Sample records for white rust caused

  1. Strategies for managing whitebark pine in the presence of white pine blister rust [Chapter 17

    Treesearch

    Raymond J. Hoff; Dennis E. Ferguson; Geral I. McDonald; Robert E. Keane

    2001-01-01

    Whitebark pine (Pinus albicaulis) is one of many North American white pine species (Pinus subgenus Strobus) susceptible to the fungal disease white pine blister rust (Cronartium ribicola). Blister rust has caused severe mortality (often reaching nearly 100 percent) in many stands of white bark pine north of 45° latitude in western North America. The rust is slowly...

  2. The climatic distribution of blister rust on white pine in Wisconsin

    Treesearch

    E.P. Van Arsdel; A.J. Riker; T.F. Kouba; V.E. Suomi; R.A. Bryson

    1961-01-01

    White pine blister rust limits the reproduction of white pine in many areas by killing young trees. In other extensive areas unjustified fear of the disease limits white pine planting. An ability to differentiate the sites on which white pine blister rust (caused by Cronartium ribicola Fischer) might be serious from those on which the disease might...

  3. White pines, blister rust, and management in the Southwest

    Treesearch

    D. A. Conklin; M Fairweather; D Ryerson; B Geils; D Vogler

    2009-01-01

    White pines in New Mexico and Arizona are threatened by the invasive disease white pine blister rust, Cronartium ribicola. Blister rust is already causing severe damage to a large population of southwestern white pine in the Sacramento Mountains of southern New Mexico. Recent detection in northern and western New Mexico suggests that a major expansion of the...

  4. Epidemiology for hazard rating of white pine blister rust

    Treesearch

    Eugene P. Van Arsdel; Brian W. Geils; Paul J. Zambino

    2006-01-01

    The ability to assess the potential for a severe infestation of white pine blister rust is an important management tool. Successful hazard rating requires a proper understanding of blister rust epidemiology, including environmental and genetic factors. For the blister rust caused by Cronartium ribicola, climate and meteorology, and the ecology,...

  5. White pine blister rust in high-elevation white pines: Screening for simply-inherited, hypersensitive resistance

    Treesearch

    Detlev R. Vogler; Annette Delfino-Mix; Anna W. Schoettle

    2006-01-01

    Recent concern about survival and recovery of high-elevation white pine ecosystems has returned white pine blister rust (caused by Cronartiurn ribicola) to prominence as a significant threat to forest health in the western U.S. (Sainman et al., 2003). This, in turn, has spurred new research into potential rust-resistance mechanisms in high-elevation...

  6. Current and future molecular approaches to investigate the white pine blister rust pathosystem

    Treesearch

    B. A. Richardson; A. K. M. Ekramoddoulah; J.-J. Liu; M.-S. Kim; N. B. Klopfenstein

    2010-01-01

    Molecular genetics is proving to be especially useful for addressing a wide variety of research and management questions on the white pine blister rust pathosystem. White pine blister rust, caused by Cronartium ribicola, is an ideal model for studying biogeography, genetics, and evolution because: (1) it involves an introduced pathogen; (2) it includes multiple primary...

  7. A preliminary hazard model of white pine blister rust for the Sacramento Ranger District, Lincoln National Forest

    Treesearch

    Brian W. Geils; David A. Conklin; Eugene P. van Arsdel

    1999-01-01

    Blister rust, caused by the introduced fungus Cronartium ribicola, is a serious disease of white pines in North America. Since about 1970, an outbreak has been increasing in the Sacramento Mountains of southern New Mexico and threatens southwestern white pine. To help determine the expected extent and impact of blister rust, we propose a preliminary...

  8. White pine blister rust resistance in limber pine: Evidence for a major gene

    Treesearch

    A. W. Schoettle; R. A. Sniezko; A. Kegley; K. S. Burns

    2014-01-01

    Limber pine (Pinus flexilis) is being threatened by the lethal disease white pine blister rust caused by the non-native pathogen Cronartium ribicola. The types and frequencies of genetic resistance to the rust will likely determine the potential success of restoration or proactive measures. These first extensive inoculation trials using individual tree seed collections...

  9. Resistance to white pine blister rust in Pinus flexilis and P

    Treesearch

    Anna W. Schoettle; Richard A. Sniezko; Angelia Kegley; Jerry Hill; Kelly S. Burns

    2010-01-01

    The non-native fungus Cronartium ribicola, that causes white pine blister rust (WPBR), is impacting or threatening limber pine, Pinus flexilis, and Rocky Mountain bristlecone pine, Pinus aristata. In the Southern Rockies, where the rust invasion is still expanding, we have the opportunity to be proactive and prepare the landscape for invasion. Genetic...

  10. First report of the white pine blister rust fungus, Cronartium ribicola, infecting Pinus flexilis on Pine Mountain, Humboldt National Forest, Elko County, northeastern Nevada, U.S.A.

    Treesearch

    Detlev R. Vogler; Patricia E. Maloney; Tom Burt; Jacob W. Snelling

    2017-01-01

    In 2013, while surveying for five-needle white pine cone crops in northeastern Nevada, we observed white pine blister rust, caused by the rust pathogen Cronartium ribicola Fisch., infecting branches and stems of limber pines (Pinus flexilis James) on Pine Mountain (41.76975°N, 115.61622°W), Humboldt National Forest,...

  11. White pine blister rust in the interior Mountain West

    Treesearch

    Kelly Burns; Jim Blodgett; Dave Conklin; Brian Geils; Jim Hoffman; Marcus Jackson; William Jacobi; Holly Kearns; Anna Schoettle

    2010-01-01

    White pine blister rust is an exotic, invasive disease of white, stone, and foxtail pines (also referred to as white pines or five-needle pines) in the genus Pinus and subgenus Strobus (Price and others 1998). Cronartium ribicola, the fungus that causes WPBR, requires an alternate host - currants and gooseberries in the genus Ribes and species of Pedicularis...

  12. Developing blister rust resistance in white pines

    Treesearch

    Bohun B. Kinloch Jr.

    2000-01-01

    After a century since introduction to North America from Europe, white pine blister rust, caused by Cronartium ribicola J.C. Fisch., is recognized as one of the catastrophic plant disease epidemics in history. It has not yet stabilized and continues to spread and intensify. Its nine native white pine hosts comprise major timber producers, important...

  13. White pine blister rust resistance research in Minnesota and Wisconsin

    Treesearch

    Andrew David; Paul Berrang; Carrie Pike

    2012-01-01

    The exotic fungus Cronartium ribicola causes the disease white pine blister rust on five-needled pines throughout North America. Although the effects of this disease are perhaps better known on pines in the western portion of the continent, the disease has also impacted regeneration and growth of eastern white pine (Pinus strobus L. ...

  14. First report of the white pine blister rust pathogen, Cronartium ribicola, in Arizona

    Treesearch

    M. L. Fairweather; Brian Geils

    2011-01-01

    White pine blister rust, caused by Cronartium ribicola J.C. Fisch., was found on southwestern white pine (Pinus flexilis James var. reflexa Engelm., synonym P. strobiformis Engelm.) near Hawley Lake, Arizona (Apache County, White Mountains, 34.024°N, 109.776°W, elevation 2,357 m) in April 2009. Although white pines in the Southwest (Arizona and New Mexico) have been...

  15. Status of white pine blister rust and seed collections in california's high-elevation white pine species

    Treesearch

    J. Dunlap

    2011-01-01

    White pine blister rust (caused by the non-native pathogen Cronartium ribicola) reached northern California about 80 years ago. Over the years its spread southward had been primarily recorded on sugar pine. However, observations on its occurrence had also been reported in several of the higher elevation five-needled white pine species in California. Since the late...

  16. Non-Ribes alternate hosts of white pine blister rust: What this discovery means to whitebark pine

    Treesearch

    Paul J. Zambino; Bryce A. Richardson; Geral I. McDonald; Ned B. Klopfenstein; Mee-Sook Kim

    2006-01-01

    From early to present-day outbreaks, white pine blister rust caused by the fungus Cronartium ribicola, in combination with mountain pine beetle outbreaks and fire exclusion has caused ecosystem-wide effects for all five-needled pines (McDonald and Hoff 2001). To be successful, efforts to restore whitebark pine will require sound management decisions that incorporate an...

  17. Blister rust resistance among 19 families of whitebark pine, Pinus albicaulis, from Oregon and Washington – early results from an artificial inoculation trial

    Treesearch

    Angelia Kegley; Richard A. Sniezko; Robert Danchok; Douglas P. Savin

    2012-01-01

    Whitebark pine is considered one of the most susceptible white pine species to white pine blister rust, the disease caused by the non-native pathogen Cronartium ribicola. High mortality from blister rust and other factors in much of the range in the United States and Canada have raised serious concerns about the future viability of this high-...

  18. HOW TO Identify White Pine Blister Rust and Remove Cankers

    Treesearch

    Thomas H. Nicholls; Robert L. Anderson

    1977-01-01

    White pine blister rust (caused by the fungus Cronartium ribicola J. C. Fisch. ex Rabenh.) was introduced into the United States about 1900 and has since spread throughout the range of white pine. The disease intensity varies throughout the range but is normally most severe where late summers (July-September) are cool (below 67? F) and damp, conditions necessary for...

  19. Distribution of Ribes, an alternate host of white pine blister rust, in Colorado and Wyoming

    Treesearch

    Holly S. J. Kearns; William R. Jacobi; Kelly S. Burns; Brian W. Geils

    2008-01-01

    Ribes (currants and gooseberries) are alternate hosts for Cronartium ribicola, the invasive fungus that causes blister rust of white pines (Pinus, subgenus Strobus) in the Rocky Mountain region of Colorado and Wyoming. The location, species, and density of Ribes can affect...

  20. Ecology of whitebark pine populations in relation to white pine blister rust infection in subalpine forests of the Lake Tahoe Basin: Implications for restoration

    Treesearch

    Patricia E. Maloney; Detlev R. Vogler; Camille E. Jensen; Annette Delfino Mix

    2012-01-01

    For over a century, white pine blister rust (WPBR), caused by the introduced fungal pathogen, Cronartium ribicola J.C. Fisch., has affected white pine (Subgenus Strobus) individuals, populations, and associated forest communities in North America. We surveyed eight populations of whitebark pine (Pinus albicaulis Engelm.) across a range of environmental conditions in...

  1. A natural history of Cronartium ribicola

    Treesearch

    Brian W. Geils; Detlev R. Vogler

    2011-01-01

    Cronartium ribicola is a fungal pathogen that causes a blister rust disease of white pines, Ribes, and other hosts in the genera Castilleja and Pedicularis. Although blister rust can damage white pine trees and stands, the severity and significance of these impacts vary with time, place, and management. We use a natural history approach to describe the history, biology...

  2. First report of albugo lepidi causing white rust on broadleaved pepperweed (lepidium latifolium) in Nevada and California

    USDA-ARS?s Scientific Manuscript database

    The biology and taxonomy of a white rust that is commonly found on the exotic invasive weed Lepidium latifolium were studied in order to assess its potential as a bioherbicide. Previously assumed to be Albugo candida, a common disease of Brassicaceae crops, comparisons of spore morphology and DNA s...

  3. Proactive intervention to sustain high-elevation pine ecosystems threatened by white pine blister rust

    Treesearch

    Anna W. Schoettle; Richard A. Sniezko

    2007-01-01

    Only recently have efforts begun to address how management might prepare currently healthy forests to affect the outcome of invasion by established non-native pests. Cronartium ribicola, the fungus that causes the disease white pine blister rust (WPBR), is among the introductions into North America where containment and eradication have failed; the...

  4. Limber pine forests on the leading edge of white pine blister rust distribution in Northern Colorado

    Treesearch

    Jennifer G. Klutsch; Betsy A. Goodrich; Anna W. Schoettle

    2011-01-01

    The combined threats of the current mountain pine beetle (Dendroctonus ponderosae, MPB) epidemic with the imminent invasion of white pine blister rust (caused by the non-native fungus Cronartium ribicola, WPBR) in limber pine (Pinus flexilis) forests in northern Colorado threatens the limber pine's regeneration cycle and ecosystem function. Over one million...

  5. Distribution and frequency of a gene for resistance to white pine blister rust in natural populations of sugar pine

    Treesearch

    Bohun B. Kinloch Jr.

    1992-01-01

    The gametic frequency of a dominant allcle (R) for resistance to white pine blister rust, a disease caused by an introduced pathogen (Cronartium ribicola), in natural populations of sugar pine was estimated by the kind of leaf symptom expressed after artificial inoculation of wind-pollinated seedlings from susceptible seed-parent...

  6. The relationship between whitebark pine health, cone production, and nutcracker occurrence across four National Parks

    Treesearch

    Lauren E. Barringer; Diana F. Tomback; Michael B. Wunder

    2011-01-01

    Whitebark pine (Pinus albicaulis) is declining in the central and northern Rocky Mountains from infection by the exotic pathogen Cronartium ribicola, which causes white pine blister rust, and from outbreaks of mountain pine beetle (Dendroctonus ponderosae). White pine blister rust has been present in Glacier and Waterton Lakes National Parks (NP) about two decades...

  7. Genetic mapping of Pinus flexilis major gene (Cr4) for resistance to white pine blister rust using transcriptome-based SNP genotyping

    Treesearch

    Jun-Jun Liu; Anna W. Schoettle; Richard A. Sniezko; Rona N. Sturrock; Arezoo Zamany; Holly Williams; Amanda Ha; Danelle Chan; Bob Danchok; Douglas P. Savin; Angelia Kegley

    2016-01-01

    Linkage of DNA markers with phenotypic traits provides essential information to dissect clustered genes with potential phenotypic contributions in a target genome region. Pinus flexilis E. James (limber pine) is a keystone five-needle pine species in mountain-top ecosystems of North America. White pine blister rust (WPBR), caused by a non-native fungal...

  8. Rust resistance in seedling families of Pinus albicaulis and Pinus strobiformis and implications for restoration

    Treesearch

    R. A. Sniezko; A. Kegley; R. Danchok; J. Hamlin; J. Hill; D. Conklin

    2011-01-01

    Infection and mortality levels from Cronartium ribicola, the fungus causing white pine blister rust, are very high in parts of the geographic range of Pinus albicaulis (whitebark pine) and P. strobiformis (Southwestern white pine). Genetic resistance to this non-native fungus will be one of the key factors in maintaining or restoring populations of these species in...

  9. 77 FR 65840 - Chrysanthemum White Rust Regulatory Status and Restrictions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-31

    ... Inspection Service 7 CFR Part 319 [Docket No. APHIS-2012-0001] RIN 0579-AD67 Chrysanthemum White Rust... should amend our process for responding to domestic chrysanthemum white rust (CWR) outbreaks and the... whether and how we should amend our process for responding to domestic chrysanthemum white rust (CWR...

  10. 77 FR 46339 - Chrysanthemum White Rust Regulatory Status and Restrictions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-03

    ... Inspection Service 7 CFR Part 319 [Docket No. APHIS-2012-0001] RIN 0579-AD67 Chrysanthemum White Rust... whether and how we should amend our process for responding to domestic chrysanthemum white rust (CWR... INFORMATION: Background Puccinia horiana P. Henn. is a filamentous rust fungus and obligate parasite that is...

  11. Whitebark pine mortality related to white pine blister rust, mountain pine beetle outbreak, and water availability

    USGS Publications Warehouse

    Shanahan, Erin; Irvine, Kathryn M.; Thoma, David P.; Wilmoth, Siri K.; Ray, Andrew; Legg, Kristin; Shovic, Henry

    2016-01-01

    Whitebark pine (Pinus albicaulis) forests in the western United States have been adversely affected by an exotic pathogen (Cronartium ribicola, causal agent of white pine blister rust), insect outbreaks (Dendroctonus ponderosae, mountain pine beetle), and drought. We monitored individual trees from 2004 to 2013 and characterized stand-level biophysical conditions through a mountain pine beetle epidemic in the Greater Yellowstone Ecosystem. Specifically, we investigated associations between tree-level variables (duration and location of white pine blister rust infection, presence of mountain pine beetle, tree size, and potential interactions) with observations of individual whitebark pine tree mortality. Climate summaries indicated that cumulative growing degree days in years 2006–2008 likely contributed to a regionwide outbreak of mountain pine beetle prior to the observed peak in whitebark mortality in 2009. We show that larger whitebark pine trees were preferentially attacked and killed by mountain pine beetle and resulted in a regionwide shift to smaller size class trees. In addition, we found evidence that smaller size class trees with white pine blister rust infection experienced higher mortality than larger trees. This latter finding suggests that in the coming decades white pine blister rust may become the most probable cause of whitebark pine mortality. Our findings offered no evidence of an interactive effect of mountain pine beetle and white pine blister rust infection on whitebark pine mortality in the Greater Yellowstone Ecosystem. Interestingly, the probability of mortality was lower for larger trees attacked by mountain pine beetle in stands with higher evapotranspiration. Because evapotranspiration varies with climate and topoedaphic conditions across the region, we discuss the potential to use this improved understanding of biophysical influences on mortality to identify microrefugia that might contribute to successful whitebark pine conservation efforts. Using tree-level observations, the National Park Service-led Greater Yellowstone Interagency Whitebark Pine Long-term Monitoring Program provided important ecological insight on the size-dependent effects of white pine blister rust, mountain pine beetle, and water availability on whitebark pine mortality. This ongoing monitoring campaign will continue to offer observations that advance conservation in the Greater Yellowstone Ecosystem.

  12. White pine blister rust in northern ldaho and western Montana: alternatives for integrated management

    Treesearch

    Susan K. Hagle; Geral I. McDonald; Eugene A. Norby

    1989-01-01

    This report comprises a handbook for managing western white pine in northern ldaho and western Montana, under the threat of white pine blister rust. Various sections cover the history of the disease and efforts to combat it, the ecology of the white pine and Ribes, alternate host of the rust, and techniques for evaluating the rust hazard and attenuating it. The authors...

  13. White pine blister rust resistance of 12 western white pine families at three field sites in the Pacific Northwest

    Treesearch

    Richard A. Sniezko; Robert Danchok; Jim Hamlin; Angelia Kegley; Sally Long; James Mayo

    2012-01-01

    Western white pine (Pinus monticola Douglas ex D. Don) is highly susceptible to the non-native, invasive pathogen Cronartium ribicola, the causative agent of white pine blister rust. The susceptibility of western white pine to blister rust has limited its use in restoration and reforestation throughout much of western North...

  14. HOW to Manage Eastern White Pine to Minimize Damage from Blister Rust and White Pine Weevil

    Treesearch

    Steven Katovich; Manfred E. Mielke

    1993-01-01

    White pine was once a dominant forest species in the north central and northeastern United States. Following logging in the late 1800's and the early part of this century, two major pests, white pine blister rust, Cronartium ribicola J.C.Fisch., and white pine weevil, Pissodes strobi (Peck), combined to reduce the value of white pine. Blister rust was introduced...

  15. Can microscale meteorological conditions predict the impact of white pine blister rust in Colorado and Wyoming?

    Treesearch

    William R. Jacobi; Betsy A. Goodrich; Holly S. J. Kearns; Kelly S. Burns; Brian W. Geils

    2011-01-01

    White pine blister rust occurs when there are compatible interactions between susceptible hosts (white pines and Ribes spp.), inoculum (Cronartium ribicola spores), and local weather conditions during infection. The five spore stages of the white pine blister rust (WPBR) fungus have specific temperature and moisture conditions necessary for production, germination, and...

  16. Preempting the pathogen: Blister rust and proactive management of high-elevation pines

    Treesearch

    Sue Miller; Anna Schoettle; Kelly Burns; Richard Sniezko; Patty Champ

    2017-01-01

    White pine blister rust has been spreading through western forests since 1910, causing widespread mortality in a group that includes some of the oldest and highest-elevation pines in the United States. The disease has recently reached Colorado and is expected to travel through the southern Rockies. Although it cannot be contained, RMRS researchers and collaborators are...

  17. Silvicultural approaches for management of eastern white pine to minimize impacts of damaging agents

    Treesearch

    M.E. Ostry; G. Laflamme; S.A. Katovich

    2010-01-01

    Since the arrival to North America of Cronartium ribicola, management of eastern white pine has been driven by the need to avoid the actual or, in many areas, the perceived damage caused by white pine blister rust. Although white pine has lost much of its former dominance, it remains a valuable species for biotic diversity, aesthetics, wildlife...

  18. Registration of ‘Puma’ soft white winter wheat

    USDA-ARS?s Scientific Manuscript database

    Resistance to strawbreaker foot rot (caused by Oculimacula yallundae Crous & W. Gams and O. acuformis Crous & W. Gams), stripe rust (caused by Puccinia striiformis Westend. f. sp. tritici Eriks.), and Cephalosporium stripe (caused by Cephalosporium gramineum Nisikado and Ikata) are important traits ...

  19. Molecular and genetic basis for partial resistance of western white pine against Cronartium ribicola.

    Treesearch

    Jun-Jun Liu; Arezoo Zamany; Richard Sniezko

    2012-01-01

    Western white pine (Pinus monticola Douglas ex D. Don) is an important forest species in North America. Forest genetics programs have been breeding for durable genetic resistance against white pine blister rust (WPBR) caused by Cronartium ribicola in the past few decades. As various genetic resistance resources are screened and...

  20. Effect of white pine blister rust (Cronartium ribicola) and rust-resistance breeding on genetic variation in western white pine Pinus monticola)

    Treesearch

    M. -S. Kim; S. J. Brunsfeld; G. I. McDonald; N. B. Klopfenstein

    2003-01-01

    Western white pine (Pinus monticola) is an economically and ecologically important species from western North America that has declined over the past several decades mainly due to the introduction of blister rust (Cronartium ribicola) and reduced opportunities for regeneration. Amplified fragment length polymorphism (AFLP) was used...

  1. A holistic approach to genetic conservation of Pinus strobiformis

    Treesearch

    K.M. Waring; R. Sniezko; B.A. Goodrich; C. Wehenkel; J.J. Jacobs

    2017-01-01

    Pinus strobiformis (southwestern white pine) is threatened by both a rapidly changing climate and the tree disease white pine blister rust, caused by an introduced fungal pathogen, Cronartium ribicola. We began a proactive program in ~2009 to sustain P. strobiformis that includes genetic conservation, research, and management strategies. Research...

  2. Environment in relation to white pine blister rust infection

    Treesearch

    E.P. Van Arsdel

    1972-01-01

    Pine trees can be free of blister rust infection either because they are growing in a climate unfavorable to rust or because they are genetically resistant to the rust. The climatic escape is hundreds of times more common than genetic resistance in the American white pines. The minimum time and temperature required for penetration by an isolate of the rice blast fungus...

  3. Biology and pathology of Ribes and their implications for management of white pine blister rust

    Treesearch

    P. J. Zambino

    2010-01-01

    Ribes (currants and gooseberries) are telial hosts for the introduced and invasive white pine blister rust fungus, Cronartium ribicola. Knowledge of wild and introduced Ribes helps us understand the epidemiology of blister rust on its aecial hosts, white pines, and develop disease control and management strategies. Ribes differ by species in their contribution to...

  4. Cronartium ribicola resistance in whitebark pine, southwestern white pine, limber pine and Rocky Mountain bristlecone pine - preliminary screening results from first tests at Dorena GRC

    Treesearch

    Richard A. Sniezko; Angelia Kegley; Robert Danchok; Anna W. Schoettle; Kelly S. Burns; Dave Conklin

    2008-01-01

    All nine species of white pines (five-needle pines) native to the United States are highly susceptible to Cronartium ribicola, the fungus causing white pine blister rust. The presence of genetic resistance will be the key to maintaining or restoring white pines in many ecosystems and planning gene conservation activities. Operational genetic...

  5. Restoration and management of eastern white pine within high blister rust hazard zones in the Lake States

    Treesearch

    S. A. Katovich; J. G. O' Brien; M. E. Mielke; M. E. Ostry

    2004-01-01

    In areas considered high hazard for blister rust in the northern Lake States, six white pine plantings were established between 1989 and 1999 to: (1) evaluate the impacts of blister rust, white pine weevil, browsing, and competition stress on tree growth and survival, and (2) evaluate the effectiveness of genetic and silvicultural strategies to minimize damage. The...

  6. Field levels of infection of progenies of western white pines selected for blister rust resistance

    Treesearch

    R. J. Steinhoff

    1971-01-01

    Western white pine trees resulting from crosses of parents selected for phenotypic resistance to Cronartium ribicola J. C. Fisch. ex Rabenh., the white pine blister rust, were inspected for rust infection after 11 to 15 years in two field plots. When compared to controls and to natural reproduction, the progenies of crosses involving trees that exhibited general...

  7. The U.S. Forest Service's renewed focus on gene conservation of five-needle pine species

    Treesearch

    2011-01-01

    The U.S. Forest Service (FS) has been actively working with five-needle pine species for decades. The main focus of this interest has been in restoration efforts involving disease-resistance screening activities in western white (Pinus monticola), sugar (Pinus lambertiana), and eastern white (Pinus strobus) pines in the face of white pine blister rust (WPBR), caused by...

  8. Needle reactions in resistance to Cronartium ribicola: Hypersensitivity response or not?

    Treesearch

    Katarina Sweeney; Jeffrey Stone; Kathy Cook; Richard A. Sniezko; Angelia Kegley; Anna W. Schoettle

    2012-01-01

    White pine blister rust (WPBR) is caused by the fungal pathogen Cronartium ribicola. The pathogen is native to Eurasia and was introduced to North America early in the 20th century and is still spreading destructively throughout the range of native western white pines (Douglas ex D. Don) (McDonald and Hoff 2001). All of the North American five-needle (white) pines are...

  9. Preparing the landscape for invasion - Early intervention approaches for threatened high elevation white pine ecosystems

    Treesearch

    Anna W. Schoettle; Richard A. Sniezko; Kelly S. Burns; Freeman Floyd

    2007-01-01

    White pine blister rust is now a permanent resident of North America. The disease continued to cause tree mortality and impact ecosystems in many areas. However, not all high elevation white pine ecosystems have been invaded; the pathogen is still spreading within the distributions of the whitebark, limber, foxtail, Rocky Mountain bristlecone pine and has yet to infect...

  10. Computer simulation of white pine blister rust epidemics

    Treesearch

    Geral I. McDonald; Raymond J. Hoff; William R. Wykoff

    1981-01-01

    A simulation of white pine blister rust is described in both word and mathematical models. The objective of this first generation simulation was to organize and analyze the available epidemiological knowledge to produce a foundation for integrated management of this destructive rust of 5-needle pines. Verification procedures and additional research needs are also...

  11. II. Pathogens

    Treesearch

    Ned B. Klopfenstein; Brian W. Geils

    2011-01-01

    Invasive fungal pathogens have caused immeasurably large ecological and economic damage to forests. It is well known that invasive fungal pathogens can cause devastating forest diseases (e.g., white pine blister rust, chestnut blight, Dutch elm disease, dogwood anthracnose, butternut canker, Scleroderris canker of pines, sudden oak death, pine pitch canker) (Maloy 1997...

  12. Genetic diversity and structure of western white pine (Pinus monticola) in North America: A baseline study for conservation, restoration, and addressing impacts of climate change

    Treesearch

    Mee-Sook Kim; Bryce A. Richardson; Geral I. McDonald; Ned B. Klopfenstein

    2010-01-01

    Western white pine (Pinus monticola) is an economically and ecologically important species in western North America that has declined in prominence over the past several decades, mainly due to the introduction of Cronartium ribicola (cause of white pine blister rust) and reduced opportunities for regeneration. Amplified fragment length polymorphism (AFLP) markers were...

  13. Anatomical and cellular responses of Pinus monticola stem tissues to invasion by Cronartium ribicola

    Treesearch

    J. W. Hudgins; G. I . McDonald; P. J. Zambino; N. B. Klopfenstein; V. R. Franceschi

    2005-01-01

    White pine blister rust (Cronartium ribicola) causes extensive damage to white pines and their associated ecosystems across North America. The anatomical and cellular characteristics of C. ribicola colonization in Pinus monticola branch and stem tissues were studied as a basis for understanding host tree reactions that may be related to resistance. Samples examined...

  14. Histology of white pine blister rust in needles of resistant and susceptible eastern white pine

    Treesearch

    Joel A. Jurgens; Robert A. Blanchette; Paul J. Zambino; Andrew David

    2003-01-01

    White pine blister rust, Cronartium ribicola, has plagued the forests of North America for almost a century. Over past decades, eastern white pine (Pinus strobus) that appear to tolerate the disease have been selected and incorporated into breeding programs. Seeds from P. strobus with putative resistance were...

  15. Threats, status & management options for bristlecone pines and limber pines in Southern Rockies

    Treesearch

    A. W. Schoettle; K. S. Burns; F. Freeman; R. A. Sniezko

    2006-01-01

    High-elevation white pines define the most remote alpine-forest ecotones in western North America yet they are not beyond the reach of a lethal non-native pathogen. The pathogen (Cronartium ribicola), a native to Asia, causes the disease white pine blister rust (WPBR) and was introduced into western Canada in 1910. Whitebark (Pinus albicaulis) and...

