NASA Astrophysics Data System (ADS)
Upputuri, Paul Kumar; Pramanik, Manojit
2018-02-01
Phase shifting white light interferometry (PSWLI) has been widely used for optical metrology applications because of their precision, reliability, and versatility. White light interferometry using monochrome CCD makes the measurement process slow for metrology applications. WLI integrated with Red-Green-Blue (RGB) CCD camera is finding imaging applications in the fields optical metrology and bio-imaging. Wavelength dependent refractive index profiles of biological samples were computed from colour white light interferograms. In recent years, whole-filed refractive index profiles of red blood cells (RBCs), onion skin, fish cornea, etc. were measured from RGB interferograms. In this paper, we discuss the bio-imaging applications of colour CCD based white light interferometry. The approach makes the measurement faster, easier, cost-effective, and even dynamic by using single fringe analysis methods, for industrial applications.
Tunable-optical-filter-based white-light interferometry for sensing.
Yu, Bing; Wang, Anbo; Pickrell, Gary; Xu, Juncheng
2005-06-15
We describe tunable-optical-filter-based white-light interferometry for sensor interrogation. By introducing a tunable optical filter into a white-light interferometry system, one can interrogate an interferometer with either quadrature demodulation or spectral-domain detection at low cost. To demonstrate the feasibility of effectively demodulating various types of interferometric sensor, experiments have been performed using an extrinsic Fabry-Perot tunable filter to interrogate two extrinsic Fabry-Perot interferometric temperature sensors and a diaphragm-based pressure sensor.
Park, Jun-Beom; Yang, Seung-Min; Ko, Youngkyung
2015-12-01
The purpose of this study was to evaluate the surface characteristics of various implant abutment materials, such as of titanium alloy (Ti6Al4V; Ma), machined cobalt-chrome-molybdenum alloy (CCM), titanium nitride coating on a titanium alloy disc (TiN), anodic oxidized titanium alloy disc (AO), composite resin coating on a titanium alloy disc (Res), and zirconia disc (Zr), using confocal microscopy and white light interferometry. Measurements from the 2 methods were evaluated to see if these methods would give equivalent results. The precision of measurements were evaluated by the coefficient of variation. Five discs each of Ma, CCM, TiN, AO, Res, and Zr were used. The surface roughness was evaluated by confocal laser microscopy and white light interferometry. Confocal microscopy showed that the Res group showed significantly greater Ra, Rq, Rz, Sa, Sq, and Sz values compared with those of the Ma group (P < 0.05). The white light interferometry results showed that the Res group had significantly higher Ra, Rq, Rz, Rt, Sa, Sq, Sz, and Sdr values compared with the Ma group (P < 0.05). All the roughness parameters obtained from the 2 methods differed, and the Sa values of the Zr group from confocal microscopy were greater by 0.163 μm than those obtained by white light interferometry. Least difference was seen in the TiN group where the difference was 0.058 μm. Roughness parameters of different abutment materials varied significantly. Precision of measurement differed according to the characteristics of the material used. White light interferometry could be recommended for measurement of TiN and AO. Confocal microscopy gave more precise measurements for Ma and CCM groups. The optical characteristics of the surface should be considered before choosing the examination method.
Guo, Tong; Wang, Siming; Dorantes-Gonzalez, Dante J.; Chen, Jinping; Fu, Xing; Hu, Xiaotang
2012-01-01
A hybrid atomic force microscopic (AFM) measurement system combined with white light scanning interferometry for micro/nanometer dimensional measurement is developed. The system is based on a high precision large-range positioning platform with nanometer accuracy on which a white light scanning interferometric module and an AFM head are built. A compact AFM head is developed using a self-sensing tuning fork probe. The head need no external optical sensors to detect the deflection of the cantilever, which saves room on the head, and it can be directly fixed under an optical microscopic interferometric system. To enhance the system’s dynamic response, the frequency modulation (FM) mode is adopted for the AFM head. The measuring data can be traceable through three laser interferometers in the system. The lateral scanning range can reach 25 mm × 25 mm by using a large-range positioning platform. A hybrid method combining AFM and white light scanning interferometry is proposed to improve the AFM measurement efficiency. In this method, the sample is measured firstly by white light scanning interferometry to get an overall coarse morphology, and then, further measured with higher resolution by AFM. Several measuring experiments on standard samples demonstrate the system’s good measurement performance and feasibility of the hybrid measurement method. PMID:22368463
Guo, Tong; Wang, Siming; Dorantes-Gonzalez, Dante J; Chen, Jinping; Fu, Xing; Hu, Xiaotang
2012-01-01
A hybrid atomic force microscopic (AFM) measurement system combined with white light scanning interferometry for micro/nanometer dimensional measurement is developed. The system is based on a high precision large-range positioning platform with nanometer accuracy on which a white light scanning interferometric module and an AFM head are built. A compact AFM head is developed using a self-sensing tuning fork probe. The head need no external optical sensors to detect the deflection of the cantilever, which saves room on the head, and it can be directly fixed under an optical microscopic interferometric system. To enhance the system's dynamic response, the frequency modulation (FM) mode is adopted for the AFM head. The measuring data can be traceable through three laser interferometers in the system. The lateral scanning range can reach 25 mm × 25 mm by using a large-range positioning platform. A hybrid method combining AFM and white light scanning interferometry is proposed to improve the AFM measurement efficiency. In this method, the sample is measured firstly by white light scanning interferometry to get an overall coarse morphology, and then, further measured with higher resolution by AFM. Several measuring experiments on standard samples demonstrate the system's good measurement performance and feasibility of the hybrid measurement method.
Defect Depth Measurement Using White Light Interferometry
NASA Technical Reports Server (NTRS)
Parker, Don; Starr, Stan
2009-01-01
The objectives of the White Light Interferometry project are the following: (1) Demonstrate a small hand-held instrument capable of performing inspections of identified defects on Orbiter outer pane window surfaces. (2) Build and field-test a prototype device using miniaturized optical components. (3) Modify the instrument based on field testing and begin the conversion of the unit to become a certified shop-aid.
Measuring the Dispersion in Laser Cavity Mirrors using White-Light Interferometry
2008-03-01
mirrors. Two AlGaInP (aluminum gallium indium phosphide ) diode lasers are aligned such that one is polarized vertically while one is polarized...linear crystals, where the index of refraction depends on beam intensity. Short pulses with high peak intensities are well 14 suited to induce the...MEASURING THE DISPERSION OF LASER CAVITY MIRRORS USING WHITE-LIGHT INTERFEROMETRY THESIS Allison S
Methods To Determine the Silicone Oil Layer Thickness in Sprayed-On Siliconized Syringes.
Loosli, Viviane; Germershaus, Oliver; Steinberg, Henrik; Dreher, Sascha; Grauschopf, Ulla; Funke, Stefanie
2018-01-01
The silicone lubricant layer in prefilled syringes has been investigated with regards to siliconization process performance, prefilled syringe functionality, and drug product attributes, such as subvisible particle levels, in several studies in the past. However, adequate methods to characterize the silicone oil layer thickness and distribution are limited, and systematic evaluation is missing. In this study, white light interferometry was evaluated to close this gap in method understanding. White light interferometry demonstrated a good accuracy of 93-99% for MgF 2 coated, curved standards covering a thickness range of 115-473 nm. Thickness measurements for sprayed-on siliconized prefilled syringes with different representative silicone oil distribution patterns (homogeneous, pronounced siliconization at flange or needle side, respectively) showed high instrument (0.5%) and analyst precision (4.1%). Different white light interferometry instrument parameters (autofocus, protective shield, syringe barrel dimensions input, type of non-siliconized syringe used as base reference) had no significant impact on the measured average layer thickness. The obtained values from white light interferometry applying a fully developed method (12 radial lines, 50 mm measurement distance, 50 measurements points) were in agreement with orthogonal results from combined white and laser interferometry and 3D-laser scanning microscopy. The investigated syringe batches (lot A and B) exhibited comparable longitudinal silicone oil layer thicknesses ranging from 170-190 nm to 90-100 nm from flange to tip and homogeneously distributed silicone layers over the syringe barrel circumference (110- 135 nm). Empty break-loose (4-4.5 N) and gliding forces (2-2.5 N) were comparably low for both analyzed syringe lots. A silicone oil layer thickness of 100-200 nm was thus sufficient for adequate functionality in this particular study. Filling the syringe with a surrogate solution including short-term exposure and emptying did not significantly influence the silicone oil layer at the investigated silicone level. It thus appears reasonable to use this approach to characterize silicone oil layers in filled syringes over time. The developed method characterizes non-destructively the layer thickness and distribution of silicone oil in empty syringes and provides fast access to reliable results. The gained information can be further used to support optimization of siliconization processes and increase the understanding of syringe functionality. LAY ABSTRACT: Silicone oil layers as lubricant are required to ensure functionality of prefilled syringes. Methods evaluating these layers are limited, and systematic evaluation is missing. The aim of this study was to develop and assess white light interferometry as an analytical method to characterize sprayed-on silicone oil layers in 1 mL prefilled syringes. White light interferometry showed a good accuracy (93-99%) as well as instrument and analyst precision (0.5% and 4.1%, respectively). Different applied instrument parameters had no significant impact on the measured layer thickness. The obtained values from white light interferometry applying a fully developed method concurred with orthogonal results from 3D-laser scanning microscopy and combined white light and laser interferometry. The average layer thicknesses in two investigated syringe lots gradually decreased from 170-190 nm at the flange to 100-90 nm at the needle side. The silicone layers were homogeneously distributed over the syringe barrel circumference (110-135 nm) for both lots. Empty break-loose (4-4.5 N) and gliding forces (2-2.5 N) were comparably low for both analyzed syringe lots. Syringe filling with a surrogate solution, including short-term exposure and emptying, did not significantly affect the silicone oil layer. The developed, non-destructive method provided reliable results to characterize the silicone oil layer thickness and distribution in empty siliconized syringes. This information can be further used to support optimization of siliconization processes and increase understanding of syringe functionality. © PDA, Inc. 2018.
Arosa, Yago; Lago, Elena López; Varela, Luis Miguel; de la Fuente, Raúl
2016-07-25
In this paper we apply spectrally resolved white light interferometry to measure refractive and group index over a wide spectral band from 400 to 1000 nm. The output of a Michelson interferometer is spectrally decomposed by a homemade prism spectrometer with a high resolution camera. The group index is determined directly from the phase extracted from the spectral interferogram while the refractive index is estimated once its value at a given wavelength is known.
NASA Astrophysics Data System (ADS)
Chen, Liang-Chia; Chen, Yi-Shiuan; Chang, Yi-Wei; Lin, Shyh-Tsong; Yeh, Sheng Lih
2013-01-01
In this research, new nano-scale measurement methodology based on spectrally-resolved chromatic confocal interferometry (SRCCI) was successfully developed by employing integration of chromatic confocal sectioning and spectrally-resolve white light interferometry (SRWLI) for microscopic three dimensional surface profilometry. The proposed chromatic confocal method (CCM) using a broad band while light in combination with a specially designed chromatic dispersion objective is capable of simultaneously acquiring multiple images at a large range of object depths to perform surface 3-D reconstruction by single image shot without vertical scanning and correspondingly achieving a high measurement depth range up to hundreds of micrometers. A Linnik-type interferometric configuration based on spectrally resolved white light interferometry is developed and integrated with the CCM to simultaneously achieve nanoscale axis resolution for the detection point. The white-light interferograms acquired at the exit plane of the spectrometer possess a continuous variation of wavelength along the chromaticity axis, in which the light intensity reaches to its peak when the optical path difference equals to zero between two optical arms. To examine the measurement accuracy of the developed system, a pre-calibrated accurate step height target with a total step height of 10.10 μm was measured. The experimental result shows that the maximum measurement error was verified to be less than 0.3% of the overall measuring height.
ERIC Educational Resources Information Center
Toal, Vincent; Mihaylova, Emilia M.
2009-01-01
This note describes how white light interference fringes can be seen by observing the Moon through a double-glazed window. White light interferometric fringes are normally observed only in a well-aligned interferometer whose optical path difference is less than the coherence length of the light source, which is approximately one micrometer for…
Space beam combiner for long-baseline interferometry
NASA Astrophysics Data System (ADS)
Lin, Yao; Bartos, Randall D.; Korechoff, Robert P.; Shaklan, Stuart B.
1999-04-01
An experimental beam combiner (BC) is being developed to support the space interferometry program at the JPL. The beam combine forms the part of an interferometer where star light collected by the sidestats or telescopes is brought together to produce white light fringes, and to provide wavefront tilt information via guiding spots and beam walk information via shear spots. The assembly and alignment of the BC has been completed. The characterization test were performed under laboratory conditions with an artificial star and optical delay line. Part of each input beam was used to perform star tracking. The white light interference fringes were obtained over the selected wavelength range from 450 nm to 850 nm. A least-square fit process was used to analyze the fringe initial phase, fringe visibilities and shift errors of the optical path difference in the delay line using the dispersed white-light fringes at different OPD positions.
Baryshev, Sergey V; Erck, Robert A; Moore, Jerry F; Zinovev, Alexander V; Tripa, C Emil; Veryovkin, Igor V
2013-02-27
In materials science and engineering it is often necessary to obtain quantitative measurements of surface topography with micrometer lateral resolution. From the measured surface, 3D topographic maps can be subsequently analyzed using a variety of software packages to extract the information that is needed. In this article we describe how white light interferometry, and optical profilometry (OP) in general, combined with generic surface analysis software, can be used for materials science and engineering tasks. In this article, a number of applications of white light interferometry for investigation of surface modifications in mass spectrometry, and wear phenomena in tribology and lubrication are demonstrated. We characterize the products of the interaction of semiconductors and metals with energetic ions (sputtering), and laser irradiation (ablation), as well as ex situ measurements of wear of tribological test specimens. Specifically, we will discuss: i. Aspects of traditional ion sputtering-based mass spectrometry such as sputtering rates/yields measurements on Si and Cu and subsequent time-to-depth conversion. ii. Results of quantitative characterization of the interaction of femtosecond laser irradiation with a semiconductor surface. These results are important for applications such as ablation mass spectrometry, where the quantities of evaporated material can be studied and controlled via pulse duration and energy per pulse. Thus, by determining the crater geometry one can define depth and lateral resolution versus experimental setup conditions. iii. Measurements of surface roughness parameters in two dimensions, and quantitative measurements of the surface wear that occur as a result of friction and wear tests. Some inherent drawbacks, possible artifacts, and uncertainty assessments of the white light interferometry approach will be discussed and explained.
Baryshev, Sergey V.; Erck, Robert A.; Moore, Jerry F.; Zinovev, Alexander V.; Tripa, C. Emil; Veryovkin, Igor V.
2013-01-01
In materials science and engineering it is often necessary to obtain quantitative measurements of surface topography with micrometer lateral resolution. From the measured surface, 3D topographic maps can be subsequently analyzed using a variety of software packages to extract the information that is needed. In this article we describe how white light interferometry, and optical profilometry (OP) in general, combined with generic surface analysis software, can be used for materials science and engineering tasks. In this article, a number of applications of white light interferometry for investigation of surface modifications in mass spectrometry, and wear phenomena in tribology and lubrication are demonstrated. We characterize the products of the interaction of semiconductors and metals with energetic ions (sputtering), and laser irradiation (ablation), as well as ex situ measurements of wear of tribological test specimens. Specifically, we will discuss: Aspects of traditional ion sputtering-based mass spectrometry such as sputtering rates/yields measurements on Si and Cu and subsequent time-to-depth conversion. Results of quantitative characterization of the interaction of femtosecond laser irradiation with a semiconductor surface. These results are important for applications such as ablation mass spectrometry, where the quantities of evaporated material can be studied and controlled via pulse duration and energy per pulse. Thus, by determining the crater geometry one can define depth and lateral resolution versus experimental setup conditions. Measurements of surface roughness parameters in two dimensions, and quantitative measurements of the surface wear that occur as a result of friction and wear tests. Some inherent drawbacks, possible artifacts, and uncertainty assessments of the white light interferometry approach will be discussed and explained. PMID:23486006
Modulated Source Interferometry with Combined Amplitude and Frequency Modulation
NASA Technical Reports Server (NTRS)
Gutierrez, Roman C. (Inventor)
1998-01-01
An improved interferometer is produced by modifying a conventional interferometer to include amplitude and/or frequency modulation of a coherent light source at radio or higher frequencies. The phase of the modulation signal can be detected in an interfering beam from an interferometer and can be used to determine the actual optical phase of the beam. As such, this improvement can be adapted to virtually any two-beam interferometer, including: Michelson, Mach-Zehnder, and Sagnac interferometers. The use of an amplitude modulated coherent tight source results in an interferometer that combines the wide range advantages of coherent interferometry with the precise distance measurement advantages of white light interferometry.
Modeling of low-finesse, extrinsic fiber optic Fabry-Perot white light interferometers
NASA Astrophysics Data System (ADS)
Ma, Cheng; Tian, Zhipeng; Wang, Anbo
2012-06-01
This article introduces an approach for modeling the fiber optic low-finesse extrinsic Fabry-Pérot Interferometers (EFPI), aiming to address signal processing problems in EFPI demodulation algorithms based on white light interferometry. The main goal is to seek physical interpretations to correlate the sensor spectrum with the interferometer geometry (most importantly, the optical path difference). Because the signal demodulation quality and reliability hinge heavily on the understanding of such relationships, the model sheds light on optimizing the sensor performance.
NASA Astrophysics Data System (ADS)
Dubey, Vishesh; Singh, Veena; Ahmad, Azeem; Singh, Gyanendra; Mehta, Dalip Singh
2016-03-01
We report white light phase shifting interferometry in conjunction with color fringe analysis for the detection of contaminants in water such as Escherichia coli (E.coli), Campylobacter coli and Bacillus cereus. The experimental setup is based on a common path interferometer using Mirau interferometric objective lens. White light interferograms are recorded using a 3-chip color CCD camera based on prism technology. The 3-chip color camera have lesser color cross talk and better spatial resolution in comparison to single chip CCD camera. A piezo-electric transducer (PZT) phase shifter is fixed with the Mirau objective and they are attached with a conventional microscope. Five phase shifted white light interferograms are recorded by the 3-chip color CCD camera and each phase shifted interferogram is decomposed into the red, green and blue constituent colors, thus making three sets of five phase shifted intererograms for three different colors from a single set of white light interferogram. This makes the system less time consuming and have lesser effect due to surrounding environment. Initially 3D phase maps of the bacteria are reconstructed for red, green and blue wavelengths from these interferograms using MATLAB, from these phase maps we determines the refractive index (RI) of the bacteria. Experimental results of 3D shape measurement and RI at multiple wavelengths will be presented. These results might find applications for detection of contaminants in water without using any chemical processing and fluorescent dyes.
An accurate surface topography restoration algorithm for white light interferometry
NASA Astrophysics Data System (ADS)
Yuan, He; Zhang, Xiangchao; Xu, Min
2017-10-01
As an important measuring technique, white light interferometry can realize fast and non-contact measurement, thus it is now widely used in the field of ultra-precision engineering. However, the traditional recovery algorithms of surface topographies have flaws and limits. In this paper, we propose a new algorithm to solve these problems. It is a combination of Fourier transform and improved polynomial fitting method. Because the white light interference signal is usually expressed as a cosine signal whose amplitude is modulated by a Gaussian function, its fringe visibility is not constant and varies with different scanning positions. The interference signal is processed first by Fourier transform, then the positive frequency part is selected and moved back to the center of the amplitude-frequency curve. In order to restore the surface morphology, a polynomial fitting method is used to fit the amplitude curve after inverse Fourier transform and obtain the corresponding topography information. The new method is then compared to the traditional algorithms. It is proved that the aforementioned drawbacks can be effectively overcome. The relative error is less than 0.8%.
Vacuum-Compatible Wideband White Light and Laser Combiner Source System
NASA Technical Reports Server (NTRS)
Azizi, Alineza; Ryan, Daniel J.; Tang, Hong; Demers, Richard T.; Kadogawa, Hiroshi; An, Xin; Sun, George Y.
2010-01-01
For the Space Interferometry Mission (SIM) Spectrum Calibration Development Unit (SCDU) testbed, wideband white light is used to simulate starlight. The white light source mount requires extremely stable pointing accuracy (<3.2 microradians). To meet this and other needs, the laser light from a single-mode fiber was combined, through a beam splitter window with special coating from broadband wavelengths, with light from multimode fiber. Both lights were coupled to a photonic crystal fiber (PCF). In many optical systems, simulating a point star with broadband spectrum with stability of microradians for white light interferometry is a challenge. In this case, the cameras use the white light interference to balance two optical paths, and to maintain close tracking. In order to coarse align the optical paths, a laser light is sent into the system to allow tracking of fringes because a narrow band laser has a great range of interference. The design requirements forced the innovators to use a new type of optical fiber, and to take a large amount of care in aligning the input sources. The testbed required better than 1% throughput, or enough output power on the lowest spectrum to be detectable by the CCD camera (6 nW at camera). The system needed to be vacuum-compatible and to have the capability for combining a visible laser light at any time for calibration purposes. The red laser is a commercially produced 635-nm laser 5-mW diode, and the white light source is a commercially produced tungsten halogen lamp that gives a broad spectrum of about 525 to 800 nm full width at half maximum (FWHM), with about 1.4 mW of power at 630 nm. A custom-made beam splitter window with special coating for broadband wavelengths is used with the white light input via a 50-mm multi-mode fiber. The large mode area PCF is an LMA-8 made by Crystal Fibre (core diameter of 8.5 mm, mode field diameter of 6 mm, and numerical aperture at 625 nm of 0.083). Any science interferometer that needs a tracking laser fringe to assist in alignment can use this system.
Mode-resolved frequency comb interferometry for high-accuracy long distance measurement
van den Berg, Steven. A.; van Eldik, Sjoerd; Bhattacharya, Nandini
2015-01-01
Optical frequency combs have developed into powerful tools for distance metrology. In this paper we demonstrate absolute long distance measurement using a single femtosecond frequency comb laser as a multi-wavelength source. By applying a high-resolution spectrometer based on a virtually imaged phased array, the frequency comb modes are resolved spectrally to the level of an individual mode. Having the frequency comb stabilized against an atomic clock, thousands of accurately known wavelengths are available for interferometry. From the spectrally resolved output of a Michelson interferometer a distance is derived. The presented measurement method combines spectral interferometry, white light interferometry and multi-wavelength interferometry in a single scheme. Comparison with a fringe counting laser interferometer shows an agreement within <10−8 for a distance of 50 m. PMID:26419282
NASA Astrophysics Data System (ADS)
Zhou, Yi; Tang, Yan; Deng, Qinyuan; Liu, Junbo; Wang, Jian; Zhao, Lixin
2017-08-01
Dimensional metrology for micro structure plays an important role in addressing quality issues and observing the performance of micro-fabricated products. In white light interferometry, the proposed method is expected to measure three-dimensional topography through modulation depth in spatial frequency domain. A normalized modulation depth is first obtained in the xy plane (image plane) for each CCD image individually. After that, the modulation depth of each pixel is analyzed along the scanning direction (z-axis) to reshape the topography of micro samples. Owing to the characteristics of modulation depth in broadband light interferometry, the method could effectively suppress the negative influences caused by light fluctuations and external irradiance disturbance. Both theory and experiments are elaborated in detail to verify that the modulation depth-based method can greatly level up the stability and sensitivity with satisfied precision in the measurement system. This technique can achieve an improved robustness in a complex measurement environment with the potential to be applied in online topography measurement such as chemistry and medical domains.
NASA Astrophysics Data System (ADS)
Anderson, Benjamin; Bernhardt, Elizabeth; Kuzyk, Mark
2012-10-01
Several organic dyes have been shown to self heal when doped in a polymer matrix. Most measurements to date use optical absorbance, amplified spontaneous emission, or digital imaging as a probe. Each method determines a subset of the relevant parameters. We have constructed a white light interferometric microscope, which measures the absorption spectrum and change in refractive index during decay and recovery simultaneously at multiple points in the material. We report on preliminary measurements and results concerning the microscopes spatial resolution.
White Light Heterodyne Interferometry SNR
2015-04-09
interferometers in the visible- and near-IR, where shot - noise -limited detectors are available. In the LWIR, the advantage of a direct detection...wavebands where shot - noise -limited detection is possible with direct detection systems, the relationship changes in the mid-wave infrared (MWIR) and...flux, without either having to split the light N – 1 ways or take the extra shot - noise penalty from Fizeau beam combining light from all apertures
Applications of wavelets in interferometry and artificial vision
NASA Astrophysics Data System (ADS)
Escalona Z., Rafael A.
2001-08-01
In this paper we present a different point of view of phase measurements performed in interferometry, image processing and intelligent vision using Wavelet Transform. In standard and white-light interferometry, the phase function is retrieved by using phase-shifting, Fourier-Transform, cosinus-inversion and other known algorithms. Our novel technique presented here is faster, robust and shows excellent accuracy in phase determinations. Finally, in our second application, fringes are no more generate by some light interaction but result from the observation of adapted strip set patterns directly printed on the target of interest. The moving target is simply observed by a conventional vision system and usual phase computation algorithms are adapted to an image processing by wavelet transform, in order to sense target position and displacements with a high accuracy. In general, we have determined that wavelet transform presents properties of robustness, relative speed of calculus and very high accuracy in phase computations.
Refractive index measurements in absorbing media with white light spectral interferometry.
Arosa, Yago; Lago, Elena López; de la Fuente, Raúl
2018-03-19
White light spectral interferometry is applied to measure the refractive index in absorbing liquids in the spectral range of 400-1000 nm. We analyze the influence of absorption on the visibility of interferometric fringes and, accordingly, on the measurement of the refractive index. Further, we show that the refractive index in the absorption band can be retrieved by a two-step process. The procedure requires the use of two samples of different thickness, the thicker one to retrieve the refractive index in the transparent region and the thinnest to obtain the data in the absorption region. First, the refractive index values are retrieved with good accuracy in the transparent region of the material for 1-mm-thick samples. Second, these refractive index values serve also to precisely calculate the thickness of a thinner sample (~150 µm) since the accuracy of the methods depends strongly on the thickness of the sample. Finally, the refractive index is recovered for the entire spectral range.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poilane, C.; Sandoz, P.; Departement d'Optique PM Duffieux, Institut FEMTO-ST, UMR CNRS 6174, Universite de Franche-Comte, 25030 Besancon, Cedex
2006-05-15
A double-side optical profilometer based on white-light interferometry was developed for thickness measurement of nontransparent films. The profile of the sample is measured simultaneously on both sides of the film. The resulting data allow the computation of the roughness, the flatness and the parallelism of the sides of the film, and the average thickness of the film. The key point is the apparatus calibration, i.e., the accurate determination of the distance between the reference mirrors of the complementary interferometers. Specific samples were processed for that calibration. The system is adaptable to various thickness scales as long as calibration can bemore » made accurately. A thickness accuracy better than 30 nm for films thinner than 200 {mu}m is reported with the experimental material used. In this article, we present the principle of the method as well as the calibration methodology. Limitation and accuracy of the method are discussed. Experimental results are presented.« less
NASA Astrophysics Data System (ADS)
Aref, Seyed Hashem
2017-11-01
In this letter, the sensitivity to strain, curvature, and temperature of a sensor based on in-line fiber Mach-Zahnder interferometer (IFMZI) is studied and experimentally demonstrated. The sensing structure is simply a section of single mode fiber sandwiched between two abrupt tapers to achieve a compact IFMZI. The phase of interferometer changes with the measurand interaction, which is the basis for considering this structure for sensing. The physical parameter sensitivity of IFMZI sensor has been evaluated using differential white light interferometry (DWLI) technique as a phase read-out system. The differential configuration of the IFMZI sensor is used to achieve a high phase resolving power of ±0.062° for read-out interferometer by means of omission of phase noise of environment perturbations. The sensitivity of the sensor to the strain, curvature, and temperature has been measured 0.0199 degree/με, 757.00 degree/m-1, and 3.25 degree/°C, respectively.
NASA Astrophysics Data System (ADS)
Mehta, Dalip Singh; Sharma, Anuradha; Dubey, Vishesh; Singh, Veena; Ahmad, Azeem
2016-03-01
We present a single-shot white light interference microscopy for the quantitative phase imaging (QPI) of biological cells and tissues. A common path white light interference microscope is developed and colorful white light interferogram is recorded by three-chip color CCD camera. The recorded white light interferogram is decomposed into the red, green and blue color wavelength component interferograms and processed it to find out the RI for different color wavelengths. The decomposed interferograms are analyzed using local model fitting (LMF)" algorithm developed for reconstructing the phase map from single interferogram. LMF is slightly off-axis interferometric QPI method which is a single-shot method that employs only a single image, so it is fast and accurate. The present method is very useful for dynamic process where path-length changes at millisecond level. From the single interferogram a wavelength-dependent quantitative phase imaging of human red blood cells (RBCs) are reconstructed and refractive index is determined. The LMF algorithm is simple to implement and is efficient in computation. The results are compared with the conventional phase shifting interferometry and Hilbert transform techniques.
Spectrally controlled interferometry for measurements of flat and spherical optics
NASA Astrophysics Data System (ADS)
Salsbury, Chase; Olszak, Artur G.
2017-10-01
Conventional interferometry is widely used to measure spherical and at surfaces with nanometer level precision but is plagued by back reflections. We describe a new method of isolating the measurement surface by controlling spectral properties of the source (Spectrally Controlled Interferometry - SCI). Using spectral modulation of the interferometer's source enables formation of localized fringes where the optical path difference is non-zero. As a consequence it becomes possible to form white-light like fringes in common path interferometers, such as the Fizeau. The proposed setup does not require mechanical phase shifting, resulting in simpler instruments and the ability to upgrade existing interferometers. Furthermore, it allows absolute measurement of distance, including radius of curvature of lenses in a single setup with possibility of improving the throughput and removing some modes of failure.
NASA Astrophysics Data System (ADS)
Zhou, Yunfei; Cai, Hongzhi; Zhong, Liyun; Qiu, Xiang; Tian, Jindong; Lu, Xiaoxu
2017-05-01
In white light scanning interferometry (WLSI), the accuracy of profile measurement achieved with the conventional zero optical path difference (ZOPD) position locating method is closely related with the shape of interference signal envelope (ISE), which is mainly decided by the spectral distribution of illumination source. For a broadband light with Gaussian spectral distribution, the corresponding shape of ISE reveals a symmetric distribution, so the accurate ZOPD position can be achieved easily. However, if the spectral distribution of source is irregular, the shape of ISE will become asymmetric or complex multi-peak distribution, WLSI cannot work well through using ZOPD position locating method. Aiming at this problem, we propose time-delay estimation (TDE) based WLSI method, in which the surface profile information is achieved by using the relative displacement of interference signal between different pixels instead of the conventional ZOPD position locating method. Due to all spectral information of interference signal (envelope and phase) are utilized, in addition to revealing the advantage of high accuracy, the proposed method can achieve profile measurement with high accuracy in the case that the shape of ISE is irregular while ZOPD position locating method cannot work. That is to say, the proposed method can effectively eliminate the influence of source spectrum.
Montés-Micó, Robert; Carones, Francesco; Buttacchio, Antonietta; Ferrer-Blasco, Teresa; Madrid-Costa, David
2011-09-01
To compare ocular biometry parameters measured with immersion ultrasound, partial coherence interferometry, and low coherence reflectometry in cataract patients. Measurements of axial length and anterior chamber depth were analyzed and compared using immersion ultrasound, partial coherence interferometry, and low coherence reflectometry. Keratometry (K), flattest axis, and white-to-white measurements were compared between partial coherence interferometry and low coherence reflectometry. Seventy-eight cataract (LOCS II range: 1 to 3) eyes of 45 patients aged between 42 and 90 years were evaluated. A subanalysis as a function of cataract degree was done for axial length and anterior chamber depth between techniques. No statistically significant differences were noted for the study cohort or within each cataract degree among the three techniques for axial length and anterior chamber depth (P>.05, ANOVA test). Measurements between techniques were highly correlated for axial length (R=0.99) and anterior chamber depth (R=0.90 to 0.96) for all methods. Keratometry, flattest axis, and white-to-white measurements were comparable (paired t test, P>.1) and correlated well between partial coherence interferometry and low coherence reflectometry (K1 [R=0.95), K2 [R=0.97], flattest axis [R=0.95], and white-to-white [R=0.92]). Immersion ultrasound, partial coherence interferometry, and low coherence reflectometry provided comparable ocular biometry measurements in cataractous eyes. Copyright 2011, SLACK Incorporated.
Hyperspectral interferometry: Sizing microscale surface features in the pine bark beetle.
Beach, James M; Uertz, James L; Eckhardt, Lori G
2015-10-01
A new method of interferometry employing a Fabry-Perot etalon model was used to locate and size microscale features on the surface of the pine bark beetle. Oscillations in the reflected light spectrum, caused by self-interference of light reflecting from surfaces of foreleg setae and spores on the elytrum, were recorded using white light hyperspectral microscopy. By making the assumption that pairs of reflecting surfaces produce an etalon effect, the distance between surfaces could be determined from the oscillation frequency. Low frequencies of less than 0.08 nm(-1) were observed in the spectrum below 700 nm while higher frequencies generally occupied wavelengths from 600 to 850 nm. In many cases, two frequencies appeared separately or in combination across the spectrum. The etalon model gave a mean spore size of 3.04 ± 1.27 μm and a seta diameter of 5.44 ± 2.88 μm. The tapering near the setae tip was detected as a lowering of frequency. Spatial fringes were observed together with spectral oscillations from surfaces on the exoskeleton at higher magnification. These signals were consistent with embedded multi-layer reflecting surfaces. Possible applications for hyperspectral interferometry include medical imaging, detection of spore loads in insects and other fungal carriers, wafer surface and subsurface inspection, nanoscale materials, biological surface analysis, and spectroscopy calibration. This is, to our knowledge, the first report of oscillations directly observed by microscopy in the reflected light spectra from Coleoptera, and the first demonstration of broadband hyperspectral interferometry using microscopy that does not employ an internal interferometer. © 2015 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Csonti, K.; Hanyecz, V.; Mészáros, G.; Kovács, A. P.
2017-06-01
In this work we have measured the group-delay dispersion of an empty Michelson interferometer for s- and p-polarized light beams applying two different non-polarizing beam splitter cubes. The interference pattern appearing at the output of the interferometer was resolved with two different spectrometers. It was found that the group-delay dispersion of the empty interferometer depended on the polarization directions in case of both beam splitter cubes. The results were checked by inserting a glass plate in the sample arm of the interferometer and similar difference was obtained for the two polarization directions. These results show that to reach high precision, linearly polarized white light beam should be used and the residual dispersion of the empty interferometer should be measured at both polarization directions.
NASA Astrophysics Data System (ADS)
Hammer, Daniel X.; Noojin, Gary D.; Thomas, Robert J.; Stolarski, David J.; Rockwell, Benjamin A.; Welch, Ashley J.
1999-06-01
Spectrally resolved white-light interferometry (SRWLI) was used to measure the wavelength dependence of refractive index (i.e., dispersion) for various ocular components. The accuracy of the technique was assessed by measurement of fused silica and water, the refractive indices of which have been measured at several different wavelengths. The dispersion of bovine and rabbit aqueous and vitreous humor was measured from 400 to 1100 nm. Also, the dispersion was measured from 400 to 700 nm for aqueous and vitreous humor extracted from goat and rhesus monkey eyes. For the humors, the dispersion did not deviate significantly from water. In an additional experiment, the dispersion of aqueous and vitreous humor that had aged up to a month was compared to freshly harvested material. No difference was found between the fresh and aged media. An unsuccessful attempt was also made to use the technique for dispersion measurement of bovine cornea and lens. Future refinement may allow measurement of the dispersion of cornea and lens across the entire visible and near-infrared wavelength band. The principles of white- light interferometry including image analysis, measurement accuracy, and limitations of the technique, are discussed. In addition, alternate techniques and previous measurements of ocular dispersion are reviewed.
Are those bugs reflective? Non-destructive biofilm imaging with white light interferometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Larimer, Curtis J.; Brann, Michelle R.; Suter, Jonathan D.
White light interferometry (WLI) is not typically used to image bacterial biofilms that are immersed in water because there is insufficient refractive index contrast to induce reflection from the biofilm’s interface. The soft structure and water-like bulk properties of hydrated biofilms make them difficult to characterize in situ by any means, especially in a non-destructive manner. Here we describe a new method for measuring and monitoring the thickness and topology of live biofilms using a WLI microscope. A microfluidic system was used to create a reflective interface on the surface of biofilms. Live biofilm samples were monitored non-destructively over time.more » The method enables surface metrology measurements (roughness, surface area) and a novel approach to measuring thickness of the thin hydrated biofilms. Increase in surface roughness preceded observable increase in biofilm thickness, indicating that this measure may be used to predict future development of biofilms. We have also developed a flow cell that enables WLI biofilm imaging in a dynamic environment. We have used this flow cell to observe changes in biofilm structure in response to changes in environmental conditions - flow velocity, availability of nutrients, and presence of biocides.« less
Local determination of thin liquid film profiles using colour interferometry.
Butler, Calum S; Seeger, Zoe L E; Bell, Toby D M; Bishop, Alexis I; Tabor, Rico F
2016-02-01
We explore theoretically the interference of white light between two interfaces as a function of the optical conditions, using separately: a) idealised conditions where the light is composed of three discrete wavelengths; b) a more typically experimentally realisable case where light comprises a sum of three Gaussian wavelength distributions; and c) unfiltered white light from a broadband source comprising a broad distribution of wavelengths. It is demonstrated that the latter case is not only optically simple to arrange, but also provides unambiguous absolute separation information over the range 0-1μm --a useful range in studies of cell adhesion, thin liquid films and lubrication-- when coupled to detection using a typical colour camera. The utility of this technique is verified experimentally by exploring the air film between a cylinder and surface, as well as arbitrary liquid films beneath air bubbles that are interacting with solid surfaces.
NASA Technical Reports Server (NTRS)
Kersten, Ralf T. (Editor)
1990-01-01
Recent advances in fiber-optic sensor (FOS) technology are examined in reviews and reports. Sections are devoted to components for FOSs, special fibers for FOSs, interferometry, FOS applications, and sensing principles and influence. Particular attention is given to solder glass sealing technology for FOS packaging, the design of optical-fiber current sensors, pressure and temperature effects on beat length in highly birefringent optical fibers, a pressure FOS based on vibrating-quartz-crystal technology, remote sensing of flammable gases using a fluoride-fiber evanescent probe, a displacement sensor with electronically scanned white-light interferometer, the use of multimode laser diodes in low-coherence coupled-cavity interferometry, electronic speckle interferometry compensated for environmentally induced phase noise, a dual-resolution noncontact vibration and displacement sensor based on a two-wavelength source, and fiber optics in composite materials.
Higher-dimensional phase imaging
NASA Astrophysics Data System (ADS)
Huntley, Jonathan M.
2010-04-01
Traditional full-field interferometric techniques (speckle, moiré, holography etc) provide 2-D phase images, which encode the surface deformation state of the object under test. Over the past 15 years, the use of additional spatial or temporal dimensions has been investigated by a number of research groups. Early examples include the measurement of 3-D surface profiles by temporally-varying projected fringe patterns, and dynamic speckle interferometry. More recently (the past 5 years) a family of related techniques (Wavelength Scanning Interferometry, Phase Contrast Spectral Optical Coherence Tomography (OCT), and Tilt Scanning Interferometry) has emerged that provides the volume deformation state of the object. The techniques can be thought of as a marriage between the phase sensing capabilities of Phase Shifting Interferometry and the depth-sensing capabilities of OCT. Finally, in the past 12 months a technique called Hyperspectral Interferometry has been proposed in which absolute optical path distributions are obtained in a single shot through the spectral decomposition of a white light interferogram, and for which the additional dimension therefore corresponds to the illumination wavenumber. An overview of these developments, and the related issue of robust phase unwrapping of noisy 3-D wrapped phase volumes, is presented in this paper.
Study on a multi-delay spectral interferometry for stellar radial velocity measurement
NASA Astrophysics Data System (ADS)
Zhang, Kai; Jiang, Haijiao; Tang, Jin; Ji, Hangxin; Zhu, Yongtian; Wang, Liang
2014-08-01
High accuracy radial velocity measurement isn't only one of the most important methods for detecting earth-like Exoplanets, but also one of the main developing fields of astronomical observation technologies in future. Externally dispersed interferometry (EDI) generates a kind of particular interference spectrum through combining a fixed-delay interferometer with a medium-resolution spectrograph. It effectively enhances radial velocity measuring accuracy by several times. Another further study on multi-delay interferometry was gradually developed after observation success with only a fixed-delay, and its relative instrumentation makes more impressive performance in near Infrared band. Multi-delay is capable of giving wider coverage from low to high frequency in Fourier field so that gives a higher accuracy in radial velocity measurement. To study on this new technology and verify its feasibility at Guo Shoujing telescope (LAMOST), an experimental instrumentation with single fixed-delay named MESSI has been built and tested at our lab. Another experimental study on multi-delay spectral interferometry given here is being done as well. Basically, this multi-delay experimental system is designed in according to the similar instrument named TEDI at Palomar observatory and the preliminary test result of MESSI. Due to existence of LAMOST spectrograph at lab, a multi-delay interferometer design actually dominates our work. It's generally composed of three parts, respectively science optics, phase-stabilizing optics and delay-calibrating optics. To switch different fixed delays smoothly during observation, the delay-calibrating optics is possibly useful to get high repeatability during switching motion through polychromatic interferometry. Although this metrology is based on white light interferometry in theory, it's different that integrates all of interference signals independently obtained by different monochromatic light in order to avoid dispersion error caused by broad band in big optical path difference (OPD).
Jet printing of convex and concave polymer micro-lenses.
Blattmann, M; Ocker, M; Zappe, H; Seifert, A
2015-09-21
We describe a novel approach for fabricating customized convex as well as concave micro-lenses using substrates with sophisticated pinning architecture and utilizing a drop-on-demand jet printer. The polymeric lens material deposited on the wafer is cured by UV light irradiation yielding lenses with high quality surfaces. Surface shape and roughness of the cured polymer lenses are characterized by white light interferometry. Their optical quality is demonstrated by imaging an USAF1951 test chart. The evaluated modulation transfer function is compared to Zemax simulations as a benchmark for the fabricated lenses.
Resolution experiments using the white light speckle method.
Conley, E; Cloud, G
1991-03-01
Noncoherent light speckle methods have been successfully applied to gauge the motion of glaciers and buildings. Resolution of the optical method was limited by the aberrating turbulent atmosphere through which the images were collected. Sensitivity limitations regarding this particular application of speckle interferometry are discussed and analyzed. Resolution limit experiments that were incidental to glacier flow studies are related to the basic theory of astronomical imaging. Optical resolution of the ice flow measurement technique is shown to be in substantial agreement with the sensitivity predictions of astronomy theory.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shafrir, S.N.; Lambropoulos, J.C.; Jacobs, S.D.
2007-03-23
Surface features of tungsten carbide composites processed by bound abrasive deterministic microgrinding and magnetorheological finishing (MRF) were studied for five WC-Ni composites, including one binderless material. All the materials studied were nonmagnetic with different microstructures and mechanical properties. White-light interferometry, scanning electron microscopy, and atomic force microscopy were used to characterize the surfaces after various grinding steps, surface etching, and MRF spot-taking.
Aknoun, Sherazade; Savatier, Julien; Bon, Pierre; Galland, Frédéric; Abdeladim, Lamiae; Wattellier, Benoit; Monneret, Serge
2015-01-01
Single-cell dry mass measurement is used in biology to follow cell cycle, to address effects of drugs, or to investigate cell metabolism. Quantitative phase imaging technique with quadriwave lateral shearing interferometry (QWLSI) allows measuring cell dry mass. The technique is very simple to set up, as it is integrated in a camera-like instrument. It simply plugs onto a standard microscope and uses a white light illumination source. Its working principle is first explained, from image acquisition to automated segmentation algorithm and dry mass quantification. Metrology of the whole process, including its sensitivity, repeatability, reliability, sources of error, over different kinds of samples and under different experimental conditions, is developed. We show that there is no influence of magnification or spatial light coherence on dry mass measurement; effect of defocus is more critical but can be calibrated. As a consequence, QWLSI is a well-suited technique for fast, simple, and reliable cell dry mass study, especially for live cells.
High-Bandwidth Dynamic Full-Field Profilometry for Nano-Scale Characterization of MEMS
NASA Astrophysics Data System (ADS)
Chen, Liang-Chia; Huang, Yao-Ting; Chang, Pi-Bai
2006-10-01
The article describes an innovative optical interferometric methodology to delivery dynamic surface profilometry with a measurement bandwidth up to 10MHz or higher and a vertical resolution up to 1 nm. Previous work using stroboscopic microscopic interferometry for dynamic characterization of micro (opto)electromechanical systems (M(O)EMS) has been limited in measurement bandwidth mainly within a couple of MHz. For high resonant mode analysis, the stroboscopic light pulse is insufficiently short to capture the moving fringes from dynamic motion of the detected structure. In view of this need, a microscopic prototype based on white-light stroboscopic interferometry with an innovative light superposition strategy was developed to achieve dynamic full-field profilometry with a high measurement bandwidth up to 10MHz or higher. The system primarily consists of an optical microscope, on which a Mirau interferometric objective embedded with a piezoelectric vertical translator, a high-power LED light module with dual operation modes and light synchronizing electronics unit are integrated. A micro cantilever beam used in AFM was measured to verify the system capability in accurate characterisation of dynamic behaviours of the device. The full-field seventh-mode vibration at a vibratory frequency of 3.7MHz can be fully characterized and nano-scale vertical measurement resolution as well as tens micrometers of vertical measurement range can be performed.
Signal processing of white-light interferometric low-finesse fiber-optic Fabry-Perot sensors.
Ma, Cheng; Wang, Anbo
2013-01-10
Signal processing for low-finesse fiber-optic Fabry-Perot sensors based on white-light interferometry is investigated. The problem is demonstrated as analogous to the parameter estimation of a noisy, real, discrete harmonic of finite length. The Cramer-Rao bounds for the estimators are given, and three algorithms are evaluated and proven to approach the bounds. A long-standing problem with these types of sensors is the unpredictable jumps in the phase estimation. Emphasis is made on the property and mechanism of the "total phase" estimator in reducing the estimation error, and a varying phase term in the total phase is identified to be responsible for the unwanted demodulation jumps. The theories are verified by simulation and experiment. A solution to reducing the probability of jump is demonstrated. © 2013 Optical Society of America
NASA Technical Reports Server (NTRS)
Lucero, John M.
2003-01-01
A new optically based measuring capability that characterizes surface topography, geometry, and wear has been employed by NASA Glenn Research Center s Tribology and Surface Science Branch. To characterize complex parts in more detail, we are using a three-dimensional, surface structure analyzer-the NewView5000 manufactured by Zygo Corporation (Middlefield, CT). This system provides graphical images and high-resolution numerical analyses to accurately characterize surfaces. Because of the inherent complexity of the various analyzed assemblies, the machine has been pushed to its limits. For example, special hardware fixtures and measuring techniques were developed to characterize Oil- Free thrust bearings specifically. We performed a more detailed wear analysis using scanning white light interferometry to image and measure the bearing structure and topography, enabling a further understanding of bearing failure causes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brann, Michelle; Suter, Jonathan D.; Addleman, R. Shane
There is a need for imaging and sensing instrumentation that can monitor transitions in biofilm structure in order to better understand biofilm development and emergent properties such as anti-microbial resistance. Herein, we expanded on our previously reported technique for measuring and monitoring the thickness and topology of live biofilms using white-light interferometry (WLI). A flow cell designed for WLI enabled the use of this non-disruptive imaging method for the capture of high resolution three-dimensional profile images of biofilm growth over time. The fine axial resolution (3 nm) and wide field of view (>1 mm by 1 mm) enabled detection ofmore » biofilm formation as early as three hours after inoculation of the flow cell with a live bacterial culture (Pseudomonas fluorescens). WLI imaging facilitated monitoring the early stages of biofilm development and subtle variations in the structure of mature biofilms. Minimally-invasive imaging enabled monitoring of biofilm structure with surface metrology metrics (e.g., surface roughness). The system was used to observe a transition in biofilm structure that occurred in response to expsoure to a common antiseptic. In the future, WLI and the biofilm imaging cell described herein may be used to test the effectiveness of biofilm-specific therapies to combat common diseases associated with biofilm formation such as cystic fibrosis and periodontitis.« less
Distributed measurement of birefringence dispersion in polarization-maintaining fibers
NASA Astrophysics Data System (ADS)
Tang, Feng; Wang, Xiang-Zhao; Zhang, Yimo; Jing, Wencai
2006-12-01
A new method to measure the birefringence dispersion in high-birefringence polarization-maintaining fibers is presented using white-light interferometry. By analyzing broadening of low-coherence interferograms obtained in a scanning Michelson interferometer, the birefringence dispersion and its variation along different fiber sections are acquired with high sensitivity and accuracy. Birefringence dispersions of two PANDA fibers at their operation wavelength are measured to be 0.011 ps/(km nm) and 0.018 ps/(km nm), respectively. Distributed measurement capability of the method is also verified experimentally.
Force transformation in spider strain sensors: white light interferometry
Schaber, Clemens F.; Gorb, Stanislav N.; Barth, Friedrich G.
2012-01-01
Scanning white light interferometry and micro-force measurements were applied to analyse stimulus transformation in strain sensors in the spider exoskeleton. Two compound or ‘lyriform’ organs consisting of arrays of closely neighbouring, roughly parallel sensory slits of different lengths were examined. Forces applied to the exoskeleton entail strains in the cuticle, which compress and thereby stimulate the individual slits of the lyriform organs. (i) For the proprioreceptive lyriform organ HS-8 close to the distal joint of the tibia, the compression of the slits at the sensory threshold was as small as 1.4 nm and hardly more than 30 nm, depending on the slit in the array. The corresponding stimulus forces were as small as 0.01 mN. The linearity of the loading curve seems reasonable considering the sensor's relatively narrow biological intensity range of operation. The slits' mechanical sensitivity (slit compression/force) ranged from 106 down to 13 nm mN−1, and gradually decreased with decreasing slit length. (ii) Remarkably, in the vibration-sensitive lyriform organ HS-10 on the metatarsus, the loading curve was exponential. The organ is thus adapted to the detection of a wide range of vibration amplitudes, as they are found under natural conditions. The mechanical sensitivities of the two slits examined in this organ in detail differed roughly threefold (522 and 195 nm mN−1) in the biologically most relevant range, again reflecting stimulus range fractionation among the slits composing the array. PMID:22031733
Zhang, Tao; Gao, Feng; Jiang, Xiangqian
2017-10-02
This paper proposes an approach to measure double-sided near-right-angle structured surfaces based on dual-probe wavelength scanning interferometry (DPWSI). The principle and mathematical model is discussed and the measurement system is calibrated with a combination of standard step-height samples for both probes vertical calibrations and a specially designed calibration artefact for building up the space coordinate relationship of the dual-probe measurement system. The topography of the specially designed artefact is acquired by combining the measurement results with white light scanning interferometer (WLSI) and scanning electron microscope (SEM) for reference. The relative location of the two probes is then determined with 3D registration algorithm. Experimental validation of the approach is provided and the results show that the method is able to measure double-sided near-right-angle structured surfaces with nanometer vertical resolution and micrometer lateral resolution.
Guo, Tong; Chen, Zhuo; Li, Minghui; Wu, Juhong; Fu, Xing; Hu, Xiaotang
2018-04-20
Based on white-light spectral interferometry and the Linnik microscopic interference configuration, the nonlinear phase components of the spectral interferometric signal were analyzed for film thickness measurement. The spectral interferometric signal was obtained using a Linnik microscopic white-light spectral interferometer, which includes the nonlinear phase components associated with the effective thickness, the nonlinear phase error caused by the double-objective lens, and the nonlinear phase of the thin film itself. To determine the influence of the effective thickness, a wavelength-correction method was proposed that converts the effective thickness into a constant value; the nonlinear phase caused by the effective thickness can then be determined and subtracted from the total nonlinear phase. A method for the extraction of the nonlinear phase error caused by the double-objective lens was also proposed. Accurate thickness measurement of a thin film can be achieved by fitting the nonlinear phase of the thin film after removal of the nonlinear phase caused by the effective thickness and by the nonlinear phase error caused by the double-objective lens. The experimental results demonstrated that both the wavelength-correction method and the extraction method for the nonlinear phase error caused by the double-objective lens improve the accuracy of film thickness measurements.
2016-05-01
Visible-light long baseline interferometry holds the promise of advancing a number of important applications in fundamental astronomy, including the...advance the field of visible-light interferometry requires development of instruments capable of combing light from 15 baselines (6 telescopes
NASA Technical Reports Server (NTRS)
Zhai, Chengxing; Milman, Mark H.; Regehr, Martin W.; Best, Paul K.
2007-01-01
In the companion paper, [Appl. Opt. 46, 5853 (2007)] a highly accurate white light interference model was developed from just a few key parameters characterized in terms of various moments of the source and instrument transmission function. We develop and implement the end-to-end process of calibrating these moment parameters together with the differential dispersion of the instrument and applying them to the algorithms developed in the companion paper. The calibration procedure developed herein is based on first obtaining the standard monochromatic parameters at the pixel level: wavenumber, phase, intensity, and visibility parameters via a nonlinear least-squares procedure that exploits the structure of the model. The pixel level parameters are then combined to obtain the required 'global' moment and dispersion parameters. The process is applied to both simulated scenarios of astrometric observations and to data from the microarcsecond metrology testbed (MAM), an interferometer testbed that has played a prominent role in the development of this technology.
Ruggiero, Anthony J.
2005-05-03
An integrated optical capillary electrophoresis system for analyzing an analyte. A modulated optical pump beam impinges on an capillary containing the analyte/buffer solution which is separated by electrophoresis. The thermally-induced change in the index of refraction of light in said electrophoresis capillary is monitored using an integrated micro-interferometer. The interferometer includes a first interferometer arm intersecting the electrophoresis capillary proximate the excitation beam and a second, reference interferometer arm. Changes in index of refraction in the analyte measured by interrogating the interferometer state using white light interferometry and a phase-generated carrier demodulation technique. Background thermo-optical activity in the buffer solution is cancelled by splitting the pump beam and exciting pure buffer solution in a second section of capillary where it crosses the reference arm of the interferometer.
Surface-mount sapphire interferometric temperature sensor.
Zhu, Yizheng; Wang, Anbo
2006-08-20
A fiber-optic high-temperature sensor is demonstrated by bonding a 45 degrees -polished single-crystal sapphire fiber on the surface of a sapphire wafer, whose optical thickness is temperature dependent and measured by white-light interferometry. A novel adhesive-free coupling between the silica and sapphire fibers is achieved by fusion splicing, and its performance is characterized. The sensor's interference signal is investigated for its dependence on angular alignment between the fiber and the wafer. A prototype sensor is tested to 1,170 degrees C with a resolution of 0.4 degrees C, demonstrating excellent potential for high-temperature measurement.
NASA Astrophysics Data System (ADS)
Seppä, Jeremias; Kassamakov, Ivan; Heikkinen, Ville; Nolvi, Anton; Paulin, Tor; Lassila, Antti; Hæggström, Edward
2013-12-01
A stroboscopic scanning white light interferometer (SSWLI) can characterize both static features and motion in micro(nano)electromechanical system devices. SSWLI measurement results should be linked to the meter definition to be comparable and unambiguous. This traceability is achieved by careful error characterization and calibration of the interferometer. The main challenge in vertical scale calibration is to have a reference device with reproducible out-of-plane movement. A piezo-scanned flexure guided stage with capacitive sensor feedback was attached to a mirror and an Invar steel holder with a reference plane-forming a transfer standard that was calibrated by laser interferometry with 2.3 nm uncertainty. The moving mirror vertical position was then measured with the SSWLI, relative to the reference plane, between successive mirror position steppings. A light-emitting diode pulsed at 100 Hz with 0.5% duty cycle synchronized to the CCD camera and a halogen light source were used. Inside the scanned 14 μm range, the measured SSWLI scale amplification coefficient error was 0.12% with 4.5 nm repeatability of the steps. For SWLI measurements using a halogen lamp, the corresponding results were 0.05% and 6.7 nm. The presented methodology should permit accurate traceable calibration of the vertical scale of any SWLI.
Spatially resolved scatter measurement of diffractive micromirror arrays.
Sicker, Cornelius; Heber, Jörg; Berndt, Dirk
2016-06-01
Spatial light modulators (SLMs) support flexible system concepts in modern optics and especially phase-only SLMs such as micromirror arrays (MMAs) appear attractive for many applications. In order to achieve a precise phase modulation, which is crucial for optical performance, careful characterization and calibration of SLM devices is required. We examine an intensity-based measurement concept, which promises distinct advantages by means of a spatially resolved scatter measurement that is combined with the MMA's diffractive principle. Measurements yield quantitative results, which are consistent with measurements of micromirror roughness components, by white-light interferometry. They reveal relative scatter as low as 10-4, which corresponds to contrast ratios up to 10,000. The potential of the technique to resolve phase changes in the subnanometer range is experimentally demonstrated.
Optical Multi-Channel Intensity Interferometry - Or: How to Resolve O-Stars in the Magellanic Clouds
NASA Astrophysics Data System (ADS)
Trippe, Sascha; Kim, Jae-Young; Lee, Bangwon; Choi, Changsu; Oh, Junghwan; Lee, Taeseok; Yoon, Sung-Chul; Im, Myungshin; Park, Yong-Sun
2014-12-01
Intensity interferometry, based on the Hanbury Brown--Twiss effect, is a simple and inexpensive method for optical interferometry at microarcsecond angular resolutions; its use in astronomy was abandoned in the 1970s because of low sensitivity. Motivated by recent technical developments, we argue that the sensitivity of large modern intensity interferometers can be improved by factors up to approximately 25,000, corresponding to 11 photometric magnitudes, compared to the pioneering Narrabri Stellar Interferometer. This is made possible by (i) using avalanche photodiodes (APD) as light detectors, (ii) distributing the light received from the source over multiple independent spectral channels, and (iii) use of arrays composed of multiple large light collectors. Our approach permits the construction of large (with baselines ranging from few kilometers to intercontinental distances) optical interferometers at the cost of (very) long-baseline radio interferometers. Realistic intensity interferometer designs are able to achieve limiting R-band magnitudes as good as m_R≈14, sufficient for spatially resolved observations of main-sequence O-type stars in the Magellanic Clouds. Multi-channel intensity interferometers can address a wide variety of science cases: (i) linear radii, effective temperatures, and luminosities of stars, via direct measurements of stellar angular sizes; (ii) mass--radius relationships of compact stellar remnants, via direct measurements of the angular sizes of white dwarfs; (iii) stellar rotation, via observations of rotation flattening and surface gravity darkening; (iv) stellar convection and the interaction of stellar photospheres and magnetic fields, via observations of dark and bright starspots; (v) the structure and evolution of multiple stars, via mapping of the companion stars and of accretion flows in interacting binaries; (vi) direct measurements of interstellar distances, derived from angular diameters of stars or via the interferometric Baade--Wesselink method; (vii) the physics of gas accretion onto supermassive black holes, via resolved observations of the central engines of luminous active galactic nuclei; and (viii) calibration of amplitude interferometers by providing a sample of calibrator stars.
Techniques in Broadband Interferometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Erskine, D J
2004-01-04
This is a compilation of my patents issued from 1997 to 2002, generally describing interferometer techniques that modify the coherence properties of broad-bandwidth light and other waves, with applications to Doppler velocimetry, range finding, imaging and spectroscopy. Patents are tedious to read in their original form. In an effort to improve their readability I have embedded the Figures throughout the manuscript, put the Figure captions underneath the Figures, and added section headings. Otherwise I have resisted the temptation to modify the words, though I found many places which could use healthy editing. There may be minor differences with the officialmore » versions issued by the US Patent and Trademark Office, particularly in the claims sections. In my shock physics work I measured the velocities of targets impacted by flyer plates by illuminating them with laser light and analyzing the reflected light with an interferometer. Small wavelength changes caused by the target motion (Doppler effect) were converted into fringe shifts by the interferometer. Lasers having long coherence lengths were required for the illumination. While lasers are certainly bright sources, and their collimated beams are convenient to work with, they are expensive. Particularly if one needs to illuminate a wide surface area, then large amounts of power are needed. Orders of magnitude more power per dollar can be obtained from a simple flashlamp, or for that matter, a 50 cent light bulb. Yet these inexpensive sources cannot practically be used for Doppler velocimetry because their coherence length is extremely short, i.e. their bandwidth is much too wide. Hence the motivation for patents 1 & 2 is a method (White Light Velocimetry) for allowing use of these powerful but incoherent lamps for interferometry. The coherence of the illumination is modified by passing it through a preparatory interferometer.« less
Nanoscale optical interferometry with incoherent light
Li, Dongfang; Feng, Jing; Pacifici, Domenico
2016-01-01
Optical interferometry has empowered an impressive variety of biosensing and medical imaging techniques. A widely held assumption is that devices based on optical interferometry require coherent light to generate a precise optical signature in response to an analyte. Here we disprove that assumption. By directly embedding light emitters into subwavelength cavities of plasmonic interferometers, we demonstrate coherent generation of surface plasmons even when light with extremely low degrees of spatial and temporal coherence is employed. This surprising finding enables novel sensor designs with cheaper and smaller light sources, and consequently increases accessibility to a variety of analytes, such as biomarkers in physiological fluids, or even airborne nanoparticles. Furthermore, these nanosensors can now be arranged along open detection surfaces, and in dense arrays, accelerating the rate of parallel target screening used in drug discovery, among other high volume and high sensitivity applications. PMID:26880171
Nanoscale optical interferometry with incoherent light.
Li, Dongfang; Feng, Jing; Pacifici, Domenico
2016-02-16
Optical interferometry has empowered an impressive variety of biosensing and medical imaging techniques. A widely held assumption is that devices based on optical interferometry require coherent light to generate a precise optical signature in response to an analyte. Here we disprove that assumption. By directly embedding light emitters into subwavelength cavities of plasmonic interferometers, we demonstrate coherent generation of surface plasmons even when light with extremely low degrees of spatial and temporal coherence is employed. This surprising finding enables novel sensor designs with cheaper and smaller light sources, and consequently increases accessibility to a variety of analytes, such as biomarkers in physiological fluids, or even airborne nanoparticles. Furthermore, these nanosensors can now be arranged along open detection surfaces, and in dense arrays, accelerating the rate of parallel target screening used in drug discovery, among other high volume and high sensitivity applications.
NASA Astrophysics Data System (ADS)
Reolon, David; Jacquot, Maxime; Verrier, Isabelle; Brun, Gérald; Veillas, Colette
2006-12-01
In this paper we propose group refractive index measurement with a spectral interferometric set-up using a broadband supercontinuum generated in an air-silica Microstructured Optical Fibre (MOF) pumped with a picosecond pulsed microchip laser. This source authorizes high fringes visibility for dispersion measurements by Spectroscopic Analysis of White Light Interferograms (SAWLI). Phase calculation is assumed by a wavelet transform procedure combined with a curve fit of the recorded channelled spectrum intensity. This approach provides high resolution and absolute group refractive index measurements along one line of the sample by recording a single 2D spectral interferogram without mechanical scanning.
Autonomous formation flying sensor for the Star Light Mission
NASA Technical Reports Server (NTRS)
Aung, M.; Purcell, G.; Tien, J.; Young, L.; Srinivasan, J.; Ciminera, M. A.; Chong, Y. J.; Amaro, L. R.; Young, L. E.
2002-01-01
The StarLight Mission, an element of NASA's Origins Program, was designed for first-time demonstration of two technologies: formation flying optical interferometry between spacecraft and autonomous precise formation flying of an array of spacecraft to support optical interferometry. The design overview and results of the technology effort are presented in this paper.
Design considerations and validation of the MSTAR absolute metrology system
NASA Astrophysics Data System (ADS)
Peters, Robert D.; Lay, Oliver P.; Dubovitsky, Serge; Burger, Johan; Jeganathan, Muthu
2004-08-01
Absolute metrology measures the actual distance between two optical fiducials. A number of methods have been employed, including pulsed time-of-flight, intensity-modulated optical beam, and two-color interferometry. The rms accuracy is currently limited to ~5 microns. Resolving the integer number of wavelengths requires a 1-sigma range accuracy of ~0.1 microns. Closing this gap has a large pay-off: the range (length measurement) accuracy can be increased substantially using the unambiguous optical phase. The MSTAR sensor (Modulation Sideband Technology for Absolute Ranging) is a new system for measuring absolute distance, capable of resolving the integer cycle ambiguity of standard interferometers, and making it possible to measure distance with sub-nanometer accuracy. In this paper, we present recent experiments that use dispersed white light interferometry to independently validate the zero-point of the system. We also describe progress towards reducing the size of optics, and stabilizing the laser wavelength for operation over larger target ranges. MSTAR is a general-purpose tool for conveniently measuring length with much greater accuracy than was previously possible, and has a wide range of possible applications.
Development of Speckle Interferometry Algorithm and System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shamsir, A. A. M.; Jafri, M. Z. M.; Lim, H. S.
2011-05-25
Electronic speckle pattern interferometry (ESPI) method is a wholefield, non destructive measurement method widely used in the industries such as detection of defects on metal bodies, detection of defects in intergrated circuits in digital electronics components and in the preservation of priceless artwork. In this research field, this method is widely used to develop algorithms and to develop a new laboratory setup for implementing the speckle pattern interferometry. In speckle interferometry, an optically rough test surface is illuminated with an expanded laser beam creating a laser speckle pattern in the space surrounding the illuminated region. The speckle pattern is opticallymore » mixed with a second coherent light field that is either another speckle pattern or a smooth light field. This produces an interferometric speckle pattern that will be detected by sensor to count the change of the speckle pattern due to force given. In this project, an experimental setup of ESPI is proposed to analyze a stainless steel plate using 632.8 nm (red) wavelength of lights.« less
The Least-Squares Calibration on the Micro-Arcsecond Metrology Test Bed
NASA Technical Reports Server (NTRS)
Zhai, Chengxing; Milman, Mark H.; Regehr, Martin W.
2006-01-01
The Space Interferometry Mission (S1M) will measure optical path differences (OPDs) with an accuracy of tens of picometers, requiring precise calibration of the instrument. In this article, we present a calibration approach based on fitting star light interference fringes in the interferometer using a least-squares algorithm. The algorithm is first analyzed for the case of a monochromatic light source with a monochromatic fringe model. Using fringe data measured on the Micro-Arcsecond Metrology (MAM) testbed with a laser source, the error in the determination of the wavelength is shown to be less than 10pm. By using a quasi-monochromatic fringe model, the algorithm can be extended to the case of a white light source with a narrow detection bandwidth. In SIM, because of the finite bandwidth of each CCD pixel, the effect of the fringe envelope can not be neglected, especially for the larger optical path difference range favored for the wavelength calibration.
Shirai, Tomohiro; Barnes, Thomas H
2002-02-01
A liquid-crystal adaptive optics system using all-optical feedback interferometry is applied to partially coherent imaging through a phase disturbance. A theoretical analysis based on the propagation of the cross-spectral density shows that the blurred image due to the phase disturbance can be restored, in principle, irrespective of the state of coherence of the light illuminating the object. Experimental verification of the theory has been performed for two cases when the object to be imaged is illuminated by spatially coherent light originating from a He-Ne laser and by spatially incoherent white light from a halogen lamp. We observed in both cases that images blurred by the phase disturbance were successfully restored, in agreement with the theory, immediately after the adaptive optics system was activated. The origin of the deviation of the experimental results from the theory, together with the effect of the feedback misalignment inherent in our optical arrangement, is also discussed.
Sub-10-ms X-ray tomography using a grating interferometer
NASA Astrophysics Data System (ADS)
Yashiro, Wataru; Noda, Daiji; Kajiwara, Kentaro
2017-05-01
An X-ray phase tomogram was successfully obtained with an exposure time of less than 10 ms by X-ray grating interferometry, an X-ray phase imaging technique that enables high-sensitivity X-ray imaging even of materials consisting of light elements. This high-speed X-ray imaging experiment was performed at BL28B2, SPring-8, where a white X-ray beam is available, and the tomogram was reconstructed from projection images recorded at a frame rate of 100,000 fps. The setup of the experiment will make it possible to realize three-dimensional observation of unrepeatable high-speed phenomena with a time resolution of less than 10 ms.
An optical solution for the traveling salesman problem.
Haist, Tobias; Osten, Wolfgang
2007-08-06
We introduce an optical method based on white light interferometry in order to solve the well-known NP-complete traveling salesman problem. To our knowledge it is the first time that a method for the reduction of non-polynomial time to quadratic time has been proposed. We will show that this achievement is limited by the number of available photons for solving the problem. It will turn out that this number of photons is proportional to N(N) for a traveling salesman problem with N cities and that for large numbers of cities the method in practice therefore is limited by the signal-to-noise ratio. The proposed method is meant purely as a gedankenexperiment.
Holodiagram: elliptic visualizing interferometry, relativity, and light-in-flight.
Abramson, Nils H
2014-04-10
In holographic interferometry, there is usually a static distance separating the point of illumination and the point of observation. In Special Relativity, this separation is dynamic and is caused by the velocity of the observer. The corrections needed to compensate for these separations are similar in the two fields. We use the ellipsoids of the holodiagram for measurement and in a graphic way to explain and evaluate optical resolution, gated viewing, radar, holography, three-dimensional interferometry, Special Relativity, and light-in-flight recordings. Lorentz contraction together with time dilation is explained as the result of the eccentricity of the measuring ellipsoid, caused by its velocity. The extremely thin ellipsoid of the very first light appears as a beam aimed directly at the observer, which might explain the wave or ray duality of light and entanglement. Finally, we introduce the concept of ellipsoids of observation.
During air cool process aerosol absorption detection with photothermal interferometry
NASA Astrophysics Data System (ADS)
Li, Baosheng; Xu, Limei; Huang, Junling; Ma, Fei; Wang, Yicheng; Li, Zhengqiang
2014-11-01
This paper studies the basic principle of laser photothermal interferometry method of aerosol particles absorption coefficient. The photothermal interferometry method with higher accuracy and lower uncertainty can directly measure the absorption coefficient of atmospheric aerosols and not be affected by scattered light. With Jones matrix expression, the math expression of a special polarization interferometer is described. This paper using folded Jamin interferometer, which overcomes the influence of vibration on measuring system. Interference come from light polarization beam with two orthogonal and then combine to one beam, finally aerosol absorption induced refractive index changes can be gotten with four beam of phase orthogonal light. These kinds of styles really improve the stability of system and resolution of the system. Four-channel detections interact with interference fringes, to reduce the light intensity `zero drift' effect on the system. In the laboratory, this device typical aerosol absorption index, it shows that the result completely agrees with actual value. After heated by laser, cool process of air also show the process of aerosol absorption. This kind of instrument will be used to monitor ambient aerosol absorption and suspended particulate matter chemical component. Keywords: Aerosol absorption coefficient; Photothermal interferometry; Suspended particulate matter.
NASA Astrophysics Data System (ADS)
Li, Dongfang; Pacifici, Domenico
The spectral degree of coherence describes the correlation of electromagnetic fields, which plays a key role in many applications, including free-space optical communications and speckle-free bioimaging. Recently, plasmonic interferometry, i.e. optical interferometry that employs surface plasmon polaritons (SPPs), has enabled enhanced light transmission and high-sensitivity biosensing, among other applications. It offers new ways to characterize and engineer electromagnetic fields using nano-structured thin metal films. Here, we employ plasmonic interferometry to demonstrate full control of spatial coherence at length scales comparable to the wavelength of the incident light. Specifically, by measuring the diffraction pattern of several double-slit plasmonic structures etched on a metal film, the amplitude and phase of the degree of spatial coherence is determined as a function of slit-slit separation distance and incident wavelength. When the SPP contribution is turned on (i.e., by changing the polarization of the incident light from TE to TM illumination mode), strong modulation of both amplitude and phase of the spatial coherence is observed. These findings may help design compact modulators of optical spatial coherence and other optical elements to shape the light intensity in the far-field.
X-ray Optics Testing Beamline 1-BM at the Advanced Photon Source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Macrander, Albert; Erdmann, Mark; Kujala, Naresh
2016-07-27
Beamline 1-BM at the APS has been reconfigured in part for testing of synchrotron optics with both monochromatic and white beams. Operational since 2013, it was reconfigured to accommodate users of the APS as well as users from other DOE facilities. Energies between 6 and 28 keV are available. The beamline was reconfigured to remove two large mirrors and to provide a 100 mm wide monochromatics beam at 54 m from the source. In addition a custom white beam shutter was implemented for topography exposures as short as 65 millisec over the full available horizontal width. Primary agendas include bothmore » white beam and monochromatic beam topography, Talbot grating interferometry, and tests of focusing optics. K-B mirrors, MLLs, and FZPs have been characterized. Measurements of the spatial coherence lengths on the beamline were obtained with Talbot interferometry. Topography data has been reported.« less
X-ray optics testing beamline 1-BM at the advanced photon source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Macrander, Albert, E-mail: atm@anl.gov; Erdmann, Mark; Kujala, Naresh
2016-07-27
Beamline 1-BM at the APS has been reconfigured in part for testing of synchrotron optics with both monochromatic and white beams. Operational since 2013, it was reconfigured to accommodate users of the APS as well as users from other DOE facilities. Energies between 6 and 28 keV are available. The beamline was reconfigured to remove two large mirrors and to provide a 100 mm wide monochromatic beam at 54 m from the source. In addition a custom white beam shutter was implemented for topography exposures as short as 65 millisec over the full available horizontal width. Primary agendas include bothmore » white beam and monochromatic beam topography, Talbot grating interferometry, and tests of focusing optics. K-B mirrors, MLLs, and FZPs have been characterized. Measurements of the spatial coherence lengths on the beamline were obtained with Talbot interferometry. Topography data has been reported.« less
Resolving the depth of fluorescent light by structured illumination and shearing interferometry
NASA Astrophysics Data System (ADS)
Schindler, Johannes; Elmaklizi, Ahmed; Voit, Florian; Hohmann, Ansgar; Schau, Philipp; Brodhag, Nicole; Krauter, Philipp; Frenner, Karsten; Kienle, Alwin; Osten, Wolfgang
2016-03-01
A method for the depth-sensitive detection of fluorescent light is presented. It relies on a structured illumination restricting the excitation volume and on an interferometric detection of the wave front curvature. The illumination with two intersecting beams of a white-light laser separated in a Sagnac interferometer coupled to the microscope provides a coarse confinement in lateral and axial direction. The depth reconstruction is carried out by evaluating shearing interferograms produced with a Michelson interferometer. This setup can also be used with spatially and temporally incoherent light as emitted by fluorophores. A simulation workflow of the method was developed using a combination of a solution of Maxwell's equations with the Monte Carlo method. These simulations showed the principal feasibility of the method. The method is validated by measurements at reference samples with characterized material properties, locations and sizes of fluorescent regions. It is demonstrated that sufficient signal quality can be obtained for materials with scattering properties comparable to dental enamel while maintaining moderate illumination powers in the milliwatt range. The depth reconstruction is demonstrated for a range of distances and penetration depths of several hundred micrometers.
Barão, Valentim A R; Mathew, Mathew T; Assunção, Wirley Gonçalves; Yuan, Judy Chia-Chun; Wimmer, Markus A; Sukotjo, Cortino
2012-09-01
To investigate the role of different levels of pH of artificial saliva under simulated oral environment on the corrosion behavior of commercially pure titanium (cp-Ti) and Ti-6Al-4V alloy. Special attention is given to understand the changes in corrosion kinetics and surface characterization of Ti by using electrochemical impedance spectroscopy (EIS). Fifty-four Ti disks (15-mm diameter, 2-mm thickness) were divided into six groups (n = 9) as a function of saliva pH (3, 6.5, and 9) and Ti type. Samples were mechanically polished using standard metallographic procedures. Standard electrochemical tests, such as open circuit potential, EIS, and potentiodynamic tests were conducted in a controlled environment. Data were evaluated by two-way ANOVA, Tukey multiple comparison test, and independent t-test (α = 0.05). Ti surfaces were examined using white-light-interferometry microscopy and scanning electron microscopy (SEM). Saliva pH level significantly affected the corrosion behavior of both Ti types. At low pH, acceleration of ions exchange between Ti and saliva, and reduction of resistance of Ti surface against corrosion were observed (P < 0.05). Corrosion rate was also significantly increased in acidic medium (P < 0.05). Similar corrosion behavior was observed for both Ti types. The white-light-interferometry images of Ti surfaces show higher surface changes at low pH level. SEM images do not show detectable changes. No pitting corrosion was observed for any group. The pH level of artificial saliva influences the corrosion behavior of cp-Ti and Ti-6Al-4V alloy in that lower pH accelerates the corrosion rate and kinetics. The corrosion products may mitigate the survival rate of dental implants. © 2011 John Wiley & Sons A/S.
Holographic interferometry of transparent media using light scattered by embedded test objects
NASA Technical Reports Server (NTRS)
Prikryl, I.; Vest, C. M.
1982-01-01
Fringe formation and localization in holographic interferometry of transparent media are discussed for configurations in which light enters the medium and is scattered back through it by an embedded diffuse object. Fringe order numbers are doubled, and the fringe localization region is translated and compressed by a factor of two. The results are applicable to tomographic reconstruction of aerodynamic density fields around opaque test objects.
Refractive index measurement of imidazolium based ionic liquids in the Vis-NIR
NASA Astrophysics Data System (ADS)
Arosa, Yago; Rodríguez Fernández, Carlos Damián; López Lago, Elena; Amigo, Alfredo; Varela, Luis Miguel; Cabeza, Oscar; de la Fuente, Raúl
2017-11-01
In this paper spectrally resolved white light interferometry is applied for measuring the refractive index of different ionic liquids over a wide spectral band from 400 to 1000 nm. The measuring device is compound by a Michelson interferometer whose output is analyzed by means of two spectrometers. The first one is a homemade prism spectrometer which provides the interferogram produced by the sample over a wide continuum spectrum. The second one is a commercial diffraction grating spectrometer used to make high precision measurements of the displacement between the Michelson mirrors by interferometry. Both instruments combined allow the retrieval of the refractive index of the sample over a wide visible-near infrared continuum spectrum with deviations on the fourth decimal. A group of 14 different ionic liquids based on the 1-alkyl-3-methylimidazolium cation have been studied through this technique. The measured refractive index of the ionic liquids is used to calculate their electronic polarizability. This makes possible to gain insight into the microscopic behavior of the compounds. To give a better picture, the liquids have been classified in four groups and their refractive indices and polarizabilities are compared in order to find correlations between these magnitudes and the structure of the liquids.
New method for path-length equalization of long single-mode fibers for interferometry
NASA Astrophysics Data System (ADS)
Anderson, M.; Monnier, J. D.; Ozdowy, K.; Woillez, J.; Perrin, G.
2014-07-01
The ability to use single mode (SM) fibers for beam transport in optical interferometry offers practical advantages over conventional long vacuum pipes. One challenge facing fiber transport is maintaining constant differential path length in an environment where environmental thermal variations can lead to cm-level variations from day to night. We have fabricated three composite cables of length 470 m, each containing 4 copper wires and 3 SM fibers that operate at the astronomical H band (1500-1800 nm). Multiple fibers allow us to test performance of a circular core fiber (SMF28), a panda-style polarization-maintaining (PM) fiber, and a lastly a specialty dispersion-compensated PM fiber. We will present experimental results using precision electrical resistance measurements of the of a composite cable beam transport system. We find that the application of 1200 W over a 470 m cable causes the optical path difference in air to change by 75 mm (+/- 2 mm) and the resistance to change from 5.36 to 5.50Ω. Additionally, we show control of the dispersion of 470 m of fiber in a single polarization using white light interference fringes (λc=1575 nm, Δλ=75 nm) using our method.
NASA Astrophysics Data System (ADS)
Matthews, Nolan; Kieda, David; LeBohec, Stephan
2018-06-01
We present measurements of the second-order spatial coherence function of thermal light sources using Hanbury-Brown and Twiss interferometry with a digital correlator. We demonstrate that intensity fluctuations between orthogonal polarizations, or at detector separations greater than the spatial coherence length of the source, are uncorrelated but can be used to reduce systematic noise. The work performed here can readily be applied to existing and future Imaging Air-Cherenkov Telescopes used as star light collectors for stellar intensity interferometry to measure spatial properties of astronomical objects.
Forward scattering in two-beam laser interferometry
NASA Astrophysics Data System (ADS)
Mana, G.; Massa, E.; Sasso, C. P.
2018-04-01
A fractional error as large as 25 pm mm-1 at the zero optical-path difference has been observed in an optical interferometer measuring the displacement of an x-ray interferometer used to determine the lattice parameter of silicon. Detailed investigations have brought to light that the error was caused by light forward-scattered from the beam feeding the interferometer. This paper reports on the impact of forward-scattered light on the accuracy of two-beam optical interferometry applied to length metrology, and supplies a model capable of explaining the observed error.
Dispersion-engineered and highly nonlinear microstructured polymer optical fibres
NASA Astrophysics Data System (ADS)
Frosz, Michael H.; Nielsen, Kristian; Hlubina, Petr; Stefani, Alessio; Bang, Ole
2009-05-01
We demonstrate dispersion-engineering of microstructured polymer optical fibres (mPOFs) made of poly(methyl methacrylate) (PMMA). A significant shift of the total dispersion from the material dispersion is confirmed through measurement of the mPOF dispersion using white-light spectral interferometry. The influence of strong loss peaks on the dispersion (through the Kramers-Kronig relations) is investigated theoretically. It is found that the strong loss peaks of PMMA above 1100 nm can significantly modify the dispersion, while the losses below 1100 nm only modify the dispersion slightly. To increase the nonlinearity of the mPOFs we investigated doping of PMMA with the highly-nonlinear dye Disperse Red 1. Both doping of a PMMA cane and direct doping of a PMMA mPOF was performed.
Chkhalo, N I; Churin, S A; Pestov, A E; Salashchenko, N N; Vainer, Yu A; Zorina, M V
2014-08-25
The main problems and the approach used by the authors for roughness metrology of super-smooth surfaces designed for diffraction-quality X-ray mirrors are discussed. The limitations of white light interferometry and the adequacy of the method of atomic force microscopy for surface roughness measurements in a wide range of spatial frequencies are shown and the results of the studies of the effect of etching by argon and xenon ions on the surface roughness of fused quartz and optical ceramics, Zerodur, ULE and Sitall, are given. Substrates of fused quartz and ULE with the roughness, satisfying the requirements of diffraction-quality optics intended for working in the spectral range below 10 nm, are made.
NASA Astrophysics Data System (ADS)
Hamilton, Andrew; Caplinger, James; Sotnikov, Vladimir; Sarkisov, Gennady; Leland, John
2017-10-01
In the Plasma Physics and Sensors Laboratory, located at Wright Patterson Air Force Base, we utilize a pulsed power source to create plasma through a wire ablation process of metallic wires. With a parallel arrangement of wires the azimuthal magnetic fields generated around each wire, along with the Ohmic current dissipation and heating occurring upon wire evaporation, launch strong radial outflows of magnetized plasmas towards the centralized stagnation region. It is in this region that we investigate two phases of the wire ablation process. Observations in the first phase are collsionless and mostly comprised of light ions ejected from the initial corona. The second phase is observed when the wire core is ablated and heavy ions dominate collisions in the stagnation region. In this presentation we will show how dual-wavelength interferometric techniques can provide information about electron and atomic densities from experiments. Additionally, we expect white-light emission to provide a qualitative confirmation of the instabilities observed from our experiments. The material is based upon work supported by the Air Force Office of Scientific Research under Award Number 16RYCOR289.
Detection of deoxynivalenol using biolayer interferometry
USDA-ARS?s Scientific Manuscript database
Biolayer interferometry allows for the real time monitoring of the interactions between molecules without the need for reagents with enzymatic, fluorescent, or radioactive labels. The technology is based upon the changes in interference pattern of light reflected from the surface of an optical fiber...
Wide-field phase imaging for the endoscopic detection of dysplasia and early-stage esophageal cancer
NASA Astrophysics Data System (ADS)
Fitzpatrick, C. R. M.; Gordon, G. S. D.; Sawyer, T. W.; Wilkinson, T. D.; Bohndiek, S. E.
2018-02-01
Esophageal cancer has a 5-year survival rate below 20%, but can be curatively resected if it is detected early. At present, poor contrast for early lesions in white light imaging leads to a high miss rate in standard-of- care endoscopic surveillance. Early lesions in the esophagus, referred to as dysplasia, are characterized by an abundance of abnormal cells with enlarged nuclei. This tissue has a different refractive index profile to healthy tissue, which results in different light scattering properties and provides a source of endogenous contrast that can be exploited for advanced endoscopic imaging. For example, point measurements of such contrast can be made with scattering spectroscopy, while optical coherence tomography generates volumetric data. However, both require specialist interpretation for diagnostic decision making. We propose combining wide-field phase imaging with existing white light endoscopy in order to provide enhanced contrast for dysplasia and early-stage cancer in an image format that is familiar to endoscopists. Wide-field phase imaging in endoscopy can be achieved using coherent illumination combined with phase retrieval algorithms. Here, we present the design and simulation of a benchtop phase imaging system that is compatible with capsule endoscopy. We have undertaken preliminary optical modelling of the phase imaging setup, including aberration correction simulations and an investigation into distinguishing between different tissue phantom scattering coefficients. As our approach is based on phase retrieval rather than interferometry, it is feasible to realize a device with low-cost components for future clinical implementation.
NASA Astrophysics Data System (ADS)
Tawfik, Walid
2015-06-01
In this work, we could experimentally achieved the generation of white-light laser pulses of few-cycle fs pulses using a neon-filled hollow-core fiber. The observed pulses reached 6-fs at at repetition rate of 1 kHz using 2.5 mJ of 31 fs femtosecond pulses. The pulse compressing achieved by the supercontinuum produced in static neon-filled hollow fibers while the dispersion compensation is achieved by five pairs of chirped mirrors. We showed that gas pressure can be used to continuously vary the bandwidth from 350 nm to 900 nm. Furthermore, the applied technique allows for a straightforward tuning of the pulse duration via the gas pressure whilst maintaining near-transform-limited pulses with constant output energy, thereby reducing the complications introduced by chirped pulses. Through measurements of the transmission through the fiber as a function of gas pressure, a high throughput exceeding 60% was achieved. Adaptive pulse compression is achieved by using the spectral phase obtained from a spectral phase interferometry for direct electric field reconstruction (SPIDER) measurement as feedback for a liquid crystal spatial light modulator (SLM). The spectral phase of these supercontinua is found to be extremely stable over several hours. This allowed us to demonstrate successful compression to pulses as short as 5.2 fs with controlled wide spectral bandwidth, which could be used to excite different states in complicated molecules at once.
Visualizing Nanoscopic Topography and Patterns in Freely Standing Thin Films
NASA Astrophysics Data System (ADS)
Sharma, Vivek; Zhang, Yiran; Yilixiati, Subinuer
Thin liquid films containing micelles, nanoparticles, polyelectrolyte-surfactant complexes and smectic liquid crystals undergo thinning in a discontinuous, step-wise fashion. The discontinuous jumps in thickness are often characterized by quantifying changes in the intensity of reflected monochromatic light, modulated by thin film interference from a region of interest. Stratifying thin films exhibit a mosaic pattern in reflected white light microscopy, attributed to the coexistence of domains with various thicknesses, separated by steps. Using Interferometry Digital Imaging Optical Microscopy (IDIOM) protocols developed in the course of this study, we spatially resolve for the first time, the landscape of stratifying freely standing thin films. We distinguish nanoscopic rims, mesas and craters, and follow their emergence and growth. In particular, for thin films containing micelles of sodium dodecyl sulfate (SDS), these topological features involve discontinuous, thickness transitions with concentration-dependent steps of 5-25 nm. These non-flat features result from oscillatory, periodic, supramolecular structural forces that arise in confined fluids, and arise due to complex coupling of hydrodynamic and thermodynamic effects at the nanoscale.
Visualizing Nanoscopic Topography and Patterns in Freely Standing Thin Films
NASA Astrophysics Data System (ADS)
Yilixiati, Subinuer; Zhang, Yiran; Pearsall, Collin; Sharma, Vivek
Thin liquid films containing micelles, nanoparticles, polyelectrolyte-surfactant complexes and smectic liquid crystals undergo thinning in a discontinuous, step-wise fashion. The discontinuous jumps in thickness are often characterized by quantifying changes in the intensity of reflected monochromatic light, modulated by thin film interference from a region of interest. Stratifying thin films exhibit a mosaic pattern in reflected white light microscopy, attributed to the coexistence of domains with various thicknesses, separated by steps. Using Interferometry Digital Imaging Optical Microscopy (IDIOM) protocols developed in the course of this study, we spatially resolve for the first time, the landscape of stratifying freestanding thin films. In particular, for thin films containing micelles of sodium dodecyl sulfate (SDS), discontinuous, thickness transitions with concentration-dependent steps of 5-25 nm are visualized and analyzed using IDIOM protocols. We distinguish nanoscopic rims, mesas and craters and show that the non-flat features are sculpted by oscillatory, periodic, supramolecular structural forces that arise in confined fluids
In Situ observation of dark current emission in a high gradient rf photocathode gun
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shao, Jiahang; Shi, Jiaru; Antipov, Sergey P.
Undesirable electron field emission (also known as dark current) in high gradient rf photocathode guns deteriorates the quality of the photoemission current and limits the operational gradient. To improve the understanding of dark current emission, a high-resolution (~100 μm) dark current imaging experiment has been performed in an L-band photocathode gun operating at ~100 MV/m of surface gradient. Scattered strong emission areas with high current have been observed on the cathode. The field enhancement factor β of selected regions on the cathode has been measured. Finally, the postexaminations with scanning electron microscopy and white light interferometry reveal the origins ofmore » ~75% strong emission areas overlap with the spots where rf breakdown has occurred.« less
In Situ observation of dark current emission in a high gradient rf photocathode gun
Shao, Jiahang; Shi, Jiaru; Antipov, Sergey P.; ...
2016-08-15
Undesirable electron field emission (also known as dark current) in high gradient rf photocathode guns deteriorates the quality of the photoemission current and limits the operational gradient. To improve the understanding of dark current emission, a high-resolution (~100 μm) dark current imaging experiment has been performed in an L-band photocathode gun operating at ~100 MV/m of surface gradient. Scattered strong emission areas with high current have been observed on the cathode. The field enhancement factor β of selected regions on the cathode has been measured. Finally, the postexaminations with scanning electron microscopy and white light interferometry reveal the origins ofmore » ~75% strong emission areas overlap with the spots where rf breakdown has occurred.« less
Suppression of span in sealed microcavity Fabry-Perot pressure sensors
NASA Astrophysics Data System (ADS)
Mishra, Shivam; Rajappa, Balasubramaniam; Chandra, Sudhir
2017-01-01
Optical microelectromechanical system pressure sensors working on the principle of extrinsic Fabry-Perot (FP) interferometer are designed and fabricated for pressure range of 1-bar absolute. Anodic bonding of silicon with glass is performed under atmospheric pressure to form FP cavity. This process results in entrapment of gas in the sealed microcavity. The effect of trapped gas is investigated on sensor characteristics. A closed-loop solution is derived for the deflection of the diaphragm of a sealed microcavity pressure sensor. Phenomenon of "suppression of span" is brought out. The sensors are tested using white light interferometry technique. The residual pressure of the trapped gas is estimated from the experiments. The developed model has been used to estimate the deflection sensitivity of the free diaphragm and the extent of suppression of span after bonding.
Sciammarella, C A; Gilbert, J A
1976-09-01
Utilizing the light scattering property of transparent media, holographic interferometry is applied to the measurement of displacement at the interior planes of three dimensional bodies. The use of a double beam illumination and the introduction of a fictitious displacement make it feasible to obtain information corresponding to components of displacement projected on the scattering plane. When the proposed techniques are invoked, it is possible to eliminate the use of a matching index of refraction fluid in many problems involving symmetrically loaded prismatic bodies. Scattered light holographic interferometry is limited in its use to small changes in the index of refraction and to low values of relative retardation. In spite of these restrictions, a large number of technical problems in both statics and dynamics can be solved.
Application of SPM interferometry in MEMS vibration measurement
NASA Astrophysics Data System (ADS)
Tang, Chaowei; He, Guotian; Xu, Changbiao; Zhao, Lijuan; Hu, Jun
2007-12-01
The resonant frequency measurement of cantilever has an important position in MEMS(Micro Electro Mechanical Systems) research. Meanwhile the SPM interferometry is a high-precision optical measurement technique, which can be used in physical quantity measurement of vibration, displacement, surface profile. Hence, in this paper we propose to apply SPM(SPM) interferometry in measuring the vibration of MEMS cantilever and in the experiment the vibration of MEMS cantilever was driven by light source. Then this kind of vibration was measured in nm precision. Finally the relational characteristics of MEMS cantilever vibration under optical excitation can be gotten and the measurement principle is analyzed. This method eliminates the influence on the measuring precision caused by external interference and light intensity change through feedback control loop. Experiment results prove that this measurement method has a good effect.
High-Speed Digital Interferometry
NASA Technical Reports Server (NTRS)
De Vine, Glenn; Shaddock, Daniel A.; Ware, Brent; Spero, Robert E.; Wuchenich, Danielle M.; Klipstein, William M.; McKenzie, Kirk
2012-01-01
Digitally enhanced heterodyne interferometry (DI) is a laser metrology technique employing pseudo-random noise (PRN) codes phase-modulated onto an optical carrier. Combined with heterodyne interferometry, the PRN code is used to select individual signals, returning the inherent interferometric sensitivity determined by the optical wavelength. The signal isolation arises from the autocorrelation properties of the PRN code, enabling both rejection of spurious signals (e.g., from scattered light) and multiplexing capability using a single metrology system. The minimum separation of optical components is determined by the wavelength of the PRN code.
Optical versus tactile geometry measurement: alternatives or counterparts
NASA Astrophysics Data System (ADS)
Lehmann, Peter
2003-05-01
This contribution deals with measuring strategies and methods for the determination of several geometrical features, covering the surface micro-topography and the form of mechanical objects. The measuring principles used in optical surface metrology include optical focusing profilers, confocal point measuring and areal measuring sensors as well as interferometrical principles such as white light interferometry and speckle techniques. In comparison with stylus instruments optical techniques provide certain advantages such as a fast data acquisition, in-process applicability or contactless measurement. However, the frequency response characteristics of optical and tactile measurement differ significantly. In addition, optical sensors are commonly more influenced by critical geometrical conditions and optical properties of an object. For precise form measurement mechanical instruments dominate till now. One reason for this may be, that commonly the complete 360 degrees geometry of the measuring object has to be analyzed. Another point is that optical principles such as form measuring interferometry fail in cases of complex object geometry or rougher object surfaces. Other methods, e.g. fringe projection or digital holography, till now do not meet the accuracy demands of precision engineered workpieces. Hence, a combination of mechanical concepts and optical sensors represents an interesting potential for current and future measuring tasks, which require high accuracy and maximum flexibility.
Status of the LISA On Table experiment: a electro-optical simulator for LISA
NASA Astrophysics Data System (ADS)
Laporte, M.; Halloin, H.; Bréelle, E.; Buy, C.; Grüning, P.; Prat, P.
2017-05-01
The LISA project is a space mission that aim at detecting gravitational waves in space. An electro-optical simulator called LISA On Table (LOT) is being developed at APC in order to test noise reduction techniques (such as Timed Delayed Interferometry) and instruments that will be used. This document presents its latest results: TimeDelayed Interferometry of 1st generation works in the case of a simulated white noise with static, unequal arms. Future and ongoing developments of the experiment are also addressed.
Interferometry in the Era of Very Large Telescopes
NASA Technical Reports Server (NTRS)
Barry, Richard K.
2010-01-01
Research in modern stellar interferometry has focused primarily on ground-based observatories, with very long baselines or large apertures, that have benefited from recent advances in fringe tracking, phase reconstruction, adaptive optics, guided optics, and modern detectors. As one example, a great deal of effort has been put into development of ground-based nulling interferometers. The nulling technique is the sparse aperture equivalent of conventional coronography used in filled aperture telescopes. In this mode the stellar light itself is suppressed by a destructive fringe, effectively enhancing the contrast of the circumstellar material located near the star. Nulling interferometry has helped to advance our understanding of the astrophysics of many distant objects by providing the spatial resolution necessary to localize the various faint emission sources near bright objects. We illustrate the current capabilities of this technique by describing the first scientific results from the Keck Interferometer Nuller that combines the light from the two largest optical telescopes in the world including new, unpublished measurements of exozodiacal dust disks. We discuss prospects in the near future for interferometry in general, the capabilities of secondary masking interferometry on very large telescopes, and of nulling interferometry using outriggers on very large telescopes. We discuss future development of a simplified space-borne NIR nulling architecture, the Fourier-Kelvin Stellar Interferometer, capable of detecting and characterizing an Earth twin in the near future and how such a mission would benefit from the optical wavelength coverage offered by large, ground-based instruments.
Atom Interferometry in a Warm Vapor
Biedermann, G. W.; McGuinness, H. J.; Rakholia, A. V.; ...
2017-04-17
Here, we demonstrate matter-wave interference in a warm vapor of rubidium atoms. Established approaches to light-pulse atom interferometry rely on laser cooling to concentrate a large ensemble of atoms into a velocity class resonant with the atom optical light pulse. In our experiment, we show that clear interference signals may be obtained without laser cooling. This effect relies on the Doppler selectivity of the atom interferometer resonance. Lastly, this interferometer may be configured to measure accelerations, and we demonstrate that multiple interferometers may be operated simultaneously by addressing multiple velocity classes.
Optical Interferometry Motivation and History
NASA Technical Reports Server (NTRS)
Lawson, Peter
2006-01-01
A history and motivation of stellar interferometry is presented. The topics include: 1) On Tides, Organ Pipes, and Soap Bubbles; 2) Armand Hippolyte Fizeau (1819-1896); 3) Fizeau Suggests Stellar Interferometry 1867; 4) Edouard Stephan (1837-1923); 5) Foucault Refractor; 6) Albert A. Michelson (1852-1931); 7) On the Application of Interference Methods to Astronomy (1890); 8) Moons of Jupiter (1891); 9) Other Applications in 19th Century; 10) Timeline of Interferometry to 1938; 11) 30 years goes by; 12) Mount Wilson Observatory; 13) Michelson's 20 ft Interferometer; 14) Was Michelson Influenced by Fizeau? 15) Work Continues in the 1920s and 30s; 16) 50 ft Interferometer (1931-1938); 17) Light Paths in the 50 ft Interferometer; 18) Ground-level at the 50 ft; 19) F.G. Pease (1881-1938); 20) Timeline of Optical Interferometry to 1970; 21) A New Type of Stellar Interferometer (1956); 22) Intensity Interferometer (1963- 1976; 23) Robert Hanbury Brown; 24) Interest in Optical Interferometry in the 1960s; 25) Interferometry in the Early 1970s; and 26) A New Frontier is Opened up in 1974.
Kournetas, N; Spintzyk, S; Schweizer, E; Sawada, T; Said, F; Schmid, P; Geis-Gerstorfer, J; Eliades, G; Rupp, F
2017-08-01
Comparability of topographical data of implant surfaces in literature is low and their clinical relevance often equivocal. The aim of this study was to investigate the ability of scanning electron microscopy and optical interferometry to assess statistically similar 3-dimensional roughness parameter results and to evaluate these data based on predefined criteria regarded relevant for a favorable biological response. Four different commercial dental screw-type implants (NanoTite Certain Prevail, TiUnite Brånemark Mk III, XiVE S Plus and SLA Standard Plus) were analyzed by stereo scanning electron microscopy and white light interferometry. Surface height, spatial and hybrid roughness parameters (Sa, Sz, Ssk, Sku, Sal, Str, Sdr) were assessed from raw and filtered data (Gaussian 50μm and 5μm cut-off-filters), respectively. Data were statistically compared by one-way ANOVA and Tukey-Kramer post-hoc test. For a clinically relevant interpretation, a categorizing evaluation approach was used based on predefined threshold criteria for each roughness parameter. The two methods exhibited predominantly statistical differences. Dependent on roughness parameters and filter settings, both methods showed variations in rankings of the implant surfaces and differed in their ability to discriminate the different topographies. Overall, the analyses revealed scale-dependent roughness data. Compared to the pure statistical approach, the categorizing evaluation resulted in much more similarities between the two methods. This study suggests to reconsider current approaches for the topographical evaluation of implant surfaces and to further seek after proper experimental settings. Furthermore, the specific role of different roughness parameters for the bioresponse has to be studied in detail in order to better define clinically relevant, scale-dependent and parameter-specific thresholds and ranges. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Optical Fiber Strain Instrumentation for High Temperature Aerospace Structural Monitoring
NASA Technical Reports Server (NTRS)
Wang, A.
2002-01-01
The objective of the program is the development and laboratory demonstration of sensors based on silica optical fibers for measurement of high temperature strain for aerospace materials evaluations. A complete fiber strain sensor system based on white-light interferometry was designed and implemented. An experiment set-up was constructed to permit testing of strain measurement up to 850 C. The strain is created by bending an alumina cantilever beam to which is the fiber sensor is attached. The strain calibration is provided by the application of known beam deflections. To ensure the high temperature operation capability of the sensor, gold-coated single-mode fiber is used. Moreover, a new method of sensor surface attachment which permits accurate sensor gage length determination is also developed. Excellent results were obtained at temperatures up to 800-850 C.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chizhov, P A; Ushakov, A A; Bukin, V V
2015-05-31
We propose a scheme for measuring the spatial distribution of the THz pulse electric field strength in an electro-optic crystal using optical interferometry. The resulting images of the field distribution from a test source with a spherical wave front are presented. (extreme light fields and their applications)
Astronomical Optical Interferometry. I. Methods and Instrumentation
NASA Astrophysics Data System (ADS)
Jankov, S.
2010-12-01
Previous decade has seen an achievement of large interferometric projects including 8-10m telescopes and 100m class baselines. Modern computer and control technology has enabled the interferometric combination of light from separate telescopes also in the visible and infrared regimes. Imaging with milli-arcsecond (mas) resolution and astrometry with micro-arcsecond (muas) precision have thus become reality. Here, I review the methods and instrumentation corresponding to the current state in the field of astronomical optical interferometry. First, this review summarizes the development from the pioneering works of Fizeau and Michelson. Next, the fundamental observables are described, followed by the discussion of the basic design principles of modern interferometers. The basic interferometric techniques such as speckle and aperture masking interferometry, aperture synthesis and nulling interferometry are disscused as well. Using the experience of past and existing facilities to illustrate important points, I consider particularly the new generation of large interferometers that has been recently commissioned (most notably, the CHARA, Keck, VLT and LBT Interferometers). Finally, I discuss the longer-term future of optical interferometry, including the possibilities of new large-scale ground-based projects and prospects for space interferometry.
Three dimensional ink-jet printing of biomaterials using ionic liquids and co-solvents.
Gunasekera, Deshani H A T; Kuek, SzeLee; Hasanaj, Denis; He, Yinfeng; Tuck, Christopher; Croft, Anna K; Wildman, Ricky D
2016-08-15
1-Ethyl-3-methylimidazolium acetate ([C2C1Im][OAc]) and 1-butyl-3-methylimidazolium acetate ([C4C1Im][OAc]) have been used as solvents for the dissolution and ink-jet printing of cellulose from 1.0 to 4.8 wt%, mixed with the co-solvents 1-butanol and DMSO. 1-Butanol and DMSO were used as rheological modifiers to ensure consistent printing, with DMSO in the range of 41-47 wt% producing samples within the printable range of a DIMATIX print-head used (printability parameter < 10) at 55 °C, whilst maintaining cellulose solubility. Regeneration of cellulose from printed samples using water was demonstrated, with the resulting structural changes to the cellulose sample assessed by scanning electron microscopy (SEM) and white light interferometry (WLI). These results indicate the potential of biorenewable materials to be used in the 3D additive manufacture process to generate single-component and composite materials.
Mechanical stresses and amorphization of ion-implanted diamond
NASA Astrophysics Data System (ADS)
Khmelnitsky, R. A.; Dravin, V. A.; Tal, A. A.; Latushko, M. I.; Khomich, A. A.; Khomich, A. V.; Trushin, A. S.; Alekseev, A. A.; Terentiev, S. A.
2013-06-01
Scanning white light interferometry and Raman spectroscopy were used to investigate the mechanical stresses and structural changes in ion-implanted natural diamonds with different impurity content. The uniform distribution of radiation defects in implanted area was obtained by the regime of multiple-energy implantation of keV He+ ions. A modification of Bosia's et al. (Nucl. Instrum. Meth. B 268 (2010) 2991) method for determining the internal stresses and the density variation in an ion-implanted diamond layer was proposed that suggests measuring, in addition to the surface swelling of a diamond plate, the radius of curvature of the plate. It is shown that, under multiple-energy implantation of He+, mechanical stresses in the implanted layer may be as high as 12 GPa. It is shown that radiation damage reaches saturation for the implantation fluence characteristic of amorphization of diamond but is appreciably lower than the graphitization threshold.
NASA Astrophysics Data System (ADS)
Schanen-Duport, Isabelle; Persegol, Dominique; Collomb, Virginie; Minier, Vincent; Haguenauer, Pierre
2017-11-01
Astronomical aperture synthesis requires to combine beams coming from telescopes, with constraints on mechanical and thermal stability, accuracy on the measurement of the interferences visibility. One adapted way for solving the problem is integrated planar optics. A first two telescope beam combiner made by ion exchange technique on glass substrate and build with symmetric Y-junction provides laboratory white light interferograms simultaneously with photometric calibration. In order to increase the interferometric signal without loss of photometric output, we propose to replace symmetric Y-junctions by asymmetric ones. In this paper, we report the conception, the manufacturing and the characterization of asymmetric Y-junction realized by ion exchange on glass substrate. The specific application of astronomical interferometry required the characterization of such component in term of spectral behavior, so we report the simulation and the measurement of asymmetric Y-junction response versus wavelength.
Influence of the Liquid on Femtosecond Laser Ablation of Iron
NASA Astrophysics Data System (ADS)
Kanitz, A.; Hoppius, J. S.; Gurevich, E. L.; Ostendorf, A.
Ultrashort pulse laser ablation has become a very important industrial method for highly precise material removal ranging from sensitive thin film processing to drilling and cutting of metals. Over the last decade, a new method to produce pure nanoparticles emerged from this technique: Pulsed Laser Ablation in Liquids (PLAL). By this method, the ablation of material by a laser beam is used to generate a metal vapor within the liquid in order to obtain nanoparticles from its recondensation process. It is well known that the liquid significantly alters the ablation properties of the substrate, in our case iron. For example, the ablation rate and crater morphology differ depending on the used liquid. We present our studies on the efficiency and quality of ablated grooves in water, methanol, acetone, ethanol and toluene. The produced grooves are investigated by means of white-light interferometry, EDX and SEM.
Krueger, Alexander P; Singh, Gurpal; Beil, Frank Timo; Feuerstein, Bernd; Ruether, Wolfgang; Lohmann, Christoph H
2014-05-01
Ceramic components in total knee arthroplasty (TKA) are evolving. We analyze the first case of BIOLOX delta ceramic femoral component fracture. A longitudinal midline fracture in the patellar groove was present, with an intact cement mantle and no bony defects. Fractographic analysis with laser scanning microscopy and white light interferometry showed no evidence of arrest lines, hackles, wake hackles, material flaws, fatigue or crack propagation. Analysis of periprosthetic tissues with Fourier-transform infrared (FT-IR) microscopy, contact radiography, histology, and subsequent digestion and high-speed centrifugation did not show ceramic debris. A macrophage-dominated response was present around polyethylene debris. We conclude that ceramic femoral component failure in this case was related to a traumatic event. Further research is needed to determine the suitability of ceramic components in TKA. Copyright © 2014 Elsevier Inc. All rights reserved.
Manipulation of Micro Scale Particles in an Optical Trap Using Interferometry
NASA Technical Reports Server (NTRS)
Seibel, Robin
2002-01-01
This research shows that micro particles can be manipulated via interferometric patterns superimposed on an optical tweezers beam. Interferometry allows the manipulation of intensity distributions, and thus, force distributions on a trapped particle. To demonstrate the feasibility of such manipulation, 458 nm light, from an argon-ion laser, was injected into a Mach Zender interferometer. One mirror in the interferometer was oscillated with a piezoelectric phase modulator. The light from the interferometer was then injected into a microscope to trap a 9.75 micron polystyrene sphere. By varying the phase modulation, the sphere was made to oscillate in a controlled fashion.
DH and ESPI laser interferometry applied to the restoration shrinkage assessment
NASA Astrophysics Data System (ADS)
Campos, L. M. P.; Parra, D. F.; Vasconcelos, M. R.; Vaz, M.; Monteiro, J.
2014-01-01
In dental restoration postoperative marginal leakage is commonly associated to polymerization shrinkage effects. In consequence the longevity and quality of restorative treatment depends on the shrinkage mechanisms of the composite filling during the polymerization. In this work the development of new techniques for evaluation of those effects under light-induced polymerization of dental nano composite fillings is reported. The composite resins activated by visible light, initiate the polymerization process by absorbing light in wavelengths at about 470 nm. The techniques employed in the contraction assessment were digital holography (DH) and Electronic Speckle Pattern Interferometry (ESPI) based on laser interferometry. A satisfactory resolution was achieved in the non-contact displacement field measurements on small objects concerning the experimental dental samples. According to a specific clinical protocol, natural teeth were used (human mandibular premolars). A class I cavity was drilled and restored with nano composite material, according to Black principles. The polymerization was monitored by DH and ESPI in real time during the cure reaction of the restoration. The total displacement reported for the material in relation of the tooth wall was 3.7 μm (natural tooth). The technique showed the entire tooth surface (wall) deforming during polymerization shrinkage.
Optical mapping of surface roughness by implementation of a spatial light modulator
NASA Astrophysics Data System (ADS)
Aulbach, Laura; Pöller, Franziska; Lu, Min; Wang, Shengjia; Koch, Alexander W.
2017-08-01
It is well-known that the surface roughness of materials plays an important role in the operation and performance of technological systems. The roughness influences key parameters, such as friction and wear, and is directly connected to the functionality and durability of the respective system. Tactile methods are widely used for the measurement of surface roughness, but a destructive measurement procedure and the lack of feasibility of online monitoring are crucial drawbacks. In the last decades, several non-contact, usually optical systems for surface roughness measurements have been developed, e.g., white light interferometry, light scatter analysis, or speckle correlation. These techniques are in turn often unable to assign the roughness to a certain surface area or involve inappropriate adjustment procedures. One promising and straightforward optical measurement method is the surface roughness measurement by analyzing the fringe visibility of an interferometric fringe pattern. In our work, we employed a spatial light modulator in the interferometric setup to vary the fringe visibility and provide a stable and reliable measurement system. In previous research, either the averaged fringe visibility or the fringe visibility along a defined observation profile were analyzed. In this article, the analysis of the fringe visibility is extended to generate a complete roughness map of the measurement target. Thus, surface defects or areas of different roughness can be easily located.
The Art of Optical Aberrations
NASA Astrophysics Data System (ADS)
Wylde, Clarissa Eileen Kenney
Art and optics are inseparable. Though seemingly opposite disciplines, the combination of art and optics has significantly impacted both culture and science as they are now known. As history has run its course, in the sciences, arts, and their fruitful combinations, optical aberrations have proved to be a problematic hindrance to progress. In an effort to eradicate aberrations the simple beauty of these aberrational forms has been labeled as undesirable and discarded. Here, rather than approach aberrations as erroneous, these beautiful forms are elevated to be the photographic subject in a new body of work, On the Bright Side. Though many recording methods could be utilized, this work was composed on classic, medium-format, photographic film using white-light, Michelson interferometry. The resulting images are both a representation of the true light rays that interacted on the distorted mirror surfaces (data) and the artist's compositional eye for what parts of the interferogram are chosen and displayed. A detailed description of the captivating interdisciplinary procedure is documented and presented alongside the final artwork, CCD digital reference images, and deformable mirror contour maps. This alluring marriage between the arts and sciences opens up a heretofore minimally explored aspect of the inextricable art-optics connection. It additionally provides a fascinating new conversation on the importance of light and optics in photographic composition.
Optical measurement methods in thermogasdynamics
NASA Technical Reports Server (NTRS)
Stursberg, K.; Erhardt, K.; Krahr, W.; Becker, M.
1978-01-01
A review is presented of a number of optical methods of flow measurements. Consideration is given to such spectroscopic methods as emission and absorption techniques, electron beam-stimulated fluorescence, and light scattering - Rayleigh, Raman and Mie - methods. The following visualization methods are also discussed: shadow photography, schlieren photography, interferometry, holographic interferometry, laser anemometry, particle holography, and electron-excitation imaging. A large bibliography is presented and the work is copiously illustrated with figures and photographs.
NASA Astrophysics Data System (ADS)
Zhou, Yi; Tang, Yan; Deng, Qinyuan; Zhao, Lixin; Hu, Song
2017-08-01
Three-dimensional measurement and inspection is an area with growing needs and interests in many domains, such as integrated circuits (IC), medical cure, and chemistry. Among the methods, broadband light interferometry is widely utilized due to its large measurement range, noncontact and high precision. In this paper, we propose a spatial modulation depth-based method to retrieve the surface topography through analyzing the characteristics of both frequency and spatial domains in the interferogram. Due to the characteristics of spatial modulation depth, the technique could effectively suppress the negative influences caused by light fluctuations and external disturbance. Both theory and experiments are elaborated to confirm that the proposed method can greatly improve the measurement stability and sensitivity with high precision. This technique can achieve a superior robustness with the potential to be applied in online topography measurement.
Aberration correction in wide-field fluorescence microscopy by segmented-pupil image interferometry.
Scrimgeour, Jan; Curtis, Jennifer E
2012-06-18
We present a new technique for the correction of optical aberrations in wide-field fluorescence microscopy. Segmented-Pupil Image Interferometry (SPII) uses a liquid crystal spatial light modulator placed in the microscope's pupil plane to split the wavefront originating from a fluorescent object into an array of individual beams. Distortion of the wavefront arising from either system or sample aberrations results in displacement of the images formed from the individual pupil segments. Analysis of image registration allows for the local tilt in the wavefront at each segment to be corrected with respect to a central reference. A second correction step optimizes the image intensity by adjusting the relative phase of each pupil segment through image interferometry. This ensures that constructive interference between all segments is achieved at the image plane. Improvements in image quality are observed when Segmented-Pupil Image Interferometry is applied to correct aberrations arising from the microscope's optical path.
Resolving microstructures in Z pinches with intensity interferometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Apruzese, J. P.; Kroupp, E.; Maron, Y.
2014-03-15
Nearly 60 years ago, Hanbury Brown and Twiss [R. Hanbury Brown and R. Q. Twiss, Nature 178, 1046 (1956)] succeeded in measuring the 30 nrad angular diameter of Sirius using a new type of interferometry that exploited the interference of photons independently emitted from different regions of the stellar disk. Its basis was the measurement of intensity correlations as a function of detector spacing, with no beam splitting or preservation of phase information needed. Applied to Z pinches, X pinches, or laser-produced plasmas, this method could potentially provide spatial resolution under one micron. A quantitative analysis based on the workmore » of Purcell [E. M. Purcell, Nature 178, 1449 (1956)] reveals that obtaining adequate statistics from x-ray interferometry of a Z-pinch microstructure would require using the highest-current generators available. However, using visible light interferometry would reduce the needed photon count and could enable its use on sub-MA machines.« less
Optical aperture synthesis with electronically connected telescopes
Dravins, Dainis; Lagadec, Tiphaine; Nuñez, Paul D.
2015-01-01
Highest resolution imaging in astronomy is achieved by interferometry, connecting telescopes over increasingly longer distances and at successively shorter wavelengths. Here, we present the first diffraction-limited images in visual light, produced by an array of independent optical telescopes, connected electronically only, with no optical links between them. With an array of small telescopes, second-order optical coherence of the sources is measured through intensity interferometry over 180 baselines between pairs of telescopes, and two-dimensional images reconstructed. The technique aims at diffraction-limited optical aperture synthesis over kilometre-long baselines to reach resolutions showing details on stellar surfaces and perhaps even the silhouettes of transiting exoplanets. Intensity interferometry circumvents problems of atmospheric turbulence that constrain ordinary interferometry. Since the electronic signal can be copied, many baselines can be built up between dispersed telescopes, and over long distances. Using arrays of air Cherenkov telescopes, this should enable the optical equivalent of interferometric arrays currently operating at radio wavelengths. PMID:25880705
NASA Astrophysics Data System (ADS)
Axelsson, Anders; Marucci, Mariagrazia
2008-12-01
In this review holographic interferometry and electron speckle pattern interferometry are discussed as efficient techniques for diffusion measurements in biochemical and pharmaceutical applications. Transport phenomena can be studied, quantitatively and qualitatively, in gels, liquids and membranes. Detailed information on these phenomena is required to design effective chromatography bioseparation processes using gel beads or ultrafiltration membranes, and in the design of controlled-release pharmaceuticals using membrane-coated pellets or tablets. The influence of gel concentration, ion strength in the liquid and the size of diffusing protein molecules can easily be studied with good accuracy. When studying membranes, the resistance can be quantified, and it is also possible to discriminate between permeable and semi-permeable membranes. In this review the influence of temperature, natural convection and light deflection on the accuracy of the diffusion measurements is also discussed.
Holographic interferometry of transparent media with reflection from imbedded test objects
NASA Technical Reports Server (NTRS)
Prikryl, I.; Vest, C. M.
1981-01-01
In applying holographic interferometry, opaque objects blocking a portion of the optical beam used to form the interferogram give rise to incomplete data for standard computer tomography algorithms. An experimental technique for circumventing the problem of data blocked by opaque objects is presented. The missing data are completed by forming an interferogram using light backscattered from the opaque object, which is assumed to be diffuse. The problem of fringe localization is considered.
Mishima, T; Kao, K C
1982-03-15
New laser interferometry has been developed, based on the principle that a 2-D fringe pattern can be produced by interference of spatially coherent light beams. To avoid the effect of reflection from the back surface of the substrate, the Brewster angle of incidence is adopted; to suppress the effect of diffraction, a lens or a lens system is used. This laser interferometry is an efficient nondestructive technique for the determination of thickness distributions or uniformities of low absorbing films on transparent substrates over a large area without involving laborious computations. The limitation of spatial resolution, thickness resolution, and visibility of fringes is fully analyzed.
Optical device for measuring a surface characteristic of an object by multi-color interferometry
NASA Technical Reports Server (NTRS)
Meyer, William V. (Inventor); Smart, Anthony E. (Inventor)
2001-01-01
An interferometer having a light beam source that produces a plurality of separate and distinct wavelengths of light. Optic fibers are used to transport the wavelengths of light toward an object surface and to allow light reflected from the object to pass through a polarizer to improve the polarization ratio of the reflected light to determine a characteristic of the object surface.
ESA to test the smartest technique for detecting extrasolar planets from the ground
NASA Astrophysics Data System (ADS)
2002-03-01
GENIE will use ESO's Very Large Telescopes Credits: European Southern Observatory This photo shows an aerial view of the observing platform on the top of Paranal mountain (from late 1999), with the four enclosu Three 1.8-m VLTI Auxiliary Telescopes (ATs) and paths of the light beams have been superposed on the photo. Also seen are some of the 30 'stations' where the ATs will be positioned for observations and from where the light beams from the telescopes can enter the Interferometric Tunnel below. The straight structures are supports for the rails on which the telescopes can move from one station to another. The Interferometric Laboratory (partly subterranean) is at the centre of the platform. How nulling interferometry works Credits: ESA 2002/Medialab How nulling interferometry works In nulling interferometry, light from a distant star (red beams) hits each telescope, labelled T1 and T2, simultaneously. Before the resultant light beams are combined, the beam from one telescope is delayed by half a wavelength. This means that when the rays are brought together, peaks from one telescope line up with troughs from the other and so are cancelled out (represented by the straight red line), leaving no starlight. Light from a planet (blue beams), orbiting the star, enters the telescopes at an angle. This introduces a delay in the light reaching the second telescope. So, even after the half wavelength change in one of the rays, when the beams are combined they are reinforced (represented by the large blue waves) rather than cancelled out. Illustration by Medialab. Nulling interferometry combines the signal from a number of different telescopes in such a way that the light from the central star is cancelled out, leaving the much fainter planet easier to see. This is possible because light is a wave with peaks and troughs. Usually when combining light from two or more telescopes, a technique called interferometry, the peaks are lined up with one another to boost the signal. In nulling interferometry, however, the peaks are lined up with the troughs so they cancel out to nothing and the star disappears. Planets in orbit around the star show up, however, because they are offset from the central star and their light takes different paths through the telescope system. ESA and ESO will build a new instrument called GENIE (Ground-based European Nulling Interferometer Experiment) to perform nulling interferometry using ESO's Very Large Telescope (VLT), a collection of four 8-metre telescopes in Chile. It will be the biggest investigation of nulling interferometry to date. "It's being tested in the lab in a number of places but we can do more," says Malcolm Fridlund, project scientist for the Darwin mission at the European Space Research and Technology Centre, the Netherlands. "We intend to use the world's largest telescope and the world's largest interferometer to get very high resolution." Using GENIE to perfect this technique will provide invaluable information for engineers about how to build the 'hub' spacecraft of the Darwin flotilla. Scheduled for launch in the middle of the next decade Darwin is a collection of six space telescopes and two other spacecraft, which will together search for Earth-like planets around nearby stars. The hub will combine the light from the telescopes. "If you see the way of getting to Darwin as being outlined by a number of technological milestones this is one of the most important ones," says Malcolm Fridlund. Once up and running, GENIE will also provide a training ground for astronomers who will later use Darwin. For example, it will allow them to perfect their methods of interpreting Darwin data because, as well as the engineering tests, GENIE will be capable of real science. One of its greatest tasks will be to develop the target list of stars for Darwin to study. As recently discovered by ESA's Ulysses spaceprobe, the signature of a planetary system is probably a ring of dust surrounding the central star. GENIE will be able to look for these dust rings and make sure that the dust is not so dense that it will mask the planets from view. GENIE will see failed stars, known as brown dwarfs and, if the instrument performs to expectations, may also see some of the already-discovered giant planets. So far, these worlds have never been seen, only inferred to exist by the effect they have on their parent stars. From Earth, two things handicap nulling interferometry. Firstly, the atmosphere smears out the starlight so that its cancellation is a hundred times less effective than it will be in space. Secondly, planets are most easily seen using infrared wavelengths because they are warm. So, observing from the surface of Earth, itself a planet emitting infrared radiation, is like peering through fog. In space, these two problems disappear and Darwin will be able to see smaller, Earth-like worlds. "We have calculated that with Darwin we could see an 'Earth' if it were ten light-years away with a few hours of observation time. With the VLT, it would be impossible because of the atmosphere. Even if the atmosphere weren't there it would take 450 days because of the infrared background released by the Earth. So we have to go into space," says Fridlund. GENIE is expected to be on-line by 2006.
Observational Model for Precision Astrometry with the Space Interferometry Mission
NASA Technical Reports Server (NTRS)
Turyshev, Slava G.; Milman, Mark H.
2000-01-01
The Space Interferometry Mission (SIM) is a space-based 10-m baseline Michelson optical interferometer operating in the visible waveband that is designed to achieve astrometric accuracy in the single digits of the microarcsecond domain. Over a narrow field of view SIM is expected to achieve a mission accuracy of 1 microarcsecond. In this mode SIM will search for planetary companions to nearby stars by detecting the astrometric "wobble" relative to a nearby reference star. In its wide-angle mode, SIM will provide 4 microarcsecond precision absolute position measurements of stars, with parallaxes to comparable accuracy, at the end of its 5-year mission. The expected proper motion accuracy is around 3 microarcsecond/year, corresponding to a transverse velocity of 10 m/ s at a distance of 1 kpc. The basic astrometric observable of the SIM instrument is the pathlength delay. This measurement is made by a combination of internal metrology measurements that determine the distance the starlight travels through the two arms of the interferometer, and a measurement of the white light stellar fringe to find the point of equal pathlength. Because this operation requires a non-negligible integration time, the interferometer baseline vector is not stationary over this time period, as its absolute length and orientation are time varying. This paper addresses how the time varying baseline can be "regularized" so that it may act as a single baseline vector for multiple stars, as required for the solution of the astrometric equations.
Analysis of simulated hypervelocity impacts on a titanium fuel tank from the Salyut 7 space station
NASA Astrophysics Data System (ADS)
Jantou, V.; McPhail, D. S.; Chater, R. J.; Kearsley, A.
2006-07-01
The aim of this project was to gain a better understanding of the microstructural effects of hypervelocity impacts (HVI) in titanium alloys. We investigated a titanium fuel tank recovered from the Russian Salyut 7 space station, which was launched on April 19, 1982 before being destroyed during an un-controlled re-entry in 1991, reportedly scattering debris over parts of South America. Several sections were cut out from the tank in order to undergo HVI simulations using a two-stage light gas gun. In addition, a Ti-6Al-4V alloy was studied for further comparison. The crater morphologies produced were successfully characterised using microscope-based white light interferometry (Zygo ® Corp, USA), while projectile remnants were identified via secondary ion mass spectrometry (SIMS). Microstructural alterations were investigated using focused ion beam (FIB) milling and depth profiling, as well as transmission electron microscopy (TEM). There was evidence of a very high density of dislocations in the vicinity of the crater. The extent of the deformation was localised in a region of about one to two radii of the impact craters. No notable differences were observed between the titanium alloys used during the hypervelocity impact tests.
NASA Astrophysics Data System (ADS)
Zhu, Yizheng; Li, Chengshuai
2016-03-01
Morphological assessment of spermatozoa is of critical importance for in vitro fertilization (IVF), especially intracytoplasmic sperm injection (ICSI)-based IVF. In ICSI, a single sperm cell is selected and injected into an egg to achieve fertilization. The quality of the sperm cell is found to be highly correlated to IVF success. Sperm morphology, such as shape, head birefringence and motility, among others, are typically evaluated under a microscope. Current observation relies on conventional techniques such as differential interference contrast microscopy and polarized light microscopy. Their qualitative nature, however, limits the ability to provide accurate quantitative analysis. Here, we demonstrate quantitative morphological measurement of sperm cells using two types of spectral interferometric techniques, namely spectral modulation interferometry and spectral multiplexing interferometry. Both are based on spectral-domain low coherence interferometry, which is known for its exquisite phase determination ability. While spectral modulation interferometry encodes sample phase in a single spectrum, spectral multiplexing interferometry does so for sample birefringence. Therefore they are capable of highly sensitive phase and birefringence imaging. These features suit well in the imaging of live sperm cells, which are small, dynamic objects with only low to moderate levels of phase and birefringence contrast. We will introduce the operation of both techniques and demonstrate their application to measuring the phase and birefringence morphology of sperm cells.
Nonclassicality Criteria in Multiport Interferometry
NASA Astrophysics Data System (ADS)
Rigovacca, L.; Di Franco, C.; Metcalf, B. J.; Walmsley, I. A.; Kim, M. S.
2016-11-01
Interference lies at the heart of the behavior of classical and quantum light. It is thus crucial to understand the boundaries between which interference patterns can be explained by a classical electromagnetic description of light and which, on the other hand, can only be understood with a proper quantum mechanical approach. While the case of two-mode interference has received a lot of attention, the multimode case has not yet been fully explored. Here we study a general scenario of intensity interferometry: we derive a bound on the average correlations between pairs of output intensities for the classical wavelike model of light, and we show how it can be violated in a quantum framework. As a consequence, this violation acts as a nonclassicality witness, able to detect the presence of sources with sub-Poissonian photon-number statistics. We also develop a criterion that can certify the impossibility of dividing a given interferometer into two independent subblocks.
Interferometer Control of Optical Tweezers
NASA Technical Reports Server (NTRS)
Decker, Arthur J.
2002-01-01
This paper discusses progress in using spatial light modulators and interferometry to control the beam profile of an optical tweezers. The approach being developed is to use a spatial light modulator (SLM) to control the phase profile of the tweezers beam and to use a combination of the SLM and interferometry to control the intensity profile. The objective is to perform fine and calculable control of the moments and forces on a tip or tool to be used to manipulate and interrogate nanostructures. The performance of the SLM in generating multiple and independently controllable tweezers beams is also reported. Concurrent supporting research projects are mentioned and include tweezers beam scattering and neural-net processing of the interference patterns for control of the tweezers beams.
NASA Technical Reports Server (NTRS)
Thorpe, James Ira
2010-01-01
A key challenge for all gravitational wave detectors in the detection of changes in the fractional difference between pairs of test masses with sufficient precision to measure astrophysical strains with amplitudes on the order of approx.10(exp -21). ln the case of the five million km arms of LISA, this equates to distance measurements on the ten picometer level. LISA interferometry utilizes a decentralized topology, in which each of the sciencecraft houses its own light sources, detectors, and electronics. The measurements made at each of the sciencecraft are then telemetered to ground and combined to extract the strain experienced by the constellation as a whole. I will present an overview of LISA interferometry and highlight some of the key components and technologies that make it possible.
Random sequences generation through optical measurements by phase-shifting interferometry
NASA Astrophysics Data System (ADS)
François, M.; Grosges, T.; Barchiesi, D.; Erra, R.; Cornet, A.
2012-04-01
The development of new techniques for producing random sequences with a high level of security is a challenging topic of research in modern cryptographics. The proposed method is based on the measurement by phase-shifting interferometry of the speckle signals of the interaction between light and structures. We show how the combination of amplitude and phase distributions (maps) under a numerical process can produce random sequences. The produced sequences satisfy all the statistical requirements of randomness and can be used in cryptographic schemes.
NASA Astrophysics Data System (ADS)
Machikhin, Alexander; Burmak, Ludmila; Pozhar, Vitold
2018-04-01
The manuscript addresses the advantages and possible applications of acousto-optic image spectral filtration in lowcoherence interferometry. In particular, an effective operation of acousto-optical tunable filters in combination with Michelson-type interferometers is shown. The results of original experiments are presented. It is demonstrated that amplitude and phase spatial distributions of light waves reflected from or transmitted through the object can be fast determined in contactless manner for any spectral intervals with use of the presented techniques.
Park, Yongwoo; Malacarne, Antonio; Azaña, José
2011-02-28
A simple, highly accurate measurement technique for real-time monitoring of the group delay (GD) profiles of photonic dispersive devices over ultra-broad spectral bandwidths (e.g. an entire communication wavelength band) is demonstrated. The technique is based on time-domain self-interference of an incoherent light pulse after linear propagation through the device under test, providing a measurement wavelength range as wide as the source spectral bandwidth. Significant enhancement in the signal-to-noise ratio of the self-interference signal has been observed by use of a relatively low-noise incoherent light source as compared with the theoretical estimate for a white-noise light source. This fact combined with the use of balanced photo-detection has allowed us to significantly reduce the number of profiles that need to be averaged to reach a targeted GD measurement accuracy, thus achieving reconstruction of the device GD profile in real time. We report highly-accurate monitoring of (i) the group-delay ripple (GDR) profile of a 10-m long chirped fiber Bragg grating over the full C band (~42 nm), and (ii) the group velocity dispersion (GVD) and dispersion slope (DS) profiles of a ~2-km long dispersion compensating fiber module over an ~72-nm wavelength range, both captured at a 15 frames/s video rate update, with demonstrated standard deviations in the captured GD profiles as low as ~1.6 ps.
NASA Technical Reports Server (NTRS)
Marn, Jure
1989-01-01
Holographic interferometry is a nonintrusive method and as such possesses considerable advantages such as not disturbing the velocity and temperature field by creating obstacles which would alter the flow field. These optical methods have disadvantages as well. Holography, as one of the interferometry methods, retains the accuracy of older methods, and at the same time eliminates the system error of participating components. The holographic interferometry consists of comparing the objective beam with the reference beam and observing the difference in lengths of optical paths, which can be observed during the propagation of the light through a medium with locally varying refractive index. Thus, change in refractive index can be observed as a family of nonintersecting surfaces in space (wave fronts). The object of the investigation was a rectangular heat pipe. The goal was to measure temperatures in the heat pipe, which yields data for computer code or model assessment. The results were obtained by calculating the temperatures by means of finite fringes.
Australian Red Dune Sand: A Potential Martian Regolith Analog
NASA Technical Reports Server (NTRS)
Kuhlman, K. R.; Marshall, J.; Evans, N. D.; Luttge, A.
2001-01-01
To demonstrate the potential scientific and technical merits of in situ microscopy on Mars, we analyzed a possible Martian regolith analog - an acolian red dune sand from the central Australian desert (near Mt. Olga). This sand was chosen for its ubiquitous red coating and the desert environment in which is it found. Grains of this sand were analyzed using a variety of microanalytical techniques. A database of detailed studies of such terrestrial analogs would assist the study of geological and astrobiological specimens in future missions to Mars. Potential instrument concepts for in situ deployment on Mars include local electrode atom probe nanoanalysis (LEAP), vertical scanning white light interferometry (VSWLI), scanning electron microscopies, energy dispersive x-ray microanalysis (EDX), atomic force microscopy (AFM) and X-ray diffraction (XRD). While in situ deployment of these techniques is many years away, ground-based studies using these analytical techniques extend our understanding of the data obtained from instruments to be flown in the near future.
NASA Astrophysics Data System (ADS)
Na, Jeong K.; Kuhr, Samuel J.; Jata, Kumar V.
2008-03-01
Thermal Protection Systems (TPS) can be subjected to impact damage during flight and/or during ground maintenance and/or repair. AFRL/RXLP is developing a reliable and robust on-board sensing/monitoring capability for next generation thermal protection systems to detect and assess impact damage. This study was focused on two classes of metallic thermal protection tiles to determine threshold for impact damage and develop sensing capability of the impacts. Sensors made of PVDF piezoelectric film were employed and tested to evaluate the detectability of impact signals and assess the onset or threshold of impact damage. Testing was performed over a range of impact energy levels, where the sensors were adhered to the back of the specimens. The PVDF signal levels were analyzed and compared to assess damage, where digital microscopy, visual inspection, and white light interferometry were used for damage verification. Based on the impact test results, an assessment of the impact damage thresholds for each type of metallic TPS system was made.
Subsurface damage in some single crystalline optical materials.
Randi, Joseph A; Lambropoulos, John C; Jacobs, Stephen D
2005-04-20
We present a nondestructive method for estimating the depth of subsurface damage (SSD) in some single crystalline optical materials (silicon, lithium niobate, calcium fluoride, magnesium fluoride, and sapphire); the method is established by correlating surface microroughness measurements, specifically, the peak-to-valley (p-v) microroughness, to the depth of SSD found by a novel destructive method. Previous methods for directly determining the depth of SSD may be insufficient when applied to single crystals that are very soft or very hard. Our novel destructive technique uses magnetorheological finishing to polish spots onto a ground surface. We find that p-v surface microroughness, appropriately scaled, gives an upper bound to SSD. Our data suggest that SSD in the single crystalline optical materials included in our study (deterministically microground, lapped, and sawed) is always less than 1.4 times the p-v surface microroughness found by white-light interferometry. We also discuss another way of estimating SSD based on the abrasive size used.
193 nm ArF laser ablation and patterning of chitosan thin films
NASA Astrophysics Data System (ADS)
Aesa, A. A.; Walton, C. D.
2018-06-01
This paper reports laser ablation studies on spin-coated biopolymer chitosan films, β-l,4-1inked 2-amino-2-deoxy- d-glucopyranose. Chitosan has been irradiated using an ArF laser emitting at 193 nm. An ablation threshold of F T = 85±8 mJ cm-2 has been determined from etch rate measurements. Laser-ablated chitosan is characterised using white light interferometry, scanning electron microscopy, and thermo-gravimetric analysis. Laser ablation of chitosan is discussed in terms of thermal and photoacoustic mechanisms. Heat transfer is simulated to assist in the understanding of laser-irradiated chitosan using a finite-element method and the software package COMSOL Multi-Physics™. As a demonstrator, a micro-array of square structures in the form of a crossed grating has been fabricated by laser ablation using a mask projection scanning method. The initial investigations show no evidence of thermal damage occurring to the adjacent chitosan when operating at a moderately low laser fluence of 110 mJ cm-2.
NASA Astrophysics Data System (ADS)
Lorenz, Pierre; Ehrhardt, Martin; Zimmer, Klaus
The defect-free laser-assisted structuring of thin films on flexible substrates is a challenge for laser methods. However, solving this problem exhibits an outstanding potential for a pioneering development of flexible electronics. Thereby, the laser-assisted delamination method has a great application potential. At the delamination process: the localized removal of the layer is induced by a shock wave which is produced by a laser ablation process on the rear side of the substrate. In this study, the thin-film patterning process is investigated for different polymer substrates dependent on the material and laser parameters using a KrF excimer laser. The resultant structures were studied by optical microscopy and white light interferometry (WLI). The delamination process was tested at different samples (indium tin oxide (ITO) on polyethylene terephthalate (PET), epoxy-based negative photoresist (SU8) on polyimide (PI) and indium tin oxide/copper indium gallium selenide/molybdenum (ITO/CIGS/Mo) on PI.
Contact-free calibration of an asymmetric multi-layer interferometer for the surface force balance
NASA Astrophysics Data System (ADS)
Balabajew, Marco; van Engers, Christian D.; Perkin, Susan
2017-12-01
The Surface Force Balance (SFB, also known as Surface Force Apparatus, SFA) has provided important insights into many phenomena within the field of colloid and interface science. The technique relies on using white light interferometry to measure the distance between surfaces with sub-nanometer resolution. Up until now, the determination of the distance between the surfaces required a so-called "contact calibration," an invasive procedure during which the surfaces are brought into mechanical contact. This requirement for a contact calibration limits the range of experimental systems that can be investigated with SFB, for example, it precludes experiments with substrates that would be irreversibly modified or damaged by mechanical contact. Here we present a non-invasive method to measure absolute distances without performing a contact calibration. The method can be used for both "symmetric" and "asymmetric" systems. We foresee many applications for this general approach including, most immediately, experiments using single layer graphene electrodes in the SFB which may be damaged when brought into mechanical contact.
Multiscale physics of rubber-ice friction
NASA Astrophysics Data System (ADS)
Tuononen, Ari J.; Kriston, András; Persson, Bo
2016-09-01
Ice friction plays an important role in many engineering applications, e.g., tires on icy roads, ice breaker ship motion, or winter sports equipment. Although numerous experiments have already been performed to understand the effect of various conditions on ice friction, to reveal the fundamental frictional mechanisms is still a challenging task. This study uses in situ white light interferometry to analyze ice surface topography during linear friction testing with a rubber slider. The method helps to provide an understanding of the link between changes in the surface topography and the friction coefficient through direct visualization and quantitative measurement of the morphologies of the ice surface at different length scales. Besides surface polishing and scratching, it was found that ice melts locally even after one sweep showing the refrozen droplets. A multi-scale rubber friction theory was also applied to study the contribution of viscoelasticity to the total friction coefficient, which showed a significant level with respect to the smoothness of the ice; furthermore, the theory also confirmed the possibility of local ice melting.
Temporal intensity interferometry for characterization of very narrow spectral lines
NASA Astrophysics Data System (ADS)
Tan, P. K.; Kurtsiefer, C.
2017-08-01
Some stellar objects exhibit very narrow spectral lines in the visible range additional to their blackbody radiation. Natural lasing has been suggested as a mechanism to explain narrow lines in Wolf-Rayet stars. However, the spectral resolution of conventional astronomical spectrographs is still about two orders of magnitude too low to test this hypothesis. We want to resolve the linewidth of narrow spectral emissions in starlight. A combination of spectral filtering with single-photon-level temporal correlation measurements breaks the resolution limit of wavelength-dispersing spectrographs by moving the linewidth measurement into the time domain. We demonstrate in a laboratory experiment that temporal intensity interferometry can determine a 20-MHz-wide linewidth of Doppler-broadened laser light and identify a coherent laser light contribution in a blackbody radiation background.
Zhou, Yong; Zeng, Nan; Ji, Yanhong; Li, Yao; Dai, Xiangsong; Li, Peng; Duan, Lian; Ma, Hui; He, Yonghong
2011-01-01
We present a method of glucose concentration detection in the anterior chamber with a differential absorption optical low-coherent interferometry (LCI) technique. Back-reflected light from the iris, passing through the anterior chamber twice, was selectively obtained with the LCI technique. Two light sources, one centered within (1625 nm) and the other centered outside (1310 nm) of a glucose absorption band were used for differential absorption measurement. In the eye model and pig eye experiments, we obtained a resolution glucose level of 26.8 mg/dL and 69.6 mg/dL, respectively. This method has a potential application for noninvasive detection of glucose concentration in aqueous humor, which is related to the glucose concentration in blood. PMID:21280906
Adaptive optics and interferometry
NASA Technical Reports Server (NTRS)
Beichman, Charles A.; Ridgway, Stephen
1991-01-01
Adaptive optics and interferometry, two techniques that will improve the limiting resolution of optical and infrared observations by factors of tens or even thousands, are discussed. The real-time adjustment of optical surfaces to compensate for wavefront distortions will improve image quality and increase sensitivity. The phased operation of multiple telescopes separated by large distances will make it possible to achieve very high angular resolution and precise positional measurements. Infrared and optical interferometers that will manipulate light beams and measure interference directly are considered. Angular resolutions of single telescopes will be limited to around 10 milliarcseconds even using the adaptive optics techniques. Interferometry would surpass this limit by a factor of 100 or more. Future telescope arrays with 100-m baselines (resolution of 2.5 milliarcseconds at a 1-micron wavelength) are also discussed.
Optical interferometry and Gaia parallaxes for a robust calibration of the Cepheid distance scale
NASA Astrophysics Data System (ADS)
Kervella, Pierre; Mérand, Antoine; Gallenne, Alexandre; Trahin, Boris; Borgniet, Simon; Pietrzynski, Grzegorz; Nardetto, Nicolas; Gieren, Wolfgang
2018-04-01
We present the modeling tool we developed to incorporate multi-technique observations of Cepheids in a single pulsation model: the Spectro-Photo-Interferometry of Pulsating Stars (SPIPS). The combination of angular diameters from optical interferometry, radial velocities and photometry with the coming Gaia DR2 parallaxes of nearby Galactic Cepheids will soon enable us to calibrate the projection factor of the classical Parallax-of-Pulsation method. This will extend its applicability to Cepheids too distant for accurate Gaia parallax measurements, and allow us to precisely calibrate the Leavitt law's zero point. As an example application, we present the SPIPS model of the long-period Cepheid RS Pup that provides a measurement of its projection factor, using the independent distance estimated from its light echoes.
Off-axis low coherence digital holographic interferometry for quantitative phase imaging with an LED
NASA Astrophysics Data System (ADS)
Guo, Rongli; Wang, Fan; Hu, Xiaoying; Yang, Wenqian
2017-11-01
Off-axis digital holographic interferometry with the light source of a light emitting diode (LED) is presented and its application for quantitative phase imaging in a large range with low noise is demonstrated. The scheme is implemented in a grating based Mach-Zehnder interferometer. To achieve off-axis interferometry, firstly, the collimated beam emitted from an LED is diffracted into multiple orders by a grating and they are split into two copies by a beam splitter; secondly, in the object arm the zero order of one copy is filtered in the Fourier plane and is reshaped to illuminate the sample, while in the reference arm one of its first order of another copy is selected to serve as the reference beam, and then an off-axis hologram can be obtained at the image plane. The main advantage stemming from an LED illumination is its high spatial phase resolution, due to the subdued speckle effect. The off-axis geometry enables one-shot recording of the hologram in the millisecond scale. The utility of the proposed setup is illustrated with measurements of a resolution target and part of a wing of green-lacewing, and dynamic evaporation process of an ethanol film.
Measurements of striae in CR+ doped YAG laser crystals
NASA Astrophysics Data System (ADS)
Cady, Fredrick M.
1994-12-01
Striations in Czochralski (CZ) grown crystals have been observed in materials such as GaAs, silicon, photorefractive crystals used for data storage, potassium titanyl phosphate crystals and LiNbO3. Several techniques have been used for investigating these defects including electron microscopy, laser scanning tomography, selective photoetching, X-ray diffuse scattering, interference orthoscopy, laser interferometry and micro-Fourier transform infrared spectroscopy mapping. A 2mm thick sample of the material to be investigated is illuminated with light that is absorbed and non-absorbed by the ion concentration to be observed. The back surface of the sample is focused onto a solid-state image detector and images of the input beam and absorbed (and diffracted) beams are captured at two wavelengths. The variation of the coefficient of absorption asa function of distance on the sample can be derived from these measurements. A Big Sky Software Beamcode system is used to capture and display images. Software has been written to convert the Beamcode data files to a format that can be imported into a spreadsheet program such as Quatro Pro. The spreadsheet is then used to manipulate and display data. A model of the intensity map of the striae collected by the imaging system has been proposed and a data analysis procedure derived. From this, the variability of the attenuation coefficient alpha can be generated. Preliminary results show that alpha may vary by a factor of four or five over distances of 100 mu m. Potential errors and problems have been discovered and additional experiments and improvements to the experimental setup are in progress and we must now show that the measurement techniques and data analysis procedures provide 'real' information. Striae are clearly visible at all wavelengths including white light. Their basic spatial frequency does not change radically, at least when changing from blue to green to white light. Further experimental and theoretical work can be done to improve the data collection techniques and to verify the data analysis procedures.
Concept of white light in stage lighting
NASA Astrophysics Data System (ADS)
Rinaldi, Mauricio R.
2002-06-01
In perceiving objects, generally we see them in a white light situation. But, actually, there is not an absolute white, in such a manner that the different light sources have a determined kind of white, what it is known as color temperature. Even the white light may be of different kinds (different color temperature), the individual mind tends to perceive it as the same kind of white, that is to say, there is in our mind a psychological function by which we operate an integration in the perception in order to do the object perceptually invariable. On the other hand, it is a common practice in stage lighting to use color light sources. It is a well known phenomenon that a color of light produces a change in the object color perception. However, when we go to theater, we see the objects as having their real color, even if the lighting is not white. In this paper the concept of white light in stage lighting is presented, showing its possibilities of aesthetical expression.
Advanced wave field sensing using computational shear interferometry
NASA Astrophysics Data System (ADS)
Falldorf, Claas; Agour, Mostafa; Bergmann, Ralf B.
2014-07-01
In this publication we give a brief introduction into the field of Computational Shear Interferometry (CoSI), which allows for determining arbitrary wave fields from a set of shear interferograms. We discuss limitations of the method with respect to the coherence of the underlying wave field and present various numerical methods to recover it from its sheared representations. Finally, we show experimental results on Digital Holography of objects with rough surface using a fiber coupled light emitting diode and quantitative phase contrast imaging as well as numerical refocusing in Differential Interference Contrast (DIC) microscopy.
Digital phase demodulation for low-coherence interferometry-based fiber-optic sensors
NASA Astrophysics Data System (ADS)
Liu, Y.; Strum, R.; Stiles, D.; Long, C.; Rakhman, A.; Blokland, W.; Winder, D.; Riemer, B.; Wendel, M.
2018-03-01
We describe a digital phase demodulation scheme for low-coherence interferometry-based fiber-optic sensors by employing a simple generation of phase-shifted signals at the interrogation interferometer. The scheme allows a real-time calibration process and offers capability of measuring large variations (up to the coherence of the light source) at the bandwidth that is only limited by the data acquisition system. The proposed phase demodulation method is analytically derived and its validity and performance are experimentally verified using fiber-optic Fabry-Perot sensors for measurement of strains and vibrations.
Classical analogues of two-photon quantum interference.
Kaltenbaek, R; Lavoie, J; Resch, K J
2009-06-19
Chirped-pulse interferometry (CPI) captures the metrological advantages of quantum Hong-Ou-Mandel (HOM) interferometry in a completely classical system. Modified HOM interferometers are the basis for a number of seminal quantum-interference effects. Here, the corresponding modifications to CPI allow for the first observation of classical analogues to the HOM peak and quantum beating. They also allow a new classical technique for generating phase super-resolution exhibiting a coherence length dramatically longer than that of the laser light, analogous to increased two-photon coherence lengths in entangled states.
Novel phase-locked electronic speckle pattern interferometry
NASA Astrophysics Data System (ADS)
Yue, Kaiduan; Zhang, Feng; Wang, Chuangshe; Tan, Yushan
1997-03-01
The theory, design, and characteristics of a Phase-locked Electronic Speckle Pattern Interferometry (ESPI) are described. The main principle of the Phase-lock system is to use the characteristics of spatial frequency of the object light to get the information of the phase of the objects' vibration and the disturbance of air. By using the information, we eliminate not only the influence of the objects' vibration, but also the influence of the disturbance of the air. So we can get more stable image of ESPI, and more reliable measurement result.
Design of a dynamic biofilm imaging cell for white-light interferometric microscopy
NASA Astrophysics Data System (ADS)
Larimer, Curtis; Brann, Michelle; Suter, Jonathan D.; Addleman, R. Shane
2017-11-01
In microbiology research, there is a strong need for next-generation imaging and sensing instrumentation that will enable minimally invasive and label-free investigation of soft, hydrated structures, such as in bacterial biofilms. White-light interferometry (WLI) can provide high-resolution images of surface topology without the use of fluorescent labels but is not typically used to image biofilms because there is insufficient refractive index contrast to induce reflection from the biofilm's interface. The soft structure and water-like bulk properties of hydrated biofilms make them difficult to characterize in situ, especially in a nondestructive manner. We build on our prior description of static biofilm imaging and describe the design of a dynamic growth flow cell that enables monitoring of the thickness and topology of live biofilms over time using a WLI microscope. The microfluidic system is designed to grow biofilms in dynamic conditions and to create a reflective interface on the surface while minimizing disruption of fragile structures. The imaging cell was also designed to accommodate limitations imposed by the depth of focus of the microscope's objective lens. Example images of live biofilm samples are shown to illustrate the ability of the flow cell and WLI instrument to (1) support bacterial growth and biofilm development, (2) image biofilm structure that reflects growth in flow conditions, and (3) monitor biofilm development over time nondestructively. In future work, the apparatus described here will enable surface metrology measurements (roughness, surface area, etc.) of biofilms and may be used to observe changes in biofilm structure in response to changes in environmental conditions (e.g., flow velocity, availability of nutrients, and presence of biocides). This development will open opportunities for the use of WLI in bioimaging.
NASA Astrophysics Data System (ADS)
Gugsa, Solomon A.; Davies, Angela
2005-08-01
Characterizing an aspheric micro lens is critical for understanding the performance and providing feedback to the manufacturing. We describe a method to find the best-fit conic of an aspheric micro lens using a least squares minimization and Monte Carlo analysis. Our analysis is based on scanning white light interferometry measurements, and we compare the standard rapid technique where a single measurement is taken of the apex of the lens to the more time-consuming stitching technique where more surface area is measured. Both are corrected for tip/tilt based on a planar fit to the substrate. Four major parameters and their uncertainties are estimated from the measurement and a chi-square minimization is carried out to determine the best-fit conic constant. The four parameters are the base radius of curvature, the aperture of the lens, the lens center, and the sag of the lens. A probability distribution is chosen for each of the four parameters based on the measurement uncertainties and a Monte Carlo process is used to iterate the minimization process. Eleven measurements were taken and data is also chosen randomly from the group during the Monte Carlo simulation to capture the measurement repeatability. A distribution of best-fit conic constants results, where the mean is a good estimate of the best-fit conic and the distribution width represents the combined measurement uncertainty. We also compare the Monte Carlo process for the stitched data and the not stitched data. Our analysis allows us to analyze the residual surface error in terms of Zernike polynomials and determine uncertainty estimates for each coefficient.
Design of a dynamic biofilm imaging cell for white-light interferometric microscopy
Larimer, Curtis; Brann, Michelle; Suter, Jonathan D.; ...
2017-05-10
In microbiology research there is a strong need for next generation imaging and sensing instrumentation that will enable minimally invasive and label-free investigation of soft, hydrated structures such as in bacterial biofilms. White light interferometry (WLI) can provide high resolution images of surface topology without the use of fluorescent labels but is not typically used to image biofilms because there is insufficient refractive index contrast to induce reflection from the biofilm’s interface. The soft structure and water-like bulk properties of hydrated biofilms make them difficult to characterize in situ, especially in a non-destructive manner. In this report, we build onmore » our prior description of static biofilm imaging and describe the design of a dynamic imaging flow cell that enables monitoring the thickness and topology of live biofilms over time using a WLI microscope. The microfluidic system is specifically designed to create a reflective interface on the surface of biofilms while minimizing disruption of fragile structures. The imaging cell was also designed to accommodate limitations imposed by the depth of focus of the microscope’s objective lens. Example images of live biofilm samples are shown in order to illustrate the ability of the flow cell and WLI instrument to 1) support bacterial growth and biofilm development, 2) image biofilm structure that reflects growth in flow conditions, and 3) monitor biofilm development over time non-destructively. In future work, the apparatus described here will enable surface metrology measurements (roughness, surface area, etc.) of biofilms and may be used to observe changes in biofilm structure in response to changes in environmental conditions (e.g., flow velocity, availability of nutrients, and presence of biocides). Furthermore, this development will open new opportunities for the use of WLI in bioimaging.« less
Design of a dynamic biofilm imaging cell for white-light interferometric microscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Larimer, Curtis; Brann, Michelle; Suter, Jonathan D.
In microbiology research there is a strong need for next generation imaging and sensing instrumentation that will enable minimally invasive and label-free investigation of soft, hydrated structures such as in bacterial biofilms. White light interferometry (WLI) can provide high resolution images of surface topology without the use of fluorescent labels but is not typically used to image biofilms because there is insufficient refractive index contrast to induce reflection from the biofilm’s interface. The soft structure and water-like bulk properties of hydrated biofilms make them difficult to characterize in situ, especially in a non-destructive manner. In this report, we build onmore » our prior description of static biofilm imaging and describe the design of a dynamic imaging flow cell that enables monitoring the thickness and topology of live biofilms over time using a WLI microscope. The microfluidic system is specifically designed to create a reflective interface on the surface of biofilms while minimizing disruption of fragile structures. The imaging cell was also designed to accommodate limitations imposed by the depth of focus of the microscope’s objective lens. Example images of live biofilm samples are shown in order to illustrate the ability of the flow cell and WLI instrument to 1) support bacterial growth and biofilm development, 2) image biofilm structure that reflects growth in flow conditions, and 3) monitor biofilm development over time non-destructively. In future work, the apparatus described here will enable surface metrology measurements (roughness, surface area, etc.) of biofilms and may be used to observe changes in biofilm structure in response to changes in environmental conditions (e.g., flow velocity, availability of nutrients, and presence of biocides). Furthermore, this development will open new opportunities for the use of WLI in bioimaging.« less
Phase-Shifted Laser Feedback Interferometry
NASA Technical Reports Server (NTRS)
Ovryn, Benjie
1999-01-01
Phase-shifted, laser feedback interferometry is a new diagnostic tool developed at the NASA Lewis Research Center under the Advanced Technology Development (ATD) Program directed by NASA Headquarters Microgravity Research Division. It combines the principles of phase-shifting interferometry (PSI) and laser-feedback interferometry (LFI) to produce an instrument that can quantify both optical path length changes and sample reflectivity variations. In a homogenous medium, the optical path length between two points is the product of the index of refraction and the geometric distance between the two points. LFI differs from other forms of interferometry by using the laser as both the source and the phase detector. In LFI, coherent feedback of the incident light either reflected directly from a surface or reflected after transmission through a region of interest will modulate the output intensity of the laser. The combination of PSI and LFI has produced a robust instrument, based on a low-power helium-neon (HeNe) gas laser, with a high dynamic range that can be used to measure either static or oscillatory changes of the optical path length. Small changes in optical path length are limited by the fraction of a fringe that can be measured; we can measure nonoscillatory changes with a root mean square (rms) error of the wavelength/1000 without averaging.
NASA Astrophysics Data System (ADS)
Taudt, Ch.; Baselt, T.; Nelsen, B.; Assmann, H.; Greiner, A.; Koch, E.; Hartmann, P.
2017-06-01
Within this work an alternative approach to precision surface profilometry based on a low-coherence interferometer is presented. Special emphasis is placed on the characterization of edge effects, which influence the measurement result on sharp edges and steep slopes. In contrast to other works, this examination focuses on the comparison of very broadband light sources such as a supercontinuum white-light source (SC; 380 - 1100 nm) and a laser-driven plasma light source (LDP; 200 - 1100 nm) and their influence on the formation of these effects. The interferometer is equipped with one of these broadband light sources and a defined dispersion over a given spectral range. The spectral width of the light sources in combination with the dispersive element defines the possible measurement range and resolution. Instead of detecting the signals only in a one-dimensional manner, an imaging spectrometer on the basis of a high resolution CMOS-camera is set-up. Through the introduction of a defined dispersion, a controlled phase variation in the spectral domain is created. This phase variation is dependent on the optical path difference between both arms and can therefore be used as a measure for the height of a structure which is present in one arm. The results of measurements on a 100 nm height standard with both selected light sources have been compared. Under consideration of the coherence length of both light sources of 1.58 μm for the SC source and 1.81 m for the LDP source differences could be recorded. Especially at sharp edges, the LDP light source could record height changes with slopes twice as steep as the SC source. Furthermore, it became obvious, that measurements with the SC source tend to show edge effects like batwings due to diffraction. Additional effects on the measured roughness and the flatness of the profile were investigated and discussed.
Zhang, Jiwei; Di, Jianglei; Li, Ying; Xi, Teli; Zhao, Jianlin
2015-10-19
We present a method for dynamically measuring the refractive index distribution in a large range based on the combination of digital holographic interferometry and total internal reflection. A series of holograms, carrying the index information of mixed liquids adhered on a total reflection prism surface, are recorded with CCD during the diffusion process. Phase shift differences of the reflected light are reconstructed exploiting the principle of double-exposure holographic interferometry. According to the relationship between the reflection phase shift difference and the liquid index, two dimensional index distributions can be directly figured out, assuming that the index of air near the prism surface is constant. The proposed method can also be applied to measure the index of solid media and monitor the index variation during some chemical reaction processes.
Can, Ertuğrul; Duran, Mustafa; Çetinkaya, Tuğba; Arıtürk, Nurşen
2016-01-01
To evaluate a new noncontact optical biometer using partial-coherence interferometry and to compare the clinical measurements with those obtained from the device using optical low-coherence reflectometry (OLCR). Ondokuz Mayis University, Samsun, Turkey. Nonrandomized, prospective clinical trial. The study was performed on the healthy phakic eyes of volunteers in the year 2014. Measurements of axial length (AL), anterior chamber depth (ACD), central corneal thickness (CCT), mean keratometry (K), and white-to-white (WTW) measurements obtained with the low-time coherence interferometry (LTCI) were compared with those obtained with the OLCR. The results were evaluated using Bland-Altman analyses. The differences between both methods were assessed using the paired t -test, and its correlation was evaluated by Pearson's coefficient. We examined seventy participants with a mean age of 33.06 (±9.7) (range: 19-53) years. AL measurements with LTCI and OLCR were 23.7 (±1.08) mm and 23.7 (±1.1) mm, respectively. ACD was 3.6 (±0.4) mm and 3.5 (±0.4) mm for LTCI and OLCR, respectively. The mean CCT measurements for both devices were 533 (±28) mm and 522 (±28) mm, respectively. The mean K readings measurements for LTCI and OLCR were 43.3 (±1.5) D and 43.3 (±1.5) D, respectively. The mean WTW distance measurements for both devices were 12.0 (±0.5) mm and 12.1 (±0.5) mm, respectively. Measurements with LTCI correlated well with those with the OLCR. These two devices showed good agreement for the measurement of all parameters.
Development of phase detection schemes based on surface plasmon resonance using interferometry.
Kashif, Muhammad; Bakar, Ahmad Ashrif A; Arsad, Norhana; Shaari, Sahbudin
2014-08-28
Surface plasmon resonance (SPR) is a novel optical sensing technique with a unique ability to monitor molecular binding in real-time for biological and chemical sensor applications. Interferometry is an excellent tool for accurate measurement of SPR changes, the measurement and comparison is made for the sensitivity, dynamic range and resolution of the different analytes using interferometry techniques. SPR interferometry can also employ phase detection in addition to the amplitude of the reflected light wave, and the phase changes more rapidly compared with other approaches, i.e., intensity, angle and wavelength. Therefore, the SPR phase interferometer offers the advantages of spatial phase resolution and high sensitivity. This work discusses the advancements in interferometric SPR methods to measure the phase shifts due to refractive index changes. The main application areas of SPR sensors are demonstrated, i.e., the Fabry-Perot interferometer, Michelson interferometer and Mach-Zehnder interferometer, with different configurations. The three interferometers are discussed in detail, and solutions are suggested to enhance the performance parameters that will aid in future biological and chemical sensors.
Development of Phase Detection Schemes Based on Surface Plasmon Resonance Using Interferometry
Kashif, Muhammad; Bakar, Ahmad Ashrif A.; Arsad, Norhana; Shaari, Sahbudin
2014-01-01
Surface plasmon resonance (SPR) is a novel optical sensing technique with a unique ability to monitor molecular binding in real-time for biological and chemical sensor applications. Interferometry is an excellent tool for accurate measurement of SPR changes, the measurement and comparison is made for the sensitivity, dynamic range and resolution of the different analytes using interferometry techniques. SPR interferometry can also employ phase detection in addition to the amplitude of the reflected light wave, and the phase changes more rapidly compared with other approaches, i.e., intensity, angle and wavelength. Therefore, the SPR phase interferometer offers the advantages of spatial phase resolution and high sensitivity. This work discusses the advancements in interferometric SPR methods to measure the phase shifts due to refractive index changes. The main application areas of SPR sensors are demonstrated, i.e., the Fabry-Perot interferometer, Michelson interferometer and Mach-Zehnder interferometer, with different configurations. The three interferometers are discussed in detail, and solutions are suggested to enhance the performance parameters that will aid in future biological and chemical sensors. PMID:25171117
Determining the Speed of Sound and Heat Capacity Ratios of Gases by Acoustic Interferometry
ERIC Educational Resources Information Center
Varberg, Thomas D.; Pearlman, Bradley W.; Wyse, Ian A.; Gleason, Samuel P.; Kellett, Dalir H. P.; Moffett, Kenneth L.
2017-01-01
In this paper, we describe an experiment for the undergraduate physical chemistry laboratory in which students determine the speed of sound in the gases He, N[subscript 2], CO[subscript 2], and CF[subscript 3]CH[subscript 2]F. The experimental apparatus consists of a closed acrylic tube containing the gas under study. White audio noise is injected…
Quantitative determination of testosterone levels with biolayer interferometry.
Zhang, Hao; Li, Wei; Luo, Hong; Xiong, Guangming; Yu, Yuanhua
2017-10-01
Natural and synthetic steroid hormones are widely spread in the environment and are considered as pollutants due to their endocrine activities, even at low concentrations, which are harmful to human health. To detect steroid hormones in the environment, a novel biosensor system was developed based on the principle of biolayer interferometry. Detection is based on changes in the interference pattern of white light reflected from the surface of an optical fiber with bound biomolecules. Monitoring interactions between molecules does not require radioactive, enzymatic, or fluorescent labels. Here, 2 double-stranded DNA fragments of operator 1 (OP1) and OP2 containing 10-bp palindromic sequences in chromosomal Comamonas testosteroni DNA (ATCC11996) were surface-immobilized to streptavidin sensors. Interference changes were detected when repressor protein RepA bound the DNA sequences. DNA-protein interactions were characterized and kinetic parameters were obtained. The dissociation constants between the OP1 and OP2 DNA sequences and RepA were 9.865 × 10 -9 M and 2.750 × 10 -8 M, respectively. The reactions showed high specifically and affinity. Because binding of the 10-bp palindromic sequence and RepA was affected by RepA-testosterone binding, the steroid could be quantitatively determined rapidly using the biosensor system. The mechanism of the binding assay was as follows. RepA could bind both OP1 and testosterone. RepA binding to testosterone changed the protein conformation, which influenced the binding between RepA and OP1. The percentage of the signal detected negative correlation with the testosterone concentration. A standard curve was obtained, and the correlation coefficient value was approximately 0.97. We could quantitatively determine testosterone levels between 2.13 and 136.63 ng/ml. Each sample could be quantitatively detected in 17 min. These results suggested that the specific interaction between double-stranded OP1 DNA and the RepA protein could be used to rapidly and quantitatively determine environmental testosterone levels by the biolayer interferometry technique. Copyright © 2017 Elsevier B.V. All rights reserved.
Thermoresponsive scattering coating for smart white LEDs.
Bauer, Jurica; Verbunt, Paul P C; Lin, Wan-Yu; Han, Yang; Van, My-Phung; Cornelissen, Hugo J; Yu, Joan J H; Bastiaansen, Cees W M; Broer, Dirk J
2014-12-15
White light emitting diode (LED) systems, capable of lowering the color temperature of emitted light on dimming, have been reported in the literature. These systems all use multiple color LEDs and complex control circuitry. Here we present a novel responsive lighting system based on a single white light emitting LED and a thermoresponsive scattering coating. The coated LED automatically emits light of lower correlated color temperature (CCT) when the power is reduced. We also present results on the use of multiple phosphors in the white light LED allowing for the emission of warm white light in the range between 2900 K and 4150 K, and with a chromaticity complying with the ANSI standards (C78.377). This responsive warm white light LED-system with close-to-ideal emission characteristics is highly interesting for the lighting industry.
Variable ratio beam splitter for laser applications
NASA Technical Reports Server (NTRS)
Brown, R. M.
1971-01-01
Beam splitter employing birefringent optics provides either widely different or precisely equal beam ratios, it can be used with laser light source systems for interferometry of lossy media, holography, scattering measurements, and precise beam ratio applications.
Lighting theory and luminous characteristics of white light-emitting diodes
NASA Astrophysics Data System (ADS)
Uchida, Yuji; Taguchi, Tsunemasa
2005-12-01
A near-ultraviolet (UV)-based white light-emitting diode (LED) lighting system linked with a semiconductor InGaN LED and compound phosphors for general lighting applications is proposed. We have developed for the first time a novel type of high-color rendering index (Ra) white LED light source, which is composed of near-UV LED and multiphosphor materials showing orange (O), yellow (Y), green (G), and blue (B) emissions. The white LED shows the superior characteristics of luminous efficacy and high Ra to be about 40 lm/W and 93, respectively. Luminous and chromaticity characteristics, and their spectral distribution of the present white LED can be evaluated using the multipoint LED light source theory. It is revealed that the OYGB white LED can provide better irradiance properties than that of conventional white LEDs. Near-UV white LED technologies, in conjunction with phosphor blends, can offer superior color uniformity, high Ra, and excellent light quality. Consequently we are carrying out a "white LEDs for medical applications" program in the second phase of this national project from 2004 to 2009.
Handheld White Light Interferometer for Measuring Defect Depth in Windows
NASA Technical Reports Server (NTRS)
Youngquist, Robert; Simmons, Stephen; Cox, Robert
2010-01-01
Accurate quantification of defects (scratches and impacts) is vital to the certification of flight hardware and other critical components. The amount of damage to a particular component contributes to the performance, reliability, and safety of a system, which ultimately affects the success or failure of a mission or test. The launch-commit criteria on a Space Shuttle Orbiter window are governed by the depth of the defects that are identified by a visual inspection. This measurement of a defect is not easy to obtain given the environment, size of the defect, and location of the window(s). The determination of depth has typically been performed by taking a mold impression and measuring the impression with an optical profiling instrument. Another method of obtaining an estimate of the depth is by using a refocus microscope. To use a refocus microscope, the surface of the glass and bottom of the defect are, in turn, brought into focus by the operator. The amount of movement between the two points corresponds to the depth of the defect. The refocus microscope requires a skilled operator and has been proven to be unreliable when used on Orbiter windows. White light interferometry was chosen as a candidate to replace the refocus microscope. The White Light Interferometer (WLI) was developed to replace the refocus microscope as the instrument used for measuring the depth of defects in Orbiter windows. The WLI consists of a broadband illumination source, interferometer, detector, motion control, displacement sensor, mechanical housing, and support electronics. The illumination source for the WLI is typically a visible light emitting diode (LED) or a near-infrared superluminescent diode (SLD) with power levels of less than a milliwatt. The interferometer is a Michelson configuration consisting of a 1-in. (2.5-cm) cube beam splitter, a 0.5-in. (1.3-cm) optical window as a movable leg (used to closely match the return intensity of the fixed leg from the window), and a mirrored prism to fold the optics into the mechanical housing. The detector may be one of many C-mount CCD (charge-coupled device) cameras. Motion is provided by a commercial nanostepping motor with a serial interface. The displacement sensor is a custom device specifically designed for this application. The mechanical housing and support electronics were designed to integrate the various components into an instrument that could be physically handled by a technician and easily transported.
Adaptive Nulling for Interferometric Detection of Planets
NASA Technical Reports Server (NTRS)
Lay, Oliver P.; Peters, Robert D.
2010-01-01
An adaptive-nulling method has been proposed to augment the nulling-optical- interferometry method of detection of Earth-like planets around distant stars. The method is intended to reduce the cost of building and aligning the highly precise optical components and assemblies needed for nulling. Typically, at the mid-infrared wavelengths used for detecting planets orbiting distant stars, a star is millions of times brighter than an Earth-sized planet. In order to directly detect the light from the planet, it is necessary to remove most of the light coming from the star. Nulling interferometry is one way to suppress the light from the star without appreciably suppressing the light from the planet. In nulling interferometry in its simplest form, one uses two nominally identical telescopes aimed in the same direction and separated laterally by a suitable distance. The light collected by the two telescopes is processed through optical trains and combined on a detector. The optical trains are designed such that the electric fields produced by an on-axis source (the star) are in anti-phase at the detector while the electric fields from the planet, which is slightly off-axis, combine in phase, so that the contrast ratio between the star and the planet is greatly decreased. If the electric fields from the star are exactly equal in amplitude and opposite in phase, then the star is effectively nulled out. Nulling is effective only if it is complete in the sense that it occurs simultaneously in both polarization states and at all wavelengths of interest. The need to ensure complete nulling translates to extremely tight demands upon the design and fabrication of the complex optical trains: The two telescopes must be highly symmetric, the reflectivities of the many mirrors in the telescopes and other optics must be carefully tailored, the optical coatings must be extremely uniform, sources of contamination must be minimized, optical surfaces must be nearly ideal, and alignments must be extremely precise. Satisfaction of all of these requirements entails substantial cost.
An Overview of the StarLight Mission
NASA Technical Reports Server (NTRS)
Lay, Oliver; Blackwood, Gary; Dubovitsky, Serge; Duren, Riley
2004-01-01
An overview of the Starlight Mission is presented. Mission summary: June 2006 launch to heliocentric orbit; Nominal 6 month mission with option of additional 6 month extension; Validate autonomous formation flying system: range control to 10 cm bearing, control to 4 arcmin; Demonstrate formation flying optical interferometry.The original 3 spacecraft design did not fit the budget. 2 spacecraft concept demonstrates all key areas of formation flying interferometry. Collector flown on the surface of a virtual paraboloid, with combiner at the focus. It Gives a baseline of 125 m with a fixed delay of only 14 m.
Three Dimensional Imaging with Multiple Wavelength Speckle Interferometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bernacki, Bruce E.; Cannon, Bret D.; Schiffern, John T.
2014-05-28
We present the design, modeling, construction, and results of a three-dimensional imager based upon multiple-wavelength speckle interferometry. A surface under test is illuminated with tunable laser light in a Michelson interferometer configuration while a speckled image is acquired at each laser frequency step. The resulting hypercube is Fourier transformed in the frequency dimension and the beat frequencies that result map the relative offsets of surface features. Synthetic wavelengths resulting from the laser tuning can probe features ranging from 18 microns to hundreds of millimeters. Three dimensional images will be presented along with modeling results.
Non-contact angle measurement based on parallel multiplex laser feedback interferometry
NASA Astrophysics Data System (ADS)
Zhang, Song; Tan, Yi-Dong; Zhang, Shu-Lian
2014-11-01
We present a novel precise angle measurement scheme based on parallel multiplex laser feedback interferometry (PLFI), which outputs two parallel laser beams and thus their displacement difference reflects the angle variation of the target. Due to its ultrahigh sensitivity to the feedback light, PLFI realizes the direct non-contact measurement of non-cooperative targets. Experimental results show that PLFI has an accuracy of 8″ within a range of 1400″. The yaw of a guide is also measured and the experimental results agree with those of the dual-frequency laser interferometer Agilent 5529A.
Dual exposure interferometry. [gas dynamics and flow visualization
NASA Technical Reports Server (NTRS)
Smeets, G.; George, A.
1982-01-01
The application of dual exposure differential interferometry to gas dynamics and flow visualization is discussed. A differential interferometer with Wallaston prisms can produce two complementary interference fringe systems, depending on the polarization of the incident light. If these two systems are superimposed on a film, with one exposure during a phenomenon, the other before or after, the phenomenon will appear on a uniform background. By regulating the interferometer to infinite fringe distance, a resolution limit of approximately lambda/500 can be obtained in the quantitative analysis of weak phase objects. This method was successfully applied to gas dynamic investigations.
Digital phase demodulation for low-coherence interferometry-based fiber-optic sensors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Y.; Strum, R.; Stiles, D.
In this paper, we describe a digital phase demodulation scheme for low-coherence interferometry-based fiber-optic sensors by employing a simple generation of phase-shifted signals at the interrogation interferometer. The scheme allows a real-time calibration process and offers capability of measuring large variations (up to the coherence of the light source) at the bandwidth that is only limited by the data acquisition system. Finally, the proposed phase demodulation method is analytically derived and its validity and performance are experimentally verified using fiber-optic Fabry–Perot sensors for measurement of strains and vibrations.
Digital phase demodulation for low-coherence interferometry-based fiber-optic sensors
Liu, Y.; Strum, R.; Stiles, D.; ...
2017-11-20
In this paper, we describe a digital phase demodulation scheme for low-coherence interferometry-based fiber-optic sensors by employing a simple generation of phase-shifted signals at the interrogation interferometer. The scheme allows a real-time calibration process and offers capability of measuring large variations (up to the coherence of the light source) at the bandwidth that is only limited by the data acquisition system. Finally, the proposed phase demodulation method is analytically derived and its validity and performance are experimentally verified using fiber-optic Fabry–Perot sensors for measurement of strains and vibrations.
Near-Earth Object Astrometric Interferometry
NASA Technical Reports Server (NTRS)
Werner, Martin R.
2005-01-01
Using astrometric interferometry on near-Earth objects (NEOs) poses many interesting and difficult challenges. Poor reflectance properties and potentially no significant active emissions lead to NEOs having intrinsically low visual magnitudes. Using worst case estimates for signal reflection properties leads to NEOs having visual magnitudes of 27 and higher. Today the most sensitive interferometers in operation have limiting magnitudes of 20 or less. The main reason for this limit is due to the atmosphere, where turbulence affects the light coming from the target, limiting the sensitivity of the interferometer. In this analysis, the interferometer designs assume no atmosphere, meaning they would be placed at a location somewhere in space. Interferometer configurations and operational uncertainties are looked at in order to parameterize the requirements necessary to achieve measurements of low visual magnitude NEOs. This analysis provides a preliminary estimate of what will be required in order to take high resolution measurements of these objects using interferometry techniques.
Zhang, Yanyan; Zhao, Jianlin; Di, Jianglei; Jiang, Hongzhen; Wang, Qian; Wang, Jun; Guo, Yunzhu; Yin, Dachuan
2012-07-30
We report a real-time measurement method of the solution concentration variation during the growth of protein-lysozyme crystals based on digital holographic interferometry. A series of holograms containing the information of the solution concentration variation in the whole crystallization process is recorded by CCD. Based on the principle of double-exposure holographic interferometry and the relationship between the phase difference of the reconstructed object wave and the solution concentration, the solution concentration variation with time for arbitrary point in the solution can be obtained, and then the two-dimensional concentration distribution of the solution during crystallization process can also be figured out under the precondition which the refractive index is constant through the light propagation direction. The experimental results turns out that it is feasible to in situ, full-field and real-time monitor the crystal growth process by using this method.
A decade of innovation with laser speckle metrology
NASA Astrophysics Data System (ADS)
Ettemeyer, Andreas
2003-05-01
Speckle Pattern Interferometry has emerged from the experimental substitution of holographic interferometry to become a powerful problem solving tool in research and industry. The rapid development of computer and digital imaging techniques in combination with minaturization of the optical equipment led to new applications which had not been anticipated before. While classical holographic interferometry had always required careful consideration of the environmental conditions such as vibration, noise, light, etc. and could generally only be performed in the optical laboratory, it is now state of the art, to handle portable speckle measuring equipment at almost any place. During the last decade, the change in design and technique has dramatically influenced the range of applications of speckle metrology and opened new markets. The integration of recent research results into speckle measuring equipment has led to handy equipment, simplified the operation and created high quality data output.
A novel plasmonic interferometry and the potential applications
NASA Astrophysics Data System (ADS)
Ali, J.; Pornsuwancharoen, N.; Youplao, P.; Aziz, M. S.; Chiangga, S.; Jaglan, J.; Amiri, I. S.; Yupapin, P.
2018-03-01
In this article, we have proposed the plasmonic interferometry concept and analytical details given. By using the conventional optical interferometry, which can be simply calculated by using the relationship between the electric field and electron mobility, the interference mobility visibility (fringe visibility) can be observed. The surface plasmons in the sensing arm of the Michelson interferometer is constructed by the stacked layers of the silicon-graphene-gold, allows to characterize the spatial resolution of light beams in terms of the electron mobility down to 100-nm scales, with measured coherence lengths as low as ∼100 nm for an incident wavelength of 1550 nm. We have demonstrated a compact plasmonic interferometer that can apply to the electron mean free paths measurement, from which the precise determination can be used for the high-resolution mean free path measurement and sensing applications. This system provides the practical simulation device parameters that can be fabricated and tested by the experimental platform.
Polarization Effects Aboard the Space Interferometry Mission
NASA Technical Reports Server (NTRS)
Levin, Jason; Young, Martin; Dubovitsky, Serge; Dorsky, Leonard
2006-01-01
For precision displacement measurements, laser metrology is currently one of the most accurate measurements. Often, the measurement is located some distance away from the laser source, and as a result, stringent requirements are placed on the laser delivery system with respect to the state of polarization. Such is the case with the fiber distribution assembly (FDA) that is slated to fly aboard the Space Interferometry Mission (SIM) next decade. This system utilizes a concatenated array of couplers, polarizers and lengthy runs of polarization-maintaining (PM) fiber to distribute linearly-polarized light from a single laser to fourteen different optical metrology measurement points throughout the spacecraft. Optical power fluctuations at the point of measurement can be traced back to the polarization extinction ration (PER) of the concatenated components, in conjunction with the rate of change in phase difference of the light along the slow and fast axes of the PM fiber.
Efficient and Stable CsPb(Br/I)3@Anthracene Composites for White Light-Emitting Devices.
Shen, Xinyu; Sun, Chun; Bai, Xue; Zhang, Xiaoyu; Wang, Yu; Wang, Yiding; Song, Hongwei; Yu, William W
2018-05-16
Inorganic perovskite quantum dots bear many unique properties that make them potential candidates for optoelectronic applications, including color display and lighting. However, the white emission with inorganic perovskite quantum dots has rarely been realized due to the anion-exchange reaction. Here, we proposed a one-pot preparation to fabricate inorganic perovskite quantum dot-based white light-emitting composites by introducing anthracene as a blue emission component. The as-prepared white light-emitting composite exhibited a photoluminescence quantum yield of 41.9%. By combining CsPb(Br/I) 3 @anthracene composites with UV light-emitting device (LED) chips, white light-emitting devices with a color rendering index of 90 were realized with tunable color temperature from warm white to cool white. These results can promote the application of inorganic perovskite quantum dots in the field of white LEDs.
NASA Astrophysics Data System (ADS)
Bizheva, Kostadinka K.; Siegel, Andy M.; Boas, David A.
1998-12-01
We used low coherence interferometry to measure Brownian motion within highly scattering random media. A coherence gate was applied to resolve the optical path-length distribution and to separate ballistic from diffusive light. Our experimental analysis provides details on the transition from single scattering to light diffusion and its dependence on the system parameters. We found that the transition to the light diffusion regime occurs at shorter path lengths for media with higher scattering anisotropy or for larger numerical aperture of the focusing optics.
NASA Astrophysics Data System (ADS)
Ho, Derek; Chu, Kengyeh K.; Crose, Michael; Desoto, Michael; Peters, Jennifer J.; Murtha, Amy P.; Wax, Adam
2017-02-01
The cervix is primarily composed of two types of epithelium: stratified squamous ectocervix and simple columnar endocervix. In between these two layers lies a metaplastic squamocolumnar junction commonly referred to as the transformation zone (T-zone). During puberty, the cervical epithelium undergoes dynamic changes including cervical ectropion and increased area and rates of metaplasia. Although these metaplastic changes have been linked to higher incidence of cervical cancer among young women, research in this field has been limited to surface analysis using computerized planimetry of colopophotographs. Here, we present a novel multiplexed low coherence interferometry (mLCI) system for interrogating the cervical epithelium. The system is comprised of 6 parallel Mach-Zehnder interferometers in a time-multiplexed configuration that increases throughput by 6-fold to realize a combined 36-channel acquisition. A custom designed endoscopic handheld probe is used to collect sparsely sampled, depth-resolved scattering intensity profiles (A-scans) from a large field of view (25 x 25 mm) on the cervical epithelium in vivo. The instrument incorporates white light imaging through a plastic fiber bundle to co-register the mLCI A-scans to colpophotographs which are analyzed by a clinician to manually segment the cervical epithelium. Our preliminary data shows significant differences in characteristic A-scans from endocervical and ectocervical epithelium. These results demonstrate the feasibility of using mLCI as both a research tool for studying the relationship between cervical ectopy and cancer as well as a clinical instrument for identifying the at-risk T-zone on the cervix in vivo as a means to improve biopsy targeting. Further analysis will be performed to develop an algorithm for distinguishing the mLCI A-scans of endocervical, ectocervical, and metaplastic epithelium in real time.
NASA Astrophysics Data System (ADS)
Co, Noelle Easter C.; Brown, Donald E.; Burns, James T.
2018-05-01
This study applies data science approaches (random forest and logistic regression) to determine the extent to which macro-scale corrosion damage features govern the crack formation behavior in AA7050-T7451. Each corrosion morphology has a set of corresponding predictor variables (pit depth, volume, area, diameter, pit density, total fissure length, surface roughness metrics, etc.) describing the shape of the corrosion damage. The values of the predictor variables are obtained from white light interferometry, x-ray tomography, and scanning electron microscope imaging of the corrosion damage. A permutation test is employed to assess the significance of the logistic and random forest model predictions. Results indicate minimal relationship between the macro-scale corrosion feature predictor variables and fatigue crack initiation. These findings suggest that the macro-scale corrosion features and their interactions do not solely govern the crack formation behavior. While these results do not imply that the macro-features have no impact, they do suggest that additional parameters must be considered to rigorously inform the crack formation location.
Electroplating Gold-Silver Alloys for Spherical Capsules for NIF Double-Shell Targets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhandarkar, N.; Horwood, C.; Bunn, T.
For Inertial Confinement Fusion (ICF) implosions, a design based on gradients of high and mid Z materials could potentially be more robust than single element capsule systems. To that end, gold and silver alloys were electroplated on 2.0 mm diameter surrogate brass spheres using a new flow–based pulsed plating method specifically designed to minimize surface roughness without reducing plating rates. The coatings were analyzed by scanning electron microscope (SEM) and white light interferometry for surface topography, and by energy dispersive x-ray spectroscopy (EDX) to determine near-surface gold and silver compositions. The alloy range attainable was 15 to 85 weight percentmore » gold using 1:1 and 1:3 silver to gold ratio plating baths at applied potentials of -0.7 volts to -1.8 volts. This range was bounded by the open circuit potential of the system and hydrogen evolution, and in theory could be extended by using ionic liquids or aprotic solutions. Preliminary gradient trials proved constant composition alloy data could be translated to smooth gradient plating, albeit at higher gold compositions.« less
Topography and nanostructural evaluation of chemically and thermally modified titanium substrates.
Salemi, Hoda; Behnamghader, Aliasghar; Afshar, Abdollah
2016-10-01
In this research, the effects of chemical and thermal treatment on the morphological and compositional aspects of titanium substrates and so, potentially, on development of biomimetic bone like layers formation during simulated body fluid (SBF) soaking was investigated. The HF, HF/HNO3 and NaOH solutions were used for chemical treatment and some of alkali-treated samples followed a heat treatment at 600°C. The treated samples before and after soaking were subjected to material characterization tests using scanning electron microscopy (SEM), X-ray diffraction (XRD) and atomic force microscopy (AFM). White light interferometry (WLI) was used to determine the roughness parameters such as Ra, Rq, RKu and Rsk. The significance of the obtained data was assessed using ANOVA variance analysis between all samples. It was observed that the reaction at grain boundaries and sodium titanate intermediate layers play a great role in the nucleation of calcium phosphate layers. Based on the obtained results in this work, the calcium phosphate microstructure deposited on titanium substrates was more affected by chemical modification than surface topography.
An innovative application of time-domain spectroscopy on localized surface plasmon resonance sensing
NASA Astrophysics Data System (ADS)
Li, Meng-Chi; Chang, Ying-Feng; Wang, Huai-Yi; Lin, Yu-Xen; Kuo, Chien-Cheng; Annie Ho, Ja-An; Lee, Cheng-Chung; Su, Li-Chen
2017-03-01
White-light scanning interferometry (WLSI) is often used to study the surface profiles and properties of thin films because the strength of the technique lies in its ability to provide fast and high resolution measurements. An innovative attempt is made in this paper to apply WLSI as a time-domain spectroscopic system for localized surface plasmon resonance (LSPR) sensing. A WLSI-based spectrometer is constructed with a breadboard of WLSI in combination with a spectral centroid algorithm for noise reduction and performance improvement. Experimentally, the WLSI-based spectrometer exhibits a limit of detection (LOD) of 1.2 × 10-3 refractive index units (RIU), which is better than that obtained with a conventional UV-Vis spectrometer, by resolving the LSPR peak shift. Finally, the bio-applicability of the proposed spectrometer was investigated using the rs242557 tau gene, an Alzheimer’s and Parkinson’s disease biomarker. The LOD was calculated as 15 pM. These results demonstrate that the proposed WLSI-based spectrometer could become a sensitive time-domain spectroscopic biosensing platform.
Nganga, Sara; Moritz, Niko; Kolakovic, Ruzica; Jakobsson, Kristina; Nyman, Johan O; Borgogna, Massimiliano; Travan, Andrea; Crosera, Matteo; Donati, Ivan; Vallittu, Pekka K; Sandler, Niklas
2014-10-22
Biostable fiber-reinforced composites, based on bisphenol-A-dimethacrylate and triethyleneglycoldimethacrylate thermoset polymer matrix reinforced with E-glass fibers have been successfully used in cranial reconstructions and the material has been approved for clinical use. As a further refinement of these implants, antimicrobial, non-cytotoxic coatings on the composites were created by an immersion procedure driven by strong electrostatic interactions. Silver nanoparticles (nAg) were immobilized in lactose-modified chitosan (Chitlac) to prepare the bacteriostatic coatings. Herein, we report the use of inkjet technology (a drop-on-demand inkjet printer) to deposit functional Chitlac-nAg coatings on the thermoset substrates. Characterization methods included scanning electron microscopy, scanning white light interferometry and electro-thermal atomic absorption spectroscopy. Inkjet printing enabled the fast and flexible functionalization of the thermoset surfaces with controlled coating patterns. The coatings were not impaired by the printing process: the kinetics of silver release from the coatings created by inkjet printing and conventional immersion technique was similar. Further research is foreseen to optimize printing parameters and to tailor the characteristics of the coatings for specific clinical applications.
NASA Astrophysics Data System (ADS)
Lorenz, P.; Bayer, L.; Ehrhardt, M.; Zimmer, K.; Engisch, L.
2015-03-01
Micro- and nanostructures exhibit a growing commercial interest where a fast, cost-effective, and large-area production is attainable. Laser methods have a great potential for the easy fabrication of surface structures into flexible polymer foils like polyimide (PI). In this study two different concepts for the structuring of polymer foils using a KrF excimer laser were tested and compared: the laser-induced ablation and the laser-induced shock wave structuring. The direct front side laser irradiation of these polymers allows the fabrication of different surface structures. For example: The low laser fluence treatment of PI results in nano-sized cone structures where the cone density can be controlled by the laser parameters. This allows inter alia the laser fabrication of microscopic QR code and high-resolution grey-tone images. Furthermore, the laser treatment of the front side of the polymer foil allows the rear side structuring due to a laserinduced shock wave. The resultant surface structures were analysed by optical and scanning electron microscopy (SEM) as well as white light interferometry (WLI).
Characterization of PET preforms using spectral domain optical coherence tomography
NASA Astrophysics Data System (ADS)
Hosseiny, Hamid; Ferreira, Manuel João.; Martins, Teresa; Carmelo Rosa, Carla
2013-11-01
Polyethylene terephthalate (PET) preforms are massively produced nowadays with the purpose of producing food and beverages packaging and liquid containers. Some varieties of these preforms are produced as multilayer structures, where very thin inner film(s) act as a barrier for nutrients leakage. The knowledge of the thickness of this thin inner layer is important in the production line. The quality control of preforms production requires a fast approach and normally the thickness control is performed by destructive means out of the production line. A spectral domain optical coherence tomography (SD-OCT) method was proposed to examine the thin layers in real time. This paper describes a nondestructive approach and all required signal processing steps to characterize the thin inner layers and also to improve the imaging speed and the signal to noise ratio. The algorithm was developed by using graphics processing unit (GPU) with computer unified device architecture (CUDA). This GPU-accelerated white light interferometry technique nondestructively assesses the samples and has high imaging speed advantage, overcoming the bottlenecks in PET performs quality control.
NASA Astrophysics Data System (ADS)
Kalziqi, Arben; Yunker, Peter; Thomas, Jacob
Unlike equilibrium atomic solids, biofilms do not experience significant thermal fluctuations at the constituent level. However, cells inside the biofilm stochastically die and reproduce, provoking a mechanical response. We investigate the mechanical response of biofilms to the death and reproduction of cells by measuring surface-height fluctuations of biofilms with two mutual predator strains of Vibrio cholerae which kill one another on contact via the Type VI Secretion System. Biofilm surface topography is measured in the homeostatic limit, wherein cell division and death occur at roughly the same rate, via white light interferometry. Although biofilms are far from equilibrium systems, measured height correlation functions line up with expectations from a generalized fluctuation-response relation derived from replication and death events, as predicted by Risler et al. (PRL 2015). Using genetically modified strains of V. cholerae which cannot kill, we demonstrate that extracted effective temperatures increase with the amount of death and reproduction. Thus, high-precision measurement of surface topography reveals the physical consequences of death and reproduction within a biofilm, providing a new approach to studying interactions between bacteria and cells.
In-line height profiling metrology sensor for zero defect production control
NASA Astrophysics Data System (ADS)
Snel, Rob; Winters, Jasper; Liebig, Thomas; Jonker, Wouter
2017-06-01
Contemporary production systems of mechanical precision parts show challenges as increased complexity, tolerances shrinking to sub-microns and yield losses that must be mastered to the extreme. More advanced automation and process control is required to accomplish this task. Often a solution based on feedforward/feedback control is chosen requiring innovative and more advanced in line metrology. This article concentrates first on the context of in line metrology for process control and then on the development of a specific in line height profiling sensor. The novel sensor technology is based on full field time domain white light interferometry which is well know from the quality lab. The novel metrology system is to be mounted close to the production equipment, as required to minimize time delay in the control loop, and is thereby fully exposed to vibrations. This sensor is innovated to perform in line with an orders of magnitude faster throughput than laboratory instruments; it's robust to withstand the rigors of workshops and has a height resolution that is in the nanometer range.
Useful surface parameters for biomaterial discrimination.
Etxeberria, Marina; Escuin, Tomas; Vinas, Miquel; Ascaso, Carlos
2015-01-01
Topographical features of biomaterials' surfaces are determinant when addressing their application site. Unfortunately up to date there has not been an agreement regarding which surface parameters are more representative in discriminating between materials. Discs (n = 16) of different currently used materials for implant prostheses fabrication, such as cast cobalt-chrome, direct laser metal soldered (DLMS) cobalt-chrome, titanium grade V, zirconia (Y-TZP), E-glass fiber-reinforced composite and polyetheretherketone (PEEK) were manufactured. Nanoscale topographical surface roughness parameters generated by atomic force microscopy (AFM), microscale surface roughness parameters obtained by white light interferometry (WLI) and water angle values obtained by the sessile-water-drop method were analyzed in order to assess which parameter provides the best optimum surface characterization method. Correlations between nanoroughness, microroughness, and hydrophobicity data were performed to achieve the best parameters giving the highest discriminatory power. A subset of six parameters for surface characterization were proposed. AFM and WLI techniques gave complementary information. Wettability did not correlate with any of the nanoroughness parameters while it however showed a weak correlation with microroughness parameters. © Wiley Periodicals, Inc.
Popescu, Marian C; Bita, Bogdan I; Tucureanu, Vasilica; Vasilache, Dan; Banu, Melania A; Avram, Andrei M; Giurescu-Dumitrescu, Raluca A
2018-02-01
The aim of this study is to conduct an extended surface and cross-section characterization of a denture base acrylic resin subjected to 500, 650, and 750 W microwave irradiation for 2, 3, and 5 min to assess its morphological modifications. A commercial heat-cured powder was polymerized according to the manufacturer's specifications and distributed into 20 circular samples. A stainless-steel wire was partially embedded in half of the discs, in order to investigate the metal-polymer interface. High-resolution scanning electron microscopy (SEM) imaging, white light interferometry, roughness measurements and Fourier transform infrared spectrometry were employed for morphological and structural evaluation of the irradiated polymer. Superficial adaptation was discovered after 5 min exposure at 500 W, 650 W, and 750 W, revealing significant roughness correction for 750 W. SEM characterization revealed the inner alteration of the resin for the 750 W protocol and a metal-polymer gap developed regardless of the irradiation conditions. The considerable temperature fluctuations that the samples were subject to during the experiments did not essentially change the poly(methyl-methacrylate) bond structure.
Wide field of view 3D label-free super-resolution imaging
NASA Astrophysics Data System (ADS)
Nolvi, Anton; Laidmäe, Ivo; Maconi, Göran; Heinämäki, Jyrki; Hæggström, Edward; Kassamakov, Ivan
2018-02-01
Recently, 3D label-free super-resolution profilers based on microsphere-assisted scanning white light interferometry were introduced having vertical resolution of few angstroms (Å) and a lateral resolution approaching 100 nm. However, the use of a single microsphere to generate the photonic nanojet (PNJ) limits their field of view. We overcome this limitation by using polymer microfibers to generate the PNJ. This increases the field of view by order of magnitude in comparison to the previously developed solutions while still resolving sub 100 nm features laterally and keeping the vertical resolution in 1nm range. To validate the capabilities of our system we used a recordable Blu-ray disc as a sample. It features a grooved surface topology with heights in the range of 20 nm and with distinguishable sub 100 nm lateral features that are unresolvable by diffraction limited optics. We achieved agreement between all three measurement devices across lateral and vertical dimensions. The field of view of our instrument was 110 μm by 2 μm and the imaging time was a couple of seconds.
Weekenstroo, Harm H A; Cornelissen, Bart M W; Bernelot Moens, Hein J
2015-06-01
Nailfold capillaroscopy is a non-invasive and safe technique for the analysis of microangiopathologies. Imaging quality of widely used simple videomicroscopes is poor. The use of green illumination instead of the commonly used white light may improve contrast. The aim of the study was to compare the effect of green illumination with white illumination, regarding capillary density, the number of microangiopathologies, and sensitivity and specificity for systemic sclerosis. Five rheumatologists have evaluated 80 images; 40 images acquired with green light, and 40 images acquired with white light. A larger number of microangiopathologies were found in images acquired with green light than in images acquired with white light. This results in slightly higher sensitivity with green light in comparison with white light, without reducing the specificity. These findings suggest that green instead of white illumination may facilitate evaluation of capillaroscopic images obtained with a low-cost digital videomicroscope.
Very long baseline interferometry using a radio telescope in Earth orbit
NASA Technical Reports Server (NTRS)
Ulvestad, J. S.; Edwards, C. D.; Linfield, R. P.
1987-01-01
Successful Very Long Baseline Interferometry (VLBI) observations at 2.3 GHz were made using an antenna aboard an Earth-orbiting spacecraft as one of the receiving telescopes. These observations employed the first deployed satellite (TDRSE-E for East) of the NASA Tracking and Data Relay Satellite System (TDRSS). Fringes were found for 3 radio sources on baselines between TDRSE and telescopes in Australia and Japan. The purpose of this experiment and the characteristics of the spacecraft that are related to the VLBI observations are described. The technical obstacles to maintaining phase coherence between the orbiting antenna and the ground stations, as well as the calibration schemes for the communication link between TDRSE and its ground station at White Sands, New Mexico are explored. System coherence results and scientific results for the radio source observations are presented. Using all available calibrations, a coherence of 84% over 700 seconds was achieved for baselines to the orbiting telescope.
ERIC Educational Resources Information Center
Eaton, Bruce G., Ed.
1981-01-01
Describes experiments and apparatus to: (1) allow astronomy students to test resolution limit of their eyes at several wavelengths; (2) analyze laser mode phases by interferometry; (3) demonstrate a Cartesian diver with an overhead projector; and (4) generate conical beams of light for smoke-chamber demonstrations. (JN)
Optical polarimetry for noninvasive glucose sensing enabled by Sagnac interferometry.
Winkler, Amy M; Bonnema, Garret T; Barton, Jennifer K
2011-06-10
Optical polarimetry is used in pharmaceutical drug testing and quality control for saccharide-containing products (juice, honey). More recently, it has been proposed as a method for noninvasive glucose sensing for diabetic patients. Sagnac interferometry is commonly used in optical gyroscopes, measuring minute Doppler shifts resulting from mechanical rotation. In this work, we demonstrate that Sagnac interferometers are also sensitive to optical rotation, or the rotation of linearly polarized light, and are therefore useful in optical polarimetry. Results from simulation and experiment show that Sagnac interferometers are advantageous in optical polarimetry as they are insensitive to net linear birefringence and alignment of polarization components.
Measurement of Poisson's ratio of nonmetallic materials by laser holographic interferometry
NASA Astrophysics Data System (ADS)
Zhu, Jian T.
1991-12-01
By means of the off-axis collimated plane wave coherent light arrangement and a loading device by pure bending, Poisson's ratio values of CFRP (carbon fiber-reinforced plactics plates, lay-up 0 degree(s), 90 degree(s)), GFRP (glass fiber-reinforced plactics plates, radial direction) and PMMA (polymethyl methacrylate, x, y direction) have been measured. In virtue of this study, the ministry standard for the Ministry of Aeronautical Industry (Testing method for the measurement of Poisson's ratio of non-metallic by laser holographic interferometry) has been published. The measurement process is fast and simple. The measuring results are reliable and accurate.
Imaging of dental material by polarization-sensitive optical coherence tomography
NASA Astrophysics Data System (ADS)
Dichtl, Sabine; Baumgartner, Angela; Hitzenberger, Christoph K.; Moritz, Andreas; Wernisch, Johann; Robl, Barbara; Sattmann, Harald; Leitgeb, Rainer; Sperr, Wolfgang; Fercher, Adolf F.
1999-05-01
Partial coherence interferometry (PCI) and optical coherence tomography (OCT) are noninvasive and noncontact techniques for high precision biometry and for obtaining cross- sectional images of biologic structures. OCT was initially introduced to depict the transparent tissue of the eye. It is based on interferometry employing the partial coherence properties of a light source with high spatial coherence ut short coherence length to image structures with a resolution of the order of a few microns. Recently this technique has been modified for cross section al imaging of dental and periodontal tissues. In vitro and in vivo OCT images have been recorded, which distinguish enamel, cemento and dentin structures and provide detailed structural information on clinical abnormalities. In contrast to convention OCT, where the magnitude of backscattered light as a function of depth is imaged, polarization sensitive OCT uses backscattered light to image the magnitude of the birefringence in the sample as a function of depth. First polarization sensitive OCT recordings show, that changes in the mineralization status of enamel or dentin caused by caries or non-caries lesions can result in changes of the polarization state of the light backscattered by dental material. Therefore polarization sensitive OCT might provide a new diagnostic imaging modality in clinical and research dentistry.
de Jong, Maaike; Caro, Samuel P; Gienapp, Phillip; Spoelstra, Kamiel; Visser, Marcel E
2017-08-01
Artificial light at night disturbs the daily rhythms of many organisms. To what extent this disturbance depends on the intensity and spectral composition of light remain obscure. Here, we measured daily activity patterns of captive blue tits ( Cyanistes caeruleus) exposed to similar intensities of green, red, or white light at night. Birds advanced their onset of activity in the morning under all light colors but more under red and white light than under green light. Offset of activity was slightly delayed in all light colors. The total activity over a 24-h period did not change but birds moved a part of their daily activity into the night. Since the effect of red and white lights are comparable, we tested the influence of light intensity in a follow-up experiment, where we compared the activity of the birds under different intensities of green and white light only. While in the higher range of intensities, the effects of white and green light were comparable; at lower intensities, green light had a less disturbing effect as compared with white light on daily rhythms in blue tits. Our results show that the extent of this disturbance can be mitigated by modulating the spectral characteristics and intensity of outdoor lighting, which is now feasible through the use of LED lighting.
White LEDs and modules in chip-on-board technology for general lighting
NASA Astrophysics Data System (ADS)
Hartmann, Paul; Wenzl, Franz P.; Sommer, Christian; Pachler, Peter; Hoschopf, Hans; Schweighart, Marko; Hartmann, Martin; Kuna, Ladislav; Jakopic, Georg; Leising, Guenther; Tasch, Stefan
2006-08-01
At present, light-emitting diode (LED) modules in various shapes are developed and designed for the general lighting, advertisement, emergency lighting, design and architectural markets. To compete with and to surpass the performance of traditional lighting systems, enhancement of Lumen output and the white light quality as well as the thermal management and the luminary integration are key factors for success. Regarding these issues, white LEDs based on the chip-on-board (COB) technology show pronounced advantages. State-of-the-art LEDs exploiting this technology are now ready to enter the general lighting segments. We introduce and discuss the specific properties of the Tridonic COB technology dedicated for general lighting. This technology, in combination with a comprehensive set of tools to improve and to enhance the Lumen output and the white light quality, including optical simulation, is the scaffolding for the application of white LEDs in emerging areas, for which an outlook will be given.
Is White Light the Best Illumination for Palmprint Recognition?
NASA Astrophysics Data System (ADS)
Guo, Zhenhua; Zhang, David; Zhang, Lei
Palmprint as a new biometric has received great research attention in the past decades. It owns many merits, such as robustness, low cost, user friendliness, and high accuracy. Most of the current palmprint recognition systems use an active light to acquire clear palmprint images. Thus, light source is a key component in the system to capture enough of discriminant information for palmprint recognition. To the best of our knowledge, white light is the most widely used light source. However, little work has been done on investigating whether white light is the best illumination for palmprint recognition. In this study, we empirically compared palmprint recognition accuracy using white light and other six different color lights. The experiments on a large database show that white light is not the optimal illumination for palmprint recognition. This finding will be useful to future palmprint recognition system design.
Efficient white light generation from 2,3-diphenyl-1,2-dihydro-quinoxaline complex
NASA Astrophysics Data System (ADS)
Dwivedi, Y.; Kant, S.; Rai, R. N.; Rai, S. B.
2010-11-01
In this article, we report two organic materials dispersed in transparent poly (methyl methacrylate) matrix for efficient white light simulation under different optical excitations. A newly synthesized complex of benzoin and o-phenyldiamine is observed to be white on illumination with a blue LED. A new concept of white light emitting tube is also demonstrated. A mixture of 2,2″-([1,1'-biphenyl]-4,4'-diyldi-2,1-ethenediyl)-bis-benzenesulfonic acid disodium salt and complex is optimized to emit white light extended in the violet region on 355 nm laser excitation. The optical quality of the emitted white light is adjudged by the CIE coordinate, correlated color temperature and color rendition index in both the cases.
Real-time trichromatic holographic interferometry: preliminary study
NASA Astrophysics Data System (ADS)
Albe, Felix; Bastide, Myriam; Desse, Jean-Michel; Tribillon, Jean-Louis H.
1998-08-01
In this paper we relate our preliminary experiments on real- time trichromatic holographic interferometry. For this purpose a CW `white' laser (argon and krypton of Coherent- Radiation, Spectrum model 70) is used. This laser produces about 10 wavelengths. A system consisting of birefringent plates and polarizers allows to select a trichromatic TEM00 triplet: blue line ((lambda) equals 476 nm, 100 mW), green line ((lambda) equals 514 nm, 100 mW) and red line ((lambda) equals 647 nm, 100 mW). In a first stage we recorded a trichromatic reflection hologram with a separate reference beam on a single-layer silver-halide panchromatic plate (PFG 03C). After processing, the hologram is put back into the original recording set-up, as in classical experiments on real-time monochromatic holographic interferometry. So we observe interference fringes between the 3 reconstructed waves and the 3 actual waves. The interference fringes of the phenomenon are observed on a screen and recorded by a video camera at 25 frames per second. A color video film of about 3 minutes of duration is presented. Some examples related to phase objects are presented (hot airflow from a candle, airflow from a hand). The actual results show the possibility of using this technique to study, in real time, aerodynamic wakes and mechanical deformation.
Development of a portable frequency-domain angle-resolved low coherence interferometry system
NASA Astrophysics Data System (ADS)
Pyhtila, John W.; Wax, Adam
2007-02-01
Improved methods for detecting dysplasia, or pre-cancerous growth, are a current clinical need. Random biopsy and subsequent diagnosis through histological analysis is the current gold standard in endoscopic surveillance for dysplasia. However, this approach only allows limited examination of the at-risk tissue and has the drawback of a long delay in time-to-diagnosis. In contrast, optical scattering spectroscopy methods offer the potential to assess cellular structure and organization in vivo, thus allowing for instantaneous diagnosis and increased coverage of the at-risk tissue. Angle-resolved low coherence interferometry (a/LCI), a novel scattering spectroscopy technique, combines the ability of low-coherence interferometry to isolate scattered light from sub-surface tissue layers with the ability of light scattering spectroscopy to obtain structural information on sub-wavelength scales, specifically by analyzing the angular distribution of the backscattered light. In application to examining tissue, a/LCI enables depthresolved quantitative measurements of changes in the size and texture of cell nuclei, which are characteristic biomarkers of dysplasia. The capabilities of a/LCI were demonstrated initially by detecting pre-cancerous changes in epithelial cells within intact, unprocessed, animal tissues. Recently, we have developed a new frequency-domain a/LCI system, with sub-second acquisition time and a novel fiber optic probe. Preliminary results using the fa/LCI system to examine human esophageal tissue in Barrett's esophagus patients demonstrate the clinical viability of the approach. In this paper, we present a new portable system which improves upon the design of the fa/LCI system to allow for higher quality data to be collected in the clinic. Accurate sizing of polystyrene microspheres and cell nuclei from ex vivo human esophageal tissue is presented. These results demonstrate the promise of a/LCI as a clinically viable diagnostic tool.
Studying the inner regions of young stars and their disks with aperture masking interferometry
NASA Astrophysics Data System (ADS)
Greenbaum, Alexandra; Sivaramakrishnan, Anand; GPI Instrument Team; NIRISS Instrument Team
2017-01-01
High resolution aperture masking interferometry complements coronagraphic imagers to provide a unique perspective on star and planet formation at more moderate contrast. By targeting young stars, especially those with disks, we aim to understand complex protoplanetary environments. Ground-based non-redundant masking (NRM) paired with spectrographs and polarimeters probes both thermally emitting young companions, possibly embedded in the disk or gap and scattered light in protoplanetary disks. And soon the community will have access to the most stable NRM conditions yet, with the Near Infrared Imager and Slitless Spectrograph (NIRISS) Aperture Masking Interferometry (AMI) mode on the James Webb Space Telescope. I will present my thesis work commissioning the Gemini Planet Imager’s NRM, highlighting results through both its spectroscopy and polarimetry modes, which set the stage for future space-based imaging. I will also give an overview of NIRISS-AMI capabilities and performance predictions for imaging young low-mass companions and disks, and how it will complement other instruments on JWST.
Isotope-selective high-order interferometry with large organic molecules in free fall
NASA Astrophysics Data System (ADS)
Rodewald, Jonas; Dörre, Nadine; Grimaldi, Andrea; Geyer, Philipp; Felix, Lukas; Mayor, Marcel; Shayeghi, Armin; Arndt, Markus
2018-03-01
Interferometry in the time domain has proven valuable for matter-wave based measurements. This concept has recently been generalized to cold molecular clusters using short-pulse standing light waves which realized photo-depletion gratings, arranged in a time-domain Talbot–Lau interferometer (OTIMA). Here we extend this idea further to large organic molecules and demonstrate a new scheme to scan the emerging molecular interferogram in position space. The capability of analyzing different isotopes of the same monomer under identical conditions opens perspectives for studying the interference fringe shift as a function of time in gravitational free fall. The universality of OTIMA interferometry allows one to handle a large variety of particles. In our present work, quasi-continuous laser evaporation allows transferring fragile organic molecules into the gas phase, covering more than an order of magnitude in mass between 614 amu and 6509 amu, i.e. 300% more massive than in previous OTIMA experiments. For all masses, we find about 30% fringe visibility.
Trägårdh, Johanna; Gersen, Henkjan
2013-07-15
We show how a combination of near-field scanning optical microscopy with crossed beam spectral interferometry allows a local measurement of the spectral phase and amplitude of light propagating in photonic structures. The method only requires measurement at the single point of interest and at a reference point, to correct for the relative phase of the interferometer branches, to retrieve the dispersion properties of the sample. Furthermore, since the measurement is performed in the spectral domain, the spectral phase and amplitude could be retrieved from a single camera frame, here in 70 ms for a signal power of less than 100 pW limited by the dynamic range of the 8-bit camera. The method is substantially faster than most previous time-resolved NSOM methods that are based on time-domain interferometry, which also reduced problems with drift. We demonstrate how the method can be used to measure the refractive index and group velocity in a waveguide structure.
Sun, Wen-Shing; Tien, Chuen-Lin; Tsuei, Chih-Hsuan; Pan, Jui-Wen
2014-10-10
We simulate and compare the illuminance, uniformity, and efficiency of metal-halide lamps, white LED light sources, and hybrid light box designs combining sunlight and white LED lighting used for indoor basketball court illumination. According to the optical simulation results and our examination of real situations, we find that hybrid light box designs combining sunlight and white LEDs do perform better than either metal-halide lamps or white LED lights. An evaluation of the sunlight concentrator system used in our inverted solar cell shows that the energy consumption of stadium lighting can be reduced significantly.
Medical Applications of White LEDs for Surgical Operation
NASA Astrophysics Data System (ADS)
Shimada, Junichi; Kawakami, Yoichi
Everywhere in the world, the highest quality and quantity of lighting is required during the surgical operations. However, the surgical approach has had many types and various angles, common ceiling surgical halogen lighting system cannot provide an adequate amount of beams because the surgeons' heads hinder the illuminations from reaching the operation field. The evolution of solid-state-lighting is currently going to be developed due to the progress of white light emitting diodes (LEDs). We proposed and developed the new lighting equipment that is a surgical lighting goggle composed of InGaN-YAG (yttrium aluminum garnet):Ce3+-based white LEDs. Here, we newly design surgical lighting system composed of white LEDs equipped on both sides of goggles. In fact, we have succeeded in the first internal shunt operation in the left forearm using the surgical LED lighting system on 11th Sept 2000. Since the white LEDs used were composed of InGaN-blue-emitters and YAG-yellow-phosphors, the color rendering property was not sufficient in the reddish colors. After our first challenge for medical application of white LEDs, we have been trying to improve the luminance power of white LED, the color rendering in red colors and the spectral distribution of white LED to render inherent color of raw flesh such as skin, blood, fat tissue and internal organs. We have produced new concepts for LED lighting sources and new several generations of LED lighting goggles.
Apodization of beams in an optical interferometer
NASA Technical Reports Server (NTRS)
Ames, Lawrence L. (Inventor); Dutta, Kalyan (Inventor)
2006-01-01
An interferometry apparatus comprises one or more beam generators, a detector, and a plurality of optical paths along which one or more beams of light propagate. Disposed along at least one of the optical paths is an apodization mask to shape one of the beams.
Space Radar Image of Owens Valley, California
NASA Technical Reports Server (NTRS)
1999-01-01
This is a three-dimensional perspective view of Owens Valley, near the town of Bishop, California that was created by combining two spaceborne radar images using a technique known as interferometry. Visualizations like this one are helpful to scientists because they clarify the relationships of the different types of surfaces detected by the radar and the shapes of the topographic features such as mountains and valleys. The view is looking southeast along the eastern edge of Owens Valley. The White Mountains are in the center of the image, and the Inyo Mountains loom in the background. The high peaks of the White Mountains rise more than 3,000 meters (10,000 feet) above the valley floor. The runways of the Bishop airport are visible at the right edge of the image. The meandering course of the Owens River and its tributaries appear light blue on the valley floor. Blue areas in the image are smooth, yellow areas are rock outcrops, and brown areas near the mountains are deposits of boulders, gravel and sand known as alluvial fans. The image was constructed by overlaying a color composite radar image on top of a digital elevation map. The radar data were taken by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar (SIR-C/X-SAR) on board the space shuttle Endeavour in October 1994. The digital elevation map was produced using radar interferometry, a process in which radar data are acquired on different passes of the space shuttle. The two data passes are compared to obtain elevation information. The elevation data were derived from a 1,500-km-long (930-mile) digital topographic map processed at JPL. Radar image data are draped over the topography to provide the color with the following assignments: red is L-band vertically transmitted, vertically received; green is C-band vertically transmitted, vertically received; and blue is the ratio of C-band vertically transmitted, vertically received to L-band vertically transmitted, vertically received. This image is centered near 37.4 degrees north latitude and 118.3 degrees west longitude. No vertical exaggeration factor has been applied to the data. SIR-C/X-SAR, a joint mission of the German, Italian, and the United States space agencies, is part of NASA's Mission to Planet Earth.
Tricolor R/G/B Laser Diode Based Eye-Safe White Lighting Communication Beyond 8 Gbit/s.
Wu, Tsai-Chen; Chi, Yu-Chieh; Wang, Huai-Yung; Tsai, Cheng-Ting; Huang, Yu-Fang; Lin, Gong-Ru
2017-01-31
White light generation by mixing red, green, and blue laser diodes (RGB LDs) was demonstrated with Commission International de l'Eclairage coordinates of (0.2928, 0.2981), a correlated color temperature of 8382 K, and a color rendering index of 54.4 to provide a maximal illuminance of 7540 lux. All the white lights generated using RGB LDs were set within the risk group-1 criterion to avoid the blue-light hazard to human eyes. In addition, the RGB-LD mixed white light was diffused using a frosted glass to avoid optical aberration and to improve the performance of the lighting source. In addition, visible light communication (VLC) by using RGB-LD mixed white-light carriers and a point-to-point scheme over 1 m was performed in the directly modulated 16-QAM OFDM data format. In back-to-back transmission, the maximal allowable data rate at 10.8, 10.4, and 8 Gbps was determined for R, G, and B LDs, respectively. Moreover, the RGB-LD mixed white light-based indoor wavelength-division multiplexing (WDM)-VLC system yielded a total allowable transmission data rate of 8.8 Gbps over 0.5 m in free space. Such a high-speed RGB-LD mixed WDM-VLC system without any channel interference can be used to simultaneously provide data transmission and white lighting in an indoor environment.
Exposing broiler eggs to green, red and white light during incubation.
Archer, G S
2017-07-01
Previous work has shown that exposing broiler eggs to white light during incubation can improve hatchability and post-hatch animal welfare. It was hypothesized that due to how different wavelengths of light can affect avian physiology differently, and how pigmented eggshells filter light that different monochromatic wavelengths would have differential effects on hatchability and post-hatch animal welfare indicators. To determine, we incubated chicken eggs (n=6912) under either no light (dark), green light, red light or white light; the light level was 250 lux. White and red light were observed to increase hatch of fertile (P0.05). Fear response of during isolation and tonic immobility was reduced (P0.05) from dark incubated broilers. All light incubated broilers had lower (P<0.05) plasma corticosterone and higher (P<0.05) plasma serotonin concentrations than dark incubated broilers. These results indicate that white light and red light that is a component of it are possibly the key spectrum to improving hatchability and lower fear and stress susceptibility, whereas green light is not as effective. Incubating broiler eggs under these spectrums could be used to improve hatchery efficiency and post-hatch animal welfare at the same time.
Effects of coloured lighting on the perception of interior spaces.
Odabaşioğlu, Seden; Olguntürk, Nіlgün
2015-02-01
Use of coloured lighting in interior spaces has become prevalent in recent years. Considerable importance is ascribed to coloured lighting in interior and lighting design. The effects of colour on the perception of interior spaces have been studied as surface colour; but here, the effects of three different types of chromatic light were investigated. The lighting differed in colour (red, green and white) and perceptions of interior space were assessed. 97 participants (59 women, 38 men; M age = 21.4 yr.) evaluated the experiment room on a questionnaire assessing eight evaluative factors: Pleasantness, Arousal, Aesthetics, Usefulness, Comfort, Spaciousness, Colour, and Lighting quality. Perceptions of the room differed by colour of lighting for some of the evaluative factors, but there was no sex difference in perceptions. Interior spaces may be perceived as equally pleasant under white, green and red lighting. Under white lighting a space is perceived as more useful, spacious, clear, and luminous. Green lighting would make the same effect. Green and white lighting were perceived equally comfortable in an interior space. Chromatic coloured lighting was perceived to be more aesthetic than white lighting. The results support previous findings for some evaluative factors, but differed for others.
33 CFR 83.30 - Anchored vessels and vessels aground (Rule 30).
Code of Federal Regulations, 2010 CFR
2010-07-01
... fore part, an all-round white light or one ball; and (2) At or near the stern and at a lower level than the light prescribed in subparagraph (1), an all-round white light. (b) Vessels of less than 50 meters... white light where it can best be seen instead of the lights prescribed in paragraph (a) of this Rule. (c...
33 CFR 83.30 - Anchored vessels and vessels aground (Rule 30).
Code of Federal Regulations, 2011 CFR
2011-07-01
... fore part, an all-round white light or one ball; and (2) At or near the stern and at a lower level than the light prescribed in subparagraph (1), an all-round white light. (b) Vessels of less than 50 meters... white light where it can best be seen instead of the lights prescribed in paragraph (a) of this Rule. (c...
33 CFR 83.30 - Anchored vessels and vessels aground (Rule 30).
Code of Federal Regulations, 2013 CFR
2013-07-01
... fore part, an all-round white light or one ball; and (2) At or near the stern and at a lower level than the light prescribed in subparagraph (1), an all-round white light. (b) Vessels of less than 50 meters... white light where it can best be seen instead of the lights prescribed in paragraph (a) of this Rule. (c...
33 CFR 83.30 - Anchored vessels and vessels aground (Rule 30).
Code of Federal Regulations, 2014 CFR
2014-07-01
... fore part, an all-round white light or one ball; and (2) At or near the stern and at a lower level than the light prescribed in subparagraph (1), an all-round white light. (b) Vessels of less than 50 meters... white light where it can best be seen instead of the lights prescribed in paragraph (a) of this Rule. (c...
33 CFR 83.30 - Anchored vessels and vessels aground (Rule 30).
Code of Federal Regulations, 2012 CFR
2012-07-01
... fore part, an all-round white light or one ball; and (2) At or near the stern and at a lower level than the light prescribed in subparagraph (1), an all-round white light. (b) Vessels of less than 50 meters... white light where it can best be seen instead of the lights prescribed in paragraph (a) of this Rule. (c...
Speckle interferometry of asteroids. I - 433 Eros
NASA Technical Reports Server (NTRS)
Drummond, J. D.; Cocke, W. J.; Hege, E. K.; Strittmatter, P. A.; Lambert, J. V.
1985-01-01
Analytical expressions are derived for the semimajor and semiminor axes and orientation angle of the ellipse projected by a triaxial asteroid, and the results are applied speckle-interferometry observations of the 433 Eros asteroid. The expressions were calculated as functions of the dimensions and pole of the body and of the asterocentric position of the earth and the sun. On the basis of the analytical expressions, the dimensions of 433 Eros are obtained. The light curve from December 18, 1981 is compared to the dimensions to obtain a geometric albedo of 0.156 (+ or - 0.010). A series of two-dimensional power spectra and autocorrelation functions for 433 Eros show that it is spinning in space.
Chromatic dispersion effects in ultra-low coherence interferometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lychagov, V V; Ryabukho, V P
2015-06-30
We consider the properties of an interference signal shift from zero-path-difference position in the presence of an uncompensated dispersive layer in one of the interferometer arms. It is experimentally shown that in using an ultra-low coherence light source, the formation of the interference signal is also determined by the group velocity dispersion, which results in a nonlinear dependence of the position of the interference signal on the geometrical thickness of the dispersive layer. The discrepancy in the dispersive layer and compensator refractive indices in the third decimal place is experimentally shown to lead to an interference signal shift that ismore » an order of magnitude greater than the pulse width. (interferometry)« less
Challenging the ‘Big G’ measurement with atoms and light
NASA Astrophysics Data System (ADS)
Rosi, Gabriele
2016-10-01
The measurement of the Newtonian gravity constant G is a formidable task. Starting from the first determination made by Henry Cavendish in 1798, several attempts have been made in order to improve knowledge of its value. Nevertheless, despite these efforts, its uncertainty has decreased only by a factor of ten per century. Cold atom interferometry represents a conceptually different technique to challenge the G measurement, a feature that is crucial in order to identify discrepancies among previous measurements. In this review paper, after a short introduction on the traditional measurement techniques, I will describe and discuss past and ongoing G determination based on atom interferometry, highlighting for each of them the most significant aspects.
NASA Astrophysics Data System (ADS)
Rivera, V. A. G.; Ferri, F. A.; Nunes, L. A. O.; Marega, E.
2017-05-01
Yb3+, Er3+ and Tm3+ triply doped zinc-tellurite glass have been prepared containing up to 3.23 wt% of rare-earth ion oxides, were characterized by absorption spectroscopy, excitation, emission and up-conversion spectra. Transparent and homogeneous glasses have been produced, managing the red, green and blue emission bands, in order to generate white light considering the human eye perception. The energy transfer (resonant or non-resonant) between those rare-earth ions provides a color balancing mechanism that maintains the operating point in the white region, generating warm white light, cool white light and artificial daylight through the increase of the 976/980 nm diode laser excitation power from 4 to 470 mW. A light source at 4000 K is obtained under the excitation at 980 nm with 15 mW, providing a white light environment that is comfortable to the human eye vision. The spectroscopic study presented in this work describes the white light generation by the triply-doped zinc-tellurite glass, ranging from blue, green and red, by controlling the laser excitation power and wavelength at 976/980 nm. Such white tuning provokes healthy effects on human health throughout the day, especially the circadian system.
Nandhikonda, Premchendar; Heagy, Michael D
2010-11-14
The synthesis and photophysical characterization of a new white-light fluorophore is described. The optimization of excitation wavelengths allows the naphthalimide (NI) dyes to display blue, green or white light emission depending on the excitation wavelength.
Nanocluster-based white-light-emitting material employing surface tuning
Wilcoxon, Jess P [Albuquerque, NM; Abrams, Billie L [Albuquerque, NM; Thoma, Steven G [Albuquerque, NM
2007-06-26
A method for making a nanocrystal-based material capable of emitting light over a sufficiently broad spectral range to appear white. Surface-modifying ligands are used to shift and broaden the emission of semiconductor nanocrystals to produce nanoparticle-based materials that emit white light.
NASA Astrophysics Data System (ADS)
Wieg, A. T.; Penilla, E. H.; Hardin, C. L.; Kodera, Y.; Garay, J. E.
2016-12-01
We introduce high thermal conductivity aluminum nitride (AlN) as a transparent ceramic host for Ce3+, a well-known active ion dopant. We show that the Ce:AlN ceramics have overlapping photoluminescent (PL) emission peaks that cover almost the entire visible range resulting in a white appearance under 375 nm excitation without the need for color mixing. The PL is due to a combination of intrinsic AlN defect complexes and Ce3+ electronic transitions. Importantly, the peak intensities can be tuned by varying the Ce concentration and processing parameters, causing different shades of white light without the need for multiple phosphors or light sources. The Commission Internationale de l'Eclairage coordinates calculated from the measured spectra confirm white light emission. In addition, we demonstrate the viability of laser driven white light emission by coupling the Ce:AlN to a readily available frequency tripled Nd-YAG laser emitting at 355 nm. The high thermal conductivity of these ceramic down-converters holds significant promise for producing higher power white light sources than those available today.
Imaging camera system of OYGBR-phosphor-based white LED lighting
NASA Astrophysics Data System (ADS)
Kobashi, Katsuya; Taguchi, Tsunemasa
2005-03-01
The near-ultraviolet (nUV) white LED approach is analogous to three-color fluorescent lamp technology, which is based on the conversion of nUV radiation to visible light via the photoluminescence process in phosphor materials. The nUV light is not included in the white light generation from nUV-based white LED devices. This technology can thus provide a higher quality of white light than the blue and YAG method. A typical device demonstrates white luminescence with Tc=3,700 K, Ra > 93, K > 40 lm/W and chromaticity (x, y) = (0.39, 0.39), respectively. The orange, yellow, green and blue OYGB) or orange, yellow, red, green and blue (OYRGB) device shows a luminescence spectrum broader than of an RGB white LED and a better color rendering index. Such superior luminous characteristics could be useful for the application of several kinds of endoscope. We have shown the excellent pictures of digestive organs in a stomach of a dog due to the strong green component and high Ra.
NASA Astrophysics Data System (ADS)
Gravity Collaboration; Abuter, R.; Accardo, M.; Amorim, A.; Anugu, N.; Ávila, G.; Azouaoui, N.; Benisty, M.; Berger, J. P.; Blind, N.; Bonnet, H.; Bourget, P.; Brandner, W.; Brast, R.; Buron, A.; Burtscher, L.; Cassaing, F.; Chapron, F.; Choquet, É.; Clénet, Y.; Collin, C.; Coudé Du Foresto, V.; de Wit, W.; de Zeeuw, P. T.; Deen, C.; Delplancke-Ströbele, F.; Dembet, R.; Derie, F.; Dexter, J.; Duvert, G.; Ebert, M.; Eckart, A.; Eisenhauer, F.; Esselborn, M.; Fédou, P.; Finger, G.; Garcia, P.; Garcia Dabo, C. E.; Garcia Lopez, R.; Gendron, E.; Genzel, R.; Gillessen, S.; Gonte, F.; Gordo, P.; Grould, M.; Grözinger, U.; Guieu, S.; Haguenauer, P.; Hans, O.; Haubois, X.; Haug, M.; Haussmann, F.; Henning, Th.; Hippler, S.; Horrobin, M.; Huber, A.; Hubert, Z.; Hubin, N.; Hummel, C. A.; Jakob, G.; Janssen, A.; Jochum, L.; Jocou, L.; Kaufer, A.; Kellner, S.; Kendrew, S.; Kern, L.; Kervella, P.; Kiekebusch, M.; Klein, R.; Kok, Y.; Kolb, J.; Kulas, M.; Lacour, S.; Lapeyrère, V.; Lazareff, B.; Le Bouquin, J.-B.; Lèna, P.; Lenzen, R.; Lévêque, S.; Lippa, M.; Magnard, Y.; Mehrgan, L.; Mellein, M.; Mérand, A.; Moreno-Ventas, J.; Moulin, T.; Müller, E.; Müller, F.; Neumann, U.; Oberti, S.; Ott, T.; Pallanca, L.; Panduro, J.; Pasquini, L.; Paumard, T.; Percheron, I.; Perraut, K.; Perrin, G.; Pflüger, A.; Pfuhl, O.; Phan Duc, T.; Plewa, P. M.; Popovic, D.; Rabien, S.; Ramírez, A.; Ramos, J.; Rau, C.; Riquelme, M.; Rohloff, R.-R.; Rousset, G.; Sanchez-Bermudez, J.; Scheithauer, S.; Schöller, M.; Schuhler, N.; Spyromilio, J.; Straubmeier, C.; Sturm, E.; Suarez, M.; Tristram, K. R. W.; Ventura, N.; Vincent, F.; Waisberg, I.; Wank, I.; Weber, J.; Wieprecht, E.; Wiest, M.; Wiezorrek, E.; Wittkowski, M.; Woillez, J.; Wolff, B.; Yazici, S.; Ziegler, D.; Zins, G.
2017-06-01
GRAVITY is a new instrument to coherently combine the light of the European Southern Observatory Very Large Telescope Interferometer to form a telescope with an equivalent 130 m diameter angular resolution and a collecting area of 200 m2. The instrument comprises fiber fed integrated optics beam combination, high resolution spectroscopy, built-in beam analysis and control, near-infrared wavefront sensing, phase-tracking, dual-beam operation, and laser metrology. GRAVITY opens up to optical/infrared interferometry the techniques of phase referenced imaging and narrow angle astrometry, in many aspects following the concepts of radio interferometry. This article gives an overview of GRAVITY and reports on the performance and the first astronomical observations during commissioning in 2015/16. We demonstrate phase-tracking on stars as faint as mK ≈ 10 mag, phase-referenced interferometry of objects fainter than mK ≈ 15 mag with a limiting magnitude of mK ≈ 17 mag, minute long coherent integrations, a visibility accuracy of better than 0.25%, and spectro-differential phase and closure phase accuracy better than 0.5°, corresponding to a differential astrometric precision of better than ten microarcseconds (μas). The dual-beam astrometry, measuring the phase difference of two objects with laser metrology, is still under commissioning. First observations show residuals as low as 50 μas when following objects over several months. We illustrate the instrument performance with the observations of archetypical objects for the different instrument modes. Examples include the Galactic center supermassive black hole and its fast orbiting star S2 for phase referenced dual-beam observations and infrared wavefront sensing, the high mass X-ray binary BP Cru and the active galactic nucleus of PDS 456 for a few μas spectro-differential astrometry, the T Tauri star S CrA for a spectro-differential visibility analysis, ξ Tel and 24 Cap for high accuracy visibility observations, and η Car for interferometric imaging with GRAVITY.
NASA Astrophysics Data System (ADS)
Santhosh, C.; Dharmadhikari, A. K.; Alti, K.; Dharmadhikari, J. A.; Mathur, D.
2007-02-01
Propagation of ultrashort pulses of intense, infrared light through transparent medium gives rise to a visually spectacular phenomenon known as supercontinuum (white light) generation wherein the spectrum of transmitted light is very considerably broader than that of the incident light. We have studied the propagation of ultrafast (<45 fs) pulses of intense infrared light through biological media (water, and water doped with salivary proteins) which reveal that white light generation is severely suppressed in the presence of a major salivary protein, α-amylase.
Time-Delay Interferometry for Space-based Gravitational Wave Searches
NASA Technical Reports Server (NTRS)
Armstrong, J.; Estabrook, F.; Tinto, M.
1999-01-01
Ground-based, equal-arm-length laser interferometers are being built to measure high-frequency astrophysical graviatational waves. Because of the arm-length equality, laser light experiences the same delay in each arm and thus phase or frequency noise from the laser itself precisely cancels at the photodetector.
Honda, Kazuhisa; Kondo, Makoto; Hiramoto, Daichi; Saneyasu, Takaoki; Kamisoyama, Hiroshi
2017-05-01
The core circadian clock mechanism relies on a feedback loop comprised of clock genes, such as the brain and muscle Arnt-like 1 (Bmal1), chriptochrome 1 (Cry1), and period 3 (Per3). Exposure to the light-dark cycle synchronizes the master circadian clock in the brain, and which then synchronizes circadian clocks in peripheral tissues. Birds have long been used as a model for the investigation of circadian rhythm in human neurobiology. In the present study, we examined the effects of continuous light and the combination of white and blue light on the expression of clock genes (Bmal1, Cry1, and Per3) in the central and peripheral tissues in chicks. Seventy two day-old male chicks were weighed, allocated to three groups and maintained under three light schedules: 12h white light-12h dark-cycles group (control); 24h white light group (WW group); 12h white light-12h blue light-cycles group (WB group). The mRNA levels of clock genes in the diencephalon were significantly different between the control and WW groups. On the other hand, the alteration in the mRNA levels of clock genes was similar between the control and WB groups. Similar phenomena were observed in the liver and skeletal muscle (biceps femoris). These results suggest that 12h white-12h blue light-cycles did not disrupt the circadian rhythm of clock gene expression in chicks. Copyright © 2017 Elsevier Inc. All rights reserved.
Effects of supplementary lighting by natural light for growth of Brassica chinensis
NASA Astrophysics Data System (ADS)
Yeh, Shih-Chuan; Lee, Hui-Ping; Kao, Shih-Tse; Lu, Ju-Lin
2016-04-01
This paper present a model of cultivated chamber with supplementary natural colour light. We investigate the effects of supplementary natural red light and natural blue light on growth of Brassica chinensis under natural white light illumination. After 4 weeks of supplementary colour light treatment, the experiment results shown that the weight of fresh leaf were not affected by supplementary natural blue light. However, those Brassica chinensis were cultivated in the chambers with supplementary natural red light obtained a significant increasing of fresh weight of leaf under both white light illuminate models. The combination of natural white light with supplementary natural red light illumination will be benefits in growth for cultivation and energy saving.
Far Red and White Light-promoted Utilization of Calcium by Seedlings of Phaseolus vulgaris L.
Helms, K; David, D J
1973-01-01
The cotyledons and embryo axes of seeds of Phaseolus vulgaris L. cv. Pinto contained 16% of the total calcium in the seed. The remaining 84% was in the testas. There was no evidence that calcium in testas was used in seedling growth or that calcium was leached from seedlings during growth.An external supply of calcium decreased the incidence of hypocotyl collapse (a severe symptom of calcium deficiency), increased the calcium content of all organs, and increased the dry weight of all organs except cotyledons. Light treatments decreased the incidence of hypocotyl collapse and increased the calcium content and dry weight of all organs except cotyledons and hypocotyls.White light was more effective than far red light for decreasing incidence of hypocotyl collapse. Usually the effects of white light and far red light on the calcium content and dry weight of organs were similar, and usually those of white light were quantitatively greater than those of far red light. It is suggested that the light-promoted effects were associated with photomorphogenesis and that differences in data obtained with white light and far red light could be associated with photosynthesis.
Evaluating white LEDs for outdoor landscape lighting application
NASA Astrophysics Data System (ADS)
Shakir, Insiya; Narendran, Nadarajah
2002-11-01
A laboratory experiment was conducted to understand the acceptability of different white light emitting diodes (LEDs) for outdoor landscape lighting. The study used a scaled model setup. The scene was designed to replicate the exterior of a typical upscale suburban restaurant including the exterior facade of the building, an approach with steps, and a garden. The lighting was designed to replicate light levels commonly found in nighttime outdoor conditions. The model had a central dividing partition with symmetrical scenes on both sides for side-by-side evaluations of the two scenes with different light sources. While maintaining equal luminance levels and distribution between the two scenes, four types of light sources were evaluated. These include, halogen, phosphor white LED, and two white light systems using RGB LEDs. These light sources were tested by comparing two sources at a time placed side-by-side and by individual assessment of each lighting condition. The results showed that the RGB LEDs performed equal or better than the most widely used halogen light source in this given setting. A majority of the subjects found slightly dimmer ambient lighting to be more typical for restaurants and therefore found RGB LED and halogen light sources to be more inviting. The phosphor white LEDs made the space look brighter, however a majority of the subjects disliked them.
Joki-Erkkilä, Minna; Rainio, Juha; Huhtala, Heini; Salonen, Aki; Karhunen, Pekka J
2014-09-01
New clinical forensic examination techniques for sexual assaults have not been introduced over the last few decades. We evaluated the benefit of ultraviolet light compared to white light for detecting minor anogenital injuries and scars, following consensual sexual intercourse among adult volunteers. A prospective study comparing female genital findings utilising white and ultraviolet light. A colposcopy with photographic documentation was used. Personal invitation to healthcare students, hospital employees or acquaintances to volunteer for a gynecological examination, with a focus on clinical forensic aspects. Eighty-eight adult female volunteers were recruited for the study. The examination was performed after consensual intercourse. Age ranged from 20 to 52 years (median 26.5 years). Presence of acute findings and scars in the genital area using white and UV-light. Acute genital injury rate was 14.8% under white light colposcopy and 23.0% using UV light. Submucosal hemorrhages in the genital area were documented significantly better under UV-light than white light (14.9% vs. 6.8%; p=0.016), whereas petechiaes (4.5%) and abrasions (2.3%) were detected using either method. UV-light revealed significantly more often delivery-associated genital scars compared to white light (39.8% vs. 31.8%; p=0.016). Furthermore, 10 out of 31 (33.3%) women had no residual anogenital skin or mucosal surface findings, despite a prior episiotomy or rupture of the vaginal outlet wall during delivery, supporting its enormous ability to heal even after major trauma. UV-light may provide additional value for the evaluation of physical findings in clinical forensic examinations after sexual assault, and is especially useful in detecting otherwise invisible early submucosal hemorrhages and scars. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
White LED sources for vehicle forward lighting
NASA Astrophysics Data System (ADS)
Van Derlofske, John F.; McColgan, Michele W.
2002-11-01
Considerations for the use of white light emitting diode (LED) sources to produce illumination for automotive forward lighting is presented. Due to their reliability, small size, lower consumption, and lower heat generation LEDs are a natural choice for automotive lighting systems. Currently, LEDs are being sucessfully employed in most vehicle lighting applications. In these applications the light levels, distributions, and colors needed are achievable by present LED technologies. However, for vehicle white light illumination applications LEDs are now only being considered for low light level applications, such as back-up lamps. This is due to the relatively low lumen output that has been available up to now in white LEDs. With the advent of new higher lumen packages, and with the promise of even higher light output in the near future, the use of white LEDs sources for all vehicle forward lighting applications is beginning to be considered. Through computer modeling and photometric evaluation this paper examines the possibilities of using currently available white LED technology for vehicle headlamps. It is apparent that optimal LED sources for vehicle forward lighting applications will be constructed with hereto undeveloped technology and packaging configurations. However, the intent here in exploring currently available products is to begin the discussion on the design possibilities and significant issues surrounding LEDs in order to aid in the design and development of future LED sources and systems. Considerations such as total light output, physical size, optical control, power consumption, color appearance, and the effects of white LED spectra on glare and peripheral vision are explored. Finally, conclusions of the feasibility of current LED technology being used in these applications and recommendations of technology advancements that may need to occur are made.
Hirabayashi, Kimio; Nagai, Yoshinari; Mushya, Tetsuya; Higashino, Makoto; Taniguchi, Yoshio
2017-06-01
A study on the attraction of adult Propsilocerus akamusi midges to different-colored light traps was carried out from October 21 to November 15, 2013. The 6 colored lights used in light-emitting diode (LED) lamps were white, green, red, blue, amber, and ultraviolet (UV). The UV lamp attracted the most P. akamusi, followed by green, white, blue, amber, and red. A white pulsed LED light attracted only half the number of midges as did a continuous-emission white LED light. The result indicated that manipulation of light color, considering that the red LED light and/or pulsed LED light are not as attractive as the other colors, may be appropriate for the development of an overall integrated strategy to control nuisance P. akamusi in the Lake Suwa area.
CORRELATION OF HARD X-RAY AND WHITE LIGHT EMISSION IN SOLAR FLARES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuhar, Matej; Krucker, Säm; Battaglia, Marina
A statistical study of the correlation between hard X-ray and white light emission in solar flares is performed in order to search for a link between flare-accelerated electrons and white light formation. We analyze 43 flares spanning GOES classes M and X using observations from the Reuven Ramaty High Energy Solar Spectroscopic Imager and Helioseismic and Magnetic Imager. We calculate X-ray fluxes at 30 keV and white light fluxes at 6173 Å summed over the hard X-ray flare ribbons with an integration time of 45 s around the peak hard-X ray time. We find a good correlation between hard X-raymore » fluxes and excess white light fluxes, with a highest correlation coefficient of 0.68 for photons with energy of 30 keV. Assuming the thick target model, a similar correlation is found between the deposited power by flare-accelerated electrons and the white light fluxes. The correlation coefficient is found to be largest for energy deposition by electrons above ∼50 keV. At higher electron energies the correlation decreases gradually while a rapid decrease is seen if the energy provided by low-energy electrons is added. This suggests that flare-accelerated electrons of energy ∼50 keV are the main source for white light production.« less
A novel ultra-planar, long-stroke and low-voltage piezoelectric micromirror
NASA Astrophysics Data System (ADS)
Bakke, Thor; Vogl, Andreas; Żero, Oleg; Tyholdt, Frode; Johansen, Ib-Rune; Wang, Dag
2010-06-01
A novel piston-type micromirror with a stroke of up to 20 µm at 20 V formed out of a silicon-on-insulator wafer with integrated piezoelectric actuators was designed, fabricated and characterized. The peak-to-valley planarity of a 2 mm diameter mirror was better than 15 nm, and tip-to-tip tilt upon actuation less than 30 nm. A resonance frequency of 9.8 kHz was measured. Analytical and finite element models were developed and compared to measurements. The design is based on a silicon-on-insulator wafer where the circular mirror is formed out of the handle silicon, thus forming a thick, highly rigid and ultra-planar mirror surface. The mirror plate is connected to a supporting frame through a membrane formed out of the device silicon layer. A piezoelectric actuator made of lead-zirconate-titanate (PZT) thin film is structured on top of the membrane, providing mirror deflection by deformation of the membrane. Two actuator designs were tested: one with a single ring and the other with a double ring providing bidirectional movement of the mirror. The fabricated mirrors were characterized by white light interferometry to determine the static and temporal response as well as mirror planarity.
2D tilting MEMS micro mirror integrating a piezoresistive sensor position feedback
NASA Astrophysics Data System (ADS)
Lani, S.; Bayat, D.; Despont, M.
2015-02-01
An integrated position sensor for a dual-axis electromagnetic tilting mirror is presented. This tilting mirror is composed of a silicon based mirror directly assembled on a silicon membrane supported by flexible beams. The position sensors are constituted by 4 Wheatstone bridges of piezoresistors which are fabricated by doping locally the flexible beams. A permanent magnet is attached to the membrane and the scanner is mounted above planar coils deposited on a ceramic substrate to achieve electromagnetic actuation. The performances of the piezoresistive sensors are evaluated by measuring the output signal of the piezoresistors as a function of the tilt of the mirror and the temperature. White light interferometry was performed for all measurement to measure the exact tilt angle. The minimum detectable angle with such sensors was 30µrad (around 13bits) in the range of the minimum resolution of the interferometer. The tilt reproducibility was 0.0186%, obtained by measuring the tilt after repeated actuations with a coil current of 50mA during 30 min and the stability over time was 0.05% in 1h without actuation. The maximum measured tilt angle was 6° (mechanical) limited by nonlinearity of the MEMS system.
Application of an optical interferometer for measuring the surface contour of micro-components
NASA Astrophysics Data System (ADS)
Wang, S. H.; Tay, C. J.
2006-04-01
The application of an optical interferometric system using a Mireau objective to measure the surface profile of micro-components is described. The proposed system produces a uniform monochromatic illumination over the test area and introduces an interference fringe pattern localized near the test surface. Both the interference fringes and the 2D image of the test surface can be focused by an infinity microscope system consisting of a Mireau objective and a tube lens. A piezoelectric transducer (PZT) attached to the Mireau objective can move precisely along the optical axis of the objective. This enables the implementation of phase-shifting interferometry without changing the focus of a CCD sensor as the combination of the Mireau objective and the tube lens provides a depth of focus which is deep in comparison to the phase-shifting step. Experimental results from surface profilometry of the protrusion/undercut of a polished fibre within an optical connector and of the curved surface of a micromirror demonstrate that features in the order of nanometres are measurable. Measurements on standard blocks also show that the accuracy of the proposed system is comparable to an existing commercial white-light interferometer and a stylus profilometer.
Visser, Peter; Liu, Yanwen; Zhou, Xiaorong; Hashimoto, Teruo; Thompson, George E; Lyon, Stuart B; van der Ven, Leendert G J; Mol, Arjan J M C; Terryn, Herman A
2015-01-01
Lithium carbonate and lithium oxalate were incorporated as leachable corrosion inhibitors in model organic coatings for the protection of AA2024-T3. The coated samples were artificially damaged with a scribe. It was found that the lithium-salts are able to leach from the organic coating and form a protective layer in the scribe on AA2024-T3 under neutral salt spray conditions. The present paper shows the first observation and analysis of these corrosion protective layers, generated from lithium-salt loaded organic coatings. The scribed areas were examined by scanning and transmission electron microscopy before and after neutral salt spray exposure (ASTM-B117). The protective layers typically consist of three different layered regions, including a relatively dense layer near the alloy substrate, a porous middle layer and a flake-shaped outer layer, with lithium uniformly distributed throughout all three layers. Scanning electron microscopy and white light interferometry surface roughness measurements demonstrate that the formation of the layer occurs rapidly and, therefore provides an effective inhibition mechanism. Based on the observation of this work, a mechanism is proposed for the formation of these protective layers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vinogradov, A.; Laboratory of Hybrid Nanostructured Materials, NITU MISiS, Moscow 119490; Yasnikov, I. S.
2014-06-21
We demonstrate that the fractal dimension (FD) of the dislocation population in a deforming material is an important quantitative characteristic of the evolution of the dislocation structure. Thus, we show that peaking of FD signifies a nearing loss of uniformity of plastic flow and the onset of strain localization. Two techniques were employed to determine FD: (i) inspection of surface morphology of the deforming crystal by white light interferometry and (ii) monitoring of acoustic emission (AE) during uniaxial tensile deformation. A connection between the AE characteristics and the fractal dimension determined from surface topography measurements was established. As a commonmore » platform for the two methods, the dislocation density evolution in the bulk was used. The relations found made it possible to identify the occurrence of a peak in the median frequency of AE as a harbinger of plastic instability leading to necking. It is suggested that access to the fractal dimension provided by AE measurements and by surface topography analysis makes these techniques important tools for monitoring the evolution of the dislocation structure during plastic deformation—both as stand-alone methods and especially when used in tandem.« less
Method to Enhance the Operation of an Optical Inspection Instrument Using Spatial Light Modulators
NASA Technical Reports Server (NTRS)
Trolinger, James; Lal, Amit; Jo, Joshua; Kupiec, Stephen
2012-01-01
For many aspheric and freeform optical components, existing interferometric solutions require a custom computer-generated hologram (CGH) to characterize the part. The overall objective of this research is to develop hardware and a procedure to produce a combined, dynamic, Hartmann/ Digital Holographic interferometry inspection system for a wide range of advanced optical components, including aspheric and freeform optics. This new instrument would have greater versatility and dynamic range than currently available measurement systems. The method uses a spatial light modulator to pre-condition wavefronts for imaging, interferometry, and data processing to improve the resolution and versatility of an optical inspection instrument. Existing interferometers and Hartmann inspection systems have either too small a dynamic range or insufficient resolution to characterize conveniently unusual optical surfaces like aspherical and freeform optics. For interferometers, a specially produced, computer-generated holographic optical element is needed to transform the wavefront to within the range of the interferometer. A new hybrid wavefront sensor employs newly available spatial light modulators (SLMs) as programmable holographic optical elements (HOEs). The HOE is programmed to enable the same instrument to inspect an optical element in stages, first by a Hartmann measurement, which has a very large dynamic range but less resolution. The first measurement provides the information required to precondition a reference wave that avails the measurement process to the more precise phase shifting interferometry. The SLM preconditions a wavefront before it is used to inspect an optical component. This adds important features to an optical inspection system, enabling not just wavefront conditioning for null testing and dynamic range extension, but also the creation of hybrid measurement procedures. This, for example, allows the combination of dynamic digital holography and Hartmann sensing procedures to cover a virtually unlimited dynamic range with high resolution. Digital holography technology brings all of the power and benefits of digital holographic interferometry to the requirement, while Hartmann-type wavefront sensors bring deflectometry technologies to the solution. The SLM can be used to generate arbitrary wavefronts in one leg of the interferometer, thereby greatly simplifying its use and extending its range. The SLM can also be used to modify the system into a dynamic Shack-Hartmann system, which is useful for optical components with large amounts of slope. By integrating these capabilities into a single instrument, the system will have tremendous flexibility to measure a variety of optical shapes accurately.
Transforming White Light into Rainbows: Segmentation Strategies for Successful School Tax Elections
ERIC Educational Resources Information Center
Senden, J. Bradford; Lifto, Don E.
2009-01-01
In the late 1600s, British physicist Sir Isaac Newton first demonstrated refraction and dispersion in a triangular prism. He discovered that a prism could decompose white light into a spectrum. Hold a prism up to the light at the correct angle and white light magically splits into vivid colors of the rainbow! So what do prisms and rainbows have to…
NASA Astrophysics Data System (ADS)
Gillespie, Jonathan B.; Maclean, Michelle; Wilson, Mark P.; Given, Martin J.; MacGregor, Scott J.
2017-03-01
This study details the design, build and testing of a prototype antimicrobial blended white light unit containing pulsed red, yellow, green and 405nm LEDs. With a push for alternative methods of disinfection, optical methods have become a topic of interest. Ultra-violet (UV) light is widely known for its antimicrobial properties however; 405nm light has demonstrated significant antimicrobial properties against many common hospital acquired pathogens. In this study, a pulsed, blended, white-light prototype with a high content of 405 nm antimicrobial light, was designed, built and tested. Antimicrobial efficacy testing of the prototype was conducted using Staphylococcus aureus and Pseudomonas. aeruginosa, two bacteria which are common causes of hospital acquired infections. These were exposure to 3 different light outputs from the prototype and the surviving bacteria enumerated. Results showed that the mixed light output provided a much better CRI and light output under which to work. Also, the light output containing 405 nm light provided an antimicrobial effect, with decontamination of 103 CFUml-1 populations of both bacterial species. The other light content (red, yellow, green) had no beneficial or adverse effects on the antimicrobial properties of the 405nm light. The results suggest that with further development, it could be possible to produce an antimicrobial blended white light containing pulsed 405nm light that could supplement or even replace standard white lighting in certain environments.
ZnO-nanorods: A possible white LED phosphor
NASA Astrophysics Data System (ADS)
Sarangi, Sachindra Nath; T., Arun; Ray, Dinseh K.; Sahoo, Pratap Kumar; Nozaki, Shinji; Sugiyama, Noriyuki; Uchida, Kazuo
2017-05-01
The white light-emitting diodes (LEDs) have drawn much attention to replace conventional lighting sources because of low energy consumption, high light efficiency and long lifetime. Although the most common approach to produce white light is to combine a blue LED chip and a yellow phosphor, such a white LED cannot be used for a general lighting application, which requires a broad luminescence spectrum in the visible wavelength range. We have successfully chemically synthesized the ZnO nanorods showing intense broad luminescence in the visible wavelength range and made a white LED using the ZnO nanorods as phosphor excited with a blue LED. Their lengths and diameters were 2 - 10 μm and 200 - 800 nm, respectively. The wurtzite structure was confirmed by the x-ray diffraction measurement. The PL spectrum obtained by exciting the ZnO nanorods with the He-Cd laser has two peaks, one associated with the near band-edge recombination and the other with recombination via defects. The peak intensity of the near band-edge luminescence at 388 nm is much weaker than that of the defect-related luminescence. The latter luminescence peak ranges from 450 to 850 nm and broad enough to be used as a phosphor for a white LED. A white LED has been fabricated using a blue LED with 450 nm emission and ZnO nanorod powders. The LED performances show a white light emission and the electroluminescence measurement shows a stiff increase in white light intensity with increasing blue LED current. The Commission International de1'Eclairage (CIE) chromaticity colour coordinates of 450 nm LED pumped white emission shows a coordinate of (0.31, 0.32) for white LED at 350 mA. These results indicate that ZnO nanorods provides an alternate and effective approach to achieve high-performance white LEDs and also other optoelectronic devices.
Wang, Xiaoli; Knapp, Peter; Vaynman, S; Graham, M E; Cao, Jian; Ulmer, M P
2014-09-20
The desire for continuously gaining new knowledge in astronomy has pushed the frontier of engineering methods to deliver lighter, thinner, higher quality mirrors at an affordable cost for use in an x-ray observatory. To address these needs, we have been investigating the application of magnetic smart materials (MSMs) deposited as a thin film on mirror substrates. MSMs have some interesting properties that make the application of MSMs to mirror substrates a promising solution for making the next generation of x-ray telescopes. Due to the ability to hold a shape with an impressed permanent magnetic field, MSMs have the potential to be the method used to make light weight, affordable x-ray telescope mirrors. This paper presents the experimental setup for measuring the deformation of the magnetostrictive bimorph specimens under an applied magnetic field, and the analytical and numerical analysis of the deformation. As a first step in the development of tools to predict deflections, we deposited Terfenol-D on the glass substrates. We then made measurements that were compared with the results from the analytical and numerical analysis. The surface profiles of thin-film specimens were measured under an external magnetic field with white light interferometry (WLI). The analytical model provides good predictions of film deformation behavior under various magnetic field strengths. This work establishes a solid foundation for further research to analyze the full three-dimensional deformation behavior of magnetostrictive thin films.
Laser interferometry force-feedback sensor for an interfacial force microscope
Houston, Jack E.; Smith, William L.
2004-04-13
A scanning force microscope is provided with a force-feedback sensor to increase sensitivity and stability in determining interfacial forces between a probe and a sample. The sensor utilizes an interferometry technique that uses a collimated light beam directed onto a deflecting member, comprising a common plate suspended above capacitor electrodes situated on a substrate forming an interference cavity with a probe on the side of the common plate opposite the side suspended above capacitor electrodes. The probe interacts with the surface of the sample and the intensity of the reflected beam is measured and used to determine the change in displacement of the probe to the sample and to control the probe distance relative to the surface of the sample.
Sensitivity of Atom Interferometry to Ultralight Scalar Field Dark Matter.
Geraci, Andrew A; Derevianko, Andrei
2016-12-23
We discuss the use of atom interferometry as a tool to search for dark matter (DM) composed of virialized ultralight fields (VULFs). Previous work on VULF DM detection using accelerometers has considered the possibility of equivalence-principle-violating effects whereby gradients in the dark matter field can directly produce relative accelerations between media of differing composition. In atom interferometers, we find that time-varying phase signals induced by coherent oscillations of DM fields can also arise due to changes in the atom rest mass that can occur between light pulses throughout the interferometer sequence as well as changes in Earth's gravitational field. We estimate that several orders of magnitude of unexplored phase space for VULF DM couplings can be probed due to these new effects.
Fercher, A; Hitzenberger, C; Sticker, M; Zawadzki, R; Karamata, B; Lasser, T
2001-12-03
Dispersive samples introduce a wavelength dependent phase distortion to the probe beam. This leads to a noticeable loss of depth resolution in high resolution OCT using broadband light sources. The standard technique to avoid this consequence is to balance the dispersion of the sample byarrangingadispersive materialinthereference arm. However, the impact of dispersion is depth dependent. A corresponding depth dependent dispersion balancing technique is diffcult to implement. Here we present a numerical dispersion compensation technique for Partial Coherence Interferometry (PCI) and Optical Coherence Tomography (OCT) based on numerical correlation of the depth scan signal with a depth variant kernel. It can be used a posteriori and provides depth dependent dispersion compensation. Examples of dispersion compensated depth scan signals obtained from microscope cover glasses are presented.
Zhu, Yizheng; Terry, Neil G; Wax, Adam
2012-01-01
Angle-resolved low-coherence interferometry (a/LCI) is an optical biopsy technique that measures scattered light from tissue to determine nuclear size with submicron-level accuracy. The a/LCI probe can be deployed through the accessory channel of a standard endoscope and provides feedback to physicians to guide physical biopsies. The technique has been validated in animal and ex vivo human studies, and has been used to detect dysplasia in Barrett’s esophagus patients in vivo. In a recent clinical study of 46 Barrett’s esophagus patients, a/LCI was able to detect dysplasia with 100% sensitivity and 84% specificity. This report reviews the technique and discusses its potential clinical utility. PMID:22149580
Portable Holographic Interferometry Testing System: Application to crack patching quality control
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heslehurst, R.B.; Baird, J.P.; Williamson, H.M.
Over recent years the repair of metallic structures has been improved through the use of patches fabricated from composite materials and adhesively bonded to the damaged area. This technology is termed crack patching, and has been successfully and extensively used by the RAAF and the USAF. However, application of the technology to civilian registered aircraft has had limited success due to the apparent lack of suitable quality assurance testing methods and the airworthiness regulators concern overpatch adhesion integrity. Holographic interferometry has previously shown the advantages of detecting out-of-plane deformations of the order of the wavelength of light (1{mu}). Evidence willmore » be presented that holography is able to detect changes in load path due to debonds and weakened adhesion in an adhesively bonded patch. A Portable Holographic Interferometry Testing System (PHITS) which overcomes the vibration isolation problem associated with conventional holography techniques has been developed. The application of PHITS to crack patching technology now provides a suitable method to verify the integrity of bonded patches in-situ.« less
ACTIVE-REGION TILT ANGLES: MAGNETIC VERSUS WHITE-LIGHT DETERMINATIONS OF JOY'S LAW
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Y.-M.; Colaninno, R. C.; Baranyi, T.
2015-01-01
The axes of solar active regions are inclined relative to the east-west direction, with the tilt angle tending to increase with latitude ({sup J}oy's law{sup )}. Observational determinations of Joy's law have been based either on white-light images of sunspot groups or on magnetograms, where the latter have the advantage of measuring directly the physically relevant quantity (the photospheric field), but the disadvantage of having been recorded routinely only since the mid-1960s. White-light studies employing the historical Mount Wilson (MW) database have yielded tilt angles that are smaller and that increase less steeply with latitude than those obtained from magneticmore » data. We confirm this effect by comparing sunspot-group tilt angles from the Debrecen Photoheliographic Database with measurements made by Li and Ulrich using MW magnetograms taken during cycles 21-23. Whether white-light or magnetic data are employed, the median tilt angles significantly exceed the mean values, and provide a better characterization of the observed distributions. The discrepancy between the white-light and magnetic results is found to have two main sources. First, a substantial fraction of the white-light ''tilt angles'' refer to sunspots of the same polarity. Of greater physical significance is that the magnetograph measurements include the contribution of plage areas, which are invisible in white-light images but tend to have greater axial inclinations than the adjacent sunspots. Given the large uncertainties inherent in both the white-light and the magnetic measurements, it remains unclear whether any systematic relationship exists between tilt angle and cycle amplitude during cycles 16-23.« less
Recent developments in white light emitting diodes
NASA Astrophysics Data System (ADS)
Lohe, P. P.; Nandanwar, D. V.; Belsare, P. D.; Moharil, S. V.
2018-05-01
In the recent years solid state lighting based on LEDs has revolutionized lighting technology. LEDs have many advantages over the conventional lighting based on fluorescent and incandescent lamps such as mercury free, high conversion efficiency of electrical energy into light, long lifetime reliability and ability to use with many types of devices. LEDs have emerged as a new potentially revolutionary technology that could save up to half of energy used for lighting applications. White LEDs would be the most important light source in the future, so much so that this aspect had been highlighted by the Nobel committee during the award of 2014 Nobel Prize for Physics. Recent advancement in the fabrication of GaN chip capable of emitting in blue and near UV region paved way for fabrication of white LED lamps. Mainly there are two approaches used for preparing white emitting solid state lamp. In the first approach blue light (λ=450 nm) emitted from the InGaN LED chip is partially absorbed by the YAG:Ce3+ phosphor coated on it and re-emitted as yellow fluorescence. A white light can be generated by the combination of blue + yellow emission bands. These lamps are already available. But they are suffering from major drawback that their Colour Rendering Index (CRI) is low. In the second approach, white LEDs are made by coating near ultraviolet emitting (360 to 410nm) LED with a mixture of high efficiency red, green and blue emitting phosphors, analogous to the fluorescent lamp. This method yields lamps with better color rendition. Addition of a yellow emitting phosphor improves CRI further. However conversion efficiency is compromised to some extent. Further the cost of near UV emitting chip is very high compared to blue emitting chips. Thus cost and light output wise, near UV chips are much inferior to blue chips. Recently some rare earth activated oxynitrides, silicates, fluorides have emerged as an important family of luminescent materials for white LED application because they can emit visible light strongly under blue light irradiation. These are chemically, thermally and mechanically stable materials with high efficiency to down convert blue radiation into green and red. Efficient white light can be generated by coating these phosphors on blue LED.CRI of white emitting LED lamp can be improved significantly if green and red emitting phosphors are coated on efficient blue emitting LED chips. In this approach CRI will be maintained if appropriate combination of red, green along with blue emission is used. This article reviews some recent developments in phosphors for white light emitting diodes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Biedermann, G. W.; McGuinness, H. J.; Rakholia, A. V.
Here, we demonstrate matter-wave interference in a warm vapor of rubidium atoms. Established approaches to light-pulse atom interferometry rely on laser cooling to concentrate a large ensemble of atoms into a velocity class resonant with the atom optical light pulse. In our experiment, we show that clear interference signals may be obtained without laser cooling. This effect relies on the Doppler selectivity of the atom interferometer resonance. Lastly, this interferometer may be configured to measure accelerations, and we demonstrate that multiple interferometers may be operated simultaneously by addressing multiple velocity classes.
The Light Microscopy Module: An On-Orbit Multi-User Microscope Facility
NASA Technical Reports Server (NTRS)
Motil, Susan M.; Snead, John H.
2002-01-01
The Light Microscopy Module (LMM) is planned as a remotely controllable on-orbit microscope subrack facility, allowing flexible scheduling and operation of fluids and biology experiments within the Fluids and Combustion Facility (FCF) Fluids Integrated Rack (FIR) on the International Space Station (ISS). The LMM will be the first integrated payload with the FIR to conduct four fluid physics experiments. A description of the LMM diagnostic capabilities, including video microscopy, interferometry, laser tweezers, confocal, and spectrophotometry, will be provided.
Developing a new supplemental lighting device with ultra-bright white LED for vegetables
NASA Astrophysics Data System (ADS)
Hu, Yongguang; Li, Pingping; Jiang, Jianghai
2007-02-01
It has been proved that monochromatic or compound light-emitting diode (LED) or laser diode (LD) can promote the photosynthesis of horticultural crops, but the promotion of polychromatic light like white LED is unclear. A new type of ultra-bright white LED (LUW56843, InGaN, \
White Light Emission and Enhanced Color Stability in a Single-Component Host.
Li, Junhao; Liang, Qiongyun; Hong, Jun-Yu; Yan, Jing; Dolgov, Leonid; Meng, Yuying; Xu, Yiqin; Shi, Jianxin; Wu, Mingmei
2018-05-30
Eu 3+ ion can be effectively sensitized by Ce 3+ ion through an energy-transfer chain of Ce 3+ -(Tb 3+ ) n -Eu 3+ , which has contributed to the development of white light-emitting diodes (WLEDs) as it can favor more efficient red phosphors. However, simply serving for WLEDs as one of the multicomponents, the design of the Ce 3+ -(Tb 3+ ) n -Eu 3+ energy transfer is undoubtedly underused. Theoretically, white light can be achieved with extra blue and green emissions released from Ce 3+ and Tb 3+ . Herein, the design of the white light based on these three multicolor luminescence centers has been realized in GdBO 3 . It is the first time that white light is generated via accurate controls on the Ce 3+ -(Tb 3+ ) n -Eu 3+ energy transfer in such a widely studied host material. Because the thermal quenching rates of blue, green, and red emissions from Ce 3+ , Tb 3+ , and Eu 3+ , respectively, are well-matched in the host, this novel white light exhibits superior color stability and potential application prospect.
Material system for tailorable white light emission and method for making thereof
Smith, Christine A.; Lee, Howard W.
2004-08-10
A method of processing a composite material to tailor white light emission of the resulting composite during excitation. The composite material is irradiated with a predetermined power and for a predetermined time period to reduce the size of a plurality of nanocrystals and the number of a plurality of traps in the composite material. By this irradiation process, blue light contribution from the nanocrystals to the white light emission is intensified and red and green light contributions from the traps are decreased.
Material system for tailorable white light emission and method for making thereof
Smith, Christine A [Livermore, CA; Lee, Howard W. H. [Fremont, CA
2009-05-19
A method of processing a composite material to tailor white light emission of the resulting composite during excitation. The composite material is irradiated with a predetermined power and for a predetermined time period to reduce the size of a plurality of nanocrystals and the number of a plurality of traps in the composite material. By this irradiation process, blue light contribution from the nanocrystals to the white light emission is intensified and red and green light contributions from the traps are decreased.
A 10-cm Discharge-Length He-ZnII White Light Laser
NASA Astrophysics Data System (ADS)
Sasaki, Wakao; Itani, Kimihiko; Ohta, Tatehisa
1989-06-01
We demonstrate a unique, efficient white light laser source realized by the He-Zn mixture with substantially short discharge length of 10 cm. The white laser light can be made up of only two wavelengths at simultaneous oscillation --- 492.4 nm (4f2Fo712_4d2D5/2) and 610.2 nm (5d 2D 512 -5 2p03/2 The ideal white color region for human eyes lies just between these two wavelengths in the chromaticity diagram. Therefore, such a compact white light laser will be useful for some specific purposes such as a white color standard. Moreover, we have analyzed the proper relation between the electron energy and the discharge sustaining voltage which appears as a function of the Zn vapor pressure measured at the terminal of the tube, considering the Druyvesteyn distribution of electron energy. Then we succeeded to operate a He-Zn laser tube in white light with 10-cm discharge length. The derived output beam was estimated to be about 0.5 mW.
White-light-emitting supramolecular gels.
Praveen, Vakayil K; Ranjith, Choorikkat; Armaroli, Nicola
2014-01-07
Let there be light, let it be white: Recent developments in the use of chromophore-based gels as scaffolds for the assembly of white-light-emitting soft materials have been significant. The main advantage of this approach lies in the facile accommodation of selected luminescent components within the gel. Excitation-energy-transfer processes between these components ultimately generate the desired light output. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Digital holographic interferometry applied to the investigation of ignition process.
Pérez-Huerta, J S; Saucedo-Anaya, Tonatiuh; Moreno, I; Ariza-Flores, D; Saucedo-Orozco, B
2017-06-12
We use the digital holographic interferometry (DHI) technique to display the early ignition process for a butane-air mixture flame. Because such an event occurs in a short time (few milliseconds), a fast CCD camera is used to study the event. As more detail is required for monitoring the temporal evolution of the process, less light coming from the combustion is captured by the CCD camera, resulting in a deficient and underexposed image. Therefore, the CCD's direct observation of the combustion process is limited (down to 1000 frames per second). To overcome this drawback, we propose the use of DHI along with a high power laser in order to supply enough light to increase the speed capture, thus improving the visualization of the phenomenon in the initial moments. An experimental optical setup based on DHI is used to obtain a large sequence of phase maps that allows us to observe two transitory stages in the ignition process: a first explosion which slightly emits visible light, and a second stage induced by variations in temperature when the flame is emerging. While the last stage can be directly monitored by the CCD camera, the first stage is hardly detected by direct observation, and DHI clearly evidences this process. Furthermore, our method can be easily adapted for visualizing other types of fast processes.
Effects of Different Viewing Conditions on Radiographic Interpretation
Moshfeghi, Mahkameh; Shahbazian, Majid; Sajadi, Soodabeh Sadat; Sajadi, Sepideh; Ansari, Hossein
2015-01-01
Objectives: Optimum viewing conditions facilitate identification of radiographic details and decrease the need for retakes, patients’ costs and radiation dose. This study sought to evaluate the effects of different viewing conditions on radiographic interpretation. Materials and Methods: This diagnostic study was performed by evaluating radiograph of a 7mm-thick aluminum block, in which 10 holes with 2mm diameters were randomly drilled with depths ranging from 0.05 mm to 0.50mm. The radiograph was viewed by four oral radiologists independently under four viewing conditions, including a white light viewing light box in a lit room, yellow light viewing light box in a lit room, white light viewing light box in a dark room and yellow light viewing light box in a dark room. Number of circular shadows observed on the film was recorded. The data were analyzed by two-way ANOVA. Results: The mean number of detected circular shadows was 6.75, 7.5, 7.25 and 7.75 in white light viewing light box in a lit room, white light viewing light box in a dark room, yellow light viewing light box in a lit room and yellow light viewing light box in a dark room, respectively. Although the surrounding illumination had statistically significant effect on the radiographic details (P≤0.03), the light color of the viewing light box had no significant effect on visibility of the radiographic details. Conclusion: White and yellow light of the viewing light box had no significant effect on visibility of the radiographic details but more information was obtained in a dark room. PMID:27507997
Effects of Different Viewing Conditions on Radiographic Interpretation.
Moshfeghi, Mahkameh; Shahbazian, Majid; Sajadi, Soodabeh Sadat; Sajadi, Sepideh; Ansari, Hossein
2015-11-01
Optimum viewing conditions facilitate identification of radiographic details and decrease the need for retakes, patients' costs and radiation dose. This study sought to evaluate the effects of different viewing conditions on radiographic interpretation. This diagnostic study was performed by evaluating radiograph of a 7mm-thick aluminum block, in which 10 holes with 2mm diameters were randomly drilled with depths ranging from 0.05 mm to 0.50mm. The radiograph was viewed by four oral radiologists independently under four viewing conditions, including a white light viewing light box in a lit room, yellow light viewing light box in a lit room, white light viewing light box in a dark room and yellow light viewing light box in a dark room. Number of circular shadows observed on the film was recorded. The data were analyzed by two-way ANOVA. The mean number of detected circular shadows was 6.75, 7.5, 7.25 and 7.75 in white light viewing light box in a lit room, white light viewing light box in a dark room, yellow light viewing light box in a lit room and yellow light viewing light box in a dark room, respectively. Although the surrounding illumination had statistically significant effect on the radiographic details (P≤0.03), the light color of the viewing light box had no significant effect on visibility of the radiographic details. White and yellow light of the viewing light box had no significant effect on visibility of the radiographic details but more information was obtained in a dark room.
Human phase response curve to a 1 h pulse of bright white light
St Hilaire, Melissa A; Gooley, Joshua J; Khalsa, Sat Bir S; Kronauer, Richard E; Czeisler, Charles A; Lockley, Steven W
2012-01-01
The phase resetting response of the human circadian pacemaker to light depends on the timing of exposure and is described by a phase response curve (PRC). The current study aimed to construct a PRC for a 1 h exposure to bright white light (∼8000 lux) and to compare this PRC to a <3 lux dim background light PRC. These data were also compared to a previously completed 6.7 h bright white light PRC and a <15 lux dim background light PRC constructed under similar conditions. Participants were randomized for exposure to 1 h of either bright white light (n= 18) or <3 lux dim background light (n= 18) scheduled at 1 of 18 circadian phases. Participants completed constant routine (CR) procedures in dim light (<3 lux) before and after the light exposure to assess circadian phase. Phase shifts were calculated as the difference in timing of dim light melatonin onset (DLMO) during pre- and post-stimulus CRs. Exposure to 1 h of bright white light induced a Type 1 PRC with a fitted peak-to-trough amplitude of 2.20 h. No discernible PRC was observed in the <3 lux dim background light PRC. The fitted peak-to-trough amplitude of the 1 h bright light PRC was ∼40% of that for the 6.7 h PRC despite representing only 15% of the light exposure duration, consistent with previous studies showing a non-linear duration–response function for the effects of light on circadian resetting. PMID:22547633
Human phase response curve to a 1 h pulse of bright white light.
St Hilaire, Melissa A; Gooley, Joshua J; Khalsa, Sat Bir S; Kronauer, Richard E; Czeisler, Charles A; Lockley, Steven W
2012-07-01
The phase resetting response of the human circadian pacemaker to light depends on the timing of exposure and is described by a phase response curve (PRC). The current study aimed to construct a PRC for a 1 h exposure to bright white light (∼8000 lux) and to compare this PRC to a <3 lux dim background light PRC. These data were also compared to a previously completed 6.7 h bright white light PRC and a <15 lux dim background light PRC constructed under similar conditions. Participants were randomized for exposure to 1 h of either bright white light (n=18) or <3 lux dim background light (n=18) scheduled at 1 of 18 circadian phases. Participants completed constant routine (CR) procedures in dim light (<3 lux) before and after the light exposure to assess circadian phase. Phase shifts were calculated as the difference in timing of dim light melatonin onset (DLMO) during pre- and post-stimulus CRs. Exposure to 1 h of bright white light induced a Type 1 PRC with a fitted peak-to-trough amplitude of 2.20 h. No discernible PRC was observed in the <3 lux dim background light PRC. The fitted peak-to-trough amplitude of the 1 h bright light PRC was ∼40% of that for the 6.7 h PRC despite representing only 15% of the light exposure duration, consistent with previous studies showing a non-linear duration–response function for the effects of light on circadian resetting.
NASA Astrophysics Data System (ADS)
Hua, Wang; Du, Xiaogang; Su, Wenming; Lin, Wenjing; Zhang, Dongyu
2014-02-01
In this paper, a novel type of white-light organic light emitting diode (OLED) with high color stability was reported, in which the yellow-light emission layer of (4,4'-N,N'-dicarbazole)biphenyl (CBP) : tris(2-phenylquinoline-C2,N')iridium(III) (Ir(2-phq)3) was sandwiched by double blue-light emission layers of 1,1-bis-[(di-4-tolylamino)pheny1]cyclohexane (TAPC) : bis[4,6-(di-fluorophenyl)-pyridinato-N,C2']picolinate (FIrpic) and tris[3-(3-pyridyl)mesityl]borane (3TPYMB):FIrpic. And, it exhibited the maximum current efficiency of 33.1 cd/A, the turn-on voltage at about 3 V and the maximum luminance in excess of 20000 cd/m2. More important, it realized very stable white-light emission, and its CIE(x, y) coordinates only shift from (0.34, 0.37) to (0.33, 0.37) as applied voltage increased from 5 V to 12 V. It is believed that the new scheme in emission layer of white-light OLED can fine tune the contribution of primary emission with applied voltage changed, resulting in high quality white-light OLED.
Hybrid shearing and phase-shifting point diffraction interferometer
Goldberg, Kenneth Alan; Naulleau, Patrick P.
2003-06-03
A new interferometry configuration combines the strengths of two existing interferometry methods, improving the quality and extending the dynamic range of both. On the same patterned mask, placed near the image-plane of an optical system under test, patterns for phase-shifting point diffraction interferometry and lateral shearing interferometry coexist. The former giving verifiable high accuracy for the measurement of nearly diffraction-limited optical systems. The latter enabling the measurement of optical systems with more than one wave of aberration in the system wavefront. The interferometry configuration is a hybrid shearing and point diffraction interferometer system for testing an optical element that is positioned along an optical path including: a source of electromagnetic energy in the optical path; a first beam splitter that is secured to a device that includes means for maneuvering the first beam splitter in a first position wherein the first beam splitter is in the optical path dividing light from the source into a reference beam and a test beam and in a second position wherein the first beam splitter is outside the optical path: a hybrid mask which includes a first section that defines a test window and at least one reference pinhole and a second section that defines a second beam splitter wherein the hybrid mask is secured to a device that includes means for maneuvering either the first section or the second section into the optical path positioned in an image plane that is created by the optical element, with the proviso that the first section of the hybrid mask is positioned in the optical path when first beam splitter is positioned in the optical path; and a detector positioned after the hybrid mask along the optical path.
Galvez, Miguel; Grossman, Kenneth; Betts, David
2013-11-12
There is herein described a lamp for providing white light comprising a plurality of light sources positioned on a substrate. Each of said light sources comprises a blue light emitting diode (LED) and a dome that substantially covers said LED. A first portion of said blue light from said LEDs is transmitted through said domes and a second portion of said blue light is converted into a red light by a first phosphor contained in said domes. A cover is disposed over all of said light sources that transmits at least a portion of said red and blue light emitted by said light sources. The cover contains a second phosphor that emits a yellow light in response to said blue light. The red, blue and yellow light combining to form the white light and the white light having a color rendering index (CRI) of at least about 80.
Improved self-reliance shearing interferometric technique for collimation testing
NASA Astrophysics Data System (ADS)
Zhao, Mingshan; Li, Guohua; Wang, Zhaobing; Jing, Yaling; Li, Yi
1995-06-01
Self-reference single plate shearing interferometric technique used for collimation testing of light beams are briefly reviewed. Two improved configurations of this self-reference interferometry with an inclined screen and matched half-field interferograms are described in detail. Sensitivity of these configurations is analyzed and compared with that of the existing ones.
Fourier-domain angle-resolved low coherence interferometry for clinical detection of dysplasia
NASA Astrophysics Data System (ADS)
Terry, Neil G.; Zhu, Yizheng; Wax, Adam
2010-02-01
Improved methods for detecting dysplasia, or pre-cancerous growth are a current clinical need, particularly in the esophagus. The currently accepted method of random biopsy and histological analysis provides only a limited examination of tissue in question while being coupled with a long time delay for diagnosis. Light scattering spectroscopy, in contrast, allows for inspection of the cellular structure and organization of tissue in vivo. Fourier-domain angle-resolved low-coherence interferometry (a/LCI) is a novel light scattering spectroscopy technique that provides quantitative depth-resolved morphological measurements of the size and optical density of the examined cell nuclei, which are characteristic biomarkers of dysplasia. Previously, clinical viability of the a/LCI system was demonstrated through analysis of ex vivo human esophageal tissue in Barrett's esophagus patients using a portable a/LCI, as was the development of a clinical a/LCI system. Data indicating the feasibility of the technique in other organ sites (colon, oral cavity) will be presented. We present an adaptation of the a/LCI system that will be used to investigate the presence of dysplasia in vivo in Barrett's esophagus patients.
Couleurs, etoiles, temperatures.
NASA Astrophysics Data System (ADS)
Spite, F.
The eye is able to distinguish very tiny color differences of contiguous objects (at high light level, cones vision), but it is not a reliable colorimeter. Hot objects (a heated iron rod) emits some red light, a hotter object would provide a yellow-orange light (the filament of a bulb) and a still hotter one a white or even bluish light : this may be at reverse of common life codes, where "red" means hot water and/or danger, and "blue" cool water or cool air. Stars are a good illustration of the link between temperatures and colors. A heated iron rod has a temperature of about 800 K. Let us recall that K is a temperature unit (Kelvin) such that the Kelvin temperature is the Celsius temperature +273).The so called red stars (or cool stars) have temperature around 3000 K, higher than "white-hot iron". The Sun has a still higher temperature (5800 K) and its color is white : the solar light is by definition the "white light", and includes violet, blue, green, yellow, orange and red colors in balanced proportions (the maximum in the yellow-green). It is often said that the Sun is a yellow star. Admittedly, a brief glimpse at the Sun (take care ! never more than a VERY brief glimpse !) provides a perception of yellow light, but such a vision, with the eye overwhelmed by a fierce light, is not able to provide a good evaluation of the solar color : prefer a white sheet of paper illuminated by the Sun at noon and conclude that "the Sun is a white star". It is sometimes asked why red, white and bluish stars are seen in the sky, but no green stars : the solar light has its maximum intensity in the green, but such a dominant green light, equilibrated by some blue and some red light, is what we call "white", so that stars similar to the Sun, with a maximum in the green, are seen as white stars. Faint stars (rods vision of the eye) are also seen as white stars. Spots on the Sun (never look at the Sun ! let us say spots on "projected images of the Sun") appear as black spots : they are in fact bright areas, only slightly less luminous than the undisturbed surface of the Sun, but the eye has a particular of enhancing enormously the contrasts.
Wakefield, Andrew; Broyles, Moth; Stone, Emma L; Jones, Gareth; Harris, Stephen
2016-11-01
LED lighting is predicted to constitute 70% of the outdoor and residential lighting markets by 2020. While the use of LEDs promotes energy and cost savings relative to traditional lighting technologies, little is known about the effects these broad-spectrum "white" lights will have on wildlife, human health, animal welfare, and disease transmission. We conducted field experiments to compare the relative attractiveness of four commercially available "domestic" lights, one traditional (tungsten filament) and three modern (compact fluorescent, "cool-white" LED and "warm-white" LED), to aerial insects, particularly Diptera. We found that LEDs attracted significantly fewer insects than other light sources, but found no significant difference in attraction between the "cool-" and "warm-white" LEDs. Fewer flies were attracted to LEDs than alternate light sources, including fewer Culicoides midges (Diptera: Ceratopogonidae). Use of LEDs has the potential to mitigate disturbances to wildlife and occurrences of insect-borne diseases relative to competing lighting technologies. However, we discuss the risks associated with broad-spectrum lighting and net increases in lighting resulting from reduced costs of LED technology.
Zero- and two-dimensional hybrid carbon phosphors for high colorimetric purity white light-emission.
Ding, Yamei; Chang, Qing; Xiu, Fei; Chen, Yingying; Liu, Zhengdong; Ban, Chaoyi; Cheng, Shuai; Liu, Juqing; Huang, Wei
2018-03-01
Carbon nanomaterials are promising phosphors for white light emission. A facile single-step synthesis method has been developed to prepare zero- and two-dimensional hybrid carbon phosphors for the first time. Zero-dimensional carbon dots (C-dots) emit bright blue luminescence under 365 nm UV light and two-dimensional nanoplates improve the dispersity and film forming ability of C-dots. As a proof-of-concept application, the as-prepared hybrid carbon phosphors emit bright white luminescence in the solid state, and the phosphor-coated blue LEDs exhibit high colorimetric purity white light-emission with a color coordinate of (0.3308, 0.3312), potentially enabling the successful application of white emitting phosphors in the LED field.
White-Light Optical Information Processing and Holography.
1985-07-29
this technique is the processing system does not require to carry its own light source. It is very suitable for spaceborne and satellite application. We...developed a technique of generating a spatialtrequency color coded speech spectrogram with a white-light optical system . This system not only offers a low...that the annoying moire fringes can be eliminated. In short, we have once again demonstrated the versatility of the white-light progress system ; a
Terashima, Ichiro; Fujita, Takashi; Inoue, Takeshi; Chow, Wah Soon; Oguchi, Riichi
2009-04-01
The literature and our present examinations indicate that the intra-leaf light absorption profile is in most cases steeper than the photosynthetic capacity profile. In strong white light, therefore, the quantum yield of photosynthesis would be lower in the upper chloroplasts, located near the illuminated surface, than that in the lower chloroplasts. Because green light can penetrate further into the leaf than red or blue light, in strong white light, any additional green light absorbed by the lower chloroplasts would increase leaf photosynthesis to a greater extent than would additional red or blue light. Based on the assessment of effects of the additional monochromatic light on leaf photosynthesis, we developed the differential quantum yield method that quantifies efficiency of any monochromatic light in white light. Application of this method to sunflower leaves clearly showed that, in moderate to strong white light, green light drove photosynthesis more effectively than red light. The green leaf should have a considerable volume of chloroplasts to accommodate the inefficient carboxylation enzyme, Rubisco, and deliver appropriate light to all the chloroplasts. By using chlorophylls that absorb green light weakly, modifying mesophyll structure and adjusting the Rubisco/chlorophyll ratio, the leaf appears to satisfy two somewhat conflicting requirements: to increase the absorptance of photosynthetically active radiation, and to drive photosynthesis efficiently in all the chloroplasts. We also discuss some serious problems that are caused by neglecting these intra-leaf profiles when estimating whole leaf electron transport rates and assessing photoinhibition by fluorescence techniques.
Recent advances in light outcoupling from white organic light-emitting diodes
NASA Astrophysics Data System (ADS)
Gather, Malte C.; Reineke, Sebastian
2015-01-01
Organic light-emitting diodes (OLEDs) have been successfully introduced to the smartphone display market and have geared up to become contenders for applications in general illumination where they promise to combine efficient generation of white light with excellent color quality, glare-free illumination, and highly attractive designs. Device efficiency is the key requirement for such white OLEDs, not only from a sustainability perspective, but also because at the high brightness required for general illumination, losses lead to heating and may, thus, cause rapid device degradation. The efficiency of white OLEDs increased tremendously over the past two decades, and internal charge-to-photon conversion can now be achieved at ˜100% yield. However, the extraction of photons remains rather inefficient (typically <30%). Here, we provide an introduction to the underlying physics of outcoupling in white OLEDs and review recent progress toward making light extraction more efficient. We describe how structures that scatter, refract, or diffract light can be attached to the outside of white OLEDs (external outcoupling) or can be integrated close to the active layers of the device (internal outcoupling). Moreover, the prospects of using top-emitting metal-metal microcavity designs for white OLEDs and of tuning the average orientation of the emissive molecules within the OLED are discussed.
Tuneable light-emitting carbon-dot/polymer flexible films prepared through one-pot synthesis
NASA Astrophysics Data System (ADS)
Bhunia, Susanta Kumar; Nandi, Sukhendu; Shikler, Rafi; Jelinek, Raz
2016-02-01
Development of efficient, inexpensive, and environmentally-friendly light emitters, particularly devices that produce white light, have drawn intense interest due to diverse applications in the lighting industry, photonics, solar energy, and others. We present a simple strategy for the fabrication of flexible transparent films exhibiting tuneable light emission through one-pot synthesis of polymer matrixes with embedded carbon dots assembled in situ. Importantly, different luminescence colours were produced simply by preparing C-dot/polymer films using carbon precursors that yielded C-dots exhibiting distinct fluorescence emission profiles. Furthermore, mixtures of C-dot precursors could be also employed for fabricating films exhibiting different colours. In particular, we successfully produced films emitting white light with attractive properties (i.e. ``warm'' white light with a high colour rendering index) - a highly sought after goal in optical technologies.Development of efficient, inexpensive, and environmentally-friendly light emitters, particularly devices that produce white light, have drawn intense interest due to diverse applications in the lighting industry, photonics, solar energy, and others. We present a simple strategy for the fabrication of flexible transparent films exhibiting tuneable light emission through one-pot synthesis of polymer matrixes with embedded carbon dots assembled in situ. Importantly, different luminescence colours were produced simply by preparing C-dot/polymer films using carbon precursors that yielded C-dots exhibiting distinct fluorescence emission profiles. Furthermore, mixtures of C-dot precursors could be also employed for fabricating films exhibiting different colours. In particular, we successfully produced films emitting white light with attractive properties (i.e. ``warm'' white light with a high colour rendering index) - a highly sought after goal in optical technologies. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr08400h
Xu, P; Zhao, L N; Lv, X J; Lu, J; Yuan, Y; Zhao, G; Zhu, S N
2009-06-08
1W quasi-white-light source has been generated from a single lithium tantalate with cascaded domain modulation. The quasi-white-light is combined by proper proportion of the red, green and blue laser light. The red and the blue result from a compact self-sum frequency optical parametric oscillation when pumped by a single green laser. The efficiency of quasi-white-light from the green pump reaches 27%. This compact design can be employed not only as a stable and powerful RGB light source but also an effective blue laser generator.
Ji, Wenyu; Zhang, Letian; Gao, Ruixue; Zhang, Liming; Xie, Wenfa; Zhang, Hanzhuang; Li, Bin
2008-09-29
White top-emitting organic light-emitting devices (TEOLEDs) with down-conversion phosphors are investigated from theory and experiment. The theoretical simulation was described by combining the microcavity model with the down-conversion model. A White TEOLED by the combination of a blue TEOLED with organic down-conversion phosphor 3-(4-(diphenylamino)phenyl)-1-pheny1prop-2-en-1-one was fabricated to validate the simulated results. It is shown that this approach permits the generation of white light in TEOLEDs. The efficiency of the white TEOLED is twice over the corresponding blue TEOLED. The feasible methods to improve the performance of such white TEOLEDs are discussed.
NASA Astrophysics Data System (ADS)
Dravins, Dainis; Lagadec, Tiphaine; Nuñez, Paul D.
2015-08-01
Context. A long-held vision has been to realize diffraction-limited optical aperture synthesis over kilometer baselines. This will enable imaging of stellar surfaces and their environments, and reveal interacting gas flows in binary systems. An opportunity is now opening up with the large telescope arrays primarily erected for measuring Cherenkov light in air induced by gamma rays. With suitable software, such telescopes could be electronically connected and also used for intensity interferometry. Second-order spatial coherence of light is obtained by cross correlating intensity fluctuations measured in different pairs of telescopes. With no optical links between them, the error budget is set by the electronic time resolution of a few nanoseconds. Corresponding light-travel distances are approximately one meter, making the method practically immune to atmospheric turbulence or optical imperfections, permitting both very long baselines and observing at short optical wavelengths. Aims: Previous theoretical modeling has shown that full images should be possible to retrieve from observations with such telescope arrays. This project aims at verifying diffraction-limited imaging experimentally with groups of detached and independent optical telescopes. Methods: In a large optics laboratory, artificial stars (single and double, round and elliptic) were observed by an array of small telescopes. Using high-speed photon-counting solid-state detectors and real-time electronics, intensity fluctuations were cross-correlated over up to 180 baselines between pairs of telescopes, producing coherence maps across the interferometric Fourier-transform plane. Results: These interferometric measurements were used to extract parameters about the simulated stars, and to reconstruct their two-dimensional images. As far as we are aware, these are the first diffraction-limited images obtained from an optical array only linked by electronic software, with no optical connections between the telescopes. Conclusions: These experiments serve to verify the concepts for long-baseline aperture synthesis in the optical, somewhat analogous to radio interferometry.
New analysis strategies for micro aspheric lens metrology
NASA Astrophysics Data System (ADS)
Gugsa, Solomon Abebe
Effective characterization of an aspheric micro lens is critical for understanding and improving processing in micro-optic manufacturing. Since most microlenses are plano-convex, where the convex geometry is a conic surface, current practice is often limited to obtaining an estimate of the lens conic constant, which average out the surface geometry that departs from an exact conic surface and any addition surface irregularities. We have developed a comprehensive approach of estimating the best fit conic and its uncertainty, and in addition propose an alternative analysis that focuses on surface errors rather than best-fit conic constant. We describe our new analysis strategy based on the two most dominant micro lens metrology methods in use today, namely, scanning white light interferometry (SWLI) and phase shifting interferometry (PSI). We estimate several parameters from the measurement. The major uncertainty contributors for SWLI are the estimates of base radius of curvature, the aperture of the lens, the sag of the lens, noise in the measurement, and the center of the lens. In the case of PSI the dominant uncertainty contributors are noise in the measurement, the radius of curvature, and the aperture. Our best-fit conic procedure uses least squares minimization to extract a best-fit conic value, which is then subjected to a Monte Carlo analysis to capture combined uncertainty. In our surface errors analysis procedure, we consider the surface errors as the difference between the measured geometry and the best-fit conic surface or as the difference between the measured geometry and the design specification for the lens. We focus on a Zernike polynomial description of the surface error, and again a Monte Carlo analysis is used to estimate a combined uncertainty, which in this case is an uncertainty for each Zernike coefficient. Our approach also allows us to investigate the effect of individual uncertainty parameters and measurement noise on both the best-fit conic constant analysis and the surface errors analysis, and compare the individual contributions to the overall uncertainty.
A novel tunable white light emitting multiphase phosphor obtained from Ba2TiP2O9 by introducing Eu3+
NASA Astrophysics Data System (ADS)
Zhou, Zhenzhen; Liu, Guanghui; Wan, Jieqiong; Ni, Jia; Lu, Zhouguang; Ma, Ruguang; Zhou, Yao; Wang, Jiacheng; Liu, Qian
2016-04-01
Tunable white light was realized in samples Ba2(1- x)TiP2O9:2 xEu ( x = 0-0.80) by introducing orange-red light emitting Eu3+ in self-activated blue-green light emitting matrix Ba2TiP2O9. The sample Ba2(1- x)TiP2O9:2 xEu is a multiphase system consisting of Ba2TiP2O9, EuPO4 and TiO2 when x is greater than or equal to 0.20. The tunable light from blue-green to bluish-white, to white, and eventually to pinky-white of samples Ba2(1- x)TiP2O9:2 xEu under UV light excitation is attributed to the light mixture of tunable blue-green light from Ti4+-O2- charge transfer transition in Ba2TiP2O9 and orange-red light from Eu3+ 4f-4f transition mostly in EuPO4. The Commission International de l'Eclairage chromaticity coordinates, correlated color temperature and color rendering index were tuned from (0.262, 0.339), 9492 K and 74 for matrix sample Ba2TiP2O9 to (0.324, 0.346), 5876 K and 87 for sample Ba2(1- x)TiP2O9:2 xEu ( x = 0.40) under UV light excitation. Therefore, a kind of promising UV-excited white light emitting multiphase phosphor was obtained.
Wu, Haining; Dong, Jianfei; Qi, Gaojin; Zhang, Guoqi
2015-07-01
Enhancing the colorfulness of illuminated objects is a promising application of LED lighting for commercial, exhibiting, and scientific purposes. This paper proposes a method to enhance the color of illuminated objects for a given polychromatic lamp. Meanwhile, the light color is restricted to white. We further relax the white light constraints by introducing soft margins. Based on the spectral and electrical characteristics of LEDs and object surface properties, we determine the optimal mixing of the LED light spectrum by solving a numerical optimization problem, which is a quadratic fractional programming problem by formulation. Simulation studies show that the trade-off between the white light constraint and the level of the color enhancement can be adjusted by tuning an upper limit value of the soft margin. Furthermore, visual evaluation experiments are performed to evaluate human perception of the color enhancement. The experiments have verified the effectiveness of the proposed method.
The generation of higher-order Laguerre-Gauss optical beams for high-precision interferometry.
Carbone, Ludovico; Fulda, Paul; Bond, Charlotte; Brueckner, Frank; Brown, Daniel; Wang, Mengyao; Lodhia, Deepali; Palmer, Rebecca; Freise, Andreas
2013-08-12
Thermal noise in high-reflectivity mirrors is a major impediment for several types of high-precision interferometric experiments that aim to reach the standard quantum limit or to cool mechanical systems to their quantum ground state. This is for example the case of future gravitational wave observatories, whose sensitivity to gravitational wave signals is expected to be limited in the most sensitive frequency band, by atomic vibration of their mirror masses. One promising approach being pursued to overcome this limitation is to employ higher-order Laguerre-Gauss (LG) optical beams in place of the conventionally used fundamental mode. Owing to their more homogeneous light intensity distribution these beams average more effectively over the thermally driven fluctuations of the mirror surface, which in turn reduces the uncertainty in the mirror position sensed by the laser light. We demonstrate a promising method to generate higher-order LG beams by shaping a fundamental Gaussian beam with the help of diffractive optical elements. We show that with conventional sensing and control techniques that are known for stabilizing fundamental laser beams, higher-order LG modes can be purified and stabilized just as well at a comparably high level. A set of diagnostic tools allows us to control and tailor the properties of generated LG beams. This enabled us to produce an LG beam with the highest purity reported to date. The demonstrated compatibility of higher-order LG modes with standard interferometry techniques and with the use of standard spherical optics makes them an ideal candidate for application in a future generation of high-precision interferometry.
Stellar Temporal Intensity Interferometry
NASA Astrophysics Data System (ADS)
Kian, Tan Peng
Stellar intensity interferometry was developed by Hanbury-Brown & Twiss [1954, 1956b, 1957, 1958] to bypass the diffraction limit of telescope apertures, with successful measurements including the determination of 32 stellar angular diameters using the Narrabri Stellar Intensity Interferometer [Hanbury-Brown et al., 1974]. This was achieved by measuring the intensity correlations between starlight received by a pair of telescopes separated by varying baselines b which, by invoking the van Cittert-Zernicke theorem [van Cittert, 1934; Zernicke, 1938], are related to the angular intensity distributions of the stellar light sources through a Fourier transformation of the equal-time complex degree of coherence gamma(b) between the two telescopes. This intensity correlation, or the second order correlation function g(2) [Glauber, 1963], can be described in terms of two-photoevent coincidence measurements [Hanbury-Brown, 1974] for our use of photon-counting detectors. The application of intensity interferometry in astrophysics has been largely restricted to the spatial domain but not found widespread adoption due to limitations by its signal-to-noise ratio [Davis et al., 1999; Foellmi, 2009; Jensen et al., 2010; LeBohec et al., 2008, 2010], although there is a growing movement to revive its use [Barbieri et al., 2009; Capraro et al., 2009; Dravins & Lagadec, 2014; Dravins et al., 2015; Dravins & LeBohec, 2007]. In this thesis, stellar intensity interferometry in the temporal domain is investigated instead. We present a narrowband spectral filtering scheme [Tan et al., 2014] that allows direct measurements of the Lorentzian temporal correlations, or photon bunching, from the Sun, with the preliminary Solar g(2)(tau = 0) = 1.3 +/- 0.1, limited mostly by the photon detector response [Ghioni et al., 2008], compared to the theoretical value of g(2)(0) = 2. The measured temporal photon bunching signature of the Sun exceeded the previous records of g(2)(0) = 1.03 [Karmakar et al., 2012] and g(2)(0) = 1.04 [Liu et al., 2014] by an order of magnitude. In order to study possible effects of atmospheric turbulence [Blazej et al., 2008; Cavazzani et al., 2012; Dravins et al., 1997] on temporal intensity interferometry, the filtering scheme was improved so that the required integration time of measurement reduced from 45 minutes previously to only 4 minutes, which allowed for timing correlation measurements of Sunlight in 1° intervals of elevation angular position to probe the atmospheric dependence. The instruments were used to measure the temporal photon bunching signal of the Sun from 11:36 am to 5:36 pm, covering Solar elevation angles from approximately 70° just before noon to about 20° by the evening, corresponding to different depths of atmospheric air column [Bennett, 1982; Marini & Murray, 1973] the sunlight passed through. The thereby obtained Solar g (2)(tau = 0) = 1.693 +/- 0.003 exceeded our previous record, due to improved suppression of the blackbody spectrum outside the target bandwidth. The Solar photon bunching signature was compatible with control measurements of an Argon arc lamp with g(2)(tau = 0) = 1.687 +/- 0.004, which served as a blackbody light source of temperature T = 6000K. This suggests that the atmospheric and weather conditions have no measurable effects on temporal intensity interferometry for a 2GHz optical bandwidth after narrowband spectral filtering. The instruments were exposed to a light source simulating astrophysical scenarios, created by mixing the blackbody radiation from the Argon arc lamp with laser light at 513.8 nm. The spectral filtering scheme was able to isolate the laser light by filtering the blackbody spectrum to only Deltanu FWHM ≈ 2GHz and thus suppressing the blackbody contribution to the order of 104 photoevents/sec. The instruments were thus able to identify coherent laser light contributions of 3 x 10 4 photoevents/sec within the blackbody spectrum, which is a situation that Optical SETI [Drake, 1961; Dyson, 1960; Forgan, 2014; Korpela et al., 2011; Merali, 2015; Sagan & Drake, 1975; Townes, 1983] may have to identify. The final scenario tested was to identify the laser light at 513.8 nm that has been Doppler broadened by a suspension of mono-dispersive microspheres [Dravins & Lagadec, 2014; Dravins et al., 2015]. We found that g(2)(0) = 1.227 +/- 0.005 and determined the coherence time of the broadened laser signal to be tauc = 44 +/- 2 ns, corresponding to a linewidth of about 23MHz which is comparable to the predicted linewidth values for natural lasers [Dravins & Germana, 2008; Griest et al., 2010; Johansson & Letokhov, 2005; Roche et al., 2012; Strelnitski et al., 1995; Taylor, 1983; Tellis & Marcy, 2015]. These results suggest that the narrowband spectral filtering technique developed in this thesis may provide a useful tool for revisiting intensity correlation measurements in astronomy again.
A wide angle low coherence interferometry based eye length optometer
NASA Astrophysics Data System (ADS)
Meadway, Alexander; Siegwart, John; Wildsoet, Christine; Norton, Thomas; Zhang, Yuhua
2015-03-01
Interest in eye growth regulation has burgeoned with the rise in myopia prevalence world-wide. Eye length and eye shape are fundamental metrics for related research, but current in vivo measurement techniques are generally limited to the optical axis of the eye. We describe a high resolution, time domain low coherence interferometry based optometer for measuring the eye length of small animals over a wide field of view. The system is based upon a Michelson interferometer using a superluminescent diode as a source, including a sample arm and a reference arm. The sample arm is split into two paths by a polarisation beam splitter; one focuses the light on the cornea and the other focuses the light on the retina. This method has a high efficiency of detection for reflections from both surfaces. The reference arm contains a custom high speed linear motor with 25 mm stroke and equipped with a precision displacement encoder. Light reflected from the cornea and the retina is combined with the reference beam to generate low coherence interferograms. Two galvo scanners are employed to steer the light to different angles so that the eye length over a field of view of 20° × 20° can be measured. The system has an axial resolution of 6.8 μm (in air) and the motor provides accurate movement, allowing for precise and repeatable measurement of coherence peak positions. Example scans from a tree shrew are presented.
Unequal-Arm Interferometry and Ranging in Space
NASA Technical Reports Server (NTRS)
Tinto, Massimo
2005-01-01
Space-borne interferometric gravitational wave detectors, sensitive in the low-frequency (millihertz) band, will fly in the next decade. In these detectors the spacecraft-to-spacecraft light-traveltimes will necessarily be unequal, time-varying, and (due to aberration) have different time delays on up- and down-links. By using knowledge of the inter-spacecraft light-travel-times and their time evolution it is possible to cancel in post-processing the otherwise dominant laser phase noise and obtain a variety of interferometric data combinations sensitive to gravitational radiation. This technique, which has been named Time-Delay Interferometry (TDI), can be implemented with constellations of three or more formation-flying spacecraft that coherently track each other. As an example application we consider the Laser Interferometer Space Antenna (LISA) mission and show that TDI combinations can be synthesized by properly time-shifting and linearly combining the phase measurements performed on board the three spacecraft. Since TDI exactly suppresses the laser noises when the delays coincide with the light-travel-times, we then show that TDI can also be used for estimating the time-delays needed for its implementation. This is done by performing a post-processing non-linear minimization procedure, which provides an effective, powerful, and simple way for making measurements of the inter-spacecraft light-travel-times. This processing technique, named Time-Delay Interferometric Ranging (TDIR), is highly accurate in estimating the time-delays and allows TDI to be successfully implemented without the need of a dedicated ranging subsystem.
Phosphorous Diffuser Diverged Blue Laser Diode for Indoor Lighting and Communication
Chi, Yu-Chieh; Hsieh, Dan-Hua; Lin, Chung-Yu; Chen, Hsiang-Yu; Huang, Chia-Yen; He, Jr-Hau; Ooi, Boon; DenBaars, Steven P.; Nakamura, Shuji; Kuo, Hao-Chung; Lin, Gong-Ru
2015-01-01
An advanced light-fidelity (Li-Fi) system based on the blue Gallium nitride (GaN) laser diode (LD) with a compact white-light phosphorous diffuser is demonstrated for fusing the indoor white-lighting and visible light communication (VLC). The phosphorous diffuser adhered blue GaN LD broadens luminescent spectrum and diverges beam spot to provide ample functionality including the completeness of Li-Fi feature and the quality of white-lighting. The phosphorous diffuser diverged white-light spot covers a radiant angle up to 120o with CIE coordinates of (0.34, 0.37). On the other hand, the degradation on throughput frequency response of the blue LD is mainly attributed to the self-feedback caused by the reflection from the phosphor-air interface. It represents the current state-of-the-art performance on carrying 5.2-Gbit/s orthogonal frequency-division multiplexed 16-quadrature-amplitude modulation (16-QAM OFDM) data with a bit error rate (BER) of 3.1 × 10−3 over a 60-cm free-space link. This work aims to explore the plausibility of the phosphorous diffuser diverged blue GaN LD for future hybrid white-lighting and VLC systems. PMID:26687289
Phosphorous Diffuser Diverged Blue Laser Diode for Indoor Lighting and Communication
NASA Astrophysics Data System (ADS)
Chi, Yu-Chieh; Hsieh, Dan-Hua; Lin, Chung-Yu; Chen, Hsiang-Yu; Huang, Chia-Yen; He-Hau, Jr.; Ooi, Boon; Denbaars, Steven P.; Nakamura, Shuji; Kuo, Hao-Chung; Lin, Gong-Ru
2015-12-01
An advanced light-fidelity (Li-Fi) system based on the blue Gallium nitride (GaN) laser diode (LD) with a compact white-light phosphorous diffuser is demonstrated for fusing the indoor white-lighting and visible light communication (VLC). The phosphorous diffuser adhered blue GaN LD broadens luminescent spectrum and diverges beam spot to provide ample functionality including the completeness of Li-Fi feature and the quality of white-lighting. The phosphorous diffuser diverged white-light spot covers a radiant angle up to 120o with CIE coordinates of (0.34, 0.37). On the other hand, the degradation on throughput frequency response of the blue LD is mainly attributed to the self-feedback caused by the reflection from the phosphor-air interface. It represents the current state-of-the-art performance on carrying 5.2-Gbit/s orthogonal frequency-division multiplexed 16-quadrature-amplitude modulation (16-QAM OFDM) data with a bit error rate (BER) of 3.1 × 10-3 over a 60-cm free-space link. This work aims to explore the plausibility of the phosphorous diffuser diverged blue GaN LD for future hybrid white-lighting and VLC systems.
A dual-emitting core-shell carbon dot-silica-phosphor composite for white light emission
NASA Astrophysics Data System (ADS)
Chen, Yonghao; Lei, Bingfu; Zheng, Mingtao; Zhang, Haoran; Zhuang, Jianle; Liu, Yingliang
2015-11-01
A unique dual-emitting core-shell carbon dot-silica-phosphor (CDSP) was constructed from carbon dots (CDs), tetraethoxysilane (TEOS) and Sr2Si5N8:Eu2+ phosphor through a one-pot sol-gel method. Blue emitting CDs uniformly disperse in the silica layer covering the orange emitting phosphor via a polymerization process, which makes CDSP achieve even white light emission. Tunable photoluminescence of CDSP is observed and the preferable white light emission is achieved through changing the excitation wavelength or controlling the mass ratio of the phosphor. When CDSP powders with a phosphor rate of 3.9% and 5.1% are excited at a wavelength of 400 nm, preferable white light emission is observed, with Commission Internationale de l'Eclairage (CIE) coordinates of (0.32, 0.32) and (0.34, 0.32), respectively. Furthermore, CDSP can mix well with epoxy resin to emit strong and even white light, and based on this, a CDSP-based white LED with a high colour rendering index (CRI) of 94 was fabricated.A unique dual-emitting core-shell carbon dot-silica-phosphor (CDSP) was constructed from carbon dots (CDs), tetraethoxysilane (TEOS) and Sr2Si5N8:Eu2+ phosphor through a one-pot sol-gel method. Blue emitting CDs uniformly disperse in the silica layer covering the orange emitting phosphor via a polymerization process, which makes CDSP achieve even white light emission. Tunable photoluminescence of CDSP is observed and the preferable white light emission is achieved through changing the excitation wavelength or controlling the mass ratio of the phosphor. When CDSP powders with a phosphor rate of 3.9% and 5.1% are excited at a wavelength of 400 nm, preferable white light emission is observed, with Commission Internationale de l'Eclairage (CIE) coordinates of (0.32, 0.32) and (0.34, 0.32), respectively. Furthermore, CDSP can mix well with epoxy resin to emit strong and even white light, and based on this, a CDSP-based white LED with a high colour rendering index (CRI) of 94 was fabricated. Electronic supplementary information (ESI) available: Characterization methods, SEM and TEM images, fluorescence spectra and CIE coordinates of CDSP. See DOI: 10.1039/c5nr05637c
van Grunsven, Roy H. A.; Ramakers, Jip J. C.; Ferguson, Kim B.; Raap, Thomas; Donners, Maurice; Veenendaal, Elmar M.; Visser, Marcel E.
2017-01-01
Artificial light at night has shown a remarkable increase over the past decades. Effects are reported for many species groups, and include changes in presence, behaviour, physiology and life-history traits. Among these, bats are strongly affected, and how bat species react to light is likely to vary with light colour. Different spectra may therefore be applied to reduce negative impacts. We used a unique set-up of eight field sites to study the response of bats to three different experimental light spectra in an otherwise dark and undisturbed natural habitat. We measured activity of three bat species groups around transects with light posts emitting white, green and red light with an intensity commonly used to illuminate countryside roads. The results reveal a strong and spectrum-dependent response for the slow-flying Myotis and Plecotus and more agile Pipistrellus species, but not for Nyctalus and Eptesicus species. Plecotus and Myotis species avoided white and green light, but were equally abundant in red light and darkness. The agile, opportunistically feeding Pipistrellus species were significantly more abundant around white and green light, most likely because of accumulation of insects, but equally abundant in red illuminated transects compared to dark control. Forest-dwelling Myotis and Plecotus species and more synanthropic Pipistrellus species are thus least disturbed by red light. Hence, in order to limit the negative impact of light at night on bats, white and green light should be avoided in or close to natural habitat, but red lights may be used if illumination is needed. PMID:28566484
NASA Astrophysics Data System (ADS)
Lee, Soojin; Cho, Woon Jo; Kim, Yang Do; Kim, Eun Kyu; Park, Jae Gwan
2005-07-01
White-light-emitting Si nanoparticles were prepared from the sodium silicide (NaSi) precursor. The photoluminescence of colloidal Si nanoparticles has been fitted by effective mass approximation (EMA). We analyzed the correlation between experimental photoluminescence and simulated fitting curves. Both the mean diameter and the size dispersion of the white-light-emitting Si nanoparticles were estimated.
Validation of Fujinon intelligent chromoendoscopy with high definition endoscopes in colonoscopy.
Parra-Blanco, Adolfo; Jiménez, Alejandro; Rembacken, Björn; González, Nicolás; Nicolás-Pérez, David; Gimeno-García, Antonio Z; Carrillo-Palau, Marta; Matsuda, Takahisa; Quintero, Enrique
2009-11-14
To validate high definition endoscopes with Fujinon intelligent chromoendoscopy (FICE) in colonoscopy. The image quality of normal white light endoscopy (WLE), that of the 10 available FICE filters and that of a gold standard (0.2% indigo carmine dye) were compared. FICE-filter 4 [red, green, and blue (RGB) wavelengths of 520, 500, and 405 nm, respectively] provided the best images for evaluating the vascular pattern compared to white light. The mucosal surface was best assessed using filter 4. However, the views obtained were not rated significantly better than those observed with white light. The "gold standard", indigo carmine (IC) dye, was found to be superior to both white light and filter 4. Filter 6 (RGB wavelengths of 580, 520, and 460 nm, respectively) allowed for exploration of the IC-stained mucosa. When assessing mucosal polyps, both FICE with magnification, and magnification following dye spraying were superior to the same techniques without magnification and to white light imaging. In the presence of suboptimal bowel preparation, observation with the FICE mode was possible, and endoscopists considered it to be superior to observation with white light. FICE-filter 4 with magnification improves the image quality of the colonic vascular patterns obtained with WLE.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumari, Astha; Rai, Vineet Kumar, E-mail: vineetkrrai@yahoo.co.in
Graphical abstract: The upconversion emission spectra of the Ho{sup 3+}/Yb{sup 3+} doped/codoped BaCa{sub 2}Al{sub 8}O{sub 15} phosphors with different doping concentrations of Ho{sup 3+}/Yb{sup 3+} ions along with UC emission spectrum of the white light emitting phosphor annealed at 800 °C. - Highlights: • BaCa{sub 2}Al{sub 8}O{sub 15} phosphors codoped with Ho{sup 3+}–Yb{sup 3+} have been prepared by combustion method. • Phosphor annealed at 800 °C, illuminate an intense white light upon NIR excitation. • The sample annealed at higher temperatures emits in the pure green region. • The colour emitted persists in the white region even at high pumpmore » power density. • Developed phosphor is suitable for making upconverters and WLEDs. - Abstract: The BaCa{sub 2}Al{sub 8}O{sub 15} (BCAO) phosphors codoped with suitable Ho{sup 3+}–Yb{sup 3+} dopant concentration prepared by combustion method illuminate an intense white light upon near infrared diode laser excitation. The structural analysis of the phosphors and the detection of impurity contents have been performed by using the X-Ray Diffraction, FESEM and FTIR analysis. The purity of white light emitted from the sample has been confirmed by the CIE chromaticity diagram. Also, the white light emitted from the sample persists with the variation of pump power density. The phosphors emit upconversion (UC) emission bands in the blue, green and red region (three primary colours required for white light emission) along with one more band in the near infrared region of the electromagnetic spectrum. On annealing the white light emitting sample at higher temperatures, the sample starts to emit green colour and also the intensity of green and red UC emission bands get enhanced largely.« less
Xie, Chen; Li, Xiuyi; Tong, Jianping; Gu, Yangshun; Shen, Ye
2014-01-01
Cataract is the major cause for legal blindness in the world. Oxidative stress on the lens epithelial cells (hLECs) is the most important factor in cataract formation. Cumulative light-exposure from widely used light-emitting diodes (LEDs) may pose a potential oxidative threat to the lens epithelium, due to the high-energy blue light component in the white-light emission from diodes. In the interest of perfecting biosafety standards for LED domestic lighting, this study analyzed the photobiological effect of white LED light with different correlated color temperatures (CCTs) on cultured hLECs. The hLECs were cultured and cumulatively exposed to multichromatic white LED light with CCTs of 2954, 5624, and 7378 K. Cell viability of hLECs was measured by Cell Counting Kit-8 (CCK-8) assay. DNA damage was determined by alkaline comet assay. Intracellular reactive oxygen species (ROS) generation, cell cycle, and apoptosis were quantified by flow cytometry. Compared with 2954 and 5624 K LED light, LED light having a CCT of 7378 K caused overproduction of intracellular ROS and severe DNA damage, which triggered G2 /M arrest and apoptosis. These results indicate that white LEDs with a high CCT could cause significant photobiological damage to hLECs. © 2014 The American Society of Photobiology.
White-Light Emission from Layered Halide Perovskites.
Smith, Matthew D; Karunadasa, Hemamala I
2018-03-20
With nearly 20% of global electricity consumed by lighting, more efficient illumination sources can enable massive energy savings. However, effectively creating the high-quality white light required for indoor illumination remains a challenge. To accurately represent color, the illumination source must provide photons with all the energies visible to our eye. Such a broad emission is difficult to achieve from a single material. In commercial white-light sources, one or more light-emitting diodes, coated by one or more phosphors, yield a combined emission that appears white. However, combining emitters leads to changes in the emission color over time due to the unequal degradation rates of the emitters and efficiency losses due to overlapping absorption and emission energies of the different components. A single material that emits broadband white light (a continuous emission spanning 400-700 nm) would obviate these problems. In 2014, we described broadband white-light emission upon near-UV excitation from three new layered perovskites. To date, nine white-light-emitting perovskites have been reported by us and others, making this a burgeoning field of study. This Account outlines our work on understanding how a bulk material, with no obvious emissive sites, can emit every color of the visible spectrum. Although the initial discoveries were fortuitous, our understanding of the emission mechanism and identification of structural parameters that correlate with the broad emission have now positioned us to design white-light emitters. Layered hybrid halide perovskites feature anionic layers of corner-sharing metal-halide octahedra partitioned by organic cations. The narrow, room-temperature photoluminescence of lead-halide perovskites has been studied for several decades, and attributed to the radiative recombination of free excitons (excited electron-hole pairs). We proposed that the broad white emission we observed primarily stems from exciton self-trapping. Here, the exciton couples strongly to the lattice, creating transient elastic lattice distortions that can be viewed as "excited-state defects". These deformations stabilize the exciton affording a broad emission with a large Stokes shift. Although material defects very likely contribute to the emission width, our mechanistic studies suggest that the emission mostly arises from the bulk material. Ultrafast spectroscopic measurements support self-trapping, with new, transient, electronic states appearing upon photoexcitation. Importantly, the broad emission appears common to layered Pb-Br and Pb-Cl perovskites, albeit with a strong temperature dependence. Although the emission is attributed to light-induced defects, it still reflects changes in the crystal structure. We find that greater out-of-plane octahedral tilting increases the propensity for the broad emission, enabling synthetic control over the broad emission. Many of these perovskites have color rendering abilities that exceed commercial requirements and mixing halides affords both "warm" and "cold" white light. The most efficient white-light-emitting perovskite has a quantum efficiency of 9%. Improving this value will make these phosphors attractive for solid-state lighting, particularly as large-area coatings that can be deposited inexpensively. The emission mechanism can also be extended to other low-dimensional systems. We hope this Account aids in expanding the phase space of white-light emitters and controlling their exciton dynamics by the synthetic, spectroscopic, theoretical, and engineering communities.
33 CFR 83.21 - Definitions (Rule 21).
Code of Federal Regulations, 2012 CFR
2012-07-01
... NAVIGATION RULES RULES Lights and Shapes § 83.21 Definitions (Rule 21). (a) Masthead light means a white... light shall be placed as nearly as practicable to the fore and aft centerline of the vessel. (b... white light placed as nearly as practicable at the stern showing an unbroken light over an arc of the...
33 CFR 83.21 - Definitions (Rule 21).
Code of Federal Regulations, 2014 CFR
2014-07-01
... NAVIGATION RULES RULES Lights and Shapes § 83.21 Definitions (Rule 21). (a) Masthead light means a white... light shall be placed as nearly as practicable to the fore and aft centerline of the vessel. (b... white light placed as nearly as practicable at the stern showing an unbroken light over an arc of the...
33 CFR 83.21 - Definitions (Rule 21).
Code of Federal Regulations, 2011 CFR
2011-07-01
... NAVIGATION RULES RULES Lights and Shapes § 83.21 Definitions (Rule 21). (a) Masthead light means a white... light shall be placed as nearly as practicable to the fore and aft centerline of the vessel. (b... white light placed as nearly as practicable at the stern showing an unbroken light over an arc of the...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hua, Wang, E-mail: wmsu2008@sinano.ac.cn, E-mail: wanghua001@tyut.edu.cn; Du, Xiaogang; Research Center of Advanced Materials Science and Technology, Taiyuan University of Technology, Taiyuan 030024
2014-02-15
In this paper, a novel type of white-light organic light emitting diode (OLED) with high color stability was reported, in which the yellow-light emission layer of (4,4{sup ′}-N,N{sup ′}-dicarbazole)biphenyl (CBP) : tris(2-phenylquinoline-C2,N{sup ′})iridium(III) (Ir(2-phq){sub 3}) was sandwiched by double blue-light emission layers of 1,1-bis-[(di-4-tolylamino)pheny1]cyclohexane (TAPC) : bis[4,6-(di-fluorophenyl)-pyridinato-N,C2{sup ′}]picolinate (FIrpic) and tris[3-(3-pyridyl)mesityl]borane (3TPYMB):FIrpic. And, it exhibited the maximum current efficiency of 33.1 cd/A, the turn-on voltage at about 3 V and the maximum luminance in excess of 20000 cd/m{sup 2}. More important, it realized very stable white-light emission, and its CIE(x, y) coordinates only shift from (0.34, 0.37) to (0.33, 0.37)more » as applied voltage increased from 5 V to 12 V. It is believed that the new scheme in emission layer of white-light OLED can fine tune the contribution of primary emission with applied voltage changed, resulting in high quality white-light OLED.« less
Advanced Propulsion Physics Lab: Eagleworks Investigations
NASA Technical Reports Server (NTRS)
Scogin, Tyler
2014-01-01
Eagleworks Laboratory is an advanced propulsions physics laboratory with two primary investigations currently underway. The first is a Quantum Vacuum Plasma Thruster (QVPT or Q-thrusters), an advanced electric propulsion technology in the development and demonstration phase. The second investigation is in Warp Field Interferometry (WFI). This is an investigation of Dr. Harold "Sonny" White's theoretical physics models for warp field equations using optical experiments in the Electro Optical laboratory (EOL) at Johnson Space Center. These investigations are pursuing technology necessary to enable human exploration of the solar system and beyond.
Mashiko, Hiroki; Yamaguchi, Tomohiko; Oguri, Katsuya; Suda, Akira; Gotoh, Hideki
2014-01-01
In many atomic, molecular and solid systems, Lorentzian and Fano profiles are commonly observed in a broad research fields throughout a variety of spectroscopies. As the profile structure is related to the phase of the time-dependent dipole moment, it plays an important role in the study of quantum properties. Here we determine the dipole phase in the inner-shell transition using spectral phase interferometry for direct electric-field reconstruction (SPIDER) with isolated attosecond pulses (IAPs). In addition, we propose a scheme for pulse generation and compression by manipulating the inner-shell transition. The electromagnetic radiation generated by the transition is temporally compressed to a few femtoseconds in the extreme ultraviolet (XUV) region. The proposed pulse-compression scheme may provide an alternative route to producing attosecond pulses of light. PMID:25510971
NASA Astrophysics Data System (ADS)
Ishii, Mie; Moriyama, Takayoshi; Toda, Masahiro; Kohmoto, Kohtaro; Saito, Masako
White light-emitting diodes (LED) are well suited for museum lighting because they emit neither UV nor IR radiation, which damage artifacts. The color degradation of natural dyes and blue scale standards (JIS L 0841) by white LED lamps are examined, and the performance of white LED lamps for museum lighting is evaluated. Blue scale standard grades 1-6 and silk fabrics dyed with 22 types of natural dyes classified as mid to highly responsive in a CIE technical report (CIE157:2004) were exposed to five types of white LED lamps using different luminescence methods and color temperatures. Color changes were measured at each 15000 lx·hr (500 lx at fabric surface × 300 hr) interval ten times. The accumulated exposure totaled 150000 lx·hr. The data on conventional white LED lamps and previously reported white fluorescent (W) and museum fluorescent (NU) lamps was evaluated. All the white LED lamps showed lower fading rates compared with a W lamp on a blue scale grade 1. The fading rate of natural dyes in total was the same between an NU lamp (3000 K) and a white LED lamp (2869 K). However, yellow natural dyes showed higher fading rates with the white LED lamp. This tendency is due to the high power characteristic of the LED lamp around 400-500 nm, which possibly contributes to the photo-fading action on the dyes. The most faded yellow dyes were Ukon (Curcuma longa L.) and Kihada (Phellodendron amurense Rupr.), and these are frequently used in historic artifacts such as kimono, wood-block prints, and scrolls. From a conservation point of view, we need to continue research on white LED lamps for use in museum lighting.
Multilayer white lighting polymer light-emitting diodes
NASA Astrophysics Data System (ADS)
Gong, Xiong; Wang, Shu; Heeger, Alan J.
2006-08-01
Organic and polymer light-emitting diodes (OLEDs/PLEDs) that emit white light are of interest and potential importance for use in active matrix displays (with color filters) and because they might eventually be used for solid-state lighting. In such applications, large-area devices and low-cost of manufacturing will be major issues. We demonstrated that high performance multilayer white emitting PLEDs can be fabricated by using a blend of luminescent semiconducting polymers and organometallic complexes as the emission layer, and water-soluble (or ethanol-soluble) polymers/small molecules (for example, PVK-SO 3Li) as the hole injection/transport layer (HIL/HTL) and water-soluble (or ethanol-soluble) polymers/small molecules (for example, t-Bu-PBD-SO 3Na) as the electron injection/transport layer (EIL/HTL). Each layer is spin-cast sequentially from solutions. Illumination quality light is obtained with stable Commission Internationale d'Eclairage coordinates, stable color temperatures, and stable high color rendering indices, all close to those of "pure" white. The multilayer white-emitting PLEDs exhibit luminous efficiency of 21 cd/A, power efficiency of 6 lm/W at a current density of 23 mA/cm2 with luminance of 5.5 x 10 4 cd/m2 at 16 V. By using water-soluble (ethanol-soluble) polymers/small molecules as HIL/HTL and polymers/small molecules as EIL/ETL, the interfacial mixing problem is solved (the emissive polymer layer is soluble in organic solvents, but not in water/ ethanol). As a result, this device architecture and process technology can potentially be used for printing large-area multiplayer light sources and for other applications in "plastic" electronics. More important, the promise of producing large areas of high quality white light with low-cost manufacturing technology makes the white multilayer white-emitting PLEDs attractive for the development of solid state light sources.
NASA Astrophysics Data System (ADS)
Uchida, Yuji; Taguchi, Tsunemasa
2003-07-01
We have performed theoretical studies on the luminous characeristics of white LED light source which composed of multi phosphors and near ultraviolet (UV) LED for general lighting. White LED source for general lighting applications requires the conditions that have high-flux, high luminous efficacy of radiation (> 100 lm/W) in addition to high color rendering index (Ra > 90) and variable color temperatures. Recently, we have proposed a novel type white LED based on multi phosphors and near UV LED system in order to high-Ra (>93). We will describe the excellent luminescence properties of white LED consisting of orange (O), yellow (Y), green (G) and blue (B) phosphor materials, and near UV LED. The color spectral contributions of individual phosphor-coated LED are theoretically analyzed using our multi LED lighting theory calculated the maximum luminous efficacy can be estimated to be approximately 300 lm/W having a high Ra of about 90 taking into account individual radiation spectrum. Illuminance distribution of white LED is in fairly good agreement with the experimental data.
White light velocity interferometer
Erskine, D.J.
1999-06-08
The invention is a technique that allows the use of broadband and incoherent illumination. Although denoted white light velocimetry, this principle can be applied to any wave phenomenon. For the first time, powerful, compact or inexpensive sources can be used for remote target velocimetry. These include flash and arc lamps, light from detonations, pulsed lasers, chirped frequency lasers, and lasers operating simultaneously in several wavelengths. The technique is demonstrated with white light from an incandescent source to measure a target moving at 16 m/s. 41 figs.
White light velocity interferometer
Erskine, David J.
1997-01-01
The invention is a technique that allows the use of broadband and incoherent illumination. Although denoted white light velocimetry, this principle can be applied to any wave phenomenon. For the first time, powerful, compact or inexpensive sources can be used for remote target velocimetry. These include flash and arc lamps, light from detonations, pulsed lasers, chirped frequency lasers, and lasers operating simultaneously in several wavelengths. The technique is demonstrated with white light from an incandescent source to measure a target moving at 16 m/s.
White light velocity interferometer
Erskine, David J.
1999-01-01
The invention is a technique that allows the use of broadband and incoherent illumination. Although denoted white light velocimetry, this principle can be applied to any wave phenomenon. For the first time, powerful, compact or inexpensive sources can be used for remote target velocimetry. These include flash and arc lamps, light from detonations, pulsed lasers, chirped frequency lasers, and lasers operating simultaneously in several wavelengths. The technique is demonstrated with white light from an incandescent source to measure a target moving at 16 m/s.
White light velocity interferometer
Erskine, D.J.
1997-06-24
The invention is a technique that allows the use of broadband and incoherent illumination. Although denoted white light velocimetry, this principle can be applied to any wave phenomenon. For the first time, powerful, compact or inexpensive sources can be used for remote target velocimetry. These include flash and arc lamps, light from detonations, pulsed lasers, chirped frequency lasers, and lasers operating simultaneously in several wavelengths. The technique is demonstrated with white light from an incandescent source to measure a target moving at 16 m/s. 41 figs.
A system for a multiframing interferometry and its application to a plasma focus experiment.
Hirano, K; Shimoda, K; Emori, S
1979-10-01
A four-framing Mach-Zehnder interferometer system which has variable intervals from frame to frame is developed. TEA N(2) lasers that are operated with atmospheric-pressure N(2) gas are employed as light sources. Applicability of the system is demonstrated for a rapidly changing plasma in the plasma focus discharge.
White-light-controlled resistive switching in ZnO/BaTiO3/C multilayer layer at room temperature
NASA Astrophysics Data System (ADS)
Wang, Junshuai; Liang, Dandan; Wu, Liangchen; Li, Xiaoping; Chen, Peng
2018-07-01
The bipolar resistance switching effect is observed in ZnO/BaTiO3/C structure. The resistance switching behavior can be modulated by white light. The resistance switch states and threshold voltage can be changed when subjected to white light. This research can help explore multi-functional materials and applications in nonvolatile memory device.
Yang, Shuming; Lin, Zhenghuan; Wang, Jingwei; Chen, Yunxiang; Liu, Zhengde; Yang, E; Zhang, Jian; Ling, Qidan
2018-05-09
Two-dimensional (2D) white-light-emitting hybrid perovskites (WHPs) are promising active materials for single-component white-light-emitting diodes (WLEDs) driven by UV. However, the reported WHPs exhibit low quantum yields (≤9%) and low color rendering index (CRI) values less than 85, which does not satisfy the demand of solid-state lighting applications. In this work, we report a series of mixed-halide 2D layered WHPs (C 6 H 5 C 2 H 4 NH 3 ) 2 PbBr x Cl 4- x (0 < x < 4) obtained from the phenethylammonium cation. Unlike the reported WHPs including (C 6 H 5 C 2 H 4 NH 3 ) 2 PbCl 4 , the mixed-halide perovskites display morphology-dependent white emission for the different extents of self-absorption. Additionally, the amount of Br has a huge influence on the photophysical properties of mixed-halide WHPs. With the increasing content of Br, the quantum yields of WHPs increase gradually from 0.2 to 16.9%, accompanied by tunable color temperatures ranging from 4000 K ("warm" white light) to 7000 K ("cold" white light). When applied to the WLEDs, the mixed-halide perovskite powders exhibit tunable white electroluminescent emission with very high CRI of 87-91.
Beam shaping optics to enhance performance of interferometry techniques in grating manufacture
NASA Astrophysics Data System (ADS)
Laskin, Alexander; Laskin, Vadim; Ostrun, Aleksei
2018-02-01
Improving of industrial holographic and interferometry techniques is of great importance in interference lithography, computer-generated holography, holographic data storage, interferometry recording of Bragg gratings as well as gratings of various types in semiconductor industry. Performance of mentioned techniques is essentially enhanced by providing a light beam with flat phase front and flat-top irradiance distribution. Therefore, transformation of Gaussian distribution of a TEM00 laser to flat-top (top hat, uniform) distribution is an important optical task. There are different refractive and diffractive beam shaping approaches used in laser industrial and scientific applications, but only few of them are capable to fulfil the optimum conditions for beam quality demanding holography and interferometry. As a solution it is suggested to apply refractive field mapping beam shaping optics πShaper, which operational principle presumes almost lossless transformation of Gaussian to flat-top beam with flatness of output wavefront, conserving of beam consistency, providing collimated low divergent output beam, high transmittance, extended depth of field, negligible wave aberration, and achromatic design provides capability to work with several lasers with different wavelengths simultaneously. High optical quality of resulting flat-top beam allows applying additional optical components to build various imaging optical systems for variation of beam size and shape to fulfil requirements of a particular application. This paper will describe design basics of refractive beam shapers and optical layouts of their applying in holography and laser interference lithography. Examples of real implementations and experimental results will be presented as well.
Cone signals for spectacle-lens compensation: differential responses to short and long wavelengths.
Rucker, Frances J; Wallman, Josh
2008-09-01
Chick eyes compensate for defocus imposed by spectacle lenses by making compensatory changes in eye length and choroidal thickness, a laboratory model of emmetropization. To investigate the roles of longitudinal chromatic aberration and of chromatic mechanisms in emmetropization, we examined the participation of different cone classes, and we compared the efficacy of lens compensation under monochromatic illumination with that under white light of the same illuminance to the chick eye. Chicks wore positive or negative 6D or 8D lenses on one eye for 3 days, under either blue (460 nm) or red (620 nm) light at 0.67 lux or under white light at 0.67 or 0.2 lux (all measures are corrected for chick photopic sensitivity). The illumination conditions were chosen to differentially stimulate either the short-wavelength and ultraviolet cones or the long-wavelength and double cones. Measurements are expressed as the relative change: the inter-ocular difference in the amount of change over the 3 days of lens wear. We find that under this low illumination the two components of lens compensation were differentially affected by the monochromatic illumination: in blue light lens compensation was mainly due to changes in eye length, whereas in red light lens compensation was mainly due to changes in choroidal thickness. In general, white light produced better lens compensation than monochromatic illumination. NEGATIVE LENSES: Under white light negative lenses caused an increase in eye length (60 microm) together with a decrease in choroidal thickness (-51 microm) relative to the fellow eye. Under blue light, although there was an increase in eye length (32 microm), there was no change in choroidal thickness (5 microm). In contrast, under red light there was a decrease in choroidal thickness (-62 microm) but no increase in eye length (8 microm). Relative ocular elongation was the same in white and monochromatic light. POSITIVE LENSES: Under white light positive lenses caused a decrease in eye length (-142 microm) together with an increase in choroidal thickness (68 microm) relative to the fellow eye. Under blue light, there was a decrease in eye length (-64 microm), but no change in choroidal thickness (2 microm). In contrast, under red light there was an increase (90 microm) in choroidal thickness but less of a decrease (-36 microm) in eye length. Lens compensation by inhibition of ocular elongation was less effective under monochromatic illumination than under white light (white v red: p=0.003; white v blue p=.014). The differential effects of red and blue light on the choroidal and ocular length compensatory responses suggest that they are driven by different proportions of the cone-types, implying that, although chromatic contrast is not essential for lens compensation and presumably for emmetropization as well, the retinal substrates exist for utilizing chromatic contrast in these compensatory responses. The generally better lens compensation in white than monochromatic illumination suggests that longitudinal chromatic aberration may be used in lens compensation.
Pure white-light emitting ultrasmall organic-inorganic hybrid perovskite nanoclusters.
Teunis, Meghan B; Lawrence, Katie N; Dutta, Poulami; Siegel, Amanda P; Sardar, Rajesh
2016-10-14
Organic-inorganic hybrid perovskites, direct band-gap semiconductors, have shown tremendous promise for optoelectronic device fabrication. We report the first colloidal synthetic approach to prepare ultrasmall (∼1.5 nm diameter), white-light emitting, organic-inorganic hybrid perovskite nanoclusters. The nearly pure white-light emitting ultrasmall nanoclusters were obtained by selectively manipulating the surface chemistry (passivating ligands and surface trap-states) and controlled substitution of halide ions. The nanoclusters displayed a combination of band-edge and broadband photoluminescence properties, covering a major part of the visible region of the solar spectrum with unprecedentedly large quantum yields of ∼12% and photoluminescence lifetime of ∼20 ns. The intrinsic white-light emission of perovskite nanoclusters makes them ideal and low cost hybrid nanomaterials for solid-state lighting applications.
.pi.-conjugated heavy-metal polymers for organic white-light-emitting diodes
Vardeny, Zeev Valentine; Wojcik, Leonard; Drori, Tomer
2016-09-13
A polymer mixture emits a broad spectrum of visible light that appears white or near-white in the aggregate. The polymer mixture comprises two (or more) components in the active layer. A heavy atom, such as platinum and/or iridium, present in the backbone of the mixture acts via a spin-orbit coupling mechanism to cause the ratio of fluorescent to phosphorescent light emission bands to be of approximately equal strength. These two broad emissions overlap, resulting in an emission spectrum that appears to the eye to be white.
Multicolor white light-emitting diodes for illumination applications
NASA Astrophysics Data System (ADS)
Chi, Solomon W. S.; Chen, Tzer-Perng; Tu, Chuan-Cheng; Chang, Chih-Sung; Tsai, Tzong-Liang; Hsieh, Mario C. C.
2004-01-01
Semiconductor light emitting diode (LED) has become a promising device for general-purpose illumination applications. LED has the features of excellent durability, long operation life, low power consumption, no mercury containing and potentially high efficiency. Several white LED technologies appear capable of meeting the technical requirements of illumination. In this paper we present a new multi-color white (MCW) LED as a high luminous efficacy, high color rendering index and low cost white illuminator. The device consists of two LED chips, one is AlInGaN LED for emitting shorter visible spectra, another is AlInGaP LED for emitting longer visible spectra. At least one chip in the MCW-LED has two or more transition energy levels used for emitting two or more colored lights. The multiple colored lights generated from the MCW-LED can be mixed into a full-spectral white light. Besides, there is no phosphors conversion layer used in the MCW-LED structure. Therefore, its color rendering property and illumination efficiency are excellent. The Correlated Color Temperature (CCT) of the MCW-LED may range from 2,500 K to over 10,000 K. The theoretical General Color Rendering Index (Ra) could be as high as 94, which is close to the incandescent and halogen sources, while the Ra of binary complementary white (BCW) LED is about 30 ~ 45. Moreover, compared to the expensive ternary RGB (Red AlInGaP + Green AlInGaN + Blue AlInGaN) white LED sources, the MCW-LED uses only one AlInGaN chip in combination with one cheap AlInGaP chip, to form a low cost, high luminous performance white light source. The MCW-LED is an ideal light source for general-purpose illumination applications.
Preparation of balanced trichromatic white phosphors for solid-state white lighting.
Al-Waisawy, Sara; George, Anthony F; Jadwisienczak, Wojciech M; Rahman, Faiz
2017-08-01
High quality white light-emitting diodes (LEDs) employ multi-component phosphor mixtures to generate light of a high color rendering index (CRI). The number of distinct components in a typical phosphor mix usually ranges from two to four. Here we describe a systematic experimental technique for starting with phosphors of known chromatic properties and arriving at their respective proportions for creating a blended phosphor to produce light of the desired chromaticity. This method is applicable to both LED pumped and laser diode (LD) pumped white light sources. In this approach, the radiometric power in the down-converted luminescence of each phosphor is determined and that information is used to estimate the CIE chromaticity coordinate of light generated from the mixed phosphor. A suitable method for mixing multi-component phosphors is also described. This paper also examines the effect of light scattering particles in phosphors and their use for altering the spectral characteristics of LD- and LED-generated light. This is the only approach available for making high efficiency phosphor-converted single-color LEDs that emit light of wide spectral width. Copyright © 2016 John Wiley & Sons, Ltd.
Wang, Zhiye; Wang, Zi; Lin, Bangjiang; Hu, XueFu; Wei, YunFeng; Zhang, Cankun; An, Bing; Wang, Cheng; Lin, Wenbin
2017-10-11
A dye@metal-organic framework (MOF) hybrid was used as a fluorophore in a white-light-emitting diode (WLED) for fast visible-light communication (VLC). The white light was generated from a combination of blue emission of the 9,10-dibenzoate anthracene (DBA) linkers and yellow emission of the encapsulated Rhodamine B molecules. The MOF structure not only prevents dye molecules from aggregation-induced quenching but also efficiently transfers energy to the dye for dual emission. This light-emitting material shows emission lifetimes of 1.8 and 5.3 ns for the blue and yellow components, respectively, which are significantly shorter than the 200 ns lifetime of Y 3 Al 5 O 12 :Ce 3+ in commercial WLEDs. The MOF-WLED device exhibited a modulating frequency of 3.6 MHz for VLC, six times that of commercial WLEDs.
Light-induced changes in bottled white wine and underlying photochemical mechanisms.
Grant-Preece, Paris; Barril, Celia; Schmidtke, Leigh M; Scollary, Geoffrey R; Clark, Andrew C
2017-03-04
Bottled white wine may be exposed to UV-visible light for considerable periods of time before it is consumed. Light exposure may induce an off-flavor known as "sunlight" flavor, bleach the color of the wine, and/or increase browning and deplete sulfur dioxide. The changes that occur in bottled white wine exposed to light depend on the wine composition, the irradiation conditions, and the light exposure time. The light-induced changes in the aroma, volatile composition, color, and concentrations of oxygen and sulfur dioxide in bottled white wine are reviewed. In addition, the photochemical reactions thought to have a role in these changes are described. These include the riboflavin-sensitized oxidation of methionine, resulting in the formation of methanethiol and dimethyl disulfide, and the photodegradation of iron(III) tartrate, which gives rise to glyoxylic acid, an aldehyde known to react with flavan-3-ols to form yellow xanthylium cation pigments.
NASA Astrophysics Data System (ADS)
Singh Mehta, Dalip; Srivastava, Vishal
2012-11-01
We report quantitative phase imaging of human red blood cells (RBCs) using phase-shifting interference microscopy. Five phase-shifted white light interferograms are recorded using colour charge coupled device camera. White light interferograms were decomposed into red, green, and blue colour components. The phase-shifted interferograms of each colour were then processed by phase-shifting analysis and phase maps for red, green, and blue colours were reconstructed. Wavelength dependent refractive index profiles of RBCs were computed from the single set of white light interferogram. The present technique has great potential for non-invasive determination of refractive index variation and morphological features of cells and tissues.
Spoelstra, Kamiel; van Grunsven, Roy H A; Ramakers, Jip J C; Ferguson, Kim B; Raap, Thomas; Donners, Maurice; Veenendaal, Elmar M; Visser, Marcel E
2017-05-31
Artificial light at night has shown a remarkable increase over the past decades. Effects are reported for many species groups, and include changes in presence, behaviour, physiology and life-history traits. Among these, bats are strongly affected, and how bat species react to light is likely to vary with light colour. Different spectra may therefore be applied to reduce negative impacts. We used a unique set-up of eight field sites to study the response of bats to three different experimental light spectra in an otherwise dark and undisturbed natural habitat. We measured activity of three bat species groups around transects with light posts emitting white, green and red light with an intensity commonly used to illuminate countryside roads. The results reveal a strong and spectrum-dependent response for the slow-flying Myotis and Plecotus and more agile Pipistrellus species, but not for Nyctalus and Eptesicus species. Plecotus and Myotis species avoided white and green light, but were equally abundant in red light and darkness. The agile, opportunistically feeding Pipistrellus species were significantly more abundant around white and green light, most likely because of accumulation of insects, but equally abundant in red illuminated transects compared to dark control. Forest-dwelling Myotis and Plecotus species and more synanthropic Pipistrellus species are thus least disturbed by red light. Hence, in order to limit the negative impact of light at night on bats, white and green light should be avoided in or close to natural habitat, but red lights may be used if illumination is needed. © 2017 The Author(s).
Bright-White Beetle Scales Optimise Multiple Scattering of Light
NASA Astrophysics Data System (ADS)
Burresi, Matteo; Cortese, Lorenzo; Pattelli, Lorenzo; Kolle, Mathias; Vukusic, Peter; Wiersma, Diederik S.; Steiner, Ullrich; Vignolini, Silvia
2014-08-01
Whiteness arises from diffuse and broadband reflection of light typically achieved through optical scattering in randomly structured media. In contrast to structural colour due to coherent scattering, white appearance generally requires a relatively thick system comprising randomly positioned high refractive-index scattering centres. Here, we show that the exceptionally bright white appearance of Cyphochilus and Lepidiota stigma beetles arises from a remarkably optimised anisotropy of intra-scale chitin networks, which act as a dense scattering media. Using time-resolved measurements, we show that light propagating in the scales of the beetles undergoes pronounced multiple scattering that is associated with the lowest transport mean free path reported to date for low-refractive-index systems. Our light transport investigation unveil high level of optimisation that achieves high-brightness white in a thin low-mass-per-unit-area anisotropic disordered nanostructure.
Up-conversion white light of Tm 3+/Er 3+/Yb 3+ tri-doped CaF 2 phosphors
NASA Astrophysics Data System (ADS)
Cao, Chunyan; Qin, Weiping; Zhang, Jisen; Wang, Yan; Wang, Guofeng; Wei, Guodong; Zhu, Peifen; Wang, Lili; Jin, Longzhen
2008-03-01
Tm3+/Er3+/Yb3+ tri-doped CaF2 phosphors were synthesized using a hydrothermal method. The phosphors were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), and up-conversion (UC) emission spectra. After annealing, the phosphors emitted white light under a 980 nm continuous wave diode laser (CW LD 2 W) excitation. As the excitation power density changed in the range of 20-260 W/cm2, the chromaticity coordinates of the UC light of the phosphor Ca0.885Tm0.005Er0.01Yb0.1F2 fell well in the white region of the 1931 CIE diagram. For the proportion of red, green and blue (RGB) in white light is strict, key factors for achieving UC white light, such as host materials, rare earth ions doping concentrations, annealing temperatures, as well as the excitation power densities, were investigated and discussed.
The brilliant beauty of the eye: light reflex from the cornea and tear film.
Goto, Eiki
2006-12-01
Light reflex from the cornea and tear film as contributors to beautiful eyes ("eye sparkling") are reviewed. A systematic literature review was conducted using "Purkinje-Sanson image," "corneal light reflex," "corneal topography," "corneal wavefront aberration," and "tear interference image" as search terms. Articles on corneal surface regularity and stability and tear interferometry of the precorneal tear lipid layer were reviewed. PS-1 image, that is light reflex from the cornea and tear film, is widely used in practical ophthalmic examination. To achieve a brilliant beauty of the eye ("eye sparkling"), it is important that the tear film (aqueous layer) surface is smooth and stable with adequate tear volume and that the tear lipid layer is present in adequate thickness.
Whole high-quality light environment for humans and plants
NASA Astrophysics Data System (ADS)
Sharakshane, Anton
2017-11-01
Plants sharing a single light environment on a spaceship with a human being and bearing a decorative function should look as natural and attractive as possible. And consequently they can be illuminated only with white light with a high color rendering index. Can lighting optimized for a human eye be effective and appropriate for plants? Spectrum-based effects have been compared under artificial lighting of plants by high-pressure sodium lamps and general-purpose white LEDs. It has been shown that for the survey sample phytochrome photo-equilibria does not depend significantly on the parameters of white LED light, while the share of phytoactive blue light grows significantly as the color temperature increases. It has been revealed that yield photon flux is proportional to luminous efficacy and increases as the color temperature decreases, general color rendering index Ra and the special color rendering index R14 (green leaf) increase. General-purpose white LED lamps with a color temperature of 2700 K, Ra > 90 and luminous efficacy of 100 lm/W are as efficient as the best high-pressure sodium lamps, and at a higher luminous efficacy their yield photon flux per joule is even bigger in proportion. Here we show that demand for high color rendering white LED light is not contradictory to the agro-technical objectives.
Stray-light suppression in a reflecting white-light coronagraph
NASA Technical Reports Server (NTRS)
Romoli, Marco; Weiser, Heinz; Gardner, Larry D.; Kohl, John L.
1993-01-01
An analysis of stray-light suppression in the white-light channel of the Ultraviolet Coronagraph Spectrometer experiment for the Solar and Heliospheric Observatory is reported. The white-light channel consists of a reflecting telescope with external and internal occultation and a polarimeter section. Laboratory tests and analytical methods are used to perform the analysis. The various stray-light contributions are classified in two main categories: the contribution from sunlight that passes directly through the entrance aperture and the contribution of sunlight that is diffracted by the edges of the entrance aperture. Values of the stray-light contributions from various sources and the total stray-light level for observations at heliocentric heights from 1.4 to 5 solar radii are derived. Anticipated signal-to-stray-light ratios are presented together with the effective stray-light rejection by the polarimeter, demonstrating the efficacy of the stray-light suppression design.
Stone, Emma Louise; Wakefield, Andrew; Harris, Stephen; Jones, Gareth
2015-01-01
Artificial light at night is a major feature of anthropogenic global change and is increasingly recognized as affecting biodiversity, often negatively. On a global scale, newer technology white lights are replacing orange sodium lights to reduce energy waste. In 2009, Cornwall County Council (UK) commenced replacement of existing low-pressure sodium (LPS) high intensity discharge (HID) street lights with new Phillips CosmoPolis white ceramic metal halide street lights to reduce energy wastage. This changeover provided a unique collaborative opportunity to implement a before-after-control-impact field experiment to investigate the ecological effects of newly installed broad spectrum light technologies. Activity of the bat species Pipistrellus pipistrellus, P. pygmaeus and Nyctalus/Eptesicus spp. was significantly higher at metal halide than LPS lights, as found in other studies of bat activity at old technology (i.e. mercury vapour) white light types. No significant difference was found in feeding attempts per bat pass between light types, though more passes overall were recorded at metal halide lights. Species-specific attraction of bats to the metal halide lights could have cascading effects at lower trophic levels. We highlight the need for further research on possible ecosystem-level effects of light technologies before they are installed on a wide scale. PMID:25780239
Mixing Halogens To Assemble an All-Inorganic Layered Perovskite with Warm White-Light Emission.
Li, Xianfeng; Wang, Sasa; Zhao, Sangen; Li, Lina; Li, Yanqiang; Zhao, Bingqing; Shen, Yaoguo; Wu, Zhenyue; Shan, Pai; Luo, Junhua
2018-05-01
Most of single-component white-light-emitting materials focus on organic-inorganic hybrid perovskites, metal-organic frameworks, as well as all-inorganic semiconductors. In this work, we successfully assembled an all-inorganic layered perovskite by mixing two halogens of distinct ionic radii, namely, Rb 2 CdCl 2 I 2 , which emits "warm" white light with a high color rendering index of 88. To date, Rb 2 CdCl 2 I 2 is the first single-component white-light-emitting material with an all-inorganic layered perovskite structure. Furthermore, Rb 2 CdCl 2 I 2 is thermally highly stable up to 575 K. A series of luminescence measurements show that the white-light emission arises from the lattice deformation, which are closely related to the [CdCl 4 I 2 ] 2- octahedra with high distortion from the distinct ionic radii of Cl and I. The first-principles calculations reveal that both the Cl and I components make significant contributions to the electronic band structures of Rb 2 CdCl 2 I 2 . These findings indicate that mixing halogens is an effective route to design and synthesize new single-component white-light-emitting materials. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Chang, Tsung-Yuan; Wang, Chih-Min; Lin, Tai-Yuan; Lin, Hsiu-Mei
2016-12-02
The increasing volume and complexity of waste associated with the modern economy poses a serious risk to ecosystems and human health. However, the remanufacturing and recycling of waste into usable products can lead to substantial resource savings. In the present study, clam shell waste was first transformed into pure and well-crystallized single-phase white light-emitting phosphor Ca₉Gd(PO₄)₇:Eu 2+ ,Mn 2+ materials. The phosphor Ca₉Gd(PO₄)₇:Eu 2+ ,Mn 2+ materials were synthesized by the solid-state reaction method and the carbothermic reduction process, and then characterized and analyzed by means of X-ray diffraction (XRD) and photoluminescence (PL) measurements. The structural and luminescent properties of the phosphors were investigated as well. The PL and quantum efficiency measurements showed that the luminescence properties of clam shell-based phosphors were comparable to that of the chemically derived phosphors. Moreover, white light-emitting diodes were fabricated through the integration of 380 nm chips and single-phase white light-emitting phosphors (Ca 0.979 Eu 0.006 Mn 0.015 )₉Gd(PO₄)₇ into a single package of a white light emitting diode (WLED) emitting a neutral white light of 5298 K with color coordinates of (0.337, 0.344).
Chang, Tsung-Yuan; Wang, Chih-Min; Lin, Tai-Yuan; Lin, Hsiu-Mei
2016-01-01
The increasing volume and complexity of waste associated with the modern economy poses a serious risk to ecosystems and human health. However, the remanufacturing and recycling of waste into usable products can lead to substantial resource savings. In the present study, clam shell waste was first transformed into pure and well-crystallized single-phase white light-emitting phosphor Ca9Gd(PO4)7:Eu2+,Mn2+ materials. The phosphor Ca9Gd(PO4)7:Eu2+,Mn2+ materials were synthesized by the solid-state reaction method and the carbothermic reduction process, and then characterized and analyzed by means of X-ray diffraction (XRD) and photoluminescence (PL) measurements. The structural and luminescent properties of the phosphors were investigated as well. The PL and quantum efficiency measurements showed that the luminescence properties of clam shell-based phosphors were comparable to that of the chemically derived phosphors. Moreover, white light-emitting diodes were fabricated through the integration of 380 nm chips and single-phase white light-emitting phosphors (Ca0.979Eu0.006Mn0.015)9Gd(PO4)7 into a single package of a white light emitting diode (WLED) emitting a neutral white light of 5298 K with color coordinates of (0.337, 0.344). PMID:28774101
NASA Astrophysics Data System (ADS)
Cope, K. R.; Bugbee, B.
2011-12-01
Light-emitting diodes (LEDs) are an emerging technology for plant growth lighting. Due to their narrow spectral output, colored LEDs provide many options for studying the spectral effects of light on plants. Early on, efficient red LEDs were the primary focus of photobiological research; however, subsequent studies have shown that normal plant growth and development cannot be achieved under red light without blue light supplementation. More recent studies have shown that red and blue (RB) LEDs supplemented with green light increase plant dry mass. This is because green light transmits more effectively through the leaf canopy than red and blue light, thus illuminating lower plant leaves and increasing whole-plant photosynthesis. Red, green and blue (RGB) light can be provided by either a conventional white light source (such as fluorescent lights), a combination of RGB LEDs, or from recently developed white LEDs. White LEDs exceed the efficiency of fluorescent lights and have a comparable broad spectrum. As such, they have the potential to replace fluorescent lighting for growth-chamber-based crop production both on Earth and in space. Here we report the results of studies on the effects of three white LED types (warm, neutral and cool) on plant growth and development compared to combinations of RB and RGB LEDs. Plants were grown under two constant light intensities (200 and 500 μmol m-2 s-1). Temperature, environmental conditions and root-zone environment were uniformly maintained across treatments. Phytochrome photoequilbria and red/far-red ratios were similar among treatments and were comparable to conventional fluorescent lights. Blue light had a significant effect on both plant growth (dry mass gain) and development (dry mass partitioning). An increase in the absolute amount (μmol m-2 s-1) of blue light from 0-80 μmol m-2 s-1 resulted in a decrease in stem elongation, independent of the light intensity. However, an increase in the relative amount (%) of blue light caused a decrease in specific leaf area (leaf area per unit leaf mass). As the relative amount of blue light increased, chlorophyll concentration per unit leaf area increased, but chlorophyll concentration per unit leaf mass remained constant. The relative amount of blue light increased total dry mass in some species while it remained constant in others. An increase in the fraction of green light increased dry mass in radish. Overall, white LEDs provided a more uniform spectral distribution, reduced stem elongation and leaf area, and maintained or increased dry mass as compared to RB and RGB LEDs. Cool white LEDs are more electrically efficient than the other two white LEDs and have sufficient blue light for normal plant growth and development at both high and low light intensities. Compared to sunlight, cool white LEDs are perhaps deficient in red light and may therefore benefit from supplementation with red LEDs. Future studies will be conducted to test this hypothesis. These results have significant implication for LADA growth chambers which are currently used for vegetable production on the International Space Station.
Generation of three wide frequency bands within a single white-light cavity
NASA Astrophysics Data System (ADS)
Othman, Anas; Yevick, David; Al-Amri, M.
2018-04-01
We theoretically investigate the double-Λ scheme inside a Fabry-Pérot cavity employing a weak probe beam and two strong driving fields together with an incoherent pumping mechanism. By generating analytical expressions for the susceptibility and applying the white-light cavity conditions, we devise a procedure that reaches the white-light condition at a smaller gas density than the values typically cited in similar previous studies. Further, when the intensities of the two driving fields are equal, a single giant white band is obtained, while for unequal driving fields three white bands can be present in the cavity. Two additional techniques are then advanced for generating three white bands and a method is described for displacing the center frequency of the bands. Finally, some potential applications are suggested.
The possible ocular hazards of LED dental illumination applications.
Stamatacos, Catherine; Harrison, Janet L
2014-04-01
The use of high-intensity illumination via Light-Emitting Diode (LED) headlamps is gaining in popularity with dentists and student dentists. Practitioners are using LED headlamps together with magnifying loupes, overhead LED illumination and fiber-optic dental handpieces for long periods of time. Although most manufacturers of these LED illuminators advertise that their devices emit "white" light, these still consist of two spectral bands - the blue spectral band, with its peak at 445 nm, and the green with its peak at 555 nm. While manufacturers suggest that their devices emit "white" light, spectral components of LED lights from different companies are significantly different. Dental headlamp manufacturers strive to create a white LED, and they advertise that this type of light emitted from their product offers bright white-light illumination. However, the manufacturing of a white LED light is done through selection of a white LED-type based on the peak blue strength in combination with the green peak strength and thus creating a beam-forming optic, which determines the beam quality. Some LED illuminators have a strong blue-light component versus the green-light component. Blue-light is highly energized and is close in the color spectrum to ultraviolet-light. The hazards of retinal damage with the use of high-intensity blue-lights has been well-documented. There is limited research regarding the possible ocular hazards of usage of high-intensity illuminating LED devices. Furthermore, the authors have found little research, standards, or guidelines examining the possible safety issues regarding the unique dental practice setting consisting of the combined use of LED illumination systems. Another unexamined component is the effect of high-intensity light reflective glare and magnification back to the practitioner's eyes due to the use of water during dental procedures. Based on the result of Dr. Janet Harrison's observations of beginning dental students in a laboratory setting, the aim of this review is to raise awareness of the potential risk for eye damage when singular or combinations of LED illumination are used.
The possible ocular hazards of LED dental illumination applications.
Stamatacos, Catherine; Harrison, Janet L
2013-01-01
The use of high-intensity illumination via Light-Emitting Diode (LED) headlamps is gaining in popularity with dentists and student dentists. Practitioners are using LED headlamps together with magnifying loupes, overhead LED illumination and fiber-optic dental handpieces for long periods of time. Although most manufacturers of these LED illuminators advertise that their devices emit "white" light, these still consist of two spectral bands--the blue spectral band, with its peak at 445 nm, and the green with its peak at 555 nm. While manufacturers suggest that their devices emit "white" light, spectral components of LED lights from different companies are significantly different. Dental headlamp manufacturers strive to create a white LED, and they advertise that this type of light emitted from their product offers bright white-light illumination. However, the manufacturing of a white LED light is done through selection of a white LED-type based on the peak blue strength in combination with the green peak strength and thus creating a beam-forming optic, which determines the beam quality. Some LED illuminators have a strong blue-light component versus the green-light component. Blue-light is highly energized and is close in the color spectrum to ultraviolet-light. The hazards of retinal damage with the use of high-intensity blue-lights has been well-documented. There is limited research regarding the possible ocular hazards of usage of high-intensity illuminating LED devices. Furthermore, the authors have found little research, standards, or guidelines examining the possible safety issues regarding the unique dental practice setting consisting of the combined use of LED illumination systems. Another unexamined component is the effect of high-intensity light reflective glare and magnification back to the practitioner's eyes due to the use of water during dental procedures. Based on the result of Dr. Janet Harrison's observations of beginning dental students in a laboratory setting, the aim of this review is to raise awareness of the potential risk for eye damage when singular or combinations of LED illumination are used.
White light emitting device based on single-phase CdS quantum dots.
Li, Feng; Nie, Chao; You, Lai; Jin, Xiao; Zhang, Qin; Qin, Yuancheng; Zhao, Feng; Song, Yinglin; Chen, Zhongping; Li, Qinghua
2018-05-18
White light emitting diodes (WLEDs) based on quantum dots (QDs) are emerging as robust candidates for white light sources, however they are suffering from the problem of energy loss resulting from the re-absorption and self-absorption among the employed QDs of different peak wavelengths. It still remains a challenging task to construct WLEDs based on single-phase QD emitters. Here, CdS QDs with short synthesis times are introduced to the fabrication of WLEDs. With a short synthesis time, on one hand, CdS QDs with a small diameter with blue emission can be obtained. On the other hand, surface reconstruction barely has time to occur, and the surface is likely defect-ridden, which enables the existence of a broad emission covering the range of green, yellow and red regions. This is essential for the white light emission of CdS QDs, and is very important for WLED applications. The temporal evolution of the PL spectra for CdS QDs was obtained to investigate the influence of growth time on the luminescent properties. The CdS QDs with a growth time of 0.5 min exhibited a colour rendering index (CRI) of 79.5 and a correlated colour temperature (CCT) of 6238 K. With increasing reaction time, the colour coordinates of the CdS QDs will move away from the white light region in the CIE 1931 chromaticity diagram. By integrating the as prepared white light emission CdS QDs with a violet GaN chip, WLEDs were fabricated. The fabricated WLEDs exhibited a CRI of 87.9 and a CCT of 4619 K, which satisfy the demand of general illumination. The luminous flux and the luminous efficiency of the fabricated WLEDs, being less advanced than current commercial white light sources, can be further improved, meaning there is a need for much more in-depth studies on white light emission CdS QDs.
White light emitting device based on single-phase CdS quantum dots
NASA Astrophysics Data System (ADS)
Li, Feng; Nie, Chao; You, Lai; Jin, Xiao; Zhang, Qin; Qin, Yuancheng; Zhao, Feng; Song, Yinglin; Chen, Zhongping; Li, Qinghua
2018-05-01
White light emitting diodes (WLEDs) based on quantum dots (QDs) are emerging as robust candidates for white light sources, however they are suffering from the problem of energy loss resulting from the re-absorption and self-absorption among the employed QDs of different peak wavelengths. It still remains a challenging task to construct WLEDs based on single-phase QD emitters. Here, CdS QDs with short synthesis times are introduced to the fabrication of WLEDs. With a short synthesis time, on one hand, CdS QDs with a small diameter with blue emission can be obtained. On the other hand, surface reconstruction barely has time to occur, and the surface is likely defect-ridden, which enables the existence of a broad emission covering the range of green, yellow and red regions. This is essential for the white light emission of CdS QDs, and is very important for WLED applications. The temporal evolution of the PL spectra for CdS QDs was obtained to investigate the influence of growth time on the luminescent properties. The CdS QDs with a growth time of 0.5 min exhibited a colour rendering index (CRI) of 79.5 and a correlated colour temperature (CCT) of 6238 K. With increasing reaction time, the colour coordinates of the CdS QDs will move away from the white light region in the CIE 1931 chromaticity diagram. By integrating the as prepared white light emission CdS QDs with a violet GaN chip, WLEDs were fabricated. The fabricated WLEDs exhibited a CRI of 87.9 and a CCT of 4619 K, which satisfy the demand of general illumination. The luminous flux and the luminous efficiency of the fabricated WLEDs, being less advanced than current commercial white light sources, can be further improved, meaning there is a need for much more in-depth studies on white light emission CdS QDs.
The Influence of the Environment and Clothing on Human Exposure to Ultraviolet Light
Liu, Jin; Zhang, Wei
2015-01-01
Objection The aim of this study is to determine the effect of clothing and the environment on human exposure to ultraviolet light. Methods The ultraviolet (ultraviolet A and ultraviolet B) light intensity was measured, and air quality parameters were recorded in 2014 in Beijing, China. Three types of clothing (white polyester cloth, pure cotton white T-shirt, and pure cotton black T-shirt) were individually placed on a mannequin. The ultraviolet (ultraviolet A and ultraviolet B) light intensities were measured above and beneath each article of clothing, and the percentage of ultraviolet light transmission through the clothing was calculated. Results (1) The ultraviolet light transmission was significantly higher through white cloth than through black cloth; the transmission was significantly higher through polyester cloth than through cotton. (2) The weather significantly influenced ultraviolet light transmission through white polyester cloth; transmission was highest on clear days and lowest on overcast days (ultraviolet A: P=0.000; ultraviolet B: P=0.008). (3) Air quality parameters (air quality index and particulate matter 2.5 and 10) were inversely related to the ultraviolet light intensity that reached the earth’s surface. Ultraviolet B transmission through white polyester cloth was greater under conditions of low air pollution compared with high air pollution. Conclusion Clothing color and material and different types of weather affected ultraviolet light transmission; for one particular cloth, the transmission decreased with increasing air pollution. PMID:25923778
The influence of the environment and clothing on human exposure to ultraviolet light.
Liu, Jin; Zhang, Wei
2015-01-01
The aim of this study is to determine the effect of clothing and the environment on human exposure to ultraviolet light. The ultraviolet (ultraviolet A and ultraviolet B) light intensity was measured, and air quality parameters were recorded in 2014 in Beijing, China. Three types of clothing (white polyester cloth, pure cotton white T-shirt, and pure cotton black T-shirt) were individually placed on a mannequin. The ultraviolet (ultraviolet A and ultraviolet B) light intensities were measured above and beneath each article of clothing, and the percentage of ultraviolet light transmission through the clothing was calculated. (1) The ultraviolet light transmission was significantly higher through white cloth than through black cloth; the transmission was significantly higher through polyester cloth than through cotton. (2) The weather significantly influenced ultraviolet light transmission through white polyester cloth; transmission was highest on clear days and lowest on overcast days (ultraviolet A: P=0.000; ultraviolet B: P=0.008). (3) Air quality parameters (air quality index and particulate matter 2.5 and 10) were inversely related to the ultraviolet light intensity that reached the earth's surface. Ultraviolet B transmission through white polyester cloth was greater under conditions of low air pollution compared with high air pollution. Clothing color and material and different types of weather affected ultraviolet light transmission; for one particular cloth, the transmission decreased with increasing air pollution.
Wide color gamut display with white and emerald backlighting.
Duan, Lvyin; Lei, Zhichun
2018-02-20
This paper proposes a wide color gamut approach that uses white and emerald lighting units as the backlight of the liquid crystal display. The white and emerald backlights are controlled by the image to be displayed. The mixing ratio of the white and the emerald lighting is analyzed so that the maximal color gamut coverage ratio can be achieved. Experimental results prove the effectiveness of the wide color gamut approach using white and emerald backlights.
Growth of hybrid poplars, white spruce, and jack pine under various artificial lights.
Pamela S. Roberts; J. Zavitkovski
1981-01-01
Describes the energy consumption and biological effects of fluorescent, incandescent, and high pressure sodium lighting on the growth of poplars, white spruce, and jack pine in a greenhouse. At similar light levels the biological effects of all three light sources were similar. The incandescent lamps consumed several times more energy than the other two light...
Characteristics of white LED transmission through a smoke screen
NASA Astrophysics Data System (ADS)
Zheng, Yunfei; Yang, Aiying; Feng, Lihui; Guo, Peng
2018-01-01
The characteristics of white LED transmission through a smoke screen is critical for visible light communication through a smoke screen. Based on the Mie scattering theory, the Monte Carlo transmission model is established. Based on the probability density function, the white LED sampling model is established according to the measured spectrum of a white LED and the distribution angle of the lambert model. The sampling model of smoke screen particle diameter is also established according to its distribution. We simulate numerically the influence the smoke thickness, the smoke concentration and the angle of irradiance of white LED on transmittance of the white LED. We construct a white LED smoke transmission experiment system. The measured result on the light transmittance and the smoke concentration agreed with the simulated result, and demonstrated the validity of simulation model for visible light transmission channel through a smoke screen.
White light emission and optical gains from a Si nanocrystal thin film
NASA Astrophysics Data System (ADS)
Wang, Dong-Chen; Hao, Hong-Chen; Chen, Jia-Rong; Zhang, Chi; Zhou, Jing; Sun, Jian; Lu, Ming
2015-11-01
We report a Si nanocrystal thin film consisting of free-standing Si nanocrystals, which can emit white light and show positive optical gains for its red, green and blue (RGB) components under ultraviolet excitation. Si nanocrystals with ϕ = 2.31 ± 0.35 nm were prepared by chemical etching of Si powder, followed by filtering. After being mixed with SiO2 sol-gel and thermally annealed, a broadband photoluminescence (PL) from the thin film was observed. The RGB ratio of the PL can be tuned by changing the annealing temperature or atmosphere, which is 1.00/3.26/4.59 for the pure white light emission. The origins of the PL components could be due to differences in oxygen-passivation degree for Si nanocrystals. The results may find applications in white-light Si lasing and Si lighting.
Huang, Jinhai; McAlinden, Colm; Huang, Yingying; Wen, Daizong; Savini, Giacomo; Tu, Ruixue; Wang, Qinmei
2017-02-24
A meta-analysis to compare ocular biometry measured by optical low-coherence reflectometry (Lenstar LS900; Haag Streit) and partial coherence interferometry (the IOLMaster optical biometer; Carl Zeiss Meditec). A systematic literature search was conducted for articles published up to August 6th 2015 in the Cochrane Library, PubMed, Medline, Embase, China Knowledge Resource Integrated Database and Wanfang Data. A total of 18 studies involving 1921 eyes were included. There were no statistically significant differences in axial length (mean difference [MD] 0 mm; 95% confidence interval (CI) -0.08 to 0.08 mm; p = 0.92), anterior chamber depth (MD 0.02 mm; 95% CI -0.07 to 0.10 mm; p = 0.67), flat keratometry (MD -0.05 D; 95% CI -0.16 to 0.06 D; p = 0.39), steep keratometry (MD -0.09 D; 95% CI -0.20 to 0.03 D; p = 0.13), and mean keratometry (MD -0.15 D; 95% CI -0.30 to 0.00 D; p = 0.05). The white to white distance showed a statistically significant difference (MD -0.14 mm; 95% CI -0.25 to -0.02 mm; p = 0.02). In conclusion, there was no difference in the comparison of AL, ACD and keratometry readings between the Lenstar and IOLMaster. However the WTW distance indicated a statistically significant difference between the two devices. Apart from the WTW distance, measurements for AL, ACD and keratometry readings may be used interchangeability with both devices.
Photocontrol of Spirodela intermedia flavonoids 1
McClure, Jerry W.
1968-01-01
Clone 115 of Spirodela intermedia W. Koch grown in Hutner's medium with sucrose produces the glycoflavones vitexin and orientin in darkness or in light of various wavelengths. The anthocyanin cyanidin-3-monoglucoside was present only after prolonged illumination of the plants with white or blue light. No cyanidin-glucoside was formed under constant red light. The substitution of red, blue, or far-red light for the last 24 hours of culture under constant white light reduced each flavonoid over those maintained in white light or given 24 hours of darkness. Reducing the light intensity from 900 to 400 ft-c of constant cool-white fluorescent light had no appreciable influence on vitexin (4′-hydroxyl) but markedly reduced orientin and cyanidin-glucoside (both 3′4′-hydroxyl). Substituting alternate 12-hour periods of light and darkness for continuous light reduced the glycoflavones approximately 50% while cyanidin-glucoside was reduced about 85%. Most responses to red, blue, or far-red light are consistent with a phytochrome-controlled promotion of vitexin synthesis. The evidence suggests that in S. intermedia: A) Environmental conditions which elicit cyanidin-glucoside and glycoflavone synthesis are different since a prolonged illumination with white light is required for the former but not the latter. B) The availability of a 3′4′-hydroxyl precursor for orientin and anthocyanin probably limits their synthesis in low intensity light. Since vitexin is essentially unaltered under these conditions this also suggests that acetate or malonate units for the A-ring and the deamination products of aromatic amino acids for the B-ring and carbons of the C-ring are not limiting factors. C) Light controls the biosynthesis of flavonols in the same manner as glycoflavones; under all experimental conditions the synthesis of kaempferol paralleled vitexin while quercetin responded in the same manner as crientin. PMID:16656751
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Xufan; Budai, John D.; Liu, Feng
2013-01-01
Phosphor-converted white light-emitting diodes for indoor illumination need to be warm-white (i.e., correlated color temperature <4000 K) with good color rendition (i.e., color rendering index >80). However, no single-phosphor, single-emitting-center-converted white light-emitting diodes can simultaneously satisfy the color temperature and rendition requirements due to the lack of sufficient red spectral component in the phosphors’ emission spectrum. Here, we report a new yellow Ba 0.93Eu 0.07Al 2O 4 phosphor that has a new orthorhombic lattice structure and exhibits a broad yellow photoluminescence band with sufficient red spectral component. Warm-white emissions with correlated color temperature <4000 K and color rendering index >80more » were readily achieved when combining the Ba 0.93Eu 0.07Al 2O 4 phosphor with a blue light-emitting diode (440–470 nm). This study demonstrates that warm-white light-emitting diodes with high color rendition (i.e., color rendering index >80) can be achieved based on single-phosphor, single-emitting-center conversion.« less
NASA Astrophysics Data System (ADS)
Kobayashi, Naofumi; Kasahara, Takashi; Edura, Tomohiko; Oshima, Juro; Ishimatsu, Ryoichi; Tsuwaki, Miho; Imato, Toshihiko; Shoji, Shuichi; Mizuno, Jun
2015-10-01
We demonstrated a novel microfluidic white organic light-emitting diode (microfluidic WOLED) based on integrated sub-100-μm-wide microchannels. Single-μm-thick SU-8-based microchannels, which were sandwiched between indium tin oxide (ITO) anode and cathode pairs, were fabricated by photolithography and heterogeneous bonding technologies. 1-Pyrenebutyric acid 2-ethylhexyl ester (PLQ) was used as a solvent-free greenish-blue liquid emitter, while 2,8-di-tert-butyl-5,11-bis(4-tert-butylphenyl)-6,12-diphenyltetracene (TBRb)-doped PLQ was applied as a yellow liquid emitter. In order to form the liquid white light-emitting layer, the greenish-blue and yellow liquid emitters were alternately injected into the integrated microchannels. The fabricated electro-microfluidic device successfully exhibited white electroluminescence (EL) emission via simultaneous greenish-blue and yellow emissions under an applied voltage of 100 V. A white emission with Commission Internationale de l’Declairage (CIE) color coordinates of (0.40, 0.42) was also obtained; the emission corresponds to warm-white light. The proposed device has potential applications in subpixels of liquid-based microdisplays and for lighting.
Chen, Mengyun; Zhao, Yang; Yan, Lijia; Yang, Shuai; Zhu, Yanan; Murtaza, Imran; He, Gufeng; Meng, Hong; Huang, Wei
2017-01-16
White-light-emitting materials with high mobility are necessary for organic white-light-emitting transistors, which can be used for self-driven OLED displays or OLED lighting. In this study, we combined two materials with similar structures-2-fluorenyl-2-anthracene (FlAnt) with blue emission and 2-anthryl-2-anthracence (2A) with greenish-yellow emission-to fabricate OLED devices, which showed unusual solid-state white-light emission with the CIE coordinates (0.33, 0.34) at 10 V. The similar crystal structures ensured that the OTFTs based on mixed FlAnt and 2A showed high mobility of 1.56 cm 2 V -1 s -1 . This simple method provides new insight into the design of high-performance white-emitting transistor materials and structures. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Spectral optimization simulation of white light based on the photopic eye-sensitivity curve
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dai, Qi, E-mail: qidai@tongji.edu.cn; Institute for Advanced Study, Tongji University, 1239 Siping Road, Shanghai 200092; Key Laboratory of Ecology and Energy-saving Study of Dense Habitat
Spectral optimization simulation of white light is studied to boost maximum attainable luminous efficacy of radiation at high color-rendering index (CRI) and various color temperatures. The photopic eye-sensitivity curve V(λ) is utilized as the dominant portion of white light spectra. Emission spectra of a blue InGaN light-emitting diode (LED) and a red AlInGaP LED are added to the spectrum of V(λ) to match white color coordinates. It is demonstrated that at the condition of color temperature from 2500 K to 6500 K and CRI above 90, such white sources can achieve spectral efficacy of 330–390 lm/W, which is higher than the previously reportedmore » theoretical maximum values. We show that this eye-sensitivity-based approach also has advantages on component energy conversion efficiency compared with previously reported optimization solutions.« less
Wang, Guan-E; Xu, Gang; Wang, Ming-Sheng; Cai, Li-Zhen; Li, Wen-Hua; Guo, Guo-Cong
2015-12-01
Single-component white light materials may create great opportunities for novel conventional lighting applications and display systems; however, their reported color rendering index (CRI) values, one of the key parameters for lighting, are less than 90, which does not satisfy the demand of color-critical upmarket applications, such as photography, cinematography, and art galleries. In this work, two semiconductive chloroplumbate (chloride anion of lead(ii)) hybrids, obtained using a new inorganic-organic hybrid strategy, show unprecedented 3-D inorganic framework structures and white-light-emitting properties with high CRI values around 90, one of which shows the highest value to date.
SEMICONDUCTOR MATERIALS: White light photoluminescence from ZnS films on porous Si substrates
NASA Astrophysics Data System (ADS)
Caifeng, Wang; Qingshan, Li; Bo, Hu; Weibing, Li
2010-03-01
ZnS films were deposited on porous Si (PS) substrates using a pulsed laser deposition (PLD) technique. White light emission is observed in photoluminescence (PL) spectra, and the white light is the combination of blue and green emission from ZnS and red emission from PS. The white PL spectra are broad, intense in a visible band ranging from 450 to 700 nm. The effects of the excitation wavelength, growth temperature of ZnS films, PS porosity and annealing temperature on the PL spectra of ZnS/PS were also investigated.
Lim, Helena; Li, Fang-Chi; Friedman, Shimon; Kishen, Anil
2016-09-01
Residual microstrain influences the resistance to crack propagation in a biomaterial. This study evaluated the residual microstrain and microdefects formed in dentin after canal instrumentation in teeth maintained in hydrated and nonhydrated environments. Canals of 18 extracted human premolars with single-root canals were instrumented in accordance with 3 groups: the ProTaper Universal (Dentsply Maillefer, Ballaigues, Switzerland) group: ProTaper Universal (S1, S2, F1, and F2) used in rotation, the WaveOne Primary (Dentsply Maillefer) group: the WaveOne (Primary) used in reciprocal motion, and the control group: hand files. Half the specimens (3/group) were maintained in deionized water (hydrated) and half in ambient relative humidity conditions (22°C, 55% RH) for 72 hours (nonhydrated). Customized high-sensitivity digital moiré interferometry was used to qualitatively evaluate pre- and postinstrumentation dentinal microstrain. Subsequently, specimens were examined for dentinal microdefects with micro-computed tomographic imaging and polarized light microscopy. Digital moiré interferometry showed only minor changes in postinstrumentation microstrain in hydrated dentin in all groups, suggestive of a stress relaxation behavior. Nonhydrated dentin in all groups showed localized concentration of postinstrumentation microstrain, which appeared higher in the WaveOne group than in the other groups. No dentinal microdefects were detected by micro-computed tomographic imaging and polarized light microscopy in hydrated and nonhydrated specimens in all groups. This study suggested that the biomechanical response of root dentin to instrumentation was influenced by hydration. Reciprocating, rotary, and hand instrumentation of well-hydrated roots did not cause an increase in residual microstrain or the formation of microdefects in root dentin. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Lee, Ho Won; Lee, Ki-Heon; Lee, Jae Woo; Kim, Jong-Hoon; Yang, Heesun; Kim, Young Kwan
2015-02-01
In this work, the simple process of hybrid quantum dot (QD)/organic light-emitting diode (OLED) was proposed to apply a white illumination light by using QD plate and organic fluorescence. Conventional blue fluorescent OLEDs were firstly fabricated and then QD plates of various concentrations, which can be controlled of UV-vis absorption and photoluminescence spectrum, were attached under glass substrate of completed blue devices. The suggested process indicates that we could fabricate the white device through very simple process without any deposition of orange or red organic emitters. Therefore, this work would be demonstrated that the potential simple process for white applications can be applied and also can be extended to additional research on light applications.
NASA Astrophysics Data System (ADS)
Li, Zhi-Guo; Chen, Qi-Feng; Gu, Yun-Jun; Zheng, Jun; Chen, Xiang-Rong
2016-10-01
The accurate hydrodynamic description of an event or system that addresses the equations of state, phase transitions, dissociations, ionizations, and compressions, determines how materials respond to a wide range of physical environments. To understand dense matter behavior in extreme conditions requires the continual development of diagnostic methods for accurate measurements of the physical parameters. Here, we present a comprehensive diagnostic technique that comprises optical pyrometry, velocity interferometry, and time-resolved spectroscopy. This technique was applied to shock compression experiments of dense gaseous deuterium-helium mixtures driven via a two-stage light gas gun. The advantage of this approach lies in providing measurements of multiple physical parameters in a single experiment, such as light radiation histories, particle velocity profiles, and time-resolved spectra, which enables simultaneous measurements of shock velocity, particle velocity, pressure, density, and temperature and expands understanding of dense high pressure shock situations. The combination of multiple diagnostics also allows different experimental observables to be measured and cross-checked. Additionally, it implements an accurate measurement of the principal Hugoniots of deuterium-helium mixtures, which provides a benchmark for the impedance matching measurement technique.
Retrieving the axial position of fluorescent light emitting spots by shearing interferometry
NASA Astrophysics Data System (ADS)
Schindler, Johannes; Schau, Philipp; Brodhag, Nicole; Frenner, Karsten; Osten, Wolfgang
2016-12-01
A method for the depth-resolved detection of fluorescent radiation based on imaging of an interference pattern of two intersecting beams and shearing interferometry is presented. The illumination setup provides the local addressing of the excitation of fluorescence and a coarse confinement of the excitation volume in axial and lateral directions. The reconstruction of the depth relies on the measurement of the phase of the fluorescent wave fronts. Their curvature is directly related to the distance of a source to the focus of the imaging system. Access to the phase information is enabled by a lateral shearing interferometer based on a Michelson setup. This allows the evaluation of interference signals even for spatially and temporally incoherent light such as emitted by fluorophors. An analytical signal model is presented and the relations for obtaining the depth information are derived. Measurements of reference samples with different concentrations and spatial distributions of fluorophors and scatterers prove the experimental feasibility of the method. In a setup optimized for flexibility and operating in the visible range, sufficiently large interference signals are recorded for scatterers placed in depths in the range of hundred micrometers below the surface in a material with scattering properties comparable to dental enamel.
One- and two-mode squeezed light in correlated interferometry
NASA Astrophysics Data System (ADS)
Ruo-Berchera, I.; Degiovanni, I. P.; Olivares, S.; Samantaray, N.; Traina, P.; Genovese, M.
2015-11-01
We study in detail a system of two interferometers aimed at detecting extremely faint phase fluctuations. This system can represent a breakthrough for detecting a faint correlated signal that would remain otherwise undetectable even using the most sensitive individual interferometric devices, as in the case of so-called holographic noise. The signature of this kind of noise emerges as a correlation between the output signals of the interferometers. On the other hand, when holographic noise is absent one expects uncorrelated signals since the time-averaged fluctuations due to shot noise and other independent contributions vanish (though limiting the overall sensitivity). We show how injecting quantum light in the free ports of the interferometers can reduce the photon noise of the system beyond the shot noise, enhancing the resolution in the phase-correlation estimation. We analyze the use of both the two-mode squeezed vacuum and two independent squeezed states. Our results confirm the benefit of using squeezed beams together with strong coherent beams in interferometry. We also investigate the possible use of the two-mode squeezed vacuum, discovering interesting and unexplored areas of application of bipartite entanglement, in particular the possibility of reaching in principle a surprising uncertainty reduction.
Study of density distribution in a near-critical simple fluid (19-IML-1)
NASA Technical Reports Server (NTRS)
Michels, Teun
1992-01-01
This experiment uses visual observation, interferometry, and light scattering techniques to observe and analyze the density distribution in SF6 above and below the critical temperature. Below the critical temperature, the fluid system is split up into two coexisting phases, liquid and vapor. The spatial separation of these phases on earth, liquid below and vapor above, is not an intrinsic property of the fluid system; it is merely an effect of the action of the gravity field. At a fixed temperature, the density of each of the coexisting phases is in principle fixed. However, near T sub c where the fluid is strongly compressible, gravity induced hydrostatic forces will result in a gradual decrease in density with increasing height in the sample container. This hydrostatic density profile is even more pronounced in the one phase fluid at temperatures slightly above T sub c. The experiment is set up to study the intrinsic density distributions and equilibration rates of a critical sample in a small container. Interferometry will be used to determine local density and thickness of surface and interface layers. The light scattering data will reveal the size of the density fluctuations on a microscopic scale.
Coherence-length-gated distributed optical fiber sensing based on microwave-photonic interferometry.
Hua, Liwei; Song, Yang; Cheng, Baokai; Zhu, Wenge; Zhang, Qi; Xiao, Hai
2017-12-11
This paper presents a new optical fiber distributed sensing concept based on coherent microwave-photonics interferometry (CMPI), which uses a microwave modulated coherent light source to interrogate cascaded interferometers for distributed measurement. By scanning the microwave frequencies, the complex microwave spectrum is obtained and converted to time domain signals at known locations by complex Fourier transform. The amplitudes of these time domain pulses are a function of the optical path differences (OPDs) of the distributed interferometers. Cascaded fiber Fabry-Perot interferometers (FPIs) fabricated by femtosecond laser micromachining were used to demonstrate the concept. The experimental results indicated that the strain measurement resolution can be better than 0.6 µε using a FPI with a cavity length of 1.5 cm. Further improvement of the strain resolution to the nε level is achievable by increasing the cavity length of the FPI to over 1m. The tradeoff between the sensitivity and dynamic range was also analyzed in detail. To minimize the optical power instability (either from the light source or the fiber loss) induced errors, a single reflector was added in front of an individual FPI as an optical power reference for the purpose of compensation.
Retrieving the axial position of fluorescent light emitting spots by shearing interferometry.
Schindler, Johannes; Schau, Philipp; Brodhag, Nicole; Frenner, Karsten; Osten, Wolfgang
2016-12-01
A method for the depth-resolved detection of fluorescent radiation based on imaging of an interference pattern of two intersecting beams and shearing interferometry is presented. The illumination setup provides the local addressing of the excitation of fluorescence and a coarse confinement of the excitation volume in axial and lateral directions. The reconstruction of the depth relies on the measurement of the phase of the fluorescent wave fronts. Their curvature is directly related to the distance of a source to the focus of the imaging system. Access to the phase information is enabled by a lateral shearing interferometer based on a Michelson setup. This allows the evaluation of interference signals even for spatially and temporally incoherent light such as emitted by fluorophors. An analytical signal model is presented and the relations for obtaining the depth information are derived. Measurements of reference samples with different concentrations and spatial distributions of fluorophors and scatterers prove the experimental feasibility of the method. In a setup optimized for flexibility and operating in the visible range, sufficiently large interference signals are recorded for scatterers placed in depths in the range of hundred micrometers below the surface in a material with scattering properties comparable to dental enamel.
Zhuang, Fengjiang; Jungbluth, Bernd; Gronloh, Bastian; Hoffmann, Hans-Dieter; Zhang, Ge
2013-07-20
We present a continuous-wave (CW) intracavity frequency-doubled Yb:YAG laser providing 1030 and 515 nm output simultaneously. This laser system was designed for photothermal common-path interferometry to measure spatially resolved profiles of the linear absorption in dielectric media and coatings for visible or infrared light as well as of the nonlinear absorption for the combination of both. A Z-shape laser cavity was designed, providing a beam waist in which an LBO crystal was located for effective second-harmonic generation (SHG). Suitable frequency conversion parameters and cavity configurations were discussed to achieve the optimal performance of a diode-pumped CW SHG laser. A 12.4 W 1030 nm laser and 5.4 W 515 nm laser were developed simultaneously in our experiment.
WFPC2 Observations of Astrophysically Important Visual Binaries
NASA Astrophysics Data System (ADS)
Bond, Howard
1997-07-01
We recently used WFPC2 images of Procyon A and B to measure an extremely accurate separation of the bright F star and its much fainter white-dwarf companion. Combined with ground-based astrometry of the bright star, our observation significantly revises downward the derived masses, and brings Procyon A into excellent agreement with theoretical evolutionary tracks for the first time. We now propose to begin a modest but long-term program of WFPC2 measurements of astrophysically important visual binaries, working in a regime of large magnitude differences and/or faint stars where ground-based speckle interferometry cannot compete. We have selected three systems: Procyon {P=40 yr}, for which continued monitoring will even further refine the very accurate masses; Mu Cas {P=21 yr}, a famous metal-deficient G dwarf for which accurate masses will lead to the star's helium content with cosmological implications; and G 107-70, a close double white dwarf {P=18 yr} that promises to add two accurate masses to the tiny handful of white-dwarf masses that are directly known from dynamical measurements.
WFPC2 Observations of Astrophysically Important Visual Binaries - Continued
NASA Astrophysics Data System (ADS)
Bond, Howard
1999-07-01
We recently used WFPC2 images of Procyon A and B to measure an extremely accurate separation of the bright F star and its much fainter white-dwarf companion. Combined with ground-based astrometry of the bright star, our observation significantly revises downward the derived masses, and brings Procyon A into excellent agreement with theoretical evolutionary tracks for the first time. We now propose to begin a modest but long-term program of WFPC2 measurements of astrophysically important visual binaries, working in a regime of large magnitude differences and/or faint stars where ground-based speckle interferometry cannot compete. We have selected three systems: Procyon {P=40 yr}, for which continued monitoring will even further refine the very accurate masses; Mu Cas {P=21 yr}, a famous metal-deficient G dwarf for which accurate masses will lead to the star's helium content with cosmological implications; and G 107-70, a close double white dwarf {P=18 yr} that promises to add two accurate masses to the tiny handful of white-dwarf masses that are directly known from dynamical measurements.
Phonon counting and intensity interferometry of a nanomechanical resonator
NASA Astrophysics Data System (ADS)
Cohen, Justin D.; Meenehan, Seán M.; Maccabe, Gregory S.; Gröblacher, Simon; Safavi-Naeini, Amir H.; Marsili, Francesco; Shaw, Matthew D.; Painter, Oskar
2015-04-01
In optics, the ability to measure individual quanta of light (photons) enables a great many applications, ranging from dynamic imaging within living organisms to secure quantum communication. Pioneering photon counting experiments, such as the intensity interferometry performed by Hanbury Brown and Twiss to measure the angular width of visible stars, have played a critical role in our understanding of the full quantum nature of light. As with matter at the atomic scale, the laws of quantum mechanics also govern the properties of macroscopic mechanical objects, providing fundamental quantum limits to the sensitivity of mechanical sensors and transducers. Current research in cavity optomechanics seeks to use light to explore the quantum properties of mechanical systems ranging in size from kilogram-mass mirrors to nanoscale membranes, as well as to develop technologies for precision sensing and quantum information processing. Here we use an optical probe and single-photon detection to study the acoustic emission and absorption processes in a silicon nanomechanical resonator, and perform a measurement similar to that used by Hanbury Brown and Twiss to measure correlations in the emitted phonons as the resonator undergoes a parametric instability formally equivalent to that of a laser. Owing to the cavity-enhanced coupling of light with mechanical motion, this effective phonon counting technique has a noise equivalent phonon sensitivity of 0.89 +/- 0.05. With straightforward improvements to this method, a variety of quantum state engineering tasks using mesoscopic mechanical resonators would be enabled, including the generation and heralding of single-phonon Fock states and the quantum entanglement of remote mechanical elements.
Resolution enhancement of partial coherence interferometry by dispersion compensation
NASA Astrophysics Data System (ADS)
Baumgartner, Angela; Hitzenberger, Christoph K.; Drexler, Wolfgang; Fercher, Adolf F.
1997-12-01
In the past ten years partial coherence interferometry and optical coherence tomography have been developed for high precision biometry and tomography of the human eye in vivo. The longitudinal resolution of the optical coherence tomography technique depends on the spectral bandwidth of the light source used and on the dispersion of the media to be measured. In nondispersive media the resolution is approximately equal to the coherence length of the light used, which is inversely proportional to the width of the emission spectrum. Hence, a broad emission spectrum yields a short coherence length and consequently a good resolution. However, if the tissue under investigation is dispersive, the coherence envelope of the signal broadens leading to a decrease in resolution and interference fringe contrast. This effect becomes predominant if measurements through the dispersive media of the eye to the retina are performed with source bandwidths larger than approximately 25 nm. In order to achieve optimum resolution of OCT by applying a light source with a broad emission spectrum, the dispersion of the object to be measured, i.e. in this case of the ocular media, has to be compensated. Within the scope of this work we demonstrate the resolution improvement that is obtained by compensating the dispersive effects of the ocular media and using broadband light sources. Furthermore, we present the first optical coherence tomogram recorded with this technique in the retina of a human eye in vivo with an axial geometrical resolution of approximately 6 micrometers which is a two-fold improvement compared to presently used technology.
Imaging System and Method for Biomedical Analysis
2013-03-11
biological particles and items of interest. Broadly, Padmanabhan et al. utilize the diffraction of a laser light source in flow cytometry to count...spread of light from multiple LED devices over the entire sample surface. Preferably, light source 308 projects a full spectrum white light. Light...for example, red blood cells, white blood cells (which may include lymphocytes which are relatively large and easily detectable), T-helper cells
9 CFR 381.156 - Poultry meat content standards for certain poultry products.
Code of Federal Regulations, 2013 CFR
2013-01-01
... specifications for percent light meat and percent dark meat set forth in said table. Table I Label terminology Percent light meat Percent dark meat Natural proportions 50-65 50-35. Light or white meat 100 0. Dark meat 0 100. Light and dark meat 51-65 49-35. Dark and light meat 35-49 65-51. Mostly white meat 66 or...
9 CFR 381.156 - Poultry meat content standards for certain poultry products.
Code of Federal Regulations, 2012 CFR
2012-01-01
... specifications for percent light meat and percent dark meat set forth in said table. Table I Label terminology Percent light meat Percent dark meat Natural proportions 50-65 50-35. Light or white meat 100 0. Dark meat 0 100. Light and dark meat 51-65 49-35. Dark and light meat 35-49 65-51. Mostly white meat 66 or...
9 CFR 381.156 - Poultry meat content standards for certain poultry products.
Code of Federal Regulations, 2014 CFR
2014-01-01
... specifications for percent light meat and percent dark meat set forth in said table. Table I Label terminology Percent light meat Percent dark meat Natural proportions 50-65 50-35. Light or white meat 100 0. Dark meat 0 100. Light and dark meat 51-65 49-35. Dark and light meat 35-49 65-51. Mostly white meat 66 or...
The role of laser wavelength on plasma generation and expansion of ablation plumes in air
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hussein, A. E.; Department of Physics, McGill University, Montreal, Quebec H3A 0G4; Diwakar, P. K.
2013-04-14
We investigated the role of excitation laser wavelength on plasma generation and the expansion and confinement of ablation plumes at early times (0-500 ns) in the presence of atmospheric pressure. Fundamental, second, and fourth harmonic radiation from Nd:YAG laser was focused on Al target to produce plasma. Shadowgraphy, fast photography, and optical emission spectroscopy were employed to analyze the plasma plumes, and white light interferometry was used to characterize the laser ablation craters. Our results indicated that excitation wavelength plays a crucial role in laser-target and laser-plasma coupling, which in turn affects plasma plume morphology and radiation emission. Fast photographymore » and shadowgraphy images showed that plasmas generated by 1064 nm are more cylindrical compared to plasmas generated by shorter wavelengths, indicating the role of inverse bremsstrahlung absorption at longer laser wavelength excitation. Electron density estimates using Stark broadening showed higher densities for shorter wavelength laser generated plasmas, demonstrating the significance of absorption caused by photoionization. Crater depth analysis showed that ablated mass is significantly higher for UV wavelengths compared to IR laser radiation. In this experimental study, the use of multiple diagnostic tools provided a comprehensive picture of the differing roles of laser absorption mechanisms during ablation.« less
Full-field OCT for fast diagnostic of head and neck cancer
NASA Astrophysics Data System (ADS)
De Leeuw, Frederic; Casiraghi, Odile; Ben Lakhdar, Aïcha; Abbaci, Muriel; Laplace-Builhé, Corinne
2015-02-01
Full-Field OCT (FFOCT) produces optical slices of tissue using white light interferometry providing in-depth 2D images, with an isotropic resolution around 1 micrometer. These optical biopsy images are similar to those obtained with established histological procedures, but without tissue preparation and within few minutes. This technology could be useful when diagnosing a lesion or at the time of its surgical management. Here we evaluate the clinical value of FFOCT imaging in the management of patients with Head and Neck cancers by assessing the accuracy of the diagnosis done on FFOCT images from resected specimen. FFOCT images from Head and Neck samples were first compared to the gold standard (HES-conventional histology). An image atlas dedicated to the training of pathologists was built and diagnosis criteria were identified. Then, we performed a morphological correlative study: both healthy and cancerous samples from patients who undergo Head and Neck surgery of oral cavity, pharynx, and larynx were imaged. Images were interpreted in a random way by two pathologists and the FFOCT based diagnostics were compared with HES (gold standard) of the same samples. Here we present preliminary results showing that FFOCT provides a quick assessment of tissue architecture at microscopic level that could guide surgeons for tumor margin delineation during intraoperative procedure.
Friction and wear of human hair fibres
NASA Astrophysics Data System (ADS)
Bowen, James; Johnson, Simon A.; Avery, Andrew R.; Adams, Michael J.
2016-06-01
An experimental study of the tribological properties of hair fibres is reported, and the effect of surface treatment on the evolution of friction and wear during sliding. Specifically, orthogonally crossed fibre/fibre contacts under a compressive normal load over a series of 10 000 cycle studies are investigated. Reciprocating sliding at a velocity of 0.4 mm s-1, over a track length of 0.8 mm, was performed at 18 °C and 40%-50% relative humidity. Hair fibres retaining their natural sebum were studied, as well as those stripped of their sebum via hexane cleaning, and hair fibres conditioned using a commercially available product. Surface topography modifications resulting from wear were imaged using scanning electron microscopy and quantified using white light interferometry. Hair fibres that presented sebum or conditioned product at the fibre/fibre junction exhibited initial coefficients of friction at least 25% lower than those that were cleaned with hexane. Coefficients of friction were observed to depend on the directionality of sliding for hexane cleaned hair fibres after sufficient wear cycles that cuticle lifting was present, typically on the order 1000 cycles. Cuticle flattening was observed for fibre/fibre junctions exposed to 10 mN compressive normal loads, whereas loads of 100 mN introduced substantial cuticle wear and fibre damage.
Comparison of non-invasive tear film stability measurement techniques.
Wang, Michael Tm; Murphy, Paul J; Blades, Kenneth J; Craig, Jennifer P
2018-01-01
Measurement of tear film stability is commonly used to give an indication of tear film quality but a number of non-invasive techniques exists within the clinical setting. This study sought to compare three non-invasive tear film stability measurement techniques: instrument-mounted wide-field white light clinical interferometry, instrument-mounted keratoscopy and hand-held keratoscopy. Twenty-two subjects were recruited in a prospective, randomised, masked, cross-over study. Tear film break-up or thinning time was measured non-invasively by independent experienced examiners, with each of the three devices, in a randomised order, within an hour. Significant correlation was observed between instrument-mounted interferometric and keratoscopic measurements (p < 0.001) but not between the hand-held device and the instrument-mounted techniques (all p > 0.05). Tear film stability values obtained from the hand-held device were significantly shorter and demonstrated narrower spread than the other two instruments (all p < 0.05), while no significant differences were observed between the two instrument-mounted devices (all p > 0.05). Good clinical agreement exists between the instrument-mounted interferometric and keratoscopic measurements but not between the hand-held device and either of the instrument-mounted techniques. The results highlight the importance of specifying the instrument employed to record non-invasive tear film stability. © 2017 Optometry Australia.
Immotile Active Matter: Activity from Death and Reproduction
NASA Astrophysics Data System (ADS)
Kalziqi, Arben; Yanni, David; Thomas, Jacob; Ng, Siu Lung; Vivek, Skanda; Hammer, Brian K.; Yunker, Peter J.
2018-01-01
Unlike equilibrium atomic solids, biofilms—soft solids composed of bacterial cells—do not experience significant thermal fluctuations at the constituent level. However, living cells stochastically reproduce and die, provoking a mechanical response. We investigate the mechanical consequences of cellular death and reproduction by measuring surface-height fluctuations of biofilms containing two mutually antagonistic strains of Vibrio cholerae that kill one another on contact via the type VI secretion system. While studies of active matter typically focus on activity via constituent mobility, here, activity is mediated by reproduction and death events in otherwise immobilized cells. Biofilm surface topography is measured in the nearly homeostatic limit via white light interferometry. Although biofilms are far from equilibrium systems, measured surface-height fluctuation spectra resemble the spectra of thermal permeable membranes but with an activity-mediated effective temperature, as predicted by Risler, Peilloux, and Prost [Phys. Rev. Lett. 115, 258104 (2015), 10.1103/PhysRevLett.115.258104]. By comparing the activity of killer strains of V. cholerae with that of genetically modified strains that cannot kill each other and validating with individual-based simulations, we demonstrate that extracted effective temperatures increase with the amount of death and reproduction and that death and reproduction can fluidize biofilms. Together, these observations demonstrate the unique physical consequences of activity mediated by death and reproduction events.
NASA Astrophysics Data System (ADS)
Gamboa, Bryan M.; Malladi, Madhuri; Vadlamani, Ramya; Guo, Ruyan; Bhalla, Amar
2016-09-01
PZT are also well known for their applications in Micro Electrical Mechanical Systems (MEMS). It is necessary to study the piezoelectric coefficients of the materials accurately in order to design a sensor as an example, which defines their strain dependent applications. Systematic study of the electro mechanic displacement measurement was conducted and compared using a white light fiber optic sensor, a heterodyne laser Doppler vibrometer, and a homodyne laser interferometry setup. Frequency dependent measurement is conducted to evaluate displacement values well below and near the piezoelectric resonances. UHF-120 ultra-high frequency Vibrometer is used to measure the longitudinal piezoelectric displacement or x33 and the MTI 2000 FotonicTM Sensor is used to measure the transverse piezoelectric displacement or x11 over 100Hz to 2MHz. A Multiphysics Finite Element Analysis method, COMSOL, is also adopted in the study to generate a three dimensional electromechanical coupled model based on experimentally determined strains x33 and x11 as a function of frequency of the electric field applied. The full family of piezoelectric coefficients of the poled electronic ceramic PZT, d33, d31, and d15, can be then derived, upon satisfactory simulation of the COMSOL. This is achieved without the usual need of preparation of piezoelectric resonators of fundamental longitudinal, transversal, and shear modes respectively.
NASA Astrophysics Data System (ADS)
Liao, Kaixing; Li, Jinke; Kong, Xianglong; Sun, Changsen; Zhao, Xuefeng
2017-04-01
After years of operation, the safety of the prestressed concrete containment vessel (PCCV) structure of Nuclear Power Plant (NPP) is an important aspect. In order to detect the strength degradation and the structure deformation, several sensors such as vibrating wire strain gauge, invar wires and pendulums were installed in PCCV. However, the amounts of sensors above are limited due to the cost. Due to the well durability of fiber optic sensors, three kinds of fiber optic sensors were chosen to install on the surface of PCCV to monitor the deformation during Integrated Leakage Rate Test (ILRT). The three kinds of fiber optic sensors which had their own advantages and disadvantages are Fiber Bragg Grating (FBG), white light interferometry (WLI) and Brillouin Optical Time Domain Analysis (BOTDA). According to the measuring data, the three fiber optic sensors worked well during the ILRT. After the ILRT, the monitoring strain was recoverable thus the PCCV was still in the elastic stage. If these three kinds of fiber optic sensors are widely used in the PCCV, the unusual deformations are easier to detect. As a consequence, the three fiber optic sensors have good potential in the structure health monitoring of PCCV.
Immotile Active Matter: Activity from Death and Reproduction.
Kalziqi, Arben; Yanni, David; Thomas, Jacob; Ng, Siu Lung; Vivek, Skanda; Hammer, Brian K; Yunker, Peter J
2018-01-05
Unlike equilibrium atomic solids, biofilms-soft solids composed of bacterial cells-do not experience significant thermal fluctuations at the constituent level. However, living cells stochastically reproduce and die, provoking a mechanical response. We investigate the mechanical consequences of cellular death and reproduction by measuring surface-height fluctuations of biofilms containing two mutually antagonistic strains of Vibrio cholerae that kill one another on contact via the type VI secretion system. While studies of active matter typically focus on activity via constituent mobility, here, activity is mediated by reproduction and death events in otherwise immobilized cells. Biofilm surface topography is measured in the nearly homeostatic limit via white light interferometry. Although biofilms are far from equilibrium systems, measured surface-height fluctuation spectra resemble the spectra of thermal permeable membranes but with an activity-mediated effective temperature, as predicted by Risler, Peilloux, and Prost [Phys. Rev. Lett. 115, 258104 (2015)PRLTAO0031-900710.1103/PhysRevLett.115.258104]. By comparing the activity of killer strains of V. cholerae with that of genetically modified strains that cannot kill each other and validating with individual-based simulations, we demonstrate that extracted effective temperatures increase with the amount of death and reproduction and that death and reproduction can fluidize biofilms. Together, these observations demonstrate the unique physical consequences of activity mediated by death and reproduction events.
NASA Astrophysics Data System (ADS)
Pluymakers, Anne; Kobchenko, Maya; Renard, François
2017-01-01
Flow through fractures in shales is of importance to many geoengineering purposes. Shales are not only caprocks to hydrocarbon reservoirs and nuclear waste or CO2 storage sites, but also potential source and reservoir rocks for hydrocarbons. The presence of microfractures in shales controls their permeability and transport properties. Using X-ray micro-tomography and white light interferometry we scanned borehole samples obtained from 4 km depth in the Pomeranian shales in Poland. These samples contain open exhumation/drying cracks as well as intact vein-rock interfaces plus one striated slip surface. At micron resolution and above tensile drying cracks exhibit a power-law roughness with a scaling exponent, called the Hurst exponent H, of 0.3. At sub-micron resolution we capture the properties of the clay interface only, with H = 0.6. In contrast, the in-situ formed veins and slip surface exhibit H = 0.4-0.5, which is deemed representative for in-situ fractures. These results are discussed in relation to the shale microstructure and linear elastic fracture mechanics theory. The data imply that the Hurst roughness exponent can be used as a microstructural criterion to distinguish between exhumation and in-situ fractures, providing a step forward towards the characterization of potential flow paths at depth in shales.
LED lighting increases the ecological impact of light pollution irrespective of color temperature.
Pawson, S M; Bader, M K-F
Recognition of the extent and magnitude of night-time light pollution impacts on natural ecosystems is increasing, with pervasive effects observed in both nocturnal and diurnal species. Municipal and industrial lighting is on the cusp of a step change where energy-efficient lighting technology is driving a shift from “yellow” high-pressure sodium vapor lamps (HPS) to new “white” light-emitting diodes (LEDs). We hypothesized that white LEDs would be more attractive and thus have greater ecological impacts than HPS due to the peak UV-green-blue visual sensitivity of nocturnal invertebrates. Our results support this hypothesis; on average LED light traps captured 48% more insects than were captured with light traps fitted with HPS lamps, and this effect was dependent on air temperature (significant light × air temperature interaction). We found no evidence that manipulating the color temperature of white LEDs would minimize the ecological impacts of the adoption of white LED lights. As such, large-scale adoption of energy-efficient white LED lighting for municipal and industrial use may exacerbate ecological impacts and potentially amplify phytosanitary pest infestations. Our findings highlight the urgent need for collaborative research between ecologists and electrical engineers to ensure that future developments in LED technology minimize their potential ecological effects.
Najjar, Raymond P.; Wolf, Luzian; Taillard, Jacques; Schlangen, Luc J. M.; Salam, Alex
2014-01-01
Studies in Polar Base stations, where personnel have no access to sunlight during winter, have reported circadian misalignment, free-running of the sleep-wake rhythm, and sleep problems. Here we tested light as a countermeasure to circadian misalignment in personnel of the Concordia Polar Base station during the polar winter. We hypothesized that entrainment of the circadian pacemaker to a 24-h light-dark schedule would not occur in all crew members (n = 10) exposed to 100–300 lux of standard fluorescent white (SW) light during the daytime, and that chronic non-time restricted daytime exposure to melanopsin-optimized blue-enriched white (BE) light would establish an a stable circadian phase, in participants, together with increased cognitive performance and mood levels. The lighting schedule consisted of an alternation between SW lighting (2 weeks), followed by a BE lighting (2 weeks) for a total of 9 weeks. Rest-activity cycles assessed by actigraphy showed a stable rest-activity pattern under both SW and BE light. No difference was found between light conditions on the intra-daily stability, variability and amplitude of activity, as assessed by non-parametric circadian analysis. As hypothesized, a significant delay of about 30 minutes in the onset of melatonin secretion occurred with SW, but not with BE light. BE light significantly enhanced well being and alertness compared to SW light. We propose that the superior efficacy of blue-enriched white light versus standard white light involves melanopsin-based mechanisms in the activation of the non-visual functions studied, and that their responses do not dampen with time (over 9-weeks). This work could lead to practical applications of light exposure in working environment where background light intensity is chronically low to moderate (polar base stations, power plants, space missions, etc.), and may help design lighting strategies to maintain health, productivity, and personnel safety. PMID:25072880
NASA Astrophysics Data System (ADS)
Zhang, Jingjing; Guo, Weihong; Xie, Bin; Yu, Xingjian; Luo, Xiaobing; Zhang, Tao; Yu, Zhihua; Wang, Hong; Jin, Xing
2017-09-01
Blue light hazard of white light-emitting diodes (LED) is a hidden risk for human's photobiological safety. Recent spectral optimization methods focus on maximizing luminous efficacy and improving color performances of LEDs, but few of them take blue hazard into account. Therefore, for healthy lighting, it's urgent to propose a spectral optimization method for white LED source to exhibit low blue light hazard, high luminous efficacy of radiation (LER) and high color performances. In this study, a genetic algorithm with penalty functions was proposed for realizing white spectra with low blue hazard, maximal LER and high color rendering index (CRI) values. By simulations, white spectra from LEDs with low blue hazard, high LER (≥297 lm/W) and high CRI (≥90) were achieved at different correlated color temperatures (CCTs) from 2013 K to 7845 K. Thus, the spectral optimization method can be used for guiding the fabrication of LED sources in line with photobiological safety. It is also found that the maximum permissible exposure duration of the optimized spectra increases by 14.9% than that of bichromatic phosphor-converted LEDs with equal CCT.
Color and Light Effects on Learning.
ERIC Educational Resources Information Center
Grangaard, Ellen Mannel
This study examined the effects of color and light on the learning of eleven 6-year-old elementary school students. The students were videotaped to identify off-task behaviors and had their blood pressure measured while in a standard classroom with white walls and cool-white fluorescent lights, as well as in a classroom with light blue walls and…
Whole high-quality light environment for humans and plants.
Sharakshane, Anton
2017-11-01
Plants sharing a single light environment on a spaceship with a human being and bearing a decorative function should look as natural and attractive as possible. And consequently they can be illuminated only with white light with a high color rendering index. Can lighting optimized for a human eye be effective and appropriate for plants? Spectrum-based effects have been compared under artificial lighting of plants by high-pressure sodium lamps and general-purpose white LEDs. It has been shown that for the survey sample phytochrome photo-equilibria does not depend significantly on the parameters of white LED light, while the share of phytoactive blue light grows significantly as the color temperature increases. It has been revealed that yield photon flux is proportional to luminous efficacy and increases as the color temperature decreases, general color rendering index R a and the special color rendering index R 14 (green leaf) increase. General-purpose white LED lamps with a color temperature of 2700 K, R a > 90 and luminous efficacy of 100 lm/W are as efficient as the best high-pressure sodium lamps, and at a higher luminous efficacy their yield photon flux per joule is even bigger in proportion. Here we show that demand for high color rendering white LED light is not contradictory to the agro-technical objectives. Copyright © 2017. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Zhao, L. N.; Liu, J.; Yuan, Y.; Hu, X. P.; Zhao, G.; Gao, Z. D.; Zhu, S. N.
2012-03-01
We present a high power red-green-blue (RGB) laser light source based on cascaded quasi-phasematched wavelength conversions in a single stoichiometric lithium tantalate. The superiority of the experimental setup is: the facula of the incident beam is elliptical to increase interaction volume, and the cavity was an idler resonant configuration for realizing more efficient red and blue light output. An average power of 2 W of quasi-white-light was obtained by proper combination of the RGB three colors. The conversion efficiency for the power of the quasi-white-light over pump power reached 36%. This efficiency and powerful RGB laser light source has potential applications in laser-based projection display et al.
Stone, Emma Louise; Wakefield, Andrew; Harris, Stephen; Jones, Gareth
2015-05-05
Artificial light at night is a major feature of anthropogenic global change and is increasingly recognized as affecting biodiversity, often negatively. On a global scale, newer technology white lights are replacing orange sodium lights to reduce energy waste. In 2009, Cornwall County Council (UK) commenced replacement of existing low-pressure sodium (LPS) high intensity discharge (HID) street lights with new Phillips CosmoPolis white ceramic metal halide street lights to reduce energy wastage. This changeover provided a unique collaborative opportunity to implement a before-after-control-impact field experiment to investigate the ecological effects of newly installed broad spectrum light technologies. Activity of the bat species Pipistrellus pipistrellus, P. pygmaeus and Nyctalus/Eptesicus spp. was significantly higher at metal halide than LPS lights, as found in other studies of bat activity at old technology (i.e. mercury vapour) white light types. No significant difference was found in feeding attempts per bat pass between light types, though more passes overall were recorded at metal halide lights. Species-specific attraction of bats to the metal halide lights could have cascading effects at lower trophic levels. We highlight the need for further research on possible ecosystem-level effects of light technologies before they are installed on a wide scale. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
Color design model of high color rendering index white-light LED module.
Ying, Shang-Ping; Fu, Han-Kuei; Hsieh, Hsin-Hsin; Hsieh, Kun-Yang
2017-05-10
The traditional white-light light-emitting diode (LED) is packaged with a single chip and a single phosphor but has a poor color rendering index (CRI). The next-generation package comprises two chips and a single phosphor, has a high CRI, and retains high luminous efficacy. This study employs two chips and two phosphors to improve the diode's color tunability with various proportions of two phosphors and various densities of phosphor in the silicone used. A color design model is established for color fine-tuning of the white-light LED module. The maximum difference between the measured and color-design-model simulated CIE 1931 color coordinates is approximately 0.0063 around a correlated color temperature (CCT) of 2500 K. This study provides a rapid method to obtain the color fine-tuning of a white-light LED module with a high CRI and luminous efficacy.
Xia, Yu; Chen, Shiyan; Ni, Xin-Long
2018-04-18
Energy transfer and interchange are central for fabricating white light-emitting organic materials. However, increasing the efficiency of light energy transfer remains a considerable challenge because of the occurrence of "cross talk". In this work, by exploiting the unique photophysical properties of cucurbituril-triggered host-guest interactions, the two complementary luminescent colors blue and yellow for white light emission were independently obtained from a single fluorophore dye rather than energy transfer. Further study suggested that the rigid cavity of cucurbiturils efficiently prevented the aggregation of the dye and improved its thermal stability in the solid state by providing a regular nanosized fence for each encapsulated dye molecule. As a result, a novel macrocycle-assisted supramolecular approach for obtaining solid, white light-emitting organic materials with low cost, high efficiency, and easy scale-up was successfully demonstrated.
Hwang, Hyun-Jun; Oh, Kyung-Hwan; Kim, Hak-Sung
2016-01-01
We developed an ultra-high speed photonic sintering method involving flash white light (FWL) combined with near infrared (NIR) and deep UV light irradiation to produce highly conductive copper nano-ink film. Flash white light irradiation energy and the power of NIR/deep UV were optimized to obtain high conductivity Cu films. Several microscopic and spectroscopic characterization techniques such as scanning electron microscopy (SEM), a x-ray diffraction (XRD), and Fourier-transform infrared (FT-IR) spectroscopy were employed to characterize the Cu nano-films. Optimally sintered Cu nano-ink films produced using a deep UV-assisted flash white light sintering technique had the lowest resistivity (7.62 μΩ·cm), which was only 4.5-fold higher than that of bulk Cu film (1.68 μΩ•cm). PMID:26806215
Hwang, Hyun-Jun; Oh, Kyung-Hwan; Kim, Hak-Sung
2016-01-25
We developed an ultra-high speed photonic sintering method involving flash white light (FWL) combined with near infrared (NIR) and deep UV light irradiation to produce highly conductive copper nano-ink film. Flash white light irradiation energy and the power of NIR/deep UV were optimized to obtain high conductivity Cu films. Several microscopic and spectroscopic characterization techniques such as scanning electron microscopy (SEM), a x-ray diffraction (XRD), and Fourier-transform infrared (FT-IR) spectroscopy were employed to characterize the Cu nano-films. Optimally sintered Cu nano-ink films produced using a deep UV-assisted flash white light sintering technique had the lowest resistivity (7.62 μΩ·cm), which was only 4.5-fold higher than that of bulk Cu film (1.68 μΩ•cm).
NASA Astrophysics Data System (ADS)
Zhu, Daoyun; Liao, Min; Mu, Zhongfei; Wu, Fugen
2018-05-01
Dy3+-doped Ca9NaZn(PO4)7 has been synthesized by high-temperature solid-state reaction. X-ray diffraction analysis revealed that the obtained phosphors existed as single phase. Doping with Dy3+ at low concentration had no obvious effect on the crystal structure of the host. Dy3+-doped samples showed strong emission at approximately 480 nm and 571 nm under excitation at 350 nm. The blue and yellow emissions showed almost the peak intensity. The combination of blue and yellow light formed white light. The color coordinates (0.323, 0.372) of the composite light are located in the white light region. The optimum doping concentration of Dy3+ ions was experimentally determined to be 10 mol.%. The concentration quenching mechanism was ascertained to be electric dipole-dipole interaction among Dy3+ ions. The obtained phosphors exhibited good thermal stability. These results indicate potential applications as single-phase white light-emitting phosphors.
Laser induced white lighting of tungsten filament
NASA Astrophysics Data System (ADS)
Strek, W.; Tomala, R.; Lukaszewicz, M.
2018-04-01
The sustained bright white light emission of thin tungsten filament was induced under irradiation with focused beam of CW infrared laser diode. The broadband emission centered at 600 nm has demonstrated the threshold behavior on excitation power. Its intensity increased non-linearly with excitation power. The emission occurred only from the spot of focused beam of excitation laser diode. The white lighting was accompanied by efficient photocurrent flow and photoelectron emission which both increased non-linearly with laser irradiation power.
NASA Astrophysics Data System (ADS)
Kowalski, A. F.; Hawley, S. L.; Holtzman, J. A.; Wisniewski, J. P.; Hilton, E. J.
2012-03-01
The white light during M dwarf flares has long been known to exhibit the broadband shape of a T≈10 000 K blackbody, and the white light in solar-flares is thought to arise primarily from hydrogen recombination. Yet, a current lack of broad-wavelength coverage solar flare spectra in the optical/near-UV region prohibits a direct comparison of the continuum properties to determine if they are indeed so different. New spectroscopic observations of a secondary flare during the decay of a megaflare on the dM4.5e star YZ CMi have revealed multiple components in the white-light continuum of stellar flares, including both a blackbody-like spectrum and a hydrogen-recombination spectrum. One of the most surprising findings is that these two components are anti-correlated in their temporal evolution. We combine initial phenomenological modeling of the continuum components with spectra from radiative hydrodynamic models to show that continuum veiling causes the measured anti-correlation. This modeling allows us to use the components' inferred properties to predict how a similar spatially resolved, multiple-component, white-light continuum might appear using analogies to several solar-flare phenomena. We also compare the properties of the optical stellar flare white light to Ellerman bombs on the Sun.
Ag nanocluster-based color converters for white organic light-emitting devices
NASA Astrophysics Data System (ADS)
Nishikitani, Yoshinori; Takizawa, Daisuke; Uchida, Soichi; Lu, Yue; Nishimura, Suzushi; Oyaizu, Kenichi; Nishide, Hiroyuki
2017-11-01
The authors present Ag nanocluster-based color converters (Ag NC color converters), which convert part of the blue light from a light source to yellow light so as to create white organic light-emitting devices that could be suitable for lighting systems. Ag NCs synthesized by poly(methacrylic acid) template methods have a statistical size distribution with a mean diameter of around 4.5 nm, which is larger than the Fermi wavelength of around 2 nm. Hence, like free electrons in metals, the Ag NC electrons are thought to form a continuous energy band, leading to the formation of surface plasmons by photoexcitation. As for the fluorescence emission mechanism, the fact that the photoluminescence is excitation wavelength dependent suggests that the fluorescence originates from surface plasmons in Ag NCs of different sizes. By using Ag NC color converters and suitable blue light sources, white organic light-emitting devices can be fabricated based on the concept of light-mixing. For our blue light sources, we used polymer light-emitting electrochemical cells (PLECs), which, like organic light-emitting diodes, are area light sources. The PLECs were fabricated with a blue fluorescent π-conjugated polymer, poly[(9,9-dihexylfluoren-2,7-diyl)-co-(anthracen-9,10-diyl)] (PDHFA), and a polymeric solid electrolyte composed of poly(ethylene oxide) and KCF3SO3. In this device structure, the Ag NC color converter absorbs blue light from the PDHFA-based PLEC (PDHFA-PLEC) and then emits yellow light. When the PDHFA-PLEC is turned on by applying an external voltage, pure white light emission can be produced with Commission Internationale de l'Eclairage coordinates of (x = 0.32, y = 0.33) and a color rendering index of 93.6. This study shows that utilization of Ag NC color converters and blue PLECs is a very promising and highly effective method for realizing white organic light-emitting devices.
MO-AB-BRA-03: Calorimetry-Based Absorbed Dose to Water Measurements Using Interferometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Flores-Martinez, E; Malin, M; DeWerd, L
2015-06-15
Purpose: Interferometry-based calorimetry is a novel technique to measure radiation-induced temperature changes allowing the measurement of absorbed dose to water (ADW). There are no mechanical components in the field. This technique also has the possibility of obtaining 2D dose distributions. The goal of this investigation is to calorimetrically-measure doses between 2.5 and 5 Gy over a single projection in a photon beam using interferometry and compare the results with doses calculated using the TG-51 linac calibration. Methods: ADW was determined by measuring radiation-induced phase shifts (PSs) of light passing through water irradiated with a 6 MV photon beam. A 9×9×9more » cm{sup 3} glass phantom filled with water and placed in an arm of a Michelson interferometer was irradiated with 300, 400, 500 and 600 monitor units. The whole system was thermally insulated to achieve sufficient passive temperature control. The depth of measurement was 4.5 cm with a field size of 7×7 cm{sup 2}. The intensity of the fringe pattern was monitored with a photodiode and used to calculate the time-dependent PS curve. Data was acquired 60 s before and after the irradiation. The radiation-induced PS was calculated by taking the difference in the pre- and post-irradiation drifts extrapolated to the midpoint of the irradiation. Results were compared to computed doses. Results: Average comparison of calculated ADW values with interferometry-measured values showed an agreement to within 9.5%. k=1 uncertainties were 4.3% for calculations and 14.7% for measurements. The dominant source of uncertainty for the measurements was a temperature drift of about 30 µK/s caused by heat conduction from the interferometer’s surroundings. Conclusion: This work presented the first absolute ADW measurements using interferometry in the dose range of linac-based radiotherapy. Future work to improve measurements’ reproducibility includes the implementation of active thermal control techniques.« less
Farinas, J; Verkman, A S
1996-12-01
The development of strategies to measure plasma membrane osmotic water permeability (Pf) in epithelial cells has been motivated by the identification of a family of molecular water channels. A general approach utilizing interferometry to measure cell shape and volume was developed and applied to measure Pf in cell layers. The method is based on the cell volume dependence of optical path length (OPL) for a light beam passing through the cell. The small changes in OPL were measured by interferometry. A mathematical model was developed to relate the interference signal to cell volume changes for cells of arbitrary shape and size. To validate the model, a Mach-Zehnder interference microscope was used to image OPL in an Madin Darby Canine Kidney (MDCK) cell layer and to reconstruct the three-dimensional cell shape (OPL resolution < lambda/25). As predicted by the model, a doubling of cell volume resulted in a change in OPL that was proportional to the difference in refractive indices between water and the extracellular medium. The time course of relative cell volume in response to an osmotic gradient was computed from serial interference images. To measure cell volume without microscopy and image analysis, a Mach-Zehnder interferometer was constructed in which one of two interfering laser beams passed through a flow chamber containing the cell layer. The interference signal in response to an osmotic gradient was analyzed to quantify the time course of relative cell volume. The calculated MDCK cell plasma membrane Pf of 6.1 x 10(-4) cm/s at 24 degrees C agreed with that obtained by interference microscopy and by a total internal reflection fluorescence method. Interferometry was also applied to measure the apical plasma membrane water permeability of intact toad urinary bladder; Pf increased fivefold after forskolin stimulation to 0.04 cm/s at 23 degrees C. These results establish and validate the application of interferometry to quantify cell volume and osmotic water permeability in cell layers.
White organic light-emitting diodes with fluorescent tube efficiency.
Reineke, Sebastian; Lindner, Frank; Schwartz, Gregor; Seidler, Nico; Walzer, Karsten; Lüssem, Björn; Leo, Karl
2009-05-14
The development of white organic light-emitting diodes (OLEDs) holds great promise for the production of highly efficient large-area light sources. High internal quantum efficiencies for the conversion of electrical energy to light have been realized. Nevertheless, the overall device power efficiencies are still considerably below the 60-70 lumens per watt of fluorescent tubes, which is the current benchmark for novel light sources. Although some reports about highly power-efficient white OLEDs exist, details about structure and the measurement conditions of these structures have not been fully disclosed: the highest power efficiency reported in the scientific literature is 44 lm W(-1) (ref. 7). Here we report an improved OLED structure which reaches fluorescent tube efficiency. By combining a carefully chosen emitter layer with high-refractive-index substrates, and using a periodic outcoupling structure, we achieve a device power efficiency of 90 lm W(-1) at 1,000 candelas per square metre. This efficiency has the potential to be raised to 124 lm W(-1) if the light outcoupling can be further improved. Besides approaching internal quantum efficiency values of one, we have also focused on reducing energetic and ohmic losses that occur during electron-photon conversion. We anticipate that our results will be a starting point for further research, leading to white OLEDs having efficiencies beyond 100 lm W(-1). This could make white-light OLEDs, with their soft area light and high colour-rendering qualities, the light sources of choice for the future.
High-efficient and brightness white organic light-emitting diodes operated at low bias voltage
NASA Astrophysics Data System (ADS)
Zhang, Lei; Yu, Junsheng; Yuan, Kai; Jian, Yadong
2010-10-01
White organic light-emitting diodes (OLEDs) used for display application and lighting need to possess high efficiency, high brightness, and low driving voltage. In this work, white OLEDs consisted of ambipolar 9,10-bis 2-naphthyl anthracene (ADN) as a host of blue light-emitting layer (EML) doped with tetrabutyleperlene (TBPe) and a thin codoped layer consisted of N, N'-bis(naphthalen-1-yl)-N,N'-bis(phenyl)-benzidine (NPB) as a host of yellow light-emitting layer doped with 4-(dicyanomethylene)-2-tert-butyl-6-(1,1,7,7-tetramethyljulolidin-4-yl-vinyl)-4H-pyran (DCJTB) were investigated. With appropriate tuning in the film thickness, position, and dopant concentration of the co-doped layer, a white OLED with a luminance yield of 10.02 cd/A with the CIE coordinates of (0.29, 0.33) has been achieved at a bias voltage of 9 V and a luminance level of over 10,000 cd/m2. By introducing the PIN structure with both HIL and bis(10- hydroxybenzo-quinolinato)-beryllium (BeBq2) ETL, the power efficiency of white OLED was improved.
White-light diffraction phase microscopy at doubled space-bandwidth product.
Shan, Mingguang; Kandel, Mikhail E; Majeed, Hassaan; Nastasa, Viorel; Popescu, Gabriel
2016-12-12
White light diffraction microscopy (wDPM) is a quantitative phase imaging method that benefits from both temporal and spatial phase sensitivity, granted, respectively, by the common-path geometry and white light illumination. However, like all off-axis quantitative phase imaging methods, wDPM is characterized by a reduced space-bandwidth product compared to phase shifting approaches. This happens essentially because the ultimate resolution of the image is governed by the period of the interferogram and not just the diffraction limit. As a result, off-axis techniques generates single-shot, i.e., high time-bandwidth, phase measurements, at the expense of either spatial resolution or field of view. Here, we show that combining phase-shifting and off-axis, the original space-bandwidth is preserved. Specifically, we developed phase-shifting diffraction phase microscopy with white light, in which we measure and combine two phase shifted interferograms. Due to the white light illumination, the phase images are characterized by low spatial noise, i.e., <1nm pathlength. We illustrate the operation of the instrument with test samples, blood cells, and unlabeled prostate tissue biopsy.
Thermal, optical, and electrical engineering of an innovative tunable white LED light engine
NASA Astrophysics Data System (ADS)
Trivellin, Nicola; Meneghini, Matteo; Ferretti, Marco; Barbisan, Diego; Dal Lago, Matteo; Meneghesso, Gaudenzio; Zanoni, Enrico
2014-02-01
Color temperature, intensity and blue spectrum of the light affects the ganglion receptors in human brain stimulating the human nervous system. With this work we review different methods for obtaining tunable light emission spectra and propose an innovative white LED lighting system. By an in depth study of the thermal, electrical and optical characteristics of GaN and GaP based compound semiconductors for optoelectronics a specific tunable spectra has been designed. The proposed tunable white LED system is able to achieve high CRI (above 95) in a large CCT range (3000 - 5000K).
Warm white LEDs lighting over Ra=95 and its applications
NASA Astrophysics Data System (ADS)
Kobashi, Katsuya; Taguchi, Tsunemasa
2007-02-01
We have for the first time developed warm white LEDs lighting using a combination of near ultraviolet LED and three-band (red, green and blue) white phosphors. This LED has the average color-rendering index Ra=96. Moreover, special color-rendering index R9 (red) and R15 (face color of Japanese) are estimated to be 95 and 97, respectively. We will describe the results of evaluation on the medical lighting applications such as operation, treatment and endoscope experiments, application to the LED fashions and application to the Japanese antique art (ink painting) lighting.
Martin, David; Hurlbert, Anya; Cousins, David Andrew
2018-06-01
Psychiatric inpatient units often maintain a degree of lighting at night to facilitate the observation of patients, but this has the potential to disrupt sleep. Certain wavelengths of light may be less likely to disturb sleep and if such lighting permitted adequate observations, patient wellbeing may be improved. This study explored the effects of changing night-lights from broad-band white to narrow-band red on the amount of sleep observed, 'as required' medication administered and number of falls, in an old age psychiatry inpatient setting. Qualitative data was also gathered with a staff questionnaire. We hypothesised that compared to the use of white lights, red lights would be associated with a greater amount of recorded sleep, lesser use of 'as required' medication and no increase in the number of falls (reflecting comparable safety). Whilst there were no significant differences in quantitative measures recorded, there were more observations of sleep during the red light period than the white light period (14.1 versus 13.9 times per night) (U=627.5, z=-0.69, p=0.49) and fewer 'as required' medication administrations during the red light period compared to the white light period (3.3 versus 4.8 times per night) (U=640.0, z=0.56, p=0.57). Qualitatively, the staff of the organic assessment unit reported that patients were sleeping better and less agitated at night. Larger and more in-depth studies are required to examine the full effectiveness of using safe, sleep-enhancing lighting on wards at night. Copyright © 2017 Elsevier Inc. All rights reserved.
Application of Phase Shifted, Laser Feedback Interferometry to Fluid Physics
NASA Technical Reports Server (NTRS)
Ovryn, Ben; Eppell, Steven J.; Andrews, James H.; Khaydarov, John
1996-01-01
We have combined the principles of phase-shifting interferometry (PSI) and laser-feedback interferometry (LFI) to produce a new instrument that can measure both optical path length (OPL) changes and discern sample reflectivity variations. In LFI, coherent feedback of the incident light either reflected directly from a surface or reflected after transmission through a region of interest will modulate the output intensity of the laser. LFI can yield a high signal-to-noise ratio even for low reflectivity samples. By combining PSI and LFI, we have produced a robust instrument, based upon a HeNe laser, with high dynamic range that can be used to measure either static (dc) or oscillatory changes along the optical path. As with other forms of interferometry, large changes in OPL require phase unwrapping. Conversely, small phase changes are limited by the fraction of a fringe that can be measured. We introduce the phase shifts with an electro-optic modulator (EOM) and use either the Carre or Hariharan algorithms to determine the phase and visibility. We have determined the accuracy and precision of our technique by measuring both the bending of a cantilevered piezoelectric bimorph and linear ramps to the EOM. Using PSI, sub-nanometer displacements can be measured. We have combined our interferometer with a commercial microscope and scanning piezoelectric stage and have measured the variation in OPL and visibility for drops of PDMS (silicone oil) on coated single crystal silicon. Our measurement of the static contact angle agrees with the value of 68 deg stated in the literature.
A stable Alq3@MOF composite for white-light emission.
Xie, Wei; He, Wen-Wen; Du, Dong-Ying; Li, Shun-Li; Qin, Jun-Sheng; Su, Zhong-Min; Sun, Chun-Yi; Lan, Ya-Qian
2016-02-25
A stable mesoporous blue-emitting MOF NENU-521 was successfully constructed. NENU-521 can serve as a host for encapsulating Alq3 to obtain tunable and efficient white-light emission. The Alq3@NENU-521 composite possesses excellent stability and can be used as a promising white phosphor in WLEDs.
Hayashida, Tetsuya; Iwasaki, Hiroaki; Masaoka, Kenichiro; Shimizu, Masanori; Yamashita, Takayuki; Iwai, Wataru
2017-06-26
We selected appropriate indices for color rendition and determined their recommended values for ultra-high-definition television (UHDTV) production using white LED lighting. Since the spectral sensitivities of UHDTV cameras can be designed to approximate the ideal spectral sensitivities of UHDTV colorimetry, they have more accurate color reproduction than HDTV cameras, and thus the color-rendering properties of the lighting are critical. Comparing images taken under white LEDs with conventional color rendering indices (R a , R 9-14 ) and recently proposed methods for evaluating color rendition of CQS, TM-30, Q a , and SSI, we found the combination of R a and R 9 appropriate. For white LED lighting, R a ≥ 90 and R 9 ≥ 80 are recommended for UHDTV production.
COSMIC INFRARED BACKGROUND FLUCTUATIONS AND ZODIACAL LIGHT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arendt, Richard G.; Kashlinsky, A.; Moseley, S. H.
We performed a specific observational test to measure the effect that the zodiacal light can have on measurements of the spatial fluctuations of the near-IR background. Previous estimates of possible fluctuations caused by zodiacal light have often been extrapolated from observations of the thermal emission at longer wavelengths and low angular resolution or from IRAC observations of high-latitude fields where zodiacal light is faint and not strongly varying with time. The new observations analyzed here target the COSMOS field at low ecliptic latitude where the zodiacal light intensity varies by factors of ∼2 over the range of solar elongations atmore » which the field can be observed. We find that the white-noise component of the spatial power spectrum of the background is correlated with the modeled zodiacal light intensity. Roughly half of the measured white noise is correlated with the zodiacal light, but a more detailed interpretation of the white noise is hampered by systematic uncertainties that are evident in the zodiacal light model. At large angular scales (≳100″) where excess power above the white noise is observed, we find no correlation of the power with the modeled intensity of the zodiacal light. This test clearly indicates that the large-scale power in the infrared background is not being caused by the zodiacal light.« less
Cosmic Infrared Background Fluctuations and Zodiacal Light
NASA Astrophysics Data System (ADS)
Arendt, Richard G.; Kashlinsky, A.; Moseley, S. H.; Mather, J.
2016-06-01
We performed a specific observational test to measure the effect that the zodiacal light can have on measurements of the spatial fluctuations of the near-IR background. Previous estimates of possible fluctuations caused by zodiacal light have often been extrapolated from observations of the thermal emission at longer wavelengths and low angular resolution or from IRAC observations of high-latitude fields where zodiacal light is faint and not strongly varying with time. The new observations analyzed here target the COSMOS field at low ecliptic latitude where the zodiacal light intensity varies by factors of ˜2 over the range of solar elongations at which the field can be observed. We find that the white-noise component of the spatial power spectrum of the background is correlated with the modeled zodiacal light intensity. Roughly half of the measured white noise is correlated with the zodiacal light, but a more detailed interpretation of the white noise is hampered by systematic uncertainties that are evident in the zodiacal light model. At large angular scales (≳100″) where excess power above the white noise is observed, we find no correlation of the power with the modeled intensity of the zodiacal light. This test clearly indicates that the large-scale power in the infrared background is not being caused by the zodiacal light.
MAHLI First Night Imaging of Martian Rock, White Lighting
2013-01-24
A Martian rock in the Yellowknife Bay area of Mars Gale Crater is illuminated by white-light light emitting diodes is part of the first set of nighttime images taken by the MAHLI camera at the end of the robotic arm of NASA Mars rover Curiosity.
Reversible photoinduced spectral change in Eu2O3 at room temperature
NASA Astrophysics Data System (ADS)
Mochizuki, Shosuke; Nakanishi, Tauto; Suzuki, Yuya; Ishi, Kimihiro
2001-12-01
When Eu2O3 powder compact and film are irradiated with ultraviolet (UV) laser light in a vacuum, their photoluminescence (PL) spectra change from a red sharp-line structure to a white broad band, which can be clearly seen with the naked eye. After removing the UV laser light, the white PL continues for more than several months at room temperature under room light, in spite of any changes of atmosphere. By irradiating with the same UV laser light at room temperature under O2 gas atmosphere, the original red PL state reappears. Such a reversible phenomenon may well yield materials for white-light-emitting devices and erasable optical storage.
Piasecki, Tomasz; Breadmore, Michael C; Macka, Mirek
2010-11-01
Although traditional lamps, such as deuterium lamps, are suitable for bench-top instrumentation, their compatibility with the requirements of modern miniaturized instrumentation is limited. This study investigates the option of utilizing solid-state light source technology, namely white LEDs, as a broad band spectrum source for spectrophotometry. Several white light LEDs of both RGB and white phosphorus have been characterized in terms of their emission spectra and energy output and a white phosphorus Luxeon LED was then chosen for demonstration as a light source for visible-spectrum spectrophotometry conducted in CE. The Luxeon LED was fixed onto the base of a dismounted deuterium (D(2) ) lamp so that the light-emitting spot was geometrically positioned exactly where the light-emitting spot of the original D(2) lamp is placed. In this manner, the detector of a commercial CE instrument equipped with a DAD was not modified in any way. As the detector hardware and electronics remained the same, the change of the deuterium lamp for the Luxeon white LED allowed a direct comparison of their performances. Several anionic dyes as model analytes with absorption maxima between 450 and 600 nm were separated by CE in an electrolyte of 0.01 mol/L sodium tetraborate. The absorbance baseline noise as the key parameter was 5 × lower for the white LED lamp, showing clearly superior performance to the deuterium lamp in the available, i.e. visible part of the spectrum. Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
White LED visible light communication technology research
NASA Astrophysics Data System (ADS)
Yang, Chao
2017-03-01
Visible light communication is a new type of wireless optical communication technology. White LED to the success of development, the LED lighting technology is facing a new revolution. Because the LED has high sensitivity, modulation, the advantages of good performance, large transmission power, can make it in light transmission light signal at the same time. Use white LED light-emitting characteristics, on the modulation signals to the visible light transmission, can constitute a LED visible light communication system. We built a small visible optical communication system. The system composition and structure has certain value in the field of practical application, and we also research the key technology of transmitters and receivers, the key problem has been resolved. By studying on the optical and LED the characteristics of a high speed modulation driving circuit and a high sensitive receiving circuit was designed. And information transmission through the single chip microcomputer test, a preliminary verification has realized the data transmission function.
Effects of a Blacklight Visual Field on Eye-Contact Training of Spastic Cerebral Palsied Children.
ERIC Educational Resources Information Center
Poland, D. J.; Doebler, L, K.
1980-01-01
Four subjects, aged six to seven, identified as visually impaired, were given training in making eye contact with a stimulus under both white and black light visual field. All subjects performed better under the black light condition, even overcoming the expected practice effect when white light training followed black light training. (Author/SJL)
White light Sagnac interferometer—a common (path) tale of light
NASA Astrophysics Data System (ADS)
Schwartz, Eyal
2017-11-01
White or polychromatic light sources are vastly abundant in nature and lie in our most basic understanding of the theory of light, beginning from stars like our Sun and extending to every common household light bulb or street lamp. In this paper, I present concepts of white light interferometery using a common-path Sagnac interferometer, manifested in a straightforward laboratory experiment. I further show the use of this as a Fourier transform spectrometer while presenting a basic overview of the theoretical concepts and spectrum of different light sources obtained experimentally. This work, both experimentally and analytically, is suitable for upper-level undergraduate physics or engineering courses where electromagnetic theory and optics are discussed. The experiment and theory presents important deep concepts and aspects in modern optics and physics that every science student should acquire.
NASA Astrophysics Data System (ADS)
Bartle, S. J.; Thomson, D. U.; Gehring, R.; van der Merwe, D.
2017-11-01
The effects of titanium dioxide coatings of bovine hides on light absorption and transdermal transfer of light-derived heat were investigated. Four hair-on rug hides from Holstein cattle were purchased. Twelve samples about 20 cm on a side were cut from each hide; nine from the black-colored areas, and three from the white areas. Samples were randomized and assigned to four coating treatments: (1) white hide with no coating (White), (2) black hide with no coating (Black), (3) black hide with 50% coating (Mid), and (4) black hide with 100% coating (High). Coatings were applied to the black hide samples using a hand sprayer. Lux measurements were taken using a modified lux meter at three light intensities generated with a broad spectrum, cold halogen light source. Reflectance over a wavelength range of 380 to 900 nm was measured using a spectroradiometer. The transdermal transfer of heat derived from absorbed light was measured by applying a broad spectrum, cold halogen light source to the stratum corneum (coated) side of the sample and recording the temperature of the dermis-side using a thermal camera for 10 min at 30-s intervals. At the high light level, the White, Black, Mid, and High coating treatments had different ( P < 0.001) lux values of 64,945, 1741, 15,978, and 40,730 lx, respectively. In the visible wavelength range (400 to 750 nm), Black hides reflected 10 to 15% of the light energy, hides with the Mid coating treatment reflected 35 to 40%, and hides with the High coating treatment reflected 70 to 80% of the light energy. The natural White hide samples reflected 60 to 80% of the light energy. The average maximum temperatures at the dermis-side of the hides due to transferred heat were 34.5, 70.1, 55.0, and 31.7, for the White, Black, Mid, and High treatments, respectively. Reflective coatings containing titanium dioxide on cattle hides were effective in reducing light energy absorption and reduced light-derived heat transfer from the skin surface to deeper skin layers.
Wu, Hao; Xu, Shuhong; Shao, Haibao; Li, Lang; Cui, Yiping; Wang, Chunlei
2017-11-09
Single component nanocrystals (NCs) with white fluorescence are promising single layer color conversion media for white light-emitting diodes (LED) because the undesirable changes of chromaticity coordinates for the mixture of blue, green and red emitting NCs can be avoided. However, their practical applications have been hindered by the relative low photoluminescence (PL) quantum yield (QY) for traditional semiconductor NCs. Though Mn-doped perovskite nanocube is a potential candidate, it has been unable to realize a white-light emission to date. In this work, the synthesis of Mn-doped 2D perovskite-related CsPb 2 Cl x Br 5-x nanoplatelets with a pure white emission from a single component is reported. Unlike Mn-doped perovskite nanocubes with insufficient energy transfer efficiency, the current reported Mn-doped 2D perovskite-related CsPb 2 Cl x Br 5-x nanoplatelets show a 10 times higher energy transfer efficiency from perovskite to Mn impurities at the required emission wavelengths (about 450 nm for perovskite emission and 580 nm for Mn emission). As a result, the Mn/perovskite dual emission intensity ratio surprisingly elevates from less than 0.25 in case of Mn-doped nanocubes to 0.99 in the current Mn-doped CsPb 2 Cl x Br 5-x nanoplatelets, giving rise to a pure white light emission with Commission Internationale de l'Eclairage (CIE) color coordinates of (0.35, 0.32). More importantly, the highest PL QY for Mn-doped perovskite-related CsPb 2 Cl x Br 5-x nanoplatelets is up to 49%, which is a new record for white-emitting nanocrystals with single component. These highly luminescent nanoplatelets can be blended with polystyrene (PS) without changing the white light emission but dramatically improving perovskite stability. The perovskite-PS composites are available not only as a good solution processable coating material for assembling LED, but also as a superior conversion material for achieving white light LED with a single conversion layer.
Synchronizing Photography For High-Speed-Engine Research
NASA Technical Reports Server (NTRS)
Chun, K. S.
1989-01-01
Light flashes when shaft reaches predetermined angle. Synchronization system facilitates visualization of flow in high-speed internal-combustion engines. Designed for cinematography and holographic interferometry, system synchronizes camera and light source with predetermined rotational angle of engine shaft. 10-bit resolution of absolute optical shaft encoder adapted, and 2 to tenth power combinations of 10-bit binary data computed to corresponding angle values. Pre-computed angle values programmed into EPROM's (erasable programmable read-only memories) to use as angle lookup table. Resolves shaft angle to within 0.35 degree at rotational speeds up to 73,240 revolutions per minute.
Daneshmand, Siamak; Patel, Sanjay; Lotan, Yair; Pohar, Kamal; Trabulsi, Edouard; Woods, Michael; Downs, Tracy; Huang, William; Jones, Jeffrey; O'Donnell, Michael; Bivalacqua, Trinity; DeCastro, Joel; Steinberg, Gary; Kamat, Ashish; Resnick, Matthew; Konety, Badrinath; Schoenberg, Mark; Jones, J Stephen
2018-05-01
We compared blue light flexible cystoscopy with white light flexible cystoscopy for the detection of bladder cancer during surveillance. Patients at high risk for recurrence received hexaminolevulinate intravesically before white light flexible cystoscopy and randomization to blue light flexible cystoscopy. All suspicious lesions were documented. Patients with suspicious lesions were referred to the operating room for repeat white and blue light cystoscopy. All suspected lesions were biopsied or resected and specimens were examined by an independent pathology consensus panel. The primary study end point was the proportion of patients with histologically confirmed malignancy detected only with blue light flexible cystoscopy. Additional end points were the false-positive rate, carcinoma in situ detection and additional tumors detected only with blue light cystoscopy. Following surveillance 103 of the 304 patients were referred, including 63 with confirmed malignancy, of whom 26 had carcinoma in situ. In 13 of the 63 patients (20.6%, 95% CI 11.5-32.7) recurrence was seen only with blue light flexible cystoscopy (p <0.0001). Five of these cases were confirmed as carcinoma in situ. Operating room examination confirmed carcinoma in situ in 26 of 63 patients (41%), which was detected only with blue light cystoscopy in 9 of the 26 (34.6%, 95% CI 17.2-55.7, p <0.0001). Blue light cystoscopy identified additional malignant lesions in 29 of the 63 patients (46%). The false-positive rate was 9.1% for white and blue light cystoscopy. None of the 12 adverse events during surveillance were serious. Office based blue light flexible cystoscopy significantly improves the detection of patients with recurrent bladder cancer and it is safe when used for surveillance. Blue light cystoscopy in the operating room significantly improves the detection of carcinoma in situ and detects lesions that are missed with white light cystoscopy. Copyright © 2018 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wook Kim, Jin; Yoo, Seung Il; Sung Kang, Jin
2015-06-28
We analyzed the performance of multi-emissive white phosphorescent organic light-emitting diodes (PHOLEDs) in relation to various red emitting sites of hole and electron transport layers (HTL and ETL). The shift of the recombination zone producing stable white emission in PHOLEDs was utilized as luminance was increased with red emission in its electron transport layer. Multi-emissive white PHOLEDs including the red light emitting electron transport layer yielded maximum external quantum efficiency of 17.4% with CIE color coordinates (−0.030, +0.001) shifting only from 1000 to 10 000 cd/m{sup 2}. Additionally, we observed a reduction of energy loss in the white PHOLED via Ir(piq){submore » 3} as phosphorescent red dopant in electron transport layer.« less
Lee, Ho Won; Jeong, Hyunjin; Kim, Young Kwan; Ha, Yunkyoung
2015-10-01
Recently, white organic light-emitting diodes (OLEDs) have aroused considerable attention because they have the potential of next-generation flexible displays and white illuminated applications. White OLED applications are particularly heading to the industry but they have still many problems both materials and manufacturing. Therefore, we proposed that the new iridium compounds of orange emitters could be demonstrated and also applied to flexible white OLEDs for verification of potential. First, we demonstrated the chemical properties of new orange iridium compounds. Secondly, conventional two kinds of white phosphorescent OLEDs were fabricated by following devices; indium-tin oxide coated glass substrate/4,4'-bis[N-(napthyl)-N-phenylamino]biphenyl/N,N'-dicarbazolyl-3,5-benzene doped with blue and new iridium compounds for orange emitting 8 wt%/1,3,5-tris[N-phenylbenzimidazole-2-yl]benzene/lithium quinolate/aluminum. In addition, we fabricated white OLEDs using these emitters to verify the potential on flexible substrate. Therefore, this work could be proposed that white light applications can be applied and could be extended to additional research on flexible applications.
LED backlight system with fiber-optic red, green, blue to white color combiner
NASA Astrophysics Data System (ADS)
Kim, Hye R.; Jeong, Yunsong; Lee, Jhang-Woo; Oh, Kyunghwan
2006-09-01
As an application in the backlight system of small LCD display, we realized a pure white light source by mixing red, green, blue (RGB) lights using a 3 X 3 Hard Plastic Cladding Fiber (HPCF) coupler. We also proposed the 0.44 inch LED backlight system with these fiber-optic pure white sources and characterized its illumination characteristics. Using optimized fusion-tapering technique, we fabricated HPCF coupler which combines three input lights over the circularly formed waist. HPCF has the core diameter of 200 μm and clad diameter of 230 μm. The fabricated 3 X 3 HPCF coupler has the perfect uniformity of about 0.3 dB, low insertion loss of 5.5 dB, and low excess loss of 0.8 dB, which shows excellent uniform power splitting ratio. In order to improve the transmission performance, The RGB chip LEDs were butt-coupled directly to the ferruled input ports of the coupler and packaged by TO46-can type. In the produced white color by HPCF coupler, the photometric brightness at the circular endface of outputs of HPCF coupler was in a rage of 10062 ~ 10094 cd/m2. The fiber optic white color combiner provides tunable white sources excluding heat source and having thickness of 200 μm. We also proposed a 0.44 inch LED backlight system with these fiber-optic pure white sources. With the proposed device, we obtain the improved uniformity in luminance distribution and wide color gamut by using the white light mixing red, green and blue lights.
Optical monitoring of protein crystal growth
NASA Technical Reports Server (NTRS)
Choudry, A.
1988-01-01
The possibility of using various optical techniques for detecting the onset of nucleation in protein crystal growth was investigated. Direct microscopy, general metrologic techniques, light scattering, ultraviolet absorption, and interferometry are addressed along with techniques for determining pH value. The necessity for collecting basic data on the optical properties of the growth solution as a prerequisite to the evaluation of monitoring techniques is pointed out.
Zhu, Minrong; Li, Yanhu; Cao, Xiaosong; Jiang, Bei; Wu, Hongbin; Qin, Jingui; Cao, Yong; Yang, Chuluo
2014-12-01
A series of new star-shaped polymers with a triphenylamine-based iridium(III) dendritic complex as the orange-emitting core and poly(9,9-dihexylfluorene) (PFH) chains as the blue-emitting arms is developed towards white polymer light-emitting diodes (WPLEDs). By fine-tuning the content of the orange phosphor, partial energy transfer and charge trapping from the blue backbone to the orange core is realized to achieve white light emission. Single-layer WPLEDs with the configuration of ITO (indium-tin oxide)/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS)/polymer/CsF/Al exhibit a maximum current efficiency of 1.69 cd A(-1) and CIE coordinates of (0.35, 0.33), which is very close to the pure white-light point of (0.33, 0.33). To the best of our knowledge, this is the first report on star-shaped white-emitting single polymers that simultaneously consist of fluorescent and phosphorescent species. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Characterization and effect of light on the plasma membrane H(+) -ATPase of bean leaves
NASA Technical Reports Server (NTRS)
Linnemeyer, P. A.; Van Volkenburgh, E.; Cleland, R. E.
1990-01-01
Proton excretion from bean (Phaseolus vulgaris L.) leaf cells is increased by bright white light. To test whether this could be due, at least in part, to an increase in plasma membrane (PM) ATPase activity, PM vesicles were isolated from primary leaves by phase partitioning and used to characterize PM ATPase activity and changes in response to light. ATPase activity was characterized as magnesium ion dependent, vanadate sensitive, and slightly stimulated by potassium chloride. The pH optimum was 6.5, the Km was approximately 0.30 millimolar ATP, and the activity was about 60% latent. PM vesicles were prepared from leaves of plants grown for 11 days in dim red light (growing slowly) or grown for 10 days in dim red light and then transferred to bright white-light for 1 day (growing rapidly). For both light treatments, ATPase specific activity was approximately 600 to 700 nanomoles per milligram protein per minute, and the latency, Km, and sensitivity to potassium chloride were also similar. PM vesicles from plants grown in complete darkness, however, exhibited a twofold greater specific activity. We conclude that the promotion of leaf growth and proton excretion by bright white light is not due to an increase in ATPase specific activity. Light does influence ATPase activity, however; both dim red light and bright white light decreased the ATPase specific activity by nearly 50% as compared with dark-grown leaves.
Surgical operation using lighting goggle composed of white LED arrays
NASA Astrophysics Data System (ADS)
Shimada, Junichi; Kawakami, Yoichi; Fujita, Shigeo
2001-12-01
Everywhere in the world, the highest quality and quantity of lighting is required during the surgical operations. However, the surgical approach has had many types and various angles, common ceiling surgical halogen lighting system cannot provide an adequate amount of beams because the surgeons' heads hinder the illuminations from reaching the operation field. Here, we newly design surgical lighting system composed of white LEDs equipped on both sides of goggles, which controls the lighting beams to the gazing point. With this system, it is just needed for surgeons to wear light plastic goggles with high quality LEDs made by Nichia. In fact, we have succeeded in the first internal shunt operation in the left forearm using the surgical LED lighting system on 11th Sept 2000. The electrical power for the system was supplied from lithium-ion battery for 2 hours. Since the white LEDs used were composed of InGaN-blue-emitters and YAG-yellow-phosphors, the color rendering property was not sufficient in the reddish colors. Therefore, in the next approach, it is very important to develop the spectral distribution of white LED to render inherent color of raw flesh such as skin, blood, fat tissue and internal organs. To improve the color rendering in red colors, some adjustments should be given in the fluorescents layers. Design of goggle is also very important for cutting into the real practical market of white LEDs.
Students’ conceptions on white light and implications for teaching and learning about colour
NASA Astrophysics Data System (ADS)
Haagen-Schützenhöfer, Claudia
2017-07-01
The quality of learning processes is mainly determined by the extent to which students’ conceptions are addressed and thus conceptual change is triggered. Colour phenomena are a topic within initial instruction of optics which is challenging. A physically adequate concept of white light is crucial for being able to grasp the processes underlying colour formation. Our previous research suggests that misconceptions on white light may influence the conceptual understanding of colour phenomena. For the design of a learning environment on light and colours, the literature was reviewed. Then an explorative interview study with participants (N = 32), with and without instruction in introductory optics, was carried out. In addition, the representations used for white light in Austrian physics schoolbooks were analysed. Based on the results of the literature review, the interview study and the schoolbook analysis, a learning environment was designed and tested in teaching experiments. The results indicate that learners often lack an adequate concept of white light even after instruction in introductory optics. This seems to cause learning difficulties concerning colour phenomena. On the other hand, the evaluation of our learning environment showed that students are able to gain a good conceptual understanding of colour phenomena if instruction takes these content specific learning difficulties into account.
Efficient and bright organic light-emitting diodes on single-layer graphene electrodes
NASA Astrophysics Data System (ADS)
Li, Ning; Oida, Satoshi; Tulevski, George S.; Han, Shu-Jen; Hannon, James B.; Sadana, Devendra K.; Chen, Tze-Chiang
2013-08-01
Organic light-emitting diodes are emerging as leading technologies for both high quality display and lighting. However, the transparent conductive electrode used in the current organic light-emitting diode technologies increases the overall cost and has limited bendability for future flexible applications. Here we use single-layer graphene as an alternative flexible transparent conductor, yielding white organic light-emitting diodes with brightness and efficiency sufficient for general lighting. The performance improvement is attributed to the device structure, which allows direct hole injection from the single-layer graphene anode into the light-emitting layers, reducing carrier trapping induced efficiency roll-off. By employing a light out-coupling structure, phosphorescent green organic light-emitting diodes exhibit external quantum efficiency >60%, while phosphorescent white organic light-emitting diodes exhibit external quantum efficiency >45% at 10,000 cd m-2 with colour rendering index of 85. The power efficiency of white organic light-emitting diodes reaches 80 lm W-1 at 3,000 cd m-2, comparable to the most efficient lighting technologies.
Study of CCT varying by volume scattering diffuser with moving and rotating white light LED
NASA Astrophysics Data System (ADS)
Ma, Shih-Hsin; Chen, Liang-Shiun; Huang, Wen-Chao
2014-09-01
In this study, the corrected color temperature (CCT) of white light, which originates from a white light LED (WLLED) and passes through a volume-scattering diffuser (VSD), is investigated. The VSD with thickness of 2mm is fabricated by mixing the 2um-sized PMMA scattering particles and the epoxy glue with different concentration values. Moreover, in order to understand the influences of the illuminated area and the scattering path of VSD on CCT values, the bulletheaded and lambertian-type WLLEDs are assembled for different positions and distinct orientations along the optical axis in a black cavity. A detailed comparison between results regarding the white light with and without passing through the VSD is offered. The results of this research will help to improve the colorful consistency of the LED lamps which use diffusers.
IRIS Ultraviolet Spectral Properties of a Sample of X-Class Solar Flares
NASA Astrophysics Data System (ADS)
Butler, Elizabeth; Kowalski, Adam; Cauzzi, Gianna; Allred, Joel C.; Daw, Adrian N.
2018-06-01
The white-light (near-ultraviolet (NUV) and optical) continuum emission comprises the majority of the radiated energy in solar flares. However, there are nearly as many explanations for the origin of the white-light continuum radiation as there are white-light flares that have been studied in detail with spectra. Furthermore, there are rarely robust constraints on the time-resolved dynamics in the white-light emitting flare layers. We are conducting a statistical study of the properties of Fe II lines, Mg II lines, and NUV continuum intensity in bright flare kernels observed by the Interface Region Imaging Spectrograph (IRIS), in order to provide comprehensive constraints for radiative-hydrodynamic flare models. Here we present a new technique for identifying bright flare kernels and preliminary relationships among IRIS spectral properties for a sample of X-class solar flares.
NASA Astrophysics Data System (ADS)
Lü, Xiaodan; Yang, Jing; Fu, Yuqin; Liu, Qianqian; Qi, Bin; Lü, Changli; Su, Zhongmin
2010-03-01
White light emitting semiconductor nanocrystals (NCs) have been successfully synthesized from 8-hydroxyquinoline-5-sulfonic acid (HQS) decorated manganese doped ZnS NCs through fine tuning the surface-coordination emission and dopant emission of the NC host. The HQS functionalized manganese doped ZnS NCs (QS-ZnS:Mn), with a cubic crystal structure, have the same diameter of about 4.0 nm as ZnS:Mn NCs without HQS. The intensity of the surface-coordination emission peak increased with increasing HQS content or augmenting excited wavelength. The emission of white light was achieved by carefully controlling the dosage of HQS in NCs and appropriately tuning the excited wavelength. The color coordinates (0.35, 0.34) for the efficient white light emitting NCs were very close to the ideal Commission Internationale de l'Eclairage (CIE) chromaticity coordinates for pure white light (0.33, 0.33). The photoluminescence (PL) decay study revealed that the white light emitting NCs exhibited maximum lifetime values at different emission peaks for different NC samples. The study results also indicated that the HQS molecules were attached to the surface of ZnS:Mn NCs in a single coordination fashion due to the steric hindrance effect of the special spherical surface of NCs, which made the QS-ZnS:Mn NCs possess stable and high fluorescent properties in different organic solvents as compared with the conventional small molecule complexes.
GATEWAY Report Brief: Tunable-White Lighting at the ACC Care Center
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
Summary of a GATEWAY program report that documented the performance of tunable-white LED lighting systems installed in several spaces within the ACC Care Center, a senior-care facility in Sacramento, CA. The project results included energy savings and improved lighting quality, as well as other possible health-related benefits that may have been attributable, at least in part, to the lighting changes.
NASA Astrophysics Data System (ADS)
Mathar, Richard J.
Long-baseline interferometry detects fringes created by superposition of two beams of light collected by two telescopes pointing into a common direction. The external path difference is commonly compensated by adding a variable optical path length (delay) through air for one beam such that the optical path difference between the beams remains close to zero near the detector. The ABCD formula assigns a (wrapped) phase to the signals A to D of an interference pattern shifted by multiples of 90 degrees in phase. We study the interplay between a broad spectral passband of the optics and the dispersion of the air in the compensating delay, which leads to small deviations between the ABCD phase and the reduced, monochromatic group-delay representation of the wave packets. This adds dispersion to the effects that have been discussed for evacuated interferometers before (Milman 2005).
Very large ground-based telescopes for optical and IR astronomy
NASA Technical Reports Server (NTRS)
Angel, J. R. P.
1982-01-01
Methods for improving the light grasp by an order of magnitude for earth-based observations of astrophysical objects are reviewed. Noting that the atmosphere is opaque below 0.3 micron and that techniques have been developed to make corrections for the atmospheric distortion, fully diffraction limited IR performance at 10 microns is asserted to be practicable. The use of mirror-seeing with metal mirrors with thin faceplates and air cooling is outlined as a means to achieve subarcsec resolution. Designs are considered which involve multiple sections to gain effective large aperture viewing for spectroscopy, using Si CCD detectors, and heterodyne IR interferometry, but not for direct interferometry or certain IR measurements. The Multiple Mirror Telescope is described, including designs for four 7.5 m honeycomb glass primaries co-aligned in a single mount. Further discussion is devoted to the fabrication of mirror elements and electronic image stabilization.
Intensity Interferometry: Imaging Stars with Kilometer Baselines
NASA Astrophysics Data System (ADS)
Dravins, Dainis
2018-04-01
Microarcsecond imaging will reveal stellar surfaces but requires kilometer-scale interferometers. Intensity interferometry circumvents atmospheric turbulence by correlating intensity fluctuations between independent telescopes. Telescopes connect only electronically, and the error budget relates to electronic timescales of nanoseconds (light-travel distances on the order of a meter), enabling the use of imperfect optics in a turbulent atmosphere. Once pioneered by Hanbury Brown and Twiss, digital versions have now been demonstrated in the laboratory, reconstructing diffraction-limited images from hundreds of optical baselines. Arrays of Cherenkov telescopes (primarily erected for gamma-ray studies) will extend over a few km, enabling an optical equivalent of radio interferometers. Resolutions in the tens of microarcseconds will resolve rotationally flattened stars with their circumstellar disks and winds, or possibly even the silhouettes of transiting exoplanets. Applying the method to mirror segments in extremely large telescopes (even with an incompletely filled main mirror, poor seeing, no adaptive optics), the diffraction limit in the blue may be reached.
A microchip laser source with stable intensity and frequency used for self-mixing interferometry.
Zhang, Shaohui; Zhang, Shulian; Tan, Yidong; Sun, Liqun
2016-05-01
We present a stable 40 × 40 × 30 mm(3) Laser-diode (LD)-pumped-microchip laser (ML) laser source used for self-mixing interferometry which can measure non-cooperative targets. We simplify the coupling process of pump light in order to make its polarization and intensity robust against environmental disturbance. Thermal frequency stabilization technology is used to stabilize the laser frequency of both LD and ML. Frequency stability of about 1 × 10(-7) and short-term intensity fluctuation of 0.1% are achieved. The theoretical long-term displacement accuracy limited by frequency and intensity fluctuation is about 10 nm when the measuring range is 0.1 m. The line-width of this laser is about 25 kHz corresponding to 12 km coherent length and 6 km measurement range for self-mixing interference. The laser source has been equipped to a self-mixing interferometer, and it works very well.
NASA Astrophysics Data System (ADS)
Ebbeni, Jean
Included in this volume are papers on real-time image enhancement by simple video systems, automatic identification and data collection via barcode laser scanning, the optimization of the cutting up of a strip of float glass, optical sensors for factory automation, and the use of a digital theodolite with infrared radiation. Attention is also given to ISIS (integrated shape imaging system), a new system for follow-up of scoliosis; optical diffraction extensometers; a cross-spectrum technique for high-sensitivity remote vibration analysis by optical interferometry; the compensation and measurement of any motion of three-dimensional objects in holographic interferometry; and stereoscreen. Additional papers are on holographic double pulse YAG lasers, miniature optic connectors, stress-field analysis in an adhesively bonded joint with laser photoelasticimetry, and the locking of the light pulse delay in externally triggered gas lasers.
NASA Technical Reports Server (NTRS)
Bolcar, Matthew R.; Leisawitz, David; Maher, Steve; Rinehart, Stephen
2012-01-01
The Wide-field Imaging Interferometer testbed (WIIT) at NASA's Goddard Space Flight Center uses a dual-Michelson interferometric technique. The WIIT combines stellar interferometry with Fourier-transform interferometry to produce high-resolution spatial-spectral data over a large field-of-view. This combined technique could be employed on future NASA missions such as the Space Infrared Interferometric Telescope (SPIRIT) and the Sub-millimeter Probe of the Evolution of Cosmic Structure (SPECS). While both SPIRIT and SPECS would operate at far-infrared wavelengths, the WIIT demonstrates the dual-interferometry technique at visible wavelengths. The WIIT will produce hyperspectral image data, so a true hyperspectral object is necessary. A calibrated hyperspectral image projector (CHIP) has been constructed to provide such an object. The CHIP uses Digital Light Processing (DLP) technology to produce customized, spectrally-diverse scenes. CHIP scenes will have approximately 1.6-micron spatial resolution and the capability of . producing arbitrary spectra in the band between 380 nm and 1.6 microns, with approximately 5-nm spectral resolution. Each pixel in the scene can take on a unique spectrum. Spectral calibration is achieved with an onboard fiber-coupled spectrometer. In this paper we describe the operation of the CHIP. Results from the WIIT observations of CHIP scenes will also be presented.
Interferometry in the era of time-domain astronomy
NASA Astrophysics Data System (ADS)
Schaefer, Gail H.; Cassan, Arnaud; Gallenne, Alexandre; Roettenbacher, Rachael M.; Schneider, Jean
2018-04-01
The physical nature of time variable objects is often inferred from photometric light-curves and spectroscopic variations. Long-baseline optical interferometry has the power to resolve the spatial structure of time variable sources directly in order to measure their physical properties and test the physics of the underlying models. Recent interferometric studies of variable objects include measuring the angular expansion and spatial structure during the early stages of novae outbursts, studying the transits and tidal distortions of the components in eclipsing and interacting binaries, measuring the radial pulsations in Cepheid variables, monitoring changes in the circumstellar discs around rapidly rotating massive stars, and imaging starspots. Future applications include measuring the image size and centroid displacements in gravitational microlensing events, and imaging the transits of exoplanets. Ongoing and upcoming photometric surveys will dramatically increase the number of time-variable objects detected each year, providing many potential targets to observe interferometrically. For short-lived transient events, it is critical for interferometric arrays to have the flexibility to respond rapidly to targets of opportunity and optimize the selection of baselines and beam combiners to provide the necessary resolution and sensitivity to resolve the source as its brightness and size change. We discuss the science opportunities made possible by resolving variable sources using long baseline optical interferometry.
Phosphor-Free InGaN White Light Emitting Diodes Using Flip-Chip Technology
Li, Ying-Chang; Chang, Liann-Be; Chen, Hou-Jen; Yen, Chia-Yi; Pan, Ke-Wei; Huang, Bohr-Ran; Kuo, Wen-Yu; Chow, Lee; Zhou, Dan; Popko, Ewa
2017-01-01
Monolithic phosphor-free two-color gallium nitride (GaN)-based white light emitting diodes (LED) have the potential to replace current phosphor-based GaN white LEDs due to their low cost and long life cycle. Unfortunately, the growth of high indium content indium gallium nitride (InGaN)/GaN quantum dot and reported LED’s color rendering index (CRI) are still problematic. Here, we use flip-chip technology to fabricate an upside down monolithic two-color phosphor-free LED with four grown layers of high indium quantum dots on top of the three grown layers of lower indium quantum wells separated by a GaN tunneling barrier layer. The photoluminescence (PL) and electroluminescence (EL) spectra of this white LED reveal a broad spectrum ranging from 475 to 675 nm which is close to an ideal white-light source. The corresponding color temperature and color rendering index (CRI) of the fabricated white LED, operated at 350, 500, and 750 mA, are comparable to that of the conventional phosphor-based LEDs. Insights of the epitaxial structure and the transport mechanism were revealed through the TEM and temperature dependent PL and EL measurements. Our results show true potential in the Epi-ready GaN white LEDs for future solid state lighting applications. PMID:28772792
Light at Night and Measures of Alertness and Performance: Implications for Shift Workers.
Figueiro, Mariana G; Sahin, Levent; Wood, Brittany; Plitnick, Barbara
2016-01-01
Rotating-shift workers, particularly those working at night, are likely to experience sleepiness, decreased productivity, and impaired safety while on the job. Light at night has been shown to have acute alerting effects, reduce sleepiness, and improve performance. However, light at night can also suppress melatonin and induce circadian disruption, both of which have been linked to increased health risks. Previous studies have shown that long-wavelength (red) light exposure increases objective and subjective measures of alertness at night, without suppressing nocturnal melatonin. This study investigated whether exposure to red light at night would not only increase measures of alertness but also improve performance. It was hypothesized that exposure to both red (630 nm) and white (2,568 K) lights would improve performance but that only white light would significantly affect melatonin levels. Seventeen individuals participated in a 3-week, within-subjects, nighttime laboratory study. Compared to remaining in dim light, participants had significantly faster reaction times in the GO/NOGO test after exposure to both red light and white light. Compared to dim light exposure, power in the alpha and alpha-theta regions was significantly decreased after exposure to red light. Melatonin levels were significantly suppressed by white light only. Results show that not only can red light improve measures of alertness, but it can also improve certain types of performance at night without affecting melatonin levels. These findings could have significant practical applications for nurses; red light could help nurses working rotating shifts maintain nighttime alertness, without suppressing melatonin or changing their circadian phase. © The Author(s) 2015.
White-Light Phase-Conjugate Mirrors as Distortion Correctors
NASA Technical Reports Server (NTRS)
Frazier, Donald; Smith, W. Scott; Abdeldayem, Hossin; Banerjee, Partha
2010-01-01
White-light phase-conjugate mirrors would be incorporated into some optical systems, according to a proposal, as means of correcting for wavefront distortions caused by imperfections in large optical components. The proposal was given impetus by a recent demonstration that white, incoherent light can be made to undergo phase conjugation, whereas previously, only coherent light was known to undergo phase conjugation. This proposal, which is potentially applicable to almost any optical system, was motivated by a need to correct optical aberrations of the primary mirror of the Hubble Space telescope. It is difficult to fabricate large optical components like the Hubble primary mirror and to ensure the high precision typically required of such components. In most cases, despite best efforts, the components as fabricated have small imperfections that introduce optical aberrations that adversely affect imaging quality. Correcting for such aberrations is difficult and costly. The proposed use of white-light phase conjugate mirrors offers a relatively simple and inexpensive solution of the aberration-correction problem. Indeed, it should be possible to simplify the entire approach to making large optical components because there would be no need to fabricate those components with extremely high precision in the first place: A white-light phase-conjugate mirror could correct for all the distortions and aberrations in an optical system. The use of white-light phase-conjugate mirrors would be essential for ensuring high performance in optical systems containing lightweight membrane mirrors, which are highly deformable. As used here, "phase-conjugate mirror" signifies, more specifically, an optical component in which incident light undergoes time-reversal phase conjugation. In practice, a phase-conjugate mirror would typically be implemented by use of a suitably positioned and oriented photorefractive crystal. In the case of a telescope comprising a primary and secondary mirror (see figure) white light from a distant source would not be brought to initial focus on one or more imaging scientific instrument(s) as in customary practice. Instead, the light would be brought to initial focus on a phase-conjugate mirror. The phase-conjugate mirror would send a phase-conjugate image back, along the path of the incoming light, to the primary mirror. A transparent, highly efficient diffractive thin film deposited on the primary mirror would direct the phase-conjugate image to the imaging instrument(s).
The Whiteness of Things and Light Scattering
ERIC Educational Resources Information Center
Gratton, L. M.; Lopez-Arias, T.; Calza, G.; Oss, S.
2009-01-01
We discuss some simple experiments dealing with intriguing properties of light and its interaction with matter. In particular, we show how to emphasize that light reflection, refraction and scattering can provide a proper, physical description of human perception of the "colour" white. These experiments can be used in the classroom with an enquiry…
USDA-ARS?s Scientific Manuscript database
Attraction of tephritid fruit flies to light and its role in fly biology and management has received little attention. Here, the objective was to show that western cherry fruit fly, Rhagoletis indifferens Curran (Diptera: Tephritidae), is attracted to white light in the presence and absence of ammo...
NASA Astrophysics Data System (ADS)
Chung, Wan-Ho; Kim, Sang-Ho; Kim, Hak-Sung
2016-08-01
In this work, silver nanowire inks with hydroxypropyl methylcellulose (HPMC) binders were coated on polyethylene terephthalate (PET) substrates and welded via flash white light and ultraviolet C (UV-C) irradiation to produce highly conductive transparent electrodes. The coated silver nanowire films were firmly welded and embedded into PET substrate successfully at room temperature and under ambient conditions using an in-house flash white light welding system and UV-C irradiation. The effects of light irradiation conditions (light energy, irradiation time, pulse duration, and pulse number) on the silver nanowire networks were studied and optimized. Bending fatigue tests were also conducted to characterize the reliability of the welded transparent conductive silver nanowire films. The surfaces of the welded silver nanowire films were analyzed via scanning electron microscopy (SEM), while the transmittance of the structures was measured using a spectrophotometer. From the results, a highly conductive and transparent silver nanowire film with excellent reliability could be achieved at room temperature under ambient conditions via the combined flash white light and UV-C irradiation welding process.
Chung, Wan-Ho; Kim, Sang-Ho; Kim, Hak-Sung
2016-01-01
In this work, silver nanowire inks with hydroxypropyl methylcellulose (HPMC) binders were coated on polyethylene terephthalate (PET) substrates and welded via flash white light and ultraviolet C (UV-C) irradiation to produce highly conductive transparent electrodes. The coated silver nanowire films were firmly welded and embedded into PET substrate successfully at room temperature and under ambient conditions using an in-house flash white light welding system and UV-C irradiation. The effects of light irradiation conditions (light energy, irradiation time, pulse duration, and pulse number) on the silver nanowire networks were studied and optimized. Bending fatigue tests were also conducted to characterize the reliability of the welded transparent conductive silver nanowire films. The surfaces of the welded silver nanowire films were analyzed via scanning electron microscopy (SEM), while the transmittance of the structures was measured using a spectrophotometer. From the results, a highly conductive and transparent silver nanowire film with excellent reliability could be achieved at room temperature under ambient conditions via the combined flash white light and UV-C irradiation welding process. PMID:27553755
Lifetime predictions for dimmable two-channel drivers for color tuning luminaires
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davis, Lynn; Smith, Aaron; Clark, Terry
Two-channel tunable white lighting (TWL) systems represent the next wave of solid-state lighting (SSL) systems and promise flexibility in light environment while maintaining the high reliability and luminous efficacy expected with SSL devices. TWL systems utilize LED assemblies consisting of two different LED spectra (i.e., often a warm white assembly and a cool white assembly) that are integrated into modules. While these systems provide the ability to adjust the lighting spectrum to match the physiology needs of the task at hand, they also are a potentially more complex lighting system from a performance and reliability perspective. We report an initialmore » study on the reliability performance of such lighting systems including an examination of the lumen maintenance and chromaticity stability of warm white and cool white LED assemblies and the multi-channel driver that provides power to the assemblies. Accelerated stress tests including operational bake tests conducted at 75°C and 95°C were used to age the LED modules, while more aggressive temperature and humidity tests were used for the drivers in this study. Small differences in the performance between the two LED assemblies were found and can be attributed to the different phosphor chemistries. The lumen maintenances of both LED assemblies were excellent. The warm white LED assemblies were found to shift slightly in the green color direction over time while the cool white LED assemblies shifted slightly in the yellow color direction. The net result of these chromaticity shifts is a small, barely perceptible reduction in the tuning range after 6,000 hours of exposure to an accelerating elevated temperature of 75°C.« less
White-light optical vortex coronagraph
NASA Astrophysics Data System (ADS)
Kanburapa, Prachyathit
An optical vortex is characterized by a dark core of destructive interference in a light beam. One of the methods commonly employed to create an optical vortex is by using a computer-generated hologram. A vortex hologram pattern is computed from the interference pattern between a reference plane wave and a vortex wave, resulting in a forked grating pattern. In astronomy, an optical vortex coronagraph is one of the most promising high contrast imaging techniques for the direct imaging of extra-solar planets. Direct imaging of extra-solar planets is a challenging task since the brightness of the parent star is extremely high compared to its orbiting planets. The on-axis light from the parent star gets diffracted in the coronagraph, forming a "ring of fire" pattern, whereas the slightly off-axis light from the planet remains intact. Lyot stop can then be used to block the ring of fire pattern, thus allowing only the planetary light to get through to the imaging camera. Contrast enhancements of 106 or more are possible, provided the vortex lens (spiral phase plate) has exceptional optical quality. By using a vortex hologram with a 4 microm pitch, and an f/300 focusing lens, we were able to demonstrate the creation of a "ring of fire" using a white light emitting diode as a source. A dispersion compensating linear diffraction grating of 4 microm pitch was used to bring the rings together to form a single white light ring of fire. To our knowledge, this is the first time a vortex hologram based OVC has been demonstrated, resulting in a well-formed white light ring of fire. Experimental results show measured power contrast of 1/515 when HeNe laser source was used as a light source and 1/77 when using a white light emitting diode.
Fifty shades of white: how white feather brightness differs among species
NASA Astrophysics Data System (ADS)
Igic, Branislav; D'Alba, Liliana; Shawkey, Matthew D.
2018-04-01
White colouration is a common and important component of animal visual signalling and camouflage, but how and why it varies across species is poorly understood. White is produced by wavelength-independent and diffuse scattering of light by the internal structures of materials, where the degree of brightness is related to the amount of light scattered. Here, we investigated the morphological basis of brightness differences among unpigmented pennaceous regions of white body feathers across 61 bird species. Using phylogenetically controlled comparisons of reflectance and morphometric measurements, we show that brighter white feathers had larger and internally more complex barbs than duller white feathers. Higher brightness was also associated with more closely packed barbs and barbules, thicker and longer barbules, and rounder and less hollow barbs. Larger species tended to have brighter white feathers than smaller species because they had thicker and more complex barbs, but aquatic species were not significantly brighter than terrestrial species. As similar light scattering principals affect the brightness of chromatic signals, not just white colours, these findings help broaden our general understanding of the mechanisms that affect plumage brightness. Future studies should examine how feather layering on a bird's body contributes to differences between brightness of white plumage patches within and across species.
Green light emitting curcumin dye in organic solvents
NASA Astrophysics Data System (ADS)
Mubeen, Mohammad; Deshmukh, Abhay D.; Dhoble, S. J.
2018-05-01
In this modern world, the demand for the white light emission has increased because of its wide applications in various display and lighting devices, sensors etc. This white light can be produced by mixing red, green and blue lights. Thus this green light can be produced from the plant extract i.e., Turmeric. Curcumin is the essential element present in turmeric to generate the green light. The Photoluminescence (PL) emission is observed at 540 nm at 380nm excitation. This method of generating green light is very simple, cost effective and efficient when compared to other methods.
Meesters, Ybe; Duijzer, Wianne B; Hommes, Vanja
2018-05-01
Ever since a new photoreceptor was discovered with a highest sensitivity to 470-490 nm blue light, it has been speculated that blue light has some advantages in the treatment of Seasonal Affective Disorder (SAD) over more traditional treatments. In this study we compared the effects of exposure to narrow-band blue light (BLUE) to those of broad-wavelength white light (BLT) in the treatment of SAD. In a 15-day design, 45 patients suffering from SAD completed 30-min sessions of light treatment on 5 consecutive days. 21 subjects received white-light treatment (BLT, broad-wavelength without UV, 10 000 lx, irradiance 31.7 W/m 2 ), 24 subjects received narrow-band blue light (BLUE, 100 lx, irradiance 1.0 W/m 2 ). All participants completed weekly questionnaires concerning mood and energy levels, and were also assessed by means of the SIGH-SAD, which is the primary outcome measure. On day 15, SIGH-SAD ratings were significantly lower than on day 1 (BLT 73.2%, effect size 3.37; BLUE 67%, effect size 2.63), which outcomes were not statistically significant different between both conditions. Small sample size. Light treatment is an effective treatment for SAD. The use of narrow-band blue light is equally effective as a treatment using bright white-light. Copyright © 2018 Elsevier B.V. All rights reserved.
Marra, Kayla; LaRochelle, Ethan P; Chapman, M Shane; Hoopes, P Jack; Lukovits, Karina; Maytin, Edward V; Hasan, Tayyaba; Pogue, Brian W
2018-04-16
Daylight-mediated photodynamic therapy (d-PDT) as a treatment for actinic keratosis (AK) is an increasingly common technique due to a significant reduction in pain, leading to better patient tolerability. While past studies have looked at different light sources and delivery methods, this study strives to provide equivalent PpIX-weighted light doses with the hypothesis that artificial light sources could be equally as effective as natural sunlight if their PpIX-weighted fluences were equalized. Normal mouse skin was used as the model to compare blue LED light, metal halide white light and natural sunlight, with minimal incubation time between topical ALA application and the onset of light delivery. A total PpIX-weighted fluence of 20 J eff cm -2 was delivered over 2 h, and the efficacy of response was quantified using three acute bioassays for PDT damage: PpIX photobleaching, Stat3 crosslinking and quantitative histopathology. These bioassays indicated blue light was slightly inferior to both sunlight and white light, but that the latter two were not significantly different. The results suggest that metal halide white light could be a reasonable alternative to daylight PDT, which should allow a more controlled treatment that is independent of weather and yet should have similar response rates with limited pain during treatment. © 2018 The American Society of Photobiology.
Cosmic Infrared Background Fluctuations and Zodiacal Light
NASA Technical Reports Server (NTRS)
Arendt, Richard G.; Kashlinsky, A.; Moseley, S. H.; Mather, J.
2017-01-01
We performed a specific observational test to measure the effect that the zodiacal light can have on measurements of the spatial fluctuations of the near-IR (near-infrared)background. Previous estimates of possible fluctuations caused by zodiacal light have often been extrapolated from observations of the thermal emission at longer wavelengths and low angular resolution or from IRAC (Infrared Array Camera) observations of high-latitude fields where zodiacal light is faint and not strongly varying with time. The new observations analyzed here target the COSMOS (Cosmic Evolution Survey) field at low ecliptic latitude where the zodiacal light intensity varies by factors of approximately 2 over the range of solar elongations at which the field can be observed. We find that the white-noise component of the spatial power spectrum of the background is correlated with the modeled zodiacal light intensity. Roughly half of the measured white noise is correlated with the zodiacal light, but a more detailed interpretation of the white noise is hampered by systematic uncertainties that are evident in the zodiacal light model. At large angular scales (greater than or approximately equal to 100 arcseconds) where excess power above the white noise is observed, we find no correlation of the power with the modeled intensity of the zodiacal light. This test clearly indicates that the large-scale power in the infrared background is not being caused by the zodiacal light.
Katiyar, Ajit K; Sinha, Arun Kumar; Manna, Santanu; Ray, Samit K
2014-09-10
Well-separated Si/ZnS radial nanowire heterojunction-based light-emitting devices have been fabricated on large-area substrates by depositing n-ZnS film on p-type nanoporous Si nanowire templates. Vertically oriented porous Si nanowires on p-Si substrates have been grown by metal-assisted chemical etching catalyzed using Au nanoparticles. Isolated Si nanowires with needle-shaped arrays have been made by KOH treatment before ZnS deposition. Electrically driven efficient white light emission from radial heterojunction arrays has been achieved under a low forward bias condition. The observed white light emission is attributed to blue and green emission from the defect-related radiative transition of ZnS and Si/ZnS interface, respectively, while the red arises from the porous surface of the Si nanowire core. The observed white light emission from the Si/ZnS nanowire heterojunction could open up the new possibility to integrate Si-based optical sources on a large scale.
Fabrication of White Light-emitting Electrochemical Cells with Stable Emission from Exciplexes.
Uchida, Soichi; Takizawa, Daisuke; Ikeda, Satoru; Takeuchi, Hironori; Nishimura, Suzushi; Nishide, Hiroyuki; Nishikitani, Yoshinori
2016-11-15
The authors present an approach for fabricating stable white light emission from polymer light-emitting electrochemical cells (PLECs) having an active layer which consists of blue-fluorescent poly(9,9-di-n-dodecylfluorenyl-2,7-diyl) (PFD) and π-conjugated triphenylamine molecules. This white light emission originates from exciplexes formed between PFD and amines in electronically excited states. A device containing PFD, 4,4',4''-tris[2-naphthyl(phenyl)amino]triphenylamine (2-TNATA), Poly(ethylene oxide) and K2CF3SO3 showed white light emission with Commission internationale de l'éclairage (CIE) coordinates of (0.33, 0.43) and a Color Rendering Index (CRI) of Ra = 73 at an applied voltage of 3.5 V. Constant voltage measurements showed that the CIE coordinates of (0.27, 0.37), Ra of 67, and the emission color observed immediately after application of a voltage of 5 V were nearly unchanged and stable after 300 sec.
NASA Astrophysics Data System (ADS)
Chiong, W. L.; Omar, A. F.
2017-07-01
Non-destructive technique based on visible (VIS) spectroscopy using light emitting diode (LED) as lighting was used for evaluation of the internal quality of mango fruit. The objective of this study was to investigate feasibility of white LED as lighting in spectroscopic instrumentation to predict the acidity and soluble solids content of intact Sala Mango. The reflectance spectra of the mango samples were obtained and measured in the visible range (400-700 nm) using VIS spectroscopy illuminated under different white LEDs and tungsten-halogen lamp (pro lamp). Regression models were developed by multiple linear regression to establish the relationship between spectra and internal quality. Direct calibration transfer procedure was then applied between master and slave lighting to check on the acidity prediction results after transfer. Determination of mango acidity under white LED lighting was successfully performed through VIS spectroscopy using multiple linear regression but otherwise for soluble solids content. Satisfactory results were obtained for calibration transfer between LEDs with different correlated colour temperature indicated this technique was successfully used in spectroscopy measurement between two similar light sources in prediction of internal quality of mango.
LEDs for solid state lighting and other emerging applications: status, trends, and challenges
NASA Astrophysics Data System (ADS)
Craford, M. George
2005-09-01
LEDs have been commercially available since the 1960's, but in recent years there have been remarkable improvements in performance. These technology developments have enabled the use of LEDs in a variety of colored and white lighting applications. Colored LEDs have already become the technology of choice for traffic signals, much of interior and exterior vehicle lighting, signage of various types often as a replacement for neon, and other areas. LEDs are expected to become the dominant technology for most colored lighting applications. LEDs are beginning to penetrate white lighting markets such as flashlights and localized task lighting. With further improvement LEDs have the potential to become an important technology for large area general illumination. White LED products already have performance of over 30 lumens/watt which is nearly 3x better than incandescents. White LEDs with outputs of more than 100 lumens are already available commercially, and higher power devices can be expected in the near future. LEDs can be used as point sources, or can be used with light guides of various types to provide distributed illumination. Developments that will need to occur for LEDs to be viable for large area general illumination are discussed.
White- and blue-light-emitting dysprosium(III) and terbium(III)-doped gadolinium titanate phosphors.
Antić, Ž; Kuzman, S; Đorđević, V; Dramićanin, M D; Thundat, T
2017-06-01
Here we report the synthesis and structural, morphological, and photoluminescence analysis of white- and blue-light-emitting Dy 3 + - and Tm 3 + -doped Gd 2 Ti 2 O 7 nanophosphors. Single-phase cubic Gd 2 Ti 2 O 7 nanopowders consist of compact, dense aggregates of nanoparticles with an average size of ~25 nm for Dy 3 + -doped and ~50 nm for Tm 3 + -doped samples. The photoluminescence results indicated that ultraviolet (UV) light excitation of the Dy 3 + -doped sample resulted in direct generation of white light, while a dominant yellow emission was obtained under blue-light excitation. Intense blue light was obtained for Tm 3 + -doped Gd 2 Ti 2 O 7 under UV excitation suggesting that this material could be used as a blue phosphor. Copyright © 2016 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Kim, Hyo-Jun; Shin, Min-Ho; Kim, Young-Joo
2016-08-01
A new structure for white organic light-emitting diode (OLED) displays with a patterned quantum dot (QD) film and a long pass filter (LPF) was proposed and evaluated to realize both a high color gamut and high optical efficiency. Since optical efficiency is a critical parameter in white OLED displays with a high color gamut, a red or green QD film as a color-converting component and an LPF as a light-recycling component are introduced to be adjusted via the characteristics of a color filter (CF). Compared with a conventional white OLED without both a QD film and the LPF, it was confirmed experimentally that the optical powers of red and green light in a new white OLED display were increased by 54.1 and 24.7% using a 30 wt % red QD film and a 20 wt % green QD film with the LPF, respectively. In addition, the white OLED with both a QD film and the LPF resulted in an increase in the color gamut from 98 to 107% (NTSC x,y ratio) due to the narrow emission linewidth of the QDs.
Gadomski, D.M.; Parsley, M.J.
2005-01-01
White sturgeon Acipenser transmontanus occur in rivers of the western United States and southwestern Canada, but some populations are in decline because of recruitment failure. Many river systems in this area have been altered as a result of development that has caused major environmental changes. Our goal was to examine how three changes - lower turbidity levels, higher light levels, and altered substrates - might affect predation by prickly sculpin Cottus asper on white sturgeon larvae. We experimentally investigated predation at various turbidity levels and found that significantly more white sturgeon yolk sac larvae were eaten at lower turbidity levels. The effects of light level (1-4 and 7-15 1x), the presence or absence of rocks as cover, and prey size (14-17 mm and 20-24 mm total length) on the outcome of predator-prey interactions were also examined. Significantly fewer white sturgeon were eaten during trials that combined the lowest light level, cover, and the smallest larvae. Our results suggest that altered river conditions caused by impoundment and other factors have increased predation on white sturgeon larvae. ?? Copyright by the American Fisheries Society 2005.
NASA Astrophysics Data System (ADS)
Engelson, Brian Aaron
Footwear impression evidence in dust is often difficult to locate in ambient light and is a fragile medium that both collection and enhancement techniques can destroy or distort. The collection of footwear impression evidence always begins with non-destructive photographic techniques; however, current methods are limited to oblique lighting of the impression followed by an attempt to photograph in situ. For the vast majority of footwear impressions, an interactive collection method, and thus a potentially destructive procedure, is subsequently carried out to gather the evidence. Therefore, alternative non-destructive means for the preservation and enhancement of footwear impressions in dust merits further attention. Previous research performed with reflected ultraviolet (UV) photography and reflected ultraviolet imaging systems (RUVIS) has shown that there are additional non-destructive methodologies that can be applied to the search for and documentation of footwear impressions in dust. Unfortunately, these prior studies did not include robust comparisons to traditional oblique white light, instead choosing to focus on different UV wavelengths. This study, however, seeks to evaluate the use of a RUVIS device paired with a 254 nanometer (nm) UV light source to locate 2-D footwear impressions in dust on multiple substrates against standard oblique white light techniques and assess the visibility of the impression and amount of background interference present. The optimal angle of incident UV light for each substrate was also investigated. Finally, this study applied an image enhancement technique in order to evaluate its usefulness when looking at the visibility of a footwear impression and the amount of background interference present for enhanced white light and RUVIS pictures of footwear impressions in dust. A collection of eight different substrate types was gathered for investigation, including vinyl composition tile (VCT), ceramic tile, marble tile, magazine paper, steel sheet metal, vinyl flooring, wood flooring, and carpet. Heel impressions were applied to the various substrates utilizing vacuum collected dust and normal walking pressure. Each substrate was then explored and photographed in ambient fluorescent light, oblique white light at 0°, 15°, 30°, and 0° with the light source below the surface plane of the substrate, and 254 nm UV light at 0°, 15°, 30°, 45°, 60°, 75°, 90° and 0° with the light source below the surface plane of the substrate. All pictures were evaluated for clarity and visible detail of the footwear impression and the amount of background interference present, selecting for the best images within a lighting condition group. Additional intra- and intergroup comparisons were carried out to explore differences created by the various lighting conditions. Enhanced images were then created with the best scored pictures and evaluated for additional modifications in impression visibility and background interference. Photographs of footwear impressions in dust illuminated with ambient fluorescent light proved to be the most difficult conditions under which a footwear impression could be visualized. However, both oblique white light and 254 nm UV light lighting conditions showed improvements in either visualization or background dropout, or both, over ambient light conditions. An assessment of the white light and 254 nm UV light RUVIS images also demonstrated that the best angles for the light source for all substrates were oblique 0 and oblique 0° below the surface plane of the substrate lighting. It was found that white light photographs generally provided higher visibility ratings, while RUVIS 254 nm UV light photographs provided better grades for reducing background interference. Enhanced images of white light conditions provided generally poorer quality and quantity of details, while enhanced RUVIS images seemed to improve upon these areas. The use of a RUVIS to capture photographs of footwear impression evidence in dust was found to be a successful secondary non-destructive technique that can be paired with traditional oblique white light procedures. Additionally, the use of below the surface plane of the substrate lighting techniques were found to improve either visibility or background dropout, or both, over standard 0 oblique lighting, depending on the light source, and should be employed, when applicable. Finally, further investigation into digital photo-editing enhancement techniques for footwear impression evidence in dust is needed.
The Era After the ELT: Optical Interferometry With Kilometer Baselines
NASA Astrophysics Data System (ADS)
Bakker, Eric J.
2007-12-01
The 8-meter class telescopes seen first light in 1993-1998 (Keck, 1993, VLT 1998). The ELT will see first light in the 2013-2018 time frame. The follow-up of the ELT will see first light around 2023. That is 15 years from today. The sequence from 8-meter to 30 meter telescopes (started as a goal of 100m), will suggest a follow-up telescope with an aperture of 300 meter as initial goal. Cleary a 300 meter or more ambitiously a 1000-meter telescope can no longer be structural one piece that has to point to any point on the sky and track the objects. The more likely scenario is to follow the process applied in radio astronomy and move from single telescopes to interferometers. Optical interferometry is maturing very quickly with the de-commissioning of experimental instruments (COAST, GT2I, IOTA, and probably PTI and ISI in the near future) and the use of precision mechanics and automation. The remaining interferometers are grouped in three categories: large telescopes (VLTI and KECK-I), mid-size interferometers (MROI) and small interferometers (CHARA and NPOI). The Magdalena Ridge Observatory Interferometer (MROI) is scheduled for first light/fringe in 2009 and will provide unique observing capabilities to astronomers with limiting magnitudes in the same range as those currently achieved by Keck-I and VLTI. The Magdalena Ridge Observatory Interferometer (near Socorro, NM) invites interested engineers, scientists, and astronomers to participate in the construction and science program of MRO at all levels. Ranging from visitors instruments, support of large procurements in return for access, to individual contributions related to the science program, shared risk observations, etc. For more information, contact the Project Manager at the Magdalena Ridge Observatory Interferometer.
NASA Astrophysics Data System (ADS)
Singh, R. G.; Singh, Fouran; Kanjilal, D.; Agarwal, V.; Mehra, R. M.
2009-03-01
White light emission across the extended visible region of the electromagnetic spectrum from the ZnO-porous silicon (PS) nanocomposite is reported. Nanocrystallites of ZnO were grown inside the spongy structures of PS by the chemical route of sol-gel spin coating. The property of the material arises from versatile interactions among the host structures of PS and ZnO. The origin of the observed extended white light emission from 1.4 to 3.3 eV is discussed by developing a flat band energy diagram.
White light upconversion emissions in Er3+/Tm3+/Yb3+ tridoped oxyfluoride glass
NASA Astrophysics Data System (ADS)
Guan, Xiaoping; Xu, Wei; Zhu, Shuang; Song, Qiutong; Wu, Xijun; Liu, Hailong
2015-10-01
Rare earth ions doped glasses producing visible upconversion emissions are of great interest due to their potential applications in the photonics filed. In fact, practical application of upconversion emissions has been used to obtain color image displays and white light sources. However, there are few reports on the thermal effect on tuning the emission color of the RE doped materials. In this work, the Er3+/Tm3+/Yb3+ tridoped oxyfluoride glasses were prepared through high temperature solid-state method. Under a 980 nm diode laser excitation, the upconversion emissions from the samples were studied. At room-temperature, bright white luminescence, whose CIE chromaticity coordinate was about (0.28, 0.31), can be obtained when the excitation power was 120 mW. The emission color was changed by varying the intensity ratios between RGB bands, which are strongly dependent on the rare earth ions concentration. The temperature dependent color emissions were also investigated. As temperature increased, the intensities for the emission bands presented different decay rates, finally resulting in the changing of the CIE coordinate. When the temperature was 573 K, white light with color coordinate of (0.31, 0.33) was achieved, which matches well with the white reference (0.33, 0.33). The color tunability, high quality of white light and intense emission intensity make the transparent oxyfluoride glasses excellent candidates for applications in solid-state lighting.
CdSe white quantum dots-based white light-emitting diodes with high color rendering index
NASA Astrophysics Data System (ADS)
Su, Yu-Sheng; Hsiao, Chih-Chun; Chung, Shu-Ru
2016-09-01
A white light emission CdSe quantum dots (QDs) can be prepared by chemical route under 180°C. An organic oleic acid (OA) is used to react with CdO to form Cd-OA complex. Hexadecylamine (HDA) and 1-Octadecene (ODE) were used as co-surfactants. By controlling the reaction time, a white light emission CdSe QDs can be obtained after reacts for 3 to 10 min. The luminescence spectra compose two obvious emission peaks and entire visible light ranges from 400 to 650 nm. Based on TEM measurement result, spherical morphologies with particle size 2.39+/-0.27 nm can be obtained. The quantum yields (QYs) of white CdSe QD are between 20 and 60 %, which depends on reaction time. A white CdSe QDs were mixed with UV cured gel (OPAS-226) with weight ratios 50.0 wt. %, and putted the mixture into reflective cup (3020, 13 mil) as convert type. The white LEDs have controllable CIE coordinates and correlated color temperature (CCT). The luminous efficacy of the device is less than 3 lm/W, but the color rendering index (CRI) for all devices are higher than 80. Since the luminous efficacy of hybrid devices has a direct dependence on the external QY of the UV-LED as well, the luminous efficacy can be improved by well dispersion of CdSe QDs in UV gel matrix and using optimized LED chips. Therefore, in this study, we provide a new and simple method to prepare high QY of white CdSe QDs and its have a potential to applicate in solid-state lighting.
NASA Astrophysics Data System (ADS)
Chen, Mingxian; Sun, Riyong; Ye, Yanchun; Tang, Huaijun; Dong, Xueyan; Yan, Jialun; Wang, Kaimin; Zhou, Qiang; Wang, Zhengliang
2018-02-01
A novel red-emitting cationic iridium(III) coordination polymer using 2-(9-(2-ethylhexyl)-9H-carbazol-3-yl)benzo[d]thiazole as main ligands, 4,4‧-bipyridine as bridging auxiliary ligands and Clˉ as anions was synthesized. It had high thermal stability with a thermal decomposition temperature (Td) of 345 °C and low thermal quenching with an activation energy (Ea) of 0.2760 eV, with the temperature increasing from 20 °C to 100 °C, its photoluminescent intensity decreased to 76.7%. It can be efficiently excited by blue light of GaN chips, the cold white light of GaN-based LEDs using only Y3Al5O12:Ce3+ (YAG:Ce, 7.0 wt% in silicone) as phosphors can become warmer when it was blended in. When blending concentrations were 0.1 wt% and 0.2 wt%, the cold white light became neutral white light, the correlated color temperature (CCT) decreased from 6157 K to 5240 K, then to 4043 K, the color rendering index (CRI) changed from 72.7 to 81.3, then to 78.6, the luminous efficiency (ηL) changed from 134.1 lm·w-1 to 61.9 lm·w-1, then to 46.3 lm·w-1, the Commission Internationale de L'Eclairage (CIE) chromaticity coordinates changed from (0.32, 0.33) to (0.34, 0.33), then to (0.38, 0.36). At 0.3 wt%, the light became warm white light, the corresponding CCT was 3475 K, CRI was 75.6, ηL was 36.9 lm·w-1, and CIE value was (0.41, 0.40). The results suggest the coordination polymer is a promising red-emitting phosphor candidate for neutral and warm white LEDs, especially for warm white LEDs.
OLEDs for lighting applications
NASA Astrophysics Data System (ADS)
van Elsbergen, V.; Boerner, H.; Löbl, H.-P.; Goldmann, C.; Grabowski, S. P.; Young, E.; Gaertner, G.; Greiner, H.
2008-08-01
Organic light emitting diodes (OLEDs) provide potential for power-efficient large area light sources that combine revolutionary properties. They are thin and flat and in addition they can be transparent, colour-tuneable, or flexible. We review the state of the art in white OLEDs and present performance data for three-colour hybrid white OLEDs on indexmatched substrates. With improved optical outcoupling 45 lm/W are achieved. Using a half-sphere to collect all the light that is in the substrate results in 80 lm/W. Optical modelling supports the experimental work. For decorative applications features like transparency and colour tuning are very appealing. We show results on transparent white OLEDs and two ways to come to a colour-variable OLED. These are lateral separation of different colours in a striped design and direct vertical stacking of the different emitting layers. For a striped colour tuneable OLED 36 lm/W are achieved in white with improved optical outcoupling.
Colour-crafted phosphor-free white light emitters via in-situ nanostructure engineering.
Min, Daehong; Park, Donghwy; Lee, Kyuseung; Nam, Okhyun
2017-03-08
Colour-temperature (T c ) is a crucial specification of white light-emitting diodes (WLEDs) used in a variety of smart-lighting applications. Commonly, T c is controlled by distributing various phosphors on top of the blue or ultra violet LED chip in conventional phosphor-conversion WLEDs (PC-WLEDs). Unfortunately, the high cost of phosphors, additional packaging processes required, and phosphor degradation by internal thermal damage must be resolved to obtain higher-quality PC-WLEDs. Here, we suggest a practical in-situ nanostructure engineering strategy for fabricating T c -controlled phosphor-free white light-emitting diodes (PF-WLEDs) using metal-organic chemical vapour deposition. The dimension controls of in-situ nanofacets on gallium nitride nanostructures, and the growth temperature of quantum wells on these materials, were key factors for T c control. Warm, true, and cold white emissions were successfully demonstrated in this study without any external processing.
Colour-crafted phosphor-free white light emitters via in-situ nanostructure engineering
Min, Daehong; Park, Donghwy; Lee, Kyuseung; Nam, Okhyun
2017-01-01
Colour-temperature (Tc) is a crucial specification of white light-emitting diodes (WLEDs) used in a variety of smart-lighting applications. Commonly, Tc is controlled by distributing various phosphors on top of the blue or ultra violet LED chip in conventional phosphor-conversion WLEDs (PC-WLEDs). Unfortunately, the high cost of phosphors, additional packaging processes required, and phosphor degradation by internal thermal damage must be resolved to obtain higher-quality PC-WLEDs. Here, we suggest a practical in-situ nanostructure engineering strategy for fabricating Tc-controlled phosphor-free white light-emitting diodes (PF-WLEDs) using metal-organic chemical vapour deposition. The dimension controls of in-situ nanofacets on gallium nitride nanostructures, and the growth temperature of quantum wells on these materials, were key factors for Tc control. Warm, true, and cold white emissions were successfully demonstrated in this study without any external processing. PMID:28272455
Electrically switchable organo–inorganic hybrid for a white-light laser source
Huang, Jui-Chieh; Hsiao, Yu-Cheng; Lin, Yu-Ting; Lee, Chia-Rong; Lee, Wei
2016-01-01
We demonstrate a spectrally discrete white-light laser device based on a photonic bandgap hybrid, which is composed of a soft photonic crystal; i.e., a layer of dye-doped cholesteric liquid crystal (CLC), sandwiched between two imperfect but identical, inorganic multilayer photonic crystals. With a sole optical pump, a mono-, bi-, or tri-chromatic laser can be obtained and, through the soft photonic crystal regulated by an applied voltage, the hybrid possesses electrical tunability in laser wavelength. The three emitted spectral peaks originate from two bandedges of the CLC reflection band as well as one of the photonic defect modes in dual-mode lasing. Thanks to the optically bistable nature of CLC, such a white-light laser device can operate in quite an energy-saving fashion. This technique has potential to fulfill the present mainstream in the coherent white-light source. PMID:27324219
Integrated optics prototype beam combiner for long baseline interferometry in the L and M bands
NASA Astrophysics Data System (ADS)
Tepper, J.; Labadie, L.; Diener, R.; Minardi, S.; Pott, J.-U.; Thomson, R.; Nolte, S.
2017-06-01
Context. Optical long baseline interferometry is a unique way to study astronomical objects at milli-arcsecond resolutions not attainable with current single-dish telescopes. Yet, the significance of its scientfic return strongly depends on a dense coverage of the uv-plane and a highly stable transfer function of the interferometric instrument. In the last few years, integrated optics (IO) beam combiners have facilitated the emergence of 4-telescope interferometers such as PIONIER or GRAVITY, boosting the imaging capabilities of the VLTI. However, the spectral range beyond 2.2 μm is not ideally covered by the conventional silica based IO. Here, we consider new laser-written IO prototypes made of gallium lanthanum sulfide (GLS) glass, a material that permits access to the mid-infrared spectral regime. Aims: Our goal is to conduct a full characterization of our mid-IR IO two-telescope coupler in order to measure the performance levels directly relevant for long-baseline interferometry. We focus in particular on the exploitation of the L and M astronomical bands. Methods: We use a dedicated Michelson-interferometer setup to perform Fourier transform spectroscopy on the coupler and measure its broadband interferometric performance. We also analyze the polarization properties of the coupler, the differential dispersion and phase degradation, as well as the modal behavior and the total throughput. Results: We measure broadband interferometric contrasts of 94.9% and 92.1% for unpolarized light in the L and M bands. Spectrally integrated splitting ratios are close to 50%, but show chromatic dependence over the considered bandwidths. Additionally, the phase variation due to the combiner is measured and does not exceed 0.04 rad and 0.07 rad across the L and M band, respectively. The total throughput of the coupler including Fresnel and injection losses from free-space is 25.4%. Furthermore, differential birefringence is low (<0.2 rad), in line with the high contrasts reported for unpolarized light. Conclusions: The laser-written IO GLS prototype combiners prove to be a reliable technological solution with promising performance for mid-infrared long-baseline interferometry. In the next steps, we will consider more advanced optical functions, as well as a fiber-fed input, and we will revise the optical design parameters in order to further enhance the total throughput and achromatic behavior.
Gallium Nitride Nanowires and Heterostructures: Toward Color-Tunable and White-Light Sources.
Kuykendall, Tevye R; Schwartzberg, Adam M; Aloni, Shaul
2015-10-14
Gallium-nitride-based light-emitting diodes have enabled the commercialization of efficient solid-state lighting devices. Nonplanar nanomaterial architectures, such as nanowires and nanowire-based heterostructures, have the potential to significantly improve the performance of light-emitting devices through defect reduction, strain relaxation, and increased junction area. In addition, relaxation of internal strain caused by indium incorporation will facilitate pushing the emission wavelength into the red. This could eliminate inefficient phosphor conversion and enable color-tunable emission or white-light emission by combining blue, green, and red sources. Utilizing the waveguiding modes of the individual nanowires will further enhance light emission, and the properties of photonic structures formed by nanowire arrays can be implemented to improve light extraction. Recent advances in synthetic methods leading to better control over GaN and InGaN nanowire synthesis are described along with new concept devices leading to efficient white-light emission. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Achievements and perspectives of fiber gyros
NASA Astrophysics Data System (ADS)
Boehm, Manfred
1986-01-01
After evaluating the development history and current status of fiber-optic gyros employing the Sagnac effect, attention is given to a novel class of inertial fiber-optic motion devices having their basis in the Kennedy-Thorndike (1932) interferometry experiments. These devices promise high performance strapdown inertial navigation systems that dispense with accelerometers. The prospective performance of such devices is discussed in light of an analysis of Sagnac, Michelson, and Kennedy-Thorndike interferometers.
Enhanced Interferometry with Programmable Spatial Light Modulator
2010-06-07
metrolaserinc.com6-7-2010-Monday 6 Simulated by Zemax Lenslet diameters, d, define spatial resolution over the wavefront being measured. (sensitivity...MetroLaser Irvine, California Fitted Zernike Polynomials upto 36 terms, found and put into Zemax Simulated Cats’ eye wavefronts by ZEMAX Experimental...measurement Simulated Fringes Leftover < 0.1λ 23 Cat’s eye wavefronts by ZEMAX based on Experimental results Jtrolinger@metrolaserinc.com6-7-2010
Nanoparticle light scattering on interferometric surfaces
NASA Astrophysics Data System (ADS)
Hayrapetyan, K.; Arif, K. M.; Savran, C. A.; Nolte, D. D.
2011-03-01
We present a model based on Mie Surface Double Interaction (MSDI) to explore bead-based detection mechanisms using imaging and scanning. The application goal of this work is to explore the trade-offs between the sensitivity and throughput among various detection methods. Experimentally we use thermal oxide on silicon to establish and control surface interferometric conditions. Surface-captured gold beads are detected using Molecular Interferometric Imaging (MI2) and Spinning-Disc Interferometry (SDI).
NASA Technical Reports Server (NTRS)
Barry, Richard K.; Danchi, William C.; Lopez, Bruno; Rinehart, Stephen; Absil, Olivier; Augereau, Jean-Charles; Beust, Herve; Bonfils, Xavier; Borde, Pascal; Defrere, Denis;
2009-01-01
In recent years, the evolution of technology has led to significant advances in high angular resolution astronomy and the precision of new observations. In particular, the interferometric combination of light from physically separated telescopes has shown both great promise and great challenge. We describe the first scientific results from the Keck Interferometer Nuller an instrument that combines the light of the two largest optical telescopes in the world in the context of the historic development of interferometry from its beginning in the work of Fizeau, Stephan and Michelson. We also describe our efforts to build a space-borne mid-infrared interferometer the Fourier Kelvin Stellar Interferometer (FKSI) - for the characterization of exoplanets. We report results of a recent engineering study on an enhanced version of FKSI that includes 1-meter primary mirrors, 20-meter boom length, and an advanced sun shield that will provide a 45-degree FOR and 40K operating temperature for all optics, including siderostats, enabling the characterization of exozodiacal debris disks, extrasolar planets and other phenomena requiring extremely high spatial resolution. We are further investigating the possibility of characterizing the atmospheres of several super-Earths and a few Earth twins by a combination of spatial modulation and spectral analysis.
State of the metal core in nanosecond exploding wires and related phenomena
NASA Astrophysics Data System (ADS)
Sarkisov, G. S.; Sasorov, P. V.; Struve, K. W.; McDaniel, D. H.
2004-08-01
Experiments show that an expanding metal wire core that results from a nanosecond electrical explosion in vacuum consists primarily of three different states: solid, microdrop, and gas-plasma. The state of the wire core depends both on the amount of energy deposited before the voltage breakdown and on the heating conditions. For small amounts of deposited energy (on the order of solid-stage enthalpy), the wire core remains in a solid state or is partially disintegrated. For a high level of deposited energy (more than vaporization energy) the wire core is in a gas-plasma state. For an intermediate level of deposited energy (more than melting but less than vaporization), the wire disintegrates into hot liquid microdrops or clusters of submicron size. For a wire core in the cluster state, interferometry demonstrates weak (or even absent) phaseshift. Light emission shows a "firework effect"—the long late-time radiation related to the emission by the expanding cylinder of hot microparticles. For the wire core in a gas-plasma state, interferometry demonstrates a large phaseshift and a fast reduction in light emission due to adiabatic cooling of the expanding wire core. The simulation of this firework effect agrees well with experimental data, assuming submicron size and a temperature approaching boiling for the expanded microparticles cylinder.
Highly efficient white OLEDs for lighting applications
NASA Astrophysics Data System (ADS)
Murano, Sven; Burghart, Markus; Birnstock, Jan; Wellmann, Philipp; Vehse, Martin; Werner, Ansgar; Canzler, Tobias; Stübinger, Thomas; He, Gufeng; Pfeiffer, Martin; Boerner, Herbert
2005-10-01
The use of organic light-emitting diodes (OLEDs) for large area general lighting purposes is gaining increasing interest during the recent years. Especially small molecule based OLEDs have already shown their potential for future applications. For white light emission OLEDs, power efficiencies exceeding that of incandescent bulbs could already be demonstrated, however additional improvements are needed to further mature the technology allowing for commercial applications as general purpose illuminating sources. Ultimately the efficiencies of fluorescent tubes should be reached or even excelled, a goal which could already be achieved in the past for green OLEDs.1 In this publication the authors will present highly efficient white OLEDs based on an intentional doping of the charge carrier transport layers and the usage of different state of the art emission principles. This presentation will compare white PIN-OLEDs based on phosphorescent emitters, fluorescent emitters and stacked OLEDs. It will be demonstrated that the reduction of the operating voltage by the use of intentionally doped transport layers leads to very high power efficiencies for white OLEDs, demonstrating power efficiencies of well above 20 lm/W @ 1000 cd/m2. The color rendering properties of the emitted light is very high and CRIs between 85 and 95 are achieved, therefore the requirements for standard applications in the field of lighting applications could be clearly fulfilled. The color coordinates of the light emission can be tuned within a wide range through the implementation of minor structural changes.
Zhu, Jinyang; Shao, He; Bai, Xue; Zhai, Yue; Zhu, Yongsheng; Chen, Xu; Pan, Gencai; Dong, Biao; Xu, Lin; Zhang, Hanzhuang; Song, Hongwei
2018-06-15
Carbon dots (CDs) have emerged as a new type of fluorescent material because of their unique optical advantages, such as high photoluminescence quantum yields (QYs), excellent photo-stability, excitation-dependent emissions, and low toxicity. However, the photoluminescence mechanism for CDs remains unclear, which limits their further practical application. Here, CDs were synthesized via a solvothermal route from citric acid and urea. Through the oxidation and reduction treatment of pristine CDs, the origin of the photoluminescence and the involved mechanism were revealed. We found that the blue/green/red emissions originated from three diverse emitting states, i.e. the intrinsic state, and C=O- and C=N-related surface states, respectively. Based on the as-prepared CDs, a pH sensor depending on the radiometric luminescence detection was developed. Furthermore, we constructed CD/PVP (PVP, polyvinylpyrrolidone) composite films, which exhibited white light emission with photoluminescence QYs of 15.3%. The white light emission with different correlated color temperatures (CCTs), from 4807 K to 3319 K, was obtained by simply changing the amount of PVP solution. Benefiting from the white light-emitting solid-state films, single-component white light-emitting diodes were fabricated with an average color rendering index value (Ra) of 80.0, luminous efficiency of 10.2 lm W -1 , and good working stability, thus indicating a promising potential for practical lighting applications.
NASA Astrophysics Data System (ADS)
Zhu, Jinyang; Shao, He; Bai, Xue; Zhai, Yue; Zhu, Yongsheng; Chen, Xu; Pan, Gencai; Dong, Biao; Xu, Lin; Zhang, Hanzhuang; Song, Hongwei
2018-06-01
Carbon dots (CDs) have emerged as a new type of fluorescent material because of their unique optical advantages, such as high photoluminescence quantum yields (QYs), excellent photo-stability, excitation-dependent emissions, and low toxicity. However, the photoluminescence mechanism for CDs remains unclear, which limits their further practical application. Here, CDs were synthesized via a solvothermal route from citric acid and urea. Through the oxidation and reduction treatment of pristine CDs, the origin of the photoluminescence and the involved mechanism were revealed. We found that the blue/green/red emissions originated from three diverse emitting states, i.e. the intrinsic state, and C=O- and C=N-related surface states, respectively. Based on the as-prepared CDs, a pH sensor depending on the radiometric luminescence detection was developed. Furthermore, we constructed CD/PVP (PVP, polyvinylpyrrolidone) composite films, which exhibited white light emission with photoluminescence QYs of 15.3%. The white light emission with different correlated color temperatures (CCTs), from 4807 K to 3319 K, was obtained by simply changing the amount of PVP solution. Benefiting from the white light-emitting solid-state films, single-component white light-emitting diodes were fabricated with an average color rendering index value (Ra) of 80.0, luminous efficiency of 10.2 lm W‑1, and good working stability, thus indicating a promising potential for practical lighting applications.
NASA Astrophysics Data System (ADS)
Meng, Qinghuan; Liu, Ying; Fu, Yujie; Zu, Yuangang; Zhou, Zhenbao
2018-01-01
A series of Tb3Al5O12:Ce3+ phosphors were successfully synthesized by a precipitation method. The pure Tb3Al5O12 phase was obtained in the synthesized Tb3Al5O12:Ce3+ phosphors after heat treatments at 500 °C in air for 3 h. The excitation spectra of Tb3Al5O12:Ce3+ phosphors include excitation bands corresponding to Tb3+ and Ce3+ ions. Under the excitation at 455 nm, Tb3Al5O12:Ce3+ phosphors show emission band at around 553 nm. The critical doping concentration of Ce3+ in Tb3Al5O12 is 6mol%, which shows the highest emission intensity. White light-emitting diodes were fabricated by combining InGaN-based blue light-emitting diodes with Tb3Al5O12:Ce3+ and Y3Al5O12:Ce3+ phosphors. The Tb3Al5O12:Ce3+ based white light-emitting diode shows a lower color temperature than that of Y3Al5O12:Ce3+ based white light-emitting diode. The experimental results clearly indicate that the prepared Tb3Al5O12:Ce3+ has potential applications in white light emitting diodes.
Stanish, Paul C.; Radovanovic, Pavle V.
2016-01-01
Developing solid state materials capable of generating homogeneous white light in an energy efficient and resource-sustainable way is central to the design of new and improved devices for various lighting applications. Most currently-used phosphors depend on strategically important rare earth elements, and rely on a multicomponent approach, which produces sub-optimal quality white light. Here, we report the design and preparation of a colloidal white-light emitting nanocrystal conjugate. This conjugate is obtained by linking colloidal Ga2O3 and II–VI nanocrystals in the solution phase with a short bifunctional organic molecule (thioglycolic acid). The two types of nanocrystals are electronically coupled by Förster resonance energy transfer owing to the short separation between Ga2O3 (energy donor) and core/shell CdSe/CdS (energy acceptor) nanocrystals, and the spectral overlap between the photoluminescence of the donor and the absorption of the acceptor. Using steady state and time-resolved photoluminescence spectroscopies, we quantified the contribution of the energy transfer to the photoluminescence spectral power distribution and the corresponding chromaticity of this nanocrystal conjugate. Quantitative understanding of this new system allows for tuning of the emission color and the design of quasi-single white light emitting inorganic phosphors without the use of rare-earth elements. PMID:28344289
White perovskite based lighting devices.
Bidikoudi, M; Fresta, E; Costa, R D
2018-06-28
Hybrid organic-inorganic and all-inorganic metal halide perovskites have been one of the most intensively studied materials during the last few years. In particular, research focusing on understanding how to tune the photoluminescence features and to apply perovskites to optoelectronic applications has led to a myriad of new materials featuring high photoluminescence quantum yields covering the whole visible range, as well as devices with remarkable performances. Having already established their successful incorporation in highly efficient solar cells, the next step is to tackle the challenges in solid-state lighting (SSL) devices. Here, the most prominent is the preparation of white-emitting devices. Herein, we have provided a comprehensive view of the route towards perovskite white lighting devices, including thin film light-emitting diodes (PeLEDs) and hybrid LEDs (HLEDs), using perovskite based color down-converting coatings. While synthesis and photoluminescence features are briefly discussed, we focus on highlighting the major achievements and limitations in white devices. Overall, we expect that this review will provide the reader a general overview of the current state of perovskite white SSL, paving the way towards new breakthroughs in the near future.
The faintest speck of dirt: disgust enhances the detection of impurity.
Sherman, Gary D; Haidt, Jonathan; Clore, Gerald L
2012-12-01
Purity is commonly regarded as being physically embodied in the color white, with even trivial deviations from whiteness indicating a loss of purity. In three studies, we explored the implications of this "white = pure" association for disgust, an emotion that motivates the detection and avoidance of impurities that threaten purity and cleanliness. We hypothesized that disgust tunes perception to prioritize the light end of the light-dark spectrum, which results in a relative hypersensitivity to changes in lightness in this range. In studies 1 and 2, greater sensitivity to disgusting stimuli was associated with greater ability to make subtle gray-scale discriminations (e.g., detecting a faint gray stimulus against a white background) at the light end of the spectrum relative to ability to make subtle gray-scale discriminations at the dark end of the spectrum. In study 3, after viewing disgusting images, disgust-sensitive individuals demonstrated a heightened ability to detect deviations from white. These findings suggest that disgust not only motivates people to avoid impurities, but actually makes them better able to see them.
Investigating pitting in X65 carbon steel using potentiostatic polarisation
NASA Astrophysics Data System (ADS)
Mohammed, Sikiru; Hua, Yong; Barker, R.; Neville, A.
2017-11-01
Although pitting corrosion in passive materials is generally well understood, the growth of surface pits in actively-corroding materials has received much less attention to date and remains poorly understood. One of the key challenges which exists is repeatedly and reliably generating surface pits in a practical time-frame in the absence of deformation and/or residual stress so that studies on pit propagation and healing can be performed. Another pertinent issue is how to evaluate pitting while addressing general corrosion in low carbon steel. In this work, potentiostatic polarisation was employed to induce corrosion pits (free from deformation or residual stress) on actively corroding X65 carbon steel. The influence of applied potential (50 mV, 100 mV and 150 mV vs open circuit potential) was investigated over 24 h in a CO2-saturated, 3.5 wt.% NaCl solution at 30 °C and pH 3.8. Scanning electron microscopy (SEM) was utilised to examine pits, while surface profilometry was conducted to measure pit depth as a function of applied potential over the range considered. Analyses of light pitting (up to 120 μm) revealed that pit depth increased linearly with increase in applied potential. This paper relates total pit volume (measured using white light interferometry) to dissipated charge or total mass loss (using the current response for potentiostatic polarisation in conjunction with Faraday's law). By controlling the potential of the surface (anodic) the extent of pitting and general corrosion could be controlled. This allowed pits to be evaluated for their ability to continue to propagate after the potentiostatic technique was employed. Linear growth from a depth of 70 μm at pH 3.8, 80 °C was demonstrated. The technique offers promise for the study of inhibition of pitting.
THE KEPLER LIGHT CURVE OF THE UNIQUE DA WHITE DWARF BOKS 53856
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holberg, J. B.; Howell, Steve B., E-mail: holberg@argus.lpl.arizona.edu, E-mail: howell@noao.edu
2011-08-15
The faint (g = 16.9) hot white dwarf BOKS 53856 was observed by the Kepler Mission in short cadence mode during mid-2009. Analysis of these observations reveals a highly stable modulation with a period of 6.1375 hr and a 2.46% half-amplitude. The folded light curve has an unusual shape that is difficult to explain in terms of a binary system containing an unseen companion more luminous than an L0 brown dwarf. Optical spectra of BOKS 53856 show a T{sub eff} = 34,000 K, log g = 8.0 DA white dwarf. There are few, if any, known white dwarfs in thismore » temperature range exhibiting photometric variations similar to those we describe. A magnetic spin-modulated white dwarf model can in principle explain the light curve, an interpretation supported by spectral observations of the H{alpha} line showing evidence of Zeeman splitting.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feng, X. T.; Zhang, Y.; Liu, X. G., E-mail: liuxuguang@tyut.edu.cn
Carbon quantum dots (CQDs) with high quantum yield (51.4%) were synthesized by a one-step hydrothermal method using thiosalicylic acid and ethylenediamine as precursor. The CQDs have the average diameter of 2.3 nm and possess excitation-independent emission wavelength in the range from 320 to 440 nm excitation. Under an ultraviolet (UV) excitation, the CQDs aqueous solutions emit bright blue fluorescence directly and exhibit broad emission with a high spectral component ratio of 67.4% (blue to red intensity to total intensity). We applied the CQDs as a single white-light converter for white light emitting diodes (WLEDs) using a UV-LED chip as the excitation lightmore » source. The resulted WLED shows superior performance with corresponding color temperature of 5227 K and the color coordinates of (0.34, 0.38) belonging to the white gamut.« less
Close up view of switchboard panel operator's station #1; panel ...
Close up view of switchboard panel operator's station #1; panel contains 1200 push-pull button switches which control poer to red, green, and white indicating lights on the model board; white lights indicate that power is off; green lights indicate that equipment (switch breaker or transformer) is off; red lights indicate that equipment is on - Thirtieth Street Station, Power Director Center, Thirtieth & Market Streets in Amtrak Railroad Station, Philadelphia, Philadelphia County, PA
Exterior building details of Building A; west façade: white painted ...
Exterior building details of Building A; west façade: white painted brick wall of road and second level, road level: paired four-light casement window and a small single-light wood casement window; second level: four-over-four wood double-hung window and a six-light horizontal pivot over a three-light fixed window; easterly view - San Quentin State Prison, Building 22, Point San Quentin, San Quentin, Marin County, CA
The fabrication and optical detection of a vertical structure organic thin film transistor
NASA Astrophysics Data System (ADS)
Zhang, H.; Wang, D.; Jia, P.
2014-03-01
Using vacuum evaporation and sputtering process, we prepared a photoelectric transistor with the vertical structure of Cu/copper phthalocyanine (CuPc)/Al/copper phthalocyanine (CuPc)/ITO. The material of CuPc semiconductor has good photosensitive properties. Excitons will be generated after the optical signal irradiation in semiconductor material, and then transformed into photocurrent under the built-in electric field formed by the Schottky contact, as the organic transistor drive current makes the output current enlarged. The results show that the I-V characteristics of transistor are unsaturated. When device was irradiated by full band (white) light, its working current significantly increased. In full band white light, when Vec = 3 V, the ratio of light and no light current was ranged for 2.9-6.4 times. Device in the absence of light current amplification coefficient is 16.5, and white light amplification coefficient is 98.65.
Spectral design flexibility of LED brings better life
NASA Astrophysics Data System (ADS)
Ou, Haiyan; Corell, Dennis; Ou, Yiyu; Poulsen, Peter B.; Dam-Hansen, Carsten; Petersen, Paul-Michael
2012-03-01
Light-emitting diodes (LEDs) are penetrating into the huge market of general lighting because they are energy saving and environmentally friendly. The big advantage of LED light sources, compared to traditional incandescent lamps and fluorescent light tubes, is the flexible spectral design to make white light using different color mixing schemes. The spectral design flexibility of white LED light sources will promote them for novel applications to improve the life quality of human beings. As an initial exploration to make use of the spectral design flexibility, we present an example: 'no blue' white LED light source for sufferers of disease Porphyria. An LED light source prototype, made of high brightness commercial LEDs applying an optical filter, was tested by a patient suffering from Porphyria. Preliminary results have shown that the sufferer could withstand the light source for much longer time than the standard light source. At last future perspectives on spectral design flexibility of LED light sources improving human being's life will be discussed, with focus on the light and health. The good health is ensured by the spectrum optimized so that vital hormones (melatonin and serotonin) are produced during times when they support human daily rhythm.
Ben Sedrine, N.; Esteves, T. C.; Rodrigues, J.; Rino, L.; Correia, M. R.; Sequeira, M. C.; Neves, A. J.; Alves, E.; Bockowski, M.; Edwards, P. R.; O’Donnell, K. P.; Lorenz, K.; Monteiro, T.
2015-01-01
In this work we demonstrate by photoluminescence studies white light emission from a monolithic InGaN/GaN single quantum well structure grown by metal organic chemical vapour deposition. As-grown and thermally annealed samples at high temperature (1000 °C, 1100 °C and 1200 °C) and high pressure (1.1 GPa) were analysed by spectroscopic techniques, and the annealing effect on the photoluminescence is deeply explored. Under laser excitation of 3.8 eV at room temperature, the as-grown structure exhibits two main emission bands: a yellow band peaked at 2.14 eV and a blue band peaked at 2.8 eV resulting in white light perception. Interestingly, the stability of the white light is preserved after annealing at the lowest temperature (1000 °C), but suppressed for higher temperatures due to a deterioration of the blue quantum well emission. Moreover, the control of the yellow/blue bands intensity ratio, responsible for the white colour coordinate temperatures, could be achieved after annealing at 1000 °C. The room temperature white emission is studied as a function of incident power density, and the correlated colour temperature values are found to be in the warm white range: 3260–4000 K. PMID:26336921
Archer, G S; Jeffrey, D; Tucker, Z
2017-08-01
Previous research has shown that providing light during incubation can have positive effects on hatchability and chick quality; however, white light alone has been observed to improve these factors only in pigmented broiler eggs and non-pigmented white layer eggs. Monochromatic red light has been shown to improve hatchability in layer eggs. Therefore the objective of this study was to utilize one light fixture that emitted both white and monochromatic red light to determine if this one light source could improve hatchability in both types of chicken eggs and pigmented Pekin duck egg. To determine this, 3 experiments were conducted, the first using White Leghorn eggs (N = 6912), the second using commercial broiler eggs (N = 4608), and the third using commercial Pekin duck eggs (N = 3564) in which eggs were incubated with 12 h of light and 12 h of darkness (LED) or complete darkness (DARK); the light level was 250 lux. Hatchability, embryo mortality, and hatchling quality were measured. In Experiment 1, LED had fewer early dead embryos (P = 0.03), less overall embryo mortality (P = 0.05), fewer chicks with unhealed navels (P < 0.001), fewer chicks with defects (P < 0.001), and a higher percentage of fertile eggs that hatched (P = 0.05) than DARK. In Experiment 2, LED had fewer chicks with unhealed navels (P = 0.003), fewer chicks with defects (P = 0.001), and a higher percentage of fertile eggs that hatched (P = 0.04) than DARK. In Experiment 3, LED had fewer early dead embryos (P = 0.05), lower overall embryo mortality (P = 0.04), and a higher percentage of fertile eggs that hatched (P = 0.05), and had ducklings with lower bodyweights at hatch (P = 0.04) than DARK. These results indicate that providing both white and red light during incubation can improve chick quality across poultry varieties. This type of fixture could be used to improve commercial hatchery efficiency and chick quality. © 2017 Poultry Science Association Inc.
Pupillary behavior in relation to wavelength and age
Lobato-Rincón, Luis-Lucio; Cabanillas-Campos, Maria del Carmen; Bonnin-Arias, Cristina; Chamorro-Gutiérrez, Eva; Murciano-Cespedosa, Antonio; Sánchez-Ramos Roda, Celia
2014-01-01
Pupil light reflex can be used as a non-invasive ocular predictor of cephalic autonomic nervous system integrity. Spectral sensitivity of the pupil's response to light has, for some time, been an interesting issue. It has generally, however, only been investigated with the use of white light and studies with monochromatic wavelengths are scarce. This study investigates the effects of wavelength and age within three parameters of the pupil light reflex (amplitude of response, latency, and velocity of constriction) in a large sample of younger and older adults (N = 97), in mesopic conditions. Subjects were exposed to a single light stimulus at four different wavelengths: white (5600°K), blue (450 nm), green (510 nm), and red (600 nm). Data was analyzed appropriately, and, when applicable, using the General Linear Model (GLM), Randomized Complete Block Design (RCBD), Student's t-test and/or ANCOVA. Across all subjects, pupillary response to light had the greatest amplitude and shortest latency in white and green light conditions. In regards to age, older subjects (46–78 years) showed an increased latency in white light and decreased velocity of constriction in green light compared to younger subjects (18–45 years old). This study provides data patterns on parameters of wavelength-dependent pupil reflexes to light in adults and it contributes to the large body of pupillometric research. It is hoped that this study will add to the overall evaluation of cephalic autonomic nervous system integrity. PMID:24795595
Restless roosts: Light pollution affects behavior, sleep, and physiology in a free-living songbird.
Ouyang, Jenny Q; de Jong, Maaike; van Grunsven, Roy H A; Matson, Kevin D; Haussmann, Mark F; Meerlo, Peter; Visser, Marcel E; Spoelstra, Kamiel
2017-11-01
The natural nighttime environment is increasingly polluted by artificial light. Several studies have linked artificial light at night to negative impacts on human health. In free-living animals, light pollution is associated with changes in circadian, reproductive, and social behavior, but whether these animals also suffer from physiologic costs remains unknown. To fill this gap, we made use of a unique network of field sites which are either completely unlit (control), or are artificially illuminated with white, green, or red light. We monitored nighttime activity of adult great tits, Parus major, and related this activity to within-individual changes in physiologic indices. Because altered nighttime activity as a result of light pollution may affect health and well-being, we measured oxalic acid concentrations as a biomarker for sleep restriction, acute phase protein concentrations and malaria infection as indices of immune function, and telomere lengths as an overall measure of metabolic costs. Compared to other treatments, individuals roosting in the white light were much more active at night. In these individuals, oxalic acid decreased over the course of the study. We also found that individuals roosting in the white light treatment had a higher probability of malaria infection. Our results indicate that white light at night increases nighttime activity levels and sleep debt and affects disease dynamics in a free-living songbird. Our study offers the first evidence of detrimental effects of light pollution on the health of free-ranging wild animals. © 2017 John Wiley & Sons Ltd.
Ho, Derek; Drake, Tyler K.; Bentley, Rex C.; Valea, Fidel A.; Wax, Adam
2015-01-01
We evaluate a new hybrid algorithm for determining nuclear morphology using angle-resolved low coherence interferometry (a/LCI) measurements in ex vivo cervical tissue. The algorithm combines Mie theory based and continuous wavelet transform inverse light scattering analysis. The hybrid algorithm was validated and compared to traditional Mie theory based analysis using an ex vivo tissue data set. The hybrid algorithm achieved 100% agreement with pathology in distinguishing dysplastic and non-dysplastic biopsy sites in the pilot study. Significantly, the new algorithm performed over four times faster than traditional Mie theory based analysis. PMID:26309741
Suzuki, Takeshi; Yoshioka, Yoshio; Tsarsitalidou, Olga; Ntalia, Vivi; Ohno, Suguru; Ohyama, Katsumi; Kitashima, Yasuki; Gotoh, Tetsuo; Takeda, Makio; Koveos, Dimitris S
2014-03-01
We developed a computer-based system for controlling the photoperiod and irradiance of UV-B and white light from a 5×5 light-emitting diode (LED) matrix (100×100mm). In this system, the LED matrix was installed in each of four irradiation boxes and controlled by pulse-width modulators so that each box can independently emit UV-B and white light at irradiances of up to 1.5 and 4.0Wm(-2), respectively, or a combination of both light types. We used this system to examine the hatchabilities of the eggs of four Tetranychus spider mite species (T. urticae, T. kanzawai, T. piercei and T. okinawanus) collected from Okinawa Island under UV-B irradiation alone or simultaneous irradiation with white light for 12hd(-1) at 25°C. Although no eggs of any species hatched under the UV-B irradiation, even when the irradiance was as low as 0.02Wm(-2), the hatchabilities increased to >90% under simultaneous irradiation with 4.0Wm(-2) white light. At 0.06Wm(-2) UV-B, T. okinawanus eggs hatched (15% hatchability) under simultaneous irradiation with white light, whereas other species showed hatchabilities <1%. These results suggest that photolyases activated by white light may reduce UV-B-induced DNA damage in spider mite eggs and that the greater UV-B tolerance of T. okinawanus may explain its dominance on plants in seashore environments, which have a higher risk of exposure to reflected UV-B even on the undersurface of leaves. Our system will be useful for further examination of photophysiological responses of tiny organisms because of its ability to precisely control radiation conditions. Copyright © 2014 Elsevier Ltd. All rights reserved.
Meng, Qinghe; Lian, Yuzheng; Jiang, Jianjun; Wang, Wei; Hou, Xiaohong; Pan, Yao; Chu, Hongqian; Shang, Lanqin; Wei, Xuetao; Hao, Weidong
2018-04-18
Ambient light has a vital impact on mood and cognitive functions. Blue light has been previously reported to play a salient role in the antidepressant effect via melanopsin. Whether blue light filtered white light (BFW) affects mood and cognitive functions remains unclear. The present study aimed to investigate whether BFW led to depression-like symptoms and cognitive deficits including spatial learning and memory abilities in rats, and whether they were associated with the light-responsive function in retinal explants. Male Sprague-Dawley albino rats were randomly divided into 2 groups (n = 10) and treated with a white light-emitting diode (LED) light source and BFW light source, respectively, under a standard 12 : 12 h L/D condition over 30 days. The sucrose consumption test, forced swim test (FST) and the level of plasma corticosterone (CORT) were employed to evaluate depression-like symptoms in rats. Cognitive functions were assessed by the Morris water maze (MWM) test. A multi-electrode array (MEA) system was utilized to measure electro-retinogram (ERG) responses induced by white or BFW flashes. The effect of BFW over 30 days on depression-like responses in rats was indicated by decreased sucrose consumption in the sucrose consumption test, an increased immobility time in the FST and an elevated level of plasma CORT. BFW led to temporary spatial learning deficits in rats, which was evidenced by prolonged escape latency and swimming distances in the spatial navigation test. However, no changes were observed in the short memory ability of rats treated with BFW. The micro-ERG results showed a delayed implicit time and reduced amplitudes evoked by BFW flashes compared to the white flash group. BFW induces depression-like symptoms and temporary spatial learning deficits in rats, which might be closely related to the impairment of light-evoked output signals in the retina.
Hanbury Brown and Twiss interferometry with twisted light
Magaña-Loaiza, Omar S.; Mirhosseini, Mohammad; Cross, Robert M.; Rafsanjani, Seyed Mohammad Hashemi; Boyd, Robert W.
2016-01-01
The rich physics exhibited by random optical wave fields permitted Hanbury Brown and Twiss to unveil fundamental aspects of light. Furthermore, it has been recognized that optical vortices are ubiquitous in random light and that the phase distribution around these optical singularities imprints a spectrum of orbital angular momentum onto a light field. We demonstrate that random fluctuations of intensity give rise to the formation of correlations in the orbital angular momentum components and angular positions of pseudothermal light. The presence of these correlations is manifested through distinct interference structures in the orbital angular momentum–mode distribution of random light. These novel forms of interference correspond to the azimuthal analog of the Hanbury Brown and Twiss effect. This family of effects can be of fundamental importance in applications where entanglement is not required and where correlations in angular position and orbital angular momentum suffice. We also suggest that the azimuthal Hanbury Brown and Twiss effect can be useful in the exploration of novel phenomena in other branches of physics and astrophysics. PMID:27152334