough, will oxidise water-extractable arabinoxylans via ferulic acid bridges, and the resulting arabinoxylan gel will hinder gluten formation. The negative effects of water-unextractable arabinoxylans on gluten yield and rheological properties can be compensated by the addition of ferulic acid. Free ferulic acid can probably prevent arabinoxylan cross-linking via ferulic acid.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wook Kim, Jin; Yoo, Seung Il; Sung Kang, Jin
2015-06-28
We analyzed the performance of multi-emissive white phosphorescent organic light-emitting diodes (PHOLEDs) in relation to various red emitting sites of hole and electron transport layers (HTL and ETL). The shift of the recombination zone producing stable white emission in PHOLEDs was utilized as luminance was increased with red emission in its electron transport layer. Multi-emissive white PHOLEDs including the red light emitting electron transport layer yielded maximum external quantum efficiency of 17.4% with CIE color coordinates (−0.030, +0.001) shifting only from 1000 to 10 000 cd/m{sup 2}. Additionally, we observed a reduction of energy loss in the white PHOLED via Ir(piq){submore » 3} as phosphorescent red dopant in electron transport layer.« less
Healed corneal ulcer with keloid formation.
Alkatan, Hind M; Al-Arfaj, Khalid M; Hantera, Mohammed; Al-Kharashi, Soliman
2012-04-01
We are reporting a 34-year-old Arabic white female patient who presented with a white mass covering her left cornea following multiple ocular surgeries and healed corneal ulcer. The lesion obscured further view of the iris, pupil and lens. The patient underwent penetrating keratoplasty and the histopathologic study of the left corneal button showed epithelial hyperplasia, absent Bowman's layer and subepithelial fibrovascular proliferation. The histopathologic appearance was suggestive of a corneal keloid which was supported by further ultrastructural study. The corneal graft remained clear 6 months after surgery and the patient was satisfied with the visual outcome. Penetrating keratoplasty may be an effective surgical option for corneal keloids in young adult patients.
Steele-Mallory, B. A.
1982-01-01
The White Rim Sandstone Member of the Cutler Formation of Permian age in Canyonlands National Park, Utah, was deposited in coastal eolian and associated interdune environments. This conclusion is based on stratigraphic relationships primary sedimentary structures, and petrologic features. The White Rim consists of two major genetic units. The first represents a coastal dune field and the second represents related interdune ponds. Distinctive sedimentary structures of the coastal dune unit include large- to medium-scale, unidirectional, tabular-planar cross-bedding; high-index ripples oriented parallel to dip direction of the foresets; coarse-grained lag layers; avalanche or slump marks; and raindrop impressions. Cross-bedding measurements suggest the dunes were deposited as transverse ridges by a dominantly northwest to southeast wind. Distinctive sedimentary structures of the interdune pond unit include wavy, horizontally laminated bedding, adhesion ripples, and desiccation polygons. These features may have been produced by alternate wetting and drying of sediment during water-table fluctuations. Evidence of bioturbation is also present in this unit. Petrologic characteristics of the White Rim helped to define the depositional environment as coastal. A crinoid fragment was identified at one location; both units are enriched in heavy minerals, and small amounts of well rounded, reworked glauconite were found in the White Rim throughout the study area. Earlier work indicates that the White Rim sandstone is late Wolfcampian to early Leonardian in age. During this time, the Canyonlands area was located in a depositional area alternately dominated by marine and nonmarine environments. Results of this study suggest the White Rim represents a coastal dune field that was deposited by predominantly on-shore winds during a period of marine transgression.
Lim, Dong Kyu; Mo, Changyeun; Long, Nguyen Phuoc; Kim, Giyoung; Kwon, Sung Won
2017-03-29
White rice is the final product after the hull and bran layers have been removed during the milling process. Although lysoglycerophospholipids (lysoGPLs) only occupy a small proportion in white rice, they are essential for evaluating rice authenticity and quality. In this study, we developed a high-throughput and targeted lipidomics approach that involved direct infusion-tandem mass spectrometry with multiple reaction monitoring to simultaneously profile lysoGPLs in white rice. The method is capable of characterizing 17 lysoGPLs within 1 min. In addition, unsupervised and supervised analyses exhibited a considerably large diversity of lysoGPL concentrations in white rice from different origins. In particular, a classification model was built using identified lysoGPLs that can differentiate white rice from Korea, China, and Japan. Among the discriminatory lysoGPLs, for the lysoPE(16:0) and lysoPE(18:2) compositions, there were relatively small within-group variations, and they were considerably different among the three countries. In conclusion, our proposed method provides a rapid, high-throughput, and comprehensive format for profiling lysoGPLs in rice samples.
Study of the microstructure and mechanical properties of white clam shell.
Liang, Yunhong; Zhao, Qian; Li, Xiujuan; Zhang, Zhihui; Ren, Luquan
2016-08-01
The microstructure and mechanical properties of white clam shell were investigated, respectively. It can be divided into horny layer, prismatic layer and nacreous layer. Crossed-lamellar structure was the microstructural characteristic. The extension direction of lamellae in prismatic layer was different from that in nacreous layer, which formed an angle on the interface between prismatic layer and nacreous layer. The phase component of three layers was CaCO3 with crystallization morphology of aragonite, which confirmed the crossed-lamellar structural characteristic. White calm shell exhibited perfect mechanical properties. The microhardness values of three layers were 273HV, 240HV and 300HV, respectively. The average values of flexure and compression strength were 110.2MPa and 80.1MPa, respectively. The macroscopical cracks crossed the lamellae and finally terminated within the length range of about 80μm. It was the microstructure characteristics, the angle on the interface between prismatic and nacreous layer and the hardness diversity among the different layers that enhanced mechanical properties of white calm shell. Copyright © 2016 Elsevier Ltd. All rights reserved.
Zhao, Yongbiao; Chen, Jiangshan; Ma, Dongge
2013-02-01
In this paper, highly efficient and simple monochrome blue, green, orange, and red organic light emitting diodes (OLEDs) based on ultrathin nondoped emissive layers (EMLs) have been reported. The ultrathin nondoped EML was constructed by introducing a 0.1 nm thin layer of pure phosphorescent dyes between a hole transporting layer and an electron transporting layer. The maximum external quantum efficiencies (EQEs) reached 17.1%, 20.9%, 17.3%, and 19.2% for blue, green, orange, and red monochrome OLEDs, respectively, indicating the universality of the ultrathin nondoped EML for most phosphorescent dyes. On the basis of this, simple white OLED structures are also demonstrated. The demonstrated complementary blue/orange, three primary blue/green/red, and four color blue/green/orange/red white OLEDs show high efficiency and good white emission, indicating the advantage of ultrathin nondoped EMLs on constructing simple and efficient white OLEDs.
Simple single-emitting layer hybrid white organic light emitting with high color stability
NASA Astrophysics Data System (ADS)
Nguyen, C.; Lu, Z. H.
2017-10-01
Simultaneously achieving a high efficiency and color quality at luminance levels required for solid-state lighting has been difficult for white organic light emitting diodes (OLEDs). Single-emitting layer (SEL) white OLEDs, in particular, exhibit a significant tradeoff between efficiency and color stability. Furthermore, despite the simplicity of SEL white OLEDs being its main advantage, the reported device structures are often complicated by the use of multiple blocking layers. In this paper, we report a highly simplified three-layered white OLED that achieves a low turn-on voltage of 2.7 V, an external quantum efficiency of 18.9% and power efficiency of 30 lm/W at 1000 cd/cm2. This simple white OLED also shows good color quality with a color rendering index of 75, CIE coordinates (0.42, 0.46), and little color shifting at high luminance. The device consists of a SEL sandwiched between a hole transport layer and an electron transport layer. The SEL comprises a thermally activated delayer fluorescent molecule having dual functions as a blue emitter and as a host for other lower energy emitters. The improved color stability and efficiency in such a simple device structure is explained as due to the elimination of significant energy barriers at various organic-organic interfaces in the traditional devices having multiple blocking layers.
Recombination zone in white organic light emitting diodes with blue and orange emitting layers
NASA Astrophysics Data System (ADS)
Tsuboi, Taiju; Kishimoto, Tadashi; Wako, Kazuhiro; Matsuda, Kuniharu; Iguchi, Hirofumi
2012-10-01
White fluorescent OLED devices with a 10 nm thick blue-emitting layer and a 31 nm thick orange-emitting layer have been fabricated, where the blue-emitting layer is stacked on a hole transport layer. An interlayer was inserted between the two emitting layers. The thickness of the interlayer was changed among 0.3, 0.4, and 1.0 nm. White emission with CIE coordinates close to (0.33, 0.33) was observed from all the OLEDs. OLED with 0.3 nm thick interlayer gives the highest maximum luminous efficiency (11 cd/A), power efficiency (9 lm/W), and external quantum efficiency (5.02%). The external quantum efficiency becomes low with increasing the interlayer thickness from 0 nm to 1.0 nm. When the location of the blue- and orange-emitting layers is reversed, white emission was not obtained because of too weak blue emission. It is suggested that the electron-hole recombination zone decreases nearly exponentially with a distance from the hole transport layer.
White dwarf stars and the age of the Galactic disk
NASA Technical Reports Server (NTRS)
Wood, M. A.
1990-01-01
The history of the Galaxy is written in its oldest stars, the white dwarf (WD) stars. Significant limits can be placed on both the Galactic age and star formation history. A wide range of input WD model sequences is used to derive the current limits to the age estimates suggested by fitting to the observed falloff in the WD luminosity function. The results suggest that the star formation rate over the history of the Galaxy has been relatively constant, and that the disk age lies in the range 6-12 billion years, depending upon the assumed structure of WD stars, and in particular on the core composition and surface helium layer mass. Using plausible mixed C/O core input models, the estimates for the disk age range from 8-10.5 Gyr, i.e.,sustantially younger than most age estimates for the halo globular clusters. After speculating on the significance of the results, expected observational and theoretical refinements which will further enhance the reliability of the method are discussed.
Barbut, S
2013-01-01
1. The development of crust during a 22-min period was evaluated in an oven, and in previously cooked-in-bag products (no crust) placed in an oven for 10 min. The oven-roasted products started to develop a thin (2-4 μm) crust layer after 4 min. At that point, the colour of the fillets turned white but no browning was observed. As roasting time increased, crust thickness and shear force increased, the product turned brown and eventually black at certain spots. 2. Light microscopy revealed the shrinking of muscle fibres close to the surface, as they also lost water. At a certain point, tears between the different layers started to appear. The inner muscle fibres also progressively shrank and the spaces between them increased. Microscopy of cook-in-bag products revealed no crust formation during heating. Upon moving to the oven, crust started to form but was much faster compared with the other products. 3. Cook-in-the-bag samples showed a higher rate of cook loss during the first 12 min (to internal 70°C) compared with oven heating. This could have been due to the fast heating rate in water and/or no crust formation. 4. White colour was fully formed on water-cooked fillets within 2 min (L* = 83), while it was gradually forming on oven-roasted samples (max L* of 79 after 12 min). 5. Shear force measurements showed an increase in both treatments up to 18 min, with a decrease thereafter (when dry crust started to crack).
Hybrid Structure White Organic Light Emitting Diode for Enhanced Efficiency by Varied Doping Rate.
Kim, Dong-Eun; Kang, Min-Jae; Park, Gwang-Ryeol; Kim, Nam-Kyu; Lee, Burm-Jong; Kwon, Young-Soo; Shin, Hoon-Kyu
2016-03-01
Novel materials based on Zn(HPB)2 and Ir-complexes were synthesized as blue or red emitters, respectively. White organic light emitting diodes were fabricated using the Zn(HPB)2 as a blue emitting layer, Ir-complexes as a red emitting layer and Alq3 as a green emitting layer. The obtained experimental results, were based on white OLEDs fabricated using double emission layers of Zn(HPB)2 and Alq3:Ir-complexes. The doping rate of the Ir-complexes was varied at 0.4%, 0.6%, 0.8% and 1.0%. When the doping rate of the Alq3:Ir-complexes was 0.6%, a white emission was achieved. The Commission Internationale de l'Eclairage coordinates of the device's white emission were (0.316, 0.331) at an applied voltage of 10.75 V.
The preparation and application of white graphene
NASA Astrophysics Data System (ADS)
Zhou, Chenghong
2014-12-01
In this article, another thin film named white graphene is introduced, containing its properties, preparation and potential applications. White graphene, which has the same structure with graphene but quite different electrical properties, can be exfoliated from its layered crystal, hexagonal boron nitride. Here two preparation methods of white graphene including supersonic cleavage and supercritical cleavage are presented. Inspired by the cleavage of graphene oxide, supersonic is applied to BN and few-layered films are obtained. Compared with supersonic cleavage, supercritical cleavage proves to be more successful. As supercritical fluid can diffuse into interlayer space of the layered hexagonal boron nitride easily, once reduce the pressure of the supercritical system fast, supercritical fluid among layers expands and escapes form interlayer, consequently exfoliating the hexagonal boron nitride into few layered structure. A series of characterization demonstrate that the monolayer white graphene prepared in the process matches its theoretical thickness 0.333nm and has lateral sizes at the order of 10μm. Supercritical cleavage proves to be successful and shows many advantages, such as good production quality and fast production cycle. Furthermore, the band energy of white graphene, which shows quite different from graphene, is simulated via tight-bonding in theory. The excellent properties will lead to extensive applications of white graphene. As white graphene has not received enough concern and exploration, it's potential to play a significant role in the fields of industry and science.
NASA Technical Reports Server (NTRS)
Musielak, Zdzislaw E.
1987-01-01
The radiative damping of acoustic and MHD waves that propagate through white dwarf photospheric layers is studied, and other damping processes that may be important for the propagation of the MHD waves are calculated. The amount of energy remaining after the damping processes have occurred in different types of waves is estimated. The results show that lower acoustic fluxes should be expected in layered DA and homogeneous DB white dwarfs than had previously been estimated. Acoustic emission manifests itself in an enhancement of the quadrupole term, but this term may become comparable to or even lower than the dipole term for cool white dwarfs. Energy carried by the acoustic waves is significantly dissipated in deep photospheric layers, mainly because of radiative damping. Acoustically heated corona cannot exist around DA and DB white dwarfs in a range T(eff) = 10,000-30,000 K and for log g = 7 and 8. However, relatively hot and massive white dwarfs could be exceptions.
White dwarf stars with chemically stratified atmospheres
NASA Technical Reports Server (NTRS)
Muchmore, D.
1982-01-01
Recent observations and theory suggest that some white dwarfs may have chemically stratified atmospheres - thin layers of hydrogen lying above helium-rich envelopes. Models of such atmospheres show that a discontinuous temperature inversion can occur at the boundary between the layers. Model spectra for layered atmospheres at 30,000 K and 50,000 K tend to have smaller decrements at 912 A, 504 A, and 228 A than uniform atmospheres would have. On the basis of their continuous extreme ultraviolet spectra, it is possible to distinguish observationally between uniform and layered atmospheres for hot white dwarfs.
The interacting binary white dwarf systems
NASA Astrophysics Data System (ADS)
Provencal, Judith Lucille
1994-01-01
Interacting binary white dwarfs are believed to contain two white dwarfs of extreme mass ratio, one of which is filling its Roche Lobe, transferring material to its companion via an accretion disk. The defining characteristic of an IBWD is the nondetection of hydrogen in the system. IBWD's represent the culmination of binary star evolution. In this final death dance, two degenerate objects are entangled, the massive white dwarf tidally stripping and devouring its helpless companion's outer layers. Because a white dwarf expands as it loses mass, the end result of this process is the complete absorption of one star by the other . My goal in the examination of these systems is to understand their photometric behavior and determine the best model of these objects. The IBWD's represent the endpoint of binary evolution. Knowledge of the physical properties of these objects will provide constraints on theories of binary evolution, white dwarf formation, the thermal and physical structure of accreting white dwarfs, and nucleosynthesis. To achieve this goal, I have analyzed the most comprehensive high speed photometric data sets available on 5 of the 6 known objects: AM CVn, PG1346+082, CP Eri, V803 Cen, and G61-29. AM CVn and PG1346+0S2 were targets of the Whole Earth Telescope in 1988 and 1990 respectively. We find a range of variation timescales, from minutes to days, and a range of physical behaviour. Most importantly, we measure a rate of period change of P = 1.68 +/- 0.03 x 10-11s/s for the dominant variation in AM CVn. We also find the differences in behavior can be attributed to a difference in mass transfer rate that may be evolutionary in origin. Finally, I discuss in detail the observational characteristics of each object, and overall properties of the IBWD family. In conclusion, I discuss past and future history of these objects, and touch on their possible influence on our knowledge of white dwarf evolution and formation. The IBWD's are possible progenitors of helium white dwarfs. If this hypothesis is correct, these systems represent a second entry point onto the white dwarf cooling curve.
White OLED in Hybrid Structure for Enhancing Color Purity.
Kim, Dong-Eun; Kang, Min-Jae; Park, Gwang-Ryeol; Lee, Burm-Jong; Kwon, Young-Soo; Shin, Hoon-Kyu
2016-06-01
We synthesized the red emission material, bis(1,4-bis(5-phenyloxazol-2-yl)phenyl) iridium(picolate) [Ir-complexes] and the blue emission material, bis (2-(2-hydroxyphenyl) benzoxazolate)zinc [Zn(HPB)2]. White Organic Light Emitting Diodes were fabricated by using Zn(HPB)2 for a blue emitting layer, Ir-complexes for a red emitting layer and a tris (8-hydroxy quinoline)aluminum [Alq3] for a green emitting layer. The important experimental results obtained, white OLED was fabricated by using double emitting layers of Zn(HPB)2 and Alq3:Ir-complexes, and hole blocking layer of 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline[BCP]. We also varied the thickness of BCP. When the thickness of BCP layer was 5 nm, white emission was achieved. We obtained a maximum luminance of 5400 cd/m2 at a current density of 650 mA/cm2. The CIE coordinates was (0.339, 0.323) at voltage of 10 V.
The formation of low-angle eolian stratification through the migration of protodunes
NASA Astrophysics Data System (ADS)
Ewing, R. C.; Phillips, J. D.; Weymer, B. A.; Barrineaux, P.; Bowling, R.; Nittrouer, J. A.
2017-12-01
Protodunes are low-relief, slipfaceless migrating bed forms that represent the emergent form of eolian sand dunes. Protodunes develop as cm-scale topography out of a flat bed of sand and evolve spatially and temporally into dunes with angle-of-repose slipfaces. Protodunes at White Sands Dune Field in New Mexico form at the upwind, trailing margin of the field, on dune stoss slopes, and in interdune areas. Here we analyze protodunes at the upwind margin of White Sands by coupling 200 mHz ground penetrating radar (GPR) with time-series high-resolution topography to characterize the origin and evolution of protodune stratification and the stratigraphic transition into fully developed dunes. We surveyed a 780m transect in the resultant transport direction of the dune field from SW to NE from sand patches through protodunes and into the first dune. We used airborne lidar surveys and structure-from-motion photogrammetry from 2007, 2008, 2009, 2010, 2015, and 2016. We find that protodune stratification forms at angles between 0-10 degrees by protodune migration. Dip angles increase as protodune amplitude increases along the transect. Accumulation of low-angle stratification increases across the first 650m and ranges from none to subcritical. Nearly aggradational accumulation of low-angle stratification occurs over the last 100m and is a precursor to angle-of-repose slipface formation. The origins of the aggradation and slipface development appear to be linked to protodune merging, dune interactions, and possibly to the development of a dune field-scale boundary layer. Protodunes and the formation of low-angle stratification at the upwind margin of White Sands are a good analog to the initiation of dune field development from sand sheets and the formation of low-angle stratification found at the base of eolian successions in the stratigraphic record.
Booker, Edward P; Thomas, Tudor H; Quarti, Claudio; Stanton, Michael R; Dashwood, Cameron D; Gillett, Alexander J; Richter, Johannes M; Pearson, Andrew J; Davis, Nathaniel J L K; Sirringhaus, Henning; Price, Michael B; Greenham, Neil C; Beljonne, David; Dutton, Siân E; Deschler, Felix
2017-12-27
We investigate the origin of the broadband visible emission in layered hybrid lead-halide perovskites and its connection with structural and photophysical properties. We study ⟨001⟩ oriented thin films of hexylammonium (HA) lead iodide, (C 6 H 16 N) 2 PbI 4 , and dodecylammonium (DA) lead iodide, (C 12 H 28 N) 2 PbI 4 , by combining first-principles simulations with time-resolved photoluminescence, steady-state absorption and X-ray diffraction measurements on cooling from 300 to 4 K. Ultrafast transient absorption and photoluminescence measurements are used to track the formation and recombination of emissive states. In addition to the excitonic photoluminescence near the absorption edge, we find a red-shifted, broadband (full-width at half-maximum of about 0.4 eV), emission band below 200 K, similar to emission from ⟨110⟩ oriented bromide 2D perovskites at room temperature. The lifetime of this sub-band-gap emission exceeds that of the excitonic transition by orders of magnitude. We use X-ray diffraction measurements to study the changes in crystal lattice with temperature. We report changes in the octahedral tilt and lattice spacing in both materials, together with a phase change around 200 K in DA 2 PbI 4 . DFT simulations of the HA 2 PbI 4 crystal structure indicate that the low-energy emission is due to interstitial iodide and related Frenkel defects. Our results demonstrate that white-light emission is not limited to ⟨110⟩ oriented bromide 2D perovskites but a general property of this class of system, and highlight the importance of defect control for the formation of low-energy emissive sites, which can provide a pathway to design tailored white-light emitters.
Output blue light evaluation for phosphor based smart white LED wafer level packages.
Kolahdouz, Zahra; Rostamian, Ali; Kolahdouz, Mohammadreza; Ma, Teng; van Zeijl, Henk; Zhang, Kouchi
2016-02-22
This study presents a blue light detector for evaluating the output light of phosphor based white LED package. It is composed of a silicon stripe-shaped photodiode designed and implemented in a 2 μm BiCMOS process which can be used for wafer level integration of different passive and active devices all in just 5 lithography steps. The final device shows a high selectivity to blue light. The maximum responsivity at 480 nm is matched with the target blue LED illumination. The designed structure have better responsivity compared to simple photodiode structure due to reducing the effect of dead layer formation close to the surface because of implantation. It has also a two-fold increase in the responsivity and quantum efficiency compared to previously similar published sensors.
Does prism width from the shell prismatic layer have a random distribution?
NASA Astrophysics Data System (ADS)
Vancolen, Séverine; Verrecchia, Eric
2008-10-01
A study of the distribution of the prism width inside the prismatic layer of Unio tumidus (Philipsson 1788, Diss Hist-Nat, Berling, Lundæ) from Lake Neuchâtel, Switzerland, has been conducted in order to determine whether or not this distribution is random. Measurements of 954 to 1,343 prism widths (depending on shell sample) have been made using a scanning electron microscope in backscattered electron mode. A white noise test has been applied to the distribution of prism sizes (i.e. width). It shows that there is no temporal cycle that could potentially influence their formation and growth. These results suggest that prism widths are randomly distributed, and related neither to external rings nor to environmental constraints.
NASA Astrophysics Data System (ADS)
Costa, B. F. O.; Lehmann, R.; Wengerowsky, D.; Blumers, M.; Sansano, A.; Rull, F.; Schmidt, H.-J.; Dencker, F.; Niebur, A.; Klingelhöfer, G.; Sindelar, R.; Renz, F.
2016-12-01
In a rediscovered Klimt-artwork " Trompetender Putto" material tests have been conducted. We report studies on different points of the painting. The spots are of different colors, mainly taken in spots of the painting not restaurated. MIMOS II Fe-57 Mössbauer spectroscopy revealed mainly haematite and nano particle oxides in red and red/brown colors. Brown colors also contain crystallized goethite. In brown/ochre colors the same pigments as in brown colors are observed, but there is less quantity of goethite and more quantity of haematite. The green colors show Fe-rich clays, like celadonite or glauconite and or lepidocrocite as main component. Raman spectroscopy revealed cinnabar in red colors of the Scarf; and massicot in brown/ochre points, i.e. in the Left Wing of the "Putto". With scanning electron microscopy, various layers of the original and of overpainting could be recognized. The investigations of sample 1 show three layers of colored materials, which were identified as zinc-white, cinnabar and galena as well as carbon compounds. In sample 2 four layers could be detected. These are identified (bottom to top) as gypsum and lead-white (layer 1), zinc-white (layer 2), lead-white and cinnabar (layer 3) and titanium-white (layer 4). The elementary composition was examined with the portable X-ray-fluorescence analysis for qualitative manner at different points.
Layering in peralkaline magmas, Ilímaussaq Complex, S Greenland
NASA Astrophysics Data System (ADS)
Hunt, Emma J.; Finch, Adrian A.; Donaldson, Colin H.
2017-01-01
The peralkaline to agpaitic Ilímaussaq Complex, S. Greenland, displays spectacular macrorhythmic (> 5 m) layering via the kakortokite (agpaitic nepheline syenite), which outcrops as the lowest exposed rocks in the complex. This study applies crystal size distribution (CSD) analyses and eudialyte-group mineral chemical compositions to study the marker horizon, Unit 0, and the contact to the underlying Unit - 1. Unit 0 is the best-developed unit in the kakortokites and as such is ideal for gaining insight into processes of crystal formation and growth within the layered kakortokite. The findings are consistent with a model whereby the bulk of the black and red layers developed through in situ crystallisation at the crystal mush-magma interface, whereas the white layer developed through a range of processes operating throughout the magma chamber, including density segregation (gravitational settling and flotation). Primary textures were modified through late-stage textural coarsening via grain overgrowth. An open-system model is proposed, where varying concentrations of halogens, in combination with undercooling, controlled crystal nucleation and growth to form Unit 0. Our observations suggest that the model is applicable more widely to the layering throughout the kakortokite series and potentially other layered peralkaline/agpaitic rocks around the world.
Winds from accretion disks - Ultraviolet line formation in cataclysmic variables
NASA Technical Reports Server (NTRS)
Shlosman, Isaac; Vitello, Peter
1993-01-01
Winds from accretion disks in cataclysmic variable stars are ubiquitous. Observations by IUE reveal P Cygni-shaped profiles of high-ionization lines which are attributed to these winds. We have studied the formation of UV emission lines in cataclysmic variables by constructing kinematical models of biconical rotating outflows from disks around white dwarfs. The photoionization in the wind is calculated taking into account the radiation fields of the disk, the boundary layer, and the white dwarf. The 3D radiative transfer is solved in the Sobolev approximation. Effects on the line shapes of varying basic physical parameters of the wind are shown explicitly. We identify and map the resonant scattering regions in the wind which have strongly biconical character regardless of the assumed velocity and radiation fields. Rotation at the base of the wind introduces a radial shear which decreases the line optical depth and reduces the line core intensity. We find that it is possible to reproduce the observed P Cygni line shapes and make some predictions to be verified in high-resolution observations.
Study on the Impact Resistance of Bionic Layered Composite of TiC-TiB2/Al from Al-Ti-B4C System
Zhao, Qian; Liang, Yunhong; Zhang, Zhihui; Li, Xiujuan; Ren, Luquan
2016-01-01
Mechanical property and impact resistance mechanism of bionic layered composite was investigated. Due to light weight and high strength property, white clam shell was chosen as bionic model for design of bionic layered composite. The intercoupling model between hard layer and soft layer was identical to the layered microstructure and hardness tendency of the white clam shell, which connected the bionic design and fabrication. TiC-TiB2 reinforced Al matrix composites fabricated from Al-Ti-B4C system with 40 wt. %, 50 wt. % and 30 wt. % Al contents were treated as an outer layer, middle layer and inner layer in hard layers. Pure Al matrix was regarded as a soft layer. Compared with traditional homogenous Al-Ti-B4C composite, bionic layered composite exhibited high mechanical properties including flexural strength, fracture toughness, compressive strength and impact toughness. The intercoupling effect of layered structure and combination model of hard and soft played a key role in high impact resistance of the bionic layered composite, proving the feasibility and practicability of the bionic model of a white clam shell. PMID:28773827
Modification of Low-Alloy Steel Surface by High-Temperature Gas Nitriding Plus Tempering
NASA Astrophysics Data System (ADS)
Jiao, Dongling; Li, Minsong; Ding, Hongzhen; Qiu, Wanqi; Luo, Chengping
2018-02-01
The low-alloy steel was nitrided in a pure NH3 gas atmosphere at 640 660 °C for 2 h, i.e., high-temperature gas nitriding (HTGN), followed by tempering at 225 °C, which can produce a high property surface coating without brittle compound (white) layer. The steel was also plasma nitriding for comparison. The composition, microstructure and microhardness of the nitrided and tempered specimens were examined, and their tribological behavior investigated. The results showed that the as-gas-nitrided layer consisted of a white layer composed of FeN0.095 phase (nitrided austenite) and a diffusional zone underneath the white layer. After tempering, the white layer was decomposed to a nano-sized (α-Fe + γ'-Fe4N + retained austenite) bainitic microstructure with a high hardness of 1150HV/25 g. Wear test results showed that the wear resistance and wear coefficient yielded by the complex HTGN plus tempering were considerably higher and lower, respectively, than those produced by the conventional plasma nitriding.
Slanic Tuff and associated Miocene evaporite deposits, Eastern Carpathians, Romania
NASA Astrophysics Data System (ADS)
Bojar, Ana-Voica; Halas, Stanislaw; Barbu, Victor; Bojar, Hans-Peter; Wojtowicz, Artur; Duliu, Octavian
2017-04-01
Miocene tuffs of calcalkaline composition are widespread in the Carpathians, Pannonian and Eastern Alpine realm. Their occurrences are described in outcrops as well as in the subsurface. The presence of such tuffs may offer important criteria for stratigraphic correlations and help to establish the absolute age of deposits and associated climatic and environmental changes. The Green Stone Hill (Muntele Piatra Verde) is situated to the north of Slanic-Prahova salt mine, in the bend region of the Eastern Carpathians, Romania. From bottom to top the section is composed of: marls with Globigerina followed by the so called Slanic tuff, gypsum and salt breccia and, on the top, radiolarian bearing shales. The stratigraphic age of the section is Middle to Upper Badenian (nannoplankton zones NN5 to NN6). XRD investigations of the green Slanic tuff show that the main mineralogical component is clinoptilolite (zeolite) followed by quartz and plagioclase. For this type of tuff there is no crystalline phase, which may be used for radiometric dating. In the middle part of the green tuff interval, we found discrete layers of a much coarser white tuff, with mineralogy consisting of quartz, plagioclase, biotite and clinoptilolite. The white tuff forming distinct layers within the green tuff, has an andesitic composition. 40Ar/39Ar dating of biotite concentrates from the white tuff gives an age of 13.6±0.2Ma, the dated layer being situated below the gypsum and salt breccia. We consider that the age is well constraining the time when the green tuffs were formed at the border of the basin. From this level upwards discrete gypsum layers occurs within the green tuffs, the age may be considered as indicating the base of the evaporitic sequence. To the south-east, from this level upwards evaporites, mainly salt formed. The age suggests that evaporitic deposits formed after the Mid Badenian climatic optimum, evaporitic formation being related to restricted circulation due the drop of sea-level and tectonism.
Kim, Dong-Eun; Kwon, Young-Soo; Shin, Hoon-Kyu
2015-01-01
We have studied white OLED using two types of Zn-complexes as an emitting layer. We synthesized brand new two emissive materials, Zn(HPQ)2 as a yellow emitting material and Zn(HPB)2 as a blue emitting material. The Zn-complexes are low-molecular compounds and stable thermally. The fundamental structures of the fabricated OLED was ITO/NPB (40 nm)/Zn(HPB)2 (30 nm)/Zn(HPQ)2/LiF/Al. We varied the thickness of the Zn(HPQ)2 layer by 20, 30, and 40 nm. When the thickness of the Zn(HPQ)2 layer was 20 nm, the white emission was achieved. The maximum luminance was 12,000 cd/m2 at a current density of 800 mA/cm2. The CIE coordinates of the white emission were (0.319, 0.338) at an applied voltage of 10 V.
Stacked white OLED having separate red, green and blue sub-elements
Forrest, Stephen; Qi, Xiangfei; Slootsky, Michael
2014-07-01
The present invention relates to efficient organic light emitting devices (OLEDs). The devices employ three emissive sub-elements, typically emitting red, green and blue, to sufficiently cover the visible spectrum. Thus, the devices may be white-emitting OLEDs, or WOLEDs. Each sub-element comprises at least one organic layer which is an emissive layer--i.e., the layer is capable of emitting light when a voltage is applied across the stacked device. The sub-elements are vertically stacked and are separated by charge generating layers. The charge-generating layers are layers that inject charge carriers into the adjacent layer(s) but do not have a direct external connection.
Bio-inspired, large scale, highly-scattering films for nanoparticle-alternative white surfaces
Syurik, Julia; Siddique, Radwanul Hasan; Dollmann, Antje; Gomard, Guillaume; Schneider, Marc; Worgull, Matthias; Wiegand, Gabriele; Hölscher, Hendrik
2017-01-01
Inspired by the white beetle of the genus Cyphochilus, we fabricate ultra-thin, porous PMMA films by foaming with CO2 saturation. Optimising pore diameter and fraction in terms of broad-band reflectance results in very thin films with exceptional whiteness. Already films with 60 µm-thick scattering layer feature a whiteness with a reflectance of 90%. Even 9 µm thin scattering layers appear white with a reflectance above 57%. The transport mean free path in the artificial films is between 3.5 µm and 4 µm being close to the evolutionary optimised natural prototype. The bio-inspired white films do not lose their whiteness during further shaping, allowing for various applications. PMID:28429805
Bio-inspired, large scale, highly-scattering films for nanoparticle-alternative white surfaces
NASA Astrophysics Data System (ADS)
Syurik, Julia; Siddique, Radwanul Hasan; Dollmann, Antje; Gomard, Guillaume; Schneider, Marc; Worgull, Matthias; Wiegand, Gabriele; Hölscher, Hendrik
2017-04-01
Inspired by the white beetle of the genus Cyphochilus, we fabricate ultra-thin, porous PMMA films by foaming with CO2 saturation. Optimising pore diameter and fraction in terms of broad-band reflectance results in very thin films with exceptional whiteness. Already films with 60 µm-thick scattering layer feature a whiteness with a reflectance of 90%. Even 9 µm thin scattering layers appear white with a reflectance above 57%. The transport mean free path in the artificial films is between 3.5 µm and 4 µm being close to the evolutionary optimised natural prototype. The bio-inspired white films do not lose their whiteness during further shaping, allowing for various applications.
High-efficient and brightness white organic light-emitting diodes operated at low bias voltage
NASA Astrophysics Data System (ADS)
Zhang, Lei; Yu, Junsheng; Yuan, Kai; Jian, Yadong
2010-10-01
White organic light-emitting diodes (OLEDs) used for display application and lighting need to possess high efficiency, high brightness, and low driving voltage. In this work, white OLEDs consisted of ambipolar 9,10-bis 2-naphthyl anthracene (ADN) as a host of blue light-emitting layer (EML) doped with tetrabutyleperlene (TBPe) and a thin codoped layer consisted of N, N'-bis(naphthalen-1-yl)-N,N'-bis(phenyl)-benzidine (NPB) as a host of yellow light-emitting layer doped with 4-(dicyanomethylene)-2-tert-butyl-6-(1,1,7,7-tetramethyljulolidin-4-yl-vinyl)-4H-pyran (DCJTB) were investigated. With appropriate tuning in the film thickness, position, and dopant concentration of the co-doped layer, a white OLED with a luminance yield of 10.02 cd/A with the CIE coordinates of (0.29, 0.33) has been achieved at a bias voltage of 9 V and a luminance level of over 10,000 cd/m2. By introducing the PIN structure with both HIL and bis(10- hydroxybenzo-quinolinato)-beryllium (BeBq2) ETL, the power efficiency of white OLED was improved.
NASA Astrophysics Data System (ADS)
Miura-Fujiwara, Eri; Mizushima, Keisuke; Watanabe, Yoshimi; Kasuga, Toshihiro; Niinomi, Mitsuo
2014-11-01
In this study, the relationships among oxidation condition, color tone, and the cross-sectional microstructure of the oxide layer on commercially pure (CP) Ti and Ti-36Nb-2Ta-3Zr-0.3O were investigated. “White metals” are ideal metallic materials having a white color with sufficient strength and ductility like a metal. Such materials have long been sought for in dentistry. We have found that the specific biomedical Ti alloys, such as CP Ti, Ti-36Nb-2Ta-3Zr-0.3O, and Ti-29Nb-13Ta-4.6Zr, form a bright yellowish-white oxide layer after a particular oxidation heat treatment. The brightness L* and yellowness +b* of the oxide layer on CP Ti and Ti-36Nb-2Ta-3Zr-0.3O increased with heating time and temperature. Microstructural observations indicated that the oxide layer on Ti-29Nb-13Ta-4.6Zr and Ti-36Nb-2Ta-3Zr-0.3O was dense and firm, whereas a piecrust-like layer was formed on CP Ti. The results obtained in this study suggest that oxide layer coating on Ti-36Nb-2Ta-3Zr-0.3O is an excellent technique for dental applications.
Methods To Determine the Silicone Oil Layer Thickness in Sprayed-On Siliconized Syringes.
Loosli, Viviane; Germershaus, Oliver; Steinberg, Henrik; Dreher, Sascha; Grauschopf, Ulla; Funke, Stefanie
2018-01-01
The silicone lubricant layer in prefilled syringes has been investigated with regards to siliconization process performance, prefilled syringe functionality, and drug product attributes, such as subvisible particle levels, in several studies in the past. However, adequate methods to characterize the silicone oil layer thickness and distribution are limited, and systematic evaluation is missing. In this study, white light interferometry was evaluated to close this gap in method understanding. White light interferometry demonstrated a good accuracy of 93-99% for MgF 2 coated, curved standards covering a thickness range of 115-473 nm. Thickness measurements for sprayed-on siliconized prefilled syringes with different representative silicone oil distribution patterns (homogeneous, pronounced siliconization at flange or needle side, respectively) showed high instrument (0.5%) and analyst precision (4.1%). Different white light interferometry instrument parameters (autofocus, protective shield, syringe barrel dimensions input, type of non-siliconized syringe used as base reference) had no significant impact on the measured average layer thickness. The obtained values from white light interferometry applying a fully developed method (12 radial lines, 50 mm measurement distance, 50 measurements points) were in agreement with orthogonal results from combined white and laser interferometry and 3D-laser scanning microscopy. The investigated syringe batches (lot A and B) exhibited comparable longitudinal silicone oil layer thicknesses ranging from 170-190 nm to 90-100 nm from flange to tip and homogeneously distributed silicone layers over the syringe barrel circumference (110- 135 nm). Empty break-loose (4-4.5 N) and gliding forces (2-2.5 N) were comparably low for both analyzed syringe lots. A silicone oil layer thickness of 100-200 nm was thus sufficient for adequate functionality in this particular study. Filling the syringe with a surrogate solution including short-term exposure and emptying did not significantly influence the silicone oil layer at the investigated silicone level. It thus appears reasonable to use this approach to characterize silicone oil layers in filled syringes over time. The developed method characterizes non-destructively the layer thickness and distribution of silicone oil in empty syringes and provides fast access to reliable results. The gained information can be further used to support optimization of siliconization processes and increase the understanding of syringe functionality. LAY ABSTRACT: Silicone oil layers as lubricant are required to ensure functionality of prefilled syringes. Methods evaluating these layers are limited, and systematic evaluation is missing. The aim of this study was to develop and assess white light interferometry as an analytical method to characterize sprayed-on silicone oil layers in 1 mL prefilled syringes. White light interferometry showed a good accuracy (93-99%) as well as instrument and analyst precision (0.5% and 4.1%, respectively). Different applied instrument parameters had no significant impact on the measured layer thickness. The obtained values from white light interferometry applying a fully developed method concurred with orthogonal results from 3D-laser scanning microscopy and combined white light and laser interferometry. The average layer thicknesses in two investigated syringe lots gradually decreased from 170-190 nm at the flange to 100-90 nm at the needle side. The silicone layers were homogeneously distributed over the syringe barrel circumference (110-135 nm) for both lots. Empty break-loose (4-4.5 N) and gliding forces (2-2.5 N) were comparably low for both analyzed syringe lots. Syringe filling with a surrogate solution, including short-term exposure and emptying, did not significantly affect the silicone oil layer. The developed, non-destructive method provided reliable results to characterize the silicone oil layer thickness and distribution in empty siliconized syringes. This information can be further used to support optimization of siliconization processes and increase understanding of syringe functionality. © PDA, Inc. 2018.
Tak, Ali Zeynel Abidin; Sengul, Yıldızhan; Bilak, Şemsettin
2018-03-01
The aim of our study is to assess retinal nerve fiber layer (RNFL), the ganglion cell layer (GCL), inner-plexiform layer (IPL), and choroidal layer in migraine patients with white matter lesion (WML) or without WML, using spectral domain optical coherence tomography (OCT). To our study, 77 migraine patients who are diagnosed with migraine in accordance to the International Classification of Headache Disorders (ICHD)-3 beta and 43 healthy control are included. In accordance to cranial MRI, migraine patients are divided into two groups as those who have white matter lesions (39 patients), and those who do not have a lesion (38 patients). OCT was performed for participants. The average age of participants was comparable. The RNFL average thickness parameter in the migraine group was significantly lower than in the control group (p < 0.01). However, no significant difference was detected among those migraine patients who have WML, and those who do not have. No significant difference is detected among all groups in terms of IPL, GCL, and choroidal layer measuring scales. The proofs showing that affected retinal nerve fiber layer are increased in migraine patients. However, it is not known whether this may affect other layers of retina, or whether there is a correlation between affected retinal structures and white matter lesions. In our study, we found thinner RNFL in migraine patients when we compared with controls but IPL, GCL, and choroid layer values were similar between each patient groups and controls. Also, all parameters were similar between patients with WML and without WML. Studies in this regard are required.
Multilayer white lighting polymer light-emitting diodes
NASA Astrophysics Data System (ADS)
Gong, Xiong; Wang, Shu; Heeger, Alan J.
2006-08-01
Organic and polymer light-emitting diodes (OLEDs/PLEDs) that emit white light are of interest and potential importance for use in active matrix displays (with color filters) and because they might eventually be used for solid-state lighting. In such applications, large-area devices and low-cost of manufacturing will be major issues. We demonstrated that high performance multilayer white emitting PLEDs can be fabricated by using a blend of luminescent semiconducting polymers and organometallic complexes as the emission layer, and water-soluble (or ethanol-soluble) polymers/small molecules (for example, PVK-SO 3Li) as the hole injection/transport layer (HIL/HTL) and water-soluble (or ethanol-soluble) polymers/small molecules (for example, t-Bu-PBD-SO 3Na) as the electron injection/transport layer (EIL/HTL). Each layer is spin-cast sequentially from solutions. Illumination quality light is obtained with stable Commission Internationale d'Eclairage coordinates, stable color temperatures, and stable high color rendering indices, all close to those of "pure" white. The multilayer white-emitting PLEDs exhibit luminous efficiency of 21 cd/A, power efficiency of 6 lm/W at a current density of 23 mA/cm2 with luminance of 5.5 x 10 4 cd/m2 at 16 V. By using water-soluble (ethanol-soluble) polymers/small molecules as HIL/HTL and polymers/small molecules as EIL/ETL, the interfacial mixing problem is solved (the emissive polymer layer is soluble in organic solvents, but not in water/ ethanol). As a result, this device architecture and process technology can potentially be used for printing large-area multiplayer light sources and for other applications in "plastic" electronics. More important, the promise of producing large areas of high quality white light with low-cost manufacturing technology makes the white multilayer white-emitting PLEDs attractive for the development of solid state light sources.
SUPERSONIC SHEAR INSTABILITIES IN ASTROPHYSICAL BOUNDARY LAYERS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belyaev, Mikhail A.; Rafikov, Roman R., E-mail: rrr@astro.princeton.edu
Disk accretion onto weakly magnetized astrophysical objects often proceeds via a boundary layer (BL) that forms near the object's surface, in which the rotation speed of the accreted gas changes rapidly. Here, we study the initial stages of formation for such a BL around a white dwarf or a young star by examining the hydrodynamical shear instabilities that may initiate mixing and momentum transport between the two fluids of different densities moving supersonically with respect to each other. We find that an initially laminar BL is unstable to two different kinds of instabilities. One is an instability of a supersonicmore » vortex sheet (implying a discontinuous initial profile of the angular speed of the gas) in the presence of gravity, which we find to have a growth rate of order (but less than) the orbital frequency. The other is a sonic instability of a finite width, supersonic shear layer, which is similar to the Papaloizou-Pringle instability. It has a growth rate proportional to the shear inside the transition layer, which is of order the orbital frequency times the ratio of stellar radius to the BL thickness. For a BL that is thin compared to the radius of the star, the shear rate is much larger than the orbital frequency. Thus, we conclude that sonic instabilities play a dominant role in the initial stages of nonmagnetic BL formation and give rise to very fast mixing between disk gas and stellar fluid in the supersonic regime.« less
Phosphor-Free InGaN White Light Emitting Diodes Using Flip-Chip Technology
Li, Ying-Chang; Chang, Liann-Be; Chen, Hou-Jen; Yen, Chia-Yi; Pan, Ke-Wei; Huang, Bohr-Ran; Kuo, Wen-Yu; Chow, Lee; Zhou, Dan; Popko, Ewa
2017-01-01
Monolithic phosphor-free two-color gallium nitride (GaN)-based white light emitting diodes (LED) have the potential to replace current phosphor-based GaN white LEDs due to their low cost and long life cycle. Unfortunately, the growth of high indium content indium gallium nitride (InGaN)/GaN quantum dot and reported LED’s color rendering index (CRI) are still problematic. Here, we use flip-chip technology to fabricate an upside down monolithic two-color phosphor-free LED with four grown layers of high indium quantum dots on top of the three grown layers of lower indium quantum wells separated by a GaN tunneling barrier layer. The photoluminescence (PL) and electroluminescence (EL) spectra of this white LED reveal a broad spectrum ranging from 475 to 675 nm which is close to an ideal white-light source. The corresponding color temperature and color rendering index (CRI) of the fabricated white LED, operated at 350, 500, and 750 mA, are comparable to that of the conventional phosphor-based LEDs. Insights of the epitaxial structure and the transport mechanism were revealed through the TEM and temperature dependent PL and EL measurements. Our results show true potential in the Epi-ready GaN white LEDs for future solid state lighting applications. PMID:28772792
NASA Astrophysics Data System (ADS)
Vančo, Ľubomír; Kadlečíková, Magdaléna; Breza, Juraj; Čaplovič, Ľubomír; Gregor, Miloš
2013-01-01
In this paper we studied the material composition of the ground layer of a neoclassical painting. We used Raman spectroscopy (RS) as a prime method. Thereafter scanning electron microscopy combined with energy dispersive spectroscopy (SEM-EDS) and X-ray powder diffraction (XRD) were employed as complementary techniques. The painting inspected was of the side altar in King St. Stephen's Church in Galanta (Slovakia), signed and dated by Jos. Chr. Mayer 1870. Analysis was carried out on both covered and uncovered ground layers. Four principal compounds (barite, lead white, calcite, dolomite) and two minor compounds (sphalerite, quartz) were identified. This ground composition is consistent with the 19th century painting technique used in Central Europe consisting of white pigments and white fillers. Transformation of lead white occurred under laser irradiation. Subdominant Raman peaks of the components were measured. The observed results elucidate useful partnership of RS and SEM-EDS measurements supported by X-ray powder diffraction as well as possibilities and limitations of non-destructive analysis of covered lower layers by RS.
White organic light-emitting diodes with ultra-thin mixed emitting layer
NASA Astrophysics Data System (ADS)
Jeon, T.; Forget, S.; Chenais, S.; Geffroy, B.; Tondelier, D.; Bonnassieux, Y.; Ishow, E.
2012-02-01
White light can be obtained from Organic Light Emitting Diodes by mixing three primary colors, (i.e. red, green and blue) or two complementary colors in the emissive layer. In order to improve the efficiency and stability of the devices, a host-guest system is generally used as an emitting layer. However, the color balance to obtain white light is difficult to control and optimize because the spectrum is very sensitive to doping concentration (especially when a small amount of material is used). We use here an ultra-thin mixed emitting layer (UML) deposited by thermal evaporation to fabricate white organic light emitting diodes (WOLEDs) without co-evaporation. The UML was inserted in the hole-transporting layer consisting of 4, 4'-bis[N-(1-naphtyl)-N-phenylamino]biphenyl (α-NPB) instead of using a conventional doping process. The UML was formed from a single evaporation boat containing a mixture of two dipolar starbust triarylamine molecules (fvin and fcho) presenting very similar structures and thermal properties and emitting in complementary spectral regions (orange and blue respectively) and mixed according to their weight ratio. The composition of the UML specifically allows for fine tuning of the emission color despite its very thin thickness down to 1 nm. Competitive energy transfer processes from fcho and the host interface toward fvin are key parameters to control the relative intensity between red and blue emission. White light with very good CIE 1931 color coordinate (0.34, 0.34) was obtained by simply adjusting the UML film composition.
Water depth penetration film test
NASA Technical Reports Server (NTRS)
Lockwood, H. E.; Perry, L.; Sauer, G. E.; Lamar, N. T.
1974-01-01
As part of the National Aeronautics and Space Administration Earth Resources Program, a comparative and controlled evaluation of nine film-filter combinations was completed to establish the relative effectiveness in recording water subsurface detail if exposed from an aerial platform over a typical water body. The films tested, with one exception, were those which prior was suggested had potential. These included an experimental 2-layer positive color film, a 2-layer (minus blue layer) film, a normal 3-layer color film, a panchromatic black-and-white film, and a black-and-white infrared film. Selective filtration was used with all films.
NASA Astrophysics Data System (ADS)
Qiao, Yangzi; Yin, Hui; Chang, Nan; Wan, Mingxi
2017-03-01
Phase-shift Nano-emulsions (PSNEs) with a small initial diameter in nanoscale have the potential to leak out of the blood vessels and to accumulate at target point of tissue. At desired location, PSNEs can undergo acoustic droplet vaporization (ADV) process, change into gas bubbles and enhance focused ultrasound efficiency. The aim of this work was to provide spatial and temporal information on PSNE induced cavitation and ablation effects during pulsed high intensity focused ultrasound (HIFU) exposure. The PSNEs were composed of perfluorohaxane (PFH) and bovine serum albumin (BSA), and then uniformly distributed in a transparent polyacrylamide phantom. The Sonoluminescence (SL) method was employed to visualize the cavitation distribution and formation process of PSNEs induced cavitation. For the phantom which was used for ablation observation, heat sensitive BSA was added. When the temperature generated by ultrasound exposure was high enough to denature BSA, the transparent phantom would turn out white lesions. The shape of the lesion and the formation process were compared with those of cavitation. Each of the pulse contained 12 cycles for a duration of 10 µs. And the duty cycle changed from 1:10 to 1:40. The total "on" time of HIFU was 2s. PSNE can evidently accelerate cavitation emitting bright SL in pre-focal region. The cavitation was generated layer by layer towards the transducer. The formed bubble wall can block acoustic waves transmitting to the distal end. And the lesion appeared to be separated into two parts. One in pre-focal region stemmed from one point and grew quickly toward the transducer. The other in focal region was formed by merging some small white dots, and grew much slower. The influence of duty cycle has also been examined. The lower duty cycle with longer pulse-off time would generate more intense cavitation, however, smaller lesion. Bubble cloud gradually developed within phantom would greatly influence the cavitation and ablation process. One hand, the evaporated bubbles could enhance both the cavitation and thermal effects of HIFU. The other hand, outside layer bubbles would block the acoustic wave transmission, inducing distinctive cavitation and ablation formation process. The spatial distribution of cavitation and lesion organized into special structures under different acoustic parameters.
NASA Astrophysics Data System (ADS)
Zhang, Xianfei; Hall, Philip D.; Jeffery, C. Simon; Bi, Shaolan
2018-02-01
It is not known how single white dwarfs with masses less than 0.5Msolar -- low-mass white dwarfs -- are formed. One way in which such a white dwarf might be formed is after the merger of a helium-core white dwarf with a main-sequence star that produces a red giant branch star and fails to ignite helium. We use a stellar-evolution code to compute models of the remnants of these mergers and find a relation between the pre-merger masses and the final white dwarf mass. Combining our results with a model population, we predict that the mass distribution of single low-mass white dwarfs formed through this channel spans the range 0.37 to 0.5Msolar and peaks between 0.45 and 0.46Msolar. Helium white dwarf--main-sequence star mergers can also lead to the formation of single helium white dwarfs with masses up to 0.51Msolar. In our model the Galactic formation rate of single low-mass white dwarfs through this channel is about 8.7X10^-3yr^-1. Comparing our models with observations, we find that the majority of single low-mass white dwarfs (<0.5Msolar) are formed from helium white dwarf--main-sequence star mergers, at a rate which is about $2$ per cent of the total white dwarf formation rate.
A progenitor binary and an ejected mass donor remnant of faint type Ia supernovae
NASA Astrophysics Data System (ADS)
Geier, S.; Marsh, T. R.; Wang, B.; Dunlap, B.; Barlow, B. N.; Schaffenroth, V.; Chen, X.; Irrgang, A.; Maxted, P. F. L.; Ziegerer, E.; Kupfer, T.; Miszalski, B.; Heber, U.; Han, Z.; Shporer, A.; Telting, J. H.; Gänsicke, B. T.; Østensen, R. H.; O'Toole, S. J.; Napiwotzki, R.
2013-06-01
Type Ia supernovae (SN Ia) are the most important standard candles for measuring the expansion history of the universe. The thermonuclear explosion of a white dwarf can explain their observed properties, but neither the progenitor systems nor any stellar remnants have been conclusively identified. Underluminous SN Ia have been proposed to originate from a so-called double-detonation of a white dwarf. After a critical amount of helium is deposited on the surface through accretion from a close companion, the helium is ignited causing a detonation wave that triggers the explosion of the white dwarf itself. We have discovered both shallow transits and eclipses in the tight binary system CD-30°11223 composed of a carbon/oxygen white dwarf and a hot helium star, allowing us to determine its component masses and fundamental parameters. In the future the system will transfer mass from the helium star to the white dwarf. Modelling this process we find that the detonation in the accreted helium layer is sufficiently strong to trigger the explosion of the core. The helium star will then be ejected at such high velocity that it will escape the Galaxy. The predicted properties of this remnant are an excellent match to the so-called hypervelocity star US 708, a hot, helium-rich star moving at more than 750 km s-1, sufficient for it to leave the Galaxy. The identification of both progenitor and remnant provides a consistent picture of the formation and evolution of underluminous SNIa.
Origin of the DA and non-DA white dwarf stars
NASA Technical Reports Server (NTRS)
Shipman, Harry L.
1989-01-01
Various proposals for the bifurcation of the white dwarf cooling sequence are reviewed. 'Primordial' theories, in which the basic bifurcation of the white dwarf sequence is rooted in events predating the white dwarf stage of stellar evolution, are discussed, along with the competing 'mixing' theories in which processes occurring during the white dwarf stage are responsible for the existence of DA or non-DA stars. A new proposal is suggested, representing a two-channel scenario. In the DA channel, some process reduces the hydrogen layer mass to the value of less than 10 to the -7th. The non-DA channel is similar to that in the primordial scenario. These considerations suggest that some mechanism operates in both channels to reduce the thickness of the outermost layer of the white dwarf. It is also noted that accretion from the interstellar medium has little to do with whether a particular white dwarf becomes a DA or a non-DA star.
Glomus drummondii and G. walkeri, two new species of arbuscular mycorrhizal fungi (Glomeromycota).
Błaszkowski, Janusz; Renker, Carsten; Buscot, François
2006-05-01
Two new ectocarpic arbuscular mycorrhizal fungal species, Glomus drummondii and G. walkeri (Glomeromycota), found in maritime sand dunes of northern Poland and those adjacent to the Mediterranean Sea are described and illustrated. Mature spores of G. drummondii are pastel yellow to maize yellow, globose to subglobose, (58-)71(-85) micromdiam, or ovoid, 50-80x63-98 microm. Their wall consists of three layers: an evanescent, hyaline, short-lived outermost layer, a laminate, smooth, pastel yellow to maize yellow middle layer, and a flexible, smooth, hyaline innermost layer. Spores of G. walkeri are white to pale yellow, globose to subglobose, (55-)81(-95) micromdiam, or ovoid, 60-90x75-115 microm, and have a spore wall composed of three layers: a semi-permanent, hyaline outermost layer, a laminate, smooth, white to pale yellow middle layer, and a flexible, smooth, hyaline innermost layer. In Melzer's reagent, only the inner- and outermost layers stain reddish white to greyish rose in G. drummondii and G. walkeri, respectively. Both species form vesicular-arbuscular mycorrhizae in one-species cultures with Plantago lanceolata as the host plant. Phylogenetic analyses of the ITS and parts of the LSU of the nrDNA of spores placed both species in Glomus Group B sensu Schüssler et al. [Schüssler A, Schwarzott D, Walker C, 2001. A new fungal phylum, the Glomeromycota: phylogeny and evolution. Mycolological Research 105: 1413-1421.].
NASA Astrophysics Data System (ADS)
Spradling, Emily M.; Viator, John A.
2009-02-01
Melanoma is the deadliest form of skin cancer. Although the initial malignant cells are removed, it is impossible to determine whether or not the cancer has metastasized until a secondary tumor forms that is large enough to detect with conventional imaging. Photoacoustic detection of circulating melanoma cells in the bloodstream has shown promise for early detection of metastasis that may aid in treatment of this aggressive cancer. When blood is irradiated with energy from an Nd:YAG laser at 532 nm, photoacoustic signals are created and melanoma cells can be differentiated from the surrounding cells based on waveforms produced by an oscilloscope. Before this can be used as a diagnostic technique, however, we needed to investigate several parameters. Specifically, the current technique involves the in vitro separation of blood through centrifugation to isolate and test only the white blood cell layer. Using this method, we have detected a single cultured melanoma cell among a suspension of white blood cells. However, the process could be made simpler if the plasma layer were used for detection instead of the white blood cell layer. This layer is easier to obtain after blood separation, the optical difference between plasma and melanoma cells is more pronounced in this layer than in the white blood cell layer, and the possibility that any stray red blood cells could distort the results is eliminated. Using the photoacoustic apparatus, we detected no melanoma cells within the plasma of whole blood samples spiked with cultured melanoma cells.
Mixing Halogens To Assemble an All-Inorganic Layered Perovskite with Warm White-Light Emission.
Li, Xianfeng; Wang, Sasa; Zhao, Sangen; Li, Lina; Li, Yanqiang; Zhao, Bingqing; Shen, Yaoguo; Wu, Zhenyue; Shan, Pai; Luo, Junhua
2018-05-01
Most of single-component white-light-emitting materials focus on organic-inorganic hybrid perovskites, metal-organic frameworks, as well as all-inorganic semiconductors. In this work, we successfully assembled an all-inorganic layered perovskite by mixing two halogens of distinct ionic radii, namely, Rb 2 CdCl 2 I 2 , which emits "warm" white light with a high color rendering index of 88. To date, Rb 2 CdCl 2 I 2 is the first single-component white-light-emitting material with an all-inorganic layered perovskite structure. Furthermore, Rb 2 CdCl 2 I 2 is thermally highly stable up to 575 K. A series of luminescence measurements show that the white-light emission arises from the lattice deformation, which are closely related to the [CdCl 4 I 2 ] 2- octahedra with high distortion from the distinct ionic radii of Cl and I. The first-principles calculations reveal that both the Cl and I components make significant contributions to the electronic band structures of Rb 2 CdCl 2 I 2 . These findings indicate that mixing halogens is an effective route to design and synthesize new single-component white-light-emitting materials. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
High Efficiency Stacked Organic Light-Emitting Diodes Employing Li2O as a Connecting Layer
NASA Astrophysics Data System (ADS)
Kanno, Hiroshi; Hamada, Yuji; Nishimura, Kazuki; Okumoto, Kenji; Saito, Nobuo; Ishida, Hiroki; Takahashi, Hisakazu; Shibata, Kenichi; Mameno, Kazunobu
2006-12-01
We demonstrate the high-efficiency stacked organic light-emitting diodes (OLEDs) introducing new connecting layers. In the green stacked OLEDs, the external efficiencies increase proportionally to the number of the stacked units without suffering the decrease in power efficiency. The current, power and external efficiencies at 0.5 mA/cm2 of the stacked OLED with six stacked units (6-stacked OLED) have reached 235 cd/A, 46.6 lm/W, and 65.8%, respectively. Furthermore, we have applied the connecting layers to a white stacked OLED and fabricated an active-matrix full-color display with a low temperature polysilicon thin film transistor backplane. In the device, the current efficiency of the white 2-stacked OLED is enhanced by a factor of 2.2. The initial luminance drop is significantly suppressed for the white 2-stacked OLED compared to 1-stacked OLED. The proposed white stacked OLED technology can be applied to a full-color display for a practical use.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, Raghav; Dürrenfeld, P.; Iacocca, E.
The frequency noise spectrum of a magnetic tunnel junction based spin torque oscillator is examined where multiple modes and mode-hopping events are observed. The frequency noise spectrum is found to consist of both white noise and 1/f frequency noise. We find a systematic and similar dependence of both white noise and 1/f frequency noise on bias current and the relative angle between the reference and free layers, which changes the effective damping and hence the mode-hopping behavior in this system. The frequency at which the 1/f frequency noise changes to white noise increases as the free layer is aligned awaymore » from the anti-parallel orientation w.r.t the reference layer. These results indicate that the origin of 1/f frequency noise is related to mode-hopping, which produces both white noise as well as 1/f frequency noise similar to the case of ring lasers.« less
Cho, Ho Young; Park, Eun Jung; Kim, Jin-Hoo; Park, Lee Soon
2008-10-01
Copolymers containing carbazole and aromatic amine unit were synthesized by using Pd-catalyzed polycondensation reaction. The polymers were characterized in terms of their molecular weight and thermal stability and their UV and PL properties in solution and film state. The band gap energy of the polymers was also determined by the UV absorption and HOMO energy level data. The polymers had high HOMO energy level of 5.19-5.25 eV and work function close to that of ITO. The polymers were thus tested as hole injection/transport layer in the white organic light emitting diodes (OLED) by using 4,4'-bis(2,2-diphenyl-ethen-1-yl)diphenyl (DPVBi) as blue emitting material and 5,6,11,12-tetraphenylnaphthacene (Rubrene) as orange emitting dopant. The synthesized polymer, poly bis[6-bromo-N-(2-ethylhexyl)-carbazole-3-yl] was found to be useful as hole injection layer/hole transport layer (HIL/HTL) multifunctional material with high luminance efficiency and stable white color coordinate in the wide range of applied voltage.
A white organic light emitting diode based on anthracene-triphenylamine derivatives
NASA Astrophysics Data System (ADS)
Jiang, Quan; Qu, Jianjun; Yu, Junsheng; Tao, Silu; Gan, Yuanyuan; Jiang, Yadong
2010-10-01
White organic lighting-diode (WOLED) can be used as flat light sources, backlights for liquid crystal displays and full color displays. Recently, a research mainstream of white OLED is to develop the novel materials and optimize the structure of devices. In this work a WOLED with a structure of ITO/NPB/PAA/Alq3: x% rubrene/Alq3/Mg: Ag, was fabricated. The device has two light-emitting layers. NPB is used as a hole transport layer, PAA as a blue emitting layer, Alq3: rubrene host-guest system as a yellow emitting layer, and Alq3 close to the cathode as an electron transport layer. In the experiment, the doping concentration of rubrene was optimized. WOLED 1 with 4% rubrene achieved a maximum luminous efficiency of 1.80 lm/W, a maximum luminance of 3926 cd/m2 and CIE coordinates of (0.374, 0.341) .WOLED 2 with 2% rubrene achieved a maximum luminous efficiency of 0.65 lm/W, a maximum luminance of 7495cd/m2 and CIE coordinates of (0.365,0.365).
NASA Astrophysics Data System (ADS)
Lei, Xia; Yu, Junsheng; Zhao, Juan; Jiang, Yadong
2011-11-01
The electroluminescence (EL) characteristics of phosphorescent organic light-emitting diodes (OLEDs) with an undoped bis(1,2-dipheny1-1H-benzoimidazole) iridium (acetylacetonate) [(pbi)2Ir(acac)] emissive layer (EML) of various film thicknesses were studied. The results showed that the intensity of green light emission decreased rapidly with the increasing thickness of (pbi)2Ir(acac), which was relevant to the triplet excimer emission. It suggested that the concentration quenching of monomer emission in the undoped (pbi)2Ir(acac) film was mainly due to the formation of triplet excimer and partly due to the triplet-triplet annihilation (TTA) and triplet-polaron annihilation (TPA). A green OLED with a maximum luminance of 26,531 cd/m2, a current efficiency of 36.2 cd/A, and a power efficiency of 32.4 lm/W was obtained, when the triplet excimer emission was eliminated. Moreover, the white OLED with low efficiency roll-off was realized due to the broadened recombination zone and reduced quenching effects in the EML when no electron blocking layer was employed.
Topography and nanostructural evaluation of chemically and thermally modified titanium substrates.
Salemi, Hoda; Behnamghader, Aliasghar; Afshar, Abdollah
2016-10-01
In this research, the effects of chemical and thermal treatment on the morphological and compositional aspects of titanium substrates and so, potentially, on development of biomimetic bone like layers formation during simulated body fluid (SBF) soaking was investigated. The HF, HF/HNO3 and NaOH solutions were used for chemical treatment and some of alkali-treated samples followed a heat treatment at 600°C. The treated samples before and after soaking were subjected to material characterization tests using scanning electron microscopy (SEM), X-ray diffraction (XRD) and atomic force microscopy (AFM). White light interferometry (WLI) was used to determine the roughness parameters such as Ra, Rq, RKu and Rsk. The significance of the obtained data was assessed using ANOVA variance analysis between all samples. It was observed that the reaction at grain boundaries and sodium titanate intermediate layers play a great role in the nucleation of calcium phosphate layers. Based on the obtained results in this work, the calcium phosphate microstructure deposited on titanium substrates was more affected by chemical modification than surface topography.
NASA Astrophysics Data System (ADS)
Sarti, Giovanni; Bertocchini, Federico; Chiesura, Guido; Bini, Monica; Cascella, Antonio; Ribolini, Adriano; Patacca, Etta; Casacchia, Claudia
2014-05-01
The volcanic island of Santiago de Cape Verde was the first stop of Darwin during his circumnavigation on board of the Beagle vessel (1832). The exploration of Santiago played a fundamental role in the growth of his interest for geology. During the three weeks spent on the island, Darwin had the opportunity of doing many pioneering and insightful observations around the morphology and structure of the basaltic platforms. He was also very impressed by a white fossiliferous layer. This horizon, few meters thick, is sandwiched in between two black volcanic units and outcrops extensively along the coastal cliff in the southern part of Santiago. Darwin rightly identified the marine depositional origin of the white layer (Darwin's old beach) observing that the same fossilized shells and algae were still living in the beaches of the island. In 2008, 2009 and 2102 under the auspices of the scientific project "Darwin at Santiago de Cape Verde Island" three expeditions have been performed on the footsteps of Darwin. The firsts two missions have been focused on the mapping and characterization of the basaltic units while the third has exclusively dealt with the facies analysis of the white sedimentary layer. The main goal of this study is to revisit, by a modern sedimentological, stratigraphical, and geomorphological point of view, the white old beach sequence described by Darwin in 1832. The first results display a very complex and fascinating geological history, largely grasped by the observations of Darwin, driven by the interplay among volcanic, tectonic and sea level changes factors. The old beach sequence (likely Pleistocene in age) is composed of two main transgressive depositional units separated by an angular erosional unconformity. This is a first important new topic enriching the Darwin's observations. The unconformity is well exposed along the small Quail island cliff, located about 1 km seaward of the Praia harbour. The unconformity divides sandy fossil-rich deposits, characterized by the abundance of Oyster colony and Turritella, from a white limestone/sandstone layer that commonly shows at its base accumulation of rodholits (the "Nulliporae" of Darwin). This obviously implies that a significant chronological hiatus is recorded in the section. As a whole the white limestone/sandstone layer is organized in a fining and deepening upward sequence that is abruptly truncated by a subaerial basalt unit in the Eastern side of the Praia Harbour and by a subaqueous pillows lava unit to the West. In addition the limestone/sandstone layer outcrops patchily at different quotes, from more than 30 m above sea level down to plunge below the sea. Ours study highlights how the white sedimentary layer, that so much aroused the curiosity of Darwin, records more than one depositional event. At least the position of four palaeoshores can be identified, evidencing how the island undergone to several phases of relative sea-level variations driven by eustatic and/ or tectonic factors.
Highly efficient blue and warm white organic light-emitting diodes with a simplified structure
NASA Astrophysics Data System (ADS)
Li, Xiang-Long; Ouyang, Xinhua; Chen, Dongcheng; Cai, Xinyi; Liu, Ming; Ge, Ziyi; Cao, Yong; Su, Shi-Jian
2016-03-01
Two blue fluorescent emitters were utilized to construct simplified organic light-emitting diodes (OLEDs) and the remarkable difference in device performance was carefully illustrated. A maximum current efficiency of 4.84 cd A-1 (corresponding to a quantum efficiency of 4.29%) with a Commission Internationale de l’Eclairage (CIE) coordinate of (0.144, 0.127) was achieved by using N,N-diphenyl-4″-(1-phenyl-1H-benzo[d]imidazol-2-yl)-[1, 1‧:4‧, 1″-terphenyl]-4-amine (BBPI) as a non-doped emission layer of the simplified blue OLEDs without carrier-transport layers. In addition, simplified fluorescent/phosphorescent (F/P) hybrid warm white OLEDs without carrier-transport layers were fabricated by utilizing BBPI as (1) the blue emitter and (2) the host of a complementary yellow phosphorescent emitter (PO-01). A maximum current efficiency of 36.8 cd A-1 and a maximum power efficiency of 38.6 lm W-1 were achieved as a result of efficient energy transfer from the host to the guest and good triplet exciton confinement on the phosphorescent molecules. The blue and white OLEDs are among the most efficient simplified fluorescent blue and F/P hybrid white devices, and their performance is even comparable to that of most previously reported complicated multi-layer devices with carrier-transport layers.
NASA Astrophysics Data System (ADS)
Newsom, H. E.; Belgacem, I.; Wiens, R. C.; Frydenvang, J.; Gasnault, O.; Maurice, S.; Gasda, P. J.; Clegg, S. M.; Cousin, A.; Rapin, W.; Jackson, R.; Vaci, Z.; Ha, B.; Blaney, D. L.; Bridges, N.; Francis, R.; Payré, V.; Gupta, S.; Banham, S.; Schroeder, J.; Calef, F. J., III; Edgett, K. S.; Fey, D.; Fisk, M. R.; Gellert, R.; Thompson, L. M.; Perrett, G. M.; Grotzinger, J. P.; Rubin, D. M.; Williams, A.; Kah, L. C.; Kronyak, R. E.
2015-12-01
MSL began investigating a contact between Murray formation, (fine grained lake deposits) and the younger Stimson formation at Marias Pass in May 2015, on the lower slopes of Mt. Sharp. Images show that the Murray formation, with numerous calcium sulfate veins compared to the Stimson, is truncated at an erosional contact. MAHLI images show a white layer a few mm thick at the contact that might be calcium sulfate. The lowermost beds of the Stimson unit in the Missoula area comprise horizontally laminated or cross-laminated sandstones. The sandstones are poorly sorted with floating granules and very coarse sand grains set in a fine- medium-grained sand 'matrix'. This material directly above the contact is a resistant, basal ledge-forming layer that also forms numerous blocks of float on top of the eroded Murray. This basal layer contains light toned fragments, possibly calcium sulfate, eroded from the Murray. The poor sorting and presence of sub-angular grains, together with the absence of preferential sorting into size sorted layers would seem to rule out eolian processes for the lowermost beds of the Stimson and suggest fluvial processes were responsible for deposition of these beds. For chemostratigraphy, the distance of each ChemCam or APXS observation above or below the contact was determined from images and the NavCam stereo mesh. The top of the Murray near the Missoula area is variable in composition, and additional analyses are planned to determine if weathering occurred at the eroded surface. Above the contact, the lowest 2 cm of the resistant slab is higher in SiO2, and lower in Al2O3, K2O and Na2O, relative to other Stimson analyses. In a few points with low totals, there is a correlation between Ca and missing components (presumed to be mostly S). These points could be connected to calcium sulfate in the form of cements and/or incorporation of eroded clasts of Murray vein materials.
Stepwise dynamics of an anionic micellar film - Formation of crown lenses.
Lee, Jongju; Nikolov, Alex; Wasan, Darsh
2017-06-15
We studied the stepwise thinning of a microscopic circular foam film formed from an anionic micellar solution of sodium dodecyl sulfate (SDS). The foam film formed from the SDS micellar solution thins in a stepwise manner by the formation and expansion of a dark spot(s) of one layer less than the film thickness. During the last stages of film thinning (e.g., a film with one micellar layer), the dark spot expansion occurs via two steps. Initially, a small dark circular spot inside a film of several microns in size is formed, which expands at a constant rate. Then, a ridge along the expanding spot is formed. As the ridge grows, it becomes unstable and breaks into regular crown lenses, which are seen as white spots in the reflected light at the border of the dark spot with the surrounding thicker film. The Rayleigh type of instability contributes to the formation of the lenses, which results in the increase of the dark spot expansion rate with time. We applied the two-dimensional micellar-vacancy diffusion model and took into consideration the effects of the micellar layering and film volume on the rate of the dark spot expansion [Lee et al., 2016] to predict the rate of the dark spot expansion for a 0.06M SDS film in the presence of lenses. We briefly discuss the Rayleigh type of instability in the case of a 0.06M SDS foam film. The goals of this study are to reveal why the crown lenses are formed during the foam film stratification and to elucidate their effect on the rate of spot expansion. Copyright © 2017 Elsevier Inc. All rights reserved.
Wu, Shengfan; Li, Sihua; Sun, Qi; Huang, Chenchao; Fung, Man-Keung
2016-01-01
Ultrathin emissive layers (UEMLs) of phosphorescent materials with a layer thickness of less than 0.3 nm were introduced for high-efficiency organic light-emitting diodes (OLEDs). All the UEMLs for white OLEDs can be prepared without the use of interlayers or spacers. Compared with devices fabricated with interlayers inserted in-between the UEMLs, our spacer-free structure not only significantly improves device efficiency, but also simplifies the fabrication process, thus it has a great potential in lowering the cost of OLED panels. In addition, its spacer-free structure decreases the number of interfaces which often introduce unnecessary energy barriers in these devices. In the present work, UEMLs of red, green and blue-emitting phosphorescent materials and yellow and blue phosphorescent emitters are utilized for the demonstration of spacer-free white OLEDs. Upon optimization of the device structure, we demonstrated spacer-free and simple-structured white-emitting OLEDs with a good device performance. The current and power efficiencies of our white-emitting devices are as high as 56.0 cd/A and 55.5 lm/W, respectively. These efficiencies are the highest ever reported for OLEDs fabricated with the UEML approach. PMID:27170543
Lee, Seok Jae; Koo, Ja Ryong; Lim, Dong Hwan; Park, Hye Rim; Kim, Young Kwan; Ha, Yunkyoung
2011-08-01
We demonstrated efficient and stable white phosphorescent organic light-emitting diodes (OLEDs) with double-emitting layers (D-EMLs), which were comprised of two emissive layers with a hole transport-type host of N,N'-dicarbazolyl-3,5-benzene (mCP) and a electron transport-type host of 2,2',2"-(1,3,5-benzenetryl)tris(1-phenyl)-1H-benzimidazol (TPBi) with blue/orange emitters, respectively. We fabricated two type white devices with single emitting layer (S-EML) and D-EML of orange emitter, maintaining double recombination zone of blue emitter. In addition, the device architecture was developed to confine excitons inside the D-EMLs and to manage triplet excitons by controlling the charge injection. As a result, light-emitting performances of white OLED with D-EMLs were improved and showed the steady CIE coordinates compared to that with S-EML of orange emitter, which demonstrated the maximum luminous efficiency and external quantum efficiency were 21.38 cd/A and 11.09%. It also showed the stable white emission with CIE(x,y) coordinates from (x = 0.36, y = 0.37) at 6 V to (x = 0.33, y = 0.38) at 12 V.
Wu, Shengfan; Li, Sihua; Sun, Qi; Huang, Chenchao; Fung, Man-Keung
2016-05-12
Ultrathin emissive layers (UEMLs) of phosphorescent materials with a layer thickness of less than 0.3 nm were introduced for high-efficiency organic light-emitting diodes (OLEDs). All the UEMLs for white OLEDs can be prepared without the use of interlayers or spacers. Compared with devices fabricated with interlayers inserted in-between the UEMLs, our spacer-free structure not only significantly improves device efficiency, but also simplifies the fabrication process, thus it has a great potential in lowering the cost of OLED panels. In addition, its spacer-free structure decreases the number of interfaces which often introduce unnecessary energy barriers in these devices. In the present work, UEMLs of red, green and blue-emitting phosphorescent materials and yellow and blue phosphorescent emitters are utilized for the demonstration of spacer-free white OLEDs. Upon optimization of the device structure, we demonstrated spacer-free and simple-structured white-emitting OLEDs with a good device performance. The current and power efficiencies of our white-emitting devices are as high as 56.0 cd/A and 55.5 lm/W, respectively. These efficiencies are the highest ever reported for OLEDs fabricated with the UEML approach.
NASA Astrophysics Data System (ADS)
Hua, Wang; Du, Xiaogang; Su, Wenming; Lin, Wenjing; Zhang, Dongyu
2014-02-01
In this paper, a novel type of white-light organic light emitting diode (OLED) with high color stability was reported, in which the yellow-light emission layer of (4,4'-N,N'-dicarbazole)biphenyl (CBP) : tris(2-phenylquinoline-C2,N')iridium(III) (Ir(2-phq)3) was sandwiched by double blue-light emission layers of 1,1-bis-[(di-4-tolylamino)pheny1]cyclohexane (TAPC) : bis[4,6-(di-fluorophenyl)-pyridinato-N,C2']picolinate (FIrpic) and tris[3-(3-pyridyl)mesityl]borane (3TPYMB):FIrpic. And, it exhibited the maximum current efficiency of 33.1 cd/A, the turn-on voltage at about 3 V and the maximum luminance in excess of 20000 cd/m2. More important, it realized very stable white-light emission, and its CIE(x, y) coordinates only shift from (0.34, 0.37) to (0.33, 0.37) as applied voltage increased from 5 V to 12 V. It is believed that the new scheme in emission layer of white-light OLED can fine tune the contribution of primary emission with applied voltage changed, resulting in high quality white-light OLED.
NASA Astrophysics Data System (ADS)
Wu, Shengfan; Li, Sihua; Sun, Qi; Huang, Chenchao; Fung, Man-Keung
2016-05-01
Ultrathin emissive layers (UEMLs) of phosphorescent materials with a layer thickness of less than 0.3 nm were introduced for high-efficiency organic light-emitting diodes (OLEDs). All the UEMLs for white OLEDs can be prepared without the use of interlayers or spacers. Compared with devices fabricated with interlayers inserted in-between the UEMLs, our spacer-free structure not only significantly improves device efficiency, but also simplifies the fabrication process, thus it has a great potential in lowering the cost of OLED panels. In addition, its spacer-free structure decreases the number of interfaces which often introduce unnecessary energy barriers in these devices. In the present work, UEMLs of red, green and blue-emitting phosphorescent materials and yellow and blue phosphorescent emitters are utilized for the demonstration of spacer-free white OLEDs. Upon optimization of the device structure, we demonstrated spacer-free and simple-structured white-emitting OLEDs with a good device performance. The current and power efficiencies of our white-emitting devices are as high as 56.0 cd/A and 55.5 lm/W, respectively. These efficiencies are the highest ever reported for OLEDs fabricated with the UEML approach.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Liping; Chen, Jiangshan; Ma, Dongge, E-mail: mdg1014@ciac.ac.cn
2014-06-28
By adopting an ultra-thin non-doped orange emission layer sandwiched between two blue emission layers, high efficiency white organic light-emitting diodes (WOLEDs) with reduced efficiency roll-off were fabricated. The optimized devices show a balanced white emission with Internationale de L'Eclairage of (0.41, 0.44) at the luminance of 1000 cd/m{sup 2}, and the maximum power efficiency, current efficiency (CE), and external quantum efficiency reach 63.2 lm/W, 59.3 cd/A, and 23.1%, which slightly shift to 53.4 lm/W, 57.1 cd/A, and 22.2% at 1000 cd/m{sup 2}, respectively, showing low efficiency roll-off. Detailed investigations on the recombination zone and the transient electroluminescence (EL) clearly reveal the EL processes of the ultra-thinmore » non-doped orange emission layer in WOLEDs.« less
High-efficiency white OLEDs based on small molecules
NASA Astrophysics Data System (ADS)
Hatwar, Tukaram K.; Spindler, Jeffrey P.; Ricks, M. L.; Young, Ralph H.; Hamada, Yuuhiko; Saito, N.; Mameno, Kazunobu; Nishikawa, Ryuji; Takahashi, Hisakazu; Rajeswaran, G.
2004-02-01
Eastman Kodak Company and SANYO Electric Co., Ltd. recently demonstrated a 15" full-color, organic light-emitting diode display (OLED) using a high-efficiency white emitter combined with a color-filter array. Although useful for display applications, white emission from organic structures is also under consideration for other applications, such as solid-state lighting, where high efficiency and good color rendition are important. By incorporating adjacent blue and orange emitting layers in a multi-layer structure, highly efficient, stable white emission has been attained. With suitable host and dopant combinations, a luminance yield of 20 cd/A and efficiency of 8 lm/W have been achieved at a drive voltage of less than 8 volts and luminance level of 1000 cd/m2. The estimated external efficiency of this device is 6.3% and a high level of operational stability is observed. To our knowledge, this is the highest performance reported so far for white organic electroluminescent devices. We will review white OLED technology and discuss the fabrication and operating characteristics of these devices.
Highly Efficient White Organic Light Emitting Diodes Using New Blue Fluorescence Emitter.
Kim, Seungho; Kim, Beomjin; Lee, Jaehyun; Yu, Young-Jun; Park, Jongwook
2015-07-01
Two different emitting compounds, 1-[1,1';3',1"]Terphenyl-5'-yl-6-(10-[1,1';3',1"]terpheny-5'-yl- anthracen-9-yl)-pyrene (TP-AP-TP) and Poly-phenylene vinylene derivative (PDY 132) were used to white OLED device. By incorporating adjacent blue and yellow emitting layers in a multi-layered structure, highly efficient white emission has been attained. The device was fabricated with a hybrid configuration structure: ITO/PEDOT (40 nm)/PDY-132 (8-50 nm)/ NPB (10 nm)/TP-AP-TP (30 nm)/Alq3 (20 nm)/LiF (1 nm)/Al (200 nm). After fixing TP-AP-TP thickness of 30 nm by evaporation, PDY-132 thickness varied with 8, 15, 35, and 50 nm by spin coating in device. The luminance efficiency of the white devices at 10 mA/cm2 were 2.93 cd/A-6.55 cd/A. One of white devices showed 6.55 cd/A and white color of (0.290, 0.331).
Shulman, S; Shorer, R; Wollman, J; Dotan, G; Paran, D
2017-11-01
Background Cognitive impairment is frequent in systemic lupus erythematosus. Atrophy of the corpus callosum and hippocampus have been reported in patients with systemic lupus erythematosus, and diffusion tensor imaging studies have shown impaired white matter integrity, suggesting that white matter damage in systemic lupus erythematosus may underlie the cognitive impairment as well as other neuropsychiatric systemic lupus erythematosus manifestations. Retinal nerve fiber layer thickness, as assessed by optical coherence tomography, has been suggested as a biomarker for white matter damage in neurologic disorders such as multiple sclerosis, Alzheimer's disease and Parkinson's disease. Retinal nerve fiber layer thinning may occur early, even in patients with mild clinical symptoms. Aim The objective of this study was to assess the association of retinal nerve fiber layer thickness, as a biomarker of white matter damage in systemic lupus erythematosus patients, with neuropsychiatric systemic lupus erythematosus manifestations, including cognitive impairment. Methods Twenty-one consecutive patients with systemic lupus erythematosus underwent neuropsychological testing using a validated computerized battery of tests as well as the Rey-Auditory verbal learning test. All 21 patients, as well as 11 healthy, age matched controls, underwent optical coherence tomography testing to assess retinal nerve fiber layer thickness. Correlations between retinal nerve fiber layer thickness and results in eight cognitive domains assessed by the computerized battery of tests as well as the Rey-Auditory verbal learning test were assessed in patients with systemic lupus erythematosus, with and without neuropsychiatric systemic lupus erythematosus, and compared to retinal nerve fiber layer thickness in healthy controls. Results No statistically significant correlation was found between retinal nerve fiber layer thickness in patients with systemic lupus erythematosus as compared to healthy controls. When evaluating by subgroups, no correlation was found between patients with or without neuropsychiatric systemic lupus erythematosus or cognitive impairment and retinal nerve fiber layer thickness. Conclusion Retinal nerve fiber layer thickness of systemic lupus erythematosus patients was not found to be statistically different compared to controls. Within systemic lupus erythematosus patients there was no correlation between retinal nerve fiber layer thickness and cognitive impairment or other neuropsychiatric systemic lupus erythematosus manifestations.
Genetics Home Reference: white sponge nevus
... Twitter Home Health Conditions White sponge nevus White sponge nevus Printable PDF Open All Close All Enable ... to view the expand/collapse boxes. Description White sponge nevus is a condition characterized by the formation ...
Fabrication of a white electroluminescent device based on bilayered yellow and blue quantum dots.
Kim, Jong-Hoon; Lee, Ki-Heon; Kang, Hee-Don; Park, Byoungnam; Hwang, Jun Yeon; Jang, Ho Seong; Do, Young Rag; Yang, Heesun
2015-03-12
Until now most work on colloidal quantum dot-light-emitting diodes (QLEDs) has been focused on the improvement of the electroluminescent (EL) performance of monochromatic devices, and multi-colored white QLEDs comprising more than one type of QD emitter have been rarely investigated. To demonstrate a white EL as a result of color mixing between blue and yellow, herein a unique combination of two dissimilar QDs of blue- CdZnS/ZnS plus a yellow-emitting Cu-In-S (CIS)/ZnS is used for the formation of the emitting layer (EML) of a multilayered QLED. First, the QLED consisting of a single EML randomly mixed with two QDs is fabricated, however, its EL is dominated by blue emission with the contribution of yellow emission substantially weaker. Thus, another EML configuration is devised in the form of a QD bilayer with two stacking sequences of CdZnS/ZnS//CIS/ZnS QD and vice versa. The QLED with the former stacking sequence shows an overwhelming contribution of blue EL, similar to the mixed QD EML-based device. Upon applying the oppositely stacked QD bilayer of CIS/ZnS//CdZnS/ZnS, however, a bicolored white EL can be successfully achieved by means of the effective extension of the radiative excitonic recombination zone throughout both QD EML regions. Such QD EML configuration-dependent EL results, which are discussed primarily using the proposed device energy level diagram, strongly suggest that the positional design of individual QD emitters is a critical factor for the realization of multicolored, white emissive devices.
Wu, Ningling; Christenbury, Joseph G; Dishler, Jon G; Bozkurt, Tahir Kansu; Duel, Daniel; Zhang, Lijun; Hamilton, D Rex
2017-09-01
To identify risk factors for opaque bubble layer (OBL) formation and compare the incidence of OBL using a cone modification technique versus the original technique for LASIK flap creation using the VisuMax laser (Carl Zeiss Meditec, Jena, Germany). This retrospective study examined videos of flap creation using the VisuMax laser to identify OBL occurrence. Eyes were divided into three groups: eyes where OBL occurred using the original technique (OBL group), eyes where OBL did not occur using the original technique (no OBL group), and eyes in which the cone modification technique was used for LASIK flap creation (larger flap diameter) (cone modification technique group). Preoperative measurements including simulated keratometry (flat and steep) values, white-to-white distance (WTW), pachymetry, patient age and gender, amount of correction, flap parameters, energy setting, corneal hysteresis, and corneal resistance factor were analyzed to identify parameters with statistical difference between the OBL and no OBL groups. Incidence of OBL was compared between the original and cone modification techniques. OBL incidence was significantly lower with the cone modification technique (7.6%; 7 of 92 eyes) than with the original technique (28.8%; 34 of 118 eyes) (Fisher's exact test, P = .0009). Factors identified with a significant difference between eyes with and without OBL using the original technique were: corneal thickness (OBL: 561.2 μm, no OBL: 549.6 μm, P = .0132), WTW diameter (OBL: 11.6 mm, no OBL: 11.9 mm, P = .0048), corneal resistance factor (OBL: 10.4 mm Hg, no OBL: 9.6 mm Hg, P = 0.0329), and corneal astigmatism (OBL: 0.80 diopter, no OBL: 1.00 diopter, P = .0472) CONCLUSIONS: Less astigmatic, thicker, denser, and smaller corneas increased the risk of OBL using the original technique for flap creation. The cone modification technique was associated with lower risk of OBL formation, even in eyes with significant risk factors for OBL using the original technique. [J Refract Surg. 2017;33(9):584-590.]. Copyright 2017, SLACK Incorporated.
In situ heat treatment from multiple layers of a tar sands formation
Vinegar, Harold J.
2010-11-30
A method for treating a tar sands formation is disclosed. The method includes providing a drive fluid to a first hydrocarbon containing layer of the formation to mobilize at least some hydrocarbons in the first layer. At least some of the mobilized hydrocarbons are allowed to flow into a second hydrocarbon containing layer of the formation. Heat is provided to the second layer from one or more heaters located in the second layer. At least some hydrocarbons are produced from the second layer of the formation.
The Changing Roles of Neurons in the Cortical Subplate
Friedlander, Michael J.; Torres-Reveron, Juan
2009-01-01
Neurons may serve different functions over the course of an organism's life. Recent evidence suggests that cortical subplate (SP) neurons including those that reside in the white matter may perform longitudinal multi-tasking at different stages of development. These cells play a key role in early cortical development in coordinating thalamocortical reciprocal innervation. At later stages of development, they become integrated within the cortical microcircuitry. This type of longitudinal multi-tasking can enhance the capacity for information processing by populations of cells serving different functions over the lifespan. Subplate cells are initially derived when cells from the ventricular zone underlying the cortex migrate to the cortical preplate that is subsequently split by the differentiating neurons of the cortical plate with some neurons locating in the marginal zone and others settling below in the SP. While the cortical plate neurons form most of the cortical layers (layers 2–6), the marginal zone neurons form layer 1 and the SP neurons become interstitial cells of the white matter as well as forming a compact sublayer along the bottom of layer 6. After serving as transient innervation targets for thalamocortical axons, most of these cells die and layer 4 neurons become innervated by thalamic axons. However, 10–20% survives, remaining into adulthood along the bottom of layer 6 and as a scattered population of interstitial neurons in the white matter. Surviving SP cells' axons project throughout the overlying laminae, reaching layer 1 and issuing axon collaterals within white matter and in lower layer 6. This suggests that they participate in local synaptic networks, as well. Moreover, they receive excitatory and inhibitory synaptic inputs, potentially monitoring outputs from axon collaterals of cortical efferents, from cortical afferents and/or from each other. We explore our understanding of the functional connectivity of these cells at different stages of development. PMID:19688111
Recurrent white thrombi formation in hemodialysis tubing: a case report.
Sathe, Kiran P; Yeo, Wee-Song; Liu, Isaac Desheng; Ekambaram, Sudha; Azar, Mohammed; Yap, Hui-Kim; Ng, Kar-Hui
2015-01-15
While the appearance of red clots in the dialyzer is a common phenomenon in every hemodialysis unit, the occurrence of white thrombi in the tubing is relatively rare. We describe an adolescent male with recurrent white thrombi formation in the hemodialysis tubing. This patient had chronic renal failure from focal segmental glomerulosclerosis, but was no longer nephrotic at the time of the thrombi formation. He had a history of recurrent thrombosis of his vascular access. However, no pro-thrombotic risk factors could be identified. White particulate matter, measuring 1 to 3mm in size, and adherent to the arterial and venous blood tubing lines was found during the rinse back of a hemodialysis session. This was associated with a 60% decrease in his platelet count. Light microscopic examination of the deposits revealed the presence of platelet aggregates. He subsequently developed thrombosis of his arteriovenous graft six hours later. The white thrombi recurred at the next dialysis session, as well as six months later. These episodes occurred regardless of the type of dialysis machine or tubing, and appeared to resolve with an increase in heparin dose. Recurrent white thrombi formation can occur in the hemodialysis tubing of a patient with no identifiable pro-thrombotic factors. The white thrombi may be a harbinger of arteriovenous graft thrombosis and may be prevented by an increase in heparin dose.
The Hidden Curriculum of Whiteness: White Teachers, White Territory, and White Community.
ERIC Educational Resources Information Center
Allen, Ricky Lee
This paper suggests that space and spatiality are major features of racial identity and the formation of student resistance. It brings together critical studies of "Whiteness," human territoriality, and theories of resistance in education. The problems between white teachers and students of color can be understood better through a combination of…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hua, Wang, E-mail: wmsu2008@sinano.ac.cn, E-mail: wanghua001@tyut.edu.cn; Du, Xiaogang; Research Center of Advanced Materials Science and Technology, Taiyuan University of Technology, Taiyuan 030024
2014-02-15
In this paper, a novel type of white-light organic light emitting diode (OLED) with high color stability was reported, in which the yellow-light emission layer of (4,4{sup ′}-N,N{sup ′}-dicarbazole)biphenyl (CBP) : tris(2-phenylquinoline-C2,N{sup ′})iridium(III) (Ir(2-phq){sub 3}) was sandwiched by double blue-light emission layers of 1,1-bis-[(di-4-tolylamino)pheny1]cyclohexane (TAPC) : bis[4,6-(di-fluorophenyl)-pyridinato-N,C2{sup ′}]picolinate (FIrpic) and tris[3-(3-pyridyl)mesityl]borane (3TPYMB):FIrpic. And, it exhibited the maximum current efficiency of 33.1 cd/A, the turn-on voltage at about 3 V and the maximum luminance in excess of 20000 cd/m{sup 2}. More important, it realized very stable white-light emission, and its CIE(x, y) coordinates only shift from (0.34, 0.37) to (0.33, 0.37)more » as applied voltage increased from 5 V to 12 V. It is believed that the new scheme in emission layer of white-light OLED can fine tune the contribution of primary emission with applied voltage changed, resulting in high quality white-light OLED.« less
Monolithic Inorganic ZnO/GaN Semiconductors Heterojunction White Light-Emitting Diodes.
Jeong, Seonghoon; Oh, Seung Kyu; Ryou, Jae-Hyun; Ahn, Kwang-Soon; Song, Keun Man; Kim, Hyunsoo
2018-01-31
Monolithic light-emitting diodes (LEDs) that can generate white color at the one-chip level without the wavelength conversion through packaged phosphors or chip integration for photon recycling are of particular importance to produce compact, cost-competitive, and smart lighting sources. In this study, monolithic white LEDs were developed based on ZnO/GaN semiconductor heterojunctions. The electroluminescence (EL) wavelength of the ZnO/GaN heterojunction could be tuned by a post-thermal annealing process, causing the generation of an interfacial Ga 2 O 3 layer. Ultraviolet, violet-bluish, and greenish-yellow broad bands were observed from n-ZnO/p-GaN without an interfacial layer, whereas a strong greenish-yellow band emission was the only one observed from that with an interfacial layer. By controlled integration of ZnO/GaN heterojunctions with different postannealing conditions, monolithic white LED was demonstrated with color coordinates in the range (0.3534, 0.3710)-(0.4197, 0.4080) and color temperatures of 4778-3349 K in the Commission Internationale de l'Eclairage 1931 chromaticity diagram. Furthermore, the monolithic white LED produced approximately 2.1 times higher optical output power than a conventional ZnO/GaN heterojunction due to the carrier confinement effect at the Ga 2 O 3 /n-ZnO interface.
Characterization of V-shaped defects in 4H-SiC homoepitaxial layers
Zhang, Lihua; Su, Dong; Kisslinger, Kim; ...
2014-12-04
Synchrotron white beam x-ray topography images show that faint needle-like surface morphological features observed on the Si-face of 4H-SiC homoepitaxial layers using Nomarski optical microscopy are associated with V shaped stacking faults in the epilayer. KOH etching of the V shaped defect reveals small oval pits connected by a shallow line which corresponding to the surface intersections of two partial dislocations and the stacking fault connecting them. Transmission electron microscopy (TEM) specimens from regions containing the V shaped defects were prepared using focused ion beam milling, and stacking sequences of (85), (50) and (63) are observed at the faulted regionmore » with high resolution TEM. In order to study the formation mechanism of V shaped defect, low dislocation density 4H-SiC substrates were chosen for epitaxial growth, and the corresponding regions before and after epitaxy growth are compared in SWBXT images. It is found that no defects in the substrate are directly associated with the formation of the V shaped defect. Simulation results of the contrast from the two partial dislocations associated with V shaped defect in synchrotron monochromatic beam x-ray topography reveals the opposite sign nature of their Burgers vectors. Therefore, a mechanism of 2D nucleation during epitaxy growth is postulated for the formation of the V shaped defect, which requires elimination of non-sequential 1/4[0001] bilayers from the original structure to create the observed faulted stacking sequence.« less
Characterization of V-shaped defects in 4H-SiC homoepitaxial layers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Lihua; Su, Dong; Kisslinger, Kim
Synchrotron white beam x-ray topography images show that faint needle-like surface morphological features observed on the Si-face of 4H-SiC homoepitaxial layers using Nomarski optical microscopy are associated with V shaped stacking faults in the epilayer. KOH etching of the V shaped defect reveals small oval pits connected by a shallow line which corresponding to the surface intersections of two partial dislocations and the stacking fault connecting them. Transmission electron microscopy (TEM) specimens from regions containing the V shaped defects were prepared using focused ion beam milling, and stacking sequences of (85), (50) and (63) are observed at the faulted regionmore » with high resolution TEM. In order to study the formation mechanism of V shaped defect, low dislocation density 4H-SiC substrates were chosen for epitaxial growth, and the corresponding regions before and after epitaxy growth are compared in SWBXT images. It is found that no defects in the substrate are directly associated with the formation of the V shaped defect. Simulation results of the contrast from the two partial dislocations associated with V shaped defect in synchrotron monochromatic beam x-ray topography reveals the opposite sign nature of their Burgers vectors. Therefore, a mechanism of 2D nucleation during epitaxy growth is postulated for the formation of the V shaped defect, which requires elimination of non-sequential 1/4[0001] bilayers from the original structure to create the observed faulted stacking sequence.« less
Chen, Jing; Zhao, Dewei; Li, Chi; Xu, Feng; Lei, Wei; Sun, Litao; Nathan, Arokia; Sun, Xiao Wei
2014-01-01
White quantum dot light-emitting diodes (QD-LEDs) have been a promising candidate for high-efficiency and color-saturated displays. However, it is challenging to integrate various QD emitters into one device and also to obtain efficient blue QDs. Here, we report a simply solution-processed white QD-LED using a hybrid ZnO@TiO2 as electron injection layer and ZnCdSeS QD emitters. The white emission is obtained by integrating the yellow emission from QD emitters and the blue emission generated from hybrid ZnO@TiO2 layer. We show that the performance of white QD-LEDs can be adjusted by controlling the driving force for hole transport and electroluminescence recombination region via varying the thickness of hole transport layer. The device is demonstrated with a maximum luminance of 730 cd/m2 and power efficiency of 1.7 lm/W, exhibiting the Commission Internationale de l'Enclairage (CIE) coordinates of (0.33, 0.33). The unencapsulated white QD-LED has a long lifetime of 96 h at its initial luminance of 730 cd/m2, primarily due to the fact that the device with hybrid ZnO@TiO2 has low leakage current and is insensitive to the oxygen and the moisture. These results indicate that hybrid ZnO@TiO2 provides an alternate and effective approach to achieve high-performance white QD-LEDs and also other optoelectronic devices. PMID:24522341
Physical Limitations of Phosphor layer thickness and concentration for White LEDs.
Tan, Cher Ming; Singh, Preetpal; Zhao, Wenyu; Kuo, Hao-Chung
2018-02-05
Increasing phosphor layer thickness and concentration can enhance the lumen flux of white LED (W-LED). In this work, we found that increasing the phosphor layer thickness and concentration can increase its temperature, and there is also a maximum thickness and concentration beyond which their increase will not lead to lumen increase, but only temperature increase. Higher thickness and higher concentration also results in warm light instead of White light. The maximum thickness and concentration are found to be limited by the scattering of light rays with higher % decrease of blue light rays than the yellow light rays. The results obtained in this work can also be used to compute the temperature and thermo-mechanical stress distribution of an encapsulated LED, demonstrating its usefulness to the design of encapsulated LED packages. Simulation software like ANSYS and TracePro are used extensively to verify the root cause mechanisms.
NASA Astrophysics Data System (ADS)
Chen, Tsun-Ren
2005-02-01
The absorption and emission properties of benzimidazol-2-yl-quinoline (BIQ) and bis (2-(benzimidazol-2-yl) quinolinato) zinc (ZnBIQ) a new emitter used for organic light emitting device (OLED) were reported. Exciplexes are observed for ZnBIQ with N, N'-bis-(1-naphthyl)- N, N'-diphenyl-1,1'-biphenyl-4,4'-diamine (NPB) system, in both electro- and photoluminescent processes. The identification of exciplex emission in co-evaporated and multi-layer ZnBIQ thin film was reported for the first time. The optical formation of the exciplex involves the excitation of a single molecule, followed by the relaxation of that exciton into a lower energy exciplex state. Both BIQ and ZnBIQ possess very high thermal stabilities and can be purified by subliming under the high vacuum condition. Devices consisting of ZnBIQ as the emitting layer have been fabricated, and the emission spectra of ZnBIQ-base devices gave a voltage-dependent spectrum, with the red emission observed (3-7 V), switching over to strong white emission as the bias was raised.
Wan, Yi; Jin, Sihua; Ma, Chendong; Wang, Zhicheng; Fang, Qi; Jiang, Runshen
2017-12-22
Eggs with a much higher proportion of thick albumen are preferred in the layer industry, as they are favoured by consumers. However, the genetic factors affecting the thick egg albumen trait have not been elucidated. Using RNA sequencing, we explored the magnum transcriptome in 9 Rhode Island white layers: four layers with phenotypes of extremely high ratios of thick to thin albumen (high thick albumen, HTA) and five with extremely low ratios (low thick albumen, LTA). A total of 220 genes were differentially expressed, among which 150 genes were up-regulated and 70 were down-regulated in the HTA group compared with the LTA group. Gene Ontology (GO) analysis revealed that the up-regulated genes in HTA were mainly involved in a wide range of regulatory functions. In addition, a large number of these genes were related to glycosphingolipid biosynthesis, focal adhesion, ECM-receptor interactions and cytokine-cytokine receptor interactions. Based on functional analysis, ST3GAL4, FUT4, ITGA2, SDC3, PRLR, CDH4 and GALNT9 were identified as promising candidate genes for thick albumen synthesis and metabolism during egg formation. These results provide new insights into the molecular mechanisms of egg albumen traits and may contribute to future breeding strategies that optimise the proportion of thick egg albumen.
Organic light emitting device having multiple separate emissive layers
Forrest, Stephen R [Ann Arbor, MI
2012-03-27
An organic light emitting device having multiple separate emissive layers is provided. Each emissive layer may define an exciton formation region, allowing exciton formation to occur across the entire emissive region. By aligning the energy levels of each emissive layer with the adjacent emissive layers, exciton formation in each layer may be improved. Devices incorporating multiple emissive layers with multiple exciton formation regions may exhibit improved performance, including internal quantum efficiencies of up to 100%.
NASA Astrophysics Data System (ADS)
Bahadormanesh, Behrouz; Ghorbani, Mohammad
2018-06-01
The Ni-P/Zn-Ni compositionally modulated multilayer coatings CMMCs were electrodeposited from a single bath by switching the deposition current density. The corrosion resistance of the deposits was studied and compared with that of monolayers of Ni-P and Zn-Ni alloys via Tafel polarization, EIS and salt spray tests. Characterization of corrosion products by means of EDS and XRD revealed more details from the corrosion mechanism of the monolayers and multilayers. The corrosion current density of Ni-P/Zn-Ni CMMCs were around one tenth of Zn-Ni monolayer. The CMMC with incomplete layers performed lower polarization resistance and higher corrosion current density compared to the CMMC with complete layers. The electrical circuit that was proposed for modeling the corrosion process based on the EIS spectrum, proved that layering reduces the porosity and consequently improves the barrier properties. Although, layering of Zn-Ni layers with Ni-P deposits increased the time to red rust in salt spray test, the time for white rust formation decreased. The corrosion mechanism of both Zn-Ni and Ni-P (containing small amount of Zn) was preferential dissolution of Zn and the corrosion products were comprised of mainly Zn hydroxychloride and Zn hydroxycarbonate. Also, Ni and P did not take part in the corrosion products. Based on the electrochemical character of the layers and the morphology of the corroded surface, the corrosion mechanism of multilayers was discussed.
Zhang, Jing; Lynch, Richard J M; Watson, Timothy F; Banerjee, Avijit
2018-05-01
To investigate the remineralisation of chitosan pre-treated enamel white spot lesions (WSLs) by bioglass in the presence of the pellicle layer. 50 artificial enamel white spot lesions were created by acidic gel. Two lesions were used to investigate the formation of the pellicle layer by treating with human whole saliva for 3 min. 48 lesions were assigned to 6 experimental groups (n = 8): (1) bioactive glass slurry, (2) bioactive glass containing polyacrylic acid (BG + PAA) slurry, (3) chitosan pre-treated WSLs with BG slurry (CS-BG), (4) chitosan pre-treated WSLs with BG + PAA slurry (CS-BG + PAA), (5) "standard" remineralisation solution (RS) and (6) de-ionised water (negative control, NC). Remineralisation was carried out using a pH-cycling model for 7 days. Before each treatment using remineralising agents, 3-min pellicle was formed on lesions' surfaces. Mineral content changes, surface and subsurface microhardness and ultrastructure were evaluated by Raman intensity mapping, Knoop microhardness and scanning electron microscopy, respectively. Data were statistically analysed using one-way ANOVA with Tukey's test (p < 0.05 is considered as significant). Despite the heterogeneously formed pellicle layer, all groups showed an increase in surface mineral content after pH-cycling. Chitosan pre-treatment enhanced the subsurface remineralisation of WSLs using bioglass as both pre-treated groups showed greater surface and subsurface microhardness compared to NC. CS-BG exhibited denser subsurface structure than BG, while in CS-BG + PAA the crystals were bigger in size but resemble more enamel-like compared to BG + PAA as shown in SEM observations. Remineralisation of RS was limited to the surface as no significant subsurface changes of mechanical properties and structure were found. Chitosan pre-treatment can enhance WSL remineralisation with bioglass biomaterials when a short-term salivary pellicle is present. A further investigation using a long-term pH-cycling model with mature pellicle is suggested with regards to clinical application. Chitosan pre-treatment has the potential in clinical application to remineralise subsurface lesions to achieve lesion consolidation. Copyright © 2018 Elsevier Ltd. All rights reserved.
Andjelic, Sofija; Drašlar, Kazimir; Hvala, Anastazija; Hawlina, Marko
2016-02-01
Our purpose was to study the structure of the lens epithelial cells (LECs) of intumescent white cataracts (IC) in comparison with nuclear cataracts (NC) in order to investigate possible structural reasons for development of IC. The anterior lens capsule (aLC: basement membrane and associated LECs) were obtained from cataract surgery and prepared for scanning electron microscopy (SEM) and transmission electron microscopy (TEM). We observed by SEM that in IC, LEC swelling was pronounced with the clefts surrounding the groups of LECs. Another structural feature was spherical formations, that were observed on the apical side of LEC's, towards the fibre cell layer, both by SEM and TEM. Development of these structures, bulging out from the apical cell membrane of the LEC's and disrupting it, could be followed in steps towards the sphere formation. The degeneration of the lens epithelium and the structures of the aLC in IC similar to Morgagnian globules were also observed. None of these structural changes were observed in NC. We show by SEM and TEM that, in IC, LECs have pronounced structural features not observed in NC. This supports the hypothesis that the disturbed structure of LECs plays a role in water accumulation in the IC lens. We also suggest that, in IC, LECs produce bulging spheres that represent unique structures of degenerated material, extruded from the LEC.
Efficient and bright organic light-emitting diodes on single-layer graphene electrodes
NASA Astrophysics Data System (ADS)
Li, Ning; Oida, Satoshi; Tulevski, George S.; Han, Shu-Jen; Hannon, James B.; Sadana, Devendra K.; Chen, Tze-Chiang
2013-08-01
Organic light-emitting diodes are emerging as leading technologies for both high quality display and lighting. However, the transparent conductive electrode used in the current organic light-emitting diode technologies increases the overall cost and has limited bendability for future flexible applications. Here we use single-layer graphene as an alternative flexible transparent conductor, yielding white organic light-emitting diodes with brightness and efficiency sufficient for general lighting. The performance improvement is attributed to the device structure, which allows direct hole injection from the single-layer graphene anode into the light-emitting layers, reducing carrier trapping induced efficiency roll-off. By employing a light out-coupling structure, phosphorescent green organic light-emitting diodes exhibit external quantum efficiency >60%, while phosphorescent white organic light-emitting diodes exhibit external quantum efficiency >45% at 10,000 cd m-2 with colour rendering index of 85. The power efficiency of white organic light-emitting diodes reaches 80 lm W-1 at 3,000 cd m-2, comparable to the most efficient lighting technologies.
NASA Astrophysics Data System (ADS)
Akiya, Shunta; Kikuchi, Tatsuya; Natsui, Shungo; Suzuki, Ryosuke O.
2017-05-01
Anodizing of aluminum in an arsenic acid solution is reported for the fabrication of anodic porous alumina. The highest potential difference (voltage) without oxide burning increased as the temperature and the concentration of the arsenic acid solution decreased, and a high anodizing potential difference of 340 V was achieved. An ordered porous alumina with several tens of cells was formed in 0.1-0.5 M arsenic acid solutions at 310-340 V for 20 h. However, the regularity of the porous alumina was not improved via anodizing for 72 h. No pore sealing behavior of the porous alumina was observed upon immersion in boiling distilled water, and it may be due to the formation of an insoluble complex on the oxide surface. The porous alumina consisted of two different layers: a hexagonal alumina layer that contained arsenic from the electrolyte and a pure alumina honeycomb skeleton. The porous alumina exhibited a white photoluminescence emission at approximately 515 nm under UV irradiation at 254 nm.
White-Light Emission from Layered Halide Perovskites.
Smith, Matthew D; Karunadasa, Hemamala I
2018-03-20
With nearly 20% of global electricity consumed by lighting, more efficient illumination sources can enable massive energy savings. However, effectively creating the high-quality white light required for indoor illumination remains a challenge. To accurately represent color, the illumination source must provide photons with all the energies visible to our eye. Such a broad emission is difficult to achieve from a single material. In commercial white-light sources, one or more light-emitting diodes, coated by one or more phosphors, yield a combined emission that appears white. However, combining emitters leads to changes in the emission color over time due to the unequal degradation rates of the emitters and efficiency losses due to overlapping absorption and emission energies of the different components. A single material that emits broadband white light (a continuous emission spanning 400-700 nm) would obviate these problems. In 2014, we described broadband white-light emission upon near-UV excitation from three new layered perovskites. To date, nine white-light-emitting perovskites have been reported by us and others, making this a burgeoning field of study. This Account outlines our work on understanding how a bulk material, with no obvious emissive sites, can emit every color of the visible spectrum. Although the initial discoveries were fortuitous, our understanding of the emission mechanism and identification of structural parameters that correlate with the broad emission have now positioned us to design white-light emitters. Layered hybrid halide perovskites feature anionic layers of corner-sharing metal-halide octahedra partitioned by organic cations. The narrow, room-temperature photoluminescence of lead-halide perovskites has been studied for several decades, and attributed to the radiative recombination of free excitons (excited electron-hole pairs). We proposed that the broad white emission we observed primarily stems from exciton self-trapping. Here, the exciton couples strongly to the lattice, creating transient elastic lattice distortions that can be viewed as "excited-state defects". These deformations stabilize the exciton affording a broad emission with a large Stokes shift. Although material defects very likely contribute to the emission width, our mechanistic studies suggest that the emission mostly arises from the bulk material. Ultrafast spectroscopic measurements support self-trapping, with new, transient, electronic states appearing upon photoexcitation. Importantly, the broad emission appears common to layered Pb-Br and Pb-Cl perovskites, albeit with a strong temperature dependence. Although the emission is attributed to light-induced defects, it still reflects changes in the crystal structure. We find that greater out-of-plane octahedral tilting increases the propensity for the broad emission, enabling synthetic control over the broad emission. Many of these perovskites have color rendering abilities that exceed commercial requirements and mixing halides affords both "warm" and "cold" white light. The most efficient white-light-emitting perovskite has a quantum efficiency of 9%. Improving this value will make these phosphors attractive for solid-state lighting, particularly as large-area coatings that can be deposited inexpensively. The emission mechanism can also be extended to other low-dimensional systems. We hope this Account aids in expanding the phase space of white-light emitters and controlling their exciton dynamics by the synthetic, spectroscopic, theoretical, and engineering communities.
The white dwarf luminosity function - A possible probe of the galactic halo
NASA Technical Reports Server (NTRS)
Tamanaha, Christopher M.; Silk, Joseph; Wood, M. A.; Winget, D. E.
1990-01-01
The dynamically inferred dark halo mass density, amounting to above 0.01 solar masses/cu pc at the sun's Galactocentric radius, can be composed of faint white dwarfs provided that the halo formed in a sufficiently early burst of star formation. The model is constrained by the observed disk white dwarf luminosity function which falls off below log (L/solar L) = -4.4, due to the onset of star formation in the disk. By using a narrow range for the initial mass function and an exponentially decaying halo star formation rate with an e-folding time equal to the free-fall time, all the halo dark matter is allowed to be in cool white dwarfs which lie beyond the falloff in the disk luminosity function. Although it is unlikely that all the dark matter is in these dim white dwarfs, a definite signature in the low-luminosity end of the white dwarf luminosity function is predicted even if they comprise only 1 percent of the dark matter. Current CCD surveys should answer the question of the existence of this population within the next few years.
Performance analysis of multi-primary color display based on OLEDs/PLEDs
NASA Astrophysics Data System (ADS)
Xiong, Yan; Deng, Fei; Xu, Shan; Gao, Shufang
2017-09-01
A multi-primary color display, such as the six-primary color format, is a solution in expanding the color gamut of a full-color flat panel display. The performance of a multi-primary color display based on organic/polymer light-emitting diodes was analyzed in this study using the fitting curves of the characteristics of devices (i.e., current density, voltage, luminance). A white emitter was introduced into a six-primary color format to form a seven-primary color format that contributes to energy saving, and the ratio of power efficiency of a seven-primary color display to that of a six-primary color display would increase from 1.027 to 1.061 by using emitting diodes with different electroluminescent efficiencies. Different color matching schemes of the seven-primary color format display were compared in a uniform color space, and the scheme of the color reproduction did not significantly affect the display performance. Although seven- and six-primary color format displays benefit a full-color display with higher quality, they are less efficient than three-primary (i.e., red (R), green (G), and blue (B), RGB) and four-primary (i.e., RGB+white, RGBW) color format displays. For the seven-primary color formats considered in this study, the advantages of white-primary-added display with efficiently developed light-emitting devices were more evident than the format without a white primary.
NASA Astrophysics Data System (ADS)
Kim, You-Hyun; Wai Cheah, Kok; Young Kim, Woo
2013-07-01
Phosphorescent white organic light-emitting diodes (PHWOLEDs) with single emissive layer were fabricated by co-doping phosphorescent blue, green, and red emitters with different concentrations. WOLEDs using Ir(piq)3 and Ir(ppy)3 as red and green dopants along with 8% of Firpic as blue dopant with host materials of 4CzPBP in the emissive layer were compared under various doping ratio between Ir(piq)3 and Ir(ppy)3. Triplet-triplet Dexter energy transfer in single emissive PHWOLEDs including three primary colors was saturated from higher triplet energy levels to lower triplet energy levels directly.
NASA Astrophysics Data System (ADS)
Colvin, A.; Merrill, M.; Demoor, M.; Goss, A.; Varekamp, J. C.
2004-05-01
The Caviahue-Copahue volcanic complex (38 S, 70 W) is located on the eastern margin of the active arc in the southern Andes, Argentina. Volcán Copahue, an active stratovolcano which hosts an active hydrothermal system, sits on the southwestern rim of the elliptical Caviahue megacaldera (17 x 15 km). The caldera wall sequences are up to 0.6 km thick and consist of lavas with 51 -69 percent SiO2 and 0.2 - 5 percent MgO as well as breccias, dikes, sills, domes and minor ignimbrites. Andesitic lava flows also occur within the caldera, and are overlain by a chaotic complex of silicic lava and intracaldera pyroclastic flow deposits. The eastern wall sequence is capped by several extracaldera ignimbrites (Riscos Bayos formation) of about 50 m maximum thickness which extend 30 km east-southeast of the caldera. Young back-arc alkali basalt scoria cones occur east of the Caviahue-Copahue volcanic complex. The eruption of the Riscos Bayos formation at about 1.1 Ma (12 km cubed) may be related to the Caviahue caldera formation, though the Riscos Bayos account for only about 7 percent of the caldera volume. The Riscos Bayos consists of three lithic-bearing flow units: a grey basal flow, a tan middle flow and a bright-white, highly indurated uppermost flow. The basal unit consists of white and grey pumice fragments, black scoria clasts, black obsidian clasts (which give it the grey color), and accidental volcanic lithics set in a matrix of ash and crystals. The middle unit is composed of large mauve pumice fragments and accidental lithics set in a fine tan ash groundmass. The uppermost unit is composed of small pink and white pumice fragments set in a matrix of fine white ash. These pumices carry quartz and biotite crystals, whereas the lower two units are orthopyroxene-bearing trachy-dacites. The Caviahue-Copahue magmas all bear arc signatures, but possibly some magma mixing between the andesitic arc magmas and basaltic back-arc magmas may have occurred. The evolved top layer of the Riscos Bayos ignimbrite may be genetically unrelated to the other magmas, and is possibly a local crustal melt. Trace element and isotope data for the Caviahue-Copahue volcanoes suggest the presence of a subducted sediment component with minor continental crust assimilation.
NASA Astrophysics Data System (ADS)
Miao, Yanqin; Wang, Kexiang; Zhao, Bo; Gao, Long; Tao, Peng; Liu, Xuguang; Hao, Yuying; Wang, Hua; Xu, Bingshe; Zhu, Furong
2018-01-01
By incorporating ultrathin (<0.1 nm) green, yellow, and red phosphorescence layers with different sequence arrangements in a blue fluorescence layer, four unique and simplified fluorescence/phosphorescence (F/P) hybrid, white organic light-emitting diodes (WOLEDs) were obtained. All four devices realize good warm white light emission, with high color rending index (CRI) of >80, low correlated color temperature of <3600 K, and high color stability at a wide voltage range of 5 V-9 V. These hybrid WOLEDs also reveal high forward-viewing external quantum efficiencies (EQE) of 17.82%-19.34%, which are close to the theoretical value of 20%, indicating an almost complete exciton harvesting. In addition, the electroluminescence spectra of the hybrid WOLEDs can be easily improved by only changing the incorporating sequence of the ultrathin phosphorescence layers without device efficiency loss. For example, the hybrid WOLED with an incorporation sequence of ultrathin red/yellow/green phosphorescence layers exhibits an ultra-high CRI of 96 and a high EQE of 19.34%. To the best of our knowledge, this is the first WOLED with good tradeoff among device efficiency, CRI, and color stability. The introduction of ultrathin (<0.1 nm) phosphorescence layers can also greatly reduce the consumption of phosphorescent emitters as well as simplify device structures and fabrication process, thus leading to low cost. Such a finding is very meaningful for the potential commercialization of hybrid WOLEDs.
Angular color uniformity enhancement of white light-emitting diodes integrated with freeform lenses.
Wang, Kai; Wu, Dan; Chen, Fei; Liu, Zongyuan; Luo, Xiaobing; Liu, Sheng
2010-06-01
We demonstrate a freeform lens to enhance the angular color uniformity (ACU) of white light-emitting diodes (LEDs) whose phosphor layers were coated by freely dispersed coating processes. Monte Carlo ray tracing simulation results indicated that the ACU of the modified LED integrated with the freeform lens significantly increased from 0.334 to 0.957, compared with the traditional LED. Enhancement of ACU reached as high as 186.5%. Moreover, the ACU of the modified LED was not only at a high level, but also stable when the shape of the phosphor layer changed. The freeform lens provided an effective way to achieve white LEDs with high ACU at low cost.
Phosphor-free, white-light LED under alternating-current operation.
Yao, Yu-Feng; Chen, Hao-Tsung; Su, Chia-Ying; Hsieh, Chieh; Lin, Chun-Han; Kiang, Yean-Woei; Yang, C C
2014-11-15
A light-emitting diode structure, consisting of a p-GaN layer, a CdZnO/ZnO quantum-well (QW) structure, a high-temperature-grown ZnO layer, and a GaZnO layer, is fabricated. Under forward bias, the device effectively emits green-yellow light, from the QW structure, at the rim of device mesa. Under reverse bias, electrons in the valence band of the p-GaN layer move into the conduction band of the GaZnO layer, through a QW-state-assisted tunneling process, to recombine with the injected holes in the GaZnO layer, for emitting yellow-red and shallow ultraviolet light over the entire mesa area. Also, carrier recombination in the p-GaN layer produces blue light. By properly designing the thickness of the high-temperature grown ZnO layer, the emission intensity under forward bias can be controlled such that, under alternating-current operation at 60 Hz, the spatial and spectral mixtures of the emitted lights of complementary colors, under forward and reverse biases, result in white light generation based on persistence of vision.
Qualitative Analysis of Fourteen White Solids and Two Mixtures Using Household Chemicals.
ERIC Educational Resources Information Center
Oliver-Hoyo, Maria; Allen, DeeDee; Solomon, Sally; Brook, Bryan; Ciraolo, Justine; Daly, Shawn; Jackson, Leia
2001-01-01
Describes a laboratory experiment in which students identify 11 white solids readily available in drugstores and supermarkets. Investigates solubility, pH, copper reduction, evolution of carbon dioxide bubbles, formation of starch-iodine complex, and formation of an insoluble hydroxide. (YDS)
Two stacked tandem white organic light-emitting diodes employing WO3 as a charge generation layer
NASA Astrophysics Data System (ADS)
Bin, Jong-Kwan; Lee, Na Yeon; Lee, SeungJae; Seo, Bomin; Yang, JoongHwan; Kim, Jinook; Yoon, Soo Young; Kang, InByeong
2016-09-01
Recently, many studies have been conducted to improve the electroluminescence (EL) performance of organic lightemitting diodes (OLEDs) by using appropriate organic or inorganic materials as charge generation layer (CGL) for their application such as full color displays, backlight units, and general lighting source. In a stacked tandem white organic light-emitting diodes (WOLEDs), a few emitting units are electrically interconnected by a CGL, which plays the role of generating charge carriers, and then facilitate the injection of it into adjacent emitting units. In the present study, twostacked WOLEDs were fabricated by using tungsten oxide (WO3) as inorganic charge generation layer and 1,4,5,8,9,11- hexaazatriphenylene hexacarbonitrile (HAT-CN) as organic charge generation layer (P-CGL). Organic P-CGL materials were used due to their ease of use in OLED fabrication as compared to their inorganic counterparts. To obtain high efficiency, we demonstrate two-stacked tandem WOLEDs as follows: ITO/HIL/HTL/HTL'/B-EML/ETL/N-CGL/P-CGL (WO3 or HAT-CN)/HTL″/YG-EML/ETL/LiF/Al. The tandem devices with blue- and yellow-green emitting layers were sensitive to the thickness of an adjacent layer, hole transporting layer for the YG emitting layer. The WOLEDs containing the WO3 as charge generation layer reach a higher power efficiency of 19.1 lm/W and the current efficiency of 51.2 cd/A with the white color coordinate of (0.316, 0.318) than the power efficiency of 13.9 lm/W, and the current efficiency of 43.7 cd/A for organic CGL, HAT-CN at 10 mA/cm2, respectively. This performance with inserting WO3 as CGL exhibited the highest performance with excellent CIE color coordinates in the two-stacked tandem OLEDs.
Formation of high-field magnetic white dwarfs from common envelopes
Nordhaus, Jason; Wellons, Sarah; Spiegel, David S.; Metzger, Brian D.; Blackman, Eric G.
2011-01-01
The origin of highly magnetized white dwarfs has remained a mystery since their initial discovery. Recent observations indicate that the formation of high-field magnetic white dwarfs is intimately related to strong binary interactions during post-main-sequence phases of stellar evolution. If a low-mass companion, such as a planet, brown dwarf, or low-mass star, is engulfed by a post-main-sequence giant, gravitational torques in the envelope of the giant lead to a reduction of the companion’s orbit. Sufficiently low-mass companions in-spiral until they are shredded by the strong gravitational tides near the white dwarf core. Subsequent formation of a super-Eddington accretion disk from the disrupted companion inside a common envelope can dramatically amplify magnetic fields via a dynamo. Here, we show that these disk-generated fields are sufficiently strong to explain the observed range of magnetic field strengths for isolated, high-field magnetic white dwarfs. A higher-mass binary analogue may also contribute to the origin of magnetar fields. PMID:21300910
Pyke, K; Zubko, M K; Day, A
2000-10-01
Spectinomycin, an inhibitor of plastid protein synthesis, can be used to mark specific cell layers in the shoot meristem of Brassica napus. Pale yellow-green (YG) plants resulting from spectinomycin-treatment can be propagated indefinitely in vitro. Microscopic examination showed that YG-plants result from inactivation of plastids in the L2 and L3 layers and are composed of a pale green epidermis covering a white mesophyll layer. Epidermal cells of YG and normal green plants are similar and contain 10-20 small pale green plastids. YG plants are equivalent to periclinal chimeras with the important distinction that there is no genotypic difference between the white and green cell layers. Periclinal divisions of epidermal cells take place at all stages of leaf development to produce invaginations of green mesophyll located in sectors of widely varying sizes. A periclinal division rate of 1 in 3000-4000 anticlinal divisions for the adaxial epidermis, was 2-3-fold higher than that estimated for the abaxial epidermis. Analysis of white and green mesophyll showed that chloroplasts are essential for palisade cell differentiation and this requirement is cell-autonomous. Stable marking of cell lineages with spectinomycin is simple, rapid and reveals the requirement for functional plastids in cellular differentiation.
Snow White Trench After Scraping
2008-07-24
This view from the Surface Stereo Imager on NASA Phoenix Mars Lander shows the trench informally named Snow White after a series of scrapings were done in preparation for collecting a sample for analysis from a hard subsurface layer.
NASA Technical Reports Server (NTRS)
Nash, D. B.
1987-01-01
A form of sulfur that is white at room temperature and very fluffy in texture has been found in laboratory experiments on the effects of vacuum sublimation (evaporation) on solid sulfur. This work is an outgrowth of proton sputtering experiments on sulfur directed toward understanding Jovian magnetospheric effects on the surface of Io. Fluffy white sulfur is formed on the surface of solid yellow, tan, or brown sulfur melt freezes in vacuum by differential (fractional) evaporation of two or more sulfur molecular species present in the original sulfur; S(8) ring sulfur is thought to be the dominant sublimination phase lost to the vacuum sink, and polymeric chain sulfur S(u) the dominant residual phase that remains in place, forming the residual fluffy surface layer. The reflectance spectrum of the original sulfur surface is greaty modified by formation of the fluffy layer: the blue absorption band-edge and shoulder move 0.05 to 0.06 microns toward shorter wavelengths resulting in a permanent increase in reflectivity near 0.42 to 0.46 microns; the UV reflectivity below 0.40 microns is reduced. This form of sulfur should exist in large quantity on the surface of Io, especially in hotspot regions if there is solid free sulfur there that has solidified from a melt. Its color and spectra will indicate relative crystallization age on a scale of days to months and/or surface temperature distribution history.
Zhang, Jing; Cai, Ge-Mei; Yang, Lv-Wei; Ma, Zhi-Yuan; Jin, Zhan-Peng
2017-11-06
Single-component white phosphors stand a good chance to serve in the next-generation high-power white light-emitting diodes. Because of low thermal stability and containing lanthanide ions with reduced valence state, most of reported phosphors usually suffer unstable color of lighting for practical packaging and comparably complex synthetic processes. In this work, we present a type of novel color-tunable blue-white-yellow-emitting MgIn 2 P 4 O 14 :Tm 3+ /Dy 3+ phosphor with high thermal stability, which can be easily fabricated in air. Under UV excitation, the MgIn 2 P 4 O 14 :Tm 0.02 Dy 0.03 white phosphor exhibits negligible thermal-quenching behavior, with a 99.5% intensity retention at 150 °C, relative to its initial value at room temperature. The phosphor host MgIn 2 P 4 O 14 was synthesized and reported for the first time. MgIn 2 P 4 O 14 crystallizes in the space group of C2/c (No. 15) with a novel layered structure built of alternate anionic and cationic layers. Its disordering structure, with Mg and In atoms co-occupying the same site, is believed to facilitate the energy transfer between rare-earth ions and benefit by sustaining the luminescence with increasing temperature. The measured absolute quantum yields of MgIn 2 P 4 O 14 :Dy 0.04 , MgIn 2 P 4 O 14 :Tm 0.01 Dy 0.04 , and MgIn 2 P 4 O 14 :Tm 0.02 Dy 0.03 phosphors under the excitation of 351 nm ultraviolet radiation are 70.50%, 53.24%, and 52.31%, respectively. Present work indicates that the novel layered MgIn 2 P 4 O 14 is a promising candidate as a single-component white phosphor host with an excellent thermal stability for near-UV-excited white-light-emitting diodes (wLEDs).
NASA Astrophysics Data System (ADS)
Yang, Su-Hua; Wu, Jian-Ping; Huang, Tao-Liang; Chung, Bin-Fong
2018-02-01
Four configurations of buffer layers were inserted into the structure of a white organic light emitting diode, and their impacts on the hole tunneling-injection and exciton diffusion processes were investigated. The insertion of a single buffer layer of 4,4'-bis(carbazol-9-yl)biphenyl (CBP) resulted in a balanced carrier concentration and excellent color stability with insignificant chromaticity coordinate variations of Δ x < 0.023 and Δ y < 0.023. A device with a 2,9-Dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP) buffer layer was beneficial for hole tunneling to the emission layer, resulting in a 1.45-fold increase in current density. The tunneling of holes and the diffusion of excitons were confirmed by the preparation of a dual buffer layer of CBP:tris-(phenylpyridine)-iridine (Ir(ppy)3)/BCP. A maximum current efficiency of 12.61 cd/A with a luminance of 13,850 cd/m2 was obtained at 8 V when a device with a dual-buffer layer of CBP:6 wt.% Ir(ppy)3/BCP was prepared.
Gastric emptying rate and chyme characteristics for cooked brown and white rice meals in vivo.
Bornhorst, Gail M; Chang, Lucy Q; Rutherfurd, Shane M; Moughan, Paul J; Singh, R Paul
2013-09-01
Rice structure is important to rice grain and starch breakdown during digestion. The objective of this study was to determine the gastric emptying and rice composition during gastric digestion of cooked brown and white medium-grain (Calrose variety) rice using the growing pig as a model for the adult human. Brown and white rice did not show significantly different gastric emptying rates of dry matter or starch, but brown rice had slower protein emptying (P < 0.05). Moisture content was greater and pH was lower in the distal stomach compared to the proximal stomach (P < 0.0001), and varied with time (P < 0.0001). The mechanism of physical breakdown for brown and white rice varied. Brown rice exhibited an accumulation of bran layer fragments in the distal stomach, quantified by lower starch and higher protein content. The quantity of gastric secretions observed after a brown or white rice meal may be related to the meal buffering capacity, and are accumulated in the distal stomach. The delayed rate of protein emptying in brown rice compared to white rice was most likely due to the accumulation of bran layers in the stomach. © 2013 Society of Chemical Industry.
NASA Astrophysics Data System (ADS)
Bhattacharya, Mukul; Mukhopadhyay, Banibrata; Mukerjee, Subroto
2018-06-01
We investigate the luminosity and cooling of highly magnetized white dwarfs with electron-degenerate cores and non-degenerate surface layers where cooling occurs by diffusion of photons. We find the temperature and density profiles in the surface layers or envelope of white dwarfs by solving the magnetostatic equilibrium and photon diffusion equations in a Newtonian framework. We also obtain the properties of white dwarfs at the core-envelope interface, when the core is assumed to be practically isothermal. With the increase in magnetic field, the interface temperature increases whereas the interface radius decreases. For a given age of the white dwarf and for fixed interface radius or interface temperature, we find that the luminosity decreases significantly from about 10-6 to 10-9 L⊙ as the magnetic field strength increases from about 109 to 1012 G at the interface and hence the envelope. This is remarkable because it argues that magnetized white dwarfs are fainter and can be practically hidden in an observed Hertzsprung-Russell diagram. We also find the cooling rates corresponding to these luminosities. Interestingly, the decrease in temperature with time, for the fields under consideration, is not found to be appreciable.
Cho, Sang-Hwan; Oh, Jeong Rok; Park, Hoo Keun; Kim, Hyoung Kun; Lee, Yong-Hee; Lee, Jae-Gab; Do, Young Rag
2010-01-18
We demonstrate the combined effects of a microcavity structure and light-recycling filters (LRFs) on the forward electrical efficiency of phosphor-converted white organic light-emitting diodes (pc-WOLEDs). The introduction of a single pair of low- and high-index layers (SiO(2)/TiO(2)) improves the blue emission from blue OLED and the insertion of blue-passing and yellow-reflecting LRFs enhances the forward yellow emission from the YAG:Ce(3+) phosphors layers. The enhancement of the luminous efficacy of the forward white emission is 1.92 times that of a conventional pc-WOLED with color coordinates of (0.34, 0.34) and a correlated color temperature of about 4800 K.
Intrinsic white-light emission from layered hybrid perovskites.
Dohner, Emma R; Jaffe, Adam; Bradshaw, Liam R; Karunadasa, Hemamala I
2014-09-24
We report on the second family of layered perovskite white-light emitters with improved photoluminescence quantum efficiencies (PLQEs). Upon near-ultraviolet excitation, two new Pb-Cl and Pb-Br perovskites emit broadband "cold" and "warm" white light, respectively, with high color rendition. Emission from large, single crystals indicates an origin from the bulk material and not surface defect sites. The Pb-Br perovskite has a PLQE of 9%, which is undiminished after 3 months of continuous irradiation. Our mechanistic studies indicate that the emission has contributions from strong electron-phonon coupling in a deformable lattice and from a distribution of intrinsic trap states. These hybrids provide a tunable platform for combining the facile processability of organic materials with the structural definition of crystalline, inorganic solids.
White light emitting diode based on InGaN chip with core/shell quantum dots
NASA Astrophysics Data System (ADS)
Shen, Changyu; Hong, Yan; Ma, Jiandong; Ming, Jiangzhou
2009-08-01
Quantum dots have many applications in optoelectronic device such as LEDs for its many superior properties resulting from the three-dimensional confinement effect of its carrier. In this paper, single chip white light-emitting diodes (WLEDs) were fabricated by combining blue InGaN chip with luminescent colloidal quantum dots (QDs). Two kinds of QDs of core/shell CdSe /ZnS and core/shell/shell CdSe /ZnS /CdS nanocrystals were synthesized by thermal deposition using cadmium oxide and selenium as precursors in a hot lauric acid and hexadecylamine trioctylphosphine oxide hybrid. This two kinds of QDs exhibited high photoluminescence efficiency with a quantum yield more than 41%, and size-tunable emission wavelengths from 500 to 620 nm. The QDs LED mainly consists of flip luminescent InGaN chip, glass ceramic protective coating, glisten cup, QDs using as the photoluminescence material, pyroceram, gold line, electric layer, dielectric layer, silicon gel and bottom layer for welding. The WLEDs had the CIE coordinates of (0.319, 0.32). The InGaN chip white-light-emitting diodes with quantum dots as the emitting layer are potentially useful in illumination and display applications.
NASA Astrophysics Data System (ADS)
Kim, Jin Wook; You, Seung Il; Kim, Nam Ho; Yoon, Ju-An; Cheah, Kok Wai; Zhu, Fu Rong; Kim, Woo Young
2014-11-01
In this study, we report our effort to realize high performance single emissive layer three color white phosphorescent organic light emitting diodes (PHOLEDs) through sequential Dexter energy transfer of blue, green and red dopants. The PHOLEDs had a structure of; ITO(1500 Å)/NPB(700 Å)/mCP:Firpic-x%:Ir(ppy)3-0.5%:Ir(piq)3-y%(300 Å)/TPBi(300 Å)/Liq(20 Å)/Al(1200 Å). The dopant concentrations of FIrpic, Ir(ppy)3 and Ir(piq)3 were adjusted and optimized to facilitate the preferred energy transfer processes attaining both the best luminous efficiency and CIE color coordinates. The presence of a deep trapping center for charge carriers in the emissive layer was confirmed by the observed red shift in electroluminescent spectra. White PHOLEDs, with phosphorescent dopant concentrations of FIrpic-8.0%:Ir(ppy)3-0.5%:Ir(piq)3-0.5% in the mCP host of the single emissive layer, had a maximum luminescence of 37,810 cd/m2 at 11 V and a luminous efficiency of 48.10 cd/A at 5 V with CIE color coordinates of (0.35, 0.41).
Thromboresistance Characterization of Extruded Nitric Oxide-Releasing Silicone Catheters
Amoako, Kagya A.; Archangeli, Christopher; Handa, Hitesh; Major, Terry; Meyerhoff, Mark E.; Annich, Gail M.; Bartlett, Robert H.
2013-01-01
Intravascular catheters used in clinical practice can activate platelets, leading to thrombus formation and stagnation of blood flow. Nitric oxide (NO)-releasing polymers have been shown previously to reduce clot formation on a number of blood contacting devices. In this work, trilaminar NO-releasing silicone catheters were fabricated and tested for their thrombogenicity. All catheters had specifications of L = 6 cm, inner diameter = 21 gauge (0.0723 cm), outer diameter = 12 gauge (0.2052 cm), and NO-releasing layer thickness = 200 ± 11 μm. Control and NO-releasing catheters were characterized in vitro for their NO flux and NO release duration by gas phase chemiluminescence measurements. The catheters were then implanted in the right and left internal jugular veins of (N = 6 and average weight = 3 kg) adult male rabbits for 4 hours thrombogenicity testing. Platelet counts and function, methemoglobin (metHb), hemoglobin (Hb), and white cell counts and functional time (defined as patency time of catheter) were monitored as measured outcomes. Nitric oxide-releasing catheters (N = 6) maintained an average flux above (2 ± 0.5) × 10−10 mol/min/cm2 for more than 24 hours, whereas controls showed no NO release. Methemoglobin, Hb, white cell, and platelet counts and platelet function at 4 hours were not significantly different from baseline (α = 0.05). However, clots on controls were visibly larger and prevented blood draws at a significantly (p < 0.05) earlier time (2.3 ± 0.7 hours) into the experiment, whereas all NO-releasing catheters survived the entire 4 hours test period. Results indicate that catheter NO flux levels attenuated thrombus formation in a short-term animal model. PMID:22395119
NASA Astrophysics Data System (ADS)
Deshpande, R. S.; Bulović, V.; Forrest, S. R.
1999-08-01
We demonstrate efficient, molecular organic white-light-emitting devices using vacuum-deposited thin films of red luminescent [2-methyl-6-[2-(2,3,6,7-tetrahydro-1H, 5H-benzo [ij] quinolizin-9-yl) ethenyl]-4H-pyran-4-ylidene] propane-dinitrile (DCM2), doped into blue-emitting 4, 4' bis [N-1-napthyl-N-phenyl-amino]biphenyl (α-NPD), and green-emitting tris-(8-hydroxyquinolinato) aluminum(III) (AlQ3). The luminescent layers are separated by a hole-blocking layer of 2,9-dimethyl, 4,7-diphenyl, 1,10-phenanthroline (BCP), whose thickness is on the order of a typical Förster transfer radius of 30-40 Å. Excitons formed on α-NPD sequentially transfer their energy via a Förster mechanism to AlQ3 across the BCP layer, and from AlQ3 to DCM2. This interlayer sequential energy transfer results in partial excitation of all three molecular species, thereby producing white light emission. The thickness of the blocking layer and the concentration of DCM2 in α-NPD permit the tuning of the device spectrum to achieve a balanced white emission with Commission Internationale d'Eclairage chromaticity coordinates of (0.33, 0.33). The spectrum is largely insensitive to the drive current, and the devices have a maximum luminance of 13 500 cd/m2. At a luminance of 100 cd/m2, the quantum and power efficiencies are 0.5% and 0.35 lm/W, respectively.
In situ heat treatment of a tar sands formation after drive process treatment
Vinegar, Harold J.; Stanecki, John
2010-09-21
A method for treating a tar sands formation includes providing a drive fluid to a hydrocarbon containing layer of the tar sands formation to mobilize at least some hydrocarbons in the layer. At least some first hydrocarbons from the layer are produced. Heat is provided to the layer from one or more heaters located in the formation. At least some second hydrocarbons are produced from the layer of the formation. The second hydrocarbons include at least some hydrocarbons that are upgraded compared to the first hydrocarbons produced by using the drive fluid.
[The role of BCP in electroluminescence of multilayer organic light-emitting devices].
Deng, Zhao-Ru; Yang, Sheng-Yi; Lou, Zhi-Dong; Meng, Ling-Chuan
2009-03-01
As a hole-blocking layer, 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP) is usually used in blue and white light electroluminescent devices. The ability of blocking holes of BCP layer depends on its thickness, and basically holes can tunnel through thin BCP layer. In order to know the role of BCP layer in electroluminescence (EL) of multilayer organic light-emitting diodes (OLEDs), in the present paper, the authors designed a multilayer OLED ITO/NPB/BCP/Alq3 : DCJTB/Alq3/Al and investigated the influence of thickness of BCP on the EL spectra of multilayer OLEDs at different applied voltages. The experimental data show that thin BCP layer can block holes partially and tune the energy transfer between different emissive layers, and in this way, it is easy to obtain white emission, but its EL spectra will change with the applied voltages. The EL spectra of multilayer device will remain relatively stable when BCP layer is thick enough, and the holes can hardly tunnel through when the thickness of BCP layer is more than 15 nm. Furthermore, the stability of EL spectra of the multilayer OLED at different applied voltages was discussed.
Early Family Formation among White, Black, and Mexican American Women
ERIC Educational Resources Information Center
Landale, Nancy S.; Schoen, Robert; Daniels, Kimberly
2010-01-01
Using data from Waves I and III of Add Health, this study examines early family formation among 6,144 White, Black, and Mexican American women. Drawing on cultural and structural perspectives, models of the first and second family transitions (cohabitation, marriage, or childbearing) are estimated using discrete-time multinomial logistic…
Treating tar sands formations with dolomite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vinegar, Harold J.; Karanikas, John Michael
A method for treating a karsted formation containing heavy hydrocarbons and dolomite includes providing heat to at least part of one or more karsted layers in the formation from one or more heaters located in the karsted layers. A temperature in at least one of the karsted layers is allowed to reach a decomposition temperature of dolomite in the formation. The dolomite is allowed to decompose and at least some hydrocarbons are produced from at least one of the karsted layers of the formation.
White-light-controlled resistive switching in ZnO/BaTiO3/C multilayer layer at room temperature
NASA Astrophysics Data System (ADS)
Wang, Junshuai; Liang, Dandan; Wu, Liangchen; Li, Xiaoping; Chen, Peng
2018-07-01
The bipolar resistance switching effect is observed in ZnO/BaTiO3/C structure. The resistance switching behavior can be modulated by white light. The resistance switch states and threshold voltage can be changed when subjected to white light. This research can help explore multi-functional materials and applications in nonvolatile memory device.
Wu, Hao; Xu, Shuhong; Shao, Haibao; Li, Lang; Cui, Yiping; Wang, Chunlei
2017-11-09
Single component nanocrystals (NCs) with white fluorescence are promising single layer color conversion media for white light-emitting diodes (LED) because the undesirable changes of chromaticity coordinates for the mixture of blue, green and red emitting NCs can be avoided. However, their practical applications have been hindered by the relative low photoluminescence (PL) quantum yield (QY) for traditional semiconductor NCs. Though Mn-doped perovskite nanocube is a potential candidate, it has been unable to realize a white-light emission to date. In this work, the synthesis of Mn-doped 2D perovskite-related CsPb 2 Cl x Br 5-x nanoplatelets with a pure white emission from a single component is reported. Unlike Mn-doped perovskite nanocubes with insufficient energy transfer efficiency, the current reported Mn-doped 2D perovskite-related CsPb 2 Cl x Br 5-x nanoplatelets show a 10 times higher energy transfer efficiency from perovskite to Mn impurities at the required emission wavelengths (about 450 nm for perovskite emission and 580 nm for Mn emission). As a result, the Mn/perovskite dual emission intensity ratio surprisingly elevates from less than 0.25 in case of Mn-doped nanocubes to 0.99 in the current Mn-doped CsPb 2 Cl x Br 5-x nanoplatelets, giving rise to a pure white light emission with Commission Internationale de l'Eclairage (CIE) color coordinates of (0.35, 0.32). More importantly, the highest PL QY for Mn-doped perovskite-related CsPb 2 Cl x Br 5-x nanoplatelets is up to 49%, which is a new record for white-emitting nanocrystals with single component. These highly luminescent nanoplatelets can be blended with polystyrene (PS) without changing the white light emission but dramatically improving perovskite stability. The perovskite-PS composites are available not only as a good solution processable coating material for assembling LED, but also as a superior conversion material for achieving white light LED with a single conversion layer.
Highly efficient blue- and white-organic light emitting diodes base on triple-emitting layer.
Shin, Hyun Su; Lee, Seok Jae; Lee, Ho Won; Lee, Dong Hyung; Kim, Woo Young; Yoon, Seung Soo; Kim, Young Kwan
2013-12-01
We have demonstrated highly efficient blue phosphorescent organic light-emitting diodes (PHOLEDs) using iridium (III) bis[(4,6-di-fluoropheny)-pyridinato-N,C2] picolinate (Flrpic) doped in three kinds of host materials, such as 9-(4-(triphenylsilyl)phenyl)-9H-carbazole (SPC), N,N'-dicarbazolyl-3,5-benzene (mCP), and 2,2',2"-(1,3,5-benzenetriyl)tris-[1-phenyl-1H-benzimidazole] (TPBi) as triple-emitting layer (T-EML). The properties of device with T-EML using the stepwise structure was found to be superior to the other blue PHOLEDs and exhibited a maximum luminous efficiency of 23.02 cd/A, a maximum external quantum efficiency of 11.09%, and a maximum power efficiency of 14.89 lm/W, respectively. An optimal blue device has improving charge balance and triplet excitons confinement within emitting layers (EMLs) each. Additionally, we also fabricated white PHOLED using a phosphorescent red dopant, bis(2-phenylquinolinato)-acetylacetonate iridium III (Ir(pq)2acac) doped in mCP and TPBi between blue EMLs. The properties of white PHOLED showed a maximum luminous efficiency and a maximum external quantum efficiency of 33.03 cd/A and 16.95%, respectively. It also showed the white emission with CIEx,y coordinates of (x = 0.36, y = 0.39) at 10 V.
Final Environmental Planning Technical Report
1984-01-01
from natural. For cold waters, the maximum limit is 68°F (20’C) with an allowable change of 5’F (3°C) from natural. For warm waters the maximum limit...upper Cretaceous Fox Hills and Lance formations, Oligocene White River Group, Miocene Arikaree Formation, Miocene-Pliocene Ogallala Formation, and...day) and 1 to 15 feet per day (ft/day), respectively, averaging roughly 200 sq ft/day and 3 ft/day (Rapp et al. 1957). The Oligocene White River
NASA Astrophysics Data System (ADS)
Miki, T.; Kiyokawa, S.; Ito, T.; Yamaguchi, K. E.; Ikehara, M.
2014-12-01
DXCL project was targeted for 3.2-3.1 Ga hydrothermal chert-black shale (Dixon Island Formation) and black shale-banded iron formation (Cleaverville Formation). CL3 core (200m long) was drilled from 1) upper part of Black Shale Member (35m thick) to 2) lower part of BIF Member (165m thick) of the Cleaverville Formation. Here, the BIF Member can be divided into three submembers; Greenish shale-siderite (50m thick), Magnetite-siderite (55m thick) and Black shale-siderite (60m) submembers. In this study, we used bulk samples and samples treated by hot hydrochloric acid in order to extract organic carbon. The Black shale Member consists of black carbonaceous matter and fine grain quartz (< 100μm). Organic carbon content (Corg) of black shale is 1.2% in average and organic carbon isotope ratio (δ13Corg) is -31.4 to -28.7‰. On the other hand, inorganic carbon isotope ratio of siderite (δ13Ccarb) was -5.2 to +12.6‰. In the BIF Member, the Greenish shale-siderite submember is composed of well laminated greenish sideritic shale and white chert (<7mm thick), which is gradually increase from black shale of the Black shale Member through about 10m. Magnetite-siderite submember contains very fine magnetite lamination with inter-bedded greenish sideritic shale and siderite lamination. Hematite is identified near fractured part. The Black shale-siderite submember is composed of black shale, siderite and chert bands. 1) Siderite layers of these three submembers showedδ13Ccarb value of -14.6 to -3.8‰. Corg and δ13Corg content are 0.2% and -18.3 to -0.3‰. 2) Siderite grains within greenish sideritic shales showedδ13Ccarb value of -12.9 to +15.0‰. 3) Black shale of Corg and δ13Corg content in the BIF Member are 0.1% and -36.3 to -17.1‰ respectively. We found great difference in values of δ13Ccarb of siderite. One is Corg-rich shale (up to +15.0‰) and the other is Corg-poor siderite layers (up to -3.8‰). The lighter value of siderite layers may be originated from precursor organic carbon which is strongly affected by biological activity.
Artesani, Alessia; Gherardi, Francesca; Nevin, Austin; Valentini, Gianluca; Comelli, Daniela
2017-01-01
It is known that oil paintings containing zinc white are subject to rapid degradation. This is caused by the interaction between the active groups of binder and the metal ions of the pigment, which gives rise to the formation of new zinc complexes (metal soaps). Ongoing studies on zinc white paints have been limited to the chemical mechanisms that lead to the formation of zinc complexes. On the contrary, little is known of the photo-physical changes induced in the zinc oxide crystal structure following this interaction. Time-resolved photoluminescence spectroscopy has been applied to follow modifications in the luminescent zinc white pigment when mixed with binder. Significant changes in trap state photoluminescence emissions have been detected: the enhancement of a blue emission combined with a change of the decay kinetic of the well-known green emission. Complementary data from molecular analysis of paints using Fourier transform infrared spectroscopy confirms the formation of zinc carboxylates and corroborates the mechanism for zinc complexes formation. We support the hypothesis that zinc ions migrate into binder creating novel vacancies, affecting the photoluminescence intensity and lifetime properties of zinc oxide. Here, we further demonstrate the advantages of a time-resolved photoluminescence approach for studying defects in semiconductor pigments. PMID:28772700
NASA Technical Reports Server (NTRS)
1992-01-01
This cross section of the Earth's atmosphere at sunset and earth limb (24.5S, 43.5E) displays an unusual layering believed to be caused by temperature inversions which effectively concentrate smoke, dust and aerosols into narrow layers. the top of the stratosphere can be seen as the top of the white layer thought to contain volcanic debris. The purple layer is the troposphere containing smoke from landclearing biomass burning.
1992-11-01
This cross section of the Earth's atmosphere at sunset and earth limb (24.5S, 43.5E) displays an unusual layering believed to be caused by temperature inversions which effectively concentrate smoke, dust and aerosols into narrow layers. the top of the stratosphere can be seen as the top of the white layer thought to contain volcanic debris. The purple layer is the troposphere containing smoke from landclearing biomass burning.
NASA Astrophysics Data System (ADS)
Xue, Kaiwen; Chen, Ping; Duan, Yu; Sheng, Ren; Han, Guangguang; Zhao, Yi
2016-03-01
We demonstrated color stability improved white phosphorescent organic light-emitting diodes (WOLEDs) based on red, orange and blue emission layers. Iridium(III) Bis(3,5-diflouro)-2-(2-pyridyl)phenyl-(2-carboxypyridyl) was doped into red emission layer (R-EML) and orange emission layer (O-EML) to lower the electrons injection barrier and facilitate the ambipolar charge carriers balance. Consequently, the recombination region was extended to the R-EML and O-EML, leading to the excellently stable spectra and the reduction of triplet-triplet annihilation. Then the resulting device with a negligible Commission International de L'Eclairage coordinates shift of (0.003, 0.007) within a wide luminance range as well as a high color rendering index of 90 was gained, which was comparable to the profit caused by the conventional method of introducing the interlayer. And the emission mechanism of the WOLEDs was also discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schaefer, Tim; Institut für Physikalische Chemie, Universität zu Köln, 50939 Köln; Schwab, Tobias
A random scattering approach to enhance light extraction in white top-emitting organic light-emitting diodes (OLEDs) is reported. Through solution processing from fluorinated solvents, a nano-particle scattering layer (NPSL) can be deposited directly on top of small molecule OLEDs without affecting their electrical performance. The scattering length for light inside the NPSL is determined from transmission measurements and found to be in agreement with Mie scattering theory. Furthermore, the dependence of the light outcoupling enhancement on electron transport layer thickness is studied. Depending on the electron transport layer thickness, the NPSL enhances the external quantum efficiency of the investigated white OLEDsmore » by between 1.5 and 2.3-fold. For a device structure that has been optimized prior to application of the NPSL, the maximum external quantum efficiency is improved from 4.7% to 7.4% (1.6-fold improvement). In addition, the scattering layer strongly reduces the undesired shift in emission color with viewing angle.« less
Hegarty, Peter
2017-01-01
Drawing together social psychologists' concerns with equality and cognitive psychologists' concerns with scientific inference, 6 studies (N = 841) showed how implicit category norms make the generation and test of hypothesis about race highly asymmetric. Having shown that Whiteness is the default race of celebrity actors (Study 1), Study 2 used a variant of Wason's (1960) rule discovery task to demonstrate greater difficulty in discovering rules that require specifying that race is shared by White celebrity actors than by Black celebrity actors. Clues to the Whiteness of White actors from analogous problems had little effect on hypothesis formation or rule discovery (Studies 3 and 4). Rather, across Studies 2 and 4 feedback about negative cases-non-White celebrities-facilitated the discovery that White actors shared a race, whether participants or experimenters generated the negative cases. These category norms were little affected by making White actors' Whiteness more informative (Study 5). Although participants understood that discovering that White actors are White would be harder than discovering that Black actors are Black, they showed limited insight into the information contained in negative cases (Study 6). Category norms render some identities as implicit defaults, making hypothesis formation and generalization about real social groups asymmetric in ways that have implications for scientific reasoning and social equality. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Tamura, Yuki; Inagawa, Hiroyuki; Nakata, Yoko; Kohchi, Chie; Soma, Gen-Ichiro
2015-08-01
Oral intake of lipopolysaccharide (LPS) has been demonstrated to be effective in the prevention of various diseases. We have found that the subaleurone layer of rice contains a large amount of LPS. The aim of this study was to evaluate the role of this layer in innate immunity. Using the Saika-style rice polishing process, a sbaleurone layer and the rice retaining a subaleurone layer and polished white rice were prepared from brown rice. Using hot-water extracts from rice, LPS content was measured by the Limulus reaction and the effect of activation of macrophages was evaluated on the basis of their phagocytic activity and nitric monoxide (NO) and tumor necrosis factor (TNF) production levels. Toll-like receptor (TLR)-2-, TLR-4- and TLR-9-transfected human embryonic kidney (HEK) cells were used to identify the activation pathway. An allergy mouse model was used to evaluate the prevention of pollen allergy. When compared to polished white rice, rice retaining a subaleurone layer had a 6-fold increase in LPS and an increased macrophage activation when phagocytic activity and NO and TNF production were used as indices. TRL4 was the major pathway for such activation. Anti-allergy test by oral intake of subaleurone showed a significant preventive effect for pollen allergy. Compared to polished white rice, rice retaining a subaleurone layer contained a high level of LPS with higher macrophage activation. Furthermore, oral administration of the rice demonstrated a preventive effect for pollen allergy, thus indicating its utility as a functional food that has a regulatory effect on innate immunity. Copyright© 2015 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, Raghav; Dürrenfeld, P.; Iacocca, E.
The frequency noise spectrum of a magnetic tunnel junction (MTJ) based spin torque oscillator (STO) is examined where multiple modes and mode-hopping events are observed. The frequency noise spectrum is found to consist of both white noise and 1/f frequency noise. Here, we find a systematic and similar dependence of both white noise and 1/f frequency noise on bias current and the relative angle between the reference and free layers, which changes the effective damping and hence the mode-hopping behavior in this system. The frequency at which the 1/f frequency noise changes to white noise increases as the free layermore » is aligned away from the anti-parallel orientation w.r.t the reference layer. Lastly, these results indicate that the origin of 1/f frequency noise is related to mode-hopping which produces both white noise as well as 1/f frequency noise similar to the case of ring lasers.« less
Sharma, Raghav; Dürrenfeld, P.; Iacocca, E.; ...
2014-09-29
The frequency noise spectrum of a magnetic tunnel junction (MTJ) based spin torque oscillator (STO) is examined where multiple modes and mode-hopping events are observed. The frequency noise spectrum is found to consist of both white noise and 1/f frequency noise. Here, we find a systematic and similar dependence of both white noise and 1/f frequency noise on bias current and the relative angle between the reference and free layers, which changes the effective damping and hence the mode-hopping behavior in this system. The frequency at which the 1/f frequency noise changes to white noise increases as the free layermore » is aligned away from the anti-parallel orientation w.r.t the reference layer. Lastly, these results indicate that the origin of 1/f frequency noise is related to mode-hopping which produces both white noise as well as 1/f frequency noise similar to the case of ring lasers.« less
White dwarf stars with carbon atmospheres.
Dufour, P; Liebert, J; Fontaine, G; Behara, N
2007-11-22
White dwarfs represent the endpoint of stellar evolution for stars with initial masses between approximately 0.07 and 8-10, where is the mass of the Sun (more massive stars end their life as either black holes or neutron stars). The theory of stellar evolution predicts that the majority of white dwarfs have a core made of carbon and oxygen, which itself is surrounded by a helium layer and, for approximately 80 per cent of known white dwarfs, by an additional hydrogen layer. All white dwarfs therefore have been traditionally found to belong to one of two categories: those with a hydrogen-rich atmosphere (the DA spectral type) and those with a helium-rich atmosphere (the non-DAs). Here we report the discovery of several white dwarfs with atmospheres primarily composed of carbon, with little or no trace of hydrogen or helium. Our analysis shows that the atmospheric parameters found for these stars do not fit satisfactorily in any of the currently known theories of post-asymptotic giant branch evolution, although these objects might be the cooler counterpart of the unique and extensively studied PG 1159 star H1504+65 (refs 4-7). These stars, together with H1504+65, might accordingly form a new evolutionary sequence that follows the asymptotic giant branch.
NASA Astrophysics Data System (ADS)
Xu, Lisong
As a possible next-generation solid-state lighting source, white organic light-emitting diodes (WOLEDs) have the advantages in high power efficiency, large area and flat panel form factor applications. Phosphorescent emitters and multiple emitting layer structures are typically used in high efficiency WOLEDs. However due to the complexity of the device structure comprising a stack of multiple layers of organic thin films, ten or more organic materials are usually required, and each of the layers in the stack has to be optimized to produce the desired electrical and optical functions such that collectively a WOLED of the highest possible efficiency can be achieved. Moreover, device degradation mechanisms are still unclear for most OLED systems, especially blue phosphorescent OLEDs. Such challenges require a deep understanding of the device operating principles and materials/device degradation mechanisms. This thesis will focus on achieving high-efficiency and color-stable all-phosphorescent WOLEDs through optimization of the device structures and material compositions. The operating principles and the degradation mechanisms specific to all-phosphorescent WOLED will be studied. First, we investigated a WOLED where a blue emitter was based on a doped mix-host system with the archetypal bis(4,6-difluorophenyl-pyridinato-N,C2) picolinate iridium(III), FIrpic, as the blue dopant. In forming the WOLED, the red and green components were incorporated in a single layer adjacent to the blue layer. The WOLED efficiency and color were optimized through variations of the mixed-host compositions to control the electron-hole recombination zone and the dopant concentrations of the green-red layers to achieve a balanced white emission. Second, a WOLED structure with two separate blue layers and an ultra-thin red and green co-doped layer was studied. Through a systematic investigation of the placement of the co-doped red and green layer between the blue layers and the material compositions of these layers, we were able to achieve high-efficiency WOLEDs with controllable white emission characteristics. We showed that we can use the ultra-thin co-doped layer and two blue emitting layers to manipulate exciton confinement to certain zones and energy transfer pathways between the various hosts and dopants. Third, a blue phosphorescent dopant tris[1-(2,6-diisopropylphenyl)-2-phenyl-1H-imidazole]iridium(III) (Ir(iprpmi)3) with a low ionization potential (HOMO 4.8 eV) and propensity for hole-trapping was studied in WOLEDs. In a bipolar host, 2,6-bis(3-(carbazol-9-yl)phenyl)-pyridine (DCzPPy), Ir(iprpmi)3 was found to trap holes at low concentrations but transport holes at higher concentrations. By adjusting the dopant concentration and thereby the location of the recombination zone, we were able to demonstrate blue and white OLEDs with external quantum efficiencies over 20%. The fabricated WOLEDs shows high color stability over a wide range of luminance. Moreover, the device lifetime has also been improved with Ir(iprpmi)3 as the emitter compared to FIrpic. Last, we analyzed OLED degradation using Laser Desorption Time-Of-Flight Mass Spectrometry (LDI-TOF-MS) technique. By carefully and systematically comparing the LDI-TOF patterns of electrically/optically stressed and controlled (unstressed) OLED devices, we were able to identify some prominent degradation byproducts and trace possible chemical pathways involving specific host and dopant materials.
Thinner retinal layers are associated with changes in the visual pathway: A population-based study.
Mutlu, Unal; Ikram, Mohammad K; Roshchupkin, Gennady V; Bonnemaijer, Pieter W M; Colijn, Johanna M; Vingerling, Johannes R; Niessen, Wiro J; Ikram, Mohammad A; Klaver, Caroline C W; Vernooij, Meike W
2018-06-23
Increasing evidence shows that thinner retinal nerve fiber layer (RNFL) and ganglion cell layer (GCL), assessed on optical coherence tomography (OCT), are reflecting global brain atrophy. Yet, little is known on the relation of these layers with specific brain regions. Using voxel-based analysis, we aimed to unravel specific brain regions associated with these retinal layers. We included 2,235 persons (mean age: 67.3 years, 55% women) from the Rotterdam Study (2007-2012) who had gradable retinal OCT images and brain magnetic resonance imaging (MRI) scans, including diffusion tensor (DT) imaging. Thicknesses of peripapillary RNFL and perimacular GCL were measured using an automated segmentation algorithm. Voxel-based morphometry protocols were applied to process DT-MRI data. We investigated the association between retinal layer thickness with voxel-wise gray matter density and white matter microstructure by performing linear regression models. We found that thinner RNFL and GCL were associated with lower gray matter density in the visual cortex, and with lower fractional anisotropy and higher mean diffusivity in white matter tracts that are part of the optic radiation. Furthermore, thinner GCL was associated with lower gray matter density of the thalamus. Thinner RNFL and GCL are associated with gray and white matter changes in the visual pathway suggesting that retinal thinning on OCT may be specifically associated with changes in the visual pathway rather than with changes in the global brain. These findings may serve as a basis for understanding visual symptoms in elderly patients, patients with Alzheimer's disease, or patients with posterior cortical atrophy. © 2018 Wiley Periodicals, Inc.
ITO/metal/ITO anode for efficient transparent white organic light-emitting diodes
NASA Astrophysics Data System (ADS)
Joo, Chul Woong; Lee, Jonghee; Sung, Woo Jin; Moon, Jaehyun; Cho, Nam Sung; Chu, Hye Yong; Lee, Jeong-Ik
2015-02-01
We report on the characteristics of enhanced and balanced white-light emission of transparent organic light emitting diodes (TOLEDs) by introducing anode that has a stack structure of ITO/metal/ITO (IMI). We have investigated an anode that has a stack structure of IMI. IMI anodes are typically composed of a thin Ag layer (˜15 nm) sandwiched between two ITO layers (˜50 nm). By inserting an Ag layer it was possible to achieve sheet resistance lower than 3 Ω/sq. and transmittance of 86% at a wavelength of 550 nm. The Ag insert can act as a reflective component. With its counterpart, a transparent cathode made of a thin Ag layer (˜15 nm), micro-cavities (MC) can be effectively induced in the OLED, leading to improved performance. Using an IMI anode, it was possible to significantly increase the current efficiencies. The current efficiencies of the top and the bottom of the IMI TOLED increased to 23.0 and 15.6 cd/A, respectively, while those of the white TOLED with the ITO anode were 20.7 and 5.1 cd/A, respectively. A 30% enhancement in the overall current efficiency was achieved by taking advantage of the MC effect and the low sheet resistance.
Label-free multiphoton microscopy reveals altered tissue architecture in hippocampal sclerosis.
Uckermann, Ortrud; Galli, Roberta; Leupold, Susann; Coras, Roland; Meinhardt, Matthias; Hallmeyer-Elgner, Susanne; Mayer, Thomas; Storch, Alexander; Schackert, Gabriele; Koch, Edmund; Blümcke, Ingmar; Steiner, Gerald; Kirsch, Matthias
2017-01-01
The properties and structure of tissue can be visualized without labeling or preparation by multiphoton microscopy combining coherent anti-Stokes Raman scattering (CARS), addressing lipid content, second harmonic generation (SHG) showing collagen, and two-photon excited fluorescence (TPEF) of endogenous fluorophores. We compared samples of sclerotic and nonsclerotic human hippocampus to detect pathologic changes in the brain of patients with pharmacoresistant temporomesial epilepsy (n = 15). Multiphoton microscopy of cryosections and bulk tissue revealed hippocampal layering and micromorphologic details in accordance with reference histology: CARS displayed white and gray matter layering and allowed the assessment of axonal myelin. SHG visualized blood vessels based on adventitial collagen. In addition, corpora amylacea (CoA) were found to be SHG-active. Pyramidal cell bodies were characterized by intense cytoplasmic endogenous TPEF. Furthermore, diffuse TPEF around blood vessels was observed that co-localized with positive albumin immunohistochemistry and might indicate degeneration-associated vascular leakage. We present a label-free and fast optical approach that analyzes pathologic aspects of HS. Hippocampal layering, loss of pyramidal cells, and presence of CoA indicative of sclerosis are visualized. Label-free multiphoton microscopy has the potential to extend the histopathologic armamentarium for ex vivo assessment of changes of the hippocampal formation on fresh tissue and prospectively in vivo. Wiley Periodicals, Inc. © 2016 International League Against Epilepsy.
Explosive change in crater properties during high power nanosecond laser ablation of silicon
NASA Astrophysics Data System (ADS)
Yoo, J. H.; Jeong, S. H.; Greif, R.; Russo, R. E.
2000-08-01
Mass removed from single crystal silicon samples by high irradiance (1×109 to 1×1011W/cm2) single pulse laser ablation was studied by measuring the resulting crater morphology with a white light interferometric microscope. The craters show a strong nonlinear change in both the volume and depth when the laser irradiance is less than or greater than ≈2.2×1010W/cm2. Time-resolved shadowgraph images of the ablated silicon plume were obtained over this irradiance range. The images show that the increase in crater volume and depth at the threshold of 2.2×1010W/cm2 is accompanied by large size droplets leaving the silicon surface, with a time delay ˜300 ns. A numerical model was used to estimate the thickness of the layer heated to approximately the critical temperature. The model includes transformation of liquid metal into liquid dielectric near the critical state (i.e., induced transparency). In this case, the estimated thickness of the superheated layer at a delay time of 200-300 ns shows a close agreement with measured crater depths. Induced transparency is demonstrated to play an important role in the formation of a deep superheated liquid layer, with subsequent explosive boiling responsible for large-particulate ejection.
Ozawa, Tadashi C; Sasaki, Takayoshi
2010-03-15
We have designed a new approach to synthesize brookite, i.e., to extract alkali-metal ions from K(0.8)Ti(1.73)Li(0.27)O(4) (KTLO) and to apply simultaneous heat treatment to the remaining lepidocrocite-type layers of TiO(6) octahedra. For the alkali-metal ion extraction and the simultaneous heat treatment, KTLO was heated at 400 degrees C with polytetrafluoroethylene (PTFE) in flowing Ar. PTFE has been found to be an effective agent to extract strongly electropositive alkali-metal ions from KTLO because of the strong electronegativity of F as its component. The product of this reaction consists of a mixture of brookite, K(2)CO(3), LiF, and PTFE derivatives, indicating the complete extraction of K(+) and Li(+) from KTLO and formation of brookite from the lepidocrocite-type layer of TiO(6) octahedra as a template. This brookite has a partial replacement of O(2-) with F(-) and/or slight oxygen deficiency; thus, its color is light-bluish gray. Fully oxidized brookite formation and complete decomposition of PTFE derivatives have been achieved by further heating in flowing air, and coproduced alkali-metal salts have been removed by washing in water. Powder X-ray diffraction, Raman spectroscopy, and chemical analysis results have confirmed that the final brookite product treated at 600 degrees C is single phase, and it is white. The method to extract alkali-metal ions from a crystalline material using PTFE is drastically different from the common methods such as soft-chemical and electrochemical reactions. It is likely that this new synthetic approach is applicable to other layered systems to prepare a diverse family of compounds, including novel metastable ones.
Smith, Matthew D.; Jaffe, Adam; Dohner, Emma R.; Lindenberg, Aaron M.
2017-01-01
Through structural and optical studies of a series of two-dimensional hybrid perovskites, we show that broadband emission upon near-ultraviolet excitation is common to (001) lead-bromide perovskites. Importantly, we find that the relative intensity of the broad emission correlates with increasing out-of-plane distortion of the Pb–(μ-Br)–Pb angle in the inorganic sheets. Temperature- and power-dependent photoluminescence data obtained on a representative (001) perovskite support an intrinsic origin to the broad emission from the bulk material, where photogenerated carriers cause excited-state lattice distortions mediated through electron–lattice coupling. In contrast, most inorganic phosphors contain extrinsic emissive dopants or emissive surface sites. The design rules established here could allow us to systematically optimize white-light emission from layered hybrid perovskites by fine-tuning the bulk crystal structure. PMID:28970879
Rutledge, Claire E; Arango-Velez, Adriana
2017-04-01
Emerald ash borer (Agrilus planipennis Fairmaire) was recently found on a novel host in North America, white fringetree (Chionanthus virginicus L.) (Oleaceae). In this study, we artificially infested 4-yr-old, naïve white fringetree and white ash (Fraxinus americana L.) saplings under well-watered and water-deficit conditions with emerald ash borer eggs. We used physiological and phenotypical approaches to investigate both plant response to emerald ash borer and insect development at 21, 36, and 61 d postinfestation. Photosynthesis was reduced in both tree species by larval feeding, but not by water deficits. Emerald ash borer larvae established and survived successfully on white ash. Both establishment and survival were lower on white fringetree than on white ash. Larvae were larger, and had reached higher instars at all three time points on white ash than on white fringetrees. Larvae grew faster in white ash under water-deficit conditions; however, water-deficit conditions negatively impacted survival of larvae at 61 d postinfestation in white fringetrees, although head size did not differ among surviving larvae. White ash showed higher callus formation in well-watered trees, but no impact on larval survival was observed. In white fringetree, callus formation was not affected by water treatment, and was inversely related to larval survival. The higher rate of mortality and slow growth rate of larvae in white fringetree as compared to white ash suggest that populations of emerald ash borer may be sustained by white fringetree, but may grow more slowly than in white ash. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Fouling mechanisms of gel layer in a submerged membrane bioreactor.
Hong, Huachang; Zhang, Meijia; He, Yiming; Chen, Jianrong; Lin, Hongjun
2014-08-01
The fouling mechanisms underlying gel layer formation and its filtration resistance in a submerged membrane bioreactor (MBR) were investigated. It was found that gel layer rather than cake layer was more easily formed when soluble microbial products content in sludge suspension was relatively high. Thermodynamic analyses showed that gel layer formation process should overcome a higher energy barrier as compared with cake layer formation process. However, when separation distance <2.3 nm, attractive interaction energy of gelling foulant-membrane combination was remarkably higher than that of sludge floc-membrane combination. The combined effects were responsible for gel layer formation. Filtration tests showed that specific filtration resistance (SFR) of gel layer was almost 100 times higher than that of cake layer. The unusually high SFR of gel layer could be ascribed to the gelling propensity and osmotic pressure mechanism. These findings shed significant light on fouling mechanisms of gel layer in MBRs. Copyright © 2014 Elsevier Ltd. All rights reserved.
Fabrication of a white electroluminescent device based on bilayered yellow and blue quantum dots
NASA Astrophysics Data System (ADS)
Kim, Jong-Hoon; Lee, Ki-Heon; Kang, Hee-Don; Park, Byoungnam; Hwang, Jun Yeon; Jang, Ho Seong; Do, Young Rag; Yang, Heesun
2015-03-01
Until now most work on colloidal quantum dot-light-emitting diodes (QLEDs) has been focused on the improvement of the electroluminescent (EL) performance of monochromatic devices, and multi-colored white QLEDs comprising more than one type of QD emitter have been rarely investigated. To demonstrate a white EL as a result of color mixing between blue and yellow, herein a unique combination of two dissimilar QDs of blue- CdZnS/ZnS plus a yellow-emitting Cu-In-S (CIS)/ZnS is used for the formation of the emitting layer (EML) of a multilayered QLED. First, the QLED consisting of a single EML randomly mixed with two QDs is fabricated, however, its EL is dominated by blue emission with the contribution of yellow emission substantially weaker. Thus, another EML configuration is devised in the form of a QD bilayer with two stacking sequences of CdZnS/ZnS//CIS/ZnS QD and vice versa. The QLED with the former stacking sequence shows an overwhelming contribution of blue EL, similar to the mixed QD EML-based device. Upon applying the oppositely stacked QD bilayer of CIS/ZnS//CdZnS/ZnS, however, a bicolored white EL can be successfully achieved by means of the effective extension of the radiative excitonic recombination zone throughout both QD EML regions. Such QD EML configuration-dependent EL results, which are discussed primarily using the proposed device energy level diagram, strongly suggest that the positional design of individual QD emitters is a critical factor for the realization of multicolored, white emissive devices.Until now most work on colloidal quantum dot-light-emitting diodes (QLEDs) has been focused on the improvement of the electroluminescent (EL) performance of monochromatic devices, and multi-colored white QLEDs comprising more than one type of QD emitter have been rarely investigated. To demonstrate a white EL as a result of color mixing between blue and yellow, herein a unique combination of two dissimilar QDs of blue- CdZnS/ZnS plus a yellow-emitting Cu-In-S (CIS)/ZnS is used for the formation of the emitting layer (EML) of a multilayered QLED. First, the QLED consisting of a single EML randomly mixed with two QDs is fabricated, however, its EL is dominated by blue emission with the contribution of yellow emission substantially weaker. Thus, another EML configuration is devised in the form of a QD bilayer with two stacking sequences of CdZnS/ZnS//CIS/ZnS QD and vice versa. The QLED with the former stacking sequence shows an overwhelming contribution of blue EL, similar to the mixed QD EML-based device. Upon applying the oppositely stacked QD bilayer of CIS/ZnS//CdZnS/ZnS, however, a bicolored white EL can be successfully achieved by means of the effective extension of the radiative excitonic recombination zone throughout both QD EML regions. Such QD EML configuration-dependent EL results, which are discussed primarily using the proposed device energy level diagram, strongly suggest that the positional design of individual QD emitters is a critical factor for the realization of multicolored, white emissive devices. Electronic supplementary information (ESI) available: Detailed description of synthesis of CdZnS/ZnS, CIS/ZnS QDs and ZnO NPs; TEM images of CdZnS/ZnS and CIS/ZnS QDs; voltage-dependent luminance (CE variations of blue CdZnS/ZnS and yellow CIS/ZnS monochromatic QLEDs; EL spectra and energy band diagram of bilayered QD EML-based QLED with a stacking sequence of CdZnS/ZnS//CIS/ZnS QD; normalized EL spectra of CIS/ZnS//CdZnS/ZnS QD-bilayered QLEDs; comparison of current density of monochromatic QLEDs and bicolored white QLEDs; and voltage-dependent luminance (CE variations of CIS/ZnS QLED fabricated through 150 °C-EML baking. See DOI: 10.1039/c5nr00426h
Jeong, H S; Kim, S H; Lee, K S; Jeong, J M; Yoo, T W; Kwon, M S; Yoo, K H; Kim, T W
2013-06-01
White organic light-emitting devices (OLEDs) were fabricated by combining a blue OLED with a color conversion layer made of mixed Y3Al5O12:Ce3+ green and Ca2AlO19:Mn4+ red phosphors. The X-ray diffraction patterns showed that Ce3+ ions in the Y3Al5O12:Ce3+ phosphors completely substituted for the Y3+ ions and the Mn4+ ions in the CaAl12O19:Mn4+ phosphors completely substituted for the Ca2+ ions. Electroluminescence spectra at 11 V for the OLEDs fabricated utilizing a color conversion layer showed that the Commission Internationale de l'Eclairage coordinates for the Y3Al5O12:Ce3+ and CaAl12O19:Mn4+ phosphors mixed at the ratio of 1:5 and 1:10 were (0.31, 0.34) and (0.32, 0.37), respectively, indicative of a good white color.
.pi.-conjugated heavy-metal polymers for organic white-light-emitting diodes
Vardeny, Zeev Valentine; Wojcik, Leonard; Drori, Tomer
2016-09-13
A polymer mixture emits a broad spectrum of visible light that appears white or near-white in the aggregate. The polymer mixture comprises two (or more) components in the active layer. A heavy atom, such as platinum and/or iridium, present in the backbone of the mixture acts via a spin-orbit coupling mechanism to cause the ratio of fluorescent to phosphorescent light emission bands to be of approximately equal strength. These two broad emissions overlap, resulting in an emission spectrum that appears to the eye to be white.
Steinhaus, Martin; Schieberle, Peter
2005-07-27
In white pepper samples, directly taken from a retting batch at a pepper production plant in Thailand, 3-methylindole, 4-methylphenol, 3-methylphenol, and butanoic acid, recently confirmed to be responsible for the characteristic fecal off-odor frequently detected in white pepper powders, were quantified by stable isotope dilution analyses. The results clearly showed that, in particular, 3-methylindole (fecal, swine-manure-like), 4-methylphenol (fecal, horse-like), and butanoic acid (cheese-like) were biochemically formed during retting, thus indicating that fermentation is the crucial step for off-odorant formation during white pepper processing. Model fermentation experiments performed with different manufacturing regimens revealed that white pepper, containing no substantial amounts of these odorants, can be produced from ripe starting material by a short fermentation under water and with frequent exchange of water. The overall aroma of such pepper was superior as compared to the aroma of white pepper produced according to the traditional procedure.
The search for a source rock for the giant Tar Sand triangle accumulation, southeastern Utah
Huntoon, J.E.; Hansley, P.L.; Naeser, N.D.
1999-01-01
A large proportion (about 36%) of the world's oil resource is contained in accumulations of heavy oil or tar. In these large deposits of degraded oil, the oil in place represents only a fraction of what was present at the time of accumulation. In many of these deposits, the source of the oil is unknown, and the oil is thought to have migrated over long distances to the reservoirs. The Tar Sand triangle in southeastern Utah contains the largest tar sand accumulation in the United States, with 6.3 billion bbl of heavy oil estimated to be in place. The deposit is thought to have originally contained 13-16 billion bbl prior to the biodegradation, water washing, and erosion that have taken place since the middle - late Tertiary. The source of the oil is unknown. The tar is primarily contained within the Lower Permian White Rim Sandstone, but extends into permeable parts of overlying and underlying beds. Oil is interpreted to have migrated into the White Rim sometime during the Tertiary when the formation was at a depth of approximately 3500 m. This conclusion is based on integration of fluid inclusion analysis, time-temperature reconstruction, and apatite fission-track modeling for the White Rim Sandstone. Homogenization temperatures cluster around 85-90??C for primary fluid inclusions in authigenic, nonferroan dolomite in the White Rim. The fluid inclusions are associated with fluorescent oil-bearing inclusions, indicating that dolomite precipitation was coeval with oil migration. Burial reconstruction suggests that the White Rim Sandstone reached its maximum burial depth from 60 to 24 Ma, and that maximum burial was followed by unroofing from 24 to 0 Ma. Time-temperature modeling indicates that the formation experienced temperatures of 85-90??C from about 35 to 40 Ma during maximum burial. Maximum formation temperatures of about 105-110??C were reached at about 24 Ma, just prior to unroofing. Thermal modeling is used to examine the history of potential source rocks for the White Rim oil. The most attractive potential sources for White Rim oil include beds within one or more of the following formations: the Proterozoic Chuar Group, which is present in the subsurface southwest of the Tar Sand triangle; the Mississippian Delle Phosphatic Member of the Deseret Limestone and equivalent formations, the Permian Kaibab Limestone, the Sinbad Limestone Member of the Triassic Moenkopi Formation, and the Jurassic Arapien Shale, Twin Creek Limestone, and Carmel Formation, which are present west of the Tar Sand triangle; the Pennsylvanian Paradox Formation in the Paradox basin east of the Tar Sand triangle; and the Permian Park City Formation northwest of the Tar Sand triangle. Each formation has a high total organic carbon content and is distributed over a wide enough geographic area to have provided a huge volume of oil. Source beds in all of the formations reached thermal maturity at times prior to or during the time that migration into the White Rim is interpreted to have occurred. Based on all available data, the most likely source for the Tar Sand triangle appears to be the Mississippian Delle Phosphatic Member of the Deseret Limestone. Secondary migration out of the Delle is interpreted to have occurred during the Cretaceous, during Sevier thrusting. Subsequent tertiary migration into the Tar Sand triangle reservoir is interpreted to have occurred later, during middle Tertiary Laramide deformation.
Formation Energies of Native Point Defects in Strained-Layer Superlattices (Postprint)
2017-06-05
AFRL-RX-WP-JA-2017-0217 FORMATION ENERGIES OF NATIVE POINT DEFECTS IN STRAINED-LAYER SUPERLATTICES (POSTPRINT) Zhi-Gang Yu...2016 Interim 11 September 2013 – 5 November 2016 4. TITLE AND SUBTITLE FORMATION ENERGIES OF NATIVE POINT DEFECTS IN STRAINED-LAYER SUPERLATTICES...native point defect (NPD) formation energies and absence of mid-gap levels. In this Letter we use first-principles calculations to study the formation
Gyrotactic trapping: A numerical study
NASA Astrophysics Data System (ADS)
Ghorai, S.
2016-04-01
Gyrotactic trapping is a mechanism proposed by Durham et al. ["Disruption of vertical motility by shear triggers formation of thin Phytoplankton layers," Science 323, 1067-1070 (2009)] to explain the formation of thin phytoplankton layer just below the ocean surface. This mechanism is examined numerically using a rational model based on the generalized Taylor dispersion theory. The crucial role of sedimentation speed in the thin layer formation is demonstrated. The effects of variation in different parameters on the thin layer formation are also investigated.
Sriurairatana, Siriporn; Boonyawiwat, Visanu; Gangnonngiw, Warachin; Laosutthipong, Chaowanee; Hiranchan, Jindanan; Flegel, Timothy W.
2014-01-01
Accompanying acute hepatopancreatic necrosis disease (AHPND) in cultivated Asian shrimp has been an increasing prevalence of vermiform, gregarine-like bodies within the shrimp hepatopancreas (HP) and midgut. In high quantity they result in white fecal strings and a phenomenon called white feces syndrome (WFS). Light microscopy (LM) of squash mounts and stained smears from fresh HP tissue revealed that the vermiform bodies are almost transparent with widths and diameters proportional to the HP tubule lumens in which they occur. Despite vermiform appearance, they show no cellular structure. At high magnification (LM with 40-100x objectives), they appear to consist of a thin, outer membrane enclosing a complex of thicker, inter-folded membranes. Transmission electron microscopy (TEM) revealed that the outer non-laminar membrane of the vermiform bodies bore no resemblance to a plasma membrane or to the outer layer of any known gregarine, other protozoan or metazoan. Sub-cellular organelles such as mitochondria, nuclei, endoplasmic reticulum and ribosomes were absent. The internal membranes had a tubular sub-structure and occasionally enclosed whole B-cells, sloughed from the HP tubule epithelium. These internal membranes were shown to arise from transformed microvilli that peeled away from HP tubule epithelial cells and then aggregated in the tubule lumen. Stripped of microvilli, the originating cells underwent lysis. By contrast, B-cells remained intact or were sloughed independently and whole from the tubule epithelium. When sometimes engulfed by the aggregated, transformed microvilli (ATM) they could be misinterpreted as cyst-like structures by light microscopy, contributing to gregarine-like appearance. The cause of ATM is currently unknown, but formation by loss of microvilli and subsequent cell lysis indicate that their formation is a pathological process. If sufficiently severe, they may retard shrimp growth and may predispose shrimp to opportunistic pathogens. Thus, the cause of ATM and their relationship (if any) to AHPND should be determined. PMID:24911022
Sriurairatana, Siriporn; Boonyawiwat, Visanu; Gangnonngiw, Warachin; Laosutthipong, Chaowanee; Hiranchan, Jindanan; Flegel, Timothy W
2014-01-01
Accompanying acute hepatopancreatic necrosis disease (AHPND) in cultivated Asian shrimp has been an increasing prevalence of vermiform, gregarine-like bodies within the shrimp hepatopancreas (HP) and midgut. In high quantity they result in white fecal strings and a phenomenon called white feces syndrome (WFS). Light microscopy (LM) of squash mounts and stained smears from fresh HP tissue revealed that the vermiform bodies are almost transparent with widths and diameters proportional to the HP tubule lumens in which they occur. Despite vermiform appearance, they show no cellular structure. At high magnification (LM with 40-100x objectives), they appear to consist of a thin, outer membrane enclosing a complex of thicker, inter-folded membranes. Transmission electron microscopy (TEM) revealed that the outer non-laminar membrane of the vermiform bodies bore no resemblance to a plasma membrane or to the outer layer of any known gregarine, other protozoan or metazoan. Sub-cellular organelles such as mitochondria, nuclei, endoplasmic reticulum and ribosomes were absent. The internal membranes had a tubular sub-structure and occasionally enclosed whole B-cells, sloughed from the HP tubule epithelium. These internal membranes were shown to arise from transformed microvilli that peeled away from HP tubule epithelial cells and then aggregated in the tubule lumen. Stripped of microvilli, the originating cells underwent lysis. By contrast, B-cells remained intact or were sloughed independently and whole from the tubule epithelium. When sometimes engulfed by the aggregated, transformed microvilli (ATM) they could be misinterpreted as cyst-like structures by light microscopy, contributing to gregarine-like appearance. The cause of ATM is currently unknown, but formation by loss of microvilli and subsequent cell lysis indicate that their formation is a pathological process. If sufficiently severe, they may retard shrimp growth and may predispose shrimp to opportunistic pathogens. Thus, the cause of ATM and their relationship (if any) to AHPND should be determined.
NASA Astrophysics Data System (ADS)
Yu, Jingting; Zhu, Wenqing; Shi, Guanjie; Zhai, Guangsheng; Qian, Bingjie; Li, Jun
2017-02-01
White organic light-emitting devices (WOLEDs) with enhanced current efficiency and negligible color shifting equipped with an internal color conversion layer (CCL) were fabricated. They were attained by embedding a single layer of silver nanoclusters (SNCs) between the CCL and light-emitting layer (EML). The simultaneous enhancement of the photoluminescence (PL) of the CCL and electroluminescence (EL) of the EML were realized by controlling the thickness and size of the SNCs to match the localized surface plasmon resonance spectrum with the PL spectrum of the CCL and the EL spectrum of the EML. The WOLED with optimal SNCs demonstrated a 25.81% enhancement in current efficiency at 60 mA cm-2 and good color stability over the entire range of current density.
NASA Astrophysics Data System (ADS)
Wang, Xu; Qi, Yige; Yu, Junsheng
2014-09-01
White organic light-emitting devices (WOLEDs) with combined doping emissive layer (EML) and ultrathin EML have been fabricated to investigate the effect of each EML on the electroluminescent (EL) performance of the WOLEDs. Through tailoring doping concentration of bis[(4,6-difluorophenyl)-pyridinato-N,C2'](picolinate) iridium(III) (FIrpic) and thickness of ultrathin bis[2-(4-tertbutylphenyl)benzothiazolato-N,C2'] iridium (acetylacetonate) [(tbt)2Ir(acac)] EML, it is found that the change in the doping ratio of FIrpic significantly influenced the EL efficiencies and spectra, while the alteration of ultrathin EML thickness had much milder effect on the EL performance. The results indicated that ultrathin EML is in favor of reproducibility in mass production compared with doping method.
Lee, Ming-Lun; Yeh, Yu-Hsiang; Tu, Shang-Ju; Chen, P C; Lai, Wei-Chih; Sheu, Jinn-Kong
2015-04-06
Non-planar InGaN/GaN multiple quantum well (MQW) structures are grown on a GaN template with truncated hexagonal pyramids (THPs) featuring c-plane and r-plane surfaces. The THP array is formed by the regrowth of the GaN layer on a selective-area Si-implanted GaN template. Transmission electron microscopy shows that the InGaN/GaN epitaxial layers regrown on the THPs exhibit different growth rates and indium compositions of the InGaN layer between the c-plane and r-plane surfaces. Consequently, InGaN/GaN MQW light-emitting diodes grown on the GaN THP array emit multiple wavelengths approaching near white light.
Koo, Ja Ryong; Lee, Seok Jae; Hyung, Gun Woo; Kim, Bo Young; Shin, Hyun Su; Lee, Kum Hee; Yoon, Seung Soo; Kim, Woo Young; Kim, Young Kwan
2013-03-01
We have demonstrated a stable phosphorescent white organic light-emitting diodes (WOLEDs) using an orange emitter, Bis(5-benzoyl-2-(4-fluorophenyl)pyridinato-C,N) iridium(III)acetylacetonate [(Bz4Fppy)2Ir(III)acac] doped into a newly synthesized blue host material, 2-(carbazol-9-yl)-7-(isoquinolin-1-yl)-9,9-diethylfluorene (CzFliq). When 1 wt.% (Bz4Fppy)2Ir(III)acac was doped into emitting layer, it was realized an improved EL performance and a pure white color in the OLED. The optimum WOLED showed maximum values as a luminous efficiency of 10.14 cd/A, a power efficiency of 10.24 Im/W, a peak external quantum efficiency 4.07%, and Commission Internationale de L'Eclairage coordinates of (0.34, 0.39) at 8 V.
Novel chip coating approaches to improve white LED technology
NASA Astrophysics Data System (ADS)
Hartmann, Paul; Schweighart, Marko; Sommer, Christian; Wenzl, Franz-P.; Zinterl, Ernst; Hoschopf, Hans; Pachler, Peter; Tasch, Stefan
2008-02-01
Key market requirements for white LEDs, especially in the general lighting and automotive headlamp segments call for improved concepts and performance of white LEDs based on phosphor conversion. Major challenges are small emission areas, highest possible intensities, long-term color stability, and spatial homogeneity of color coordinates. On the other hand, the increasingly high radiation power of the blue LEDs poses problems for all involved materials. Various thick film coating technologies are widely used for applying the color conversion layer to the semiconductor chip. We present novel concepts based on Silicate phosphors with high performance in terms of spatial homogeneity of the emission and variability of the color temperature. Numerical calculation of the optical properties with the help of state-of-the-art simulation tools was used as a basis for the practical optimization of the layer geometries.
Höfle, Stefan; Schienle, Alexander; Bernhard, Christoph; Bruns, Michael; Lemmer, Uli; Colsmann, Alexander
2014-08-13
Fully solution processed monochromatic and white-light emitting tandem or multi-photon polymer OLEDs with an inverted device architecture have been realized by employing WO3 /PEDOT:PSS/ZnO/PEI charge carrier generation layers. The luminance of the sub-OLEDs adds up in the stacked device indicating multi-photon emission. The white OLEDs exhibit a CRI of 75. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Analysis of Adhesively Bonded Ceramics Using an Asymmetric Wedge Test
2008-12-01
4 Figure 2. Average crack ...flexure specimen. The flaw, indicated by the white arrow, is a subsurface semi-elliptical crack induced by surface machining damage...strength-limiting orthogonal surface machining crack in an alumina flexure specimen coated with a single layer of film adhesive. The white arrow
Chapran, Marian; Angioni, Enrico; Findlay, Neil J; Breig, Benjamin; Cherpak, Vladyslav; Stakhira, Pavlo; Tuttle, Tell; Volyniuk, Dmytro; Grazulevicius, Juozas V; Nastishin, Yuriy A; Lavrentovich, Oleg D; Skabara, Peter J
2017-02-08
A new interface engineering method is demonstrated for the preparation of an efficient white organic light-emitting diode (WOLED) by embedding an ultrathin layer of the novel ambipolar red emissive compound 4,4-difluoro-2,6-di(4-hexylthiopen-2-yl)-1,3,5,7,8-pentamethyl-4-bora-3a,4a-diaza-s-indacene (bThBODIPY) in the exciplex formation region. The compound shows a hole and electron mobility of 3.3 × 10 -4 and 2 × 10 -4 cm 2 V -1 s -1 , respectively, at electric fields higher than 5.3 × 10 5 V cm -1 . The resulting WOLED exhibited a maximum luminance of 6579 cd m -2 with CIE 1931 color coordinates (0.39; 0.35). The bThBODIPY dye is also demonstrated to be an effective laser dye for a cholesteric liquid crystal (ChLC) laser. New construction of the ChLC laser, by which a flat capillary with an optically isotropic dye solution is sandwiched between two dye-free ChLC cells, provides photonic lasing at a wavelength well matched with that of a dye-doped planar ChLC cell.
NASA Astrophysics Data System (ADS)
Janghouri, Mohammad
2017-10-01
A new graphene oxide-cobalt porphyrin (GO-CoTPP) hybrid material has been used as an emissive layer in organic light-emitting diodes (OLEDs). Devices with fundamental structure of indium-doped tin oxide (ITO)/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS, 45 nm)/polyvinylcarbazole (PVK):2-(4-biphenyl)-5-(4- t-butylphenyl)-1,3,4-oxadiazole (PBD):GO-CoTPP (70 nm)/1,3,5-tris( N-phenylbenzimidazol-2-yl)-benzene (TPBI, 20 nm)/Al (150 nm) were fabricated. A red electroluminescence (EL) was obtained from thin-film PVK:PBD:CoTPP at 70 nm thickness. When CoTPP was covalently grafted on graphene oxide (GO) sheets, near-white EL was obtained. The white emission, which was composed of bluish green and red, is attributed to electroplex formation at the GO-CoTPP/PBD interface. Such electroplex emission between electrons and holes is a reason for the low turn-on voltage of the GO-CoTPP-based OLED. Maximum luminance efficiency of 1.43 cd/A with Commission International de l'Eclairage coordinates of 0.33 and 0.40 was achieved at current of 0.02 mA and voltage of 14 V.
Loose, E L; Hilton, E J; Graves, J E
2017-04-01
The comparative morphology of the scales of roundscale spearfish Tetrapturus georgii and white marlin Kajikia albida was investigated. In addition, variation in scale morphology across different body regions within each species was analysed. Although considerable morphological variation was observed among scales from different body regions in both species, scales of K. albida generally have pointed anterior ends, fewer posterior points and are more heavily imbricated than those of T. georgii, which are frequently rounded anteriorly, often have many posterior points and are separated farther within the skin. In all sampled body regions and individuals, scales of T. georgii are significantly broader and have a lower length-to-width aspect ratio than those of K. albida. Superficial to the scales are denticular plates, which are ossified formations occurring on the surface layer of the epidermis; these were observed and described for T. georgii, K. albida and blue marlin Makaira nigricans. Detailed scale descriptions allow for a more accurate characterization of the variation within and differences between these two species and could potentially be a valuable tool for investigating istiophorid systematics. © 2017 The Fisheries Society of the British Isles.
Rover Panorama of Entrance to Murray Buttes on Mars
2016-08-19
This 360-degree panorama was acquired by the Mast Camera (Mastcam) on NASA's Curiosity Mars rover as the rover neared features called "Murray Buttes" on lower Mount Sharp. The view combines more than 130 images taken on Aug. 5, 2016, during the afternoon of the mission's 1,421st sol, or Martian day, by Mastcam's left-eye camera. This date also was the fourth anniversary of Curiosity's landing. The dark, flat-topped mesa seen to the left of Curiosity's robotic arm is about 300 feet (about 90 meters) from the rover's position. It stands about 50 feet (about 15 meters) high. The horizontal ledge near the top of the mesa is about 200 feet (about 60 meters) across. An upper portion of Mount Sharp appears on the distant horizon to the left of this mesa. The relatively flat foreground is part of a geological layer called the Murray formation, which formed from lakebed mud deposits. The buttes and mesas rising above this surface are eroded remnants of ancient sandstone that originated when winds deposited sand after lower Mount Sharp had formed. Curiosity closely examined that layer -- the Stimson formation -- during the first half of 2016 while crossing a feature called "Naukluft Plateau" between two exposures of the Murray formation. The buttes and mesas of Murray Buttes are capped by material that is relatively resistant to erosion, just as is the case with many similarly shaped buttes and mesas on Earth. The informal naming honors Bruce Murray (1931-2013), a Caltech planetary scientist and director of NASA's Jet Propulsion Laboratory, Pasadena, California. The scene is presented with a color adjustment that approximates white balancing, to resemble how the rocks and sand would appear under daytime lighting conditions on Earth. http://photojournal.jpl.nasa.gov/catalog/PIA20765
White organic light-emitting devices with high color purity and stability
NASA Astrophysics Data System (ADS)
Bai, Yajie; Liu, Su; Li, Hairong; Liu, Chunjuan; Wang, Jinshun; Chang, Jinxian
2014-04-01
A white organic light-emitting device (WOLED) with dual-emitting layers was presented, in which the blue fluorescent dye 2,5,8,11-terta-tertbutylperylene (TBPe) was doped in 2-methyl-9, 10-di(2-naphthyl)-anthracene (MADN) as a blue-emitting layer, while 5,6,11,12-tetraphenylnaphthacene (rubrene, Rb) was doped in the above-mentioned materials as a yellow-emitting layer. The fabricated monochromatic devices using the blue- and yellow-emitting layer have demonstrated that the direct charge trapping mechanism is the dominant emission mechanism in the yellow OLED. Studies on the WOLEDs with dual-emitting layers have shown that the performances of these devices are strongly susceptible to the thickness of the emitting layer and the stack order of two emitting layers. Structure of ITO(160 nm)/NPB(30 nm)/MADN: 5 wt%TBPe: 3 wt%Rb(10 nm)/MADN: 5 wt%TBPe(20 nm)/BCP (10 nm)/Alq3(20 nm)/Al(100 nm) was determined to be the most favorable WOLED. The maximum luminance of 16 000 cd cm-2 at the applied voltage of 13.4 V and Commission International de 1‧Eclairage (CIE) coordinates of (0.3263, 0.3437) which is closer to the standard white light (CIE (0.33, 0.33)) than the most recent reported WOLEDs were obtained. Moreover, there is just slight variation of CIE coordinates (ΔCIEx, y = 0.0171, 0.0167; corresponding Δu‧v‧ = 0.0119) when the current density increases from 10 to 100 mA cm-2. It reveals that the emissive dopant Rb acts as charge traps to improve electron-hole balance, provides sites for electron-hole recombination and thus makes carriers distribute more evenly in the dual-emitting layers which broaden the recombination zone and improve the stability of the CIE coordinates.
NASA Astrophysics Data System (ADS)
Hartmann, D.; Sarfert, W.; Meier, S.; Bolink, H.; García Santamaría, S.; Wecker, J.
2010-05-01
Typically high efficient OLED device structures are based on a multitude of stacked thin organic layers prepared by thermal evaporation. For lighting applications these efficient device stacks have to be up-scaled to large areas which is clearly challenging in terms of high through-put processing at low-cost. One promising approach to meet cost-efficiency, high through-put and high light output is the combination of solution and evaporation processing. Moreover, the objective is to substitute as many thermally evaporated layers as possible by solution processing without sacrificing the device performance. Hence, starting from the anode side, evaporated layers of an efficient white light emitting OLED stack are stepwise replaced by solution processable polymer and small molecule layers. In doing so different solutionprocessable hole injection layers (= polymer HILs) are integrated into small molecule devices and evaluated with regard to their electro-optical performance as well as to their planarizing properties, meaning the ability to cover ITO spikes, defects and dust particles. Thereby two approaches are followed whereas in case of the "single HIL" approach only one polymer HIL is coated and in case of the "combined HIL" concept the coated polymer HIL is combined with a thin evaporated HIL. These HIL architectures are studied in unipolar as well as bipolar devices. As a result the combined HIL approach facilitates a better control over the hole current, an improved device stability as well as an improved current and power efficiency compared to a single HIL as well as pure small molecule based OLED stacks. Furthermore, emitting layers based on guest/host small molecules are fabricated from solution and integrated into a white hybrid stack (WHS). Up to three evaporated layers were successfully replaced by solution-processing showing comparable white light emission spectra like an evaporated small molecule reference stack and lifetime values of several 100 h.
White organic light-emitting diodes based on doped and ultrathin Rubrene layer
NASA Astrophysics Data System (ADS)
Li, Yi; Jiang, Yadong; Wen, Wen; Yu, Junsheng
2010-10-01
Based on a yellow fluorescent dye of 5, 6, 11, 12-tetraphenylnaphthacene (Rubrene), WOLEDs were fabricated, with doping structure and ultrathin layer structure utilized in the devices. By doping Rubrene into blue-emitting N,N'-bis-(1- naphthyl)-N,N'-biphenyl-1,1'-biphenyl-4,4'-diamine (NPB), the device with a structure of indium-tin-oxide (ITO)/NPB (40 nm)/NPB:Rubrene (0.25 wt%, 7 nm)/2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP) (30 nm)/Mg:Ag exhibited a warm white light with Commissions Internationale De L'Eclairage (CIE) coordinates of (0.38, 0.41) at 12 V. The electroluminescent spectrum of the OLED consisted of blue and yellow fluorescent emissions, the intensity of blue emission increased gradually relative to the orange emission with increasing voltage. This is mainly due to the recombination zone shifted towards the anode side as the transmission rate of electrons grows faster than that of holes under higher bias voltage. A maximum luminance of 7300 cd/m2 and a maximum power efficiency of 0.57 lm/W were achieved. Comparatively, by utilizing ultrathin dopant layer, the device with a structure of ITO/NPB (40 nm)/Rubrene (0.3 nm)/NPB (7 nm)/BCP (30 nm)/Mg:Ag achieved a low turn-on voltage of 3 V and a more stable white light. The peaks of EL spectra located at 430 and 560 nm corresponding to the CIE coordinates of (0.32, 0.32) under bias voltage ranging from 5 to 15 V. A maximum luminance of 5630 cd/m2 and a maximum power efficiency of 0.6 lm/W were achieved. The balanced spectra were attributed to the stable confining of charge carriers and exciton by the thin emitting layers. Hence, with simple device structure and fabricating process, the device with ultrathin layer achieved low turn-on voltage, stable white light emitting and higher power efficiency.
Virtual Slice Through Icy Layered Deposits Near Mars South Pole
2007-03-15
The upper image is a radargram showing data from the subsurface of Mars in the ice-rich layered deposits that surround the south pole. The lower image shows the position of the ground track white line on a topographic map
White Middle Class Identities and Urban Schooling. Identity Studies in the Social Sciences
ERIC Educational Resources Information Center
Reay, Diane; Crozier, Gill; James, David
2011-01-01
This book examines experiences and implications of "against-the-grain" school choices, where white middle class families choose ordinary and "low performing" secondary schools for their children. It offers a unique view of identity formation, taking in matters like family history, locality and whiteness.
Functionally Graded Multifunctional Hybrid Composites for Extreme Environments
2010-02-01
Develop multifunctional FGHC with multiple layers: a ceramic thermal barrier layer, a graded ceramic /metal composite (GCMeC) layer and a high...AFOSR-MURI Functionally Graded Hybrid Composites Actively Cooled PMC White (UIUC) FGHC Fabrication Team Graded Ceramic Metal Composites (GCMeC...Composites Fabrication and Characterization of Bulk Ceramic MAX Phase and MAX–Metal Composites AFOSR-MURI Functionally Graded Hybrid Composites Mn
NASA Astrophysics Data System (ADS)
Garrote, M. A.; Robador, M. D.; Perez-Rodriguez, J. L.
2017-02-01
The pigments, execution technique and repainting used on the polychrome wood ceilings and doors in the Casa de Pilatos (Seville, Spain) were studied using portable X-ray fluorescence equipment. Cross-sections of small samples were also analysed by optical microscopy, SEM with EDX analysis, micro-Raman and micro-infrared spectroscopy and X-ray diffraction. These carpentry works are magnificent examples of the Mudéjar art made in Spain in the early 16th century. Portable X-ray fluorescence gave good information on the different components of the polychrome. The SEM-EDX study of the surfaces of small samples gave information on their components and also characterized the compounds that had been deposited or formed by environmental contamination or by the alteration of some pigments. The SEM-EDX study of cross-sections facilitated the characterization of all layers and pigments from the support to the most external layer. The following pigments were characterized: red (cinnabar/vermillion, lead oxide, iron oxides and orpiment/realgar), black (carbon black), white (white lead and titanium barium white), yellow-orange-red-brown (orpiment/realgar and iron oxides), green (chromium oxide), blue (indigo blue and ultramarine blue), and gilding (gold leaf on bole). False gold, bronze and brass were also found. The pigments were applied with the oil painting technique over a support layer that had been primed with animal glue. This support layer was gypsum in some cases and white lead in others. This study is essential to the polychrome conservation of the studied artwork, and it will help clarify uncertainties in the history and painting of Mudéjar art.
Garrote, M A; Robador, M D; Perez-Rodriguez, J L
2017-02-15
The pigments, execution technique and repainting used on the polychrome wood ceilings and doors in the Casa de Pilatos (Seville, Spain) were studied using portable X-ray fluorescence equipment. Cross-sections of small samples were also analysed by optical microscopy, SEM with EDX analysis, micro-Raman and micro-infrared spectroscopy and X-ray diffraction. These carpentry works are magnificent examples of the Mudéjar art made in Spain in the early 16th century. Portable X-ray fluorescence gave good information on the different components of the polychrome. The SEM-EDX study of the surfaces of small samples gave information on their components and also characterized the compounds that had been deposited or formed by environmental contamination or by the alteration of some pigments. The SEM-EDX study of cross-sections facilitated the characterization of all layers and pigments from the support to the most external layer. The following pigments were characterized: red (cinnabar/vermillion, lead oxide, iron oxides and orpiment/realgar), black (carbon black), white (white lead and titanium barium white), yellow-orange-red-brown (orpiment/realgar and iron oxides), green (chromium oxide), blue (indigo blue and ultramarine blue), and gilding (gold leaf on bole). False gold, bronze and brass were also found. The pigments were applied with the oil painting technique over a support layer that had been primed with animal glue. This support layer was gypsum in some cases and white lead in others. This study is essential to the polychrome conservation of the studied artwork, and it will help clarify uncertainties in the history and painting of Mudéjar art. Copyright © 2016 Elsevier B.V. All rights reserved.
Xu, Wei; Lu, Fu-Han; Cao, Jin; Zhu, Wen-Qing; Jiang, Xue-Yin; Zhang, Zhi-Lin; Xu, Shao-Hong
2008-02-01
In multilayer OLED devices, the order and thickness of the emission layers have great effect on their spectrum. Based on the three basic colours of red, blue and green, a series of white organic light-emitting diodes(WOLEDS)with the structure of ITO/CuPc(12 nm)/NPB(50 nm)/EML/LiF(1 nm)/Al(100 nm) and a variety of emission layer's orders and thicknesses were fabricated. The blue emission material: 2-t-butyl-9,10-di-(2-naphthyl)anthracene (TBADN) doped with p-bis(p-N, N-diphenyl-amono-styryl)benzene(DSA-Ph), the green emission material: tris-[8-hydroxyquinoline]aluminum(Alq3) doped with C545, and the red emission material: tris-[8-hydroxyquinoline]aluminum( Alq3) doped with 4-(dicyanomethylene)-2-t-butyl-6-(1, 1, 7, 7-tetramethyljulolidyl-9-enyl)-4H-pyran (DCJTB) were used. By adjusting the order and thickness of each emission layer in the RBG structure, we got a white OLED with current efficiency of 5.60 cd x A(-1) and Commission Internationale De L'Eclairage (CIE) coordinates of (0. 34, 0.34) at 200 mA x cm(-2). Its maximum luminance reached 20 700 cd x m(-2) at current density of 400 mA x cm(-2). The results were analyzed on the basis of the theory of excitons' generation and diffusion. According to the theory, an equation was set up which relates EL spectra to the luminance efficiency, the thickness of each layer and the exciton diffusion length. In addition, in RBG structure with different thickness of red layer, the ratio of th e spectral intensity of red to that of blue was calculated. It was found that the experimental results are in agreement with the theoretical values.
Schares, G; Herrmann, D C; Maksimov, P; Matzkeit, B; Conraths, F J; Moré, G; Preisinger, R; Weigend, S
2017-09-01
Three genetically different clones of Toxoplasma gondii, also different in mouse virulence, were studied by experimental infection in chickens. For the experiments, four chicken lines were used, which differed in phylogenetic origin and performance level: two white egg layer lines, one with high laying performance (WLA), one with low (R11) and two brown layer lines, also displaying high (BLA) and low (L68) egg number. Chickens were intraperitoneally infected with three different T. gondii isolates representing type IIxIII recombinant clones, i.e. showing both, type II- and type III-specific alleles. These clones (K119/2 2C10, B136/1 B6H6, K119/2 A7) had exhibited virulence differences in a mouse model. In chickens, a significantly higher mortality was observed in white layer lines, but not in brown layer lines, suggesting that differences in the phylogenetic background may influence the susceptibility of chickens for toxoplasmosis. In addition, antibody (IgY) levels varied in surviving chickens at 31 days post infection. While low to intermediate antibody levels were observed in white layers, intermediate to high levels were measured in brown layers. Infection with a T. gondii clone showing low chicken virulence resulted in higher antibody levels in all chicken lines compared to infection with T. gondii clones of intermediate or high chicken virulence. This was in agreement with the parasite load as determined by real-time PCR. Overall, results show that progeny resulting from natural sexual recombination of T. gondii clonal lineages, may differ in their virulence for mice and chickens. Copyright © 2016 Elsevier Inc. All rights reserved.
Chou, Ho-Hsiu; Li, Yi-Kai; Chen, Yu-Han; Chang, Ching-Chih; Liao, Chuang-Yi; Cheng, Chien-Hong
2013-07-10
A new light blue complex (fmoppy)2Ir(tfpypz) [bis(4'-fluoro-6'-methoxylphenyl pyridinato)-iridium(III)-3-(trifluoromethyl)-5-(pyridin-2-yl)-1,2,4-triazolate] and a new orange complex (dpiq)2Ir(acac) [bis(3,4-diphenylisoquinoline)-iridium(III)-acetylacetonate] were synthesized. These two complexes were used as the dopants for the fabrication of two-element white phosphorescent devices. Via the introduction of a thin energy-harvesting layer (EHL) to harvest the extra energy and exciton from the emission zone, highly efficient two-element white devices with excellent color stability were created. One of the best devices shows yellow-white color emission with an extremely high external quantum efficiency (EQE) of 21.5% and a current efficiency of 68.8 cd/A. The other device gave a pure white emission with an external quantum efficiency of 19.2% and a current efficiency of 53.2 cd/A. At a high brightness of 1000 cd/m(2), the EQE still remains as high as 18.9 and 17.2%. With a brightness of 1000-10000 cd/m(2), the CIE coordinates of these two devices shift by only (0.02, ≤0.01). The white phosphorescent devices with the EHL showed much higher efficiency and better color stability than the one without the EHL.
Gil-Sanz, Cristina; Landeira, Bruna; Ramos, Cynthia; Costa, Marcos R; Müller, Ulrich
2014-08-06
Radial glial cells (RGCs) in the ventricular neuroepithelium of the dorsal telencephalon are the progenitor cells for neocortical projection neurons and astrocytes. Here we show that the adherens junction proteins afadin and CDH2 are critical for the control of cell proliferation in the dorsal telencephalon and for the formation of its normal laminar structure. Inactivation of afadin or CDH2 in the dorsal telencephalon leads to a phenotype resembling subcortical band heterotopia, also known as "double cortex," a brain malformation in which heterotopic gray matter is interposed between zones of white matter. Adherens junctions between RGCs are disrupted in the mutants, progenitor cells are widely dispersed throughout the developing neocortex, and their proliferation is dramatically increased. Major subtypes of neocortical projection neurons are generated, but their integration into cell layers is disrupted. Our findings suggest that defects in adherens junctions components in mice massively affects progenitor cell proliferation and leads to a double cortex-like phenotype. Copyright © 2014 the authors 0270-6474/14/3410475-13$15.00/0.
Oaks belowground: mycorrhizas, truffles, and small mammals
Jonathan Frank; Seth Barry; Joseph Madden; Darlene Southworth
2008-01-01
Oaks depend on hidden diversity belowground. Oregon white oaks (Quercus garryana) form ectomycorrhizas with more than 40 species of fungi at a 25-ha site. Several of the most common oak mycorrhizal fungi form hypogeous fruiting bodies or truffles in the upper layer of mineral soil. We collected 18 species of truffles associated with Oregon white...
Franquelo, M L; Duran, A; Castaing, J; Arquillo, D; Perez-Rodriguez, J L
2012-01-30
This paper presents the novel application of recently developed analytical techniques to the study of paint layers on sculptures that have been restored/repainted several times across centuries. Analyses were performed using portable XRF, μ-XRD and μ-Raman instruments. Other techniques, such as optical microscopy, SEM-EDX and μ-FTIR, were also used. Pigments and other materials including vermilion, minium, red lac, ivory black, lead white, barium white, zinc white (zincite), titanium white (rutile and anatase), lithopone, gold and brass were detected. Pigments from both ancient and modern times were found due to the different restorations/repaintings carried out. μ-Raman was very useful to characterise some pigments that were difficult to determine by μ-XRD. In some cases, pigments identification was only possible by combining results from the different analytical techniques used in this work. This work is the first article devoted to the study of sculpture cross-section samples using laboratory-made μ-XRD systems. Copyright © 2011 Elsevier B.V. All rights reserved.
Gamma rays shielding parameters for white metal alloys
NASA Astrophysics Data System (ADS)
Kaur, Taranjot; Sharma, Jeewan; Singh, Tejbir
2018-05-01
In the present study, an attempt has been made to check the feasibility of white metal alloys as gamma rays shielding materials. Different combinations of cadmium, lead, tin and zinc were used to prepare quaternary alloys Pb60Sn20ZnxCd20-x (where x = 5, 10, 15) using melt quench technique. These alloys were also known as white metal alloys because of its shining appearance. The density of prepared alloys has been measured using Archimedes Principle. Gamma rays shielding parameters viz. mass attenuation coefficient (µm), effective atomic number (Zeff), electron density (Nel), Mean free path (mfp), Half value layer (HVL) and Tenth value layer (TVL) has been evaluated for these alloys in the wide energy range from 1 keV to 100 GeV. The WinXCom software has been used for obtaining mass attenuation coefficient values for the prepared alloys in the given energy range. The effective atomic number (Zeff) has been assigned to prepared alloys using atomic to electronic cross section ratio method. Further, the variation of various shielding parameters with photon energy has been investigated for the prepared white metal alloys.
Collision avoidance in TV white spaces: a cross-layer design approach for cognitive radio networks
NASA Astrophysics Data System (ADS)
Foukalas, Fotis; Karetsos, George T.
2015-07-01
One of the most promising applications of cognitive radio networks (CRNs) is the efficient exploitation of TV white spaces (TVWSs) for enhancing the performance of wireless networks. In this paper, we propose a cross-layer design (CLD) of carrier sense multiple access with collision avoidance (CSMA/CA) mechanism at the medium access control (MAC) layer with spectrum sensing (SpSe) at the physical layer, for identifying the occupancy status of TV bands. The proposed CLD relies on a Markov chain model with a state pair containing both the SpSe and the CSMA/CA from which we derive the collision probability and the achievable throughput. Analytical and simulation results are obtained for different collision avoidance and SpSe implementation scenarios by varying the contention window, back off stage and probability of detection. The obtained results depict the achievable throughput under different collision avoidance and SpSe implementation scenarios indicating thereby the performance of collision avoidance in TVWSs-based CRNs.
Method for improving the performance of oxidizable ceramic materials in oxidizing environments
NASA Technical Reports Server (NTRS)
Nagaraj, Bangalore A. (Inventor)
2002-01-01
Improved adhesion of thermal barrier coatings to nonmetallic substrates using a dense layer of ceramic on an underlying nonmetallic substrate that includes at least one oxidizable component. The improved adhesion occurs because the application of the dense ceramic layer forms a diffusion barrier for oxygen. This diffusion barrier prevents the oxidizable component of the substrate from decomposing. The present invention applies ceramic by a process that deposits a relatively thick and dense ceramic layer on the underlying substrate. The formation of the dense layer of ceramic avoids the problem of void formation associated with ceramic formation by most prior art thermal decomposition processes. The formation of voids has been associated with premature spalling of thermal barrier layers and other protective layers applied to substrates.
Anodic Oxidative Modification of Egg White for Heat Treatment.
Takahashi, Masahito; Handa, Akihiro; Yamaguchi, Yusuke; Kodama, Risa; Chiba, Kazuhiro
2016-08-31
A new functionalization of egg white was achieved by an electrochemical reaction. The method involves electron transfer from thiol groups of egg white protein to form disulfide bonds. The oxidized egg white produced less hydrogen sulfide during heat treatment; with sufficient application of electricity, almost no hydrogen sulfide was produced. In addition, gels formed by heating electrochemically oxidized egg white exhibited unique properties, such as a lower gelation temperature and a softened texture, presumably due to protein aggregation and electrochemically mediated intramolecular disulfide bond formation.
Qualitative investigation of fresh human scalp hair with full-field optical coherence tomography
NASA Astrophysics Data System (ADS)
Choi, Woo June; Pi, Long-Quan; Min, Gihyeon; Lee, Won-Soo; Lee, Byeong Ha
2012-03-01
We have investigated depth-resolved cellular structures of unmodified fresh human scalp hairs with ultrahigh-resolution full-field optical coherence tomography (FF-OCT). The Linnik-type white light interference microscope has been home-implemented to observe the micro-internal layers of human hairs in their natural environment. In hair shafts, FF-OCT has qualitatively revealed the cellular hair compartments of cuticle and cortex layers involved in keratin filaments and melanin granules. No significant difference between black and white hair shafts was observed except for absence of only the melanin granules in the white hair, reflecting that the density of the melanin granules directly affects the hair color. Anatomical description of plucked hair bulbs was also obtained with the FF-OCT in three-dimensions. We expect this approach will be useful for evaluating cellular alteration of natural hairs on cosmetic assessment or diagnosis of hair diseases.
[White organic light emitting device with dyestuff DCJTB blended in polymer].
Zhang, Yan-Fei; Xu, Zheng; Zhang, Fu-Jun; Wang, Yong; Zhao, Su-Ling
2008-04-01
The Alq3 and DCJTB were blended with poly (N-vinylcarbazole) (PVK) in different weight ratios and spin coated into films. Multilayer devices with the light emitting layer PVK : Alq3 : DCJTB were fabricated, and their structure was ITO/ PVK : Alq3 : DCJTB/ BCP/Alq3/LiF/Al in which BCP and Alq3 were employed as the hole-blocking and electron-transporting layers respectively, PVK is the blue light-emitting as well as hole-transporting layer. The mass proportion of PVK relative to Alq3 was tuned while the quality ratio of PVK to DCJTB remained (100 : 1). Finally, fairly pure and stabile white emission was achieved when PVK : Alq3 : DCJTB was 100 : 5 : 1. The CIE coordinate was (0.33, 0.36) at 14 V, which is very stable at various biases (10-14 V).
USDA-ARS?s Scientific Manuscript database
White lupin (Lupinus albus) forms specialized cluster roots characterized by exudation of organic anions under phosphorus (P) deficiency. Here, we evaluated the role of nitric oxide (NO) in P deficiency-induced cluster-root formation and citrate exudation in white lupin. Plants were treated with NO ...
Picture Details in Recognition Memory.
ERIC Educational Resources Information Center
Cody, James A.; Madigan, Stephen
A study was conducted to investigate the effects of symbolic format of test material on short- and long-term recognition. Subjects, 104 undergraduate students, viewed slides of either a black-and-white photograph, a one-sentence verbal description of the photo, a black-and-white drawing based on the verbal description, or a black-and-white line…
High color rendering index white organic light-emitting diode using levofloxacin as blue emitter
NASA Astrophysics Data System (ADS)
Miao, Yan-Qin; Gao, Zhi-Xiang; Zhang, Ai-Qin; Li, Yuan-Hao; Wang, Hua; Jia, Hu-Sheng; Liu, Xu-Guang; Tsuboi, Taijuf
2015-05-01
Levofloxacin (LOFX), which is well-known as an antibiotic medicament, was shown to be useful as a 452-nm blue emitter for white organic light-emitting diodes (OLEDs). In this paper, the fabricated white OLED contains a 452-nm blue emitting layer (thickness of 30 nm) with 1 wt% LOFX doped in CBP (4,4’-bis(carbazol-9-yl)biphenyl) host and a 584-nm orange emitting layer (thickness of 10 nm) with 0.8 wt% DCJTB (4-(dicyanomethylene)-2-tert-butyl-6-(1,1,7,7-tetramethyljulolidin-4-yl-vinyl)-4H-pyran) doped in CBP, which are separated by a 20-nm-thick buffer layer of TPBi (2,2’,2”-(benzene-1,3,5-triyl)-tri(1-phenyl-1H-benzimidazole). A high color rendering index (CRI) of 84.5 and CIE chromaticity coordinates of (0.33, 0.32), which is close to ideal white emission CIE (0.333, 0.333), are obtained at a bias voltage of 14 V. Taking into account that LOFX is less expensive and the synthesis and purification technologies of LOFX are mature, these results indicate that blue fluorescence emitting LOFX is useful for applications to white OLEDs although the maximum current efficiency and luminance are not high. The present paper is expected to become a milestone to using medical drug materials for OLEDs. Project supported by the Program for New Century Excellent Talents in University of Ministry of Education of China (Grant No. NCET-13-0927), the International Science & Technology Cooperation Program of China (Grant No. 2012DFR50460), the National Natural Science Foundation of China (Grant Nos. 21101111 and 61274056), and the Shanxi Provincial Key Innovative Research Team in Science and Technology, China (Grant No. 2012041011).
The Temperature and Cooling Age of the White Dwarf Companion to the Millisecond Pulsar PSR B1855+09.
van Kerkwijk MH; Bell; Kaspi; Kulkarni
2000-02-10
We report on Keck and Hubble Space Telescope observations of the binary millisecond pulsar PSR B1855+09. We detect its white dwarf companion and measure mF555W=25.90+/-0.12 and mF814W=24.19+/-0.11 (Vega system). From the reddening-corrected color, (mF555W-mF814W&parr0;0=1.06+/-0.21, we infer a temperature Teff=4800+/-800 K. The white dwarf mass is known accurately from measurements of the Shapiro delay of the pulsar signal, MC=0.258+0.028-0.016 M middle dot in circle. Hence, given a cooling model, one can use the measured temperature to determine the cooling age. The main uncertainty in the cooling models for such low-mass white dwarfs is the amount of residual nuclear burning, which is set by the thickness of the hydrogen layer surrounding the helium core. From the properties of similar systems, it has been inferred that helium white dwarfs form with thick hydrogen layers, with mass greater, similar3x10-3 M middle dot in circle, which leads to significant additional heating. This is consistent with expectations from simple evolutionary models of the preceding binary evolution. For PSR B1855+09, though, such models lead to a cooling age of approximately 10 Gyr, which is twice the spin-down age of the pulsar. It could be that the spin-down age were incorrect, which would call the standard vacuum dipole braking model into question. For two other pulsar companions, however, ages well over 10 Gyr are inferred, indicating that the problem may lie with the cooling models. There is no age discrepancy for models in which the white dwarfs are formed with thinner hydrogen layers ( less, similar3x10-4 M middle dot in circle).
Vorauer, Jacquie D; Sakamoto, Yumiko
2006-04-01
This study examined the precursors and consequences of systematic miscommunications regarding relationship interest during intergroup interaction. Pairs of previously unacquainted same-sex students (White-White, White-Chinese, or Chinese-Chinese) engaged in a relatively intimate controlled interaction. White participants who had had little prior contact with Chinese persons were more apt to exhibit a signal-amplification bias (i.e., to perceive that their overtures had conveyed more interest than was actually the case) in intergroup as compared with intragroup exchanges. In contrast, White participants with high levels of prior contact with Chinese persons and Chinese participants did not show enhanced signal amplification in intergroup relative to intragroup exchanges. These results support our hypothesis that lack of intergroup contact experience sets the stage for miscommunications regarding friendship interest. White participants' tendency to feel that they had initially communicated more interest in being friends than their Chinese partner mediated a downward shift in their actual friendship interest over time, suggesting that signal amplification triggers defensive distancing and ultimately lowers the likelihood of cross-group friendship formation.
Perez-Rodriguez, Jose Luis; Robador, Maria Dolores; Centeno, Miguel Angel; Siguenza, Belinda; Duran, Adrian
2014-01-01
This work describes a comparative study between in situ applications of portable Raman spectroscopy and direct laboratory measurements using micro-Raman spectroscopy on the surface of small samples and of cross sections. The study was performed using wall paintings from different sites of the Alcazar of Seville. Little information was obtained using a portable Raman spectrometer due to the presence of an acrylic polymer, calcium oxalate, calcite and gypsum that was formed or deposited on the surface. The pigments responsible for different colours, except cinnabar, were not detected by the micro-Raman spectroscopy study of the surface of small samples taken from the wall paintings due to the presence of surface contaminants. The pigments and plaster were characterised using cross sections. The black colour consisted of carbon black. The red layers were formed by cinnabar and white lead or by iron oxides. The green and white colours were composed of green emerald or atacamite and calcite, respectively. Pb3O4 has also been characterised. The white layers (plaster) located under the colour layers consisted of calcite, quartz and feldspars. The fresco technique was used to create the wall paintings. A wall painting located on a gypsum layer was also studied. The Naples yellow in this wall painting was not characterised due to the presence of glue and oils. This study showed the advantage of studying cross sections to completely characterise the pigments and plaster in the studied wall paintings. Copyright © 2013 Elsevier B.V. All rights reserved.
Zhao, Xin-Dong; Li, Yan-Qing; Xiang, Heng-Yang; Zhang, Yi-Bo; Chen, Jing-De; Xu, Lu-Hai; Tang, Jian-Xin
2017-01-25
Inverted organic light-emitting diode (OLED) has attracted extensive attention due to the demand in active-matrix OLED display panels as its geometry enables the direct connection with n-channel transistor backplane on the substrate. One key challenge of high-performance inverted OLED is an efficient electron-injection layer with superior electrical and optical properties to match the indium tin oxide cathode on substrate. We here propose a synergistic electron-injection architecture using surface modification of ZnO layer to simultaneously promote electron injection into organic emitter and enhance out-coupling of waveguided light. An efficient inverted white OLED is realized by introducing the nanoimprinted aperiodic nanostructure of ZnO for broadband and angle-independent light out-coupling and inserting an n-type doped interlayer for energy level tuning and injection barrier lowering. As a result, the optimized inverted white OLEDs have an external quantum efficiency of 42.4% and a power efficiency of 85.4 lm W 1- , which are accompanied by the superiority of angular color stability over the visible wavelength range. Our results may inspire a promising approach to fabricate high-efficiency inverted OLEDs for large-scale display panels.
NASA Astrophysics Data System (ADS)
Deng, Lingling; Zhou, Hongwei; Chen, Shufen; Shi, Hongying; Liu, Bin; Wang, Lianhui; Huang, Wei
2015-02-01
Wide-angle interference (WI) and multi-beam interference (MI) in microcavity are analyzed separately to improve chromaticity and efficiency of the top-emitting white organic light-emitting diodes (TWOLEDs). A classic electromagnetic theory is used to calculate the resonance intensities of WI and MI in top-emitting organic light-emitting diodes (TOLEDs) with influence factors (e.g., electrodes and exciton locations) being considered. The role of WI on the performances of TOLEDs is revealed through using δ-doping technology and comparing blue and red EML positions in top-emitting and bottom-emitting devices. The blue light intensity significantly increases and the chromaticity of TWOLEDs is further improved with the use of enhanced WI (the blue emitting layer moving towards the reflective electrode) in the case of a weak MI. In addition, the effect of the thicknesses of light output layer and carrier transport layers on WI and MI are also investigated. Apart from the microcavity effect, other factors, e.g., carrier balance and carrier recombination regions are considered to obtain TWOLEDs with high efficiency and improved chromaticity near white light equal-energy point.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deng, Lingling; Zhou, Hongwei; Chen, Shufen, E-mail: iamsfchen@njupt.edu.cn
Wide-angle interference (WI) and multi-beam interference (MI) in microcavity are analyzed separately to improve chromaticity and efficiency of the top-emitting white organic light-emitting diodes (TWOLEDs). A classic electromagnetic theory is used to calculate the resonance intensities of WI and MI in top-emitting organic light-emitting diodes (TOLEDs) with influence factors (e.g., electrodes and exciton locations) being considered. The role of WI on the performances of TOLEDs is revealed through using δ-doping technology and comparing blue and red EML positions in top-emitting and bottom-emitting devices. The blue light intensity significantly increases and the chromaticity of TWOLEDs is further improved with the usemore » of enhanced WI (the blue emitting layer moving towards the reflective electrode) in the case of a weak MI. In addition, the effect of the thicknesses of light output layer and carrier transport layers on WI and MI are also investigated. Apart from the microcavity effect, other factors, e.g., carrier balance and carrier recombination regions are considered to obtain TWOLEDs with high efficiency and improved chromaticity near white light equal-energy point.« less
Panel 1: A pulsating red giant star and a compact, hot white dwarf star orbit each other.
NASA Technical Reports Server (NTRS)
2002-01-01
Panel 1: A pulsating red giant star and a compact, hot white dwarf star orbit each other. Panel 2: The red giant sheds much of its outer layers in a stellar wind. The white dwarf helps concentrate the wind along a thin equatorial plane. The white dwarf accretes some of this escaping gas forming a disk around the itself. Panel 3: When enough gas accumulates on the white dwarf's surface it explodes as a nova outburst. Most of the hot gas forms a pair of expanding bubbles above and below the equatorial disk. Panel 4: A few thousand years after the bubbles expand into space, the white dwarf goes through another nova outburst and makes another pair of bubbles, which form a distinctive hourglass shape.
Influence of temperature and molecular structure on ionic liquid solvation layers.
Wakeham, Deborah; Hayes, Robert; Warr, Gregory G; Atkin, Rob
2009-04-30
Atomic force microscopy (AFM) force profiling is used to investigate the structure of adsorbed and solvation layers formed on a mica surface by various room temperature ionic liquids (ILs) ethylammonium nitrate (EAN), ethanolammonium nitrate (EtAN), ethylammonium formate (EAF), propylammonium formate (PAF), ethylmethylammonium formate (EMAF), and dimethylethylammonium formate (DMEAF). At least seven layers are observed for EAN at 14 degrees C (melting point 13 degrees C), decreasing as the temperature is increased to 30 degrees C due to thermal energy disrupting solvophobic forces that lead to segregation of cation alkyl tails from the charged ammonium and nitrate moieties. The number and properties of the solvation layers can also be controlled by introducing an alcohol moiety to the cation's alkyl tail (EtAN), or by replacing the nitrate anion with formate (EAF and PAF), even leading to the detection of distinct cation and anion sublayers. Substitution of primary by secondary or tertiary ammonium cations reduces the number of solvation layers formed, and also weakens the cation layer adsorbed onto mica. The observed solvation and adsorbed layer structures are discussed in terms of the intermolecular cohesive forces within the ILs.
Formation mechanism of the protective layer in a blast furnace hearth
NASA Astrophysics Data System (ADS)
Jiao, Ke-xin; Zhang, Jian-liang; Liu, Zheng-jian; Xu, Meng; Liu, Feng
2015-10-01
A variety of techniques, such as chemical analysis, scanning electron microscopy-energy dispersive spectroscopy, and X-ray diffraction, were applied to characterize the adhesion protective layer formed below the blast furnace taphole level when a certain amount of titanium- bearing burden was used. Samples of the protective layer were extracted to identify the chemical composition, phase assemblage, and distribution. Furthermore, the formation mechanism of the protective layer was determined after clarifying the source of each component. Finally, a technical strategy was proposed for achieving a stable protective layer in the hearth. The results show that the protective layer mainly exists in a bilayer form in the sidewall, namely, a titanium-bearing layer and a graphite layer. Both the layers contain the slag phase whose major crystalline phase is magnesium melilite (Ca2MgSi2O7) and the main source of the slag phase is coke ash. It is clearly determined that solid particles such as graphite, Ti(C,N) and MgAl2O4 play an important role in the formation of the protective layer, and the key factor for promoting the formation of a stable protective layer is reasonable control of the evolution behavior of coke.
NASA Astrophysics Data System (ADS)
Chang, Yu-Fan; Chiu, Yu-Chian; Chang, Hao-Wen; Wang, Yi-Siang; Shih, Yi-Lun; Wu, Chih-Hao; Liu, Yi-Lun; Lin, Yu-Sheng; Meng, Hsin-Fei; Chi, Yun; Huang, Heh-Lung; Tseng, Mei-Rurng; Lin, Hao-Wu; Zan, Hsiao-Wen; Horng, Sheng-Fu; Juang, Jenh-Yih
2013-09-01
We developed a general method based on fluorescence microscopy to characterize the interface dissolution in multi-layer organic light-emitting diodes (OLEDs) by blade coating. A sharp bi-layer edge was created before blade coating, with the bottom layer being insoluble and top layer soluble. After blade coating, fluorescence images showed that the edge of the top layer shifted when the layer dissolved completely, whereas the bottom layer's edge remained in place as a positioning mark. The dissolution depth was determined to be 15-20 nm when the emissive-layer host of 2,6-bis (3-(9H-carbazol-9-yl)phenyl) pyridine (26DCzPPy) was coated on the hole-transport layer of N,N'-bis(naphthalen-1-yl)-N,N'-bis(phenyl)-benzidine(NPB), which was consistent with a sudden drop in efficiency of orange OLEDs with layer thickness below 20 nm. Thus, the layer thickness of OLEDs was optimized to stay more than 20 nm for blade coating. For a two-color white OLED with the structure TCTA/26DCzPPy:PO-01-TB:FIrpic/TPBI, efficiency was 24 cd/A and 8.5 lm/W at 1000 cd/m2. For a three-color white OLED with Os(fptz)2(dhpm) added as the emitter, the efficiency was 12.3 cd/A and 3.7 lm/W at 1000 cd/m2. For a green device with the structure TCTA/26DCzPPy:Ir(mppy)3/TPBI, the efficiency was 41.9 cd/A and 23.4 lm/W at 1000 cd/m2.
NASA Astrophysics Data System (ADS)
Yu, Yaoyao; Chen, Xingming; Jin, Yu; Wu, Zhijun; Yu, Ye; Lin, Wenyan; Yang, Huishan
2017-07-01
Cesium azide was employed as an effective n-dopant in the electron-transporting layer (ETL) of organic light-emitting devices (OLEDs) owing to its low deposition temperature and high ambient stability. By doping cesium azide onto 4,7-diphenyl-1,10-phenanthroline, a green phosphorescent OLED having best efficiencies of 66.25 cd A-1, 81.22 lm W-1 and 18.82% was realized. Moreover, the efficiency roll-off from 1000 cd m-2 to 10 000 cd m-2 is only 12.9%, which is comparable with or even lower than that of devices utilizing the co-host system. Physical mechanisms for the improvement of device performance were studied in depth by analyzing the current density-voltage (J-V) characteristics of the electron-only devices. In particular, by comparing the J-V characteristics of the electron-only devices instead of applying the complicated ultraviolet photoelectron spectrometer measurements, we deduced the decrease in barrier height for electron injection at the ETL/cathode contact. Finally, an efficient tandem white OLED utilizing the n-doped layer in the charge generation unit (CGU) was constructed. As far as we know, this is the first report on the application of this CGU for fabricating tandem white OLEDs. The emissions of the tandem device are all in the warm white region from 1213 cd m-2 to 10870 cd m-2, as is beneficial to the lighting application.
Molecular events of apical bud formation in white spruce, Picea glauca.
El Kayal, Walid; Allen, Carmen C G; Ju, Chelsea J-T; Adams, Eri; King-Jones, Susanne; Zaharia, L Irina; Abrams, Suzanne R; Cooke, Janice E K
2011-03-01
Bud formation is an adaptive trait that temperate forest trees have acquired to facilitate seasonal synchronization. We have characterized transcriptome-level changes that occur during bud formation of white spruce [Picea glauca (Moench) Voss], a primarily determinate species in which preformed stem units contained within the apical bud constitute most of next season's growth. Microarray analysis identified 4460 differentially expressed sequences in shoot tips during short day-induced bud formation. Cluster analysis revealed distinct temporal patterns of expression, and functional classification of genes in these clusters implied molecular processes that coincide with anatomical changes occurring in the developing bud. Comparing expression profiles in developing buds under long day and short day conditions identified possible photoperiod-responsive genes that may not be essential for bud development. Several genes putatively associated with hormone signalling were identified, and hormone quantification revealed distinct profiles for abscisic acid (ABA), cytokinins, auxin and their metabolites that can be related to morphological changes to the bud. Comparison of gene expression profiles during bud formation in different tissues revealed 108 genes that are differentially expressed only in developing buds and show greater transcript abundance in developing buds than other tissues. These findings provide a temporal roadmap of bud formation in white spruce. © 2011 Blackwell Publishing Ltd.
Multibeam Formation with a Parametric Sonar
1976-03-05
AD-A022 815 MULTIBEAM FORMATION WITH A PARAMETRIC SONAR Robert L. White Texas University at Austin Prepared for: Office of Naval Research 5 March...PARAMETRIC SONAR Final Report under Contract N00014-70-A-0166, Task 0020 1 February - 31 July 1974 Robe&, L. White OFFICE OF NAVAL RESEARCH Contract N00014...78712 APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. r-X: ~ ... ABSTRACT Parametric sonar has proven to be an effective concept in sonar
Studies on the structure of the boundary tissue of the white rat seminiferous tubules.
Cieciura, L
1988-01-01
The studies on boundary tissue of the white rat seminiferous tubules with light and electron microscopy were carried out. The wall of the tubules consists of four layers: two cellular and two amorphous ones. In cellular external sheath the characteristic intercellular fissures a network of hexagonal meshes were seen resembling the honey-combs.
Stacked white OLED having separate red, green and blue sub-elements
Forrest, Stephen; Qi, Xiangfei; Slootsky, Michael
2015-06-23
The present invention relates to efficient organic light emitting devices (OLEDs). More specifically, the present invention relates to white-emitting OLEDs, or WOLEDs. The devices of the present invention employ three emissive sub-elements, typically emitting red, green and blue, to sufficiently cover the visible spectrum. The sub-elements are separated by charge generating layers.
Stacked white OLED having separate red, green and blue sub-elements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Forrest, Stephen; Qi, Xiangfei; Slootsky, Michael
The present invention relates to efficient organic light emitting devices (OLEDs). More specifically, the present invention relates to white-emitting OLEDs, or WOLEDs. The devices of the present invention employ three emissive sub-elements, typically emitting red, green and blue, to sufficiently cover the visible spectrum. The sub-elements are separated by charge generating layers.
Yagci, Ahmet; Korkmaz, Yasemin Nur; Yagci, Filiz; Atilla, Aykan Onur; Buyuk, Suleyman Kutalmiş
2016-12-01
The aim of this study was to assess the effects of 3 luting agents (glass ionomer cement, compomer, and polycarboxylate cement) on white spot lesion formation in patients with full-coverage bonded acrylic splint expanders. White spot lesion formation was assessed with quantitative light-induced fluorescence. Full-coverage rapid maxillary expanders were cemented with glass ionomer cement, compomer, and polycarboxylate cement in groups 1, 2, and 3, respectively. A control group comprised patients who never had orthodontic treatment. Quantitative light-induced fluorescence images taken before and after rapid maxillary expansion treatment were analyzed for these parameters: the percentages of fluorescence loss with respect to the fluorescence of sound tooth tissue (ΔF) and maximum loss of fluorescence intensity in the whole lesion; lesion area with ΔF equal to less than a -5% threshold; and the percentage of fluorescence loss with respect to the fluorescence of sound tissue times the area that indicated lesion volume. All 3 groups showed statistically significantly greater demineralization than the control group. The 3 experimental groups differed from each other in half of the parameters calculated. Teeth in the polycarboxylate group developed the most white spot lesions. With the highest rate of white spot lesion formation, polycarboxylate cements should not be used for full-coverage bonded acrylic splint expanders. Compomers may be preferred over glass ionomer cements, based on the findings of this study. Copyright © 2016 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.
Bruinenberg, Vibeke M; van Vliet, Danique; Attali, Amos; de Wilde, Martijn C; Kuhn, Mirjam; van Spronsen, Francjan J; van der Zee, Eddy A
2016-03-26
The inherited metabolic disease phenylketonuria (PKU) is characterized by increased concentrations of phenylalanine in the blood and brain, and as a consequence neurotransmitter metabolism, white matter, and synapse functioning are affected. A specific nutrient combination (SNC) has been shown to improve synapse formation, morphology and function. This could become an interesting new nutritional approach for PKU. To assess whether treatment with SNC can affect synapses, we treated PKU mice with SNC or an isocaloric control diet and wild-type (WT) mice with an isocaloric control for 12 weeks, starting at postnatal day 31. Immunostaining for post-synaptic density protein 95 (PSD-95), a post-synaptic density marker, was carried out in the hippocampus, striatum and prefrontal cortex. Compared to WT mice on normal chow without SNC, PKU mice on the isocaloric control showed a significant reduction in PSD-95 expression in the hippocampus, specifically in the granular cell layer of the dentate gyrus, with a similar trend seen in the cornus ammonis 1 (CA1) and cornus ammonis 3 (CA3) pyramidal cell layer. No differences were found in the striatum or prefrontal cortex. PKU mice on a diet supplemented with SNC showed improved expression of PSD-95 in the hippocampus. This study gives the first indication that SNC supplementation has a positive effect on hippocampal synaptic deficits in PKU mice.
Assessing the Impact of a Race-Based Course on Counseling Students: A Quantitative Study
ERIC Educational Resources Information Center
Paone, Tina R.; Malott, Krista M.; Barr, Jason J.
2015-01-01
This study sought to determine changes in 121 White counseling students following their participation in an experiential, race-based course taught in a group format. Pre- and postoutcomes were reported based on instruments that measured White racial identity development, White privilege, color blindness, and the costs of racism. Findings indicated…
Christian Education, White Supremacy, and Humility in Formational Agendas
ERIC Educational Resources Information Center
Turpin, Katherine
2017-01-01
Christian education served as a tool of White supremacy that played a central role in the devastation of millions of human lives throughout the colonial era of Western expansion. An adequate account of how Christian education paired with colonial imperatives helps to identify where the legacy of White supremacy and imperial domination lives on in…
Systems and methods for producing hydrocarbons from tar sands formations
Li, Ruijian [Katy, TX; Karanikas, John Michael [Houston, TX
2009-07-21
A system for treating a tar sands formation is disclosed. A plurality of heaters are located in the formation. The heaters include at least partially horizontal heating sections at least partially in a hydrocarbon layer of the formation. The heating sections are at least partially arranged in a pattern in the hydrocarbon layer. The heaters are configured to provide heat to the hydrocarbon layer. The provided heat creates a plurality of drainage paths for mobilized fluids. At least two of the drainage paths converge. A production well is located to collect and produce mobilized fluids from at least one of the converged drainage paths in the hydrocarbon layer.
NASA Astrophysics Data System (ADS)
Kiyokawa, S.; Ito, T.; Ikehara, M.; Yamaguchi, K. E.; Onoue, T.; Horie, K.; Sakamoto, R.; Teraji, S.; Aihara, Y.
2012-12-01
The 3.2-3.1 Ga Dixon island-Cleaverville formations are well-preserved hydrothermal oceanic sequence at oceanic island arc setting (Kiyokawa et al., 2002, 2006, 2012). The Dixon Island (3195+15 Ma) - Cleaverville (3108+13 Ma) formations formed volcano-sedimentary sequences with hydrothermal chert, black shale and banded iron formation to the top. Based on the scientific drilling as DXCL1 at 2007 and DXCL2 at 2011, lithology was clearly understood. Four drilling holes had been done at coastal sites; the Dixon Island Formation is DX site (100m) and the Cleaverville Formation is CL2 (40m), CL1 (60m) and CL3 (200m) sites and from stratigraphic bottom to top. These sequences formed coarsening and thickening upward black shale-BIF sequences. The Dixon Island Formation consists komatiite-rhyolite sequences with many hydrothermal veins and very fine laminated cherty rocks above them. The Cleaverville Formation contains black shale, fragments-bearing pyroclastic beds, white chert, greenish shale and BIF. Especially, CL3 core, which drilled through the Iron formation, shows siderite-chert beds above black shale identified before magnetite lamination bed. The magnetite bed formed very thin laminated bed with siderite lamination. This magnetite bed was covered by black shale beds again. New U-Pb SHRIMP data of the pyroclastic in black shale is 3109Ma. Estimated 2-8 cm/1000year sedimentation rate are identified in these sequences. Our preliminary result show that siderite and chert layers formed before magnetite iron sedimentation. The lower-upper sequence of organic carbon rich black shales are similar amount of organic content and 13C isotope (around -30per mill). So we investigate that the Archean iron formation, especially Cleaverville iron formation, was highly related by hydrothermal input and started pre-syn iron sedimentation at anoxic oceanic condition.
NASA Technical Reports Server (NTRS)
Hyer, M. W.; Charette, R. F.
1987-01-01
To increase the effectiveness and efficiency of fiber-reinforced materials, the use of fibers in a curvilinear rather than the traditional straightline format is explored. The capacity of a laminated square plate with a central circular hole loaded in tension is investigated. The orientation of the fibers is chosen so that the fibers in a particular layer are aligned with the principle stress directions in that layer. Finite elements and an iteration scheme are used to find the fiber orientation. A noninteracting maximum strain criterion is used to predict load capacity. The load capacities of several plates with different curvilinear fibers format are compared with the capacities of more conventional straightline format designs. It is found that the most practical curvilinear design sandwiches a group of fibers in a curvilinear format between a pair of +/-45 degree layers. This design has a 60% greater load capacity than a conventional quasi-isotropic design with the same number of layers. The +/-45 degree layers are necessary to prevent matrix cracking in the curvilinear layers due to stresses perpendicular to the fibers in those layers. Greater efficiencies are achievable with composite structures than now realized.
Shiraishi, Sumihiro; Sakata, Yukoh; Yamaguchi, Hiroyuki
2010-01-04
We have found that a cast film forms a white film when an aqueous solution comprising hydroxypropyl methylcellulose (HPMC) and calcium salts such as calcium lactate pentahydrate (CLP) and calcium chloride (CaCl(2)) is used. In contrast, the obtained white film was transformed into a transparent film by the addition of purified water. The transformation time for the change from the white film to the transparent film was dependent on film thickness. The relationship between the transformation time and the film thickness was significantly correlated, and it was found that the white film could be adaptable as time indicator. The formation of a white film comprising HPMC and calcium salts was strongly dependent on temperature conditions. The objective of the present study is to investigate the mechanism of the formation of this white film because of the interaction between HPMC and calcium salts. The DSC and XRPD results indicate that the calcium salts affect the HPMC polymer phase in the cast film comprising HPMC and calcium salts. By carrying out attenuated total reflection Fourier transform infrared (ATR FT-IR) analysis, we found that the white film could be formed by the calcium salts affecting the region associated with the C-O-C, C-O, and CH(3) stretching of the HPMC polymer phase.
NASA Astrophysics Data System (ADS)
Baines, Kevin; Sromovsky, Lawrence A.; Fry, Patrick M.; Carlson, Robert W.; Momary, Thomas W.
2016-10-01
We report results incorporating the red-tinted photochemically-generated aerosols of Carlson et al (2016, Icarus 274, 106-115) in spectral models of Jupiter's Great Red Spot (GRS). Spectral models of the 0.35-1.0-micron spectrum show good agreement with Cassini/VIMS near-center-meridian and near-limb GRS spectra for model morphologies incorporating an optically-thin layer of Carlson (2016) aerosols at high altitudes, either at the top of the tropospheric GRS cloud, or in a distinct stratospheric haze layer. Specifically, a two-layer "crème brûlée" structure of the Mie-scattering Carlson et al (2016) chromophore attached to the top of a conservatively scattering (hereafter, "white") optically-thick cloud fits the spectra well. Currently, best agreement (reduced χ2 of 0.89 for the central-meridian spectrum) is found for a 0.195-0.217-bar, 0.19 ± 0.02 opacity layer of chromophores with mean particle radius of 0.14 ± 0.01 micron. As well, a structure with a detached stratospheric chromophore layer ~0.25 bar above a white tropospheric GRS cloud provides a good spectral match (reduced χ2 of 1.16). Alternatively, a cloud morphology with the chromophore coating white particles in a single optically- and physically-thick cloud (the "coated-shell model", initially explored by Carlson et al 2016) was found to give significantly inferior fits (best reduced χ2 of 2.9). Overall, we find that models accurately fit the GRS spectrum if (1) most of the optical depth of the chromophore is in a layer near the top of the main cloud or in a distinct separated layer above it, but is not uniformly distributed within the main cloud, (2) the chromophore consists of relatively small, 0.1-0.2-micron-radius particles, and (3) the chromophore layer optical depth is small, ~ 0.1-0.2. Thus, our analysis supports the exogenic origin of the red chromophore consistent with the Carlson et al (2016) photolytic production mechanism rather than an endogenic origin, such as upwelling of material from the depths of Jupiter.
Natural resistance of Sri Lankan village chicken to Salmonella gallinarum infection.
Weerasooriya, K M S G; Fernando, P S; Liyanagunawardena, N; Wijewardena, G; Wijemuni, M I; Samarakoon, S A T C
2017-12-01
1. An experiment was conducted to compare the natural resistance of an indigenous breed of local village chickens to Salmonella gallinarum with two commercial breeds: ISA Brown and ISA White layers under experimental conditions. 2. A total of 72 chickens from each of these breeds were randomly distributed to 4 pens to provide equal numbers of two replicate pens maintained as infected and control (uninfected). All chickens in infected groups were inoculated orally with 1 × 10 8 CFU (1 ml dose) of a field isolate of S. gallinarum, at the age of 8 and 16 weeks given over 5 consecutive days. Growth performance, clinical signs, gross pathological lesions and antibody responses were measured. 3. A significantly higher mortality was observed in the brown layers compared with the white layers, and clinical signs and mortality were absent in village chickens. However, a large number of birds with gross lesions and high antibody titres were detected in village chickens, indicating that birds had the disease subclinically. Commercial breeds had a significantly higher body weight, feed intake and feed conversion efficiency. 4. There was a significantly lower proportion of positive reactors in village chickens in the whole-blood agglutination test (35%) compared to brown (100%) and white (90%) layers even after the second inoculation. Uninfected birds were negative in all groups. The indirect enzyme-linked immunosorbent assay confirmed these observations. 5. These results suggest that the indigenous breed had superior natural resistance to S. gallinarum than the commercial breeds.
Recombination energy in double white dwarf formation
NASA Astrophysics Data System (ADS)
Nandez, J. L. A.; Ivanova, N.; Lombardi, J. C.
2015-06-01
In this Letter, we investigate the role of recombination energy during a common envelope event. We confirm that taking this energy into account helps to avoid the formation of the circumbinary envelope commonly found in previous studies. For the first time, we can model a complete common envelope event, with a clean compact double white dwarf binary system formed at the end. The resulting binary orbit is almost perfectly circular. In addition to considering recombination energy, we also show that between 1/4 and 1/2 of the released orbital energy is taken away by the ejected material. We apply this new method to the case of the double white dwarf system WD 1101+364, and we find that the progenitor system at the start of the common envelope event consisted of an ˜1.5 M⊙ red giant star in an ˜30 d orbit with a white dwarf companion.
First Dodo Trench with White Layer Visible in Dig Area
NASA Technical Reports Server (NTRS)
2008-01-01
These color images were taken by NASA's Phoenix Mars Lander's Stereo Surface Imager on the ninth Martian day of the mission, or Sol 9 (June 3, 2008). The images of the trench shows a white layer that has been uncovered by the Robotic Arm (RA) scoop and is now visible in the wall of the trench. This trench was the first one dug by the RA to understand the Martian soil and plan the digging strategy. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.DOE Office of Scientific and Technical Information (OSTI.GOV)
Levinson, Ronnen; Akbari, Hashem; Berdahl, Paul
The widespread use of solar-reflective roofing materials can save energy, mitigate urban heat islands and slow global warming by cooling the roughly 20% of the urban surface that is roofed. In this study we created prototype solar-reflective nonwhite concrete tile and asphalt shingle roofing materials using a two-layer spray coating process intended to maximize both solar reflectance and factory-line throughput. Each layer is a thin, quick-drying, pigmented latex paint based on either acrylic or a poly(vinylidene fluoride)/acrylic blend. The first layer is a titanium dioxide rutile white basecoat that increases the solar reflectance of a gray-cement concrete tile from 0.18more » to 0.79, and that of a shingle surfaced with bare granules from 0.06 to 0.62. The second layer is a 'cool' color topcoat with weak near-infrared (NIR) absorption and/or strong NIR backscattering. Each layer dries within seconds, potentially allowing a factory line to pass first under the white spray, then under the color spray. We combined a white basecoat with monocolor topcoats in various shades of red, brown, green and blue to prepare 24 cool color prototype tiles and 24 cool color prototypes shingles. The solar reflectances of the tiles ranged from 0.26 (dark brown; CIELAB lightness value L* = 29) to 0.57 (light green; L* = 76); those of the shingles ranged from 0.18 (dark brown; L* = 26) to 0.34 (light green; L* = 68). Over half of the tiles had a solar reflectance of at least 0.40, and over half of the shingles had a solar reflectance of at least 0.25.« less
White-tailed deer impact on the vegetation dynamics of a northern hardwood forest
Stephen B. Horsley; Susan L. Stout; David S. deCalesta; David S. deCalesta
2003-01-01
Considerable controversy has arisen over the management of white-tailed deer in eastern landscapes where there is evidence of damage to forest vegetation, crops, and wildlife habitat attributable to deer. We examined the impact of 4, 8, 15, and 25 deer/km2 on herbaceous layer abundance and tree seedling density, height development, species composition, and diversity...
USDA-ARS?s Scientific Manuscript database
The study was designed to examine whether there are genetic differences in response to repeated social disruption (RSD). Two genetic strains of White Leghorn hens were used in the study; i.e., HGPS (the line selected for high group production and survivability), and DXL (DeKalb XL commercial line). ...
ERIC Educational Resources Information Center
Yancy, George
2000-01-01
Analyzes how the structure of whiteness has shaped the feminist movement, marginalizing the voices of black women. Shows how racism forms the core ideology of feminism, suggesting that the hegemonic racial epistemological standpoint of feminism is limited. Argues that black women's standpoint must be understood within the framework of their unique…
White butterflies as solar photovoltaic concentrators.
Shanks, Katie; Senthilarasu, S; Ffrench-Constant, Richard H; Mallick, Tapas K
2015-07-31
Man's harvesting of photovoltaic energy requires the deployment of extensive arrays of solar panels. To improve both the gathering of thermal and photovoltaic energy from the sun we have examined the concept of biomimicry in white butterflies of the family Pieridae. We tested the hypothesis that the V-shaped posture of basking white butterflies mimics the V-trough concentrator which is designed to increase solar input to photovoltaic cells. These solar concentrators improve harvesting efficiency but are both heavy and bulky, severely limiting their deployment. Here, we show that the attachment of butterfly wings to a solar cell increases its output power by 42.3%, proving that the wings are indeed highly reflective. Importantly, and relative to current concentrators, the wings improve the power to weight ratio of the overall structure 17-fold, vastly expanding their potential application. Moreover, a single mono-layer of scale cells removed from the butterflies' wings maintained this high reflectivity showing that a single layer of scale cell-like structures can also form a useful coating. As predicted, the wings increased the temperature of the butterflies' thorax dramatically, showing that the V-shaped basking posture of white butterflies has indeed evolved to increase the temperature of their flight muscles prior to take-off.
White butterflies as solar photovoltaic concentrators
NASA Astrophysics Data System (ADS)
Shanks, Katie; Senthilarasu, S.; Ffrench-Constant, Richard H.; Mallick, Tapas K.
2015-07-01
Man’s harvesting of photovoltaic energy requires the deployment of extensive arrays of solar panels. To improve both the gathering of thermal and photovoltaic energy from the sun we have examined the concept of biomimicry in white butterflies of the family Pieridae. We tested the hypothesis that the V-shaped posture of basking white butterflies mimics the V-trough concentrator which is designed to increase solar input to photovoltaic cells. These solar concentrators improve harvesting efficiency but are both heavy and bulky, severely limiting their deployment. Here, we show that the attachment of butterfly wings to a solar cell increases its output power by 42.3%, proving that the wings are indeed highly reflective. Importantly, and relative to current concentrators, the wings improve the power to weight ratio of the overall structure 17-fold, vastly expanding their potential application. Moreover, a single mono-layer of scale cells removed from the butterflies’ wings maintained this high reflectivity showing that a single layer of scale cell-like structures can also form a useful coating. As predicted, the wings increased the temperature of the butterflies’ thorax dramatically, showing that the V-shaped basking posture of white butterflies has indeed evolved to increase the temperature of their flight muscles prior to take-off.
COS Spectroscopy of White Dwarf Companions to Blue Stragglers
NASA Astrophysics Data System (ADS)
Gosnell, Natalie M.; Geller, Aaron M.; Knigge, Christian; Mathieu, Robert D.; Sills, Alison; Leiner, Emily; Leigh, Nathan
2017-01-01
Complete membership studies of open stellar clusters reveal that 25% of the evolved stars follow alternative pathways in stellar evolution, meaning something in the history of these stars changed their composition or mass (or both). In order to draw a complete picture of stellar evolution we must include these canonically "strange" stars in our definition of standard stellar populations. The formation mechanism of blue straggler stars, traditionally defined to be brighter and bluer than the main sequence turnoff in a star cluster, has been an outstanding question for almost six decades. Recent Hubble Space Telescope (HST) far-ultraviolet (far-UV) observations directly reveal that the blue straggler stars in the old (7 Gyr) open cluster NGC 188 are predominantly formed through mass transfer. We will present HST far-UV COS spectroscopy of white dwarf companions to blue stragglers. These white dwarfs are the remnants of the mass transfer formation process. The effective temperatures and surface gravities of the white dwarfs delineate the timeline of blue straggler formation in this cluster. The existence of these binaries in a well-studied cluster environment provides an unprecedented opportunity to observationally constrain mass transfer models and inform our understanding of many other alternative pathway stellar products.
Dynamic Evolution in the Symbiotic R Aquarii
NASA Technical Reports Server (NTRS)
DePasquale, J. M.; Nichols, J. S.; Kellogg, E. M.
2007-01-01
We report on multiple Chandra observations spanning a period of 5 years as well as a more recent XMM observation of the nearby symbiotic binary R Aqr. Spectral analysis of these four observations reveals considerable variability in hardness ratios and in the strength and ionization levels of emission lines which provides insight into white dwarf accretion processes as well as continuum and line formation mechanisms. Chandra imaging of the central source also shows the formation and evolution of a new south west jet. This growing body of high-resolution X-ray data of R Aqr provides a unique glimpse into white dwarf wind-accretion processes and jet formation.
Hu, Xuefu; Wang, Zi; Lin, Bangjiang; Zhang, Cankun; Cao, Lingyun; Wang, Tingting; Zhang, Jingzheng; Wang, Cheng; Lin, Wenbin
2017-06-22
A metal-organic layer (MOL) is a new type of 2D material that is derived from metal-organic frameworks (MOFs) by reducing one dimension to a single layer or a few layers. Tetraphenylethylene-based tetracarboxylate ligands (TCBPE), with aggregation-induced emission properties, were assembled into the first luminescent MOL by linking with Zr 6 O 4 (OH) 6 (H 2 O) 2 (HCO 2 ) 6 clusters. The emissive MOL can replace the lanthanide phosphors in white light emitting diodes (WLEDs) with remarkable processability, color rendering, and brightness. Importantly, the MOL-WLED exhibited a physical switching speed three times that of commercial WLEDs, which is crucial for visible-light communication (VLC), an alternative wireless communication technology to Wi-Fi and Bluetooth, by using room lighting to carry transmitted signals. The short fluorescence lifetime (2.6 ns) together with high quantum yield (50 %) of the MOL affords fast switching of the assembled WLEDs for efficient information encoding and transmission. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
New digital anti-copy/scan and verification technologies
NASA Astrophysics Data System (ADS)
Phillips, George K.
2004-06-01
This white paper reviews the method for making bearer printed information indistinguishable on a non-copyable substrate when a copied attempt is made on either an analog or digital electrostatic photocopier device. In 1995 we received patent number 5,704,651 for a non-copyable technology trademarked MetallicSafe. In this patent the abstract describes the usage of a reflective layer, formed on a complex pattern region and having graphic or font size shapes and type coordinating to particular patterns in the complex pattern region. The technology used in this patent has now been improved and evolved to new methods of creating a non-copyable substrate trademarked CopySafe+. CopySafe+ is formed of a metallic specular light reflector, a white camouflaged diffused light reflector, and the content information 'light absorption' layer. The synthesizing of these layers on a substrate creates dynamic camouflaged interference patterns and the phenomena of image chaos on a copy. In short, the orientation of a plurality of spectral and diffused light reflection camouflaged layers, mixed and coordinated with light absorption printed information, inhibits the copying device from reproducing the printed content.
The effect of surface colour on the formation of marine micro and macrofouling communities.
Dobretsov, Sergey; Abed, Raeid M M; Voolstra, Christian R
2013-01-01
The effect of substratum colour on the formation of micro- and macro fouling communities was investigated. Acrylic tiles, painted either black or white were covered with transparent sheets in order to ensure similar surface properties. All substrata were exposed to biofouling at 1 m depth for 40 d in the Marina Bandar al Rowdha (Muscat, Sea of Oman). Studies were conducted in 2010 over a time course of 5, 10 and 20 d, and in 2012 samples were collected at 7, 14 and 21 d. The densities of bacteria on the black and white substrata were similar with the exception of day 10, when the black substrata had a higher abundance than white ones. Pyrosequencing via 454 of 16S rRNA genes of bacteria from white and black substrata revealed that Alphaproteobacteria and Firmicutes were the dominant groups. SIMPER analysis demonstrated that bacterial phylotypes (uncultured Gammaproteobacteria, Actibacter, Gaetbulicola, Thalassobius and Silicibacter) and the diatoms (Navicula directa, Navicula sp. and Nitzschia sp.) contributed to the dissimilarities between communities developed on white and black substrata. At day 20, the highest amount of chlorophyll a was recorded in biofilms developed on black substrata. SIMPER analysis showed that Folliculina sp., Ulva sp. and Balanus amphitrite were the major macro fouling species that contributed to the dissimilarities between the communities formed on white and black substrata. Higher densities of these species were observed on black tiles. The results emphasise the effect of substratum colour on the formation of micro and macro fouling communities; substratum colour should to be taken into account in future studies.
A model for thin layer formation by delayed particle settling at sharp density gradients
NASA Astrophysics Data System (ADS)
Prairie, Jennifer C.; White, Brian L.
2017-02-01
Thin layers - regions where plankton or particles accumulate vertically on scales of a few meters or less - are common in coastal waters, and have important implications for both trophic dynamics and carbon cycling. These features can form by a variety of biological and physical mechanisms, including localized growth, shear-thinning, and directed swimming. An additional mechanism may result in the formation of thin layers of marine aggregates, which have been shown to decrease their settling velocity when passing through sharp density gradients, a behavior termed delayed settling. Here, we apply a simple vertical advection-diffusion model to predict the properties of aggregate thin layers formed by this process. We assume a constant vertical flux of particles from the surface, which is parameterized by observations from laboratory experiments with marine aggregates. The formation, maintenance, and shape of the layers are described in relation to non-dimensional numbers that depend on environmental conditions and particle settling properties. In particular, model results demonstrate layer intensity and sharpness both increase with higher Péclet number (Pe), that is, under conditions with weaker mixing relative to layer formation. Similarly, more intense and sharper layers are found when the delayed settling behavior of aggregates is characterized by a lower velocity minimum. The model also predicts layers that are vertically asymmetric and highly "peaky" when compared with a Gaussian distribution, features often seen in thin layers in natural environments. Lastly, by comparing model predictions with observations of thin layers in the field, we are able to gain some insight into the applicability of delayed settling as a thin layer formation mechanism in different environmental conditions.
NASA Astrophysics Data System (ADS)
Rebassa-Mansergas, A.; Liu, X.-W.; Cojocaru, R.; Yuan, H.-B.; Torres, S.; García-Berro, E.; Xiang, M.-X.; Huang, Y.; Koester, D.; Hou, Y.; Li, G.; Zhang, Y.
2015-06-01
Modern large-scale surveys have allowed the identification of large numbers of white dwarfs. However, these surveys are subject to complicated target selection algorithms, which make it almost impossible to quantify to what extent the observational biases affect the observed populations. The LAMOST (Large Sky Area Multi-Object Fiber Spectroscopic Telescope) Spectroscopic Survey of the Galactic anticentre (LSS-GAC) follows a well-defined set of criteria for selecting targets for observations. This advantage over previous surveys has been fully exploited here to identify a small yet well-characterized magnitude-limited sample of hydrogen-rich (DA) white dwarfs. We derive preliminary LSS-GAC DA white dwarf luminosity and mass functions. The space density and average formation rate of DA white dwarfs we derive are 0.83 ± 0.16 × 10-3 pc-3 and 5.42 ± 0.08 × 10-13 pc-3 yr-1, respectively. Additionally, using an existing Monte Carlo population synthesis code we simulate the population of single DA white dwarfs in the Galactic anticentre, under various assumptions. The synthetic populations are passed through the LSS-GAC selection criteria, taking into account all possible observational biases. This allows us to perform a meaningful comparison of the observed and simulated distributions. We find that the LSS-GAC set of criteria is highly efficient in selecting white dwarfs for spectroscopic observations (80-85 per cent) and that, overall, our simulations reproduce well the observed luminosity function. However, they fail at reproducing an excess of massive white dwarfs present in the observed mass function. A plausible explanation for this is that a sizable fraction of massive white dwarfs in the Galaxy are the product of white dwarf-white dwarf mergers.
NASA Astrophysics Data System (ADS)
Rotunno, E.; Fabbri, F.; Cinquanta, E.; Kaplan, D.; Longo, M.; Lazzarini, L.; Molle, A.; Swaminathan, V.; Salviati, G.
2016-06-01
MoS2 multi-layer flakes, exfoliated from geological molybdenite, have been exposed to high dose electron irradiation showing clear evidence of crystal lattice and stoichiometry modifications. A massive surface sulfur depletion is induced together with the consequent formation of molybdenum nanoislands. It is found that a nanometric amorphous carbon layer, unwillingly deposited during the transmission electron microscope experiments, prevents the formation of the nanoislands. In the absence of the carbon layer, the formation of molybdenum grains proceeds both on the top and bottom surfaces of the flake. If carbon is present on both the surfaces then the formation of Mo grains is completely prevented.
Lee, Dong Hyung; Lee, Seok Jae; Koo, Ja-Ryong; Lee, Ho Won; Shin, Hyun Su; Lee, Song Eun; Kim, Woo Young; Lee, Kum Hee; Yoon, Seung Soo; Kim, Young Kwan
2014-08-01
We investigated blue fluorescent organic light-emitting diode (OLED) with a charge control layer (CCL) to produce high efficiency and improve the half-decay lifetime. Three types of devices (device A, B, and C) were fabricated following the number of CCLs within the emitting layer (EML), maintaining the thickness of whole EML. The CCL and host material, 2-methyl-9,10-di(2-naphthyl)anthracene, which has a bipolar property, was able to control the carrier movement with ease inside the EML. Device B demonstrated a maximum luminous efficiency (LE) and external quantum efficiency (EQE) of 9.19 cd/A and 5.78%, respectively. It also showed that the enhancement of the half-decay lifetime, measured at an initial luminance of 1,000 cd/m2, was 1.5 times longer than that of the conventional structure. A hybrid white OLED (WOLED) was also fabricated using a phosphorescent red emitter, bis(2-phenylquinoline)-acetylacetonate iridium III doped in 4,4'-N,N'-dicarbazolyl-biphenyl. The property of the hybrid WOLED with CCL showed a maximum LE and an EQE of 13.46 cd/A and 8.32%, respectively. It also showed white emission with Commission International de L'Éclairage coordinates of (x = 0.41, y = 0.33) at 10 V.
Raman, SEM-EDS and XRPD investigations on pre-Columbian Central America "estucado" pottery
NASA Astrophysics Data System (ADS)
Casanova Municchia, Annalaura; Micheli, Mario; Ricci, Maria Antonietta; Toledo, Michelle; Bellatreccia, Fabio; Lo Mastro, Sergio; Sodo, Armida
2016-03-01
Seventeen different colored fragments from six selected pre-Columbian estucado ceramics from El Salvador have been investigated by Raman spectroscopy, scanning electron microscope coupled to an energy dispersive spectrometer (SEM/EDS) and X-ray powder diffraction (XRPD). The peculiarity of this kind of ceramics consist of the unusual presence of a white engobe, traditionally termed stucco, between the ceramic body and the decoration elements, hence the name estucado ceramics. The aim of this work was to study the unusual manufacturing technique and to identify the chemical composition of the engobe and of the pigment palette. The results showed that the stucco layer is made of clay (kaolinite) with traces of titanium oxide (anatase). Remarkably, this is the same composition of the white pigments used for the decoration layer, thus excluding an early use of natural titanium oxide as a white pigment in the estucado productions as suggested in previous investigations. Moreover, the presence of kaolinite and anatase both in the stucco and in the decoration layer suggests a cold-working or low temperature technique. The red, yellow and green decorations were realized by the use of natural ochre, while in all the blue and gray decorations Maya blue pigment was identified. Finally, an amorphous carbon pigment of vegetal origin and manganese oxide were used to obtain black pigments.
NASA Astrophysics Data System (ADS)
Bandanadjaja, Beny; Purwadi, Wiwik; Idamayanti, Dewi; Lilansa, Noval; Hanaldi, Kus; Nurzaenal, Friya Kurnia
2018-05-01
Hard metal castings are widely used in the coal mill pulverizer as construction material for coal crushers. During its operation crushers and mills experience degradation caused by abrasion load. This research dealed with the surface overlaying of similiar material on the surface of white cast iron by mean of gravity casting. The die blank casting was preheated prior to the casting process of outer layer made of Ni-Hard white cast iron to guarantee bonding processes and avoid any crack. The preheating temperature of die blankin ther range of 500C up to 850C was set up to reach the interface temperature in the range of 887°C -1198°C and the flushing time was varied between 10-20 seconds. Studies carried on the microstructure of sample material revealed a formation of metallurgical bonding at the preheating temperature above 625 °C by pouring temperature ranging from 1438 °C to 1468 °C. Metallographical and chemical composition by mean of EDS examination were performed to observed the resut. This research concludes that the casting of Ni-Hard 1 overlay by applying gravity casting method can be done by preheating the surface of casting to 625 °C, interface temperature of 1150 °C, flushing time of 7 seconds and pouring temperature of 1430 °C. Excellent metallurgical bonding at the contact area between dieblank and overlay material has been achieved in which there is no parting line at the interface area to be observed.
Numerical Simulation of Roughness-Induced Transient Growth in a Laminar Boundary Layer
NASA Technical Reports Server (NTRS)
Fischer, Paul; Choudhari, Meelan
2004-01-01
Numerical simulations are used to examine the roughness-induced transient growth in a laminar boundary-layer flow. Based on the spectral element method, these simulations model the stationary disturbance field associated with a nonsmooth roughness geometry, such as the spanwise periodic array of circular disks used by White and co-workers during a series of wind tunnel experiments at Case Western Reserve University. Besides capturing the major trends from the recent measurements by White and Ergin, the simulations provide additional information concerning the relative accuracy of the experimental findings derived from two separate wall-finding procedures. The paper also explores the dependence of transient growth on geometric characteristics of the roughness distribution, including the height and planform shape of the roughness element and the ratio of roughness due to spacing between an adjacent pair of elements. Results are used for a preliminary assessment of the differences between recently reported theoretical results of Tumin and Reshotko and the measurements by White and Ergin.
Suppression of Hydrogen Emission in an X-Class White-Light Solar Flare
NASA Technical Reports Server (NTRS)
Prochazka, Ondrej; Milligan, Ryan O.; Allred, Joel C.; Kowalski, Adam F.; Kotrc, Pavel; Mathioudakis, Mihalis
2017-01-01
We present unique NUV observations of a well-observed X-class flare from NOAA 12087 obtained at the Ondrejov Observatory. The flare shows a strong white-light continuum but no detectable emission in the higher Balmer and Lyman lines. Reuven Ramaty High-Energy Solar Spectroscopic Imager and Fermi observations indicate an extremely hard X-ray spectrum and gamma-ray emission. We use the RADYN radiative hydrodynamic code to perform two types of simulations: one where an energy of 3 x 10(exp 11) erg/sq cm/s is deposited by an electron beam with a spectral index of approx. = 3, and a second where the same energy is applied directly to the photosphere. The combination of observations and simulations allows us to conclude that the white-light emission and the suppression or complete lack of hydrogen emission lines is best explained by a model where the dominant energy deposition layer is located in the lower layers of the solar atmosphere, rather than the chromosphere.
Nascimento, Luana Beatriz dos Santos; Moreira, Nattacha dos Santos; Leal-Costa, Marcos Vinícius; Costa, Sônia Soares; Tavares, Eliana Schwartz
2015-01-01
Background and Aims UV-B radiation can be stressful for plants and cause morphological and biochemical changes. Kalanchoe pinnata is a CAM leaf-succulent species distributed in hot and dry regions, and is rich in flavonoids, which are considered to be protective against UV-B radiation. This study aims to verify if K. pinnata has morphological or anatomical responses as a strategy in response to high UV-B levels. Methods Kalanchoe pinnata plants of the same age were grown under white light (control) or white light plus supplemental UV-B radiation (5 h d–1). The plants were treated with the same photoperiod, photosynthetically active radiation, temperature and daily watering system. Fragments of the middle third of the leaf blade and petiole were dehydrated and then embedded in historesin and sectioned in a rotary microtome. Sections were stained with toluidine blue O and mounted in Entellan®. Microchemical analyses by optical microscopy were performed on fresh material with Sudan III, Sudan IV and phloroglucinol, and analysed using fluorescence microscopy. Key Results Supplemental UV-B radiation caused leaf curling and the formation of brown areas on the leaves. These brown areas developed into a protective tissue on the adaxial side of the leaf, but only in directly exposed regions. Anatomically, this protective tissue was similar to a wound-periderm, with outer layer cell walls impregnated with suberin and lignin. Conclusions This is the first report of wound-periderm formation in leaves in response to UV-B radiation. This protective tissue could be important for the survival of the species in desert regions under high UV-B stress conditions. PMID:26346722
Formation Energies of Native Point Defects in Strained layer Superlattices (Postprint)
2017-06-05
AFRL-RX-WP-JA-2017-0440 FORMATION ENERGIES OF NATIVE POINT DEFECTS IN STRAINED-LAYER SUPERLATTICES (POSTPRINT) Zhi Gang Yu...2017 Interim 11 September 2013 – 31 May 2017 4. TITLE AND SUBTITLE FORMATION ENERGIES OF NATIVE POINT DEFECTS IN STRAINED-LAYER SUPERLATTICES...Hamiltonian, tight-binding Hamiltonian, and Green’s function techniques to obtain energy levels arising from native point defects (NPDs) in InAs-GaSb and
Synthesis and characterization of methyltrihydroxysilane water repellent
NASA Astrophysics Data System (ADS)
Abidin, A. Z.; Harjandi, M. N.; Wirawan, V.; Suharno, S. M.
2018-03-01
Methyltrihydroxysilane (CH3Si (OH)3) as a water repellent has been synthesized from trichloromethylsilane and ethanol by varying their composition, reaction condition, and the addition of nanosilica. The properties of the material have been characterized using FTIR for identification of raw materials and water repellent product, SEM for identification of water repellent coating surface, and tensiometer for measurement of water repellent contact angle. The FTIR spectra confirm the reaction of the water-repellent formation. The water repellent product was applied by spraying or dip coating on the automotive window surface. This study shows that the best ethanol composition is 91% and the best contact angle of synthesized water repellent material is 149,46°. This contact angle is higher than that of a commercial product, which shows it as a property of the superhydrophobic material. Water repellency properties increase as the composition of trichloromethylsilane increases. It shows that the increasing of trichloromethylsilane composition can also increase methyltrihydroxysilane formation. However, glass surface becomes opaque as the composition of trichloromethylsilane increase because methyltrihydroxysilane will create the Si-O-Si layer that has a white color. The addition of nanomaterial also increases the surface roughness, but a binder is required to bind nanomaterial to the water-repellent layer. For an application, dip coating has better water repellency than spraying. This is because dip coating method creates more homogenous nanomaterial precipitation on the surface. On the other hand, the level of transparency is worse. Therefore, the water repellent of trichloromethylsilane is recommended for applications that do not need clarity such bathroom glass wall.
A Survey of Melting Layer Research.
1982-01-04
melting layer done over the past 40 years, or since Findeisen (1940) 14 first looked at isothermal layers in the atmosphere at temperatures close to 0°C...Atmospheric Science, University of Wyoming, Laramie, Wyoming, 204 pp. 14. Findeisen , W. (1940) The formation of the 00C-isothermal layer and fracto...Wyoming, Laramie, Wyoming, 204 pp. 14. Findeisen , W. (1940) The formation of the 0°C-isothermal layer and fracto- cumulus under nimbostratus, Met. Zeit 57
Tang, Wei; Newton, Ronald J
2006-02-01
Mevalonate kinase (MK) catalyzes a step in the isoprenoid biosynthetic pathway, which leads to a huge number of compounds that play important roles in plant growth and development. Here, we report on changes in MK activity in white pine (Pinus strobus L.) during plant regeneration by adventitious shoot organogenesis from cotyledons of mature embryos, including nodular callus induction, shoot formation and rooting. Nodular calli were induced from Pinus strobus (PS) embryos by culture in nodular callus induction medium in a 0-, 8- or 16-h photoperiod. Mevalonate kinase activity peaked in nodular calli after three weeks of culture on nodular callus induction medium in a 16-h photoperiod, whereas frequency of nodular callus formation peaked after 4 weeks of culture on nodular callus induction medium in darkness. During adventitious shoot formation, MK activity peaked in shoots derived from dark-grown nodular calli after 3 weeks on bud formation medium, and frequency of shoot formation was highest in dark-grown nodular calli cultured on bud formation medium for 4 weeks. During rooting, MK activity peaked 2 weeks after transfer of adventitious shoots to rooting medium and rooting frequency was highest in adventitious shoots after 3 weeks on rooting medium. Although during nodular callus induction in darkness MK activity was inversely related to frequency of nodular callus formation, MK activity was highly correlated with frequency of shoot formation and with rooting frequency. The observed increase in MK activity preceding rooting suggests that MK could serve as a marker for rooting of white pine shoots in vitro.
Biodegradation of pentachlorophenol by the white rot fungus Phanerochaete chrysosporium (1988)
Extensive biodegradation of pentachlorophenol (PCP) by the white rot fungus Phanerochaete chrysosporium was demonstrated by the disappearance and mineralization of [14C]PCP in nutrient nitrogen-limited culture. Mass balance analyses demonstrated the formation of water-soluble met...
Oscillations and waves in a spatially distributed system with a 1/f spectrum
NASA Astrophysics Data System (ADS)
Koverda, V. P.; Skokov, V. N.
2018-02-01
A spatially distributed system with a 1/f power spectrum is described by two nonlinear stochastic equations. Conditions for the formation of auto-oscillations have been found using numerical methods. The formation of a 1/f and 1/k spectrum simultaneously with the formation and motion of waves under the action of white noise has been demonstrated. The large extreme fluctuations with 1/f and 1/k spectra correspond to the maximum entropy, which points to the stability of such processes. It is shown that on the background of formation and motion of waves at an external periodic action there appears spatio-temporal stochastic resonance, at which one can observe the expansion of the region of periodic pulsations under the action of white noise.
Use of Edible Laminate Layers in Intermediate Moisture Food Rations to Inhibit Moisture Migration
2016-04-29
methylcellulose, propylene glycol, citric acid, modified starch , white beeswax Water resistant coating on one side Watson, Inc. Dual-sided HPMC moisture...barrier film Hydroxypropyl methylcellulose, propylene glycol, citric acid, modified starch , white beeswax Water resistant coating on both sides...Moisture Barrier (BWMB) film #1 Pullulan*, beeswax, glycerin, propylene glycol, starch , polysorbate 80 Water soluble Watson, Inc. Pullulan BWMB film
1979-07-06
Range : 3.2 million km This image returned by Voyager 2 shows one of the long dark clouds observed in the North Equatorial Belt of Jupiter. A high, white cloud is seen moving over the darker cloud, providing an indication of the structure of the cloud layers. Thin white clouds are also seen within the dark cloud. At right, blue areas, free of high clouds, are seen.
Archer, G S; Jeffrey, D; Tucker, Z
2017-08-01
Previous research has shown that providing light during incubation can have positive effects on hatchability and chick quality; however, white light alone has been observed to improve these factors only in pigmented broiler eggs and non-pigmented white layer eggs. Monochromatic red light has been shown to improve hatchability in layer eggs. Therefore the objective of this study was to utilize one light fixture that emitted both white and monochromatic red light to determine if this one light source could improve hatchability in both types of chicken eggs and pigmented Pekin duck egg. To determine this, 3 experiments were conducted, the first using White Leghorn eggs (N = 6912), the second using commercial broiler eggs (N = 4608), and the third using commercial Pekin duck eggs (N = 3564) in which eggs were incubated with 12 h of light and 12 h of darkness (LED) or complete darkness (DARK); the light level was 250 lux. Hatchability, embryo mortality, and hatchling quality were measured. In Experiment 1, LED had fewer early dead embryos (P = 0.03), less overall embryo mortality (P = 0.05), fewer chicks with unhealed navels (P < 0.001), fewer chicks with defects (P < 0.001), and a higher percentage of fertile eggs that hatched (P = 0.05) than DARK. In Experiment 2, LED had fewer chicks with unhealed navels (P = 0.003), fewer chicks with defects (P = 0.001), and a higher percentage of fertile eggs that hatched (P = 0.04) than DARK. In Experiment 3, LED had fewer early dead embryos (P = 0.05), lower overall embryo mortality (P = 0.04), and a higher percentage of fertile eggs that hatched (P = 0.05), and had ducklings with lower bodyweights at hatch (P = 0.04) than DARK. These results indicate that providing both white and red light during incubation can improve chick quality across poultry varieties. This type of fixture could be used to improve commercial hatchery efficiency and chick quality. © 2017 Poultry Science Association Inc.
Spontaneous symmetry breaking and phase coexistence in two-color networks
NASA Astrophysics Data System (ADS)
Avetisov, V.; Gorsky, A.; Nechaev, S.; Valba, O.
2016-01-01
We consider an equilibrium ensemble of large Erdős-Renyi topological random networks with fixed vertex degree and two types of vertices, black and white, prepared randomly with the bond connection probability p . The network energy is a sum of all unicolor triples (either black or white), weighted with chemical potential of triples μ . Minimizing the system energy, we see for some positive μ the formation of two predominantly unicolor clusters, linked by a string of Nb w black-white bonds. We have demonstrated that the system exhibits critical behavior manifested in the emergence of a wide plateau on the Nb w(μ ) curve, which is relevant to a spinodal decomposition in first-order phase transitions. In terms of a string theory, the plateau formation can be interpreted as an entanglement between baby universes in two-dimensional gravity. We conjecture that the observed classical phenomenon can be considered as a toy model for the chiral condensate formation in quantum chromodynamics.
Spontaneous symmetry breaking and phase coexistence in two-color networks.
Avetisov, V; Gorsky, A; Nechaev, S; Valba, O
2016-01-01
We consider an equilibrium ensemble of large Erdős-Renyi topological random networks with fixed vertex degree and two types of vertices, black and white, prepared randomly with the bond connection probability p. The network energy is a sum of all unicolor triples (either black or white), weighted with chemical potential of triples μ. Minimizing the system energy, we see for some positive μ the formation of two predominantly unicolor clusters, linked by a string of N_{bw} black-white bonds. We have demonstrated that the system exhibits critical behavior manifested in the emergence of a wide plateau on the N_{bw}(μ) curve, which is relevant to a spinodal decomposition in first-order phase transitions. In terms of a string theory, the plateau formation can be interpreted as an entanglement between baby universes in two-dimensional gravity. We conjecture that the observed classical phenomenon can be considered as a toy model for the chiral condensate formation in quantum chromodynamics.
The Cyborg Astrobiologist: scouting red beds for uncommon features with geological significance
NASA Astrophysics Data System (ADS)
McGuire, Patrick Charles; Díaz-Martínez, Enrique; Ormö, Jens; Gómez-Elvira, Javier; Rodríguez-Manfredi, José Antonio; Sebastián-Martínez, Eduardo; Ritter, Helge; Haschke, Robert; Oesker, Markus; Ontrup, Jörg
2005-04-01
The `Cyborg Astrobiologist' has undergone a second geological field trial, at a site in northern Guadalajara, Spain, near Riba de Santiuste. The site at Riba de Santiuste is dominated by layered deposits of red sandstones. The Cyborg Astrobiologist is a wearable computer and video camera system that has demonstrated a capability to find uncommon interest points in geological imagery in real time in the field. In this second field trial, the computer vision system of the Cyborg Astrobiologist was tested at seven different tripod positions, on three different geological structures. The first geological structure was an outcrop of nearly homogeneous sandstone, which exhibits oxidized-iron impurities in red areas and an absence of these iron impurities in white areas. The white areas in these `red beds' have turned white because the iron has been removed. The iron removal from the sandstone can proceed once the iron has been chemically reduced, perhaps by a biological agent. In one instance the computer vision system found several (iron-free) white spots to be uncommon and therefore interesting, as well as several small and dark nodules. The second geological structure was another outcrop some 600 m to the east, with white, textured mineral deposits on the surface of the sandstone, at the bottom of the outcrop. The computer vision system found these white, textured mineral deposits to be interesting. We acquired samples of the mineral deposits for geochemical analysis in the laboratory. This laboratory analysis of the crust identifies a double layer, consisting of an internal millimetre-size layering of calcite and an external centimetre-size efflorescence of gypsum. The third geological structure was a 50 cm thick palaeosol layer, with fossilized root structures of some plants. The computer vision system also found certain areas of these root structures to be interesting. A quasi-blind comparison of the Cyborg Astrobiologist's interest points for these images with the interest points determined afterwards by a human geologist shows that the Cyborg Astrobiologist concurred with the human geologist 68% of the time (true-positive rate), with a 32% false-positive rate and a 32% false-negative rate. The performance of the Cyborg Astrobiologist's computer vision system was by no means perfect, so there is plenty of room for improvement. However, these tests validate the image-segmentation and uncommon-mapping technique that we first employed at a different geological site (Rivas Vaciamadrid) with somewhat different properties for the imagery.
Formation mechanism of photo-induced nested wrinkles on siloxane-photomonomer hybrid film
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suzuki, Kazumasa; International Laboratory of Materials Science and Nanotechnology; Laboratorio di Scienz
Nested wrinkle structures, hierarchical surface wrinkles of different periodicities of sub-μm and tens-μm, have been fabricated on a siloxane-photomonomer hybrid film via a photo-induced surface polymerization of acrylamide. The formation mechanism of the nested wrinkle structures is examined based on a time-dependent structure observation and chemical composition analyses. In-situ observation of the evolving surface structure showed that sub-μm scale wrinkles first formed, subsequently the tens-μm scale ones did. In-situ FT-IR analysis indicated that the nested wrinkles formation took place along with the development of siloxane network of under layer. A cross sectional observation of the film revealed that the filmmore » was composed of three layers. FT-IR spectra of the film revealed that the surface and interior layers were polyacrylamide rich layer and siloxane-polymer rich layer, respectively. The intermediate layer formed as a diffusion layer by migration of acrylamide from interior to the surface. These three layers have different chemical compositions and therefore different mechanical characteristics, which allows the wrinkle formation. Shrinkage of siloxane-polymer interior layers, as a result of polycondensation of siloxane network, induced mechanical instabilities at interlayers, to form the nested wrinkle structures.« less
The properties and origin of magnetic fields in white dwarfs
NASA Astrophysics Data System (ADS)
Kawka, A.
2018-01-01
A significant fraction of white dwarfs harbour a magnetic field with strengths ranging from a few kG up to about 1000 MG. The fraction appears to depend on the specific class of white dwarfs being investigated and may hold some clues to the origin of their magnetic field. The number of white dwarfs with variable fields as a function of their rotation phase have revealed a large field structure diversity, from a simple offset dipole to structures with spots or multipoles. A review of the current challenges in modelling white dwarf atmospheres in the presence of a magnetic field is presented, and the proposed scenarios for the formation of magnetic fields in white dwarfs are examined.
Simultaneous RGB lasing from a single-chip polymer device.
Yamashita, Kenichi; Takeuchi, Nobutaka; Oe, Kunishige; Yanagi, Hisao
2010-07-15
This Letter describes the fabrication and operation of a single-chip white-laser device. The laser device has a multilayered structure consisting of three laser layers. Each laser layer comprises polymer claddings and a waveguide core doped with organic dye. In each laser layer, grating corrugations were fabricated by UV-nanoimprint lithography that act as distributed-feedback cavity structures. Under optical pumping, lasing output with red, green, and blue colors was simultaneously obtained from the sample edge.
Shannon, H.D.; Young, G.S.; Yates, M.; Fuller, Mark R.; Seegar, W.
2003-01-01
An examination of boundary-layer meteorological and avian aerodynamic theories suggests that soaring birds can be used to measure the magnitude of vertical air motions within the boundary layer. These theories are applied to obtain mixed-layer normalized thermal updraft intensity over both flat and complex terrain from the climb rates of soaring American white pelicans and from diagnostic boundary-layer model-produced estimates of the boundary-layer depth zi and the convective velocity scale w*. Comparison of the flatland data with the profiles of normalized updraft velocity obtained from previous studies reveals that the pelican-derived measurements of thermal updraft intensity are in close agreement with those obtained using traditional research aircraft and large eddy simulation (LES) in the height range of 0.2 to 0.8 zi. Given the success of this method, the profiles of thermal vertical velocity over the flatland and the nearby mountains are compared. This comparison shows that these profiles are statistically indistinguishable over this height range, indicating that the profile for thermal updraft intensity varies little over this sample of complex terrain. These observations support the findings of a recent LES study that explored the turbulent structure of the boundary layer using a range of terrain specifications. For terrain similar in scale to that encountered in this study, results of the LES suggest that the terrain caused less than an 11% variation in the standard deviation of vertical velocity.
Cheng, Chun-Yu; Cheng, Hao-Min; Chen, Shih-Pin; Chung, Chih-Ping; Lin, Yung-Yang; Hu, Han-Hwa; Chen, Chen-Huan; Wang, Shuu-Jiun
2018-06-01
Background The role of central pulsatile hemodynamics in the pathogenesis of white matter hyperintensities in migraine patients has not been clarified. Methods Sixty patients with migraine (20-50 years old; women, 68%) without overt vascular risk factors and 30 demographically-matched healthy controls were recruited prospectively. Cerebral white matter hyperintensities volume was determined by T1-weighted magnetic resonance imaging with CUBE-fluid-attenuated-inversion-recovery sequences. Central systolic blood pressure, carotid-femoral pulse wave velocity, and carotid augmentation index were measured by applanation tonometry. Carotid pulsatility index was derived from Doppler ultrasound carotid artery flow analysis. Results Compared to the controls, the migraine patients had higher white matter hyperintensities frequency (odds ratio, 2.75; p = 0.04) and greater mean white matter hyperintensities volume (0.174 vs. 0.049, cm 3 , p = 0.04). Multivariable regression analysis showed that white matter hyperintensities volume in migraine patients was positively associated with central systolic blood pressure ( p = 0.04) and carotid-femoral pulse wave velocity ( p < 0.001), but negatively associated with carotid pulsatility index ( p = 0.04) after controlling for potential confounding factors. The interaction effects observed indicated that the influence of carotid-femoral pulse wave velocity ( p = 0.004) and central systolic blood pressure ( p = 0.03) on white matter hyperintensities formation was greater for the lower-carotid pulsatility index subgroup of migraine patients. White matter hyperintensities volume in migraine patients increased with decreasing carotid pulsatility index and with increasing central systolic blood pressure or carotid-femoral pulse wave velocity. Conclusions White matter hyperintensities are more common in patients with migraine than in healthy controls. Increased aortic stiffness or central systolic blood pressure in the presence of low intracranial artery resistance may predispose patients with migraine to white matter hyperintensities formation.
Formation Mechanisms for Helium White Dwarfs in Binaries
NASA Astrophysics Data System (ADS)
Sandquist, E. L.; Taam, R. E.; Burkert, A.
1999-05-01
We discuss the constraints that can be placed on formation mechanisms for helium degenerate stars in binary systems, as well as the orbital parameters of the progenitor binaries, by using observed systems and numerical simulations of common envelope evolution. For pre-cataclysmic variable stars having a helium white dwarf, common envelope simulations covering the range of observed companion masses indicate that the initial mass of the red giant (parent of the white dwarf) can be constrained by the final period of the system. The formation mechanisms for double helium degenerate systems are also restricted. Using energy arguments, we find that there are almost no parameter combinations for which such a system can be formed using two successive common envelope phases. Observed short-period systems appear to favor an Algol-like phase of stable mass transfer followed by a common envelope phase. However, theory predicts that the brighter component is also the most massive, which is not observed in at least one system. This may require that nuclear burning must have occurred on the white dwarf that formed first, but after its formation. Systems which instead go through a common envelope episode, followed by a phase of nonconservative mass transfer from secondary to primary, would tend to form double degenerates with low mass ratios, which have not been observed to date. Finally, we discuss a new mechanism for producing subdwarf B stars in binaries. This work was supported by NSF grants AST-9415423 and AST-9727875.
Effects of Burning Conditions to the Formation of Gold Layer Photograph and Gold Layer Hologram
NASA Astrophysics Data System (ADS)
Kuge, Ken'ichi; Takahashi, Ataru; Harada, Takahito; Doi, Keiji; Sakai, Tomoko
Burning stage from gold nanoparticles to gold layer in the formation process of gold-layer photograph using gold deposition development was investigated. The gelatin layer holding gold nanoparticles is carbonized at about 400°C and burned out until about 500°C. Because gold nanoparticles would be compressed only to vertical direction and then melt to form the gold layer, the gold-layer photograph still holds the high resolution. Gold nanoparaticles do not melt completely even at 900°C, and form continuous clusters of several hundred nm.
Thermal management of the remote phosphor layer in LED systems
NASA Astrophysics Data System (ADS)
Perera, Indika U.; Narendran, Nadarajah
2013-09-01
Generally in a white light-emitting diode (LED), a phosphor slurry is placed around the semiconductor chip or the phosphor is conformally coated over the chip to covert the narrowband, short-wavelength radiation to a broadband white light. Over the past few years, the remote-phosphor method has provided significant improvement in overall system efficiency by reducing the photons absorbed by the LED chip and reducing the phosphor quenching effects. However, increased light output and smaller light engine requirements are causing high radiant energy density on the remotephosphor plates, thus heating the phosphor layer. The phosphor layer temperature rise increases when the phosphor material conversion efficiency decreases. Phosphor layer heating can negatively affect performance in terms of luminous efficacy, color shift, and life. In such cases, the performance of remote-phosphor LED lighting systems can be improved by suitable thermal management to reduce the temperature of the phosphor layer. To verify this hypothesis and to understand the factors that influence the reduction in temperature, a phosphor layer was embedded in a perforated metal heatsink to remove the heat; the parameters that influence the effectiveness of heat extraction were then studied. These parameters included the heatsink-to-phosphor layer interface area and the thermal conductivity of the heatsink. The temperature of the remote-phosphor surface was measured using IR thermography. The results showed that when the heat conduction area of the heatsink increased, the phosphor layer temperature decreased, but at the same time the overall light output of the remote phosphor light engine used in this study decreased due to light absorption by the metal areas.
Abbasi, Mazhar Ali; Ibupoto, Zafar Hussain; Hussain, Mushtaque; Nur, Omer; Willander, Magnus
2013-07-13
Cheap and efficient white light-emitting diodes (LEDs) are of great interest due to the energy crisis all over the world. Herein, we have developed heterojunction LEDs based on the well-aligned ZnO nanorods and nanotubes on the p-type GaN with the insertion of the NiO buffer layer that showed enhancement in the light emission. Scanning electron microscopy have well demonstrated the arrays of the ZnO nanorods and the proper etching into the nanotubes. X-ray diffraction study describes the wurtzite crystal structure array of ZnO nanorods with the involvement of GaN at the (002) peak. The cathodoluminescence spectra represent strong and broad visible emission peaks compared to the UV emission and a weak peak at 425 nm which is originated from GaN. Electroluminescence study has shown highly improved luminescence response for the LEDs fabricated with NiO buffer layer compared to that without NiO layer. Introducing a sandwich-thin layer of NiO between the n-type ZnO and the p-type GaN will possibly block the injection of electrons from the ZnO to the GaN. Moreover, the presence of NiO buffer layer might create the confinement effect.
Effect of endosulfan on immunological competence of layer birds.
Singh, P P; Kumar, Ashok; Chauhan, R S; Pankaj, P K
2016-07-01
The present study was aimed to investigate the immunological competence of endosulfan insecticide after limited oral administration in White Leghorn layer chickens. A total of 20 White Leghorn birds were given endosulfan in drinking water at 30 ppm/bird/day (no observable effect level dose) for a period of 3-months. Immune competence status of layer birds and chicks hatched from endosulfan offered birds were estimated at 15-day interval in layer birds and at monthly interval in chicks using immunological, biochemical parameters, and teratological estimates. There was a significant decrease in levels of total leukocytes count, absolute lymphocyte count, absolute heterophil count, total serum protein, serum albumin, serum globulin, and serum gamma globulin in the birds fed with endosulfan as compared to control. Similarly, immune competence tests such as lymphocyte stimulation test, oxidative burst assay, and enzyme-linked immunosorbent assay tests indicated lower immunity in birds treated with endosulfan as compared to control. Subsequently, chicks produced from endosulfan-treated birds were also examined for immune competence, but no significant difference was observed between chicks of both the groups. The exposure to endosulfan in limited oral dosage was able to exhibit hemo-biochemical and other changes that could be correlated with changes in the immunological profile of layer chickens suggesting cautious usage of endosulfan insecticide in poultry sheds.
The impact of motivation on race-based impression formation.
Li, Tianyi; Cardenas-Iniguez, Carlos; Correll, Joshua; Cloutier, Jasmin
2016-01-01
Affective biases toward racial out-group members, characterized by White perceivers' negative evaluations of Black individuals, prevail in U.S. culture. Such affective associations have been found to guide race-based impression formation. Accordingly, individuals may strive to resolve inconsistencies when perceiving targets violating their expectations. The current study focuses on the impact of evaluative incongruence on the activity of the dorsomedial prefrontal cortex (dmPFC) - a brain region previously shown to support impression formation. When asking participants to form impressions of positively and negatively evaluated Black and White individuals, we found preferential dmPFC activity in response to individuals paired with information that violates race-based affective associations. Importantly, individual differences in internal motivation to respond without prejudice (IMS) were found to shape the extent to which dmPFC activity indexes the interactive effects of race and affective associations during impression formation. Specifically, preferential dmPFC activity in response to evaluatively incongruent targets (i.e., Black-positive & White-negative) was present among participants with lower, but not those with higher, levels of IMS. Implications and future directions are discussed in the context of dmPFC involvement in social cognition. Copyright © 2015 Elsevier Inc. All rights reserved.
Neubauer, Jonathan D; Lulai, Edward C; Thompson, Asunta L; Suttle, Jeffrey C; Bolton, Melvin D
2012-04-15
Little is known about the coordinate induction of genes that may be involved in agriculturally important wound-healing events. In this study, wound-healing events were determined together with wound-induced expression profiles of selected cell cycle, cell wall protein, and pectin methyl esterase genes using two diverse potato genotypes and two harvests (NDTX4271-5R and Russet Burbank tubers; 2008 and 2009 harvests). By 5 d after wounding, the closing layer and a nascent phellogen had formed. Phellogen cell divisions generated phellem layers until cessation of cell division at 28 d after wounding for both genotypes and harvests. Cell cycle genes encoding epidermal growth factor binding protein (StEBP), cyclin-dependent kinase B (StCDKB) and cyclin-dependent kinase regulatory subunit (StCKS1At) were induced by 1 d after wounding; these expressions coordinated with related phellogen formation and the induction and cessation of phellem cell formation. Genes encoding the structural cell wall proteins extensin (StExt1) and extensin-like (StExtlk) were dramatically up-regulated by 1-5 d after wounding, suggesting involvement with closing layer and later phellem cell layer formation. Wounding up-regulated pectin methyl esterase genes (StPME and StPrePME); StPME expression increased during closing layer and phellem cell formation, whereas maximum expression of StPrePME occurred at 5-14 d after wounding, implicating involvement in later modifications for closing layer and phellem cell formation. The coordinate induction and expression profile of StTLRP, a gene encoding a cell wall strengthening "tyrosine-and lysine-rich protein," suggested a role in the formation of the closing layer followed by phellem cell generation and maturation. Collectively, the genes monitored were wound-inducible and their expression profiles markedly coordinated with closing layer formation and the index for phellogen layer meristematic activity during wound periderm development; results were more influenced by harvest than genotype. Importantly, StTLRP was the only gene examined that may be involved in phellogen cell wall thickening after cessation of phellogen cell division. Published by Elsevier GmbH.
Analyzing the Effects of Stellar Evolution on White Dwarf Ages
NASA Astrophysics Data System (ADS)
Moss, Adam; Von Hippel, Ted, Dr.
2018-01-01
White dwarfs are among the oldest objects in our Galaxy, thus if we can determine their ages, we can derive the star formation history of our Galaxy. As part of a larger project that will use Gaia parallaxes to derive the ages of tens of thousands of white dwarfs, we explore the impact on the total white dwarf age of various modern models of main sequence and red giant branch stellar evolution, as well as uncertainties in progenitor metallicity. In addition, we study the effect on white dwarf ages caused by uncertainties in the Initial Final Mass Relation, which is the mapping between zero age main sequence and white dwarf masses. We find that for old and high mass white dwarfs, uncertainties in these factors have little effect on the total white dwarf age.
Electron Microscopy Imaging of Zinc Soaps Nucleation in Oil Paint.
Hermans, Joen; Osmond, Gillian; van Loon, Annelies; Iedema, Piet; Chapman, Robyn; Drennan, John; Jack, Kevin; Rasch, Ronald; Morgan, Garry; Zhang, Zhi; Monteiro, Michael; Keune, Katrien
2018-06-04
Using the recently developed techniques of electron tomography, we have explored the first stages of disfiguring formation of zinc soaps in modern oil paintings. The formation of complexes of zinc ions with fatty acids in paint layers is a major threat to the stability and appearance of many late 19th and early 20th century oil paintings. Moreover, the occurrence of zinc soaps in oil paintings leading to defects is disturbingly common, but the chemical reactions and migration mechanisms leading to large zinc soap aggregates or zones remain poorly understood. State-of-the-art scanning (SEM) and transmission (TEM) electron microscopy techniques, primarily developed for biological specimens, have enabled us to visualize the earliest stages of crystalline zinc soap growth in a reconstructed zinc white (ZnO) oil paint sample. In situ sectioning techniques and sequential imaging within the SEM allowed three-dimensional tomographic reconstruction of sample morphology. Improvements in the detection and discrimination of backscattered electrons enabled us to identify local precipitation processes with small atomic number contrast. The SEM images were correlated to low-dose and high-sensitivity TEM images, with high-resolution tomography providing unprecedented insight into the structure of nucleating zinc soaps at the molecular level. The correlative approach applied here to study phase separation, and crystallization processes specific to a problem in art conservation creates possibilities for visualization of phase formation in a wide range of soft materials.
NASA Astrophysics Data System (ADS)
Lorenz, Pierre; Zhao, Xiongtao; Ehrhardt, Martin; Zagoranskiy, Igor; Zimmer, Klaus; Han, Bing
2018-02-01
Large area, high speed, nanopatterning of surfaces by laser ablation is challenging due to the required high accuracy of the optical and mechanical systems fulfilling the precision of nanopatterning process. Utilization of self-organization approaches can provide an alternative decoupling spot precision and field of machining. The laser-induced front side etching (LIFE) and laser-induced back side dry etching (LIBDE) of fused silica were studied using single and double flash nanosecond laser pulses with a wavelength of 532 nm where the time delay Δτ of the double flash laser pulses was adjusted from 50 ns to 10 μs. The fused silica can be etched at both processes assisted by a 10 nm chromium layer where the etching depth Δz at single flash laser pulses is linear to the laser fluence and independent on the number of laser pulses, from 2 to 12 J/cm2, it is Δz = δLIFE/LIBDE . Φ with δLIFE 16 nm/(J/cm2) and δLIBDE 5.2 nm/(J/cm2) 3 . δLIFE. At double flash laser pulses, the Δz is dependent on the time delay Δτ of the laser pulses and the Δz slightly increased at decreasing Δτ. Furthermore, the surface nanostructuring of fused silica using IPSM-LIFE (LIFE using in-situ pre-structured metal layer) method with a single double flash laser pulse was tested. The first pulse of the double flash results in a melting of the metal layer. The surface tension of the liquid metal layer tends in a droplet formation process and dewetting process, respectively. If the liquid phase life time ΔtLF is smaller than the droplet formation time the metal can be "frozen" in an intermediated state like metal bare structures. The second laser treatment results in a evaporation of the metal and in a partial evaporation and melting of the fused silica surface, where the resultant structures in the fused silica surface are dependent on the lateral geometry of the pre-structured metal layer. A successful IPSM-LIFE structuring could be achieved assisted by a 20 nm molybdenum layer at Δτ >= 174 ns. That path the way for the high speed ultra-fast nanostructuring of dielectric surfaces by self-organizing processes. The different surface structures were analyzed by scanning electron microscopy (SEM) and white light interferometry (WLI).
Ling, Xue; Mao, Zhen-wei; Feng, Min; Hu, Yao-wu; Wang, Chang-sui; Liu, Hong-miao
2005-07-01
Gong kiln, for its long porcelain-firing history, was one of three representative white porcelain kilns in northern China. In order to improve the quality and whiteness of white porcelain, a decorating layer or cosmetic earth was laid on the body surface in Gong kiln during early Tang dynasty, which was able to blot out rough surface and weaken the influence of fuscous body upon surface color. In this paper the main chemical composition of the white porcelain's profile was analyzed by using energy disperse X-Ray fluorescence. The result showed that different materials were used as cosmetic earth during early Tang dynasty, in accordance with the phenomenon under optical microscope. In addition, the glaze belongs to calcium glaze in which plant ash was added.
Yoshioka, Shinya; Kinoshita, Shuichi
2006-01-22
A few species of Morpho butterflies have a distinctive white stripe pattern on their structurally coloured blue wings. Since the colour pattern of a butterfly wing is formed as a mosaic of differently coloured scales, several questions naturally arise: are the microstructures the same between the blue and white scales? How is the distinctive whiteness produced, structurally or by means of pigmentation? To answer these questions, we have performed structural and optical investigations of the stripe pattern of a butterfly, Morpho cypris. It is found that besides the dorsal and ventral scale layers, the wing substrate also has the corresponding stripe pattern. Quantitative optical measurements and analysis using a simple model for the wing structure reveal the origin of the higher reflectance which makes the white stripe brighter.
2011-07-01
rendering of a subject using 316,691 polygon faces and 161,951 points. The small white dots on the surface of the subject are landmark points. The...Figure 17: CAESAR Data. The leftmost image is a color polygon rendering of a subject using 316,691 polygon faces and 161,951 points. The small white...polygon rendering of a subject using 316,691 polygon faces and 161,951 points. The small white dots on the surface of the subject are landmark points
White butterflies as solar photovoltaic concentrators
Shanks, Katie; Senthilarasu, S.; ffrench-Constant, Richard H.; Mallick, Tapas K.
2015-01-01
Man’s harvesting of photovoltaic energy requires the deployment of extensive arrays of solar panels. To improve both the gathering of thermal and photovoltaic energy from the sun we have examined the concept of biomimicry in white butterflies of the family Pieridae. We tested the hypothesis that the V-shaped posture of basking white butterflies mimics the V-trough concentrator which is designed to increase solar input to photovoltaic cells. These solar concentrators improve harvesting efficiency but are both heavy and bulky, severely limiting their deployment. Here, we show that the attachment of butterfly wings to a solar cell increases its output power by 42.3%, proving that the wings are indeed highly reflective. Importantly, and relative to current concentrators, the wings improve the power to weight ratio of the overall structure 17-fold, vastly expanding their potential application. Moreover, a single mono-layer of scale cells removed from the butterflies’ wings maintained this high reflectivity showing that a single layer of scale cell-like structures can also form a useful coating. As predicted, the wings increased the temperature of the butterflies’ thorax dramatically, showing that the V-shaped basking posture of white butterflies has indeed evolved to increase the temperature of their flight muscles prior to take-off. PMID:26227341
Optical devices featuring textured semiconductor layers
Moustakas, Theodore D [Dover, MA; Cabalu, Jasper S [Cary, NC
2011-10-11
A semiconductor sensor, solar cell or emitter, or a precursor therefor, has a substrate and one or more textured semiconductor layers deposited onto the substrate. The textured layers enhance light extraction or absorption. Texturing in the region of multiple quantum wells greatly enhances internal quantum efficiency if the semiconductor is polar and the quantum wells are grown along the polar direction. Electroluminescence of LEDs of the invention is dichromatic, and results in variable color LEDs, including white LEDs, without the use of phosphor.
Optical devices featuring textured semiconductor layers
Moustakas, Theodore D [Dover, MA; Cabalu, Jasper S [Cary, NC
2012-08-07
A semiconductor sensor, solar cell or emitter, or a precursor therefor, has a substrate and one or more textured semiconductor layers deposited onto the substrate. The textured layers enhance light extraction or absorption. Texturing in the region of multiple quantum wells greatly enhances internal quantum efficiency if the semiconductor is polar and the quantum wells are grown along the polar direction. Electroluminescence of LEDs of the invention is dichromatic, and results in variable color LEDs, including white LEDs, without the use of phosphor.
NASA Astrophysics Data System (ADS)
Akintunde, S. O.; Selyshchev, P. A.
2016-05-01
A theoretical approach is developed that describes the formation of a thin-film of AB-compound layer under the influence of radiation-induced vacancy. The AB-compound layer is formed as a result of a chemical reaction between the atomic species of A and B immiscible layers. The two layers are irradiated with a beam of energetic particles and this process leads to several vacant lattice sites creation in both layers due to the displacement of lattice atoms by irradiating particles. A- and B-atoms diffuse via these lattice sites by means of a vacancy mechanism in considerable amount to reaction interfaces A/AB and AB/B. The reaction interfaces increase in thickness as a result of chemical transformation between the diffusing species and surface atoms (near both layers). The compound layer formation occurs in two stages. The first stage begins as an interfacial reaction controlled process, and the second as a diffusion controlled process. The critical thickness and time are determined at a transition point between the two stages. The influence of radiation-induced vacancy on layer thickness, speed of growth, and reaction rate is investigated under irradiation within the framework of the model presented here. The result obtained shows that the layer thickness, speed of growth, and reaction rate increase strongly as the defect generation rate rises in the irradiated layers. It also shows the feasibility of producing a compound layer (especially in near-noble metal silicide considered in this study) at a temperature below their normal formation temperature under the influence of radiation.
NASA Astrophysics Data System (ADS)
Yeom, Bongjun; Char, Kookheon
2016-06-01
Laminated nanostructures in nacre have been adopted as models in the fabrication of strong, tough synthetic nanocomposites. However, the utilization of CaCO3 biominerals in these composites is limited by the complexity of the synthesis method for nanosized biominerals. In this study, we use the enzymatic reaction of urease to generate a nanoscale CaCO3 thin film to prepare CaCO3/polymer hybrid nanolaminates. Additional layers of CaCO3 thin film are consecutively grown over the base CaCO3 layer with the intercalation of organic layers. The morphology and crystallinity of the added CaCO3 layers depend strongly on the thickness of the organic layer coated on the underlying CaCO3 layer. When the organic layer is less than 20 nm thick, the amorphous CaCO3 layer is spontaneously transformed into crystalline calcite layer during the growth process. We also observe crystalline continuity between adjacent CaCO3 layers through interconnecting mineral bridges. The formation of these mineral bridges is crucial to the epitaxial growth of CaCO3 layers, similar to the formation of natural nacre.
Highly efficient white OLEDs for lighting applications
NASA Astrophysics Data System (ADS)
Murano, Sven; Burghart, Markus; Birnstock, Jan; Wellmann, Philipp; Vehse, Martin; Werner, Ansgar; Canzler, Tobias; Stübinger, Thomas; He, Gufeng; Pfeiffer, Martin; Boerner, Herbert
2005-10-01
The use of organic light-emitting diodes (OLEDs) for large area general lighting purposes is gaining increasing interest during the recent years. Especially small molecule based OLEDs have already shown their potential for future applications. For white light emission OLEDs, power efficiencies exceeding that of incandescent bulbs could already be demonstrated, however additional improvements are needed to further mature the technology allowing for commercial applications as general purpose illuminating sources. Ultimately the efficiencies of fluorescent tubes should be reached or even excelled, a goal which could already be achieved in the past for green OLEDs.1 In this publication the authors will present highly efficient white OLEDs based on an intentional doping of the charge carrier transport layers and the usage of different state of the art emission principles. This presentation will compare white PIN-OLEDs based on phosphorescent emitters, fluorescent emitters and stacked OLEDs. It will be demonstrated that the reduction of the operating voltage by the use of intentionally doped transport layers leads to very high power efficiencies for white OLEDs, demonstrating power efficiencies of well above 20 lm/W @ 1000 cd/m2. The color rendering properties of the emitted light is very high and CRIs between 85 and 95 are achieved, therefore the requirements for standard applications in the field of lighting applications could be clearly fulfilled. The color coordinates of the light emission can be tuned within a wide range through the implementation of minor structural changes.
High efficiency blue and white phosphorescent organic light emitting devices
NASA Astrophysics Data System (ADS)
Eom, Sang-Hyun
Organic light-emitting devices (OLEDs) have important applications in full-color flat-panel displays and as solid-state lighting sources. Achieving high efficiency deep-blue phosphorescent OLEDs (PHOLEDs) is necessary for high performance full-color displays and white light sources with a high color rendering index (CRI); however it is more challenging compared to the longer wavelength light emissions such as green and red due to the higher energy excitations for the deep-blue emitter as well as the weak photopic response of deep-blue emission. This thesis details several effective strategies to enhancing efficiencies of deep-blue PHOLEDs based on iridium(III) bis(4',6'-difluorophenylpyridinato)tetrakis(1-pyrazolyl)borate (FIr6), which are further employed to demonstrate high efficiency white OLEDs by combining the deep-blue emitter with green and red emitters. First, we have employed 1,1-bis-(di-4-tolylaminophenyl) cyclohexane (TAPC) as the hole transporting material to enhance electron and triplet exciton confinement in Fir6-based PHOLEDs, which increased external quantum efficiency up to 18 %. Second, dual-emissive-layer (D-EML) structures consisting of an N,N -dicarbazolyl-3,5-benzene (mCP) layer doped with 4 wt % FIr6 and a p-bis (triphenylsilyly)benzene (UGH2) layer doped with 25 wt % FIr6 was employed to maximize exciton generation in the emissive layer. Combined with the p-i-n device structure, high power efficiencies of (25 +/- 2) lm/W at 100 cd/m2 and (20 +/- 2) lm/W at 1000 cd/m 2 were achieved. Moreover, the peak external quantum efficiency of (20 +/- 1) % was achieved by employing tris[3-(3-pyridyl)mesityl]borane (3TPYMB) as the electron transporting material, which further improves the exciton confinement in the emissive layer. With Cs2CO3 doping in the 3TPYMB layer to greatly increase its electrical conductivity, a peak power efficiency up to (36 +/- 2) lm/W from the deep-blue PHOLED was achieved, which also maintains Commission Internationale de L'Eclairage (CIE) coordinates of (0.16, 0.28). High efficiency white PHOLEDs are also demonstrated by incorporating green and red phosphorescent emitters together with the deep-blue emitter FIr6. Similar to the FIr6-only devices, the D-EML structure with high triplet energy charge transport materials leads to a maximum external quantum efficiency of (19 +/- 1) %. Using the p-i-n device structure, a peak power efficiency of (40 +/- 2) lm/W and (36 +/- 2) lm/W at 100 cd/m2 were achieved, and the white PHOLED possesses a CRI of 79 and CIE coordinates of (0.37, 0.40). The limited light extraction from the planar-type OLEDs is also one of the remaining challenges to the OLED efficiency. Here we have developed a simple soft lithography technique to fabricate a transparent, close-packed hemispherical microlens arrays. The application of such microlens arrays to the glass surface of the large-area fluorescent OLEDs enhanced the light extraction efficiency up to (70 +/- 7)%. It is also shown that the light extraction efficiency of the OLEDs is affected by microlens contact angle, OLEDs size, and detailed layer structure of the OLEDs.
Preservation of Archaeal Surface Layer Structure During Mineralization
NASA Astrophysics Data System (ADS)
Kish, Adrienne; Miot, Jennyfer; Lombard, Carine; Guigner, Jean-Michel; Bernard, Sylvain; Zirah, Séverine; Guyot, François
2016-05-01
Proteinaceous surface layers (S-layers) are highly ordered, crystalline structures commonly found in prokaryotic cell envelopes that augment their structural stability and modify interactions with metals in the environment. While mineral formation associated with S-layers has previously been noted, the mechanisms were unconstrained. Using Sulfolobus acidocaldarius a hyperthermophilic archaeon native to metal-enriched environments and possessing a cell envelope composed only of a S-layer and a lipid cell membrane, we describe a passive process of iron phosphate nucleation and growth within the S-layer of cells and cell-free S-layer “ghosts” during incubation in a Fe-rich medium, independently of metabolic activity. This process followed five steps: (1) initial formation of mineral patches associated with S-layer; (2) patch expansion; (3) patch connection; (4) formation of a continuous mineral encrusted layer at the cell surface; (5) early stages of S-layer fossilization via growth of the extracellular mineralized layer and the mineralization of cytosolic face of the cell membrane. At more advanced stages of encrustation, encrusted outer membrane vesicles are formed, likely in an attempt to remove damaged S-layer proteins. The S-layer structure remains strikingly well preserved even upon the final step of encrustation, offering potential biosignatures to be looked for in the fossil record.
Integration of the White Sands Complex into a Wide Area Network
NASA Technical Reports Server (NTRS)
Boucher, Phillip Larry; Horan, Sheila, B.
1996-01-01
The NASA White Sands Complex (WSC) satellite communications facility consists of two main ground stations, an auxiliary ground station, a technical support facility, and a power plant building located on White Sands Missile Range. When constructed, terrestrial communication access to these facilities was limited to copper telephone circuits. There was no local or wide area communications network capability. This project incorporated a baseband local area network (LAN) topology at WSC and connected it to NASA's wide area network using the Program Support Communications Network-Internet (PSCN-I). A campus-style LAN is configured in conformance with the International Standards Organization (ISO) Open Systems Interconnect (ISO) model. Ethernet provides the physical and data link layers. Transmission Control Protocol and Internet Protocol (TCP/IP) are used for the network and transport layers. The session, presentation, and application layers employ commercial software packages. Copper-based Ethernet collision domains are constructed in each of the primary facilities and these are interconnected by routers over optical fiber links. The network and each of its collision domains are shown to meet IEEE technical configuration guidelines. The optical fiber links are analyzed for the optical power budget and bandwidth allocation and are found to provide sufficient margin for this application. Personal computers and work stations attached to the LAN communicate with and apply a wide variety of local and remote administrative software tools. The Internet connection provides wide area network (WAN) electronic access to other NASA centers and the world wide web (WWW). The WSC network reduces and simplifies the administrative workload while providing enhanced and advanced inter-communications capabilities among White Sands Complex departments and with other NASA centers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oliviero, E.; David, M. L.; Beaufort, M. F.
The crystalline-to-amorphous transformation induced by lithium ion implantation at low temperature has been investigated. The resulting damage structure and its thermal evolution have been studied by a combination of Rutherford backscattering spectroscopy channelling (RBS/C) and cross sectional transmission electron microscopy (XTEM). Lithium low-fluence implantation at liquid nitrogen temperature is shown to produce a three layers structure: an amorphous layer surrounded by two highly damaged layers. A thermal treatment at 400 Degree-Sign C leads to the formation of a sharp amorphous/crystalline interfacial transition and defect annihilation of the front heavily damaged layer. After 600 Degree-Sign C annealing, complete recrystallization takes placemore » and no extended defects are left. Anomalous recrystallization rate is observed with different motion velocities of the a/c interfaces and is ascribed to lithium acting as a surfactant. Moreover, the sharp buried amorphous layer is shown to be an efficient sink for interstitials impeding interstitial supersaturation and {l_brace}311{r_brace} defect formation in case of subsequent neon implantation. This study shows that lithium implantation at liquid nitrogen temperature can be suitable to form a sharp buried amorphous layer with a well-defined crystalline front layer, thus having potential applications for defects engineering in the improvement of post-implantation layers quality and for shallow junction formation.« less
A dual-emitting core-shell carbon dot-silica-phosphor composite for white light emission
NASA Astrophysics Data System (ADS)
Chen, Yonghao; Lei, Bingfu; Zheng, Mingtao; Zhang, Haoran; Zhuang, Jianle; Liu, Yingliang
2015-11-01
A unique dual-emitting core-shell carbon dot-silica-phosphor (CDSP) was constructed from carbon dots (CDs), tetraethoxysilane (TEOS) and Sr2Si5N8:Eu2+ phosphor through a one-pot sol-gel method. Blue emitting CDs uniformly disperse in the silica layer covering the orange emitting phosphor via a polymerization process, which makes CDSP achieve even white light emission. Tunable photoluminescence of CDSP is observed and the preferable white light emission is achieved through changing the excitation wavelength or controlling the mass ratio of the phosphor. When CDSP powders with a phosphor rate of 3.9% and 5.1% are excited at a wavelength of 400 nm, preferable white light emission is observed, with Commission Internationale de l'Eclairage (CIE) coordinates of (0.32, 0.32) and (0.34, 0.32), respectively. Furthermore, CDSP can mix well with epoxy resin to emit strong and even white light, and based on this, a CDSP-based white LED with a high colour rendering index (CRI) of 94 was fabricated.A unique dual-emitting core-shell carbon dot-silica-phosphor (CDSP) was constructed from carbon dots (CDs), tetraethoxysilane (TEOS) and Sr2Si5N8:Eu2+ phosphor through a one-pot sol-gel method. Blue emitting CDs uniformly disperse in the silica layer covering the orange emitting phosphor via a polymerization process, which makes CDSP achieve even white light emission. Tunable photoluminescence of CDSP is observed and the preferable white light emission is achieved through changing the excitation wavelength or controlling the mass ratio of the phosphor. When CDSP powders with a phosphor rate of 3.9% and 5.1% are excited at a wavelength of 400 nm, preferable white light emission is observed, with Commission Internationale de l'Eclairage (CIE) coordinates of (0.32, 0.32) and (0.34, 0.32), respectively. Furthermore, CDSP can mix well with epoxy resin to emit strong and even white light, and based on this, a CDSP-based white LED with a high colour rendering index (CRI) of 94 was fabricated. Electronic supplementary information (ESI) available: Characterization methods, SEM and TEM images, fluorescence spectra and CIE coordinates of CDSP. See DOI: 10.1039/c5nr05637c
NASA Astrophysics Data System (ADS)
Kharcheva, Anastasia V.; Krasnova, Elena D.; Voronov, Dmitry A.; Patsaeva, Svetlana V.
2015-03-01
As a result of a recent years study on the Karelia shore of the White Sea more than ten relict lakes in different stages of separation from the sea have been discovered. Five of them are located close to the Nikolai Pertsov White Sea Biological Station of Moscow State University. Such separated lakes are interesting to explore for their firm vertical stratification. Water layers differ not only by temperature, salinity and other physic and chemical characteristics and optical properties, but also by ibhabiting microorganisms and by the quality of dissolved organic matter. To study phototropic organisms in water sampled from different depths we used spectroscopic techniques. Identification of the main bands in the absorption and fluorescence spectra showed that there are two main groups of photosynthetic organisms in the redox zone (chemocline): unicellular algae containing chlorophyll a and green sulfur bacteria with bacteriochlorophylls c, d, e. Spectral data were compared with physical and chemical characteristics of the water layer (temperature, salinity, pH, dissolved oxygen and sunlight illumination at certain depth). It gave an opportunity to compare vertical profiles of oxygen and hydrogen sulphide concentration with the number and distribution of oxygenic and anoxygenic phototrophic microorganisms. Maximum abundance of both algae and green sulfur bacteria were achieved within the redox zone. Typical thickness of the layer with the highest concentration of microorganisms did not exceed 10-20 cm.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Liping; Chen, Jiangshan; Ma, Dongge, E-mail: mdg1014@ciac.ac.cn
2015-11-07
We compared the performance of phosphorescent white organic light emitting diodes (WOLEDs) with red-blue-green and green-blue-red sequent emissive layers. It was found that the influence of red and green dopants on electron and hole transport in emissive layers leads to the large difference in the efficiency of fabricated WOLEDs. This improvement mechanism is well investigated by the current density-voltage characteristics of single-carrier devices based on dopant doped emissive layers and the comparison of electroluminescent and photoluminescence spectra, and attributed to the different change of charge carrier transport by the dopants. The optimized device achieves a maximum power efficiency, current efficiency,more » and external quantum efficiency of 37.0 lm/W, 38.7 cd/A, and 17.7%, respectively, which are only reduced to 32.8 lm/W, 38.5 cd/A, and 17.3% at 1000 cd/m{sup 2} luminance. The critical current density is as high as 210 mA/cm{sup 2}. It can be seen that the efficiency roll-off in phosphorescent WOLEDs can be well improved by effectively designing the structure of emissive layers.« less
Lee, Hyena; Kim, Jungnam; Kim, Hwajeong; Kim, Youngkyoo
2016-01-01
We demonstrate strong photo-amplification effects in flexible organic capacitors which consist of small molecular solid-state electrolyte layers sandwiched between light-sensitive conjugated polymer nanolayers. The small molecular electrolyte layers were prepared from aqueous solutions of tris(8-hydroxyquinoline-5-sulfonic acid) aluminum (ALQSA3), while poly(3-hexylthiophene) (P3HT) was employed as the light-sensitive polymer nanolayer that is spin-coated on the indium-tin oxide (ITO)-coated poly(ethylene terephthalate) (PET) film substrates. The resulting capacitors feature a multilayer device structure of PET/ITO/P3HT/ALQSA3/P3HT/ITO/PET, which were mechanically robust due to good adhesion between the ALQSA3 layers and the P3HT nanolayers. Results showed that the specific capacitance was increased by ca. 3-fold when a white light was illuminated to the flexible organic multilayer capacitors. In particular, the capacity of charge storage was remarkably (ca. 250-fold) enhanced by a white light illumination in the potentiostatic charge/discharge operation, and the photo-amplification functions were well maintained even after bending for 300 times at a bending angle of 180o. PMID:26846891
Lee, Hyena; Kim, Jungnam; Kim, Hwajeong; Kim, Youngkyoo
2016-02-05
We demonstrate strong photo-amplification effects in flexible organic capacitors which consist of small molecular solid-state electrolyte layers sandwiched between light-sensitive conjugated polymer nanolayers. The small molecular electrolyte layers were prepared from aqueous solutions of tris(8-hydroxyquinoline-5-sulfonic acid) aluminum (ALQSA3), while poly(3-hexylthiophene) (P3HT) was employed as the light-sensitive polymer nanolayer that is spin-coated on the indium-tin oxide (ITO)-coated poly(ethylene terephthalate) (PET) film substrates. The resulting capacitors feature a multilayer device structure of PET/ITO/P3HT/ALQSA3/P3HT/ITO/PET, which were mechanically robust due to good adhesion between the ALQSA3 layers and the P3HT nanolayers. Results showed that the specific capacitance was increased by ca. 3-fold when a white light was illuminated to the flexible organic multilayer capacitors. In particular, the capacity of charge storage was remarkably (ca. 250-fold) enhanced by a white light illumination in the potentiostatic charge/discharge operation, and the photo-amplification functions were well maintained even after bending for 300 times at a bending angle of 180(°).
Cheng, Fei; Lorch, Mark; Sajedin, Seyed Mani; Kelly, Stephen M; Kornherr, Andreas
2013-08-01
To inhibit the photocatalytic degradation of organic material supports induced by small titania (TiO2 ) nanoparticles, four kinds of TiO2 nanoparticles, that is, commercial P25-TiO2 , commercial rutile phase TiO2 , rutile TiO2 nanorods and rutile TiO2 spheres, prepared from TiCl4 , were coated with a thin, but dense, coating of silica (SiO2 ) using a conventional sol-gel technique to form TiO2 /SiO2 core/shell nanoparticles. These core/shell particles were deposited and fixed as a very thin coating onto the surface of cellulose paper samples by a wet-chemistry polyelectrolyte layer-by-layer approach. The TiO2 /SiO2 nanocoated paper samples exhibit higher whiteness and brightness and greater stability to UV-bleaching than comparable samples of blank paper. There are many potential applications for this green chemistry approach to protect cellulosic fibres from UV-bleaching in sunlight and to improve their whiteness and brightness. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Barton, Gary J.
2004-01-01
Many local, State, and Federal agencies have concerns over the declining population of white sturgeon (Acipenser transmontanus) in the Kootenai River and the possible effects of the closure and subsequent operation of Libby Dam in 1972. In 1994, the Kootenai River white sturgeon was listed as an Endangered Species. A year-long field study was conducted in cooperation with the Kootenai Tribe of Idaho along a 21.7-kilometer reach of the Kootenai River including the white sturgeon spawning reach near Bonners Ferry, Idaho, approximately 111 to 129 kilometers below Libby Dam. During the field study, data were collected in order to map the channel substrate in the white sturgeon spawning reach. These data include seismic subbottom profiles at 18 cross sections of the river and sediment cores taken at or near the seismic cross sections. The effect that Libby Dam has on the Kootenai River white sturgeon spawning substrate was analyzed in terms of changes in suspended-sediment transport, aggradation and degradation of channel bed, and changes in the particle size of bed material with depth below the riverbed. The annual suspended-sediment load leaving the Kootenai River white sturgeon spawning reach decreased dramatically after the closure of Libby Dam in 1972: mean annual pre-Libby Dam load during 1966–71 was 1,743,900 metric tons, and the dam-era load during 1973–83 was 287,500 metric tons. The amount of sand-size particles in three suspended-sediment samples collected at Copeland, Idaho, 159 kilometers below Libby Dam, during spring and early summer high flows after the closure of Libby Dam is less than in four samples collected during the pre-Libby Dam era. The supply of sand to the spawning reach is currently less due to the reduction of high flows and a loss of 70 percent of the basin after the closure of Libby Dam. The river's reduced capacity to transport sand out of the spawning reach is compensated to an unknown extent by a reduced load of sand entering the spawning reach. Since the closure of Libby Dam, the most notable change in channel geometry at the Copeland streamflow gaging station was the initiation of cyclical aggradation and degradation of the riverbed in the center of the channel. The aggradation and degradation of the riverbed are reflected in a twofold increase, from 1.3 to 2.5 meters, in the fluctuation of the minimum riverbed elevation, which suggests that during the Libby Dam era, parts of the riverbed in the spawning reach may have aggraded or degraded by as much as 2.5 meters. Before the closure of Libby Dam, there was a greater propensity for aggradation and degradation of sand over the discontinuous gravel and cobble layers in the buried gravelcobble reach at Bonners Ferry. The gravel and cobble in this reach, 111.3 to 115.9 kilometers below Libby Dam, are buried by sand. Unregulated spring snowmelt-runoff flows flushed part of the sand layer and exposed some of the buried gravel-cobble layer because streamflow velocities were higher at that time. Unregulated autumn-winter base flows gradually deposited silt and sand and reestablished a sand layer, burying the gravel-cobble layer. This cyclical process of aggradation and degradation of the riverbed sediment is reflected in the alternating gravel-cobble layers and sand layers found in sediment core K18-TH taken as part of this project. White sturgeon spawning substrate in the Kootenai River meander reach is currently composed of alluvial sand that forms sand dunes and of minor amounts of lacustrine clay and silt that generally are found in the river's thalweg. The present substrate composition in the meander reach is considered similar to that which existed prior to closure of Libby Dam, with one possible exception. Prior to closure of Libby Dam, minor amounts of gravel and cobble may have been exposed on the riverbed in the spawning reach just below the mouth of Myrtle Creek 230 kilometers below Libby Dam. The substrate composition near Shorty Island, 234 kilometers below Libby Dam, a notable white sturgeon spawning reach, is predominantly sand and is similar to that which existed prior to closure of Libby Dam.
Yuan, Chengzhi; Licht, Stephen; He, Haibo
2017-09-26
In this paper, a new concept of formation learning control is introduced to the field of formation control of multiple autonomous underwater vehicles (AUVs), which specifies a joint objective of distributed formation tracking control and learning/identification of nonlinear uncertain AUV dynamics. A novel two-layer distributed formation learning control scheme is proposed, which consists of an upper-layer distributed adaptive observer and a lower-layer decentralized deterministic learning controller. This new formation learning control scheme advances existing techniques in three important ways: 1) the multi-AUV system under consideration has heterogeneous nonlinear uncertain dynamics; 2) the formation learning control protocol can be designed and implemented by each local AUV agent in a fully distributed fashion without using any global information; and 3) in addition to the formation control performance, the distributed control protocol is also capable of accurately identifying the AUVs' heterogeneous nonlinear uncertain dynamics and utilizing experiences to improve formation control performance. Extensive simulations have been conducted to demonstrate the effectiveness of the proposed results.
Kohout, George D; He, Jianing; Primus, Carolyn M; Opperman, Lynne A; Woodmansey, Karl F
2015-02-01
Quick-Set (Avalon Biomed Inc, Bradenton, FL) is a calcium aluminosilicate cement that is a potential alternative to mineral trioxide aggregate (MTA) with greater acid resistance and faster setting. The purpose of this study was to compare the regeneration of apical tissues after root-end surgery when the apical tissues were exposed to Quick-Set or White ProRoot MTA (Dentsply Tulsa Dental Specialties, Tulsa, OK) by root-end resection. The root canals of 42 mandibular premolars in 7 beagle dogs were accessed, cleaned and shaped, and obturated with Quick-Set or white MTA. Osteotomies and root-end resections were performed immediately. The dogs were sacrificed at 90 days, and the teeth and surrounding tissues were removed and prepared for histologic analysis. The sections of the apical areas were scored for inflammation, new cementum formation, periodontal ligament formation, and bone quality. At 90 days, both materials supported some degree of cementum formation on the surface of the material, periodontal ligament regeneration, and excellent bone quality. The only significant difference was greater inflammation found in the Quick-Set group. Quick-Set and White ProRoot MTA had a similar effect on bone quality, cementum formation, and periodontal ligament formation after root-end surgery in dogs. Quick-Set was associated with greater inflammation. Copyright © 2015 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Jet Formation and Penetration Study of Double-Layer Shaped Charge
NASA Astrophysics Data System (ADS)
Wang, Zhe; Jiang, Jian-Wei; Wang, Shu-You; Liu, Han
2018-04-01
A theoretical analysis on detonation wave propagation in a double-layer shaped charge (DLSC) is performed. Numerical simulations using the AUTODYN software are carried out to compare the distinctions between jet formations in DLSC and ordinary shaped charge (OSC), in particular, the OSC made using a higher detonation velocity explosive, which is treated as the outer layer charge in the DLSC. The results show that the improved detonation velocity ratio and radial charge percentage of outer-to-inner layer charge are conducive to the formation of a convergent detonation wave, which contributes to enhancement of jet tip velocity in DLSC. The thickness and mass percentages of liner flowing into jet in DLSC closely follow the exponential distribution along the radial direction, but the percentages in DLSC and the mass of effective jet, which have significant influence on the penetration depth, are lower than those in OSC with the outer layer charge. This implies that the total charge energy is the major factor controlling the effective jet formation, which is confirmed by the verification tests using flash X-ray system and following penetration tests. The numerical simulation and test results compare well, while penetration test results indicate that the performance of DLSC is not better than that of OSC with the outer layer charge, due to the differences in jet formation.
Evolutionary Calculations of Phase Separation in Crystallizing White Dwarf Stars
NASA Astrophysics Data System (ADS)
Montgomery, M. H.; Klumpe, E. W.; Winget, D. E.; Wood, M. A.
1999-11-01
We present an exploration of the significance of carbon/oxygen phase separation in white dwarf stars in the context of self-consistent evolutionary calculations. Because phase separation can potentially increase the calculated ages of the oldest white dwarfs, it can affect the age of the Galactic disk as derived from the downturn in the white dwarf luminosity function. We find that the largest possible increase in ages due to phase separation is ~1.5 Gyr, with a most likely value of approximately 0.6 Gyr, depending on the parameters of our white dwarf models. The most important factors influencing the size of this delay are the total stellar mass, the initial composition profile, and the phase diagram assumed for crystallization. We find a maximum age delay in models with masses of ~0.6 Msolar, which is near the peak in the observed white dwarf mass distribution. In addition, we note that the prescription that we have adopted for the mixing during crystallization provides an upper bound for the efficiency of this process, and hence a maximum for the age delays. More realistic treatments of the mixing process may reduce the size of this effect. We find that varying the opacities (via the metallicity) has little effect on the calculated age delays. In the context of Galactic evolution, age estimates for the oldest Galactic globular clusters range from 11.5 to 16 Gyr and depend on a variety of parameters. In addition, a 4-6 Gyr delay is expected between the formation of the globular clusters and the formation of the Galactic thin disk, while the observed white dwarf luminosity function gives an age estimate for the thin disk of 9.5+1.1-0.8 Gyr, without including the effect of phase separation. Using the above numbers, we see that phase separation could add between 0 and 3 Gyr to the white dwarf ages and still be consistent with the overall picture of Galaxy formation. Our calculated maximum value of <~1.5 Gyr fits within these bounds, as does our best-guess value of ~0.6 Gyr.
Evaluation of a reflective coating for an organic scintillation detector
NASA Astrophysics Data System (ADS)
Tarancón, A.; Marin, E.; Tent, J.; Rauret, G.; Garcia, J. F.
2012-05-01
A reflective coating based on white paint, black paint and varnish has been evaluated to determine its reflective capabilities and its potential use in radioactivity detectors based on organic scintillators. Three different white paints, all of which were based on TiO2, were also tested to determine the one with the best performance and lowest radioactivity content. In a first experiment, we evaluated the capability of the reflective coating by measuring 90Sr/90Y with PSm in a polyethylene vial partially painted with EJ510 (Eljen Technology) reflective paint, black paint and varnish. In a second experiment, we compared the performance of the EJ510 to that of other white paints used for artistic purposes (Vallejo and Rembrandt). The results showed that, when a vial was only partially painted with the white paints (keeping a window free of paint to allow photons to exit), the efficiency and spectral distribution of the painted vial was similar to that of a non-painted vial. This behavior showed the efficiency of the reflective coatings. In terms of reflection capabilities, all of the tested paints were equivalent; however, the background was higher for the EJ510 paint. Analyses using high-resolution gamma spectroscopy indicated the presence of natural radionuclides (40K, 226Ra and 228Ra) in the EJ510. On the basis of the results (high reflection capabilities and the absence of radioactive impurities) and its lower cost, the Vallejo paint was selected as the white reflective paint. The final structure of the reflective coating was composed of five white paint layers, a black paint (to avoid external light entrance) and a layer of varnish (to protect the paints).
Comets Kick up Dust in Helix Nebula
NASA Technical Reports Server (NTRS)
2007-01-01
This infrared image from NASA's Spitzer Space Telescope shows the Helix nebula, a cosmic starlet often photographed by amateur astronomers for its vivid colors and eerie resemblance to a giant eye. The nebula, located about 700 light-years away in the constellation Aquarius, belongs to a class of objects called planetary nebulae. Discovered in the 18th century, these colorful beauties were named for their resemblance to gas-giant planets like Jupiter. Planetary nebulae are the remains of stars that once looked a lot like our sun. When sun-like stars die, they puff out their outer gaseous layers. These layers are heated by the hot core of the dead star, called a white dwarf, and shine with infrared and visible colors. Our own sun will blossom into a planetary nebula when it dies in about five billion years. In Spitzer's infrared view of the Helix nebula, the eye looks more like that of a green monster's. Infrared light from the outer gaseous layers is represented in blues and greens. The white dwarf is visible as a tiny white dot in the center of the picture. The red color in the middle of the eye denotes the final layers of gas blown out when the star died. The brighter red circle in the very center is the glow of a dusty disk circling the white dwarf (the disk itself is too small to be resolved). This dust, discovered by Spitzer's infrared heat-seeking vision, was most likely kicked up by comets that survived the death of their star. Before the star died, its comets and possibly planets would have orbited the star in an orderly fashion. But when the star blew off its outer layers, the icy bodies and outer planets would have been tossed about and into each other, resulting in an ongoing cosmic dust storm. Any inner planets in the system would have burned up or been swallowed as their dying star expanded. So far, the Helix nebula is one of only a few dead-star systems in which evidence for comet survivors has been found. This image is made up of data from Spitzer's infrared array camera and multiband imaging photometer. Blue shows infrared light of 3.6 to 4.5 microns; green shows infrared light of 5.8 to 8 microns; and red shows infrared light of 24 microns.NASA Astrophysics Data System (ADS)
Baig, Mirza A.; Patel, Faheemuddin; Alhooshani, Khalid; Muraza, Oki; Wang, Evelyn N.; Laoui, Tahar
2015-12-01
LTA zeolite layer was successfully grown on a superhydrophilic mesoporous titania layer coated onto porous α-alumina substrate. Mesoporous titania layer was formed as an intermediate bridge in the pore size variation between the macroporous α-alumina support and micro-porous LTA zeolite layer. In-situ aging microwave heating synthesis method was utilized to deposit the LTA zeolite layer. Mesoporous titania layer was pre-treated with UV photons and this was observed to have played a major role in improving the surface hydrophilicity of the substrate leading to formation of increased number of Ti-OH groups on the surface. This increase in Ti-OH groups enhanced the interaction between the synthesis gel and the substrate leading to strong attachment of the amorphous gel on the substrate, thus enhancing coverage of the LTA zeolite layer to almost the entire surface of the 1-inch (25.4 mm) diameter membrane. LTA zeolite layer was developed via in-situ aged under microwave irradiation to study the effect of synthesis parameters such as in-situ aging time and synthesis time on the formation of the LTA zeolite layer. Optimized process parameters resulted in the formation of crack-free porous zeolite layer yielding a zeolite-titania-alumina multi-layer membrane with a gradient in porosity.
NASA Astrophysics Data System (ADS)
Vasil'eva, E. V.; Bochkov, V. E.; Mikheev, É. A.; Lyakishev, V. A.; Afanas'eva, T. N.
1983-10-01
With an increase in carbon content in the steel being treated, the thickness of the alloyed layer increases and its microhardness also increases. The carbon exerts a deoxidizing action on the layer being formed and promotes a reduction in the threshold of deerosion and also additional strengthening of the layer as the result of the formation of binary η-carbides.
a Fractal Permeability Model Coupling Boundary-Layer Effect for Tight Oil Reservoirs
NASA Astrophysics Data System (ADS)
Wang, Fuyong; Liu, Zhichao; Jiao, Liang; Wang, Congle; Guo, Hu
A fractal permeability model coupling non-flowing boundary-layer effect for tight oil reservoirs was proposed. Firstly, pore structures of tight formations were characterized with fractal theory. Then, with the empirical equation of boundary-layer thickness, Hagen-Poiseuille equation and fractal theory, a fractal torturous capillary tube model coupled with boundary-layer effect was developed, and verified with experimental data. Finally, the parameters influencing effective liquid permeability were quantitatively investigated. The research results show that effective liquid permeability of tight formations is not only decided by pore structures, but also affected by boundary-layer distributions, and effective liquid permeability is the function of fluid type, fluid viscosity, pressure gradient, fractal dimension, tortuosity fractal dimension, minimum pore radius and maximum pore radius. For the tight formations dominated with nanoscale pores, boundary-layer effect can significantly reduce effective liquid permeability, especially under low pressure gradient.
Silicide formation process of Er films with Ta and TaN capping layers.
Choi, Juyun; Choi, Seongheum; Kim, Jungwoo; Na, Sekwon; Lee, Hoo-Jeong; Lee, Seok-Hee; Kim, Hyoungsub
2013-12-11
The phase development and defect formation during the silicidation reaction of sputter-deposited Er films on Si with ∼20-nm-thick Ta and TaN capping layers were examined. TaN capping effectively prevented the oxygen incorporation from the annealing atmosphere, which resulted in complete conversion to the ErSi2-x phase. However, significant oxygen penetration through the Ta capping layer inhibited the ErSi2-x formation, and incurred the growth of several Er-Si-O phases, even consuming the ErSi2-x layer formed earlier. Both samples produced a number of small recessed defects at an early silicidation stage. However, large rectangular or square-shaped surface defects, which were either pitlike or pyramidal depending on the capping layer identity, were developed as the annealing temperature increased. The origin of different defect generation mechanisms was suggested based on the capping layer-dependent silicidation kinetics.
Liu, Yue; Williams, Mackenzie G.; Miller, Timothy J.; Teplyakov, Andrew V.
2015-01-01
This paper establishes a strategy for chemical deposition of functionalized nanoparticles onto solid substrates in a layer-by-layer process based on self-limiting surface chemical reactions leading to complete monolayer formation within the multilayer system without any additional intermediate layers – nanoparticle layer deposition (NPLD). This approach is fundamentally different from previously established traditional layer-by-layer deposition techniques and is conceptually more similar to well-known atomic and molecular – layer deposition processes. The NPLD approach uses efficient chemical functionalization of the solid substrate material and complementary functionalization of nanoparticles to produce a nearly 100% coverage of these nanoparticles with the use of “click chemistry”. Following this initial deposition, a second complete monolayer of nanoparticles is deposited using a copper-catalyzed “click reaction” with the azide-terminated silica nanoparticles of a different size. This layer-by-layer growth is demonstrated to produce stable covalently-bound multilayers of nearly perfect structure over macroscopic solid substrates. The formation of stable covalent bonds is confirmed spectroscopically and the stability of the multilayers produced is tested by sonication in a variety of common solvents. The 1-, 2- and 3-layer structures are interrogated by electron microscopy and atomic force microscopy and the thickness of the multilayers formed is fully consistent with that expected for highly efficient monolayer formation with each cycle of growth. This approach can be extended to include a variety of materials deposited in a predesigned sequence on different substrates with a highly conformal filling. PMID:26726273
Formation of porous surface layers in reaction bonded silicon nitride during processing
NASA Technical Reports Server (NTRS)
Shaw, N. J.; Glasgow, T. K.
1979-01-01
An effort was undertaken to determine if the formation of the generally observed layer of large porosity adjacent to the as-nitride surfaces of reaction bonded silicon nitrides could be prevented during processing. Isostatically pressed test bars were prepared from wet vibratory milled Si powder. Sintering and nitriding were each done under three different conditions:(1) bars directly exposed to the furnance atmosphere; (2) bars packed in Si powder; (3) bars packed in Si3N4 powder. Packing the bars in either Si of Si3N4 powder during sintering retarded formation of the layer of large porosity. Only packing the bars in Si prevented formation of the layer during nitridation. The strongest bars (316 MPa) were those sintered in Si and nitrided in Si3N4 despite their having a layer of large surface porosity; failure initiated at very large pores and inclusions. The alpha/beta ratio was found to be directly proportional to the oxygen content; a possible explanation for this relationship is discussed.
Implementation of a diffusion convection surface evolution model in WallDYN
NASA Astrophysics Data System (ADS)
Schmid, K.
2013-07-01
In thermonuclear fusion experiments with multiple plasma facing materials the formation of mixed materials is inevitable. The formation of these mixed material layers is a dynamic process driven the tight interaction between transport in the plasma scrape off layer and erosion/(re-) deposition at the surface. To track this global material erosion/deposition balance and the resulting formation of mixed material layers the WallDYN code has been developed which couples surface processes and plasma transport. The current surface model in WallDYN cannot fully handle the growth of layers nor does it include diffusion. However at elevated temperatures diffusion is a key process in the formation of mixed materials. To remedy this shortcoming a new surface model has been developed which, for the first time, describes both layer growth/recession and diffusion in a single continuous diffusion/convection equation. The paper will detail the derivation of the new surface model and compare it to TRIDYN calculations.
Wu, Bulong; Luo, Xiaobing; Zheng, Huai; Liu, Sheng
2011-11-21
Gold wire bonding is an important packaging process of lighting emitting diode (LED). In this work, we studied the effect of gold wire bonding on the angular uniformity of correlated color temperature (CCT) in white LEDs whose phosphor layers were coated by freely dispersed coating process. Experimental study indicated that different gold wire bonding impacts the geometry of phosphor layer, and it results in different fluctuation trends of angular CCT at different spatial planes in one LED sample. It also results in various fluctuating amplitudes of angular CCT distributions at the same spatial plane for samples with different wire bonding angles. The gold wire bonding process has important impact on angular uniformity of CCT in LED package. © 2011 Optical Society of America
Lee, Kyu Seung; Shim, Jaeho; Lee, Hyunbok; Yim, Sang-Youp; Angadi, Basavaraj; Lim, Byungkwon; Son, Dong Ick
2018-06-08
Hybrid organic-Red-Green-Blue (RGB) color quantum dots were incorporated into consolidated p(polymer)-i(RGB quantum dots)-n(small molecules) junction structures to fabricate a single active layer for a light emitting diode device for white electroluminescence. The semiconductor RGB quantum dots, as an intrinsic material, were electrostatically bonded between functional groups of the p-type polymer organic material core surface and the n-type small molecular organic material shell surface. The ZnCdSe/ZnS and CdSe/ZnS quantum dots distributed uniformly and isotropically surrounding the polymer core which in turn was surrounded by small molecular organic materials. In the present study, we have identified the mechanisms of chemical synthesis and interactions of the p-i-n junction nanocell structure through modeling studies by DFT calculations. We have also investigated optical, structural and electrical properties along with the carrier transport mechanism of the light emitting diodes which have a single active layer of consolidated p-i-n junction nanocells for white electroluminescence.
Phosphor chessboard packaging for white LEDs in high efficiency and high color performance
NASA Astrophysics Data System (ADS)
Nguyen, Quang-Khoi; Chang, Yu-Yu; Lu, Chun-Yan; Yang, Tsung-Hsun; Chung, Te-Yuan; Sun, Ching-Cherng
2016-09-01
We performed the simulation of white LEDs packaging with different chessboard structures of white light converting phosphor layer covered on GaN die chip. Three different types of chessboard structures are called type 1, type 2 and type 3, respectively. The result of investigation according to the phosphor thickness show the increasing of thickness of phosphor layer are, the decreasing of output blue light power are. Meanwhile, the changes of yellow light are neglect. Type 3 shows highest packaging efficiency of 74.3 % compares with packaging efficiency of type 2 and type 1 (72.5 % and 71.3 %, respectively). Type 3 also shows the most effect of forward light. Attention that the type 3 chessboard structure gets packaging efficiency of 74.3 % at color temperature of daylight as well as high saving of phosphor amount. The color temperatures of three types of chessboard structure are higher than 5000 K, so they are suitable for lighting purpose. The angular correlate color temperature deviation (ACCTD) of type 1, type 2 and type 3 are 6500K, 11500K and 17000K, respectively.
Suppression of Hydrogen Emission in an X-class White-light Solar Flare
DOE Office of Scientific and Technical Information (OSTI.GOV)
Procházka, Ondrej; Milligan, Ryan O.; Mathioudakis, Mihalis
We present unique NUV observations of a well-observed X-class flare from NOAA 12087 obtained at the Ondřejov Observatory. The flare shows a strong white-light continuum but no detectable emission in the higher Balmer and Lyman lines. Reuven Ramaty High-Energy Solar Spectroscopic Imager and Fermi observations indicate an extremely hard X-ray spectrum and γ -ray emission. We use the RADYN radiative hydrodynamic code to perform two types of simulations: one where an energy of 3 × 10{sup 11} erg cm{sup −2} s{sup −1} is deposited by an electron beam with a spectral index of ≈3, and a second where the samemore » energy is applied directly to the photosphere. The combination of observations and simulations allows us to conclude that the white-light emission and the suppression or complete lack of hydrogen emission lines is best explained by a model where the dominant energy deposition layer is located in the lower layers of the solar atmosphere, rather than the chromosphere.« less
Benmalek, Yamina; Yahia, Ouahiba Ait; Belkebir, Aicha; Fardeau, Marie-Laure
2013-01-01
Illicium verum (badiane or star anise), Crataegus oxyacantha ssp monogyna (hawthorn) and Allium cepa (onion), have traditionnally been used as medicinal plants in Algeria. This study showed that the outer layer of onion is rich in flavonols with contents of 103 ± 7.90 µg/g DW (red variety) and 17.3 ± 0.69 µg/gDW (white variety). We also determined flavonols contents of 14.3 ± 0.21 µg/g 1.65 ± 0.61 µg/g for Crataegus oxyacantha ssp monogyna leaves and berries and 2.37 ± 0.10 µg/g for Illicium verum. Quantitative analysis of anthocyanins showed highest content in Crataegus oxyacantha ssp monogyna berries (5.11 ± 0.266 mg/g), while, inner and outer layers of white onion had the lowest contents with 0.045 ± 0.003mg/g and 0.077 ± 0.001 mg/g respectively. Flavonols extracts presented high antioxidant activity as compared with anthocyanins and standards antioxidants (ascorbic acid and quercetin). Allium cepa and Crataegus oxyacantha ssp monogyna exhibited the most effective antimicrobial activity.
NASA Astrophysics Data System (ADS)
Janjua, Bilal; Ng, Tien K.; Zhao, Chao; Anjum, Dalaver H.; Prabaswara, Aditya; Consiglio, Giuseppe Bernardo; Shen, Chao; Ooi, Boon S.
2017-02-01
White light based on blue laser - YAG: Ce3+ phosphor has the advantage of implementing solid-state lighting and optical wireless communications combined-functionalities in a single lamp. However, the blue light was found to disrupt melatonin production, and therefore the human circadian rhythm in general; while the yellow phosphor is susceptible to degradation by laser irradiation and also lack tunability in color rendering index (CRI). In this investigation, by using a violet laser, which has 50% less impact on circadian response, as compared to blue light, and an InGaN-quantum-disks nanowires-based light-emitting diode (NWs-LED), we address both issues simultaneously. The white light is therefore generated using violet-green-red lasers, in conjunction with a yellow NWs-LED realized using molecular beam epitaxy technique, on titanium-coated silicon substrates. Unlike the conventional quantum-well-based LED, the NWs-LED showed efficiency-droop free behavior up to 9.8 A/cm2 with peak output power of 400 μW. A low turn-on voltage of 2.1 V was attributed to the formation of conducting titanium nitride layer at NWs nucleation site and improved fabrication process in the presence of relatively uniform height distribution. The 3D quantum confinement and the reduced band bending improve carriers-wavefunctions overlap, resulting in an IQE of 39 %. By changing the relative intensities of the individual color components, CRI of >85 was achieved with tunable correlated color temperature (CCT), thus covering the desired room lighting conditions. Our architecture provides important considerations in designing smart solid-state lighting while addressing the harmful effect of blue light.
FATE OF FLUORIDE-INDUCED SUBAMELOBLASTIC CYSTS IN DEVELOPING HAMSTER MOLAR TOOTH GERMS
Lyaruu, DM; Alberga, JMR; Kwee, NCH; Bervoets, TJM; Bronckers, ALJJ; DenBesten, PK
2016-01-01
White opacities and pits are developmental defects in enamel caused by high intake of fluoride (F) during amelogenesis. We tested the hypothesis that these enamel pits develop at locations where F induces the formation of sub-ameloblastic cysts. We followed the fate of these cysts during molar development over time. Mandibles from hamster pups injected with 20 mg NaF/kg at postnatal day 4 were excised from 1 h after injection till shortly after tooth eruption, 8 days later. Tissues were histologically processed and cysts located and measured. Cysts were formed at early secretory stage and transitional stage of amelogenesis and detected as early 1 h after injection. The number of cysts increased from 1 to almost 4 per molar during the first 16 h post-injection. The size of the cysts was about the same, i.e., 0.46±0.29 ×106 μm3 at 2hr and 0.50±0.35×106 μm3 at 16 h post-injection. By detachment of the ameloblasts the forming enamel surface below the cyst was cell-free the first 16 h post-injection. With time new ameloblasts repopulated and covered the enamel surface in the cystic area. Three days after injection all cysts had disappeared and the integrity of the ameloblastic layer restored. After eruption, white opaque areas with intact enamel surface were found occlusally at similar anatomical locations as late secretory stage cysts were seen pre-eruptively. We conclude that at this moderate F dose, the opaque sub-surface defects with intact surface enamel (white spots) are the consequence of the fluoride-induced cystic lesions formed earlier under the late secretory–transitional stage ameloblasts. PMID:21277565
Leskovjan, Andreana C; Kretlow, Ariane; Miller, Lisa M
2010-04-01
Polyunsaturated fatty acids are essential to brain functions such as membrane fluidity, signal transduction, and cell survival. It is also thought that low levels of unsaturated lipid in the brain may contribute to Alzheimer's disease (AD) risk or severity. However, it is not known how accumulation of unsaturated lipids is affected in different regions of the hippocampus, which is a central target of AD plaque pathology, during aging. In this study, we used Fourier transform infrared imaging (FTIRI) to visualize the unsaturated lipid content in specific regions of the hippocampus in the PSAPP mouse model of AD as a function of plaque formation. Specifically, the unsaturated lipid content was imaged using the olefinic =CH stretching mode at 3012 cm(-1). The axonal, dendritic, and somatic layers of the hippocampus were examined in the mice at 13, 24, 40, and 56 weeks old. Results showed that lipid unsaturation in the axonal layer was significantly increased with normal aging in control (CNT) mice (p < 0.01) but remained low and relatively constant in PSAPP mice. Thus, these findings indicate that unsaturated lipid content is reduced in hippocampal white matter during amyloid pathogenesis and that maintaining unsaturated lipid content early in the disease may be critical in avoiding progression of the disease.
Fifty shades of white: how white feather brightness differs among species
NASA Astrophysics Data System (ADS)
Igic, Branislav; D'Alba, Liliana; Shawkey, Matthew D.
2018-04-01
White colouration is a common and important component of animal visual signalling and camouflage, but how and why it varies across species is poorly understood. White is produced by wavelength-independent and diffuse scattering of light by the internal structures of materials, where the degree of brightness is related to the amount of light scattered. Here, we investigated the morphological basis of brightness differences among unpigmented pennaceous regions of white body feathers across 61 bird species. Using phylogenetically controlled comparisons of reflectance and morphometric measurements, we show that brighter white feathers had larger and internally more complex barbs than duller white feathers. Higher brightness was also associated with more closely packed barbs and barbules, thicker and longer barbules, and rounder and less hollow barbs. Larger species tended to have brighter white feathers than smaller species because they had thicker and more complex barbs, but aquatic species were not significantly brighter than terrestrial species. As similar light scattering principals affect the brightness of chromatic signals, not just white colours, these findings help broaden our general understanding of the mechanisms that affect plumage brightness. Future studies should examine how feather layering on a bird's body contributes to differences between brightness of white plumage patches within and across species.
Sun, Ning; Wang, Qi; Zhao, Yongbiao; Chen, Yonghua; Yang, Dezhi; Zhao, Fangchao; Chen, Jiangshan; Ma, Dongge
2014-03-12
By using mixed hosts with bipolar transport properties for blue emissive layers, a novel phosphorescence/fluorescence hybrid white OLED without using an interlayer between the fluorescent and phosphorescent regions is demonstrated. The peak EQE of the device is 19.0% and remains as high as 17.0% at the practical brightness of 1000 cd m(-2) . © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
The periodicities in the infrared excess of G29-38 - An oscillating brown dwarf?
NASA Technical Reports Server (NTRS)
Marley, Mark S.; Lunine, Jonathan I.; Hubbard, William B.
1990-01-01
The oscillatory behavior of brown dwarfs has been investigated. The observed periodicities in the infrared excess of the white dwarf Giclas 29-38 are consistent with low-degree, intermediate radial order p-mode oscillations of a brown dwarf companion to the white dwarf. These oscillation modes have the correct frequencies, act on observable layers of the atmosphere, and may be excited to sufficient amplitudes to explain the observations.
Simmons, Denina B D; Bols, Niels C; Duncker, Bernard P; McMaster, Mark; Miller, Jason; Sherry, James P
2012-02-07
White sucker (Catostomus commersonii) sampled from the Thunder Bay Area of Concern were assessed for health using a shotgun approach to compile proteomic profiles. Plasma proteins were sampled from male and female fish from a reference location, an area in recovery within Thunder Bay Harbour, and a site at the mouth of the Kaministiquia River where water and sediment quality has been degraded by industrial activities. The proteins were characterized using reverse-phase liquid chromatography tandem to a quadrupole-time-of-flight (LC-Q-TOF) mass spectrometer and were identified by searching in peptide databases. In total, 1086 unique proteins were identified. The identified proteins were then examined by means of a bioinformatics pathway analysis to gain insight into the biological functions and disease pathways that were represented and to assess whether there were any significant changes in protein expression due to sampling location. Female white sucker exhibited significant (p = 0.00183) site-specific changes in the number of plasma proteins that were related to tumor formation, reproductive system disease, and neurological disease. Male fish plasma had a significantly different (p < 0.0001) number of proteins related to neurological disease and tumor formation. Plasma concentrations of vitellogenin were significantly elevated in females from the Kaministiquia River compared to the Thunder Bay Harbour and reference sites. The protein expression profiles indicate that white sucker health has benefited from the remediation of the Thunder Bay Harbour site, whereas white sucker from the Kaministiquia River site are impacted by ongoing contaminant discharges.
Das, Dipjyoti; Gopikrishna, Peddaboodi; Singh, Ashish; Dey, Anamika; Iyer, Parameswar Krishnan
2016-03-14
Fabrication of efficient blue and white polymer light-emitting diodes (PLEDs) using a well charge balanced, core modified polyfluorene derivative, poly[2,7-(9,9'-dioctylfluorene)-co-N-phenyl-1,8-naphthalimide (99:01)] (PFONPN01), is presented. The excellent film forming properties as observed from the morphological study and the enhanced electron transport properties due to the inclusion of the NPN unit in the PFO main chain resulted in improved device properties. Bright blue light was observed from single layer PLEDs with PFONPN01 as an emissive layer (EML) as well as from double layer PLEDs using tris-(8-hydroxyquinoline) aluminum (Alq3) as an electron transporting layer (ETL) and LiF/Al as a cathode. The effect of ETL thickness on the device performance was studied by varying the Alq3 thickness (5 nm, 10 nm and 20 nm) and the device with an ETL thickness of 20 nm was found to exhibit the maximum brightness value of 11 662 cd m(-2) with a maximum luminous efficiency of 4.87 cd A(-1). Further, by using this highly electroluminescent blue PFONPN01 as a host and a narrow band gap, yellow emitting small molecule, dithiophene benzothiadiazole (DBT), as a guest at three different concentrations (0.2%, 0.4% and 0.6%), WPLEDs with the ITO/PEDOT:PSS/emissive layer/Alq3(20 nm)/LiF/Al configuration were fabricated and maximum brightness values of 8025 cd m(-2), 9565 cd m(-2) and 10 180 cd m(-2) were achieved respectively. 0.4% DBT in PFONPN01 was found to give white light with Commission International de l'Echairage (CIE) coordinates of (0.31, 0.38), a maximum luminous efficiency of 6.54 cd A(-1) and a color-rendering index (CRI) value of 70.
Coating transformations in the early stages of hot-dip galvannealing of steel sheet
NASA Astrophysics Data System (ADS)
McDevitt, Erin Todd
The present, comprehensive study of the reactions occurring early in galvanneal processing under conditions typical of commercial production represents the first detailed investigation of the microstructural evolution of the coating in the early stages of galvannealing and the results shed new light on the course of the coating microstructural development. During hot dipping, an Fe2Al5 inhibition layer formed on the surface of the steel substrate in the first instants of immersion in Zn baths containing as low as 0.10 wt.% Al. When hot-dipping in a 0.14 wt.% Al, the as-dipped coating microstructure consisted of an Fe2Al 5 layer on the steel surface. That layer was covered by a layer of the Fe-Zn compound Gamma1, which was covered by the zeta phase or unalloyed Zn. Substrate chemistry did not affect coating microstructure development in the bath. Thermodynamic predictions of the precipitation behavior during the bath reactions agrees well with experimental observations. A mechanism for coating microstructure development in the Zn bath which is consistent with all the experimental results is proposed. From this information, the metallurgical variables which govern inhibition layer formation are discerned. The breakdown of the Fe2Al5 inhibition layer during galvannealing at 500°C occurred without the formation of outbursts. Instead, the grain boundary diffusion of Al into the steel substrate accounted for dissolution of the inhibition layer in the first second of galvannealing. A mechanism for inhibition layer breakdown is presented. P-additions affected only the rate at which the inhibition layer dissolved and did not affect the rate of Fe-Zn compound formation. P in the substrate blocked grain boundary diffusion of Al into the substrate thus slowing inhibition layer dissolution. The slower overall galvannealing behavior often observed on P-bearing substrates is due to a longer period of inhibition layer survival which results in a longer incubation period for the initiation of the formation of Fe-Zn compounds. The coating solidified after inhibition layer dissolution by the continuous formation of new delta grains from the liquid at the solidification front. The microstructural evolution of the entire coating, including the formation of Gamma and Gammal, during solidification is also presented.
Formation of anodic layers on InAs (111)III. Study of the chemical composition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Valisheva, N. A., E-mail: valisheva@thermo.isp.nsc.ru; Tereshchenko, O. E.; Prosvirin, I. P.
2012-04-15
The chemical composition of {approx}20-nm-thick anodic layers grown on InAs (111)III in alkaline and acid electrolytes containing or not containing NH{sub 4}F is studied by X-ray photoelectron spectroscopy. It is shown that the composition of fluorinated layers is controlled by the relation between the concentrations of fluorine and hydroxide ions in the electrolyte and by diffusion processes in the growing layer. Fluorine accumulates at the (anodic layer)/InAs interface. Oxidation of InAs in an acid electrolyte with a low oxygen content and a high NH{sub 4}F content brings about the formation of anodic layers with a high content of fluorine andmore » elemental arsenic and the formation of an oxygen-free InF{sub x}/InAs interface. Fluorinated layers grown in an alkaline electrolyte with a high content of O{sup 2-} and/or OH{sup -} groups contain approximately three times less fluorine and consist of indium and arsenic oxyfluorides. No distinction between the compositions of the layers grown in both types of fluorine-free electrolytes is established.« less
Hindered settling and the formation of layered intrusions
NASA Astrophysics Data System (ADS)
Bons, Paul D.; Baur, Albrecht; Elburg, Marlina A.; Lindhuber, Matthias J.; Marks, Michael A. W.; Soesoo, Alvar; van Milligen, Boudewijn P.; Walte, Nicolas P.
2015-04-01
Layered intrusions are characterized by (often repetitive) layering on a range of scales. Many explanations for the formation of such layering have been proposed over the past decades. We investigated the formation of "mats" by hindered crystal settling, a model that was first suggested by Lauder (1964). The interaction of sinking and rising crystals leads to the amplification of perturbations in crystal density within a magma chamber, a process similar to the formation of traffic jams in dense traffic (Bons et al., 2015). Once these "crystal traffic jams" form they constitute a barrier for further settling of crystals. Between these barriers, the magma evolves in a semi-closed system in which stratification may develop by gravitational sorting. Barriers, and therefore layers, form sequentially during inward cooling of the magma chamber. Barring later equilibration, mineralogical and geochemical trends within the layers are repetitive, but with variations due to the random process of initial perturbation formation. Layers can form in the transition between two end-member regimes: (1) in a fast cooling and/or viscous magma crystals cannot sink or float a significant distance and minerals are distributed homogeneously throughout the chamber; (2) in a slow cooling and/or low-viscosity magma crystals can quickly settle at the top and bottom of the chamber and crystals concentrations are never high enough to form "traffic jams". As a result, heavy and light minerals get fully separated in the chamber. Between these two end members, crystals can sink and float a significant distance, but not the whole height of the magma chamber before entrapment in "traffic jams". We illustrate the development of layers with numerical models and compare the results with the layered nepheline syenites (kakortokites) of the Ilímaussaq intrusion in SW Greenland. References: Bons, P.D., Baur, A., Elburg, M.A., Lindhuber, M.J., Marks, M.A.W., Soesoo, A., van Milligen, B.P., Walte, N.P. 2015. Layered intrusions and traffic jams. Geology 43, 71-74 Lauder, W. 1964. Mat formation and crystal settling in magma. Nature 202, 1100-1101.
Adaptive format conversion for scalable video coding
NASA Astrophysics Data System (ADS)
Wan, Wade K.; Lim, Jae S.
2001-12-01
The enhancement layer in many scalable coding algorithms is composed of residual coding information. There is another type of information that can be transmitted instead of (or in addition to) residual coding. Since the encoder has access to the original sequence, it can utilize adaptive format conversion (AFC) to generate the enhancement layer and transmit the different format conversion methods as enhancement data. This paper investigates the use of adaptive format conversion information as enhancement data in scalable video coding. Experimental results are shown for a wide range of base layer qualities and enhancement bitrates to determine when AFC can improve video scalability. Since the parameters needed for AFC are small compared to residual coding, AFC can provide video scalability at low enhancement layer bitrates that are not possible with residual coding. In addition, AFC can also be used in addition to residual coding to improve video scalability at higher enhancement layer bitrates. Adaptive format conversion has not been studied in detail, but many scalable applications may benefit from it. An example of an application that AFC is well-suited for is the migration path for digital television where AFC can provide immediate video scalability as well as assist future migrations.
Nucleation and Crystallization of Globular Proteins: What we Know and What is Missing
NASA Technical Reports Server (NTRS)
Rosenberger, F.; Vekilov, P. G.; Muschol, M.; Thomas, B. R.
1996-01-01
Recently. much progress has been made in understanding the nucleation and crystallization of globular proteins, including the formation of compositional and structural crystal defects, Insight into the interactions of (screened) protein macro-ions in solution, obtained from light scattering, small angle X-ray scattering and osmotic pressure studies. can guide the search for crystallization conditions. These studies show that the nucleation of globular proteins is governed by the same principles as that of small molecules. However, failure to account for direct and indirect (hydrodynamic) protein interactions in the solutions results in unrealistic aggregation scenarios. Microscopic studies of numerous proteins reveal that crystals grow by the attachment of growth units through the same layer-spreading mechanisms as inorganic crystals. Investigations of the growth kinetics of hen-egg-white lysozyme (HEWL) reveal non-steady behavior under steady external conditions. Long-term variations in growth rates are due to changes in step-originating dislocation groups. Fluctuations on a shorter timescale reflect the non-linear dynamics of layer growth that results from the interplay between interfacial kinetics and bulk transport. Systematic gel electrophoretic analyses suggest that most HEWL crystallization studies have been performed with material containing other proteins at percent levels. Yet, sub-percent levels of protein impurities impede growth step propagation and play a role in the formation of structural/compositional inhomogeneities. In crystal growth from highly purified HEWL solutions, however, such inhomogeneities are much weaker and form only in response to unusually large changes in growth conditions. Equally important for connecting growth conditions to crystal perfection and diffraction resolution are recent advances in structural characterization through high-resolution Bragg reflection profiling and X-ray topography.
Antiferromagnetic MnN layer on the MnGa(001) surface
NASA Astrophysics Data System (ADS)
Guerrero-Sánchez, J.; Takeuchi, Noboru
2016-12-01
Spin polarized first principles total energy calculations have been applied to study the stability and magnetic properties of the MnGa(001) surface and the formation of a topmost MnN layer with the deposit of nitrogen. Before nitrogen adsorption, surface formation energies show a stable gallium terminated ferromagnetic surface. After incorporation of nitrogen atoms, the antiferromagnetic manganese terminated surface becomes stable due to the formation of a MnN layer (Mn-N bonding at the surface). Spin density distribution shows a ferromagnetic/antiferromagnetic arrangement in the first surface layers. This thermodynamically stable structure may be exploited to growth MnGa/MnN magnetic heterostructures as well as to look for exchange biased systems.
On the photon annealing of silicon-implanted gallium-nitride layers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seleznev, B. I., E-mail: Boris.Seleznev@novsu.ru; Moskalev, G. Ya.; Fedorov, D. G.
2016-06-15
The conditions for the formation of ion-doped layers in gallium nitride upon the incorporation of silicon ions followed by photon annealing in the presence of silicon dioxide and nitride coatings are analyzed. The conditions of the formation of ion-doped layers with a high degree of impurity activation are established. The temperature dependences of the surface concentration and mobility of charge carriers in ion-doped GaN layers annealed at different temperatures are studied.
NASA Astrophysics Data System (ADS)
Velázquez, Daniel; Seibert, Rachel; Man, Hamdi; Spentzouris, Linda; Terry, Jeff
2016-03-01
We report on the growth of 1-10 ML films of hexagonal boron nitride (h-BN), also known as white graphene, on fiber-oriented Ag buffer films on SrTiO3(001) by pulsed laser deposition. The Ag buffer films of 40 nm thickness were used as substitutes for expensive single crystal metallic substrates. In-situ, reflection high-energy electron diffraction was used to monitor the surface structure of the Ag films and to observe the formation of the characteristic h-BN diffraction pattern. Further evidence of the growth of h-BN was provided by attenuated total reflectance spectroscopy, which showed the characteristic h-BN peaks at ˜780 cm-1 and 1367.4 cm-1. Ex-situ photoelectron spectroscopy showed that the surface of the h-BN films is stoichiometric. The physical structure of the films was confirmed by scanning electron microscopy. The h-BN films grew as large, sub-millimeter sheets with nano- and micro-sheets scattered on the surface. The h-BN sheets can be exfoliated by the micromechanical adhesive tape method. Spectral analysis was performed by energy dispersive spectroscopy in order to identify the h-BN sheets after exfoliation. The use of thin film Ag allows for reduced use of Ag and makes it possible to adjust the surface morphology of the thin film prior to h-BN growth.
Formation of an Anti-Core–Shell Structure in Layered Oxide Cathodes for Li-Ion Batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Hanlei; Omenya, Fredrick; Whittingham, M. Stanley
The layered → rock-salt phase transformation in the layered dioxide cathodes for Li-ion batteries is believed to result in a “core-shell” structure of the primary particles, in which the core region maintains as the layered phase while the surface region undergoes the phase transformation to the rock-salt phase. Using transmission electron microscopy, here we demonstrate the formation of an “anti-core-shell” structure in cycled primary particles with a formula of LiNi0.80Co0.15Al0.05O2, in which the surface and subsurface regions remain as the layered structure while the rock-salt phase forms as domains in the bulk with a thin layer of the spinel phasemore » between the rock-salt core and the skin of the layered phase. Formation of this anti-core-shell structure is attributed to the oxygen loss at the surface that drives the migration of oxygen from the bulk to the surface, thereby resulting in localized areas of significantly reduced oxygen levels in the bulk of the particle, which subsequently undergoes the phase transformation to the rock-salt domains. The formation of the anti-core-shell rock-salt domains is responsible for the reduced capacity, discharge voltage and ionic conductivity in cycled cathode.« less
An, Seong Jin; Li, Jianlin; Daniel, Claus; ...
2016-04-09
An in-depth review is presented on the science of lithium-ion battery (LIB) solid electrolyte interphase (SEI) formation on the graphite anode, including structure, morphology, chemical composition, electrochemistry, formation mechanism, and LIB formation cycling. During initial operation of LIBs, the SEI layer forms on the graphite surfaces, the most commonly used anode material, due to side reactions with the electrolyte solvent/salt at low electro-reduction potentials. It is accepted that the SEI layer is essential to the long-term performance of LIBs, and it also has an impact on its initial capacity loss, self-discharge characteristics, cycle life, rate capability, and safety. While themore » presence of the anode SEI layer is vital, it is difficult to control its formation and growth, as the chemical composition, morphology, and stability depend on several factors. These factors include the type of graphite, electrolyte composition, electrochemical conditions, and cell temperature. Thus, SEI layer formation and electrochemical stability over long-term operation should be a primary topic of future investigation in the development of LIB technology. We review the progression of knowledge gained about the anode SEI, from its discovery in 1979 to the current state of understanding, and covers its formation process, differences in the chemical and structural makeup when cell materials and components are varied, methods of characterization, and associated reactions with the liquid electrolyte phase. It also discusses the relationship of the SEI layer to the LIB formation step, which involves both electrolyte wetting and subsequent slow charge-discharge cycles to grow the SEI.« less
Masaki, S; Sugimori, G; Okamoto, A; Imose, J; Hayashi, Y
1991-01-01
The effects of Tween 80 supplementation of liquid culture medium on the formation of the superficial L1 layer of the Mycobacterium avium-Mycobacterium intracellulare complex (MAC) were examined by serological and scanning electron microscopic experiments. Specific antiserum to the glycopeptidolipids on the L1 layer of M. avium S-139, made in a rabbit, was used for seroagglutination reactions with antigens prepared from strain S-139 grown in medium supplemented with various levels of Tween 80 (0, 0.05, 0.5, 5, and 50 mg/ml). The agglutination titers gradually decreased as the concentration of Tween 80 rose. Scanning electron microscopy showed that the fibrillar materials consisting mainly of glycopeptidolipids on the L1 layer of strain S-139 also disappeared with increases in the concentration of Tween 80. In addition, there was no obvious correlation between (i) the plasmid DNAs and serotypes of MAC and (ii) formation of the L1 layer of MAC. It is therefore concluded that Tween 80 used to supplement liquid culture medium affects formation of the L1 layer, which has been considered to be one of the pathogenic factors of MAC. Images PMID:1885740
Formation mechanism of the graphite-rich protective layer in blast furnace hearths
NASA Astrophysics Data System (ADS)
Jiao, Ke-xin; Zhang, Jian-liang; Liu, Zheng-jian; Liu, Feng; Liang, Li-sheng
2016-01-01
A long campaign life of blast furnaces is heavily linked to the existence of a protective layer in their hearths. In this work, we conducted dissection studies and investigated damage in blast furnace hearths to estimate the formation mechanism of the protective layer. The results illustrate that a significant amount of graphite phase was trapped within the hearth protective layer. Furthermore, on the basis of the thermodynamic and kinetic calculations of the graphite precipitation process, a precipitation potential index related to the formation of the graphite-rich protective layer was proposed to characterize the formation ability of this layer. We determined that, under normal operating conditions, the precipitation of graphite phase from hot metal was thermodynamically possible. Among elements that exist in hot metal, C, Si, and P favor graphite precipitation, whereas Mn and Cr inhibit this process. Moreover, at the same hot-face temperature, an increase of carbon concentration in hot metal can shorten the precipitation time. Finally, the results suggest that measures such as reducing the hot-face temperature and increasing the degree of carbon saturation in hot metal are critically important to improve the precipitation potential index.
AA6082 to DX56-Steel Laser Brazing: Process Parameter-Intermetallic Formation Correlation
NASA Astrophysics Data System (ADS)
Narsimhachary, D.; Pal, S.; Shariff, S. M.; Padmanabham, G.; Basu, A.
2017-09-01
In the present study, laser-brazed AA6082 to DX56-galvanized steel joints were investigated to understand the influence of process parameters on joint strength in terms of intermetallic layer formation. 1.5-mm-thick sheet of aluminum alloy (AA6082-T6) and galvanized steel (DX56) sheet of 0.7 mm thickness were laser-brazed with 1.5-mm-diameter Al-12% Si solid filler wire. During laser brazing, laser power (4.6 kW) and wire feed rate (3.4 m/min) were kept constant with a varying laser scan speed of 3.5, 3, 2.5, 2, 1.5, and 1 m/min. Microstructure of brazed joint reveals epitaxial growth at the aluminum side and intermetallic layer formation at steel interface. Intermetallic layer formation was confirmed by EDS analysis and XRD study. Hardness profile showed hardness drop in filler region, and failure during tensile testing was initiated through the filler region near the steel interface. As per both experimental study and numerical analysis, it was observed that intermetallic layer thickness decreases with increasing brazing speed. Zn vaporization from galvanized steel interface also affected the joint strength. It was found that high laser scan speed or faster cooling rate can be chosen for suppressing intermetallic layer formation or at least decreasing the layer thickness which results in improved mechanical properties.
Szubert, M; Adamska, K; Szybowicz, M; Jesionowski, T; Buchwald, T; Voelkel, A
2014-01-01
The aim of this study was the surface modification of hydroxyapatite and β-tricalcium phosphate by poly(3-hydroxybutyrate) grafting and characterization of modificates. The bioactivity examination was carried out by the determination to grow an apatite layer on modified materials during incubation in simulated body fluid at 37°C. The additional issue taken up in this paper was to investigate the influence of fluid replacement. The process of the surface modification of biomaterials was evaluated by means of infrared and Raman spectroscopy. Formation of the apatite layer was assessed by means of scanning electron microscopy and confirmed by energy dispersive, Raman and Fourier transformed infrared spectroscopy. During exposure in simulated body fluid, the variation of the zeta potential, pH measurement and relative weight was monitored. Examination of scanning electron microscopy micrographs suggests that modification of hydroxyapatite and β-tricalcium phosphate by poly(3-hydroxybutyrate) significantly increases apatite layer formation. Raman spectroscopy evaluation revealed that the formation of the apatite layer was more significant in the case of hydroxyapatite modificate, when compared to the β-tricalcium phosphate modificate. Both modificates were characterized by stable pH, close to the natural pH of human body fluids. Furthermore, we have shown that a weekly changed, simulated body fluid solution increases apatite layer formation. © 2013.
Some aspects of metallic ion chemistry and dynamics in the mesosphere and thermosphere
NASA Technical Reports Server (NTRS)
Mathews, J. D.
1987-01-01
The relationship between the formation of sporadic layers of metallic ion and the dumping of these ions into the upper mesosphere is discussed in terms of the tidal wind, classical (i.e., windshear) and other more complex, perhaps highly nonlinear layer formation mechanisms, and a possible circulation mechanism for these ions. Optical, incoherent scatter radar, rocket, and satellite derived evidence for various layer formation mechanisms and for the metallic ion circulation system is reviewed. The results of simple one dimensional numerical model calculations of sporadic E and intermediate layer formation are presented along with suggestions for more advanced models of intense or blanketing sporadic E. The flux of metallic ions dumped by the tidal wind system into the mesosphere is estimated and compared with estimates of total particle flux of meteoric origin. Possible effects of the metallic ion flux and of meteoric dust on D region ion chemistry are discussed.
NASA Astrophysics Data System (ADS)
Gunn, A.; Jerolmack, D. J.; Edmonds, D. A.; Ewing, R. C.; Wanker, M.; David, S. R.
2017-12-01
Aolian sand dunes grow to 100s or 1000s of meters in wavelength by sand saltation, which also produces dust plumes that feed cloud formation and may spread around the world. The relations among sediment transport, landscape dynamics and wind are typically observed at the limiting ends of the relevant range: highly resolved and localized ground observations of turbulence and relevant fluxes; or regional and synoptic-scale meteorology and satellite imagery. Between the geostrophic winds aloft and shearing stress on the Earth's surface is the boundary layer, whose stability and structure determines how momentum is transferred and ultimately entrains sediment. Although the literature on atmospheric boundary layer flows is mature, this understanding is rarely applied to aeolian landscape dynamics. Moreover, there are few vertically and time-resolved datasets of atmospheric boundary layer flows in desert sand seas, where buoyancy effects are most pronounced. Here we employ a ground-based upward-looking doppler lidar to examine atmospheric boundary layer flow at the upwind margin of the White Sands (New Mexico) dune field, providing continuous 3D wind velocity data from the surface to 300-m aloft over 70 days of the characteristically windy spring season. Data show highly resolved daily cyles of convective instabilty due to daytime heating and stable stratification due to nightime cooling which act to enhance or depress, respectively, the surface wind stresses for a given free-stream velocity. Our data implicate convective instability in driving strong saltation and dust emission, because enhanced mixing flattens the vertical velocity profile (raising surface wind speed) while upward advection helps to deliver dust to the high atmosphere. We also find evidence for Ekman spiralling, with a magnitude that depends on atmospheric stability. This spiralling gives rise to a deflection in the direction between geostrophic and surface winds, that is significant for the orientation of dunes.
Mao, Lingling; Wu, Yilei; Stoumpos, Constantinos C; Wasielewski, Michael R; Kanatzidis, Mercouri G
2017-03-29
Hybrid inorganic-organic perovskites are developing rapidly as high performance semiconductors. Recently, two-dimensional (2D) perovskites were found to have white-light, broadband emission in the visible range that was attributed mainly to the role of self-trapped excitons (STEs). Here, we describe three new 2D lead bromide perovskites incorporating a series of bifunctional ammonium dications as templates which also emit white light: (1) α-(DMEN)PbBr 4 (DMEN = 2-(dimethylamino)ethylamine), which adopts a unique corrugated layered structure in space group Pbca with unit cell a = 18.901(4) Å, b = 11.782(2) Å, and c = 23.680(5) Å; (2) (DMAPA)PbBr 4 (DMAPA = 3-(dimethylamino)-1-propylamine), which crystallizes in P2 1 /c with a = 10.717(2) Å, b = 11.735(2) Å, c = 12.127(2) Å, and β = 111.53(3)°; and (3) (DMABA)PbBr 4 (DMABA = 4-dimethylaminobutylamine), which adopts Aba2 with a = 41.685(8) Å, b = 23.962(5) Å, and c = 12.000(2) Å. Photoluminescence (PL) studies show a correlation between the distortion of the "PbBr 6 " octahedron in the 2D layer and the broadening of PL emission, with the most distorted structure having the broadest emission (183 nm full width at half-maximum) and longest lifetime (τ avg = 1.39 ns). The most distorted member α-(DMEN)PbBr 4 exhibits white-light emission with a color rendering index (CRI) of 73 which is similar to a fluorescent light source and correlated color temperature (CCT) of 7863 K, producing "cold" white light.
NASA Technical Reports Server (NTRS)
Williams, Alton C. (Editor); Moorehead, Tauna W. (Editor)
1987-01-01
Topics addressed include: laboratory double layers; ion-acoustic double layers; pumping potential wells; ion phase-space vortices; weak double layers; electric fields and double layers in plasmas; auroral double layers; double layer formation in a plasma; beamed emission from gamma-ray burst source; double layers and extragalactic jets; and electric potential between plasma sheet clouds.
Cardoso-Silva, Cristina; Barbería, Elena; Maroto, Myriam; García-Godoy, Franklin
2011-02-01
The aim of the present study was to conduct a clinical and radiographic long-term evaluation of pulpotomy in temporary molars performed with Grey and White Mineral Trioxide Aggregate (MTA) and compare the results of Grey and White MTA pulpotomies in a sample of 233 primary molars with a maximum follow-up period of 84 months. The sample was selected from patients treated at the Department of Pediatric Dentistry, Faculty of Dentistry, Complutense University of Madrid, Spain. This prospective study included first and second primary molars treated with pulpotomy with Grey or White MTA, controlled for a maximum follow-up period of 84 months. Statistical analysis of clinical and radiographic findings was completed using ANOVA (P<0.05). Follow-up evaluations, performed every 6 months, revealed that only 2 molars treated with White MTA presented abscess and pathological mobility. Radiographic examination of the 210 molars revealed unfavourable pulp response in only 6 molars (internal or furcation root resorption), without statistically significant differences between Grey and White MTA. Two radiological findings were noticed: dentine bridge formation and partial or total root canal stenosis. Grey MTA induced a higher percentage of dentine bridges with statistically significant differences (P<0.05), and a higher percentage of pulp canal stenosis, without a statistically significant difference. Grey and White MTA presented high levels of clinical and radiographic success. Although the present study showed evidence of a very good biologic response with both types of MTA, Grey MTA showed significantly higher number of dentine bridge formation than White MTA. Copyright © 2010 Elsevier Ltd. All rights reserved.
Geologic associations of Arizona willow in the White Mountains, Arizona
Jonathan W. Long; Alvin L. Medina
2007-01-01
The Arizona willow (Salix arizonica Dorn) is a rare species growing in isolated populations at the margins of the Colorado Plateau. Although its habitat in the White Mountains of Arizona has been mischaracterized as basaltic, the area is actually a complex mixture of felsic, basaltic and epiclastic formations. Comparing the distribution of the...
Canavan Disease: A White Matter Disorder
ERIC Educational Resources Information Center
Kumar, Shalini; Mattan, Natalia S.; de Vellis, Jean
2006-01-01
Breakdown of oligodendrocyte-neuron interactions in white matter (WM), such as the loss of myelin, results in axonal dysfunction and hence a disruption of information processing between brain regions. The major feature of leukodystrophies is the lack of proper myelin formation during early development or the onset of myelin loss late in life.…
40 CFR 761.45 - Marking formats.
Code of Federal Regulations, 2010 CFR
2010-07-01
... POLYCHLORINATED BIPHENYLS (PCBs) MANUFACTURING, PROCESSING, DISTRIBUTION IN COMMERCE, AND USE PROHIBITIONS Marking...) Large PCB Mark—M L. Mark ML shall be as shown in Figure 1, letters and striping on a white or yellow... PCB Mark—M s. Mark Ms shall be as shown in Figure 2, letters and striping on a white or yellow...
Formation of Olelresin and Lignans in Sapwood of White Spruce in Response to Wounding
J.H. Hart; J.F. Wardell; Richard W. Hemingway
1975-01-01
Sapwood of white spruce (Picea glauca) was wounded in the spring with an increment borer. Tissue adjacent to the wound, collected 4-9 months after injury, was more decay resistant than uninjured tissue when exposed to Poria monticola or Coriolus versicolor. No significant quantitative or qualitative differences...
CDK6 inhibits white to beige fat transition by suppressing RUNX1
USDA-ARS?s Scientific Manuscript database
Whereas white adipose tissue depots contribute to the development of metabolic diseases, brown and beige adipose tissue has beneficial metabolic effects. Here we show that CDK6 regulates beige adipocyte formation. We demonstrate that mice lacking the CDK6 protein or its kinase domain (K43M) exhibit ...
Microstructural Development during Directional Solidification of Peritectic Alloys
NASA Technical Reports Server (NTRS)
Lograsso, Thomas A.
1996-01-01
A thorough understanding of the microstructures produced through solidification in peritectic systems has yet to be achieved, even though a large number of industrially and scientifically significant materials are in this class. One type of microstructure frequently observed during directional solidification consists of alternating layers of primary solid and peritectic solid oriented perpendicular to the growth direction. This layer formation is usually reported for alloy compositions within the two-phase region of the peritectic isotherm and for temperature gradient and growth rate conditions that result in a planar solid-liquid interface. Layered growth in peritectic alloys has not previously been characterized on a quantitative basis, nor has a mechanism for its formation been verified. The mechanisms that have been proposed for layer formation can be categorized as either extrinsic or intrinsic to the alloy system. The extrinsic mechanisms rely on externally induced perturbations to the system for layer formation, such as temperature oscillations, growth velocity variations, or vibrations. The intrinsic mechanisms approach layer formation as an alternative type of two phase growth that is inherent for certain peritectic systems and solidification conditions. Convective mixing of the liquid is an additional variable which can strongly influence the development and appearance of layers due to the requisite slow growth rate. The first quantitative description of layer formation is a model recently developed by Trivedi based on the intrinsic mechanism of cyclic accumulation and depiction of solute in the liquid ahead of the interface, linked to repeated nucleation events in the absence of convection. The objective of this research is to characterize the layered microstructures developed during ground-based experiments in which external influences have been minimized as much as possible and to compare these results to the current the model. Also, the differences between intrinsic and externally influenced layer formation were explored. The choice of alloy system is critical to a study of the formation of layered microstructures. The ideal system would have a well-characterized phase diagram, equal densities of both elements in the liquid state to minimize compositionally-driven convective flows, a low peritectic temperature to simplify directional solidification and the achievement of a high temperature gradient in the liquid, a broad composition range for the peritectic reaction, and a reasonable hardness at room temperature to facilitate handling and metallographic preparation. The In-Sn system was selected initially due to a very low peritectic temperature and the nearly equal densities of In and Sn in the liquid state. Since the In-rich peritectic reaction had apparently not been utilized previously for solidification research, experiments were conducted to check the phase diagram in the region of interest. The alloys in this system proved to be difficult to handle and prepare in bulk form with the equipment available, so experiments were initiated with the Sn-Cd system. Layered microstructures had been observed previously in Sn-Cd.
Earth Atmosphere Observations taken by the Expedition 35 Crew
2013-04-03
Earth atmosphere observation taken by the Expedition 35 crew aboard the ISS. The colors roughly denote the layers of the atmosphere (the orange troposphere, the white stratosphere, and the blue mesosphere).
Oxygen-free atomic layer deposition of indium sulfide
Martinson, Alex B.; Hock, Adam S.; McCarthy, Robert; Weimer, Matthew S.
2016-07-05
A method for synthesizing an In(III) N,N'-diisopropylacetamidinate precursor including cooling a mixture comprised of diisopropylcarbodiimide and diethyl ether to approximately -30.degree. C., adding methyllithium drop-wise into the mixture, allowing the mixture to warm to room temperature, adding indium(III) chloride as a solid to the mixture to produce a white solid, dissolving the white solid in pentane to form a clear and colorless solution, filtering the mixture over a celite plug, and evaporating the solution under reduced pressure to obtain a solid In(III) N,N'-diisopropylacetamidinate precursor. This precursor has been further used to develop a novel atomic layer deposition technique for indium sulfide by dosing a reactor with the precursor, purging with nitrogen, dosing with dilute hydrogen sulfide, purging again with nitrogen, and repeating these steps to increase growth.
Habibi, Wazir Ahmad; Hirai, Takuya; Niazmand, Mohammad Hakim; Okumura, Naoko; Yamaguchi, Ryoji
2017-10-01
We investigated the amyloidogenic potential of inactivated vaccines and the localized production of serum amyloid A (SAA) at the injection site in white layer chickens. Hens in the treated group were injected intramuscularly three times with high doses of inactivated oil-emulsion Salmonella Enteritidis vaccine and multivalent viral and bacterial inactivated oil-emulsion vaccines at two-week intervals. Chickens in the control group did not receive any inoculum. In the treated group, emaciation and granulomas were present, while several chickens died between 4 and 6 weeks after the first injection. Hepatomegaly was seen at necropsy, and the liver parenchyma showed inconsistent discolouration with patchy green to yellowish-brown areas, or sometimes red-brown areas with haemorrhage. Amyloid deposition in the liver, spleen, duodenum, and at injection sites was demonstrated using haematoxylin and eosin staining, Congo red, and immunohistochemistry. The incidence of chicken amyloid A (AA) amyloidosis was 47% (28 of 60) in the treated group. In addition, RT-PCR was used to identify chicken SAA mRNA expression in the liver and at the injection sites. Furthermore, SAA mRNA was detected by in situ hybridization in fibroblasts at the injection sites, and also in hepatocytes. We believe that this is the first report of the experimental induction of systemic AA amyloidosis in white layer chickens following repeated inoculation with inactivated vaccines without the administration of amyloid fibrils or other amyloid-enhancing factors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peng, Kun, E-mail: kpeng@hnu.edu.cn; Hunan Province Key Laboratory for Spray Deposition Technology and Application, Hunan University, Changsha 410082; Jiang, Pan
2014-12-15
Graphical abstract: Layer-stack hexagonal cadmium oxide (CdO) micro-rods were prepared. - Highlights: • Novel hexagonal layer-stack structure CdO micro-rods were synthesized by a thermal evaporation method. • The pre-oxidation, vapor pressure and substrate nature play a key role on the formation of CdO rods. • The formation mechanism of CdO micro-rods was explained. - Abstract: Novel layer-stack hexagonal cadmium oxide (CdO) micro-rods were prepared by pre-oxidizing Cd granules and subsequent thermal oxidation under normal atmospheric pressure. X-ray diffraction (XRD) and scanning electron microscopy (SEM) were performed to characterize the phase structure and microstructure. The pre-oxidation process, vapor pressure and substratemore » nature were the key factors for the formation of CdO micro-rods. The diameter of micro-rod and surface rough increased with increasing of thermal evaporation temperature, the length of micro-rod increased with the increasing of evaporation time. The formation of hexagonal layer-stack structure was explained by a vapor–solid mechanism.« less
White Thrombus Formation in Blood Tubing Lines in a Chronic Hemodialysis Unit
Watnick, Suzanne; Stooksbury, Michael; Winter, Rolf; Riscoe, Michael; Cohen, David M.
2008-01-01
Background and objectives: Previous reports have described white particulate matter in banked blood components, but no prior public reports describe such matter in blood tubing during the course of routine in-center hemodialysis. This report describes the events, investigations, and preliminary conclusions associated with the spontaneous formation of adherent white thrombus in the venous and arterial blood lines during routine in-center hemodialysis treatments. Design setting, participants, & measurements: This investigation occurred at the Portland Veterans Administration Medical Center (PVAMC) Hemodialysis Unit from October 2006 through April 2007. Sixty-eight variables regarding demographics, medical history and dialysis treatments were collected on our 34 chronic hemodialysis outpatients. Results: Over a 5-wk interval, 62% (21 of 34) of the chronic hemodialysis patients unexpectedly developed a white precipitate adhering to the lumenal surface of their dialysis blood tubing, with 73 of 580 chronic dialysis treatments exhibiting the phenomenon. Microscopic and biochemical analyses were consistent with white thrombus, formed by an aggregation of platelets and fibrin. An alert was issued and other in-center hemodialysis units noted similar findings. This was remedied by the removal of specific tubing. Conclusions: Both patient-specific and tubing-specific factors may have been operative. Although patient safety was not adversely affected, assessment of clinical and manufacturing variables potentially affecting platelet activation is warranted. PMID:18184880
White thrombus formation in blood tubing lines in a chronic hemodialysis unit.
Watnick, Suzanne; Stooksbury, Michael; Winter, Rolf; Riscoe, Michael; Cohen, David M
2008-03-01
Previous reports have described white particulate matter in banked blood components, but no prior public reports describe such matter in blood tubing during the course of routine in-center hemodialysis. This report describes the events, investigations, and preliminary conclusions associated with the spontaneous formation of adherent white thrombus in the venous and arterial blood lines during routine in-center hemodialysis treatments. Design setting, participants, & measurements: This investigation occurred at the Portland Veterans Administration Medical Center (PVAMC) Hemodialysis Unit from October 2006 through April 2007. Sixty-eight variables regarding demographics, medical history and dialysis treatments were collected on our 34 chronic hemodialysis outpatients. Over a 5-wk interval, 62% (21 of 34) of the chronic hemodialysis patients unexpectedly developed a white precipitate adhering to the lumenal surface of their dialysis blood tubing, with 73 of 580 chronic dialysis treatments exhibiting the phenomenon. Microscopic and biochemical analyses were consistent with white thrombus, formed by an aggregation of platelets and fibrin. An alert was issued and other in-center hemodialysis units noted similar findings. This was remedied by the removal of specific tubing. Both patient-specific and tubing-specific factors may have been operative. Although patient safety was not adversely affected, assessment of clinical and manufacturing variables potentially affecting platelet activation is warranted.
NASA Astrophysics Data System (ADS)
Fiske, Peter S.
1996-01-01
The size, shape, composition, and vesicle content of 6 kg of layered tektite fragments, excavated near the town of Huai Sai, Thailand, place some constraints on the formation of layered tektites. The mass, shape, and distribution of the fragments are not consistent with an origin as a "puddle" of impact melt but suggest that they were derived from a single equant block. The presence of vesicles up to 7 mm in mean diameter within the tektite fragments suggests that the material was too viscous to allow for significant gravity-driven flow. These results suggest that layered tektites may be analogous to lava bombs, which may have been stretched and deformed in flight but underwent little flow after landing. Rather than being a product of "unusual circumstances," such as multiple impacts, layered tektites may differ from splash-form tektites only in initial temperature of formation, speed of ejection, and small differences in initial composition.
Formation and evolution of anodic TiO2 nanotube embryos
NASA Astrophysics Data System (ADS)
Jin, Rong; Liao, Maoying; Lin, Tong; Zhang, Shaoyu; Shen, Xiaoping; Song, Ye; Zhu, Xufei
2017-06-01
Anodic TiO2 nanotubes (ATNTs) have been widely investigated for decades due to their interesting nanostructures and various applications. However, the formation mechanism of ATNTs still remains unclear. To date, most of researches focus on the tubular structure but neglect the formation process of initial nanotube embryos. Herein, polyethylene glycol (PEG) is added into the traditional electrolyte to moderate the transformation process from compact layer to porous layer. Based on ‘oxygen bubble mould’ and ‘plastic flow model’ theory, the formation and evolution process of nanotube embryo is clarified firstly. Results validate the effect of ‘oxygen bubble mould’ on the formation of nanotube embryo, which has a great effect on regulating the morphology of ATNT arrays. Besides, nanotubes prepared in electrolytes with PEG show shorter tube length with larger diameter than that prepared in traditional electrolytes. The addition of PEG can also effectively avoid the breakdown phenomenon. Highlights Transformation from compact layer into porous layer is observed in PEG electrolyte. The effect of oxygen bubble mould is first demonstrated and observed. The formation process of TiO2 nanotube embryo is described systematically. TiO2 nanotubes prepared in PEG electrolyte show short length and large diameter.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dumpala, Ravikumar; Nano Functional Materials Technology Centre, Department of Physics, Indian Institute of Technology Madras, Chennai 600036; Kumar, N.
Tribo-layer formation and frictional characteristics of the SiC ball were studied with the sliding test against nanocrystalline diamond coating under atmospheric test conditions. Unsteady friction coefficients in the range of 0.04 to 0.1 were observed during the tribo-test. Friction and wear characteristics were found to be influenced by the formation of cohesive tribo-layer (thickness ∼ 1.3 μm) in the wear track of nanocrystalline diamond coating. Hardness of the tribo-layer was measured using nanoindentation technique and low hardness of ∼ 1.2 GPa was observed. The presence of silicon and oxygen in the tribo-layer was noticed by the energy dispersive spectroscopy mappingmore » and the chemical states of the silicon were analyzed using X-ray photoelectron spectroscopy. Large amount of oxygen content in the tribo-layer indicated tribo-oxidation wear mechanism. - Highlights: • Sliding wear and friction characteristics of SiC were studied against NCD coating. • Silicon oxide tribo-layer formation was observed in the NCD coating wear track. • Low hardness 1.2 GPa of tribo-layer was measured using nanoindentation technique. • Chemical states of silicon were analyzed using X-ray photoelectron spectroscopy.« less
Swenson, J.B.; Person, M.; Raffensperger, Jeff P.; Cannon, W.F.; Woodruff, L.G.; Berndt, M.E.
2004-01-01
This paper presents a suite of two-dimensional mathematical models of basin-scale groundwater flow and heat transfer for the middle Proterozoic Midcontinent Rift System. The models were used to assess the hydrodynamic driving mechanisms responsible for main-stage stratiform copper mineralization of the basal Nonesuch Formation during the post-volcanic/pre-compressional phase of basin evolution. Results suggest that compaction of the basal aquifer (Copper Harbor Formation), in response to mechanical loading during deposition of the overlying Freda Sandstone, generated a pulse of marginward-directed, compaction-driven discharge of cupriferous brines from within the basal aquifer. The timing of this pulse is consistent with the radiometric dates for the timing of mineralization. Thinning of the basal aquifer near White Pine, Michigan, enhanced stratiform copper mineralization. Focused upward leakage of copper-laden brines into the lowermost facies of the pyrite-rich Nonesuch Formation resulted in copper sulfide mineralization in response to a change in oxidation state. Economic-grade mineralization within the White Pine ore district is a consequence of intense focusing of compaction-driven discharge, and corresponding amplification of leakage into the basal Nonesuch Formation, where the basal aquifer thins dramatically atop the Porcupine Mountains volcanic structure. Equilibrium geochemical modeling and mass-balance calculations support this conclusion. We also assessed whether topography and density-driven flow systems could have caused ore genesis at White Pine. Topography-driven flow associated with the Ottawan orogeny was discounted because it post-dates main-stage ore genesis and because recent seismic interpretations of basin inversion indicates that basin geometry would not be conductive to ore genesis. Density-driven flow systems did not produce focused discharge in the vicinity of the White Pine ore district.
Antioxidant activity of selected Spanish wines in corn oil emulsions.
Sánchez-Moreno, C; Satué-Gracia, M T; Frankel, E N
2000-11-01
Wines contain phenolic compounds that may be useful for preventing lipid oxidation as dietary antioxidants. This study was aimed at evaluating the antioxidant activity in corn oil emulsions of seventeen selected Spanish wines and two California wines. The inhibition of hydroperoxide formation at 10 microM gallic acid equivalents (GAE) varied from 8.4% to 40.2% with the red wines, from 20.9% to 45.8% with the rosé wines, and from 6.5% to 47.0% with the white wines. The inhibition of hydroperoxide formation at 20 microM GAE varied from 11.9% to 34.1% with the red wines, from 0.1% to 34. 5% with the rosé wines, and from 3.3% to 37.2% with the white wines. The inhibition of hexanal formation at 10 microM GAE varied from 23. 6% to 64.4% with the red wines, from 42.7% to 68.5% with the rosé wines, and from 28.4% to 68.8% with the white wines. The inhibition of hexanal formation at 20 microM GAE varied from 33.0% to 46.3% with the red wines, from 11.3% to 66.5% with the rosé wines, and from -16.7% to +21.0% with the white wines. The antioxidant effect decreased with increasing concentration. This antioxidant activity was related to the five main groups of phenolic compounds identified in wines by HPLC. The relative antioxidant activity correlated positively with the total phenol content of wines (by the Folin-Ciocalteu method and by HPLC), benzoic acids, anthocyanins, flavan-3-ols, and flavonols, for the inhibition of hydroperoxides and hexanal at 10 and 20 microM GAE.
Advanced Multi-frequency Inversion Methods for Classifying Acoustic Scatterers
2002-09-30
layers and the presence of individual zooplankton taxa. For example, physonect siphonophore larvae with small gas filled pneumatophores (~0.20 mm...over an approximately 2h period. The white circles indicate the presence of physonect siphonophore larvae detected by the VPR. Note the coincidence...of the distributions of these organisms and layers of elevated scattering. The high scattering in the vicinity of siphonophore larvae at 43 kHz is
Organic light-emitting device with a phosphor-sensitized fluorescent emission layer
Forrest, Stephen [Ann Arbor, MI; Kanno, Hiroshi [Osaka, JP
2009-08-25
The present invention relates to organic light emitting devices (OLEDs), and more specifically to OLEDS that emit light using a combination of fluorescent emitters and phosphorescent emitters. The emissive region of the devices of the present invention comprise at least one phosphor-sensitized layer which has a combined emission from a phosphorescent emitter and a fluorescent emitter. In preferred embodiments, the invention relates to white-emitting OLEDS (WOLEDs).
A golgi study of the optic tectum of the tegu lizard, Tupinambis nigropunctatus.
Butler, A B; Ebbesson, O E
1975-06-01
The dendritic patterns of cells in the optic tectum of the tegu lizard, Tupinambis nigropunctatus, were analyzed with the Ramon-Moliner modification of the Golgi-Cox technique. Cell types were compared with those described by other authors in the tectum of other reptiles; particular comparisons of our results were made with the description of cell types in the chameleon (Ramń, 1896), as the latter is the most complete analysis in the literature. The periventricular gray layers 3 and 5 consist primarily of two cell types--piriform or pyramidal shaped cells and horizontal cells. Cells in the medial portion of the tectum, in an area coextensive with the bilateral spinal projection zone, possess dendrites that extend across the midline. The latter cells have either fusiform or pyramidal shaped somas. The central white zone, layer 6, contains fibers, large fusiform or pyramidal shaped cells, fusiform cells, and small horizontal cells. The central gray zone, layer 7, is composed predominately of fusiform cells which have dendrites extending to the superficial optic layers, large polygonal cells, and horizontal cells. The superficial gray and white layers, layers 8-13, contain polygonal, fusiform, stellate, and horizontal elements. Layer 14 is composed solely of afferent optic tract fibers. Several differences in the occurrence and distribution of cell types between the tegu and the other reptiles studied are noted. Additionally, the laminar distribution of retinal, tectotectal, telencephalic, and spinal projections in the tegutectum can be related to the distribution of cell types, and those cells which may be postsynaptic to specific inputs can be identified. The highly differentiated laminar structure of the reptilian optic tectum, both in regard to cell type and to afferent and efferent connections, may serve as a model for studying some functional properties of lamination common to cortical structures.
Suzuki, Michio; Nakayama, Seiji; Nagasawa, Hiromichi; Kogure, Toshihiro
2013-02-01
Although the formation mechanism of calcite crystals in the prismatic layer has been studied well in many previous works, the initial state of calcite formation has not been observed in detail using electron microscopes. In this study, we report that the soft prismatic layer with transparent color (the thin prismatic layer) in the tip of the fresh shell of Pinctada fucata was picked up to observe the early calcification phase. A scanning electron microscope (SEM) image showed that the growth tip of the thin prismatic layer was covered by the periostracum, which was also where the initial formation of calcite crystals began. A cross-section containing the thin calcite crystals in the thin prismatic layer with the periostracum was made using a focused ion beam (FIB) system. In a transmission electron microscope (TEM) observation, the thin calcite crystal (thickness is about 1μm) on the periostracum was found to be a single crystal with the c-axis oriented perpendicular to the shell surface. On the other hand, many aggregated small particles consisting of bassanite crystals were observed in the periostracum suggesting the possibility that not only organic sulfate but also inorganic sulfates exist in the prismatic layer. These discoveries in the early calcification phase of the thin prismatic layer may help to clarify the mechanism of regulating the nucleation and orientation of the calcite crystal in the shell. Copyright © 2012 Elsevier Ltd. All rights reserved.
Sonic Hedgehog Expression in Corticofugal Projection Neurons Directs Cortical Microcircuit Formation
Harwell, Corey C.; Parker, Philip R.L.; Gee, Steven M.; Okada, Ami; McConnell, Susan K.; Kreitzer, Anatol C.; Kriegstein, Arnold R.
2012-01-01
SUMMARY The precise connectivity of inputs and outputs is critical for cerebral cortex function; however, the cellular mechanisms that establish these connections are poorly understood. Here, we show that the secreted molecule Sonic Hedgehog (Shh) is involved in synapse formation of a specific cortical circuit. Shh is expressed in layer V corticofugal projection neurons and the Shh receptor, Brother of CDO (Boc), is expressed in local and callosal projection neurons of layer II/III that synapse onto the subcortical projection neurons. Layer V neurons of mice lacking functional Shh exhibit decreased synapses. Conversely, the loss of functional Boc leads to a reduction in the strength of synaptic connections onto layer Vb, but not layer II/III, pyramidal neurons. These results demonstrate that Shh is expressed in postsynaptic target cells while Boc is expressed in a complementary population of presynaptic input neurons, and they function to guide the formation of cortical microcircuitry. PMID:22445340
Structural and electrical investigations of MBE-grown SiGe nanoislands
NASA Astrophysics Data System (ADS)
Şeker, İsa; Karatutlu, Ali; Gürbüz, Osman; Yanık, Serhat; Bakış, Yakup; Karakız, Mehmet
2018-01-01
SiGe nanoislands were grown by Molecular Beam Epitaxy (MBE) method on Si (100) substrates with comparative growth parameters such as annealing temperature, top Ge content and layer-by-layer annealing (LBLA). XRD and Raman data suggest that annealing temperature, top Ge content and layer-by-layer annealing (LBLA) can overall give a control not only over the amorphous content but also over yielding the strained Ge layer formation in addition to mostly Ge crystallites. Depending on the layer design and growth conditions, size of the crystallites was observed to be changed. Four Point Probe (FPP) Method via Semiconductor Analyzer shows that 100 °C rise in annealing temperature of the samples with Si0.25Ge0.75 top layers caused rougher islands with vacancies which further resulted in the formation of laterally higher resistive thin film sheets. However, vertically performed I-AFM analysis produced higher I-V values which suggest that the vertical and horizantal conductance mechanisms appear to be different. Ge top-layered samples gained greater crystalline structure and better surface conductivity where LBLA resulted in the formation of Ge nucleation and tight 2D stacking resulting in enhanced current values.
Few-layer bismuth selenides exfoliated by hemin inhibit amyloid-β1–42 fibril formation
Peng, Jian; Xiong, Yunjing; Lin, Zhiqin; Sun, Liping; Weng, Jian
2015-01-01
Inhibiting amyloid-β (Aβ) fibril formation is the primary therapeutic strategy for Alzheimer’s disease. Several small molecules and nanomaterials have been used to inhibit Aβ fibril formation. However, insufficient inhibition efficiency or poor metabolization limits their further applications. Here, we used hemin to exfoliate few-layer Bi2Se3 in aqueous solution. Then we separated few-layer Bi2Se3 with different sizes and thicknesses by fractional centrifugation, and used them to attempt to inhibit Aβ1-42 aggregation. The results show that smaller and thinner few-layer Bi2Se3 had the highest inhibition efficiency. We further investigated the interaction between few-layer Bi2Se3 and Aβ1-42 monomers. The results indicate that the inhibition effect may be due to the high adsorption capacity of few-layer Bi2Se3 for Aβ1−42 monomers. Few-layer Bi2Se3 also decreased Aβ-mediated peroxidase-like activity and cytotoxicity according to in vitro neurotoxicity studies under physiological conditions. Therefore, our work shows the potential for applications of few-layer Bi2Se3 in the biomedical field. PMID:26018135
Modelling hazardous surface hoar layers in the mountain snowpack over space and time
NASA Astrophysics Data System (ADS)
Horton, Simon Earl
Surface hoar layers are a common failure layer in hazardous snow slab avalanches. Surface hoar crystals (frost) initially form on the surface of the snow, and once buried can remain a persistent weak layer for weeks or months. Avalanche forecasters have difficulty tracking the spatial distribution and mechanical properties of these layers in mountainous terrain. This thesis presents numerical models and remote sensing methods to track the distribution and properties of surface hoar layers over space and time. The formation of surface hoar was modelled with meteorological data by calculating the downward flux of water vapour from the atmospheric boundary layer. The timing of surface hoar formation and the modelled crystal size was verified at snow study sites throughout western Canada. The major surface hoar layers over several winters were predicted with fair success. Surface hoar formation was modelled over various spatial scales using meteorological data from weather forecast models. The largest surface hoar crystals formed in regions and elevation bands with clear skies, warm and humid air, cold snow surfaces, and light winds. Field surveys measured similar regional-scale patterns in surface hoar distribution. Surface hoar formation patterns on different slope aspects were observed, but were not modelled reliably. Mechanical field tests on buried surface hoar layers found layers increased in shear strength over time, but had persistent high propensity for fracture propagation. Layers with large crystals and layers overlying hard melt-freeze crusts showed greater signs of instability. Buried surface hoar layers were simulated with the snow cover model SNOWPACK and verified with avalanche observations, finding most hazardous surface hoar layers were identified with a structural stability index. Finally, the optical properties of surface hoar crystals were measured in the field with spectral instruments. Large plate-shaped crystals were less reflective at shortwave infrared wavelengths than other common surface snow grains. The methods presented in this thesis were developed into operational products that model hazardous surface hoar layers in western Canada. Further research and refinements could improve avalanche forecasts in regions prone to hazardous surface hoar layers.
Dust, Abundances, and the Evolution of Novae
NASA Astrophysics Data System (ADS)
Woodward, Charles; Bode, Michael; Evans, Anuerin; Geballe, Thomas; Gehrz, Robert; Helton, Andrew; Krautter, Joachim; Lynch, David; Ness, Jan-Uwe; Rudy, Richard; Schwarz, Greg; Shore, Steve; Starrfield, Sumner; Truran, James; Vanlandingham, Karen; Wagner, R. Mark
2008-03-01
Evolved stars are the engines of energy production and chemical evolution in our Universe. They deposit radiative and mechanical energy into their environments. They enrich the ambient ISM with elements synthesized in their interiors and dust grains condensed in their atmospheres. Classical novae (CNe) contribute to this cycle of chemical enrichment through explosive nucleosynthesis and the violent ejection of material dredged from the white dwarf progenitor and mixed with the accreted surface layers. Our capstone study of 10 CNe will provide an ensemble of objects, well-populated in CNe parameter space (fast, slow, 'coronal', dusty) for detailed photoionization modeling and analysis. CNe are laboratories in which several poorly-understood astrophysical processes (e.g., mass transfer, thermonuclear runaway, optically thick winds, common envelope evolution, molecule and grain formation, coronal emission) may be observed. With Spitzer's unique wavelength coverage and point-source sensitivity we can: (i) investigate the in situ formation, astromineralogy, and processing of nova dust, (ii) determine the ejecta elemental abundances resulting from thermonuclear runaway, (iii) constrain the correlation of ejecta mass with progenitor type, (iv) measure the bolometric luminosity of the outburst, and (v) characterize the kinematics and structure of the ejected envelopes. Extensive ground-based and space-based (Chandra, Swift, XMM-Newton) programs led by team CoIs will complement Spitzer CNe observations.
Li, Zuo-Xi; Zhao, Jiong-Peng; Sañudo, E C; Ma, Hong; Pan, Zhong-Da; Zeng, Yong-Fei; Bu, Xian-He
2009-12-21
Sparked by the strategy of pillared-layer MOFs, three formate coordination polymers, {[Ni(2)(HCO(2))(3)(L)(2)](NO(3)).2H(2)O}(infinity) (1), {[Co(2)(HCO(2))(3)(L)(2)](HCO(2)).2H(2)O}(infinity) (2), and {[Cu(2)(HCO(2))(3)(L)(2)](HCO(2)).2H(2)O}(infinity) (3), have been synthesized by employing the rodlike ligand 4,4'-bis(imidazol-1-yl)biphenyl (L) as the pillar. Structural analysis indicates that the title complexes 1-3 are isostructural compounds, which possess metal-formate 2D layers perpendicularly pillared by the ligand L to afford a 3D open framework. This is an interesting example of a Kagome lattice based on the formate mediator. Moreover, the formate anion of this 2D Kagome layer exhibits various bridging modes: anti-anti, syn-anti, and 3.21 modes. Their magnetic measurements reveals that only complex 1 presents the spin canting phenomenon, while its isostructural Co(II) and Cu(II) complexes are simply paramagnets with antiferromagnetic coupling.
IRIS Ultraviolet Spectral Properties of a Sample of X-Class Solar Flares
NASA Astrophysics Data System (ADS)
Butler, Elizabeth; Kowalski, Adam; Cauzzi, Gianna; Allred, Joel C.; Daw, Adrian N.
2018-06-01
The white-light (near-ultraviolet (NUV) and optical) continuum emission comprises the majority of the radiated energy in solar flares. However, there are nearly as many explanations for the origin of the white-light continuum radiation as there are white-light flares that have been studied in detail with spectra. Furthermore, there are rarely robust constraints on the time-resolved dynamics in the white-light emitting flare layers. We are conducting a statistical study of the properties of Fe II lines, Mg II lines, and NUV continuum intensity in bright flare kernels observed by the Interface Region Imaging Spectrograph (IRIS), in order to provide comprehensive constraints for radiative-hydrodynamic flare models. Here we present a new technique for identifying bright flare kernels and preliminary relationships among IRIS spectral properties for a sample of X-class solar flares.
Black-on-white polymer-stabilized cholesteric formulations
NASA Astrophysics Data System (ADS)
West, John L.; Magyar, Gregory R.; Francl, James J.; Nixon, Christine M.
1995-08-01
Recent research by Doane, Yang, and Chien demonstrated the use of cholesteric liquid crystals in multiplexed, high resolution, reflective diplays. These materials utilize the bistability of the cholesteric planar and focal conic states for displays with a colored image on a black background. Many commercial applications of these materials, such as electronic books and newspapers, portable faxes and personal data assistants, require, or at least prefer, black-on- white images. We report on relatively high polymer content (equalsV 20% by weight) dispersions of cholesteric liquid crystals that produce a white, reflecting, planar state. The polymer network appears to form cholesteric domains with varying pitch lengths resulting in planar states that reflect in the red, green, and blue portions of the spectrum. Utilizing a black absorbing layer behind a display using these materials offers white images on a black background, or vice-versa.
Germ layer differentiation during early hindgut and cloaca formation in rabbit and pig embryos
Hassoun, Romia; Schwartz, Peter; Rath, Detlef; Viebahn, Christoph; Männer, Jörg
2010-01-01
Relative to recent advances in understanding molecular requirements for endoderm differentiation, the dynamics of germ layer morphology and the topographical distribution of molecular factors involved in endoderm formation at the caudal pole of the embryonic disc are still poorly defined. To discover common principles of mammalian germ layer development, pig and rabbit embryos at late gastrulation and early neurulation stages were analysed as species with a human-like embryonic disc morphology, using correlative light and electron microscopy. Close intercellular contact but no direct structural evidence of endoderm formation such as mesenchymal–epithelial transition between posterior primitive streak mesoderm and the emerging posterior endoderm were found. However, a two-step process closely related to posterior germ layer differentiation emerged for the formation of the cloacal membrane: (i) a continuous mesoderm layer and numerous patches of electron-dense flocculent extracellular matrix mark the prospective region of cloacal membrane formation; and (ii) mesoderm cells and all extracellular matrix including the basement membrane are lost locally and close intercellular contact between the endoderm and ectoderm is established. The latter process involves single cells at first and then gradually spreads to form a longitudinally oriented seam-like cloacal membrane. These gradual changes were found from gastrulation to early somite stages in the pig, whereas they were found from early somite to mid-somite stages in the rabbit; in both species cloacal membrane formation is complete prior to secondary neurulation. The results highlight the structural requirements for endoderm formation during development of the hindgut and suggest new mechanisms for the pathogenesis of common urogenital and anorectal malformations. PMID:20874819
Discrete element simulation of charging and mixed layer formation in the ironmaking blast furnace
NASA Astrophysics Data System (ADS)
Mitra, Tamoghna; Saxén, Henrik
2016-11-01
The burden distribution in the ironmaking blast furnace plays an important role for the operation as it affects the gas flow distribution, heat and mass transfer, and chemical reactions in the shaft. This work studies certain aspects of burden distribution by small-scale experiments and numerical simulation by the discrete element method (DEM). Particular attention is focused on the complex layer-formation process and the problems associated with estimating the burden layer distribution by burden profile measurements. The formation of mixed layers is studied, and a computational method for estimating the extent of the mixed layer, as well as its voidage, is proposed and applied on the results of the DEM simulations. In studying a charging program and its resulting burden distribution, the mixed layers of coke and pellets were found to show lower voidage than the individual burden layers. The dynamic evolution of the mixed layer during the charging process is also analyzed. The results of the study can be used to gain deeper insight into the complex charging process of the blast furnace, which is useful in the design of new charging programs and for mathematical models that do not consider the full behavior of the particles in the burden layers.
Silky Sunflowers & Swirly Skies
ERIC Educational Resources Information Center
Welling, Linda
2012-01-01
In this article, second-graders create a sunflower drawing using pastel techniques that produce similar effects to Vincent van Gogh's brushstrokes. They also learn how layering colors and using white to lighten colors creates depth in their flowers.
27 CFR 21.127 - Shellac (refined).
Code of Federal Regulations, 2014 CFR
2014-04-01
... Gutzeit Method (AOAC method 25.020; for incorporation by reference, see § 21.6(c)). (b) Color. White or... layer (at least 50 ml) and filter if cloudy. Evaporate the petroleum ether and test as follows: Solution...
27 CFR 21.127 - Shellac (refined).
Code of Federal Regulations, 2012 CFR
2012-04-01
... Gutzeit Method (AOAC method 25.020; for incorporation by reference, see § 21.6(c)). (b) Color. White or... layer (at least 50 ml) and filter if cloudy. Evaporate the petroleum ether and test as follows: Solution...
27 CFR 21.127 - Shellac (refined).
Code of Federal Regulations, 2011 CFR
2011-04-01
... Gutzeit Method (AOAC method 25.020; for incorporation by reference, see § 21.6(c)). (b) Color. White or... layer (at least 50 ml) and filter if cloudy. Evaporate the petroleum ether and test as follows: Solution...
27 CFR 21.127 - Shellac (refined).
Code of Federal Regulations, 2013 CFR
2013-04-01
... Gutzeit Method (AOAC method 25.020; for incorporation by reference, see § 21.6(c)). (b) Color. White or... layer (at least 50 ml) and filter if cloudy. Evaporate the petroleum ether and test as follows: Solution...
An Optimal Delivery Format for Presentations Targeting Older Adults.
ERIC Educational Resources Information Center
Austin-Wells, Vonnette; Zimmerman, Teena; McDougall, Graham J., Jr.
2003-01-01
African-American, Hispanic, and white older adults (n=34) attended three information sessions presented via flipcharts, transparencies, and PowerPoint (one format per session). In focus groups, participants rated accessibility, novelty, and efficiency. They overwhelmingly preferred PowerPoint on all dimensions. (SK)
Liu, Xiao-Ke; Chen, Zhan; Qing, Jian; Zhang, Wen-Jun; Wu, Bo; Tam, Hoi Lam; Zhu, Furong; Zhang, Xiao-Hong; Lee, Chun-Sing
2015-11-25
A high-performance hybrid white organic light-emitting device (WOLED) is demonstrated based on an efficient novel thermally activated delayed fluorescence (TADF) blue exciplex system. This device shows a low turn-on voltage of 2.5 V and maximum forward-viewing external quantum efficiency of 25.5%, which opens a new avenue for achieving high-performance hybrid WOLEDs with simple structures. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Quantitative description of charge-carrier transport in a white organic light-emitting diode
NASA Astrophysics Data System (ADS)
Schober, M.; Anderson, M.; Thomschke, M.; Widmer, J.; Furno, M.; Scholz, R.; Lüssem, B.; Leo, K.
2011-10-01
We present a simulation model for the analysis of charge-carrier transport in organic thin-film devices, and apply it to a three-color white hybrid organic light-emitting diode (OLED) with fluorescent blue and phosphorescent red and green emission. We simulate a series of single-carrier devices, which reconstruct the OLED layer sequence step by step. Thereby, we determine the energy profiles for hole and electron transport, show how to discern bulk from interface limitation, and identify trap states.
On the Impact of Injection Schemes on Transition in Hypersonic Boundary Layers
2009-10-13
e (1 − r ) – CpTw] [1] where r is the recovery factor. For...9.72 MJ/kg Reynolds number (Re x ) [-] S ta n to n n u m b e r (S t) [ -] experimental laminar Van Driest II White & Christoph Figure 4...h0 = 10.22 MJ/kg Reynolds number (Re x ) [-] S ta n to n n u m b e r (S t) [ -] experimental laminar Van Driest II White & Christoph 10 6 10
37 CFR 2.52 - Types of drawings and format for drawings.
Code of Federal Regulations, 2013 CFR
2013-07-01
... must submit a standard character drawing that shows the mark in black on a white background. An... drawing should show the mark in black on a white background, unless the mark includes color. (1) Marks... lines to show any other matter not claimed as part of the mark. For any drawing using broken lines to...
37 CFR 2.52 - Types of drawings and format for drawings.
Code of Federal Regulations, 2014 CFR
2014-07-01
... must submit a standard character drawing that shows the mark in black on a white background. An... drawing should show the mark in black on a white background, unless the mark includes color. (1) Marks... lines to show any other matter not claimed as part of the mark. For any drawing using broken lines to...
37 CFR 2.52 - Types of drawings and format for drawings.
Code of Federal Regulations, 2012 CFR
2012-07-01
... must submit a standard character drawing that shows the mark in black on a white background. An... drawing should show the mark in black on a white background, unless the mark includes color. (1) Marks... lines to show any other matter not claimed as part of the mark. For any drawing using broken lines to...
37 CFR 2.52 - Types of drawings and format for drawings.
Code of Federal Regulations, 2011 CFR
2011-07-01
... must submit a standard character drawing that shows the mark in black on a white background. An... drawing should show the mark in black on a white background, unless the mark includes color. (1) Marks... lines to show any other matter not claimed as part of the mark. For any drawing using broken lines to...
Adolescent Precursors of Early Union Formation among Asian American and White Young Adults
ERIC Educational Resources Information Center
Cheng, Yen-hsin Alice; Landale, Nancy S.
2011-01-01
Using a framework that emphasizes independent versus interdependent self-construals, this study investigates the relatively low rates of early marriage and cohabitation among Asian Americans compared with Whites. Data from Waves 1 and 3 of Add Health are used to test five hypotheses that focus on family value socialization and other precursors…
Fine-scale genetic structure and social organization in female white-tailed deer
Christopher E. Comer; John C. Kilgo; Gino J. D' Angelo; Travis C. Glenn; Karl V. Miller
2005-01-01
Social behavior of white-tailed deer (Odocoileus virginianus) can have important management implications. The formation of matrilineal social groups among female deer has been documented and management strategies have been proposed based on this well-developed social structure. Using radiocollared (n = 17) and hunter or vehicle-killed (n = 21) does, we examined spatial...
Testing the white dwarf mass-radius relationship with eclipsing binaries
NASA Astrophysics Data System (ADS)
Parsons, S. G.; Gänsicke, B. T.; Marsh, T. R.; Ashley, R. P.; Bours, M. C. P.; Breedt, E.; Burleigh, M. R.; Copperwheat, C. M.; Dhillon, V. S.; Green, M.; Hardy, L. K.; Hermes, J. J.; Irawati, P.; Kerry, P.; Littlefair, S. P.; McAllister, M. J.; Rattanasoon, S.; Rebassa-Mansergas, A.; Sahman, D. I.; Schreiber, M. R.
2017-10-01
We present high-precision, model-independent, mass and radius measurements for 16 white dwarfs in detached eclipsing binaries and combine these with previously published data to test the theoretical white dwarf mass-radius relationship. We reach a mean precision of 2.4 per cent in mass and 2.7 per cent in radius, with our best measurements reaching a precision of 0.3 per cent in mass and 0.5 per cent in radius. We find excellent agreement between the measured and predicted radii across a wide range of masses and temperatures. We also find the radii of all white dwarfs with masses less than 0.48 M⊙ to be fully consistent with helium core models, but they are on average 9 per cent larger than those of carbon-oxygen core models. In contrast, white dwarfs with masses larger than 0.52 M⊙ all have radii consistent with carbon-oxygen core models. Moreover, we find that all but one of the white dwarfs in our sample have radii consistent with possessing thick surface hydrogen envelopes (10-5 ≥ MH/MWD ≥ 10-4), implying that the surface hydrogen layers of these white dwarfs are not obviously affected by common envelope evolution.
Multi-periodic pulsations of a stripped red-giant star in an eclipsing binary system.
Maxted, Pierre F L; Serenelli, Aldo M; Miglio, Andrea; Marsh, Thomas R; Heber, Ulrich; Dhillon, Vikram S; Littlefair, Stuart; Copperwheat, Chris; Smalley, Barry; Breedt, Elmé; Schaffenroth, Veronika
2013-06-27
Low-mass white-dwarf stars are the remnants of disrupted red-giant stars in binary millisecond pulsars and other exotic binary star systems. Some low-mass white dwarfs cool rapidly, whereas others stay bright for millions of years because of stable fusion in thick surface hydrogen layers. This dichotomy is not well understood, so the potential use of low-mass white dwarfs as independent clocks with which to test the spin-down ages of pulsars or as probes of the extreme environments in which low-mass white dwarfs form cannot fully be exploited. Here we report precise mass and radius measurements for the precursor to a low-mass white dwarf. We find that only models in which this disrupted red-giant star has a thick hydrogen envelope can match the strong constraints provided by our data. Very cool low-mass white dwarfs must therefore have lost their thick hydrogen envelopes by irradiation from pulsar companions or by episodes of unstable hydrogen fusion (shell flashes). We also find that this low-mass white-dwarf precursor is a type of pulsating star not hitherto seen. The observed pulsation frequencies are sensitive to internal processes that determine whether this star will undergo shell flashes.
Seismic evidence for the loss of stellar angular momentum before the white-dwarf stage.
Charpinet, S; Fontaine, G; Brassard, P
2009-09-24
White-dwarf stars represent the final products of the evolution of some 95% of all stars. If stars were to keep their angular momentum throughout their evolution, their white-dwarf descendants, owing to their compact nature, should all rotate relatively rapidly, with typical periods of the order of a few seconds. Observations of their photospheres show, in contrast, that they rotate much more slowly, with periods ranging from hours to tens of years. It is not known, however, whether a white dwarf could 'hide' some of its original angular momentum below the superficial layers, perhaps spinning much more rapidly inside than at its surface. Here we report a determination of the internal rotation profile of a white dwarf using a method based on asteroseismology. We show that the pulsating white dwarf PG 1159-035 rotates as a solid body (encompassing more than 97.5% of its mass) with the relatively long period of 33.61 +/- 0.59 h. This implies that it has lost essentially all of its angular momentum, thus favouring theories which suggest important angular momentum transfer and loss in evolutionary phases before the white-dwarf stage.
Guan, Guobo; Dai, Yu; Nobile, Clarissa J.; Liang, Weihong; Cao, Chengjun; Zhang, Qiuyu; Zhong, Jin; Huang, Guanghua
2014-01-01
Non-genetic phenotypic variations play a critical role in the adaption to environmental changes in microbial organisms. Candida albicans, a major human fungal pathogen, can switch between several morphological phenotypes. This ability is critical for its commensal lifestyle and for its ability to cause infections. Here, we report the discovery of a novel morphological form in C. albicans, referred to as the “gray” phenotype, which forms a tristable phenotypic switching system with the previously reported white and opaque phenotypes. White, gray, and opaque cell types differ in a number of aspects including cellular and colony appearances, mating competency, secreted aspartyl proteinase (Sap) activities, and virulence. Of the three cell types, gray cells exhibit the highest Sap activity and the highest ability to cause cutaneous infections. The three phenotypes form a tristable phenotypic switching system, which is independent of the regulation of the mating type locus (MTL). Gray cells mate over 1,000 times more efficiently than do white cells, but less efficiently than do opaque cells. We further demonstrate that the master regulator of white-opaque switching, Wor1, is essential for opaque cell formation, but is not required for white-gray transitions. The Efg1 regulator is required for maintenance of the white phenotype, but is not required for gray-opaque transitions. Interestingly, the wor1/wor1 efg1/efg1 double mutant is locked in the gray phenotype, suggesting that Wor1 and Efg1 could function coordinately and play a central role in the regulation of gray cell formation. Global transcriptional analysis indicates that white, gray, and opaque cells exhibit distinct gene expression profiles, which partly explain their differences in causing infections, adaptation ability to diverse host niches, metabolic profiles, and stress responses. Therefore, the white-gray-opaque tristable phenotypic switching system in C. albicans may play a significant role in a wide range of biological aspects in this common commensal and pathogenic fungus. PMID:24691005
Tao, Li; Du, Han; Guan, Guobo; Dai, Yu; Nobile, Clarissa J; Liang, Weihong; Cao, Chengjun; Zhang, Qiuyu; Zhong, Jin; Huang, Guanghua
2014-04-01
Non-genetic phenotypic variations play a critical role in the adaption to environmental changes in microbial organisms. Candida albicans, a major human fungal pathogen, can switch between several morphological phenotypes. This ability is critical for its commensal lifestyle and for its ability to cause infections. Here, we report the discovery of a novel morphological form in C. albicans, referred to as the "gray" phenotype, which forms a tristable phenotypic switching system with the previously reported white and opaque phenotypes. White, gray, and opaque cell types differ in a number of aspects including cellular and colony appearances, mating competency, secreted aspartyl proteinase (Sap) activities, and virulence. Of the three cell types, gray cells exhibit the highest Sap activity and the highest ability to cause cutaneous infections. The three phenotypes form a tristable phenotypic switching system, which is independent of the regulation of the mating type locus (MTL). Gray cells mate over 1,000 times more efficiently than do white cells, but less efficiently than do opaque cells. We further demonstrate that the master regulator of white-opaque switching, Wor1, is essential for opaque cell formation, but is not required for white-gray transitions. The Efg1 regulator is required for maintenance of the white phenotype, but is not required for gray-opaque transitions. Interestingly, the wor1/wor1 efg1/efg1 double mutant is locked in the gray phenotype, suggesting that Wor1 and Efg1 could function coordinately and play a central role in the regulation of gray cell formation. Global transcriptional analysis indicates that white, gray, and opaque cells exhibit distinct gene expression profiles, which partly explain their differences in causing infections, adaptation ability to diverse host niches, metabolic profiles, and stress responses. Therefore, the white-gray-opaque tristable phenotypic switching system in C. albicans may play a significant role in a wide range of biological aspects in this common commensal and pathogenic fungus.
Investigation of formation of cut off layers and productivity of screw milling process
NASA Astrophysics Data System (ADS)
Ambrosimov, S. K.; Morozova, A. V.
2018-03-01
The article presents studies of a new method for complex milling surfaces with a screw feed motion. Using the apparatus of algebra of logic, the process of formation of cut metal layers and processing capacity is presented.
Germinated brown rice and its bio-functional compounds.
Cho, Dong-Hwa; Lim, Seung-Taik
2016-04-01
Brown rice (BR) contains bran layers and embryo, where a variety of nutritional and biofunctional components, such as dietary fibers, γ-oryzanol, vitamins, and minerals, exist. However, BR is consumed less than white rice because it has an inferior eating texture when cooked. Germination is one of the techniques used to improve the texture of the cooked BR. In addition, it induces numerous changes in the composition and chemical structure of the bioactive components. Moreover, many studies reported that the germination could induce the formation of new bioactive compounds, such as gamma-aminobutyric acid (GABA). The consumption of germinated brown rice (GBR) is increasing in many Asian countries because of its improved eating quality and potential health-promoting functions. However, there is still a lack of studies on the compositional and functional changes of the bioactive components during germination. This review contains recent research findings, especially on the bioactive components in GBR. Copyright © 2015 Elsevier Ltd. All rights reserved.
Metallurgical investigation of wire breakage of tyre bead grade.
Palit, Piyas; Das, Souvik; Mathur, Jitendra
2015-10-01
Tyre bead grade wire is used for tyre making application. The wire is used as reinforcement inside the polymer of tyre. The wire is available in different size/section such as 1.6-0.80 mm thin Cu coated wire. During tyre making operation at tyre manufacturer company, wire failed frequently. In this present study, different broken/defective wire samples were collected from wire mill for detailed investigation of the defect. The natures of the defects were localized and similar in nature. The fracture surface was of finger nail type. Crow feet like defects including button like surface abnormalities were also observed on the broken wire samples. The defect was studied at different directions under microscope. Different advanced metallographic techniques have been used for detail investigation. The analysis revealed that, white layer of surface martensite was formed and it caused the final breakage of wire. In this present study we have also discussed about the possible reason for the formation of such kind of surface martensite (hard-phase).
Formation of thin-film resistors on silicon substrates
Schnable, George L.; Wu, Chung P.
1988-11-01
The formation of thin-film resistors by the ion implantation of a metallic conductive layer in the surface of a layer of phosphosilicate glass or borophosphosilicate glass which is deposited on a silicon substrate. The metallic conductive layer materials comprise one of the group consisting of tantalum, ruthenium, rhodium, platinum and chromium silicide. The resistor is formed and annealed prior to deposition of metal, e.g. aluminum, on the substrate.
Dinosaurs, spherules, and the “magic” layer: A new K-T boundary clay site in Wyoming
NASA Astrophysics Data System (ADS)
Bohor, Bruce F.; Triplehorn, Don M.; Nichols, Douglas J.; Millard, Hugh T., Jr.
1987-10-01
A new Cretaceous-Tertiary (K-T) boundary clay site has been found along Dogie Creek in Wyoming in the drainage of Lance Creek—the type area of the Lance Formation of latest Cretaceous age. The boundary clay was discovered in the uppermost part of the Lance Formation, 4 7 cm beneath the lowest lignite in the Paleocene Fort Union Formation and approximately 1 m above a fragmented dinosaur bone. The boundary clay consists of a basal kaolinitic claystone layer as much as 3 cm thick containing hollow goyazite spherules, overlain by a 2 3 mm smectitic layer (the “magic” layer) containing both shock-metamorphosed minerals and an iridium anomaly of 21 ppb. A palynological break coincides with the base of the claystone layer; numerous Late Cretaceous palynomorph species terminate at this boundary. The paleontological significance of this new boundary site lies in its close association with the well-studied assemblage of dinosaurs and other vertebrates and flora within the type area of the Lance Formation. The spherules at the Dogie Creek site are extremely well preserved by virtue of their replacement by the mineral goyazite. This preservation should facilitate the resolution of the origin of the spherules and of their host layer.
Coat color genetics of Peromyscus: IV. Variable white, a new dominant mutation in the deer mouse.
Cowling, K; Robbins, R J; Haigh, G R; Teed, S K; Dawson, W D
1994-01-01
The variable white mutation arose spontaneously in 1983 within a laboratory stock of wild-type deer mice (Peromyscus maniculatus). The original mutant animal was born to a wild-type pair that had previously produced several entirely wild-type litters. Other variable white animals were bred from the initial individual. Variable white deer mice exhibit extensive areas of white on the head, sides, and tail. Usually a portion of pigmented pelage occurs dorsally and on the shoulders, but the extent of white varies from nearly all white to patches of white on the muzzle, tip of tail, and sides. The pattern is irregular, but not entirely asymmetrical. Eyes are pigmented, but histologically reveal a decrease in thickness and pigmentation of the choroid layer. Many variable white animals do not respond to auditory stimuli, an effect that is particularly evident in animals in which the head is entirely white. Ataxic behavior is also prevalent. Pigment distribution, together with auditory and retinal deficiencies, suggests a neural crest cell migration defect. Breeding data are consistent with an autosomal semidominant, lethal mode of inheritance. The trait differs from two somewhat similar variants in Peromyscus: from dominant spot (S) in extent and pattern of pigmentation and from whiteside (ws), an autosomal recessive trait, in the mode of inheritance and viability. Evidence for possible homology with the Va (varitint-waddler) locus in house mouse (Mus) is presented. The symbol Vw is tentatively assigned for the variable white locus in Peromyscus.
Danesh, F; Vahid, A; Jahanbani, J; Mashhadiabbas, F; Arman, E
2012-01-01
To evaluate the effects of apatite precipitation on the biocompatibility and hard tissue induction properties of white mineral trioxide aggregate (WMTA) in a dental pulp model. Pulp exposures were created on the axial walls of 32 sound canine teeth of eight dogs. Four additional sound teeth served as controls. The pulps were capped either with WMTA or apatite derivatives [biomimetic carbonated apatite (BCAp)] in the interaction of WMTA with a synthetic tissue fluid and restored with zinc oxide-eugenol cement. After 7 and 70 days, the animals were killed, and the histological specimens taken from the teeth were stained with haematoxylin and eosin for histomorphological evaluation. The Brown and Brenn technique was employed to stain bacteria. The data were subjected to nonparametric Kruskall-Wallis analysis and Mann-Whitney U_tests. Biomimetic carbonated apatite did not induce hard tissue bridge formation. WMTA performed significantly better than BCAp in this respect at both periods (P < 0.05). BCAp was associated with a significantly greater inflammatory response as compared with WMTA after 7 days (P < 0.05). Both materials were associated with similar reactions after 70 days (P >0.05). White mineral trioxide aggregate induced hard tissue formation via a mechanism other than that postulated via apatite formation. © 2011 International Endodontic Journal.
NASA Astrophysics Data System (ADS)
Jiang, Tongtong; Shen, Mohan; Dai, Peng; Wu, Mingzai; Yu, Xinxin; Li, Guang; Xu, Xiaoliang; Zeng, Haibo
2017-10-01
The work reports the fabrication of Cu doped Zn-In-S (CZIS) alloy quantum dots (QDs) using dodecanethiol and oleic acid as stabilizing ligands. With the increase of doped Cu element, the photoluminescence (PL) peak is monotonically red shifted. After coating ZnS shell, the PL quantum yield of CZIS QDs can reach 78%. Using reverse micelle microemulsion method, CZIS/ZnS QDs@SiO2 multi-core nanospheres were synthesized to improve the colloidal stability and avoid the aggregation of QDs. The obtained multi-core nanospheres were dispersed in curing adhesive, and applied as a color conversion layer in down converted light-emitting diodes. After encapsulation in curing adhesive, the newly designed LEDs show artifically regulated color coordinates with varying the weight ratio of green QDs and red QDs, and the concentrations of these two types of QDs. Moreover, natural white and warm white LEDs with correlated color temperature of 5287, 6732, 2731, and 3309 K can be achieved, which indicates that CZIS/ZnS QDs@SiO2 nanostructures are promising color conversion layer material for solid-state lighting application.
Benmalek, Yamina; Yahia, Ouahiba Ait; Belkebir, Aicha; Fardeau, Marie-Laure
2013-01-01
Illicium verum (badiane or star anise), Crataegus oxyacantha ssp monogyna (hawthorn) and Allium cepa (onion), have traditionnally been used as medicinal plants in Algeria. This study showed that the outer layer of onion is rich in flavonols with contents of 103 ± 7.90 µg/g DW (red variety) and 17.3 ± 0.69 µg/gDW (white variety). We also determined flavonols contents of 14.3 ± 0.21 µg/g 1.65 ± 0.61 µg/g for Crataegus oxyacantha ssp monogyna leaves and berries and 2.37 ± 0.10 µg/g for Illicium verum. Quantitative analysis of anthocyanins showed highest content in Crataegus oxyacantha ssp monogyna berries (5.11 ± 0.266 mg/g), while, inner and outer layers of white onion had the lowest contents with 0.045 ± 0.003mg/g and 0.077 ± 0.001 mg/g respectively. Flavonols extracts presented high antioxidant activity as compared with anthocyanins and standards antioxidants (ascorbic acid and quercetin). Allium cepa and Crataegus oxyacantha ssp monogyna exhibited the most effective antimicrobial activity. PMID:23579100
NASA Astrophysics Data System (ADS)
Jahedi Rad, Shahpour; Kaveh, Mohammad; Sharabiani, Vali Rasooli; Taghinezhad, Ebrahim
2018-05-01
The thin-layer convective- infrared drying behavior of white mulberry was experimentally studied at infrared power levels of 500, 1000 and 1500 W, drying air temperatures of 40, 55 and 70 °C and inlet drying air speeds of 0.4, 1 and 1.6 m/s. Drying rate raised with the rise of infrared power levels at a distinct air temperature and velocity and thus decreased the drying time. Five mathematical models describing thin-layer drying have been fitted to the drying data. Midlli et al. model could satisfactorily describe the convective-infrared drying of white mulberry fruit with the values of the correlation coefficient (R 2=0.9986) and root mean square error of (RMSE= 0.04795). Artificial neural network (ANN) and fuzzy logic methods was desirably utilized for modeling output parameters (moisture ratio (MR)) regarding input parameters. Results showed that output parameters were more accurately predicted by fuzzy model than by the ANN and mathematical models. Correlation coefficient (R 2) and RMSE generated by the fuzzy model (respectively 0.9996 and 0.01095) were higher than referred values for the ANN model (0.9990 and 0.01988 respectively).
Increased upstream ionization due to formation of a double layer.
Thakur, S Chakraborty; Harvey, Z; Biloiu, I A; Hansen, A; Hardin, R A; Przybysz, W S; Scime, E E
2009-01-23
We report observations that confirm a theoretical prediction that formation of a current-free double layer in a plasma expanding into a chamber of larger diameter is accompanied by an increase in ionization upstream of the double layer. The theoretical model argues that the increased ionization is needed to balance the difference in diffusive losses upstream and downstream of the expansion region. In our expanding helicon source experiments, we find that the upstream plasma density increases sharply at the same antenna frequency at which the double layer appears.
NASA Technical Reports Server (NTRS)
Nascimento, F. S. D. (Principal Investigator); Nascimento, M. A. L. S. D.
1977-01-01
The author has identified the following significant results. Results showed that the black and white aerial photographs and the color infrared transparencies were efficient for mapping of three lithological units of the Paraopeba formation and for mineralized zones identification, respectively. Multispectral transparencies of I2S made it easier to separate dolomites, which were the rocks conditioning zinc and lead mineralization. Statistical analysis of morphometric indexes obtained from black and white photographs and topographic charts showed significant difference among three lithological units of Paraopeba formation which can be defined as Crest, Hilly, and Karstic reliefs.
Zhu, Minrong; Li, Yanhu; Cao, Xiaosong; Jiang, Bei; Wu, Hongbin; Qin, Jingui; Cao, Yong; Yang, Chuluo
2014-12-01
A series of new star-shaped polymers with a triphenylamine-based iridium(III) dendritic complex as the orange-emitting core and poly(9,9-dihexylfluorene) (PFH) chains as the blue-emitting arms is developed towards white polymer light-emitting diodes (WPLEDs). By fine-tuning the content of the orange phosphor, partial energy transfer and charge trapping from the blue backbone to the orange core is realized to achieve white light emission. Single-layer WPLEDs with the configuration of ITO (indium-tin oxide)/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS)/polymer/CsF/Al exhibit a maximum current efficiency of 1.69 cd A(-1) and CIE coordinates of (0.35, 0.33), which is very close to the pure white-light point of (0.33, 0.33). To the best of our knowledge, this is the first report on star-shaped white-emitting single polymers that simultaneously consist of fluorescent and phosphorescent species. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Comparison of pinniped and cetacean prey tissue lipids with lipids of their elasmobranch predator.
Davidson, Bruce; Cliff, Geremy
2014-01-01
The great white shark is known to include pinnipeds and cetaceans in its diet. Both groups of marine mammals deposit thick blubber layers around their bodies. Elasmobranchs do not produce adipose tissue, but rather store lipid in their livers, thus a great white predating on a marine mammal will deposit the lipids in its liver until required. Samples from great white liver and muscle, Cape fur seal, Indian Ocean bottlenose dolphin and common dolphin liver, muscle and blubber were analyzed for their lipid and fatty acid profiles. The great white liver and marine mammal blubber samples showed a considerable degree of homogeneity, but there were significant differences when comparing between the muscle samples. Blubber from all three marine mammal species was calculated to provide greater than 95% of lipid intake for the great white shark from the tissues analyzed. Sampling of prey blubber may give a good indication of the lipids provided to the shark predator.
Creutzfeldt-Jakob disease with severe involvement of cerebral white matter and cerebellum.
Berciano, J; Berciano, M T; Polo, J M; Figols, J; Ciudad, J; Lafarga, M
1990-01-01
We describe a patient with Creutzfeldt-Jakob disease (CJD) of the ataxic and panencephalopathic type. Postmortem examination revealed the characteristic lesions of CJD in the grey matter and profound white matter involvement was seen with immunocytochemical techniques. Ultrastructural white matter lesions were identical to those described in experimentally transmitted CJD. There was marked loss of cerebellar granule cells with virtual disappearance of parallel fibres, but Purkinje cells were only slightly reduced. Electron microscopic studies revealed extensive degenerative changes including cytoplasmic vacuoles in both cell types. Silver methods disclosed massive impregnation of white matter and striking abnormalities of Purkinje cells consisting of hypertrophy and flattening of thick dendritic branches, reduction in the number of terminal branchlets, segmentary loss of spines and polymorphic spines. These findings show the extensive involvement of all three cerebellar cortical layers and the reactive plasticity of Purkinje cells to deafferentiation. They favour the hypothesis that demyelination represents a primary lesion of the white matter.
Zhou, Lijie; Zhuang, Wei-Qin; Wang, Xin; Yu, Ke; Yang, Shufang; Xia, Siqing
2017-11-01
In previous studies, cake layer analysis in membrane bioreactor (MBR) was both carried out with synthetic and practical municipal wastewater (SMW and PMW), leading to different results. This study aimed to identify the comparison between SMW and PMW in cake layer characteristic analysis of MBR. Two laboratory-scale anoxic/oxic MBRs were operated for over 90days with SMW and PMW, respectively. Results showed that PMW led to rough cake layer surface with particles, and the aggravation of cake layer formation with thinner and denser cake layer. Additionally, inorganic components, especially Si and Al, in PMW accumulated into cake layer and strengthened the cake layer structure, inducing severer biofouling. However, SMW promoted bacterial metabolism during cake layer formation, thus aggravated the accumulation of organic components into cake layer. Therefore, SMW highlighted the organic components in cake layer, but weakened the inorganic functions in practical MBR operation. Copyright © 2017 Elsevier Ltd. All rights reserved.
Role of Cu layer thickness on the magnetic anisotropy of pulsed electrodeposited Ni/Cu/Ni tri-layer
NASA Astrophysics Data System (ADS)
Dhanapal, K.; Prabhu, D.; Gopalan, R.; Narayanan, V.; Stephen, A.
2017-07-01
The Ni/Cu/Ni tri-layer film with different thickness of Cu layer was deposited using pulsed electrodeposition method. The XRD pattern of all the films show the formation of fcc structure of nickel and copper. This shows the orientated growth in the (2 2 0) plane of the layered films as calculated from the relative intensity ratio. The layer formation in the films were observed from cross sectional view using FE-SEM and confirms the decrease in Cu layer thickness with decreasing deposition time. The magnetic anisotropy behaviour was measured using VSM with two different orientations of layered film. This shows that increasing anisotropy energy with decreasing Cu layer thickness and a maximum of -5.13 × 104 J m-3 is observed for copper deposited for 1 min. From the K eff.t versus t plot, development of perpendicular magnetic anisotropy in the layered system is predicted below 0.38 µm copper layer thickness.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aines, Roger D.; Bourcier, William L.; Duoss, Eric B.
2018-01-30
A capsule for carrying a proppant for emplaced in a formation containing formation fluid by a hydraulic fracture operation using a fracturing fluid. The capsule includes a capsule body. The capsule body includes a proppant. There is a surface layer on the capsule body that is permeable to the formation fluid or the fracturing fluid or is permeable to both the formation fluid and the fracturing fluid. The proppant material is dry cement that interacts with the formation fluid or the fracturing fluid or both the formation fluid and the fracturing fluid that migrate through the surface layer and ismore » taken up by the dry cement causing the dry cement to harden.« less
Aines, Roger D.; Bourcier, William L.; Duoss, Eric B.; Roberts, Jeffery James; Spadaccini, Christopher M.; Stolaroff, Joshuah K.
2018-01-09
A capsule for carrying a proppant for emplaced in a formation containing formation fluid by a hydraulic fracture operation using a fracturing fluid. The capsule includes a capsule body. The capsule body includes a proppant. There is a surface layer on the capsule body that is permeable to the formation fluid or the fracturing fluid or is permeable to both the formation fluid and the fracturing fluid. The proppant material is dry cement that interacts with the formation fluid or the fracturing fluid or both the formation fluid and the fracturing fluid that migrate through the surface layer and is taken up by the dry cement causing the dry cement to harden.
Coupling of magnetopause-boundary layer to the polar ionosphere
NASA Technical Reports Server (NTRS)
Wei, C. Q.; Lee, L. C.
1993-01-01
The plasma dynamics in the low-latitude boundary layer and its coupling to the polar ionosphere under boundary conditions at the magnetopause are investigated. In the presence of a driven plasma flow along the magnetopause, the Kelvin-Helmholtz instability can develop, leading to the formation and growth of plasma vortices in the boundary layer. The finite ionospheric conductivity leads to the decay of these vortices. The competing effect of the formation and decay of vortices leads to the formation of strong vortices only in a limited region. Several enhanced field-aligned power density regions associated with the boundary layer vortices and the upward field-aligned current (FAC) filaments can be found along the postnoon auroral oval. These enhanced field-aligned power density regions may account for the observed auroral bright spots.
Blue light emission from the heterostructured ZnO/InGaN/GaN
2013-01-01
ZnO/InGaN/GaN heterostructured light-emitting diodes (LEDs) were fabricated by molecular beam epitaxy and atomic layer deposition. InGaN films consisted of an Mg-doped InGaN layer, an undoped InGaN layer, and a Si-doped InGaN layer. Current-voltage characteristic of the heterojunction indicated a diode-like rectification behavior. The electroluminescence spectra under forward biases presented a blue emission accompanied by a broad peak centered at 600 nm. With appropriate emission intensity ratio, the heterostructured LEDs had potential application in white LEDs. Moreover, a UV emission and an emission peak centered at 560 nm were observed under reverse bias. PMID:23433236
Yang, Jingwen; Lu, Bingguo; Jiang, Yaping; Chen, Haiyang; Hong, Yuwei; Wu, Binghua; Miao, Ying
2017-01-01
Chinese narcissus (Narcissus tazetta var. chinensis) is one of the ten traditional flowers in China and a famous bulb flower in the world flower market. However, only white color tepals are formed in mature flowers of the cultivated varieties, which constrains their applicable occasions. Unfortunately, for lack of genome information of narcissus species, the explanation of tepal color formation of Chinese narcissus is still not clear. Concerning no genome information, the application of transcriptome profile to dissect biological phenomena in plants was reported to be effective. As known, pigments are metabolites of related metabolic pathways, which dominantly decide flower color. In this study, transcriptome profile and pigment metabolite analysis methods were used in the most widely cultivated Chinese narcissus “Jinzhanyintai” to discover the structure of pigment metabolic pathways and their contributions to white tepal color formation during flower development and pigmentation processes. By using comparative KEGG pathway enrichment analysis, three pathways related to flavonoid, carotenoid and chlorophyll pigment metabolism showed significant variations. The structure of flavonoids metabolic pathway was depicted, but, due to the lack of F3ʹ5ʹH gene; the decreased expression of C4H, CHS and ANS genes; and the high expression of FLS gene, the effect of this pathway to synthesize functional anthocyanins in tepals was weak. Similarly, the expression of DXS, MCT and PSY genes in carotenoids synthesis sub-pathway was decreased, while CCD1/CCD4 genes in carotenoids degradation sub-pathway was increased; therefore, the effect of carotenoids metabolic pathway to synthesize adequate color pigments in tepals is restricted. Interestingly, genes in chlorophyll synthesis sub-pathway displayed uniform down-regulated expression, while genes in heme formation and chlorophyll breakdown sub-pathways displayed up-regulated expression, which also indicates negative regulation of chlorophyll formation. Further, content change trends of various color metabolites detected by HPLC in tepals are consistent with the additive gene expression patterns in each pathway. Therefore, all three pathways exhibit negative control of color pigments synthesis in tepals, finally resulting in the formation of white tepals. Interestingly, the content of chlorophyll was more than 10-fold higher than flavonoids and carotenoids metabolites, which indicates that chlorophyll metabolic pathway may play the major role in deciding tepal color formation of Chinese narcissus. PMID:28885552
Ren, Yujun; Yang, Jingwen; Lu, Bingguo; Jiang, Yaping; Chen, Haiyang; Hong, Yuwei; Wu, Binghua; Miao, Ying
2017-09-08
Chinese narcissus ( Narcissus tazetta var. chinensis ) is one of the ten traditional flowers in China and a famous bulb flower in the world flower market. However, only white color tepals are formed in mature flowers of the cultivated varieties, which constrains their applicable occasions. Unfortunately, for lack of genome information of narcissus species, the explanation of tepal color formation of Chinese narcissus is still not clear. Concerning no genome information, the application of transcriptome profile to dissect biological phenomena in plants was reported to be effective. As known, pigments are metabolites of related metabolic pathways, which dominantly decide flower color. In this study, transcriptome profile and pigment metabolite analysis methods were used in the most widely cultivated Chinese narcissus "Jinzhanyintai" to discover the structure of pigment metabolic pathways and their contributions to white tepal color formation during flower development and pigmentation processes. By using comparative KEGG pathway enrichment analysis, three pathways related to flavonoid, carotenoid and chlorophyll pigment metabolism showed significant variations. The structure of flavonoids metabolic pathway was depicted, but, due to the lack of F3'5'H gene; the decreased expression of C4H , CHS and ANS genes; and the high expression of FLS gene, the effect of this pathway to synthesize functional anthocyanins in tepals was weak. Similarly, the expression of DXS , MCT and PSY genes in carotenoids synthesis sub-pathway was decreased, while CCD1 / CCD4 genes in carotenoids degradation sub-pathway was increased; therefore, the effect of carotenoids metabolic pathway to synthesize adequate color pigments in tepals is restricted. Interestingly, genes in chlorophyll synthesis sub-pathway displayed uniform down-regulated expression, while genes in heme formation and chlorophyll breakdown sub-pathways displayed up-regulated expression, which also indicates negative regulation of chlorophyll formation. Further, content change trends of various color metabolites detected by HPLC in tepals are consistent with the additive gene expression patterns in each pathway. Therefore, all three pathways exhibit negative control of color pigments synthesis in tepals, finally resulting in the formation of white tepals. Interestingly, the content of chlorophyll was more than 10-fold higher than flavonoids and carotenoids metabolites, which indicates that chlorophyll metabolic pathway may play the major role in deciding tepal color formation of Chinese narcissus.
NASA Technical Reports Server (NTRS)
Lee, L. C.; Ma, Z. W.; Fu, Z. F.; Otto, A.
1993-01-01
A mechanism for the formation of fossil flux transfer events and the low-level boundary layer within the framework of multiple X-line reconnection is proposed. Attention is given to conditions for which the bulk of magnetic flux in a flux rope of finite extent has a simple magnetic topology, where the four possible connections of magnetic field lines are: IMF to MSP, MSP to IMF, IMF to IMF, and MSP to MSP. For a sufficient relative shift of the X lines, magnetic flux may enter a flux rope from the magnetosphere and exit into the magnetosphere. This process leads to the formation of magnetic flux ropes which contain a considerable amount of magnetosheath plasma on closed magnetospheric field lines. This process is discussed as a possible explanation for the formation of fossil flux transfer events in the magnetosphere and the formation of the low-latitude boundary layer.
Moving hydrocarbons through portions of tar sands formations with a fluid
Stegemeier, George Leo; Mudunuri, Ramesh Raju; Vinegar, Harold J.; Karanikas, John Michael; Jaiswal, Namit; Mo, Weijian
2010-05-18
A method for treating a tar sands formation is disclosed. The method includes heating a first portion of a hydrocarbon layer in the formation from one or more heaters located in the first portion. The heat is controlled to increase a fluid injectivity of the first portion. A drive fluid and/or an oxidizing fluid is injected and/or created in the first portion to cause at least some hydrocarbons to move from a second portion of the hydrocarbon layer to a third portion of the hydrocarbon layer. The second portion is between the first portion and the third portion. The first, second, and third portions are horizontally displaced from each other. The third portion is heated from one or more heaters located in the third portion. Hydrocarbons are produced from the third portion of the formation. The hydrocarbons include at least some hydrocarbons from the second portion of the formation.
Molecular formation in the stagnation region of colliding laser-produced plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Al-Shboul, K. F.; Hassan, S. M.; Harilal, S. S.
2016-10-27
The laser-produced colliding plasmas have numerous attractive applications and stagnation layer formed during collisions between plasmas is a useful system for understanding particle collisions and molecular formation in a controlled way. In this article, we explore carbon dimer formation and its evolutionary paths in a stagnation layer formed during the interaction of two laser-produced plasmas. Colliding laser produced plasmas are generated by splitting a laser beam into two sub-beams and then focus them into either a single flat (laterally colliding plasmas) or a V-shaped graphite targets (orthogonally colliding plasmas). The C2 formation in the stagnation region of both colliding plasmamore » schemes is investigated using optical spectroscopic means and compared with emission features from single seed plasma. Our results show that the collisions among the plasmas followed by the stagnation layer formation lead to rapid cooling causing enhanced carbon dimer formation. In addition, plasma electron temperature, density and C2 molecular temperature were measured for the stagnation zone and compared with seed plasma.« less
NASA Astrophysics Data System (ADS)
Zaraska, Leszek; Gilek, Dominika; Gawlak, Karolina; Jaskuła, Marian; Sulka, Grzegorz D.
2016-12-01
A simple anodic oxidation of metallic tin in fluoride-free alkaline electrolyte at low potentials was proposed as a new and effective strategy for fabrication of crack-free nanoporous tin oxide layers. A low-purity Sn foil (98.8%) was used as a starting material, and a series of anodizations were performed in 1 M NaOH at different conditions such as anodizing potential, and duration of the process. It was proved for the first time that nanostructured tin oxides with ultra-small nanochannels having diameters of <15 nm can be synthesized by simple anodization of metallic tin at a potential of 2 V in 1 M NaOH electrolyte. Increasing anodizing potential to 3 and 4 V allowed for formation of tin oxide layers with much larger pores (40-50 nm in diameter) which were still free from internal cracks and transversal pores. Applying such low potentials significantly reduces the oxide growth rate and suppresses vigorous oxygen evolution at the anode. As a result mechanical deterioration of the oxide structure is prevented while strongly alkaline electrolyte is responsible for formation of the porous layer with completely open pores even at such low potentials. On the contrary, when anodization was carried out at potentials of 5 and 6 V, much faster formation of anodic layer, accompanied by vigorous oxygen gas formation, was observed. In consequence, as grown oxide layers exhibited typical cracked or even stacked internal structure. Finally, we demonstrated for the first time that nanoporous tin oxide layers with segments of different channel sizes can be successfully obtained by simple altering potential during anodization.
Organic light emitting device structure for obtaining chromaticity stability
Tung, Yeh-Jiun [Princeton, NJ; Ngo, Tan [Levittown, PA
2007-05-01
The present invention relates to organic light emitting devices (OLEDs). The devices of the present invention are efficient white or multicolored phosphorescent OLEDs which have a high color stability over a wide range of luminances. The devices of the present invention comprise an emissive region having at least two emissive layers, with each emissive layer comprising a different host and emissive dopant, wherein at least one of the emissive dopants emits by phosphorescence.
1990-11-01
Furusawa , M . 1969. "Experiments on Selective Withdrawal into a Sink from a Uniformly Stratified Fluid--Phenomenon of Layer Separation and Middle-Layer...E. Howington prepared this report. Assisting in the testing were Messrs. Jack E. Davis; Calvin Buie, Jr.; Douglas M . White; and Paul Ahlrich; and Ms...virtually horizontal. Several researchers such as Hino and Furusawa (1969), Croach (1971), Hino (1980), and Farrant (1982) have studied withdrawal
Organic light emitting device structures for obtaining chromaticity stability
Tung, Yeh-Jiun; Lu, Michael; Kwong, Raymond C.
2005-04-26
The present invention relates to organic light emitting devices (OLEDs). The devices of the present invention are efficient white or multicolored phosphorescent OLEDs which have a high color stability over a wide range of luminances. The devices of the present invention comprise an emissive region having at least two emissive layers, with each emissive layer comprising a different host and emissive dopant, wherein at least one of the emissive dopants emits by phosphorescence.
Exciplex formation and electroluminescent absorption in ultraviolet organic light-emitting diodes
NASA Astrophysics Data System (ADS)
Zhang, Qi; Zhang, Hao; Zhang, Xiao-Wen; Xu, Tao; Wei, Bin
2015-02-01
We investigated the formation of exciplex and electroluminescent absorption in ultraviolet organic light-emitting diodes (UV OLEDs) using different heterojunction structures. It is found that an energy barrier of over 0.3 eV between the emissive layer (EML) and adjacent transport layer facilitates exciplex formation. The electron blocking layer effectively confines electrons in the EML, which contributes to pure UV emission and enhances efficiency. The change in EML thickness generates tunable UV emission from 376 nm to 406 nm. In addition, the UV emission excites low-energy organic function layers and produces photoluminescent emission. In UV OLED, avoiding the exciplex formation and averting light absorption can effectively improve the purity and efficiency. A maximum external quantum efficiency of 1.2% with a UV emission peak of 376 nm is realized. Project supported by the National Natural Science Foundation of China (Grant Nos. 61136003 and 61275041) and the Guangxi Provincial Natural Science Foundation, China (Grant No. 2012GXNSFBA053168).
Poprawa, Izabela
2005-01-01
The eggs of Dactylobiotus dispar, similar to other Tardigrada eggs, are covered with two shells: the vitelline envelope and the chorion. Ultrastructural studies have shown that the oocyte actively participates in the formation of both shells. The process of egg capsule formation begins at the midpoint of vitellogenesis. The chorion at first appears as isolated cones resulting from the exocytotic activity of the oocyte and the ovarian epithelium. Subsequently, connections between the cones are formed. Three layers can be distinguished in the completely developed chorion: (1) the inner layer of medium electron density; (2) the middle, labyrinthine layer; (3) the outer layer of medium electron density with cones (future conical processes). After chorion formation, a vitelline envelope is secreted by the oocyte. The Dactylobiotus dispar egg is covered with small, conical processes with hooked tips. The surface of the chorion is covered with a mesh-like network consisting of elongated interstices. The egg capsule has no micropylar opening.
NASA Astrophysics Data System (ADS)
Bernal, Wilson; Perez-Gutierrez, Enrique; Agular, Andres; Barbosa G, J. Oracio C.; Maldonado, Jose L.; Meneses-Nava, Marco Antonio; Rodriguez Rivera, Mario A.; Rodriguez, Braulio
2017-02-01
Efficient solid state lighting devices based in inorganic emissive materials are now available in the market meanwhile for organic emissive materials still a lot of research work is in its way. [1,2] In this work a new organic emissive material based on carbazole, N-(4-Ethynylphenyl) carba-zole-d4 (6-d4), is used as electron-acceptor and commercial PEDOT:PSS as the electron-donor to obtain white emission. Besides the HOMO-LUMO levels of materials the white emission showed dependence on the films thicknesses and applied voltages. In here it is reported that by diminishing the thickness of the PEDOT:PSS layer, from 60 to 35 nm, and by keeping the derivative carbazole layer constant at 100 nm the electro-luminescence (EL) changed from emissive exciton states to the mixture of emissive exciton and exciplex states. [3] For the former thicknesses no white light was obtained meanwhile for the later the EL spectra broadened due to the emission of exciplex states. Under this condition, the best-achieved CIE coordinate was (0.31,0.33) with a driving voltage of 8 V. To lower the driving voltage of the devices a thin film of LiF was added between the derivative of carbazol and cathode but the CIE coordinates changed. The best CIE coordinates for this case were (0.29, 0.34) and (0.32, 0.37) with driving voltage of about 6.5 V. Acknowledgments: CeMie-Sol/27 (Mexico) 207450 References [1] Timothy L Dawson, Society of Dyers and Colourists, Color. Technol., 126, 1-10 (2010), doi: 10.1111/j.1478-4408.2010.00220.x [2] G. M. Farinola, R. Ragni, Journal of Solid State Lighting, 2:9 (2015), doi: 10.1186/s40539-015-0028-7. [3] E. Angioni, et al, J. Mater. Chem. C, 2016, 4, 3851, doi: 10.1039/c6tc00750c.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hagiwara, Teruhiko
1996-12-31
Induction log responses to layered, dipping, and anisotropic formations are examined analytically. The analytical model is especially helpful in understanding induction log responses to thinly laminated binary formations, such as sand/shale sequences, that exhibit macroscopically anisotropic: resistivity. Two applications of the analytical model are discussed. In one application we examine special induction log shoulder-bed corrections for use when thin anisotropic beds are encountered. It is known that thinly laminated sand/shale sequences act as macroscopically anisotropic: formations. Hydrocarbon-bearing formations also act as macroscopically anisotropic formations when they consist of alternating layers of different grain-size distributions. When such formations are thick, inductionmore » logs accurately read the macroscopic conductivity, from which the hydrocarbon saturation in the formations can be computed. When the laminated formations are not thick, proper shoulder-bed corrections (or thin-bed corrections) should be applied to obtain the true macroscopic formation conductivity and to estimate the hydrocarbon saturation more accurately. The analytical model is used to calculate the thin-bed effect and to evaluate the shoulder-bed corrections. We will show that the formation resistivity and hence the hydrocarbon saturation are greatly overestimated when the anisotropy effect is not accounted for and conventional shoulder-bed corrections are applied to the log responses from such laminated formations.« less
Role of graphene inter layer on the formation of the MoS2-CZTS interface during growth
NASA Astrophysics Data System (ADS)
Vishwakarma, Manoj; Thota, Narayana; Karakulina, Olesia; Hadermann, Joke; Mehta, B. R.
2018-05-01
The growth of MoS2 layer near the Mo/CZTS interface during sulphurization process can have an impact on back contact cell parameters (series resistance and fill factor) depending upon the thickness or quality of MoS2. This study reports the dependence of the thickness of interfacial MoS2 layer on the growth of graphene at the interface between molybdenum back contact and deposited CZTS layer. The graphene layer reduces the accumulation of Zn/ZnS, Sn/SnO2 and formation of pores near the MoS2-CZTS interface. The use of graphene as interface layer can be potentially useful for improving the quality of Mo/MoS2/CZTS interface.
RGB and white-emitting organic lasers on flexible glass.
Foucher, C; Guilhabert, B; Kanibolotsky, A L; Skabara, P J; Laurand, N; Dawson, M D
2016-02-08
Two formats of multiwavelength red, green and blue (RGB) laser on mechanically-flexible glass are demonstrated. In both cases, three all-organic, vertically-emitting distributed feedback (DFB) lasers are assembled onto a common ultra-thin glass membrane substrate and fully encapsulated by a thin polymer overlayer and an additional 50 µm-thick glass membrane in order to improve the performance. The first device format has the three DFB lasers sitting next to each other on the glass substrate. The DFB lasers are simultaneously excited by a single overlapping optical pump, emitting spatially separated red, green and blue laser output with individual thresholds of, respectively, 28 µJ/cm(2), 11 µJ/cm(2) and 32 µJ/cm(2) (for 5 ns pump pulses). The second device format has the three DFB lasers, respectively the red, green and blue laser, vertically stacked onto the flexible glass. This device format emits a white laser output for an optical pump fluence above 42 µJ/cm(2).
A Search for Variability in Warm and Cool C-rich DQ White Dwarfs
NASA Astrophysics Data System (ADS)
Dupuis, Christopher Michael; Williams, Kurtis A.
2018-01-01
Hot DQ white dwarfs are a rare class of white dwarfs that have atmospheres dominated by carbon with little to no hydrogen or helium. Recently it has been found that the majority of these stars are photometrically variable likely due to rapid rotation with star spots. The cool progeny of the hot DQs are expected to also be rapidly rotating as no strong braking mechanisms should be present. We present the time-series photometry of multiple warm and cool C-rich DQ white dwarfs as part of an ongoing search for variability in hot DQ white dwarfs and their progeny. This program will permit us to confirm rotation as the source of variability, compare the distribution of rotation rates to those of more common white dwarf spectral types, and constrain the evolutionary rates of hot DQ rotation. These data are one way to better understand the formation scenarios of these stars.
Family identity: black-white interracial family health experience.
Byrd, Marcia Marie; Garwick, Ann Williams
2006-02-01
The purpose of this interpretive descriptive study was to describe how eight Black-White couples with school-aged children constructed their interracial family identity through developmental transitions and interpreted race to their children. Within and across-case data analytic strategies were used to identify commonalities and variations in how Black men and White women in couple relationships formed their family identities over time. Coming together was the core theme described by the Black-White couples as they negotiated the process of forming a family identity. Four major tasks in the construction of interracial family identity emerged: (a) understanding and resolving family of origin chaos and turmoil, (b) transcending Black-White racial history, (c) articulating the interracial family's racial standpoint, and (d) explaining race to biracial children across the developmental stages. The findings guide family nurses in promoting family identity formation as a component of family health within the nurse-family partnership with Black-White mixed-race families.
Raspoet, R; Shearer, N; Appia-Ayme, C; Haesebrouck, F; Ducatelle, R; Thompson, A; Van Immerseel, F
2014-05-01
Eggs contaminated with Salmonella Enteritidis are an important source of human foodborne Salmonella infections. Salmonella Enteritidis is able to contaminate egg white during formation of the egg within the chicken oviduct, and it has developed strategies to withstand the antimicrobial properties of egg white to survive in this hostile environment. The mechanisms involved in the persistence of Salmonella Enteritidis in egg white are likely to be complex. To address this issue, a microarray-based transposon library screen was performed to identify genes necessary for survival of Salmonella Enteritidis in egg white at chicken body temperature. The majority of identified genes belonged to the lipopolysaccharide biosynthesis pathway. Additionally, we provide evidence that the serine protease/heat shock protein (HtrA) appears essential for the survival of Salmonella Enteritidis in egg white at chicken body temperature.
A white dwarf with an oxygen atmosphere.
Kepler, S O; Koester, Detlev; Ourique, Gustavo
2016-04-01
Stars born with masses below around 10 solar masses end their lives as white dwarf stars. Their atmospheres are dominated by the lightest elements because gravitational diffusion brings the lightest element to the surface. We report the discovery of a white dwarf with an atmosphere completely dominated by oxygen, SDSS J124043.01+671034.68. After oxygen, the next most abundant elements in its atmosphere are neon and magnesium, but these are lower by a factor of ≥25 by number. The fact that no hydrogen or helium are observed is surprising. Oxygen, neon, and magnesium are the products of carbon burning, which occurs in stars at the high-mass end of pre-white dwarf formation. This star, a possible oxygen-neon white dwarf, will provide a rare observational test of the evolutionary paths toward white dwarfs. Copyright © 2016, American Association for the Advancement of Science.
Numerical simulations of compressible mixing layers
NASA Technical Reports Server (NTRS)
Normand, Xavier
1990-01-01
Direct numerical simulations of two-dimensional temporally growing compressible mixing layers are presented. The Kelvin-Helmholtz instability is initially excited by a white-noise perturbation superimposed onto a hyperbolic tangent meanflow profile. The linear regime is studied at low resolution in the case of two flows of equal temperatures, for convective Mach numbers from 0.1 to 1 and for different values of the Reynolds number. At higher resolution, the complete evolution of a two-eddy mixing layer between two flows of different temperatures is simulated at moderate Reynolds number. Similarities and differences between flows of equal convective Mach numbers are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Engstrom, T. A.; Yoder, N. C.; Crespi, V. H., E-mail: tae146@psu.edu, E-mail: ncy5007@psu.edu, E-mail: vhc2@psu.edu
A systematic search for multicomponent crystal structures is carried out for five different ternary systems of nuclei in a polarizable background of electrons, representative of accreted neutron star crusts and some white dwarfs. Candidate structures are “bred” by a genetic algorithm and optimized at constant pressure under the assumption of linear response (Thomas–Fermi) charge screening. Subsequent phase equilibria calculations reveal eight distinct crystal structures in the T = 0 bulk phase diagrams, five of which are complicated multinary structures not previously predicted in the context of compact object astrophysics. Frequent instances of geometrically similar but compositionally distinct phases give insight into structural preferencesmore » of systems with pairwise Yukawa interactions, including and extending to the regime of low-density colloidal suspensions made in a laboratory. As an application of these main results, we self-consistently couple the phase stability problem to the equations for a self-gravitating, hydrostatically stable white dwarf, with fixed overall composition. To our knowledge, this is the first attempt to incorporate complex multinary phases into the equilibrium phase-layering diagram and mass–radius-composition dependence, both of which are reported for He–C–O and C–O–Ne white dwarfs. Finite thickness interfacial phases (“interphases”) show up at the boundaries between single-component body-centered cubic (bcc) crystalline regions, some of which have lower lattice symmetry than cubic. A second application—quasi-static settling of heavy nuclei in white dwarfs—builds on our equilibrium phase-layering method. Tests of this nonequilibrium method reveal extra phases that play the role of transient host phases for the settling species.« less
NASA Astrophysics Data System (ADS)
Engstrom, T. A.; Yoder, N. C.; Crespi, V. H.
2016-02-01
A systematic search for multicomponent crystal structures is carried out for five different ternary systems of nuclei in a polarizable background of electrons, representative of accreted neutron star crusts and some white dwarfs. Candidate structures are “bred” by a genetic algorithm and optimized at constant pressure under the assumption of linear response (Thomas-Fermi) charge screening. Subsequent phase equilibria calculations reveal eight distinct crystal structures in the T = 0 bulk phase diagrams, five of which are complicated multinary structures not previously predicted in the context of compact object astrophysics. Frequent instances of geometrically similar but compositionally distinct phases give insight into structural preferences of systems with pairwise Yukawa interactions, including and extending to the regime of low-density colloidal suspensions made in a laboratory. As an application of these main results, we self-consistently couple the phase stability problem to the equations for a self-gravitating, hydrostatically stable white dwarf, with fixed overall composition. To our knowledge, this is the first attempt to incorporate complex multinary phases into the equilibrium phase-layering diagram and mass-radius-composition dependence, both of which are reported for He-C-O and C-O-Ne white dwarfs. Finite thickness interfacial phases (“interphases”) show up at the boundaries between single-component body-centered cubic (bcc) crystalline regions, some of which have lower lattice symmetry than cubic. A second application—quasi-static settling of heavy nuclei in white dwarfs—builds on our equilibrium phase-layering method. Tests of this nonequilibrium method reveal extra phases that play the role of transient host phases for the settling species.
Characterization of chemical interactions during chemical mechanical polishing (CMP) of copper
NASA Astrophysics Data System (ADS)
Lee, Seung-Mahn
2003-10-01
Chemical mechanical polishing (CMP) has received much attention as an unique technique to provide a wafer level planarization in semiconductor manufacturing. However, despite the extensive use of CMP, it still remains one of the least understood areas in semiconductor processing. The lack of the fundamental understanding is a significant barrier to further advancements in CMP technology. One critical aspect of metal CMP is the formation of a thin surface layer on the metal surface. The formation and removal of this layer controls all the aspects of the CMP process, including removal rate, surface finish, etc. In this dissertation, we focus on the characterization of the formation and removal of the thin surface layer on the copper surface. The formation dynamics was investigated using static and dynamic electrochemical techniques, including potentiodynamic scans and chronoamperometry. The results were validated using XPS measurements. The mechanical properties of the surface layer were investigated using nanoindentation measurements. The electrochemical investigation showed that the thickness of the surface layer is controlled by the chemicals such as an oxidizer (hydrogen peroxide), a corrosion inhibitor (benzotriazole), a complexing agent (citric acid), and their concentrations. The dynamic electrochemical measurements indicated that the initial layer formation kinetics is unaffected by the corrosion inhibitors. The passivation due to the corrosion inhibitor becomes important only on large time scales (>200 millisecond). The porosity and the density of the chemically modified surface layer can be affected by additives of other chemicals such as citric acid. An optimum density of the surface layer is required for high polishing rate while at the same time maintaining a high degree of surface finish. Nanoindentation measurements indicated that the mechanical properties of the surface layer are strongly dependent on the chemical additives in the slurry. The CMP removal rates were found to be in good agreement with the initial reaction kinetics as well as the mechanical properties of the chemically modified surface layer. In addition, the material removal model based on the micro- and nano-scale interactions, which were measured experimentally, has been developed.
Convective Differentiation of the Earth's Mantle
NASA Astrophysics Data System (ADS)
Hansen, U.; Schmalzl, J.; Stemmer, K.
2007-05-01
The differentiation of the Earth is likely to be influenced by convective motions within the early mantle. Double- diffusive convection (d.d.c), driven by thermally and compositionally induced density differences is considered as a vital mechanism behind the dynamic differentiation of the early mantle.. We demonstrate that d.d.c can lead to layer formation on a planetary scale in the diffusive regime where composition stabilizes the system whil heat provides the destabilizing force. Choosing initial conditions in which a stable compositional gradient overlies a hot reservoir we mimic the situation of a planet in a phase after core formation. Differently from earlier studies we fixed the temperature rather than the heat flux at the lower boundary, resembling a more realistic condition for the core-mantle boundary. We have carried out extended series of numerical experiments, ranging from 2D calculations in constant viscosity fluids to fully 3D experiments in spherical geometry with strongly temperature dependent viscosity. The buoyancy ratio R and the Lewis number Le are the important dynamical parameters. In all scenarios we could identify a parameter regime where the non-layered initial structure developed into a state consisting of several, mostly two layers. Initially plumes from the bottom boundary homogenize a first layer which subsequently thickens. The bottom layer heats up and then convection is initiated in the top layer. This creates dynamically (i.e. without jump in the material behavior) a stack of separately convecting layers. The bottom layer is significantly thicker than the top layer. Strongly temperature dependent viscosity leads to a more complex evolution The formation of the bottom layer is followed by the generation of several layers on top. Finally the uppermost layer starts to convect. In general, the multilayer structure collapses into a two layer system. We employed a numerical technique, allowing for a diffusion free treatment of the compositional field. In each case a similar evolution has been observed. This indicates that a temporary formation of layered structures in planetary interiors is a typical phenomenon. Moreover, in this scenario, plate tectonics appears only in later stages of the evolution.
Nascimento, Luana Beatriz dos Santos; Moreira, Nattacha dos Santos; Leal-Costa, Marcos Vinícius; Costa, Sônia Soares; Tavares, Eliana Schwartz
2015-10-01
UV-B radiation can be stressful for plants and cause morphological and biochemical changes. Kalanchoe pinnata is a CAM leaf-succulent species distributed in hot and dry regions, and is rich in flavonoids, which are considered to be protective against UV-B radiation. This study aims to verify if K. pinnata has morphological or anatomical responses as a strategy in response to high UV-B levels. Kalanchoe pinnata plants of the same age were grown under white light (control) or white light plus supplemental UV-B radiation (5 h d(-1)). The plants were treated with the same photoperiod, photosynthetically active radiation, temperature and daily watering system. Fragments of the middle third of the leaf blade and petiole were dehydrated and then embedded in historesin and sectioned in a rotary microtome. Sections were stained with toluidine blue O and mounted in Entellan®. Microchemical analyses by optical microscopy were performed on fresh material with Sudan III, Sudan IV and phloroglucinol, and analysed using fluorescence microscopy. Supplemental UV-B radiation caused leaf curling and the formation of brown areas on the leaves. These brown areas developed into a protective tissue on the adaxial side of the leaf, but only in directly exposed regions. Anatomically, this protective tissue was similar to a wound-periderm, with outer layer cell walls impregnated with suberin and lignin. This is the first report of wound-periderm formation in leaves in response to UV-B radiation. This protective tissue could be important for the survival of the species in desert regions under high UV-B stress conditions. © The Author 2015. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Resende, Laysa Cristina Araujo; Batista, Inez Staciarini; Denardini, Clezio Marcos; Batista, Paulo Prado; Carrasco, Alexander José; Andrioli, Vânia Fátima; Moro, Juliano
2018-06-01
This work analysis the blanketing sporadic layers (Esb) behavior over São Luís, Brazil (2° 31‧ S, 44° 16‧ W, dip: -4.80) which is classified as a transition region between equatorial and low-latitude. Hence, some peculiarities can appear as Esb occurrence instead of the common Esq, which is a non-blanketing irregularity layer. The analysis presented here was obtained using a modified version of a theoretical model for the E region (MIRE), which computes the densities of the metallic ions (Fe+ and Mg+) and the densities of the main molecular ions (NO+, O2+, N2+) by solving the continuity and momentum equations for each one of them. In that model, the Es layer physics driven by both diurnal and semidiurnal tidal winds are taken into account and it was extended in height coverage by adding a novel neutral wind model derived from the all-sky meteor radar measurements. Thus, we provide more trustworthy results related to the Es layer formation in the equatorial region. We verified the contribution of each tidal wind component to the Esb layer formation in this equatorial region. Additionally, we compared the Es layer electron density computed by MIRE with the data obtained by using the blanketing frequency parameter (fbEs) deduced from ionograms. The results show that the diurnal component of the tidal wind is more important in the Esb layer formation whereas the semidiurnal component has a little contribution in our simulations. Finally, it was verified that the modified MIRE presented here can be used to study the Esb layers occurrence over the equatorial region in the Brazilian sector.
NASA Technical Reports Server (NTRS)
Charette, R. F.; Hyer, M. W.
1990-01-01
The influence is investigated of a curvilinear fiber format on load carrying capacity of a layered fiber reinforced plate with a centrally located hole. A curvilinear fiber format is descriptive of layers in a laminate having fibers which are aligned with the principal stress directions in those layers. Laminates of five curvilinear fiber format designs and four straightline fiber format designs are considered. A quasi-isotropic laminate having a straightline fiber format is used to define a baseline design for comparison with the other laminate designs. Four different plate geometries are considered and differentiated by two values of hole diameter/plate width equal to 1/6 and 1/3, and two values of plate length/plate width equal to 2 and 1. With the plates under uniaxial tensile loading on two opposing edges, alignment of fibers in the curvilinear layers with the principal stress directions is determined analytically by an iteration procedure. In-plane tensile load capacity is computed for all of the laminate designs using a finite element analysis method. A maximum strain failure criterion and the Tsai-Wu failure criterion are applied to determine failure loads and failure modes. Resistance to buckling of the laminate designs to uniaxial compressive loading is analyzed using the commercial code Engineering Analysis Language. Results indicate that the curvilinear fiber format laminates have higher in-plane tensile load capacity and comparable buckling resistance relative to the straightline fiber format laminates.
NASA Astrophysics Data System (ADS)
Chen, Sun-Zen; Peng, Shiang-Hau; Ting, Tzu-Yu; Wu, Po-Shien; Lin, Chun-Hao; Chang, Chin-Yeh; Shyue, Jing-Jong; Jou, Jwo-Huei
2012-10-01
We demonstrate the feasibility of using direct contact-printing in the fabrication of monochromatic and polychromatic organic light-emitting diodes (OLEDs). Bright devices with red, green, blue, and white contact-printed light-emitting layers with a respective maximum luminance of 29 000, 29 000, 4000, and 18 000 cd/m2 were obtained with sound film integrity by blending a polymeric host into a molecular host. For the red OLED as example, the maximum luminance was decreased from 29 000 to 5000 cd/m2 as only the polymeric host was used, or decreased to 7000 cd/m2 as only the molecular host was used. The markedly improved device performance achieved in the devices with blended hosts may be attributed to the employed polymeric host that contributed a good film-forming character, and the molecular host that contributed a good electroluminescence character.
Steering and filtering white light with resonant waveguide gratings
NASA Astrophysics Data System (ADS)
Quaranta, Giorgio; Basset, Guillaume; Martin, Olivier J. F.; Gallinet, Benjamin
2017-08-01
A novel thin-film single-layer structure based on resonant waveguide gratings (RWGs) allows to engineer selective color filtering and steering of white light. The unit cell of the structure consists of two adjacent finite-length and cross-talking RWGs, where the former acts as in-coupler and the latter acts as out-coupler. The structure is made by only one nano-imprint lithography replication and one thin film layer deposition, making it fully compatible with up-scalable fabrication processes. We characterize a fabricated optical security element designed to work with the flash and the camera of a smartphone in off-axis light steering configuration, where the pattern is revealed only by placing the smartphone in the proper position. Widespread applications are foreseen in a variety of fields, such as multifocal or monochromatic lenses, solar cells, biosensors, security devices and seethrough optical combiners for near-eye displays.
NASA Astrophysics Data System (ADS)
Miura-Fujiwara, Eri; Suzuki, Yuu; Ito, Michiko; Yamada, Motoko; Matsutake, Sinpei; Takashima, Seigo; Sato, Hisashi; Watanabe, Yoshimi
2018-01-01
Ti and Ti alloys are widely used for biomedical applications such as artificial joints and dental devices because of their good mechanical properties and biochemical compatibility. However, dental devices made of Ti and Ti alloys do not have the same color as teeth, so they are inferior to ceramics and polymers in terms of aesthetic properties. In a previous study, Ti-29Nb-13Ta-4.6Zr was coated with a white Ti oxide layer by heat treatment to improve its aesthetic properties. Shot-peening is a severe plastic deformation process and can introduce a large shear strain on the peened surface. In this study, the effects of shot-peening and atmospheric-pressure plasma on Ti-29Nb-13Ta-4.6Zr were investigated to form a white layer on the surface for dental applications.
Mixing and overshooting in surface convection zones of DA white dwarfs: first results from ANTARES
NASA Astrophysics Data System (ADS)
Kupka, F.; Zaussinger, F.; Montgomery, M. H.
2018-03-01
We present results of a large, high-resolution 3D hydrodynamical simulation of the surface layers of a DA white dwarf (WD) with Teff = 11 800 K and log (g) = 8 using the ANTARES code, the widest and deepest such simulation to date. Our simulations are in good agreement with previous calculations in the Schwarzschild-unstable region and in the overshooting region immediately beneath it. Farther below, in the wave-dominated region, we find that the rms horizontal velocities decay with depth more rapidly than the vertical ones. Since mixing requires both vertical and horizontal displacements, this could have consequences for the size of the region that is well mixed by convection, if this trend is found to hold for deeper layers. We discuss how the size of the mixed region affects the calculated settling times and inferred steady-state accretion rates for WDs with metals observed in their atmospheres.
A Pulsar and White Dwarf in an Unexpected Orbit
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2016-11-01
Astronomers have discovered a binary system consisting of a low-mass white dwarf and a millisecond pulsar but its eccentric orbit defies all expectations of how such binaries form.Observed orbital periods and binary eccentricities for binary millisecond pulsars. PSR J2234+0511 is the furthest right of the green stars that mark the five known eccentric systems. [Antoniadis et al. 2016]Unusual EccentricityIt would take a low-mass (0.4 solar masses) white dwarf over 100 billion years to form from the evolution of a single star. Since this is longer than the age of the universe, we believe that these lightweights are instead products of binary-star evolution and indeed, we observe many of these stars to still be in binary systems.But the binary evolution that can create a low-mass white dwarf includes a period of mass transfer, in which efficient tidal dissipation damps the systems orbital eccentricity. Because of this, we would expect all systems containing low-mass white dwarfs to have circular orbits.In the past, our observations of low-mass white dwarfmillisecond pulsar binaries have all been consistent with this expectation. But a new detection has thrown a wrench in the works: the unambiguous identification of a low-mass white dwarf thats in an eccentric (e=0.13) orbit with the millisecond pulsar PSR J2234+0511. How could this system have formed?Eliminating Formation ModelsLed by John Antoniadis (Dunlap Institute at University of Toronto), a team of scientists has used newly obtained optical photometry (from the Sloan Digital Sky Survey) and spectroscopy (from the Very Large Telescope in Chile) of the white dwarf to confirm the identification of this system.Antoniadis and collaborators then use measurements of the bodies masses (0.28 and 1.4 solar masses for the white dwarf and pulsar, respectively) and velocities, and constraints on the white dwarfs temperature, radius and surface gravity, to address three proposed models for the formation of this system.The 3D motion of the pulsar (black solid lines; current position marked with diamond) in our galaxy over the past 1.5 Gyr. This motion is typical for low-mass X-ray binary descendants, favoring a binary-evolution model over a 3-body-interaction model. [Antoniadis et al. 2016]In the first model, the eccentric binary was created via adynamic three-body formation channel. This possibility is deemed unlikely, as the white-dwarf properties and all the kinematic properties of the system point to normal binary evolution.In the secondmodel, the binary system gains its high eccentricity after mass transfer ends, when the pulsar progenitor experiences a spontaneous phase transition. The authors explore two options for this: one in which the neutron star implodes into a strange-quark star, and the other in which an over-massive white dwarf suffers a delayed collapse into a neutron star. Both cases are deemed unlikely, because the mass inferred for the pulsar progenitor is not consistent with either model.In the third model, the system forms a circumbinary disk fueled by material escaping the proto-white dwarf. After mass transfer has ended, interactions between the binary and its disk gradually increase the eccentricity of the system, pumping it up to what we observe today. All of the properties of the system measured by Antoniadis and collaborators are thus far consistent with this model.Further observations of this system and systems like it (several others have been detected, though not yet confirmed) will help determine whether binary evolution combined with interactions with a disk can indeed explain the formation of this unexpectedly eccentricsystem.CitationJohn Antoniadis et al 2016 ApJ 830 36. doi:10.3847/0004-637X/830/1/36
NASA Technical Reports Server (NTRS)
Vennes, Stephane; Thorstensen, John R.
1994-01-01
We have obtained new high-dispersion optical spectroscopy at Kitt Peak National Observatory (KPNO) and new International Ultraviolet Explorer (IUE) spectroscopy of the white dwarf+red dwarf binary system Feige 24. The optical range shows a composite DA+dM spectrum, together with H I Balmer and He I emission. The orbital phase dependence of the emission shows that it results from extreme ultraviolet (EUV) light reprocessing in the red dwarf upper atmosphere. The systems close enough and hot enough to show this reprocessing signature only recently emerged from common-envelope evolution. The ultraviolet spectrum exclusively emanates from the white dwarf and shows numerous heavy element absorption lines. We measured accurate radial velocities of the red dwarf component motion, traced by both optical absorption and emission lines, and new radial velocities of the white dwarf, traced by ultraviolet Fe V lines. Combining these measurements, we refined the orbital parameters presented by Vennes et al. (1991), and we confirmed that the white dwarf gravitational redshift is exceptionally small with 9 +/- 2 km/s. From this we deduced that the interior is either pure helium or carbon with a thick hydrogen layer, and we derived, for the combined interior compositions, a white dwarf mass and radius of M(sub WD) = 0.44-050 solar mass and R(sub WD) = 0.028-0.036 solar radius. We suggest that Feige 24 could be a typical case of close binary evolution leading to the formation of a low-mass helium white dwarf. The mass of the red dwarf and the inclination of the system naturally follow: M(sub dM) = 0.26-0.33 solar mass, i greater than or equal to 75 deg. High-dispersion H-alpha line profiles are asymmetrical, strongly enhanced toward the blue, suggesting a moving atmosphere possibly linked to a mass loss rate of 10(exp -10) solar mass/yr. The IUE spectra taken when the system is near inferior conjunction show strong He II 1640 A absorption. The profile is highly variable in width and intensity. Because it is correlated with the passage of the white dwarf at inferior conjunction, the absorption may occur in some foreground plasma emanated by the red dwarf and accumulating near a Lagrangian point or, alternatively, it may originate in an accretion spot on the white dwarf surface coaligned with the major orbital axis. Either way, the He II detection may imply substantial mass loss from the red dwarf with a corollary reclassification of Feige 24 as a mixed He/H DAO white dwarf resulting from accretion of secondary mass-loss material. Feige 24 is the prototype of a class of young, EUV-emitting, binary systems comprising a late main sequence secondary and a hot H-rich white dwarf; the class is characterized by optical and ultraviolet photospheric He II absorption, circumstellar C IV lambda (1550) absorption, and by the presence of EUV-induced, phase-dependent Balmer fluorescence. These young systems present the best opportunity to constrain theory of common-envelope evolution.
Vortex Formation During Unsteady Boundary-Layer Separation
NASA Astrophysics Data System (ADS)
Das, Debopam; Arakeri, Jaywant H.
1998-11-01
Unsteady laminar boundary-layer separation is invariably accompanied by the formation of vortices. The aim of the present work is to study the vortex formation mechanism(s). An adverse pressure gradient causing a separation can be decomposed into a spatial component ( spatial variation of the velocity external to the boundary layer ) and a temporal component ( temporal variation of the external velocity ). Experiments were conducted in a piston driven 2-D water channel, where the spatial component could be be contolled by geometry and the temporal component by the piston motion. We present results for three divergent channel geometries. The piston motion consists of three phases: constant acceleration from start, contant velocity, and constant deceleration to stop. Depending on the geometry and piston motion we observe different types of unsteady separation and vortex formation.
A Triassic to Cretaceous Sundaland-Pacific subduction margin in West Sarawak, Borneo
NASA Astrophysics Data System (ADS)
Breitfeld, H. Tim; Hall, Robert; Galin, Thomson; Forster, Margaret A.; BouDagher-Fadel, Marcelle K.
2017-01-01
Metamorphic rocks in West Sarawak are poorly exposed and studied. They were previously assumed to be pre-Carboniferous basement but had never been dated. New 40Ar/39Ar ages from white mica in quartz-mica schists reveal metamorphism between c. 216 to 220 Ma. The metamorphic rocks are associated with Triassic acid and basic igneous rocks, which indicate widespread magmatism. New U-Pb dating of zircons from the Jagoi Granodiorite indicates Triassic magmatism at c. 208 Ma and c. 240 Ma. U-Pb dating of zircons from volcaniclastic sediments of the Sadong and Kuching Formations confirms contemporaneous volcanism. The magmatic activity is interpreted to represent a Triassic subduction margin in westernmost West Sarawak with sediments deposited in a forearc basin derived from the magmatic arc at the Sundaland-Pacific margin. West Sarawak and NW Kalimantan are underlain by continental crust that was already part of Sundaland or accreted to Sundaland in the Triassic. One metabasite sample, also previously assumed to be pre-Carboniferous basement, yielded Early Cretaceous 40Ar/39Ar ages. They are interpreted to indicate resumption of subduction which led to deposition of volcaniclastic sediments and widespread magmatism. U-Pb ages from detrital zircons in the Cretaceous Pedawan Formation are similar to those from the Schwaner granites of NW Kalimantan, and the Pedawan Formation is interpreted as part of a Cretaceous forearc basin containing material eroded from a magmatic arc that extended from Vietnam to west Borneo. The youngest U-Pb ages from zircons in a tuff layer from the uppermost part of the Pedawan Formation indicate that volcanic activity continued until c. 86 to 88 Ma when subduction terminated.
The functional morphology of color changing in a spider: development of ommochrome pigment granules.
Insausti, Teresita C; Casas, Jérôme
2008-03-01
Studies on the formation of ommochrome pigment granules are very few, despite their generalized occurrence as screening pigments in insect eyes. This is particularly true for ommochrome granules responsible for epidermal coloration. The aims of this study were to characterize the localization of major body pigments in a color changing mimetic spider, Misumena vatia (Thomisidae), and to describe the formation and location of ommochrome pigment granules responsible for the spider's color change from white to yellow. The unpigmented cuticula of this spider is transparent. Both the guanine localized in guanine cells in the opisthosoma and the uric acid localized in epidermis cells in the prosoma are responsible for the white coloration. The bright yellow color is due to the combination of ommochrome pigment granules and the white reflectance from coincident guanine and/or uric acid. The formation of ommochrome pigment granules in epidermis cells proceeds via three distinctive steps. Translucent, UV fluorescent, progranules (type I) are produced by a dense network of endoplasmic reticulum associated with numerous mitochondria and glycogen rosettes. These progranules are present in white spiders only, and regularly distributed in the cytoplasm. The merging of several progranules of type I into a transient state (progranule type II) leads to the formation of granules (type III) characterized by their lack of fluorescence, their spherical sections and their osmophilic-electron-dense contents. They are found in yellow spiders and in the red stripes on the body sides. Their color varies from yellow to red. Thus, white spiders contain only type I granules, yellow tinted spiders contain type II and III granules and bright yellow spiders contain only type III granules. We present a synthetic view of the ontogeny of ommochrome granules. We discuss the physiology of color changing and the nature of the chemical compounds in the different types of granules. Extended studies on the ultrastructural modification and physiological processes associated with color change are required before any statement about the adaptiveness of the color change can be made.
Shklyaev, A A; Latyshev, A V
2016-12-01
We study the surface morphology and chemical composition of SiGe layers after their formation under high-temperature annealing at 800-1100 °C of 30-150 nm Ge layers deposited on Si(100) at 400-500 °C. It is found that the annealing leads to the appearance of the SiGe layers of two types, i.e., porous and continuous. The continuous layers have a smoothened surface morphology and a high concentration of threading dislocations. The porous and continuous layers can coexist. Their formation conditions and the ratio between their areas on the surface depend on the thickness of deposited Ge layers, as well as on the temperature and the annealing time. The data obtained suggest that the porous SiGe layers are formed due to melting of the strained Ge layers and their solidification in the conditions of SiGe dewetting on Si. The porous and dislocation-rich SiGe layers may have properties interesting for applications.
NASA Astrophysics Data System (ADS)
Gong, Fubao; Shen, Jun; Gao, Runhua; Xie, Xiong; Luo, Xiong
2016-03-01
A novel organic-inorganic Mg(OH)2/silane surface layer has been developed for corrosion protection of AZ31 magnesium alloy. The results of electrochemical impedance spectroscopy (EIS), the immersion tests, Fourier-transform infrared spectroscopy (FTIR) and sellotape tests showed that the Mg(OH)2/silane-based composite surface layer possessed excellent corrosion resistance and very good adhesion due to the formation of Si-O-Mg bond between Mg(OH)2 layer and silane layer. Electrochemical impedance spectroscopy tests results indicated that for the long-term corrosion protection of AZ31 the increase of the curing temperature improved the impedance of the composited layer when the curing temperature was lower than 130 °С. However, the impedance of the composited layer deceased when the curing temperature was more than 130 °С due to the carbonization of the silane layer.
Killin'em with kindness: "The porter" and Hemingway's racial cauldron.
Dudley, Marc
2010-01-01
"The Porter" brings us close to the nightmare plaguing white America's collective imagination during the 20th century's formative years, when white and black collided and racial definition conflated. Hemingway's piece about a young white boy, his father, and the African-American porter who serves them on an overnight train trip is an exploration of 20th century American race relations. Initially, Hemingway pushes the reader to see the world through the young boy's eyes, through the bifurcated lens of racial stereotype. But through the black porter's intervention, the reader comes to recognize that the lens of racial stereotype is imperfect, faulty even, and that notions of white supremacy and the color line are dangerous illusions.
NASA Astrophysics Data System (ADS)
Tremblay, P.-E.; Gentile-Fusillo, N.; Cummings, J.; Jordan, S.; Gänsicke, B. T.; Kalirai, J. S.
2018-04-01
The vast majority of stars will become white dwarfs at the end of the stellar life cycle. These remnants are precise cosmic clocks owing to their well constrained cooling rates. Gaia Data Release 2 is expected to discover hundreds of thousands of white dwarfs, which can then be observed spectroscopically with WEAVE and 4MOST. By employing spectroscopically derived atmospheric parameters combined with Gaia parallaxes, white dwarfs can constrain the stellar formation history in the early developing phases of the Milky Way, the initial mass function in the 1.5 to 8 M ⊙ range, and the stellar mass loss as well as the state of planetary systems during the post main-sequence evolution.
Three-peak standard white organic light-emitting devices for solid-state lighting
NASA Astrophysics Data System (ADS)
Guo, Kunping; Wei, Bin
2014-12-01
Standard white organic light-emitting device (OLED) lighting provides a warm and comfortable atmosphere and shows mild effect on melatonin suppression. A high-efficiency red OLED employing phosphorescent dopant has been investigated. The device generates saturated red emission with Commission Internationale de l'Eclairage (CIE) coordinates of (0.66, 0.34), characterized by a low driving voltage of 3.5 V and high external quantum efficiency of 20.1% at 130 cd m-2. In addition, we have demonstrated a two-peak cold white OLED by combining with a pure blue emitter with the electroluminescent emission of 464 nm, 6, 12-bis{[N-(3,4-dimethylpheyl)-N-(2,4,5-trimethylphenyl)]} chrysene (BmPAC). It was found that the man-made lighting device capable of yielding a relatively stable color emission within the luminance range of 1000-5000 cd m-2. And the chromaticity coordinates, varying from (0.25, 0.21) to (0.23, 0.21). Furthermore, an ultrathin layer of green-light-emitting tris (2-phenylpyridinato)iridium(Ⅲ) Ir(ppy)3 in the host material was introduced to the emissive region for compensating light. By appropriately controlling the layer thickness, the white light OLED achieved good performance of 1280 cd m-2 at 5.0 V and 5150 cd m-2 at 7.0 V, respectively. The CIE coordinates of the emitted light are quite stable at current densities from 759 cd m-2 to 5150 cd m-2, ranging from (0.34, 0.37) to (0.33, 0.33).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Melis, Carl; Dufour, P., E-mail: cmelis@ucsd.edu
We present spectroscopic observations of the dust- and gas-enshrouded, polluted, single white dwarf star SDSS J104341.53+085558.2 (hereafter SDSS J1043+0855). Hubble Space Telescope Cosmic Origins Spectrograph far-ultraviolet spectra combined with deep Keck HIRES optical spectroscopy reveal the elements C, O, Mg, Al, Si, P, S, Ca, Fe, and Ni and enable useful limits for Sc, Ti, V, Cr, and Mn in the photosphere of SDSS J1043+0855. From this suite of elements we determine that the parent body being accreted by SDSS J1043+0855 is similar to the silicate Moon or the outer layers of Earth in that it is rocky and iron-poor.more » Combining this with comparison to other heavily polluted white dwarf stars, we are able to identify the material being accreted by SDSS J1043+0855 as likely to have come from the outermost layers of a differentiated object. Furthermore, we present evidence that some polluted white dwarfs (including SDSS J1043+0855) allow us to examine the structure of differentiated extrasolar rocky bodies. Enhanced levels of carbon in the body polluting SDSS J1043+0855 relative to the Earth–Moon system can be explained with a model where a significant amount of the accreted rocky minerals took the form of carbonates; specifically, through this model the accreted material could be up to 9% calcium-carbonate by mass.« less
ERIC Educational Resources Information Center
Buras, Kristen L.
2011-01-01
In this article, Kristen L. Buras examines educational policy formation in New Orleans and the racial, economic, and spatial dynamics shaping the city's reconstruction since 2005. More specifically, Buras draws on the critical theories of whiteness as property, accumulation by dispossession, and urban space economy to describe the strategic…
Examining the Origins of Myeloid Leukemia | Center for Cancer Research
Acute myeloid leukemia or AML, a cancer of the white blood cells, is the most common type of rapidly-growing leukemia in adults. The over-production of white blood cells in the bone marrow inhibits the development of other necessary blood components including red blood cells, which carry oxygen throughout the body, and platelets, which are required for clot formation. The
OLEDs for lighting applications
NASA Astrophysics Data System (ADS)
van Elsbergen, V.; Boerner, H.; Löbl, H.-P.; Goldmann, C.; Grabowski, S. P.; Young, E.; Gaertner, G.; Greiner, H.
2008-08-01
Organic light emitting diodes (OLEDs) provide potential for power-efficient large area light sources that combine revolutionary properties. They are thin and flat and in addition they can be transparent, colour-tuneable, or flexible. We review the state of the art in white OLEDs and present performance data for three-colour hybrid white OLEDs on indexmatched substrates. With improved optical outcoupling 45 lm/W are achieved. Using a half-sphere to collect all the light that is in the substrate results in 80 lm/W. Optical modelling supports the experimental work. For decorative applications features like transparency and colour tuning are very appealing. We show results on transparent white OLEDs and two ways to come to a colour-variable OLED. These are lateral separation of different colours in a striped design and direct vertical stacking of the different emitting layers. For a striped colour tuneable OLED 36 lm/W are achieved in white with improved optical outcoupling.
Chemical whitings and chlorophyll distributions in the Great Lakes as viewed by Landsat
NASA Technical Reports Server (NTRS)
Strong, A. E.
1978-01-01
A chemical precipitation of calcium carbonate, or whiting, was first observed by satellite in Lake Michigan during August 1973. Since that initial observation similar events have been noted in Lakes Michigan, Erie, and Ontario with imagery from Landsat, Skylab, and NOAA satellites. By the use of Landsat multispectral data together with NOAA thermal infrared data, it has been observed that whitings occur several meters below the lake surface in relatively warm water. They are most vividly displayed during and after periods of upwelling. As the epilimnetic waters become supersaturated with Ca(+2) ions during summer, a triggering mechanism (presumably biological or physical) initiates the whiting, which may continue for several months. The effects on the biota of the euphotic zone when this milky cloud is present in the upper layers are poorly understood. However, Great Lakes circulation studies are taking advantage of these natural dye tracers.
Efficient non-doped phosphorescent orange, blue and white organic light-emitting devices
NASA Astrophysics Data System (ADS)
Yin, Yongming; Yu, Jing; Cao, Hongtao; Zhang, Letian; Sun, Haizhu; Xie, Wenfa
2014-10-01
Efficient phosphorescent orange, blue and white organic light-emitting devices (OLEDs) with non-doped emissive layers were successfully fabricated. Conventional blue phosphorescent emitters bis [4,6-di-fluorophenyl]-pyridinato-N,C2'] picolinate (Firpic) and Bis(2,4-difluorophenylpyridinato) (Fir6) were adopted to fabricate non-doped blue OLEDs, which exhibited maximum current efficiency of 7.6 and 4.6 cd/A for Firpic and Fir6 based devices, respectively. Non-doped orange OLED was fabricated utilizing the newly reported phosphorescent material iridium (III) (pbi)2Ir(biq), of which manifested maximum current and power efficiency of 8.2 cd/A and 7.8 lm/W. The non-doped white OLEDs were achieved by simply combining Firpic or Fir6 with a 2-nm (pbi)2Ir(biq). The maximum current and power efficiency of the Firpic and (pbi)2Ir(biq) based white OLED were 14.8 cd/A and 17.9 lm/W.
Photospheric soft X-ray emission from hot DA white dwarfs
NASA Technical Reports Server (NTRS)
Wesemael, F.; Raymond, J. C.; Kahn, S. M.; Liebert, J.; Steiner, J. E.; Shipman, H. L.
1984-01-01
The Einstein Observatory's imaging proportional counter has detected 150-eV soft X-ray radiation from the four hot DA white dwarfs EG 187, Gr 288 and 289, and LB 1663. The observed pulse height spectra suggest that the emission is generated by hot photospheres whose T(eff) lie in the 30,000-60,000 K range. The IUE spacecraft UV spectra and H-beta line profiles for the four stars have been fitted, along with the X-ray fluxes, with a grid of hot, high gravity, homogeneous model atmospheres of mixed H-He composition. In all cases, the data require the presence of some X-ray opacity in the photosphere. Attention is given to the implications of this result in the context of white dwarf surface layer diffusion theories. Also noted are the limits imposed on the hot white dwarf population by the Einstein Medium Sensitivity Survey.
Accretional Heating by Periodic Dwarf Nova Outburst Events
NASA Astrophysics Data System (ADS)
Godon, P.; Sion, E. M.
2001-12-01
We carry out simulations of evolutionary models of accreting white dwarfs in dwarf novae to assess the combined effect of boundary layer irradiation and compressional heating on the accreting star. We focus on the behavior of the surface observables of the accreting white dwarf for different value of the mass accretion rate and accretor mass. Outburst of days to weeks are followed by a shut off of the radial infall during quiescences lasting weeks to months. Preliminary results indicate that after a long evolution time of many accretion cycles, the effective surface temperature of the white dwarf will increase substantially. The purpose of this work is to generate a grid of models that will then be used to compared with observations of white dwarf heating and cooling in dwarf nova systems. This work is supported by NASA HST grant GO-8139 and in part by NSF grant AST99-01955 and NASA grant NAG5-8388.
The number of taste buds is related to bitter taste sensitivity in layer and broiler chickens.
Kudo, Ken-ichi; Shiraishi, Jun-ichi; Nishimura, Shotaro; Bungo, Takashi; Tabata, Shoji
2010-04-01
The relationship between taste sensitivity and the number of taste buds using a bitter tastant, quinine hydrochloride, was investigated in White Leghorn, Rhode Island Red, and broiler chickens. The White Leghorn and Rhode Island Red strains were able to perceive 2.0 mmol/L quinine hydrochloride, but the taste sensitivity of Rhode Island Red chickens was higher than that of White Leghorn chickens. Broiler chickens perceived 0.5 mmol/L quinine hydrochloride. The number of taste buds in the White Leghorn strain was the lowest, then the Rhode Island Red strain, with the number of taste buds highest in the broiler chickens. The number of taste buds was well correlated with bitter taste sensitivity. Therefore, we suggest that the number of taste buds is a vital factor in the perception of bitter taste and may be useful in selecting appropriate feeds for chickens.
Electrically switchable organo–inorganic hybrid for a white-light laser source
Huang, Jui-Chieh; Hsiao, Yu-Cheng; Lin, Yu-Ting; Lee, Chia-Rong; Lee, Wei
2016-01-01
We demonstrate a spectrally discrete white-light laser device based on a photonic bandgap hybrid, which is composed of a soft photonic crystal; i.e., a layer of dye-doped cholesteric liquid crystal (CLC), sandwiched between two imperfect but identical, inorganic multilayer photonic crystals. With a sole optical pump, a mono-, bi-, or tri-chromatic laser can be obtained and, through the soft photonic crystal regulated by an applied voltage, the hybrid possesses electrical tunability in laser wavelength. The three emitted spectral peaks originate from two bandedges of the CLC reflection band as well as one of the photonic defect modes in dual-mode lasing. Thanks to the optically bistable nature of CLC, such a white-light laser device can operate in quite an energy-saving fashion. This technique has potential to fulfill the present mainstream in the coherent white-light source. PMID:27324219
"White men can't jump." But can they throw? Social perception in European basketball.
Furley, P; Dicks, M
2014-10-01
In the present article, we investigate the influence of sociocultural stereotypes on the impression formation of basketball players and coaches. In Experiment 1 (n = 32), participants were shown a picture of a black or white basketball player prior to observation of a point-light video of a player executing a basketball free throw. The participant was informed that the player depicted in the picture was executing the free throw. Results indicated that ethnicity of the target player significantly influenced participant evaluations, demonstrating specific stereotypes about black and white basketball players when evaluating performance. In Experiment 2 (n = 30), results derived from the Implicit Association Test indicated that black players are implicitly associated with athletic player attributes. The results are in line with social schema theory and demonstrate that - similar to findings that have been reported in the United States - a subpopulation of German basketball players and coaches hold specific stereotypes about the abilities of black and white basketball athletes. These stereotypes bias impression formation when coaches and players make assessments of basketball performance. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Impact of Xanthylium Derivatives on the Color of White Wine.
Bührle, Franziska; Gohl, Anita; Weber, Fabian
2017-08-19
Xanthylium derivatives are yellow to orange pigments with a glyoxylic acid bridge formed by dimerization of flavanols, which are built by oxidative cleavage of tartaric acid. Although their structure and formation under wine-like conditions are well established, knowledge about their color properties and their occurrence and importance in wine is deficient. Xanthylium cations and their corresponding esters were synthesized in a model wine solution and isolated via high-performance countercurrent chromatography (HPCCC) and solid phase extraction (SPE). A Three-Alternative-Forced-Choice (3-AFC) test was applied to reveal the color perception threshold of the isolated compounds in white wine. Their presence and color impact was assessed in 70 different wines (58 white and 12 rosé wines) by UHPLC-DAD-ESI-MS n and the storage stability in wine was determined. The thresholds in young Riesling wine were 0.57 mg/L (cations), 1.04 mg/L (esters) and 0.67 mg/L (1:1 ( w / w ) mixture), respectively. The low thresholds suggest a possible impact on white wine color, but concentrations in wines were below the threshold. The stability study showed the degradation of the compounds during storage under several conditions. Despite the low perception threshold, xanthylium derivatives might have no direct impact on white wine color, but might play a role in color formation as intermediate products in polymerization and browning.
Robinson, Shenandoah; Mikolaenko, Irina; Thompson, Ian; Cohen, Mark L.; Goyal, Monisha
2011-01-01
Epilepsy associated with preterm birth is often refractory to anticonvulsants. Children who are born preterm are also prone to cognitive delay and behavioral problems. Brains from these children often show diffuse abnormalities in cerebral circuitry that is likely caused by disrupted development during critical stages of cortical formation. To test the hypothesis that prenatal injury impairs the developmental switch of γ-amino butyric acid (GABA)ergic synapses from excitatory to inhibitory, thereby disrupting cortical circuit formation and predisposing to epilepsy, we used immunohistochemistry to compare the expression of cation-chloride transporters that developmentally regulate postsynaptic GABAergic discharges in postmortem cerebral samples from infants born preterm with known white matter injury (n = 11) with that of controls with minimal white matter gliosis (n = 7). Controls showed the expected developmental expression of cation-chloride transporters NKCC1 and KCC2 and of calretinin, a marker of a GABAergic neuronal subpopulation. Samples from infants with white matter damage showed a significant loss of expression of both NKCC1 and KCC2 in subplate and white matter. By contrast, there were no significant differences in total cell number or glutamate transporter VGLUT1 expression. Together, these novel findings suggest a molecular mechanism involved in the disruption of a critical stage of cerebral circuit development after brain injury from preterm birth that may predispose to epilepsy. PMID:20467335
Preventive effect of fluoridated orthodontic resins subjected to high cariogenic challenges.
Passalini, Paula; Fidalgo, Tatiana Kelly da Silva; Caldeira, Erika Machado; Gleiser, Rogerio; Nojima, Matilde da Cunha Gonçalves; Maia, Lucianne Cople
2010-01-01
The aim of the present study was to evaluate the in vitro caries preventive effect of fluoridated orthodontic resins under pH cycling with two types of acid demineralizing saliva. Brackets were bonded to 60 bovine incisors, using either Transbond Plus Color Change (n=30) or Orthodontic Fill Magic (n=30) orthodontic resins. Each group of resin was divided into 3 subgroups (n=10): immersion in remineralizing artificial saliva for 14 days, pH cycling with high cariogenic challenge in acid saliva with pH 5.5, and acid saliva with pH 4.5. After 14 days of pH cycling, the caries preventive effect on the development of white spot lesion was evaluated considering the presence of inhibition zones to white spot lesions using two scores: 0= absence and 1= presence. Kruskal Wallis and Mann-Whitney tests (a=0.05) were used. Formation of white spot lesions was observed only under pH cycling using acid saliva with pH 4.5; with Transbond Plus Color Change being significantly more effective (p<0.05) in preventing the appearance of white spot lesions effect than Orthodontic Fill Magic. The acidity of the demineralizing solution influenced the formation of white spot lesions around orthodontic brackets under highly cariogenic conditions. Transbond Plus Color Change resin presented higher caries preventive effect than Orthodontic Fill Magic.
Vesicle Size Distribution as a Novel Nuclear Forensics Tool
Donohue, Patrick H.; Simonetti, Antonio
2016-09-22
The first nuclear bomb detonation on Earth involved a plutonium implosion-type device exploded at the Trinity test site (33°40'38.28"N, 106°28'31.44"W), White Sands Proving Grounds, near Alamogordo, New Mexico. Melting and subsequent quenching of the local arkosic sand produced glassy material, designated “Trinitite”. In cross section, Trinitite comprises a thin (1–2 mm), primarily glassy surface above a lower zone (1–2 cm) of mixed melt and mineral fragments from the precursor sand. Multiple hypotheses have been put forward to explain these well-documented but heterogeneous textures. In this study, we report the first quantitative textural analysis of vesicles in Trinitite to constrain theirmore » physical and thermal history. Vesicle morphology and size distributions confirm the upper, glassy surface records a distinct processing history from the lower region, that is useful in determining the original sample surface orientation. Specifically, the glassy layer has lower vesicle density, with larger sizes and more rounded population in cross-section. This vertical stratigraphy is attributed to a two-stage evolution of Trinitite glass from quench cooling of the upper layer followed by prolonged heating of the subsurface. Finally, defining the physical regime of post-melting processes constrains the potential for surface mixing and vesicle formation in a post-detonation environment.« less
Laser-induced periodic surface structures of thin, complex multi-component films
NASA Astrophysics Data System (ADS)
Reif, Juergen; Varlamova, Olga; Ratzke, Markus; Uhlig, Sebastian
2016-04-01
Femtosecond laser-induced regular nanostructures are generated on a complex multilayer target, namely a piece of a commercial, used hard disk memory. It is shown that after single-shot 800-nm irradiation at 0.26 J/cm2 only the polymer cover layer and—in the center—a portion of the magnetic multilayer are ablated. A regular array of linearly aligned spherical 450-nm features at the uncovered interface between cover and magnetic layers appears not to be produced by the irradiation. Only after about 10 pulses on one spot, classical ripples perpendicular to the laser polarization with a period of ≈700 nm are observed, with a modulation between 40 nm above and 40 nm below the pristine surface and an ablation depth only slightly larger than the thickness of the multilayer magnetic film. Further increase of the pulse number does not result in deeper ablation. However, 770-nm ripples become parallel to the polarization and are swelling to more than 120 nm above zero, much more than the full multilayer film thickness. In the spot periphery, much shallower 300-nm ripples are perpendicular to the strong modulation and the laser polarization. Irradiation with 0.49-J/cm2 pulses from an ultrafast white-light continuum results—in the spot periphery—in the formation of 200-nm ripples, only swelling above zero after removal of the polymer cover, without digging into the magnetic film.
Bornhorst, Gail M; Kostlan, Kevin; Singh, R Paul
2013-09-01
The particle size distribution of foods during gastric digestion indicates the amount of physical breakdown that occurred due to the peristaltic movement of the stomach walls in addition to the breakdown that initially occurred during oral processing. The objective of this study was to present an image analysis technique that was rapid, simple, and could distinguish between food components (that is, rice kernel and bran layer in brown rice). The technique was used to quantify particle breakdown of brown and white rice during gastric digestion in growing pigs (used as a model for an adult human) over 480 min of digestion. The particle area distributions were fit to a Rosin-Rammler distribution function. Brown and white rice exhibited considerable breakdown as the number of particles per image decreased over time. The median particle area (x(50)) increased during digestion, suggesting a gastric sieving phenomenon, where small particles were emptied and larger particles were retained for additional breakdown. Brown rice breakdown was further quantified by an examination of the bran layer fragments and rice grain pieces. The percentage of total particle area composed of bran layer fragments was greater in the distal stomach than the proximal stomach in the first 120 min of digestion. The results of this study showed that image analysis may be used to quantify particle breakdown of a soft food product during gastric digestion, discriminate between different food components, and help to clarify the role of food structure and processing in food breakdown during gastric digestion. © 2013 Institute of Food Technologists®
Opinion formation on multiplex scale-free networks
NASA Astrophysics Data System (ADS)
Nguyen, Vu Xuan; Xiao, Gaoxi; Xu, Xin-Jian; Li, Guoqi; Wang, Zhen
2018-01-01
Most individuals, if not all, live in various social networks. The formation of opinion systems is an outcome of social interactions and information propagation occurring in such networks. We study the opinion formation with a new rule of pairwise interactions in the novel version of the well-known Deffuant model on multiplex networks composed of two layers, each of which is a scale-free network. It is found that in a duplex network composed of two identical layers, the presence of the multiplexity helps either diminish or enhance opinion diversity depending on the relative magnitudes of tolerance ranges characterizing the degree of openness/tolerance on both layers: there is a steady separation between different regions of tolerance range values on two network layers where multiplexity plays two different roles, respectively. Additionally, the two critical tolerance ranges follow a one-sum rule; that is, each of the layers reaches a complete consensus only if the sum of the tolerance ranges on the two layers is greater than a constant approximately equaling 1, the double of the critical bound on a corresponding isolated network. A further investigation of the coupling between constituent layers quantified by a link overlap parameter reveals that as the layers are loosely coupled, the two opinion systems co-evolve independently, but when the inter-layer coupling is sufficiently strong, a monotonic behavior is observed: an increase in the tolerance range of a layer causes a decline in the opinion diversity on the other layer regardless of the magnitudes of tolerance ranges associated with the layers in question.
Dark current of organic heterostructure devices with insulating spacer layers
NASA Astrophysics Data System (ADS)
Yin, Sun; Nie, Wanyi; Mohite, Aditya D.; Saxena, Avadh; Smith, Darryl L.; Ruden, P. Paul
2015-03-01
The dark current density at fixed voltage bias in donor/acceptor organic planar heterostructure devices can either increase or decrease when an insulating spacer layer is added between the donor and acceptor layers. The dominant current flow process in these systems involves the formation and subsequent recombination of an interfacial exciplex state. If the exciplex formation rate limits current flow, the insulating interface layer can increase dark current whereas, if the exciplex recombination rate limits current flow, the insulating interface layer decreases dark current. We present a device model to describe this behavior and illustrate it experimentally for various donor/acceptor systems, e.g. P3HT/LiF/C60.
Conditions for double layers in the earth's magnetosphere and perhaps in other astrophysical objects
NASA Technical Reports Server (NTRS)
Lyons, L. R.
1987-01-01
It is suggested that the features which govern the formation of the double layers are: (1) the divergence of the magnetospheric electric field, (2) the ionospheric conductivity, and (3) the current-voltage characteristics of auroral magnetic field lines. Also considered are conditions in other astrophysical objects that could lead to the formation of DLs in a manner analogous to what occurs in the earth's auroral zones. It is noted that two processes can drive divergent Pedersen currents within a collisional conducting layer: (1) sheared plasma flow applied anywhere along the magnetic field lines connected to the conducting layer and (2) a neutral flow with shear within the conducting layer.
BOREAS Soils Data over the SSA in Raster Format and AEAC Projection
NASA Technical Reports Server (NTRS)
Knapp, David; Rostad, Harold; Hall, Forrest G. (Editor)
2000-01-01
This data set consists of GIS layers that describe the soils of the BOREAS SSA. The original data were submitted as vector layers that were gridded by BOREAS staff to a 30-meter pixel size in the AEAC projection. These data layers include the soil code (which relates to the soil name), modifier (which also relates to the soil name), and extent (indicating the extent that this soil exists within the polygon). There are three sets of these layers representing the primary, secondary, and tertiary soil characteristics. Thus, there is a total of nine layers in this data set along with supporting files. The data are stored in binary, image format files.
Current–voltage characteristics of organic heterostructure devices with insulating spacer layers
Yin, Sun; Nie, Wanyi; Mohite, Aditya D.; ...
2015-05-14
The dark current density in donor/acceptor organic planar heterostructure devices at a given forward voltage bias can either increase or decrease when an insulating spacer layer is added between the donor and acceptor layers. The dominant current flow process in these systems involves the formation and subsequent recombination of interfacial exciplex states. If the exciplex recombination rate limits current flow, an insulating interface layer decreases the dark current. However, if the exciplex formation rate limits the current, an insulating interface layer may increase the dark current. As a result, we present a device model to describe this behavior, and wemore » discuss relevant experimental data.« less
Disruption of vertical motility by shear triggers formation of thin phytoplankton layers.
Durham, William M; Kessler, John O; Stocker, Roman
2009-02-20
Thin layers of phytoplankton are important hotspots of ecological activity that are found in the coastal ocean, meters beneath the surface, and contain cell concentrations up to two orders of magnitude above ambient concentrations. Current interpretations of their formation favor abiotic processes, yet many phytoplankton species found in these layers are motile. We demonstrated that layers formed when the vertical migration of phytoplankton was disrupted by hydrodynamic shear. This mechanism, which we call gyrotactic trapping, can be responsible for the thin layers of phytoplankton commonly observed in the ocean. These results reveal that the coupling between active microorganism motility and ambient fluid motion can shape the macroscopic features of the marine ecological landscape.
Harwell, Corey C; Parker, Philip R L; Gee, Steven M; Okada, Ami; McConnell, Susan K; Kreitzer, Anatol C; Kriegstein, Arnold R
2012-03-22
The precise connectivity of inputs and outputs is critical for cerebral cortex function; however, the cellular mechanisms that establish these connections are poorly understood. Here, we show that the secreted molecule Sonic Hedgehog (Shh) is involved in synapse formation of a specific cortical circuit. Shh is expressed in layer V corticofugal projection neurons and the Shh receptor, Brother of CDO (Boc), is expressed in local and callosal projection neurons of layer II/III that synapse onto the subcortical projection neurons. Layer V neurons of mice lacking functional Shh exhibit decreased synapses. Conversely, the loss of functional Boc leads to a reduction in the strength of synaptic connections onto layer Vb, but not layer II/III, pyramidal neurons. These results demonstrate that Shh is expressed in postsynaptic target cells while Boc is expressed in a complementary population of presynaptic input neurons, and they function to guide the formation of cortical microcircuitry. Copyright © 2012 Elsevier Inc. All rights reserved.
Effect of the Microstructure of the Functional Layers on the Efficiency of Perovskite Solar Cells.
Huang, Fuzhi; Pascoe, Alexander R; Wu, Wu-Qiang; Ku, Zhiliang; Peng, Yong; Zhong, Jie; Caruso, Rachel A; Cheng, Yi-Bing
2017-05-01
The efficiencies of the hybrid organic-inorganic perovskite solar cells have been rapidly approaching the benchmarks held by the leading thin-film photovoltaic technologies. Arguably, one of the most important factors leading to this rapid advancement is the ability to manipulate the microstructure of the perovskite layer and the adjacent functional layers within the device. Here, an analysis of the nucleation and growth models relevant to the formation of perovskite films is provided, along with the effect of the perovskite microstructure (grain sizes and voids) on device performance. In addition, the effect of a compact or mesoporous electron-transport-layer (ETL) microstructure on the perovskite film formation and the optical/photoelectric properties at the ETL/perovskite interface are overviewed. Insight into the formation of the functional layers within a perovskite solar cell is provided, and potential avenues for further development of the perovskite microstructure are identified. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Varying properties of in situ heat treatment of a tar sands formation based on assessed viscosities
Karanikas, John Michael; Vinegar, Harold J
2014-03-04
A method for treating a tar sands formation includes providing heat to at least part of a hydrocarbon layer in the formation from a plurality of heaters located in the formation. The heat is allowed to transfer from the heaters to at least a portion of the formation. A viscosity of one or more zones of the hydrocarbon layer is assessed. The heating rates in the zones are varied based on the assessed viscosities. The heating rate in a first zone of the formation is greater than the heating rate in a second zone of the formation if the viscosity in the first zone is greater than the viscosity in the second zone. Fluids are produced from the formation through the production wells.
Meng, Zhi Bin; Chen, Li Qian; Suo, Dong; Li, Gui Xin; Tang, Cai Xian; Zheng, Shao Jian
2012-01-01
Background and Aims Formation of cluster roots is one of the most specific root adaptations to nutrient deficiency. In white lupin (Lupinus albus), cluster roots can be induced by phosphorus (P) or iron (Fe) deficiency. The aim of the present work was to investigate the potential shared signalling pathway in P- and Fe-deficiency-induced cluster root formation. Methods Measurements were made of the internal concentration of nutrients, levels of nitric oxide (NO), citrate exudation and expression of some specific genes under four P × Fe combinations, namely (1) 50 µm P and 10 µm Fe (+P + Fe); (2) 0 P and 10 µm Fe (–P + Fe); (3) 50 µm P and 0 Fe (+P–Fe); and (4) 0 P and 0 Fe (–P–Fe), and these were examined in relation to the formation of cluster roots. Key Results The deficiency of P, Fe or both increased the cluster root number and cluster zones. It also enhanced NO accumulation in pericycle cells and rootlet primordia at various stages of cluster root development. The formation of cluster roots and rootlet primordia, together with the expression of LaSCR1 and LaSCR2 which is crucial in cluster root formation, were induced by the exogenous NO donor S-nitrosoglutathione (GSNO) under the +P + Fe condition, but were inhibited by the NO-specific endogenous scavenger 2-(4-carboxyphenyl)-4, 4, 5, 5-tetramethylimidazoline-1-oxyl- 3-oxide (cPTIO) under –P + Fe, +P–Fe and –P–Fe conditions. However, cluster roots induced by an exogenous supply of the NO donor did not secrete citrate, unlike those formed under –P or –Fe conditions. Conclusions NO plays an important role in the shared signalling pathway of the P- and Fe-deficiency-induced formation of cluster roots in white lupin. PMID:22351487
The Accretion Disk and the Boundary Layer of the Symbiotic Recurrent Nova T Corona Borealis
NASA Astrophysics Data System (ADS)
Mukai, Koji; Luna, Gerardo; Nelson, Thomas; Sokoloski, Jennifer L.; Lucy, Adrian; Nuñez, Natalia
2017-08-01
T Corona Borealis is one of four known Galactic recurrent symbiotic novae, red giant-white dwarf binaries from which multiple thermonuclear runaway (TNR) events, or nova eruptions, have been observed. TNR requires high pressure at the base of the accreted envelope, and a recurrence time of less than a century almost certainly requires both high white dwarf mass and high accretion rate. The eruptions of T CrB were observed in 1866 and 1946; if the 80 year interval is typical, the next eruption would be expected within the next decade or two. Optical observations show that T CrB has entered a super-active state starting in 2015, similar to that seen in 1938, 8 years before the last eruption. In quiescence, T CrB is a known, bright hard X-ray source that has been detected in the Swift/BAT all-sky survey. Here we present the result of our NuSTAR observation of T CrB in 2015, when it had started to brighten but had not yet reached the peak of the super-active state. We were able to fit the spectrum with an absorbed cooling flow model with reflection, with a reflection amplitude of 1.0. We also present recent Swift and XMM-Newton observations during the peak of the super-active state, when T CrB had faded dramatically in the BAT band. T CrB is found to be much more luminous in the UV, while the X-ray spectrum became complex including a soft, optically thick component. We present our interpretation of the overall variability as due to instability of a large disk, and of the X-rays as due to emission from the boundary layer. In our view, the NuSTAR observation was performed when the boundary layer was optically thin, and the reflection was only from the white dwarf surface that subtended 2π steradian of the sky as seen from the emission region. With these assumptions, we infer the white dwarf in the T CrB system to have a mass of ~1.2 Msun. During the very active state, the boundary layer had turned partially optically thick and produced the soft X-ray component, while drastically reducing the hard X-ray luminosity. We will discuss the implication of variable accretion on the total mass accumulated since the last eruption.
Modeling of Particulate Emissions
2011-12-01
Concern Local Air Quality - A Continuing Concern Ground Level Troposphere Ozone Layer Depletion • H2O Ozone Depletion (ice formation) 5 Modeling... Ozone & Smog Formation Health Effects Local Air Quality 33,000-58,000 ft• NOx •Traffic Growth • CO2* • NOx O3* • NOx Reduces CH4 • H2O Vapor...Particulates • SOx Cloud Formation Global Warming * - Greenhouse Gases Ozone Layer Depletion - Not an Immediate Concern Global Warming - An Emerging
Thermal analysis of microlens formation on a sensitized gelatin layer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muric, Branka; Pantelic, Dejan; Vasiljevic, Darko
2009-07-01
We analyze a mechanism of direct laser writing of microlenses. We find that thermal effects and photochemical reactions are responsible for microlens formation on a sensitized gelatin layer. An infrared camera was used to assess the temperature distribution during the microlens formation, while the diffraction pattern produced by the microlens itself was used to estimate optical properties. The study of thermal processes enabled us to establish the correlation between thermal and optical parameters.
2013-01-29
Scanning Confocal Microscope (Zeiss- Pascal) using 20x obj. and edited using Zeiss Image Examiner Ver 5.0. The iso-cortical pyramidal layers 1 and 2 are...NeuN immunoreactivity is seen in the neuronal cytoplasm and especially apical dendrites of pyramidal neurons (white arrows), which facilitates the...identification of the pyramidal cell morphology in the outer pyramidal cell layer of neo-cortex (see picture A, depicted as py). Cortical Pyramidal
Vacuum deposition and curing of liquid monomers
Affinito, J.D.
1993-11-09
The present invention is the formation of solid polymer layers under vacuum. More specifically, the present invention is the use of standard polymer layer-making equipment that is generally used in an atmospheric environment in a vacuum, and degassing the monomer material prior to injection into the vacuum. Additional layers of polymer or metal may be vacuum deposited onto solid polymer layers. Formation of polymer layers under a vacuum improves material and surface characteristics, and subsequent quality of bonding to additional layers. Further advantages include use of less to no photoinitiator for curing, faster curing, fewer impurities in the polymer electrolyte, as well as improvement in material properties including no trapped gas resulting in greater density, and reduced monomer wetting angle that facilitates spreading of the monomer and provides a smoother finished surface.
Formation of CCP-NOL in CPP-GMR spin valve structure for the enhancement of magnetoresistance
NASA Astrophysics Data System (ADS)
Kang, Y. M.; Isogami, S.; Tsunoda, M.; Takahashi, M.; Yoo, S. I.
2007-03-01
For the MR enhancement in current perpendicular to plane-giant magetoresistance spin valve (CPP-GMR SV), a current-confined path—nano-oxide layer (CCP-NOL)—AlO x was formed on the Cu spacer of half SV structure. In order to form effective current-confining paths, an ultra-thin AlO x layer was deposited on a Cu spacer layer by O 2 reactive sputtering of Al with infra-red (IR) heat treatment on the substrate, and that enable to form an island-structured insulating AlO x layer having holes between AlO x islands. By controlling PO 2 and substrate temperature in the NOL deposition, AlO x layer formation without an oxidizing bottom layer could be achieved.
Vacuum deposition and curing of liquid monomers
Affinito, J.D.
1995-03-07
The present invention is the formation of solid polymer layers under vacuum. More specifically, the present invention is the use of ``standard`` polymer layer-making equipment that is generally used in an atmospheric environment in a vacuum, and degassing the monomer material prior to injection into the vacuum. Additional layers of polymer or metal or oxide may be vacuum deposited onto solid polymer layers. Formation of polymer layers under a vacuum improves material and surface characteristics, and subsequent quality of bonding to additional layers. Further advantages include use of less to no photoinitiator for curing, faster curing, fewer impurities in the polymer electrolyte, as well as improvement in material properties including no trapped gas resulting in greater density, and reduced monomer wetting angle that facilitates spreading of the monomer and provides a smoother finished surface.
Vacuum deposition and curing of liquid monomers
Affinito, John D.
1993-01-01
The present invention is the formation of solid polymer layers under vacuum. More specifically, the present invention is the use of "standard" polymer layer-making equipment that is generally used in an atmospheric environment in a vacuum, and degassing the monomer material prior to injection into the vacuum. Additional layers of polymer or metal may be vacuum deposited onto solid polymer layers. Formation of polymer layers under a vacuum improves material and surface characteristics, and subsequent quality of bonding to additional layers. Further advantages include use of less to no photoinitiator for curing, faster curing, fewer impurities in the polymer electrolyte, as well as improvement in material properties including no trapped gas resulting in greater density, and reduced monomer wetting angle that facilitates spreading of the monomer and provides a smoother finished surface.
Vacuum deposition and curing of liquid monomers apparatus
Affinito, John D.
1996-01-01
The present invention is the formation of solid polymer layers under vacuum. More specifically, the present invention is the use of "standard" polymer layer-making equipment that is generally used in an atmospheric environment in a vacuum, and degassing the monomer material prior to injection into the vacuum. Additional layers of polymer or metal or oxide may be vacuum deposited onto solid polymer layers. Formation of polymer layers under a vacuum improves material and surface characteristics, and subsequent quality of bonding to additional layers. Further advantages include use of less to no photoinitiator for curing, faster curing, fewer impurities in the polymer electrolyte, as well as improvement in material properties including no trapped gas resulting in greater density, and reduced monomer wetting angle that facilitates spreading of the monomer and provides a smoother finished surface.
Vacuum deposition and curing of liquid monomers
Affinito, John D.
1995-01-01
The present invention is the formation of solid polymer layers under vacuum. More specifically, the present invention is the use of "standard" polymer layer-making equipment that is generally used in an atmospheric environment in a vacuum, and degassing the monomer material prior to injection into the vacuum. Additional layers of polymer or metal or oxide may be vacuum deposited onto solid polymer layers. Formation of polymer layers under a vacuum improves material and surface characteristics, and subsequent quality of bonding to additional layers. Further advantages include use of less to no photoinitiator for curing, faster curing, fewer impurities in the polymer electrolyte, as well as improvement in material properties including no trapped gas resulting in greater density, and reduced monomer wetting angle that facilitates spreading of the monomer and provides a smoother finished surface.
NASA Astrophysics Data System (ADS)
Yoon, Hee Chang; Oh, Ji Hye; Do, Young Rag
2014-09-01
This paper introduces high color rendering index (CRI) white light-emitting diodes (W-LEDs) coated with red emitting (Sr,Ca)AlSiN3:Eu phosphors and yellowish-green emitting AgIn5S8/ZnS (AIS/ZS) quantum dots (QDs) on glass or a short-wavelength pass dichroic filter (SPDF), which transmit blue wavelength regions and reflect yellow wavelength regions. The red emitting (Sr,Ca)AlSiN3:Eu phosphor film is coated on glass and a SPDF using a screen printing method, and then the yellowish-green emitting AIS/ZS QDs are coated on the red phosphor (Sr,Ca)AlSiN3:Eu film-coated glass and SPDF using the electrospray (e-spray) method.To fabricate the red phosphor film, the optimum amount of phosphor is dispersed in a silicon binder to form a red phosphor paste. The AIS/ZS QDs are mixed with dimethylformamide (DMF), toluene, and poly(methyl methacrylate) (PMMA) for the e-spray coating. The substrates are spin-coated with poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) to fabricate a conductive surface. The CRI of the white LEDs is improved through inserting the red phosphor film between the QD layer and the glass substrate. Furthermore, the light intensities of the multi-layered phosphor films are enhanced through changing the glass substrate to the SPDF. The correlated color temperatures (CCTs) vary as a function of the phosphor concentration in the phosphor paste. The optical properties of the yellowish-green AIS/ZS QDs and red (Sr,Ca)AlSiN3:Eu phosphors are characterized using photoluminescence (PL), and the multi-layered QD-phosphor films are measured using electroluminescence (EL) with an InGaN blue LED (λmax = 450 nm) at 60 mA.
Ferrara, Toni L; Boughton, Philip; Slavich, Eve; Wroe, Stephen
2013-01-01
Nanomechanical testing methods that are suitable for a range of hydrated tissues are crucial for understanding biological systems. Nanoindentation of tissues can provide valuable insights into biology, tissue engineering and biomimetic design. However, testing hydrated biological samples still remains a significant challenge. Shark jaw cartilage is an ideal substrate for developing a method to test hydrated tissues because it is a unique heterogeneous composite of both mineralized (hard) and non-mineralized (soft) layers and possesses a jaw geometry that is challenging to test mechanically. The aim of this study is to develop a novel method for obtaining multidirectional nanomechanical properties for both layers of jaw cartilage from a single sample, taken from the great white shark (Carcharodon carcharias). A method for obtaining multidirectional data from a single sample is necessary for examining tissue mechanics in this shark because it is a protected species and hence samples may be difficult to obtain. Results show that this method maintains hydration of samples that would otherwise rapidly dehydrate. Our study is the first analysis of nanomechanical properties of great white shark jaw cartilage. Variation in nanomechanical properties were detected in different orthogonal directions for both layers of jaw cartilage in this species. The data further suggest that the mineralized layer of shark jaw cartilage is less stiff than previously posited. Our method allows multidirectional nanomechanical properties to be obtained from a single, small, hydrated heterogeneous sample. Our technique is therefore suitable for use when specimens are rare, valuable or limited in quantity, such as samples obtained from endangered species or pathological tissues. We also outline a method for tip-to-optic calibration that facilitates nanoindentation of soft biological tissues. Our technique may help address the critical need for a nanomechanical testing method that is applicable to a variety of hydrated biological materials whether soft or hard.