  16. 75 FR 19347 - Submission for OMB Review; Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-14

    ... from Countries with Chrysanthemum White Rust. OMB Control Number: 0579-0271. Summary of Collection... importation of cut flowers that are hosts of Chrysanthemum White Rust (CWR) from countries where the disease...

  17. Cladosporium cladosporioides and Cladosporium pseudocladosporioides as potential new fungal antagonists of Puccinia horiana Henn., the causal agent of chrysanthemum white rust.

    PubMed

    Torres, David Eduardo; Rojas-Martínez, Reyna Isabel; Zavaleta-Mejía, Emma; Guevara-Fefer, Patricia; Márquez-Guzmán, G Judith; Pérez-Martínez, Carolina

    2017-01-01

    Puccinia horiana Hennings, the causal agent of chrysanthemum white rust, is a worldwide quarantine organism and one of the most important fungal pathogens of Chrysanthemum × morifolium cultivars, which are used for cut flowers and as potted plants in commercial production regions of the world. It was previously reported to be controlled by Lecanicillium lecanii, Cladosporium sphaerospermum, C. uredinicola and Aphanocladium album, due to their antagonistic and hyperparasitic effects. We report novel antagonist species on Puccinia horiana. Fungi isolated from rust pustules in a commercial greenhouse from Villa Guerrero, México, were identified as Cladosporium cladosporioides and Cladosporium pseudocladosporioides based upon molecular analysis and morphological characters. The antagonism of C. cladosporioides and C. pseudocladosporioides on chrysanthemum white rust was studied using light and electron microscopy in vitro at the host/parasite interface. Cladosporium cladosporioides and C. pseudocladosporioides grew towards the white rust teliospores and colonized the sporogenous cells, but no direct penetration of teliospores was observed; however, the structure and cytoplasm of teliospores were altered. The two Cladosporium spp. were able to grow on media containing laminarin, but not when chitin was used as the sole carbon source; these results suggest that they are able to produce glucanases. Results from the study indicate that both Cladosporium species had potential as biological control agents of chrysanthemum white rust.

  18. Cladosporium cladosporioides and Cladosporium pseudocladosporioides as potential new fungal antagonists of Puccinia horiana Henn., the causal agent of chrysanthemum white rust

    PubMed Central

    Guevara-Fefer, Patricia; Márquez-Guzmán, G. Judith; Pérez-Martínez, Carolina

    2017-01-01

    Puccinia horiana Hennings, the causal agent of chrysanthemum white rust, is a worldwide quarantine organism and one of the most important fungal pathogens of Chrysanthemum × morifolium cultivars, which are used for cut flowers and as potted plants in commercial production regions of the world. It was previously reported to be controlled by Lecanicillium lecanii, Cladosporium sphaerospermum, C. uredinicola and Aphanocladium album, due to their antagonistic and hyperparasitic effects. We report novel antagonist species on Puccinia horiana. Fungi isolated from rust pustules in a commercial greenhouse from Villa Guerrero, México, were identified as Cladosporium cladosporioides and Cladosporium pseudocladosporioides based upon molecular analysis and morphological characters. The antagonism of C. cladosporioides and C. pseudocladosporioides on chrysanthemum white rust was studied using light and electron microscopy in vitro at the host/parasite interface. Cladosporium cladosporioides and C. pseudocladosporioides grew towards the white rust teliospores and colonized the sporogenous cells, but no direct penetration of teliospores was observed; however, the structure and cytoplasm of teliospores were altered. The two Cladosporium spp. were able to grow on media containing laminarin, but not when chitin was used as the sole carbon source; these results suggest that they are able to produce glucanases. Results from the study indicate that both Cladosporium species had potential as biological control agents of chrysanthemum white rust. PMID:28141830

  19. White pine blister rust in Korea, Japan and other Asian regions: comparisons and implications for North America

    Treesearch

    M.-S. Kim; N. B. Klopfenstein; Y. Ota; S. K. Lee; K.-S. Woo; S. Kaneko

    2010-01-01

    This article briefly reviews the history of white pine blister rust, attributed to Cronartium ribicola, and addresses current research and management issues in South Korea, Japan and other regions of eastern Asia (China, Russia and Himalaya). For each region, the distribution, damage, aecial hosts, telial hosts and management of C. ribicola and other blister rust fungi...

  20. Blister rust control in the management of western white pine

    Treesearch

    Kenneth P. Davis; Virgil D. Moss

    1940-01-01

    The forest industry of the western white pine region depends on the production of white pine as a major species on about 2,670,000 acres of commercial forest land. Continued production of this species and maintenance of the forest industry at anything approaching its present level is impossible unless the white pine blister rust is controlled. Existing merchantable...

  1. Influence of host resistance on the genetic structure of the white pine blister rust fungus in the western United States

    Treesearch

    B. A. Richardson; N. B. Klopfenstein; P. J. Zambino; G. I. McDonald; B. W. Geils; L. M. Carris

    2008-01-01

    Cronartium ribicola, the causal agent of white pine blister rust, has been devastating to five-needled white pines in North America since its introduction nearly a century ago. However, dynamic and complex interactions occur among C. ribicola, five-needled white pines, and the environment. To examine potential evolutionary...

  2. Genetic interactions in the white pine/blister rust pathosystem

    Treesearch

    Bohun B. Kinloch Jr.

    2000-01-01

    The nine white pine species native to North America have very different ecological roles and values, which include high quality timber production, important watershed protection, keystone ecological species, and the oldest and some of the most picturesque trees on earth. All are highly susceptible to white pine blister rust (Cronartium ribicola), and...

  3. Resistance of three interspecific white pine hybrids to blister rust

    Treesearch

    R. Z. Callaham

    1962-01-01

    Three white pine hybrids exposed to infection by white pine blister rust (Cronartium ribicola Fischer) since 1946 have inherited the relative resistance of their parental species. The hybrids were produced from controlled pollinations in 1940 and 1941 at the Institute of Forest Genetics, Placerville, Calif. Twelve seedlings of each hybrid were...

  4. Characteristics of Blister Rust Cankers on Eastern White Pine

    Treesearch

    William R. Phelps; Ray Weber

    1969-01-01

    The growth, development, and sporulation of white pine blister rust cankers were studied on eastern white pine in Wisconsin and Minnesota. Three district canker types were identified on the basis of physical appearance, growth rate, and sporulation. Canker growth rate and sporulation decreased as tree size or age increased, and many cankers apparently became inactive...

  5. White pines, Ribes, and blister rust: integration and action

    Treesearch

    R. S. Hunt; B. W. Geils; K. E. Hummer

    2010-01-01

    The preceding articles in this series review the history, biology and management of white pine blister rust in North America, Europe and eastern Asia. In this integration, we connect and discuss seven recurring themes important for understanding and managing epidemics of Cronartium ribicola in the white pines (five-needle pines in subgenus Strobus). Information and...

  6. Pruning to manage white pine blister rust in the southern Rocky Mountains

    Treesearch

    Amanda Crump; William R. Jacobi; Kelly S. Burns; Brian E. Howell

    2011-01-01

    White pine blister rust is an exotic, invasive disease that severely damages and kills white pines in the southern Rocky Mountains. We evaluated the efficacy of preventive pruning (removing lower branches) and/or sanitation pruning (removing cankered branches) to reduce disease impacts in limber (Pinus flexilis James) and Rocky Mountain bristlecone (P. aristata Englm...

  7. White pines, Ribes, and blister rust: a review and synthesis

    Treesearch

    Brian W. Geils; Kim E. Hummer; Richard S. Hunt

    2010-01-01

    For over a century, white pine blister rust (Cronartium ribicola) has linked white pines (Strobus) with currants and gooseberries (Ribes) in a complex and serious disease epidemic in Asia, Europe, and North America. Because of ongoing changes in climate, societal demands for forests and their amenities, and scientific advances in genetics and proteomics, our current...

  8. Modeling the potential distribution of white pine blister rust in the central Rocky Mountains.

    Treesearch

    Holly S. J. Kearns; William R. Jacobi

    2006-01-01

    Cronartium ribicola (J. C. Fischer ex Rabh.), the causal agent of white pine blister rust (WPBR), was introduced to western North America via infected nursery stock imported from France to Point Grey near Vancouver, British Columbia (Mielke 1943). Primary infection of white pines occurs on the needles where fungal spores land, enter through stomata,...

  9. Aiding blister rust control by silvicultural measures in the western white pine type

    Treesearch

    Virgil D. Moss; Charles A. Wellner

    1953-01-01

    The forest industry of the Inland Empire depends on the production of western white pine (Pinus monticola Dougl.) as a major species. Continued production of this tree is impossible unless white pine blister rust (Cronartium ribicola Fischer) is controlled. Existing merchantable timber can and probably will be harvested before serious losses occur, but the young growth...

  10. Antibiotic Treatment of Blister Rust Cankers in Eastern White Pine

    Treesearch

    William R. Phelps; Ray Weber

    1970-01-01

    Cycloheximide (Acti-dione) and Phytoactin antibiotics, applied as basal stem treatments, aerial spray treatments, and complete foliar drenches were not effective in controlling blister rust cankers in eastern white pine. Cycloheximide was effective in suppressing canker activity and growth if directly applied to scarified cankers.

  11. Antibiotics Do Not Control Blister Rust in Eastern White Pine Seedlings

    Treesearch

    William R. Phelps; Ray Weber

    1968-01-01

    To prevent blister rust infections in Eastern white pine seedlings, the antibiotics, cycloheximide (acti-dione) and Phytoactin, were tested in root dips, root slurries, and foliar drenches before planting and after planting the trees. None of the methods and materials tested was effective.

  12. Growing white pine in the Lake States to avoid blister rust

    Treesearch

    Eugene P. Van Arsdel

    1961-01-01

    Since white pine is one of the most desirable tree species for the Lake States region, it is unfortunate that fear of the blister rust disease has greatly limited the amount of white pine planted. Research has shown that, in many areas, loss from the disease has not been great even where pine stands have not been protected through ribes eradication. Conversely, in...

  13. A paradigm shift for white pine blister rust: Non-Ribes alternate hosts for Cronartium ribicola in North America

    Treesearch

    Paul J. Zambino; Bryce A. Richardson; Geral I. McDonald; Ned B. Klopfenstein; Mee-Sook Kim

    2007-01-01

    Naturally occurring Cronartium ribicola infections were discovered in August and September, 2004 on Pedicularis racemosa and Castilleja miniata in a mixed stand of white pine blister rust-infected whitebark pine (Pinus albicaulis) and western white pine (P. monticola) in northern Idaho, at Roman Nose Lakes, ca 30 km west of Bonners Ferry. Infections were confirmed by...

  14. 4.4.5S: Genetic interactions of white pines and blister rust in western North America

    Treesearch

    Bohun B. Kinloch Jr.

    1998-01-01

    A century since its introduction to North America from Europe, white pine blister rust has come to be recognized as one of the catastrophic plant disease epidemics in history. It has yet to stabilize, continuing to spread and intensify. The nine native white pine hosts comprise major timber producers, important watershed protectors, keystone ecological species, and the...

  15. The influence of white pine blister rust on seed dispersal in whitebark pine

    Treesearch

    Shawn T. McKinney; Diana F. Tomback

    2007-01-01

    We tested the hypotheses that white pine blister rust (Cronartium ribicola J.C. Fisch.) damage in whitebark pine (Pinus albicaulis Engelm.) stands leads to reduced (1) seed cone density, (2) predispersal seed survival, and (3) likelihood of Clark's Nutcracker (Nucifraga columbiana (Wilson, 1811)) seed...

  16. Histological observations on needle colonization by Cronartium ribicola in susceptible and resistant seedlings of whitebark pine and limber pine

    Treesearch

    Jeffrey Stone; Anna Schoettle; Richard Sniezko; Angelia Kegley

    2011-01-01

    Resistance to white pine blister rust based on a hypersensitive response (HR) that is conferred by a dominant gene has been identified as functioning in needles of blister rust-resistant families of sugar pine, western white pine and southwestern white pine. The typical HR response displays a characteristic local necrosis at the site of infection in the needles during...

  17. How to recognize blister rust infection on whitebark pine

    Treesearch

    Ray J. Hoff

    1992-01-01

    Color photographs show how white pine blister rust can be identified. In addition, the photographs show how pines resistant to the fungus could be identified. Such trees could be used to develop a new variety of whitebark pine that is resistant to blister rust.

  18. Options for the management of white pine blister rust in the Rocky Mountain Region

    Treesearch

    Kelly S. Burns; Anna W. Schoettle; William R. Jacobi; Mary F. Mahalovich

    2008-01-01

    This publication synthesizes current information on the biology, distribution, and management of white pine blister rust (WPBR) in the Rocky Mountain Region. In this Region, WPBR occurs within the range of Rocky Mountain bristlecone pine (Pinus aristata), limber pine (P. flexilis), and whitebark pine (P. albicaulis...

  19. Tracking the footsteps of an invasive plant pathogen: Intercontinental phylogeographic structure of the white-pine-blister-rust fungus, Cronartium ribicola

    Treesearch

    Bryce A. Richardson; Mee-Sook Kim; Ned B. Klopfenstein; Yuko Ota; Kwan Soo Woo; Richard C. Hamelin

    2009-01-01

    Presently, little is known about the worldwide genetic structure, diversity, or evolutionary relationships of the white-pineblister-rust fungus, Cronartium ribicola. A collaborative international effort is underway to determine the phylogeographic relationships among Asian, European, and North American sources of C. ribicola and...

  20. A summary of white pine blister rust research in the Lake States.

    Treesearch

    Ralph L. Anderson

    1973-01-01

    Summarizes white pine blister rust research in the Lake States and present status of knowledge. Important microclimatic relations are described. Antibiotics are not effective, whereas pruning provides some control. Genetic resistance shows much promise but may be complicated by pathogenic races. The effectiveness of ribes eradication is open to question.

  1. White pine blister rust at mountain home demonstration state forest: a case study of the epidemic and prospects for genetic control.

    Treesearch

    Bohun B. Kinloch; Dulitz Jr.

    1990-01-01

    The behavior of white pine blister rust at Mountain Home State Demonstration Forest and surrounding areas in the southern Sierra Nevada of California indicates that the epidemic has not yet stabilized and that the most likely prognosis is a pandemic on white pines in this region within the next few decades. The impact on sugar pines, from young regeneration to old...

  2. Pedicularis and Castilleja are natural hosts of Cronartium ribicola in North America: A first report

    Treesearch

    Geral I. McDonald; Bryce A. Richardson; Paul J. Zambino; Ned B. Klopfenstein; Mee-Sook Kim

    2006-01-01

    White pine blister rust disease, caused by the introduced pathogen Cronartium ribicola, has severely disrupted five-needled pine ecosystems in North America. A 100-year effort to manage this disease was predicated in part on the premise that the pathogen utilizes only species of Ribes (Grossulariaceae) as...

  3. The effects of seed source health on whitebark pine (Pinus albicaulis) regeneration density after wildfire

    Treesearch

    Signe B. Leirfallom; Robert E. Keane; Diana F. Tomback; Solomon Z. Dobrowski

    2015-01-01

    Whitebark pine (Pinus albicaulis Engelm.) populations are declining nearly rangewide from a combination of factors, including mountain pine beetle (Dendroctonus ponderosae Hopkins, 1902) outbreaks, the exotic pathogen Cronartium ribicola J.C. Fisch. 1872, which causes the disease white pine blister rust, and successional replacement due to historical fire...

  4. Polymerase Chain Reaction (PCR) applications in white pine blister rust resistance screening

    Treesearch

    Sam Hendricks; Wendy Sutton; Jeffrey Stone; Richard Sniezko; Angelia Kegley; Anna Schoettle

    2011-01-01

    A goal of breeding programs for resistance to white pine blister rust is the development of multigenic resistance, even if the genetics and mechanisms of resistance may be imperfectly understood. The goal of multigenic resistance has prompted efforts to categorize host resistance reactions at increasingly finer scales, to identify heritable traits that may confer...

  5. Synoptic climatology of the long-distance dispersal of white pine blister rust II. Combination of surface and upper level conditions

    Treesearch

    K. L. Frank; B. W. Geils; L. S. Kalkstein; H. W. Thistle

    2008-01-01

    An invasive forest pathogen, Cronartium ribicola, white pine blister rust (WPBR), is believed to have arrived in the Sacramento Mountains of south-central New Mexico about 1970. Epidemiological and genetic evidence supports the hypothesis that introduction was the result of long-distance dispersal (LDD) by atmospheric transport from California. This...

  6. Selection for resistance to white pine blister rust affects the abiotic stress tolerances of limber pine

    Treesearch

    Patrick J. Vogan; Anna W. Schoettle

    2015-01-01

    Limber pine (Pinus flexilis) mortality is increasing across the West as a result of the combined stresses of white pine blister rust (Cronartium ribicola; WPBR), mountain pine beetle (Dendroctonus ponderosae), and dwarf mistletoe (Arceuthobium cyanocarpum) in a changing climate. With the continued spread of WPBR, extensive mortality will continue with strong selection...

  7. Strong partial resistance to white pine blister rust in sugar pine

    Treesearch

    Bohun B. Kinloch, Jr.; Deems Burton; Dean A. Davis; Robert D. Westfall; Joan Dunlap; Detlev Vogler

    2012-01-01

    Quantitative resistance to white pine blister rust in 128 controlled- and open-pollinated sugar pine families was evaluated in a “disease garden”, where alternate host Ribes bushes were interplanted among test progenies. Overall infection was severe (88%), but with great variation among and within families: a 30-fold range in numbers of infections...

  8. Random amplified polymorphic DNA markers tightly linked to a gene for resistance to white pine blister rust in sugar pine

    Treesearch

    Michael E. Devey; Annette Delfino-Mix1; Bohun B. Kinloch; David B. NEALEt

    1995-01-01

    We have genetically mapped a gene for resistance to white pine blister rust (Cronartium ribicola Fisch.) in sugar pine (Pinus lambertiana Dougl.) by using an approach which relies on three factors: (i) the ability to assay for genetic markers in the haploid stage of the host's life cycle, using...

  9. Monitoring white pine blister rust infection and mortality in whitebark pine in the Greater Yellowstone ecosystem

    Treesearch

    Cathie Jean; Erin Shanahan; Rob Daley; Gregg DeNitto; Dan Reinhart; Chuck Schwartz

    2011-01-01

    There is a critical need for information on the status and trend of whitebark pine (Pinus albicaulis) in the Greater Yellowstone Ecosystem (GYE). Concerns over the combined effects of white pine blister rust (WPBR, Cronartium ribicola), mountain pine beetle (MPB, Dendroctonus ponderosae), and climate change prompted an interagency working group to design and implement...

  10. Heterogeneous nonmarket benefits of managing white pine bluster rust in high-elevation pine forests

    Treesearch

    James R. Meldrum; Patricia A. Champ; Craig A. Bond

    2013-01-01

    This article describes a nonmarket valuation study about benefits of managing the invasive disease white pine blister rust in highelevation forests in the Western United States. Results demonstrate that, on average, households in the Western United States are willing to pay $154 to improve the resiliency of these forests. Factor analysis shows that long-run protection...

  11. Assessing host specialization among aecial and telial hosts of the white pine blister rust fungus, Cronartium ribicola

    Treesearch

    Bryce A. Richardson; Paul J. Zambino; Ned B. Klopfenstein; Geral I. McDonald; Lori M. Carris

    2007-01-01

    The white-pine blister rust fungus, Cronartium ribicola Fisch. in Rabenh., continues to spread in North America, utilizing various aecial (primary) and telial (alternate) hosts, some of which have only recently been discovered. This introduced pathogen has been characterized as having low genetic diversity in North America, yet it has demonstrated a...

  12. Annual observations of conspicuous canker activity on whitebark pine (2003 to 2007)

    Treesearch

    Michael P. Murray

    2011-01-01

    Whitebark pine's (Pinus albicaulis) notable ecological values, combined with its precarious state, underscore the need for monitoring its health and dynamics. Populations of whitebark pine are in decline throughout most of its range. White pine blister rust, caused by the fungus Cronartium ribicola, has denuded stands since introduction during the early 1900s (...

  13. Population biology of sugar pine (Pinus lambertiana Dougl.) with reference to historical disturbances in the Lake Tahoe Basin: implications for restoration

    Treesearch

    Patricia E. Maloney; Detlev R. Vogler; Andrew J. Eckert; Camille E. Jensen; David B. Neale

    2011-01-01

    Historical logging, fire suppression, and an invasive pathogen, Cronartium ribicola, the cause of white pine blister rust (WPBR), are assumed to have dramatically affected sugar pine (Pinus lambertiana) populations in the Lake Tahoe Basin. We examined population- and genetic-level consequences of these disturbances within 10...

  14. Pre-dispersal seed predator dynamics at the northern limits of limber pine distribution

    Treesearch

    Vernon S. Peters

    2011-01-01

    Limber pine (Pinus flexilis) is listed provincially as endangered in the northern part of its geographic range (Alberta) due to the high mortality caused by white pine blister rust (WPBR) (Cronartium ribicola) and mountain pine beetle (Dendroctonus ponderosae), and limited regeneration opportunities due to fire exclusion. In the case of an endangered species, seed...

  15. Phytosanitation: A systematic approach to disease prevention

    Treesearch

    Thomas D. Landis

    2013-01-01

    Phytosanitation is not a new concept but has received renewed attention due to the increasing threat of nursery spread Phytophthora ramorum (PRAM), the fungus-like pathogen that causes Sudden Oak Death. This disease has the potental to become the most serious forest pest since white pine blister rust and chestnut blight. Phytosanitation can help prevent the spread of...

  16. A range-wide restoration strategy for whitebark pine (Pinus albicaulis)

    Treesearch

    Robert E. Keane; D. F. Tomback; C. A. Aubry; A. D. Bower; E. M. Campbell; C. L. Cripps; M. B. Jenkins; M. F. Mahalovich; M. Manning; S. T. McKinney; M. P. Murray; D. L. Perkins; D. P. Reinhart; C. Ryan; A. W. Schoettle; C. M. Smith

    2012-01-01

    Whitebark pine (Pinus albicaulis), an important component of western high-elevation forests, has been declining in both the United States and Canada since the early Twentieth Century from the combined effects of mountain pine beetle (Dendroctonus ponderosae) outbreaks, fire exclusion policies, and the spread of the exotic disease white pine blister rust (caused by the...

  17. The distribution and incidence of white pine blister rust in central and southeastern Wyoming and northern Colorado

    Treesearch

    Holly S. J. Kearns; William R. Jacobi

    2007-01-01

    A survey of limber pine (Pinus flexilis James) to determine the geographic distribution, incidence, and severity of white pine blister rust (WPBR) throughout 13 study areas in central and southeastern Wyoming and northern Colorado was conducted from 2002 to 2004. The majority (81.1%) of the 18719 surveyed limber pines>1.37 m tall were classified...

  18. Low average blister-rust infection rates may mean high control costs

    Treesearch

    Robert Marty

    1965-01-01

    The Northeastern Forest Experiment Station, in cooperation with Federal and State forest-pest-control agencies, undertook a survey of blister-rust infection rates in the white pine region of the East during 1962 and 1963. Those engaged in blister-rust-control activities will not be surprised at the survey's results. We found that infection rates were significantly...

  19. A method for estimating white pine blister rust canker age on limber pine in the central Rocky Mountains

    Treesearch

    Holly S. J. Kearns; William R. Jacobi; Brian W. Geils

    2009-01-01

    Epidemiological studies of white pine blister rust on limber pine require a temporal component to explain variations in incidence of infection and mortality. Unfortunately, it is not known how long the pathogen has been present at various sites in the central Rocky Mountains of North America. Canker age, computed from canker length and average expansion rate, can be...

  20. A population genetic model for high-elevation five-needle pines: Projecting population outcomes in the presence of white pine blister rust

    Treesearch

    A. W. Schoettle; J. G. Klutsch; M. F. Antolin; S. Field

    2011-01-01

    The slow growth and long generation time of the five-needle pines have historically enabled these trees to persist on the landscape for centuries, but without sufficient regeneration opportunities these same traits hinder the species' ability to adapt to novel stresses such as the non-native disease white pine blister rust (WPBR). Increasing the frequency of...

  1. Restoration planting options for limber pines impacted by mountain pine beetles and/or white pine blister rust in the Southern Rocky Mountains

    Treesearch

    Anne Marie Casper; William R. Jacobi; Anna W. Schoettle; Kelly S. Burns

    2010-01-01

    Limber Pine (Pinus flexilis) populations in the southern Rock Mountains are severely threatened by the combined impacts of mountain pine beetles and white pine blister rust. Limber pine’s critical role these high elevation ecosystems heightens the importance of mitigating impacts. To develop forest-scale planting methods six seedling planting trial sites were installed...

  2. Gene conservation of Pinus aristata: a collection with ecological context for management today and resources for tomorrow

    Treesearch

    A.W. Schoettle

    2017-01-01

    Pinus aristata, Rocky Mountain bristlecone pine, has a narrow geographic and elevational distribution and is threatened by rapid climate change, the introduced pathogen Cronartium ribicola that causes white pine blister rust (WPBR), and bark beetles. The core distribution of P. aristata is near and at treeline in central and southern Colorado and...

  3. Partnerships in the Pacific Northwest help save an endangered species, whitebark pine (Pinus albicaulis): an example of dynamic genetic conservation

    Treesearch

    Richard A. Sniezko; Michael P. Murray; Charlie V. Cartwright; Jenifer Beck; Dan Omdal; Amy Ramsey; Zolton Bair; George McFadden; Doug Manion; Katherine Fitch; Philip Wapato; Jennifer A. Gruhn; Michael Crawford; Regina M. Rochefort; John Syring; Jun-Jun Liu; Heather E. Lintz; Lorinda Bullington; Brianna A. McTeague; Angelia Kegley

    2017-01-01

    Whitebark pine (WBP, Pinus albicaulis) is a keystone species distributed widely at high elevations across western North America. It is in decline due to a combination of threats including infection from white pine blister rust (WPBR, caused by the non-native fungal pathogen Cronartium ribicola), mountain pine beetle (...

  4. Inheritance of the bark reaction resistance mechanism in Pinus monticola infected by Cronartium ribicola

    Treesearch

    Ray J. Hoff

    1986-01-01

    Necrotic reactions in branch or main stems of western white pine (Pinus monticola Dougl.) caused by infection by the blister rust fungus (Cronartium ribicola J. C. Fisch. ex Rabenh.) are a major mechanism of resistance. Overall, 26 percent of the seedlings eliminated the fungus via this defense system. Heritability based upon crossing family groups averaged 33 percent...

  5. Health, reproduction, and fuels in whitebark pine in the Frank Church River of No Return Wilderness Area in central Idaho (Project INT-F-05-02)

    Treesearch

    Lauren Fins; Ben Hoppus

    2013-01-01

    Whitebark pine (Pinus albicaulis Engelm.) is in serious decline across its range, largely due to the combined effects of Cronartium ribicola J. C. Fisch (an introduced fungal pathogen that causes white pine blister rust), replacement by late successional species, and widespread infestation of mountain pine beetle (...

  6. Inheritance and bulked segregant analysis of leaf rust and stem rust resistance genes in eight durum wheat genotypes

    USDA-ARS?s Scientific Manuscript database

    Leaf rust, caused by Puccinia triticina (Pt) and stem rust caused by Puccinia graminis f. sp. tritici (Pgt) are important diseases of durum wheat. This study determined the inheritance and genomic locations of leaf rust resistance (Lr) genes to Pt-race BBBQJ and stem rust resistance (Sr) genes to Pg...

  7. Blister rust in North America: What we have not learned in the past 100 years

    Treesearch

    Eugene P. Van Arsdel; Brian W. Geils

    2011-01-01

    Introduction of Cronartium ribicola (white pine blister rust) greatly motivated development of tree disease control and research in America. Although foresters and pathologists have learned much in the past 100 years, more remains to learn. The most important lesson is that fear of blister rust has reduced pine regeneration more than the disease itself. Based on six...

  8. Glyphosate Control of Orange and Brown Rusts in Glyphosate-Sensitive Sugarcane Cultivars

    USDA-ARS?s Scientific Manuscript database

    Technical Abstract: Brown and orange rust diseases cause substantial yield reductions on sugarcane (Saccharum spp.) in Florida and other regions where sugarcane is grown. Brown rust caused by Puccinia melanocephala Syd. & P. Syd has been present in Florida since 1978 and orange rust caused by Pucci...

  9. The proactive strategy for sustaining five-needle pine populations: An example of its implementation in the southern Rocky Mountains

    Treesearch

    A. W. Schoettle; B. A. Goodrich; J. G. Klutsch; K. S. Burns; S. Costello; R. A. Sniezko

    2011-01-01

    The imminent invasion of the non-native fungus, Cronartium ribicola J.C. Fisch., that causes white pine blister rust (WPBR) and the current mountain pine beetle (Dendroctonus ponderosae Hopkins, MPB) epidemic in northern Colorado limber pine forests will severely affect the forest regeneration cycle necessary for functioning ecosystems. The slow growth and maturity of...

  10. Effects of exotic species on Yellowstone's grizzly bears

    USGS Publications Warehouse

    Reinhart, Daniel P.; Haroldson, Mark A.; Mattson, D.J.; Gunther, Kerry A.

    2001-01-01

    Humans have affected grizzly bears (Ursus arctos horribilis) by direct mortality, competition for space and resources, and introduction of exotic species. Exotic organisms that have affected grizzly bears in the Greater Yellowstone Area include common dandelion (Taraxacum officinale), nonnative clovers (Trifolium spp.), domesticated livestock, bovine brucellosis (Brucella abortus), lake trout (Salvelinus namaycush), and white pine blister rust (Cronartium ribicola). Some bears consume substantial amounts of dandelion and clover. However, these exotic foods provide little digested energy compared to higher-quality bear foods. Domestic livestock are of greater energetic value, but use of this food by bears often leads to conflicts with humans and subsequent increases in bear mortality. Lake trout, blister rust, and brucellosis diminish grizzly bears foods. Lake trout prey on native cutthroat trout (Oncorhynchus clarkii) in Yellowstone Lake; white pine blister rust has the potential to destroy native whitebark pine (Pinus albicaulis) stands; and management response to bovine brucellosis, a disease found in the Yellowstone bison (Bison bison) and elk (Cervus elaphus), could reduce populations of these 2 species. Exotic species will likely cause more harm than good for Yellowstone grizzly bears. Managers have few options to mitigate or contain the impacts of exotics on Yellowstone's grizzly bears. Moreover, their potential negative impacts have only begun to unfold. Exotic species may lead to the loss of substantial highquality grizzly bear foods, including much of the bison, trout, and pine seeds that Yellowstone grizzly bears currently depend upon.

  11. Sugar Pine Seedlings not protected from blister rust by chemotherapeutants

    Treesearch

    George M. Harvey

    1975-01-01

    None of several types of chemotherapeutants applied before inoculation (antibiotics, metallic salts, systemic fungicides) prevented infection of sugar pine seedlings by white pine blister rust. DMSO (dimethyl sulfoxide) did not enhance the action of any material with which it was applied.

  12. Effects of an introduced pathogen and fire exclusion on the demography of sugar pine

    USGS Publications Warehouse

    van Mantgem, Phillip J.; Stephenson, Nathan L.; Keifer, MaryBeth; Keeley, Jon E.

    2004-01-01

    An introduced pathogen, white pine blister rust (Cronartium ribicola), has caused declines in five-needled pines throughout North America. Simultaneously, fire exclusion has resulted in dense stands in many forest types, which may create additional stress for these generally shade-intolerant pines. Fire exclusion also allows fuels to accumulate, and it is unclear how affected populations will respond to the reintroduction of fire. Although white pine blister rust and fire exclusion are widely recognized threats, long-term demographic data that document the effects of these stressors are rare. We present population trends from 2168 individuals over 5–15 years for an affected species, sugar pine (Pinus lambertiana), at several burned and unburned sites in the Sierra Nevada of California. Size-based matrix models indicate that most unburned populations have negative growth rates (λ range: 0.82–1.04). The growth rate of most populations was, however, indistinguishable from replacement levels (λ = 1.0), implying that, if populations are indeed declining, the progression of any such decline is slow, and longer observations are needed to clearly determine population trends. We found significant differences among population growth rates, primarily due to variation in recruitment rates. Deaths associated with blister rust and stress (i.e., resource competition) were common, suggesting significant roles for both blister rust and fire exclusion in determining population trajectories. Data from 15 prescribed fires showed that the immediate effect of burning was the death of many small trees, with the frequency of mortality returning to pre-fire levels within five years. In spite of a poor prognosis for sugar pine, our results suggest that we have time to apply and refine management strategies to protect this species.

  13. LEAF WHORL INOCULATION METHOD FOR SCREENING SUGARCANE RUST RESISTANCE

    USDA-ARS?s Scientific Manuscript database

    Technical Abstract: Sugarcane rust diseases, brown rust caused by Puccinia melanocephala, and orange rust caused by P. kuehnii, are agronomically important diseases in Florida. Cultivar resistance is the best means of controlling these diseases. Natural infection has been the primary means of asses...

  14. A sugar pine consensus map: Comparative mapping between the Pinus subgenus Pinus and the subgenus Strobus

    Treesearch

    Kathleen D. Jermstad; Andrew J. Eckert; Bohun B. Kinloch; Dean A. Davis; Deems C. Burton; Annette D. Mix; Jill L. Wegrzyn; David B. Neale

    2011-01-01

    We have constructed a consensus genetic linkage map for sugar pine using three mapping populations that segregate for resistance to white pine blister rust, a disease caused by the fungal pathogen Cronartium ribicola. The major gene of resistance, Cr1, was mapped in two of the populations and included in the consensus map, which contains 400 markers organized into 19...

  15. Genetic variability among the brown rust resistant and susceptible genotypes of sugarcane by RAPD technique

    USDA-ARS?s Scientific Manuscript database

    Brown leaf rust in sugarcane is caused by Puccinia melanocephala (Syd. & P. Syd.), which is major cause of cultivar withdrawal. We attempted to analyze the RAPD diversity of two discrete phenotypic classes i.e. rust resistant (R) and rust susceptible (S) of six commercially available sugarcane elite...

  16. Putting white pine in its place on the Hiawatha National Forest

    Treesearch

    Allen D. Saberniak

    1995-01-01

    White pine was once a very important part of the ecosysystem in the northern lake states. Turn of the century logging and wildfires removed white pine from many of the ecosystems of which it was an integral part. Early reforestation efforts were largely unsuccessful. The native white pine weevil and the exotic white pine blister rust made white pine establishment...

  17. Invasive pathogen threatens bird-pine mutualism: implications for sustaining a high-elevation ecosystem.

    PubMed

    McKinney, Shawn T; Fiedler, Carl E; Tomback, Diana F

    2009-04-01

    Human-caused disruptions to seed-dispersal mutualisms increase the extinction risk for both plant and animal species. Large-seeded plants can be particularly vulnerable due to highly specialized dispersal systems and no compensatory regeneration mechanisms. Whitebark pine (Pinus albicaulis), a keystone subalpine species, obligately depends upon the Clark's Nutcracker (Nucifraga columbiana) for dispersal of its large, wingless seeds. Clark's Nutcracker, a facultative mutualist with whitebark pine, is sensitive to rates of energy gain, and emigrates from subalpine forests during periods of cone shortages. The invasive fungal pathogen Cronartium ribicola, which causes white pine blister rust, reduces whitebark pine cone production by killing cone-bearing branches and trees. Mortality from blister rust reaches 90% or higher in some whitebark pine forests in the Northern Rocky Mountains, USA, and the rust now occurs nearly rangewide in whitebark pine. Our objectives were to identify the minimum level of cone production necessary to elicit seed dispersal by nutcrackers and to determine how cone production is influenced by forest structure and health. We quantified forest conditions and ecological interactions between nutcrackers and whitebark pine in three Rocky Mountain ecosystems that differ in levels of rust infection and mortality. Both the frequency of nutcracker occurrence and probability of seed dispersal were strongly related to annual whitebark pine cone production, which had a positive linear association with live whitebark pine basal area, and negative linear association with whitebark pine tree mortality and rust infection. From our data, we estimated that a threshold level of approximately 1000 cones/ha is needed for a high likelihood of seed dispersal by nutcrackers (probability > or = 0.7), and that this level of cone production can be met by forests with live whitebark pine basal area > 5.0 m2/ha. The risk of mutualism disruption is greatest in northern most Montana (USA), where three-year mean cone production and live basal area fell below predicted threshold levels. There, nutcracker occurrence, seed dispersal, and whitebark pine regeneration were the lowest of the three ecosystems. Managers can use these threshold values to differentiate between restoration sites requiring planting of rust-resistant seedlings and sites where nutcracker seed dispersal can be expected.

  18. New Rust Disease of Korean Willow (Salix koreensis) Caused by Melampsora yezoensis, Unrecorded Pathogen in Korea.

    PubMed

    Yun, Yeo Hong; Ahn, Geum Ran; Yoon, Seong Kwon; Kim, Hoo Hyun; Son, Seung Yeol; Kim, Seong Hwan

    2016-12-01

    During the growing season of 2015, leaf specimens with yellow rust spots were collected from Salix koreensis Andersson, known as Korean willow, in riverine areas in Cheonan, Korea. The fungus on S. koreensis was identified as the rust species, Melampsora yezoensis , based on the morphology of urediniospores observed by light and scanning electron microscopy, and the molecular properties of the internal transcribed spacer rDNA region. Pathogenicity tests confirmed that the urediniospores are the causal agent of the rust symptoms on the leaves and young stems of S. koreensis . Here, we report a new rust disease of S. koreensis caused by the rust fungus, M. yezoensis , a previously unrecorded rust pathogen in Korea.

  19. Expression of apoplast-targeted plant defensin MtDef4.2 confers resistance to leaf rust pathogen Puccinia triticina but does not affect mycorrhizal symbiosis in transgenic wheat

    USDA-ARS?s Scientific Manuscript database

    Rust diseases caused by Puccinia spp. pose a major threat to global wheat production. Puccinia triticina (Pt), an obligate basidiomycete biotroph, causes leaf rust disease which incurs yield losses of up to 50% in wheat. Historically, resistant wheat cultivars have been used to control leaf rust, bu...

  20. Indium and Zinc Alloys as Cadmium Brush Plating Replacements

    DTIC Science & Technology

    2011-05-10

    process development Salt Fog Corrosion Resistance 18 Coating Condition First Sign of White Rust First Sign of Red Rust Noticeable Propagation of...coupons] 31 1. Low temperature eutectic : • The Sn-In system eutectic is 244°F at ~48.3 weight % Sn • Cd-In-Sn system eutectic is ~199°F • Good for a

  1. New insights into the obligate biotrophic lifestyle of rust fungi through comparative genomics

    USDA-ARS?s Scientific Manuscript database

    Wheat production continues to be plagued by rust pathogens and with the recent race shifts there is an increased concern regarding world food security. Three distinct rust fungi caused disease in wheat: Puccinia graminis f. sp. tritici (Pgt), stem rust or black stem rust; P. striiformis f. sp. triti...

  2. Improve the quality and service life of water-based pavement marking paints on pavements with high-iron aggregates.

    DOT National Transportation Integrated Search

    2015-08-01

    White pavement paint marking on airport runways was being discolored by rust-like staining. Discoloration is a critical safety : problem because white paint indicates runways and yellow paint is used for taxiways and aircraft parking. When the white ...

  3. A small cysteine-rich protein from the Asian soybean rust fungus, Phakopsora pachyrhizi, suppresses plant immunity

    USDA-ARS?s Scientific Manuscript database

    The Asian soybean rust fungus, Phakopsora pachyrhizi, is an obligate pathogen capable of causing explosive disease epidemics that drastically reduce the yield of soybean (Glycine max). Currently, the molecular mechanisms by which P. pachyrhizi and other rust fungi cause disease are poorly understood...

  4. Introduction of orange rust caused by Puccinia kuehnii into the Louisiana sugarcane industry

    USDA-ARS?s Scientific Manuscript database

    The first observation of orange rust infecting sugarcane, caused by Puccinia kuehnii, in the Americas was in Florida in 2007. To monitor for the possible introduction of orange rust into Louisiana, visual surveys were initiated throughout the Louisiana sugarcane industry among plantings of cultivar...

  5. First report of Pantoea ananatis (Syn. Erwinia uredovora) being associated with peanut rust in Georgia

    USDA-ARS?s Scientific Manuscript database

    Peanut rust is caused by the fungus Puccinia arachidis. This disease, if not treated can cause severe damage and defoliation. While sequencing DNA of urediniospores of the rust fungus, BLAST analysis detected many sequences corresponding to the bacterial species Pantoea ananatis. This bacterium, ...

  6. An ecosystem-scale model for the spread of a host-specific forest pathogen in the Greater Yellowstone Ecosystem

    USGS Publications Warehouse

    Hatala, J.A.; Dietze, M.C.; Crabtree, R.L.; Kendall, Katherine C.; Six, D.; Moorcroft, P.R.

    2011-01-01

    The introduction of nonnative pathogens is altering the scale, magnitude, and persistence of forest disturbance regimes in the western United States. In the high-altitude whitebark pine (Pinus albicaulis) forests of the Greater Yellowstone Ecosystem (GYE), white pine blister rust (Cronartium ribicola) is an introduced fungal pathogen that is now the principal cause of tree mortality in many locations. Although blister rust eradication has failed in the past, there is nonetheless substantial interest in monitoring the disease and its rate of progression in order to predict the future impact of forest disturbances within this critical ecosystem.This study integrates data from five different field-monitoring campaigns from 1968 to 2008 to create a blister rust infection model for sites located throughout the GYE. Our model parameterizes the past rates of blister rust spread in order to project its future impact on high-altitude whitebark pine forests. Because the process of blister rust infection and mortality of individuals occurs over the time frame of many years, the model in this paper operates on a yearly time step and defines a series of whitebark pine infection classes: susceptible, slightly infected, moderately infected, and dead. In our analysis, we evaluate four different infection models that compare local vs. global density dependence on the dynamics of blister rust infection. We compare models in which blister rust infection is: (1) independent of the density of infected trees, (2) locally density-dependent, (3) locally density-dependent with a static global infection rate among all sites, and (4) both locally and globally density-dependent. Model evaluation through the predictive loss criterion for Bayesian analysis supports the model that is both locally and globally density-dependent. Using this best-fit model, we predicted the average residence times for the four stages of blister rust infection in our model, and we found that, on average, whitebark pine trees within the GYE remain susceptible for 6.7 years, take 10.9 years to transition from slightly infected to moderately infected, and take 9.4 years to transition from moderately infected to dead. Using our best-fit model, we project the future levels of blister rust infestation in the GYE at critical sites over the next 20 years.

  7. Comparative analysis highlights variable genome content of wheat rusts and divergence of the mating loci

    USDA-ARS?s Scientific Manuscript database

    Wheat is grown around the world and has been plagued by three rust fungi for centuries. Leaf rust, stripe rust, and stem rust each cause significant damage and can adapt quickly to overcome resistance that is present in wheat cultivars. Using advanced DNA sequencing technology, the genomes of leaf ...

  8. Recovery plan for Scots pine blister rust caused by Cronartium flaccidum (Alb. & Schwein.) G. Winter and Peridermium pini (Pers.) Lév. [syn. C. asclepiadeum (Willd.) Fr., Endocronartium pini (Pers.) Y. Hiratsuka

    Treesearch

    Brian W. Geils; Ned B. Klopfenstein; Mee-Sook Kim; Pauline Spaine; Bryce A. Richardson; Paul J. Zambino; Charles G. Shaw; James Walla; Russ Bulluck; Laura Redmond; Kent Smith

    2009-01-01

    The sexually reproducing form of Scots pine blister rust, C. flaccidum, completes its life cycle alternating between pines of the subgenus Pinus and seed-plants of various families. Scots pine blister rust is also caused by a form of the rust that spreads directly from pine to pine and is named, Peridermium pini...

  9. Southern Appalachian White Pine Plantations Site, volume, and yield

    Treesearch

    John P. Vimmerstedt

    1962-01-01

    In the early 1930's several publications focused attention on the desirable characteristics of eastern white pine (Pinus strobus L. ) growing in the Southern Appalachians. In 1932 Copea reported on the excellent growth of natural and planted stands and their relative freedom from blister rust and white pine weevil. After an extensive survey he...

  10. Novel rust resistance in wheat (Triticum aestivum L.)

    USDA-ARS?s Scientific Manuscript database

    The Puccinia fungi that cause wheat rust diseases are among the most globally destructive agricultural pathogens. The most effective and utilized defense against rust is genetic resistance. The vast majority of rust resistance is racespecific conferred by single genes rapidly overcome by the pathoge...

  11. Inheritance of resistance to orange rust in sugarcane

    USDA-ARS?s Scientific Manuscript database

    Orange rust, caused by Puccinia kuehnii, is an economically important disease in the Florida sugarcane industry. In this study, orange rust reactions of seedlings in progenies originating from 12 crosses between female and male parents with differing resistance to orange rust (three of each categor...

  12. Inheritance of resistance to orange rust in sugarcane

    USDA-ARS?s Scientific Manuscript database

    Orange rust, caused by Puccinia kuehnii, is an economically important disease in the Florida sugarcane industry. In this study, orange rust reactions of seedlings in progenies originating from 12 crosses between female and male parents with differing resistance to orange rust (three of each category...

  13. No free lunch: Observations on seed predation, cone collection, and controlled germination of whitebark pine from the Canadian Rockies

    Treesearch

    Adrian Leslie; Brendan Wilson

    2011-01-01

    Whitebark pine is a keystone species of high elevation forests in western North America that is experiencing rapid decline due to fire exclusion policies, mountain pine beetle, and the introduced pathogen, white pine blister rust. Restoration activities include collecting cones and growing seedlings from individuals that show mechanisms for resistance to blister rust...

  14. Regeneration of Rocky Mountain bristlecone pine (Pinus aristata) and limber pine (Pinus flexilis) three decades after stand-replacing fires

    Treesearch

    Jonathan D. Coop; Anna W. Schoettle

    2009-01-01

    Rocky Mountain bristlecone pine (Pinus aristata) and limber pine (Pinus flexilis) are important highelevation pines of the southern Rockies that are forecast to decline due to the recent spread of white pine blister rust (Cronartium ribicola) into this region. Proactive management strategies to promote the evolution of rust resistance and maintain ecosystem function...

  15. Genetic mapping of race-specific stem rust resistance in the synthetic hexaploid W7984 x Opata M85 mapping population

    USDA-ARS?s Scientific Manuscript database

    Stem rust (caused by Puccinia graminis f. sp. tritici) has historically caused severe yield losses of wheat (Triticum aestivum) worldwide and has been one of the most feared diseases of wheat and barley (Hordeum vulgare). Stem rust has been controlled successfully through the use of resistant varie...

  16. DIVERSITY OF PUCCINIA KUEHNII AND P. MELANOCEPHALA CAUSING RUST DISEASES ON BRAZILIAN SUGARCANE

    USDA-ARS?s Scientific Manuscript database

    Sugarcane industry in Brazil suffers yield loss due to brown rust (Puccinia melanocephala) since 1986 and orange rust (P. kuehnii) as recent as 2009. The main control measure for both diseases has been cultivar resistance. Nevertheless, recent onsets of orange rust on previously resistant cultivars ...

  17. Role of alternate hosts in epidemiology and pathogen variation of cereal rusts

    USDA-ARS?s Scientific Manuscript database

    Cereal rusts, caused by obligate and biotrophic fungi in the genus Puccinia of basidiomycete are an important group of diseases threatening the world food security. With the recent discovery of alternate hosts for the stripe rust fungus (Puccinia striiformis), all cereal rust fungi are now known ...

  18. White pine blister rust resistance in Pinus monticola and P. albicaulis in the Pacific Northwest U.S. – A tale of two species

    Treesearch

    Richard A. Sniezko; Angelia Kegley; Robert Danchok

    2012-01-01

    Western white pine (Pinus monticola Dougl. ex D. Don) and whitebark pine (P. albicaulis Engelm.) are white pine species with similar latitudinal and longitudinal geographic ranges in Oregon and Washington (figs. 1 and 2). Throughout these areas, whitebark pine generally occurs at higher elevations than western white pine. Both...

  19. Cleaning to favor western white pine - its effects upon composition, growth, and potential values

    Treesearch

    Raymond J. Boyd

    1959-01-01

    The management of western white pine (Pinus monticola) requires the production of a high proportion of valuable white pine crop trees in order to defray the costs of protection from blister rust. Current average selling prices of lumber give white pine about $50 per m.b.f. advantage over western larch (Larix occidentalis) and Douglas-fir (Pseudotsuga menziesii), the...

  20. Gene gain and loss during evolution of obligate parasitism in the white rust pathogen of Arabidopsis thaliana.

    PubMed

    Kemen, Eric; Gardiner, Anastasia; Schultz-Larsen, Torsten; Kemen, Ariane C; Balmuth, Alexi L; Robert-Seilaniantz, Alexandre; Bailey, Kate; Holub, Eric; Studholme, David J; Maclean, Dan; Jones, Jonathan D G

    2011-07-01

    Biotrophic eukaryotic plant pathogens require a living host for their growth and form an intimate haustorial interface with parasitized cells. Evolution to biotrophy occurred independently in fungal rusts and powdery mildews, and in oomycete white rusts and downy mildews. Biotroph evolution and molecular mechanisms of biotrophy are poorly understood. It has been proposed, but not shown, that obligate biotrophy results from (i) reduced selection for maintenance of biosynthetic pathways and (ii) gain of mechanisms to evade host recognition or suppress host defence. Here we use Illumina sequencing to define the genome, transcriptome, and gene models for the obligate biotroph oomycete and Arabidopsis parasite, Albugo laibachii. A. laibachii is a member of the Chromalveolata, which incorporates Heterokonts (containing the oomycetes), Apicomplexa (which includes human parasites like Plasmodium falciparum and Toxoplasma gondii), and four other taxa. From comparisons with other oomycete plant pathogens and other chromalveolates, we reveal independent loss of molybdenum-cofactor-requiring enzymes in downy mildews, white rusts, and the malaria parasite P. falciparum. Biotrophy also requires "effectors" to suppress host defence; we reveal RXLR and Crinkler effectors shared with other oomycetes, and also discover and verify a novel class of effectors, the "CHXCs", by showing effector delivery and effector functionality. Our findings suggest that evolution to progressively more intimate association between host and parasite results in reduced selection for retention of certain biosynthetic pathways, and particularly reduced selection for retention of molybdopterin-requiring biosynthetic pathways. These mechanisms are not only relevant to plant pathogenic oomycetes but also to human pathogens within the Chromalveolata.

  1. Gene Gain and Loss during Evolution of Obligate Parasitism in the White Rust Pathogen of Arabidopsis thaliana

    PubMed Central

    Kemen, Eric; Gardiner, Anastasia; Schultz-Larsen, Torsten; Kemen, Ariane C.; Balmuth, Alexi L.; Robert-Seilaniantz, Alexandre; Bailey, Kate; Holub, Eric; Studholme, David J.; MacLean, Dan; Jones, Jonathan D. G.

    2011-01-01

    Biotrophic eukaryotic plant pathogens require a living host for their growth and form an intimate haustorial interface with parasitized cells. Evolution to biotrophy occurred independently in fungal rusts and powdery mildews, and in oomycete white rusts and downy mildews. Biotroph evolution and molecular mechanisms of biotrophy are poorly understood. It has been proposed, but not shown, that obligate biotrophy results from (i) reduced selection for maintenance of biosynthetic pathways and (ii) gain of mechanisms to evade host recognition or suppress host defence. Here we use Illumina sequencing to define the genome, transcriptome, and gene models for the obligate biotroph oomycete and Arabidopsis parasite, Albugo laibachii. A. laibachii is a member of the Chromalveolata, which incorporates Heterokonts (containing the oomycetes), Apicomplexa (which includes human parasites like Plasmodium falciparum and Toxoplasma gondii), and four other taxa. From comparisons with other oomycete plant pathogens and other chromalveolates, we reveal independent loss of molybdenum-cofactor-requiring enzymes in downy mildews, white rusts, and the malaria parasite P. falciparum. Biotrophy also requires “effectors” to suppress host defence; we reveal RXLR and Crinkler effectors shared with other oomycetes, and also discover and verify a novel class of effectors, the “CHXCs”, by showing effector delivery and effector functionality. Our findings suggest that evolution to progressively more intimate association between host and parasite results in reduced selection for retention of certain biosynthetic pathways, and particularly reduced selection for retention of molybdopterin-requiring biosynthetic pathways. These mechanisms are not only relevant to plant pathogenic oomycetes but also to human pathogens within the Chromalveolata. PMID:21750662

  2. First report of the white pine blister rust fungus, Cronartium ribicola, infecting Ribes inerme in north-central Utah

    Treesearch

    D. R. Vogler; B. W. Geils; K. Coats

    2017-01-01

    Cronartium ribicola Fisch. has not been found infecting any of the five-needle white pines (Pinus subgenus Strobus) in Utah, despite being established on both white pine and Ribes hosts in the other 10 western states, defined as those west of the 102° meridian.

  3. Managing western white pine plantations for multiple resource objectives

    Treesearch

    Russell T. Graham; Jonalea R. Tonn; Theresa B. Jain

    1994-01-01

    Western white pine (Pinus monticola Dougl. ex D. Don) continues to be one of the most important coniferous tree species growing in Northern Rocky Mountain forests. Because large wildfires occurred early in the 1900s, many plantations of western white pine with varying levels of resistance to blister rust (Cronartium ribicola Fisch.) were established. Thinning these...

  4. Markers linked to wheat stem rust resistance gene Sr11 effective to Puccinia graminis f. sp. tritici race TKTTF

    USDA-ARS?s Scientific Manuscript database

    Wheat stem rust caused by Puccinia graminis f. sp. tritici can cause severe yield losses on susceptible wheat varieties and cultivars. Although stem rust can be controlled by the use of genetic resistance, population dynamics of P. graminis f. sp. tritici can frequently lead to defeat of wheat stem ...

  5. Using hierarchical clustering of secreted protein families to classify and rank candidate effectors of rust fungi

    USDA-ARS?s Scientific Manuscript database

    Rust fungi are obligate biotrophic pathogens causing considerable damage on crop plants. P. graminis f. sp. tritici, the causal agent of wheat stem rust, and M. larici-populina, the poplar rust pathogen, have strong deleterious impact on wheat and poplar wood production, respectively. The recently r...

  6. Wheat Rusts in the United States in 2007

    USDA-ARS?s Scientific Manuscript database

    In 2007 90% of wheat stem rust races were QFC and 10% were RCRS Both races are relatively avirulent to wheat cultiars grown in the U.S. Wheat stem rust occurred in scattered locations on research plots of susceptible wheat cultivars in 2007, and did not cause yield loss. Wheat leaf rust was widespr...

  7. A genome-wide association study of field and seedling response to stem rust pathogen races reveals combinations of race-specific resistance genes in North American spring wheat

    USDA-ARS?s Scientific Manuscript database

    Stem rust of wheat caused by the fungal pathogen Puccinia graminis f. sp. tritici historically caused major yield losses of wheat worldwide. To understand the genetic basis of stem rust resistance in conventional North American spring wheat, genome-wide association analysis (GWAS) was conducted on a...

  8. Spread, genetic variation and methods for the detection of Puccinia kuehnii, the causal agent of sugarcane orange rust.

    USDA-ARS?s Scientific Manuscript database

    Sugarcane is susceptible to infection by two rust pathogens, Puccinia melanocephala and P. kuehnii, causing brown and orange rust, respectively. Orange rust of sugarcane was first reported in the Western hemisphere in Florida in July 2007. The pathogen was found to be distributed widely throughout t...

  9. Landscape biology of western white pine: implications for conservation of a widely-distributed five-needle pine at its southern range limit

    Treesearch

    Patricia Maloney; Andrew Eckert; Detlev Vogler; Camille Jensen; Annette Delfino Mix; David Neale

    2016-01-01

    Throughout much of the range of western white pine, Pinus monticola Dougl., timber harvesting, fire exclusion and the presence of Cronartium ribicola J. C. Fisch., the white pine blister rust (WPBR) pathogen, have led to negative population and genetic consequences. To address these interactions, we examined population dynamics...

  10. An investigation into western white pine partial resistance against the rust pathogen Cronartium ribicola using in vitro screening method

    Treesearch

    D. Noshad; J.N. King

    2012-01-01

    Cronartium ribicola is one of the most destructive forest pathogens of North American white pines. The pathogen infects pine trees through their stomata, colonizes the stem, and produces stem cankers the following growing season. In this research, we collected samples from different white pine populations across Canada and the United States to...

  11. Strategies, tools, and challenges for sustaining and restoring high elevation five-needle white pine forests in western North America

    Treesearch

    Robert E. Keane; Anna W. Schoettle

    2011-01-01

    Many ecologically important, five-needle white pine forests that historically dominated the high elevation landscapes of western North America are now being heavily impacted by mountain pine beetle (Dendroctonus spp.) outbreaks, the exotic disease white pine blister rust (WPBR), and altered high elevation fire regimes. Management intervention using specially designed...

  12. Inheritance and Bulked Segregant Analysis of Leaf Rust and Stem Rust Resistance in Durum Wheat Genotypes.

    PubMed

    Aoun, Meriem; Kolmer, James A; Rouse, Matthew N; Chao, Shiaoman; Bulbula, Worku Denbel; Elias, Elias M; Acevedo, Maricelis

    2017-12-01

    Leaf rust, caused by Puccinia triticina, and stem rust, caused by P. graminis f. sp. tritici, are important diseases of durum wheat. This study determined the inheritance and genomic locations of leaf rust resistance (Lr) genes to P. triticina race BBBQJ and stem rust resistance (Sr) genes to P. graminis f. sp. tritici race TTKSK in durum accessions. Eight leaf-rust-resistant genotypes were used to develop biparental populations. Accessions PI 192051 and PI 534304 were also resistant to P. graminis f. sp. tritici race TTKSK. The resulting progenies were phenotyped for leaf rust and stem rust response at seedling stage. The Lr and Sr genes were mapped in five populations using single-nucleotide polymorphisms and bulked segregant analysis. Five leaf-rust-resistant genotypes carried single dominant Lr genes whereas, in the remaining accessions, there was deviation from the expected segregation ratio of a single dominant Lr gene. Seven genotypes carried Lr genes different from those previously characterized in durum. The single dominant Lr genes in PI 209274, PI 244061, PI387263, and PI 313096 were mapped to chromosome arms 6BS, 2BS, 6BL, and 6BS, respectively. The Sr gene in PI 534304 mapped to 6AL and is most likely Sr13, while the Sr gene in PI 192051 could be uncharacterized in durum.

  13. Restoring of white pine in Minnesota, Wisconsin, and Michigan

    Treesearch

    Michael E. Ostry

    2000-01-01

    White pine blister rust (Cronartium ribicola J. C. Fisch) (WPBR) was discovered on Ribes L. in New York in 1906, although it was accidentially introduced from Europe on pine (Pinus L.) seedlings. The spread of this destructive fungus has changed the focus in North America. After decades of reduced planting...

  14. Sporulation capacity and longevity of Puccinia horiana teliospores in infected chrysanthemum leaves

    USDA-ARS?s Scientific Manuscript database

    PUCCINIA HORIANA is a quarantine-significant fungal pathogen and causal agent of Chrysanthemum white rust, first discovered in the U.S. in 1977. The disease was eradicated and for many years successfully controlled by fungicides and strict regulatory measures. However, recently Chrysanthemum white r...

  15. Genome-wide association study for crown rust (Puccinia coronata f. sp. avenae) and powdery mildew (Blumeria graminis f. sp. avenae) resistance in an oat (Avena sativa) collection of commercial varieties and landraces.

    PubMed

    Montilla-Bascón, Gracia; Rispail, Nicolas; Sánchez-Martín, Javier; Rubiales, Diego; Mur, Luis A J; Langdon, Tim; Howarth, Catherine J; Prats, Elena

    2015-01-01

    Diseases caused by crown rust (Puccinia coronata f. sp. avenae) and powdery mildew (Blumeria graminis f. sp. avenae) are among the most important constraints for the oat crop. Breeding for resistance is one of the most effective, economical, and environmentally friendly means to control these diseases. The purpose of this work was to identify elite alleles for rust and powdery mildew resistance in oat by association mapping to aid selection of resistant plants. To this aim, 177 oat accessions including white and red oat cultivars and landraces were evaluated for disease resistance and further genotyped with 31 simple sequence repeat and 15,000 Diversity Arrays Technology (DArT) markers to reveal association with disease resistance traits. After data curation, 1712 polymorphic markers were considered for association analysis. Principal component analysis and a Bayesian clustering approach were applied to infer population structure. Five different general and mixed linear models accounting for population structure and/or kinship corrections and two different statistical tests were carried out to reduce false positive. Five markers, two of them highly significant in all models tested were associated with rust resistance. No strong association between any marker and powdery mildew resistance at the seedling stage was identified. However, one DArT sequence, oPt-5014, was strongly associated with powdery mildew resistance in adult plants. Overall, the markers showing the strongest association in this study provide ideal candidates for further studies and future inclusion in strategies of marker-assisted selection.

  16. The revolt of the Rust Belt: place and politics in the age of anger.

    PubMed

    McQuarrie, Michael

    2017-11-01

    This paper argues that the election of Donald Trump is the product of a confluence of historical factors rather than the distinctive appeal of the victor himself. By paying particular attention to the geography of unusual voting behaviour the analytical question comes into view: why did so much uncharacteristic voting occur in the Rust Belt states of the upper Midwest? It is impossible to answer this question adequately using conventional categorical attributes. The usual hypotheses of 'economic anxiety' and white revanchism are unable to account for sudden shifts in the voting behaviour of both white and black voters in post-industrial territories. Instead, it is necessary to turn to the history of the region and the institutional apparatus that connected voters there to the federal government and the Democratic Party. From this perspective we can see that the active dismantling of the Fordist social order set the region on a divergent path from the rest of the country. But this path had no political outlet due to the reorientation of the Democratic Party around a new class and geographic base. Due to this, the party pursued policies that would magnify the region's difficulties rather than alleviate its circumstances. Moreover, the elaborate institutional ties that connected the region's voters to the Democratic Party and the federal government meant that the political implications of regional decline would be muted. However, as these institutions frayed, Rust Belt voters were made available to candidates that challenged the policy consensus that had done so much damage to the region. The election was decided by a Rust Belt revolt that unified black and white working-class voters against Hillary Clinton and the Democratic Party. © London School of Economics and Political Science 2017.

  17. Assessment of imperfect detection of blister rust in whitebark pine within the Greater Yellowstone Ecosystem

    USGS Publications Warehouse

    Wright, Wilson J.; Irvine, Kathryn M.

    2017-01-01

    We examined data on white pine blister rust (blister rust) collected during the monitoring of whitebark pine trees in the Greater Yellowstone Ecosystem (from 2004-2015). Summaries of repeat observations performed by multiple independent observers are reviewed and discussed. These summaries show variability among observers and the potential for errors being made in blister rust status. Based on this assessment, we utilized occupancy models to analyze blister rust prevalence while explicitly accounting for imperfect detection. Available covariates were used to model both the probability of a tree being infected with blister rust and the probability of an observer detecting the infection. The fitted model provided strong evidence that the probability of blister rust infection increases as tree diameter increases and decreases as site elevation increases. Most importantly, we found evidence of heterogeneity in detection probabilities related to tree size and average slope of a transect. These results suggested that detecting the presence of blister rust was more difficult in larger trees. Also, there was evidence that blister rust was easier to detect on transects located on steeper slopes. Our model accounted for potential impacts of observer experience on blister rust detection probabilities and also showed moderate variability among the different observers in their ability to detect blister rust. Based on these model results, we suggest that multiple observer sampling continue in future field seasons in order to allow blister rust prevalence estimates to be corrected for imperfect detection. We suggest that the multiple observer effort be spread out across many transects (instead of concentrated at a few each field season) while retaining the overall proportion of trees with multiple observers around 5-20%. Estimates of prevalence are confounded with detection unless it is explicitly accounted for in an analysis and we demonstrate how an occupancy model can be used to do account for this source of observation error.

  18. La Roya naranja de la caña de azúcar, una enfermedad emergente: su impacto y comparación con la roya marrón English Translation: Orange rust of sugarcane, an emerging disease: its impact and comparison to brown rust.

    USDA-ARS?s Scientific Manuscript database

    Sugarcane orange rust, caused by Puccinia kuehnii, was first detected in Florida in 2007, the first for Western Hemisphere. Subsequently, it has spread to the majority of sugarcane producing countries in the hemisphere. Orange rust is distinguished from brown rust its pustule size which is slightl...

  19. Proteome analysis of the Albugo candida–Brassica juncea pathosystem reveals that the timing of the expression of defence-related genes is a crucial determinant of pathogenesis

    PubMed Central

    Kaur, Parwinder; Jost, Ricarda; Sivasithamparam, Krishnapillai; Barbetti, Martin John

    2011-01-01

    White rust, caused by Albugo candida, is a serious pathogen of Brassica juncea (Indian mustard) and poses a potential hazard to the presently developing canola-quality B. juncea industry worldwide. A comparative proteomic study was undertaken to explore the molecular mechanisms that underlie the defence responses of Brassica juncea to white rust disease caused by the biotrophic oomycete Albugo candida. Nineteen proteins showed reproducible differences in abundance between a susceptible (RH 819) and a resistant variety (CBJ 001) of B. juncea following inoculation with A. candida. The identities of all 19 proteins were successfully established through Q-TOF MS/MS. Five of these proteins were only detected in the resistant variety and showed significant differences in their abundance at various times following pathogen inoculation in comparison to mock-inoculated plants. Among these was a thaumatin-like protein (PR-5), a protein not previously associated with the resistance of B. juncea towards A. candida. One protein, peptidyl-prolyl cis/trans isomerase (PPIase) isoform CYP20-3, was only detected in the susceptible variety and increased in abundance in response to the pathogen. PPIases have recently been discovered to play an important role in pathogenesis by suppressing the host cell's immune response. For a subset of seven proteins examined in more detail, an increase in transcript abundance always preceded their induction at the proteome level. These findings are discussed within the context of the A. candida–Brassica juncea pathosystem, especially in relation to host resistance to this pathogen. PMID:21193577

  20. Breakdown of major gene resistance to white pine blister rust in sugar pine at Mountain Home Demonstration State Forest: what are the implications?

    Treesearch

    Jr. Bohun B. Kinloch

    1996-01-01

    A virulent race of blister rust capable of neutralizing major gene resistance (MGR) in sugar pine made its first appearance nearly two decades ago at a test plantation of resistant sugar pines near Happy Camp, in northern California. Until this year (1996), it had not been found outside the very close neighborhood of this site. Its discovery last summer at Mountain...

  1. Sex Pheromone of Conophthorus ponderosae (Coleoptera: Scolytidae) in a Coastal Stand of Western White Pine (Pinaceae)

    Treesearch

    Daniel R. Miller; Harold D. Pierce; Peter de Groot; Nicole Jeans-Williams; Robb Bennett; John H. Borden

    2000-01-01

    An isolated stand of western white pine, Pinus monticola Dougl. ex D. Don, on Texada Island (49°40'N, 124°10'W), British Columbia, is extremely valuable as a seed-production area for progeny resistant to white pine blister rust, Cronartium ribicola J.C. Fisch. (Cronartiaceae). During the past 5 years, cone beetles, ...

  2. Duplications and losses in gene families of rust pathogens highlight putative effectors

    Treesearch

    Amanda L. Pendleton; Katherine E. Smith; Nicolas Feau; Francis M. Martin; Igor V. Grigoriev; Richard Hamelin; C.Dana Nelson; J.Gordon Burleigh; John M. Davis

    2014-01-01

    Rust fungi are a group of fungal pathogens that cause some of the world’s most destructive diseases of trees and crops . A shared characteristic among rust fungi is obligate biotrophy, the inability to complete a lifecycle without a host. This dependence on a host species likely affects patterns of gene expansion, contraction, and innovation within rust pathogen...

  3. Wheat rusts in the United States in 2015

    USDA-ARS?s Scientific Manuscript database

    In 2015 wheat stripe rust caused by Puccinia striiformis f. sp. graminis was widespread throughout the United States. Cool temperatures and abundant rainfall in the southern Great Plains allowed stripe rust to become widely established and spread throughout the Great Plains and eastern United States...

  4. Bulked fusiform rust inocula and Fr gene interactions in loblolly pine

    Treesearch

    Fikret Isik; Henry Amerson; Saul Garcia; Ross Whetten; Steve. McKeand

    2012-01-01

    Fusiform rust disease in loblolly (Pinus taeda L.) and slash (Pinus elliottii Engelm. var elliottii) pine plantations in the southern United States causes multi-million dollar annual losses. The disease is endemic to the region. The fusiform rust fungus (Cronartium quercuum sp.

  5. Wheat rusts in the United States in 2016

    USDA-ARS?s Scientific Manuscript database

    In 2016, wheat stripe rust caused by Puccinia striiformis f. sp. graminis was widespread throughout the United States. Cool temperatures and abundant rainfall in the southern Great Plains allowed stripe rust to become widely established and spread throughout the Great Plains and eastern United State...

  6. Glyphosate inhibits rust diseases in glyphosate-resistant wheat and soybean.

    PubMed

    Feng, Paul C C; Baley, G James; Clinton, William P; Bunkers, Greg J; Alibhai, Murtaza F; Paulitz, Timothy C; Kidwell, Kimberlee K

    2005-11-29

    Glyphosate is a broad-spectrum herbicide used for the control of weeds in glyphosate-resistant crops. Glyphosate inhibits 5-enolpyruvyl shikimate 3-phosphate synthase, a key enzyme in the synthesis of aromatic amino acids in plants, fungi, and bacteria. Studies with glyphosate-resistant wheat have shown that glyphosate provided both preventive and curative activities against Puccinia striiformis f. sp. tritici and Puccinia triticina, which cause stripe and leaf rusts, respectively, in wheat. Growth-chamber studies demonstrated wheat rust control at multiple plant growth stages with a glyphosate spray dose typically recommended for weed control. Rust control was absent in formulation controls without glyphosate, dependent on systemic glyphosate concentrations in leaf tissues, and not mediated through induction of four common systemic acquired resistance genes. A field test with endemic stripe rust inoculum confirmed the activities of glyphosate pre- and postinfestation. Preliminary greenhouse studies also demonstrated that application of glyphosate in glyphosate-resistant soybeans suppressed Asian soybean rust, caused by Phakopsora pachyrhizi.

  7. Fungal pathogen (mis-) identifications: a case study with DNA barcodes on Melampsora rusts of aspen and white poplar.

    PubMed

    Feau, Nicolas; Vialle, Agathe; Allaire, Mathieu; Tanguay, Philippe; Joly, David L; Frey, Pascal; Callan, Brenda E; Hamelin, Richard C

    2009-01-01

    Wide variation and overlap in morphological characters have led to confusion in species identification within the fungal rust genus Melampsora. The Melampsora species with uredinial-telial stages on white poplar and aspens are especially prone to misidentification. This group includes the Melampsora populnea species complex and the highly destructive pine twisting rust, Melampsora pinitorqua, which alternates between hosts in Populus section Populus and Pinus. Our objective was to compare morphologically based identification to genetic material extracted from Melampsora species pathogenic to aspen and white poplar. We compared morphometric traits and DNA barcodes obtained from internal transcribed spacer (ITS), large ribosomal RNA subunit (28S), and mitochondrial cytochrome oxidase 1 (CO1) sequences to delimit within this taxonomically difficult group. Eight different Melampsora species were initially defined based on host specificity and morphometric data. DNA barcodes were then overlaid on these initial species definitions. The DNA barcodes, specifically those defined on ITS and 28S sequences, provided a highly accurate means of identifying and resolving Melampsora taxa. We highlighted species misidentification in specimens from Canadian herbaria related to either Melampsora medusae f. sp. tremuloidae or Melampsora aecidioides. Finally, we evidenced that the north-American species found on Populus alba, M. aecidioides is closely related but distinct from the four species of the M. populnea complex (Melampsora larici-tremulae, Melampsora magnusiana, Melampsora pinitorqua, and Melampsora rostrupii) found in Eurasia.

  8. Putative rust fungal effector proteins in infected bean and soybean leaves

    USDA-ARS?s Scientific Manuscript database

    The plant pathogenic fungi Uromyces appendiculatus and Phakopsora pachyrhizi cause debilitating rust diseases on common bean and soybean. These rust fungi secrete effector proteins that allow them to infect plants, but the effector repertoire for U. appendiculatus and P. pachyrhizi is not fully def...

  9. Wheat rusts in the United States in 2014

    USDA-ARS?s Scientific Manuscript database

    Wheat stem rust caused by Puccinia graminis f. sp. tritici was not widespread or severe in the U.S. in 2014. It was only reported in nursery locations this season in Texas, Louisiana, Arkansas, Nebraska, Kansas, South Dakota, Minnesota and Wisconsin. Wheat stem rust was first reported on April 7 at ...

  10. Utilization of a major brown rust resistance gene in sugarcane breeding

    USDA-ARS?s Scientific Manuscript database

    Brown rust, caused by Puccinia melanocephala has had devastating effects on sugarcane (Saccharum spp.) breeding programs and on commercial production. The discovery of Bru1, a major gene conferring resistance to brown rust represented a substantial breakthrough and markers for the detection of Bru1 ...

  11. Determining yield loss caused by brown rust in production fields of sugarcane

    USDA-ARS?s Scientific Manuscript database

    Infections of Puccinia melanocephala, the causal agent of brown rust, appear on Louisiana sugarcane in the spring. Disease expression is usually limited to 2 to 3 months until temperatures exceed those favorable for spore production. The affected sugarcane is harvested 4 to 6 months after rust sympt...

  12. Detection, breeding, and selection of durable resistance to brown rust in sugarcane

    USDA-ARS?s Scientific Manuscript database

    Brown rust, caused by Puccinia melanocephala, is an important disease of sugarcane in Louisiana. The adaptability of the pathogen has repeatedly resulted in resistant cultivars becoming susceptible once they are widely grown. The frequency of the brown rust resistance gene Bru1 was low in the breedi...

  13. Effect of orange rust on sugarcane breeding program at canal Point

    USDA-ARS?s Scientific Manuscript database

    Orange rust of sugarcane (Saccharum spp. hybrids), caused by Puccinia kuehnii (W. Krüger) E.J. Butler, appeared in the Western Hemisphere ten years ago. Orange rust substantially reduces yields in susceptible sugarcane genotypes. Majority of the commercial cultivars were susceptible at the time of o...

  14. Disruption of Rpp1-mediated soybean rust resistance by virus-induced gene silencing

    USDA-ARS?s Scientific Manuscript database

    Soybean rust is a fungus that causes disease on soybeans. The discovery of soybean genes and proteins that are important for disease resistance to soybean rust may help improve soybean cultivars through breeding or transgenic technology. Proteins previously discovered in the cell nucleus of soybea...

  15. Evaluation of Pakistan wheat germplasms for stripe rust resistance using molecular markers

    USDA-ARS?s Scientific Manuscript database

    Wheat production in Pakistan is seriously constrained due to rust diseases. Stripe (yellow) rust, caused by Puccinia striiformis f. sp. tritici is one of these diseases that can limit yields in the area. Thus developing and cultivating genetically diverse and resistant varieties is the only sustaina...

  16. A mutagenesis-derived broad-spectrum disease resistance locus in wheat

    USDA-ARS?s Scientific Manuscript database

    Wheat leaf rust, stem rust, stripe rust, and powdery mildew caused by the fungal pathogens Puccinia triticina, P. graminis f. sp. tritici, P. striiformis f. sp. tritici, and Blumeria graminis f. sp. tritici, respectively, are destructive diseases of wheat worldwide. The most effective and widely uti...

  17. First report of Phakopsora pachyrhizi causing rust on soybean in Ethiopia

    USDA-ARS?s Scientific Manuscript database

    Soybean rust, caused by the fungal pathogen P. pachyrhizi, has been reported in 10 African countries since the first report in Uganda in 1996. In 2016, a severe epidemic caused “clouds” of urediniospores to be observed when walking through fields in mid-October 2016 in Jimma Ethiopia. In the first ...

  18. Efficacy of esfenvalerate for control of insects harmful to seed production in disease-resistant western white pines.

    Treesearch

    N.G. Rappaport; M.I. Haverty; P.J. Shea; R.E. Sandquist

    1994-01-01

    We tested the pyrethroid insecticide esfenvalerate in single, double, and triple applications for control of insects affecting seed production of blister rust-resistant western white pine, Pinus monticola Douglas. All treatments increased the proportion of normal seed produced and reduced the proportion of seed damaged by the western conifer seed...

  19. Frequency of hypersensitive-like reaction and stem infections in a large full-sib family of Pinus monticola

    Treesearch

    Robert S. Danchok; R.A. Sniezko; S. Long; A. Kegley; D. Savin; J.B. Mayo; J.J. Liu; J. Hill

    2012-01-01

    Western white pine (WWP) (Pinus monticola Douglas ex D. Don) is a long-lived forest tree species with a large native range in western North America. The tree species is highly susceptible to the non-native fungal pathogen, Cronartium ribicola, the causative agent of white pine blister rust (WPBR)....

  20. Molecular dissection of white pine genetic resistance to Cronartium ribicola

    Treesearch

    Jun-Jun Liu; Richard Sniezko

    2011-01-01

    Pinus monticola (Dougl. ex D. Don.) maintains a complex defence system that detects white pine blister rust pathogen (Cronartium ribicola J.C.Fisch.) and activates resistance responses. A thorough understanding of how it functions at the molecular level would provide us new strategies for creating forest trees with durable disease resistance. Our research focuses on...

  1. Molecular Characterization of wheat stem rust races in Kenya

    USDA-ARS?s Scientific Manuscript database

    Stem or black rust caused by Puccinia graminis f. sp. tritici (Pgt) Erikss. & Henning causes severe losses to wheat (Triticum aestivum L.), historically threatening global wheat production. Characterizing prevalent isolates of Pgt would enhance the knowledge of population dynamics and evolution of t...

  2. Multiple genotypes within aecial clusters in Puccinia graminis and Puccinia coronata: improved understanding of the biology of cereal rust fungi.

    PubMed

    Berlin, Anna; Samils, Berit; Andersson, Björn

    2017-01-01

    Cereal rust fungi ( Puccinia spp.) are among the most economically important plant pathogens. These fungi have a complex life cycle, including five spore stages and two hosts. They infect one grass host on which they reproduce clonally and cause the cereal rust diseases, while the alternate host is required for sexual reproduction. Although previous studies clearly demonstrate the importance of the alternate host in creating genetic diversity in cereal rust fungi, little is known about the amount of novel genotypes created in each successful completion of a sexual reproduction event. In this study, single sequence repeat markers were used to study the genotypic diversity within aecial clusters by genotyping individual aecial cups. Two common cereal rusts, Puccinia graminis causing stem rust and Puccinia coronata the causal agent of crown rust were investigated. We showed that under natural conditions, a single aecial cluster usually include several genotypes, either because a single pycnial cluster is fertilized by several different pycniospores, or because aecia within the cluster are derived from more than one fertilized adjoining pycnial cluster, or a combination of both. Our results imply that although sexual events in cereal rust fungi in most regions of the world are relatively rare, the events that occur may still significantly contribute to the genetic variation within the pathogen populations.

  3. Novel sources of leaf rust resistance in winter wheat

    USDA-ARS?s Scientific Manuscript database

    Leaf rust is one of the most widespread diseases of wheat, causing significant yield losses. More than 70 leaf rust resistance genes have been reported, but most of them have lost their effectiveness in the southern Great Plains of the USA. Thus continuous search for new sources of resistance is e...

  4. Screening for sugarcane brown rust in first clonal stage of the Canal Point sugarcane breeding program

    USDA-ARS?s Scientific Manuscript database

    Sugarcane (Saccharum spp.) brown rust (caused by Puccinia melanocephala H. & P. Sydow) was first reported in the United States in 1978 and is still one of great challenges for sugarcane production. A better understanding of sugarcane genotypic variation in response to brown rust will help optimize b...

  5. Registration of three soybean germplasm lines resistant to Phakopsora pachyrhizi (soybean rust)

    USDA-ARS?s Scientific Manuscript database

    Soybean rust, caused by Phakopsora pachyrhizi Sydow, is one of the most important foliar diseases of soybean [Glycine max (L.)Merr.]. Development of rust resistant lines is one objective of many soybean breeding programs. Three soybean germplasm lines esignated as TGx 1987-76F (Reg. No. xxx, PI 6577...

  6. Decline in Values of Slash Pine Stands Infected with Fusiform Rust

    Treesearch

    F.E. Bridgwater; W.D. Smith

    2002-01-01

    Losses in product values due tofusiform rust, caused by Cronartium quercuum (Berk.) Miyabe ex Shirai f. sp. fusiforme, were estimated from four, 2.5-yr-old slash pine, Pinus elliotii Engelm., plantations planted in southern Mississippi over a range of sites with different growth potential and expected rust infection levels. The...

  7. Mapping genes for resistance to stripe rust in spring wheat landrace PI 480035

    USDA-ARS?s Scientific Manuscript database

    Stripe rust caused by Puccinia striiformis Westend. f. sp. tritici Erikks. is an economically important disease of wheat (Triticum aestivum L.). Hexaploid spring wheat landrace PI 480035 was highly resistant to stripe rust in the field in Washington during 2011 and 2012. The objective of this resear...

  8. Genomic dissection of nonhost resistance to wheat stem rust in Brachypodium distachyon

    USDA-ARS?s Scientific Manuscript database

    Wheat stem rust caused by the fungus Puccinia graminis f.sp. tritici (Pgt) is a devastating disease that has largely been controlled for decades by the deployment of resistance genes. However, new races of this pathogen have emerged that overcome many important wheat stem rust resistance genes used ...

  9. A new rust disease on wild coffee (Psychotria nervosa) caused by Puccinia mysuruensis sp. nov

    USDA-ARS?s Scientific Manuscript database

    Psychotria nervosa, commonly called wild coffee (Rubiaceae) is an important ethno-medicinal plant in India. In 2010 a new rust disease of P. nervosa was observed in three regions of Mysore District, Karnataka (India) with disease incidence ranging from 58% to 63%. Typical symptoms of rust disease we...

  10. Comparisons of visual rust assessments and DNA levels of Phakopsora pachyrhizi in soybean genotypes varying in rust resistance

    USDA-ARS?s Scientific Manuscript database

    Soybean resistance to Phakopsora pachyrhizi, the cause of soybean rust, has been characterized by the following three infection types (i) immune response (IM; complete resistance) with no visible lesions, (ii) resistant reaction with reddish brown (RB) lesions (incomplete resistance), and (iii) susc...

  11. Genome-Wide Association Mapping for Resistance to Leaf and Stripe Rust in Winter-Habit Hexaploid Wheat Landraces

    PubMed Central

    Kertho, Albert; Mamidi, Sujan; Bonman, J. Michael; McClean, Phillip E.; Acevedo, Maricelis

    2015-01-01

    Leaf rust, caused by Puccinia triticina (Pt), and stripe rust, caused by P. striiformis f. sp. tritici (Pst), are destructive foliar diseases of wheat worldwide. Breeding for disease resistance is the preferred strategy of managing both diseases. The continued emergence of new races of Pt and Pst requires a constant search for new sources of resistance. Here we report a genome-wide association analysis of 567 winter wheat (Triticum aestivum) landrace accessions using the Infinium iSelect 9K wheat SNP array to identify loci associated with seedling resistance to five races of Pt (MDCL, MFPS, THBL, TDBG, and TBDJ) and one race of Pst (PSTv-37) frequently found in the Northern Great Plains of the United States. Mixed linear models identified 65 and eight significant markers associated with leaf rust and stripe rust, respectively. Further, we identified 31 and three QTL associated with resistance to Pt and Pst, respectively. Eleven QTL, identified on chromosomes 3A, 4A, 5A, and 6D, are previously unknown for leaf rust resistance in T. aestivum. PMID:26076040

  12. Colonization history, host distribution, anthropogenic influence and landscape features shape populations of white pine blister rust, an invasive alien tree pathogen.

    PubMed

    Brar, Simren; Tsui, Clement K M; Dhillon, Braham; Bergeron, Marie-Josée; Joly, David L; Zambino, P J; El-Kassaby, Yousry A; Hamelin, Richard C

    2015-01-01

    White pine blister rust is caused by the fungal pathogen Cronartium ribicola J.C. Fisch (Basidiomycota, Pucciniales). This invasive alien pathogen was introduced into North America at the beginning of the 20th century on pine seedlings imported from Europe and has caused serious economic and ecological impacts. In this study, we applied a population and landscape genetics approach to understand the patterns of introduction and colonization as well as population structure and migration of C. ribicola. We characterized 1,292 samples of C. ribicola from 66 geographic locations in North America using single nucleotide polymorphisms (SNPs) and evaluated the effect of landscape features, host distribution, and colonization history on the structure of these pathogen populations. We identified eastern and western genetic populations in North America that are strongly differentiated. Genetic diversity is two to five times higher in eastern populations than in western ones, which can be explained by the repeated accidental introductions of the pathogen into northeastern North America compared with a single documented introduction into western North America. These distinct genetic populations are maintained by a barrier to gene flow that corresponds to a region where host connectivity is interrupted. Furthermore, additional cryptic spatial differentiation was identified in western populations. This differentiation corresponds to landscape features, such as mountain ranges, and also to host connectivity. We also detected genetic differentiation between the pathogen populations in natural stands and plantations, an indication that anthropogenic movement of this pathogen still takes place. These results highlight the importance of monitoring this invasive alien tree pathogen to prevent admixture of eastern and western populations where different pathogen races occur.

  13. Image processing methods for quantitatively detecting soybean rust from multispectral images

    USDA-ARS?s Scientific Manuscript database

    Soybean rust, caused by Phakopsora pachyrhizi, is one of the most destructive diseases for soybean production. It often causes significant yield loss and may rapidly spread from field to field through airborne urediniospores. In order to implement timely fungicide treatments for the most effective c...

  14. First report of Phakopsora pachyrhizi on soybean causing rust in Tanzania

    USDA-ARS?s Scientific Manuscript database

    Phakopsora pachyrhizi Syd. was reported on legume hosts other than soybean in Tanzania as early as 1979. Soybean rust (SBR), caused by P. pachyrhizi, was first reported on soybean in Africa in Uganda in 1996, and its introduction into Africa was proposed to occur through urediniospores blowing from ...

  15. First report of Phakopsora pachyrhizi causing rust on soybean in Malawi

    USDA-ARS?s Scientific Manuscript database

    Soybean rust (SBR), caused by Phakopsora pachyrhizi, has rapidly become established in Africa since the first report in Uganda in 1996. The urediniospores, as windborne propagules, have infested new regions of Africa, initiating SBR in many countries, including Ghana and Democratic Republic of the C...

  16. Uromyces ciceris-arietini, the cause of chickpea rust: new hosts in the Trifolieae, Fabaceae

    USDA-ARS?s Scientific Manuscript database

    Plants of Medicago polymorpha in Riverside and San Diego, California were collected with severe rust caused by Uromyces ciceris-arietini. Reported hosts of U. ciceris-arietini are Cicer arietinum (chickpea) and Medicago polyceratia. To confirm the potential new host range, a monouredinial isolate RM...

  17. Genome-wide association mapping reveals novel QTL for seedling leaf rust resistance in a worldwide collection of winter wheat

    USDA-ARS?s Scientific Manuscript database

    Leaf rust is a major disease that causes significant wheat yield losses worldwide. Growing resistant cultivars is an effective approach to reduce disease losses. The short-lived nature of leaf rust resistance (Lr) genes necessitates a continuous search for novel sources of resistance. We performe...

  18. Relocation of a rust resistance gene R2 and its marker-assisted gene pyramiding in confection sunflower (Helianthus annuus L.)

    USDA-ARS?s Scientific Manuscript database

    Rust (caused by Puccinia helianthi Schwein.) is a major disease of sunflower worldwide. Due to the frequent evolution of new pathogen races, the disease is a recurring threat to sunflower production especially in North America, Argentina, and Australia. The inbred line MC29 carries the rust resistan...

  19. Multi-environment selection of small sieve snap beans reduces production constraints in East Africa and subtropical regions

    USDA-ARS?s Scientific Manuscript database

    Common bean rust caused by Uromyces appendiculatus, and heat stress lower the yield and quality of snap beans (Phaseolus vulgaris L.) in East Africa. Four snap bean breeding lines previously selected for broad-spectrum rust resistance (involving Ur-4 and Ur-11 rust genes) and heat tolerance followin...

  20. Identifying Plants of Stampede Pinto Bean with Resistance to New races of Rust Pathogen

    USDA-ARS?s Scientific Manuscript database

    The rust disease of dry beans is caused by a hyper-variable fungus that continually produces new virulent strains. Two new strains, known as races, emerged in Michigan and North Dakota in 2007 and 2008, respectively, which surmounted the resistance of a widely used rust-resistance gene known as Ur-...

  1. Loci associated with resistance to stripe rust (Puccinia striiformis f. sp. tritici) in a core collection of spring wheat (Triticum aestivum)

    USDA-ARS?s Scientific Manuscript database

    Stripe rust, caused by Puccinia striiformis Westend. f. sp. tritici Erikss. (Pst) remains one of the most significant diseases of wheat worldwide. We investigated stripe rust resistance by genome-wide association analysis (GWAS) in 959 spring wheat accessions from the Unites States Department of Agr...

  2. Distribution and frequency of Bru1, a major brown rust resistance gene, in the sugarcane world collection

    USDA-ARS?s Scientific Manuscript database

    Brown rust, caused by Puccinia melanocephala, is an important disease of sugarcane worldwide. Molecular markers for a major brown rust resistance gene, Bru1, were used to screen a total of 1,282 clones in the World Collection of Sugarcane and Related Grasses (WCSRG) to determine the distribution and...

  3. Identification of Yr59 conferring high-temperature adult-plant resistance to stripe rust in wheat germplasm PI 178759

    USDA-ARS?s Scientific Manuscript database

    Stripe rust, caused by Puccinia striiformis f. sp. tritici, is one of the most widespread and destructive wheat diseases worldwide. Resistant cultivars are the preferred means of control. The spring wheat germplasm ‘PI 178759’ originating from Iraq showed effective resistance to stripe rust in fie...

  4. Frequency and distribution of the brown rust resistance gene Bru1 and implications for the Louisiana sugarcane breeding programme

    USDA-ARS?s Scientific Manuscript database

    Brown rust, caused by the fungus Puccinia melanocephala, is an important disease of sugarcane posing an increasing threat to sugarcane industries worldwide. A major gene, Bru1, has been shown to contribute a significant proportion of brown rust resistance in multiple sugarcane industries. The recent...

  5. Genome-wide association mapping of crown rust resistance in oat elite germplasm

    USDA-ARS?s Scientific Manuscript database

    Oat crown rust, caused by Puccinia coronata f. sp. avenae, is a major constraint to oat production in many parts of the world. In this first comprehensive multi-environment genome-wide association map of oat crown rust, we used 2,972 SNPs genotyped on 631 oat lines for association mapping of quantit...

  6. Gene discovery in EST sequences from the wheat leaf rust fungus puccinia triticina sexual spores, asexual spores and haustoria, compared to other rust and corn smut fungi

    USDA-ARS?s Scientific Manuscript database

    Background: Rust fungi are biotrophic basidiomycete plant pathogens that cause major diseases on plants and trees world-wide, affecting agriculture and forestry. Their biotrophic nature precludes many established molecular genetic manipulations and lines of research. The generation of genomic resour...

  7. Interacting genes in the pine-fusiform rust forest pathosystem

    Treesearch

    H.V. Amerson; T.L. Kubisiak; S.A. Garcia; G.C. Kuhlman; C.D. Nelson; S.E. McKeand; T.J. Mullin; B. Li

    2005-01-01

    Fusiform rust (FR) disease of pines, caused by Cronartium quercuum f.sp. fusiforme (Cqf), is the most destructive disease in pine plantations of the southern U. S. The NCSU fusiform rust program, in conjunction with the USDA-Forest Service in Saucier, MS and Athens, GA, has research underway to elucidate some of the genetic interactions in this...

  8. Discovery of a novel stem rust resistance allele in durum wheat that exhibits differential reactions to Ug99 isolates

    USDA-ARS?s Scientific Manuscript database

    Wheat stem rust, caused by Puccinia graminis f. sp. tritici Erikss. & E. Henn, can incur yield losses on susceptible cultivars of durum wheat, Triticum turgidum ssp. durum (Desf.) Husnot. Though several durum cultivars possess the stem rust resistance gene Sr13, additional genes in durum wheat effec...

  9. First report of European pear rust (pear trellis rust) caused by Gymnosporangium sabinae on ornamental pear (Pyrus calleryana) in Virginia

    USDA-ARS?s Scientific Manuscript database

    In November 2014, leaves of ornamental pear (Pyrus calleryana, cultivar unknown) with bright orange to reddish spots typical of infection by a rust fungus were submitted to the Virginia Tech Plant Disease Clinic from a landscape in Frederick County, VA, for diagnosis. Brown aecia with bulbous bases ...

  10. Genetics of leaf rust resistance in the hard red winter wheat cultivars Santa Fe and Duster

    USDA-ARS?s Scientific Manuscript database

    Leaf rust caused by Puccinia triticina is a common and important disease of hard red winter wheat in the Great Plains of the United States. The hard red winter wheat cultivars 'Santa Fe' and 'Duster' have had effective leaf rust resistance since their release in 2003 and 2006, respectively. Both cul...

  11. An interspecific barberry hybrid enables genetic dissection of non-host resistance to the wheat stem rust pathogen

    USDA-ARS?s Scientific Manuscript database

    Stem rust, caused by the macrocyclic fungal pathogen Puccinia graminis (Pg), is one of the most devastating diseases of wheat and other small grains globally; and the emergence of new stem rust races virulent on deployed resistance genes brings urgency to the discovery of more durable sources of gen...

  12. Demographic projection of high-elevation white pines infected with white pine blister rust: a nonlinear disease model

    Treesearch

    S. G. Field; A. W. Schoettle; J. G. Klutsch; S. J. Tavener; M. F. Antolin

    2012-01-01

    Matrix population models have long been used to examine and predict the fate of threatened populations. However, the majority of these efforts concentrate on long-term equilibrium dynamics of linear systems and their underlying assumptions and, therefore, omit the analysis of transience. Since management decisions are typically concerned with the short term (

  13. Ecological roles of five-needle pine in Colorado: Potential consequences of their loss

    Treesearch

    Anna Schoettle

    2004-01-01

    Limber pine (Pinus flexilis James) and Rocky Mountain bristlecone pine (Pinus aristata Engelm.) are two white pines that grow in Colorado. Limber pine has a broad distribution throughout western North America while bristlecone pine’s distribution is almost entirely within the state of Colorado. White pine blister rust (Cronartium ribicola J. C. Fisch.) was...

  14. Return of the giants: Restoring white pine ecosystems by breeding and aggressive planting of blister rust-resistant white pines

    Treesearch

    Lauren Fins; James Byler; Dennis Ferguson; Al Harvey; Mary Francis Mahalovich; Geral I. McDonald; Dan Miller; John Schwandt; Art Zack

    2001-01-01

    In 1883, when the Northern Pacific Railroad made its way through northern Idaho, western white pines dominated the moist, mid-elevation, mixed-species forests of the Inland Northwest between 2,000 and 6,000 feet. These majestic trees often lived to 350 years but could reach the ripe old ages of 400 and even 500 years. They were an integral part of the most productive...

  15. Genotype-by-sequencing facilitates genetic mapping of a stem rust resistance locus in Aegilops umbellulata, a wild relative of cultivated wheat

    USDA-ARS?s Scientific Manuscript database

    Background: Wild relatives of wheat play a significant role in wheat improvement as a source of genetic diversity. Stem rust disease of wheat causes significant yield losses at the global level and stem rust pathogen race TTKSK (Ug99) is virulent to most previously deployed resistance genes. Therefo...

  16. Novel Sources of Stripe Rust Resistance Identified by Genome-Wide Association Mapping in Ethiopian Durum Wheat (Triticumturgidumssp. durum)

    USDA-ARS?s Scientific Manuscript database

    Stripe rust of wheat, caused by Puccinia striiformis f. sp. tritici (Pst), is a global concern for wheat production and has been increasingly destructive in Ethiopia,as well as in the United States and many other countries. As Ethiopia has a long history of stripe rust epidemics, its native wheat ge...

  17. Molecular mapping of stripe rust resistance QTL in hard red winter wheat TAM 111 adapted in the US high plains

    USDA-ARS?s Scientific Manuscript database

    Stripe rust, also known as yellow rust, caused by Puccinia striiformis Westend. f. sp. tritici Erikss. (Pst), is one of the most important foliar diseases of wheat (Triticum aestivum L.) in the United States and other parts of the world. To investigate the genetic basis of resistance conferred by th...

  18. Genetics of Leaf Rust Resistance in the Soft Red Winter Wheat Cultivars Coker 9663 and Pioneer 26R61

    USDA-ARS?s Scientific Manuscript database

    Leaf rust, caused by the fungus Puccinia triticina, is an important disease of soft red winter wheat cultivars that are grown in the southern and eastern United States. The objectives of this study were to identify the leaf rust resistance genes in two soft red winter wheat cultivars, Coker 9663 and...

  19. Identification of nine pathotype-specific genes conferring resistance to fusiform rust in loblolly pine (Pinus taeda L.)

    Treesearch

    Henry Amerson; C. Dana Nelson; Thomas L. Kubisiak; E.George Kuhlman; Saul Garcia

    2015-01-01

    Nearly two decades of research on the host-pathogen interaction in fusiform rust of loblolly pine is detailed. Results clearly indicate that pathotype-specific genes in the host interacting with pathogen avirulence cause resistance as defined by the non-gall phenotype under favorable environmental conditions for disease development. In particular, nine fusiform rust...

  20. Characterization and molecular mapping of Yr52 for high-temperature adult-plant resistance to stripe rust in spring wheat germplasm PI 183527

    USDA-ARS?s Scientific Manuscript database

    Stripe rust, caused by Puccinia striiformis f. sp. tritici, is one of the most destructive diseases of wheat worldwide. Resistance is the best approach to control the disease. High-temperature adult-plant (HTAP) stripe rust resistance has proven to be race non-specific and durable. However, genes...

  1. Mapping of Yr62 and a small effect QTL for high-temperature adult-plant resistance to stripe rust in spring wheat PI 192252

    USDA-ARS?s Scientific Manuscript database

    Stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), is a devastating disease of wheat worldwide. Spring wheat germplasm PI 192252 showed a high level of high-temperature adult-plant (HTAP) resistance to stripe rust in germplasm evaluation over eight years in the State of Washington. ...

  2. Genome-wide identification of QTLs conferring high-temperature adult-plant (HTAP) resistance to stripe rust (Puccinia striiformis f. sp. tritici) in wheat

    USDA-ARS?s Scientific Manuscript database

    High-temperature adult-plant (HTAP) resistance to stripe rust (caused by Puccinia striiformis f. sp. tritici) is a durable type of resistance in wheat. The objective of this study was to identify quantitative trait loci (QTL) conferring HTAP resistance to stripe rust in a population consisting of 16...

  3. Genetic mapping of stem rust resistance to Puccinia graminis f. sp. tritici race TRTTF in the Canadian wheat cultivar 'Harvest'

    USDA-ARS?s Scientific Manuscript database

    Stem rust, caused by Puccinia graminis Pers.:Pers. f. sp. tritici Eriks. & E. Henn.(Pgt), is a destructive disease of wheat that can be controlled by deploying effective stem rust resistance (Sr) genes. Highly virulent races of Pgt in Africa have been detected and characterized. These include race T...

  4. Interaction of soybean and Phakopsora pachyrhizi, the cause of soybean rust

    USDA-ARS?s Scientific Manuscript database

    Soybean rust, caused by Phakopsora pachyrhizi H. Sydow & Sydow, is a major disease limiting soybean [Glycine max (L.) Merr.] production in many areas of the world. Yield losses of up to 80% were reported in experimental plots in Taiwan. Although the disease is not always yield limiting, it has the p...

  5. Toward understanding molecular mechanisms of durable and non-durable resistance to stripe rust in wheat

    USDA-ARS?s Scientific Manuscript database

    Stripe rust of wheat, caused by Puccinia striiformis f. sp. tritici, continues causing severe damage worldwide. Durable resistance is a key for sustainable control of the disease. High-temperature adult-plant (HTAP) resistance, which expresses when weather becomes warm and plants grow old, has bee...

  6. First report of leaf rust of blueberry caused by Thekopsora minima in Mexico

    USDA-ARS?s Scientific Manuscript database

    Blueberry (Vaccinium corymbosum L.) is becoming an important crop in the states of Jalisco and Michoacan in Mexico. As the area under blueberry cultivation increases, new diseases causing severe losses are appearing. Leaf rust is one of the most destructive diseases of blueberry in Mexico. Sori on t...

  7. Two distinct classes of QTL determine rust resistance in sorghum.

    PubMed

    Wang, Xuemin; Mace, Emma; Hunt, Colleen; Cruickshank, Alan; Henzell, Robert; Parkes, Heidi; Jordan, David

    2014-12-31

    Agriculture is facing enormous challenges to feed a growing population in the face of rapidly evolving pests and pathogens. The rusts, in particular, are a major pathogen of cereal crops with the potential to cause large reductions in yield. Improving stable disease resistance is an on-going major and challenging focus for many plant breeding programs, due to the rapidly evolving nature of the pathogen. Sorghum is a major summer cereal crop that is also a host for a rust pathogen Puccinia purpurea, which occurs in almost all sorghum growing areas of the world, causing direct and indirect yield losses in sorghum worldwide, however knowledge about its genetic control is still limited. In order to further investigate this issue, QTL and association mapping methods were implemented to study rust resistance in three bi-parental populations and an association mapping set of elite breeding lines in different environments. In total, 64 significant or highly significant QTL and 21 suggestive rust resistance QTL were identified representing 55 unique genomic regions. Comparisons across populations within the current study and with rust QTL identified previously in both sorghum and maize revealed a high degree of correspondence in QTL location. Negative phenotypic correlations were observed between rust, maturity and height, indicating a trend for both early maturing and shorter genotypes to be more susceptible to rust. The significant amount of QTL co-location across traits, in addition to the consistency in the direction of QTL allele effects, has provided evidence to support pleiotropic QTL action across rust, height, maturity and stay-green, supporting the role of carbon stress in susceptibility to rust. Classical rust resistance QTL regions that did not co-locate with height, maturity or stay-green QTL were found to be significantly enriched for the defence-related NBS-encoding gene family, in contrast to the lack of defence-related gene enrichment in multi-trait effect rust resistance QTL. The distinction of disease resistance QTL hot-spots, enriched with defence-related gene families from QTL which impact on development and partitioning, provides plant breeders with knowledge which will allow for fast-tracking varieties with both durable pathogen resistance and appropriate adaptive traits.

  8. Tagging and mapping of SSR marker for rust resistance gene in lentil (Lens culinaris Medikus subsp. culinaris).

    PubMed

    Dikshit, H K; Singh, Akanksha; Singh, D; Aski, M; Jain, Neelu; Hegde, V S; Basandrai, A K; Basandrai, D; Sharma, T R

    2016-06-01

    Lentil, as an economical source of protein, minerals and vitamins, plays important role in nutritional security of the common man. Grown mainly in West Asia, North Africa (WANA) region and South Asia, it suffers from several biotic stresses such as wilt, rust, blight and broomrape. Lentil rust caused by autoecious fungus Uromyces viciae fabae (Pers.) Schroet is a serious lentil disease in Algeria, Bangladesh, Ethiopia, India, Italy, Morocco, Pakistan and Nepal. The disease symptoms are observed during flowering and early podding stages. Rust causes severe yield losses in lentil. It can only be effectively controlled by identifying the resistant source, understanding its inheritance and breeding for host resistance. The obligate parasitic nature of pathogen makes it difficult to maintain the pathogen in culture and to apply it to screen segregating progenies under controlled growth conditions. Hence, the use of molecular markers will compliment in identification of resistant types in different breeding programs. Here, we studied the inheritance of resistance to rust in lentil using F₁, F₂ and F₂:₃ from cross PL 8 (susceptible) x L 4149 (resistant) varieties. The phenotyping of lentil population was carried out at Sirmour, India. The result of genetic analysis revealed that a single dominant gene controls rust resistance in lentil genotype L 4149. The F2 population from this cross was used to tag and map the rust resistance gene using SSR and SRAP markers. Markers such as 270 SRAP and 162 SSR were studied for polymorphism and 101 SRAP and 33 SSRs were found to be polymorphic between the parents. Two SRAP and two SSR markers differentiated the resistant and susceptible bulks. SSR marker Gllc 527 was estimated to be linked to rust resistant locus at a distance of 5.9 cM. The Gllc 527 marker can be used for marker assisted selection for rust resistance; however, additional markers closer to rust resistant locus are required. The markers linked to the rust resistance gene can serve as starting points for map-based cloning of the rust resistance gene.

  9. Rust-red stringy white rot: The Indian paint fungus, Echinodontium tinctorium

    Treesearch

    A. D. Wilson

    1997-01-01

    Older trees are more susceptible to damage by this fungus, although even very young trees are susceptible to infection. Infections occur most frequently in dense stands where selfpruning creates infection courts for the fungus.

  10. Phenotypic and genotypic characterization of race TKTTF of Puccinia graminis f. sp. tritici that caused a wheat stem rust epidemic in southern Ethiopia in 2013-2014

    USDA-ARS?s Scientific Manuscript database

    A severe stem rust epidemic occurred in southern Ethiopia during November 2013 to January 2014 with yield losses close to 100% on the most widely grown wheat cultivar, 'Digalu'. Sixty-four stem rust samples collected from the regions were analyzed. A meteorological model for airborne spore dispersal...

  11. Mapping of leaf rust resistance genes and molecular characterization of the 2NS/2AS translocation in the wheat cultivar Jagger

    USDA-ARS?s Scientific Manuscript database

    Winter wheat cultivar 'Jagger' was recently found to have an alien chromosomal segment 'VPM1' that should carry Lr37, a gene conferring resistance against leaf rust caused by Puccinia triticina, and this cultivar was also reported to have the wheat gene Lr17 against leaf rust. Both Lr17 and Lr37 wer...

  12. Tracking the distribution of Puccinia psidii genotypes that cause rust disease on diverse myrtaceous trees and shrubs

    Treesearch

    Amy L. Ross-Davis; Rodrigo N. Graca; Acelino C. Alfenas; Tobin L. Peever; Jack W. Hanna; Janice Y. Uchida; Rob D. Hauff; Chris Y. Kadooka; Mee-Sook Kim; Phil G. Cannon; Shigetou Namba; Nami Minato; Sofia Simeto; Carlos A. Perez; Min B. Rayamajhi; Mauricio Moran; D. Jean Lodge; Marcela Arguedas; Rosario Medel-Ortiz; M. Armando Lopez-Ramirez; Paula Tennant; Morag Glen; Ned B. Klopfenstein

    2014-01-01

    Puccinia psidii Winter (Basidiomycota, Uredinales) is a biotrophic rust fungus that was first reported in Brazil from guava in 1884 (Psidium guajava; Winter 1884) and later from eucalypt in 1912 (Joffily 1944). Considered to be of neotropical origin, the rust has also been reported to infect diverse myrtaceous hosts elsewhere in South America, Central America, the...

  13. The Big Rust and the Red Queen: Long-Term Perspectives on Coffee Rust Research.

    PubMed

    McCook, Stuart; Vandermeer, John

    2015-09-01

    Since 2008, there has been a cluster of outbreaks of the coffee rust (Hemileia vastatrix) across the coffee-growing regions of the Americas, which have been collectively described as the Big Rust. These outbreaks have caused significant hardship to coffee producers and laborers. This essay situates the Big Rust in a broader historical context. Over the past two centuries, coffee farmers have had to deal with the "curse of the Red Queen"-the need to constantly innovate in the face of an increasing range of threats, which includes the rust. Over the 20th century, particularly after World War II, national governments and international organizations developed a network of national, regional, and international coffee research institutions. These public institutions played a vital role in helping coffee farmers manage the rust. Coffee farmers have pursued four major strategies for managing the rust: bioprospecting for resistant coffee plants, breeding resistant coffee plants, chemical control, and agroecological control. Currently, the main challenge for researchers is to develop rust control strategies that are both ecologically and economically viable for coffee farmers, in the context of a volatile, deregulated coffee industry and the emergent challenges of climate change.

  14. Monitoring direct and indirect climate effects on whitebark pine ecosystems at Crater Lake National park

    USGS Publications Warehouse

    Smith, S.B.; Odion, D.C.; Sarr, D.A.; Irvine, K.M.

    2011-01-01

    Whitebark pine (Pinus albicaulis) is the distinctive, often stunted, and picturesque tree line species in the American West. As a result of climate change, mountain pine beetles (Dendroctonus ponderosae) have moved up in elevation, adding to nonnative blister rust (Cronartium ribicola) disease as a major cause of mortality in whitebark pine. At Crater Lake National Park, Oregon, whitebark pine is declining at the rate of 1% per year. The Klamath Network, National Park Service, has elected to monitor whitebark pine and associated high-elevation vegetation. This program is designed to sample whitebark pine throughout the park to look for geographic patterns in its exposure to and mortality from disease and beetles. First-year monitoring has uncovered interesting patterns in blister rust distribution. Incidence of rust disease was higher on the west side of the park, where conditions are wetter and more humid than on the east side. However, correlating climate alone with rust disease is not straightforward. On the east side of the park, the odds of blister rust infection were much greater in plots having Ribes spp., shrubs that act as the alternate host for a portion of the rust's life cycle. However, on the park's west side, there was not a statistically significant increase in blister rust in plots with Ribes. This suggests that different species of Ribes associated with whitebark pine can increase pine exposure to blister rust disease. There is also convincing evidence of an association between total tree density and the incidence of blister rust. Warmer temperatures and possibly increased precipitation will affect both whitebark pine and Ribes physiology as well as tree density and mountain pine beetle numbers, all of which may interact with blister rust to cause future changes in tree line communities at Crater Lake. The Klamath Network monitoring program plans to document and study these ongoing changes.

  15. First Report of Orange Rust of Sugarcane caused by Puccinia kuehnii in Ecuador

    USDA-ARS?s Scientific Manuscript database

    Orange rust, Puccinia kuehnii (W. Krüger) E.J. Butler, is an important disease of sugarcane (complex hybrid of Saccharum L. species) that causes yield losses, and impacts breeding programs. Initially confined to the Asia-Oceania region (5), P. kuehnii was reported in Florida in June 2007 (2) and lat...

  16. First Report of Soybean Rust, Caused by Phakopsora pachyrhizi, on Kudzu (Pueraria montana var. lobata) in Illinois

    USDA-ARS?s Scientific Manuscript database

    Soybean rust, caused by Phakopsora pachyrhizi, was first observed on soybean (Glycine max) in the continental United States in Louisiana in 2004, and on kudzu (Pueraria montana var. lobata) in the United States in 2005. Kudzu is a leguminous weed that is prevalent in the southern United States with ...

  17. Identification of wheat gene Sr35 that confers resistance to Ug99 stem rust race group

    USDA-ARS?s Scientific Manuscript database

    Wheat stem rust, caused by Puccinia graminis f. sp. tritici (Pgt) is a devastating disease that can cause severe yield losses. A new Pgt race designated Ug99 has overcome most of the widely used resistance genes and is spreading through Africa and Asia threatening major wheat production areas. We re...

  18. Flash Rust & Waterjetting Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DORSH, P.M..

    Certain areas of the primary wall in the AY-101 tank annulus are being cleaned with a remotely operated waterjet. There is some concern on how it will effect the surface of the tank wall after cleaning and how to prevent rust and corrosion from developing on the wall in the future. This study addresses the cause and effects of flash rust, which typically develops on steel surfaces after the waterjetting process.

  19. Sequential sampling of ribes populations in the control of white pine blister rust (Cronartium ribicola Fischer) in California

    Treesearch

    Harold R. Offord

    1966-01-01

    Sequential sampling based on a negative binomial distribution of ribes populations required less than half the time taken by regular systematic line transect sampling in a comparison test. It gave the same control decision as the regular method in 9 of 13 field trials. A computer program that permits sequential plans to be built readily for other white pine regions is...

  20. Past and current investigations of the genetic resistance to cronartium ribicola in high-elevation five-needle pines

    Treesearch

    Richard A. Sniezko; Mary F. Mahalovich; Anna W. Schoettle; Detlev R. Vogler

    2011-01-01

    All nine species of white pines native to the U.S. or Canada are susceptible to the introduced pathogen Cronartium ribicola. Of the six high elevation white pine species, the severe infection and mortality levels of Pinus albicaulis have been the most documented, but blister rust also impacts P. aristata, P. balfouriana, P. flexilis and P. strobiformis; only P....

  1. Ozone curbs crown rust

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1970-01-01

    Crown rust, the most destructive disease of oats, was suppressed in laboratory fumigation chambers by ozone air pollution levels commonly surpassed in many areas. Whether the effects of air pollution on crown rust are of economic importance under field conditions is yet to be determined. Crown rust, caused by the fungus Puccinia coronata, is particularly destructive in Southern and North Central States, often reducing yields 20 percent or more. Rust pustules on oats were significantly smaller when plants were exposed to 10 parts per hundred million ozone for 6 hours in the light on the 10 days after infection. Aboutmore » half as many rust spores were produced in the ozone chamber as in one protected by carbon filters. Exposure to 10 pphm ozone did not affect viability of spores. Spores produced on exposed plants germinated and penetrated stomates of oat leaves as well as spores produced on unexposed leaves.« less

  2. Identification of QTL conferring resistance to stripe rust (Puccinia striiformis f. sp. hordei) and leaf rust (Puccinia hordei) in barley using nested association mapping (NAM)

    PubMed Central

    Vatter, Thomas; Maurer, Andreas; Perovic, Dragan; Kopahnke, Doris; Pillen, Klaus

    2018-01-01

    The biotrophic rust fungi Puccinia hordei and Puccinia striiformis are important barley pathogens with the potential to cause high yield losses through an epidemic spread. The identification of QTL conferring resistance to these pathogens is the basis for targeted breeding approaches aiming to improve stripe rust and leaf rust resistance of modern cultivars. Exploiting the allelic richness of wild barley accessions proved to be a valuable tool to broaden the genetic base of resistance of barley cultivars. In this study, SNP-based nested association mapping (NAM) was performed to map stripe rust and leaf rust resistance QTL in the barley NAM population HEB-25, comprising 1,420 lines derived from BC1S3 generation. By scoring the percentage of infected leaf area, followed by calculation of the area under the disease progress curve and the average ordinate during a two-year field trial, a large variability of resistance across and within HEB-25 families was observed. NAM based on 5,715 informative SNPs resulted in the identification of twelve and eleven robust QTL for resistance against stripe rust and leaf rust, respectively. Out of these, eight QTL for stripe rust and two QTL for leaf rust are considered novel showing no overlap with previously reported resistance QTL. Overall, resistance to both pathogens in HEB-25 is most likely due to the accumulation of numerous small effect loci. In addition, the NAM results indicate that the 25 wild donor QTL alleles present in HEB-25 strongly differ in regard to their individual effect on rust resistance. In future, the NAM concept will allow to select and combine individual wild barley alleles from different HEB parents to increase rust resistance in barley. The HEB-25 results will support to unravel the genetic basis of rust resistance in barley, and to improve resistance against stripe rust and leaf rust of modern barley cultivars. PMID:29370232

  3. Identification of QTL conferring resistance to stripe rust (Puccinia striiformis f. sp. hordei) and leaf rust (Puccinia hordei) in barley using nested association mapping (NAM).

    PubMed

    Vatter, Thomas; Maurer, Andreas; Perovic, Dragan; Kopahnke, Doris; Pillen, Klaus; Ordon, Frank

    2018-01-01

    The biotrophic rust fungi Puccinia hordei and Puccinia striiformis are important barley pathogens with the potential to cause high yield losses through an epidemic spread. The identification of QTL conferring resistance to these pathogens is the basis for targeted breeding approaches aiming to improve stripe rust and leaf rust resistance of modern cultivars. Exploiting the allelic richness of wild barley accessions proved to be a valuable tool to broaden the genetic base of resistance of barley cultivars. In this study, SNP-based nested association mapping (NAM) was performed to map stripe rust and leaf rust resistance QTL in the barley NAM population HEB-25, comprising 1,420 lines derived from BC1S3 generation. By scoring the percentage of infected leaf area, followed by calculation of the area under the disease progress curve and the average ordinate during a two-year field trial, a large variability of resistance across and within HEB-25 families was observed. NAM based on 5,715 informative SNPs resulted in the identification of twelve and eleven robust QTL for resistance against stripe rust and leaf rust, respectively. Out of these, eight QTL for stripe rust and two QTL for leaf rust are considered novel showing no overlap with previously reported resistance QTL. Overall, resistance to both pathogens in HEB-25 is most likely due to the accumulation of numerous small effect loci. In addition, the NAM results indicate that the 25 wild donor QTL alleles present in HEB-25 strongly differ in regard to their individual effect on rust resistance. In future, the NAM concept will allow to select and combine individual wild barley alleles from different HEB parents to increase rust resistance in barley. The HEB-25 results will support to unravel the genetic basis of rust resistance in barley, and to improve resistance against stripe rust and leaf rust of modern barley cultivars.

  4. Genome sequence resources for the wheat stripe rust pathogen (Puccinia striiformis f. sp. tritici) and the barley stripe rust pathogen (Puccinia striiformis f. sp. hordei).

    PubMed

    Xia, Chongjing; Wang, Meinan; Yin, Chuntao; Cornejo, Omar E; Hulbert, Scot; Chen, Xianming

    2018-05-24

    Puccinia striiformis f. sp. tritici (Pst) causes devastating stripe (yellow) rust on wheat and P. striiformis f. sp. hordei (Psh) causes stripe rust on barley. Several Pst genomes are available, but no Psh genome is available. More genomes of Pst and Psh are needed to understand the genome evolution and molecular mechanisms of their pathogenicity. We sequenced Pst isolate 93-210 and Psh isolate 93TX-2 using PacBio and Illumina technologies, and RNA sequencing. Their genomic sequences were assembled to contigs with high continuity and showed significant structural differences. The circular mitochondria genomes of both were complete. These genomes provide high-quality resources for deciphering the genomic basis of rapid evolution and host adaptation, identifying genes for avirulence and other important traits, and studying host-pathogen interaction.

  5. Unveiling common responses of Medicago truncatula to appropriate and inappropriate rust species

    PubMed Central

    Vaz Patto, Maria Carlota; Rubiales, Diego

    2014-01-01

    Little is known about the nature of effective defense mechanisms in legumes to pathogens of remotely related plant species. Some rust species are among pathogens with broad host range causing dramatic losses in various crop plants. To understand and compare the different host and nonhost resistance (NHR) responses of legume species against rusts, we characterized the reaction of the model legume Medicago truncatula to one appropriate (Uromyces striatus) and two inappropriate (U. viciae-fabae and U. lupinicolus) rusts. We found that similar pre and post-haustorial mechanisms of resistance appear to be operative in M. truncatula against appropriate and inappropriate rust fungus. The appropriate U. striatus germinated better on M. truncatula accessions then the inappropriate U. viciae-fabae and U. lupinicolus, but once germinated, germ tubes of the three rusts had a similar level of success in finding stomata and forming an appressoria over a stoma. However, responses to different inappropriate rust species also showed some specificity, suggesting a combination of non-specific and specific responses underlying this legume NHR to rust fungi. Further genetic and expression analysis studies will contribute to the development of the necessary molecular tools to use the present information on host and NHR mechanisms to breed for broad-spectrum resistance to rust in legume species. PMID:25426128

  6. HOW to Identify and Control Stem Rusts of Jack Pine

    Treesearch

    Kathryn Robbins; Dale K. Smeltzer; D. W. French

    Damage to jack pine caused by rust fungi includes growth reduction, cankers, death (by girdling or wind breakage), and creation of entryways for other fungi and insects. Seedlings and saplings are more seriously affected than older trees.

  7. Examination of Alternative Pretreatments to Hexavalent Chromium Based DOD-P-15328D Wash Primer for MIL-A-46100D High Hard Steel Armor

    DTIC Science & Technology

    2005-01-01

    material and cause a bulging or “ trampoline effect.” When a thin specimen is used, the resultant bulge causes the coating to radially peel away outwards...most of the rusting occurring within the surface pores commonly found on 46100 steel. Surprisingly, despite the initial head start in flash rust

  8. Sputum color: potential implications for clinical practice.

    PubMed

    Johnson, Allen L; Hampson, David F; Hampson, Neil B

    2008-04-01

    Respiratory infections with sputum production are a major reason for physician visits, diagnostic testing, and antibiotic prescription in the United States. We sought to determine whether the simple characteristic of sputum color provides information that impacts resource utilization such as laboratory testing and prescription of antibiotics. Out-patient sputum samples submitted to the microbiology laboratory for routine analysis were assigned to one of 8 color categories (green, yellow-green, rust, yellow, red, cream, white, and clear), based on a key made from paint chip color samples. Subsequent Gram stain and culture results were compared to sputum color. Of 289 consecutive samples, 144 (50%) met standard Gram-stain criteria for being acceptable lower-respiratory-tract specimens. In the acceptable Gram-stain group, 60 samples had a predominant organism on Gram stain, and the culture yielded a consistent result in 42 samples (15% of the 289 total specimens). Yield at each level of analysis differed greatly by color. The yield from sputum colors green, yellow-green, yellow, and rust was much higher than the yield from cream, white, or clear. If out-patient sputum is cream, white, or clear, the yield from bacteriologic analysis is extremely low. This information can reduce laboratory processing costs and help minimize unnecessary antibiotic prescription.

  9. Expression of apoplast-targeted plant defensin MtDef4.2 confers resistance to leaf rust pathogen Puccinia triticina but does not affect mycorrhizal symbiosis in transgenic wheat.

    PubMed

    Kaur, Jagdeep; Fellers, John; Adholeya, Alok; Velivelli, Siva L S; El-Mounadi, Kaoutar; Nersesian, Natalya; Clemente, Thomas; Shah, Dilip

    2017-02-01

    Rust fungi of the order Pucciniales are destructive pathogens of wheat worldwide. Leaf rust caused by the obligate, biotrophic basidiomycete fungus Puccinia triticina (Pt) is an economically important disease capable of causing up to 50 % yield losses. Historically, resistant wheat cultivars have been used to control leaf rust, but genetic resistance is ephemeral and breaks down with the emergence of new virulent Pt races. There is a need to develop alternative measures for control of leaf rust in wheat. Development of transgenic wheat expressing an antifungal defensin offers a promising approach to complement the endogenous resistance genes within the wheat germplasm for durable resistance to Pt. To that end, two different wheat genotypes, Bobwhite and Xin Chun 9 were transformed with a chimeric gene encoding an apoplast-targeted antifungal plant defensin MtDEF4.2 from Medicago truncatula. Transgenic lines from four independent events were further characterized. Homozygous transgenic wheat lines expressing MtDEF4.2 displayed resistance to Pt race MCPSS relative to the non-transgenic controls in growth chamber bioassays. Histopathological analysis suggested the presence of both pre- and posthaustorial resistance to leaf rust in these transgenic lines. MtDEF4.2 did not, however, affect the root colonization of a beneficial arbuscular mycorrhizal fungus Rhizophagus irregularis. This study demonstrates that the expression of apoplast-targeted plant defensin MtDEF4.2 can provide substantial resistance to an economically important leaf rust disease in transgenic wheat without negatively impacting its symbiotic relationship with the beneficial mycorrhizal fungus.

  10. Physical Localization of a Locus from Agropyron cristatum Conferring Resistance to Stripe Rust in Common Wheat

    PubMed Central

    Song, Liqiang; Han, Haiming; Zhou, Shenghui; Zhang, Jinpeng; Yang, Xinming; Li, Xiuquan; Liu, Weihua; Li, Lihui

    2017-01-01

    Stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), is one of the most destructive diseases of wheat (Triticum aestivum L.) worldwide. Agropyron cristatum (L.) Gaertn. (2n = 28, PPPP), one of the wild relatives of wheat, exhibits resistance to stripe rust. In this study, wheat-A. cristatum 6P disomic addition line 4844-12 also exhibited resistance to stripe rust. To identify the stripe rust resistance locus from A. cristatum 6P, ten translocation lines, five deletion lines and the BC2F2 and BC3F2 populations of two wheat-A. cristatum 6P whole-arm translocation lines were tested with a mixture of two races of Pst in two sites during 2015–2016 and 2016–2017, being genotyped with genomic in situ hybridization (GISH) and molecular markers. The result indicated that the locus conferring stripe rust resistance was located on the terminal 20% of 6P short arm’s length. Twenty-nine 6P-specific sequence-tagged-site (STS) markers mapped on the resistance locus have been acquired, which will be helpful for the fine mapping of the stripe rust resistance locus. The stripe rust-resistant translocation lines were found to carry some favorable agronomic traits, which could facilitate their use in wheat improvement. Collectively, the stripe rust resistance locus from A. cristatum 6P could be a novel resistance source and the screened stripe rust-resistant materials will be valuable for wheat disease breeding. PMID:29137188

  11. Physical Localization of a Locus from Agropyron cristatum Conferring Resistance to Stripe Rust in Common Wheat.

    PubMed

    Zhang, Zhi; Song, Liqiang; Han, Haiming; Zhou, Shenghui; Zhang, Jinpeng; Yang, Xinming; Li, Xiuquan; Liu, Weihua; Li, Lihui

    2017-11-13

    Stripe rust, caused by Puccinia striiformis f. sp. tritici ( Pst ), is one of the most destructive diseases of wheat ( Triticum aestivum L.) worldwide. Agropyron cristatum (L.) Gaertn. (2 n = 28, PPPP), one of the wild relatives of wheat, exhibits resistance to stripe rust. In this study, wheat- A . cristatum 6P disomic addition line 4844-12 also exhibited resistance to stripe rust. To identify the stripe rust resistance locus from A . cristatum 6P, ten translocation lines, five deletion lines and the BC₂F₂ and BC₃F₂ populations of two wheat- A . cristatum 6P whole-arm translocation lines were tested with a mixture of two races of Pst in two sites during 2015-2016 and 2016-2017, being genotyped with genomic in situ hybridization (GISH) and molecular markers. The result indicated that the locus conferring stripe rust resistance was located on the terminal 20% of 6P short arm's length. Twenty-nine 6P-specific sequence-tagged-site (STS) markers mapped on the resistance locus have been acquired, which will be helpful for the fine mapping of the stripe rust resistance locus. The stripe rust-resistant translocation lines were found to carry some favorable agronomic traits, which could facilitate their use in wheat improvement. Collectively, the stripe rust resistance locus from A . cristatum 6P could be a novel resistance source and the screened stripe rust-resistant materials will be valuable for wheat disease breeding.

  12. Duplications and losses in gene families of rust pathogens highlight putative effectors.

    PubMed

    Pendleton, Amanda L; Smith, Katherine E; Feau, Nicolas; Martin, Francis M; Grigoriev, Igor V; Hamelin, Richard; Nelson, C Dana; Burleigh, J Gordon; Davis, John M

    2014-01-01

    Rust fungi are a group of fungal pathogens that cause some of the world's most destructive diseases of trees and crops. A shared characteristic among rust fungi is obligate biotrophy, the inability to complete a lifecycle without a host. This dependence on a host species likely affects patterns of gene expansion, contraction, and innovation within rust pathogen genomes. The establishment of disease by biotrophic pathogens is reliant upon effector proteins that are encoded in the fungal genome and secreted from the pathogen into the host's cell apoplast or within the cells. This study uses a comparative genomic approach to elucidate putative effectors and determine their evolutionary histories. We used OrthoMCL to identify nearly 20,000 gene families in proteomes of 16 diverse fungal species, which include 15 basidiomycetes and one ascomycete. We inferred patterns of duplication and loss for each gene family and identified families with distinctive patterns of expansion/contraction associated with the evolution of rust fungal genomes. To recognize potential contributors for the unique features of rust pathogens, we identified families harboring secreted proteins that: (i) arose or expanded in rust pathogens relative to other fungi, or (ii) contracted or were lost in rust fungal genomes. While the origin of rust fungi appears to be associated with considerable gene loss, there are many gene duplications associated with each sampled rust fungal genome. We also highlight two putative effector gene families that have expanded in Cqf that we hypothesize have roles in pathogenicity.

  13. Restoration planting options for limber pines in the southern Rocky Mountains

    Treesearch

    Anne Marie Casper; William R. Jacobi; Anna W. Schoettle; Kelly S. Burns

    2011-01-01

    Limber Pine (Pinus flexilis) populations in the southern Rocky Mountains are severely threatened by the combined impacts of mountain pine beetles and white pine blister rust. Limber pine's critical role in these high elevation ecosystems heightens the importance of mitigating these impacts.

  14. Introgression of leaf rust and stripe rust resistance from Sharon goatgrass (Aegilops sharonensis Eig) into bread wheat (Triticum aestivum L.).

    PubMed

    Millet, E; Manisterski, J; Ben-Yehuda, P; Distelfeld, A; Deek, J; Wan, A; Chen, X; Steffenson, B J

    2014-06-01

    Leaf rust and stripe rust are devastating wheat diseases, causing significant yield losses in many regions of the world. The use of resistant varieties is the most efficient way to protect wheat crops from these diseases. Sharon goatgrass (Aegilops sharonensis or AES), which is a diploid wild relative of wheat, exhibits a high frequency of leaf and stripe rust resistance. We used the resistant AES accession TH548 and induced homoeologous recombination by the ph1b allele to obtain resistant wheat recombinant lines carrying AES chromosome segments in the genetic background of the spring wheat cultivar Galil. The gametocidal effect from AES was overcome by using an "anti-gametocidal" wheat mutant. These recombinant lines were found resistant to highly virulent races of the leaf and stripe rust pathogens in Israel and the United States. Molecular DArT analysis of the different recombinant lines revealed different lengths of AES segments on wheat chromosome 6B, which indicates the location of both resistance genes.

  15. Genome-wide association study of rust traits in orchardgrass using SLAF-seq technology.

    PubMed

    Zeng, Bing; Yan, Haidong; Liu, Xinchun; Zang, Wenjing; Zhang, Ailing; Zhou, Sifan; Huang, Linkai; Liu, Jinping

    2017-01-01

    While orchardgrass ( Dactylis glomerata L.) is a well-known perennial forage species, rust diseases cause serious reductions in the yield and quality of orchardgrass; however, genetic mechanisms of rust resistance are not well understood in orchardgrass. In this study, a genome-wide association study (GWAS) was performed using specific-locus amplified fragment sequencing (SLAF-seq) technology in orchardgrass. A total of 2,334,889 SLAF tags were generated to produce 2,309,777 SNPs. ADMIXTURE analysis revealed unstructured subpopulations for 33 accessions, indicating that this orchardgrass population could be used for association analysis. Linkage disequilibrium (LD) analysis revealed an average r 2 of 0.4 across all SNP pairs, indicating a high extent of LD in these samples. Through GWAS, a total of 4,604 SNPs were found to be significantly ( P  < 0.01) associated with the rust trait. The bulk analysis discovered a number of 5,211 SNPs related to rust trait. Two candidate genes, including cytochrome P450, and prolamin were implicated in disease resistance through prediction of functional genes surrounding each high-quality SNP ( P  < 0.01) associated with rust traits based on GWAS analysis and bulk analysis. The large number of SNPs associated with rust traits and these two candidate genes may provide the basis for further research on rust resistance mechanisms and marker-assisted selection (MAS) for rust-resistant lineages.

  16. Genome-Wide Association Mapping of Crown Rust Resistance in Oat Elite Germplasm.

    PubMed

    Klos, Kathy Esvelt; Yimer, Belayneh A; Babiker, Ebrahiem M; Beattie, Aaron D; Bonman, J Michael; Carson, Martin L; Chong, James; Harrison, Stephen A; Ibrahim, Amir M H; Kolb, Frederic L; McCartney, Curt A; McMullen, Michael; Fetch, Jennifer Mitchell; Mohammadi, Mohsen; Murphy, J Paul; Tinker, Nicholas A

    2017-07-01

    Oat crown rust, caused by f. sp. , is a major constraint to oat ( L.) production in many parts of the world. In this first comprehensive multienvironment genome-wide association map of oat crown rust, we used 2972 single-nucleotide polymorphisms (SNPs) genotyped on 631 oat lines for association mapping of quantitative trait loci (QTL). Seedling reaction to crown rust in these lines was assessed as infection type (IT) with each of 10 crown rust isolates. Adult plant reaction was assessed in the field in a total of 10 location-years as percentage severity (SV) and as infection reaction (IR) in a 0-to-1 scale. Overall, 29 SNPs on 12 linkage groups were predictive of crown rust reaction in at least one experiment at a genome-wide level of statistical significance. The QTL identified here include those in regions previously shown to be linked with seedling resistance genes , , , , , and and also with adult-plant resistance and adaptation-related QTL. In addition, QTL on linkage groups Mrg03, Mrg08, and Mrg23 were identified in regions not previously associated with crown rust resistance. Evaluation of marker genotypes in a set of crown rust differential lines supported as the identity of . The SNPs with rare alleles associated with lower disease scores may be suitable for use in marker-assisted selection of oat lines for crown rust resistance. Copyright © 2017 Crop Science Society of America.

  17. Development of 11 polymorphic microsatellite markers for the blackberry rust fungus Phragmidium violaceum

    USDA-ARS?s Scientific Manuscript database

    Eleven polymorphic microsatellite markers were developed for the Uredinales fungus Phragmidium violaceum, which causes leaf rust on European blackberry (Rubus fruticosus L. aggregate). Allele frequency ranged between two and seventeen alleles per locus with no evidence of linkage disequilibrium amon...

  18. Commandra Blister Rust

    Treesearch

    David W. Johnson

    1986-01-01

    Commandra blister rust is a disease of hard pines that is caused by a fungus growing in the inner bark. The fungus (Cronartium commandrae Pk.) has a complex life cycle. It infects hard pines but needs an alternate host, an unrelated plant, to spread from one pine to another.

  19. Achievements and challenges in legume breeding for pest and disease resistance

    USDA-ARS?s Scientific Manuscript database

    Yield stability of legume crops is constrained by a number of pest and diseases. Major diseases are rusts, powdery and downy mildews, ascochyta blight, botrytis gray molds, anthracnoses, damping-off, root rots, collar rot, vascular wilts and white mold. Parasitic weeds, viruses, bacteria, nematodes ...

  20. Protection against common bean rust conferred by a gene silencing method

    USDA-ARS?s Scientific Manuscript database

    Rust disease of the dry bean plant, Phaseolus vulgaris, is caused by the fungus Uromyces appendiculatus. The fungus acquires its nutrients and energy from bean leaves using a specialized cell structure, the haustorium, through which it secretes effector proteins that contribute to pathogenicity by ...

  1. 29 CFR 1910.27 - Fixed ladders.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) All rungs shall have a minimum diameter of three-fourths inch for metal ladders, except as covered in... appurtenances shall be painted or otherwise treated to resist corrosion and rusting when location demands... areas under floors, are frequently located in an atmosphere that causes corrosion and rusting. To...

  2. Pathogenic variation of Phakopsora pachyrhizi infecting soybean in Nigeria

    USDA-ARS?s Scientific Manuscript database

    Soybean rust, caused by Phakopsora pachyrhizi, is a major disease in many soybean-producing areas in Nigeria. To determine the virulence and the genetic structure of Nigerian field populations of the soybean rust pathogen, a total of 116 purified isolates established from infected leaves randomly co...

  3. The potential of pathogens as biological control of parthenium weed (Parthenium hysterophorus L.) in Ethiopia.

    PubMed

    Taye, T; Gossmann, M; Einhorn, G; Büttner, C; Metz, R; Abate, D

    2002-01-01

    P. hsyterophorus is an exotic invasive annual weed now causing severe infestation in Ethiopia. Studies on diagnosis, incidence and distribution of pathogens associated with parthenium weed in Ethiopia were carried out from 1998-2002. Several fungal isolates were obtained from seed and other parts of parthenium plants. Among them were putative pathogenic fungal species of the genus Helminthosporium, Phoma, Curvularia, Chaetomium, Alternaria, and Fusarium. However, pathogenecity test of the isolates obtained showed no or non-specific symptoms. It was concluded that these pathogens could be opportunistic with insignificant potential for biological control of parthenium. Two most important diseases associated with parthenium were a rust disease, caused by Puccinia abrupta var. partheniicola, and a phyllody disease, caused by a phytoplasma of fababean phyllody (PBP) phytoplasma group. The rust was commonly found in cool mid altitude (1500-2500 m) areas while phyllody was observed in low to mid altitude regions (900-2500 m) of Ethiopia, with a disease incidence up to 100% and 75%, respectively, in some locations. Study of the individual effects of the rust and phyllody diseases under field conditions showed a reduction on weed morphological parameters (plant height, leaf area, and dry matter yield). Parthenium seed production was reduced by 42% and 85% due to rust and phyllody, respectively. Phyllody and rust diseases of parthenium showed significant potential for classical biological control of parthenium after further confirmation of insect vectors that transmit phyllody and host range of phyllody disease to the related economic plants in Ethiopia.

  4. Finite element simulation for damage detection of surface rust in steel rebars using elastic waves

    NASA Astrophysics Data System (ADS)

    Tang, Qixiang; Yu, Tzuyang

    2016-04-01

    Steel rebar corrosion reduces the integrity and service life of reinforced concrete (RC) structures and causes their gradual and sudden failures. Early stage detection of steel rebar corrosion can improve the efficiency of routine maintenance and prevent sudden failures from happening. In this paper, detecting the presence of surface rust in steel rebars is investigated by the finite element method (FEM) using surface-generated elastic waves. Simulated wave propagation mimics the sensing scheme of a fiber optic acoustic generator mounted on the surface of steel rebars. Formation of surface rust in steel rebars is modeled by changing material's property at local elements. In this paper, various locations of a fiber optic acoustic transducer and a receiver were considered. Megahertz elastic waves were used and different sizes of surface rust were applied. Transient responses of surface displacement and pressure were studied. It is found that surface rust is most detectable when the rust location is between the transducer and the receiver. Displacement response of intact steel rebar is needed in order to obtain background-subtracted response with a better signal-to-noise ratio. When the size of surface rust increases, reduced amplitude in displacement was obtained by the receiver.

  5. Leaf rust of cultivated barley: pathology and control.

    PubMed

    Park, Robert F; Golegaonkar, Prashant G; Derevnina, Lida; Sandhu, Karanjeet S; Karaoglu, Haydar; Elmansour, Huda M; Dracatos, Peter M; Singh, Davinder

    2015-01-01

    Leaf rust of barley is caused by the macrocyclic, heteroecious rust pathogen Puccinia hordei, with aecia reported from selected species of the genera Ornithogalum, Leopoldia, and Dipcadi, and uredinia and telia occurring on Hordeum vulgare, H. vulgare ssp. spontaneum, Hordeum bulbosum, and Hordeum murinum, on which distinct parasitic specialization occurs. Although Puccinia hordei is sporadic in its occurrence, it is probably the most common and widely distributed rust disease of barley. Leaf rust has increased in importance in recent decades in temperate barley-growing regions, presumably because of more intensive agricultural practices. Although total crop loss does not occur, under epidemic conditions yield reductions of up to 62% have been reported in susceptible varieties. Leaf rust is primarily controlled by the use of resistant cultivars, and, to date, 21 seedling resistance genes and two adult plant resistance (APR) genes have been identified. Virulence has been detected for most seedling resistance genes but is unknown for the APR genes Rph20 and Rph23. Other potentially new sources of APR have been reported, and additivity has been described for some of these resistances. Approaches to achieving durable resistance to leaf rust in barley are discussed.

  6. The Lr34 adult plant rust resistance gene provides seedling resistance in durum wheat without senescence.

    PubMed

    Rinaldo, Amy; Gilbert, Brian; Boni, Rainer; Krattinger, Simon G; Singh, Davinder; Park, Robert F; Lagudah, Evans; Ayliffe, Michael

    2017-07-01

    The hexaploid wheat (Triticum aestivum) adult plant resistance gene, Lr34/Yr18/Sr57/Pm38/Ltn1, provides broad-spectrum resistance to wheat leaf rust (Lr34), stripe rust (Yr18), stem rust (Sr57) and powdery mildew (Pm38) pathogens, and has remained effective in wheat crops for many decades. The partial resistance provided by this gene is only apparent in adult plants and not effective in field-grown seedlings. Lr34 also causes leaf tip necrosis (Ltn1) in mature adult plant leaves when grown under field conditions. This D genome-encoded bread wheat gene was transferred to tetraploid durum wheat (T. turgidum) cultivar Stewart by transformation. Transgenic durum lines were produced with elevated gene expression levels when compared with the endogenous hexaploid gene. Unlike nontransgenic hexaploid and durum control lines, these transgenic plants showed robust seedling resistance to pathogens causing wheat leaf rust, stripe rust and powdery mildew disease. The effectiveness of seedling resistance against each pathogen correlated with the level of transgene expression. No evidence of accelerated leaf necrosis or up-regulation of senescence gene markers was apparent in these seedlings, suggesting senescence is not required for Lr34 resistance, although leaf tip necrosis occurred in mature plant flag leaves. Several abiotic stress-response genes were up-regulated in these seedlings in the absence of rust infection as previously observed in adult plant flag leaves of hexaploid wheat. Increasing day length significantly increased Lr34 seedling resistance. These data demonstrate that expression of a highly durable, broad-spectrum adult plant resistance gene can be modified to provide seedling resistance in durum wheat. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  7. Transcriptome Profiling of Rust Resistance in Switchgrass Using RNA-Seq Analysis

    DOE PAGES

    Serba, Desalegn D.; Uppalapati, Srinivasa Rao; Mukherjee, Shreyartha; ...

    2015-03-16

    Switchgrass rust caused by Puccinia emaculata is a major limiting factor for switchgrass (Panicum virgatum L.) production, especially in monoculture. Natural populations of switchgrass displayed diverse reactions to P. emaculata when evaluated in an Ardmore, OK, field. In order to identify the differentially expressed genes during the rust infection process and the mechanisms of switchgrass rust resistance, transcriptome analysis using RNA-Seq was conducted in two pseudo-F 1 parents ('PV281' and 'NFGA472'), and three moderately resistant and three susceptible progenies selected from a three-generation, four-founder switchgrass population (K5 x A4) x (AP13 x VS16). On average, 23.5 million reads per samplemore » (leaf tissue was collected at 0, 24, and 60 h post-inoculation (hpi)) were obtained from paired-end (2 x 100 bp) sequencing on the Illumina HiSeq2000 platform. Furthermore, mapping of the RNA-Seq reads to the switchgrass reference genome (AP13 ver. 1.1 assembly) constructed a total of 84,209 transcripts from 98,007 gene loci among all of the samples. Further analysis revealed that host defense- related genes, including the nucleotide binding site-leucinerich repeat domain containing disease resistance gene analogs, play an important role in resistance to rust infection. Rust-induced gene (RIG) transcripts inherited across generations were identified. The rust-resistant gene transcripts can be a valuable resource for developing molecular markers for rust resistance. Finally we identified the rust-resistant genotypes and gene transcripts which can expedite rust-resistant cultivar development in switchgrass.« less

  8. Genotype-by-sequencing facilitates genetic mapping of a stem rust resistance locus in Aegilops umbellulata, a wild relative of cultivated wheat.

    PubMed

    Edae, Erena A; Olivera, Pablo D; Jin, Yue; Poland, Jesse A; Rouse, Matthew N

    2016-12-15

    Wild relatives of wheat play a significant role in wheat improvement as a source of genetic diversity. Stem rust disease of wheat causes significant yield losses at the global level and stem rust pathogen race TTKSK (Ug99) is virulent to most previously deployed resistance genes. Therefore, the objective of this study was to identify loci conferring resistance to stem rust pathogen races including Ug99 in an Aegilops umbelluata bi-parental mapping population using genotype-by-sequencing (GBS) SNP markers. A bi-parental F 2:3 population derived from a cross made between stem rust resistant accession PI 298905 and stem rust susceptible accession PI 542369 was used for this study. F 2 individuals were evaluated with stem rust race TTTTF followed by testing F 2:3 families with races TTTTF and TTKSK. The segregation pattern of resistance to both stem rust races suggested the presence of one resistance gene. A genetic linkage map, comprised 1,933 SNP markers, was created for all seven chromosomes of Ae. umbellulata using GBS. A major stem rust resistance QTL that explained 80% and 52% of the phenotypic variations for TTTTF and TTKSK, respectively, was detected on chromosome 2U of Ae. umbellulata. The novel resistance gene for stem rust identified in this study can be transferred to commercial wheat varieties assisted by the tightly linked markers identified here. These markers identified through our mapping approach can be a useful strategy to identify and track the resistance gene in marker-assisted breeding in wheat.

  9. Transcriptome Profiling of Rust Resistance in Switchgrass Using RNA-Seq Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Serba, Desalegn D.; Uppalapati, Srinivasa Rao; Mukherjee, Shreyartha

    Switchgrass rust caused by Puccinia emaculata is a major limiting factor for switchgrass (Panicum virgatum L.) production, especially in monoculture. Natural populations of switchgrass displayed diverse reactions to P. emaculata when evaluated in an Ardmore, OK, field. In order to identify the differentially expressed genes during the rust infection process and the mechanisms of switchgrass rust resistance, transcriptome analysis using RNA-Seq was conducted in two pseudo-F 1 parents ('PV281' and 'NFGA472'), and three moderately resistant and three susceptible progenies selected from a three-generation, four-founder switchgrass population (K5 x A4) x (AP13 x VS16). On average, 23.5 million reads per samplemore » (leaf tissue was collected at 0, 24, and 60 h post-inoculation (hpi)) were obtained from paired-end (2 x 100 bp) sequencing on the Illumina HiSeq2000 platform. Furthermore, mapping of the RNA-Seq reads to the switchgrass reference genome (AP13 ver. 1.1 assembly) constructed a total of 84,209 transcripts from 98,007 gene loci among all of the samples. Further analysis revealed that host defense- related genes, including the nucleotide binding site-leucinerich repeat domain containing disease resistance gene analogs, play an important role in resistance to rust infection. Rust-induced gene (RIG) transcripts inherited across generations were identified. The rust-resistant gene transcripts can be a valuable resource for developing molecular markers for rust resistance. Finally we identified the rust-resistant genotypes and gene transcripts which can expedite rust-resistant cultivar development in switchgrass.« less

  10. First Report of Garlic Rust Caused by Puccinia allii on Allium sativum in Minnesota

    USDA-ARS?s Scientific Manuscript database

    In July 2010, Allium sativum, cultivar German Extra Hardy Porcelain plants showing foliar symptoms typical of rust infection were brought to the Plant Disease Clinic at the University of Minnesota by a commercial grower from Fillmore county Minnesota. Infected leaves showed circular to oblong lesio...

  11. Label-Free Detection of Soybean Rust Spores using Photonic Crystal Biosensors

    USDA-ARS?s Scientific Manuscript database

    Soybean rust, caused by the fungus Phakopsora pachyrhizi, is one of the most devastating foliar diseases affecting soybeans grown worldwide. The disease was reported for the first time in the United States in 2004. Early spore detection, prior to the appearance of visible symptoms, is critical to ef...

  12. Virulence and molecular characterization of experimental isolates of the stripe rust pathogen (Puccinia striiformis) indicate somatic recombination

    USDA-ARS?s Scientific Manuscript database

    Puccinia striiformis causes stripe rust on wheat, barley, and grasses. Natural population studies have indicated that somatic recombination plays a possible role in the pathogen variation. To determine if somatic recombination can occur, susceptible wheat or barley plants were inoculated with mixe...

  13. Variation in Soybean Rust Reaction Response in a Set of Resistant Germplasm Accessions

    USDA-ARS?s Scientific Manuscript database

    Soybean resistance to soybean rust (SBR), caused by Phakopsora pachyrhizi, is often associated with the formation of reddish-brown (RB) lesions, reduced disease incidence and severity, and/or prolongation of the latent period between infection and sporulation (referred to as “slow rusting”). The app...

  14. Identification of a soybean rust resistance gene in PI 567104B

    USDA-ARS?s Scientific Manuscript database

    Asian soybean rust (SBR), caused by the fungus Phakopsora pachyrhizi Syd. & P. Syd., is one of the most economically important diseases that affect soybean production worldwide. A long-term strategy for minimizing the effects of SBR is the development of genetically resistant cultivars integrated wi...

  15. Developing clones of Eucalyptus cloeziana resistant to rust (Puccinia psidii)

    Treesearch

    Rafael F. Alfenas; Marcelo M. Coutinho; Camila S. Freitas; Rodrigo G. Freitas; Acelino C. Alfenas

    2012-01-01

    Besides its high resistance to Chrysoporthe cubensis canker, Eucalyptus cloeziana F. Muell. is a highly valuable tree species for wood production. It can be used for furniture, electric poles, fence posts, and charcoal. Nevertheless, it is highly susceptible to the rust caused by Puccinia psidii, which...

  16. Identification of RAPD marker associated with brown rust resistance in sugarcane

    USDA-ARS?s Scientific Manuscript database

    Susceptibility to brown rust caused by Puccinia melanocephala is a major reason for the withdrawal of sugarcane cultivars from production. An efficient way to control the disease is to breed cultivars with durable resistance. Our aim was to identify random amplified polymorphic DNA (RAPD) markers ...

  17. Puccinia coronata f. sp. avenae: a threat to global oat production

    USDA-ARS?s Scientific Manuscript database

    Puccinia coronata f. sp. avenae causes crown rust disease in cultivated and wild oat. The significant yield losses inflicted by this pathogen makes crown rust the most devastating disease in the oat industry. P. coronata f. sp. avenae is a basidiomycete fungus with an obligate biotrophic lifestyle a...

  18. Global Gene Expression Profiles of Resistant and Susceptible Genotypes of Glycine tomentella During Phakopsora pachyrhizi Infection

    USDA-ARS?s Scientific Manuscript database

    Soybean rust, caused by Phakopsora pachyrhizi, is a destructive foliar disease that occurs in many soybean-producing countries. Towards the goal of identifying genes controlling resistance to soybean rust, transcriptome profiling was conducted in resistant and susceptible Glycine tomentella genotype...

  19. A latent-period duration model for wheat stem rust

    USDA-ARS?s Scientific Manuscript database

    Wheat stem rust caused by Puccinia graminis subsp. graminis (Pgg) is a highly destructive disease of wheat and other small grains. The discovery of a Pgg race (Ug99) that overcomes durable resistance in wheat raises concerns for global wheat production and food security. There is currently no mat...

  20. Dynamics of soybean rust epidemics in sequential plantings of soybean cultivars in Nigeria

    USDA-ARS?s Scientific Manuscript database

    Soybean rust, caused by the fungus Phakopsora pachyrhizi, is an important foliar disease of soybean. The disease intensity is dependent on environmental factors, although the precise conditions of most of these factors is not known. To help understand what environmental factors favor disease develop...

  1. A threshold-based weather model for predicting stripe rust infection in winter wheat

    USDA-ARS?s Scientific Manuscript database

    Wheat stripe rust (WSR) (caused by Puccinia striiformis sp. tritici) is a major threat in most wheat growing regions worldwide, with potential to inflict regular yield losses when environmental conditions are favorable. We propose a threshold-based disease-forecasting model using a stepwise modeling...

  2. Distribution of bark beetle attacks after whitebark pine restoration treatments: A case study

    Treesearch

    Kristen M. Waring; Diana L. Six

    2005-01-01

    Whitebark pine (Pinus albicaulis Engelm.), an important component of high elevation ecosystems in the western United States and Canada, is declining due to fire exclusion, white pine blister rust (Cronartium ribicola J.C. Fisch.), and mountain pine beetle (Dendroctonus ponderosae Hopkins). This study was...

  3. First report of the white pine blister rust fungus, Cronartium ribicola, on Pedicularis bracteosa

    Treesearch

    P. J. Zambino; B. A. Richardson; G. I. McDonald

    2007-01-01

    Until recently, Cronartium ribicola J.C. Fisch. was thought to utilize only Ribes spp. (Grossulariaceae) as telial hosts in North America. During 2004, Pedicularis racemosa Dougl. ex Benth. and Castilleja miniata Dougl. (Orobanchaceae) were proven as natural telial hosts at a subalpine site (48...

  4. Geographic patterns of genetic variation and population structure in Pinus aristata, Rocky Mountain bristlecone pine

    USDA-ARS?s Scientific Manuscript database

    Pinus aristata Engelm., Rocky Mountain bristlecone pine, has a narrow core geographic and elevational distribution, occurs in disjunct populations and is threatened by multiple stresses, including rapid climate change, white pine blister rust, and bark beetles. Knowledge of genetic diversity and pop...

  5. The genome sequence and effector complement of the flax rust pathogen Melampsora lini.

    PubMed

    Nemri, Adnane; Saunders, Diane G O; Anderson, Claire; Upadhyaya, Narayana M; Win, Joe; Lawrence, Gregory J; Jones, David A; Kamoun, Sophien; Ellis, Jeffrey G; Dodds, Peter N

    2014-01-01

    Rust fungi cause serious yield reductions on crops, including wheat, barley, soybean, coffee, and represent real threats to global food security. Of these fungi, the flax rust pathogen Melampsora lini has been developed most extensively over the past 80 years as a model to understand the molecular mechanisms that underpin pathogenesis. During infection, M. lini secretes virulence effectors to promote disease. The number of these effectors, their function and their degree of conservation across rust fungal species is unknown. To assess this, we sequenced and assembled de novo the genome of M. lini isolate CH5 into 21,130 scaffolds spanning 189 Mbp (scaffold N50 of 31 kbp). Global analysis of the DNA sequence revealed that repetitive elements, primarily retrotransposons, make up at least 45% of the genome. Using ab initio predictions, transcriptome data and homology searches, we identified 16,271 putative protein-coding genes. An analysis pipeline was then implemented to predict the effector complement of M. lini and compare it to that of the poplar rust, wheat stem rust and wheat stripe rust pathogens to identify conserved and species-specific effector candidates. Previous knowledge of four cloned M. lini avirulence effector proteins and two basidiomycete effectors was used to optimize parameters of the effector prediction pipeline. Markov clustering based on sequence similarity was performed to group effector candidates from all four rust pathogens. Clusters containing at least one member from M. lini were further analyzed and prioritized based on features including expression in isolated haustoria and infected leaf tissue and conservation across rust species. Herein, we describe 200 of 940 clusters that ranked highest on our priority list, representing 725 flax rust candidate effectors. Our findings on this important model rust species provide insight into how effectors of rust fungi are conserved across species and how they may act to promote infection on their hosts.

  6. Phakopsora euvitis Causes Unusual Damage to Leaves and Modifies Carbohydrate Metabolism in Grapevine

    PubMed Central

    Nogueira Júnior, Antonio F.; Ribeiro, Rafael V.; Appezzato-da-Glória, Beatriz; Soares, Marli K. M.; Rasera, Júlia B.; Amorim, Lilian

    2017-01-01

    Asian grapevine rust (Phakopsora euvitis) is a serious disease, which causes severe leaf necrosis and early plant defoliation. These symptoms are unusual for a strict biotrophic pathogen. This work was performed to quantify the effects of P. euvitis on photosynthesis, carbohydrates, and biomass accumulation of grapevine. The reduction in photosynthetic efficiency of the green leaf tissue surrounding the lesions was quantified using the virtual lesion concept (β parameter). Gas exchange and responses of CO2 assimilation to increasing intercellular CO2 concentration were analyzed. Histopathological analyses and quantification of starch were also performed on diseased leaves. Biomass and carbohydrate accumulation were quantified in different organs of diseased and healthy plants. Rust reduced the photosynthetic rate, and β was estimated at 5.78, indicating a large virtual lesion. Mesophyll conductance, maximum rubisco carboxylation rate, and regeneration of ribulose-1,5-bisphosphate dependent on electron transport rate were reduced, causing diffusive and biochemical limitations to photosynthesis. Hypertrophy, chloroplast degeneration of mesophyll cells, and starch accumulation in cells close to lesions were observed. Root carbohydrate concentration was reduced, even at low rust severity. Asian grapevine rust dramatically reduced photosynthesis and altered the dynamics of production and accumulation of carbohydrates, unlike strict biotrophic pathogens. The reduction in carbohydrate reserves in roots would support polyetic damage on grapevine, caused by a polycyclic disease. PMID:29018470

  7. Adult Plant Leaf Rust Resistance Derived from Toropi Wheat is Conditioned by Lr78 and Three Minor QTL.

    PubMed

    Kolmer, J A; Bernardo, A; Bai, G; Hayden, M J; Chao, S

    2018-02-01

    Leaf rust caused by Puccinia triticina is an important disease of wheat in many regions worldwide. Durable or long-lasting leaf rust resistance has been difficult to achieve because populations of P. triticina are highly variable for virulence to race-specific resistance genes, and respond to selection by resistance genes in released wheat cultivars. The wheat cultivar Toropi, developed and grown in Brazil, was noted to have long-lasting leaf rust resistance that was effective only in adult plants. The objectives of this study were to determine the chromosome location of the leaf rust resistance genes derived from Toropi in two populations of recombinant inbred lines in a partial Thatcher wheat background. In the first population, a single gene with major effects on chromosome 5DS that mapped 2.2 centimorgans distal to IWA6289, strongly reduced leaf rust severity in all 3 years of field plot tests. This gene for adult plant leaf rust resistance was designated as Lr78. In the second population, quantitative trait loci (QTL) with small effects on chromosomes 1BL, 3BS, and 4BS were found. These QTL expressed inconsistently over 4 years of field plot tests. The adult plant leaf rust resistance derived from Toropi involved a complex combination of QTL with large and small effects.

  8. Nonhost resistance to rust pathogens - a continuation of continua.

    PubMed

    Bettgenhaeuser, Jan; Gilbert, Brian; Ayliffe, Michael; Moscou, Matthew J

    2014-01-01

    The rust fungi (order: Pucciniales) are a group of widely distributed fungal plant pathogens, which can infect representatives of all vascular plant groups. Rust diseases significantly impact several crop species and considerable research focuses on understanding the basis of host specificity and nonhost resistance. Like many pathogens, rust fungi vary considerably in the number of hosts they can infect, such as wheat leaf rust (Puccinia triticina), which can only infect species in the genera Triticum and Aegilops, whereas Asian soybean rust (Phakopsora pachyrhizi) is known to infect over 95 species from over 42 genera. A greater understanding of the genetic basis determining host range has the potential to identify sources of durable resistance for agronomically important crops. Delimiting the boundary between host and nonhost has been complicated by the quantitative nature of phenotypes in the transition between these two states. Plant-pathogen interactions in this intermediate state are characterized either by (1) the majority of accessions of a species being resistant to the rust or (2) the rust only being able to partially complete key components of its life cycle. This leads to a continuum of disease phenotypes in the interaction with different plant species, observed as a range from compatibility (host) to complete immunity within a species (nonhost). In this review we will highlight how the quantitative nature of disease resistance in these intermediate interactions is caused by a continuum of defense barriers, which a pathogen needs to overcome for successfully establishing itself in the host. To illustrate continua as this underlying principle, we will discuss the advances that have been made in studying nonhost resistance towards rust pathogens, particularly cereal rust pathogens.

  9. Nonhost resistance to rust pathogens – a continuation of continua

    PubMed Central

    Bettgenhaeuser, Jan; Gilbert, Brian; Ayliffe, Michael; Moscou, Matthew J.

    2014-01-01

    The rust fungi (order: Pucciniales) are a group of widely distributed fungal plant pathogens, which can infect representatives of all vascular plant groups. Rust diseases significantly impact several crop species and considerable research focuses on understanding the basis of host specificity and nonhost resistance. Like many pathogens, rust fungi vary considerably in the number of hosts they can infect, such as wheat leaf rust (Puccinia triticina), which can only infect species in the genera Triticum and Aegilops, whereas Asian soybean rust (Phakopsora pachyrhizi) is known to infect over 95 species from over 42 genera. A greater understanding of the genetic basis determining host range has the potential to identify sources of durable resistance for agronomically important crops. Delimiting the boundary between host and nonhost has been complicated by the quantitative nature of phenotypes in the transition between these two states. Plant–pathogen interactions in this intermediate state are characterized either by (1) the majority of accessions of a species being resistant to the rust or (2) the rust only being able to partially complete key components of its life cycle. This leads to a continuum of disease phenotypes in the interaction with different plant species, observed as a range from compatibility (host) to complete immunity within a species (nonhost). In this review we will highlight how the quantitative nature of disease resistance in these intermediate interactions is caused by a continuum of defense barriers, which a pathogen needs to overcome for successfully establishing itself in the host. To illustrate continua as this underlying principle, we will discuss the advances that have been made in studying nonhost resistance towards rust pathogens, particularly cereal rust pathogens. PMID:25566270

  10. Characterization of Brachypodium distachyon as a nonhost model against switchgrass rust pathogen Puccinia emaculata.

    PubMed

    Gill, Upinder S; Uppalapati, Srinivasa R; Nakashima, Jin; Mysore, Kirankumar S

    2015-05-08

    Switchgrass rust, caused by Puccinia emaculata, is an important disease of switchgrass, a potential biofuel crop in the United States. In severe cases, switchgrass rust has the potential to significantly affect biomass yield. In an effort to identify novel sources of resistance against switchgrass rust, we explored nonhost resistance against P. emaculata by characterizing its interactions with six monocot nonhost plant species. We also studied the genetic variations for resistance among Brachypodium inbred accessions and the involvement of various defense pathways in nonhost resistance of Brachypodium. We characterized P. emaculata interactions with six monocot nonhost species and identified Brachypodium distachyon (Bd21) as a suitable nonhost model to study switchgrass rust. Interestingly, screening of Brachypodium accessions identified natural variations in resistance to switchgrass rust. Brachypodium inbred accessions Bd3-1 and Bd30-1 were identified as most and least resistant to switchgrass rust, respectively, when compared to tested accessions. Transcript profiling of defense-related genes indicated that the genes which were induced in Bd21after P. emaculata inoculation also had higher basal transcript abundance in Bd3-1 when compared to Bd30-1 and Bd21 indicating their potential involvement in nonhost resistance against switchgrass rust. In the present study, we identified Brachypodium as a suitable nonhost model to study switchgrass rust which exhibit type I nonhost resistance. Variations in resistance response were also observed among tested Brachypodium accessions. Brachypodium nonhost resistance against P. emaculata may involve various defense pathways as indicated by transcript profiling of defense related genes. Overall, this study provides a new avenue to utilize novel sources of nonhost resistance in Brachypodium against switchgrass rust.

  11. An analysis of the risk of introduction of additional strains of the rust puccinia psidii Winter ('Ohi'a Rust) to Hawai'i

    USGS Publications Warehouse

    Loope, Lloyd; La Rosa, Anne Marie

    2010-01-01

    In April 2005, the rust fungus Puccinia psidii (most widely known as guava rust or eucalyptus rust) was found in Hawai'i. This was the first time this rust had been found outside the Neotropics (broadly-defined, including subtropical Florida, where the rust first established in the 1970s). First detected on a nursery-grown 'ohi'a plant, it became known as ''ohi'a rust'in Hawai'i. The rust spread rapidly and by August 2005 had been found throughout the main Hawaiian Islands. The rust probably reached Hawai'i via the live plant trade or via the foliage trade. In Hawai'i, the rust has infected three native plant species and at least eight non-native species. Effects have been substantial on the endangered endemic plant Eugenia koolauensis and the introduced rose apple, Syzygium jambos. Billions of yellow, asexual urediniospores are produced on rose apple, but a complete life cycle (involving sexual reproduction) has not yet been observed. The rust is autoecious (no alternate host known) on Myrtaceae. The strain introduced into Hawai'i is found sparingly on 'ohi'a (Metrosideros polymorpha), the dominant tree of Hawai'i's forests, with sporadic damage detected to date. The introduction of a rust strain that causes widespread damage to 'ohi'a would be catastrophic for Hawai'i's native biodiversity. Most imports of material potentially contaminated with rust are shipped to Hawai'i from Florida and California (from which P. psidii was reported in late 2005 by Mellano, 2006). Florida is known to have multiple strains. The identity of the strain or strains in California is unclear, but one of them is known to infect myrtle, Myrtus communis, a species commonly imported into Hawai'i. It is important to ecosystem conservation and commercial forestry that additional rust strains or genotypes be prevented from establishing in Hawai'i. The purpose of this analysis of risk is to evaluate the need for an interim rule by the Hawai'i Department of Agriculture to regulate plant material of Myrtaceae arriving from the continental United States and to clarify consequences of such a rule, especially implications for possible eventual action by the U.S. Department of Agriculture, Animal and Plant Health Inspection Service, to assist in protection of Hawai'i's native and non-native Myrtaceae from plant pests.

  12. Characterization of stem rust resistance in wheat cultivar 'Gage'

    USDA-ARS?s Scientific Manuscript database

    Wheat (Triticum spp.) stem rust, caused by Puccinia graminis f. sp. tritici Eriks. & E. Henn. (Pgt), re-emerged as a devastating disease of wheat because of virulent race Ug99 (TTKSK). Many bread wheat (T. aestivum L.) cultivars grown in North America are susceptible to Ug99 or its derivative races ...

  13. Postulation and mapping of seedling stripe rust resistance genes in Ethiopian bread wheat cultivars

    USDA-ARS?s Scientific Manuscript database

    Stripe rust caused by Puccinia striiformis f. sp. tritici (Pst), is one of the most important diseases of wheat worldwide. In Ethiopia, grain yield loss in wheat cultivars ranges from 30 to 69%. The use of resistant cultivars is the most economical and environmentally friendly method of controlling ...

  14. QTLs for resistance to the false brome rust Puccinia brachypodii in the model grass Brachypodium distachyon L.

    USDA-ARS?s Scientific Manuscript database

    The wild grass Brachypodium distachyon (Brachypodium) is a new model system for temperate cereals, but its potential for studying interactions between grasses and their pathogens remains underexploited. Leaf rust caused by members of the fungal genus Puccinia is a major disease affecting temperate c...

  15. Infection of Brachypodium distachyon by formae speciales of Puccinia graminis: early infection events and host-pathogen incompatibility

    USDA-ARS?s Scientific Manuscript database

    Brachypodium distachyon is an emerging model to study fungal disease resistance in cereals and grasses. We characterized the stem rust-Brachypodium pathosystem to evaluate its potential for investigating molecular and genetic aspects of resistance to P. graminis, the pathogen that causes stem rust. ...

  16. Chlorogenic acid levels in leaves of coffee plants supplied with silicon and infected by Hemileia vastatrix

    USDA-ARS?s Scientific Manuscript database

    Rust, caused by Hemileia vastatrix, is the main disease that decreases coffee production in Brazil. New and enhanced methods to reduce rust intensity that can be integrated with modern genetic and chemical approaches need to be investigated. Considering that many plant species supplied with silico...

  17. Prediction of short-distance aerial movement of Phakopsora pachyrhizi urediniospores using machine learning

    USDA-ARS?s Scientific Manuscript database

    Dispersal of urediniospores by wind is the primary means of spread for Phakopsora pachyrhizi, the cause of soybean rust. Our research focused on the short distance movement of urediniospores from within the soybean canopy and up to 61 m from field-grown soybean rust infected plants. Environmental va...

  18. Genotyping Sugarcane for the Brown Rust Resistance Locus Bru1 Using Unlabeled Probe Melting

    USDA-ARS?s Scientific Manuscript database

    Brown rust, caused by the fungus Puccinia melanocephala, is a major disease of sugarcane (Saccharum spp.) in Florida, Louisiana, and other sugarcane growing regions. The Bru1 locus has been used as a durable and effective source of resistance, and markers are available to select for the trait. The...

  19. Tandem selection for fusiform rust sisease resistance to develop a clonal elite breeding population of loblolly pine

    Treesearch

    Steve McKeand; Saul Garcia; Josh Steiger; Jim Grissom; Ross Whetten; Fikret Isik

    2012-01-01

    The elite breeding populations of loblolly pine (Pinus taeda L.) in the North Carolina State University Cooperative Tree Improvement Program are intensively managed for short-term genetic gain. Fusiform rust disease, caused by the fungus Cronartium quercuum f. sp. fusiforme, is the most economically...

  20. Genetic differentiation of the wheat leaf rust fungus Puccinia triticina in Europe

    USDA-ARS?s Scientific Manuscript database

    Leaf rust, caused by Puccinia triticina is a common disease of wheat in Europe. The objective of this study was to determine whether genetically differentiated groups of P. triticina are present in Europe. In total, 133 isolates of P. triticina collected from western Europe, central Europe, and Turk...

  1. First report of Soybean Rust (Phakopsora pachyrhizi) on Florida Beggarweed (Desmodium tortuosum) in Alabama

    USDA-ARS?s Scientific Manuscript database

    Soybean rust (SBR), caused by the fungus Phakopsora pachyrhizi, was detected on Florida Beggarweed (Desmodium tortuosum) for the first time in Alabama in November, 2009. The pathogen was not observed in 2010 or 2011, probably because of the exceptionally dry, hot weather in the region. The pathogen ...

  2. First report of orange rust caused by Puccinia kuehnii in sugarcane in Louisiana

    USDA-ARS?s Scientific Manuscript database

    In June 2012, lesions typical of rust disease were observed on sugarcane cultivar Ho 05-961 (a complex hybrid of Saccharum L. species) on a farm near Schriever, Louisiana. Incidence and severity of disease symptoms were low. Two types of pustules were observed on leaves of the infected plants: uredi...

  3. First report of soybean rust (Phakopsora pachyrhizi) on Florida beggarweed (Desmodium tortuosum) in Alabama

    USDA-ARS?s Scientific Manuscript database

    Soybean rust, caused by the fungus Phakopsora pachyrhizi, was detected on Florida Beggarweed (Desmodium tortuosum) for the first time in Alabama in November, 2009. The pathogen was observed on plants collected from a field at the Wiregrass Research and Extension Center in Headland, Alabama located i...

  4. Stripe rust epidemiological regions, virulence dynamics, pathogen reproduction modes, yield losses, forecasting models, and management in the United States

    USDA-ARS?s Scientific Manuscript database

    Stripe rust of wheat, caused by Puccinia striiformis f. sp. tritici (Pst), is one of the most important diseases in the United States. Epidemiological regions were determined based on epidemic patterns, cropping systems, geographic barriers, weather patterns, and inoculum exchanges. Areas where Ps...

  5. Discovery of a seventh Rpp soybean rust resistance locus in soybean accession PI 605823

    USDA-ARS?s Scientific Manuscript database

    Soybean rust, caused by the obligate biotrophic fungal pathogen Phakopsora pachyrhizi Syd. & Syd, is a disease threat to soybean production in regions of the world with mild winters. Host plant resistance to P. pachyrhizi conditioned by Rpp genes has been found in numerous soybean accessions, and at...

  6. Genome-wide association mapping of leaf rust response in a durum wheat worldwide germplasm collection

    USDA-ARS?s Scientific Manuscript database

    Leaf rust (caused by Puccinia triticina Eriks.) is increasingly impacting durum wheat production with the recent appearance of races with virulence to widely grown cultivars in many durum producing areas worldwide. A highly virulent P. triticina race on durum wheat was recently collected in Kansas....

  7. Sources of stem rust resistance in wheat-alien introgression lines

    USDA-ARS?s Scientific Manuscript database

    Stem rust, caused by Puccinia graminis f. sp. tritici, is one of the most devastating diseases of wheat and the novel highly virulent race of TTKSK and its lineage are threatening wheat production worldwide. The objective of the study was to identify new sources of resistance in wheat-alien introgre...

  8. The control of Asian rust by glyphosate in glyphosate-resistant soybeans.

    PubMed

    Feng, Paul C C; Clark, Celeste; Andrade, Gabriella C; Balbi, Maria C; Caldwell, Pat

    2008-04-01

    Glyphosate is a widely used broad-spectrum herbicide. Recent studies in glyphosate-resistant (GR) crops have shown that, in addition to its herbicidal activity, glyphosate exhibits activity against fungi, thereby providing disease control benefits. In GR wheat, glyphosate has shown both preventive and curative activities against Puccinia striiformis f. sp. tritici (Erikss) CO Johnston and Puccinia triticina Erikss, which cause stripe and leaf rusts respectively. Laboratory studies confirmed earlier observations that glyphosate has activity against Phakopsora pachyrhizi Syd & P Syd which causes Asian soybean rust (ASR) in GR soybeans. The results showed that glyphosate at rates between 0.84 and 1.68 kg ha(-1) delayed the onset of ASR in GR soybeans. However, field trials conducted in Argentina and Brazil under natural infestations showed variable ASR control from application of glyphosate in GR soybeans. Further field studies are ongoing to define the activity of glyphosate against ASR. These results demonstrate the disease control activities of glyphosate against rust diseases in GR wheat and GR soybeans. Copyright (c) 2007 Society of Chemical Industry.

  9. Cytological and molecular analysis of nonhost resistance in rice to wheat powdery mildew and leaf rust pathogens.

    PubMed

    Cheng, Yulin; Yao, Juanni; Zhang, Hongchang; Huang, Lili; Kang, Zhensheng

    2015-07-01

    Cereal powdery mildews caused by Blumeria graminis and cereal rusts caused by Puccinia spp. are constant disease threats that limit the production of almost all important cereal crops. Rice is an intensively grown agricultural cereal that is atypical because of its immunity to all powdery mildew and rust fungi. We analyzed the nonhost interactions between rice and the wheat powdery mildew fungus B. graminis f. sp. tritici (Bgt) and the wheat leaf rust fungus Puccinia triticina (Ptr) to identify the basis of nonhost resistance (NHR) in rice against cereal powdery mildew and rust fungi at cytological and molecular levels. No visible symptoms were observed on rice leaves inoculated with Bgt or Ptr. Microscopic observations showed that both pathogens exhibited aberrant differentiation and significantly reduced penetration frequencies on rice compared to wheat. The development of Bgt and Ptr was also completely arrested at early infection stages in cases of successful penetration into rice leaves. Attempted infection of rice by Bgt and Ptr induced similar defense responses, including callose deposition, accumulation of reactive oxygen species, and hypersensitive response in rice epidermal and mesophyll cells, respectively. Furthermore, a set of defense-related genes were upregulated in rice against Bgt and Ptr infection. Rice is an excellent monocot model for genetic and molecular studies. Therefore, our results demonstrate that rice is a useful model to study the mechanisms of NHR to cereal powdery mildew and rust fungi, which provides useful information for the development of novel and durable strategies to control these important pathogens.

  10. KENNEDY SPACE CENTER, FLA. -- A tri-colored heron stands sentry in the marshes around KSC. It has slate blue feathers on most of its body except for a white chest and belly and a rust-colored neck. It has long yellow legs, a white stripe that runs up its neck and long pointed yellow bill. The bill turns blue during breeding season.The heron is one of 310 species of birds that inhabit the Merritt Island National Wildlife Refuge, which shares a boundary with KSC. The marshes and open water of the refuge also provide wintering areas for 23 species of migratory waterfowl, as well as a year-round home for great egrets, wood storks, cormorants, brown pelicans and other species of marsh and shore birds.

    NASA Image and Video Library

    2004-01-08

    KENNEDY SPACE CENTER, FLA. -- A tri-colored heron stands sentry in the marshes around KSC. It has slate blue feathers on most of its body except for a white chest and belly and a rust-colored neck. It has long yellow legs, a white stripe that runs up its neck and long pointed yellow bill. The bill turns blue during breeding season.The heron is one of 310 species of birds that inhabit the Merritt Island National Wildlife Refuge, which shares a boundary with KSC. The marshes and open water of the refuge also provide wintering areas for 23 species of migratory waterfowl, as well as a year-round home for great egrets, wood storks, cormorants, brown pelicans and other species of marsh and shore birds.

  11. 8” x 10” black and white photographic print made from ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8” x 10” black and white photographic print made from original 1933, 8” x 10” black and white photographic negative. New 4” x 5” archival negative made from print. Original photographer unknown. Original 8” x 10” negative located in the files of the New Orleans Public Belt Railroad administrative offices at 5100 Jefferson Highway, Jefferson, LA 70123. SEPTEMBER 20, 1933 PHOTOGRAPH NO. 12 OF CONTRACT NO. 6 SHOWING EAST APPROACH – GROUT AROUND RUST JOINT. - Huey P. Long Bridge, Spanning Mississippi River approximately midway between nine & twelve mile points upstream from & west of New Orleans, Jefferson, Jefferson Parish, LA

  12. Health of whitebark pine forests after mountain pine beetle outbreaks

    Treesearch

    Sandra Kegley; John Schwandt; Ken Gibson; Dana Perkins

    2011-01-01

    Whitebark pine (Pinus albicaulis), a keystone high-elevation species, is currently at risk due to a combination of white pine blister rust (WPBR) (Cronartium ribicola), forest succession, and outbreaks of mountain pine beetle (MPB) (Dendroctonus ponderosae). While recent mortality is often quantified by aerial detection surveys (ADS) or ground surveys, little...

  13. Whitebark pine direct seeding trials in the Pacific Northwest

    Treesearch

    John Schwandt; Kristen Chadwick; Holly Kearns; Chris Jensen

    2011-01-01

    Whitebark pine (Pinus albicaulis) is a critical species in many high elevation ecosystems and is currently in serious decline due to white pine blister rust (Cronartium ribicola), mountain pine beetle (Dendroctonus ponderosae), and competition from other species (Schwandt 2006; Tomback and Achuff 2010; Tomback and others 2001). Many areas needing restoration are very...

  14. Limber pine health survey in the Rocky Mountains and North Dakota

    Treesearch

    James T. Blodgett; Kelly S. Burns; Brian Howell; Marcus Jackson; William R. Jacobi; Anna W. Schoettle

    2010-01-01

    Limber pines are widely distributed across the Rocky Mountains and are especially important because of their unique cultural and ecological characteristics. Recent surveys have suggested that significant ecological impacts are occurring as a result of white pine blister rust (WPBR) and other damaging agents. Additionally, several new WPBR infestations have...

  15. Underwater EIT Follow-on Project

    DTIC Science & Technology

    2009-01-01

    correlation value of 0.2. (White pixels indicate zero deviation from predicted transimpedance ; blue represents high deviation...34 Figure 50. Sample transimpedance measurements for high turbidity (top) and low turbidity (bottom) conditions. (These measurements...magnitudes of the transimpedance measurements. ... 40 Figure 67. A reconstruction image of rust level 0. The true target position is 2cm below the

  16. Recovery of Phakopsora pachyrhizi urediniospores from Passive Spore Trap Slides and Extraction of Their DNA for Quantitative PCR

    USDA-ARS?s Scientific Manuscript database

    Enumeration of rust spores from passive spore traps utilizing white petrolatum-coated slides by traditional microscopic evaluation can represent a serious challenge. Many fungal spores look alike, and clear visualization on the adhesive can be obscured by particulate debris or nonuniformities within...

  17. Monitoring limber pine health in the Rocky Mountains and North Dakota

    Treesearch

    Kelly Burns; Jim Blodgett; Marcus Jackson; Brian Howell; William Jacobi; Anna Schoettle; Anne Marie Casper; Jennifer Klutsch

    2011-01-01

    Ecological impacts are occurring as white pine blister rust spreads and intensifies through ecologically and culturally important limber pine ecosystems of the Rocky Mountains and surrounding areas. The imminent threat of mountain pine beetle has heightened concerns. Therefore, information on the health status of limber pine is needed to facilitate management and...

  18. Restoring whitebark pine ecosystems in the face of climate change

    Treesearch

    Robert E. Keane; Lisa M. Holsinger; Mary F. Mahalovich; Diana F. Tomback

    2017-01-01

    Whitebark pine (Pinus albicaulis) forests have been declining throughout their range in western North America from the combined effects of mountain pine beetle (Dendroctonus ponderosae) outbreaks, fire exclusion policies, and the exotic disease white pine blister rust (Cronartium ribicola). Projected warming and drying trends in climate may exacerbate this decline;...

  19. Re-measurement of whitebark pine infection and mortality in the Canadian Rockies

    Treesearch

    Cyndi M. Smith; Brenda Shepherd; Cameron Gillies; Jon Stuart-Smith

    2011-01-01

    Whitebark pine (Pinus albicaulis) populations are under threat across the species' range from white pine blister rust (Cronartium ribicola), mountain pine beetle (Dendroctonus ponderosae), fire exclusion and climate change (Tomback and Achuff 2010). Loss of whitebark pine is predicted to have cascading effects on the following ecological services: provision of...

  20. Whitebark and limber pine restoration and monitoring in Glacier National Park

    Treesearch

    Jennifer M. Asebrook; Joyce Lapp; Tara. Carolin

    2011-01-01

    Whitebark pine (Pinus albicaulis) and limber pine (Pinus flexilis) are keystone species important to watersheds, grizzly and black bears, squirrels, birds, and other wildlife. Both high elevation five-needled pines have dramatically declined in Glacier National Park primarily due to white pine blister rust (Cronartium ribicola) and fire exclusion, with mountain pine...

  1. Comparison of multi- and hyperspectral imaging data of leaf rust infected wheat plants

    NASA Astrophysics Data System (ADS)

    Franke, Jonas; Menz, Gunter; Oerke, Erich-Christian; Rascher, Uwe

    2005-10-01

    In the context of precision agriculture, several recent studies have focused on detecting crop stress caused by pathogenic fungi. For this purpose, several sensor systems have been used to develop in-field-detection systems or to test possible applications of remote sensing. The objective of this research was to evaluate the potential of different sensor systems for multitemporal monitoring of leaf rust (puccinia recondita) infected wheat crops, with the aim of early detection of infected stands. A comparison between a hyperspectral (120 spectral bands) and a multispectral (3 spectral bands) imaging system shows the benefits and limitations of each approach. Reflectance data of leaf rust infected and fungicide treated control wheat stand boxes (1sqm each) were collected before and until 17 days after inoculation. Plants were grown under controlled conditions in the greenhouse and measurements were taken under consistent illumination conditions. The results of mixture tuned matched filtering analysis showed the suitability of hyperspectral data for early discrimination of leaf rust infected wheat crops due to their higher spectral sensitivity. Five days after inoculation leaf rust infected leaves were detected, although only slight visual symptoms appeared. A clear discrimination between infected and control stands was possible. Multispectral data showed a higher sensitivity to external factors like illumination conditions, causing poor classification accuracy. Nevertheless, if these factors could get under control, even multispectral data may serve a good indicator for infection severity.

  2. Detection of soybean rust contamination in soy leaves by FTIR photoacoustic spectroscopy

    NASA Astrophysics Data System (ADS)

    Andrade, L. H. C.; Freitas, P. G.; Mantovani, B. G.; Figueiredo, M. S.; Lima, R. A.; Lima, S. M.; Rangel, M. A. S.; Mussury, R. M.

    2008-01-01

    In this work the Photoacoustic Infrared Spectroscopy from 4000 to 400 cm-1 was applied, by the first time to our knowledge, to diagnostic the soy bean rust or Asian rust contamination on soy leafs caused by the fungi Phakopsora pachyrhizi. The obtained results shown that a premature, fast and precise diagnosis can be achieved using this technique before it can be detect by the conventional visual method. The early identification of the fungi infection avoid massive lost in the soy production and decrease the intense use of fungicide whose is necessary when the infection is in advanced stagy.

  3. Comparative virulence and molecular diversity of stripe rust (Puccinia striiformis f. sp. tritici) collections from Pakistan and United States

    USDA-ARS?s Scientific Manuscript database

    Information on virulence and molecular diversity of Puccinia striiformis f. sp. tritici (Pst) is a pre-requisite for mitigating the substantial yield losses caused by the stripe rust pathogen in Pakistan, the United States and other countries of the world. This study was undertaken to analyze both v...

  4. Variation in the AvrSr35 effector determines Sr35 resistance against wheat stem rust race Ug99

    USDA-ARS?s Scientific Manuscript database

    Puccinia graminis f. sp. tritici (Pgt) causes wheat stem rust, a devastating fungal disease. The Sr35 resistance gene confers immunity against this pathogen’s most virulent races, including Ug99. We used the comparative whole genome sequencing of chemically mutagenized and natural Pgt isolates to id...

  5. Tracking down worldwide Puccinia psidii dispersal

    Treesearch

    Rodrigo Neves Graca; Amy Ross-Davis; Ned Klopfenstein; Mee Sook Kim; Tobin Peever; Phil Cannon; Janice Uchida; Acelino Couto Alfenas

    2011-01-01

    Puccinia psidii causes rust disease on many host species in the Myrtaceae [1]. First reported in 1884 on guava in Southern Brazil [2], the rust has since been detected on several myrtaceous in South America, Central America, Caribbean, Mexico, USA: in Florida, California, and Hawaii. More recently, P. psidii was reported in Japan infecting M. polymorpha[3]. Of special...

  6. Changing the game: using integrative genomics to probe virulence mechanisms of the stem rust pathogen Puccinia graminis f. sp. tritici

    USDA-ARS?s Scientific Manuscript database

    The recent resurgence of wheat stem rust caused by new virulent races of Puccinia graminis f. sp. tritici (Pgt) poses a threat to food security. These concerns have catalyzed an extensive global effort towards controlling this disease. Substantial research and breeding programs target the identifica...

  7. Multilocus genotypes indicate differentiation among Puccinia psidii populations from South America and Hawaii

    Treesearch

    R. N. Graca; A. C. Alfenas; A. L. Ross-Davis; Ned Klopfenstein; M. -S. Kim; T. L. Peever; P. G. Cannon; J. Y. Uchida; C. Y. Kadooka; R. D. Hauff

    2011-01-01

    Puccinia psidii is the cause of rust disease of many host species in the Myrtaceae family, including guava (Psidium spp.), eucalypt (Eucalyptus spp.), rose apple (Syzygium jambos), and 'ohi'a (Metrosideros polymorpha). First reported in 1884 on guava in Brazil, the rust has since been detected in South America (Argentina, Brazil, Colombia, Paraguay, Uruguay,...

  8. Mapping QTL for resistance to stripe rust in spring wheat PI 192252 and winter wheat Druchamp

    USDA-ARS?s Scientific Manuscript database

    Stripe rust, caused by Puccinia striiformis f. sp. tritici, is an important disease of wheat worldwide. High-temperature adult-plant (HTAP) resistance has proven to be durable, but may not be adequate. Spring wheat PI 192252 and winter wheat Druchamp have high-levels of HTAP resistance. To elucidate...

  9. Somatic recombination in wheat stem rust leads to virulence for Ug99-effective SR50 resistance

    USDA-ARS?s Scientific Manuscript database

    Race-specific resistance genes protect much of the global wheat crop from stem rust disease caused by Puccinia graminis f. sp. tritici (Pgt), but often break down due to evolution of new virulent pathogen races. To understand the molecular mechanisms of virulence evolution in Pgt we identified the p...

  10. Genomic analysis of a novel gene conferring resistance to Ug99 stem rust in Triticum turgidum ssp. dicoccum

    USDA-ARS?s Scientific Manuscript database

    Wheat production is threatened by the disease stem rust, which is caused by the biotrophic fungal pathogen Puccinia graminis Pers.:Pers. f. sp. tritici (Pgt). Among all known Pgt races, TTKSK (Ug99) and TRTTF are significant threats to North American wheat production due to their virulence against f...

  11. The effect of the 'Hyuuga' soybean lesion type and canopy severity on yield loss in the presence of soybean rust (Phakopsora pachyrhizi)

    USDA-ARS?s Scientific Manuscript database

    Soybean rust, caused by the fungal pathogen Phakopsora pachyrhizi, occurs in many areas of the world and is a destructive foliar disease. Susceptible soybean leaves exhibit a “TAN” reaction characterized by lesions with abundant urediniospores, while resistant reactions involve either an immune resp...

  12. Screening for resistance to fusiform rust in southern United States forest trees

    Treesearch

    Josh Bronson

    2012-01-01

    The Resistance Screening Center (RSC) is operated by the Forest Health Protection unit of the U.S. Department of Agriculture, Forest Service, Southern Region, State and Private Forestry. The RSC is located at the Bent Creek Experimental Forest near Asheville, North Carolina. The center evaluates seedlings for resistance to disease, primarily fusiform rust (caused by...

  13. Successful establishment of epiphytotics of Puccinia punctiformis for biological control of Cirsium arvense

    USDA-ARS?s Scientific Manuscript database

    Canada thistle (Cirsium arvense, CT) is one of the worst weeds in temperate areas of the world. The rust fungus Puccinia punctiformis was first proposed as a biological control agent for CT in 1893. The rust causes systemic disease, is specific to CT, and is in all countries where CT is found. Despi...

  14. A bioclimatic approach to predict global regions with suitable climate space for Puccina psidii

    Treesearch

    J. W. Hanna; R. N. Graca; M. -S. Kim; A. L. Ross-Davis; R. D. Hauff; J. W. Uchida; C. Y. Kadooka; M. B. Rayamajhi; M. Arguedas Gamboa; D. J. Lodge; R. Medel Medel-Ortiz; A. Lopez Ramirez; P. G. Cannon; A. C. Alfenas; N. B. Klopfenstein

    2012-01-01

    Puccinia psidii, the cause of eucalypt-guava-'ohi'a-myrtle rust, can infect diverse plants within the Myrtaceae, and this rust pathogen has the potential to threaten numerous forest ecosystems worldwide. Known occurrence records from Brazil, Uruguay, Paraguay, Costa Rica, USA (Hawaii, Florida, and Puerto Rico), and Japan were used to develop bioclimatic...

  15. Characterization of resistance to stripe rust in contemporary cultivars and lines of winter wheat

    USDA-ARS?s Scientific Manuscript database

    Stripe rust, caused by Puccinia striiformis f. sp. tritici, has been an important disease of winter wheat in the eastern United States since 2000 when a new strain of the pathogen emerged. The new strain was more aggressive and better adapted to warmer temperatures than the old strain, and overcame ...

  16. Registration of a male fertility restorer oilseed sunflower germplasm HA-R9 resistant to sunflower rust

    USDA-ARS?s Scientific Manuscript database

    The sunflower (Helianthus annuus L.) germplasm HA-R9 (Reg. No.xxx, PI 667595) was developed by the USDA-ARS, Sunflower and Plant Biology Research Unit in collaboration with the Agricultural Experiment Station of North Dakota State University and released in January, 2013. Sunflower rust (caused by P...

  17. Identification and validation of single nucleotide polymorphic markers linked to Ug99 stem rust resistance in spring wheat

    USDA-ARS?s Scientific Manuscript database

    Wheat stem rust (Puccinia graminis f. sp. tritici Eriks. and E. Henn.) is one of the most destructive diseases world-wide. Races belonging to Ug99 (or TTKSK) continue to cause crop losses in East Africa and threaten global wheat production. Developing and deploying wheat varieties with multiple race...

  18. Screening for Resistance to Brown Rust of Sugarcane: Use of Bru1 resistance gene prospects and challenges

    USDA-ARS?s Scientific Manuscript database

    Brown rust of sugarcane caused by, Puccinia melanocephala, is a serious problem in the US sugarcane industry. A major resistance gene, Bru1 was identified and methodology for detecting it was developed by French scientists at CIRAD. The majority of the research resulting in the discovery of Bru1 res...

  19. High genome heterozygosity and endemic genetic recombination in the wheat stripe rust fungus

    USDA-ARS?s Scientific Manuscript database

    Stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), is one of the most destructive diseases of wheat. Here we report a 110-Mb draft sequence of Pst isolate CY32, obtained using a ‘fosmid-to-fosmid’ strategy, to better understand its race evolution and pathogenesis. The Pst genome is hi...

  20. From select agent to established pathogen: The response to Phakopsora pachyrhizi (soybean rust) in North America

    USDA-ARS?s Scientific Manuscript database

    The pathogen causing soybean rust, Phakopsora pachyrhizi Syd., was first described in Japan in 1902. The disease was important in the Eastern Hemisphere for many decades before the fungus was reported in Hawaii in 1994, which was followed by reports from countries in Africa and South America. In 200...

  1. First report of Puccinia psidii caused rust-disease epiphytotic on the invasive shrub Rhodomyrtus tomentosa in Florida

    USDA-ARS?s Scientific Manuscript database

    Rhodomyrtus tomentosa (Aiton) Hassk. (downy-rose myrtle, Family: Myrtaceae) of south Asian origin is an invasive shrub that has formed monotypic stands in Florida. During the winter and spring of 2010-2012, a rust disease of epiphytotic proportion was observed on young foliage, stem terminals and i...

  2. Identification, mapping, and marker development of stem rust resistance genes in durum wheat 'Lebsock'

    USDA-ARS?s Scientific Manuscript database

    Wheat production in many wheat-growing regions is vulnerable to stem rust, caused by Puccinia graminis f. sp. tritici (Pgt). Several previous studies showed that most of the durum cultivars adapted to the upper Great Plains in the U.S. have good resistance to the major Pgt pathotypes, including the...

  3. Fusiform Rust of Southern Pines

    Treesearch

    W. R. Phelps; F. L. Czabator

    1978-01-01

    Fusiform rust, caused by the fungus Cronartium fusiforme Hedg. & Hunt ex Cumm., is distributed in the Southern United States from Maryland to Florida and west to Texas and southern Arkansas. Infections by the fungus, which develops at or near the point of infection, result in tapered, spindle-shaped swells, called galls, on branches and stems of pines. (see photo...

  4. Race-Specific Adult-Plant Resistance in Winter Wheat to Stripe Rust and Characterization of Pathogen Virulence Patterns.

    PubMed

    Milus, Eugene A; Moon, David E; Lee, Kevin D; Mason, R Esten

    2015-08-01

    Stripe rust, caused by Puccinia striiformis f. sp. tritici, is an important disease of wheat in the Great Plains and southeastern United States. Growing resistant cultivars is the preferred means for managing stripe rust, but new virulence in the pathogen population overcomes some of the resistance. The objectives of this study were to characterize the stripe rust resistance in contemporary soft and hard red winter wheat cultivars, to characterize the virulence of P. striiformis f. sp. tritici isolates based on the resistances found in the cultivars, and to determine wheat breeders' perceptions on the importance and methods for achieving stripe rust resistance. Seedlings of cultivars were susceptible to recent isolates, indicating they lacked effective all-stage resistance. However, adult-plants were resistant or susceptible depending on the isolate, indicating they had race-specific adult-plant resistance. Using isolates collected from 1990 to 2013, six major virulence patterns were identified on adult plants of twelve cultivars that were selected as adult-plant differentials. Race-specific adult-plant resistance appears to be the only effective type of resistance protecting wheat from stripe rust in eastern United States. Among wheat breeders, the importance of incorporating stripe rust resistance into cultivars ranged from high to low depending on the frequency of epidemics in their region, and most sources of stripe rust resistance were either unknown or already overcome by virulence in the pathogen population. Breeders with a high priority for stripe rust resistance made most of their selections based on adult-plant reactions in the field, whereas breeders with a low priority for resistance based selections on molecular markers for major all-stage resistance genes.

  5. Genetic Diversity and Association of EST-SSR and SCoT Markers with Rust Traits in Orchardgrass (Dactylis glomerata L.).

    PubMed

    Yan, Haidong; Zhang, Yu; Zeng, Bing; Yin, Guohua; Zhang, Xinquan; Ji, Yang; Huang, Linkai; Jiang, Xiaomei; Liu, Xinchun; Peng, Yan; Ma, Xiao; Yan, Yanhong

    2016-01-08

    Orchardgrass (Dactylis glomerata L.), is a well-known perennial forage species; however, rust diseases have caused a noticeable reduction in the quality and production of orchardgrass. In this study, genetic diversity was assessed and the marker-trait associations for rust were examined using 18 EST-SSR and 21 SCoT markers in 75 orchardgrass accessions. A high level of genetic diversity was detected in orchardgrass with an average genetic diversity index of 0.369. For the EST-SSR and SCoT markers, 164 and 289 total bands were obtained, of which 148 (90.24%) and 272 (94.12%) were polymorphic, respectively. Results from an AMOVA analysis showed that more genetic variance existed within populations (87.57%) than among populations (12.43%). Using a parameter marker index, the efficiencies of the EST-SSR and SCoT markers were compared to show that SCoTs have higher marker efficiency (8.07) than EST-SSRs (4.82). The results of a UPGMA cluster analysis and a STRUCTURE analysis were both correlated with the geographic distribution of the orchardgrass accessions. Linkage disequilibrium analysis revealed an average r² of 0.1627 across all band pairs, indicating a high extent of linkage disequilibrium in the material. An association analysis between the rust trait and 410 bands from the EST-SSR and SCoT markers using TASSEL software revealed 20 band panels were associated with the rust trait in both 2011 and 2012. The 20 bands obtained from association analysis could be used in breeding programs for lineage selection to prevent great losses of orchardgrass caused by rust, and provide valuable information for further association mapping using this collection of orchardgrass.

  6. Registration of PR0806-80 and PR0806-81 white bean germplasm lines with resistance to BGYMV, BCMV, BCMNV and rust

    USDA-ARS?s Scientific Manuscript database

    PR0806-80 (Reg. No. GP-___, PI ______) and PR0806-81 (Reg. No. GP-___, PI ______) are multiple disease resistant dry bean (Phaseolus vulgaris L.) germplasm lines, adapted to the humid tropics, that were developed and released cooperatively by the University of Puerto Rico Agricultural Experiment Sta...

  7. Wisconsin's forest resources in 2001.

    Treesearch

    John S. Vissage; Gery J. Brand; Manfred E. Mielke

    2003-01-01

    Results of the 2001 annual inventory of Wisconsin show about 15.8 million acres of forest land, more than 21.6 billion cubic feet of live volume on forest land, and nearly 584 million dry tons of all live aboveground tree biomass on timberland. Gypsy moth, forest tent caterpillar, twolined chestnut borer, bronze birch borer, ash yellows, and white pine blister rust...

  8. Wisconsin's forest resources in 2002.

    Treesearch

    John S. Vissage; Gary J. Brand; Manfred E. Mielke

    2004-01-01

    Results of the 2002 annual inventory of Wisconsin show about 16.0 million acres of forest land, over 22.2 billion cubic feet of live volume on forest land, and nearly 598 million dry tons of all live aboveground tree biomass on timberland. Gypsy moth, forest tent caterpillar, twolined chestnut borer, bronze birch borer, ash yellows, and white pine blister rust were...

  9. Native ectomycorrhizal fungi of limber and whitebark pine: Necessary for forest sustainability?

    Treesearch

    Cathy L. Cripps; Robert K. Antibus

    2011-01-01

    Ectomycorrhizal fungi are an important component of northern coniferous forests, including those of Pinus flexilis (limber pine) and P. albicaulis (whitebark pine) which are being decimated by white pine blister rust and mountain pine beetles. Ectomycorrhizal fungi are known to promote seedling establishment, tree health, and may play a role in forest sustainability....

  10. Geographic patterns of genetic variation and population structure in Pinus aristata, Rocky Mountain bristlecone pine

    Treesearch

    Anna W. Schoettle; Betsy A. Goodrich; Valerie Hipkins; Christopher Richards; Julie Kray

    2012-01-01

    Pinus aristata Engelm., Rocky Mountain bristlecone pine, has a narrow core geographic and elevational distribution, occurs in disjunct populations, and is threatened by rapid climate change, white pine blister rust, and bark beetles. Knowledge of genetic diversity and population structure will help guide gene conservation strategies for this species. Sixteen sites...

  11. Restoration planting options for limber pines in Colorado and Wyoming

    Treesearch

    Anne Marie Casper; William R. Jacobi; Anna W. Schoettle; Kelly S. Burns

    2011-01-01

    Limber Pine (Pinus flexilis) populations in the southern Rocky Mountains are severely threatened by the combined impacts of mountain pine beetles and white pine blister rust. Limber pineʼs critical role in these high elevation ecosystems heightens the importance of mitigating these impacts. To develop forest-scale planting methods, six limber pine seedling...

  12. Restoration planting options for limber pine (Pinus flexilis James) in the Southern Rocky Mountains

    Treesearch

    A. M. A. Casper; W. R. Jacobi; Anna Schoettle; K. S. Burns

    2016-01-01

    Limber pine Pinus flexilis James populations in the southern Rocky Mountains are threatened by the combined impacts of mountain pine beetles and white pine blister rust. To develop restoration planting methods, six P. flexilis seedling planting trial sites were installed along a geographic gradient from southern Wyoming to southern Colorado. Experimental...

  13. Genome-wide association study for Identification and validation of novel SNP markers for Sr6 stem rust resistance gene in bread wheat

    USDA-ARS?s Scientific Manuscript database

    Stem rust (caused by Puccinia graminis f. sp. tritici Erikss. & E. Henn.), is a major disease in wheat (Triticum aestivium L.). However, in recent years it occurs rarely in Nebraska due to weather and the effective selection and gene pyramiding of resistance genes. To understand the genetic basis of...

  14. Using RNA-sequencing and in silico subtraction to identify resistance gene analog markers for Lr16 in wheat

    USDA-ARS?s Scientific Manuscript database

    Leaf rust, caused by Puccinia triticina Eriks., is one of the most widespread diseases of wheat worldwide and breeding for resistance is one of the most effective methods of control. Lr16 is a wheat leaf rust resistance gene that provides resistance at both the seedling and adult stages. Simple s...

  15. Mapping resistance to the Ug99 race group of the stem rust pathogen in a spring wheat landrace

    USDA-ARS?s Scientific Manuscript database

    Wheat landrace PI 374670 has seedling and field resistance to stem rust caused by Puccinia graminis f. sp tritici Eriks. & E. Henn (Pgt) race TTKSK. To elucidate the inheritance of resistance, 216 BC1F2 families, 192 double haploid (DH) lines, and 185 recombinant inbred lines (RILs) were developed b...

  16. Wheat stripe rust resistance protein WKS1 reduces the ability of the thylakoid-associated ascorbate peroxidase to detoxify reactive oxygen species

    USDA-ARS?s Scientific Manuscript database

    Stripe rust is a devastating fungal disease of wheat caused by Puccinia striiformis f. sp. tritici(Pst). The WKS1 resistance gene has an unusual combination of serine/threonine kinase and START lipid-binding domains and confers partial resistance to Pst. Here we show that wheat plants transformed w...

  17. