Sample records for white rock creek

  1. Floods on White Rock Creek above White Rock Lake at Dallas, Texas

    USGS Publications Warehouse

    Gilbert, Clarence R.

    1963-01-01

    The White Rock Creek watershed within the city limits of Dallas , Texas, presents problems not unique in the rapid residential and industrial development encountered by many cities throughout the United States. The advantages of full development of the existing area within a city before expanding city boundaries, are related to both economics and civic pride. The expansion of city boundaries usually results in higher per capital costs for the operation of city governments. Certainly no responsible city official would oppose reasonable development of watersheds and flood plains and thus sacrifice an increase in tax revenue. Within the words "reasonable development" lies the problem faced by these officials. They are aware that the natural function of a stream channel, and its associated flood plain is to carry away excess water in time of flood. They are also aware that failure to recognize this has often led to haphazard development on flood plains with a consequent increase in flood damages. In the absence of factual data defining the risk involved in occupying flood plains, stringent corrective and preventative measures must be taken to regulate man's activities on flood plains to a point beyond normal precaution. Flood-flow characteristics in the reach of White Rock Creek that lies between the northern city boundary of Dallas and Northwest Highway (Loop 12) at the upper end of White Rock Lake, are presented in this report. Hydrologic data shown include history and magnitude of floods, flood profiles, outlines of areas inundated by three floods, and estimates of mean velocities of flow at selected points. Approximate areas inundated by floods of April 1942 and July 1962 along White Rock Creek and by the flood of October 1962 along Cottonwood Creek, Floyd Branch, and Jackson Branch, are delineated on maps. Greater floods have undoubtedly occurred in the past but no attempt is made to show their probable overflow limits because basic data on such floods could not

  2. Rock Creek and Potomac Parkway / Waterside Drive Sycamore and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Rock Creek and Potomac Parkway / Waterside Drive Sycamore and White Ash Trees, Rock Creek and Potomac Parkway, median between northbound and southbound lanes near the Waterside Drive exit and entrance ramps., Washington, District of Columbia, DC

  3. Chemical and Ecological Health of White Sucker (Catostomus Commersoni) in Rock Creek Park, Washington, D.C., 2003-04

    USGS Publications Warehouse

    Miller, Cherie V.; Weyers, Holly S.; Blazer, Vicki; Freeman, Mary E.

    2006-01-01

    Several classes of chemicals that are known or suspected contaminants were found in bed sediment in Rock Creek, including polyaromatic hydrocarbons (PAHs), phthalate esters, organochlorine pesticides, dioxins and furans, trace metals and metalloids (mercury, arsenic, cadmium, chromium, cobalt, copper, lead, nickel, silver, and zinc), and polychlorinated biphenyls (total PCBs and selected aroclors). Concentrations of many of these chemicals consistently exceeded threshold or chronic-effects guidelines for the protection of aquatic life and often exceeded probable effects levels (PELs). Exceedance of PELs was dependent on the amount of total organic carbon in the sediments. Concurrent with the collection of sediment-quality data, white sucker (Catostomus commersoni) were evaluated for gross-external and internal-organ anomalies, whole-body burdens of chemical contaminants, and gut contents to determine prey. The histopathology of internal tissues of white sucker was compared to contaminant levels in fish tissue and bed sediment. Gut contents were examined to determine preferential prey and thus potential pathways for the bioaccumulation of chemicals from bed sediments. Male and female fish were tested separately. Lesions and other necroses were observed in all fish collected during both years of sample collection, indicating that fish in Rock Creek have experienced some form of environmental stress. No direct cause and effect was determined for chemical exposure and compromised fish health, but a substantial weight of evidence indicates that white sucker, which are bottom-feeding fish and low-order consumers in Rock Creek, are experiencing some reduction in vitality, possibly due to immunosuppression. Abnormalities observed in gonads of both sexes of white sucker and observations of abnormal behavior during spawning indicated some interruption in reproductive success.

  4. Chemical and ecological health of white sucker (Catostomus Commersoni) in Rock Creek Park, Washington, D.C., 2003?04

    USGS Publications Warehouse

    Miller, C.V.; Weyers, H.S.; Blazer, V.S.; Freeman, M.E.

    2006-01-01

    Several classes of chemicals that are known or suspected contaminants were found in bed sediment in Rock Creek, including polyaromatic hydrocarbons (PAHs), phthalate esters, organochlorine pesticides, dioxins and furans, trace metals and metalloids (mercury, arsenic, cadmium, chromium, cobalt, copper, lead, nickel, silver, and zinc), and polychlorinated biphenyls (total PCBs and selected aroclors). Concentrations of many of these chemicals consistently exceeded thresholdor chronic-effects guidelines for the protection of aquatic life and often exceeded probable effects levels (PELs). Exceedance of PELs was dependent on the amount of total organic carbon in the sediments. Concurrent with the collection of sediment-quality data, white sucker (Catostomus commersoni) were evaluated for gross-external and internal-organ anomalies, whole-body burdens of chemical contaminants, and gut contents to determine prey. The histopathology of internal tissues of white sucker was compared to contaminant levels in fish tissue and bed sediment. Gut contents were examined to determine preferential prey and thus potential pathways for the bioaccumulation of chemicals from bed sediments. Male and female fish were tested separately. Lesions and other necroses were observed in all fish collected during both years of sample collection, indicating that fish in Rock Creek have experienced some form of environmental stress. No direct cause and effect was determined for chemical exposure and compromised fish health, but a substantial weight of evidence indicates that white sucker, which are bottom-feeding fish and low-order consumers in Rock Creek, are experiencing some reduction in vitality, possibly due to immunosuppression. Abnormalities observed in gonads of both sexes of white sucker and observations of abnormal behavior during spawning indicated some interruption in reproductive success.

  5. 20. DISTANT HELICOPTER VIEW TO SOUTHEAST UP LITTLE ROCK CREEK ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. DISTANT HELICOPTER VIEW TO SOUTHEAST UP LITTLE ROCK CREEK CANYON, WITH DAM AND RESERVOIR AT RIGHT CENTER. PALMDALE-LITTLEROCK DITCH, MARKED BY DENSE VEGETATION, CROSSES ROAD AT LOWER CENTER - Little Rock Creek Dam, Little Rock Creek, Littlerock, Los Angeles County, CA

  6. Water-quality trends using sediment cores from White Rock Lake, Dallas, Texas

    USGS Publications Warehouse

    Van Metre, Peter C.; Land, Larry F.; Braun, C.L.

    1996-01-01

    The purpose of this fact sheet is to summarize the principal findings documented in a report on water-quality trends in White Rock Creek Basin using dated sediment cores from White Rock Lake (Van Metre and Callender, in press). The study used dated sediment cores to reconstruct water-quality conditions. More specifically, the changes in water quality associated with the watershed’s change from agricultural to urban land use and with the implementation of environmental regulations were identified.

  7. "Bridge #6 Rock Creek: Castiron 48" pipe lines to ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    "Bridge #6 - Rock Creek: Cast-iron 48" pipe lines to Gravity - 1859." Construction photo of Pennsylvania Avenue Bridge, 1859. Photograph courtesy Washington Aqueduct Division, U.S. Army Corps of Engineers - Pennsylvania Avenue Bridge, Spanning Rock Creek & Potomac Parkway, Washington, District of Columbia, DC

  8. 115. ROCK CREEK SIPHON LOW LINE CANAL, TWIN FALLS COUNTY, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    115. ROCK CREEK SIPHON LOW LINE CANAL, TWIN FALLS COUNTY, SOUTH OF KIMBERLY IDAHO; WEST VIEW OF SIPHON CROSSING ROCK CREEK. - Milner Dam & Main Canal: Twin Falls Canal Company, On Snake River, 11 miles West of city of Burley, Idaho, Twin Falls, Twin Falls County, ID

  9. ROCK CREEK, IDAHO RURAL CLEAN WATER PROGRAM, 1987 ANNUAL PROGRESS REPORT

    EPA Science Inventory

    Goals of the Rock Creek, Idaho (17040212) Rural Clean Water Program are to significantly reduce the amount of sediment, sediment related pollutants, and animal waste discharging into Rock Creek. Weekly water quality sampling was done through the irrigation season (April - Octobe...

  10. 33 CFR 208.29 - Arbuckle Dam and Lake of the Arbuckles, Rock Creek, Okla.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Arbuckles, Rock Creek, Okla. 208.29 Section 208.29 Navigation and Navigable Waters CORPS OF ENGINEERS... Arbuckles, Rock Creek, Okla. The Bureau of Reclamation, or its designated agent, shall operate the Arbuckle... in excess of bankfull on Rock Creek downstream of the lake and on the Washita River, from the...

  11. 33 CFR 208.29 - Arbuckle Dam and Lake of the Arbuckles, Rock Creek, Okla.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Arbuckles, Rock Creek, Okla. 208.29 Section 208.29 Navigation and Navigable Waters CORPS OF ENGINEERS... Arbuckles, Rock Creek, Okla. The Bureau of Reclamation, or its designated agent, shall operate the Arbuckle... in excess of bankfull on Rock Creek downstream of the lake and on the Washita River, from the...

  12. 33 CFR 208.29 - Arbuckle Dam and Lake of the Arbuckles, Rock Creek, Okla.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Arbuckles, Rock Creek, Okla. 208.29 Section 208.29 Navigation and Navigable Waters CORPS OF ENGINEERS... Arbuckles, Rock Creek, Okla. The Bureau of Reclamation, or its designated agent, shall operate the Arbuckle... in excess of bankfull on Rock Creek downstream of the lake and on the Washita River, from the...

  13. 33 CFR 208.29 - Arbuckle Dam and Lake of the Arbuckles, Rock Creek, Okla.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Arbuckles, Rock Creek, Okla. 208.29 Section 208.29 Navigation and Navigable Waters CORPS OF ENGINEERS... Arbuckles, Rock Creek, Okla. The Bureau of Reclamation, or its designated agent, shall operate the Arbuckle... in excess of bankfull on Rock Creek downstream of the lake and on the Washita River, from the...

  14. 33 CFR 208.29 - Arbuckle Dam and Lake of the Arbuckles, Rock Creek, Okla.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Arbuckles, Rock Creek, Okla. 208.29 Section 208.29 Navigation and Navigable Waters CORPS OF ENGINEERS... Arbuckles, Rock Creek, Okla. The Bureau of Reclamation, or its designated agent, shall operate the Arbuckle... in excess of bankfull on Rock Creek downstream of the lake and on the Washita River, from the...

  15. White Rock

    NASA Technical Reports Server (NTRS)

    2002-01-01

    (Released 19 April 2002) The Science 'White Rock' is the unofficial name for this unusual landform which was first observed during the Mariner 9 mission in the early 1970's. As later analysis of additional data sets would show, White Rock is neither white nor dense rock. Its apparent brightness arises from the fact that the material surrounding it is so dark. Images from the Mars Global Surveyor MOC camera revealed dark sand dunes surrounding White Rock and on the floor of the troughs within it. Some of these dunes are just apparent in the THEMIS image. Although there was speculation that the material composing White Rock could be salts from an ancient dry lakebed, spectral data from the MGS TES instrument did not support this claim. Instead, the White Rock deposit may be the erosional remnant of a previously more continuous occurrence of air fall sediments, either volcanic ash or windblown dust. The THEMIS image offers new evidence for the idea that the original deposit covered a larger area. Approximately 10 kilometers to the southeast of the main deposit are some tiny knobs of similarly bright material preserved on the floor of a small crater. Given that the eolian erosion of the main White Rock deposit has produced isolated knobs at its edges, it is reasonable to suspect that the more distant outliers are the remnants of a once continuous deposit that stretched at least to this location. The fact that so little remains of the larger deposit suggests that the material is very easily eroded and simply blows away. The Story Fingers of hard, white rock seem to jut out like icy daggers across a moody Martian surface, but appearances can be deceiving. These bright, jagged features are neither white, nor icy, nor even hard and rocky! So what are they, and why are they so different from the surrounding terrain? Scientists know that you can't always trust what your eyes see alone. You have to use other kinds of science instruments to measure things that our eyes can

  16. Astronaut Jack Fischer at Rock Creek Park

    NASA Image and Video Library

    2017-11-04

    NASA astronaut Jack Fischer answers a question from the audience, Saturday, Nov. 4, 2017 at the Rock Creek Park Nature Center and Planetarium in Washington, DC. During his 136 day mission aboard the ISS, Fischer conducted two spacewalks and hundreds of scientific experiments. Photo Credit: (NASA/Joel Kowsky)

  17. 76 FR 10938 - Notice of Final Federal Agency Actions on Sunrise Project, I-205 to Rock Creek Junction...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-28

    ... on Sunrise Project, I-205 to Rock Creek Junction: Clackamas County, OR AGENCY: Federal Highway.... 139(l)(1). The actions relate to a proposed highway project, Sunrise Project, I-205 to Rock Creek... Project, I-205 to Rock Creek Junction Final Environmental Impact Statement, Record of Decision and other...

  18. Astronaut Jack Fischer at Rock Creek Park

    NASA Image and Video Library

    2017-11-04

    NASA astronaut Jack Fischer speaks about his time aboard the International Space Station as part of Expeditions 51 and 52, Saturday, Nov. 4, 2017 at the Rock Creek Park Nature Center and Planetarium in Washington, DC. During his 136 day mission aboard the ISS, Fischer conducted two spacewalks and hundreds of scientific experiments. Photo Credit: (NASA/Joel Kowsky)

  19. Occurrence and Distribution of Organic Wastewater Compounds in Rock Creek Park, Washington, D.C., 2007-08

    USGS Publications Warehouse

    Phelan, Daniel J.; Miller, Cherie V.

    2010-01-01

    The U.S. Geological Survey, and the National Park Service Police Aviation Group, conducted a high-resolution, low-altitude aerial thermal infrared survey of the Washington, D.C. section of Rock Creek Basin within the Park boundaries to identify specific locations where warm water was discharging from seeps or pipes to the creek. Twenty-three stream sites in Rock Creek Park were selected based on the thermal infrared images. Sites were sampled during the summers of 2007 and 2008 for the analysis of organic wastewater compounds to verify potential sources of sewage and other anthropogenic wastewater. Two sets of stormwater samples were collected, on June 27-28 and September 6, 2008, at the Rock Creek at Joyce Road water-quality station using an automated sampler that began sampling when a specified stage threshold value was exceeded. Passive-sampler devices that accumulate organic chemicals over the duration of deployment were placed in July 2008 at the five locations that had the greatest number of detections of organic wastewater compounds from the June 2007 base-flow sampling. During the 2007 base-flow synoptic sampling, there were ubiquitous low-level detections of dissolved organic wastewater indicator compounds such as DEET, caffeine, HHCB, and organophosphate flame retardants at more than half of the 23 sites sampled in Rock Creek Park. Concentrations of DEET and caffeine in the tributaries to Rock Creek were variable, but in the main stem of Rock Creek, the concentrations were constant throughout the length of the creek, which likely reflects a distributed source. Organophosphate flame retardants in the main stem of Rock Creek were detected at estimated concentrations of 0.2 micrograms per liter or less, and generally did not increase with distance downstream. Overall, concentrations of most wastewater indicators in whole-water samples in the Park were similar to the concentrations found at the upstream sampling station at the Maryland/District of Columbia

  20. Altered tuffaceous rocks of the Green River Formation in the Piceance Creek Basin, Colorado

    USGS Publications Warehouse

    Griggs, Roy Lee

    1968-01-01

    More than 50 ash-fall tuff beds which have altered to analcitized or feldspathized rocks have been found in the upper 500-600 feet of the Parachute Creek Member of the Green River Formation in the Piceance Creek Basin of northwestern Colorado. Similarly altered water-washed tuff occurs as tongues in the uppermost part of this member, and forms most of the lower 400-600 feet of the overlying Evacuation Creek Member of the Green River Formation. 'The altered ash-fall beds of the Parachute Creek Member are all thin and show a characteristic pattern of alteration. Most beds range in thickness from a fraction of an inch to a few inches. One bed reaches a maximum thickness of 5 feet, and, unlike the other beds, is composed of several successive ash falls. The pattern of alteration changes from the outer part to the center of the basin. Most beds in the outer part of the basin contain about 50 to 65 percent analcite,with the interstices between the crystals filled mainly by microlites of feldspar, opal, and quartz, and small amounts of carbonate. At the center of the basin .essentially all the beds -are composed of microlites of feldspar, opal, and quartz, and small amounts of carbonate. The tongues of water-washed tuff in the uppermost part of the Parachute Creek Member and the similar rocks composing the lower 400-600 feet of the Evacuation Creek Mewber are feldspathized rocks composed mainly of microlites of feldspar, opal, and quartz, varying amounts of carbonate, and in some specimens tiny subrounded crystals of analcite. The general trend in alteration of the tuffaceous rocks from analcitization near the margin to feidspathization near the center of the Piceance Creek Basin is believed to have taken place at shallow depth during diagenesis , as indicated by field observations and laboratory work. It is believed that during sedimentation and diagenesis the waters of the central part of the basin were more alkaline and following the breakdown of the original

  1. Water quality, sediment quality, and stream-channel classification of Rock Creek, Washington, D.C., 1999-2000

    USGS Publications Warehouse

    Anderson, Anita L.; Miller, Cherie V.; Olsen, Lisa D.; Doheny, Edward J.; Phelan, Daniel J.

    2002-01-01

    Rock Creek Park is within the National Capital Region in Washington, D.C., and is maintained by the National Park Service. Part of Montgomery County, Maryland, and part of the District of Columbia drain into Rock Creek, which is a tributary of the Potomac River. Water quality in Rock Creek is important to biotic life in and near the creek, and in the Potomac River Basin and the Chesapeake Bay. The water quality of the Rock Creek Basin has been affected by continued urban and agricultural growth and development. The U.S. Geological Survey, in cooperation with the National Park Service, investigated water quality and sediment quality in Rock Creek over a 2-year period (1998?2000), and performed a stream-channel classification to determine the distribution of bottom sediment in Rock Creek. This report presents and evaluates water quality and bottom sediment in Rock Creek for water years 1999 (October 1, 1998 to September 30, 1999) and 2000 (October 1, 1999 to September 30, 2000). A synoptic surface-water assessment was conducted at five stations from June 23 to June 25, 1999, a temporal surface-water assessment was conducted at one station from February 18, 1999 to September 26, 2000, and bed-sediment samples were collected and assessed from three stations from August 17 to August 19, 1999. The synoptic surface-water assessment included pesticides (parent compounds and selected transformation products), field parameters, nutrients, and major ions. The temporal surface-water assessment included pesticides (parent compounds and selected transformation products) and field parameters. The bed-sediment assessment included trace elements and organic compounds (including low- and high-molecular weight polycyclic aromatic hydrocarbons, poly-chlorinated biphenyls, pesticides, and phthalates). Some, but not all, of the pesticides known to be used in the area were included in the synoptic water-quality assessment, the temporal water-quality assessment, and the bed

  2. Bridge 232, view looking east in Rock Creek Canyon at ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Bridge 23-2, view looking east in Rock Creek Canyon at Milepost 23.23 - Camas Prairie Railroad, Second Subdivision, From Spalding in Nez Perce County, through Lewis County, to Grangeville in Idaho County, Spalding, Nez Perce County, ID

  3. Odyssey/White Rock

    NASA Technical Reports Server (NTRS)

    2002-01-01

    These Mars Odyssey images show the 'White Rock' feature on Mars in both infrared (left) and visible (right) wavelengths. The images were acquired simultaneously on March 11, 2002. The box shows where the visible image is located in the infrared image. 'White Rock' is the unofficial name for this unusual landform that was first observed during the Mariner 9 mission in the early 1970's. The variations in brightness in the infrared image are due to differences in surface temperature, where dark is cool and bright is warm. The dramatic differences between the infrared and visible views of White Rock are the result of solar heating. The relatively bright surfaces observed at visible wavelengths reflect more solar energy than the darker surfaces, allowing them to stay cooler and thus they appear dark in the infrared image. The new thermal emission imaging system data will help to address the long standing question of whether the White Rock deposit was produced in an ancient crater lake or by dry processes of volcanic or wind deposition. The infrared image has a resolution of 100 meters (328 feet) per pixel and is 32 kilometers (20 miles) wide. The visible image has a resolution of 18 meters per pixel and is approximately 18 kilometers (11 miles) wide. The images are centered at 8.2 degrees south latitude and 24.9 degrees east longitude.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  4. A view over Rock Creek Canyon off Bridge 232 looking ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    A view over Rock Creek Canyon off Bridge 23-2 looking north at Milepost 23.26 - Camas Prairie Railroad, Second Subdivision, From Spalding in Nez Perce County, through Lewis County, to Grangeville in Idaho County, Spalding, Nez Perce County, ID

  5. 110. ROCK CREEK SIPHON, LOW LINE CANAL, TWIN FALLS COUNTY, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    110. ROCK CREEK SIPHON, LOW LINE CANAL, TWIN FALLS COUNTY, SOUTH OF KIMBERLY, IDAHO; INLET SIDE WEST VIEW. - Milner Dam & Main Canal: Twin Falls Canal Company, On Snake River, 11 miles West of city of Burley, Idaho, Twin Falls, Twin Falls County, ID

  6. 112. ROCK CREEK SIPHON LOW LINE CANAL, TWIN FALLS COUNTY, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    112. ROCK CREEK SIPHON LOW LINE CANAL, TWIN FALLS COUNTY, SOUTH OF KIMBERLY IDAHO; OUTLET SIDE, EAST VIEW. - Milner Dam & Main Canal: Twin Falls Canal Company, On Snake River, 11 miles West of city of Burley, Idaho, Twin Falls, Twin Falls County, ID

  7. 93. ROCK CREEK SIPHON, LOW LINE CANAL, TWIN FALLS COUNTY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    93. ROCK CREEK SIPHON, LOW LINE CANAL, TWIN FALLS COUNTY SOUTH OF KIMBERLY, IDAHO; OVERALL NORTHEAST VIEW. - Milner Dam & Main Canal: Twin Falls Canal Company, On Snake River, 11 miles West of city of Burley, Idaho, Twin Falls, Twin Falls County, ID

  8. 114. ROCK CREEK SIPHON LOW LINE CANAL, TWIN FALLS COUNTY, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    114. ROCK CREEK SIPHON LOW LINE CANAL, TWIN FALLS COUNTY, SOUTH OF KIMBERLY IDAHO; OVERALL VIEW, WEST OF INLET SIDE. - Milner Dam & Main Canal: Twin Falls Canal Company, On Snake River, 11 miles West of city of Burley, Idaho, Twin Falls, Twin Falls County, ID

  9. 111. ROCK CREEK SIPHON LOW LINE CANAL, TWIN FALLS COUNTY, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    111. ROCK CREEK SIPHON LOW LINE CANAL, TWIN FALLS COUNTY, SOUTH OF KIMBERLY IDAHO; OVERALL VIEW OF SIPHON, EAST VIEW. - Milner Dam & Main Canal: Twin Falls Canal Company, On Snake River, 11 miles West of city of Burley, Idaho, Twin Falls, Twin Falls County, ID

  10. Report A: Fish distribution and population dynamics in Rock Creek, Klickitat County, Washington

    USGS Publications Warehouse

    Allen, Brady; Munz, Carrie S.; Harvey, Elaine

    2013-01-01

    The U.S. Geological Survey collaborated with the Yakama Nation starting in fall of 2009 to study the fish populations in Rock Creek, a Washington State tributary of the Columbia River 21 kilometers upstream of John Day Dam. Prior to this study, very little was known about the ESA-listed (threatened) Mid-Columbia River steelhead (Oncorhynchus mykiss) population in this arid watershed with intermittent stream flow. The objectives of the study were to quantify fish habitat, document fish distribution, abundance, and movement, and identify areas of high salmonid productivity. To accomplish these objectives, we electrofished in the spring and fall, documenting the distribution and relative abundance of all fish species to evaluate the influence of biotic factors on salmonid productivity and survival. We surveyed the distribution of perennial pools and established a network of automated temperature recording devices from river kilometer (rkm) 2 to 23 in Rock Creek and rkm 0 to 8 in Squaw Creek, a major tributary entering Rock Creek at rkm 13, to better understand the abiotic factors influencing the salmonid populations. Salmonid abundance estimates were conducted using a mark-recapture method in a systematic subsample of the perennial pools. The proportion and timing of salmonids migrating from these pools were assessed by building, installing, and operating two passive integrated transponder (PIT) tag interrogation systems at rkm 5 and at the confluence with Squaw Creek (rkm 13). From fall 2009 to fall 2012, we PIT-tagged 3,088 O. mykiss and 151 coho salmon (O. kisutch) during electrofishing efforts. In the lowest flow periods of 2010 to 2012, we found that an average of 36% of the surveyed streambed length was dry, and 17% remained as perennial pools. The maximum temperature recorded in those pools was 24.4°C, but most pools had a maximum temperature that was less than 21°C. O. mykiss were present in most pools, and non-native fish species, such as smallmouth bass

  11. Botanical survey of Rock Creek Research Natural Area, Kentucky

    Treesearch

    Ralph L. Thompson; Ronald L. Jones; J. Richard Abbott; W. Neal Denton

    2000-01-01

    A 10-year survey of vascular plants was made of Rock Creek Research Natural Area, a 77-ha deep, narrow gorge of old-growth Hemlock-Mixed Mesophytic Forest located in Laurel County, Kentucky, on the Daniel Boone National Forest. The study documented 350 specific and infraspecific taxa in 223 genera and 93 families. Thirteen are nonindigenous naturalized species....

  12. Petrochemistry of Mafic Rocks Within the Northern Cache Creek Terrane, NW British Columbia, Canada

    NASA Astrophysics Data System (ADS)

    English, J. M.; Johnston, S. T.; Mihalynuk, M. G.

    2002-12-01

    The Cache Creek terrane is a belt of oceanic rocks that extend the length of the Cordillera in British Columbia. Fossil fauna in this belt are exotic with respect to the remainder of the Canadian Cordillera, as they are of equatorial Tethyan affinity, contrasting with coeval faunas in adjacent terranes that show closer linkages with ancestral North America. Preliminary results reported here from geochemical studies of mafic rocks within the Nakina area of NW British Columbia further constrain the origin of this enigmatic terrane. The terrane is typified by tectonically imbricated slices of chert, argillite, limestone, wacke and volcaniclastic rocks, as well as mafic and ultramafic rocks. These lithologies are believed to represent two separate lithotectonic elements: Upper Triassic to Lower Jurassic, subduction-related accretionary complexes, and dismembered basement assemblages emplaced during the closure of the Cache Creek ocean in the Middle Jurassic. Petrochemical analysis revealed four distinct mafic igneous assemblages that include: magmatic 'knockers' of the Nimbus serpentinite mélange, metabasalts of 'Blackcaps' Mountain, augite-phyric breccias of 'Laughing Moose' Creek, and volcanic pediments to the reef-forming carbonates of the Horsefeed Formation. Major and trace element analysis classifies the 'Laughing Moose' breccias and the carbonate-associated volcanics as alkaline in nature, whereas the rest are subalkaline. Tectonic discrimination diagrams show that the alkaline rocks are of within-plate affinity, while the 'Blackcaps' basalts and 'knockers' from within the mélange typically straddle the island-arc tholeiite and the mid-ocean ridge boundaries. However, primitive mantle normalized multi-element plots indicate that these subalkaline rocks have pronounced negative Nb anomalies, a characteristic arc signature. The spatial association of alkaline volcanic rocks with extensive carbonate domains points to the existence of seamounts within the Cache

  13. 113. ROCK CREEK SIPHON LOW LINE CANAL, TWIN FALLS COUNTY, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    113. ROCK CREEK SIPHON LOW LINE CANAL, TWIN FALLS COUNTY, SOUTH OF KIMBERLY IDAHO; CLOSE-UP OF INLET SIDE OF SIPHON, NORTHWEST VIEW. - Milner Dam & Main Canal: Twin Falls Canal Company, On Snake River, 11 miles West of city of Burley, Idaho, Twin Falls, Twin Falls County, ID

  14. 116. ROCK CREEK SIPHON LOW LINE CANAL, TWIN FALLS COUNTY, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    116. ROCK CREEK SIPHON LOW LINE CANAL, TWIN FALLS COUNTY, SOUTH OF KIMBERLY IDAHO; CLOSE-UP OF OUTLET, DIVERSION SPILL IN BACKGROUND, WEST VIEW. - Milner Dam & Main Canal: Twin Falls Canal Company, On Snake River, 11 miles West of city of Burley, Idaho, Twin Falls, Twin Falls County, ID

  15. Tertiary geology and oil-shale resources of the Piceance Creek basin between the Colorado and White Rivers, northwestern Colorado

    USGS Publications Warehouse

    Donnell, John R.

    1961-01-01

    The area of the Piceance Creek basin between the Colorado and White Rivers includes approximately 1,600 square miles and is characterized by an extensive plateau that rises 1,000 to more than 4,000 feet above the surrounding lowlands. Relief is greatest in Naval Oil-Shale Reserves Nos. 1 and 3 near the south margin of the area, where the spectacular Roan Cliffs tower above the valley of the Colorado River. The oldest rocks exposed in the mapped area are sandstone, shale, and coal beds of the Mesaverde group of Late Cretaceous age, which crop out along the east margin of the area. Overlying the Mesaverde is an unnamed sequence of dark-colored sandstone and shale, Paleocene in age. The Ohio Creek conglomerate, composed of black and red chert and quartzite pebbles in a white sandstone matrix, is probably the basal unit in the Paleocene sequence. The Wasatch formation of early Eocene age overlies the Paleocene sedimentary rocks. It is composed of brightly colored shale, lenticular beds of sandstone, and a few thin beds of fresh-water limestone. The Kasatch formation interfingers with and is overlain by the Green River formation of middle Eocene age. The Green River formation has been divided into the Douglas Creek, Garden Gulch, Anvil Points, Parachute Creek, and Evacuation Creek members. The basal and uppermost members, the Douglas Creek and Evacuation Creek, respectively, are predominantly sandy units. The two middle members, the Garden Gulch and Parachute Creek, are composed principally of finer clastic rocks. The Anvil Points member is present only on the southeast, east, and northeast margins of the area. It is a nearshore facies composed principally of sandstone and is the equivalent of the Douglas Creek, Garden Gulch, and the lower part of the Parachute Creek members. All of the richer exposed oil-shale beds are found in the Parachute Creek member, which is divided into two oil-shale zones by a series of low-grade oilshale beds. The upper oil-shale zone has

  16. Analytical results and sample locality maps of stream-sediment, heavy-mineral-concentrate, and rock samples from the Little Jacks Creek (ID-111-006), Big Jacks Creek (ID-111-007C), Duncan Creek (ID-111-0007B), and Upper Deep Creek (ID-111-044) Wilderness Study Areas, Owyhee County, Idaho

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erickson, M.S.; Gent, C.A.; Bradley, L.A.

    1989-01-01

    A U.S. Geological Survey report detailing the analytical results and sample locality maps of stream-sediment, heavy-mineral-concentrate, and rock samples from the Little Jacks Creek, Big Jacks Creek, Duncan Creek, and Upper Deep Creek Wilderness Study Areas, Owyhee County, Idaho

  17. Age and tectonic setting of Mesozoic metavolcanic and metasedimentary rocks, northern White Mountains, California

    NASA Astrophysics Data System (ADS)

    Hanson, R. Brooks; Saleeby, Jason B.; Fates, D. Gilbert

    1987-11-01

    Mesozoic metavolcanic and metasedimentary rocks in the northern White Mountains, eastern California and western Nevada, are separated from lower Paleozoic and Precambrian rocks by Jurassic and Cretaceous plutons. The large stratigraphic hiatus across the plutons is called the Barcroft structural break. Recent mapping and new U/Pb zircon ages of 154 +3/-1 Ma and 137 ±1 Ma. from an ash-flow tuff and a hypabyssal intrusion, respectively, indicate that part of the Mesozoic section and the Barcroft structural break are younger than the 160 165 Ma Barcroft Granodiorite, in contrast to previous interpretations. The Barcroft Granodiorite has been thrust westward over most of the Mesozoic section. It is everywhere in fault contact with overturned metasedimentary rocks on the west side of the range, rocks which were previously thought to be upright and the oldest part of the Mesozoic section. The McAfee Creek Granite, which has a 100 ±1 Ma U/Pb zircon age, postdates thrusting; therefore, the Barcroft structural break is primarily Early Cretaceous in age. *Present addresses: Hanson—Department of Mineral Sciences, Smithsonian Institution, Washington, D.C. 20560; Fates—Dames & Moore, 455 S. Figueroa Street, Suite 3504, Los Angeles, California 90074

  18. Giant desiccation fissures on the Black Rock and Smoke Creek Deserts, Nevada

    USGS Publications Warehouse

    Willden, R.; Mabey, D.R.

    1961-01-01

    Open fissures, from 100 to several hundred feet apart, that have produced polygonal patterns on the Black Rock Desert, Nevada, are believed to be giant desiccation cracks resulting from a secular trend toward aridity in the last few decades. Similar features on the Smoke Creek Desert probably have the same origin.

  19. Isotopic composition of ice cores and meltwater from upper fremont glacier and Galena Creek rock glacier, Wyoming

    USGS Publications Warehouse

    DeWayne, Cecil L.; Green, J.R.; Vogt, S.; Michel, R.; Cottrell, G.

    1998-01-01

    Meltwater runoff from glaciers can result from various sources, including recent precipitation and melted glacial ice. Determining the origin of the meltwater from glaciers through isotopic analysis can provide information about such things as the character and distribution of ablation on glaciers. A 9.4 m ice core and meltwater were collected in 1995 and 1996 at the glacigenic Galena Creek rock glacier in Wyoming's Absaroka Mountains. Measurements of chlorine-36 (36Cl), tritium (3H), sulphur-35 (35S), and delta oxygen-18 (??18O) were compared to similar measurements from an ice core taken from the Upper Fremont Glacier in the Wind River Range of Wyoming collected in 1991-95. Meltwater samples from three sites on the rock glacier yielded 36Cl concentrations that ranged from 2.1 ?? 1.0 X 106 to 5.8??0.3 X 106 atoms/l. The ice-core 36Cl concentrations from Galena Creek ranged from 3.4??0.3 X 105 to 1.0??0.1 X 106 atoms/l. Analysis of an ice core from the Upper Fremont Glacier yielded 36Cl concentrations of 1.2??0.2 X 106 and 5.2??0.2 X 106 atoms/l for pre- 1940 ice and between 2 X 106 and 3 X 106 atoms/l for post-1980 ice. Purdue's PRIME Lab analyzed the ice from the Upper Fremont Glacier. The highest concentration of 36Cl in the ice was 77 ?? 2 X 106 atoms/l and was deposited during the peak of atmospheric nuclear weapons testing in the late 1950s. This is an order of magnitude greater than the largest measured concentration from both the Upper Fremont Glacier ice core that was not affected by weapons testing fallout and the ice core collected from the Galena Creek rock glacier. Tritium concentrations from the rock glacier ranged from 9.2??0.6 to 13.2??0.8 tritium units (TU) in the meltwater to -1.3??1.3 TU in the ice core. Concentrations of 3H in the Upper Fremont Glacier ice core ranged from 0 TU in the ice older than 50 years to 6-12 TU in the ice deposited in the last 10 years. The maximum 3H concentration in ice from the Upper Fremont Glacier deposited in the

  20. 68. LITTLE ROCK AND PALMDALE IRRIGATION DISTRICT, LITTLE ROCK DAM: ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    68. LITTLE ROCK AND PALMDALE IRRIGATION DISTRICT, LITTLE ROCK DAM: STRESS SHEET, SHEET 4; MAY, 1918. Littlerock Water District files. - Little Rock Creek Dam, Little Rock Creek, Littlerock, Los Angeles County, CA

  1. Rock-Eval pyrolysis and vitrinite reflectance results from the Sheep Creek 1 well, Susitna basin, south-central Alaska

    USGS Publications Warehouse

    Stanley, Richard G.; Lillis, Paul G.; Pawlewicz, Mark J.; Haeussler, Peter J.

    2014-01-01

    We used Rock-Eval pyrolysis and vitrinite reflectance to examine the petroleum source potential of rock samples from the Sheep Creek 1 well in the Susitna basin of south-central Alaska. The results show that Miocene nonmarine coal, carbonaceous shale, and mudstone are potential sources of hydrocarbons and are thermally immature with respect to the oil window. In the samples that we studied, coals are more organic-rich and more oil-prone than carbonaceous shales and silty mudstones, which appear to be potential sources of natural gas. Lithologically similar rocks may be present in the deeper parts of the subsurface Susitna basin located west of the Sheep Creek 1 well, where they may have been buried deeply enough to generate oil and (or) gas. The Susitna basin is sparsely drilled and mostly unexplored, and no commercial production of hydrocarbons has been obtained. However, the existence of potential source rocks of oil and gas, as shown by our Rock-Eval results, suggests that undiscovered petroleum accumulations may be present in the Susitna basin.

  2. 81. PHOTOCOPY OF PHOTOGRAPH SHOWING NEW CREEK CHANNEL UNDER CONSTRUCTION ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    81. PHOTOCOPY OF PHOTOGRAPH SHOWING NEW CREEK CHANNEL UNDER CONSTRUCTION AT P STREET BEND, FROM 1940 REPORT ON PROPOSED DEVELOPMENT OF ROCK CREEK AND POTOMAC PARKWAY, SECTION II (ROCK CREEK AND POTOMAC PARKWAY FILE, HISTORY DEPARTMENT ARCHIVES, NATIONAL PARK SERVICE, WASHINGTON, DC). - Rock Creek & Potomac Parkway, Washington, District of Columbia, DC

  3. Surface radiological investigations at two creek receiving runoff from White Wing Scrap Yard, Oak Ridge Reservation, Oak Ridge, Tennessee. Environmental Restoration Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uziel, M.S.; Tiner, P.F.; Williams, J.K.

    1994-02-01

    A surface radiological investigation was conducted intermittently from August 1992 July 1993 at two creeks receiving runoff from White Wing Scrap Yard. In this report, the two creeks (both unnamed tributaries of Bear Creek) are, referred to as the east creek and the west creek based on their respective locations relative to White Wing Scrap Yard. The radiological survey of accessible areas at the east creek revealed no detectable gamma exposure rates above typical background levels (8 to 12 {mu}R/h). The very slight elevations in gamma and beta-gamma levels found along the creek were generally associated with outcroppings of shalemore » and typical of naturally occurring radionuclides present in such material. No radiological anomalies were associated with an oily sheen observed on the water at three locations, three 55-gal metal drums in or near the creek, a small pile of metal debris near the creek, or several enclosures used in a 1969 study of animal excretion rates. Radionuclide analysis of three soil samples collected at the east creek demonstrated typical of {sup 60}Co, {sup 137}Cs, gross alpha activity, gross beta activity, and {sup 40}K.« less

  4. Environmental data for the White Oak Creek/White Oak Lake watershed: Environmental Sciences Division publication No. 2779

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sherwood, C.B.; Loar, J.M.

    1987-01-01

    Oak Ridge National Laboratory (ORNL) is located in the White Oak Creek (WOC) watershed, which drains approximately 16.8 km/sup 2/ (6.5 mile/sup 2/). The waters of WOC are impounded by White Oak Dam at WOC's intersection with White Wing Road (State Route 95), 1.0 km (0.6 mile) upstream from the Clinch River. The resulting White Oak Lake (WOL) is a small, shallow impoundment, whose water level is controlled by a vertical sluice gate that remains in a fixed position during normal operations. White Oak Creek has been utilized for the discharge of treated and untreated wastes from routine operations sincemore » the Laboratory's inception. In addition, most of the more recent (1954 to date) liquid and solid low-level-waste disposal operations have been located in the drainage area of WOC. As a federally owned facility, ORNL is required to comply with all existing federal, state, and local environmental regulations regarding waste management. On July 15, 1985, the US Environmental Protection Agency published final rules to incorporate changes in the Resource Conservation and Recovery Act of 1976 that resulted from the passage of the Hazardous and Solid Waste Amendments of 1984. As a part of the rule changes, a new Sect. 3004(u) was added. The new section requires that any facility permit issued after November 8, 1984, include planned corrective actions for all continuing releases of hazardous waste or constituents from any disposal unit at the facility, regardless of when the waste was placed at the disposal unit. This report was prepared to compile existing information on the content and quantity of hazardous substances (both radioactive and nonradioactive) in the WOC/WOL watershed and to provide background information on the geology, hydrology, and ecology of the site for use in planning future remedial actions. 109 refs., 45 figs., 33 tabs.« less

  5. Streamflow characteristics of small tributaries of Rock Creek, Milk River basin, Montana, base period water years 1983-87

    USGS Publications Warehouse

    Parrett, Charles; Hull, J.A.

    1990-01-01

    Five streamflow-gaging stations were installed in the Rock Creek basin north of the Milk River near Hinsdale, Montana. Streamflow was monitored at these stations and at an existing gaging station upstream on Rock Creek from May 1983 through September 1987. The data collected were used to describe the flow characteristics of four small tributary streams. Annual mean streamflow ranges from 2.8 to 57 cu ft/sec in the mainstem and from 0 to 0.60 cu ft/sec in the tributaries. Monthly mean streamflow ranged from 0 to 528 cu ft/sec in Rock Creek and from zero to 5.3 cu ft/sec in the four tributaries. The six gaged sites show similar patterns of daily mean streamflow during periods of large runoff, but substantial individual variations during periods of lesser runoff. During periods of lesser runoff , the small tributaries may have small daily mean streamflows. At other times, daily mean streamflow at the two mainstem sites decreased downstream. Daily mean streamflow in the tributaries appears to be closely related to daily mean streamflow in the mainstem only during periods of substantial area-wide runoff. Thus, streamflow in the tributaries resulting from local storms or local snowmelt may not contribute to streamflow in the mainstem. (USGS)

  6. Geologic Map of the Upper Wolf Island Creek Watershed, Reidsville Area, Rockingham County, North Carolina

    USGS Publications Warehouse

    Horton, J. Wright; Geddes, Donald J.

    2006-01-01

    This geologic map provides a foundation for hydrogeologic investigations in the Reidsville area of Rockingham County, north-central North Carolina. The 16-mi2 area within the Southeast Eden and Reidsville 7.5-min quadrangles includes the watershed of Wolf Island Creek and its tributary, Carroll Creek, upstream of their confluence. Layered metamorphic rocks in this area of the Milton terrane, here informally named the Chinqua-Penn metamorphic suite, include a heterogeneous mica gneiss and schist unit that contains interlayers and lenses of white-mica schist, felsic gneiss, amphibolite, and ultramafic rock; a felsic gneiss that contains interlayers of amphibolite, white-mica schist, and minor ultramafic lenses; and a migmatitic biotite gneiss. Crushed stone is produced from an active quarry in the felsic gneiss. Igneous intrusive rocks include a mafic-ultramafic assemblage that may have originated as mafic intrusive bodies containing ultramafic cumulates, a foliated two-mica granite informally named the granite of Reidsville, and unmetamorphosed Jurassic diabase dikes. The newly recognized Carroll Creek shear zone strikes roughly east-west and separates heterogeneous mica gneiss and schist to the north from structurally overlying felsic gneiss to the south. Regional amphibolite-facies metamorphism accompanied polyphase ductile deformation in the metamorphic rocks. Two phases of isoclinal to tight folding and related penetrative deformation, described as D1 and D2, were followed by phases of high-strain mylonitic deformation in shear zones and late gentle to open folding. Later brittle deformation produced minor faults, steep joints, foliation-parallel parting, and sheeting joints. The metamorphic and igneous rocks are mantled by saprolite and residual soil derived from weathering of the underlying bedrock, and unconsolidated Quaternary alluvium occupies the flood plains of Wolf Island Creek and its tributaries. The geologic map delineates lithologic and structural

  7. Hydrogeology and ground-water flow in the carbonate rocks of the Little Lehigh Creek basin, Lehigh County, Pennsylvania

    USGS Publications Warehouse

    Sloto, R.A.; Cecil, L.D.; Senior, L.A.

    1991-01-01

    The Little Lehigh Creek basin is underlain mainly by a complex assemblage of highly-deformed Cambrian and Ordovician carbonate rocks. The Leithsville Formation, Allentown Dolomite, Beekmantown Group, and Jacksonburg Limestone act as a single hydrologic unit. Ground water moves through fractures and other secondary openings and generally is under water-table conditions. Median annual ground-water discharge (base flow) to Little Lehigh Creek near Allentown (station 01451500) during 1946-86 was 12.97 inches or 82 percent of streamflow. Average annual recharge for 1975-83 was 21.75 inches. Groundwater and surface-water divides do not coincide in the basin. Ground-water underflow from the Little Lehigh Creek basin to the Cedar Creek basin in 1987 was 4 inches per year. A double-mass curve analysis of the relation of cumulative precipitation at Allentown to the flow of Schantz Spring for 1956-84 showed that cessation of quarry pumping and development of ground water for public supply in the Schantz Spring basin did not affect the flow of Schantz Spring. Ground-water flow in the Little Lehigh Creek basin was simulated using a finite-difference, two-dimensional computer model. The geologic units in the modeled area were simulated as a single water-table aquifer. The 134-squaremile area of carbonate rocks between the Lehigh River and Sacony Creek was modeled to include the natural hydrologic boundaries of the ground-water-flow system. The ground-water-flow model was calibrated under steady-state conditions using 1975-83 average recharge, evapotranspiration, and pumping rates. Each geologic unit was assigned a different hydraulic conductivity. Initial aquifer hydraulic conductivity was estimated from specific-capacity data. The average (1975-83) water budget for the Little Lehigh Creek basin was simulated. The simulated base flow from the carbonate rocks of the Little Lehigh Creek basin above gaging station 01451500 is 11.85 inches per year. The simulated ground

  8. Deception Creek Experimental Forest (Idaho)

    Treesearch

    Russell T. Graham; Theresa B. Jain

    2004-01-01

    Deception Creek Experimental Forest is located in one of the most productive forests of the Rocky Mountains. When the forest was established in 1933, large, old western white pines were important for producing lumber products, matches, and toothpicks. Deception Creek is located in the heart of the western white pine forest type, allowing researchers to focus on the...

  9. The Boulder Creek Batholith, Front Range, Colorado

    USGS Publications Warehouse

    Gable, Dolores J.

    1980-01-01

    The Boulder Creek batholith is the best known of several large Precambrian batholiths of similar rock composition that crop out across central Colorado. The rocks in the batholith belong to the calc-alkaline series and range in composition from granodiorite through quartz diorite (tonalite) to gneissic aplite. Two rock types dominate': the Boulder Creek Granodiorite, the major rock unit, and a more leucocratic and slightly younger unit herein named Twin Spruce Quartz Monzonite. Besides mafic inclusions, which occur mainly in hornblende-bearing phases of the Boulder Creek Granodiorite, there are cogenetic older and younger lenses, dikes, and small plutons of hornblende diorite, hornblendite, gabbro, and pyroxenite. Pyroxenite is not found in the batholith. The Boulder Creek Granodiorite in the batholith represents essentially two contemporaneous magmas, a northern body occurring in the Gold Hill and Boulder quadrangles and a larger southern body exposed in the Blackhawk and the greater parts of the Tungsten and Eldorado Springs quadrangles. The two bodies are chemically and mineralogically distinct. The northern body is richer in CaO and poorer in K2O, is more mafic, and has a larger percentage of plagioclase than the southern body. A crude sequence of rock types occurs from west to east in the batholith accompanied by a change in plagioclase composition from calcic plagioclase on the west to sodic on the east. Ore minerals tend to decrease, and the ratio potassium feldspar:plagioclase increases inward from the western contact of the batholith, indicating that the Boulder Creek batholith is similar to granodiorite batholiths the world over. Emplacement of the Boulder Creek batholith was contemporaneous with plastic deformation and high-grade regional metamorphism that folded the country rock and the batholith contact along west-northwest and north-northwest axes. Also, smaller satellitic granodiorite bodies tend to conform to the trends of foliation and fold axes in

  10. Selenium and Other Elements in Water and Adjacent Rock and Sediment of Toll Gate Creek, Aurora, Arapahoe County, Colorado, December 2003 through March 2004

    USGS Publications Warehouse

    Herring, J.R.; Walton-Day, Katherine

    2007-01-01

    Streamwater and solid samples (rock, unconsolidated sediment, stream sediment, and efflorescent material) in the Toll Gate Creek watershed, Colorado, were collected and analyzed for major and trace elements to determine trace-element concentrations and stream loads from December 2003 through March 2004, a period of seasonally low flow. Special emphasis was given to selenium (Se) concentrations because historic Se concentrations exceeded current (2004) stream standards. The goal of the project was to assess the distribution of Se concentration and loads in Toll Gate Creek and to determine the potential for rock and unconsolidated sediment in the basin to be sources of Se to the streamwater. Streamwater samples and discharge measurements were collected during December 2003 and March 2004 along Toll Gate Creek and its two primary tributaries - West Toll Gate Creek and East Toll Gate Creek. During both sampling periods, discharge ranged from 2.5 liters per second to 138 liters per second in the watershed. Discharge was greater in March 2004 than December 2003, but both periods represent low flow in Toll Gate Creek, and results of this study should not be extended to periods of higher flow. Discharge decreased moving downstream in East Toll Gate Creek but increased moving downstream along West Toll Gate Creek and the main stem of Toll Gate Creek, indicating that these two streams gain flow from ground water. Se concentrations in streamwater samples ranged from 7 to 70 micrograms per liter, were elevated in the upstream-most samples, and were greater than the State stream standard of 4.6 micrograms per liter. Se loads ranged from 6 grams per day to 250 grams per day, decreased in a downstream direction along East Toll Gate Creek, and increased in a downstream direction along West Toll Gate Creek and Toll Gate Creek. The largest Se-load increases occurred between two sampling locations on West Toll Gate Creek during both sampling periods and between the two sampling

  11. Forensic Analysis of the May 2014 West Salt Creek Rock Avalanche in Western Colorado

    NASA Astrophysics Data System (ADS)

    Coe, J. A.; Baum, R. L.; Allstadt, K.; Kochevar, B. F.; Schmitt, R. G.; Morgan, M. L.; White, J. L.; Stratton, B. T.; Hayashi, T. A.; Kean, J. W.

    2015-12-01

    The rain-on-snow induced West Salt Creek rock avalanche occurred on May 25, 2014 on the northern flank of Grand Mesa. The avalanche was rare for the contiguous U.S. because of its large size (59 M m3) and high mobility (Length/Height=7.2). To understand the avalanche failure sequence, mechanisms, and mobility, we conducted a forensic analysis using large-scale (1:1000) structural mapping and seismic data. We used high-resolution, Unmanned Aircraft System (UAS) imagery as a base for our field mapping and analyzed seismic data from 22 broadband stations (distances <656 km) and one short-period network. We inverted broadband data to derive a time series of forces that the avalanche exerted on the earth and tracked these forces using curves in the avalanche path. Our results revealed that the rock avalanche was a cascade of landslide events, rather than a single massive failure. The sequence began with a landslide/debris flow that started about 10 hours before the main avalanche. The main avalanche lasted just over 3 minutes and traveled at average velocities ranging from 15 to 36 m/s. For at least two hours after the avalanche ceased movement, a central, hummock-rich, strike-slip bound core continued to move slowly. Following movement of the core, numerous shallow landslides, rock slides, and rock falls created new structures and modified topography. Mobility of the main avalanche and central core were likely enhanced by valley floor material that liquefied from undrained loading by the overriding avalanche. Although the base was likely at least partially liquefied, our mapping indicates that the overriding avalanche internally deformed predominantly by sliding along discrete shear surfaces in material that was nearly dry and had substantial frictional strength. These results indicate that the West Salt Creek avalanche, and probably other long-traveled avalanches, could be modeled as two layers: a liquefied basal layer; and a thicker and stronger overriding layer.

  12. White Oak Creek Watershed: Melton Valley Area Remedial Investigation Report, Oak Ridge National Laboratory, Oak Ridge, Tennessee: Volume 3 Appendix C

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    This report provides details on the baseline ecological risk assessment conducted in support of the Remedial Investigation (RI) Report for the Melton Valley areas of the White Oak Creek watershed (WOCW). The RI presents an analysis meant to enable the US Department of Energy (DOE) to pursue a series of remedial actions resulting in site cleanup and stabilization. The ecological risk assessment builds off of the WOCW screening ecological risk assessment. All information available for contaminated sites under the jurisdiction of the US Department of Energy`s Comprehensive Environmental Response, Compensation, and Liability Act Federal Facilities Agreement within the White Oakmore » Creek (WOC) RI area has been used to identify areas of potential concern with respect to the presence of contamination posing a potential risk to ecological receptors within the Melton Valley area of the White Oak Creek watershed. The risk assessment report evaluates the potential risks to receptors within each subbasin of the watershed as well as at a watershed-wide scale. The WOC system has been exposed to contaminant releases from Oak Ridge National Laboratory and associated operations since 1943 and continues to receive contaminants from adjacent waste area groupings.« less

  13. Mars' "White Rock" feature lacks evidence of an aqueous origin: Results from Mars Global Surveyor

    USGS Publications Warehouse

    Ruff, S.W.; Christensen, P.R.; Clark, R.N.; Kieffer, H.H.; Malin, M.C.; Bandfield, J.L.; Jakosky, B.M.; Lane, M.D.; Mellon, M.T.; Presley, M.A.

    2001-01-01

    The "White Rock" feature on Mars has long been viewed as a type example for a Martian playa largely because of its apparent high albedo along with its location in a topographic basin (a crater). Data from the Mars Global Surveyor Thermal Emission Spectrometer (TES) demonstrate that White Rock is not anomalously bright relative to other Martian bright regions, reducing the significance of its albedo and weakening the analogy to terrestrial playas. Its thermal inertia value indicates that it is not mantled by a layer of loose dust, nor is it bedrock. The thermal infrared spectrum of White Rock shows no obvious features of carbonates or sulfates and is, in fact, spectrally flat. Images from the Mars Orbiter Camera show that the White Rock massifs are consolidated enough to retain slopes and allow the passage of saltating grains over their surfaces. Material appears to be shed from the massifs and is concentrated at the crests of nearby bedforms. One explanation for these observations is that White Rock is an eroded accumulation of compacted or weakly cemented aeolian sediment. Copyright 2001 by the American Geophysical Union.

  14. Cultural Resources Survey at Selected Locations, Table Rock Lake, Missouri and Arkansas,

    DTIC Science & Technology

    1986-12-01

    terrace along the river banks, and this alluvial material interfingers with fine-grained colluvium (redeposited loess) and cherty residuum washed fran...by block nhstber) Archaic Period Interfluve Meander Core Rice Complex Bluff Shelter James River Complex Mississippian Sprfld Plteu Cultural Resource...Invt Jefferson City Chert Osage Table Rock Lake Dalton Kings River Ozark Highlands White River Geomorphology Long Creek Paleo-Indian Basin 20

  15. 80. LITTLE ROCK DAM: DIMENSIONS, SECTION THROUGH ARCH RING, AMENDED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    80. LITTLE ROCK DAM: DIMENSIONS, SECTION THROUGH ARCH RING, AMENDED SHEET 5; SEPTEMBER, 1922. Palmdale Water District files. - Little Rock Creek Dam, Little Rock Creek, Littlerock, Los Angeles County, CA

  16. Urbanization Effects on Floodplain Sediments in the Fourche Creek Wetlands in Little Rock, Arkansas, United States

    NASA Astrophysics Data System (ADS)

    Simmons, J.; Ruhl, L. S.

    2017-12-01

    Jason Simmons and Laura S. Ruhl As Earth's population continues to grow, is it expected that by the year 2030, sixty percent of all people will be housed in urban cities. Although these urban areas are of the utmost importance socially, culturally and economically, they also have an adverse impact on the geochemical makeup of the natural landscape. Rapid urbanization has profound hydrological, chemical, physical, and ecological impacts on watersheds near urban areas. Trace metals, and other organic and inorganic contaminants from industrialization, car exhaust, overflow of sewage lines, and excess storm drain runoff are found in this surface water. In Little Rock, Arkansas, runoff from seventy-three percent of the city's surface area empties into Fourche Creek, then its urban wetlands, before it is further transported to the Arkansas River. Previous studies have revealed that the Fourche Creek wetlands mitigate flooding and remove contaminants from the water column. In this study, we examined the effects of urbanization by examining the geochemical makeup of the wetland sediment that drains most of Little Rock. Sediment samples were collected along transects of Fourche Creek at three locations, beginning at the water's edge and moving out distances between seventy to one hundred feet into the wetland. Sediments were dried, homogenized, and then sieved for grain size distribution. Leaching experiments were performed to determine the trace element concentration adsorbed to the surface, which could be easily mobilized. In these experiments, ultrapure deionized water and homogenized soil were combined in centrifuge tubes at a 10:1 liquid to solid ratio, and rotated for twenty-four hours allowing the mixture to properly combine and react. The leachate was filtered, then analyzed using Ion Chromatography (IC) to determine cations and anions, and ICPMS to determine trace metals present in the soil. Results were compiled, and a map was created showing grain sizes present

  17. Approach view of the North Fork Butter Creek Bridge, view ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Approach view of the North Fork Butter Creek Bridge, view looking south - North Fork Butter Creek Bridge, Spanning North Fork Butter Creek Bridge at Milepost 76.63 on Heppner Highway (Oregon Route 74), Pilot Rock, Umatilla County, OR

  18. Elevation view of the North Fork Butter Creek Bridge, view ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Elevation view of the North Fork Butter Creek Bridge, view looking west - North Fork Butter Creek Bridge, Spanning North Fork Butter Creek Bridge at Milepost 76.63 on Heppner Highway (Oregon Route 74), Pilot Rock, Umatilla County, OR

  19. Approach view of the North Fork Butter Creek Bridge, view ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Approach view of the North Fork Butter Creek Bridge, view looking north - North Fork Butter Creek Bridge, Spanning North Fork Butter Creek Bridge at Milepost 76.63 on Heppner Highway (Oregon Route 74), Pilot Rock, Umatilla County, OR

  20. General perspective view of the North Fork Butter Creek Bridge, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    General perspective view of the North Fork Butter Creek Bridge, view looking southwest - North Fork Butter Creek Bridge, Spanning North Fork Butter Creek Bridge at Milepost 76.63 on Heppner Highway (Oregon Route 74), Pilot Rock, Umatilla County, OR

  1. General perspective view of the North Fork Butter Creek Bridge, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    General perspective view of the North Fork Butter Creek Bridge, view looking north - North Fork Butter Creek Bridge, Spanning North Fork Butter Creek Bridge at Milepost 76.63 on Heppner Highway (Oregon Route 74), Pilot Rock, Umatilla County, OR

  2. Detail perspective view of the North Fork Butter Creek Bridge, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail perspective view of the North Fork Butter Creek Bridge, view looking southwest - North Fork Butter Creek Bridge, Spanning North Fork Butter Creek Bridge at Milepost 76.63 on Heppner Highway (Oregon Route 74), Pilot Rock, Umatilla County, OR

  3. General perspective view of the North Fork Butter Creek Bridge, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    General perspective view of the North Fork Butter Creek Bridge, view looking south - North Fork Butter Creek Bridge, Spanning North Fork Butter Creek Bridge at Milepost 76.63 on Heppner Highway (Oregon Route 74), Pilot Rock, Umatilla County, OR

  4. MAHLI First Night Imaging of Martian Rock, White Lighting

    NASA Image and Video Library

    2013-01-24

    A Martian rock in the Yellowknife Bay area of Mars Gale Crater is illuminated by white-light light emitting diodes is part of the first set of nighttime images taken by the MAHLI camera at the end of the robotic arm of NASA Mars rover Curiosity.

  5. Topographic view of the North Fork Butter Creek Bridge (located ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Topographic view of the North Fork Butter Creek Bridge (located center of frame), view looking west - North Fork Butter Creek Bridge, Spanning North Fork Butter Creek Bridge at Milepost 76.63 on Heppner Highway (Oregon Route 74), Pilot Rock, Umatilla County, OR

  6. Gravity, magnetic, and physical property data in the Smoke Creek Desert area, northwest Nevada

    USGS Publications Warehouse

    Tilden, Janet E.; Ponce, David A.; Glen, Jonathan M.G.; Chuchel, Bruce A.; Tushman, Kira; Duvall, Alison

    2006-01-01

    The Smoke Creek Desert, located approximately 100 km (60 mi) north of Reno near the California-Nevada border, is a large basin situated along the northernmost parts of the Walker Lane Belt (Stewart, 1988), a physiographic province defined by northwest-striking topographic features and strike-slip faulting. Because geologic framework studies play an important role in understanding the hydrology of the Smoke Creek Desert, a geologic and geophysical effort was begun to help determine basin geometry, infer structural features, and estimate depth to Pre-Cenozoic rocks, or basement. In May and June of 2004, and June of 2005, the U.S. Geological Survey (USGS) collected 587 new gravity stations, more than 160 line-kilometers (100 line-miles) of truck-towed magnetometer data, and 111 rock property samples in the Smoke Creek Desert and vicinity in northwest Nevada, as part of an effort to characterize its hydrogeologic framework. In the Smoke Creek Desert area, gravity highs occur over rocks of the Skedaddle Mountains, Fox Range, Granite Range, and over portions of Tertiary volcanic rocks in the Buffalo Hills. These gravity highs likely reflect basement rocks, either exposed at the surface or buried at shallow depths. The southern Smoke Creek Desert corresponds to a 25-mGal isostatic gravity low, which corresponds with a basin depth of approximately 2 km. Magnetic highs are likely due to granitic, andesitic, and metavolcanic rocks, whereas magnetic lows are probably associated with less magnetic gneiss and metasedimentary rocks in the region. Three distinctive patterns of magnetic anomalies occur throughout the Smoke Creek Desert and Squaw Creek Valley, likely reflecting three different geological and structural settings.

  7. Geologic map of the Skull Creek Quadrangle, Moffat County Colorado

    USGS Publications Warehouse

    Van Loenen, R. E.; Selner, Gary; Bryant, W.A.

    1999-01-01

    The Skull Creek quadrangle is in northwestern Colorado a few miles north of Rangely. The prominent structural feature of the Skull Creek quadrangle is the Skull Creek monocline. Pennsylvanian rocks are exposed along the axis of the monocline while hogbacks along its southern flank expose rocks that are from Permian to Upper Cretaceous in age. The Wolf Creek monocline and the Wolf Creek thrust fault, which dissects the monocline, are salient structural features in the northern part of the quadrangle. Little or no mineral potential exists within the quadrangle. A geologic map of the Lazy Y Point quadrangle, which is adjacent to the Skull Creek quadrangle on the west, is also available (Geologic Investigations Series I-2646). This companian map shows similar geologic features, including the western half of the Skull Creek monocline. The geology of this quadrangle was mapped because of its proximity to Dinosaur National Monument. It is adjacent to quadrangles previously mapped to display the geology of this very scenic and popular National Monument. The Skull Creek quadrangle includes parts of the Skull Creek Wilderness Study Area, which was assessed for its mineral resource potential.

  8. Simulation of streamflow and water quality in the White Clay Creek subbasin of the Christina River Basin, Pennsylvania and Delaware, 1994-98

    USGS Publications Warehouse

    Senior, Lisa A.; Koerkle, Edward H.

    2003-01-01

    The Christina River Basin drains 565 square miles (mi2) in Pennsylvania, Maryland, and Delaware. Water from the basin is used for recreation, drinking water supply, and to support aquatic life. The Christina River Basin includes the major subbasins of Brandywine Creek, White Clay Creek, and Red Clay Creek. The White Clay Creek is the second largest of the subbasins and drains an area of 108 mi2. Water quality in some parts of the Christina River Basin is impaired and does not support designated uses of the streams. A multi-agency water-quality management strategy included a modeling component to evaluate the effects of point and nonpoint-source contributions of nutrients and suspended sediment on stream water quality. To assist in non point-source evaluation, four independent models, one for each of the three major subbasins and for the Christina River, were developed and calibrated using the model code Hydrological Simulation Program—Fortran (HSPF). Water-quality data for model calibration were collected in each of the four main subbasins and in smaller subbasins predominantly covered by one land use following a nonpoint-source monitoring plan. Under this plan, stormflow and base- flow samples were collected during 1998 at two sites in the White Clay Creek subbasin and at nine sites in the other subbasins.The HSPF model for the White Clay Creek Basin simulates streamflow, suspended sediment, and the nutrients, nitrogen and phosphorus. In addition, the model simulates water temperature, dissolved oxygen, biochemical oxygen demand, and plankton as secondary objectives needed to support the sediment and nutrient simulations. For the model, the basin was subdivided into 17 reaches draining areas that ranged from 1.37 to 13 mi2. Ten different pervious land uses and two impervious land uses were selected for simulation. Land-use areas were determined from 1995 land-use data. The predominant land uses in the White Clay Creek Basin are agricultural, forested

  9. Waste area grouping 2 Phase I task data report: Ecological risk assessment and White Oak Creek watershed screening ecological risk assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Efroymson, R.A.; Jackson, B.L.; Jones, D.S.

    1996-05-01

    This report presents an ecological risk assessment for Waste Area Grouping (WAG) 2 based on the data collected in the Phase I remedial investigation (RI). It serves as an update to the WAG 2 screening ecological risk assessment that was performed using historic data. In addition to identifying potential ecological risks in WAG 2 that may require additional data collection, this report serves to determine whether there are ecological risks of sufficient magnitude to require a removal action or some other expedited remedial process. WAG 2 consists of White Oak Creek (WOC) and its tributaries downstream of the Oak Ridgemore » National Laboratory (ORNL) main plant area, White Oak Lake (WOL), the White Oak Creek Embayment of the Clinch River, associated flood plains, and the associated groundwater. The WOC system drains the WOC watershed, an area of approximately 16.8 km{sup 2} that includes ORNL and associated WAGs. The WOC system has been exposed to contaminants released from ORNL and associated operations since 1943 and continues to receive contaminants from adjacent WAGs.« less

  10. Hydrology and model study of the proposed Prosperity Reservoir, Center Creek Basin, southwestern Missouri

    USGS Publications Warehouse

    Harvey, Edward Joseph; Emmett, Leo F.

    1980-01-01

    correspond to greatly altered brecciated rocks in the mining district and less altered, less brecciated rocks in the reservoir area, respectively.The authors suggest that an ancestral east-flowing White River drained the area about Joplin in Late Mississippian time. This is based on the configuration of the contact between Meramecian and Osagean rocks of Mississippian age. A high topographic area existed in the region about Joplin in which the water table stood 200 feet below the land surface when sinkholes and caverns of that depth were formed. The large number of Pennsylvanian-filled sinkholes in the Joplin area and the smaller number to the east suggest a higher land surface to the west than that to the east. The distribution of paleokarst sinkholes supports the conclusion based on the configuration of the Meramecian-Osagean contact.

  11. Deception Creek Experimental Forest

    Treesearch

    Theresa B. Jain; Russell T. Graham

    1996-01-01

    Deception Creek Experimental Forest is in one of the most productive forests in the Rocky Mountains. When the forest was established in 1933, large, old-age western white pine (Pinus monticola) were important for producing lumber products. The forest, located in the Coeur d'Alene Mountains, is in the heart of the western white pine forest type. Therefore, research...

  12. Big Creek Hydroelectric System, East & West Transmission Line, 241mile ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Big Creek Hydroelectric System, East & West Transmission Line, 241-mile transmission corridor extending between the Big Creek Hydroelectric System in the Sierra National Forest in Fresno County and the Eagle Rock Substation in Los Angeles, California, Visalia, Tulare County, CA

  13. Environmental Assessment for the Bear Creek Dam and Lake Project Master Plan, South Platte River, Colorado

    DTIC Science & Technology

    2012-09-01

    erosion. Piney Creek alluvium along the low terraces is Holocene in age and rock fragments in this area have igneous or metamorphic lithology with...to the Red Rocks Amphitheatre and Bandimere Speedway, which are a brief drive from the Park. Recreational use of Bear Creek Lake is also... US Army Corps of Engineers ® Omaha District Environmental Assessment for the Bear Creek Dam and Lake Project Master Plan South Platte River

  14. Oxygen Isotopes and the Cooling History of the Mount Barcroft Area, Central White Mountains, Easternmost California

    NASA Astrophysics Data System (ADS)

    Ernst, W. G.; Rumble, D.

    2001-12-01

    The White-Inyo Range + Owens Valley marks the western limit of the Basin and Range province, directly east of the Sierra Nevada. At Mount Barcroft, mid-Mesozoic, alkaline, bimodal White Mountain Peak metavolcanic + metaclastic rocks on the N are separated from Lower Cambrian siliciclastic + carbonate metasedimentary strata on the S by the NE-trending Middle Jurassic Barcroft mafic granodioritic pluton. It consists of mineralogically/chemically intergradational gabbro/diorite, granodiorite, metadiorite, and alaskite. Eastward, the section is intruded by the Late Cretaceous, ternary-minimum McAfee Creek Granite. Ignoring altered dikes, bulk-rock analyses of plutonic rocks indicate that metaluminous, I-type rocks of the Barcroft comagmatic suite possess an av(12) d18O value of 7.5. Slightly peraluminous, apparently S-type granitic rocks sensu stricto of the McAfee Creek series have an av(8) d18O value of 8.6. Evidence is lacking for large-scale bulk-rock interaction with near-surface waters, suggesting intermediate crustal depths of intrusion and cooling for these plutons. Coexisting Barcroft minerals exhibit consistent oxygen isotopic partitioning from high to low d18O in the sequence quartz > plagioclase > K-feldspar >> amphibole = biotite. Wall-rock quartz and biotite are richer in 18O than analogous phases in the plutonic rocks, and show slightly greater fractionations than igneous counterparts. Along its borders, late-stage exchange with heated aqueous fluids, derived from recrystallized wall rocks due to emplacement of the Middle Jurassic magma, increased 18O/16O ratios of dikes, and some Barcroft igneous plagioclase and subsolidus tremolite-actinolite. Oxygen isotope geothermometry for Barcroft quartz-amphibole and quartz-biotite pairs yields broadly similar temperatures; the combined average of 13 pairs is 519oC. A single quartz-biotite pair analyzed from a Lower Cambrian quartzite within the inner metamorphic aureole of the Barcroft pluton yields a

  15. Geology, geochemistry, and genesis of the Greens Creek massive sulfide deposit, Admiralty Island, southeastern Alaska

    USGS Publications Warehouse

    Taylor, Cliff D.; Johnson, Craig A.

    2010-01-01

    precious-metal-rich silica-barite-carbonate white ores began at low temperature in a shallow, subaqueous setting, probably a thin carbonate shelf on the flanks of the Alexander landmass. Epigenetic carbonate replacement textures in the footwall dolostones are overlain by stratiform silica-carbonate-barite-rich ores and indicate that early mineralization formed at and just beneath the paleo sea floor by mixing of a reduced, precious-metal-rich, base-metal-poor hydrothermal fluid with oxygenated seawater. As rifting intensified, the shelf was downfaulted and isolated as a graben. Isolation of the basin and onset of starved-basin shale sedimentation was concurrent with emplacement of mafic-ultramafic intrusives at shallow levels in the rift, resulting in an increasingly higher temperature and progressively more anoxic ore-forming environment. The formation of the main stage of massive sulfide ores began as the supply of bacterially reduced sulfur increased in the accumulating shales. As the main-stage mineralization intensified, shale sedimentation inundated the hydrothermal system, eventually forming a cap. Biogenic sulfate reduction supplied reduced sulfur to the base of the shales where mixing occurred with hot, base-metal-rich hydrothermal fluids. Ore deposition continued by destruction and epigenetic replacement of the early white ores in proximal areas and by inflation and diagenetic replacement of unlithified shale at the interface between the white ores and the base of the shale cap. Ore deposition waned as the shales became lithified and as the supply of bacterially reduced sulfur to the site of ore deposition ceased. The final stages of rifting resulted in the emplacement of mafic-ultramafic intrusive rocks into the Greens Creek system and extrusion of voluminous basaltic flows at the top of the Triassic section. Greenschist facies metamorphism during the Jurassic-Cretaceous accretion of the Alexander terrane to the continental margin resulted in recrystalli

  16. Analysis of vegetation changes in Rock Creek Park, 1991-2007

    USGS Publications Warehouse

    Hatfield, Jeff S.; Krafft, Cairn

    2009-01-01

    Vegetation data collected at Rock Creek Park every 4 years during 1991-2007 were analyzed for differences among 3 regions within the park and among years. The variables measured and analyzed were percentage of twigs browsed, percentage of canopy cover, species richness of herbaceous plants, number of tree seedlings in each of 7 height classes, tree seedling stocking rate for low deer density and high deer density areas, percentage of tree and shrub cover < 2 m in height, mean diameter at breast height (DBH) of trees > 1 cm DBH, number of tree stems > 1 cm DBH, species richness of trees and shrubs, and mean height of the 5 tallest trees in each plot quadrant. Repeated measures analysis of variance (ANOVA) was used to test for differences and, except for some differences in tree species composition among the 3 regions, no differences (P > 0.01) were found among the 3 regions in the variables discussed above. Many of the variables showed very significant differences (P < 0.01) among years, and causative factors should be investigated further. In addition, importance values were calculated for the 10 most important tree species in each region and changes over time were reported. Future sampling recommendations are also discussed.

  17. Fault tectonics and earthquake hazards in the Peninsular Ranges, Southern California. [including San Diego River, Otay Mts., Japatul Valley, Barrett Lake, Horsethief Canyon, Pine Valley Creek, Pine Creek, and Mojave Desert

    NASA Technical Reports Server (NTRS)

    Merifield, P. M. (Principal Investigator)

    1975-01-01

    The author has identified the following significant results. Thin sections of rock exposed along the San Diego River linear were prepared and determined to be fault breccia. Single band and ratio images of the western Mojave Desert were prepared from the multispectral scanner digital tapes. Subtle differences in color of soil and rock are enhanced on the ratio images. Two north-northeast trending linears (Horsethief Canyon and Pine Valley Creek) and an east-west linear (Pine Creek) were concluded to have resulted from erosion along well-developed foliation in crystalline basement rocks.

  18. Diel use of a saltwater creek by white-tip reef sharks Triaenodon obesus (Carcharhiniformes: Carcharhinidae) in Academy Bay, Galapagos Islands.

    PubMed

    Peñiaherrera, César; Hearn, Alex R; Kuhn, Angela

    2012-06-01

    White-tip reef sharks are common inhabitants of the shallow waters surrounding the Galapagos Islands, where several known aggregation sites have become touristic attractions. With the aim to describe site fidelity and residency patterns of the white-tip reef sharks in a saltwater creek, we used the ultrasonic telemetry method. The study was undertaken in a saltwater channel South of Academy Bay, Santa Cruz Island, from May 2008-September 2009. A total of nine transmitters were attached to sharks and ultrasonic receivers were deployed at the inner and outside areas of the creek. From the total of fitted sharks, four lost their transmitters. The results obtained with the remaining sharks showed an elevated use of the inner area of the channel during the day, with more use of the external area during the night. However, none of the sharks were detected at the site every day, suggesting that they may have a number of preferred sites within their home range. More studies are needed to detail the home range and habitat use of this species, and to guide its protection level in the Academy Bay area.

  19. Two Distinct Sets of Magma Sources in Cretaceous Rocks From Magnet Cove, Prairie Creek, and Other Igneous Centers of the Arkansas Alkaline Province, USA

    NASA Astrophysics Data System (ADS)

    Duke, G. I.; Carlson, R. W.; Eby, G. N.

    2008-12-01

    Two distinct sets of magma sources from the Arkansas alkaline province (~106-89 Ma) are revealed by Sr-Nd-Pb isotopic compositions of olivine lamproites vs. other alkalic rock types, including carbonatite, ijolite, lamprophyres, tephrite, malignite, jacupirangite, phonolite, trachyte, and latite. Isotopic compositions of diamond-bearing olivine lamproites from Prairie Creek and Dare Mine Knob point to Proterozoic lithosphere as an important source, and previous Re-Os isotopic data indicate derivation from subcontinental mantle lithosphere. Both sources were probably involved in lamproite generation. Magnet Cove carbonatites and other alkalic magmas were likely derived from an asthenospheric source. Lamproite samples are isotopically quite different from other rock types in Sr-Nd-Pb isotopic space. Although three lamproite samples from Prairie Creek have a large range of SiO2 contents (40-60 wt %), initial values of ɛNd (-10 to -13), 206Pb/204Pb (16.61-16.81), 207Pb/204Pb (15.34-15.36), and 208Pb/204Pb (36.57-36.76) are low and similar. Only 87Sr/86Sr(i) displays a wide range in the Prairie Creek lamproites (0.70627-0.70829). A fourth lamproite from Dare Mine Knob has the most negative ɛNd(i) of -19. Lamproite isotope values show a significant crustal component and isotopically overlap subalkalic rhyolites from the Black Hills (SD), which assimilated Proterozoic crust. Six samples of carbonatite, ijolite, and jacupirangite from Magnet Cove and Potash Sulphur Springs exhibit the most depleted Sr-Nd isotopic signatures of all samples. For these rock types, 87Sr/86Sr(i) is 0.70352 - 0.70396, and ɛNd(i) is +3.8 - +4.3. Eight other rock types have a narrow range of ɛNd(i) (+1.9 - +3.7), but a wide range of 87Sr/86Sr(i) (0.70424 - 0.70629). These 14 samples comprise a fairly tight cluster of Pb isotopic values: 206Pb/204Pb (18.22-19.23), 207Pb/204Pb (15.54-15.62), and 208Pb/204Pb (38.38-38.94), suggesting very little crustal assimilation. They are most similar to EM-2

  20. Paleomagnetism of the Miocene intrusive suite of Kidd Creek: Timing of deformation in the Cascade arc, southern Washington

    USGS Publications Warehouse

    Hagstrum, J.T.; Swanson, D.A.; Snee, L.W.

    1998-01-01

    Paleomagnetic study of the intrusive suite of Kidd Creek in the southern Washington Cascades (23 sites in dikes and sills) was undertaken to help determine if these rocks are comagmatic and whether they postdate regional folding of the volcanic arc. Fission track and 40Ar-39Ar age determinations indicate an age of ???12.7 Ma (middle Miocene) for these rocks. The similarity of normal-polarity characteristic directions for most samples corroborate the available geochemical data indicating that these rocks are most likely comagmatic. Reversed-polarity directions for samples from four sites, however, show that emplacement of Kidd Creek intrusions spanned at least one reversal of the geomagnetic field. The paleomagnetic directions for the dikes and sills fail a fold test at the 99% confidence level indicating that the Kidd Creek rocks postdate regional folding. The mean in situ direction also indicates that the Kidd Creek and older rocks have been rotated 22?? ?? 6?? clockwise about a vertical or near-vertical axis from the expected Miocene direction. Compression and regional folding of the Cascade arc in southern Washington therefore had ended by ???12 Ma prior to the onset of deformation resulting in rotation of these rocks.

  1. JACK CREEK BASIN, MONTANA.

    USGS Publications Warehouse

    Kiilsgaard, Thor H.; Van Noy, Ronald M.

    1984-01-01

    A mineral survey of the Jack Creek basin area in Montana revealed that phosphate rock underlies the basin. The phosphate rock is in thin beds that dip steeply and are broken and offset by faults. These features plus the rugged topography of the region would make mining difficult; however, this study finds the area to have a probable mineral-resource potential for phosphate. Sedimentary rock formations favorable for oil and gas also underlie the basin. No oil or gas has been produced from the basin or from nearby areas in southwestern Montana, but oil and gas have been produced from the same favorable formations elsewhere in Montana. The possibility of oil and gas being produced from the basin is slight but it cannot be ignored.

  2. Geology and ore deposits of the Chicago Creek area, Clear Creek County, Colorado

    USGS Publications Warehouse

    Harrison, J.E.; Wells, J.D.

    1956-01-01

    The Chicago Creek area, Clear Creek County, Colo., forms part of the Front Range mineral belt, which is a northeast-trending belt of coextensive porphyry intrusive rocks and hydrothermal veins of Tertiary age. More than $4.5 million worth of gold, silver, copper, lead, zinc, and uranium was produced from the mines in the area between 1859 and 1954. This investigation was made by the Geological survey on behalf of the Division of Raw Materials of the U.S. Atomic Energy Commission. The bedrock in the area is Precambrian and consists of igneous rocks, some of which have been metamorphosed , and metasedimentary rocks. The metasedimentary rocks include biotite-quartz-plagioclase gneiss that is locally garnetiferous, sillimanitic biotite-quartz gneiss, amphibolite, and lime-silicate gneiss. Rocks that may be metasedimentary or meta-igneous are quartz monzonite gneiss and granite gneiss and pegmatite. The granite gneiss and pegmatite locally form a migmatite with the biotitic metasedimentary rocks. These older rocks have been intruded by granodiorite, quartz, and granite pegmatite. During Tertiary time the Precambrian rocks were invaded by dikes and plugs of quartz monzonite porphyry, alaskite porphyry, granite porphyry, monzonite porphyry, bostonite and garnetiferous bostonite porphyry, quartz bostonite porphyry, trachytic granite porphyry, and biotite-quartz latite-porphyry. Solifluction debris of Wisconsin age forms sheets filling some of the high basins, covering some of the steep slopes, and filling parts of some of the valleys; talus and talus slides of Wisconsin age rest of or are mixed with solifluction debris in some of the high basins. Recent and/or Pleistocene alluvium is present along valley flats of the larger streams and gulches. Two periods of Precambrian folding can be recognized in the area. The older folding crumpled the metasedimentary rocks into a series of upright and overturned north-northeast plunging anticlines and synclines. Quartz monzonite

  3. 8. Detail view of downstream side, looking south. Buttresses, struttie ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. Detail view of downstream side, looking south. Buttresses, strut-tie beams, and arch-rings are shown. The white discoloration on the concrete is the result of efflorescence. - Little Rock Creek Dam, Little Rock Creek, Littlerock, Los Angeles County, CA

  4. Horizontal drilling potential of the Cane Creek Shale, Paradox Formation, Utah

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morgan, C.D.; Chidsey, T.C.

    1991-06-01

    The Cane Creek shale of the Pennsylvanian Paradox Formation is a well-defined target for horizontal drilling. This unit is naturally fractures and consists of organic-rich marine shale with interbedded dolomitic siltstone and anhydrite. Six fields have produced oil from the Cane Creek shale in the Paradox basin fold-and-fault belt. The regional structural trend is north-northwest with productive fractures occurring along the crest and flanks of both the larger and more subtle smaller anticlines. The Long Canyon, Cane Creek, Bartlett Flat, and Shafer Canyon fields are located on large anticlines, while Lion Mesa and Wilson Canyon fields produce from subtle structuralmore » noses. The Cane Creek shale is similar to the highly productive Bakken Shale in the Williston basin. Both are (1) proven producers of high-gravity oil, (2) highly fractured organic-rich source rocks, (3) overpressured, (4) regionally extensive, and (5) solution-gas driven with little or no associated water. Even though all production from the Cane Creek shale has been from conventional vertical wells, the Long Canyon 1 well has produced nearly 1 million bbl of high-gravity, low-sulfur oil. Horizontal drilling may result in the development of new fields, enhance recovery in producing fields, and revive production in abandoned fields. In addition, several other regionally extensive organic-rich shale beds occur in the Paradox Formation. The Gothic and Chimney Rock shales for example, offer additional potential lying above the Cane Creek shale.« less

  5. GEE CREEK WILDERNESS, TENNESSEE.

    USGS Publications Warehouse

    Epstein, Jack B.; Gazdik, Gertrude C.

    1984-01-01

    On the basis of geologic, geochemical, and mine and prospect surveys, it was determined that the Gee Creek Wilderness, Tennessee has little promise for the occurrence of mineral resources. Iron ore was formerly mined, but the deposits are small, have a high phosphorous content, and are inaccessible. Shale, suitable for brick or lightweight aggregate, and sandstone, which could be utilized for crushed stone or sand, are found in the area, but are also found in areas closer to potential markets. The geologic setting precludes the presence of oil and gas resources in the surface rocks, but the possibility of finding natural gas at depth below the rocks exposed in the area cannot be discounted. Geophysical exploration would be necessary to define the local structure in rocks at depth to properly evaluate the potential of the area for gas.

  6. Impacts on water quality and biota from natural acid rock drainage in Colorado's Lake Creek watershed

    USGS Publications Warehouse

    Bird, D.A.; Sares, Matthew A.; Policky, Greg A.; Schmidt, Travis S.; Church, Stan E.

    2006-01-01

    Colorado's Lake Creek watershed hosts natural acid rock drainage that significantly impacts surface water, streambed sediment, and aquatic life. The source of the ARD is a group of iron-rich springs that emerge from intensely hydrothermally altered, unexploited, low-grade porphyry copper mineralization in the Grizzly Peak Caldera. Source water chemistry includes pH of 2.5 and dissolved metal concentrations of up to 277 mg/L aluminum, 498 mg/L iron, and 10 mg/L copper. From the hydrothermally altered area downstream for 27 kilometers to Twin Lakes Reservoir, metal concentrations in streambed sediment are elevated and the watershed experiences locally severe adverse impacts to aquatic life due to the acidic, metal-laden water. The water and sediment quality of Twin Lakes Reservoir is sufficiently improved that the reservoir supports a trout fishery, and remnants of upstream ARD are negligible.

  7. Hydrologic and geologic characterization of Tenderfoot Creek Experimental Forest, Montana

    Treesearch

    Phillip E. Farnes; Ward W. McCaughey; Katherine J. Hansen

    1994-01-01

    Tenderfoot Creek Experimental Forest (TCEF) is located in Central Montana 24 miles north of White Sulphur Springs and 9 miles northwest of Highway 89 from Kings Hill via Forest Road #839. The experimental forest can also be accessed by Forest Road #586 via Sheep Creek. A general view of TCEF showing roads and drainages is shown in figure 2. The road down Tenderfoot...

  8. Geochemical data for stream-sediment, heavy-mineral-concentrate and rock samples collected from the Fortyseven Creek gold-arsenic-antimony-tungsten prospect, southwestern Alaska

    USGS Publications Warehouse

    Gray, John E.; Lee, G.K.; O'Leary, R. M.; Theodorakos, P.M.

    1999-01-01

    In the summer of 1991, we conducted a reconnaissance geochemical survey around the Fortyseven Creek Au-As-Sb-W prospect that is located in the southwestern part of the Sleetmute quadrangle. At that time, this project was a small part of a more comprehensive Alaska Mineral Resource Assessment Program (AMRAP) study of the Sleemute quadrangle. AMRAP studies were conducted by the U.S. Geological Survey (USGS) to fulfill requirements of the Alaska National Interests Lands Conservation Act (Public Law 96-487, 1980) to survey certain federal lands to determine their mineral potential. Although AMRAP is no longer in operation, this study represents a small topical study that was conducted during the Sleetmute quadrangle AMRAP study. The objective of the Fortyseven Creek work was to characterize the geochemistry of samples collected downstream from the Fortyseven Creek prospect, as well as mineralized and altered rock samples collected from the prospect. In this report, we describe the samples collected in 1991, the methods used for the analysis of the samples, and the geochemical data for these samples. The data in this report are also available in digital form on computer diskette in Gray and others (1999). An interpretation of these data appears in Gray and others (1998).

  9. Rock-avalanche dynamics revealed by large-scale field mapping and seismic signals at a highly mobile avalanche in the West Salt Creek valley, western Colorado

    USGS Publications Warehouse

    Coe, Jeffrey A.; Baum, Rex L.; Allstadt, Kate E.; Kochevar, Bernard; Schmitt, Robert G.; Morgan, Matthew L.; White, Jonathan L.; Stratton, Benjamin T.; Hayashi, Timothy A.; Kean, Jason W.

    2016-01-01

    On 25 May 2014, a rain-on-snow–induced rock avalanche occurred in the West Salt Creek valley on the northern flank of Grand Mesa in western Colorado (United States). The avalanche mobilized from a preexisting rock slide in the Green River Formation and traveled 4.6 km down the confined valley, killing three people. The avalanche was rare for the contiguous United States because of its large size (54.5 Mm3) and high mobility (height/length = 0.14). To understand the avalanche failure sequence, mechanisms, and mobility, we conducted a forensic analysis using large-scale (1:1000) structural mapping and seismic data. We used high-resolution, unmanned aircraft system imagery as a base for field mapping, and analyzed seismic data from 22 broadband stations (distances < 656 km from the rock-slide source area) and one short-period network. We inverted broadband data to derive a time series of forces that the avalanche exerted on the earth and tracked these forces using curves in the avalanche path. Our results revealed that the rock avalanche was a cascade of landslide events, rather than a single massive failure. The sequence began with an early morning landslide/debris flow that started ∼10 h before the main avalanche. The main avalanche lasted ∼3.5 min and traveled at average velocities ranging from 15 to 36 m/s. For at least two hours after the avalanche ceased movement, a central, hummock-rich core continued to move slowly. Since 25 May 2014, numerous shallow landslides, rock slides, and rock falls have created new structures and modified avalanche topography. Mobility of the main avalanche and central core was likely enhanced by valley floor material that liquefied from undrained loading by the overriding avalanche. Although the base was likely at least partially liquefied, our mapping indicates that the overriding avalanche internally deformed predominantly by sliding along discrete shear surfaces in material that was nearly dry and had substantial frictional

  10. CITICO CREEK WILDERNESS STUDY AREA, TENNESSEE.

    USGS Publications Warehouse

    Slack, John F.; Behum, Paul T.

    1984-01-01

    A mineral-resource survey of the Citico Creek Wilderness Study Area, in easternmost Tennessee, indicated that the area offers little promise for the occurrence of metallic mineral resources. Geochemical sampling found traces of gold, copper, cobalt, barium, arsenic, lead, zinc, and thorium in rocks, stream sediments, and panned concentrates, but not in sufficient quantities to indicate the presence of metallic mineral deposits. The only apparent resources are nonmetallic commodities including rock suitable for construction materials, and small amounts of sand and gravel; however, these commodities are found in abundance outside the study area. The potential for oil and natural gas at great depths could not be evaluated by this study. Deep drilling would test the potential for hydrocarbon resources underlying the metamorphic rocks.

  11. Mineralogy and diagenesis of low-permeability sandstones of Late Cretaceous age, Piceance Creek Basin, northwestern Colorado

    USGS Publications Warehouse

    Hansley, Paula L.; Johnson, Ronald C.

    1980-01-01

    This report presents preliminary results of a mineralogic and diagenetic study of some low-permeability sandstones from measured surface sections and cores obtained from drill holes in the Piceance Creek Basin of northwestern Colorado. A documentation of the mineralogy and diagenetic history will aid in the exploration for natural gas and in the development of recovery technology in these low-permability sandstones. These sandstones are in the nonmarine upper part of the Mesaverde Formation (or Group) of Late Cretaceous age and are separated from overlying lower Tertiary rocks by a major regional unconformity. Attention is focused on the sandstone units of the Ohio Creek Member, which directly underlies the unconformity; however, comparisons between the mineralogy of the Ohio Creek strata and that of the underlying sandstone units are made whenever possible. The Ohio Creek is a member of the Hunter Canyon Formation (Mesaverde Group) in the southwestern part of the basin, and the Mesaverde Formation in the southern and central parts of the basin. The detrital mineralogy is fairly constant throughout all of these nonrnarine Cretaceous sandstone units; however, in the southeastern part of the basin, there is an increase in percentage of feldspar, quartzite, and igneous rock fragments in sandstones of the Ohio Creek Member directly underlying the unconformity. In the southwestern part of the basin, sandstones of the Ohio Creek Member are very weathered and are almost-entirely comprised of quartz, chert, and kaolinite. A complex diagenetic history, partly related to the overlying unconformity, appears to be responsible for transforming these sandstones into potential gas reservoirs. The general diagenetic sequence for the entire Upper Cretaceous interval studied is interpreted to be (early to late): early(?) calcite cement, chlorite, quartz overgrowths, calcite cement, secondary porosity, analcime (surface only), kaolinite and illite, and late carbonate cements

  12. A First Look at Airborne Imaging Spectrometer (AIS) Data in an Area of Altered Volcanic Rocks and Carbonate Formations, Hot Creek Range, South Central Nevada

    NASA Technical Reports Server (NTRS)

    Feldman, S. C.; Taranik, J. V.; Mouat, D. A.

    1985-01-01

    Three flight lines of Airborne Imaging Spectrometer (AIS) data were collected in 128 bands between 1.2 and 2.4 microns in the Hot Creek Range, Nevada on July 25, 1984. The flight lines are underlain by hydrothermally altered and unaltered Paleozoic carbonates and Tertiary rhyolitic to latitic volcanics in the Tybo mining district. The original project objectives were to discriminate carbonate rocks from other rock types, to distinguish limestone from dolomite, and to discriminate carbonate units from each other using AIS imagery. Because of high cloud cover over the prime carbonate flight line and because of the acquisition of another flight line in altered and unaltered volcanics, the study has been extended to the discrimination of alteration products. In an area of altered and unaltered rhyolites and latites in Red Rock Canyon, altered and unaltered rock could be discriminated from each other using spectral features in the 1.16 to 2.34 micron range. The altered spectral signatures resembled montmorillonite and kaolinite. Field samples were gathered and the presence of montmorillonite was confirmed by X-ray analysis.

  13. BUCKS LAKE AND CHIPS CREEK ROADLESS AREAS, CALIFORNIA.

    USGS Publications Warehouse

    Sorensen, Martin L.; Linne, J. Mitchell

    1984-01-01

    The results of a mineral-resource assessment of the Bucks Lake and Chips Creek Roadless Areas, California indicate several areas with mineral-resource potential. The presence or absence of these potentially auriferous deposits can best be determined by drilling through the relatively thin cover of volcanic rocks.

  14. Floods in the Rock River basin, Iowa

    USGS Publications Warehouse

    Heinitz, Albert J.

    1973-01-01

    Flood profiles for the Rock River include those for the 1962, 1964, 1965, 1969, and the computed 25- and 50-year floods. On the Little Rock River and Otter Creek, profiles include those for the 1969 flood and the computed 25- and 50-year floods. Low-water profiles are shown for all reaches.

  15. Sailing to White Boat

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This is a composite red-green-blue image of the rock called White Boat. It is the first rock target that Spirit drove to after finishing a series of investigations on the rock Adirondack. White Boat stood out to scientists due to its light color and more tabular shape compared to the dark, rounded rocks that surround it.

  16. Geology and phosphate resources of the Hawley Creek area, Lemhi County, Idaho

    USGS Publications Warehouse

    Oberlindacher, Peter; Hovland, Robert David

    1979-01-01

    Phosphate resources occur within the Retort Phosphatic Shale Member of the Permian Phosphoria Formation in the Hawley Creek area, near Leadore, in east-central Idaho. About 12 square miles (31 km2 ) of the Retort Member and enclosing rocks were mapped at a scale of 1:12,000 to evaluate the leasable Federal mineral resources. The Retort has an average thickness of 73 feet (22.3 m) and 12.9 linear miles (20.8 linear km) of outcrop within the area mapped. Rock samples taken from a bulldozer trench were analyzed for phosphate content and for minor trace elements. Analyses show a cumulative thickness of 8.7 feet ( 2.7 m) of medium-grade phosphate rock ( 24 to 31 percent P2O5) and 33.4 feet (10.2 m) of low-grade phosphate rock (16 to 24 percent P2O5). Minor elements in the Retort include uranium, vanadium, fluorine, cadmium, chromium, nickel, molybdenum, silver, and rare earths. These minor elements are potential byproducts of any future phosphate production in the Hawley Creek area. In addition, analyses of six phosphate rock samples taken from a prospect trench show a cumulative thickness of 14.9 ft (4.5 m) at 17.6 percent P2O5. Indicated phosphate resources are calculated for phosphate beds under less than 600 feet (183.0 m) of overburden. Approximately 36.5 feet (11.1 m), representing 50 percent of the total Retort Member, were measured in trench CP-71. There are 80.42 million short tons (72.96 million metric tons) of medium-grade phosphate rock, and 308.76 million short tons ( 280.10 million metric tons) of low-grade phosphate rock in the Retort Member within the map area. Because the thickness and grade of the phosphate beds for each block are based on the recovered section from CP-71, the calculated phosphate resource estimates represent a minimum. Other mineral resources in the area are thorium (35 ppm) in a Precambrian (?) granite body located immediately west of the Hawley Creek area; oil and gas accumulations may occur beneath the Medicine Lodge thrust system

  17. Surficial geology of the Cane Creek basin, Lauderdale County, Tennessee

    USGS Publications Warehouse

    Miller, J.H.

    1991-01-01

    The surficial geology of the Cane Creek basin, in Lauderdale County, West Tennessee, was studied from 1985-88. Peoria Loess is the parent material from which soils in the Cane Creek drainage basin were derived. In general, a brown silt grades into a gray silt from 5 to I7 feet below ground surface. This color change probably represents depth to water table prior to the channelization of Cane Creek. Only at river mile 11.9 does rock outcrop near the main channel. Lower reaches of major tributaries have surficial geology similar to the main channel. In upper reaches of Hyde Creek and Fain Spring Creek, the sequence from the St&ace is sand and gravels, red-brown sandstone, sand and clay layers, and then, an orange sand layer. Coarse-grained deposits are found most often along the northern boundary of the basin and only occasionally in areas to the west and south of the main channel. Depth to sand or gravel ranges from about 0 to 158 feet in the uplands, and generally deeper than 40 feet near the main channel.

  18. 75 FR 77826 - White River National Forest; Eagle County, CO; Beaver Creek Mountain Improvements

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-14

    ... and/or affected individuals, organizations and governmental agencies will be used to identify resource... upcoming 2015 World Alpine Championships. In order for Beaver Creek to continue to host international... located at Beaver Creek. Hosting the 2015 International Skiing Federation (FIS) World Alpine Ski...

  19. 33 CFR 80.760 - Horeshoe Point, FL to Rock Island, FL.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Horeshoe Point, FL to Rock Island... Rock Island, FL. (a) Except inside lines specifically described provided in this section, the 72 COLREGS shall apply on the bays, bayous, creeks, marinas, and rivers from Horseshoe Point to the Rock...

  20. 33 CFR 80.760 - Horeshoe Point, FL to Rock Island, FL.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Horeshoe Point, FL to Rock Island... Rock Island, FL. (a) Except inside lines specifically described provided in this section, the 72 COLREGS shall apply on the bays, bayous, creeks, marinas, and rivers from Horseshoe Point to the Rock...

  1. 33 CFR 80.760 - Horeshoe Point, FL to Rock Island, FL.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Horeshoe Point, FL to Rock Island... Rock Island, FL. (a) Except inside lines specifically described provided in this section, the 72 COLREGS shall apply on the bays, bayous, creeks, marinas, and rivers from Horseshoe Point to the Rock...

  2. 33 CFR 80.760 - Horeshoe Point, FL to Rock Island, FL.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Horeshoe Point, FL to Rock Island... Rock Island, FL. (a) Except inside lines specifically described provided in this section, the 72 COLREGS shall apply on the bays, bayous, creeks, marinas, and rivers from Horseshoe Point to the Rock...

  3. 33 CFR 80.760 - Horeshoe Point, FL to Rock Island, FL.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Horeshoe Point, FL to Rock Island... Rock Island, FL. (a) Except inside lines specifically described provided in this section, the 72 COLREGS shall apply on the bays, bayous, creeks, marinas, and rivers from Horseshoe Point to the Rock...

  4. Radioactivity at the Copper Creek copper lode prospect, Eagle district, east-central Alaska

    USGS Publications Warehouse

    Wedow, Helmuth; Tolbert, Gene Edward

    1952-01-01

    Investigation of radioactivity anomalies at the Copper Creek copper lode prospect, Eagle district, east-central Alaska, during 1949 disclosed that the radioactivity is associated with copper mineralization in highly metamorphosed sedimentary rocks. These rocks are a roof pendant in the Mesozoic "Charley River" batholith. The radioactivity is probably all due to uranium associated with bornite and malachite.

  5. New mapping near Iron Creek, Talkeetna Mountains, indicates presence of Nikolai greenstone

    USGS Publications Warehouse

    Schmidt, Jeanine M.; Werdon, Melanie B.; Wardlaw, Bruce R.

    2003-01-01

    Detailed geologic mapping in the Iron Creek area, Talkeetna Mountains B-5 Quadrangle, has documented several intrusive bodies and rock units not previously recognized and has extended the geologic history of the area through the Mesozoic and into the Tertiary era. Greenschist-facies metabasalt and metagabbro previously thought to be Paleozoic are intruded by Late Cretaceous to Paleocene dioritic to granitic plutons. The metabasalts are massive to amygdaloidal, commonly contain abundant magnetite, and large areas are patchily altered to epidote ± quartz. They host numerous copper oxide–copper sulfide–quartz–hematite veins and amygdule fillings. These lithologic features, recognized in the field, suggested a correlation of the metamafic rocks with the Late Triassic Nikolai Greenstone, which had not previously been mapped in the Iron Creek area. Thin, discontinuous metalimestones that overlie the metabasalt sequence had previously been assigned a Pennsylvanian(?) and Early Permian age on the basis of correlation with marbles to the north, which yielded Late Paleozoic or Permian macrofossils, or both. Three new samples from the metalimestones near Iron Creek yielded Late Triassic conodonts, which confirms the correlation of the underlying metamafic rocks with Nikolai Greenstone. These new data extend the occurrence of Nikolai Greenstone about 70 km southwest of its previously mapped extent.Five to 10 km north of the conodont sample localities, numerous microgabbro and diabase sills intrude siliceous and locally calcareous metasedimentary rocks of uncertain age. These sills probably represent feeder zones to the Nikolai Greenstone. In the Mt. Hayes quadrangle 150 km to the northeast, large sill-form mafic and ultramafic feeders (for example, the Fish Lake complex) to the Nikolai Greenstone in the Amphitheatre Mountains host magmatic sulfide nickel–copper–platinum-group-element (PGE) mineralization. This new recognition of Nikolai Greenstone and possible

  6. Water resources of the Minnesota River-Hawk Creek watershed, southwestern Minnesota

    USGS Publications Warehouse

    Van Voast, Wayne A.; Broussard, W.L.; Wheat, D.E.

    1972-01-01

    The Minnesota River – Hawk Creek watershed is located in southwestern Minnesota. The watershed has an area of 1,479 square miles and is drained along its southwestern edge by the Minnesota River (Minnesota Division of Waters, 1959). The major watercourse within the watershed is Hawk Creek, having a drainage area of 510 square miles. Other, shorter streams drain into the Minnesota River but are mostly ephemeral. The watershed has a gently undulating land surface formed on glacial deposits. Directly underlying the glacial deposits in most of the area are Cretaceous sedimentary rocks. Paleozoic and Precambrian rocks are also locally in contact with overlying glacial deposits. Beds of sand and gravel buried at various depths within the glacial deposits are generally thin and discomtinuous but are the most accessible and widely used aquifers in the watershed. Beds of poorly consolidated sandstone in the Cretaceous rocks are locally good aquifers, generally yielding softer water, but in lesser quantities, than aquifers in the overlying glacial deposits. In the eastern part of the watershed, aquifers in Paleozoic and Precambrian sedimentary rocks are capable of high yields to wells and contain water of similar quality to water in the overlying Cretaceous and glacial deposits.

  7. 77 FR 42714 - Eagle Creek Hydropower, LLC, Eagle Creek Land Resources, LLC, Eagle Creek Water Resources, LLC...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-20

    ... Hydropower, LLC, Eagle Creek Land Resources, LLC, Eagle Creek Water Resources, LLC; Notice of Application...: Eagle Creek Hydropower, LLC; Eagle Creek Land Resources, LLC; and Eagle Creek Water Resources, LLC. e... Contact: Robert Gates, Senior Vice President-- Operations, Eagle Creek Hydropower, LLC, Eagle Creek Water...

  8. Crystalline rocks of the Strawberry Lake area, Front Range, Colorado

    USGS Publications Warehouse

    Young, Edward J.

    1991-01-01

    This report is a petrographic and geochemical study of the bedrock and a petrologic discussion based on felsic-mafic and silica-saturation ratios of the Strawberry Lake area. This volume is published as chapters A and B. These chapters are not available separatelyThe Strawberry lake area lies between the Continental Divide and Granby, Colorado, just north of Tabernash. It is underlain by Proterozoic rocks composed of biotite gneiss and two plutons-Boulder Creek Granodiorite of the Routt Plutonic Suite and Silver Plume Granite of the Berthoud Plutonic Suite. Relict enclaves of biotite gneiss are not uncommon in the Boulder Creek Granodiorite, in the Silver Plume Granite, and in the granitic enclaves in the biotite gneiss. Granitic and mafic enclaves in the Boulder Creek Granodiorite, granitic enclaves in the Silver Plume Granite and in the biotite gneiss, and a Tertiary andesite porphyry dike complete the rock types.

  9. Compositional gradients in large reservoirs of silicic magma as evidenced by ignimbrites versus Taylor Creek Rhyolite lava domes

    NASA Astrophysics Data System (ADS)

    Duffield, Wendell A.; Ruiz, Joaquin

    1992-04-01

    The Taylor Creek Rhyolite of southwest New Mexico consists of 20 lava domes and flows that were emplaced during a period of a few thousand years or less in late Oligocene time. Including genetically associated pyroclastic deposits, which are about as voluminous as the lava domes and flows, the Taylor Creek Rhyolite represents roughly 100 km3 of magma erupted from vents distributed throughout an area of several hundred square kilometers. Major-element composition is metaluminous to weakly peraluminous high-silica rhyolite and is nearly constant throughout the lava field. The magma reservoir for the Taylor Creek Rhyolite was vertically zoned in trace elements, 87Sr/86Sr, and phenocryst abundance and size. Mean trace-element concentrations, ranges in concentrations, and element-pair correlations are similar to many subalkaline silicic ignimbrites. However, the polarity of the zonation was opposite that in reservoirs for ignimbrites, for most constituents. For example, compared to the Bishop Tuff, only 87Sr/86Sr and Sc increased upward in both reservoirs. Quite likely, a dominant but nonerupted volume of the magma reservoir for the Taylor Creek Rhyolite was zoned like that for the Bishop Tuff, whereas an erupted, few-hundred-meter-thick cap on the magma body was variably contaminated by roof rocks whose contribution to this part of the magma system moderated relatively extreme trace-element concentrations of uncontaminated Taylor Creek Rhyolite but did not change the sense of correlation for most element pairs. The contaminant probably was a Precambrian rock of broadly granitic composition and with very high 87Sr/86Sr. Although examples apparently are not yet reported in the literature, evidence for a similar thin contaminated cap on reservoirs for large-volume silicic ignimbrites may exist in the bottom few meters of ignimbrites or perhaps only in the pumice fallout that normally immediately precedes ignimbrite emplacement. 87Sr/86Sr in sanidine phenocrysts of the

  10. Compositional gradients in large reservoirs of silicic magma as evidenced by ignimbrites versus Taylor Creek Rhyolite lava domes

    USGS Publications Warehouse

    Duffield, W.A.; Ruiz, J.

    1992-01-01

    The Taylor Creek Rhyolite of southwest New Mexico consists of 20 lava domes and flows that were emplaced during a period of a few thousand years or less in late Oligocene time. Including genetically associated pyroclastic deposits, which are about as voluminous as the lava domes and flows, the Taylor Creek Rhyolite represents roughly 100 km3 of magma erupted from vents distributed throughout an area of several hundred square kilometers. Major-element composition is metaluminous to weakly peraluminous high-silica rhyolite and is nearly constant throughout the lava field. The magma reservoir for the Taylor Creek Rhyolite was vertically zoned in trace elements, 87Sr/86Sr, and phenocryst abundance and size. Mean trace-element concentrations, ranges in concentrations, and element-pair correlations are similar to many subalkaline silicic ignimbrites. However, the polarity of the zonation was opposite that in reservoirs for ignimbrites, for most constituents. For example, compared to the Bishop Tuff, only 87Sr/86Sr and Sc increased upward in both reservoirs. Quite likely, a dominant but nonerupted volume of the magma reservoir for the Taylor Creek Rhyolite was zoned like that for the Bishop Tuff, whereas an erupted, few-hundred-meter-thick cap on the magma body was variably contaminated by roof rocks whose contribution to this part of the magma system moderated relatively extreme trace-element concentrations of uncontaminated Taylor Creek Rhyolite but did not change the sense of correlation for most element pairs. The contaminant probably was a Precambrian rock of broadly granitic composition and with very high 87Sr/86Sr. Although examples apparently are not yet reported in the literature, evidence for a similar thin contaminated cap on reservoirs for large-volume silicic ignimbrites may exist in the bottom few meters of ignimbrites or perhaps only in the pumice fallout that normally immediately precedes ignimbrite emplacement. 87Sr/86Sr in sanidine phenocrysts of the

  11. Science Rocks!

    ERIC Educational Resources Information Center

    Prestwich, Dorothy; Sumrall, Joseph; Chessin, Debby A.

    2010-01-01

    It all began one Monday morning. Raymond could not wait to come to large group. In his hand, he held a chunk of white granite he had found. "Look at my beautiful rock!" he cried. The rock was passed around and examined by each student. "I wonder how rocks are made?" wondered one student. "Where do they come from?"…

  12. Geochemical evolution of solutions derived from experimental weathering of sulfide-bearing rocks

    USGS Publications Warehouse

    Munk, L.; Faure, G.; Koski, R.

    2006-01-01

    The chemical composition of natural waters is affected by the weathering of geologic materials at or near the surface of the Earth. Laboratory weathering experiments of whole-rock sulfide rocks from the Shoe-Basin Mine (SBM) and the Pennsylvania Mine (PM) from the Peru Creek Basin, Summit County, Colorado, indicate that the mineral composition of the sulfide rocks, changes in pH, the duration of the experiment, and the formation of sorbents such as Fe and Al oxyhydroxides affect the chemical composition of the resulting solution. Carbonate minerals in the rock from SBM provide buffering capacity to the solution, contribute to increases in the pH and enhance the formation of Fe and Al oxyhydroxides, which sorb cations from solution. The final solution pH obtained in the experiments was similar to those measured in the field (i.e., 2.8 for PM and 5.0 for SBM). At PM, acidic, metal-rich mine effluent is discharged into Peru Creek where it mixes with stream water. As a result, the pH of the effluent increases causing Fe and Al oxyhydroxide and schwertmannite to precipitate. The resulting solids sorb metal cations from the water thereby improving the quality of the water in Peru Creek. ?? 2006.

  13. Geology of the Deep Creek area, Washington, and its regional significance

    USGS Publications Warehouse

    Yates, Robert Giertz

    1976-01-01

    This report, although primarily concerned with the stratigraphy and structure of a lead-zinc mining district in northern Stevens County, Washington, discusses and integrates the geology of the region about the Deep Creek area. Although the study centers in an area of about 200 square miles immediately south of the International Boundary, the regional background comes from: (1)the previously undescribed Northport quadrangle to the west, (2) published reports and reconnaissance of the Metaline quadrangle to the east, and (3) from published reports and maps of a 16 mile wide area that lies to the north adjacent to these three quadrangles in British Columbia. The report is divided into three parts: (1) descriptions of rocks and structures of the Deep Creek area, (2) descriptions of the regional setting of the Deep Creek area, and (3) an analysis and interpretation of the depositional and tectonic events that produced the geologic features exposed today. In the Deep Creek area surficial deposits of sand and gravel of glacial origin cover much of the consolidated rocks, which range in age from greenschist of the late Precambrlan to albite granite of the Eocene. Three broad divisions of depositional history are represented: (1) Precambrian, (2) lower Paleozoic and (3) upper Paleozoic; the record of the Mesozoic and Eocene is fragmentary. The lower Paleozoic division is the only fossil-controlled sequence; the age of the other two divisions were established by less direct methods. Both Precambrian and upper Paleozoic sequences are dominated by fine-grained detrital sediments, the Precambrian tending towards the alumina-rich and the upper Paleozoic tending towards the black shale facies with high silica. Neither sequence has more than trivial amounts of coarse clastics. Both include limestones, but in minor abundance. The lower Paleozoic sequence, on the other hand, represents a progressive change in deposition. The sequence began during the very late Precambrian with the

  14. Audiomagnetotelluric data to characterize the Revett-type copper-silver deposits at Rock Creek in the Cabinet Mountains Wilderness, Montana

    USGS Publications Warehouse

    Sampson, Jay A.; Rodriguez, Brian D.

    2011-01-01

    The Revett-type deposits at Rock Creek are part of the concealed stratabound copper-silver deposits located in the Cabinet Mountains Wilderness of Montana. The U.S. Geological Survey is conducting a series of multidisciplinary studies as part of the Assessment Techniques for Concealed Mineral Resources project. Geologic, geochemical, geophysical, and mineral resources data are being evaluated with existing and new mineral deposit models to predict the possibility and probability of undiscovered deposits in covered terranes. To help characterize the size, resistivity, and depth of the mineral deposit concealed beneath thick overburden, a regional southwest-northeast audiomagnetotelluric sounding profile was acquired. Further studies will attempt to determine if induced polarization parameters can be extracted from the magnetotelluric data to determine the size of the mineralized area. The purpose of this report is to release the audiomagnetotelluric sounding data collected along that southwest-northeast profile. No interpretation of the data is included.

  15. Indian Creek uranium prospects, Beaver County, Utah

    USGS Publications Warehouse

    Wyant, Donald G.; Stugard, Frederick

    1951-01-01

    The secondary uranium minerals metatorbernite (?) and autunite (?) were discovered at Indian Creek in the spring of 1950. The deposits, in sec. 26, T. 27 S., R. 6 T., Beaver County, Utah, are 20 miles west of Marysvale, and about three-eighths of a mile east of a quartz monzonite stock. The uranium minerals are sparsely disseminated in argillized and silicified earlier Tertiary Bullion Canyon latite and related volcanic rock beneart, but close to, the contact of the overlying later Tertiary Mount Belknap gray rhyolite. The prospects are in a landslide area where exposures are scarce. Therefore, trend and possible continuity of the altered and the uraniferous zones cannot be established definitely. The occurrence of secondary uranium minerals in beidellite-montmorillonite rock, formed by alteration of earlier Tertiary rocks near a quartz monzonite stock, is similar to that in some of the deposits in the Marysvale uranium district.

  16. Preliminary geochemical assessment of water in selected streams, springs, and caves in the Upper Baker and Snake Creek drainages in Great Basin National Park, Nevada, 2009

    USGS Publications Warehouse

    Paul, Angela P.; Thodal, Carl E.; Baker, Gretchen M.; Lico, Michael S.; Prudic, David E.

    2014-01-01

    Water in caves, discharging from springs, and flowing in streams in the upper Baker and Snake Creek drainages are important natural resources in Great Basin National Park, Nevada. Water and rock samples were collected from 15 sites during February 2009 as part of a series of investigations evaluating the potential for water resource depletion in the park resulting from the current and proposed groundwater withdrawals. This report summarizes general geochemical characteristics of water samples collected from the upper Baker and Snake Creek drainages for eventual use in evaluating possible hydrologic connections between the streams and selected caves and springs discharging in limestone terrain within each watershed.Generally, water discharging from selected springs in the upper Baker and Snake Creek watersheds is relatively young and, in some cases, has similar chemical characteristics to water collected from associated streams. In the upper Baker Creek drainage, geochemical data suggest possible hydrologic connections between Baker Creek and selected springs and caves along it. The analytical results for water samples collected from Wheelers Deep and Model Caves show characteristics similar to those from Baker Creek, suggesting a hydrologic connection between the creek and caves, a finding previously documented by other researchers. Generally, geochemical evidence does not support a connection between water flowing in Pole Canyon Creek to that in Model Cave, at least not to any appreciable extent. The water sample collected from Rosethorn Spring had relatively high concentrations of many of the constituents sampled as part of this study. This finding was expected as the water from the spring travelled through alluvium prior to being discharged at the surface and, as a result, was provided the opportunity to interact with soil minerals with which it came into contact. Isotopic evidence does not preclude a connection between Baker Creek and the water discharging from

  17. Fourth report on the Oak Ridge National Laboratory Biological Monitoring and Abatement Program for White Oak Creek Watershed and the Clinch River

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loar, J.M.

    1994-04-01

    In response to a condition of the National Pollutant Discharge Elimination System (NPDES) permit issued to Oak Ridge National Laboratory (ORNL) on April 1, 1986, a Biological Monitoring and Abatement Program (BMAP) was developed for White Oak Creek (WOC) and selected tributaries. BMAP currently consists of six major tasks that address both radiological and nonradiological contaminants in the aquatic and terrestrial environs on-site and the aquatic environs off-site. These tasks are (1) toxicity monitoring, (2) bioaccumulation monitoring of nonradiological contaminants in aquatic biota, (3) biological indicator studies, (4) instream ecological monitoring, (5) assessment of contaminants in the terrestrial environment, andmore » (6) radioecology of WOC and White Oak Lake. The ecological characterization of the WOC watershed will provide baseline data that can be used to document the ecological effects of the water pollution control program and the remedial action program. The long-term nature of BMAP ensures that the effectiveness of remedial measures will be properly evaluated.« less

  18. 77 FR 13592 - AER NY-Gen, LLC; Eagle Creek Hydro Power, LLC, Eagle Creek Water Resources, LLC, Eagle Creek Land...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-07

    ...; Eagle Creek Hydro Power, LLC, Eagle Creek Water Resources, LLC, Eagle Creek Land Resources, LLC; Notice... 24, 2012, AER NY-Gen, LLC (transferor), Eagle Creek Hydro Power, LLC, Eagle Creek Water Resources.... Cherry, Eagle Creek Hydro Power, LLC, Eagle Creek Water Resources, LLC, and Eagle Creek Land Resources...

  19. Flooding in the South Platte River and Fountain Creek Basins in eastern Colorado, September 9–18, 2013

    USGS Publications Warehouse

    Kimbrough, Robert A.; Holmes, Robert R.

    2015-11-25

    Flooding in the Fountain Creek Basin was primarily contained to Fountain Creek from southern Colorado Springs to its confluence with the Arkansas River in Pueblo, in lower Monument Creek, and in several mountain tributaries. New record peak streamflows occurred at four mountain tributary streamgages having at least 10 years of record; Bear Creek, Cheyenne Creek, Rock Creek, and Little Fountain Creek. Five streamgages with at least 10 years of record in a 32-mile reach of Fountain Creek extending from Colorado Springs to Piñon had peak streamflows in the top five for the period of record. A peak of 15,300 ft3/s at Fountain Creek near Fountain was the highest streamflow recorded in the Fountain Creek Basin during the September 2013 event and ranks the third highest peak in 46 years. Near the mouth of the basin, a peak of 11,800 ft3/s in Pueblo was only the thirteenth highest annual peak in 74 years. A new Colorado record for daily rainfall of 11.85 inches was recorded at a USGS rain gage in the Little Fountain Creek Basin on September 12, 2013.

  20. 75 FR 27332 - AER NY-Gen, LLC; Eagle Creek Hydro Power, LLC; Eagle Creek Water Resources, LLC; Eagle Creek Land...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-14

    ... 9690-106] AER NY-Gen, LLC; Eagle Creek Hydro Power, LLC; Eagle Creek Water Resources, LLC; Eagle Creek... Power, LLC, Eagle Creek Water Resources, LLC, and Eagle Creek Land Resources, LLC (transferees) filed an.... Paul Ho, Eagle Creek Hydro Power, LLC, Eagle Creek Water Resources, LLC, and Eagle Creek Land Resources...

  1. Site evaluation for U.S. Bureau of Mines experimental oil-shale mine, Piceance Creek basin, Rio Blanco County, Colorado

    USGS Publications Warehouse

    Ege, John R.; Leavesley, G.H.; Steele, G.S.; Weeks, J.B.

    1978-01-01

    The U.S. Geological Survey is cooperating with the U.S. Bureau of Mines in the selection of a site for a shaft and experimental mine to be constructed in the Piceance Creek basin, Rio Blanco County, Colo. The Piceance Creek basin, an asymmetric, northwest-trending large structural downwarp, is located approximately 40 km (25 mi) west of the town of Meeker in Rio Blanco County, Colo. The oil-shale, dawsonite, nahcolite, and halite deposits of the Piceance Creek basin occur in the lacustrine Green River Formation of Eocene age. In the basin the Green River Formation comprises three members. In ascending order, they are the Douglas Creek, the Garden Gulch, and the Parachute Creek Members, Four sites are presented for consideration and evaluated on geology and hydrology with respect to shale-oil economics. Evaluated criteria include: (1) stratigraphy, (2) size of site, (3) oil-shale yield, (4) representative quantities of the saline minerals dawsonite and nahcolite, which must be present with a minimum amount of halite, (5) thickness of a 'leached' saline zone, (6) geologic structure, (7) engineering characteristics of rock, (8) representative surface and ground-water conditions, with emphasis on waste disposal and dewatering, and (9) environmental considerations. Serious construction and support problems are anticipated in sinking a deep shaft in the Piceance Creek basin. The two major concerns will be dealing with incompetent rock and large inflow of saline ground water, particularly in the leached zone. Engineering support problems will include stabilizing and hardening the rock from which a certain amount of ground water has been removed. The relative suitability of the four potential oil-shale experimental shaft sites in the Piceance Creek basin has been considered on the basis of all available geologic, hydrologic, and engineering data; site 2 is preferred to sites 1, 3, and 4, The units in this report are presented in the form: metric (English). Both units of

  2. Hydrogeology and simulation of ground-water flow in the thick regolith-fractured crystalline rock aquifer system of Indian Creek basin, North Carolina

    USGS Publications Warehouse

    Daniel, Charles C.; Smith, Douglas G.; Eimers, Jo Leslie

    1997-01-01

    The Indian Creek Basin in the southwestern Piedmont of North Carolina is one of five type areas studied as part of the Appalachian Valleys-Piedmont Regional Aquifer-System analysis. Detailed studies of selected type areas were used to quantify ground-water flow characteristics in various conceptual hydrogeologic terranes. The conceptual hydrogeologic terranes are considered representative of ground-water conditions beneath large areas of the three physiographic provinces--Valley and Ridge, Blue Ridge, and Piedmont--that compose the Appalachian Valleys-Piedmont Regional Aquifer-System Analysis area. The Appalachian Valleys-Piedmont Regional Aquifer-System Analysis study area extends over approximately 142,000 square miles in 11 states and the District of Columbia in the Appalachian highlands of the Eastern United States. The Indian Creek type area is typical of ground-water conditions in a single hydrogeologic terrane that underlies perhaps as much as 40 percent of the Piedmont physiographic province. The hydrogeologic terrane of the Indian Creek model area is one of massive and foliated crystalline rocks mantled by thick regolith. The area lies almost entirely within the Inner Piedmont geologic belt. Five hydrogeologic units occupy major portions of the model area, but statistical tests on well yields, specific capacities, and other hydrologic characteristics show that the five hydrogeologic units can be treated as one unit for purposes of modeling ground-water flow. The 146-square-mile Indian Creek model area includes the Indian Creek Basin, which has a surface drainage area of about 69 square miles. The Indian Creek Basin lies in parts of Catawba, Lincoln, and Gaston Counties, North Carolina. The larger model area is based on boundary conditions established for digital simulation of ground-water flow within the smaller Indian Creek Basin. The ground-water flow model of the Indian Creek Basin is based on the U.S. Geological Survey?s modular finite

  3. Reactivation of the Archean-Proterozoic suture along the southern margin of Laurentia during the Mazatzal orogeny: Petrogenesis and tectonic implications of ca. 1.63 Ga granite in southeastern Wyoming

    USGS Publications Warehouse

    Jones, Daniel S.; Barnes, Calvin G.; Premo, Wayne R.; Snoke, Arthur W.

    2013-01-01

    The presence of ca. 1.63 Ga monzogranite (the “white quartz monzonite”) in the southern Sierra Madre, southeastern Wyoming, is anomalous given its distance from the nearest documented plutons of similar age (central Colorado) and the nearest contemporaneous tectonic margin (New Mexico). It is located immediately south of the Cheyenne belt—a ca. 1.75 Ga Archean-Proterozoic tectonic suture. New geochronological, isotopic, and geochemical data suggest that emplacement of the white quartz monzonite occurred between ca. 1645 and 1628 Ma (main pulse ca. 1628 Ma) and that the white quartz monzonite originated primarily by partial melting of the Big Creek Gneiss, a modified arc complex. There is no evidence that mafic magmas were involved. Open folds of the ca. 1750 Ma regional foliation are cut by undeformed white quartz monzonite. On a regional scale, rocks intruded by the white quartz monzonite have experienced higher pressure and temperature conditions and are migmatitic as compared to the surrounding rocks, suggesting a genetic relationship between the white quartz monzonite and tectonic exhumation. We propose that regional shortening imbricated the Big Creek Gneiss, uplifting the now-exposed high-grade rocks of the Big Creek Gneiss (hanging wall of the thrust and wall rock to the white quartz monzonite) and burying correlative rocks, which partially melted to form the white quartz monzonite. This tectonism is attributed to the ca. 1.65 Ga Mazatzal orogeny, as foreland shortening spread progressively into the Yavapai Province. Mazatzal foreland effects have also been described in the Great Lakes region and have been inferred in the Black Hills of South Dakota. We suggest that the crustal-scale rheologic contrast across the Archean-Proterozoic suture, originally developed along the southern margin of Laurentia, and including the Cheyenne belt, facilitated widespread reactivation of that boundary during the Mazatzal orogeny. This finding emphasizes the degree to

  4. Habitat of endangered white abalone, Haliotis sorenseni

    USGS Publications Warehouse

    Lafferty, Kevin D.; Behrens, M.D.; Davis, G.E.; Haaker, P.L.; Kushner, D.J.; Richards, D. V.; Taniguchi, I. K.; Tegner, M.J.

    2004-01-01

    Surveys with a submersible at offshore islands and banks in southern California found that white abalone were most abundant at depths between 43 and 60 m. This is deeper than estimates taken when white abalone were more abundant. Densities were highest at sites far from fishing ports. Controlling for depth and site found that white abalone were significantly more abundant in areas with Laminaria farlowii (an alga) but abalone were not associated with areas high in the cover of other algae (Pelagophycus porra or Eisenia arborea) or the amount of sand in the habitat (except that abalone always occurred on rock). Within an area with abalone, the particular rock they occurred on was significantly larger than unoccupied neighboring rocks. Occupied rocks were not significantly different in algal cover or in sea urchin density than unoccupied neighboring rocks. The position of abalone on a rock was nearer to the rock–sand interface than would be expected based on a random distribution. More white abalone were feeding when in association with red urchins, perhaps because both grazers capture drift algae to eat. These data may aid future efforts to locate white abalone brood stock and identify locations for outplanting.

  5. Disentangling Diagenesis From the Rock Record: An Example From the Permo-Triassic Wordie Creek Formation, East Greenland

    NASA Astrophysics Data System (ADS)

    Roberts, J.; Turchyn, A. V.; Wignall, P. B.; Newton, R. J.; Vane, C. H.

    2018-01-01

    The measurement of isotope ratios in sedimentary rocks deposited over geological time can provide key insights to past environmental change over important intervals in the past. However, it is important to be aware that secondary alteration can overprint the original isotopic records. We demonstrate this principle using high-resolution carbon, sulfur, and oxygen isotope measurements in organic carbon, pyrite, and carbonate minerals (δ13Corg, δ34Spyr, δ34SCAS, δ13Ccarb, and δ18Ocarb) and kerogen analyses (HI and OI) from the Wordie Creek Formation, East Greenland. These sediments were initially deposited across the Permo-Triassic transition, but as we will show, the carbonate record has been altered by interaction with meteoric water significantly after initial deposition. Comparison of the better preserved organic carbon and pyrite records with a proximal Permo-Triassic sequence reveals significant pyrite-sulfur isotope variability across the Permo-Triassic transition. This regional heterogeneity argues against basin-wide euxinia and instead suggests localized changes in sulfur fractionation in response to variations in organic carbon flux. This hypothesis can be used to explain seemingly inconsistent regional trends in other sulfur isotopes across the Permo-Triassic transition.

  6. Cripple Creek and other alkaline-related gold deposits in the Southern Rocky Mountains, USA: Influence of regional tectonics

    USGS Publications Warehouse

    Kelley, K.D.; Ludington, S.

    2002-01-01

    Alkaline-related epithermal vein, breccia, disseminated, skarn, and porphyry gold deposits form a belt in the southern Rocky Mountains along the eastern edge of the North American Cordillera. Alkaline igneous rocks and associated hydrothermal deposits formed at two times. The first was during the Laramide orogeny (about 70-40 Ma), with deposits restricted spatially to the Colorado mineral belt (CMB). Other alkaline igneous rocks and associated gold deposits formed later, during the transition from a compressional to an extensional regime (about 35-27 Ma). These younger rocks and associated deposits are more widespread, following the Rocky Mountain front southward, from Cripple Creek in Colorado through New Mexico. All of these deposits are on the eastern margin of the Cordillera, with voluminous calc-alkaline rocks to the west. The largest deposits in the belt include Cripple Creek and those in the CMB. The most important factor in the formation of all of the gold deposits was the near-surface emplacement of relatively oxidized volatile-rich alkaline magmas. Strontium and lead isotope compositions suggest that the source of the magmas was subduction-modified subcontinental lithosphere. However, Cripple Creek alkaline rocks and older Laramide alkaline rocks in the CMB that were emplaced through hydrously altered LREE-enriched rocks of the Colorado (Yavapai) province have 208Pb/204Pb ratios that suggest these magmas assimilated and mixed with significant amounts of lower crust. The anomalously hot, thick, and light crust beneath Colorado may have been a catalyst for large-scale transfer of volatiles and crustal melting. Increased dissolved H2O (and CO2, F, Cl) of these magmas may have resulted in more productive gold deposits due to more efficient magmatic-hydrothermal systems. High volatile contents may also have promoted Te and V enrichment, explaining the presence of fluorite, roscoelite (vanadium-rich mica) and tellurides in the CMB deposits and Cripple Creek as

  7. Ground-water conditions in the Grand County area, Utah, with emphasis on the Mill Creek-Spanish Valley area

    USGS Publications Warehouse

    Blanchard, Paul J.

    1990-01-01

    The Grand County area includes all of Grand County, the Mill Creek and Pack Creek drainages in San Juan County, and the area between the Colorado and Green Rivers in San Juan County. The Grand County area includes about 3,980 square miles, and the Mill Creek-Spanish Valley area includes about 44 square miles. The three principal consolidated-rock aquifers in the Grand County area are the Entrada, Navajo, and Wingate aquifers in the Entrada Sandstone, the Navajo Sandstone, and the Wingate Sandstone, and the principal consolidated-rock aquifer in the Mill Creek-Spanish Valley area is the Glen Canyon aquifer in the Glen Canyon Group, comprised of the Navajo Sandstone, the Kayenta Formation, and the Wingate Sandstone.Recharge to the Entrada, Navajo, and Glen Canyon aquifers typically occurs where the formations containing the aquifers crop out or are overlain by unconsolidated sand deposits. Recharge is enhanced where the sand deposits are saturated at a depth of more than about 6 feet below the land surface, and the effects of evaporation begin to decrease rapidly with depth. Recharge to the Wingate aquifer typically occurs by downward movement of water from the Navajo aquifer through the Kayenta Formation, and primarily occurs where the Navajo Sandstone, Kayenta Formation, and the Wingate Sandstone are fractured.

  8. Depositional setting and diagenetic evolution of some Tertiary unconventional reservoir rocks, Uinta Basin, Utah.

    USGS Publications Warehouse

    Pitman, Janet K.; Fouch, T.D.; Goldhaber, M.B.

    1982-01-01

    The Douglas Creek Member of the Tertiary Green River Formation underlies much of the Uinta basin, Utah, and contains large volumes of oil and gas trapped in a complex of fractured low-permeability sandstone reservoirs. In the SE part of the basin at Pariette Bench, the Eocene Douglas Creek Member is a thick sequence of fine- grained alluvial sandstone complexly intercalated with lacustrine claystone and carbonate rock. Sediments were deposited in a subsiding intermontane basin along the shallow fluctuating margin of ancient Lake Uinta. Although the Uinta basin has undergone postdepositional uplift and erosion, the deepest cored rocks at Pariette Bench have never been buried more than 3000m.-from Authors

  9. Analyses and description of geochemical samples, Mill Creek Wilderness Study Area, Giles County, Virginia

    USGS Publications Warehouse

    Mei, Leung; Lesure, Frank Gardner

    1978-01-01

    Semiquantitative emission spectrographic analyses for 64 elements on 62 stream sediment and 71 rock samples from Mill Creek Wilderness Study area, Giles County, Virginia, are reported here in detail. Locations for all samples are given in Universal Transverse Mercator (UTM) coordinates. Brief descriptions of rock samples are also included. Rocks analysed are mostly sandstone. Samples of hematitic sandstone of the Rose Hill Formation and limonite-cemented sandstone of the Rocky Gap Sandstone contain high values of iron; these rocks are submarginal iron resources. Some of the same iron-rich samples have a little more barium, copper, cobalt, lead, silver, and/or zinc then is in average sandstone, but they do not suggest the presence of economic deposits of these metals. No other obviously anomalous values related to mineralized rock are present in the data.

  10. The geology and mechanics of formation of the Fort Rock Dome, Yavapai County, Arizona

    USGS Publications Warehouse

    Fuis, Gary S.

    1996-01-01

    The Fort Rock Dome, a craterlike structure in northern Arizona, is the erosional product of a circular domal uplift associated with a Precambrian shear zone exposed within the crater and with Tertiary volcanism. A section of Precambrian to Quaternary rocks is described, and two Tertiary units, the Crater Pasture Formation and the Fort Rock Creek Rhyodacite, are named. A mathematical model of the doming process is developed that is consistent with the history of the Fort Rock Dome.

  11. Geophysical Investigations of the Smoke Creek Desert and their Geologic Implications, Northwest Nevada and Northeast California

    USGS Publications Warehouse

    Ponce, David A.; Glen, Jonathan M.G.; Tilden, Janet E.

    2006-01-01

    The Smoke Creek Desert is a large basin about 100 km (60 mi) north of Reno near the California-Nevada border, situated along the northernmost parts of the Walker Lane Belt, a physiographic region defined by diverse topographic expression consisting of northweststriking topographic features and strike-slip faulting. Because geologic and geophysical framework studies play an important role in understanding the hydrogeology of the Smoke Creek Desert, a geophysical effort was undertaken to help determine basin geometry, infer structural features, and estimate depth to basement. In the northernmost parts of the Smoke Creek Desert basin, along Squaw Creek Valley, geophysical data indicate that the basin is shallow and that granitic rocks are buried at shallow depths throughout the valley. These granitic rocks are faulted and fractured and presumably permeable, and thus may influence ground-water resources in this area. The Smoke Creek Desert basin itself is composed of three large oval sub-basins, all of which reach depths to basement of up to about 2 km (1.2 mi). In the central and southern parts of the Smoke Creek Desert basin, magnetic anomalies form three separate and narrow EW-striking features. These features consist of high-amplitude short-wavelength magnetic anomalies and probably reflect Tertiary basalt buried at shallow depth. In the central part of the Smoke Creek Desert basin a prominent EW-striking gravity and magnetic prominence extends from the western margin of the basin to the central part of the basin. Along this ridge, probably composed of Tertiary basalt, overlying unconsolidated basin-fill deposits are relatively thin (< 400 m). The central part of the Smoke Creek Desert basin is also characterized by the Mid-valley fault, a continuous geologic and geophysical feature striking NS and at least 18-km long, possibly connecting with faults mapped in the Terraced Hills and continuing southward to Pyramid Lake. The Mid-valley fault may represent a lateral

  12. Trace elements in seep waters along Whitewood Creek, South Dakota, and their toxicity to fathead minnows

    USGS Publications Warehouse

    Hamilton, S.J.; Buhl, K.J.

    2000-01-01

    Whitewood Creek, located in the Black Hills of southwestern South Dakota, has a long history of contamination from mining activity. Gold exploration began in the 1870s, and has continued since that time. Whitewood Creek received direct releases of tailings from 1870 to 1977 from Gold Run Creek in Lead, SD. It has been estimated that approximately 100 million to 1 billion tons of mining, milling, and ore processing wastes have been released by mining activity in the last century in to Whitewood Creek, the Belle Fourche river, and the Cheyenne River (Fox Consultants, Inc. 1984). Tailings deposition has altered the geomorphology of Whitewood Creek, and deposits up to 4.6 m. deep, have become stabilized by vegetation. Several other streams in the Black Hills also have been adversely affected by mining operations (Rahn 1996).As water leaches through rock strata that are disturbed by surface and subsurface mining, it dissolves inorganic elements and carries them to the groundwater.  Groundwater movement through the extensive tailings deposits in the Whitewood Creek valley enter the creek at various seeps along its downstream course to the Belle Fourche river, and the Belle Fourche River itself, which empties into the Cheyenne River and eventually into Lake Oahe.

  13. 33 CFR 110.79c - Fish Creek Harbor, Fish Creek, Wisconsin.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Fish Creek Harbor, Fish Creek, Wisconsin. 110.79c Section 110.79c Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.79c Fish Creek Harbor, Fish Creek...

  14. 33 CFR 110.79c - Fish Creek Harbor, Fish Creek, Wisconsin.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Fish Creek Harbor, Fish Creek, Wisconsin. 110.79c Section 110.79c Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.79c Fish Creek Harbor, Fish Creek...

  15. 33 CFR 110.79c - Fish Creek Harbor, Fish Creek, Wisconsin.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Fish Creek Harbor, Fish Creek, Wisconsin. 110.79c Section 110.79c Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.79c Fish Creek Harbor, Fish Creek...

  16. 33 CFR 110.79c - Fish Creek Harbor, Fish Creek, Wisconsin.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Fish Creek Harbor, Fish Creek, Wisconsin. 110.79c Section 110.79c Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.79c Fish Creek Harbor, Fish Creek...

  17. 33 CFR 110.79c - Fish Creek Harbor, Fish Creek, Wisconsin.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Fish Creek Harbor, Fish Creek, Wisconsin. 110.79c Section 110.79c Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.79c Fish Creek Harbor, Fish Creek...

  18. Assessment of hydrology, water quality, and trace elements in selected placer-mined creeks in the birch creek watershed near central, Alaska, 2001-05

    USGS Publications Warehouse

    Kennedy, Ben W.; Langley, Dustin E.

    2007-01-01

    Executive Summary The U.S. Geological Survey, in cooperation with the Bureau of Land Management, completed an assessment of hydrology, water quality, and trace-element concentrations in streambed sediment of the upper Birch Creek watershed near Central, Alaska. The assessment covered one site on upper Birch Creek and paired sites, upstream and downstream from mined areas, on Frying Pan Creek and Harrison Creek. Stream-discharge and suspended-sediment concentration data collected at other selected mined and unmined sites helped characterize conditions in the upper Birch Creek watershed. The purpose of the project was to provide the Bureau of Land Management with baseline information to evaluate watershed water quality and plan reclamation efforts. Data collection began in September 2001 and ended in September 2005. There were substantial geomorphic disturbances in the stream channel and flood plain along several miles of Harrison Creek. Placer mining has physically altered the natural stream channel morphology and removed streamside vegetation. There has been little or no effort to re-contour waste rock piles. During high-flow events, the abandoned placer-mine areas on Harrison Creek will likely contribute large quantities of sediment downstream unless the mined areas are reclaimed. During 2004 and 2005, no substantial changes in nutrient or major-ion concentrations were detected in water samples collected upstream from mined areas compared with water samples collected downstream from mined areas on Frying Pan Creek and Harrison Creek that could not be attributed to natural variation. This also was true for dissolved oxygen, pH, and specific conductance-a measure of total dissolved solids. Sample sites downstream from mined areas on Harrison Creek and Frying Pan Creek had higher median suspended-sediment concentrations, by a few milligrams per liter, than respective upstream sites. However, it is difficult to attach much importance to the small downstream increase

  19. Hydrogeologic setting and hydrologic data of the Smoke Creek Desert basin, Washoe County, Nevada, and Lassen County, California, water years 1988-90

    USGS Publications Warehouse

    Maurer, D.K.

    1993-01-01

    Smoke Creek Desert is a potential source of water for urban development in Washoe County, Nevada. Hydrogeologic data were collected from 1988 to 1990 to learn more about surface- and ground-water flow in the basin. Impermeable rocks form a boundary to ground-water flow on the east side of the basin and at unknown depths at the base of the flow system. Permeable volcanic rocks on the west and north sides of the basin represent a previously unrecognized aquifer and provide potential avenues for interbasin flow. Geophysical data indicate that basin-fill sediments are about 2,000 feet thick near the center of the basin. The geometry of the aquifers, however, remains largely unknown. Measurements of water levels, pressure head, flow rate, water temperature, and specific conductance at 19 wells show little change from 1988 to 1990. Chemically, ground water begins as a dilute sodium and calcium bicarbonate water in the mountain blocks, changes to a slightly saline sodium bicarbonate solution beneath the alluvial fans, and becomes a briny sodium chloride water near the playa. Concentrations of several inorganic constituents in the briny water near the playa commonly exceed Nevada drinking-water standards. Ground water in the Honey Lake basin and Smoke Creek Desert basin has similar stable-isotope composition, except near Sand Pass. If interbasin flow takes place, it likely occurs at depths greater than 400-600 feet beneath Sand Pass or through volcanic rocks to the north of Sand Pass. Measure- ments of streamflow indicate that about 2,800 acre-feet/year discharged from volcanic rocks to streamflow and a minimum of 7.300 acre-feet/year infiltrated and recharged unconsolidated sediments near Smoke, Buffalo, and Squaw Creeks during the period of study. Also about 1,500 acre-feet per year was lost to evapotranspiration along the channel of Smoke Creek, and about 1,680 acre-feet per year of runoff from Smoke, Buffalo, and Squaw Creeks was probably lost to evaporation from the

  20. Quantification of metal loads by tracer injection and synoptic sampling in Daisy Creek and the Stillwater River, Park County, Montana, August 1999

    USGS Publications Warehouse

    Nimick, David A.; Cleasby, Thomas E.

    2001-01-01

    A metal-loading study using tracer-injection and synoptic-sampling methods was conducted in Daisy Creek and a short reach of the Stillwater River during baseflow in August 1999 to quantify the metal inputs from acid rock drainage in the New World Mining District near Yellowstone National Park and to examine the downstream transport of these metals into the Stillwater River. Loads were calculated for many mainstem and inflow sites by combining streamflow determined using the tracer-injection method with concentrations of major ions and metals that were determined in synoptic water-quality samples. Water quality and aquatic habitat in Daisy Creek have been affected adversely by drainage derived from waste rock and adit discharge at the McLaren Mine as well as from natural weathering of pyrite-rich mineralized rock that comprises and surrounds the ore zones. However, the specific sources and transport pathways are not well understood. Knowledge of the main sources and transport pathways of metals and acid can aid resource managers in planning and conducting effective and cost-efficient remediation activities. The metals cadmium, copper, lead, and zinc occur at concentrations that are sufficiently elevated to be potentially lethal to aquatic life in Daisy Creek and to pose a toxicity risk in part of the Stillwater River. Copper is of most concern in Daisy Creek because it occurs at higher concentrations than the other metals. Acidic surface inflows had dissolved concentrations as high as 20.6 micrograms per liter (?g/L) cadmium, 26,900 ?g/L copper, 76.4 ?g/L lead, and 3,000 ?g/L zinc. These inflows resulted in maximum dissolved concentrations in Daisy Creek of 5.8 ?g/L cadmium, 5,790 ?g/L copper, 3.8 ?g/L lead, and 848 ?g/L zinc. Significant copper loading to Daisy Creek occurred only in the upper half of the stream. Sources included subsurface inflow and right-bank (mined side) surface inflows. Copper loads in left-bank (unmined side) surface inflows were negligible

  1. Bridge 231, view looking east at tunnel 5 in Rock ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Bridge 23-1, view looking east at tunnel 5 in Rock Creek Canyon at Milepost 23.1 - Camas Prairie Railroad, Second Subdivision, From Spalding in Nez Perce County, through Lewis County, to Grangeville in Idaho County, Spalding, Nez Perce County, ID

  2. Black bear habitat use in relation to food availability in the Interior Highlands of Arkansas

    USGS Publications Warehouse

    Clark, Joseph D.; Clapp, Daniel L.; Smith, Kimberly G.; Ederington, Belinda

    1994-01-01

    A black bear (Ursus americanus) food value index (FVI) was developed and calculated for forest cover type classifications on Ozark Mountain (White Rock) and Ouachita Mountain (Dry Creek) study areas in western Arkansas. FVIs are estimates of bear food production capabilities of the major forest cover types and were calculated using percent cover, mean fruit production scorings, and the dietary percentage of each major plant food species as variables. Goodness-of-fit analyses were used to determine use of forest cover types by 23 radio-collared female bears. Habitat selection by forest cover type was not detected on White Rock but was detected on Dry Creek. Use of habitats on Dry Creek appeared to be related to food production with the exception of regeneration areas, which were used less than expected but had a high FVI ranking. In general, pine cover types had low FVI rankings and were used less than expected by bears. Forest management implications are discussed. 

  3. Impacts of deer herbivory on vegetation in Rock Creek Park, 2001-2009

    USGS Publications Warehouse

    Kraft, Cairn C.; Hatfield, Jeff S.

    2011-01-01

    Starting in 2001, vegetation data have been collected annually in 16 study modules consisting of paired (1x4 m) fenced plots and unfenced control plots located in the upland forests of Rock Creek Park, Washington, D.C. Vegetation data collected from 2001-2009 have been analyzed to determine impacts of deer herbivory on vegetation in the park. Differences between fenced plots and unfenced control plots were analyzed for the following variables: cover provided by various groups of species (woody, herbaceous, native, non-native, trees, shrubs, and woody vines), as well as by individual dominant species, vegetation thickness (a measure of percent cover projected horizontally that provides information on the vertical distribution of vegetation), and species richness overall and for groups of species (woody, herbaceous, native, non-native, trees, shrubs, and woody vines). The analyses were performed using repeated measures analysis of variance (ANOVA) and associated tests. Vegetation in plots protected from deer herbivory for 9 years showed significantly greater vegetative cover compared to plots not protected from deer herbivory. This effect was most pronounced for woody and shrub cover. Cover by the dominant species was not significantly greater in the fenced plots compared to the unfenced control plots, indicating that the significant differences observed for groups were not driven by single species within those groups. With respect to vegetation thickness, results indicate that protection from deer herbivory produced significantly higher levels of vegetation in the fenced plots compared to the unfenced control plots for both the Low (0-30 cm) and Middle (30-110 cm) height classes. Protection from deer herbivory has led to higher overall species richness and higher species richness for woody species, natives, and shrubs compared to plots not receiving protection. There is also evidence that plots protected from deer herbivory and those not receiving this protection

  4. Evidence for de-sulfidation to form native electrum in the Fire Creek epithermal gold-silver deposit, north-central Nevada

    NASA Astrophysics Data System (ADS)

    Perez, J.; Day, J. M.; Cook, G. W.

    2012-12-01

    The Fire Creek property is a newly developed and previously unstudied epithermal Au-Ag deposit located in the Northern Shoshone range of north central Nevada. The mineralization occurs within and above en echelon N-NW trending basaltic dykes that are hosted within a co-genetic and bimodal suite of mid-Miocene basalts and andesites formed in association with the Yellowstone hotspot-track. Previous studies of Au-Ag mineralization in the Great Basin have focused primarily on extensively mined and/or low-grade deposits. Therefore, the ability for unrestricted sampling of a major Au-Ag deposit early in its exploration and development represents an opportunity for refined understanding of epithermal ore genesis processes. New petrology reveals at least two distinct pulses of mineralization that in relative order of timing are: 1) S-rich veins which are associated with initial host-rock alteration; 2) quartz- and/or calcite-rich veins which vary from fine-grained to lath-like quartz crystals with large calcite crystals in vein centers. Native electrum occurs only within the second phase of mineralization and typically occurs within quartz and adjacent to cross-cut first-phase S-rich veins. In places the electrum appears to replace or form overgrowths around existing sulfide phases. High levels of gold and silver are found in both the first (0.8 g Au/tonne) and second-phase pulses (37 g Au/tonne). Fire Creek shares many similarities with its northern neighbor, the Mule Canyon Au-Ag deposit, with high Fe sulfide contents for some of the ores, altered wall-rocks and the presence of narrow and discontinuous gold-bearing siliceous veins. Like Fire Creek, Mule Canyon possesses two distinct mineralizing phases, a sulfide rich and a late stage calcite/silica assemblage. The first pulse appears to be identical in both locations with a variation of disseminated to euhedral iron-sulfides and associated intense alteration of host rock. However, Fire Creek differs from Mule Canyon in

  5. Reconnaissance investigation of the Lisburne Group in the Cobblestone Creek area, Chandler Lake quadrangle, Alaska

    USGS Publications Warehouse

    Dumoulin, Julie A.; Whalen, Michael T.; Edited by Wartes, M. A.; Decker, P. L.

    2015-01-01

    A reconnaissance investigation of the Carboniferous Lisburne Group in the Cobblestone Creek area, Chandler Lake Quadrangle, yields insights into its resource potential and regional relations. Locally porous vuggy dolostone with hydrocarbon reservoir potential occurs in the lower Lisburne in the three most southerly of five thrust sheets, and contains traces of dead oil in two of these sheets. The dolostones are coarse crystalline, commonly cross-bedded, and at least in part of Osagean (late Early Mississippian) age; they have pelmatozoan grainstone protoliths that likely formed in sand shoals of the midramp to inner ramp. Similar, coeval porous dolostones occur in the Lisburne from Skimo Creek to Itkillik Lake, ~70 km west and 10 km east of the Cobblestone Creek area, respectively. We also examined the uppermost Lisburne Group at several localities in the Cobblestone Creek area, mainly in the northernmost thrust sheet where the rocks are as young as Morrowan (Early Pennsylvanian). Cobblestone sections contain more supportstone than equivalent strata at Skimo Creek, and overlying Permian successions also differ between the two areas. These lithologic contrasts may reflect different rates of tectonically controlled subsidence, and (or) changes in sediment input, along the late Paleozoic continental margin.

  6. A Lithospheric Origin for the Elk Creek Carbonatite Complex, SE Nebraska?

    NASA Astrophysics Data System (ADS)

    Farmer, G. L.

    2015-12-01

    The Elk Creek carbonatite complex in southeastern Nebraska is part of a widespread Cambrian-Ordovician alkali igneous event that affected much of North America during and after the break-up of the Rodinian supercontinent. We conducted whole rock and mineral Nd, Sr, Pb and Hf isotopic analyses of drill cores obtained from this complex in order to assess the source regions of the parental carbonatite magma. Low precision laser ablation U-Pb age determinations from individual zircon grains separated from carbonate-rich "syenites" range from 480 +/- 20 Ma to 540+/- 14 Ma. Whole rock Nd, Sr and Pb isotopic compositions all plot on Cambrian (~550 Ma) isochrons, implying that the carbonatites crystallized from melts with homogeneous radiogenic isotopic compositions. Initial ɛNd and ɛHf are well defined at ~+2 and ~0, respectively, while initial 87Sr/86Sr values are more variable and range from 0.7028 to 0.7058. The contemporaneously emplaced State Line kimberlites in the Front Range of north central Colorado share the same Nd and Sr isotopic compositions imply that sources of these rocks were similar and geographically widespread. Overall, the isotopic compositions are those expected from "Group 1" alkaline igneous rocks, usually interpreted as derivates from the sublithospheric mantle. Cretaceous-Tertiary alkaline rocks in North America generally belong to "Group 1" and may have originated in this fashion (Genet et al., 2014, Earth Planet. Sci. Lett.). An alternative possibility is that the Cambrian-Ordovician carbonatites and kimberlites were derived from underlying, carbonated portions of the lithospheric mantle that formed after the original stabilization of the latter in the Paleoproterozoic. Nd and Hf depleted mantle model ages for the Elk Creek and State Line alkaline rocks range from ~0.8 Ga to ~1.1 Ga and allow the possibility that both sets of intrusive rocks represent melting of mantle metasomatized either during or after the assembly of Rodinia. Widespread

  7. 40Ar/39Ar Data for White Mica, Biotite, and K-Feldspar Samples from Low-Grade Metamorphic Rocks in the Westminster Terrane and Adjacent Rocks, Maryland

    USGS Publications Warehouse

    Kunk, Michael J.; McAleer, Ryan J.

    2008-01-01

    This report contains reduced 40Ar/39Ar data of white mica and K-feldspar mineral separates and matrix of a whole rock phyllite, all from low-grade metamorphic rocks of the Westminster terrane and adjacent strata in central Maryland. This report presents these data in a preliminary form, but in more detail than can be accommodated in todays professional journals. Also included in this report is information on the location of the samples and a brief description of the samples. The data contained herein are not interpreted in a geological context, and care should be taken by readers unfamiliar with argon isotopic data in the use of these results; many of the individual apparent ages are not geologically meaningful. This report is primarily a detailed source document for subsequent publications that will integrate these data into a geological context.

  8. 75 FR 55507 - Proposed Flood Elevation Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-13

    .... Approximately 150 feet None +572 west of the intersection of Willow Grove Street and Parker Boulevard. Lake Erie... with Coder Run. Approximately 0.70 mile None +1,212 downstream of White Street. Sandy Lick Creek... feet None +678 downstream of White Rock Drive. Poplar Fork At the confluence with None +585...

  9. Petrography and geochemistry of selected lignite beds in the Gibbons Creek mine (Manning Formation, Jackson Group, Paleocene) of east-central Texas

    USGS Publications Warehouse

    Warwick, Peter D.; Crowley, Sharon S.; Ruppert, Leslie F.; Pontolillo, James

    1997-01-01

    This study examined the petrographic and geochemical characteristics of two lignite beds (3500 and 4500 beds, Manning Formation, Jackson Group, Eocene) that are mined at the Gibbons Creek mine in east-central Texas. The purpose of the study was to identify the relations among sample ash yield, coal petrography, and trace-element concentrations in lignite and adjoining rock layers of the Gibbons Creek mine. Particular interest was given to the distribution of 12 environmentally sensitive trace elements (As, Be, Cd, Cr, Co, Hg, Mn, Ni, Pb, Sb, Se, and U) that have been identified as potentially hazardous air pollutants (HAPs) in the United States Clean Air Act Amendments of 1990. Eleven lignite, floor, and rock parting samples were collected from incremental channel samples of the 3500 and 4500 beds that were exposed in a highwall of pit A3 at the Gibbons Creek mine. Short proximate and ultimate and forms of sulfur analyses were performed on all lignite samples, and lignite and rock samples were analyzed for 60 major, minor and trace elements. Representative splits of all lignite samples were ground and cast into pellets, and polished for petrographic analyses in blue-light fluorescence and reflected white light to determine liptinite, inertinite, and huminite maceral group percentages. The following observations summarize our results and conclusions about the geochemistry, petrography, and sedimentology of the 3500 and 4500 beds of the Gibbons Creek lignite deposit: (1) Weighted average dry (db) ash yield for the two beds is 29.7%, average total sulfur content is 2.6%, and average calorific value is 7832 Btu (18.22 MJ/kg). Ash yields are greatest in the lower bench (59.33% db) of the 3500 bed and in the upper bench of the 4500 bed (74.61% db). (2) For lignite samples (on a whole-coal basis), the distributions of two of the HAPs (Pb and Sb) are positively related to ash yield, probably indicating an inorganic affinity for these elements. By using cluster analysis we

  10. Lithofacies, Age, and Sequence Stratigraphy of the Carboniferous Lisburne Group in the Skimo Creek Area, Central Brooks Range

    USGS Publications Warehouse

    Dumoulin, Julie A.; Whalen, Michael T.; Harris, Anita G.

    2008-01-01

    The Lisburne Group, a mainly Carboniferous carbonate succession that is widely distributed across northern Alaska, contains notable amounts of oil and gas at Prudhoe Bay. Detailed studies of the Lisburne in the Skimo Creek area, central Brooks Range, delineate its lithofacies, age, conodont biofacies, depositional environments, and sequence stratigraphy and provide new data on its hydrocarbon source-rock and reservoir potential, as well as its thermal history, in this area. We have studied the Lisburne Group in two thrust sheets of the Endicott Mountains allochthon, herein called the Skimo and Tiglukpuk thrust sheets. The southern, Skimo Creek section, which is >900 m thick, is composed largely of even-bedded to nodular lime mudstone and wackestone intercalated with intervals of thin- to thick-bedded bioclastic packstone and grainstone. Some parts of the section are partially to completely dolomitized and (or) replaced by chert. A distinctive, 30-m-thick zone of black, organic-rich shale, lime mudstone, and phosphorite is exposed 170 m below the top of the Lisburne. The uppermost 40 m of section is also distinctive and made up of dark shale, lime mudstone, spiculite, and glauconitic grainstone. The northern, Tiglukpuk Creek section, which is similar to the Skimo Creek section but only ~760 m thick, includes more packstone and grainstone and less organic-rich shale. Analyses of conodonts and foraminifers indicate that both sections range in age from late Early Mississippian (Osagean) through Early Pennsylvanian (early Morrowan) and document a hiatus of at least 15 m.y. at the contact between the Lisburne and the overlying Siksikpuk Formation. No evidence of subaerial exposure was observed along this contact, which may represent a submarine erosional surface. Lithofacies and biofacies imply that the Lisburne Group in the study area was deposited mainly in midramp to outer-ramp settings. Deepest water strata are mud rich and formed below storm or fair-weather wave

  11. Kinderhookian (Lower Mississippian) calcareous rocks of the Howard Pass quadrangle, western Brooks Range: A section in Geologic studies in Alaska by the U.S. Geological Survey, 1995

    USGS Publications Warehouse

    Dumoulin, Julie A.; Harris, Anita G.

    1997-01-01

    Calcareous rocks of Kinderhookian (early Early Mississippian) age are widely distributed across the Howard Pass quadrangle in the western Brooks Range. Most occur in the lower part of the Lisburne Group (herein called the Rough Mountain Creek unit) and the upper part of the Endicott Group (Kayak Shale) in two sequences (Key Creek and Aniuk River) of the Endicott Mountains allochthon. Kinderhookian strata are also found in the Kelly River allochthon (Utukok Formation?) and in sections of uncertain stratigraphic affinity and structural level spatially associated with mafic volcanic rocks.Predominant Kinderhookian lithologies in the Lisburne Group are skeletal supportstone (rich in pelmatozoans, bryozoans, and brachiopods) and lesser spiculite; skeletal supportstone and calcarenite are the chief calcareous rock types in the Kayak Shale. Conodont and brachiopod faunas indicate that all of the Rough Mountain Creek unit and much of the Kayak Shale in the study area are of late Kinderhookian age. Lithologic and paleontologic data suggest that Kinderhookian strata in the Howard Pass quadrangle were deposited largely in inner- and middle-shelf settings with normal marine salinity and locally high energy. Overall, calcareous beds in the Rough Mountain Creek unit accumulated in a wider range of environments, less subject to siliciclastic input, than did calcareous beds in the Kayak, and Kinderhookian beds of both units in the Key Creek sequence formed in less diverse, somewhat shallower environments than correlative rocks in the Aniuk River sequence. Lithofacies patterns and contact relations imply that decreased siliciclastic influx, perhaps accompanied by relative sea-level rise, initiated deposition of the Rough Mountain Creek unit; relative sea-level rise and concurrent circulatory restriction most likely ended its deposition.Kinderhookian calcareous rocks in the Howard Pass quadrangle have several implications for middle Paleozoic paleogeography of the western Brooks

  12. Hydrogeology and simulation of groundwater flow in fractured-rock aquifers of the Piedmont and Blue Ridge Physiographic Provinces, Bedford County, Virginia

    USGS Publications Warehouse

    McCoy, Kurt J.; White, Bradley A.; Yager, Richard M.; Harlow, George E.

    2015-09-11

    A steady-state groundwater-flow simulation for Bedford County was developed to test the conceptual understanding of flow in the fractured-rock aquifers and to compute a groundwater budget for the four major drainages: James River, Smith Mountain and Leesville Lakes, Goose Creek, and Big Otter River. Model results indicate that groundwater levels mimic topography and that minimal differences in aquifer properties exist between the Proterozoic basement crystalline rocks and Late Proterozoic-Cambrian cover crystalline rocks. The Big Otter River receives 40.8 percent of the total daily groundwater outflow from fractured-rock aquifers in Bedford County; Goose Creek receives 25.8 percent, the James River receives 18.2 percent, and Smith Mountain and Leesville Lakes receive 15.2 percent. The remaining percentage of outflow is attributed to pumping from the aquifer (consumptive use).

  13. Traveltime characteristics of Gore Creek and Black Gore Creek, upper Colorado River basin, Colorado

    USGS Publications Warehouse

    Gurdak, Jason J.; Spahr, Norman E.; Szmajter, Richard J.

    2002-01-01

    In the Rocky Mountains of Colorado, major highways are often constructed in stream valleys. In the event of a vehicular accident involving hazardous materials, the close proximity of highways to the streams increases the risk of contamination entering the streams. Recent population growth has contributed to increased traffic volume along Colorado highways and has resulted in increased movement of hazardous materials, particularly along Interstate 70. Gore Creek and its major tributary, Black Gore Creek, are vulnerable to such contamination from vehicular accidents along Interstate 70. Gore Creek, major tributary of the Eagle River, drains approximately 102 square miles, some of which has recently undergone significant urban development. The headwaters of Gore Creek originate in the Gore Range in the eastern part of the Gore Creek watershed. Gore Creek flows west to the Eagle River. Beginning at the watershed boundary on Vail Pass, southeast of Vail Ski Resort, Interstate 70 parallels Black Gore Creek and then closely follows Gore Creek the entire length of the watershed. Interstate 70 crosses Gore Creek and tributaries 20 times in the watershed. In the event of a vehicular accident involving a contaminant spill into Gore Creek or Black Gore Creek, a stepwise procedure has been developed for water-resource managers to estimate traveltimes of the leading edge and peak concentration of a conservative contaminant. An example calculating estimated traveltimes for a hypothetical contaminant release in Black Gore Creek is provided. Traveltime measurements were made during May and September along Black Gore Creek and Gore Creek from just downstream from the Black Lakes to the confluence with the Eagle River to account for seasonal variability in stream discharge. Fluorometric dye injection of rhodamine WT and downstream dye detection by fluorometry were used to measure traveltime characteristics of Gore Creek and Black Gore Creek. During the May traveltime measurements

  14. "Sweet Little (White) Girls"? Sex and Fantasy across the Color Line and the Contestation of Patriarchal White Supremacy

    ERIC Educational Resources Information Center

    Godfrey, Phoebe

    2004-01-01

    The presence of the Little Rock Nine at Little Rock's Central High in September 1957 as a result of "Brown vs. the Board of Education" evoked anger, fear, and even panic among some parts of the white community, and many white women and girls responded with near hysteria. This article seeks to answer why. What was it about integration…

  15. Flood discharges and hydraulics near the mouths of Wolf Creek, Craig Branch, Manns Creek, Dunloup Creek, and Mill Creek in the New River Gorge National River, West Virginia

    USGS Publications Warehouse

    Wiley, J.B.

    1994-01-01

    The U.S. Geological Survey, in cooperation with the National Park Service, studied the frequency and magnitude of flooding near the mouths of five tributaries to the New River in the New River Gorge National River. The 100-year peak discharge at each tributary was determined from regional frequency equations. The 100-year discharge at Wolf Creek, Craig Branch, Manns Creek, Dunloup Creek, and Mill Creek was 3,400 cubic feet per second, 640 cubic feet per second, 8,200 cubic feet per second, 7,100 cubic feet per second, and 9,400 cubic feet per second, respectively. Flood elevations for each tributary were determined by application of a steady-state, one-dimensional flow model. Manning's roughness coefficients for the stream channels ranged from 0.040 to 0.100. Bridges that would be unable to contain the 100-year flood within the bridge opening included: the State Highway 82 bridge on Wolf Creek, the second Fayette County Highway 25 bridge upstream from the confluence with New River on Dunloup Creek, and an abandoned log bridge on Mill Creek.

  16. Flood on Big Fossil Creek at Haltom City near Fort Worth, Texas, in 1962

    USGS Publications Warehouse

    Montgomery, John H.; Ruggles, Frederick H.; Patterson, James Lee

    1965-01-01

    The approximate area inundated near Fort Worth, Texas, by Big Fossil Creek, during the flood of September 7, 1962, is shown on a topographic map to record the flood hazard in graphic form. Big Fossil Creek, which drains an area of 74.7 square miles, flows generally southeastward along the northeast edge of Fort Worth through Richland Hills and Haltom City, into West Fork Trinity River. The flood of September 7, 1962, the greatest in Richland Hills since at least 1900 was the result of a high rate of discharge from the area upstream from the confluence of Big Fossil Creek and Whites Branch. Greater floods are possible, but no attempt has been made to show their probable overflow limits. Future protective works may reduce the frequency of flooding in the area but will not necessarily eliminate flooding. Changes in culture such as new highways and bridges and changes in land use may influence the inundation pattern of future floods. Mapping of the West Fork Trinity River flood was beyond the scope of the Big Fossil Creek study, and is not shown.

  17. Hydrogeology of the carbonate rocks of the Lebanon Valley, Pennsylvania

    USGS Publications Warehouse

    Meisler, Harold

    1963-01-01

    The Lebanon Valley, which is part of the Great Valley in southeastern Pennsylvania, is underlain by carbonate rocks in the southern part and by shale in the northern part. The carbonate rocks consist of alternating beds of limestone and dolomite of Cambrian and Ordovician age. Although the beds generally dip to the south, progressively younger beds crop out to the north, because the rocks are overturned. The stratigraphic units, from oldest to youngest, are: the Buffalo Springs Formation, Snitz Creek, Schaefferstown, Millbach, and Richland Formations of the Conococheague Group; the Stonehenge, Rickenbach, Epler, and Ontelaunee Formations of the Beekmantown Group; and the Annville, Myerstown, and Hershey Limestones.

  18. White Rock in False Color

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site]

    The THEMIS VIS camera is capable of capturing color images of the Martian surface using five different color filters. In this mode of operation, the spatial resolution and coverage of the image must be reduced to accommodate the additional data volume produced from using multiple filters. To make a color image, three of the five filter images (each in grayscale) are selected. Each is contrast enhanced and then converted to a red, green, or blue intensity image. These three images are then combined to produce a full color, single image. Because the THEMIS color filters don't span the full range of colors seen by the human eye, a color THEMIS image does not represent true color. Also, because each single-filter image is contrast enhanced before inclusion in the three-color image, the apparent color variation of the scene is exaggerated. Nevertheless, the color variation that does appear is representative of some change in color, however subtle, in the actual scene. Note that the long edges of THEMIS color images typically contain color artifacts that do not represent surface variation.

    This false color image shows the wind eroded deposit in Pollack Crater called 'White Rock'. This image was collected during the Southern Fall Season.

    Image information: VIS instrument. Latitude -8, Longitude 25.2 East (334.8 West). 0 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of

  19. Restoring Fossil Creek

    ERIC Educational Resources Information Center

    Flaccus, Kathleen; Vlieg, Julie; Marks, Jane C.; LeRoy, Carri J.

    2004-01-01

    Fossil Creek had been dammed for the past 90 years, and plans were underway to restore the stream. The creek runs through Central Arizona and flows from the high plateaus to the desert, cutting through the same formations that form the Grand Canyon. This article discusses the Fossil Creek monitoring project. In this project, students and teachers…

  20. Paleomagnetic Constraints on Terrane Translation: the Churn Creek Succession in South Central British Columbia

    NASA Astrophysics Data System (ADS)

    Mahoney, J. B.; Enkin, R. J.; Haskin, M.

    2001-12-01

    A fundamental controversy in Cordilleran tectonics concerns the timing and magnitude of terrane displacement in the Cretaceous to Tertiary evolution of the North American continental margin. Paleomagnetic data from stratified and plutonic rocks in the Canadian Cordillera suggest large-scale northward translation of these rocks relative to the North American craton between ca. 90-55 Ma. Previous paleomagnetic interpretation predicted the existence of a major fault separating the Intermontane Superterrane, which was displaced ~1000 km northward during this period, from the Insular Superterrane, which was displaced ~3000 km northward during the same time interval. Geologic data, including structural, stratigraphic and sedimentologic studies, suggest less than a few hundred km motion between the superterranes, and less than 1000 km with respect to the craton. The conflicting data sets have generated intense debate between proponents of two fundamentally opposed tectonic models, one proposing major latitudinal displacement during Late Cretaceous to Eocene time, and one arguing for terrane accretion at or slightly south of the present latitude in mid-Cretaceous time. Stratigraphic and paleomagnetic data from Churn Creek, in south-central British Columbia document widely disparate terrane displacement values within a single stratigraphic section. Upper Cretaceous strata exposed in Churn Creek comprise two rock packages: a lower package of Albian volcanic and minor volcaniclastic rocks, and a disconformably overlying upper package of Albian to Santonian polymict conglomerate and associated clastic strata. Paleomagnetic data suggest the lower package formed 700 +/- 600 km to the south of its present position at ~100-105 Ma, tying it to other Intermontane Superterrane results. The disconformably overlying upper package was deposited 3000 +/- 450 km to the south at between ~92-83 Ma, confirming the important Mount Tatlow result for the Insular Superterrane. Thus we

  1. Water-quality appraisal. Mammoth Creek and Hot Creek, Mono County, California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Setmire, J.G.

    1984-06-01

    A late summer reconnaissance in 1981 and a spring high-flow sampling in 1982 of Mammoth Creek and Hot Creek, located in the Mammoth crest area of the Sierra Nevada, indicated that three water-quality processes were occurring: (1) mineralization; (2) eutrophication; and (3) sedimentation. Limited areas of fecal contamination were also observed. Mineralization due primarily to geothermal springs increased dissolved-solids concentration downstream, which changed the chemical composition of the water. The percentage of calcium decreased gradually, the percentage of magnesium and sodium increased, and the percentage of fluoride, sulfate, and chloride fluctuated, but increased overall. These changes produced water quality inmore » Mammoth Creek similar to that of the springs forming Hot Creek. Twin Lakes and the reach of Hot Creek below the fish hatchery showed evidence of eutrophication. Twin Lakes had floating mats of algae and a high dissolved-oxygen saturation of 147% at a pH of 9.2. Hot Creek had abundant growth of aquatic vascular plants and algae, dissolved-oxygen saturations ranging from 65% to 200%, algal growth potential of 30 milligrams per liter, nitrate concentration of 0.44 milligram per liter, and phosphate concentration of 0.157 milligram per liter. Sediment deposition was determined from detailed observations of bed-material composition, which showed that fine material was deposited at Sherwin Creek Road and downstream. Fecal contamination was indicated by fecal-coliform bacteria counts of 250 colonies per 100 milliliters and fecal-streptococcal bacteria counts greater than 1000 colonies per 100 milliliters. Although bacterial sampling was sporadic and incomplete, it did indicate adverse effects on water quality for the following beneficial uses that have been identified for Mammoth Creek and Hot Creek: (1) municipal supply; (2) cold-water habitat; and (3) contact and noncontact water recreation. 6 refs., 15 figs., 15 tabs.« less

  2. Paleozoic-Mesozoic boundary in the Berry Creek Quadrangle, northwestern Sierra Nevada, California

    USGS Publications Warehouse

    Hietanen, Anna Martta

    1977-01-01

    Structural and petrologic studies in the Berry Creek quadrangle at the north end of the western metamorphic belt of the Sierra Nevada have yielded new information that helps in distinguishing between the chemically similar Paleozoic and Mesozoic rocks. The distinguishing features are structural and textural and result from different degrees of deformation. Most Paleozoic rocks are strongly deformed and thoroughly recrystallized. Phenocrysts in meta volcanic rocks are granulated and drawn out into lenses that have sutured outlines. In contrast, the phenocrysts in the Mesozoic metavolcanic rocks show well-preserved straight crystal faces, are only slightly or not at all granulated, and contain fewer mineral inclusions than do those in the Paleozoic rocks. The groundmass in the Paleozoic rocks is recrystallized to a fairly coarse grained albite-epidote-amphibole-chlorite rock, whereas in the Mesozoic rocks the groundmass is a very fine grained feltlike mesh with only spotty occurrence of well-recrystallized finegrained albite-epidote-chlorite-actinolite rock. Primary minerals, such as augite, are locally preserved in the Mesozoic rocks but are altered to a mixture of amphibole, chlorite, and epidote in the Paleozoic rocks. In the contact aureoles of the plutons, and within the Big Bend fault zone, which crosses the area parallel to the structural trends, all rocks are thoroughly recrystallized and strongly deformed. Identification of the Paleozoic and Mesozoic rocks in these parts of the area was based on the continuity of the rock units in the field and on gradual changes in microscopic textures toward the plutons.

  3. Paleomagnetic Results From the Mid-Tertiary Cripple Creek Diatreme Complex

    NASA Astrophysics Data System (ADS)

    Rampe, J. S.; Geissman, J. W.; Melker, M.

    2001-12-01

    The Cripple Creek diatreme complex, located about 30 km southwest of Pikes Peak, Colorado, is host to gold and high grade telluride deposits associated with mid-Tertiary alkaline magmatism. Formation of the diatreme took place between about 32.5 and 28.7 Ma, based on previously reported ArAr age determinations. The complex consists of breccia (the primary rock type), that was subsequently intruded by aphanitic phonolite, porphyritic phonolite, phonotephrite, and finally lamprophyre. Rocks presently at the surface were emplaced within a few kilometers of the paleosurface, followed by hydrothermal activity resulting in pervasive K metasomatism and gold mineralization. Mineralized deposits within the diatreme are currently being mined in an open pit fashion allowing for fresh three dimensional exposures of all representative rock types in the district. The Front Fange of Colorado, since cessation of northeast-directed Laramide compression, is characterized by east-west Rio Grande rift extension. Determining Laramide and younger deformation in the Front Range of Colorado is diffucult due to the dominance of Laramide structures and exposed Precambrian rocks with complex structural histories. Structures that affect the Cripple Creek diatreme complex and host Precambrian crystalline rocks clearly were active after intrusive activity and therefore reflect tectonism in the Front Range since early diatreme formation. Over 100 sites have been collected from all representative rock types in the district, with eight to ten oriented samples per site. Results indicate that the materials are capable of carrying geologically stable magnetizations and generally reveal excellent magnetization behavior using both AF and thermal methods. Many sites are associated with contact and breccia tests. Site mean directions are of both normal (D = 5.0° , I = 67.5° , α 95 = 6.4, κ = 89.2), N = 7 and reverse polarity (D = 162.2° , I = -67.3° , α 95 = 4.2, κ = 61.1) N =13; with site mean

  4. Water-quality appraisal, Mammoth Creek and Hot Creek, Mono County, California

    USGS Publications Warehouse

    Setmire, J.G.

    1984-01-01

    A late summer reconnaissance in 1981 and a spring high-flow sampling in 1982 of Mammoth Creek and Hot Creek, located in the Mammoth crest area of the Sierra Nevada, indicated that mineralization, eutrophication, sedimentation, and limited areas of fecal contamination were occurring. Mineralization, indicated by a downstream increase in dissolved-solids concentration, was due primarily to geothermal springs that gradually decreased in the percentage of calcium, increased in the percentage of magnesium and sodium, and caused fluctuating, but overall increasing percentage of fluoride, sulfate, and chloride. Resulting water quality in Mammoth Creek was similar to that of the springs forming Hot Creek. Eutrophication was observed in Twin Lakes and the reach of Hot Creek below the fish hatchery. Twin Lakes had floating mats of algae and a high dissolved-oxygen saturation of 147 percent at a pH of 9.2. Hot Creek had excessive aquatic vascular plant and algae growth, dissolved-oxygen saturations ranging from 65 to 200 percent, algal growth potential of 30 milligrams per liter, and nitrates and phosphates of 0.44 and 0.157 milligrams per liter. Sedimentation was noted in observations of bed-material composition showing the presence of fine material beginning at Sherwin Creek Road. Fecal contamination was indicated by fecal coliform counts of 250 colonies per 100 milliliters and fecal streptococcal counts greater than 1,000 colonies per 100 milliliters. (USGS)

  5. Geologic strip map along the Hines Creek Fault showing evidence for Cenozoic displacement in the western Mount Hayes and northeastern Healy quadrangles, eastern Alaska Range, Alaska

    USGS Publications Warehouse

    Nokleberg, Warren J.; Aleinikoff, John N.; Bundtzen, Thomas K.; Hanshaw, Maiana N.

    2013-01-01

    Geologic mapping of the Hines Creek Fault and the adjacent Trident Glacier and McGinnis Glacier Faults to the north in the eastern Alaska Range, Alaska, reveals that these faults were active during the Cenozoic. Previously, the Hines Creek Fault, which is considered to be part of the strike-slip Denali Fault system (Ridgway and others, 2002; Nokleberg and Richter, 2007), was interpreted to have been welded shut during the intrusion of the Upper Cretaceous Buchanan Creek pluton (Wahrhaftig and others, 1975; Gilbert, 1977; Sherwood and Craddock, 1979; Csejtey and others, 1992). Our geologic mapping along the west- to west-northwest-striking Hines Creek Fault in the northeastern Healy quadrangle and central to northwestern Mount Hayes quadrangle reveals that (1) the Buchanan Creek pluton is truncated by the Hines Creek Fault and (2) a tectonic collage of fault-bounded slices of various granitic plutons, metagabbro, metabasalt, and sedimentary rock of the Pingston terrane occurs south of the Hines Creek Fault.

  6. Lower Walnut Creek Restoration

    EPA Pesticide Factsheets

    Lower Walnut Creek Restoration Project will restore and enhance coastal wetlands along southern shoreline of Suisun Bay from Suisun Bay upstream along Walnut Creek, improving habitat quality, diversity, and connectivity along three miles of creek channel.

  7. Diverging Histories of the Liberty Creek and Iceberg Lake Blueschist Bodies, south central Alaska

    NASA Astrophysics Data System (ADS)

    Day, E. M.; Pavlis, T. L.; Amato, J. M.

    2011-12-01

    New studies of the Liberty Creek and Iceberg Lake blueschist bodies of south central Alaska indicate that despite structural similarities, these blueschist bodies are derived from a different protolith and were metamorphosed to blueschist facies at distinctly different times. Both blueschists are located just south of the Border Ranges Fault (BRF) within outcrop belts of the McHugh Complex, a low-grade mélange assemblage that is now known from detrital zircon studies to consist of two distinct assemblages: a Jurassic to Earliest Cretaceous assemblage and a Late Cretaceous assemblage. The BRF is a megathrust system that represents the Late Triassic-Early Jurassic initiation of southern Alaskan subduction. Large scale (1:24,000) mapping revealed similar fabric overprint histories, epitomized by a previously undescribed youngest vertical N-S trending crenulation cleavage in both blueschist bodies which implies a structural correlation despite their separation of ~100 kilometers along strike. Despite structural similarities detrital zircon studies show that the Liberty Creek and Iceberg Lake blueschists do not have a similar maximum age of deposition. Thirteen samples from the Iceberg Lake blueschist were processed, none of which produced detrital zircons. Samples from the McHugh Complex greenschists that surround the Iceberg Lake blueschist produced numerous zircons indicating a Late Jurassic (~160 Ma) maximum age of deposition. Three out of sixteen samples from the Liberty creek blueschist produced detrital zircons indicating maximum depositional ages ranging from Late Jurassic (~160.1 Ma, n=64 grains; ~152.25 Ma, n=68 grains) to Early Cretaceous (~137.1 Ma, n=95 grains). The Late Jurassic dates are consistent with maximum depositional ages determined by Amato and Pavlis (2010) for McHugh Complex rocks along Turnagain Arm near Anchorage, AK. Sisson and Onstott (1986) reported a metamorphic cooling age of 185 Ma for the Iceberg Lake blueschist, thus, although no

  8. Lenticular stretch structures in eastern Nevada - possible trapping mechanism in supposed graben

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walker, C.T.; Dennis, J.G.; Lumsden, W.W.

    Eastern Nevada is widely recognized as a region of tectonic extension. The dominant structures are generally agreed to be low-dipping, younger over older faults and steeper listric faults that are responsible for the basins (grabens) and ranges (horsts). In the Schell Creek-Duck Creek Range, east of Ely, and in the White Pine Range, southwest of Ely, small lenticular structures bounded by tectonic discontinuities can be clearly seen in the field. These lenticular units, or stretch structures, range in length from a few meters to more than 200 m. All lenticular stretch structures that can be clearly seen in the fieldmore » are stratigraphically restricted; the stretched formations are the Eureka Quartzite, the Pilot Shale, the Joana Limestone, and the Chainman Shale. Still larger stretch structures, which may include several formations, are inferred, and the authors suggest that extension has created lenticular structures at all scales. The Duck Creek and Schell Creek Ranges east of Ely consist mostly of Devonian and older rocks. They are separated by a topographically lower area containing mostly Mississippian and Pennsylvanian rocks. This structure, which separates the ranges, has been referred to as a graben, but field evidence suggests that it is a large-scale lenticular stretch structure. Unlike a true graben, the structure does not extend downward. For example, in several places within the supposed graben, Cambrian and Ordovician rocks project through a cover of Carboniferous Chainman Shale and Ely Limestone, suggesting the Chainman-Ely is a thin sheet underlain by Cambrian-Ordovician rocks. Accordingly, they suggest that extension in the Duck Creek-Schell Creek Ranges stretched the formations into lenticular bodies. Between the Duck Creek and Schell Creek Ranges, the Cambrian-Ordovician is attenuated, and the resulting tectonic depression is occupied by a lenticular mass of Carboniferous rocks.« less

  9. Water quality in the Anacostia River, Maryland and Rock Creek, Washington, D.C.: Continuous and discrete monitoring with simulations to estimate concentrations and yields of nutrients, suspended sediment, and bacteria

    USGS Publications Warehouse

    Miller, Cherie V.; Chanat, Jeffrey G.; Bell, Joseph M.

    2013-01-01

    Concentrations and loading estimates for nutrients, suspended sediment, and E. coli bacteria were summarized for three water-quality monitoring stations on the Anacostia River in Maryland and one station on Rock Creek in Washington, D.C. Both streams are tributaries to the Potomac River in the Washington, D.C. metropolitan area and contribute to the Chesapeake Bay estuary. Two stations on the Anacostia River, Northeast Branch at Riverdale, Maryland and Northwest Branch near Hyattsville, Maryland, have been monitored for water quality during the study period from 2003 to 2011 and are located near the shift from nontidal to tidal conditions near Bladensburg, Maryland. A station on Paint Branch is nested above the station on the Northeast Branch Anacostia River, and has slightly less developed land cover than the Northeast and Northwest Branch stations. The Rock Creek station is located in Rock Creek Park, but the land cover in the watershed surrounding the park is urbanized. Stepwise log-linear regression models were developed to estimate the concentrations of suspended sediment, total nitrogen, total phosphorus, and E. coli bacteria from continuous field monitors. Turbidity was the strongest predictor variable for all water-quality parameters. For bacteria, water temperature improved the models enough to be included as a second predictor variable due to the strong dependence of stream metabolism on temperature. Coefficients of determination (R2) for the models were highest for log concentrations of suspended sediment (0.9) and total phosphorus (0.8 to 0.9), followed by E. coli bacteria (0.75 to 0.8), and total nitrogen (0.6). Water-quality data provided baselines for conditions prior to accelerated implementation of multiple stormwater controls in the watersheds. Counties are currently in the process of enhancing stormwater controls in both watersheds. Annual yields were estimated for suspended sediment, total nitrogen, total phosphorus, and E. coli bacteria using

  10. Maintenance action readiness assessment plan for White Oak Creek and Melton Branch Weir Stilling Pool cleanout at Oak Ridge National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-08-01

    This Readiness Assessment Plan has been prepared to document operational readiness for the following maintenance action: (1) removal of sediment from the White Oak Creek and Melton Branch Weir Stilling Pools and (2) disposal of the radiologically contaminated sediment in another location upstream of the weirs in an area previously contaminated by stream overflow from Melton Branch in Waste Area Grouping 2 (WAG) at Oak Ridge National Laboratory. This project is being performed as a maintenance action rather than an action under the Comprehensive Environmental Response, Compensation, and Liability Act because the risk to human health and environment is wellmore » below the US Environmental Protection Agency`s level of concern. The decision to proceed as a maintenance action was documented by an interim action proposed plan, which is included in the administrative record. The administrative record is available for review at the US Department of Energy Information Resource Center, 105 Broadway Avenue, Oak Ridge, Tennessee 37830.« less

  11. Relation between ground water and surface water in Brandywine Creek basin, Pennsylvania

    USGS Publications Warehouse

    Olmsted, F.H.; Hely, A.G.

    1962-01-01

    The relation between ground water and surface water was studied in Brandywine Creek basin, an area of 287 square miles in the Piedmont physiographic province in southeastern Pennsylvania. Most of the basin is underlain by crystalline rocks that yield only small to moderate supplies of water to wells, but the creek has an unusually well-sustained base flow. Streamflow records for the Chadds Ford, Pa., gaging station were analyzed; base flow recession curves and hydrographs of base flow were defined for the calendar years 1928-31 and 1952-53. Water budgets calculated for these two periods indicate that about two-thirds of the runoff of Brandywine Creek is base flow--a significantly higher proportion of base flow than in streams draining most other types of consolidated rocks in the region and almost as high as in streams in sandy parts of the Coastal Plain province in New Jersey and Delaware. Ground-water levels in 16 observation wells were compared with the base flow of the creek for 1952-53. The wells are assumed to provide a reasonably good sample of average fluctuations of the water table and its depth below the land surface. Three of the wells having the most suitable records were selected as index wells to use in a more detailed analysis. A direct, linear relation between the monthly average ground-water stage in the index wells and the base flow of the creek in winter months was found. The average ground-water discharge in the basin for 1952-53 was 489 cfs (316 mgd), of which slightly less than one-fourth was estimated to be loss by evapotranspiration. However, the estimated evapotranspiration from ground water, and consequently the estimated total ground-water discharge, may be somewhat high. The average gravity yield (short-term coefficient of storage) of the zone of water-table fluctuation was calculated by two methods. The first method, based on the ratio of change in ground-water storage as calculated from a witner base-flow recession curve is seasonal

  12. Nekton use of intertidal creek edges in low salinity salt marshes of the Yangtze River estuary along a stream-order gradient

    NASA Astrophysics Data System (ADS)

    Jin, Binsong; Qin, Haiming; Xu, Wang; Wu, Jihua; Zhong, Junsheng; Lei, Guangchun; Chen, Jiakuan; Fu, Cuizhang

    2010-07-01

    Non-vegetated creek edges were investigated to explore spatial nekton use patterns in a low salinity intertidal salt marsh creek network of the Yangtze River estuary along a stream-order gradient with four creek orders. Non-vegetated creek edges were arbitrarily defined as the approximately 3 m extending from the creek bank (the marsh-creek interface) into open water. Nekton was sampled using seine nets during daytime high slack water during spring tides for two or three days each in May through July 2008. Twenty-three nekton species (16 fishes and 7 crustaceans) were caught during the study. Fishes were dominated by gobies ( Mugilogobius abei, Periophthalmus magnuspinnatus, Periophthalmus modestus, Synechogobius ommaturus), mullets ( Chelon haematocheilus, Liza affinis) and Chinese sea bass ( Lateolabrax maculatus). Crustaceans were dominated by mud crab ( Helice tientsinensis) and white prawn ( Exopalaemon carinicauda). Rank abundance curves revealed higher evenness of nekton assemblages in lower-order creeks compared to higher-order creeks. Fish abundance tended to increase with increasing creek order. Crustacean abundance was higher in the first-third order creeks than in the fourth-order creek. Dominant nekton species displayed various trends in abundance and length-frequency distributions along the stream-order gradient. The spatial separation of nekton assemblages between the first-third order creeks and the fourth-order creek could be attributed to geomorphological factors (distance to mouth and cross-sectional area). These findings indicate that both lower- and higher-order creek edges play important yet different roles for nekton species and life history stages in salt marshes.

  13. Assessment of Young Dong tributary and Imgok Creek impacted by Young Dong coal mine, South Korea.

    PubMed

    Lee, Byung-Tae; Ranville, James F; Wildeman, Thomas R; Jang, Min; Shim, Yon Sik; Ji, Won Hyun; Park, Hyun Sung; Lee, Hyun Ju

    2012-01-01

    An initial reclamation of the Young Dong coal mine site, located in northeastern South Korea, was completed in 1995. Despite the filling of the adit with limestone, acid rock drainage (ARD) enters Young Dong tributary and is then discharged to Imgok Creek. This ARD carries an average of 500 mg CaCO(3)/l of mineral acidity, primarily as Fe(II) and Al. Before spring runoff, the flow of Imgok Creek is 3.3-4 times greater than that of the tributary and has an alkalinity of 100 mg CaCO(3)/l, which is sufficient to eliminate the mineral acidity and raise the pH to about 6.5. From April through September 2008, there were at least two periods of high surface flow that affects the flow of ARD from the adit. Flow of ARD reaches 2.8 m(3)/min during spring runoff. This raised the concentrations of Fe and Al in the confluence with Imgok Creek. However, by 2 km downstream the pH of the Imgok Creek is 6.5 and only dissolved Fe is above the Korean drinking water criteria (0.30 mg/l). This suggests only a minor impact of Young Dong Creek water on Imgok Creek. Acid digestion of the sediments in Imgok Creek and Young Dong Tributary reveals considerable abundances of heavy metals, which could have a long-term impact on water quality. However, several water-based leaching tests, which better simulate the bioavailable metals pool, released only Al, Fe, Mn, and Zn at concentrations exceeding the criteria for drinking water or aquatic life.

  14. Ramp Creek and Harrodsburg Limestones: A shoaling-upward sequence with storm-produced features in southern Indiana, U.S.A.. Carbonate petrology seminar, Indiana University

    NASA Astrophysics Data System (ADS)

    1987-05-01

    Most previously described examples of storm-produced stratification have been reported from siliciclastic rocks. However, such features should also be common in carbonate rocks. The Mississippian (Valmeyeran) Ramp Creek and Harrodsburg Limestones, deposited on the east margin of the Illinois Basin on top of the Borden Delta, contain storm-produced features. The dolomitic, geode-bearing Ramp Creek Limestone contains muddying-upward sequences, commonly with scoured bases overlain by grainstones, packstones, wackestones, and burrowed mudstones. These sequences are similar to hummocky sequences formed by storm waves below fair-weather wave base. The middle portion of the section including the upper Ramp Creek and lower Harrodsburg Limestones contains dolomitized mud lenses of uncertain origin. They may have formed by the baffling effect of bryozoans and/or unpreserved algae. The Harrodsburg is gradational with the Ramp Creek and consists predominantly of grainstones and packstones deposited in shallower water. Low-angle cross-stratification and truncation surfaces suggest a foreshore depositional environment for the Harrodsburg. Neither formation contains any indication of supratidal deposition as has been previously suggested. Open marine conditions during deposition of both formations are indicated by the fauna which includes crinoids, bryozoans, brachiopods, corals, ostracods, echinoids, trilobites, molluscs, fish (sharks), and trace fossils.

  15. Distribution of gold, tellurium, silver, and mercury in part of the Cripple Creek district, Colorado

    USGS Publications Warehouse

    Gott, Garland Bayard; McCarthy, J.H.; Van Sickle, G.H.; McHugh, J.B.

    1967-01-01

    Geochemical exploration studies were undertaken in the Cripple Creek district to test the possibility that large low-grade gold deposits might be found. Surface rock samples taken throughout the district indicate that the volcanic rocks between the productive veins contain an average of about 0.6 ppm (part per million) gold. In an area above 3,800 feet long and 500 feet wide near the Cresson mine in the south-central part of the district, scattered surface samples show that the rocks contain an average of 2.5 ppm gold, equivalent to $2.50 per ton. Inasmuch as veins that contain more than 2.5 ppm may also exist in the area, systematic sampling by trenching and drilling is warranted.

  16. The geochemical record in rock glaciers

    USGS Publications Warehouse

    Steig, E.J.; Fitzpatrick, J.J.; Potter, N.; Clark, D.H.

    1998-01-01

    A 9.5 m ice core was extracted from beneath the surficial debris cover of a rock glacier at Galena Creek, northwestern Wyoming. The core contains clean, bubble-rich ice with silty debris layers spaced at roughly 20 cm intervals. The debris layers are similar in appearance to those in typical alpine glaciers, reflecting concentration of debris by melting at the surface during the summer ablation season. Profiles of stable isotope concentrations and electrical conductivity measurements provide independent evidence for melting in association with debris layers. These observations are consistent with a glacial origin for the ice, substantiating the glacigenic model for rock glacier formation. The deuterium excess profile in the ice indicates that the total depth of meltwater infiltration is less than the thickness of one annual layer, suggesting that isotope values and other geochemical signatures are preserved at annual resolution. This finding demonstrates the potential for obtaining useful paleoclimate information from rock glacier ice.

  17. Preliminary isostatic gravity map of the Grouse Creek and east part of the Jackpot 30 by 60 quadrangles, Box Elder County, Utah, and Cassia County, Idaho

    USGS Publications Warehouse

    Langenheim, Victoria; Willis, H.; Athens, N.D.; Chuchel, Bruce A.; Roza, J.; Hiscock, H.I.; Hardwick, C.L.; Kraushaar, S.M.; Knepprath, N.E.; Rosario, Jose J.

    2013-01-01

    A new isostatic residual gravity map of the northwest corner of Utah is based on compilation of preexisting data and new data collected by the Utah and United States Geological Surveys. Pronounced gravity lows occur over Junction, Grouse Creek, and upper Raft River Valleys, indicating significant thickness of low-density Tertiary sedimentary rocks and deposits. Gravity highs coincide with exposures of dense pre-Cenozoic rocks in the Raft River Mountains. Higher values in the eastern part of the map may be produced in part by deeper crustal density variations or crustal thinning. Steep linear gravity gradients coincide with mapped Neogene normal faults near Goose Creek and may define basin-bounding faults concealed beneath Junction and Upper Raft River Valleys.

  18. Hydrogeology of, and simulation of ground-water flow in a mantled carbonate-rock system, Cumberland Valley, Pennsylvania

    USGS Publications Warehouse

    Chichester, D.C.

    1996-01-01

    The U.S. Geological Survey conducted a study in a highly productive and complex regolith-mantled carbonate valley in the northeastern part of the Cumberland Valley, Pa., as part of its Appalachian Valleys and Piedmont Regional Aquifer-system Analysis program. The study was designed to quantify the hydrogeologic characteristics and understand the ground-water flow system of a highly productive and complex thickly mantled carbonate valley. The Cumberland Valley is characterized by complexly folded and faulted carbonate bedrock in the valley bottom, by shale and graywacke to the north, and by red-sedimentary and diabase rocks in the east-southeast. Near the southern valley hillslope, the carbonate rock is overlain by wedge-shaped deposit of regolith, up to 450 feet thick, that is composed of residual material, alluvium, and colluvium. Locally, saturated regolith is greater than 200 feet thick. Seepage-run data indicate that stream reaches, near valley walls, are losing water from the stream, through the regolith, to the ground-water system. Results of hydrograph-separation analyses indicate that base flow in stream basins dominated by regolith-mantled carbonate rock, carbonate rock, and carbonate rock and shale are 81.6, 93.0, and 67.7 percent of total streamflow, respectively. The relative high percentage for the regolith-mantled carbonate-rock basin indicates that the regolith stores precipitation and slowly, steadily releases this water to the carbonate-rock aquifer and to streams as base flow. Anomalies in water-table gradients and configuration are a result of topography and differences in the character and distribution of overburden material, permeability, rock type, and geologic structure. Most ground-water flow is local, and ground water discharges to nearby springs and streams. Regional flow is northeastward to the Susquehanna River. Average-annual water budgets were calculated for the period of record from two continuous streamflow-gaging stations. Average

  19. Ground-water recharge to the regolith-fractured crystalline rock aquifer system, Orange County, North Carolina

    USGS Publications Warehouse

    Daniel, C. C.

    1996-01-01

    stations that measure streamflow within or from Orange County were analyzed to produce daily estimates of ground-water recharge in 12 drainage basins and subbasins in the county. The recharge estimates were further analyzed to determine seasonal and long-term recharge rates, as well as recharge duration statistics. Mean annual recharge in the 12 basins and subbasins ranges from 4.15 to 6.40 inches per year, with a mean value of 4.90 inches per year for all basins. In general, recharge rates are highest for basins along a north- south zone extending down the center of the county, and lowest in the western and southeastern parts of the county. Median recharge rates in the 12 basins range from 1.08 inches per year (80.7 gallons per day per acre) to 4.97 inches per year (370 gallons per day per acre), with a median value of 3.06 inches per year (228 gallons per day per acre) for all basins. Recharge estimates for the Morgan Creek Basin upstream from White Cross and upstream from Chapel Hill are higher than any other basin or subbasin in Orange County. Ground water also constitutes a higher percentage of total streamflow in Morgan Creek (44.4 percent upstream from White Cross; 47.9 percent upstream from Chapel Hill) than in any other stream in the county. Greater topographic relief and depth of channel incision may explain the high recharge estimates (base-flow rates) in the Morgan Creek Basin. The presence of large areas of regolith derived from the metaigneous, felsic hydrogeologic unit may magnify the effects of topographic relief and channel incision. Base flow in the New Hope River subbasin, as a percentage of total streamflow, at 32.2 percent, is the lowest of the 12 basins and subbasins. Much of the New Hope River subbasin is underlain by the Triassic sedimentary rock hydrogeologic unit that occurs within a rift basin of Triassic age. These data suggest that in areas underlain by Triassic sedimentary rock, there is less recharge to the ground-water syst

  20. Simulation of streamflow and estimation of recharge to the Edwards aquifer in the Hondo Creek, Verde Creek, and San Geronimo Creek watersheds, south-central Texas, 1951-2003

    USGS Publications Warehouse

    Ockerman, Darwin J.

    2005-01-01

    The U.S. Geological Survey, in cooperation with the San Antonio Water System, constructed three watershed models using the Hydrological Simulation Program—FORTRAN (HSPF) to simulate streamflow and estimate recharge to the Edwards aquifer in the Hondo Creek, Verde Creek, and San Geronimo Creek watersheds in south-central Texas. The three models were calibrated and tested with available data collected during 1992–2003. Simulations of streamflow and recharge were done for 1951–2003. The approach to construct the models was to first calibrate the Hondo Creek model (with an hourly time step) using 1992–99 data and test the model using 2000–2003 data. The Hondo Creek model parameters then were applied to the Verde Creek and San Geronimo Creek watersheds to construct the Verde Creek and San Geronimo Creek models. The simulated streamflows for Hondo Creek are considered acceptable. Annual, monthly, and daily simulated streamflows adequately match measured values, but simulated hourly streamflows do not. The accuracy of streamflow simulations for Verde Creek is uncertain. For San Geronimo Creek, the match of measured and simulated annual and monthly streamflows is acceptable (or nearly so); but for daily and hourly streamflows, the calibration is relatively poor. Simulated average annual total streamflow for 1951–2003 to Hondo Creek, Verde Creek, and San Geronimo Creek is 45,400; 32,400; and 11,100 acre-feet, respectively. Simulated average annual streamflow at the respective watershed outlets is 13,000; 16,200; and 6,920 acre-feet. The difference between total streamflow and streamflow at the watershed outlet is streamflow lost to channel infiltration. Estimated average annual Edwards aquifer recharge for Hondo Creek, Verde Creek, and San Geronimo Creek watersheds for 1951–2003 is 37,900 acrefeet (5.04 inches), 26,000 acre-feet (3.36 inches), and 5,940 acre-feet (1.97 inches), respectively. Most of the recharge (about 77 percent for the three watersheds

  1. Geology and ground-water resources of Rock County, Wisconsin

    USGS Publications Warehouse

    LeRoux, E.F.

    1964-01-01

    Rock County is in south-central Wisconsin adjacent to the Illinois State line. The county has an area of about 723 square miles and had a population of about 113,000 in 1957 ; it is one of the leading agricultural and industrial counties in the State. The total annual precipitation averages about 32 inches, and the mean annual temperature is about 48 ? F. Land-surface altitudes are generally between 800 and 00 feet, but range from 731 feet, where the Rock River flows into Illinois, to above 1,080 feet, at several places in the northwestern part of the county. The northern part of Rock County consists of the hills and kettles of a terminal moraine which slopes southward to a flat, undissected outwash plain. The southeastern part of the county is an area of gentle slopes, whereas the southwestern part consists of steep-sided valleys and ridges. Rock County is within the drainage basin of the Rock River, which flows southward through the center of the county. The western and southwestern parts of ,the county are drained by the Sugar River und Coon Creek, both of which flow into the Pecatonica River in Illinois and thence into the Rock River. The southeastern part of the county is drained by Turtle Creek, which also flows into Illinois before joining the Rock River. Nearly all the lakes and ponds are in the northern one-third of the county, the area of most recent glaciation. The aquifers in Rock County are of sedimentary origin and include deeply buried sandstones, shales, and dolomites of the Upper Cambrian series. This series overlies crystalline rocks of Precambrian age and supplies water to all the cities and villages in the county. The St. Peter sandstone of Ordovician age underlies all Rock County except where the formation has been removed by erosion in the Rock and Sugar River valleys, and perhaps in Coon Creek valley. The St. Peter sandstone is the principal source of water for domestic, stock, and small industrial wells in the western half of the county

  2. Evidence for the importance of ductile shear in regional fabric development in Grenville-age gneisses of the Beaver Creek region, Northwest Lowlands, New York State

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tewksbury, B.; Culbertson, H.; Marcoline, J.

    1993-03-01

    In the Beaver Creek region of the Northwest Lowlands, Brown (1989) has described Grenville-age metasedimentary and metaigneous rocks as showing a prominent regional foliation, early southeastward emplacement of a nappe complex (the North Gouverneur Nappe), 2 subsequent generations of folds, and late regional faulting along the Beaver Creek, Pleasant Lake, and Hickory-Mud Lakes faults. The authors examined a variety of units across the Beaver Creek region, including a granitic augen gneiss immediately west of the Beaver Creek Fault Zone, an alaskitic gneiss immediately below Brown's (1989) North Gouverneur Nappe Sole Fault, a biotitic granitic gneiss within the body of Brown'smore » North Gouverneur Nappe, and hornblende augen gneisses and metasediments adjacent to the granitic gneisses. Each of the granitic units has moderately well-developed to extremely well-developed quartz ribbon lineations, and all show at least 2 ductile shear fabrics. Shear fabrics are present as well in the hornblende augen gneisses but are essentially absent in most of the metasedimentary lithologies, even those immediately adjacent to well-lineated, sheared granitic gneiss. The earliest shear fabrics exhibit spectacular quartz ribbon lineations, sigma grains, and, in the hornblende augen gneiss, shear bands. Granitic gneisses in the Beaver Creek Region show shear fabrics in addition to the main fabric in the rock. A second, variably-recovered shear fabric with quartz ribbons and well-developed sigma grains with core and mantle structure overprints the main shear fabric and shows largely the same sense of shear. The authors suggest further that a regional kinematic model for the Beaver Creek region must take into account significant, protracted regional shear, perhaps including formation of sheath folds, as in the Hyde School Gneiss at Payne Lake and Dobbs Creek.« less

  3. Geologic map of the Willow Creek Reservoir SE Quadrangle, Elko, Eureka, and Lander Counties, Nevada

    USGS Publications Warehouse

    Wallace, Alan R.

    2003-01-01

    Map Scale: 1:24,000 Map Type: colored geologic map A 1:24,000-scale, full-color geologic map of the Willow CreekReservoir 7.5-minute SE Quadrangle in Elko, Eureka, and LanderCounties, Nevada, with two cross sections and descriptions of 24 rock units. Accompanying text discusses the geology, paleogeography, and formation of the Ivanhoe Hg-Au district.

  4. Soda Creek springs - metamorphic waters in the eastern Alaska Range

    USGS Publications Warehouse

    Richter, D.H.; Donaldson, D.E.; Lamarre, R.A.

    1973-01-01

    The Soda Creek springs are a group of small, cold mineral springs on the southern flank of the eastern Alaska Range. The spring waters contain anomalous concentrations of carbon dioxide, sodium, chlorine, sulfate, boron, and ammonia and are actively precipitating deposits of calcite and aragonite. Sparingly present in these deposits are mixed-layer illite-montmorillonite clays and zeolite minerals. Low-temperaturemetamorphic reactions in subjacent marine sedimentary rocks of Jurassic and Cretaceous age may have produced the fluids and silicate minerals. With only a few exceptions, cool bicarbonate-rich springs in Alaska are concentrated south of the Denali fault system in south-central Alaska, southeastern Alaska, and along the Kaltag-Tintina fault system. These areas are characterized by active or recently activetectonism, major faults and folds, and an abundance of marine sedimentary rocks.

  5. Structure of the Hat Creek graben region: Implications for the structure of the Hat Creek graben and transfer of right-lateral shear from the Walker Lane north of Lassen Peak, northern California, from gravity and magnetic anomalies

    USGS Publications Warehouse

    Langenheim, Victoria; Jachens, Robert C.; Clynne, Michael A.; Muffler, L. J. Patrick

    2016-01-01

    Interpretation of magnetic and new gravity data provides constraints on the geometry of the Hat Creek Fault, the amount of right-lateral offset in the area between Mt. Shasta and Lassen Peak, and confirmation of the influence of pre-existing structure on Quaternary faulting. Neogene volcanic rocks coincide with short-wavelength magnetic anomalies of both normal and reversed polarity, whereas a markedly smoother magnetic field occurs over the Klamath Mountains and its Paleogene cover. Although the magnetic field over the Neogene volcanic rocks is complex, the Hat Creek Fault, which is one of the most prominent normal faults in the region and forms the eastern margin of the Hat Creek Valley, is marked by the eastern edge of a north-trending magnetic and gravity high 20-30 km long. Modeling of these anomalies indicates that the fault is a steeply dipping (~75-85°) structure. The spatial relationship of the fault as modeled by the potential-field data, the youngest strand of the fault, and relocated seismicity suggests that deformation continues to step westward across the valley, consistent with a component of right-lateral slip in an extensional environment. Filtered aeromagnetic data highlight a concealed magnetic body of Mesozoic or older age north of Hat Creek Valley. The body’s northwest margin strikes northeast and is linear over a distance of ~40 km. Within the resolution of the aeromagnetic data (1-2 km), we discern no right-lateral offset of this body. Furthermore, Quaternary faults change strike or appear to end, as if to avoid this concealed magnetic body and to pass along its southeast edge, suggesting that pre-existing crustal structure influenced younger faulting, as previously proposed based on gravity data.

  6. A tale of 10 plutons - Revisited: Age of granitic rocks in the White Mountains, California and Nevada

    USGS Publications Warehouse

    McKee, E.H.; Conrad, J.E.

    1996-01-01

    40Ar/39Ar incremental heating analysis and conventional K-Ar age determinations on plutonic rocks of the White Mountains define two stages of magmatic emplacement: Late Cretaceous, between ca. 90 Ma and 75 Ma, and Middle-Late Jurassic, between ca. 180 and 140 Ma. The Jurassic stage can be divided into two substages, 180-165 Ma and 150-140 Ma. Thermal effects of the younger plutons on the older granitoids partially to completely reset ages, making it difficult to determine the age of emplacement and cooling of several of the plutons even by 40Ar/39Ar incremental heating analyses. New data together with published ages and regional geochronological synthesis of the Sierra Nevada batholith indicate that regions within the batholith have coherent periods or episodes of magmatic activity. In the White Mountains and Sierra Nevada directly to the west there was little or no activity in Early Jurassic and Early Cretaceous time; magmatism took place during relatively short intervals of 15 m.y. or less in the Middle and Late Jurassic and Late Cretaceous periods. The new K-Ar and 40Ar/39Ar analyses of granitoids from the White Mountains help, but do not completely clarify the complex history of emplacement, cooling, and reheating of the batholith.

  7. Rockin' around the Rock Cycle

    ERIC Educational Resources Information Center

    Frack, Susan; Blanchard, Scott Alan

    2005-01-01

    In this activity students will simulate how sedimentary rocks can be changed into metamorphic rocks by intense pressure. The materials needed are two small pieces of white bread, one piece of wheat bread, and one piece of a dark bread (such as pumpernickel or dark rye) per student, two pieces of waxed paper, scissors, a ruler, and heavy books.…

  8. Ductile shear in granitic gneisses adjacent to the Beaver Creek fault zone, northwest lowlands, New York State

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marcoline, J.

    1993-03-01

    Greenville-age rocks are exposed in the Beaver Creek area in the Northwest Lowlands of New York State. The prominent structural grain in the area strikes approximately N40E and is defined by a series of metasedimentary and metaigneous rocks elongate parallel to the Beaver Creek Fault Zone. A series of 7 granitic augen gneiss bodies lies to the west of the fault. These bodies are elongate parallel to the Beaver Creek Fault Zone and are bordered by metasedimentary units. Structural analysis of the 7 granitic gneiss bodies shows that the bodies underwent several phases of ductile shear. These shearing events aremore » responsible for both fabric development and the overall shape of the bodies. The granitic gneiss is a well-foliated and lineated augen gneiss. The foliation is defined by biotite alignment, quartz ribbons, and feldspar augen. The foliation has a strike of N42E, with dips ranging from 85SE to vertical. Quartz ribbon lineations plunge 20--25 NE. The gneiss exhibits three distinct ductile shear fabrics showing oblique slip with a large strike-slip component. Fabric asymmetry indicates oblique slip with a large component of sinistral shear. The second shear fabric is somewhat recovered but not annealed. Quartz ribbons are dominantly monogranular and many show pronounced undulose extinction. Feldspar porphyroclasts form well-defined sigma grains showing a component of sinistral shear. The youngest ductile shear fabric is defined by quartz grain shape preferred orientation and mica fish. This third fabric exhibits a component of dextral shear, rather than sinistral shear. A late cataclastic texture crosscuts the earlier ductile fabrics. The elongate character of the 7 bodies and their NE/SE alignment is probably due to the regional shearing processes responsible for forming the fabric in the rocks.« less

  9. Ordovician and Silurian Phi Kappa and Trail Creek formations, Pioneer Mountains, central Idaho; stratigraphic and structural revisions, and new data on graptolite faunas

    USGS Publications Warehouse

    Dover, James H.; Berry, William B.N.; Ross, Reuben James

    1980-01-01

    Recent geologic mapping in the northern Pioneer Mountains combined with the identification of graptolites from 116 new collections indicate that the Ordovician and Silurian Phi Kappa and Trail Creek Formations occur in a series of thrust-bounded slices within a broad zone of imbricate thrust faulting. Though confirming a deformational style first reported in a 1963 study by Michael Churkin, our data suggest that the complexity and regional extent of the thrust zone were not previously recognized. Most previously published sections of the Phi Kappa and Trail Creek Formations were measured across unrecognized thrust faults and therefore include not only structural repetitions of graptolitic Ordovician and Silurian rocks but also other tectonically juxtaposed lithostratigraphic units of diverse ages as well. Because of this discovery, the need to reconsider the stratigraphic validity of these formations and their lithology, nomenclature, structural distribution, facies relations, and graptolite faunas has arisen. The Phi Kappa Formation in most thrust slices has internal stratigraphic continuity despite the intensity of deformation to which it was subjected. As revised herein, the Phi Kappa Formation is restricted to a structurally repeated succession of predominantly black, carbonaceous, graptolitic argillite and shale. Some limy, light-gray-weathering shale occurs in the middle part of the section, and fine-grained locally pebbly quartzite is present at the base. The basal quartzite is here named the Basin Gulch Quartzite Member of the Phi Kappa. The Phi Kappa redefined on a lithologic basis represents the span of Ordovician time from W. B. N. Berry's graptolite zones 2-4 through 15 and also includes approximately 17 m of lithologically identical shale of Early and Middle Silurian age at the top. The lower contact of the formation as revised is tectonic. The Phi Kappa is gradationally overlain by the Trail Creek Formation as restricted herein. Most of the coarser

  10. Bonanza Creek Experimental Forest & Caribou-Poker Creeks Research Watershed.

    Treesearch

    Valerie Rapp

    2003-01-01

    Bonanza Creek Experimental Forest and Caribou-Poker Creeks Research Watershed are located in the boreal forest of interior Alaska. Research focuses on basic ecological processes, hydrology, disturbance regimes, and climate change in the boreal forest region. Interior Alaska lies between the Alaska Range to the south and the Brooks Range to the north and covers an area...

  11. Reevaluating the age of the Walden Creek Group and the kinematic evolution of the western Blue Ridge, southern Appalachians

    USGS Publications Warehouse

    Thigpen, J. Ryan; Hatcher, Robert D.; Kah, Linda C.; Repetski, John E.

    2016-01-01

    An integrated synthesis of existing datasets (detailed geologic mapping, geochronologic, paleontologic, geophysical) with new paleontologic and geochemical investigations of rocks previously interpreted as part of the Neoproterozoic Walden Creek Group in southeastern Tennessee suggest a necessary reevaluation of the kinematics and structural architecture of the Blue Ridge Foothills. The western Blue Ridge of Tennessee, North Carolina, and Georgia is composed of numerous northwest-directed early and late Paleozoic thrust sheets, which record pronounced variation in stratigraphic/structural architecture and timing of metamorphism. The detailed spatial, temporal, and kinematic relationships of these rocks have remained controversial. Two fault blocks that are structurally isolated between the Great Smoky and Miller Cove-Greenbrier thrust sheets, here designated the Maggies Mill and Citico thrust sheets, contain Late Ordovician-Devonian conodonts and stable isotope chemostratigraphic signatures consistent with a mid-Paleozoic age. Geochemical and paleontological analyses of Walden Creek Group rocks northwest and southeast of these two thrust sheets, however, are more consistent with a Late Neoproterozoic (550–545 Ma) depositional age. Consequently, the structural juxtaposition of mid-Paleozoic rocks within a demonstrably Neoproterozoic-Cambrian succession between the Great Smoky and Miller Cove-Greenbrier thrust sheets suggests that a simple foreland-propagating thrust sequence model is not applicable in the Blue Ridge Foothills. We propose that these younger rocks were deposited landward of the Ocoee Supergroup, and were subsequently plucked from the Great Smoky fault footwall as a horse, and breached through the Great Smoky thrust sheet during Alleghanian emplacement of that structure.

  12. Sedimentary response to orogenic exhumation in the northern rocky mountain basin and range province, flint creek basin, west-central Montana

    USGS Publications Warehouse

    Portner, R.A.; Hendrix, M.S.; Stalker, J.C.; Miggins, D.P.; Sheriff, S.D.

    2011-01-01

    Middle Eocene through Upper Miocene sedimentary and volcanic rocks of the Flint Creek basin in western Montana accumulated during a period of significant paleoclimatic change and extension across the northern Rocky Mountain Basin and Range province. Gravity modelling, borehole data, and geologic mapping from the Flint Creek basin indicate that subsidence was focused along an extensionally reactivated Sevier thrust fault, which accommodated up to 800 m of basin fill while relaying stress between the dextral transtensional Lewis and Clark lineament to the north and the Anaconda core complex to the south. Northwesterly paleocurrent indicators, foliated metamorphic lithics, 64 Ma (40Ar/39Ar) muscovite grains, and 76 Ma (U-Pb) zircons in a ca. 27 Ma arkosic sandstone are consistent with Oligocene exhumation and erosion of the Anaconda core complex. The core complex and volcanic and magmatic rocks in its hangingwall created an important drainage divide during the Paleogene shedding detritus to the NNW and ESE. Following a major period of Early Miocene tectonism and erosion, regional drainage networks were reorganized such that paleoflow in the Flint Creek basin flowed east into an internally drained saline lake system. Renewed tectonism during Middle to Late Miocene time reestablished a west-directed drainage that is recorded by fluvial strata within a Late Miocene paleovalley. These tectonic reorganizations and associated drainage divide explain observed discrepancies in provenance studies across the province. Regional correlation of unconformities and lithofacies mapping in the Flint Creek basin suggest that localized tectonism and relative base level fluctuations controlled lithostratigraphic architecture.

  13. Flood-inundation maps for Indian Creek and Tomahawk Creek, Johnson County, Kansas, 2014

    USGS Publications Warehouse

    Peters, Arin J.; Studley, Seth E.

    2016-01-25

    Digital flood-inundation maps for a 6.4-mile upper reach of Indian Creek from College Boulevard to the confluence with Tomahawk Creek, a 3.9-mile reach of Tomahawk Creek from 127th Street to the confluence with Indian Creek, and a 1.9-mile lower reach of Indian Creek from the confluence with Tomahawk Creek to just beyond the Kansas/Missouri border at State Line Road in Johnson County, Kansas, were created by the U.S. Geological Survey in cooperation with the city of Overland Park, Kansas. The flood-inundation maps, which can be accessed through the U.S. Geological Survey Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at the U.S. Geological Survey streamgages on Indian Creek at Overland Park, Kansas; Indian Creek at State Line Road, Leawood, Kansas; and Tomahawk Creek near Overland Park, Kansas. Near real time stages at these streamgages may be obtained on the Web from the U.S. Geological Survey National Water Information System at http://waterdata.usgs.gov/nwis or the National Weather Service Advanced Hydrologic Prediction Service at http://water.weather.gov/ahps/, which also forecasts flood hydrographs at these sites.Flood profiles were computed for the stream reaches by means of a one-dimensional step-backwater model. The model was calibrated for each reach by using the most current stage-discharge relations at the streamgages. The hydraulic models were then used to determine 15 water-surface profiles for Indian Creek at Overland Park, Kansas; 17 water-surface profiles for Indian Creek at State Line Road, Leawood, Kansas; and 14 water-surface profiles for Tomahawk Creek near Overland Park, Kansas, for flood stages at 1-foot intervals referenced to the streamgage datum and ranging from bankfull to the next interval above the 0.2-percent annual exceedance probability flood level (500-year recurrence interval). The

  14. Fish population and habitat analysis in Buck Creek, Washington, prior to recolonization by anadromous salmonids after the removal of Condit Dam

    USGS Publications Warehouse

    Allen, M. Brady; Burkhardt, Jeanette; Munz, Carrie; Connolly, Patrick J.

    2012-01-01

    We assessed the physical and biotic conditions in the part of Buck Creek, Washington, potentially accessible to anadromous fishes. This creek is a major tributary to the White Salmon River upstream of Condit Dam, which was breached in October 2011. Habitat and fish populations were characterized in four stream reaches. Reach breaks were based on stream gradient, water withdrawals, and fish barriers. Buck Creek generally was confined, with a single straight channel and low sinuosity. Boulders and cobble were the dominant stream substrate, with limited gravel available for spawning. Large-cobble riffles were 83 percent of the available fish habitat. Pools, comprising 15 percent of the surface area, mostly were formed by bedrock with little instream cover and low complexity. Instream wood averaged 6—10 pieces per 100 meters, 80 percent of which was less than 50 centimeters in diameter. Water temperature in Buck Creek rarely exceeded 16 degrees Celsius and did so for only 1 day at river kilometer (rkm) 3 and 11 days at rkm 0.2 in late July and early August 2009. The maximum temperature recorded was 17.2 degrees Celsius at rkm 0.2 on August 2, 2009. Minimum summer discharge in Buck Creek was 3.3 cubic feet per second downstream of an irrigation diversion (rkm 3.1) and 7.7 cubic feet per second at its confluence with the White Salmon River. Rainbow trout (Oncorhynchus mykiss) was the dominant fish species in all reaches. The abundance of age-1 or older rainbow trout was similar between reaches. However, in 2009 and 2010, the greatest abundance of age-0 rainbow trout (8 fish per meter) was in the most downstream reach. These analyses in Buck Creek are important for understanding the factors that may limit fish abundance and productivity, and they will help identify and prioritize potential restoration actions. The data collected constitute baseline information of pre-dam removal conditions that will allow assessment of changes in fish populations now that Condit Dam has

  15. Paleogeographic implications of an erosional remnant of Paleogene rocks southwest of the Sur-Nacimiento Fault Zone, southern Coast Ranges, California

    USGS Publications Warehouse

    Vedder, J.G.; McLean, H.; Stanley, R.G.; Wiley, T.J.

    1991-01-01

    A small tract of heretofore-unrecognized Paleogene rocks lies about 30 km northeast of Santa Maria and 1 km southwest of the Sur-Nacimiento fault zone near upper Pine Creek. This poorly exposed assemblage of rocks is less than 50 m thick, lies unconformably on regionally distributed Upper Cretaceous submarine-fan deposits, and consists of three units: fossiliferous lower Eocene mudstone, Oligocene(?) conglomerate, and basaltic andesite that has a radiometric age of 26.6 ?? 0.5 Ma. Both the sedimentary and igneous constituents in the Paleogene sequence are unlike those of known sequences on either side of the Sur-Nacimiento fault zone. The Paleogene sedimentary rocks near upper Pine Creek presumably are remnants of formerly widespread early Eocene bathyal deposits and locally distributed Oligocene(?) fluvial deposits southwest of the fault zone. The 26.6 Ma basaltic andesite, however, may not have extended much beyond its present outcrops. An episode of Oligocene(?) displacement is required by the contrast in thicknesses, depositional patterns, and paleobathymetry of the juxtaposed rock sequences. -from Authors

  16. Early miocene bimodal volcanism, Northern Wilson Creek Range, Lincoln County, Nevada

    USGS Publications Warehouse

    Willis, J.B.; Willis, G.C.

    1996-01-01

    Early Miocene volcanism in the northern Wilson Creek Range, Lincoln County, Nevada, produced an interfingered sequence of high-silica rhyolite (greater than 74% SiO2) ash-flow tuffs, lava flows and dikes, and mafic lava flows. Three new potassium-argon ages range from 23.9 ?? 1.0 Ma to 22.6 ?? 1.2 Ma. The rocks are similar in composition, stratigraphic character, and age to the Blawn Formation, which is found in ranges to the east and southeast in Utah, and, therefore, are herein established as a western extension of the Blawn Formation. Miocene volcanism in the northern Wilson Creek Range began with the eruption of two geochemically similar, weakly evolved ash-flow tuff cooling units. The lower unit consists of crystal-poor, loosely welded, lapilli ash-flow tuffs, herein called the tuff member of Atlanta Summit. The upper unit consists of homogeneous, crystal-rich, moderately to densely welded ash-flow tuffs, herein called the tuff member of Rosencrans Peak. This unit is as much as 300 m thick and has a minimum eruptive volume of 6.5 km3, which is unusually voluminous for tuffs in the Blawn Formation. Thick, conspicuously flow-layered rhyolite lava flows were erupted penecontemporaneously with the tuffs. The rhyolite lava flows have a range of incompatible trace element concentrations, and some of them show an unusual mixing of aphyric and porphyritic magma. Small volumes of alkaline, vesicular, mafic flows containing 50 weight percent SiO2 and 2.3 weight percent K2O were extruded near the end of the rhyolite volcanic activity. The Blawn Formation records a shift in eruptive style and magmatic composition in the northern Wilson Creek Range. The Blawn was preceded by voluminous Oligocene eruptions of dominantly calc-alkaline orogenic magmas. The Blawn and younger volcanic rocks in the area are low-volume, bimodal suites of high-silica rhyolite tuffs and lava flows and mafic lava flows.

  17. Evaluating Connectivity between Marine Protected Areas Using CODAR High-Frequency Radar

    DTIC Science & Technology

    2010-06-01

    SMCA/SMR, (6) Big Creek SMCA/SMR, (7) Piedras Blancas SMCA/SMR, (8) Cambria SMCA/White Rock SMCA, (9) Pt. Buchon SMCA/SMR, and (10) Vandenberg SMR...52 grid- points, (7) Piedras Blancas 47 grid-points, (8) Cambria 20 grid-points, (9) Pt. Buchon 45 grid- points, and (10) the Vandenberg MPA had 62...COLUMN HEADERS. Back-projected from: (Sorted north- to-south) Año Nuevo Soquel Canyon Portuguese Ledge Point Lobos Point Sur Big Creek Piedras

  18. Assessment of the Old Red Rock Indian Line Sycamore Tree, Lake Red Rock, Marion County, Iowa

    DTIC Science & Technology

    1992-01-01

    miles, when reduced to a straight line , from the junction of the White Breast and Des Moines (Stiles 1911:4). George W. Harrison was instructed to...AD-A255 372 Assessment of the Old Red Rock Indian Line Sycamore Tree, Lake Red Rock, Marion County, Iowa DACW25-92-M-0414 by Leah D. Rogers Project...portion of tree 22 9. Map showing location of Red Rock line within treaty cession area of 23 1842 10. Portion of 1844 map showing incorrect placement of

  19. RECONNAISSANCE FOR URANIUM IN ASPHALT-BEARING ROCKS IN THE WESTERN UNITED STATES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hail, W.J. Jr.

    1957-01-01

    An appraisal of asphait-bearing rocks as potential sources of uranium was made during 1953 and 1954 in 45 areas in Calif., Utah, Wyo., Mont., N. Mex., Tex., Okla., and Mo. A total of 202 samples from these areas was analyzed for uranium. The oldest rocks sampled are Ordovician in age, and the youngest are Recent. Although none of the deposits are of value at this time as a source of U, some of the deposits may constitute a low-grade U resource, but recovery of the U will depend upon the primary use of the asphalt. Significant amounts of U lnmore » the ash of oil extracted from these rocks were found in samples from 7 of the 45 areas examined. These areas are Chalome Creek, McKittrick, Edna, and Los Alamos Calif.; Vernal, Utah; Sulphur, Okla.; and Ellis, Mo. The average U content in the ash of the extracted oil of samples from these 7 areas ranges from 0.028 to 0.376%. All except the Chalone Creek area contain large estimated reserves of asphalt-bearing rock, ranging from 15 million to almost 2 billion tons. The average U content of samples from 13 additiomal areas ranges from 0.020 to 0.06B% in the ash of the extracted oil. Many of these areas contain very large reserves of asphalt-bearing rocks. It is believed that most of the asphalt deposits are oil residues, and that the U was introduced during or after the late stages of oil movement and loss of the lighter oil fractions. (auth)« less

  20. Pesticides in groundwater in the Anacostia River and Rock Creek watersheds in Washington, D.C., 2005 and 2008

    USGS Publications Warehouse

    Koterba, Michael T.; Dieter, Cheryl A.; Miller, Cherie V.

    2010-01-01

    The U.S. Geological Survey (USGS), in cooperation with the District Department of the Environment, conducted a groundwater-quality investigation to (a) determine the presence, concentrations, and distribution of selected pesticides in groundwater, and (b) assess the presence of pesticides in groundwater in relation to selected landscape, hydrogeologic, and groundwater-quality characteristics in the shallow groundwater underlying the Anacostia River and Rock Creek watersheds in Washington, D.C. With one exception, well depths were 100 feet or less below land surface. The USGS obtained or compiled ancillary data and information on land use (2001), subsurface sediments, and groundwater samples from 17 wells in the lower Anacostia River watershed from September through December 2005, and from 14 wells in the lower Anacostia River and lower Rock Creek watersheds from August through September 2008. Twenty-seven pesticide compounds, reflecting at least 19 different types of pesticides, were detected in the groundwater samples obtained in 2005 and 2008. No fungicides were detected. In relation to the pesticides detected, degradate compounds were as or more likely to be detected than applied (parent) compounds. The detected pesticides chiefly reflected herbicides commonly used in urban settings for non-specific weed control or insecticides used for nonspecific haustellate insects (insects with specialized mouthparts for sucking liquid) or termite-specific control. Detected pesticides included a combination of pesticides currently (2008) in use, banned or under highly restricted use, and some that had replaced the banned or restricted-use pesticides. The presence of banned and restricted-use pesticides illustrates their continued persistence and resistance to complete degradation in the environment. The presence of the replacement pesticides indicates the susceptibility of the surficial aquifer to contamination irrespective of the changes in the pesticides used. A

  1. 78 FR 62616 - Salmon Creek Hydroelectric Company, Salmon Creek Hydroelectric Company, LLC; Notice of Transfer...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-22

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 3730-005] Salmon Creek Hydroelectric Company, Salmon Creek Hydroelectric Company, LLC; Notice of Transfer of Exemption 1. By letter filed September 23, 2013, Salmon Creek Hydroelectric Company informed the Commission that they have...

  2. Long-term water quality and biological responses to multiple best management practices in Rock Creek, Idaho

    USGS Publications Warehouse

    Maret, T.R.; MacCoy, D.E.; Carlisle, D.M.

    2008-01-01

    Water quality and macroinvertebrate assemblage data from 1981 to 2005 were assessed to evaluate the water quality and biological responses of a western trout stream to the implementation of multiple best management practices (BMPs) on irrigated cropland. Data from Rock Creek near Twin Falls, Idaho, a long-term monitoring site, were assembled from state and federal sources to provide the evaluation. Seasonal loads of the nonpoint source pollutants suspended sediment (SS), total phosphorus (TP), and nitrate-nitrite (NN) were estimated using a regression model with time-series streamflow data and constituent concentrations. Trends in the macroinvertebrate assemblages were evaluated using a number of biological metrics and nonmetric multidimensional scaling ordination. Regression analysis found significant annual decreases in TP and SS flow-adjusted concentrations during the BMP implementation period from 1983 to 1990 of about 7 and 10%, respectively. These results are coincident with the implementation of multiple BMPs on about 75% of the irrigated cropland in the watershed. Macroinvertebrate assemblages during this time also responded with a change in taxa composition resulting in improved biotic index scores. Taxon specific TP and SS optima, empirically derived from a large national dataset, predicted a decrease in SS concentrations of about 37% (52 to 33 mg/l) and a decrease in TP concentrations of about 50% (0.20 to 0.10 mg/l) from 1981 to 1987. Decreasing trends in TP, SS, and NN pollutant loads were primarily the result of naturally low streamflow conditions during the BMP post-implementation period from 1993 to 2005. Trends in macroinvertebrate responses during 1993 to 2005 were confounded by the introduction of the New Zealand mudsnail (Potamopyrgus antipodarum), which approached densities of 100,000 per m 2 in riffle habitat. The occurrence of this invasive species appears to have caused a major shift in composition and function of the macroinvertebrate

  3. Hydrogeology and water quality of the West Valley Creek Basin, Chester County, Pennsylvania

    USGS Publications Warehouse

    Senior, Lisa A.; Sloto, Ronald A.; Reif, Andrew G.

    1997-01-01

    The West Valley Creek Basin drains 20.9 square miles in the Piedmont Physiographic Province of southeastern Pennsylvania and is partly underlain by carbonate rocks that are highly productive aquifers. The basin is undergoing rapid urbanization that includes changes in land use and increases in demand for public water supply and wastewater disposal. Ground water is the sole source of supply in the basin.West Valley Creek flows southwest in a 1.5-mile-wide valley that is underlain by folded and faulted carbonate rocks and trends east-northeast, parallel to regional geologic structures. The valley is flanked by hills underlain by quartzite and gneiss to the north and by phyllite and schist to the south. Surface water and ground water flow from the hills toward the center of the valley. Ground water in the valley flows west-southwest parallel to the course of the stream. Seepage investigations identified losing reaches in the headwaters area where streams are underlain by carbonate rocks and gaining reaches downstream. Tributaries contribute about 75 percent of streamflow. The ground-water and surface-water divides do not coincide in the carbonate valley. The ground-water divide is about 0.5 miles west of the surface-water divide at the eastern edge of the carbonate valley. Underflow to the east is about 1.1 inches per year. Quarry dewatering operations at the western edge of the valley may act partly as an artificial basin boundary, preventing underflow to the west. Water budgets for 1990, a year of normal precipitation (45.8 inches), and 1991, a year of sub-normal precipitation (41.5 inches), were calculated. Streamflow was 14.61 inches in 1990 and 12.08 inches in 1991. Evapotranspiration was estimated to range from 50 to 60 percent of precipitation. Base flow was about 62 percent of streamflow in both years. Exportation by sewer systems was about 3 inches from the basin and, at times, equaled base flow during the dry autumn of 1991. Recharge was estimated to be 18

  4. Shell Creek Summers

    ERIC Educational Resources Information Center

    Seier, Mark; Goedeken, Suzy

    2005-01-01

    In 2002 Shell Creek Watershed Improvement Group turned to the Newman Grove Public Schools' science department to help educate the public on water quality in the watershed and to establish a monitoring system that would be used to improve surface and groundwater quality in the creek's watershed. Nebraska Department of Environmental Quality provided…

  5. 76 FR 35379 - Archers Creek, Ribbon Creek, and Broad River; U.S. Marine Corps Recruit Depot, Parris Island, SC...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-17

    ..., Ribbon Creek, and Broad River; U.S. Marine Corps Recruit Depot, Parris Island, SC; Danger Zone AGENCY... use these portions of Archers Creek, Ribbon Creek, and the Broad River when the rifle and pistol.... 334.480 to read as follows: Sec. 334.480 Archers Creek, Ribbon Creek, and Broad River; U.S. Marine...

  6. Effects of Abandoned Coal-Mine Drainage on Streamflow and Water Quality in the Mahanoy Creek Basin, Schuylkill, Columbia, and Northumberland Counties, Pennsylvania, 2001

    USGS Publications Warehouse

    Cravotta,, Charles A.

    2004-01-01

    This report assesses the contaminant loading, effects to receiving streams, and possible remedial alternatives for abandoned mine drainage (AMD) within the Mahanoy Creek Basin in east-central Pennsylvania. The Mahanoy Creek Basin encompasses an area of 157 square miles (407 square kilometers) including approximately 42 square miles (109 square kilometers) underlain by the Western Middle Anthracite Field. As a result of more than 150 years of anthracite mining in the basin, ground water, surface water, and streambed sediments have been adversely affected. Leakage from streams to underground mines and elevated concentrations (above background levels) of acidity, metals, and sulfate in the AMD from flooded underground mines and (or) unreclaimed culm (waste rock) degrade the aquatic ecosystem and impair uses of the main stem of Mahanoy Creek from its headwaters to its mouth on the Susquehanna River. Various tributaries also are affected, including North Mahanoy Creek, Waste House Run, Shenandoah Creek, Zerbe Run, and two unnamed tributaries locally called Big Mine Run and Big Run. The Little Mahanoy Creek and Schwaben Creek are the only major tributaries not affected by mining. To assess the current hydrological and chemical characteristics of the AMD and its effect on receiving streams, and to identify possible remedial alternatives, the U.S. Geological Survey (USGS) began a study in 2001, in cooperation with the Pennsylvania Department of Environmental Protection and the Schuylkill Conservation District. Aquatic ecological surveys were conducted by the USGS at five stream sites during low base-flow conditions in October 2001. Twenty species of fish were identified in Schwaben Creek near Red Cross, which drains an unmined area of 22.7 square miles (58.8 square kilometers) in the lower part of the Mahanoy Creek Basin. In contrast, 14 species of fish were identified in Mahanoy Creek near its mouth at Kneass, below Schwaben Creek. The diversity and abundance of fish

  7. Timing and nature of tertiary plutonism and extension in the Grouse Creek Mountains, Utah

    USGS Publications Warehouse

    Egger, A.E.; Dumitru, T.A.; Miller, E.L.; Savage, C.F.I.; Wooden, J.L.

    2003-01-01

    The Grouse Creek-Albion-Raft River metamorphic core complex in northwestern Utah and southern Idaho is characterized by several Tertiary plutons with a range of ages and crosscutting relations that help constrain the timing of extensional deformation. In the Grouse Creek Mountains, at least three distinct, superimposed, extension-related Tertiary deformational events are bracketed by intrusive rocks, followed by a fourth event: motion on range-bounding faults. The Emigrant Pass plutonic complex was emplaced at depths of less than 10 km into Permianage rocks. SHRIMP U-Pb zircon analysis indicates a three-stage intrusion of the complex at 41.3 ?? 0.3 Ma, 36.1 ?? 0.2 Ma, and 34.3 ?? 0.3 Ma. The two youngest phases represent distinctly younger intrusive event(s) than the oldest phase, separated by more than 5 m.y. The oldest phase cuts several metamorphosed and deformed younger-on-older faults, providing a pre-41 Ma age bracket for oldest extension-related deformation in the region. The youngest phase(s) are interpreted to have been intruded during delelopment of a map-scale. N-S-trending recumbent fold, the Bovine Mountain fold, formed during vertical shortening of roof rocks during intrusion. This second event folded older normal faults that are likely pre-41 Ma. Zircons from the youngest part of the pluton show inheritance from Archean basement (???2.5 Ga) and from its Proterozoic sedimentary cover (???1.65 Ga). The Red Butte pluton, emplaced at 15-20 km depth, intruded highly metamorphosed Archean orthogneiss at 25.3 ?? 0.5 Ma; cores of some zircons yield latest Archean ages of 2.55 Ga. The pluton is interpreted to have been intruded during a third deformational and metamorphic event that resulted in vertical flattening fabrics formed during NW to EW stretching, ultimately leading to thinning of cover and top-to-the west motion on the Ingham Pass fault. The Ingham Pass fault represents an important structure in the Grouse Creek Mountains, as it juxtaposes two parts

  8. Ghost Dancing the Grand Canyon. Southern Paiute Rock Art, Ceremony, and Cultural Landscapes.

    PubMed

    Stoffle; Loendorf; Austin; Halmo; Bulletts

    2000-02-01

    Combining rock art studies with ethnohistory, contemporary ethnographic analysis, and the interpretations of people who share the cultural traditions being studied, this paper documents a rock art site in Kanab Creek Canyon that appears to have been the location of a Ghost Dance ceremony performed by Southern Paiute and perhaps Hualapai people in the late 1800s. Using the site as a point of departure, it focuses on the way in which synergistic associations among place, artifact, resources, events, and historic and contemporary Indian people contribute to the construction of a contextual cultural landscape.

  9. Age of Walden Creek Group: Can it be demonstrated--Biostratigraphically

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Broadhead, T.W.; Hatcher, R.D. Jr.; Walker, K.R.

    The Walden Creek Group (WCG) is a lithologically heterogeneous succession of sedimentary rocks exposed in the western Blue Ridge of the southern Appalachians. Carbonate rocks of the WCG occur as bedded limestone in the Sandsuck Formation and subjacent Wilhite and as limestone clasts in polymict conglomerate bodies within the Sandsuck, Wilhite, and the underlying Shields Formation. Petrographically, these carbonate rocks exhibit a shallow marine aspect. Locally abundant pisoids, ooids and peloids occur in a preservational continuum ranging from well-preserved internal fabrics to relict spar-filled micrite envelopes. Pisoids, occurring in grainstone and wackestone fabrics, resemble oversized marine ooids characteristic of Uppermore » Proterozoic carbonated rocks of Greenland and Spitzbergen. Recent reports of metazoan and foraminiferal fossils from the Wilhite Formation have cast doubt on its long-regarded Late Proterozoic age. The fossils the authors have observed include algal oncolites, minute fecal pellets, and extremely rare cyanobacterial filament sheaths and skeletal fragments of uncertain biological affinity. Good quality preservation of allochems in WCG carbonate rocks is important in evaluating the absence of undoubted Paleozoic fossils. Dominant components of Paleozoic biotas: crinoids, brachiopods, and bryozoans would be recognizable, even as tiny fragments. The absence of conodonts further suggests that carbonate rocks of the WCG predate the appearance of abundant skeletonized biota and are probably Late Proterozoic. The authors propose that both bedded carbonate rocks and carbonate clasts of the WCG are essentially contemporaneous with each other and reflect carbonate bank conditions that developed toward the end of Late Proterozoic clastic deposition, which filled rift basins that formed along the southeastern Laurentian margin. Episodic reactivation accounts for the occurrence of carbonate clasts in several parts of the WCG and Snowbird Group.« less

  10. Water flow statistics: SRP creeks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lower, M.W.

    1982-08-26

    For a number of environmental studies it is necessary to know the water flow rates and variations in the SRP streams. The objective of this memorandum is to pull together and present a number of statistical analyses for Upper Three Runs Creek, Four Mile Creek and Lower Three Runs Creek. The data basis covers 8 USGS stream gage stations for the years 1972 - 1981. The average flow rates over a ten-year period along Upper Three Runs Creek were determined to be 114 cfs at US Route 278, 193 cfs at Road C, and 265 cfs at Road A. Alongmore » Four Mile Creek the average flow rates over a ten-year period doubled from 9 cfs prior to F-Area discharges to 18 cfs prior to cooling water discharges from C-Area Reactor. Finally, average flow rates along Lower Three Runs Creek over a ten-year period tripled from 32 cfs at Par Pond to 96 cfs near Snelling, South Carolina. 1 figure, 9 tables.« less

  11. Water quality in Gaines Creek and Gaines Creek arm of Eufaula Lake, Oklahoma

    USGS Publications Warehouse

    Kurklin, J.K.

    1990-01-01

    Based on samples collected from May 1978 to May 1980 and analyzed for major anions, nitrogen, trace elements, phytoplankton, and bacteria, the water in Gaines Creek and the Gaines Creek arm of Eufaula Lake was similar with respect to suitability for municipal use. Water from Gaines Creek had a pH range of 5.7 to 7.6 and a maximum specific conductance of 97 microsiemens per centimeter at 25o Celsius, whereas water from the Gaines Creek arm of Eufaula Lake had a pH range of 6.0 to 9.2 and a maximum specific conductance of 260 microsiemens per centimeter at 25o Celsius. Dissolved oxygen, pH, temperature, and specific conductance values for the lake varied with depth. With the exceptions of cadmium, iron, lead, and manganese, trace-element determinations of samples were within recommended national primary and secondary drinking-water standards. When compared to the National Academy of Sciences water-quality criteria, phytoplankton and bacteria counts exceeded recommendations; however, water from either Gaines Creek or Eufaula Lake could be treated similarly and used as a municipal water supply.

  12. The Taylor Creek Rhyolite of New Mexico: a rapidly emplaced field of lava domes and flows

    USGS Publications Warehouse

    Duffield, W.A.; Dalrymple, G.B.

    1990-01-01

    The Tertiary Taylor Creek Rhyolite of southwest New Mexico comprises at least 20 lava domes and flows. Each of the lavas was erupted from its own vent, and the vents are distributed throughout a 20 km by 50 km area. The volume of the rhyolite and genetically associated pyroclastic deposits is at least 100 km3 (denserock equivalent). The rhyolite contains 15%-35% quartz, sanidine, plagioclase, ??biotite, ??hornblende phenocrysts. Quartz and sanidine account for about 98% of the phenocrysts and are present in roughly equal amounts. With rare exceptions, the groundmass consists of intergrowths of fine-grained silica and alkali feldspar. Whole-rock major-element composition varies little, and the rhyolite is metaluminous to weakly peraluminous; mean SiO2 content is about 77.5??0.3%. Similarly, major-element compositions of the two feldsparphenocryst species also are nearly constant. However, whole-rock concentrations of some trace-elements vary as much as several hundred percent. Initial radiometric age determinations, all K-Ar and fission track, suggest that the rhyolite lava field grew during a period of at least 2 m.y. Subsequent 40Ar/39Ar ages indicate that the period of growth was no more than 100 000 years. The time-space-composition relations thus suggest that the Taylor Creek Rhyolite was erupted from a single magma reservoir whose average width was at least 30 km, comparable in size to several penecontemporaneous nearby calderas. However, this rhyolite apparently is not related to a caldera structure. Possibly, the Taylor Creek Phyolite magma body never became sufficiently volatile rich to produce a large-volume pyroclastic eruption and associated caldera collapse, but instead leaked repeatedly to feed many relatively small domes and flows. The new 40Ar/39Ar ages do not resolve preexisting unknown relative-age relations among the domes and flows of the lava field. Nonetheless, the indicated geologically brief period during which Taylor Creek Rhyolite magma was

  13. Paleomagnetic Results for Eocene Volcanic Rocks from Northeastern Washington and the Tertiary Tectonics of the Pacific Northwest

    NASA Astrophysics Data System (ADS)

    Fox, Kenneth F., Jr.; Beck, Myrl E., Jr.

    1985-04-01

    The direction of remanent magnetization for 102 sites in Eocene volcanic and volcaniclastic rocks of the O'Brien Creek Formation, Sanpoil Volcanics, and Klondike Mountain Formation suggests approximately 25° of clockwise rotation of a 100 by 200 km area in northeastern Washington. The volcanic rocks consist chiefly of rhyodacite and quartz latite flows, with intercalated ash flow tuff and volcaniclastic layers. These rocks have been sampled at 102 sites distributed among five volcanotectonic depressions: the Toroda Creek, Republic, Keller, and First Thought grabens and the Spokane-Enterprise lineament. The volcanic rocks probably range in age from 55 m.y. to about 48 m.y., and the 50- to 48-m.y.-old volcanic rocks within this suite appear to be rotated as much as the older rocks. Previous investigators have shown that 40-m.y.-old and younger plutonic rocks of northwestern Washington are not rotated; hence we infer that the north-central Washington rocks were rotated to their present declination between 48 and 40 m.y. B.P. (during the middle and/or late Eocene). During early Eocene time this region was extended in a westward direction through crustal necking, gneiss-doming, diking, and graben formation. Internal deformation of the region related to this crustal extension was extreme, but most bedrock units that were formed concurrent with the crustal extension were probably in place prior to the rotation; hence we infer that the rotation was chiefly accommodated by movement on faults peripheral to the sampled area. Faults active during Paleogene time appear to define boundaries of a triangular crustal block (the Sanpoil block), encompassing much of northeastern Washington, northern Idaho, northwestern Montana, and adjacent parts of British Columbia. The faults include the Laramide thrusts of the Rocky Mountain thrust belt, the strike-slip faults of the Lewis and Clark line, and strike-slip faults of the Straight Creek-Fraser zone. We suggest that during early

  14. Quality of water and time-of-travel in Bakers Creek near Clinton, Mississippi. [Bakers Creek

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalkhoff, S.J.

    1982-01-01

    A short-term intensive quality-of-water study was conducted during a period of generally low streamflow in Bakers Creek and its tributary, Lindsey Creek, near Clinton, Mississippi. During the September 15-18, 1980 study, dissolved oxygen concentrations in Bakers Creek were less than 5 milligrams per liter. The specific conductance, 5-day biochemical oxygen demand, nutrient concentrations, and bacteria densities in Bakers Creek decreased downstream through the study reach. The mean specific conductance decreased from 670 to 306 microhms per centimeter. The 5-day biochemical oxygen demand decreased from 19 to 2.8 milligrams per liter. The mean total nitrogen and phosphorous concentrations decreased from 10more » and 7.1 to 1.0 and 0.87 milligram per litter, respectively. The maximum fecal bacteria decreased from 7200 to 400 colonies per 100 milliliter. The concentrations of mercury, iron, and manganese in a sample collected at the downstream site exceeded recommended limits. Diazinon and 2,4-D were also present in the water. A bottom material sample contained DDD (2.5 micrograms per kilogram), DDE (2.7 micrograms per kilogram), and DDT (.3 micrograms per kilogram). The tributary inflow from Lindsey Creek did not improve the water quality of Bakers Creek. The dissolved oxygen concentrations were generally less than 5.0 milligrams per liter at the sampling site on Lindsey Creek. The 5-day biochemical oxygen demand, the mean specific conductance, and fecal coliform densities were greater in the tributary than at the downstream site on Bakers Creek. The average rate of travel through a 1.8-mile reach of Bakers Creek was 0.06 foot per second or 0.04 miles per hour. 6 references, 9 figures, 2 tables.« less

  15. Recrystallization and anatexis along the plutonic-volcanic contact of the Turkey Creek caldera, Arizona

    USGS Publications Warehouse

    du Bray, E.A.; Pallister, J.S.

    1999-01-01

    Unusual geologic and geochemical relations are preserved along the contact between intracaldera tuff and a resurgent intrusion within the 26.9 Ma Turkey Creek caldera of southeast Arizona. Thick intracaldera tuff is weakly argillically altered throughout, except in zones within several hundred meters of its contact with the resurgent intrusion, where the groundmass of the tuff has been variably converted to granophyre and unaltered sanidine phenocrysts are present. Dikes of similarly granophyric material originate at the tuff-resurgent intrusion contact and intrude overlying intracaldera megabreccia and tuff. Field relations indicate that the resurgent intrusion is a laccolith and that it caused local partial melting of adjacent intracaldera tuff. Geochemical and petrographic relations indicate that small volumes of partially melted intracaldera tuff assimilated and mixed with dacite of the resurgent intrusion along their contact, resulting in rocks that have petrographic and compositional characteristics transitional between those of tuff and dacite. Some of this variably contaminated, second-generation magma coalesced, was mobilized, and was intruded into overlying intracaldera rocks. Interpretation of the resurgent intrusion in the Turkey Creek and other calderas as intracaldera laccoliths suggests that intrusions of this type may be a common, but often unrecognized, feature of calderas. Development of granophyric and anatectic features such as those described here may be equally common in other calderas. The observations and previously undocumented processes described here can be applied to identification and interpretation of similarly enigmatic relations and rocks in other caldera systems. Integration of large-scale field mapping with detailed petrographic and chemical data has resulted in an understanding of otherwise intractable but petrologically important caldera-related features.

  16. Geologic map of the Storm King Mountain quadrangle, Garfield County, Colorado

    USGS Publications Warehouse

    Bryant, Bruce; Shroba, Ralph R.; Harding, Anne E.; Murray, Kyle E.

    2002-01-01

    New 1:24,000-scale geologic mapping in the Storm King Mountain 7.5' quadrangle, in support of the USGS Western Colorado I-70 Corridor Cooperative Geologic Mapping Project, provides new data on the structure on the south margin of the White River uplift and the Grand Hogback and on the nature, history, and distribution of surficial geologic units. Rocks ranging from Holocene to Proterozoic in age are shown on the map. The Canyon Creek Conglomerate, a unit presently known to only occur in this quadrangle, is interpreted to have been deposited in a very steep sided local basin formed by dissolution of Pennsylvanian evaporite late in Tertiary time. At the top of the Late Cretaceous Williams Fork Formation is a unit of sandstone, siltstone, and claystone from which Late Cretaceous palynomorphs were obtained in one locality. This interval has been mapped previously as Ohio Creek Conglomerate, but it does not fit the current interpretation of the origin of the Ohio Creek. Rocks previously mapped as Frontier Sandstone and Mowry Shale are here mapped as the lower member of the Mancos Shale and contain beds equivalent to the Juana Lopez Member of the Mancos Shale in northwestern New Mexico. The Pennsylvanian Eagle Valley Formation in this quadrangle grades into Eagle Valley Evaporite as mapped by Kirkham and others (1997) in the Glenwood Springs area. The Storm King Mountain quadrangle spans the south margin of the White River uplift and crosses the Grand Hogback monocline into the Piceance basin. Nearly flat lying Mississippian through Cambrian sedimentary rocks capping the White River uplift are bent into gentle south dips and broken by faults at the edge of the uplift. South of these faults the beds dip moderately to steeply to the south and are locally overturned. These dips are interrupted by a structural terrace on which are superposed numerous gentle minor folds and faults. This terrace has an east-west extent similar to that of the Canyon Creek Conglomerate to the

  17. Hydrology and Flood Profiles of Duck Creek and Jordan Creek Downstream from Egan Drive, Juneau, Alaska

    USGS Publications Warehouse

    Curran, Janet H.

    2007-01-01

    Hydrologic and hydraulic updates for Duck Creek and the lower part of Jordan Creek in Juneau, Alaska, included computation of new estimates of peak streamflow magnitudes and new water-surface profiles for the 10-, 50-, 100-, and 500-year floods. Computations for the 2-, 5-, 10-, 25-, 50-, 100-, 200-, and 500-year recurrence interval flood magnitudes for both streams used data from U.S. Geological Survey stream-gaging stations weighted with regional regression equations for southeast Alaska. The study area for the hydraulic model consisted of three channels: Duck Creek from Taku Boulevard near the stream's headwaters to Radcliffe Road near the end of the Juneau International Airport runway, an unnamed tributary to Duck Creek from Valley Boulevard to its confluence with Duck Creek, and Jordan Creek from a pedestrian bridge upstream from Egan Drive to Crest Street at Juneau International Airport. Field surveys throughout the study area provided channel geometry for 206 cross sections, and geometric and hydraulic characteristics for 29 culverts and 15 roadway, driveway, or pedestrian bridges. Hydraulic modeling consisted of application of the U.S. Army Corps of Engineers' Hydrologic Engineering Center River Analysis System (HEC-RAS) for steady-state flow at the selected recurrence intervals using an assumed high tide of 20 feet and roughness coefficients refined by calibration to measured water-surface elevations from a 2- to 5-year flood that occurred on November 21, 2005. Model simulation results identify inter-basin flow from Jordan Creek to the southeast at Egan Drive and from Duck Creek to Jordan Creek downstream from Egan Drive at selected recurrence intervals.

  18. Environmental Impact of the Helen, Research, and Chicago Mercury Mines on Water, Sediment, and Biota in the Upper Dry Creek Watershed, Lake County, California

    USGS Publications Warehouse

    Rytuba, James J.; Hothem, Roger L.; May, Jason T.; Kim, Christopher S.; Lawler, David; Goldstein, Daniel; Brussee, Brianne E.

    2009-01-01

    The Helen, Research, and Chicago mercury (Hg) deposits are among the youngest Hg deposits in the Coast Range Hg mineral belt and are located in the southwestern part of the Clear Lake volcanic field in Lake County, California. The mine workings and tailings are located in the headwaters of Dry Creek. The Helen Hg mine is the largest mine in the watershed having produced about 7,600 flasks of Hg. The Chicago and Research Hg mines produced only a small amount of Hg, less than 30 flasks. Waste rock and tailings have eroded from the mines, and mine drainage from the Helen and Research mines contributes Hg-enriched mine wastes to the headwaters of Dry Creek and contaminate the creek further downstream. The mines are located on federal land managed by the U.S. Bureau of Land Management (USBLM). The USBLM requested that the U.S. Geological Survey (USGS) measure and characterize Hg and geochemical constituents in tailings, sediment, water, and biota at the Helen, Research, and Chicago mines and in Dry Creek. This report is made in response to the USBLM request to conduct a Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA - Removal Site Investigation (RSI). The RSI applies to removal of Hg-contaminated mine waste from the Helen, Research, and Chicago mines as a means of reducing Hg transport to Dry Creek. This report summarizes data obtained from field sampling of mine tailings, waste rock, sediment, and water at the Helen, Research, and Chicago mines on April 19, 2001, during a storm event. Further sampling of water, sediment, and biota at the Helen mine area and the upper part of Dry Creek was completed on July 15, 2003, during low-flow conditions. Our results permit a preliminary assessment of the mining sources of Hg and associated chemical constituents that could elevate levels of monomethyl Hg (MMeHg) in the water, sediment, and biota that are impacted by historic mining.

  19. Uranium favorability of tertiary rocks in the Badger Flats, Elkhorn Thrust Area, Park and Teller Counties, Colorado

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Young, P.; Mickle, D.G.

    1976-10-01

    Uranium potential of Tertiary rocks in the Badger Flats--Elkhorn Thrust area of central Colorado is closely related to a widespread late Eocene erosion surface. Most uranium deposits in the area are in the Eocene Echo Park Alluvium and Oligocene Tallahassee Creek Conglomerate, which were deposited in paleodrainage channels on or above this surface. Arkosic detritus within the channels and overlying tuffaceous sedimentary rocks of the Antero and Florissant Formations of Oligocene age and silicic tuffs within the volcanic units provide abundant sources of uranium that could be concentrated in the channels where carbonaceous debris facilitates a reducing environment. Anomalous soil,more » water, and stream-sediment samples near the Elkhorn Thrust and in Antero basin overlie buried channels or are offset from them along structural trends; therefore, uranium-bearing ground water may have moved upward from buried uranium deposits along faults. The area covered by rocks younger than the late Eocene erosion surface, specifically the trends of mapped or inferred paleochannels filled with Echo Park Alluvium and Tallahassee Creek Conglomerate, and the Antero Formation are favorable for the occurrence of uranium deposits.« less

  20. Seismic Velocities and Thicknesses of Alluvial Deposits along Baker Creek in the Great Basin National Park, East-Central Nevada

    USGS Publications Warehouse

    Allander, Kip K.; Berger, David L.

    2009-01-01

    To better understand how proposed large-scale water withdrawals in Snake Valley may affect the water resources and hydrologic processes in the Great Basin National Park, the National Park Service needs to have a better understanding of the relations between streamflow and groundwater flow through alluvium and karst topography of the Pole Canyon Limestone. Information that is critical to understanding these relations is the thickness of alluvial deposits that overlay the Pole Canyon Limestone. In mid-April 2009, the U.S. Geological Survey and National Park Service used seismic refraction along three profiles adjacent to Baker Creek to further refine understanding of the local geology. Two refractors and three distinct velocity layers were detected along two of the profiles and a single refractor and two distinct velocity layers were detected along a third profile. In the unsaturated alluvium, average velocity was 2,000 feet per second, thickness ranged from about 7 to 20 feet along two profiles downstream of the Narrows, and thickness was at least 100 feet along a single profile upstream of the Narrows. Saturated alluvium was only present downstream of the Narrows - average velocity was 4,400 feet per second, and thickness ranged from about 40 to 110 feet. The third layer probably represented Pole Canyon Limestone or Tertiary granitic rock units with an average velocity of 12,500 feet per second. Along the upstream and middle profiles (profiles 3 and 1, respectively), the depth to top of the third layer ranged from at least 60 to 110 feet below land surface and is most likely the Pole Canyon Limestone. The third layer at the farthest downstream profile (profile 2) may be a Tertiary granitic rock unit. Baker Creek is disconnected from the groundwater system along the upstream profile (profile 3) and streamflow losses infiltrate vertically downward to the Pole Canyon Limestone. Along the downstream and middle profiles (profiles 2 and 1, respectively), the presence of

  1. Water resources of the Salmon Falls Creek basin, Idaho-Nevada

    USGS Publications Warehouse

    Crosthwaite, E.G.

    1969-01-01

    The northern part of the Salmon Falls Creek basin, referred to as the Salmon Falls tract, contains a large acreage of good agricultural land, but the surface-water supply is inadequate to develop the area fully. Attempts to develop ground water for irrigation have been successful only locally. Specific capacities of wells drilled for irrigation and for test purposes ranged from less than 0.5 to 70 gallons per minute per foot of drawdown. The surface-water supply averages 107,000 acre-feet annually, of which about 76,000 acre-feet is diverted for irrigation. The Idavada Volcanics, the most widespread and oldest water-bearing formation in the Salmon Falls tract, consists of massive, dense, thick flows and blankets of welded silicic tuff with associated fine- to coarse-grained ash, clay, silt, sand, and gravel. Fault zones and jointed rock yield large amounts of water to wells, but massive nonjointed units yield little water. Sand, tuff, and ash beds yield moderate quantities of water. Clay, sandy clay, sand, and pea gravel occur in topographic lows on the Idavada Volcanics. The finegrained sediments yield little water to wells, but the gravel yields moderate quantities. Vesicular porphyritic irregularly jointed olivine basalt flows, which overlie the Idavada Volcanics, underlie almost all the Salmon Falls tract. Lenticular fine-grained sedimentary beds as much as 15 feet thick separate some of the flows. Joints and contacts between flows yield small to moderate amounts of water to wells. Alluvial and windblown deposits blanket most of the tract. Where they occur below the water table, the alluvial deposits yield adequate supplies for stock and domestic wells. Perched water in the alluvium along Deep Creek supplies some stock and domestic wells during most years. Ground-water supplies adequate for domestic and stock use can be obtained everywhere in the tract, but extensive exploration has discovered only five local areas where pumping ground water for irrigation is

  2. 33 CFR 334.480 - Archers Creek, Ribbon Creek, and Broad River; U.S. Marine Corps Recruit Depot, Parris Island...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Broad River; U.S. Marine Corps Recruit Depot, Parris Island, South Carolina; danger zones. 334.480... DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.480 Archers Creek, Ribbon Creek, and Broad River... danger zone on Archers Creek (between the Broad River and Beaufort River), Ribbon Creek, and the Broad...

  3. 33 CFR 334.480 - Archers Creek, Ribbon Creek, and Broad River; U.S. Marine Corps Recruit Depot, Parris Island...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Broad River; U.S. Marine Corps Recruit Depot, Parris Island, South Carolina; danger zones. 334.480... DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.480 Archers Creek, Ribbon Creek, and Broad River... danger zone on Archers Creek (between the Broad River and Beaufort River), Ribbon Creek, and the Broad...

  4. 33 CFR 334.480 - Archers Creek, Ribbon Creek, and Broad River; U.S. Marine Corps Recruit Depot, Parris Island...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Broad River; U.S. Marine Corps Recruit Depot, Parris Island, South Carolina; danger zones. 334.480... DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.480 Archers Creek, Ribbon Creek, and Broad River... danger zone on Archers Creek (between the Broad River and Beaufort River), Ribbon Creek, and the Broad...

  5. Carbonate rocks of Cambrian and Ordovician age in the Lancaster quadrangle, Pennsylvania

    USGS Publications Warehouse

    Meisler, Harold; Becher, Albert E.

    1968-01-01

    Detailed mapping has shown that the carbonate rocks of Cambrian and Ordovician age in the Lancaster quadrangle, Pennsylvania, can be divided into 14 rock-stratigraphic units. These units are defined primarily by their relative proportions of limestone and dolomite. The oldest units, the Vintage, Kinzers, and Ledger Formations of Cambrian age, and the Conestoga Limestone of Ordovician age are retained in this report. The Zooks Corner Formation, of Cambrian age, a dolomite unit overlying the Ledger Dolomite, is named here for exposures along Conestoga Creek near the village of Zooks Corner. The Conococheague (Cambrian) and Beekmantown (Ordovician) Limestones, as mapped by earlier workers, have been elevated to group rank and subdivided into formations that are correlated with and named for geologic units in Lebanon and Berks Counties, Pa. These formations, from oldest to youngest, are the Buffalo Springs, Snitz Creek, Millbach, and Richland Formations of the Conococheague Group, and the Stonehenge, Bpler, and Ontelaunee Formations of the Beekmantown Group. The Annville and Myerstown Limestones, which are named for lithologically similar units in Dauphin and Lebanon Counties, Pa., overlie the Beekmantown Group in one small area in the quadrangle.

  6. 33 CFR 117.331 - Snake Creek.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Snake Creek. 117.331 Section 117.331 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Florida § 117.331 Snake Creek. The draw of the Snake Creek...

  7. Selected hydrologic data for Fountain Creek and Monument Creek basins, east-central Colorado

    USGS Publications Warehouse

    Kuhn, Gerhard; Ortiz, Roderick F.

    1989-01-01

    Selected hydrologic data were collected during 1986, 1987, and 1988 by the U.S. Geological Survey for the Fountain Creek and Monument Creek basins, east-central Colorado. The data were obtained as part of a study to determine the present and projected effects of wastewater discharges on the two creeks. The data, which are available for 129 surface-water sites, include: (1) About 1,100 water quality analyses; (2) about 420 measurements of discharge, (3) characteristics of about 50 dye clouds associated with measurements of traveltime and reaeration , and (4) about 360 measurements of channel geometry. (USGS)

  8. 78 FR 5798 - Grouse Creek Wind Park, LLC, Grouse Creek Wind Park II, LLC; Notice of Petition for Enforcement

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-28

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket Nos. El13-39-000, QF11-32-001, QF11-33-001] Grouse Creek Wind Park, LLC, Grouse Creek Wind Park II, LLC; Notice of Petition for... Policies Act of 1978 (PURPA), Grouse Creek Wind Park, LLC and Grouse Creek Wind Park II, LLC filed a...

  9. Late Pleistocene landslide-dammed lakes along the Rio Grande, White Rock Canyon, New Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reneau, S.L.; Dethier, D.P.

    1996-11-01

    Massive slump complexes composed of Pliocene basaltic rocks and underlying Miocene and Pliocene sediments flank the Rio Grande along 16 km of northern White Rock Canyon, New Mexico. The toe area of at least one slump complex was active in the late Pleistocene, damming the Rio Grande at least four times during the period from 18 to 12 {sup 14}C ka and impounding lakes that extended 10-20 km upriver. Stratigraphic relationships and radiocarbon age constraints indicate that three separate lakes formed between 13.7 and 12.4 {sup 14}C ka. The age and dimensions of the ca. 12.4 ka lake are bestmore » constrained; it had an estimated maximum depth of {approx}30 m, a length of {approx}13 km, a surface area of {approx}2.7 km{sup 2}, and an initial volume of {approx}2.5 x 10{sup 7} m{sup 3}. The youngest landslide-dammed lakes formed during a period of significantly wetter regional climate, strongly suggesting that climate changes were responsible for reactivation of the slump complexes. We are not certain about the exact triggering mechanisms for these landslides, but they probably involved removal of lateral support due to erosion of the slope base by the Rio Grande during periods of exceptionally high flood discharge or rapid incision; increased pore pressures associated with higher water tables; higher seepage forces at sites of ground-water discharge; or some combination of these processes. Seismic shaking could also have contributed to triggering of some of the landslides, particularly if aided by wet antecedent conditions. 54 refs., 19 figs., 3 tabs.« less

  10. Water resources and potential effects of ground-water development in Maggie, Marys, and Susie Creek basins, Elko and Eureka counties, Nevada

    USGS Publications Warehouse

    Plume, R.W.

    1995-01-01

    The basins of Maggie, Marys, and Susie Creeks in northeastern Nevada are along the Carline trend, an area of large, low-grade gold deposits. Pumping of ground water, mostly for pit dewatering at one of the mines, will reach maximum rates of about 70,000 acre-ft/yr (acre-feet per year) around the year 2000. This pumping is expected to affect ground-water levels, streamflow, and possibly the flow of Carlin spring, which is the water supply for the town of Carlin, Nev. Ground water in the upper Maggie Creek Basin moves from recharge areas in mountain ranges toward the basin axis and discharges as evapotranspiration and as inflow to the stream channel. Ground water in the lower Maggie, Marys, and Susie Creek Basins moves southward from recharge areas in mountain ranges and along the channel of lower Maggie Creek to the discharge area along the Humboldt River. Ground-water underflow between basins is through permeable bedrock of Schroeder Mountain from the upper Maggie Creek Basin to the lower Maggie Creek Basin and through permeable volcanic rocks from lower Maggie Creek to Carlin spring in the Marys Creek Basin. The only source of water to the combined area of the three basins is an estimated 420,000 acre-ft/yr of precipitation. Water leaves as runoff (38,000 acre-ft/yr) and evapotranspiration of soil moisture and ground water (380,000 acre-ft/yr). A small part of annual precipitation (about 25,000 acre-ft/yr) infiltrates the soil zone and becomes ground-water recharge. This ground water eventually is discharged as evapotranspiration (11,000 acre-ft/yr) and as inflow to the Humboldt River channel and nearby springflow (7,000 acre-ft/yr). Total discharge is estimated to be 18,000 acre-ft/yr.

  11. Technical/ administrative options for managing tritium MCL exceedances in P-area groundwater and Steel Creek

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ross, J.

    2017-04-01

    This white paper was requested by the Core Team (United States Department of Energy [USDOE], United States Environmental Protection Agency [USEPA], and South Carolina Department of Health and Environmental Control [SCDHEC]) at the P-Area Groundwater (PAGW) Operable Unit (OU) Scoping Meeting held in January 2017 to discuss recent data and potential alternatives in support of a focused Corrective Measures Study/Feasibility Study (CMS/FS). This white paper presents an overview of the problem, and a range of technical and administrative options for addressing the tritium contamination in groundwater and Steel Creek. As tritium cannot be treated practicably, alternatives are limited to mediamore » transfer, containment and natural attenuation principally relying on radioactive decay. Using other groundwater OU decisions involving tritium as precedent, Savannah River Nuclear Solutions (SRNS) recommends that final tritium alternatives be evaluated in a CMS/FS, understanding that the likely preferred remedy will include natural attenuation with land use controls (LUCs). This is based on the inability to significantly reduce tritium impact to Steel Creek using an engineered solution as compared to natural attenuation. The timing of this evaluation could be conducted concurrently with the final remedy evaluation for volatile organic compounds (VOCs).« less

  12. Feral Cattle in the White Rock Canyon Reserve at Los Alamos National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hathcock, Charles D.; Hansen, Leslie A.

    2014-03-27

    At the request of the Los Alamos Field Office (the Field Office), Los Alamos National Security (LANS) biologists placed remote-triggered wildlife cameras in and around the mouth of Ancho Canyon in the White Rock Canyon Reserve (the Reserve) to monitor use by feral cattle. The cameras were placed in October 2012 and retrieved in January 2013. Two cameras were placed upstream in Ancho Canyon away from the Rio Grande along the perennial flows from Ancho Springs, two cameras were placed at the north side of the mouth to Ancho Canyon along the Rio Grande, and two cameras were placed atmore » the south side of the mouth to Ancho Canyon along the Rio Grande. The cameras recorded three different individual feral cows using this area as well as a variety of local native wildlife. This report details our results and issues associated with feral cattle in the Reserve. Feral cattle pose significant risks to human safety, impact cultural and biological resources, and affect the environmental integrity of the Reserve. Regional stakeholders have communicated to the Field Office that they support feral cattle removal.« less

  13. Spectral reflectance and photometric properties of selected rocks

    USGS Publications Warehouse

    Watson, Robert D.

    1971-01-01

    Studies of the spectral reflectance and photometric properties of selected rocks at the USGS Mill Creek, Oklahoma, remote sensing test site demonstrate that discrimination of rock types is possible through reflection measurements, but that the discrimination is complicated by surface conditions, such as weathering and lichen growth. Comparisons between fresh-broken, weathered, and lichen-covered granite show that whereas both degree of weathering and amount of lichen cover change the reflectance quality of the granite, lichen cover also considerably changes the photometric properties of the granite. Measurements of the spectral reflectance normal to the surface of both limestone and dolomite show limestone to be more reflective than dolomite in the wavelength range from 380 to 1550 nanometers. The reflectance difference decreases at view angles greater than 40° owing to the difference in the photometric properties of dolomite and limestone.

  14. 75 FR 5631 - Wolf Creek Nuclear Operating Corporation, Wolf Creek Generating Station; Environmental Assessment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-03

    ... NUCLEAR REGULATORY COMMISSION [Docket No. 50-482; NRC-2010-0032] Wolf Creek Nuclear Operating Corporation, Wolf Creek Generating Station; Environmental Assessment and Finding of No Significant Impact The U.S. Nuclear Regulatory Commission (NRC) is considering issuance of an exemption, pursuant to Title...

  15. Sedimentation in Hot Creek in vicinity of Hot Creek Fish Hatchery, Mono County, California

    USGS Publications Warehouse

    Burkham, D.E.

    1978-01-01

    An accumulation of fine-grained sediment in Hot Creek downstream from Hot Creek Fish Hatchery, Mono County, Calif., created concern that the site may be deteriorating as a habitat for trout. The accumulation is a phenomenon that probably occurs naturally in the problem reach. Fluctuation in the weather probably is the basic cause of the deposition of fine-grained sediment that has occurred since about 1970. Man 's activities and the Hot Creek Fish Hatchery may have contributed to the problem; the significance of these factors, however, probably was magnified because of drought conditions in 1975-77. (Woodard-USGS)

  16. Supplement Analysis for the Watershed Management Program EIS (DOE/EIS-0265/SA-71) - Duncan Creek Channel Rehabilitation Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stewart, Shannon C.

    2001-10-29

    BPA proposes to fund a project with the Washington State Department of Fish and Wildlife that will restore historic spawning areas for chum salmon in Duncan Creek. Duncan Creek, a Washington tributary of the Columbia River, was traditionally an important spawning area for chum salmon. The spring seeps areas that chum historically used for spawning are still present in Duncan Creek, however during the past 30 years they have been covered by sediment and debris and infested with reed canary grass. This project proposes to rehabilitate these spawning channels in order to provide chum salmon with a protected spawning andmore » incubation environment. The proposed habitat rehabilitation project will include removing existing gravel in the seeps of Duncan Creek that contain mud, sand, and organics and replacing them with gravels that will maximize egg-to-fry survival rates for chum salmon. A trackhoe or similar equipment will be used to excavate the spawning sites. Invasive vegetation will be removed. Spawning channels will then be reconstructed using sediment free spawning gravels and base rock. Upon completion of work, all disturbed spring channel banks will be protected from erosion with staked coir fabric and revegetated with native willows. Plantings will help to restore native plant communities, increase stream channel shading, and reduce re-infestation by reed canary grass.« less

  17. Northeastern Florida Bay estuarine creek data, water years 1996-2000

    USGS Publications Warehouse

    Hittle, Clinton D.; Zucker, Mark A.

    2004-01-01

    From October 1995 to September 2000 (water years 1996-2000), continuous 15-minute stage, water velocity, salinity, and water temperature data were collected at seven estuarine creeks that flow into northeastern Florida Bay. These creeks include West Highway Creek, Stillwater Creek, Trout Creek, Mud Creek, Taylor River, Upstream Taylor River, and McCormick Creek. Discharge was computed at 15-minute intervals using mean water velocity and the cross-sectional area of the channel. Fifteen-minute unit values are presented for comparison of the quantity, quality, timing, and distribution of flows through the creeks. Revised discharge estimation formulas are presented for three noninstrumented sites (East Highway Creek, Oregon Creek and Stillwater Creek) that utilize an improved West Highway discharge rating. Stillwater Creek and Upstream Taylor River were originally noninstrumented sites; both were fully instrumented in 1999. Discharge rating equations are presented for these sites and were developed using a simple linear regression.

  18. Distribution of manganese between coexisting biotite and hornblende in plutonic rocks

    USGS Publications Warehouse

    Greenland, L.P.; Gottfried, D.; Tilling, R.I.

    1968-01-01

    The distribution of manganese between coexisting biotite and hornblende for 80 mineral pairs from igneous rocks of diverse provenance (including Southern California, Sierra Nevada, Boulder, and Boulder Creek batholiths and the Jemez Mountains volcanics) has been determined by neutron activation analysis. Data on the distribution ratio (Kd = Mnhornblende Mnbiotite) indicate that an equilibrium distribution of Mn is closely approached, though not completely attained, in most samples from plutonic environments. Comparison of Kd values of mineral pairs with bulk chemical composition of host rocks reveals no correlation. Because initial crystallization temperatures vary with rock composition, the lack of correlation of composition with Kd suggests that the equilibrium distribution of Mn between biotite and hornblende reflects exchange at subsolidus temperatures rather than initial crystallization temperatures. The highest Kd values are for volcanic rocks, in which rapid quenching prevents subsolidus redistribution of Mn. For sample pairs from the Southern California and Sierra Nevada batholiths there is a positive correlation of Kd with TiO2 content of biotite. Though the evidence is not compelling, Kd may also correlate with the rate of cooling and/or the presence or absence of sphene in the rock. ?? 1968.

  19. Hydrology of the Johnson Creek Basin, Oregon

    USGS Publications Warehouse

    Lee, Karl K.; Snyder, Daniel T.

    2009-01-01

    The Johnson Creek basin is an important resource in the Portland, Oregon, metropolitan area. Johnson Creek forms a wildlife and recreational corridor through densely populated areas of the cities of Milwaukie, Portland, and Gresham, and rural and agricultural areas of Multnomah and Clackamas Counties. The basin has changed as a result of agricultural and urban development, stream channelization, and construction of roads, drains, and other features characteristic of human occupation. Flooding of Johnson Creek is a concern for the public and for water management officials. The interaction of the groundwater and surface-water systems in the Johnson Creek basin also is important. The occurrence of flooding from high groundwater discharge and from a rising water table prompted this study. As the Portland metropolitan area continues to grow, human-induced effects on streams in the Johnson Creek basin will continue. This report provides information on the groundwater and surface-water systems over a range of hydrologic conditions, as well as the interaction these of systems, and will aid in management of water resources in the area. High and low flows of Crystal Springs Creek, a tributary to Johnson Creek, were explained by streamflow and groundwater levels collected for this study, and results from previous studies. High flows of Crystal Springs Creek began in summer 1996, and did not diminish until 2000. Low streamflow of Crystal Springs Creek occurred in 2005. Flow of Crystal Springs Creek related to water-level fluctuations in a nearby well, enabling prediction of streamflow based on groundwater level. Holgate Lake is an ephemeral lake in Southeast Portland that has inundated residential areas several times since the 1940s. The water-surface elevation of the lake closely tracked the elevation of the water table in a nearby well, indicating that the occurrence of the lake is an expression of the water table. Antecedent conditions of the groundwater level and autumn

  20. 75 FR 40034 - Northeastern Tributary Reservoirs Land Management Plan, Beaver Creek, Clear Creek, Boone, Fort...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-13

    ... shoreline along these reservoirs. Existing land uses around the reservoirs include TVA project operations... TENNESSEE VALLEY AUTHORITY Northeastern Tributary Reservoirs Land Management Plan, Beaver Creek, Clear Creek, Boone, Fort Patrick Henry, South Holston, Watauga, and Wilbur Reservoirs, Tennessee and...

  1. 33 CFR 334.480 - Archers Creek, Ribbon Creek and Broad River, S.C.; U.S. Marine Corps Recruit Depot rifle and...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Broad River, S.C.; U.S. Marine Corps Recruit Depot rifle and pistol ranges, Parris Island. 334.480... DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.480 Archers Creek, Ribbon Creek and Broad River... navigation: (1) At the rifle range. Archers Creek between Broad River and Beaufort River and Ribbon Creek...

  2. 33 CFR 334.480 - Archers Creek, Ribbon Creek and Broad River, S.C.; U.S. Marine Corps Recruit Depot rifle and...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Broad River, S.C.; U.S. Marine Corps Recruit Depot rifle and pistol ranges, Parris Island. 334.480... DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.480 Archers Creek, Ribbon Creek and Broad River... navigation: (1) At the rifle range. Archers Creek between Broad River and Beaufort River and Ribbon Creek...

  3. The Collins Creek and Pleasant Creek Formations: Two new upper cretaceous subsurface units in the Carolina/Georgia Coastal Plain

    USGS Publications Warehouse

    ,; Prowell, D.C.; Christopher, R.A.

    2004-01-01

    This paper formally defines two new Upper Cretaceous subsurface units in the southern Atlantic Coastal Plain of North Carolina, South Carolina and Georgia: the Collins Creek Formation and the Pleasant Creek Formation. These units are confined to the subsurface of the outer Coastal Plain, and their type sections are established in corehole CHN-820 from Charleston County, S.C. The Collins Creek Formation consists of greenish-gray lignitic sand and dark-greenish-gray sandy clay and is documented in cores from Allendale, Beaufort, Berkeley, Dorchester, Jasper and Marion Counties, South Carolina, and from Screven County, Georgia. Previously, Collins Creek strata had been incorrectly assigned to the Middendorf Formation. These sediments occupy a stratigraphic position between the Turonian/Coniacian Cape Fear Formation (?) below and the proposed upper Coniacian to middle Santonian Pleasant Creek Formation above. The Collins Creek Formation is middle and late Coniacian in age on the basis of calcareous nannofossil and palynomorph analyses. The Pleasant Creek Formation consists of olive-gray sand and dark-greenish-gray silty to sandy clay and is documented in cores from New Hanover County, North Carolina, and Berkeley, Charleston, Dorchester, Horry and Marion Counties, South Carolina. The strata of this unit previously were assigned incorrectly to the Middendorf Formation and (or) the Cape Fear Formation. These sediments occupy a stratigraphic position between the proposed Collins Creek Formation below and the Shepherd Grove Formation above. The Pleasant Creek Formation is late Coniacian and middle Santonian in age, on the basis of its calcareous nannofossil and palynomorph assemblages.

  4. Geochemical Indicators of Urban Development in Tributaries and Springs along the Bull Creek Watershed, Austin, TX

    NASA Astrophysics Data System (ADS)

    Senison, J. J.; Banner, J. L.; Reyes, D.; Sharp, J. M.

    2012-12-01

    Urbanization can cause significant changes to both flow and water quality in streams and tributaries. In the Austin, Texas, area, previous studies have demonstrated that streamwater strontium isotope compositions (87Sr/86Sr) correlate with measures of urbanization when comparing non-urbanized streams to their urban counterparts. The inclusion of municipal water into natural surface water is inferred from the mean 87Sr/86Sr value found in urbanized streams, which falls between the high value in treated municipal water and the lower values found in local surface streams sourcing from non-urbanized catchments. Fluoride is added to municipal tap water in the treatment process, and a correlation between 87Sr/86Sr and fluoride is observed in streamwater sampled from the watersheds around Austin. These relationships represent some of the principal findings reported in Christian et al. (2011). Current research is testing the hypothesis that municipal water influx in urban areas is a primary modifier of stream- and spring-water chemistry in a single watershed that contains a strong gradient in land use. We compare 87Sr/86Sr and other chemical constituents with potential contributing endmembers, such as municipal tap water and wastewater, local soil and rock leachates, and land use within the Bull Creek watershed. As a consequence of the history of land development, some Bull Creek tributaries are sourced and flow almost entirely in fully-developed areas, whereas others are located in protected natural areas. Thirteen tributaries were monitored and classified as either urbanized or non-urbanized based upon land use within the tributary catchment. Springs in the Bull Creek watershed were also sampled and are similarly classified. The Bull Creek watershed is composed of Lower Cretaceous limestone with significantly lower 87Sr/86Sr than that of municipal water taken from the Lower Colorado River, which is underlain in part by Precambrian rocks upstream of Austin. There are

  5. 6. West elevation of Drift Creek Bridge, view looking east ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. West elevation of Drift Creek Bridge, view looking east from new alignment of Drift Creek Road - Drift Creek Bridge, Spanning Drift Creek on Drift Creek County Road, Lincoln City, Lincoln County, OR

  6. Evaluating uncertainty in predicting spatially variable representative elementary scales in fractured aquifers, with application to Turkey Creek Basin, Colorado

    USGS Publications Warehouse

    Wellman, Tristan P.; Poeter, Eileen P.

    2006-01-01

    Computational limitations and sparse field data often mandate use of continuum representation for modeling hydrologic processes in large‐scale fractured aquifers. Selecting appropriate element size is of primary importance because continuum approximation is not valid for all scales. The traditional approach is to select elements by identifying a single representative elementary scale (RES) for the region of interest. Recent advances indicate RES may be spatially variable, prompting unanswered questions regarding the ability of sparse data to spatially resolve continuum equivalents in fractured aquifers. We address this uncertainty of estimating RES using two techniques. In one technique we employ data‐conditioned realizations generated by sequential Gaussian simulation. For the other we develop a new approach using conditioned random walks and nonparametric bootstrapping (CRWN). We evaluate the effectiveness of each method under three fracture densities, three data sets, and two groups of RES analysis parameters. In sum, 18 separate RES analyses are evaluated, which indicate RES magnitudes may be reasonably bounded using uncertainty analysis, even for limited data sets and complex fracture structure. In addition, we conduct a field study to estimate RES magnitudes and resulting uncertainty for Turkey Creek Basin, a crystalline fractured rock aquifer located 30 km southwest of Denver, Colorado. Analyses indicate RES does not correlate to rock type or local relief in several instances but is generally lower within incised creek valleys and higher along mountain fronts. Results of this study suggest that (1) CRWN is an effective and computationally efficient method to estimate uncertainty, (2) RES predictions are well constrained using uncertainty analysis, and (3) for aquifers such as Turkey Creek Basin, spatial variability of RES is significant and complex.

  7. A possible climate signal in the surface morphology and internal structure of Galena Creek Rock Glacier, Wyoming

    NASA Astrophysics Data System (ADS)

    Petersen, Eric; Holt, John; Levy, Joseph; Stuurman, Cassie; Nerozzi, Stefano; Cardenas, Benjamin; Pharr, James; Aylward, Dan; Schmidt, Logan; Hoey, William; Prem, Parvathy; Rambo, Jackie; Lim, YeJin; Maharaj, Kian

    2016-04-01

    Galena Creek Rock Glacier (GCRG) has been shown in previous studies to be a debris-covered glacier (e.g. Ackert, Jr., 1998), and is thus a target of interest as a record of climate and an element of the mountain hydrological system. The goal of this study was to investigate possible relationships between surface morphology and internal structure and composition of GCRG. This was achieved using ground-penetrating radar (GPR), time-domain electromagnetic sounding (TEM), and photogrammetry to produce digital terrain models (DTMs). We acquired 6 longitudinal GPR surveys at 50 and 100 MHz, 2 common midpoint GPR surveys, and 28 TEM soundings on GCRG from the head to the toe, and ground-based photogrammetry data were collected to produce a DTM of its cirque at 10 cm resolution. TEM soundings locally constrained the bulk thickness of GCRG to 26-75 meters. Common midpoint and hyperbola analyses of GPR surveys produced dielectric constants in the near subsurface of 4 in the upper glacier to 5-9 in the middle and lower glacier. These are consistent with clean ice and a mélange of rock with air and/or ice, respectively. GPR revealed a pervasive shallow reflector at 1-2.5m depth that we interpret to be the interface between the surface debris layer and glacier ice. There is increased structure and clutter in the GPR data beneath this interface as one moves down glacier. Observations were additionally made of a 40m wide, 4-5m deep circular thermokarst pond located on upper GCRG in the cirque. The walls of the pond revealed a cross-section of the top several meters of GCRG's interior: a dry surface layer of rocky debris 1-1.5m thick overlying pure glacier ice. An englacial debris band was also observed, roughly 50 cm thick and presenting at an apparent up-glacier dip of ~30 degrees, intersecting the surface near a subtle ridge resolved in the photogrammetry DTM. A GPR transect conducted near the pond over 6 similar ridges imaged 6 corresponding up-glacier dipping reflectors that

  8. Astronaut David Scott - Sample - "Genesis Rock" - MSC

    NASA Image and Video Library

    1971-08-12

    S71-43477 (12 Aug. 1971) --- Astronaut David R. Scott, right, commander of the Apollo 15 mission, gets a close look at the sample referred to as "Genesis rock" in the Non-Sterile Nitrogen Processing Line (NNPL) in the Lunar Receiving Laboratory (LRL) at the Manned Spacecraft Center (MSC). Scientist-astronaut Joseph P. Allen IV, left, an Apollo 15 spacecraft communicator, looks on with interest. The white-colored rock has been given the permanent identification of 15415.

  9. Ecosystem engineers drive creek formation in salt marshes.

    PubMed

    Vu, Huy D; Wie Ski, Kazimierz; Pennings, Steven C

    2017-01-01

    Ecosystem engineers affect different organisms and processes in multiple ways at different spatial scales. Moreover, similar species may differ in their engineering effects for reasons that are not always clear. We examined the role of four species of burrowing crabs (Sesarma reticulatum, Eurytium limosum, Panopeus herbstii, Uca pugnax) in engineering tidal creek networks in salt marshes experiencing sea level rise. In the field, crab burrows were associated with heads of eroding creeks and the loss of plant (Spartina alterniflora) stems. S. reticulatum was closely associated with creek heads, but densities of the other crab species did not vary across marsh zones. In mesocosm experiments, S. reticulatum excavated the most soil and strongly reduced S. alterniflora biomass. The other three species excavated less and did not affect S. alterniflora. Creek heads with vegetation removed to simulate crab herbivory grew significantly faster than controls. Percolation rates of water into marsh sediments were 10 times faster at creek heads than on the marsh platform. Biomass decomposed two times faster at creek heads than on the marsh platform. Our results indicate that S. reticulatum increases creek growth by excavating sediments and by consuming plants, thereby increasing water flow and erosion at creek heads. Moreover, it is possible that S. reticulatum burrows also increase creek growth by increasing surface and subsurface erosion, and by increasing decomposition of organic matter at creek heads. Our results show that the interaction between crab and plant ecosystem engineers can have both positive and negative effects. At a small scale, in contrast to other marsh crabs, S. reticulatum harms rather than benefits plants, and increases erosion rather than marsh growth. At a large scale, however, S. reticulatum facilitates the drainage efficiency of the marsh through the expansion of tidal creek networks, and promotes marsh health. © 2016 by the Ecological Society

  10. Hydrologic assessment of a riparian section along Boulder Creek near Boulder, Colorado, September 1989-September 1991

    USGS Publications Warehouse

    Kimbrough, Robert

    1995-01-01

    Native woody riparian species, primarily plains cottonwood (Populus fremontii), are regenerating at less than historical rates along Boulder Creek, a regulated stream near Boulder, Colorado. Loss of native riparian habitats might cause a decline in numbers of some native wildlife species. Previous studies have indicated that streamflow regulation can adversely affect native riparian vegetation reproduction. Surface- and ground-water data were collected from September 1989 to September 1991 along a riparian section of Boulder Creek to assist ecologists in assessing woody plant-recruitment characteristics. Annual mean streamflows in Boulder Creek at Cottonwood Grove of 34.5 cubic feet per second for water year 1990 (October 1, 1989- September 30, 1990) and 34.1 cubic feet per second for water year 1991 were 53 percent less than a site on Boulder Creek about 5 miles upstream from the study area. Diversions dating from 1882 caused most of the decrease. The alluvial aquifer in the study area averaged 5 feet in thickness and consisted of gravel- to cobble-size particles derived from crystalline rock of Precambrian age. The direction of ground-water movement was similar to the direction of streamflow. Ground-water movement in the northeastern part of the grove was affected by a pond constructed at a lower elevation than the stream channel. Water levels in the alluvial aquifer adjacent to the stream pre- dominantly were affected by stream stage, whereas farther from the channel, ground-water levels were affected by other processes such as evapotrans- piration, infiltration, and recharge from urban runoff.

  11. Geologic interpretation of gravity data from the Date Creek basin and adjacent areas, west-central Arizona

    USGS Publications Warehouse

    Otton, James K.; Wynn, Jeffrey C.

    1978-01-01

    A gravity survey of the Date Creek Basin and adjacent areas was conducted in June 1977 to provide information for the interpretation of basin geology. A comparison of facies relations in the locally uraniferous Chapin Wash Formation and the position of the Anderson mine gravity anomaly in the Date Creek Basin suggested that a relationship between gravity lows and the development of thick lacustrine sections in the region might exist. A second-order residual gravity map derived from the complete Bouguer gravity map for the survey area (derived from survey data and pre-existing U.S. Department of Defense data) shows an excellent correspondence between gravity lows and sediment-filled basins and suggests considerable variation in basin-fill thickness. Using the Anderson mine anomaly as a model, gravity data and facies relations suggest that the southeastern flank of the Aguila Valley gravity low and the gravity low at the western end of the Hassayampa Plain are likely areas for finding thick sections of tuffaceous lacustrine rocks.

  12. Physical characteristics of the lower San Joaquin River, California, in relation to white sturgeon spawning habitat, 2011–14

    USGS Publications Warehouse

    Marineau, Mathieu D.; Wright, Scott A.; Whealdon-Haught, Daniel R.; Kinzel, Paul J.

    2017-07-19

    The U.S. Fish and Wildlife Service confirmed that white sturgeon (Acipenser transmontanus) recently spawned in the lower San Joaquin River, California. Decreases in the San Francisco Bay estuary white sturgeon population have led to an increased effort to understand their migration behavior and habitat preferences. The preferred spawning habitat of other white sturgeon (for example, those in the Columbia and Klamath Rivers) is thought to be areas that have high water velocity, deep pools, and coarse bed material. Coarse bed material (pebbles and cobbles), in particular, is important for the survival of white sturgeon eggs and larvae. Knowledge of the physical characteristics of the lower San Joaquin River can be used to preserve sturgeon spawning habitat and lead to management decisions that could help increase the San Francisco Bay estuary white sturgeon population.Between 2011 and 2014, the U.S. Geological Survey, in cooperation with the U.S. Fish and Wildlife Service, assessed selected reaches and tributaries of the lower river in relation to sturgeon spawning habitat by (1) describing selected spawning reaches in terms of habitat-related physical characteristics (such as water depth and velocity, channel slope, and bed material) of the lower San Joaquin River between its confluences with the Stanislaus and Merced Rivers, (2) describing variations in these physical characteristics during wet and dry years, and (3) identifying potential reasons for these variations.The lower San Joaquin River was divided into five study reaches. Although data were collected from all study reaches, three subreaches where the USFWS collected viable eggs at multiple sites in 2011–12 from Orestimba Creek to Sturgeon Bend were of special interest. Water depth and velocity were measured using two different approaches—channel cross sections and longitudinal profiles—and data were collected using an acoustic Doppler current profiler.During the first year of data collection (water

  13. Simulation of Water Quality in the Tull Creek and West Neck Creek Watersheds, Currituck Sound Basin, North Carolina and Virginia

    USGS Publications Warehouse

    Garcia, Ana Maria

    2009-01-01

    A study of the Currituck Sound was initiated in 2005 to evaluate the water chemistry of the Sound and assess the effectiveness of management strategies. As part of this study, the Soil and Water Assessment Tool (SWAT) model was used to simulate current sediment and nutrient loadings for two distinct watersheds in the Currituck Sound basin and to determine the consequences of different water-quality management scenarios. The watersheds studied were (1) Tull Creek watershed, which has extensive row-crop cultivation and artificial drainage, and (2) West Neck Creek watershed, which drains urban areas in and around Virginia Beach, Virginia. The model simulated monthly streamflows with Nash-Sutcliffe model efficiency coefficients of 0.83 and 0.76 for Tull Creek and West Neck Creek, respectively. The daily sediment concentration coefficient of determination was 0.19 for Tull Creek and 0.36 for West Neck Creek. The coefficient of determination for total nitrogen was 0.26 for both watersheds and for dissolved phosphorus was 0.4 for Tull Creek and 0.03 for West Neck Creek. The model was used to estimate current (2006-2007) sediment and nutrient yields for the two watersheds. Total suspended-solids yield was 56 percent lower in the urban watershed than in the agricultural watershed. Total nitrogen export was 45 percent lower, and total phosphorus was 43 percent lower in the urban watershed than in the agricultural watershed. A management scenario with filter strips bordering the main channels was simulated for Tull Creek. The Soil and Water Assessment Tool model estimated a total suspended-solids yield reduction of 54 percent and total nitrogen and total phosphorus reductions of 21 percent and 29 percent, respectively, for the Tull Creek watershed.

  14. 33 CFR 110.72 - Blackhole Creek, Md.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... tip of an unnamed island located 0.16 mile upstream from the mouth of the creek approximately 660 feet to the west shore of the creek; northwest of a line ranging from the southwesterly tip of the island... line 100 feet from and parallel to the shore of the creek to its intersection with the south property...

  15. 33 CFR 110.72 - Blackhole Creek, Md.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... tip of an unnamed island located 0.16 mile upstream from the mouth of the creek approximately 660 feet to the west shore of the creek; northwest of a line ranging from the southwesterly tip of the island... line 100 feet from and parallel to the shore of the creek to its intersection with the south property...

  16. 33 CFR 110.72 - Blackhole Creek, Md.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... tip of an unnamed island located 0.16 mile upstream from the mouth of the creek approximately 660 feet to the west shore of the creek; northwest of a line ranging from the southwesterly tip of the island... line 100 feet from and parallel to the shore of the creek to its intersection with the south property...

  17. Environmental Impact of the Contact and Sonoma Mercury Mines on Water, Sediment, and Biota in Anna Belcher and Little Sulphur Creek Watersheds, Sonoma County, California

    USGS Publications Warehouse

    Rytuba, James J.; Hothem, Roger L.; May, Jason T.; Kim, Christopher S.; Lawler, David; Goldstein, Daniel

    2009-01-01

    The Contact and Sonoma mercury (Hg) deposits are among the youngest Hg deposits in the Coast Range Hg mineral belt and are located in the western part of the Clear Lake volcanic field in Sonoma County, California. The mine workings and tailings are located in the headwaters of Anna Belcher Creek, which is a tributary to Little Sulphur Creek. The Contact Hg mine produced about 1,000 flasks of Hg, and the Sonoma mine produced considerably less. Waste rock and tailings eroded from the Contact and Sonoma mines have contributed Hg-enriched mine waste material to the headwaters of Anna Belcher Creek. The mines are located on federal land managed by the U.S. Bureau of Land Management (USBLM). The USBLM requested that the U.S. Geological Survey (USGS) measure and characterize Hg and other geochemical constituents in tailings, sediment, water, and biota at the Contact and Sonoma mines and in Anna Belcher and Little Sulphur Creeks. This report is made in response to the USBLM request, the lead agency mandated to conduct a Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) - Removal Site Investigation (RSI). The RSI applies to removal of Hg-contaminated mine waste from the Contact and Sonoma mines as a means of reducing Hg transport to Anna Belcher and Little Sulphur Creeks. This report summarizes data obtained from field sampling of mine tailings, waste rock, sediment, and water at the Contact and Sonoma mines that was initiated on April 20 during a storm event, and on June 19, 2001. Further sampling of water, sediment, and biota in a pond and tributaries that drain from the mine area was completed on April 1, 2003. Our results permit a preliminary assessment of the mining sources of Hg and associated chemical constituents that could elevate levels of monomethyl Hg (MMeHg) in tributaries and biota that are impacted by historic mining.

  18. Characterizing Ground-Water Flow Paths in High-Altitude Fractured Rock Settings Impacted by Mining Activities

    NASA Astrophysics Data System (ADS)

    Wireman, M.; Williams, D.

    2003-12-01

    The Rocky Mountains of the western USA have tens of thousands of abandoned, inactive and active precious-metal(gold,silver,copper)mine sites. Most of these sites occur in fractured rock hydrogeologic settings. Mining activities often resulted in mobilization and transport of associated heavy metals (zinc,cadmium,lead) which pose a significant threat to aquatic communities in mountain streams.Transport of heavy metals from mine related sources (waste rock piles,tailings impoudments,underground workings, mine pits)can occur along numerous hydrological pathways including complex fracture controlled ground-water pathways. Since 1991, the United States Environmental Protection Agency, the Colorado Division of Minerals and Geology and the University of Colorado (INSTAAR)have been conducting applied hydrologic research at the Mary Murphy underground mine. The mine is in the Chalk Creek mining district which is located on the southwestern flanks of the Mount Princeton Batholith, a Tertiary age intrusive comprised primarily of quartz monzonite.The Mount Princeton batholith comprises a large portion of the southern part of the Collegiate Range west of Buena Vista in Chaffee County, CO. Chalk Creek and its 14 tributaries drain about 24,900 hectares of the eastern slopes of the Range including the mining district. Within the mining district, ground-water flow is controlled by the distribution, orientation and permeability of discontinuities within the bedrock. Important discontinuities include faults, joints and weathered zones. Local and intermediate flow systems are perturbed by extensive underground excavations associated with mining (adits, shafts, stopes, drifts,, etc.). During the past 12 years numerous hydrological investigations have been completed. The investigations have been focused on developing tools for characterizing ground-water flow and contaminant transport in the vicinity of hard-rock mines in fractured-rock settings. In addition, the results from these

  19. Microsatellite analyses of San Franciscuito Creek rainbow trout

    USGS Publications Warehouse

    Nielsen, Jennifer L.

    2000-01-01

    Microsatellite genetic diversity found in San Francisquito Creek rainbow trout support a close genetic relationship with rainbow trout (Oncorhynchus mykiss) from another tributary of San Francisco Bay, Alameda Creek, and coastal trout found in Lagunitas Creek, Marin County, California. Fish collected for this study from San Francisquito Creek showed a closer genetic relationship to fish from the north-central California steelhead ESU than for any other listed group of O. mykiss. No significant genotypic or allelic frequency associations could be drawn between San Francisquito Creek trout and fish collected from the four primary rainbow trout hatchery strains in use in California, i.e. Whitney, Mount Shasta, Coleman, and Hot Creek hatchery fish. Indeed, genetic distance analyses (δµ2) supported separation between San Francisquito Creek trout and all hatchery trout with 68% bootstrap values in 1000 replicate neighbor-joining trees. Not surprisingly, California hatchery rainbow trout showed their closest evolutionary relationships with contemporary stocks derived from the Sacramento River. Wild collections of rainbow trout from the Sacramento-San Joaquin basin in the Central Valley were also clearly separable from San Francisquito Creek fish supporting separate, independent ESUs for two groups of O. mykiss (one coastal and one Central Valley) with potentially overlapping life histories in San Francisco Bay. These data support the implementation of management and conservation programs for rainbow trout in the San Francisquito Creek drainage as part of the central California coastal steelhead ESU.

  20. Geologic map of the Sand Creek Pass quadrangle, Larimer County, Colorado, and Albany County, Wyoming

    USGS Publications Warehouse

    Workman, Jeremiah B.; Braddock, William A.

    2010-01-01

    New geologic mapping within the Sand Creek Pass 7.5 minute quadrangle defines geologic relationships within the northern Front Range of Colorado along the Wyoming border approximately 35 km south of Laramie, Wyo. Previous mapping within the quadrangle was limited to regional reconnaissance mapping; Eaton Reservoir 7.5 minute quadrangle to the east (2008), granite of the Rawah batholith to the south (1983), Laramie River valley to the west (1979), and the Laramie 30' x 60' quadrangle to the north (2007). Fieldwork was completed during 1981 and 1982 and during 2007 and 2008. Mapping was compiled at 1:24,000-scale. Minimal petrographic work was done and no isotope work was done in the quadrangle area, but detailed petrographic and isotope studies were performed on correlative map units in surrounding areas as part of a related regional study of the northern Front Range. Stratigraphy of Proterozoic rocks is primarily based upon field observation of bulk mineral composition, macroscopic textural features, and field relationships that allow for correlation with rocks studied in greater detail outside of the map area. Stratigraphy of Phanerozoic rocks is primarily based upon correlation with similar rocks to the north in the Laramie Basin of Wyoming and to the east in the Front Range of Colorado.

  1. Within-storm and Seasonal Differences in Particulate Organic Material Composition and Sources in White Clay Creek, USA

    NASA Astrophysics Data System (ADS)

    Karwan, D. L.; Aufdenkampe, A. K.; Aalto, R. E.; Newbold, J. D.; Pizzuto, J. E.

    2011-12-01

    The material exported from a watershed reflects its origin and the processes it undergoes during downhill and downstream transport. Due to its nature as a complex mixture of material, the composition of POM integrates the physical, biological, and chemical processes effecting watershed material. In this study, we integrate sediment fingerprint analyses common in geomorphological studies of mineral suspended particulate material (SPM) with biological and ecological characterizations of particulate organic carbon (POC). Through this combination, we produce quantifiable budgets of particulate organic carbon and mineral material, as well as integrate our calculations of carbon and mineral cycling in a complex, human-influenced watershed. More specifically, we quantify the composition and sources of POM in the third-order White Clay Creek Watershed, and examine the differences in composition and source with hydrologic variations produced by storms and seasonality. POM and watershed sources have been analyzed for particle size, mineral surface area, total mineral elemental composition, fallout radioisotope activity for common erosion tracers (7Be, 210Pb, 137Cs), and organic carbon and nitrogen content with stable isotope (13C, 15N) abundance. Results indicate a difference in POM source with season as well as within individual storms. Beryllium-7 activity, an indicator of landscape surface erosion, nearly triples within a single spring storm, from 389 mBq/g on the rising limb and 1190 mBq/g at the storm hydrograph peak. Fall storms have even lower 7Be concentrations, below 100 mBq/g. Furthermore, weight-percent of organic carbon nearly doubles from 4 - 5% during spring storms to over 8% during fall storms, with smaller variation occurring within individual storms. Despite changes in percent organic carbon, organic carbon to mineral surface area ratios and carbon to nitrogen molar ratios remain similar within storms and across seasons.

  2. Coyote Creek Trash Reduction Project: Clean Creeks, Healthy Communities

    EPA Pesticide Factsheets

    Information about the SFBWQP Coyote Creek Trash Reduction Project, part of an EPA competitive grant program to improve SF Bay water quality focused on restoring impaired waters and enhancing aquatic resources.

  3. The relationship of geophysical measurements to engineering and construction parameters in the Straight Creek Tunnel pilot bore, Colorado

    USGS Publications Warehouse

    Scott, J.H.; Lee, F.T.; Carroll, R.D.; Robinson, C.S.

    1968-01-01

    Seismic-refraction and electrical-resistivity measurements made along the walls of the Straight Creek Tunnel pilot bore indicate that both a low-velocity and a high-resistivity layer exist in the disturbed rock surrounding the excavation. Seismic measurements were analyzed to obtain the thickness and seismic velocity of rock in the low-velocity layer, the velocity of rock behind the layer and the amplitude of seismic energy received at the detectors. Electrical-resistivity measurements were analyzed to obtain the thickness and electrical resistivity of the high-resistivity layer and the resistivity of rock behind the layer. The electrical resistivity and the seismic velocity of rock at depth, the thickness of rock in the low-velocity layer, and the relative amplitude of seismic energy were correlated against the following parameters, all of which are important in tunnel construction: height of the tension arch, stable vertical rock load, rock quality, rate of construction and cost per foot, percentage of lagging and blocking, set spacing, and type and amount of steel support required, The correlations were statistically meaningful, having correlation coefficients ranging in absolute value from about 0??7 to nearly 1??0. This finding suggests the possibility of predicting parameters of interest in tunnel construction from geophysical measurements made in feeler holes drilled ahead of a working face. Predictions might be based on correlations established either during the early stages of construction or from geophysical surveys in other tunnels of similar design in similar geologic environments. ?? 1968.

  4. 33 CFR 207.170d - Taylor Creek, navigation lock (S-193) across the entrance to Taylor Creek at Lake Okeechobee...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Taylor Creek, navigation lock (S-193) across the entrance to Taylor Creek at Lake Okeechobee, Okeechobee, Fla.; use, administration..., DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE NAVIGATION REGULATIONS § 207.170d Taylor Creek, navigation lock...

  5. 33 CFR 207.170d - Taylor Creek, navigation lock (S-193) across the entrance to Taylor Creek at Lake Okeechobee...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Taylor Creek, navigation lock (S-193) across the entrance to Taylor Creek at Lake Okeechobee, Okeechobee, Fla.; use, administration..., DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE NAVIGATION REGULATIONS § 207.170d Taylor Creek, navigation lock...

  6. Geologic characteristics and movement of the Meadow Creek landslide, part of the Coal Hill landslide complex, western Kane County, Utah

    USGS Publications Warehouse

    Ashland, Francis X.; McDonald, Greg N.; Carney, Stephanie M.; Tabet, David E.; Johnson, Cari L.

    2010-01-01

    The Meadow Creek landslide, part of the Coal Hill landslide complex in western Kane County, Utah, is about 1.7 miles (2.7 km) wide and 1.3 miles (2.1 km) long and contains six smaller historical slides. The upper part of the Meadow Creek landslide is gently sloping and consists of displaced and back-rotated blocks of Cretaceous Dakota and Cedar Mountain Formations that form northeast- to locally east-trending ridges that are separated by sediment-filled half-grabens. The lower part of the landslide is gently to moderately sloping, locally incised, and consists of heterogeneous debris that overrides the Jurassic Carmel Formation near Meadow Creek. Monitoring using a survey-grade Global Positioning System (GPS) instrument detected movement of the southern part of the Meadow Creek landslide between October 2005 and October 2008, including movement of two of the historical slides-landslides 1 and 2. The most movement during the measurement period occurred within the limits of persistently moving landslide 1 and ranged from about 24 to 64 inches (61-163 cm). Movement of the abutting southern part of the Meadow Creek landslide ranged from approximately 6 to 10 inches (15-25 cm). State Route 9 crosses over approximately a mile (1.6 km) of the southern part of the Meadow Creek landslide, including landslide 1. The highway and its predecessor (State Route 15) have been periodically displaced and damaged by persistent movement of landslide 1. Most of the landslide characteristics, particularly its size, probable depth, and the inferred weak strength and low permeability of clay-rich gouge derived from the Dakota and Cedar Mountain Formations, are adverse to and pose significant challenges to landslide stabilization. Secondary hazards include piping-induced sinkholes along scarps and ground cracks, and debris flows and rock falls from the main-scarp escarpment.

  7. Adolescents' Interest in and Views of Destructive Themes in Rock Music.

    ERIC Educational Resources Information Center

    Wass, Hannelore; And Others

    1989-01-01

    Surveyed 694 adolescents concerning rock music preferences and views on homicide, satanism, and suicide (HSS) themes. Nine percent of middle school students, 17 percent of rural and 24percent of urban high school students were HSS rock fans. Three-fourths of fans were male, majority were White. Many students expressed concerns about destructive…

  8. Fermilab | Tritium at Fermilab | Ferry Creek Results

    Science.gov Websites

    newsletter Ferry Creek Results chart This chart (click chart for larger version) shows the levels of tritium following the detection of low levels of tritium in Indian Creek in November 2005. The levels of tritium in . Fermilab continues to monitor the ponds and creeks on its site and take steps to keep the levels of tritium

  9. Summer food habits and trophic overlap of roundtail chub and creek chub in Muddy Creek, Wyoming

    USGS Publications Warehouse

    Quist, M.C.; Bower, M.R.; Hubert, W.A.

    2006-01-01

    Native fishes of the Upper Colorado River Basin have experienced substantial declines in abundance and distribution, and are extirpated from most of Wyoming. Muddy Creek, in south-central Wyoming (Little Snake River watershed), contains sympatric populations of native roundtail chub (Gila robusta), bluehead sucker, (Catostomus discobolus), and flannelmouth sucker (C. tatipinnis), and represents an area of high conservation concern because it is the only area known to have sympatric populations of all 3 species in Wyoming. However, introduced creek chub (Semotilus atromaculatus) are abundant and might have a negative influence on native fishes. We assessed summer food habits of roundtail chub and creek chub to provide information on the ecology of each species and obtain insight on potential trophic overlap. Roundtail chub and creek chub seemed to be opportunistic generalists that consumed a diverse array of food items. Stomach contents of both species were dominated by plant material, aquatic and terrestrial insects, and Fishes, but also included gastropods and mussels. Stomach contents were similar between species, indicating high trophic, overlap. No length-related patterns in diet were observed for either species. These results suggest that creek chubs have the potential to adversely influence the roundtail chub population through competition for food and the native fish assemblage through predation.

  10. The Early Oligocene Copperas Creek Volcano and geology along New Mexico Higway 15 between Sapillo Creek and the Gila Cliff Dwellings National Monument, Grant and Catron Counties, New Mexico

    USGS Publications Warehouse

    Ratté, James C.; Mack, Greg; Witcher, James; Lueth, Virgil W.

    2008-01-01

    The section of New Mexico Highway 15 between the intersection of NM-15 and NM 35 (aka Sapillo junction) at the south and the Gila Cliff Dwellings National Monument at the north end of NM –15 occupies an approximately 18 mile long, mile wide, corridor through the eastern part of the Gila Wilderness (Fig. 1). Whereas most of the Gila Wilderness is dominated by silicic, caldera-forming supervolcanoes of Eocene to Oligocene age, this part of NM-15 traverses a volcanic terrain of similar age, but composed mainly of intermediate composition lava flows and minor associated rhyolitic intrusions and pyroclastic rocks, which are related to the here-named Copperas Creek volcano. This volcanic complex is bounded by Basin and Range structures: on the south by the Sapillo Creek graben, and on the north by the Gila Hot Springs graben, both of which are filled with Gila Conglomerate of late Tertiary to Pleistocene(?) age. Hot springs in the Gila River valley are localized along faults in the deepest part of the Gila Hot Springs graben. The cliff dwellings of the National Monument were constructed in caves in Gila Conglomerate in the western part of the Gila Hot Springs graben. The eastern edge of the Gila Cliff Dwellings caldera is buried by younger rocks east of the cliff dwellings, but spectacular cliffs of Bloodgood Canyon Tuff, which fills the caldera, can be viewed along the West Fork of the Gila River from the trail starting at the cliff dwellings. Although this is not intended as a formal road log, highway mileage markers (MM) will be used to locate geologic features more or less progressively from south to north along NM-15.

  11. Metals in Devonian kerogenous marine strata at Gibellini and Bisoni properties in southern Fish Creek Range, Eureka County, Nevada

    USGS Publications Warehouse

    Desborough, George A.; Poole, F.G.; Hose, R.K.; Radtke, A.S.

    1979-01-01

    A kerogen-rich sequence of siliceous mudstone, siltstone, and chert as much as 60 m thick on ridge 7129 in the southern Fish Creek Range, referred to as Gibellini facies of the Woodruff Formation, has been evaluated on the surface and in drill holes principally for its potential resources of vanadium, zinc, selenium, molybdenum, and syncrude oil content. The strata are part of a strongly deformed allochthonous mass of eugeosynclinal Devonian marine rocks that overlie deformed allochthonous Mississippian siliceous rocks and relatively undeformed autochthonous Mississippian Antler flysch at this locality. The vanadium in fresh black rocks obtained from drill holes and fresh exposures in trenches and roadcuts occurs chiefly in organic matter. Concentrations of vanadium oxide (V2O5) in unoxidized samples range from 3,000 to 7,000 ppm. In oxidized and bleached rock that is prevalent at the surface, concentrations of vanadium oxide range from 6,000 to 8,000 ppm, suggesting a tendency toward enrichment due to surficial weathering and ground-water movement. Zinc occurs in sphalerite, and selenium occurs in organic matter; molybdenum appears to occur both in molybdenite and in organic matter. Concentrations of zinc in unoxidized rock range from 4,000 to 18,000 ppm, whereas in oxidized rock they range from 30 to 100 ppm, showing strong depletion due to weathering. Concentrations of selenium in unoxidized rock range from 30 to 200 ppm, whereas in oxidized rock they range from 200 to 400 ppm, indicating some enrichment upon weathering. Concentrations of molybdenum in unoxidized rock range from 70 to 960 ppm, whereas in oxidized rock they range from 30 to 80 ppm, indicating strong depletion upon weathering. Most fresh black rock is low-grade oil shale, and yields as much as 12 gallons/short ton of syncrude oil. Metahewettite is the principal vanadium mineral in the oxidized zone, but it also occurs sparsely as small nodules and fillings of microfractures in unweathered strata

  12. Structural styles of the Guess Creek fault block beneath the Great Smoky thrust sheet, Blount County, Tennessee

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carter, M.W.; Davidson, G.L.; Heller, J.A.

    1993-03-01

    A road cut along US 321 N, approximately 1 km NW of Walland, TN, exposes a previously unexposed complexly deformed section of Middle Ordovician clastic wedge [Chickamauga Group, Sevier Shale] sedimentary rocks. It provides an excellent opportunity to analyze both the lithologic assemblages and complex folding and faulting beneath the Great Smoky thrust sheet. Arkosic quartzite of the Lower Cambrian Cochran Conglomerate [Chilhowee Group], has been thrust over weaker Sevier Shale in the hanging wall of the Guess Creek fault. Regionally, the Great Smoky fault separates metamorphosed Precambrian to Lower Cambrian clastic shelf, slope, and rift facies rocks of themore » western Blue Ridge from Cambro-Ordovician carbonate shelf and orogenic wedge deposits of the foreland fold and thrust belt. West of the Great Smoky fault, the Guess Creek fault has been interpreted to floor duplexed Cambro-Ordovician rocks exposed in windows beneath the Great Smoky thrust sheet in the vicinity of the Great Smoky Mountains National Park. The Sevier Shale here consists of variably cleaved shale, siltstone, sandstone, and conglomerate. It exhibits a variety of fold styles throughout the exposure, ranging from predominantly noncylindrical tight folds to broad, open structures. A weak axial-planar pencil cleavage is developed in the Middle Ordovician shale and siltstone, along with a secondary cleavage that transects the axial surfaces of the folds. Minor thrust faults within the Sevier Shale appear to have formed by propagation through tightened fold hinges or bedding-parallel slip. The fold pattern observed in the roadcut appears to be partly the result of movement along a tear fault that broke both the hanging wall and footwall of the Great Smoky thrust sheet after emplacement. Slickenline orientations along minor thrust surfaces in the Cochran Conglomerate indicate eastward-directed, oblique-slip movement of the tear fault.« less

  13. 1. Deep Creek Road, picnic pavilion Great Smoky Mountains ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. Deep Creek Road, picnic pavilion - Great Smoky Mountains National Park Roads & Bridges, Deep Creek Road, Between Park Boundary near Bryson City & Deep Creek Campground, Gatlinburg, Sevier County, TN

  14. Floods in Starkweather Creek basin, Madison, Wisconsin

    USGS Publications Warehouse

    Lawrence, Carl L.; Holmstrom, Barry K.

    1972-01-01

    The reaches evaluated are (1) Starkweather Creek and West Branch Starkweather Creek, for a distance of 6.0 river miles from the mouth at Lake Monona upstream to the U.S. Highway 51 crossing north of Truax Field; and (2) East Branch Starkweather Creek (2.8 river miles), from its confluence with the West Branch near Milwaukee Street upstream to a point near the Interstate Highway 90-94 crossing.

  15. Water resources of the Clarion River and Redbank Creek basins, northwestern Pennsylvania

    USGS Publications Warehouse

    Buckwalter, Theodore F.; Dodge, C.H.; Schiner, G.R.; Koester, H.F.

    1981-01-01

    The Clarion River and Redbank Creek basin occupy 1,280 and 545 square miles, respectively, in northwatern Pennsylvania. The area is mostly in Clerion, Elk, and Jefferson Counties and is approximately 70 miles long and 30 miles wide. All drainage is to the Allegheny River. Sedimentary rocks of Late Devionian Early Mississippian, and Pennsylvanian age underlie the area. Rocks of Late Devonian age underlie the entire area and crop out in the deep stream valleys in the north. Lower Mississippian rocks generally crop out in strips along major stream valleys; the strips are narrow in the south and broaden northward. Pennsylvanian rocks cover most of the interfluvial areas between major streams. The Upper Devonian and Lower Mississippian rocks are composed mostly of alternating sandstone and shale. Sandstone may intertongue laterally with shale. The Pennsylvanian rocks are most heterogeneous and contain many commercial coal beds. The major mineral resources are bituminous coal, petroleum, and natural gas. Narly all coal production is from strip mining in Clarion, Elk, and Jefferson Counties. Total coal production exceeded 8 million short tons in 1976. The basins are south and east of the major oil-producing regions in Pennsylvania, but more than 50,000 barrels of crude oil were produced here in 1975. Commercial quantities of natural gas are also obtained. Thirty-three public water-supply systems furnish about two-thirds of the water for domestic use. Surface water is the source of about 90 percent of public-supply water. The remainder is from wells and springs. In an average year, 64 percent of the precipitation in the Clarion River basin and 60 percent in the Redbank Creek basin leave the area as streamflow. The percentage of annuual discharge from each basin that is base runoff averaged 53 and 51 percent, respectively, during 1972-75. Only 4 of 10 stream-gaging stations recorded an average 10-year, 7-consecutive day low flow of at least 0.15 cubic feet per second per

  16. The late cretaceous Donlin Creek gold deposit, Southwestern Alaska: Controls on epizonal ore formation

    USGS Publications Warehouse

    Goldfarb, R.J.; Ayuso, R.; Miller, M.L.; Ebert, S.W.; Marsh, E.E.; Petsel, S.A.; Miller, L.D.; Bradley, D.; Johnson, Chad; McClelland, W.

    2004-01-01

    The Donlin Creek gold deposit, southwestern Alaska, has an indicated and inferred resource of approximately 25 million ounces (Moz) Au at a cutoff grade of 1.5 g/t. The ca. 70 Ma deposit is hosted in the Late Cretaceous Kuskokwim flysch basin, which developed in the back part of the are region of an active continental margin, on previously accreted oceanic terranes and continental fragments. A hypabyssal, mainly rhyolitic to rhyodacitic, and commonly porphyritic, 8- ?? 3-km dike complex, part of a regional ca. 77 to 58 Ma magmatic arc, formed a structurally competent host for the mineralization. This deposit is subdivided into about one dozen distinct prospects, most of which consist of dense quartz ?? carbonate veinlet networks that fill north-northeast-striking extensional fractures in the northeast-trending igneous rocks. The sulfide mineral assemblage is dominated by arsenopyrite, pyrite, and, typically younger, stibnite; gold is refractory within the arsenopyrite. Sericitization, carbonatization, and suffidation were the main alteration processes. Fluid inclusion studies of the quartz that hosts the resource indicate dominantly aqueous ore fluids with also about 3 to 7 mol percent CO2 ?? CH4 and a few tenths to a few mole percent NaCl + KCl. The gold-bearing fluids were mainly homogeneously trapped at approximately 275?? to 300??C and at depths of 1 to 2 km. Some of the younger stibnite may have been deposited by late-stage aqueous fluids at lower temperature. Measured ??18O values for the gold-bearing quartz range between 11 and 25 per mil; the estimated ??18O fluid values range from 7 to 12 per mil, suggesting a mainly crustally derived fluid. A broad range of measured ??D values for hydrothermal micas, between -150 and -80 per mil, is suggestive of a contribution from devolatilization of organic matter and/or minor amounts of mixing with meteoric fluids. Gold-associated hydrothermal sulfide minerals are characterized by ??34S values mainly between -16 and

  17. 2. Deep Creek Road, old bridge at campground entrance. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. Deep Creek Road, old bridge at campground entrance. - Great Smoky Mountains National Park Roads & Bridges, Deep Creek Road, Between Park Boundary near Bryson City & Deep Creek Campground, Gatlinburg, Sevier County, TN

  18. Surface waters of North Boggy Creek basin in the Muddy Boggy Creek basin in Oklahoma

    USGS Publications Warehouse

    Laine, L.L.

    1958-01-01

    Analysis of short-term streamflow data in North Boggy Creek basin indicates that the average runoff in this region is substantial. The streamflow is highly variable from year to year and from month to month. The estimated total yield from the North Boggy Creek watershed of 231 square miles averages 155,000 acre-feet annually, equivalent to an average runoff depth of 12 1/2 inches. Almost a fourth of the annual volume is contributed by Chickasaw Creek basin, where about 35,000 acre-feet runs off from 46 square miles. Two years of records show a variation in runoff for the calendar year 1957 in comparison to 1956 in a ratio of 13 to 1 for the station on North Boggy Creek and a ratio of 18 to 1 for the station on Chickasaw Creek. In a longer-term record downstream on Muddy Boggy Creek near Farris, the corresponding range was 17 to 1, while the calendar years 1945 and 1956 show a 20-fold variation in runoff. Within a year the higher runoff tends to occur in the spring months, April to June, a 3-month period that, on the average, accounts for at least half of the annual flow. High runoff may occur during any month in the year, but in general, the streamflow is relatively small in the summer. Records for the gaging stations noted indicate that there is little or no base flow in the summer, and thus there will be periods of no flow at times in most years. The variation in runoff during a year is suggested by a frequency analysis of low flows at the reference station on Muddy Boggy Creek near Farris. Although the mean flow at that site is 955 cfs (cubic feet per second), the median daily flow is only 59 cfs and the lowest 30-day flow in a year will average less than 1 cfs in 4 out of 10 years on the average. The estimated mean flow on North Boggy Creek near Stringtown is 124 cfs, but the estimated median daily flow is only 3 1/2 cfs. Because of the high variability in streamflow, development of storage by impoundment will be necessary to attain maximum utilization of the

  19. Water quality of the Swatara Creek Basin, PA

    USGS Publications Warehouse

    McCarren, Edward F.; Wark, J.W.; George, J.R.

    1964-01-01

    The Swatara Creek of the Susquehanna River Basin is the farthest downstream sub-basin that drains acid water (pH of 4.5 or less) from anthracite coal mines. The Swatara Creek drainage area includes 567 square miles of parts of Schuylkill, Berks, Lebanon, and Dauphin Counties in Pennsylvania.To learn what environmental factors and dissolved constituents in water were influencing the quality of Swatara Creek, a reconnaissance of the basin was begun during the summer of 1958. Most of the surface streams and the wells adjacent to the principal tributaries of the Creek were sampled for chemical analysis. Effluents from aquifers underlying the basin were chemically analyzed because ground water is the basic source of supply to surface streams in the Swatara Creek basin. When there is little runoff during droughts, ground water has a dominating influence on the quality of surface water. Field tests showed that all ground water in the basin was non-acidic. However, several streams were acidic. Sources of acidity in these streams were traced to the overflow of impounded water in unworked coal mines.Acidic mine effluents and washings from coal breakers were detected downstream in Swatara Creek as far as Harper Tavern, although the pH at Harper Tavern infrequently went below 6.0. Suspended-sediment sampling at this location showed the mean daily concentration ranged from 2 to 500 ppm. The concentration of suspended sediment is influenced by runoff and land use, and at Harper Tavern it consisted of natural sediments and coal wastes. The average daily suspended-sediment discharge there during the period May 8 to September 30, 1959, was 109 tons per day, and the computed annual suspended-sediment load, 450 tons per square mile. Only moderate treatment would be required to restore the quality of Swatara Creek at Harper Tavern for many uses. Above Ravine, however, the quality of the Creek is generally acidic and, therefore, of limited usefulness to public supplies, industries and

  20. Depositional settings, correlation, and age carboniferous rocks in the western Brooks Range, Alaska

    USGS Publications Warehouse

    Dumoulin, Julie A.; Harris, Anita G.; Blome, Charles D.; Young, Lorne E.

    2004-01-01

    The Kuna Formation (Lisburne Group) in northwest Alaska hosts the Red Dog and other Zn-Pb-Ag massive sulfide deposits in the Red Dog district. New studies of the sedimentology and paleontology of the Lisburne Group constrain the setting, age, and thermal history of these deposits. In the western and west-central Brooks Range, the Lisburne Group includes both deep- and shallow-water sedimentary facies and local volcanic rocks that are exposed in a series of thrust sheets or allochthons. Deep-water facies in the Red Dog area (i.e., the Kuna Formation and related rocks) are found chiefly in the Endicott Mountains and structurally higher Picnic Creek allochthons. In the Red Dog plate of the Endicott Mountains allochthon, the Kuna consists of at least 122 m of thinly interbedded calcareous shale, calcareous spiculite, and bioclastic supportstone (Kivalina unit) overlain by 30 to 240 m of siliceous shale, mudstone, calcareous radiolarite, and calcareous lithic turbidite (Ikalukrok unit). The Ikalukrok unit in the Red Dog plate hosts all massive sulfide deposits in the area. It is notably carbonaceous, is generally finely laminated, and contains siliceous sponge spicules and radiolarians. The Kuna Formation in the Key Creek plate of the Endicott Mountains allochthon (60–110 m) resembles the Ikalukrok unit but is unmineralized and has thinner carbonate layers that are mainly organic-rich dolostone. Correlative strata in the Picnic Creek allochthon include less shale and mudstone and more carbonate (mostly calcareous spiculite). Conodonts and radiolarians indicate an age range of Osagean to early Chesterian (late Early to Late Mississippian) for the Kuna in the Red Dog area. Sedimentologic, faunal, and geochemical data imply that most of the Kuna formed in slope and basin settings characterized by anoxic or dysoxic bottom water and by local high productivity.

  1. Descriptions of mineral occurrences and interpretation of mineralized rock geochemical data in the Stikine geophysical survey area, Southeastern Alaska

    USGS Publications Warehouse

    Taylor, Cliff D.

    2003-01-01

    Detailed descriptions of some of the more significant mineral occurrences in the Stikine Airborne Geophysical Survey Project Area are presented based upon site-specific examinations by the U.S. Geological Survey in May of 1998. Reconnaissance geochemical data on unmineralized igneous and sedimentary host rocks, and mineralized rocks are also presented and are accompanied by a brief analysis of geochemical signatures typical of each occurrence. Consistent with the stated goal of the geophysical survey; to stimulate exploration for polymetallic massive sulfides similar to the Greens Creek deposit, the majority of the described occurrences are possible members of a belt of Late Triassic mineral deposits that are distributed along the eastern edge of the Alexander terrane in southeastern Alaska. Many of the described occurrences in the Duncan Canal-Zarembo Island area share similarities to the Greens Creek deposit. When considered as a whole, the geology, mineralogy, and geochemistry of these occurrences help to define a transitional portion of the Late Triassic mineral belt where changes in shallow to deeper water stratigraphy and arc-like to rift-related igneous rocks are accompanied by concomitant changes in the size, morphology, and metal endowments of the mineral occurrences. As a result, Late Triassic mineral occurrences in the area appear as: 1) small, discontinuous, structurally controlled stockwork veins in mafic volcanic rocks, 2) small, irregular replacements and stratabound horizons of diagenetic semi-massive sulfides in dolostones and calcareous shales, and as 3) larger, recognizably stratiform accumulations of baritic, semi-massive to massive sulfides at and near the contact between mafic volcanic rocks and overlying sedimentary rocks. Empirical exploration guidelines for Greens Creek-like polymetallic massive sulfide deposits in southeastern Alaska include: 1) a Late Triassic volcano-sedimentary host sequence exhibiting evidence of succession from

  2. CEAP in the Cedar Creek watershed

    USDA-ARS?s Scientific Manuscript database

    This publication provides research updates from the Conservation Effects Assessment Project (CEAP) in the Cedar Creek watershed in Indiana. In this inaugural issue, we explain the CEAP and why the National Soil Erosion Research Lab is doing research in Cedar Creek. It also includes a 'Research Featu...

  3. 33 CFR 117.809 - Tonawanda Creek.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Tonawanda Creek. 117.809 Section 117.809 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements New York § 117.809 Tonawanda Creek. The draw of the...

  4. 33 CFR 117.555 - College Creek.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false College Creek. 117.555 Section 117.555 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Maryland § 117.555 College Creek. The draws of the...

  5. 33 CFR 117.231 - Brandywine Creek.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Brandywine Creek. 117.231 Section 117.231 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Delaware § 117.231 Brandywine Creek. The draw of the...

  6. 33 CFR 117.324 - Rice Creek.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Rice Creek. 117.324 Section 117.324 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Florida § 117.324 Rice Creek. The CSX Railroad Swingbridge, mile...

  7. 33 CFR 117.324 - Rice Creek.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Rice Creek. 117.324 Section 117.324 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Florida § 117.324 Rice Creek. The CSX Railroad Swingbridge, mile...

  8. 33 CFR 117.917 - Battery Creek.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Battery Creek. 117.917 Section 117.917 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements South Carolina § 117.917 Battery Creek. The draw of...

  9. 33 CFR 117.917 - Battery Creek.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Battery Creek. 117.917 Section 117.917 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements South Carolina § 117.917 Battery Creek. The draw of...

  10. 33 CFR 117.917 - Battery Creek.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Battery Creek. 117.917 Section 117.917 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements South Carolina § 117.917 Battery Creek. The draw of...

  11. 33 CFR 117.917 - Battery Creek.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Battery Creek. 117.917 Section 117.917 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements South Carolina § 117.917 Battery Creek. The draw of...

  12. 33 CFR 117.917 - Battery Creek.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Battery Creek. 117.917 Section 117.917 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements South Carolina § 117.917 Battery Creek. The draw of...

  13. Geohydrology of the Furnace Creek basin and vicinity, Berks, Lancaster, and Lebanon counties, Pennsylvania

    USGS Publications Warehouse

    Cecil, L.D.

    1988-01-01

    The Furnace Creek basin is an area of 8.95 square miles, about three- fourths of which is underlain by metamorphic rocks of low permeability. Reported yields for 14 wells in these rocks range from 1 to 60 gal/min (gallons per minute), with a median of 7.5 gal/min. The northern part of the study area consists of highly permeable carbonate rocks. Nondomestic wells in these rocks typically yield from 200 to 300 gal/min and one well yields 1,200 gal/min. Ground-water discharge from a 4.18-square-mile drainage area underlain by Precambrian granitic and hornblende gneiss averaged 868,000 gallons per day per square mile from October 1983 through September 1985. Thus, as much as 3,630,000 gallons per day could be pumped from wells in this area on a sustained basis. However, pumping this amount would have major adverse effects on streamflow. A water-budget analysis for March 1984 to February 1985 showed that precipitation was 52.16 inches, streamflow was 26.38 inches, evapotranspiration was 29.29 inches, ground-water storage decreased by 5.94 inches and diversions made by Womelsdorf-Robesonia Joint Authority for water supply totaled 2.43 inches. Precipitation during this period was above normal. Four of 18 wells sampled for water quality had iron, manganese, or nitrate concentrations above the U.S. Environmental Protection Agency's recommended limits. The crystalline rocks in the study area yield soft to moderately hard water that is generally acidic.

  14. Walnut Creek and Squaw Creek Watersheds, Iowa: National Institute of Food and Agriculture-Conservation Effects Assessment Project

    USDA-ARS?s Scientific Manuscript database

    The Walnut Creek Watershed NIFA-CEAP Watershed project was designed to assess water quality benefits and economic costs from the adoption of a prairie ecosystem (conservation practice implementation) at a watershed scale. This chapter describes and summarizes the paired watershed (Walnut Creek and S...

  15. Rock-avalanche Deposits Record Quantitative Information On Internal Deformation During Runout

    NASA Astrophysics Data System (ADS)

    McSaveney, M. J.; Zhang, M.

    2016-12-01

    The rock avalanche deposit at Wenjiagou Creek, China, shows grain-size changes with distance from source and with depth below the surface. To see what quantitative information on internal deformation might be able to be inferred from such information, we conducted a series of laboratory tests using a conventional ring-shear apparatus (Torshear Model 27-WF2202) at GNS Science, Lower Hutt, NZ. Lacking ready access to the limestone of the Wenjiagou Creek deposit, we used locally sourced 0.5-2 mm sand sieved from the greywacke-derived gravel bed of the Hutt River. To keep within the reliable operating limits of the apparatus, we conducted 38 dry tests using the combinations of normal stress, shear rate and shear displacement listed in Table 1. Size distributions were determined over the range 0.1 - 2000 µm using a laser sizer. Results showed that the number of grain breakages increased systematically with increasing normal stress and shear displacement, while shear rate had no significant influence. We concluded that if calibrated using appropriate materials, we would be able to quantify amounts of internal shear deformation in a rock avalanche by analysis of grain-size variations in the deposit. Table 1 Ring-shear test program Normal stress (kPa) Shear rate (mm/min) Shear displacement (mm) 200 100 74.2 37.1 0 100 200 500 1000 3000 400 100 74.2 37.1 0 100 200 500 1000 600 100 74.2 0 100 200 500 1000

  16. Growth And Development Of First-Year Nursery-Grown White Oak Seedlings Of Individual Mother Trees

    Treesearch

    Shi-Jean S. Sung; Paul P. Kormanik; Stanley J. Zarnoch

    2002-01-01

    Abstract - White oak (Quercus alba L.) acorns from individual mother trees at Arrowhead Seed Orchard (ASO, Milledgeville, GA), Beech Creek Seed Orchard (BSO, Murphy, NC), and Savannah River Site (SRS, Aiken, SC) were sown in December 1999 at Whitehall Experiment Forest Nursery (Athens, GA). All 6 mother trees from BSO were grafted...

  17. Images, Dialogue, and Aesthetic Education: Arendt's Response to the Little Rock Crisis

    ERIC Educational Resources Information Center

    Pickett, Adrienne

    2009-01-01

    On September 4, 1957, a crisis occurred at Little Rock Central High School in which a mob of white citizens followed, taunted, and harassed a black student, Elizabeth Eckford, who was attempting to register for classes at the newly desegregated school. In 1959, Hannah Arendt published "Reflections on Little Rock." She argued that…

  18. Interbasin flow in the Great Basin with special reference to the southern Funeral Mountains and the source of Furnace Creek springs, Death Valley, California, U.S.

    USGS Publications Warehouse

    Belcher, W.R.; Bedinger, M.S.; Back, J.T.; Sweetkind, D.S.

    2009-01-01

    Interbasin flow in the Great Basin has been established by scientific studies during the past century. While not occurring uniformly between all basins, its occurrence is common and is a function of the hydraulic gradient between basins and hydraulic conductivity of the intervening rocks. The Furnace Creek springs in Death Valley, California are an example of large volume springs that are widely accepted as being the discharge points of regional interbasin flow. The flow path has been interpreted historically to be through consolidated Paleozoic carbonate rocks in the southern Funeral Mountains. This work reviews the preponderance of evidence supporting the concept of interbasin flow in the Death Valley region and the Great Basin and addresses the conceptual model of pluvial and recent recharge [Nelson, S.T., Anderson, K., Mayo, A.L., 2004. Testing the interbasin flow hypothesis at Death Valley, California. EOS 85, 349; Anderson, K., Nelson, S., Mayo, A., Tingey, D., 2006. Interbasin flow revisited: the contribution of local recharge to high-discharge springs, Death Valley, California. Journal of Hydrology 323, 276-302] as the source of the Furnace Creek springs. We find that there is insufficient modern recharge and insufficient storage potential and permeability within the basin-fill units in the Furnace Creek basin for these to serve as a local aquifer. Further, the lack of high sulfate content in the spring waters argues against significant flow through basin-fill sediments and instead suggests flow through underlying consolidated carbonate rocks. The maximum temperature of the spring discharge appears to require deep circulation through consolidated rocks; the Tertiary basin fill is of insufficient thickness to generate such temperatures as a result of local fluid circulation. Finally, the stable isotope data and chemical mass balance modeling actually support the interbasin flow conceptual model rather than the alternative presented in Nelson et al. [Nelson

  19. Geochemical Investigation of Source Water to Cave Springs, Great Basin National Park, White Pine County, Nevada

    USGS Publications Warehouse

    Prudic, David E.; Glancy, Patrick A.

    2009-01-01

    Cave Springs supply the water for the Lehman Caves Visitor Center at Great Basin National Park, which is about 60 miles east of Ely, Nevada, in White Pine County. The source of water to the springs was investigated to evaluate the potential depletion caused by ground-water pumping in areas east of the park and to consider means to protect the supply from contamination. Cave Springs are a collection of several small springs that discharge from alluvial and glacial deposits near the contact between quartzite and granite. Four of the largest springs are diverted into a water-collection system for the park. Water from Cave Springs had more dissolved strontium, calcium, and bicarbonate, and a heavier value of carbon-13 than water from Marmot Spring at the contact between quartzite and granite near Baker Creek campground indicating that limestone had dissolved into water at Cave Springs prior to discharging. The source of the limestone at Cave Springs was determined to be rounded gravels from a pit near Baker, Nevada, which was placed around the springs during the reconstruction of the water-collection system in 1996. Isotopic compositions of water at Cave Springs and Marmot Spring indicate that the source of water to these springs primarily is from winter precipitation. Mixing of water at Cave Springs between alluvial and glacial deposits along Lehman Creek and water from quartzite is unlikely because deuterium and oxygen-18 values from a spring discharging from the alluvial and glacial deposits near upper Lehman Creek campground were heavier than the deuterium and oxygen-18 values from Cave Springs. Additionally, the estimated mean age of water determined from chlorofluorocarbon concentrations indicates water discharging from the spring near upper Lehman Creek campground is younger than that discharging from either Cave Springs or Marmot Spring. The source of water at Cave Springs is from quartzite and water discharges from the springs on the upstream side of the

  20. 33 CFR 117.401 - Trail Creek.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Trail Creek. 117.401 Section 117.401 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Indiana § 117.401 Trail Creek. (a) The draw of the Franklin...

  1. 33 CFR 117.233 - Broad Creek.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Broad Creek. 117.233 Section 117.233 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Delaware § 117.233 Broad Creek. (a) The draw of the Conrail...

  2. 33 CFR 117.233 - Broad Creek.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Broad Creek. 117.233 Section 117.233 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Delaware § 117.233 Broad Creek. (a) The draw of the Conrail...

  3. 33 CFR 117.233 - Broad Creek.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Broad Creek. 117.233 Section 117.233 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Delaware § 117.233 Broad Creek. (a) The draw of the Conrail...

  4. 33 CFR 117.233 - Broad Creek.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Broad Creek. 117.233 Section 117.233 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Delaware § 117.233 Broad Creek. (a) The draw of the Conrail...

  5. 33 CFR 117.233 - Broad Creek.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Broad Creek. 117.233 Section 117.233 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Delaware § 117.233 Broad Creek. (a) The draw of the Conrail...

  6. 1. EXTERIOR OVERVIEW OF NORTH END OF RUSH CREEK POWERHOUSE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. EXTERIOR OVERVIEW OF NORTH END OF RUSH CREEK POWERHOUSE RESIDENTIAL COMPLEX SHOWING BUILDING 108 AT PHOTO RIGHT AND BUILDING 105 AT PHOTO CENTER BEHIND TREE. RUSH CREEK POWERHOUSE IS PARTIALLY VISIBLE AT EXTREME PHOTO LEFT). VIEW TO WEST. - Rush Creek Hydroelectric System, Clubhouse Cottage, Rush Creek, June Lake, Mono County, CA

  7. 33 CFR 117.335 - Taylor Creek.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Taylor Creek. 117.335 Section 117.335 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Florida § 117.335 Taylor Creek. The draw of US441 bridge, mile 0...

  8. 33 CFR 117.335 - Taylor Creek.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Taylor Creek. 117.335 Section 117.335 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Florida § 117.335 Taylor Creek. The draw of US441 bridge, mile 0...

  9. 33 CFR 117.841 - Smith Creek.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Smith Creek. 117.841 Section 117.841 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements North Carolina § 117.841 Smith Creek. The draw of the S117-S133...

  10. 33 CFR 117.571 - Spa Creek.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Spa Creek. 117.571 Section 117.571 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Maryland § 117.571 Spa Creek. The S181 bridge, mile 4.0, at...

  11. 33 CFR 117.571 - Spa Creek.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Spa Creek. 117.571 Section 117.571 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Maryland § 117.571 Spa Creek. The S181 bridge, mile 4.0, at...

  12. Water Quality of Camp Creek, Costello Creek, and Other Selected Streams on the South Side of Denali National Park and Preserve, Alaska

    USGS Publications Warehouse

    Brabets, Timothy P.; Whitman, Matthew S.

    2002-01-01

    The Camp and Costello Creek watersheds are located on the south side of Denali National Park and Preserve. The Dunkle Mine, an abandoned coal mine, is located near the mouth of Camp Creek. Due to concern about runoff from the mine and its possible effects on the water quality and aquatic habitat of Camp Creek and its receiving stream, Costello Creek, these two streams were studied during the summer runoff months (June to September) in 1999 and 2000 as part of a cooperative study with the National Park Service. Since the south side of Denali National Park and Preserve is part of the U.S. Geological Survey?s National Water-Quality Assessment Cook Inlet Basin study unit, an additional part of this study included analysis of existing water-quality data at 23 sites located throughout the south side of Denali National Park and Preserve to compare with the water quality of Camp and Costello Creeks and to obtain a broader understanding of the water quality in this area of the Cook Inlet Basin. Analysis of water column, bed sediment, fish, invertebrate, and algae data indicate no effects on the water quality of Camp Creek from the Dunkle Mine. Although several organic compounds were found in the streambed of Camp Creek, all concentrations were below recommended levels for aquatic life and most of the concentrations were below the minimum reporting level of 50 ?g/kg. Trace element concentrations of arsenic, chromium, and nickel in the bed sediments of Camp Creek exceeded threshold effect concentrations (TEC), but concentrations of these trace elements were also exceeded in streambed sediments of Costello Creek above Camp Creek. Since the percent organic carbon in Camp Creek is relatively high, the toxicity quotient of 0.55 is only slightly above the threshold value of 0.5. Costello Creek has a relatively low organic carbon content and has a higher toxicity quotient of 1.19. Analysis of the water-quality data for other streams located in the south side of Denali National Park

  13. 74. PHOTOCOPY OF PANORAMA 'B' DEPICTING REGRADING OPERATIONS ON EAST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    74. PHOTOCOPY OF PANORAMA 'B' DEPICTING REGRADING OPERATIONS ON EAST BANK OF CREEK BETWEEN M AND P STREETS, FROM 1940 REPORT ON PROPOSED DEVELOPMENT OF ROCK CREEK AND POTOMAC PARKWAY, SECTION II (ROCK CREEK AND POTOMAC PARKWAY FILE, HISTORY DEPARTMENT ARCHIVES, NATIONAL PARK SERVICE, WASHINGTON, DC); NUMBER 1 OF 5. - Rock Creek & Potomac Parkway, Washington, District of Columbia, DC

  14. 70. PHOTOCOPY OF PANORAMA 'A' DEPICTING REGRADING OPERATIONS ON EAST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    70. PHOTOCOPY OF PANORAMA 'A' DEPICTING REGRADING OPERATIONS ON EAST BANK OF CREEK BETWEEN M AND P STREETS, FROM 1940 REPORT ON PROPOSED DEVELOPMENT OF ROCK CREEK AND POTOMAC PARKWAY, SECTION II (ROCK CREEK AND POTOMAC PARKWAY FILE, HISTORY DEPARTMENT ARCHIVES, NATIONAL PARK SERVICE, WASHINGTON, DC); NUMBER 1 OF 4. - Rock Creek & Potomac Parkway, Washington, District of Columbia, DC

  15. 77 FR 75946 - Radio Broadcasting Services; Dove Creek, CO

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-26

    ...]. Radio Broadcasting Services; Dove Creek, CO AGENCY: Federal Communications Commission. ACTION: Proposed... service at Dove Creek, Colorado. Channel 229C3 can be allotted at Dove Creek, Colorado, in compliance with the Commission's minimum distance separation requirements, at the proposed reference coordinates: 37...

  16. A Creek to Bay Biological Assessment in Oakland, California

    NASA Astrophysics Data System (ADS)

    Ahumada, E.; Ramirez, N.; Lopez, A.; Avila, M.; Ramirez, J.; Arroyo, D.; Bracho, H.; Casanova, A.; Pierson, E.

    2011-12-01

    In 2007, the Surface Water Ambient Monitoring Program (SWAMP) assessed the impact of trash on water quality in the Peralta Creek which is located in the Fruitvale district of Oakland, CA. This 2011 follow-up study will take further steps in evaluating the physical and biological impacts of pollution and human development on Peralta Creek and in the San Leandro Bay, where the Creek empties into the larger San Francisco Bay estuary. This study will utilize two forms of biological assessment in order to determine the level of water quality and ecosystem health of Peralta Creek and San Leandro Bay in Oakland, California. A Rapid Bioassesment Protocal (RBP) will be used as the method of biological assessment for Peralta Creek. RBP uses a biotic index of benthic macroinvertebrates to provide a measure of a water body's health. Larval trematodes found in two mud snails (Ilynassa obsoleta and Cerithidea californica) will be used to evaluate the health of the San Leandro Bay. Due to the complex life cycle of trematodes, the measure of trematode diversity and richness in host species serves as an indicator of estuarine health (Huspeni 2005). We have completed the assessment of one section of Peralta Creek, located at 2465 34th Avenue, Oakland, CA 94601. Abundance results indicate a moderately healthy creek because there were high levels of pollution tolerant benthic macroinvertebrates. The tolerant group of benthic macroinvertebrates includes such organisms as flatworms, leeches, and scuds. This is possibly due to this section of the creek being pumped up to the surface from culverts impacting the macroinvertebrate's life cycle. Another contributing factor to creek health is the amount of organic debris found in the creek, which inhibits the flow and oxygenation of the water, allowing for more pollution tolerant aquatic insects to persist. Further investigation is being conducted to fully assess the Peralta Creek watershed; from the preliminary results one can surmise that

  17. Hydrogeologic and geochemical characterization of groundwater resources in Deep Creek Valley and adjacent areas, Juab and Tooele Counties, Utah, and Elko and White Pine Counties, Nevada

    USGS Publications Warehouse

    Gardner, Philip M.; Masbruch, Melissa D.

    2015-09-18

    Water-level altitude contours and groundwater ages indicate the potential for a long flow path from southwest to northeast between northern Spring and Deep Creek Valleys through Tippett Valley. Although information gathered during this study is insufficient to conclude whether or not groundwater travels along this interbasin flow path, dissolved sulfate and chloride data indicate that a small fraction of the lower altitude, northern Deep Creek Valley discharge may be sourced from these areas. Despite the uncertainty due to limited data collection points, a hydraulic connection between northern Spring Valley, Tippett Valley, and Deep Creek Valley appears likely, and potential regional effects resulting from future groundwater withdrawals in northern Spring Valley warrant ongoing monitoring of groundwater levels across this area.

  18. Nutrients and organic compounds in Deer Creek and south branch Plum Creek in southwestern Pennsylvania, April 1996 through September 1998

    USGS Publications Warehouse

    Williams, D.R.; Clark, M.E.

    2001-01-01

    This report presents results of an analysis of nutrient and pesticide data from two surface-water sites and volatile organic compound (VOC) data from one of the sites that are within the Allegheny and Monongahela River Basins study unit of the National Water-Quality Assessment Program of the U.S. Geological Survey. The Deer Creek site was located in a 27.0 square-mile basin within the Allegheny River Basin in Allegheny County. The primary land uses consist of small urban areas, large areas of residential housing, and some agricultural land in the upper part of the basin. The South Branch Plum Creek site was located in a 33.3 square-mile basin within the Allegheny River Basin in Indiana County. The primary land uses throughout this basin are mostly agriculture and forestland.Water samples for analysis of nutrients were collected monthly and during high-flow events from April 1996 through September 1998. Concentrations of dissolved nitrite, dissolved ammonia plus organic nitrogen, and dissolved phosphorus were less than the method detection limits in more than one-half of the samples collected. The median concentration of dissolved nitrite plus nitrate in South Branch Plum Creek was 0.937 mg/L and 0.597 mg/L in Deer Creek. The median concentration of dissolved orthophosphate was 0.01 mg/L in both streams. High loads of nitrate were measured in both streams from March to June. Concentrations of dissolved ammonia nitrogen, dissolved nitrate, and total phosphorus were lower during the summer months. Measured concentrations of nitrate nitrogen in both streams were well below the U.S. Environmental Protection Agency (USEPA) maximum contaminant level (MCL) of 10 mg/L.Water samples for analysis of pesticides were collected throughout 1997 in both streams and during a storm event on August 25-26, 1998, in Deer Creek. Samples were collected monthly at both sites and more frequently during the spring and early summer months to coincide with application of pesticides. Seventy

  19. a Possible Ancient Core Complex in the Northern Cache Creek Terrane, British Columbia

    NASA Astrophysics Data System (ADS)

    Zagorevski, A.

    2013-12-01

    The Cache Creek terrane (CCT) in Canadian Cordillera comprises a belt of Mississippian to Jurassic oceanic rocks that include Tethyan carbonates and alkaline basalts that are demonstrably exotic to Laurentia. The exotic Tethyan faunas in the CCT, combined with its inboard position with respect to Stikinia and Yukon-Tanana terranes has led to a variety of tectonic hypotheses including oroclinal enclosure of CCT by Stikinia, Yukon-Tanana and Quesnellia during the Jurassic. Detailed studies have demonstrated that the northern CCT is in fact a composite terrane that includes ophiolitic rocks of both ocean island and island arc origins. The western margin of the CCT is characterized by imbricated harzburgite, island arc tholeiite, sedimentary rocks and locally significant felsic volcanic rocks of the Kutcho arc. Gabbro is volumetrically minor and sheeted dyke complexes are either very rare or not developed. The felsic arc volcanic rocks and the pyroxenite bodies that cut the harzburgite have been previously isotopically dated as Middle Triassic (ca. 245 Ma) suggesting that melt percolation through the mantle was coeval with Kutcho arc magmatism and coincided with a magmatic gap in Stikinia. In general the contact between the mantle and supracrustal rocks is faulted making it difficult to determine the original relationships between the mantle and island arc tholeiites. Locally, the contact appears to be intact and is characterized by mantle tectonites with pyroxenite veins overlain by cumulate plagioclase-orthopyroxene gabbro and fine grained diabase. Elsewhere, volcanic and sedimentary rocks sit in fault contact structurally above the mantle. The absence of voluminous gabbro and sheeted dyke complexes, presence of coeval magmas in the crust and mantle, and low angle extensional faulting in some areas suggests that the western part of the CCT may preserve an ocean core complex similar to the Godzilla Megamullion in the Parece-Vela Basin. Such a hypothesis suggests that

  20. 1. DEADWOOD CREEK BRIDGE FACING SOUTHWEST. MOUNT RAINIER AND EMMONS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. DEADWOOD CREEK BRIDGE FACING SOUTHWEST. MOUNT RAINIER AND EMMONS GLACIER VISIBLE IN BACKGROUND. - Deadwood Creek Bridge, Spanning Deadwood Creek on Mather Memorial Parkway, Longmire, Pierce County, WA

  1. Perspective view of span over French Creek and east abutment, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Perspective view of span over French Creek and east abutment, looking NW. - Pennsylvania Railroad, French Creek Trestle, Spanning French Creek, north of Paradise Street, Phoenixville, Chester County, PA

  2. 3. DEADWOOD CREEK BRIDGE, VIEW BELOW DECK SHOWING OPEN SPANDREL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. DEADWOOD CREEK BRIDGE, VIEW BELOW DECK SHOWING OPEN SPANDREL ARCH CONSTRUCTION AND ARCH RIBS - Deadwood Creek Bridge, Spanning Deadwood Creek on Mather Memorial Parkway, Longmire, Pierce County, WA

  3. Effects of potential surface coal mining on dissolved solids in Otter Creek and in the Otter Creek alluvial aquifer, southeastern Montana

    USGS Publications Warehouse

    Cannon, M.R.

    1985-01-01

    Otter Creek drains an area of 709 square miles in the coal-rich Powder River structural basin of southeastern Montana. The Knobloch coal beds in the Tongue River Member of the Paleocene Fort Union Formation is a shallow aquifer and a target for future surface mining in the downstream part of the Otter Creek basin. A mass-balance model was used to estimate the effects of potential mining on the dissolved solids concentration in Otter Creek and in the alluvial aquifer in the Otter Creek valley. With extensive mining of the Knobloch coal beds, the annual load of dissolved solids to Otter Creek at Ashland at median streamflow could increase by 2,873 tons, or a 32-percent increase compared to the annual pre-mining load. Increased monthly loads of Otter Creek, at the median streamflow, could range from 15 percent in February to 208 percent in August. The post-mining dissolved solids load to the subirrigated part of the alluvial valley could increase by 71 percent. The median dissolved solids concentration in the subirrigated part of the valley could be 4,430 milligrams per liter, compared to the pre-mining median concentration of 2,590 milligrams per liter. Post-mining loads from the potentially mined landscape were calculated using saturated-paste-extract data from 506 overburdened samples collected from 26 wells and test holes. Post-mining loads to the Otter Creek valley likely would continue at increased rates for hundreds of years after mining. If the actual area of Knobloch coal disturbed by mining were less than that used in the model, post-mining loads to the Otter Creek valley would be proportionally smaller. (USGS)

  4. Baseline Characteristics of Jordan Creek, Juneau, Alaska

    USGS Publications Warehouse

    Host, Randy H.; Neal, Edward G.

    2004-01-01

    Anadromous fish populations historically have found healthy habitat in Jordan Creek, Juneau, Alaska. Concern regarding potential degradation to the habitat by urban development within the Mendenhall Valley led to a cooperative study among the City and Borough of Juneau, Alaska Department of Environmental Conservation, and the U.S. Geological Survey, that assessed current hydrologic, water-quality, and physical-habitat conditions of the stream corridor. Periods of no streamflow were not uncommon at the Jordan Creek below Egan Drive near Auke Bay stream gaging station. Additional flow measurements indicate that periods of no flow are more frequent downstream of the gaging station. Although periods of no flow typically were in March and April, streamflow measurements collected prior to 1999 indicate similar periods in January, suggesting that no flow conditions may occur at any time during the winter months. This dewatering in the lower reaches likely limits fish rearing and spawning habitat as well as limiting the migration of juvenile salmon out to the ocean during some years. Dissolved-oxygen concentrations may not be suitable for fish survival during some winter periods in the Jordan Creek watershed. Dissolved-oxygen concentrations were measured as low as 2.8 mg/L at the gaging station and were measured as low as 0.85 mg/L in a tributary to Jordan Creek. Intermittent measurements of pH and dissolved-oxygen concentrations in the mid-reaches of Jordan Creek were all within acceptable limits for fish survival, however, few measurements of these parameters were made during winter-low-flow conditions. One set of water quality samples was collected at six different sites in the Jordan Creek watershed and analyzed for major ions and dissolved nutrients. Major-ion chemistry showed Jordan Creek is calcium bicarbonate type water with little variation between sampling sites.

  5. Sources of baseflow for the Minnehaha Creek Watershed, Minnesota, US

    NASA Astrophysics Data System (ADS)

    Nieber, J. L.; Moore, T. L.; Gulliver, J. S.; Magner, J. A.; Lahti, L. B.

    2013-12-01

    Minnehaha Creek is among the most valued surface water features in the Minneapolis, MN metro area, with a waterfall as it enters the Minnehaha Creek park. Flow in Minnehaha Creek is heavily dependent on discharge from the stream's origin, Lake Minnetonka, the outlet of which is closed during drought periods to maintain water elevations in the lake resulting in low- (or no-) flow conditions in the creek. Stormwater runoff entering directly to the creek from the creek's largely urbanized watershed exacerbates extremes in flow conditions. Given the cultural and ecological value of this stream system, there is great interest in enhancing the cultural and ecosystem services provided by Minnehaha Creek through improvements in streamflow regime by reducing flashiness and sustaining increased low-flows. Determining the potential for achieving improvements in flow requires first that the current sources of water contributing to low-flows in the creek be identified and quantified. Work on this source identification has involved a number of different approaches, including analyses of the streamflow record using a hydrologic system model framework, examination of the Quaternary and bedrock geology of the region, estimation of groundwater-surface water exchange rates within the channel using hyporheic zone temperature surveys and flux meter measurements, and analyses of the stable isotopes of oxygen and hydrogen in samples of stream water, groundwater, and rainfall. Analysis of baseflow recessions using the method of Brutsaert and Nieber (1977) indicates that only a small portion of the catchment, probably the riparian zone, contributes to baseflows. This result appears to be supported by the observation that the limestone/shale bedrock layer underlying the surficial aquifer has a non-zero permeability, and in a significant portion of the watershed the layer has been eroded away leaving the surficial aquifer ';bottomless' and highly susceptible to vertical (down) water loss

  6. Beaver dams and channel sediment dynamics on Odell Creek, Centennial Valley, Montana, USA

    NASA Astrophysics Data System (ADS)

    Levine, Rebekah; Meyer, Grant A.

    2014-01-01

    Beaver dams in streams are generally considered to increase bed elevation through in-channel sediment storage, thus, reintroductions of beaver are increasingly employed as a restoration tool to repair incised stream channels. Here we consider hydrologic and geomorphic characteristics of the study stream in relation to in-channel sediment storage promoted by beaver dams. We also document the persistence of sediment in the channel following breaching of dams. Nine reaches, containing 46 cross-sections, were investigated on Odell Creek at Red Rock Lakes National Wildlife Refuge, Centennial Valley, Montana. Odell Creek has a snowmelt-dominated hydrograph and peak flows between 2 and 10 m3 s- 1. Odell Creek flows down a fluvial fan with a decreasing gradient (0.018-0.004), but is confined between terraces along most of its length, and displays a mostly single-thread, variably sinuous channel. The study reaches represent the overall downstream decrease in gradient and sediment size, and include three stages of beaver damming: (1) active; (2) built and breached in the last decade; and (3) undammed. In-channel sediment characteristics and storage were investigated using pebble counts, fine-sediment depth measurements, sediment mapping and surveys of dam breaches. Upstream of dams, deposition of fine (≤ 2 mm) sediment is promoted by reduced water surface slope, shear stress and velocity, with volumes ranging from 48 to 182 m3. High flows, however, can readily transport suspended sediment over active dams. Variations in bed-sediment texture and channel morphology associated with active dams create substantial discontinuities in downstream trends and add to overall channel heterogeneity. Observations of abandoned dam sites and dam breaches revealed that most sediment stored above beaver dams is quickly evacuated following a breach. Nonetheless, dam remnants trap some sediment, promote meandering and facilitate floodplain development. Persistence of beaver dam sediment

  7. 1. EXTERIOR OVERVIEW OF SOUTH END OF RUSH CREEK POWERHOUSE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. EXTERIOR OVERVIEW OF SOUTH END OF RUSH CREEK POWERHOUSE RESIDENTIAL COMPLEX SHOWING THE RUSH CREEK POWERHOUSE AT PHOTO RIGHT (TAILRACE IN FOREGROUND), BUILDING 106 NEXT TO THE POWERHOUSE AT PHOTO LEFT CENTER, AND BUILDING 103 AT UPPER PHOTO LEFT ABOVE AND BEHIND BUILDING 106. VIEW TO SOUTH. - Rush Creek Hydroelectric System, Worker Cottage, Rush Creek, June Lake, Mono County, CA

  8. Lithium in rocks from the Lincoln, Helena, and Townsend areas, Montana

    USGS Publications Warehouse

    Brenner-Tourtelot, Elizabeth F.; Meier, Allen L.; Curtis, Craig A.

    1978-01-01

    In anticipation of increased demand for lithium for energy-related uses, the U.S. Geological Survey has been appraising the lithium resources of the United States and investigating occurrences of lithium. Analyses of samples of chiefly lacustrine rocks of Oligocene age collected by M. R. Mudge near Lincoln, Mont. showed as much as 1,500 ppm lithium. Since then we have sampled the area in greater detail, and have sampled rocks of similar ages in the Helena and Townsend valleys. The lithium-rich beds crop out in a band about 1.3 km long by 0.3 km wide near the head of Beaver Creek, about 14 km northwest of Lincoln, Mont. These beds consist of laminated marlstone, oil shale, carbonaceous shale, limestone, conglomerate, and tuff. Some parts of this sequence average almost 0.1 percent lithium. The lithium-bearing rocks are too low in grade and volume to be economic. Samples of sedimentary rocks of Oligocene age from the Helena and Townsend valleys in the vicinity of Helena, Mont. were generally low in lithium (3-40 ppm). However, samples of rhyolites from the western side of the Helena valley and from the Lava Mountain area were slightly above average in lithium content (6-200 ppm).

  9. Analysis of Shublik Formation rocks from Mt. Michelson quadrangle, Alaska

    USGS Publications Warehouse

    Detterman, Robert L.

    1970-01-01

    Analysis of 88 samples from the Shublik formation on Fire Creek, Mt. Michelson Quadrangle, Alaska, are presented in tabular form. The results include the determination of elements by semiquantitative spectrographic analysis, phosphate by X-ray fluorescence, carbon dioxide by acid decomposable carbonate, total carbon by induction furnace, carbonate carbon by conversion using the conversion factor of 0.2727 for amount of carbon in carbon dioxide, and organic carbon by difference. A seven- cycle semilogarithmic chart presents the data graphically and illustrates the range, mode, and mean for some of the elements. The chart shows, also, the approximate concentration of the same elements in rocks similar to the black shale and limestone of the Shublik Formation. Each sample represents 5 feet of section and is composed of rock chips taken at 1 - foot intervals. The samples are keyed into a stratigraphic column of the formation. Rocks of the Shublik Formation contain anomalously high concentrations of some of the elements. These same elements might be expected to be high in some of the petroleum from northern Alaska if the Shublik Formation is a source for this petroleum. Several of the stratigraphic intervals may represent, also, a low-grade phosphate deposit.

  10. ACOUSTICAL IMAGING AND MECHANICAL PROPERTIES OF SOFT ROCK AND MARINE SEDIMENTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thurman E. Scott, Jr., Ph.D.; Younane Abousleiman, Ph.D.; Musharraf Zaman, Ph.D., P.E.

    2001-07-01

    testing including: (a) Danian chalk, (b) Cordoba Cream limestone, (c) Indiana limestone, (d) Ekofisk chalk, (e) Oil Creek sandstone, (f) unconsolidated Oil Creek sand, and (g) unconsolidated Brazos river sand. During the second quarter experiments were begun on these rock types. A series of reconnaissance experiments have been carried out on all but the Ekofisk (for which there is a preliminary data set already inhouse). A series of triaxial tests have been conducted on the Danian chalk, the Cordoba Cream limestone, the Indiana limestone, and sand samples to make a preliminary determination of the deformational mechanisms present in these samples.« less

  11. "Visit to Caspar Creek, northern California"

    Treesearch

    Nick Schofield

    1989-01-01

    As part of a brief study tour in California, I had the good fortune of spending a very pleasant day on the Caspar Creek watershed, ably guided by Peter Cafferata and Liz Keppeler. Amongst the many notable achievements of the Caspar Creek Study is its longevity. The study started in 1962 and has evolved over time

  12. 27 CFR 9.211 - Swan Creek.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Swan Creek. 9.211 Section 9.211 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.211 Swan Creek. (a) Name. The name of the viticultural are...

  13. Approach view of the Spring Creek Bridge, view looking south. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Approach view of the Spring Creek Bridge, view looking south. - Spring Creek Bridge, Spanning Spring Creek at Milepoint 253.98 on Oregon to California Highway (US Route 97), Chiloquin, Klamath County, OR

  14. Elevation view of the Spring Creek Bridge, view looking east. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Elevation view of the Spring Creek Bridge, view looking east. - Spring Creek Bridge, Spanning Spring Creek at Milepoint 253.98 on Oregon to California Highway (US Route 97), Chiloquin, Klamath County, OR

  15. Approach view of the Spring Creek Bridge, view looking north. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Approach view of the Spring Creek Bridge, view looking north. - Spring Creek Bridge, Spanning Spring Creek at Milepoint 253.98 on Oregon to California Highway (US Route 97), Chiloquin, Klamath County, OR

  16. General perspective view of the Marion Creek Bridge, view looking ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    General perspective view of the Marion Creek Bridge, view looking southwest. - Marion Creek Bridge, Spanning Marion Creek at Milepoint 66.42 on North Santiam Highway (OR-22), Marion Forks, Linn County, OR

  17. General perspective view of the Marion Creek Bridge, view looking ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    General perspective view of the Marion Creek Bridge, view looking southeast. - Marion Creek Bridge, Spanning Marion Creek at Milepoint 66.42 on North Santiam Highway (OR-22), Marion Forks, Linn County, OR

  18. 8. DETAIL VIEW OF DATEPLATE WHICH READS 'HARP CREEK, LUTEN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. DETAIL VIEW OF DATEPLATE WHICH READS 'HARP CREEK, LUTEN BRIDGE CO., CONTRACTOR, ARKANSAS STATE HIGHWAY DEPARTMENT, 1928' - Harp Creek Bridge, Spans Harp Creek at State Highway 7, Harrison, Boone County, AR

  19. Fisheries and aquatic resources of Prairie Creek, Redwood National Park

    USGS Publications Warehouse

    Wilzbach, Peggy; Ozaki, Vicki

    2017-01-01

    This report synthesizes information on the status of fisheries and aquatic resources in the Prairie Creek sub-basin of Redwood Creek in Humboldt County in northern California, founded on a bibliographic search we conducted of historic and current datasets, unpublished reports, theses, and publications. The compiled Prairie Creek Fisheries Bibliography is available at https://irma.nps.gov/DataStore/. This report describes life histories and population status of the salmonid fishes, and species occurrence of non-salmonid fishes, amphibians, macroinvertebrates, and common benthic algae in Prairie Creek. We assessed habitat conditions that may limit salmonid production in relation to recovery targets established by the National Marine Fisheries Service and the State of California. Although salmon abundance has decreased from historic levels, production of juvenile salmonids in Prairie Creek is relatively stable and robust in comparison with the rest of the Redwood Creek Basin. Carrying capacity likely differs between the undisturbed upper reaches of Prairie Creek and reaches in the lower creek, the latter of which are affected by legacy impacts from timber and agricultural activities. Increased sediment supply and lack of channel structure and floodplain connection in lower Prairie Creek appear to be the greatest stressors to salmonid production. Existing datasets on aquatic resources and environmental variables are listed, and subject areas where few data are available are identified.

  20. 2. GENERAL VIEW SHOWING SIMPSON CREEK BRIDGE WITH BRIDGEPORT LAMP ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. GENERAL VIEW SHOWING SIMPSON CREEK BRIDGE WITH BRIDGEPORT LAMP AND CHIMNEY COMPANY IN BACKGROUND. - Bridgeport Lamp Chimney Company, Simpson Creek Bridge, Spanning Simpson Creek, State Route 58 vicinity, Bridgeport, Harrison County, WV

  1. General perspective view of the Spring Creek Bridge, view looking ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    General perspective view of the Spring Creek Bridge, view looking southeast. - Spring Creek Bridge, Spanning Spring Creek at Milepoint 253.98 on Oregon to California Highway (US Route 97), Chiloquin, Klamath County, OR

  2. General perspective view of the Spring Creek Bridge, view looking ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    General perspective view of the Spring Creek Bridge, view looking northwest. - Spring Creek Bridge, Spanning Spring Creek at Milepoint 253.98 on Oregon to California Highway (US Route 97), Chiloquin, Klamath County, OR

  3. General perspective view of the Spring Creek Bridge, view looking ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    General perspective view of the Spring Creek Bridge, view looking east. - Spring Creek Bridge, Spanning Spring Creek at Milepoint 253.98 on Oregon to California Highway (US Route 97), Chiloquin, Klamath County, OR

  4. 1. EXTERIOR OVERVIEW OF SOUTH END OF RUSH CREEK POWERHOUSE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. EXTERIOR OVERVIEW OF SOUTH END OF RUSH CREEK POWERHOUSE RESIDENTIAL COMPLEX SHOWING THE RUSH CREEK POWERHOUSE AT PHOTO RIGHT, BUILDING 106 NEXT TO THE POWERHOUSE AT PHOTO CENTER, BUILDING 103 AT UPPER PHOTO LEFT, AND BUILDING 104 ABOVE BUILDING 106 PARTIALLY OBSCURED BEHIND TREE AT UPPER PHOTO CENTER. VIEW TO SOUTH. - Rush Creek Hydroelectric System, Worker Cottage, Rush Creek, June Lake, Mono County, CA

  5. 1. Topographic view of the Rocky Creek Bridge and the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. Topographic view of the Rocky Creek Bridge and the Oregon coast, view looking east - Rocky Creek Bridge, Spanning Rocky Creek on Oregon Coast Highway (U.S. Route 101), Depoe Bay, Lincoln County, OR

  6. +2 Valence Metal Concentrations in Lion Creek, Oakland, California

    NASA Astrophysics Data System (ADS)

    Vazquez, P.; Zedd, T.; Chagolla, R.; Dutton-Starbuck, M.; Negrete, A.; Jinham, M.; Lapota, M.

    2012-12-01

    Seven major creeks exist within the City of Oakland, California. These creeks all flow in the southwest direction from forested hills down through densely populated streets where they become susceptible to urban runoff. Lion Creek has been diverted to engineered channels and underground culverts and runs directly under our school (Roots International) before flowing into the San Leandro Bay. One branch of the creek begins near an abandoned sulfur mine. Previous studies have shown that extremely high levels of lead, arsenic and iron exist in this portion of the creek due to acid mine drainage. In this study +2 valence heavy metals concentration data was obtained from samples collected from a segment of the creek located approximately 2.8 miles downstream from the mine. Concentrations in samples collected at three different sites along this segment ranged between 50 ppb and 100 ppb. We hypothesize that these levels are related to the high concentration of +2 valence heavy metals at the mining site. To test this hypothesis, we have obtained samples from various locations along the roughly 3.75 miles of Lion Creek that are used to assess changes in heavy metals concentration levels from the mining site to the San Leandro Bay.

  7. 7. Cable Creek Bridge after completion. Zion National Park negative ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. Cable Creek Bridge after completion. Zion National Park negative number 1485, classification series 002, 12. - Floor of the Valley Road, Cable Creek Bridge, Spanning Cable Creek on Floor of Valley, Springdale, Washington County, UT

  8. Topographic view of the Marion Creek Bridge, view looking westbound ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Topographic view of the Marion Creek Bridge, view looking westbound on the Santiam Highway. - Marion Creek Bridge, Spanning Marion Creek at Milepoint 66.42 on North Santiam Highway (OR-22), Marion Forks, Linn County, OR

  9. Well construction, lithology, and geophysical logs for boreholes in Bear Creek Valley near Oak Ridge, Tennessee

    USGS Publications Warehouse

    Bailey, Z.C.; Hanchar, D.W.

    1988-01-01

    Twenty-four wells were constructed at nine sites at Bear Creek Valley to provide geologic and hydrologic information. Lithologic samples and suits of geophysical logs were obtained from the deepest boreholes at six of the sites. Two of these boreholes at the base of Chestnut Ridge were completed in the Maynardville Limestone and two were completed in the Nolichucky Shale. Two boreholes along Pine Ridge were completed in the Rome Formation. Zones of similar lithology within a borehole were delineated from rock cutting refined by examination of geophysical logs. The contact between the Maynardville Limestone and Nolichucky Shale was identified in two of the boreholes. Fractures and cavities were readily identifiable on the acoustic-televiewer and caliper logs. Distinct water-bearing intervals were also identified from the temperature, fluid resistance, and resistivity logs. Depths at which the drilling encounterd a thrust were identified in two boreholes in the Rome Formation from both rock cutting and geophysical logs. (USGS)

  10. Topographic view of the Spring Creek Bridge and Collier State ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Topographic view of the Spring Creek Bridge and Collier State Park, view looking east. - Spring Creek Bridge, Spanning Spring Creek at Milepoint 253.98 on Oregon to California Highway (US Route 97), Chiloquin, Klamath County, OR

  11. Freshwater flow from estuarine creeks into northeastern Florida Bay

    USGS Publications Warehouse

    Hittle, Clinton; Patino, Eduardo; Zucker, Mark A.

    2001-01-01

    Water-level, water-velocity, salinity, and temperature data were collected from selected estuarine creeks to compute freshwater flow into northeastern Florida Bay. Calibrated equations for determining mean velocity from acoustic velocity were obtained by developing velocity relations based on direct acoustic measurements, acoustic line velocity, and water level. Three formulas were necessary to describe flow patterns for all monitoring sites, with R2 (coefficient of determination) values ranging from 0.957 to 0.995. Cross-sectional area calculations were limited to the main channel of the creeks and did not include potential areas of overbank flow. Techniques also were used to estimate discharge at noninstrumented sites by establishing discharge relations to nearby instrumented sites. Results of the relation between flows at instrumented and noninstrumented sites varied with R2 values ranging from 0.865 to 0.99. West Highway Creek was used to estimate noninstrumented sites in Long Sound, and Mud Creek was used to estimate East Creek in Little Madeira Bay. Mean monthly flows were used to describe flow patterns and to calculate net flow along the northeastern coastline. Data used in the study were collected from October 1995 through September 1999, which includes the El Nino event of 1998. During this period, about 80 percent of the freshwater flowing into the bay occurred during the wet season (May-October). The mean freshwater discharge for all five instrumented sites during the wet season from 1996 to 1999 is 106 cubic feet per second. The El Nino event caused a substantial increase (654 percent) in mean flows during the dry season (November-April) at the instrumented sites, ranging from 8.5 cubic feet per second in 1996-97 to 55.6 cubic feet per second in 1997-98. Three main flow signatures were identified when comparing flows at all monitoring stations. The most significant was the magnitude of discharges at Trout Creek, which carries about 50 percent of the

  12. 79. PHOTOCOPY OF PHOTOGRAPH OF OLD BRIDLE PATH ON EAST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    79. PHOTOCOPY OF PHOTOGRAPH OF OLD BRIDLE PATH ON EAST SIDE OF CREEK BETWEEN M AND P STREETS, LOOKING NORTH, CHURCH OF THE PILGRIMS STEEPLE IN BACKGROUND, FROM 1940 REPORT ON PROPOSED DEVELOPMENT OF ROCK CREEK AND POTOMAC PARKWAY, SECTION II (ROCK CREEK AND POTOMAC PARKWAY FILE, HISTORY DEPARTMENT ARCHIVES, NATIONAL PARK SERVICE, WASHINGTON, DC). - Rock Creek & Potomac Parkway, Washington, District of Columbia, DC

  13. Surface Hydrological Processes of Rock Glaciated Basins in the San Juan Mountains, Colorado

    NASA Astrophysics Data System (ADS)

    Mateo, E. I.

    2017-12-01

    Glaciers in the western United States have been examined in terms of their summer meltwater contributions to regional hydrological systems. In the San Juan Mountains of Colorado where glaciers do not and cannot exist due to a rising zero-degree isotherm, rock glaciers take the place of valley glaciers during the summer runoff period. Most of the rock glaciers in Colorado are located on a northerly slope aspect, however, there are multiple in the southwest region of the state that occur on different aspects. This study asked how slope aspect and rising air temperatures influenced the hydrological processes of streams below rock glaciers in the San Juan Mountains during the 2016 summer season. This project focused on three basins, Yankee Boy basin, Blue Lakes basin, and Mill Creek basin, which are adjacent to each other and share a common peak, Gilpin Peak. Findings of this one-season study showed that air temperature significantly influenced stream discharge below each rock glacier. Discharge and air temperature patterns indicate a possible air temperature threshold during late summer when rock glacier melt increased at a greater rate. The results also suggest that slope aspect of rock glacier basins influences stream discharge, but temperature and precipitation are likely larger components of the melt regimes. The continuation of data collection during the 2017 summer season has allowed for more detailed analysis of the relationship between air temperature and rock glacier melt. This continual expansion of the original dataset is crucial for understanding the hydrological processes of surface runoff below rock glaciers.

  14. Hulburt Creek Hydrology, Southwestern Wisconsin

    USGS Publications Warehouse

    Gebert, Warren A.

    1971-01-01

    The purpose of this study was to determine the hydrologic characteristics of Hulburt Creek, Sauk County, Wis., in order to evaluate a proposed reservoir. The streamflow characteristics estimated are the low flow, monthly flow, and inflow flood. The study was done by the U.S. Geological Survey in cooperation with the Wisconsin Department of Natural Resources. The following estimates are for the point on Hulburt Creek at the proposed Dell Lake damsite near Wisconsin Dells. The drainage area is 11.2 square miles.

  15. Estimating pothole wetland connectivity to Pipestem Creek ...

    EPA Pesticide Factsheets

    Understanding hydrologic connectivity between wetlands and perennial streams is critical to understanding how reliant stream flow is on wetlands within their watershed. We used the isotopic evaporation signal in water to examine hydrologic connectivity within Pipestem Creek, North Dakota, with a watershed dominated by prairie potholes. During a decadal period of wet conditions, Pipestem Creek contained evaporated water that had approximately half the isotopic evaporative enrichment signal found in most evaporated permanent wetlands. If evaporation was mainly occurring within the stream, we expected the evaporation signal to increase from the headwaters with distance downstream. However, the signal either remained similar or decreased downstream over the two years of sampling. Groundwater measured at the water table adjacent to Pipestem Creek had isotopic values that indicated recharge from winter precipitation and had no significant evaporation. Using isotopic theory and discharge data, we estimated the surface area of open water necessary to generate the evaporation signal found within Pipestem Creek over time. The range of evaporating surface-area estimates was highly dynamic, spanning from 43 to 2653 ha and varying primarily with discharge. The average value (just over 600 ha) was well above the surface area of Pipestem Creek network (245 ha). This estimate of contributing area indicated that Prairie Pothole wetlands were important sources of stream fl

  16. Eruptive history, geochronology, and post-eruption structural evolution of the late Eocene Hall Creek Caldera, Toiyabe Range, Nevada

    USGS Publications Warehouse

    Colgan, Joseph P.; Henry, Christopher D.

    2017-02-24

    The magmatic, tectonic, and topographic evolution of what is now the northern Great Basin remains controversial, notably the temporal and spatial relation between magmatism and extensional faulting. This controversy is exemplified in the northern Toiyabe Range of central Nevada, where previous geologic mapping suggested the presence of a caldera that sourced the late Eocene (34.0 mega-annum [Ma]) tuff of Hall Creek. This region was also inferred to be the locus of large-magnitude middle Tertiary extension (more than 100 percent strain) localized along the Bernd Canyon detachment fault, and to be the approximate location of a middle Tertiary paleodivide that separated east and west-draining paleovalleys. Geologic mapping, 40Ar/39Ar dating, and geochemical analyses document the geologic history and extent of the Hall Creek caldera, define the regional paleotopography at the time it formed, and clarify the timing and kinematics of post-caldera extensional faulting. During and after late Eocene volcanism, the northern Toiyabe Range was characterized by an east-west trending ridge in the area of present-day Mount Callaghan, probably localized along a Mesozoic anticline. Andesite lava flows erupted around 35–34 Ma ponded hundreds of meters thick in the erosional low areas surrounding this structural high, particularly in the Simpson Park Mountains. The Hall Creek caldera formed ca. 34.0 Ma during eruption of the approximately 400 cubic kilometers (km3) tuff of Hall Creek, a moderately crystal-rich rhyolite (71–77 percent SiO2) ash-flow tuff. Caldera collapse was piston-like with an intact floor block, and the caldera filled with thick (approximately 2,600 meters) intracaldera tuff and interbedded breccia lenses shed from the caldera walls. The most extensive exposed megabreccia deposits are concentrated on or close to the caldera floor in the southwestern part of the caldera. Both silicic and intermediate post-caldera lavas were locally erupted within 400 thousand

  17. Water quality, sources of nitrate, and chemical loadings in the Geronimo Creek and Plum Creek watersheds, south-central Texas, April 2015–March 2016

    USGS Publications Warehouse

    Lambert, Rebecca B.; Opsahl, Stephen P.; Musgrove, MaryLynn

    2017-12-22

    Located in south-central Texas, the Geronimo Creek and Plum Creek watersheds have long been characterized by elevated nitrate concentrations. From April 2015 through March 2016, an assessment was done by the U.S. Geological Survey, in cooperation with the Guadalupe-Blanco River Authority and the Texas State Soil and Water Conservation Board, to characterize nitrate concentrations and to document possible sources of elevated nitrate in these two watersheds. Water-quality samples were collected from stream, spring, and groundwater sites distributed across the two watersheds, along with precipitation samples and wastewater treatment plant (WWTP) effluent samples from the Plum Creek watershed, to characterize endmember concentrations and isotopic compositions from April 2015 through March 2016. Stream, spring, and groundwater samples from both watersheds were collected during four synoptic sampling events to characterize spatial and temporal variations in water quality and chemical loadings. Water-quality and -quantity data from the WWTPs and stream discharge data also were considered. Samples were analyzed for major ions, selected trace elements, nutrients, and stable isotopes of water and nitrate.The dominant land use in both watersheds is agriculture (cultivated crops, rangeland, and grassland and pasture). The upper part of the Plum Creek watershed is more highly urbanized and has five major WWTPs; numerous smaller permitted wastewater outfalls are concentrated in the upper and central parts of the Plum Creek watershed. The Geronimo Creek watershed, in contrast, has no WWTPs upstream from or near the sampling sites.Results indicate that water quality in the Geronimo Creek watershed, which was evaluated only during base-flow conditions, is dominated by groundwater, which discharges to the stream by numerous springs at various locations. Nitrate isotope values for most Geronimo Creek samples were similar, which indicates that they likely have a common source (or

  18. 1. EXTERIOR OVERVIEW SHOWING BISHOP CREEK PLANT 4 RESIDENTIAL COMPLEX. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. EXTERIOR OVERVIEW SHOWING BISHOP CREEK PLANT 4 RESIDENTIAL COMPLEX. BUILDING 122 IS VISIBLE AT PHOTO CENTER. PLANT 5 INTAKE DAM AT PHOTO LEFT. VIEW TO WEST. - Bishop Creek Hydroelectric System, Plant 4, Worker Cottage, Bishop Creek, Bishop, Inyo County, CA

  19. View looking Eastnortheast at French Creek trestle, which appears at ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View looking Eastnortheast at French Creek trestle, which appears at left center of frame. Bridge in foreground is west entrance to abandoned Phoenix iron works. - Pennsylvania Railroad, French Creek Trestle, Spanning French Creek, north of Paradise Street, Phoenixville, Chester County, PA

  20. 33 CFR 117.153 - Corte Madera Creek.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Corte Madera Creek. 117.153 Section 117.153 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements California § 117.153 Corte Madera Creek. The draw of...

  1. 33 CFR 117.153 - Corte Madera Creek.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Corte Madera Creek. 117.153 Section 117.153 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements California § 117.153 Corte Madera Creek. The draw of...

  2. Physical Volcanology and Geochemistry of the Brown's Creek Rhyolite Lava in the Western Snake River Plain, Idaho.

    NASA Astrophysics Data System (ADS)

    Steenberg, L.; Gruber, B.; Boroughs, S.; Wolff, J.

    2015-12-01

    The Brown's Creek rhyolite (BCR), ~70 km south of Boise, Idaho, erupted during a period of widespread rhyolitic volcanism in southwestern Idaho during the middle Miocene. However, the Brown's Creek unit has several characteristics that are unusual relative to near contemporaneous units in the Central Snake Rive Plain (CSRP) and units in the Western Snake River Plain (WSRP). The BCR can contain up to 40% phenocrysts, with some feldspar and quartz crystals in excess of 2 cm in diameter. A proximal vent location is particularly well exposed in the BCR, and appears as an elongated topographic "dome" with pervasive, chaotic and steep flow banding, ramp structures, and breccias. Evidence of dome building activity is also represented by a matrix supported deposit of ash and poorly sorted, angular, rhyolite clasts up to boulder size; which crops out in a small area near the vent. The BCR is among numerous units in the CSRP and WSRP that show evidence of interaction with ancient Lake Idaho (e.g. silicification, opalized zones, pepperites, etc), but the unconformity with the sedimentary rocks of the lake and its feeder streams, is extremely well preserved in the Brown's Creek rhyolite. Geochemically, the Brown's Creek rhyolite shows greater compositional variation in comparison to other individual units in the region. This variation (e.g. Ba/Sr and Zr/Nb) may be a result of variable crystal cargo in hand samples, but could potentially represent a zoned magma body, which is also extremely rare in the CSRP or WSRP. A limited number of samples have trace element concentrations/ratios (e.g. Rb, U, and Th) that may indicate the presence of a second unit underlying the dominant outcrops of BCR, but Nb/Ta ratios are relatively invariant across the entire BCR suite; if there are two units in the BCR, their sources are the same or very similar.

  3. Scientific communications: Re-Os sulfide (bornite, chalcopyrite, and pyrite) systematics of the carbonate-hosted copper deposits at ruby creek, southern brooks range, Alaska

    USGS Publications Warehouse

    Selby, D.; Kelley, K.D.; Hitzman, M.W.; Zieg, J.

    2009-01-01

    New Re-Os data for chalcopyrite, bornite, and pyrite from the carbonate-hosted Cu deposit at Ruby Creek (Bornite), Alaska, show extremely high Re abundances (hundreds of ppb, low ppm) and contain essentially no common Os. The Re-Os data provide the first absolute ages of ore formation for the carbonate-hosted Ruby Creek Cu-(Co) deposit and demonstrate that the Re-Os systematics of pyrite, chalcopyrite, and bornite are unaffected by greenschist metamorphism. The Re-Os data show that the main phase of Cu mineralization pre dominantly occurred at 384 ?? 4.2 Ma, with an earlier phase possibly at ???400 Ma. The Re-Os data are consistent with the observed paragenetic sequence and coincide with zircon U-Pb ages from igneous rocks within the Ambler metallogenic belt, some of which are spatially and genetically associated with regional volcanogenic massive sulfide deposits. The latter may suggest a temporal link between regional magmatism and hydrothermal mineralization in the Ambler district. The utility of bornite and chalcopyrite, in addition to pyrite, contributes to a new understanding of Re-Os geochronology and permits a refinement of the genetic model for the Ruby Creek deposit. ?? 2009 Society of Economices Geologists, Inc.

  4. Seasonal Changes in Carbohydrates and Ascorbic Acid and White Pine and Possible Relation to Tipburn Sensitivity

    Treesearch

    Robert L Barnes; Charles R. Berry

    1969-01-01

    Changes in amounts of total soluble carbohydrates and ascorbic acid were related to needle length of eastern white pine during June and July 1967 at Bent Creek Experimental Forest. Sugar values remained low through the early growing season, and several instances of injury to clones sensitive to tipburn occurred as late as mid-July. Sugar levels fluctuated somewhat,...

  5. Statistical analysis of the radon-222 potential of rocks in Virginia, U.S.A.

    USGS Publications Warehouse

    Brown, C. Erwin; Mose, D.G.; Mushrush, G.W.; Chrosniak, C.E.

    1992-01-01

    More than 3,200 indoor radon-222 (222Rn) measurements were made seasonally in an area of about 1,000 square kilometers of the Coastal Plain and Piedmont physiographic provinces in Virginia, U.S.A. Results of these measurements indicate that some geological units are associated, on the average, with twice as much indoor222Rn as other geological units, and that indoor222Rn varies seasonally. The Kruskal-Wallis test was used to test whether indoor222Rn concentrations for data gathered over the winter and summer seasons differ significantly by rock unit. The tests concluded that indoor222Rn concentrations for different rock units were not equal at the 5-percent significance level. The rocks associated with the highest median indoor222Rn concentration are specific rocks in the Mesozoic Culpeper basin, including shale and siltstone units with Jurassic diabase intrusives, and mica schists in the Piedmont physiographic province. The pre-Triassic Peters Creek Schist has the highest ranking in terms of indoor222Rn concentration. The rocks associated with the lowest indoor222Rn concentrations include coastal plain sediments, the Occoquan Granite, Falls Church Tonalite, Piney Branch Mafic and Ultramafic complex, and unnamed mafic and ultramafic inclusions, respectively. The rocks have been ranked according to observed222Rn concentration by transforming the average rank of indoor222Rn concentrations to z scores. ?? 1992 Springer-Verlag New York Inc.

  6. A study of uranium favorability of Cenozoic sedimentary rocks, Basin and Range Province, Arizona: Part I, General geology and chronology of pre-late Miocene Cenozoic sedimentary rocks

    USGS Publications Warehouse

    Scarborough, Robert Bryan; Wilt, Jan Carol

    1979-01-01

    This study focuses attention on Cenozoic sedimentary rocks in the Basin and Range Province of Arizona. The known occurrences of uranium and anomalous radioactivity in these rocks are associated with sediments that accumulated in a low energy environment characterized by fine-grained clastics, including important tuffaceous materials, and carbonate rocks. Most uranium occurrences, in these rocks appear to be stratabound. Emphasis was placed on those sedimentary materials that pre-date the late Cenozoic Basin and Range disturbance. They are deformed and crop out on pedimented range blocks and along the province interface with the Transition Zone. Three tentative age groups are recognized: Group I - Oligocene, pre-22 m.y., Group II - early Miocene - 22 m.y. - 16 m.y., and Group III - middle Miocene - 16 m.y. to 13--10 m.y. Regionally, these three groups contain both coarse to fine-grained red clastics and low energy lighter colored 'lacustrine' phases. Each of the three groups has been the object of uranium exploration. Group II, the early Miocene strata, embraces the Anderson Mine - Artillery region host rocks and also the New River - Cave Creek early Miocene beds-along the boundary with the Transition Zone. These three groups of rocks have been tectonically deformed to the extent that original basins of deposition cannot yet be reconstructed. However, they were considerably more extensive in size than the late Cenozoic basins the origin of which deformed the former. Group II rocks are judged to be of prime interest because of: (1) the development and preservation of organic matter in varying lithologies, (2) apparent contemporaneity with silicic volcanic centers, (3) influence of Precambrian crystalline rocks, and (4) relative outcrop continuity near the stable Transition Zone. The Transition Zone, especially along its boundary with the Basin and Range Province, needs additional geologic investigation, especially as regards the depositional continuity of Group II

  7. 1. EXTERIOR OVERVIEW SHOWING BISHOP CREEK PLANT 4 RESIDENTIAL COMPLEX. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. EXTERIOR OVERVIEW SHOWING BISHOP CREEK PLANT 4 RESIDENTIAL COMPLEX. BUILDING 113 IS VISIBLE AT RIGHT PHOTO CENTER. PLANT 5 INTAKE DAM AT PHOTO LEFT. VIEW TO WEST. - Bishop Creek Hydroelectric System, Plant 4, Worker Cottage, Bishop Creek, Bishop, Inyo County, CA

  8. Responses to riparian restoration in the Spring Creek watershed, Central Pennsylvania

    USGS Publications Warehouse

    Carline, R.F.; Walsh, M.C.

    2007-01-01

    Riparian treatments, consisting of 3- to 4-m buffer strips, stream bank stabilization, and rock-lined stream crossings, were installed in two streams with livestock grazing to reduce sediment loading and stream bank erosion. Cedar Run and Slab Cabin Run, the treatment streams, and Spring Creek, an adjacent reference stream without riparian grazing, were monitored prior to (1991-1992) and 3-5 years after (2001-2003) riparian buffer installation to assess channel morphology, stream substrate composition, suspended sediments, and macroinvertebrate communities. Few changes were found in channel widths and depths, but channel-structuring flow events were rare in the drought period after restoration. Stream bank vegetation increased from 50% or less to 100% in nearly all formerly grazed riparian buffers. The proportion of fine sediments in stream substrates decreased in Cedar Run but not in Slab Cabin Run. After riparian treatments, suspended sediments during base flow and storm flow decreased 47-87% in both streams. Macroinvertebrate diversity did not improve after restoration in either treated stream. Relative to Spring Creek, macroinvertebrate densities increased in both treated streams by the end of the posttreatment sampling period. Despite drought conditions that may have altered physical and biological effects of riparian treatments, goals of the riparian restoration to minimize erosion and sedimentation were met. A relatively narrow grass buffer along 2.4 km of each stream was effective in improving water quality, stream substrates, and some biological metrics. ?? 2007 Society for Ecological Restoration International.

  9. 33 CFR 117.1001 - Cat Point Creek.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Cat Point Creek. 117.1001 Section 117.1001 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Virginia § 117.1001 Cat Point Creek. The draw of the...

  10. 33 CFR 117.800 - Mill Neck Creek.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Mill Neck Creek. 117.800 Section 117.800 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements New York § 117.800 Mill Neck Creek. The draw of the...

  11. 33 CFR 117.705 - Beaver Dam Creek.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Beaver Dam Creek. 117.705 Section 117.705 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements New Jersey § 117.705 Beaver Dam Creek. The draw of the...

  12. 33 CFR 117.705 - Beaver Dam Creek.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Beaver Dam Creek. 117.705 Section 117.705 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements New Jersey § 117.705 Beaver Dam Creek. The draw of the...

  13. 33 CFR 334.240 - Potomac River, Mattawoman Creek and Chicamuxen Creek; U.S. Naval Surface Weapons Center, Indian...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Potomac River, Mattawoman Creek..., DEPARTMENT OF DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.240 Potomac River, Mattawoman Creek...) The danger zone. Beginning at a point on the easterly shore of the Potomac River at latitude 38°36′00...

  14. 33 CFR 334.240 - Potomac River, Mattawoman Creek and Chicamuxen Creek; U.S. Naval Surface Weapons Center, Indian...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Potomac River, Mattawoman Creek..., DEPARTMENT OF DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.240 Potomac River, Mattawoman Creek...) The danger zone. Beginning at a point on the easterly shore of the Potomac River at latitude 38°36′00...

  15. 33 CFR 334.240 - Potomac River, Mattawoman Creek and Chicamuxen Creek; U.S. Naval Surface Weapons Center, Indian...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Potomac River, Mattawoman Creek..., DEPARTMENT OF DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.240 Potomac River, Mattawoman Creek...) The danger zone. Beginning at a point on the easterly shore of the Potomac River at latitude 38°36′00...

  16. 33 CFR 334.240 - Potomac River, Mattawoman Creek and Chicamuxen Creek; U.S. Naval Surface Weapons Center, Indian...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Potomac River, Mattawoman Creek..., DEPARTMENT OF DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.240 Potomac River, Mattawoman Creek...) The danger zone. Beginning at a point on the easterly shore of the Potomac River at latitude 38°36′00...

  17. 33 CFR 334.240 - Potomac River, Mattawoman Creek and Chicamuxen Creek; U.S. Naval Surface Weapons Center, Indian...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Potomac River, Mattawoman Creek..., DEPARTMENT OF DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.240 Potomac River, Mattawoman Creek...) The danger zone. Beginning at a point on the easterly shore of the Potomac River at latitude 38°36′00...

  18. Multifractal magnetic susceptibility distribution models of hydrothermally altered rocks in the Needle Creek Igneous Center of the Absaroka Mountains, Wyoming

    USGS Publications Warehouse

    Gettings, M.E.

    2005-01-01

    Magnetic susceptibility was measured for 700 samples of drill core from thirteen drill holes in the porphyry copper-molybdenum deposit of the Stinkingwater mining district in the Absaroka Mountains, Wyoming. The magnetic susceptibility measurements, chemical analyses, and alteration class provided a database for study of magnetic susceptibility in these altered rocks. The distribution of the magnetic susceptibilities for all samples is multi-modal, with overlapping peaked distributions for samples in the propylitic and phyllic alteration class, a tail of higher susceptibilities for potassic alteration, and an approximately uniform distribution over a narrow range at the highest susceptibilities for unaltered rocks. Samples from all alteration and mineralization classes show susceptibilities across a wide range of values. Samples with secondary (supergene) alteration due to oxidation or enrichment show lower susceptibilities than primary (hypogene) alteration rock. Observed magnetic susceptibility variations and the monolithological character of the host rock suggest that the variations are due to varying degrees of alteration of blocks of rock between fractures that conducted hydrothermal fluids. Alteration of rock from the fractures inward progressively reduces the bulk magnetic susceptibility of the rock. The model introduced in this paper consists of a simulation of the fracture pattern and a simulation of the alteration of the rock between fractures. A multifractal model generated from multiplicative cascades with unequal ratios produces distributions statistically similar to the observed distributions. The reduction in susceptibility in the altered rocks was modelled as a diffusion process operating on the fracture distribution support. The average magnetic susceptibility was then computed for each block. For the purpose of comparing the model results with observation, the simulated magnetic susceptibilities were then averaged over the same interval as the

  19. Calibration of streamflow gauging stations at the Tenderfoot Creek Experimental Forest

    Treesearch

    Scott W. Woods

    2007-01-01

    We used tracer based methods to calibrate eleven streamflow gauging stations at the Tenderfoot Creek Experimental Forest in western Montana. At six of the stations the measured flows were consistent with the existing rating curves. At Lower and Upper Stringer Creek, Upper Sun Creek and Upper Tenderfoot Creek the published flows, based on the existing rating curves,...

  20. Persistence of the longnose darter (P. nasuta) in Lee Creek, Oklahoma

    USGS Publications Warehouse

    Gatlin, Michael R.; Long, James M.

    2011-01-01

    Lee Creek is one of Oklahoma’s six rivers designated as "scenic" by the Oklahoma Legislature. Lee Creek is located on the Oklahoma-Arkansas border in far eastern Oklahoma. The headwaters originate in northwestern Arkansas and flow south towards the Arkansas River. While the majority of the stream is in Arkansas, a portion flows into Oklahoma northwest of Uniontown, AR and continues for 28.2 river-km before crossing back into Arkansas near Van Buren, AR. The hydrology of lower Lee Creek has been altered by Lee Creek Reservoir near Van Buren, AR. It was believed that pre-impounded Lee Creek had the largest existing population of longnose darters (8). However, the most recent fish surveys in Lee Creek were conducted approximately twenty years ago. Robinson (8) surveyed Lee Creek in Arkansas, upstream of the Oklahoma border, and found longnose darters upstream of Natural Dam, AR. Wagner et al. (10) were the last to document longnose darter presence in the Oklahoma segment of Lee Creek. No efforts to collect this species in Oklahoma have occurred since the completion of Lee Creek Reservoir. Our objective was to determine whether the species persist in this segment of its historic range since impoundment.

  1. 1. EXTERIOR OVERVIEW SHOWING BISHOP CREEK PLANT 4 RESIDENTIAL COMPLEX. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. EXTERIOR OVERVIEW SHOWING BISHOP CREEK PLANT 4 RESIDENTIAL COMPLEX. ROOF OF BUILDING 105 IS VISIBLE IN UPPER PHOTO CENTER. PLANT 5 INTAKE DAM AT PHOTO LEFT. VIEW TO WEST. - Bishop Creek Hydroelectric System, Plant 4, Worker Cottage, Bishop Creek, Bishop, Inyo County, CA

  2. Three-Dimensional Geologic Model of Complex Fault Structures in the Upper Seco Creek Area, Medina and Uvalde Counties, South-Central Texas

    USGS Publications Warehouse

    Pantea, Michael P.; Cole, James C.; Smith, Bruce D.; Faith, Jason R.; Blome, Charles D.; Smith, David V.

    2008-01-01

    This multimedia report shows and describes digital three-dimensional faulted geologic surfaces and volumes of the lithologic units of the Edwards aquifer in the upper Seco Creek area of Medina and Uvalde Counties in south-central Texas. This geologic framework model was produced using (1) geologic maps and interpretations of depositional environments and paleogeography; (2) lithologic descriptions, interpretations, and geophysical logs from 31 drill holes; (3) rock core and detailed lithologic descriptions from one drill hole; (4) helicopter electromagnetic geophysical data; and (5) known major and minor faults in the study area. These faults were used because of their individual and collective effects on the continuity of the aquifer-forming units in the Edwards Group. Data and information were compared and validated with each other and reflect the complex relationships of structures in the Seco Creek area of the Balcones fault zone. This geologic framework model can be used as a tool to visually explore and study geologic structures within the Seco Creek area of the Balcones fault zone and to show the connectivity of hydrologic units of high and low permeability between and across faults. The software can be used to display other data and information, such as drill-hole data, on this geologic framework model in three-dimensional space.

  3. 78 FR 54674 - Notice of Intent To Prepare an Environmental Impact Statement for the Proposed Gold Rock Mine...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-05

    ... the Proposed Gold Rock Mine Project, White Pine County, NV AGENCY: Bureau of Land Management, Interior... participation upon publication of the Draft EIS. ADDRESSES: You may submit comments related to the Gold Rock Mine Project by any of the following methods: Email: BLM_NV_EYDO_Midway_Gold_Rock[email protected] Fax: 775...

  4. Geochemistry of the Birch Creek Drainage Basin, Idaho

    USGS Publications Warehouse

    Swanson, Shawn A.; Rosentreter, Jeffrey J.; Bartholomay, Roy C.; Knobel, LeRoy L.

    2003-01-01

    The U.S. Survey and Idaho State University, in cooperation with the U.S. Department of Energy, are conducting studies to describe the chemical character of ground water that moves as underflow from drainage basins into the eastern Snake River Plain aquifer (ESRPA) system at and near the Idaho National Engineering and Environmental Laboratory (INEEL) and the effects of these recharge waters on the geochemistry of the ESRPA system. Each of these recharge waters has a hydrochemical character related to geochemical processes, especially water-rock interactions, that occur during migration to the ESRPA. Results of these studies will benefit ongoing and planned geochemical modeling of the ESRPA at the INEEL by providing model input on the hydrochemical character of water from each drainage basin. During 2000, water samples were collected from five wells and one surface-water site in the Birch Creek drainage basin and analyzed for selected inorganic constituents, nutrients, dissolved organic carbon, tritium, measurements of gross alpha and beta radioactivity, and stable isotopes. Four duplicate samples also were collected for quality assurance. Results, which include analyses of samples previously collected from four other sites, in the basin, show that most water from the Birch Creek drainage basin has a calcium-magnesium bicarbonate character. The Birch Creek Valley can be divided roughly into three hydrologic areas. In the northern part, ground water is forced to the surface by a basalt barrier and the sampling sites were either surface water or shallow wells. Water chemistry in this area was characterized by simple evaporation models, simple calcite-carbon dioxide models, or complex models involving carbonate and silicate minerals. The central part of the valley is filled by sedimentary material and the sampling sites were wells that are deeper than those in the northern part. Water chemistry in this area was characterized by simple calcite-dolomite-carbon dioxide

  5. 33 CFR 110.72 - Blackhole Creek, Md.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Blackhole Creek, Md. 110.72 Section 110.72 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.72 Blackhole Creek, Md. The waters on the west side of...

  6. 33 CFR 110.72 - Blackhole Creek, Md.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Blackhole Creek, Md. 110.72 Section 110.72 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.72 Blackhole Creek, Md. The waters on the west side of...

  7. Multiple-Purpose Project, Osage River Basin, Hundred and Ten Mile Creek Kansas, Pomona Lake, Operation and Maintenance Manual. Appendix VII. Construction Foundation Report. Revision.

    DTIC Science & Technology

    1983-10-01

    Rock, from required excavation, was utilized in the embankment. Amonium nitrate and 60 percent dynamite were used. No blasting records were kept...AD A135 578 MULTPLE-PURPOSE PROJECT OSAGE RIVER BASIN HUNDRED AND 1;TEN MILE CREEK KAA U) CORPS OF ENGINEERS KANSASOASS DS C C ES C IT UNCLASIFE D ...ADDRESS 12. REPORT DATE Estimates & Specifications Section (MRKED-DE), 1977 Revised October 1983 Design Branch (MRKED- D ), Kansas City District, 13

  8. Tidal creek changes at the Sonoma Baylands restoration site

    USGS Publications Warehouse

    Dingler, John R.; Cacchione, David A.; ,

    1998-01-01

    Over the past 150 years, human activity has had a major impact on tidal wetlands adjoining the San Francisco Bay-Delta estuary Growing concern about the effect of this change on the ecology of the estuary has prompted Bay area managers to attempt to reclaim tidal wetlands. The Sonoma Baylands Restoration Project is designed to use dredge material to convert 348 acres from farmland to wetland. This paper describes changes to a tidal creek that flows from that restoration site to San Pablo Bay (north San Francisco Bay) through an existing tidal wetland during different phases of the project. Hydrologic measurements near the bottom of the creek and cross-creek profiles show how the creek responded to non-tidal flow conditions introduced by filling the site with dredge materials. At the time of this study, the creek had deepened by approximately 40 cm but had not widened.

  9. Caspar Creek

    Treesearch

    Robert R. Ziemer

    2001-01-01

    The USDA Forest Service Pacific Southwest Research Station and the California Department of Forestry and Fire Protection have gauged streamflow, and suspended sediment and precipitation since 1962 in the 473 ha North Fork and the 424 ha South Fork of the 2167 ha Caspar Creek in the Jackson Demonstation State Forest in northwestern California. Within the two Caspar...

  10. Characterization of Fish Creek, Teton County, Wyoming, 2004-08

    USGS Publications Warehouse

    Eddy-Miller, Cheryl A.; Peterson, David A.; Wheeler, Jerrod D.; Leemon, Daniel J.

    2010-01-01

    Fish Creek, a tributary to the Snake River, is about 15 river miles long and is located in Teton County in western Wyoming near the town of Wilson (fig. 1). Public concern about nuisance growths of aquatic plants in Fish Creek has been increasing since the early 2000s. To address this concern, the U.S. Geological Survey, in cooperation with the Teton Conservation District, began studying Fish Creek in 2004 to describe the hydrology of the creek and later (2007?08) to characterize the water quality and the biological communities. The purpose of this fact sheet is to summarize the study results from 2004 to 2008.

  11. A surface vitrinite reflectance anomaly related to Bell Creek oil field, Montana, U.S.A.

    USGS Publications Warehouse

    Barker, C.E.; Dalziel, M.C.; Pawlewicz, M.J.

    1983-01-01

    Vitrinite reflectance measurements from surface samples of mudrock and coal show anomalously high values over the Bell Creek oil field. The average vitrinite reflectance (Rm) increases to a maximum of 0.9 percent over the field against background values of about 0.3 percent. The Rm anomaly coincides with a geochemical anomaly indicated by diagenetic magnetite in surface rocks and a geobiologic anomaly indicated by ethane-consuming bacteria. These samples were taken from the Upper Cretaceous Hell Creek and Paleocene Fort Union Formations which form an essentially conformable sequence. The depositional environment is similar in both formations, and we expect little variation in the source and composition of the organic matter. The surface R m should be approximately constant because of a uniform thermal history across the field. Temperature studies over local oil fields with similar geology suggest the expected thermal anomaly would be less than 10?C (50?F), which is too small to account for the significantly higher rank over the field. Coal clinkers are rare in the vicinity of Bell Creek and an Rm anomaly caused by burning of the thin, discontinuous coal seams is unlikely. The limited topographic relief, less than 305 m (1,000 ft), over the shallow-dipping homoclinal structure and the poor correlation between Rm and sample locality elevation (r = -0.2) indicate that the Rm anomaly is not due to burial, deformation and subsequent erosion. We conjecture that activity by petroleum-metabolizing bacteria is a possible explanation of the Rm anomaly. Microseepage from oil reservoirs supports large colonies of these organisms, some of which can produce enzymes that can cleave hydrocarbon side-chains on the kerogen molecule. The loss of these side chains causes condensation of the ring structures (Stach and others, 1982) and consequently increases its reflectance. These data indicate that vitrinite reflectance may be a useful tool to explore for stratigraphic traps in the

  12. Estimating pothole wetland connectivity to Pipestem Creek ...

    EPA Pesticide Factsheets

    Understanding hydrologic connectivity between wetlands and perennial streams is critical to understanding how reliant stream flow is on wetlands within their watershed. We used the isotopic evaporation signal in water to examine wetland-stream hydrologic connectivity within the Pipestem Creek watershed, North Dakota, a watershed dominated by prairie-pothole wetlands. During a wetter-than-normal decade, Pipestem Creek exhibited an evaporated-water signal that had approximately half the isotopic-enrichment signal found in most evaporatively enriched pothole wetlands. If evaporation was mainly occurring within the stream, we expected the evaporation signal to increase from upstream towards downstream. However, the signal either remained similar or decreased downstream over the two years of sampling. Groundwater measured at the water table adjacent to Pipestem Creek had isotopic values that indicated recharge from winter precipitation and had no significant evaporative enrichment. Using isotopic theory and discharge data, we estimated the surface area of open water necessary to generate the evaporation signal found within Pipestem Creek over time. The range of evaporating surface-area estimates was highly dynamic, spanning from 35 to 2380 ha of open water contributing to streamflow over time, and varied primarily with the amount of discharge. The median value (417 ha) was well above the surface area of the Pipestem Creek network (245 ha), and only two periods

  13. Environmental setting of Maple Creek watershed, Nebraska

    USGS Publications Warehouse

    Fredrick, Brian S.; Linard, Joshua I.; Carpenter, Jennifer L.

    2006-01-01

    The Maple Creek watershed covers a 955-square-kilometer area in eastern Nebraska, which is a region dominated by agricultural land use. The Maple Creek watershed is one of seven areas currently included in a nationwide study of the sources, transport, and fate of water and chemicals in agricultural watersheds. This study, known as the topical study of 'Agricultural Chemicals: Sources, Transport, and Fate' is part of the National Water-Quality Assessment Program being conducted by the U.S. Geological Survey. The Program is designed to describe water-quality conditions and trends based on representative surface- and ground-water resources across the Nation. The objective of the Agricultural Chemicals topical study is to investigate the sources, transport, and fate of selected agricultural chemicals in a variety of agriculturally diverse environmental settings. The Maple Creek watershed was selected for the Agricultural Chemicals topical study because its watershed represents the agricultural setting that characterizes eastern Nebraska. This report describes the environmental setting of the Maple Creek watershed in the context of how agricultural practices, including agricultural chemical applications and irrigation methods, interface with natural settings and hydrologic processes. A description of the environmental setting of a subwatershed within the drainage area of Maple Creek is included to improve the understanding of the variability of hydrologic and chemical cycles at two different scales.

  14. 76 FR 9501 - Amendment of Prohibited Area P-56; District of Columbia

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-18

    ... and the Rock Creek and Potomac Parkway NW. However, New Hampshire Avenue no longer intersects the Rock Creek and Potomac Parkway. Due to the construction of the John F. Kennedy Center for the Performing Arts... on the Rock Creek and Potomac Parkway still extends toward the point where New Hampshire Avenue NW...

  15. 33 CFR 117.139 - White River.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... OPERATION REGULATIONS Specific Requirements Arkansas § 117.139 White River. (a) The draws of the St. Louis Southwestern railroad bridge, mile 98.9 at Clarendon, the US70 highway bridge, mile 121.7 at DeValls Bluff, the Chicago, Rock Island and Pacific Railroad bridge, mile 122.0 at DeValls Bluff, the Missouri Pacific...

  16. Geochemical and geochronological constraints on the genesis of Au-Te deposits at Cripple Creek, Colorado

    USGS Publications Warehouse

    Kelley, K.D.; Romberger, S.B.; Beaty, D.W.; Pontius, J.A.; Snee, L.W.; Stein, H.J.; Thompson, T.B.

    1998-01-01

    The Cripple Creek district (653 metric tons (t) of Au) consists of Au-Te veins and disseminated gold deposits that are spatially related to alkaline igneous rocks in an Oligocene intrusive complex. Vein paragenesis includes quartz-biotite-K feldspar-fluorite-pyrite followed by base metal sulfides and telluride minerals. Disseminated deposits consist of microcrystalline native gold with pyrite that are associated with zones of pervasive adularia. New 40Ar/39Ar dates indicate that there was a complex magmatic and hydrothermal history. Relatively felsic rocks (tephriphonolite, trachyandesite, and phonolite) were emplaced into the complex over about 1 m.y., from 32.5 ?? 0.1 (1??) to 31.5 ?? 0.1 Ma. A younger episode of phonolite emplacement outside of the complex is indicated by an age of 30.9 ?? 0.1 Ma. Field relationships suggest that at least one episode of mafic and ultramafic dike emplacement occurred after relatively more felsic rocks and prior to the main gold mineralizing event. Only a single whole-rock date for mafic phonolite (which indicated a maximum age of 28.7 Ma) was obtained. However, constraints on the timing of mineralization are provided by paragenetically early vein minerals and K feldspar from the disseminated gold pyrite deposits. Early vein minerals (31.3 ?? 0.1-29.6 ?? 0.1 Ma) and K feldspar (29.8 ?? 0.1 Ma) from the Cresson disseminated deposit, together with potassically altered phonolite adjacent to the Pharmacist vein (28.8 and 28.2 ?? 0.1 Ma), suggest there was a protracted history of hydrothermal activity that began during the waning stages of phonolite and early mafic-ultramafic activity and continued, perhaps intermittently, for at least 2 m.y. Estimated whole-rock ??18O values of the alkaline igneous rocks range from 6.4 to 8.2 per mil. K feldspar and albite separates from igneous rocks have lead isotope compositions of 206Pb/204Pb = 17.90 to 18.10, 207Pb/204Pb = 15.51 to 15.53, and 208Pb/204Pb = 38.35 to 38.56. These isotopic

  17. Geochronology of the Thompson Creek Mo Deposit: Evidence for the Formation of Arc-related Mo Deposits

    NASA Astrophysics Data System (ADS)

    Lawrence, C. D.; Coleman, D. S.; Stein, H. J.

    2016-12-01

    The Thompson Creek Mo deposit in central ID, has been categorized as an arc-related Mo deposit due to the location, grade of Mo, and relative lack of enrichments in F, Rb, and Nb, compared to the Climax-type Mo deposits. Geochronology from this arc-related deposit provides an opportunity to compare and contrast magmatism, and mineralization to that in Climax-type deposits. Distinct pulses of magmatism were required to form the Thompson Creek Mo deposit, which is consistent with recent geochronology from Climax-type deposits. Molybdenite Re-Os geochronology from five veins requires at least three pulses of magmatism and mineralization between 89.39 +/- 0.37 and 88.47 +/- 0.16 Ma. Zircon U-Pb ages from these mineralized samples overlap with molybdenite mineralization, but show a much wider range (91.01 +/- 0.37 to 87.27 +/- 0.69). Previous work from Climax-type Mo deposits suggest a correlation between a super eruption, and the subsequent rapid (<1 Ma) onset, and completion of Mo mineralizing intrusions. The longer life (3-4 Ma) for the Thompson Creek Mo deposit suggests that the mineralizing intrusions for arc-related Mo deposits may not need to have as high [Mo] as the Climax-type deposits. This study also finds a shift in the source of magmatism from the pre- to syn-mineralizing intrusions. Zircons from pre-mineralizing intrusions have much higher (15-60 pg) concentrations of radiogenic Pb than zircons from mineralized intrusions, which all have less than 15 pg, though whole rock [U] are similar.

  18. 27 CFR 9.112 - Arkansas Mountain.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... eastward along Highway 71 until it crosses Rock Creek. (v) Then northeastward along Rock Creek to Petit Jean Creek. (vi) Then generally northeastward and eastward along Petit Jean Creek until it becomes the Petit Jean River (on the Russellville map). (vii) Then generally eastward along the Petit Jean River...

  19. 27 CFR 9.112 - Arkansas Mountain.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... eastward along Highway 71 until it crosses Rock Creek. (v) Then northeastward along Rock Creek to Petit Jean Creek. (vi) Then generally northeastward and eastward along Petit Jean Creek until it becomes the Petit Jean River (on the Russellville map). (vii) Then generally eastward along the Petit Jean River...

  20. 27 CFR 9.112 - Arkansas Mountain.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... eastward along Highway 71 until it crosses Rock Creek. (v) Then northeastward along Rock Creek to Petit Jean Creek. (vi) Then generally northeastward and eastward along Petit Jean Creek until it becomes the Petit Jean River (on the Russellville map). (vii) Then generally eastward along the Petit Jean River...

  1. 27 CFR 9.112 - Arkansas Mountain.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... eastward along Highway 71 until it crosses Rock Creek. (v) Then northeastward along Rock Creek to Petit Jean Creek. (vi) Then generally northeastward and eastward along Petit Jean Creek until it becomes the Petit Jean River (on the Russellville map). (vii) Then generally eastward along the Petit Jean River...

  2. Questa baseline and pre-mining ground-water quality investigation. 5. Well installation, water-level data, and surface- and ground-water geochemistry in the Straight Creek drainage basin, Red River Valley, New Mexico, 2001-03

    USGS Publications Warehouse

    Naus, Cheryl A.; McCleskey, R. Blaine; Nordstrom, D. Kirk; Donohoe, Lisa C.; Hunt, Andrew G.; Paillet, Frederick L.; Morin, Roger H.; Verplanck, Philip L.

    2005-01-01

    The U.S. Geological Survey, in cooperation with the New Mexico Environment Department, is investigating the pre-mining ground-water chemistry at the Molycorp molybdenum mine in the Red River Valley, northern New Mexico. The primary approach is to determine the processes controlling ground-water chemistry at an unmined, off-site, proximal analog. The Straight Creek drainage basin, chosen for this purpose, consists of the same quartz-sericite-pyrite altered andesitic and rhyolitic volcanic rock of Tertiary age as the mine site. The weathered and rugged volcanic bedrock surface is overlain by heterogeneous debris-flow deposits that interfinger with alluvial deposits near the confluence of Straight Creek and the Red River. Pyritized rock in the upper part of the drainage basin is the source of acid rock drainage (pH 2.8-3.3) that infiltrates debris-flow deposits containing acidic ground water (pH 3.0-4.0) and bedrock containing water of circumneutral pH values (5.6-7.7). Eleven observation wells were installed in the Straight Creek drainage basin. The wells were completed in debris-flow deposits, bedrock, and interfingering debris-flow and Red River alluvial deposits. Chemical analyses of ground water from these wells, combined with chemical analyses of surface water, water-level data, and lithologic and geophysical logs, provided information used to develop an understanding of the processes contributing to the chemistry of ground water in the Straight Creek drainage basin. Surface- and ground-water samples were routinely collected for determination of total major cations and selected trace metals; dissolved major cations, selected trace metals, and rare-earth elements; anions and alkalinity; and dissolved-iron species. Rare-earth elements were determined on selected samples only. Samples were collected for determination of dissolved organic carbon, mercury, sulfur isotopic composition (34S and 18O of sulfate), and water isotopic composition (2H and 18O) during

  3. Geophysical expression of a buried niobium and rare earth element deposit: the Elk Creek carbonatite, Nebraska, USA

    USGS Publications Warehouse

    Drenth, Benjamin J.

    2014-01-01

    The lower Paleozoic Elk Creek carbonatite is a 6–8-km-diameter intrusive complex buried under 200 m of sedimentary rocks in southeastern Nebraska. It hosts the largest known niobium deposit in the U.S. and a rare earth element (REE) deposit. The carbonatite is composed of several lithologies, the relations of which are poorly understood. Niobium mineralization is most enriched within a magnetite beforsite (MB) unit, and REE oxides are most concentrated in a barite beforsite unit. The carbonatite intrudes Proterozoic country rocks. Efforts to explore the carbonatite have used geophysical data and drilling. A high-resolution airborne gravity gradient and magnetic survey was flown over the carbonatite in 2012. The carbonatite is associated with a roughly annular vertical gravity gradient high and a subdued central low and a central magnetic high surrounded by magnetic field values lower than those over the country rocks. Geophysical, borehole, and physical property data are combined for an interpretation of these signatures. The carbonatite is denser than the country rocks, explaining the gravity gradient high. Most carbonatite lithologies have weaker magnetic susceptibilities than those of the country rocks, explaining why the carbonatite does not produce a magnetic high at its margin. The primary source of the central magnetic high is interpreted to be mafic rocks that are strongly magnetized and are present in large volumes. MB is very dense (mean density 3200  kg/m3) and strongly magnetized (median 0.073 magnetic susceptibility), producing a gravity gradient high and contributing to the aeromagnetic high. Barite beforsite has physical properties similar to most of the carbonatite volume, making it a poor geophysical target. Geophysical anomalies indicate the presence of dense and strongly magnetized rocks at depths below existing boreholes, either a large volume of MB or another unknown lithology.

  4. 1. EXTERIOR OVERVIEW OF NORTH END OF RUSH CREEK POWERHOUSE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. EXTERIOR OVERVIEW OF NORTH END OF RUSH CREEK POWERHOUSE RESIDENTIAL COMPLEX SHOWING BUILDING 108 AT PHOTO RIGHT AND BUILDING 105 AT PHOTO CENTER BEHIND SWITCHRACKS AND TREE. POWERHOUSE IS AT EXTREME PHOTO LEFT. VIEW TO WEST. - Rush Creek Hydroelectric System, Worker Cottage, Rush Creek, June Lake, Mono County, CA

  5. 6. VIEW OF BAMBOO GATE LEADING INTO WHITE GRAVEL AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. VIEW OF BAMBOO GATE LEADING INTO WHITE GRAVEL AND ROCK CLUSTER GARDEN REMINISCENT OF RYOAN-JI TEMPLE GARDEN IN KYOTO - Kykuit, Japanese Gardens, 200 Lake Road, Pocantico Hills, Westchester County, NY

  6. Educational outreach and impacts of white-tailed deer browse on native and invasive plants at the Crooked Creek Environmental Learning Center, Armstrong County, Pennsylvania

    NASA Astrophysics Data System (ADS)

    Lindsay, Lisa O.

    Overabundance of deer can assist the intrusion of invasive plants through browse, leading to homogenization of plant communities. Public attitudes towards native and invasive plant species and white-tailed deer browse related to personal experiences, can be changed through education focusing public awareness of ramifications of deer browse on native and invasive plants. I developed an interactive, interpretive Self-Guided Walking Tour brochure of the "You Can Trail" to provide an educational outreach program for visitors of Crooked Creek Environmental Learning Center that includes ecologically important native and invasive plants species from my investigation. This research study focuses on the overall abundance of native and invasive plant species once Odocoileus virginianus have been removed from the landscape during collection periods in June and September 2013 from exclosure and access plots that were maintained for seven years. Similarity of abundance were found in native and invasive abundance of forbs, bushes and percentage of ground cover. Differences included native bush volume being greater than invasive bush volume in the access plot in June with opposing results in the exclosure plot, being greater in invasive bush volume. However, in September, native and invasive bush volume was similar within the exclosure plot, while invasive bush volume decreased in the access plot. Invasive vines recorded in the June access plot were absent in the September collection period.

  7. Geochemical Evolution of Groundwater in the Medicine Lodge Creek Drainage Basin with Implications for the Eastern Snake River Plain Aquifer, Eastern Idaho

    NASA Astrophysics Data System (ADS)

    Ginsbach, M. L.; Rattray, G. W.; McCurry, M. O.; Welhan, J. A.

    2012-12-01

    The eastern Snake River Plain aquifer (ESRPA) is an unconfined, continuous aquifer located in a northeast-trending structural basin filled with basaltic lava flows and sedimentary interbeds in eastern Idaho. The ESPRA is not an inert transport system, as it acts as both a sink and source for solutes found in the water. More than 90% of the water recharged naturally to the ESRPA is from the surrounding mountain drainage basins. Consequently, in order to understand the natural geochemistry of water within the ESRPA, the chemistry of the groundwater from the mountain drainage basins must be characterized and the processes that control the chemistry need to be understood. The U.S. Geological Survey, in cooperation with the U.S. Department of Energy and Idaho State University, has been studying these mountain drainage basins to help understand the movement of waste solutes in the ESRPA at the Idaho National Laboratory (INL) in eastern Idaho. This study focuses on the Medicine Lodge Creek drainage basin, which originates in the Beaverhead Mountains, extends onto the eastern Snake River Plain, and contributes recharge to the ESRPA beneath the INL as underflow along the northeastern INL boundary. Water and rock samples taken from the Medicine Lodge Creek drainage basin were analyzed to better understand water/rock interactions occurring in this system and to define the groundwater geochemistry of this drainage basin. Water samples were collected at 10 locations in the drainage basin during June 2012: 6 groundwater wells used for agricultural irrigation or domestic use and 4 springs. These water samples were analyzed for major ions, nutrients, trace metals, isotopes, and dissolved gasses. Samples of rock representative of the basalt, rhyolite, and sediments that occur within the drainage basin also were collected. These samples were analyzed using x-ray diffraction and petrographic study to determine the mineralogical constituents of the rock and the presence and

  8. 27 CFR 9.64 - Dry Creek Valley.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Dry Creek Valley. 9.64 Section 9.64 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.64 Dry Creek Valley. (a) Name. The name of the...

  9. 27 CFR 9.64 - Dry Creek Valley.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Dry Creek Valley. 9.64 Section 9.64 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.64 Dry Creek Valley. (a) Name. The name of the...

  10. 27 CFR 9.64 - Dry Creek Valley.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2013-04-01 2013-04-01 false Dry Creek Valley. 9.64 Section 9.64 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY ALCOHOL AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.64 Dry Creek Valley. (a) Name. The name of the...

  11. 27 CFR 9.64 - Dry Creek Valley.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false Dry Creek Valley. 9.64 Section 9.64 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY ALCOHOL AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.64 Dry Creek Valley. (a) Name. The name of the...

  12. 27 CFR 9.64 - Dry Creek Valley.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2012-04-01 2012-04-01 false Dry Creek Valley. 9.64 Section 9.64 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.64 Dry Creek Valley. (a) Name. The name of the...

  13. Return Spawning/Rearing Habitat to Anadromous/Resident Fish within the Fishing Creek to Legendary Bear Creek Analysis Area Watersheds; 2002-2003 Final Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, Jr., Emmit E.

    2004-03-01

    This project is a critical component of currently on-going watershed restoration effort in the Lochsa River Drainage, including the Fishing (Squaw) Creek to Legendary Bear (Papoose) Creek Watersheds Analysis Area. In addition, funding for this project allowed expansion of the project into Pete King Creek and Cabin Creek. The goal of this project is working towards the re-establishment of healthy self-sustaining populations of key fisheries species (spring Chinook salmon, steelhead, bull trout, and westslope cutthroat trout) through returning historic habitat in all life stages (spawning, rearing, migration, and over-wintering). This was accomplished by replacing fish barrier road crossing culverts withmore » structures that pass fish and accommodate site conditions.« less

  14. 80. PHOTOCOPY OF VIEW OF GRADING OPERATIONS BELOW P STREET ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    80. PHOTOCOPY OF VIEW OF GRADING OPERATIONS BELOW P STREET BRIDGE, LOOKING EAST FROM SOUTHBOUND P STREET PARKWAY ACCESS, FROM 1940 REPORT ON PROPOSED DEVELOPMENT OF ROCK CREEK AND POTOMAC PARKWAY, SECTION II (ROCK CREEK AND POTOMAC PARKWAY FILE, HISTORY DEPARTMENT ARCHIVES, NATIONAL PARK SERVICE, WASHINGTON, DC). - Rock Creek & Potomac Parkway, Washington, District of Columbia, DC

  15. Density and magnetic suseptibility values for rocks in the Talkeetna Mountains and adjacent region, south-central Alaska

    USGS Publications Warehouse

    Sanger, Elizabeth A.; Glen, Jonathan M.G.

    2003-01-01

    This report presents a compilation and statistical analysis of 306 density and 706 magnetic susceptibility measurements of rocks from south-central Alaska that were collected by U.S. Geological Survey (USGS) and Alaska Division of Geological and Geophysical Surveys (ADGGS) scientists between the summers of 1999 and 2002. This work is a product of the USGS Talkeetna Mountains Transect Project and was supported by USGS projects in the Talkeetna Mountains and Iron Creek region, and by Bureau of Land Management (BLM) projects in the Delta River Mining District that aim to characterize the subsurface structures of the region. These data were collected to constrain potential field models (i.e., gravity and magnetic) that are combined with other geophysical methods to identify and model major faults, terrane boundaries, and potential mineral resources of the study area. Because gravity and magnetic field anomalies reflect variations in the density and magnetic susceptibility of the underlying lithology, these rock properties are essential components of potential field modeling. In general, the average grain density of rocks in the study region increases from sedimentary, felsic, and intermediate igneous rocks, to mafic igneous and metamorphic rocks. Magnetic susceptibility measurements performed on rock outcrops and hand samples from the study area also reveal lower magnetic susceptibilities for sedimentary and felsic intrusive rocks, moderate susceptibility values for metamorphic, felsic extrusive, and intermediate igneous rocks, and higher susceptibility values for mafic igneous rocks. The density and magnetic properties of rocks in the study area are generally consistent with general trends expected for certain rock types.

  16. 75 FR 8036 - Monitor-Hot Creek Rangeland Project

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-23

    ... DEPARTMENT OF AGRICULTURE Forest Service Monitor-Hot Creek Rangeland Project AGENCY: Forest... Rangeland Project area. The analysis will determine if a change in management direction for livestock grazing is needed to move existing resource conditions within the Monitor-Hot Creek Rangeland Project area...

  17. Composition, Alteration, and Texture of Fault-Related Rocks from Safod Core and Surface Outcrop Analogs: Evidence for Deformation Processes and Fluid-Rock Interactions

    NASA Astrophysics Data System (ADS)

    Bradbury, Kelly K.; Davis, Colter R.; Shervais, John W.; Janecke, Susanne U.; Evans, James P.

    2015-05-01

    We examine the fine-scale variations in mineralogical composition, geochemical alteration, and texture of the fault-related rocks from the Phase 3 whole-rock core sampled between 3,187.4 and 3,301.4 m measured depth within the San Andreas Fault Observatory at Depth (SAFOD) borehole near Parkfield, California. This work provides insight into the physical and chemical properties, structural architecture, and fluid-rock interactions associated with the actively deforming traces of the San Andreas Fault zone at depth. Exhumed outcrops within the SAF system comprised of serpentinite-bearing protolith are examined for comparison at San Simeon, Goat Rock State Park, and Nelson Creek, California. In the Phase 3 SAFOD drillcore samples, the fault-related rocks consist of multiple juxtaposed lenses of sheared, foliated siltstone and shale with block-in-matrix fabric, black cataclasite to ultracataclasite, and sheared serpentinite-bearing, finely foliated fault gouge. Meters-wide zones of sheared rock and fault gouge correlate to the sites of active borehole casing deformation and are characterized by scaly clay fabric with multiple discrete slip surfaces or anastomosing shear zones that surround conglobulated or rounded clasts of compacted clay and/or serpentinite. The fine gouge matrix is composed of Mg-rich clays and serpentine minerals (saponite ± palygorskite, and lizardite ± chrysotile). Whole-rock geochemistry data show increases in Fe-, Mg-, Ni-, and Cr-oxides and hydroxides, Fe-sulfides, and C-rich material, with a total organic content of >1 % locally in the fault-related rocks. The faults sampled in the field are composed of meters-thick zones of cohesive to non-cohesive, serpentinite-bearing foliated clay gouge and black fine-grained fault rock derived from sheared Franciscan Formation or serpentinized Coast Range Ophiolite. X-ray diffraction of outcrop samples shows that the foliated clay gouge is composed primarily of saponite and serpentinite, with localized

  18. Rock art at the 'Mini-Yengo' site near Kulnura, New South Wales

    NASA Astrophysics Data System (ADS)

    Hamacher, Duane W.; Clegg, John K.; Pankhurst, Robert S.

    2012-11-01

    The "Mini-Yengo" rock art site is located in Mangrove Creek Dam Park on Kyola Road, near the corner of Kyola Road and George Downes Drive, approximately 1.8 km to the northwest of Kulnura, New South Wales, Australia. No records of this site were identified in the published literature (Sim 1966; Needham 1981; McCarthy 1983; Gordon 1993; McDonald 1993) but it was included in site card 45-3-0528 from the Aboriginal Heritage Information Management System (AHIMS). The site card contained unpublished surveys by V. Attenbrow in 1980 and I.M. Sim in 1976.

  19. A land-use and water-quality history of White Rock Lake Reservoir, Dallas, Texas, based on paleolimnological analyses

    USGS Publications Warehouse

    Platt, Bradbury J.; Van Metre, P.C.

    1997-01-01

    White Rock Lake reservoir in Dallas, Texas contains a 150-cm sediment record of silty clay that documents land-use changes since its construction in 1912. Pollen analysis corroborates historical evidence that between 1912 and 1950 the watershed was primarily agricultural. Land disturbance by plowing coupled with strong and variable spring precipitation caused large amounts of sediment to enter the lake during this period. Diatoms were not preserved at this time probably because of low productivity compared to diatom dissolution by warm, alkaline water prior to burial in the sediments. After 1956, the watershed became progressively urbanized. Erosion decreased, land stabilized, and pollen of riparian trees increased as the lake water became somewhat less turbid. By 1986 the sediment record indicates that diatom productivity had increased beyond rates of diatom destruction. Neither increased nutrients nor reduced pesticides can account for increased diatom productivity, but grain size studies imply that before 1986 diatoms were light limited by high levels of turbidity. This study documents how reservoirs may relate to land-use practices and how watershed management could extend reservoir life and improve water quality.

  20. A mangrove creek restoration plan utilizing hydraulic modeling.

    PubMed

    Marois, Darryl E; Mitsch, William J

    2017-11-01

    Despite the valuable ecosystem services provided by mangrove ecosystems they remain threatened around the globe. Urban development has been a primary cause for mangrove destruction and deterioration in south Florida USA for the last several decades. As a result, the restoration of mangrove forests has become an important topic of research. Using field sampling and remote-sensing we assessed the past and present hydrologic conditions of a mangrove creek and its connected mangrove forest and brackish marsh systems located on the coast of Naples Bay in southwest Florida. We concluded that the hydrology of these connected systems had been significantly altered from its natural state due to urban development. We propose here a mangrove creek restoration plan that would extend the existing creek channel 1.1 km inland through the adjacent mangrove forest and up to an adjacent brackish marsh. We then tested the hydrologic implications using a hydraulic model of the mangrove creek calibrated with tidal data from Naples Bay and water levels measured within the creek. The calibrated model was then used to simulate the resulting hydrology of our proposed restoration plan. Simulation results showed that the proposed creek extension would restore a twice-daily flooding regime to a majority of the adjacent mangrove forest and that there would still be minimal tidal influence on the brackish marsh area, keeping its salinity at an acceptable level. This study demonstrates the utility of combining field data and hydraulic modeling to aid in the design of mangrove restoration plans.

  1. Comparison of Geochemical, Grain-Size, and Magnetic Proxies for Rock Flour and Ice- Rafted Debris in the Late Pleistocene Mono Basin, CA

    NASA Astrophysics Data System (ADS)

    Zimmerman, S. H.; Hemming, S. R.; Kent, D. V.

    2008-12-01

    Advance and retreat of mountain glaciers are important indicators of climate variability, but the most direct proxy record, mapping and dating of moraines, is by nature discontinous. The Sierra Nevada form the western boundary of the Mono Lake basin, and the proximity of the large Pleistocene lake to the glacial canyons of the Sierra presents a rare opportunity to examine glacial variability in a continuous, well-dated lacustrine sequence. We have applied a geochemical proxy for rock flour to the glacial silts of the late Pleistocene Wilson Creek Formation, but because it is time- and sample-intensive, another method is required for a high-resolution record. Previous microscopic examination, thermomagnetic measurements, XRD analysis, and new isothermal remnant magnetization (IRM) acquisition curves show that the magnetic mineralogy is dominated by fine-grained, unaltered magnetite. Bulk measurements show strong susceptibility (mean ~ 16 x 10- 6 m3/kg) and remanent magnetization (mean IRM ~ 10-2 Am2/kg) compared to diluting components (carbonate, smectite, rhyolitic ash). The Wilson Creek type section sediments also contain a coarse lithic fraction, quantified by counting the >2cm clasts in outcrop and the >425 μm fraction in the bulk sediment. Susceptibility, IRM, and ARM (anhysteretic remnant magnetization) are quite similar throughout the type section, with the abundance of coarse lithic fraction correlative to the ratio k/IRM. Because the magnetic fraction of the rock flour is fine-grained magnetite, IRM should capture the changes in concentration of flour through time, and the major features of the (low-resolution) geochemical flour proxy record are identifiable in the IRM record. Flux-correction of the IRM results in a rock flour proxy record with major peaks between 36 and 48 ka, similar to a rock flour record from neighboring Owens Lake. This regional glacial signal contrasts with peaks in coarse lithics between 58 and 68 ka in the Wilson Creek record

  2. Recovery of a PCB-Contaminated Creek Fish Community

    EPA Science Inventory

    Polychlorinated Biphenyls (PCBs) from the Sangamo-Weston Superfund Site near Clemson, South Carolina, USA, were released into the Twelvemile Creek until the early 1990s. PCB concentrations in fish in this creek have remained elevated: levels in six target fish species are still a...

  3. Water Quality in Courtland Creek, East Oakland, California

    NASA Astrophysics Data System (ADS)

    Bracho, H.; Ahumada, A.; Hernandez, G.; Quintero, D.; Ramirez, J.; Ramirez, L.; Pham, T.; Holt, J.; Johnson, A.; Rubio, E.; Ponce, X.; Medina, S.; Limon, S.

    2013-12-01

    Courtland Creek is a tributary of the larger East Creek system that runs southeast from the Oakland Hills down to the San Leandro Bay in Oakland, California. In an effort to assess the overall health of Courtland Creek our team conducted a water quality research study. Stream water samples were collected from 4 sites between MacArthur Avenue (describe geographically as not all readers are familiar with Oakland geography) and Thompson Avenue (describe geographically as not all readers are familiar with Oakland geography) at accessible sections of this largely culverted stream. Dissolved oxygen, ammonia, nitrite, nitrate, phosphate, and chlorine concentrations in were measured using wet chemistry procedures. Analysis of collected samples indicates that dissolved oxygen levels in the stream are sufficient for invertebrates, ranging from 5 and 9 parts per million (ppm). Nitrate levels were significantly high, with concentrations ranging from 15 and 40 ppm. Other chemical species associated with waste products--ammonia, nitrite, and phosphate--also were present, but at low concentrations. Small amounts of chlorine also were found in waters of the creek system. The presence of high concentrations of nitrate, together with chlorine, suggests that untreated sewage may be leaking into Courtland Creek at an unidentified location.

  4. Scotch Creek Wildlife Area 2007-2008 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olson, Jim

    The Scotch Creek Wildlife Area is a complex of 6 separate management units located in Okanogan County in North-central Washington State. The project is located within the Columbia Cascade Province (Okanogan sub-basin) and partially addresses adverse impacts caused by the construction of Chief Joseph and Grand Coulee hydroelectric dams. With the acquisition of the Eder unit in 2007, the total size of the wildlife area is now 19,860 acres. The Scotch Creek Wildlife Area was approved as a wildlife mitigation project in 1996 and habitat enhancement efforts to meet mitigation objectives have been underway since the spring of 1997 onmore » Scotch Creek. Continuing efforts to monitor the threatened Sharp-tailed grouse population on the Scotch Creek unit are encouraging. The past two spring seasons were unseasonably cold and wet, a dangerous time for the young of the year. This past spring, Scotch Creek had a cold snap with snow on June 10th, a critical period for young chicks just hatched. Still, adult numbers on the leks have remained stable the past two years. Maintenance of BPA funded enhancements is necessary to protect and enhance shrub-steppe and to recover and sustain populations of Sharp-tailed grouse and other obligate species.« less

  5. A dolichopodid hotspot: Montana's Milligan Creek Canyon

    Treesearch

    Justin B. Runyon

    2016-01-01

    In southwest Montana, near the town of Three Forks, Milligan Creek cuts a small and seemingly mundane notch through dry limestone hills. Milligan Creek is unassuming and small enough to be effortlessly stepped over in most places. In fact, it flows underground for much of its 4-5 mile journey to the Jefferson River. Incredibly, forty-nine species of long-legged flies (...

  6. Final Environmental Assessment, Horse Creek Bridge Replacement

    DTIC Science & Technology

    2010-10-01

    Final Environmental Assessment Horse Creek Bridge Replacement 78th Civil Engineer Group...Final Environmental Assessment Horse Creek Bridge Replacement 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d...Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 FINDING OF NO SIGNIFICANT IMPACT (FONSI)/ FINDING OF NO PRACTICABLE ALTERNATIVE (FONP A) HORSE

  7. Geohydrology of the stratified-drift aquifer system in the lower Sixmile Creek and Willseyville Creek trough, Tompkins County, New York

    USGS Publications Warehouse

    Miller, Todd S.; Karig, Daniel E.

    2010-01-01

    In 2002, the U.S. Geological Survey, in cooperation with the Tompkins County Planning Department began a series of studies of the stratified-drift aquifers in Tompkins County to provide geohydrologic data for planners to develop a strategy to manage and protect their water resources. This aquifer study in lower Sixmile Creek and Willseyville Creek trough is the second in a series of aquifer studies in Tompkins County. The study area is within the northern area of the Appalachian Plateau and extends about 9 miles from the boundary between Tompkins County and Tioga County in the south to just south of the City of Ithaca in the north. In lower Sixmile Creek and Willseyville Creek trough, confined sand and gravel aquifers comprise the major water-bearing units while less extensive unconfined units form minor aquifers. About 600 people who live in lower Sixmile Creek and Willseyville Creek trough rely on groundwater from the stratified-drift aquifer system. In addition, water is used by non-permanent residents such as staff at commercial facilities. The estimated total groundwater withdrawn for domestic use is about 45,000 gallons per day (gal/d) or 0.07 cubic foot per second (ft3/s) based on an average water use of 75 gal/d per person for self-supplied water systems in New York. Scouring of bedrock in the preglacial lower Sixmile Creek and Willseyville Creek valleys by glaciers and subglacial meltwaters truncated hillside spurs, formed U-shaped, transverse valley profiles, smoothed valley walls, and deepened the valleys by as much as 300 feet (ft), forming a continuous trough. The unconsolidated deposits in the study area consist mostly of glacial drift, both unstratified drift (till) and stratified drift (laminated lake, deltaic, and glaciofluvial sediments), as well as some post-glacial stratified sediments (lake-bottom sediments that were deposited in reservoirs, peat and muck that were deposited in wetlands, and alluvium deposited by streams). Multiple advances and

  8. Nanometer-scale features in dolomite from Pennsylvanian rocks, Paradox Basin, Utah

    NASA Astrophysics Data System (ADS)

    Gournay, Jonas P.; Kirkland, Brenda L.; Folk, Robert L.; Lynch, F. Leo

    1999-07-01

    Scanning electron microscopy reveals an association between early dolomite in the Pennsylvanian Desert Creek (Paradox Fm.) and small (approximately 0.1 μm) nanometer-scale textures, termed `nannobacteria'. Three diagenetically distinct dolomites are present: early dolomite, limpid dolomite, and baroque dolomite. In this study, only the early dolomite contained nanometer-scale features. These textures occur as discrete balls and rods, clumps of balls, and chains of balls. Precipitation experiments demonstrate that these textures may be the result of precipitation in an organic-rich micro-environment. The presence of these nanometer-scale textures in Pennsylvanian rocks suggests that these early dolomites precipitated in organic-rich, bacterial environments.

  9. Water resources of Bannock Creek basin, southeastern Idaho

    USGS Publications Warehouse

    Spinazola, Joseph M.; Higgs, B.D.

    1997-01-01

    The potential for development of water resources in the Bannock Creek Basin is limited by water supply. Bannock Creek Basin covers 475 square miles in southeastern Idaho. Shoshone-Bannock tribal lands on the Fort Hall Indian Reservation occupy the northern part of the basin; the remainder of the basin is privately owned. Only a small amount of information on the hydrologic and water-quality characteristics of Bannock Creek Basin is available, and two previous estimates of water yield from the basin ranged widely from 45,000 to 132,500 acre-feet per year. The Shoshone-Bannock Tribes need an accurate determination of water yield and baseline water-quality characteristics to plan and implement a sustainable level of water use in the basin. Geologic setting, quantities of precipitation, evapotranspiration, surface-water runoff, recharge, and ground-water underflow were used to determine water yield in the basin. Water yield is the annual amount of surface and ground water available in excess of evapotranspiration by crops and native vegetation. Water yield from Bannock Creek Basin was affected by completion of irrigation projects in 1964. Average 1965-89 water yield from five subbasins in Bannock Creek Basin determined from water budgets was 60,600 acre-feet per year. Water yield from the Fort Hall Indian Reservation part of Bannock Creek Basin was estimated to be 37,700 acre-feet per year. Water from wells, springs, and streams is a calcium bicarbonate type. Concentrations of dissolved nitrite plus nitrate as nitrogen and fluoride were less than Maximum Contaminant Levels for public drinking-water supplies established by the U.S. Environmental Protection Agency. Large concentrations of chloride and nitrogen in water from several wells, springs, and streams likely are due to waste from septic tanks or stock animals. Estimated suspended-sediment load near the mouth of Bannock Creek was 13,300 tons from December 1988 through July 1989. Suspended-sediment discharge was

  10. Effects of incubation substrates on hatch timing and success of White Sturgeon (Acipenser transmontanus) embryos

    USGS Publications Warehouse

    Parsley, Michael J.; Kofoot, Eric

    2013-01-01

    The Kootenai River white sturgeon (Acipenser transmontanus) was listed as endangered under the Endangered Species Act in 1994 because several decades of failed spawning had put the population at risk of extinction. Natural spawning is known to occur at several locations in the Kootenai River, Idaho, but there is little natural recruitment. Microhabitat where embryo incubation occurs is known to be an important factor in white sturgeon reproductive success. This study was conducted to address questions regarding the suitability of different substrates as egg attachment and incubation sites for these fish. A comparative laboratory study using six types of incubation substrates—clean river rocks, periphyton- and algae-covered rocks, waterlogged wood, sand, riparian vegetation, and clean glass plates—tested the hypothesis that survival to hatch of white sturgeon eggs differs among incubation substrates. The results showed that sand was unsuitable as an incubation substrate, as the adhesive embryos were easily dislodged. Periphyton- and algae-covered rocks had the lowest hatch success, and all other substrates had similar hatch success.

  11. Volcanic rocks of the McDermitt Caldera, Nevada-Oregon

    USGS Publications Warehouse

    Greene, Robert C.

    1976-01-01

    The McDermitt caldera, a major Miocene eruptive center is locatedin the northernmost Great Basin directly west of McDermitt, Nev. The alkali rhyolite of Jordan Meadow was erupted from the caldera and covered an area of about 60,000 sq km; the volume of rhyolite is about 960 cubic km. Paleozoic and Mesozoic sedimentary rocks and Mesozoic granodiorite form the pre-Tertiary Basement in this area.. Overlying these is a series of volcanic rocks, probably all of Miocene age. The lowest is a dacite welded tuff, a reddish-brown rock featuring abundant phenocrysts of plagioclase, hornblende, and biotite; next is a heterogeneous unit consisting of mocks ranging from basalt to dacite. Overlying these is the basalt and andesite of Orevada View, over 700 m thick and consisting of a basal unit of cinder agglutinate overlain by basalt and andesite, much of which contains conspicuous large plagioclase phenocrysts. Near Disaster Peak and Orevada View, the basalt and andesite are overlain by additional units of silicic volcanic rocks. The lower alkali rhyolite welded tuff contains abundant phenocrysts of alkali feldspar and has a vitric phase with obvious pumice and shard texture. The rhyolite of Little Peak consists of a wide variety of banded flows or welded ruffs and breccias, mostly containing abundant alkali feldspar phenocrysts. It extends south from Disaster Peak and apparently underlies the alkali rhyolite of Jordan Meadow. The quartz latite of Sage Creek lies north of Disaster Peak and consists mostly of finely mottled quartz latite with sparse minute plagioclase phenocrysts. Volcanic rock units in the east part of the area near the Cordero mine include trachyandesite, quartz labile of McConnell Canyon, and rhyolite of McCormick Ranch. The trachyandesite is dark gray and contains less than 1 percent microphenocrysts plagioclase. It is the lowest unit exposed and may correlate with part of the basalt and andesite of Orevada View. The quartz latite of McConnell Canyon is

  12. Assessment of Coalbed Gas Resources in Cretaceous and Tertiary Rocks on the North Slope, Alaska, 2006

    USGS Publications Warehouse

    Roberts, Steve; Barker, Charles E.; Bird, Kenneth J.; Charpentier, Ronald R.; Cook, Troy; Houseknecht, David W.; Klett, Timothy R.; Pollastro, Richard M.; Schenk, Christopher J.

    2006-01-01

    The North Slope of Alaska is a vast area of land north of the Brooks Range, extending from the Chukchi Sea eastward to the Canadian border. This Arctic region is known to contain extensive coal deposits; hypothetical coal resource estimates indicate that nearly 4 trillion short tons of coal are in Cretaceous and Tertiary rocks. Because of the large volume of coal, other studies have indicated that this region might also have potential for significant coalbed gas resources. The present study represents the first detailed assessment of undiscovered coalbed gas resources beneath the North Slope by the USGS. The assessment is based on the total petroleum system (TPS) concept. Geologic elements within a TPS relate to hydrocarbon source rocks (maturity, hydrocarbon generation, migration), the characteristics of reservoir rocks, and trap and seal formation. In the case of coalbed gas, the coal beds serve as both source rock and reservoir. The Brookian Coalbed Gas Composite TPS includes coal-bearing rocks in Cretaceous and Tertiary strata underlying the North Slope and adjacent Alaska State waters. Assessment units (AUs) within the TPS (from oldest to youngest) include the Nanushuk Formation Coalbed Gas AU, the Prince Creek and Tuluvak Formations Coalbed Gas AU, and the Sagavanirktok Formation Coalbed Gas AU.

  13. Linear geologic structure and magic rock discrimination as determined from infrared data

    NASA Technical Reports Server (NTRS)

    Offield, T. W.; Rowan, L. C.; Watson, R. D.

    1970-01-01

    Color infrared photographs of the Beartooth Mountains, Montana show the distribution of mafic dikes and amphibolite bodies. Lineaments that cross grassy plateaus can be identified as dikes by the marked constrast between the dark rocks and the red vegetation. Some amphibolite bodies in granitic terrain can also be detected by infrared photography and their contacts can be accurately drawn due to enchanced contrast of the two types of rock in the near infrared. Reflectance measurements made in the field for amphibolite and granite show that the granite is 25% to 50% more reflective in the near infrared than in the visible region. Further enhancement is due to less atmospheric scattering than in the visible region. Thermal infrared images of the Mill Creek, Oklahoma test site provided information on geologic faults and fracture systems not obtainable from photographs. Subtle stripes that cross outcrop and intervening soil areas and which probably record water distribution are also shown on infrared photographs.

  14. Valuing water quality in urban watersheds: A comparative analysis of Johnson Creek, Oregon, and Burnt Bridge Creek, Washington

    NASA Astrophysics Data System (ADS)

    Netusil, Noelwah R.; Kincaid, Michael; Chang, Heejun

    2014-05-01

    This study uses the hedonic price method to investigate the effect of five water quality parameters on the sale price of single-family residential properties in two urbanized watersheds in the Portland, Oregon-Vancouver, Washington metropolitan area. Water quality parameters include E. coli or fecal coliform, which can affect human health, decrease water clarity and generate foul odors; pH, dissolved oxygen, and stream temperature, which can impact fish and wildlife populations; and total suspended solids, which can affect water clarity, aquatic life, and aesthetics. Properties within ¼ mile, ½, mile, one mile, or more than one mile from Johnson Creek are estimated to experience an increase in sale price of 13.71%, 7.05%, 8.18%, and 3.12%, respectively, from a one mg/L increase in dissolved oxygen levels during the dry season (May-October). Estimates for a 100 count per 100 mL increase in E. coli during the dry season are -2.81% for properties within ¼ mile of Johnson Creek, -0.86% (½ mile), -1.19% (one mile), and -0.71% (greater than one mile). Results for properties in Burnt Bridge Creek include a significantly positive effect for a one mg/L increase in dissolved oxygen levels during the dry season for properties within ½ mile (4.49%), one mile (2.95%), or greater than one mile from the creek (3.17%). Results for other water quality parameters in Burnt Bridge Creek are generally consistent with a priori expectations. Restoration efforts underway in both study areas might be cost justified based on their estimated effect on property sale prices.

  15. 33 CFR 117.115 - Three Mile Creek.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Three Mile Creek. 117.115 Section... DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Alabama § 117.115 Three Mile Creek. (a) The draw of the US43 bridge, mile 1.0 at Mobile, need not be opened from 7 a.m. to 9 a.m. and from 4:30 p.m. to 6...

  16. 33 CFR 117.115 - Three Mile Creek.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Three Mile Creek. 117.115 Section... DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Alabama § 117.115 Three Mile Creek. (a) The draw of the US43 bridge, mile 1.0 at Mobile, need not be opened from 7 a.m. to 9 a.m. and from 4:30 p.m. to 6...

  17. 33 CFR 117.115 - Three Mile Creek.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Three Mile Creek. 117.115 Section... DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Alabama § 117.115 Three Mile Creek. (a) The draw of the US43 bridge, mile 1.0 at Mobile, need not be opened from 7 a.m. to 9 a.m. and from 4:30 p.m. to 6...

  18. 33 CFR 117.115 - Three Mile Creek.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Three Mile Creek. 117.115 Section... DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Alabama § 117.115 Three Mile Creek. (a) The draw of the US43 bridge, mile 1.0 at Mobile, need not be opened from 7 a.m. to 9 a.m. and from 4:30 p.m. to 6...

  19. 33 CFR 117.115 - Three Mile Creek.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Three Mile Creek. 117.115 Section... DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Alabama § 117.115 Three Mile Creek. (a) The draw of the US43 bridge, mile 1.0 at Mobile, need not be opened from 7 a.m. to 9 a.m. and from 4:30 p.m. to 6...

  20. AmeriFlux US-OWC Old Woman Creek

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bohrer, Gil

    This is the AmeriFlux version of the carbon flux data for the site US-OWC Old Woman Creek. Site Description - Old Woman Creek is a natural freshwater estuary connected to Lake Erie in northern Ohio. It is one of few natuaral estuary systems left in Ohio. The site is permanently flooded and contains a mixture of wetland vegetation, open water, and mud flats.

  1. Preliminary thermal-maturity map of the Cameo and Fairfield or equivalent coal zone in the Piceance Creek Basin, Colorado

    USGS Publications Warehouse

    Nuccio, Vito F.; Johnson, Ronald C.

    1983-01-01

    This map was prepared in cooperation with the U.S. Department of Energy's Western Gas Sands Project and was constructed to show the thermal maturity of the Upper Cretaceous Mesaverde Formation (or Group) in the Piceance Creek Basin. The ability of a source rock to generate oil and gas is directly related to its kerogen content and thermal maturity; hence, thermal maturity is commonly used as an exploration tool. This publication consists of two parts: a coal rank map for the basinwide Cameo and Fairfield or equivalent coal zone and three cross sections showing the variation in a coal rank for the entire Mesaverde. Structure contours on the map show the top of the Rollins Sandstone Member of the Mesaverde Formation and its equivalent the Trout Creek Sandstone Member of the Iles Formation of the Mesaverde Group, which immediately underlie the Cameo and Fairfield zone. The structure contours show the fairly strong correlation between structure and coal rank in the basin, suggesting that maximum overburden was the key factor in determining the coal ranks. Even in the southern part of the basin where extensive plutonism occurred during the Oligocene, coal ranks still generally follow structure; indicating that the plutons had little affect on the coals. On the cross sections both the top of the Rollins and Trout Creek, and the top of the Mesaverde Formation/Group are shown. A complete analysis of the entire Mesaverde in the basin would require more information than is presently available.

  2. Surface-water quality of coal-mine lands in Raccoon Creek Basin, Ohio

    USGS Publications Warehouse

    Wilson, K.S.

    1985-01-01

    The Ohio Department of Natural Resources, Division of Reclamation, plans to reclaim abandoned surface mines in the Raccoon Creek watershed in southern Ohio. Historic water-quality data collected between 1975 and 1983 were complied and analyzed in terms of eight selected mine-drainage characteristics to develop a data base for individual subbasin reclamation projects. Areas of mine drainage affecting Raccoon Creek basin, the study Sandy Run basin, the Hewett Fork basin, and the Little raccoon Creek basin. Surface-water-quality samples were collected from a 41-site network from November 1 through November 3, 1983, Results of the sampling reaffirmed that the major sources of mine drainage to Raccoon Creek are in the Little Raccoon Creek basin, and the Hewett Fork basin. However, water quality at the mouth of Sandy Run indicated that it is not a source of mine drainage to Raccoon Creek. Buffer Run, Goose Run, an unnamed tributary to Little Raccoon Creek, Mulga Run, and Sugar Run were the main sources of mine drainage sampled in the Little Raccoon Creek basin. All sites sampled in the East Branch Raccoon Creek basin were affected by mine drainage. This information was used to prepare a work plan for additional data collection before, during, and after reclamation. The data will be used to define the effectiveness of reclamation effects in the basin.

  3. A hydrological and geochemical analysis of chromium mobilization from serpentinized ultramafic rocks and serpentine soils at the McLaughlin Natural Reserve, Lake County, California

    NASA Astrophysics Data System (ADS)

    McClain, C.; Maher, K.; Fendorf, S.

    2011-12-01

    California recently adopted the nation's first Public Health Goal (PHG) for hexavalent chromium (Cr(VI)) in drinking water (0.02 μg/L) because recent studies show that Cr(VI) may be carcinogenic through ingestion. Approximately one third of drinking water sources in California tested for Cr(VI) have levels above 1 μg/L and thus may pose a risk to human health. Cr(VI) can enter drinking water directly from anthropogenic sources or from the release of Cr(III) in natural geogenic sources such as rocks, sediments and soils, and subsequent oxidation to Cr(VI) by manganese oxides. Ultramafic rocks and related soils and sediments have elevated Cr and Mn concentrations compared to other rock types. To study the release of Cr(VI) to water from geogenic sources we examined the local hydrology, groundwater, surface water, soils and sediment compositions within a serpentinized ultramafic terrain along Hunting Creek, a tributary to Putah Creek, at the McLaughlin Natural Reserve in the California Coast Ranges. The hydrology of the site is dominated by fracture flow: groundwater wells were screened in fractured serpentinite, and springs emanating from fractured serpentinite bedrock contribute to the baseflow of Hunting Creek. Soil profiles and bedrock were analyzed for major and trace elements by XRF to assess the fate of Cr during weathering and the distribution of manganese oxides. These factors, along with mineral surface areas, microbial activity, water content, and flow dynamics, collectively control the oxidation of Cr(III). The prevalence of Mg-HCO3 waters at this site indicates that waters are primarily interacting with serpentinites. Pyroxenes are slightly to highly undersaturated and amorphous silica is saturated. Smectite clays, chlorite, and hydromagnesite are supersaturated, indicating formation of secondary mineral phases is favorable and could lead to the inclusion of Cr(III). Total Cr concentrations in surface and groundwater vary from 0.1-26 μg/L and Cr

  4. 75 FR 68780 - Cedar Creek Wind Energy, LLC; Notice of Filing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-09

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. RC11-1-000] Cedar Creek Wind Energy, LLC; Notice of Filing November 2, 2010. Take notice that on October 27, 2010, Cedar Creek Wind Energy, LLC (Cedar Creek) filed an appeal with the Federal Energy Regulatory Commission (Commission) of...

  5. San Mateo Creek Basin

    EPA Pesticide Factsheets

    The San Mateo Creek Basin comprises approximately 321 square miles within the Rio San Jose drainage basin in McKinley and Cibola counties, New Mexico. This basin is located within the Grants Mining District (GMD).

  6. Partridge Creek Diversion Project

    EPA Pesticide Factsheets

    Goal: prevent mercury contamination by keeping the creek from flowing through a mine pit. The project improved brook trout habitat, green infrastructure, the local economy, and decreased human health risks. Includes before-and-after photos.

  7. Fast-growing willow shrub named `Fish Creek`

    DOEpatents

    Abrahamson, Lawrence P.; Kopp, Richard F.; Smart, Lawrence B.; Volk, Timothy A.

    2007-05-08

    A distinct male cultivar of Salix purpurea named `Fish Creek`, characterized by rapid stem growth producing greater than 30% more woody biomass than either of its parents (`94001` and `94006`) and 20% more biomass than a current production cultivar (`SV1`). `Fish Creek` can be planted from dormant stem cuttings, produces multiple stems after coppice, and the stem biomass can be harvested when the plant is dormant. In the spring following harvest, the plant will re-sprout very vigorously, producing new stems that can be harvested after two to four years of growth. This harvest cycle can be repeated several times. The stem biomass can be chipped and burned as a source of renewable energy, generating heat and/or electricity. `Fish Creek` displays a low incidence of rust disease or damage by beetles or sawflies.

  8. Hydrology of Bishop Creek, California: An Isotopic Analysis

    Treesearch

    Michael L. Space; John W. Hess; Stanley D. Smith

    1989-01-01

    Five power generation plants along an eleven kilometer stretch divert Bishop Creek water for hydro-electric power. Stream diversion may be adversely affecting the riparian vegetation. Stable isotopic analysis is employed to determine surface water/ground-water interactions along the creek. surface water originates primarily from three headwater lakes. Discharge into...

  9. The precipitation of aluminum, iron and manganese at the junction of Deer Creek with the Snake River in Summit County, Colorado

    USGS Publications Warehouse

    Theobald, P.K.; Lakin, H.W.; Hawkins, D.B.

    1963-01-01

    The oxidation of disseminated pyrite in relatively acid schists and gneisses of the Snake River drainage basin provides abundant iron sulfate and sulfuric acid to ground and surface water. This acid water dissolves large quantities of many elements, particularly aluminum and surprisingly large quantities of elements, such as magnesium and zinc, not expected to be abundant in the drainage basin. The adjoining drainage to the west, Deer Creek, is underlain by basic rocks, from which the water inherits a high pH. Despite the presence of base- and precious- metal veins in the drainage basin of Deer Creek, it carries less metal than the Snake River. The principal precipitate on the bed of the Snake River is hydrated iron oxide with small quantities of the other metals. In Deer Creek manganese oxide is precipitated with iron oxide and large quantities of other metals are carried down with this precipitate. Below the junction of these streams the pH stabilizes at a near-neutral value. Iron is removed from the Snake River water at the junction, and aluminum is precipitated for some distance downstream. The aluminum precipitate carries down other metals in concentrations slightly less than that in the manganese precipitate on Deer Creek. The natural processes observed in this junction if carried to a larger scale could provide the mechanism described by Ansheles (1927) for the formation of bauxite. In the environment described, geochemical exploration by either water or stream sediment techniques is difficult because of (1) the extreme pH differential between the streams above their junction and (2) the difference in the precipitates formed on the streambeds. ?? 1963.

  10. Geologic implications of new zircon U-Pb ages from the White Mountain Peak Metavolcanic Complex, eastern California

    NASA Astrophysics Data System (ADS)

    Scherer, Hannah H.; Ernst, W. G.; Brooks Hanson, R.

    2008-04-01

    The NNW-trending White-Inyo Range includes intrusive and volcanic rocks on the eastern flank of the Sierran volcano-plutonic arc. The NE-striking, steeply SE-dipping Barcroft reverse fault separates folded, metamorphosed Mesozoic White Mountain Peak mafic and felsic volcanic flows, volcanogenic sedimentary rocks, and minor hypabyssal plugs on the north from folded, well-bedded Neoproterozoic-Cambrian marble and siliciclastic strata on the south. The 163 ± 2 Ma Barcroft Granodiorite rose along this fault, and thermally recrystallized its wall rocks. However, new SHRIMP-RG ages of magmatic zircons from three White Mountain Peak volcanogenic metasedimentary rocks and a metafelsite document stages of effusion at ˜115-120 Ma as well as at ˜155-170 Ma. The U-Pb data confirm the interpretation by Hanson et al. (1987) that part of the metasedimentary-metavolcanic pile was laid down after Late Jurassic intrusion of the Barcroft pluton. The Lower Cretaceous, largely volcanogenic metasedimentary section lies beneath a low-angle thrust fault, the upper plate of which includes interlayered Late Jurassic mafic and felsic metavolcanic rocks and the roughly coeval Barcroft pluton. Late Jurassic and Early Cretaceous volcanism in this sector of the Californian continental margin, combined with earlier petrologic, structural, and geochronologic studies, indicates that there was no gap in igneous activity at this latitude of the North American continental margin.

  11. Site specific probabilistic seismic hazard analysis at Dubai Creek on the west coast of UAE

    NASA Astrophysics Data System (ADS)

    Shama, Ayman A.

    2011-03-01

    A probabilistic seismic hazard analysis (PSHA) was conducted to establish the hazard spectra for a site located at Dubai Creek on the west coast of the United Arab Emirates (UAE). The PSHA considered all the seismogenic sources that affect the site, including plate boundaries such as the Makran subduction zone, the Zagros fold-thrust region and the transition fault system between them; and local crustal faults in UAE. PSHA indicated that local faults dominate the hazard. The peak ground acceleration (PGA) for the 475-year return period spectrum is 0.17 g and 0.33 g for the 2,475-year return period spectrum. The hazard spectra are then employed to establish rock ground motions using the spectral matching technique.

  12. Stratigraphy and geologic history of the Montana group and equivalent rocks, Montana, Wyoming, and North and South Dakota

    USGS Publications Warehouse

    Gill, James R.; Cobban, William Aubrey

    1973-01-01

    During Late Cretaceous time a broad north-trending epicontinental sea covered much of the western interior of North America and extended from the Gulf of Mexico to the Arctic Ocean. The sea was bounded on the west by a narrow, unstable, and constantly rising cordillera which extended from Central America to Alaska and which separated the sea from Pacific oceanic waters. The east margin of the sea was bounded by the low-lying stable platform of the central part of the United States.Rocks of the type Montana Group in Montana and equivalent rocks in adjacent States, which consist of eastward-pointing wedges of shallow-water marine and nonmarine strata that enclose westward-pointing wedges of fine-grained marine strata, were deposited in and marginal to this sea. These rocks range in age from middle Santonian to early Maestrichtian and represent a time span of about 14 million years. Twenty-nine distinctive ammonite zones, each with a time span of about half a million years, characterize the marine strata.Persistent beds of bentonite in the transgressive part of the Claggett and Bearpaw Shales of Montana and equivalent rocks elsewhere represent periods of explosive volcanism and perhaps concurrent subsidence along the west shore in the vicinity of the Elkhorn Mountains and the Deer Creek volcanic fields in Montana. Seaward retreat of st randlines, marked by deposition of the Telegraph Creek, Eagle, Judith River, and Fox Hills Formations in Montana and the Mesaverde Formation in Wyoming, may be attributed to uplift in near-coastal areas and to an increase in volcaniclastic rocks delivered to the sea.Rates of transgression and regression determined for the Montana Group in central Montana reveal that the strandline movement was more rapid during times of transgression. The regression of the Telegraph Creek and Eagle strandlines averaged about 50 miles per million years compared with a rate of about 95 miles per million years for the advance of the strand-line during

  13. Geohydrology of the French Creek basin and simulated effects of droughtand ground-water withdrawals, Chester County, Pennsylvania

    USGS Publications Warehouse

    Sloto, Ronald A.

    2004-01-01

    This report describes the results of a study by the U.S. Geological Survey, in cooperation with the Delaware River Basin Commission, to develop a regional ground-water-flow model of the French Creek Basin in Chester County, Pa. The model was used to assist water-resource managers by illustrating the interconnection between ground-water and surface-water systems. The 70.7-mi2 (square mile) French Creek Basin is in the Piedmont Physiographic Province and is underlain by crystalline and sedimentary fractured-rock aquifers. Annual water budgets were calculated for 1969-2001 for the French Creek Basin upstream of streamflow measurement station French Creek near Phoenixville (01472157). Average annual precipitation was 46.28 in. (inches), average annual streamflow was 20.29 in., average annual base flow determined by hydrograph separation was 12.42 in., and estimated average annual ET (evapotranspiration) was 26.10 in. Estimated average annual recharge was 14.32 in. and is equal to 31 percent of the average annual precipitation. Base flow made up an average of 61 percent of streamflow. Ground-water flow in the French Creek Basin was simulated using the finite-difference MODFLOW-96 computer program. The model structure is based on a simplified two-dimensional conceptualization of the ground-water-flow system. The modeled area was extended outside the French Creek Basin to natural hydrologic boundaries; the modeled area includes 40 mi2 of adjacent areas outside the basin. The hydraulic conductivity for each geologic unit was calculated from reported specific-capacity data determined from aquifer tests and was adjusted during model calibration. The model was calibrated for aboveaverage conditions by simulating base-flow and water-level measurements made on May 1, 2001, using a recharge rate of 20 in/yr (inches per year). The model was calibrated for below-average conditions by simulating base-flow and water-level measurements made on September 11 and 17, 2001, using a

  14. Mercury at the Oat Hill Extension Mine and James Creek, Napa County, California: Tailings, Sediment, Water, and Biota, 2003-2004

    USGS Publications Warehouse

    Slowey, Aaron J.; Rytuba, James J.; Hothem, Roger L.; May, Jason T.

    2007-01-01

    Executive Summary The Oat Hill Extension (OHE) Mine is one of several mercury mines located in the James Creek/Pope Creek watershed that produced mercury from the 1870's until 1944 (U.S. Bureau of Mines, 1965). The OHE Mine developed veins and mineralized fault zones hosted in sandstone that extended eastward from the Oat Hill Mine. Waste material from the Oat Hill Mine was reprocessed at the OHE Mine using gravity separation methods to obtain cinnabar concentrates that were processed in a retort. The U.S. Bureau of Land Management requested that the U.S. Geological Survey measure and characterize mercury and other chemical constituents that are potentially relevant to ecological impairment of biota in tailings, sediment, and water at the OHE Mine and in the tributaries of James Creek that drain the mine area (termed Drainage A and B) (Figs. 1 and 2). This report summarizes such data obtained from sampling of tailings and sediments at the OHE on October 17, 2003; water, sediment, and biota from James Creek on May 20, 2004; and biota on October 29, 2004. These data are interpreted to provide a preliminary assessment of the potential ecological impact of the mine on the James Creek watershed. The mine tailings are unusual in that they have not been roasted and contain relatively high concentrations of mercury (400 to 1200 ppm) compared to unroasted waste rock at other mines. These tailings have contaminated a tributary to James Creek with mercury primarily by erosion, on the basis of higher concentration of mercury (780 ng/L) measured in unfiltered (total mercury, HgT) spring water flowing from the OHE to James Creek compared to 5 to 14 ng/L HgT measured in James Creek itself. Tailing piles (presumably from past Oat Hill mine dumping) near the USBLM property boundary and upstream of the main OHE mine drainage channel (Drainage A; Fig. 2) also likely emit mercury, on the basis of their mercury composition (930 to 1200 ppm). The OHE spring water is likely an

  15. Effects of best-management practices in Eagle and Joos Valley Creeks in the Waumandee Creek Priority Watershed, Wisconsin, 1990-2007

    USGS Publications Warehouse

    Graczyk, David J.; Walker, John F.; Bannerman, Roger T.; Rutter, Troy D.

    2012-01-01

    In many watersheds, nonpoint-source contamination is a major contributor to water-quality problems. In response to the recognition of the importance of nonpoint sources, the Wisconsin Nonpoint Source Water Pollution Abatement Program (Nonpoint Program) was enacted in 1978. This report summarizes the results of a study to assess the effectiveness of watershed-management practices for controlling nonpoint-source contamination for the Eagle Creek and Joos Valley Creek Watersheds. Streamflow-gaging stations equipped for automated sample collection and continuous recording of stream stage were installed in July 1990 at Eagle and Joos Valley Creeks and were operated through September 2007. In October 1990, three rain gages were installed in each watershed and were operated through September 2007. Best-Management Practices (BMPs) were installed during 1993 to 2000 in Eagle and Joos Valley Creeks and were tracked throughout the study period. By the year 2000, a majority of the BMPs were implemented in the two watersheds and goals set by the Wisconsin Department of Natural Resources and the local Land Conservation Department had been achieved for the two study watersheds (Wisconsin Department of Natural Resources, 1990). The distributions of the rainstorms that produced surface runoff and storm loads were similar in the pre-BMP (1990-93) and post-BMP implementation (2000-07) periods for both Eagle and Joos Valley Creeks. The highest annual streamflow occurred at both sites in water year 1993, which corresponded to the greatest above normal nonfrozen precipitation measured at two nearby NOAA weather stations. The minimum streamflow occurred in water year 2007 at both sites. Base-flow and stormwater samples were collected and analyzed for suspended solids, total phosphorus, and ammonia nitrogen. For both Eagle and Joos Valley Creeks the median concentrations of suspended solids and total phosphorus in base flow were lower during the post-BMP period compared to the pre

  16. Estimation of potential runoff-contributing areas in the Kansas-Lower Republican River Basin, Kansas

    USGS Publications Warehouse

    Juracek, Kyle E.

    1999-01-01

    Digital soils and topographic data were used to estimate and compare potential runoff-contributing areas for 19 selected subbasins representing soil, slope, and runoff variability within the Kansas-Lower Republican (KLR) River Basin. Potential runoff-contributing areas were estimated separately and collectively for the processes of infiltration-excess and saturation-excess overland flow using a set of environmental conditions that represented high, moderate, and low potential runoff. For infiltration-excess overland flow, various rainfall intensities and soil permeabilities were used. For saturation-excess overland flow, antecedent soil-moisture conditions and a topographic wetness index were used. Results indicated that the subbasins with relatively high potential runoff are located in the central part of the KLR River Basin. These subbasins are Black Vermillion River, Clarks Creek, Delaware River upstream from Muscotah, Grasshopper Creek, Mill Creek (Wabaunsee County), Soldier Creek, Vermillion Creek (Pottawatomie County), and Wildcat Creek. The subbasins with relatively low potential runoff are located in the western one-third of the KLR River Basin, with one exception, and are Buffalo Creek, Little Blue River upstream from Barnes, Mill Creek (Washington County), Republican River between Concordia and Clay Center, Republican River upstream from Concordia, Wakarusa River downstream from Clinton Lake (exception), and White Rock Creek. The ability to distinguish the subbasins as having relatively high or low potential runoff was possible mostly due to the variability of soil permeability across the KLR River Basin.

  17. Assessment of aquatic macroinvertebrate communities in the Autauga Creek watershed, Autauga County, Alabama, 2009

    USGS Publications Warehouse

    Mooty, Will S.; Gill, Amy C.

    2011-01-01

    Only four families within the Ephemeroptera, Plecoptera, and Trichoptera orders were found during a 1999 survey of aquatic macroinvertebrates in Autauga Creek, Autauga County, Alabama, by the Alabama Department of Environmental Management. The low number of taxa of Ephemeroptera, Plecoptera, and Trichoptera families indicated that the aquatic macroinvertebrate community was in poor condition, and the creek was placed on the Alabama Department of Environmental Management 303(d) list. The U.S. Geological Survey conducted a study in 2009 to provide data for the Alabama Department of Environmental Management and other water management agencies to re-evaluate aquatic macroinvertebrate communities in Autauga Creek to see if they meet Alabama Department of Environmental Management water-quality criteria. Aquatic macroinvertebrate communities were evaluated at three sites in the Autauga Creek watershed. Macroinvertebrates were sampled at two sites on Autauga Creek and one on Bridge Creek, the largest tributary to Autauga Creek. Water-quality field parameters were assessed at 11 sites. During the 2009 sampling, 12 families within the orders of Ephemeroptera, Plecoptera, Trichoptera were found at the Alabama Department of Environmental Management's assessment site whereas only four were found in 1999. The upstream site on Autauga Creek had consistently higher numbers of taxa than the Bridge Creek site and the lower site on Autauga Creek which is the Alabama Department of Environmental Management's assessment site. Chironomid richness was noticeably higher on the two Autauga Creek sites than the Bridge Creek site.

  18. 4. GENERAL VIEW SHOWING INDIAN CREEK (FOREGROUND) AND CULVERT. AQUEDUCT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. GENERAL VIEW SHOWING INDIAN CREEK (FOREGROUND) AND CULVERT. AQUEDUCT PASSES ABOVE CULVERT. - Old Croton Aqueduct, Indian Creek Culvert, Reservoir & Quaker Bridge Roads, Crotonville, Ossining, Westchester County, NY

  19. Stratigraphy and Facies of Cretaceous Schrader Bluff and Prince Creek Formations in Colville River Bluffs, North Slope, Alaska

    USGS Publications Warehouse

    Flores, Romeo M.; Myers, Mark D.; Houseknecht, David W.; Stricker, Gary D.; Brizzolara, Donald W.; Ryherd, Timothy J.; Takahashi, Kenneth I.

    2007-01-01

    Stratigraphic and sedimentologic studies of facies of the Upper Cretaceous rocks along the Colville River Bluffs in the west-central North Slope of Alaska identified barrier shoreface deposits consisting of vertically stacked, coarsening-upward parasequences in the Schrader Bluff Formation. This vertical stack of parasequence deposits represents progradational sequences that were affected by shoaling and deepening cycles caused by fluctuations of sea level. Further, the vertical stack may have served to stabilize accumulation of voluminous coal deposits in the Prince Creek Formation, which formed braided, high-sinuosity meandering, anastomosed, and low-sinuosity meandering fluvial channels and related flood plain deposits. The erosional contact at the top of the uppermost coarsening-upward sequence, however, suggests a significant drop of base level (relative sea level) that permitted a semiregional subaerial unconformity to develop at the contact between the Schrader Bluff and Prince Creek Formations. This drop of relative sea level may have been followed by a relative sea-level rise to accommodate coal deposition directly above the unconformity. This rise was followed by a second drop of relative sea level, with formation of incised valley topography as much as 75 ft deep and an equivalent surface of a major marine erosion or mass wasting, or both, either of which can be traced from the Colville River Bluffs basinward to the subsurface in the west-central North Slope. The Prince Creek fluvial deposits represent late Campanian to late Maastrichtian depositional environments that were affected by these base level changes influenced by tectonism, basin subsidence, and sea-level fluctuations.

  20. Streamflow conditions along Soldier Creek, Northeast Kansas

    USGS Publications Warehouse

    Juracek, Kyle E.

    2017-11-14

    The availability of adequate water to meet the present (2017) and future needs of humans, fish, and wildlife is a fundamental issue for the Prairie Band Potawatomi Nation in northeast Kansas. Because Soldier Creek flows through the Prairie Band Potawatomi Nation Reservation, it is an important tribal resource. An understanding of historical Soldier Creek streamflow conditions is required for the effective management of tribal water resources, including drought contingency planning. Historical data for six selected U.S. Geological Survey (USGS) streamgages along Soldier Creek were used in an assessment of streamflow characteristics and trends by Juracek (2017). Streamflow data for the period of record at each streamgage were used to compute annual mean streamflow, annual mean base flow, mean monthly flow, annual peak flow, and annual minimum flow. Results of the assessment are summarized in this fact sheet.

  1. Fast-growing willow shrub named `Fish Creek`

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abrahamson, Lawrence P; Kopp, Richard F; Smart, Lawrence B

    2007-05-08

    A distinct male cultivar of Salix purpurea named `Fish Creek`, characterized by rapid stem growth producing greater than 30% more woody biomass than either of its parents (`94001` and `94006`) and 20% more biomass than a current production cultivar (`SV1`). `Fish Creek` can be planted from dormant stem cuttings, produces multiple stems after coppice, and the stem biomass can be harvested when the plant is dormant. In the spring following harvest, the plant will re-sprout very vigorously, producing new stems that can be harvested after two to four years of growth. This harvest cycle can be repeated several times. Themore » stem biomass can be chipped and burned as a source of renewable energy, generating heat and/or electricity. `Fish Creek` displays a low incidence of rust disease or damage by beetles or sawflies.« less

  2. View of deck truss span over creek and adjacent trestle, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of deck truss span over creek and adjacent trestle, looking due south. - Pennsylvania Railroad, Brandywine Valley Viaduct, Spanning Brandywine Creek & U.S. Route 322, Downingtown, Chester County, PA

  3. Geologic framework for the coal-bearing rocks of the Central Appalachian Basin

    USGS Publications Warehouse

    Chesnut, D.R.

    1996-01-01

    marine strata, and, in the lower part of the Breathitt Group, by quartzose sandstone formations. The new coal-bearing units are formally ranked as formations and, in ascending order, are the Pocahontas, Bottom Creek, Alvy Creek, Grundy, Pikeville, Hyden, Four Corners and Princess Formations. The quartzose sandstone units are also formally ranked as formations and are, in ascending order, the Warren Point, Sewanee, Bee Rock and Corbin Sandstones. The sandstone formations were previously recognized units in some states, but have been extended (formally in Kentucky) across the basin. The key stratigraphic marine units are formally ranked as members, and are, in ascending order, the Betsie Shale Member, the Kendrick Shale Member, Magoffin Member and Stoney Fork Member.

  4. Rock type discrimination techniques using Landsat and Seasat image data

    NASA Technical Reports Server (NTRS)

    Blom, R.; Abrams, M.; Conrad, C.

    1981-01-01

    Results of a sedimentary rock type discrimination project using Seasat radar and Landsat multispectral image data of the San Rafael Swell, in eastern Utah, are presented, which has the goal of determining the potential contribution of radar image data to Landsat image data for rock type discrimination, particularly when the images are coregistered. The procedure employs several images processing techniques using the Landsat and Seasat data independently, and then both data sets are coregistered. The images are evaluated according to the ease with which contacts can be located and rock units (not just stratigraphically adjacent ones) separated. Results show that of the Landsat images evaluated, the image using a supervised classification scheme is the best for sedimentary rock type discrimination. Of less value, in decreasing order, are color ratio composites, principal components, and the standard color composite. In addition, for rock type discrimination, the black and white Seasat image is less useful than any of the Landsat color images by itself. However, it is found that the incorporation of the surface textural measures made from the Seasat image provides a considerable and worthwhile improvement in rock type discrimination.

  5. Surface water of Beaver Creek Basin, in South-Central Oklahoma

    USGS Publications Warehouse

    Laine, L.L.; Murphy, J.J.

    1962-01-01

    Annual discharge from Beaver Creek basin is estimated to have averaged 217,000 acre-feet during a 19-year base period, water years 1938-56, equivalent to an average annual runoff depth of 4.7 inches over the 857 square-mile drainage area. About 55,000 acre-feet per year comes from Little Beaver Creek basin, a tributary drainage of 195 square miles. Yearly streamflow is highly variable. The discharge of Little Beaver Creek near Duncan during 13-year period of record (water years 1949-61) has ranged from 86,530 acre-feet in calendar year 1957 to 4,880 acre-feet in 1956, a ratio of almost 18 to 1. Highest runoff within a year tends to occur in the spring months of May and June, a 2-month period that, on the average, accounts for more than half of the annual discharge of Little Beaver Creek near Duncan. The average monthly runoff during record was lowest in January. Variation in daily streamflow is such that while the average discharge for the 13-year period of record was 50.1 cfs (cubic feet per second), the daily discharge was more than 6 cfs only about half of the time. There was no flow at the site 19 percent of the time during the period. Some base runoff usually exists in the headwaters of Beaver and Little Beaver Creeks, and in the lower reaches of Beaver Creek. Low flow in Cow Creek tends to be sustained by waste water from Duncan, where water use in 1961 averaged 4 million gallons per day. In the remainder of the basin, periods of no flow occur in most years. The surface water of Beaver Creek basin is very hard but in general is usable for municipal, agricultural and industrial purposes. The chemical character of the water is predominantly a calcium, magnesium bicarbonate type of water in the lower three quarters of the basin, except in Cow Creek where oil-field brines induce a distinct sodium, calcium chloride characteristic at low and medium flows. A calcium sulfate type of water occurs in most of the northern part of the basin except in headwater areas

  6. Ebb and flow of encroachment by nonnative rainbow trout in a small stream in the southern Appalachian Mountains

    USGS Publications Warehouse

    Larson, Gary L.; Moore, S.E.

    1995-01-01

    Brook trout Salvelinus fontinalis is the native salmonid species of streams in the southern Appalachian Mountains. The present distribution of this species, once widespread from headwaters to lower reaches of large streams, is restricted to mostly headwater areas. Changes in the distribution of native brook trout in the presence of' nonnative rainbow trout Oncorhynchus mykiss have been documented in Great Smoky Mountains National Park. When rainbow trout were first found in a tributary (Rock Creek) in the park in 1979, a study was begun to assess changes through time in distribution and abundance of rainbow trout in Rock Creek and to compare the brook trout and rainbow trout associations in Rock Creek with associations found in other park streams. Abundance of brook trout was low in the downstream sections of Rock Creek in 1979a??1993. Brook trout abundance was highest in the steep-gradient, pool-dominated headwater section which was only 2 km from the confluence of Rock Creek and Cosby Creek. Rainbow trout were present in low densities in Rock Creek during the same period. Although rainbow trout were most abundant in the lower stream sections and never found in the headwater section, adult and age-0 rainbow trout were found in the middle section in 1988. Rainbow trout were absent in the middle section in 1991, but one large adult rainbow trout was present in the section in 1992 and 1993. Floods, freshets, and periods of low stream discharge appeared to play an important role in the distribution and population structure of rainbow trout in Rock Creek. The lower portion of Rock Creek was poor trout habitat because the sections were dominated by cobblea??rubble substrate and shallow riffle areas. Stream habitat appeared to be better suited for brook trout than for rainbow trout in the steep-gradient upstream sections which were dominated by boulder-cobble substrate and deep pools. The results of this study suggest that encroachment by rainbow trout can exhibit

  7. Missing link between the Hayward and Rodgers Creek faults

    PubMed Central

    Watt, Janet; Ponce, David; Parsons, Tom; Hart, Patrick

    2016-01-01

    The next major earthquake to strike the ~7 million residents of the San Francisco Bay Area will most likely result from rupture of the Hayward or Rodgers Creek faults. Until now, the relationship between these two faults beneath San Pablo Bay has been a mystery. Detailed subsurface imaging provides definitive evidence of active faulting along the Hayward fault as it traverses San Pablo Bay and bends ~10° to the right toward the Rodgers Creek fault. Integrated geophysical interpretation and kinematic modeling show that the Hayward and Rodgers Creek faults are directly connected at the surface—a geometric relationship that has significant implications for earthquake dynamics and seismic hazard. A direct link enables simultaneous rupture of the Hayward and Rodgers Creek faults, a scenario that could result in a major earthquake (M = 7.4) that would cause extensive damage and loss of life with global economic impact. PMID:27774514

  8. Missing link between the Hayward and Rodgers Creek faults

    USGS Publications Warehouse

    Watt, Janet; Ponce, David A.; Parsons, Thomas E.; Hart, Patrick E.

    2016-01-01

    The next major earthquake to strike the ~7 million residents of the San Francisco Bay Area will most likely result from rupture of the Hayward or Rodgers Creek faults. Until now, the relationship between these two faults beneath San Pablo Bay has been a mystery. Detailed subsurface imaging provides definitive evidence of active faulting along the Hayward fault as it traverses San Pablo Bay and bends ~10° to the right toward the Rodgers Creek fault. Integrated geophysical interpretation and kinematic modeling show that the Hayward and Rodgers Creek faults are directly connected at the surface—a geometric relationship that has significant implications for earthquake dynamics and seismic hazard. A direct link enables simultaneous rupture of the Hayward and Rodgers Creek faults, a scenario that could result in a major earthquake (M = 7.4) that would cause extensive damage and loss of life with global economic impact.

  9. Elevation of deck truss span over creek, looking NW along ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Elevation of deck truss span over creek, looking NW along U.S. route 322. - Pennsylvania Railroad, Brandywine Valley Viaduct, Spanning Brandywine Creek & U.S. Route 322, Downingtown, Chester County, PA

  10. Timber Creek bunkhouse and mess hall, Rocky Mountain National Park. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Timber Creek bunkhouse and mess hall, Rocky Mountain National Park. Interior, kitchen and dining area, viewing north. - Timber Creek Bunkhouse & Mess Hall, Trail Ridge Road, Grand Lake, Grand County, CO

  11. Interpretation of hydraulic conductivity in a fractured-rock aquifer over increasingly larger length dimensions

    USGS Publications Warehouse

    Shapiro, Allen M.; Ladderud, Jeffery; Yager, Richard M.

    2015-01-01

    A comparison of the hydraulic conductivity over increasingly larger volumes of crystalline rock was conducted in the Piedmont physiographic region near Bethesda, Maryland, USA. Fluid-injection tests were conducted on intervals of boreholes isolating closely spaced fractures. Single-hole tests were conducted by pumping in open boreholes for approximately 30 min, and an interference test was conducted by pumping a single borehole over 3 days while monitoring nearby boreholes. An estimate of the hydraulic conductivity of the rock over hundreds of meters was inferred from simulating groundwater inflow into a kilometer-long section of a Washington Metropolitan Area Transit Authority tunnel in the study area, and a groundwater modeling investigation over the Rock Creek watershed provided an estimate of the hydraulic conductivity over kilometers. The majority of groundwater flow is confined to relatively few fractures at a given location. Boreholes installed to depths of approximately 50 m have one or two highly transmissive fractures; the transmissivity of the remaining fractures ranges over five orders of magnitude. Estimates of hydraulic conductivity over increasingly larger rock volumes varied by less than half an order of magnitude. While many investigations point to increasing hydraulic conductivity as a function of the measurement scale, a comparison with selected investigations shows that the effective hydraulic conductivity estimated over larger volumes of rock can either increase, decrease, or remain stable as a function of the measurement scale. Caution needs to be exhibited in characterizing effective hydraulic properties in fractured rock for the purposes of groundwater management.

  12. 78 FR 64003 - Notice of Availability of the Final Environmental Impact Statement for the Jump Creek, Succor...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-25

    ... Cow Creek Watersheds Grazing Permit Renewal, Owyhee County, ID AGENCY: Bureau of Land Management... Field Office Jump Creek, Succor Creek and Cow Creek Watersheds grazing permit renewal, and by this... in the Federal Register. ADDRESSES: Copies of the Jump Creek, Succor Creek and Cow Creek Watersheds...

  13. Dry Creek Joint Elementary School District. Educational Specifications: Dry Creek Middle School.

    ERIC Educational Resources Information Center

    Dry Creek Joint Elementary School District, Roseville, CA.

    An Educational Specification Committee was convened to determine the design specifications required for a new middle school in Roseville, California's Dry Creek District. This report presents revisions to an earlier document that examined school room specifications for each grade level and administrative area. Specification considerations are…

  14. Adolescents and Destructive Themes in Rock Music: A Follow-Up.

    ERIC Educational Resources Information Center

    Wass, Hannelore; And Others

    1991-01-01

    Administered questionnaire to 120 adolescent offenders in detention centers to study rock music preferences and views of themes advocating homicide, suicide, and satanic practices (HSSR). Found that HSSR fans were more likely to be white, school dropouts, and spend more time listening to music. Findings suggest relationship between preference for…

  15. Boulder Creek Study

    ERIC Educational Resources Information Center

    Bingaman, Deirdre; Eitel, Karla Bradley

    2010-01-01

    Boulder Creek runs literally in the backyard of Donnelly Elementary School and happens to be on the EPA list of impaired water bodies. Therefore, a unique opportunity for problem solving opened the door to an exciting chance for students to become scientists, while also becoming active in their community. With the help of the Idaho Department of…

  16. Detail view of Fanno Creek trestle, showing trestle substructure, view ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail view of Fanno Creek trestle, showing trestle substructure, view looking north - Oregon Electric Railroad, Fanno Creek Trestle, Garden Home to Wilsonville Segment, Milepost 34.7, Garden Home, Washington County, OR

  17. 78 FR 26065 - Notice of Availability of the Draft Environmental Impact Statement for the Jump Creek, Succor...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-03

    ... Cow Creek Watersheds Grazing Permit Renewal, ID AGENCY: Bureau of Land Management, Interior. ACTION... the Jump Creek, Succor Creek, and Cow Creek Watersheds Grazing Permit Renewal and by this notice is... receive written comments on the Draft EIS for the Jump Creek, Succor Creek, and Cow Creek Watersheds...

  18. Lower Paleozoic Through Archean Detrital Zircon Ages From Metasedimentary Rocks of the Nome Group, Seward Peninsula, Alaska

    NASA Astrophysics Data System (ADS)

    Amato, J. M.; Miller, E. L.; Gehrels, G.

    2003-12-01

    Metamorphic rocks of Seward Peninsula have been divided into two groups based on their metamorphic grade and history: The Nome Group and the Kigluaik Group. Although it is sometime been assumed that the higher structural position of the Nome Group versus the Kigluaik Group indicates the Kigluaik Group is older, this relationship and the age of the protoliths of these rocks has never been well-established. The Nome Group includes (delete the) lower grade blueschist and greenschist facies rocks which are widespread across the Seward Peninsula (delete) Rock types include pelitic schist, more mafic chlorite-white mica-albite schist, marble, quartzite, and metabasite. An early metamorphic event (pre-120 Ma) occurred at high pressure and relatively low temperature, and is everywhere overprinted by younger deformation and greenschist facies Rare eclogite facies assemblages are preserved in metabasites, and garnet-glaucophane in some of the pelitic schists. The Kigluaik Group includes upper greenschist to granulite facies rocks that are exposed in the core of a gneiss dome. They record a younger event (~91 Ma) that occurred at higher temperatures and resulted in partial thermal overprinting of the Nome Group and upper greenschist to granulite facies assemblages forming in the Kigluaik Group. The Kigluaik Group and equivalent rocks in the Bendeleben and Darby Mountains represent at least in part similar protoliths to many of the units in the Nome Group (Till and Dumoulin, 1994). The boundary between the rocks of the Nome Group and those clearly affected by the second metamorphic event is placed arbitrarily at the "Biotite-in" isograd along the flanks of the gneiss dome. In order to assess the protolith ages and source rock ages for these units, detrital zircon ages were obtained from three samples from the Nome Group, with Kigluaik Group ages forthcoming. LA-MC-ICPMS U/Pb isotope analysis was used for dating. Two samples were collected from the western Kigluaik Mountains

  19. Investigating the Maya Polity at Lower Barton Creek Cayo, Belize

    NASA Astrophysics Data System (ADS)

    Kollias, George Van, III

    The objectives of this research are to determine the importance of Lower Barton Creek in both time and space, with relation to other settlements along the Belize River Valley. Material evidence recovered from field excavations and spatial information developed from Lidar data were employed in determining the socio-political nature and importance of this settlement, so as to orient its existence within the context of ancient socio-political dynamics in the Belize River Valley. Before the investigations detailed in this thesis no archaeological research had been conducted in the area, the site of Lower Barton Creek itself was only recently identified via the 2013 West-Central Belize LiDAR Survey (WCBLS 2013). Previously, the southern extent of the Barton Creek area represented a major break in our knowledge not only of the Barton Creek area, but the southern extent of the Belize River Valley. Conducting research at Lower Barton Creek has led to the determination of the polity's temporal existence and allowed for a greater and more complex understanding of the Belize River Valley's interaction with regions abutting the Belize River Valley proper.

  20. Sediment-transport characteristics of Cane Creek, Lauderdale County, Tennessee

    USGS Publications Warehouse

    Carey, W.P.

    1993-01-01

    An investigation of the sediment-transport characteristics of Cane Creek in Lauderdale County, Tennessee, was conducted from 1985-88 to evaluate the potential for channel erosion induced by modifications (realignment and enlargement) and the potential ability of different flows to move bed and bank stabilizing material. Frequently occurring flows in Cane Creek are capable of moving sand-size material (0.0625 - 4.0 millimeters). During floods that equal or exceed the 2-year flood, Cane Creek is capable of moving very coarse gravel (32 - 64 millimeters). Boundary-shear values at bridges, where flow contractions occur, correspond to critical diameters in excess of 100 millimeters. Thus, the areas near bridges, where channel stability is most critical, are the areas where erosive power is greatest. Deepening and widening of Cane Creek has exposed large areas of channel boundary that are a significant source of raindrop-detached sediment during the early stages of a storm before stream flow increases signifi- cantly. This causes suspended-sediment concentration to peak while the flow hydrograph is just beginning to rise. For basins like Cane Creek, where runoff events commonly last less than a day and where variation in discharge and sediment concentrations are large, an estimate of sediment yield based on periodic observations of instantaneous values is subject to considerable uncertainty.

  1. 14. VIEW OF CEDAR MILL CREEK TRESTLE FROM TRESTLE OVER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. VIEW OF CEDAR MILL CREEK TRESTLE FROM TRESTLE OVER CEDAR MILL CREEK ON SPUR LINE, FACING SOUTHWEST - Oregon Electric Railway Westside Corridor, Between Watson & 185th Avenues, Beaverton, Washington County, OR

  2. Depositional environments, sequence stratigraphy, and trapping mechanisms of Fall River Formation in Donkey Creek and Coyote Creek oil fields, Powder River basin, Wyoming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knox, P.R.

    1989-09-01

    Donkey Creek and Coyote Creek fields contain combined reserves of approximately 35 million bbl of oil and are within a trend of fields on the eastern flank of the Powder River basin that totals over 100 million bbl of reserves. The principal producing formation is the Lower Cretaceous Fall River Sandstone. A study of 45 cores and 248 logs from the three pools in the Donkey Creek and Coyote fields has shown that the Fall River is composed of three progradational deltaic units deposited during a period of rising relative sea level. These are locally eroded and are filled bymore » a fluvial point-bar complex deposited following a lowering of relative sea level. Four important depositional facies have been recognized: the delta-front and distributary-channel sandstone of the highstand deltaic sequence and the point-bar sandstone and channel-abandonment of the lowstand fluvial sequence. Stratigraphic traps in Coyote Creek and south Donkey Creek pools are the result of permeable (250 md) point-bar sandstone (250 bbl oil/day ip) bounded updip by impermeable (0.1 md) channel abandonment mudstone. Most of the oil in the central Donkey Creek pool is produced from permeable (76 md) distributary-channel sandstone (150 bbl oil/day ip), which is restricted to the western flank of a structural nose. Lesser production, on the crest and upper western flank of the structure, is obtained from the less permeable (2.8 md) delta-front sandstone (50 bbl oil/day ip). Production is possibly limited to the crest and western flank by hydrodynamic processes.« less

  3. Flood-inundation maps for Suwanee Creek from the confluence of Ivy Creek to the Noblin Ridge Drive bridge, Gwinnett County, Georgia

    USGS Publications Warehouse

    Musser, Jonathan W.

    2012-01-01

    Digital flood-inundation maps for a 6.9-mile reach of Suwanee Creek, from the confluence of Ivy Creek to the Noblin Ridge Drive bridge, were developed by the U.S. Geological Survey (USGS) in cooperation with Gwinnett County, Georgia. The inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at the USGS streamgage at Suwanee Creek at Suwanee, Georgia (02334885). Current stage at this USGS streamgage may be obtained at http://waterdata.usgs.gov/ and can be used in conjunction with these maps to estimate near real-time areas of inundation. The National Weather Service (NWS) is incorporating results from this study into the Advanced Hydrologic Prediction Service (AHPS) flood-warning system (http://water.weather.gov/ahps/). The NWS forecasts flood hydrographs at many places that commonly are collocated at USGS streamgages. The forecasted peak-stage information for the USGS streamgage at Suwanee Creek at Suwanee (02334885), available through the AHPS Web site, may be used in conjunction with the maps developed in this study to show predicted areas of flood inundation. A one-dimensional step-backwater model was developed using the U.S. Army Corps of Engineers HEC-RAS software for Suwanee Creek and was used to compute flood profiles for a 6.9-mile reach of the creek. The model was calibrated using the most current stage-discharge relations at the Suwanee Creek at Suwanee streamgage (02334885). The hydraulic model was then used to determine 19 water-surface profiles for flood stages at the Suwanee Creek streamgage at 0.5-foot intervals referenced to the streamgage. The profiles ranged from just above bankfull stage (7.0 feet) to approximately 1.7 feet above the highest recorded water level at the streamgage (16.0 feet). The simulated water-surface profiles were then combined

  4. WILLOW CREEK RECLAMATION PROJECT

    EPA Science Inventory

    Working in cooperation with the EPA, Colorado Division of Minerals and Geology, and others, the Willow Creek Reclamation Committee (WCRC) will investigate the sources and character of water entering the mine workings on the Amethyst vein near the town of Creede, Colorado. Activi...

  5. 75 FR 3195 - Ochoco National Forest, Lookout Mountain Ranger District; Oregon; Mill Creek; Allotment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-20

    ...; Oregon; Mill Creek; Allotment Management Plans EIS AGENCY: Forest Service, USDA. ACTION: Notice of intent... allotments on the Lookout Mountain Ranger District. These four allotments are: Cox, Craig, Mill Creek, and..., Mill Creek and Old Dry Creek allotments. The responsible official will also decide how to mitigate...

  6. Intrusive rocks of the Holden and Lucerne quadrangles, Washington; the relation of depth zones, composition, textures, and emplacement of plutons

    USGS Publications Warehouse

    Cater, Fred W.

    1982-01-01

    serpentine. These occur either as included irregular masses in later intrusives or as tectonically emplaced lenses in metamorphic rocks. Also of uncertain age but probably much younger, perhaps as young as Eocene, are larger masses of hornblendite and hornblende periodotite that grade into hornblende gabbro. These are exposed on the surface and in the underground workings of the Holden mine. Oldest of the granitoid intrusives are the narrow, nearly concordant Dumbell Mountain plutons, having a radiometric age of about 220 m.y. They consist of gneissic hornblende-quartz diorite and quartz diorite gneiss. Most contacts consist of lit-par-lit zones, but some are gradational or more rarely sharp. The plutons are typically catazonal. Closely resembling the Dumbell Mountain plutons in outcrop appearance, but differing considerably in composition, are the Bearcat Ridge plutons. These consist of gneissic quartz diorite and granodiorite. The Bearcat Ridge plutons are not in contact with older dated plutons, but because their textural and structural characteristics so closely resemble those of the Dumbell Mountain plutons, they are considered to be the same age. Their composition, however, is suggestive of a much younger age. Cutting the Dumbell Mountain plutons is the Leroy Creek pluton, consisting of gneissic biotite-quartz diorite and trondjhemite. The gneissic foliation in the Leroy Creek is characterized by a strong and pervasive swirling. Cutting both the Dumbell Mountain and Leroy Creek plutons are the almost dikelike Seven-fingered Jack plutons. These range in composition from gabbro to quartz diorite; associated with them are contact complexes of highly varied rocks characterized by gabbro and coarse-grained hornblendite. Most of the rocks are gneissic, but some are massive and structureless. Radiometric ages by various methods range from 100 to 193 m.y. Dikes, sills, small stocks, and irregular clots of leucocratic quartz diorite and granodiorite are abundant in t

  7. Geochemistry and shock petrography of the Crow Creek Member, South Dakota, USA: Ejecta from the 74-Ma Manson impact structure

    USGS Publications Warehouse

    Katongo, C.; Koeberl, C.; Witzke, B.J.; Hammond, R.H.; Anderson, R.R.

    2004-01-01

    The Crow Creek Member is one of several marl units recognized within the Upper Cretaceous Pierre Shale Formation of eastern South Dakota and northeastern Nebraska, but it is the only unit that contains shock-metamorphosed minerals. The shocked minerals represent impact ejecta from the 74-Ma Manson impact structure (MIS). This study was aimed at determining the bulk chemical compositions and analysis of planar deformation features (PDFs) of shocked quartz; for the basal and marly units of the Crow Creek Member. We studied samples from the Gregory 84-21 core, Iroquois core and Wakonda lime quarry. Contents of siderophile elements are generally high, but due to uncertainties in the determination of Ir and uncertainties in compositional sources for Cr, Co, and Ni, we could not confirm an extraterrestrial component in the Crow Creek Member. We recovered several shocked quartz grains from basal-unit samples, mainly from the Gregory 84-21 core, and results of PDF measurements indicate shock pressures of at least 15 GPa. All the samples are composed chiefly of SiO2, (29-58 wt%), Al2O3 (6-14 wt%), and CaO (7-30 wt%). When compared to the composition of North American Shale Composite, the samples are significantly enriched in CaO, P2O5, Mn, Sr, Y, U, Cr, and Ni. The contents of rare earth elements (REE), high field strength elements (HFSE), Cr, Co, Sc, and their ratios and chemical weathering trends, reflect both felsic and basic sources for the Crow Creek Member, an inference, which is consistent with the lithological compositions in the environs of the MIS. The high chemical indices of alteration and weathering (CIA' and CIW': 75-99), coupled with the Al2O3-(CaO*,+Na2O -K2O (A-CN'-K) ratios, indicate that the Crow Creek Member and source rocks had undergone high degrees of chemical weathering. The expected ejecta thicknesses at the sampled locations (409 to 219 km from Manson) were calculated to range from about 1.9 to 12.2 cm (for the present-day crater radius of Manson

  8. Effects of wastewater effluent discharge on stream quality in Indian Creek, Johnson County, Kansas

    USGS Publications Warehouse

    Graham, Jennifer L.; Foster, Guy M.

    2014-01-01

    Contaminants from point and other urban sources affect stream quality in Indian Creek, which is one of the most urban drainage basins in Johnson County, Kansas. The Johnson County Douglas L. Smith Middle Basin and Tomahawk Creek Wastewater Treatment Facilities discharge to Indian Creek. Data collected by the U.S. Geological Survey, in cooperation with Johnson County Wastewater, during June 2004 through June 2013 were used to evaluate stream quality in Indian Creek. This fact sheet summarizes the effects of wastewater effluent discharge on physical, chemical, and biological conditions in Indian Creek downstream from the Douglas L. Smith Middle Basin and Tomahawk Creek Wastewater Treatment Facilities.

  9. Suspended-sediment and turbidity responses to sediment and turbidity reduction projects in the Beaver Kill, Stony Clove Creek, and Warner Creek, Watersheds, New York, 2010–14

    USGS Publications Warehouse

    Siemion, Jason; McHale, Michael R.; Davis, Wae Danyelle

    2016-12-05

    Suspended-sediment concentrations (SSCs) and turbidity were monitored within the Beaver Kill, Stony Clove Creek, and Warner Creek tributaries to the upper Esopus Creek in New York, the main source of water to the Ashokan Reservoir, from October 1, 2010, through September 30, 2014. The purpose of the monitoring was to determine the effects of suspended-sediment and turbidity reduction projects (STRPs) on SSC and turbidity in two of the three streams; no STRPs were constructed in the Beaver Kill watershed. During the study period, four STRPs were completed in the Stony Clove Creek and Warner Creek watersheds. Daily mean SSCs decreased significantly for a given streamflow after the STRPs were completed. The most substantial decreases in daily mean SSCs were measured at the highest streamflows. Background SSCs, as measured in water samples collected in upstream reference stream reaches, in all three streams in this study were less than 5 milligrams per liter during low and high streamflows. Longitudinal stream sampling identified stream reaches with failing hillslopes in contact with the stream channel as the primary sediment sources in the Beaver Kill and Stony Clove Creek watersheds.

  10. 13. VIEW FROM CEDAR MILL CREEK TRESTLE NEAR MERLO ROAD ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. VIEW FROM CEDAR MILL CREEK TRESTLE NEAR MERLO ROAD TOWARD TRESTLE ON SPUR TRACK OVER CEDAR MILL CREEK, FACING NORTHEAST - Oregon Electric Railway Westside Corridor, Between Watson & 185th Avenues, Beaverton, Washington County, OR

  11. 76 FR 9968 - Drawbridge Operation Regulation; Chickasaw Creek, AL

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-23

    ... Creek, mile 0.0, in Mobile, Alabama. The deviation is necessary to replace railroad ties on the bridge...-9826. SUPPLEMENTARY INFORMATION: CSX Transportation requested a temporary deviation from the operating schedule for the Swing Span Bridge across Chickasaw Creek, mile 0.0, in Mobile, Alabama. The bridge has a...

  12. 14. Photocopy of a photographca. 1902taken by A.W. Peters showing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. Photocopy of a photograph--ca. 1902--taken by A.W. Peters showing Eastwood and his party surveying for the Big Creek Project. The surveying party is visible in the upper right corner. Courtesy Mr. Charles Allan Whitney. - Little Rock Creek Dam, Little Rock Creek, Littlerock, Los Angeles County, CA

  13. Alameda Creeks Healthy Watersheds Project

    EPA Pesticide Factsheets

    Information about the SFBWQP Alameda Creeks Healthy Watersheds Project, part of an EPA competitive grant program to improve SF Bay water quality focused on restoring impaired waters and enhancing aquatic resour

  14. Dry Creek Joint Elementary School District. Educational Specifications: Dry Creek Elementary School.

    ERIC Educational Resources Information Center

    Dry Creek Joint Elementary School District, Roseville, CA.

    An Educational Specification Committee was convened to determine the design specifications required for a new K-5 (and temporarily 6-8 grade) elementary school in Roseville, California's Dry Creek District. This report, the result of the committee's efforts, examines school room specifications for each grade level and administrative area.…

  15. 1. HEAD GATE OF THE SAND CREEK LATERAL AT THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. HEAD GATE OF THE SAND CREEK LATERAL AT THE HIGH LINE CANAL ON THE SOUTH END OF THE PEORIA STREET BRIDGE. - Highline Canal, Sand Creek Lateral, Beginning at intersection of Peoria Street & Highline Canal in Arapahoe County (City of Aurora), Sand Creek lateral Extends 15 miles Northerly through Araphoe County, City & County of Denver, & Adams County to its end point, approximately 1/4 mile Southest of intersectioin of D Street & Ninth Avenue in Adams County (Rocky Mountain Arsenal, Commerce City Vicinity), Commerce City, Adams County, CO

  16. Effect of ultramafic intrusions and associated mineralized rocks on the aqueous geochemistry of the Tangle Lakes Area, Alaska: Chapter C in Studies by the U.S. Geological Survey in Alaska, 2011

    USGS Publications Warehouse

    Wang, Bronwen; Gough, Larry P.; Wanty, Richard B.; Lee, Gregory K.; Vohden, James; O’Neill, J. Michael; Kerin, L. Jack

    2013-01-01

    Stream water was collected at 30 sites within the Tangle Lakes area of the Delta mineral belt in Alaska. Sampling focused on streams near the ultramafic rocks of the Fish Lake intrusive complex south of Eureka Creek and the Tangle Complex area east of Fourteen Mile Lake, as well as on those within the deformed metasedimentary, metavolcanic, and intrusive rocks of the Specimen Creek drainage and drainages east of Eureka Glacier. Major, minor, and trace elements were analyzed in aqueous samples for this reconnaissance aqueous geochemistry effort. The lithologic differences within the study area are reflected in the major-ion chemistry of the water. The dominant major cation in streams draining mafic and ultramafic rocks is Mg2+; abundant Mg and low Ca in these streams reflect the abundance of Mg-rich minerals in these intrusions. Nickel and Cu are detected in 84 percent and 87 percent of the filtered samples, respectively. Nickel and Cu concentrations ranged from Ni <0.4 to 10.1 micrograms per liter (mg/L), with a median of 4.2 mg/L, and Cu <0.5 to 27 mg/L, with a median of 1.2 mg/L. Trace-element concentrations in water are generally low relative to U.S. Environmental Protection Agency freshwater aquatic-life criteria; however, Cu concentrations exceed the hardness-based criteria for both chronic and acute exposure at some sites. The entire rare earth element (REE) suite is found in samples from the Specimen Creek sites MH5, MH4, and MH6 and, with the exception of Tb and Tm, at site MH14. These samples were all collected within drainages containing or downstream from Tertiary gabbro, diabase, and metagabbro (Trgb) exposures. Chondrite and source rock fractionation profiles for the aqueous samples were light rare earth element depleted, with negative Ce and Eu anomalies, indicating fractionation of the REE during weathering. Fractionation patterns indicate that the REE are primarily in the dissolved, as opposed to colloidal, phase.

  17. Quantification of mine-drainage inflows to Little Cottonwood Creek, Utah, using a tracer-injection and synoptic-sampling study

    USGS Publications Warehouse

    Kimball, B.; Runkel, R.; Gerner, L.

    2001-01-01

    Historic mining in Little Cottonwood Canyon in Utah has left behind many mine drainage tunnels that discharge water to Little Cottonwood Creek. To quantify the major sources of mine drainage to the stream, synoptic sampling was conducted during a tracer injection under low flow conditions (September 1998). There were distinct increases in discharge downstream from mine drainage and major tributary inflows that represented the total surface and subsurface contributions. The chemistry of stream water determined from synoptic sampling was controlled by the weathering of carbonate rocks and mine drainage inflows. Buffering by carbonate rocks maintained a high pH throughout the study reach. Most of the metal loading was from four surface-water inflows and three subsurface inflows. The main subsurface inflow was from a mine pool in the Wasatch Tunnel. Natural attenuation of all the metals resulted in the formation of colloidal solids, sorption of some metals, and accumulation onto the streambed. The deposition on the streambed could contribute to chronic toxicity for aquatic organisms. Information from the study will help to make decisions about environmental restoration.

  18. Flynn Creek Impact Structure: New Insights from Breccias, Melt Features, Shatter Cones, and Remote Sensing

    NASA Technical Reports Server (NTRS)

    Evenick, J. C.; Lee, P.; Deane, B.

    2004-01-01

    The Flynn Creek impact structure is located in Tennessee, USA (36 deg.17 min.N, 85 deg.40 min.W). The structure was first mapped as a crypto-volcanic by Wilson and Born in 1936 [1]. Although they did not properly identify the stratigraphy within the crater or the causal mechanism, they did correctly define the horizontal extent of the crater. More detailed surface and subsurface research by Roddy (1979) accurately described the crater as being an impact structure with a diameter of 3.8 km. It formed around 360 Ma, which corresponds to the interval between the deposition of the Nashville Group and the Chattanooga Shale. Although there is limited rock outcrop in the area, there are exposed surface faults, folds, and large outcrops of impact breccia within the crater.

  19. 33 CFR 110.71a - Cabin Creek, Grasonville, Md.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Cabin Creek, Grasonville, Md. 110.71a Section 110.71a Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.71a Cabin Creek, Grasonville, Md. The waters...

  20. 33 CFR 110.71a - Cabin Creek, Grasonville, Md.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Cabin Creek, Grasonville, Md. 110.71a Section 110.71a Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.71a Cabin Creek, Grasonville, Md. The waters...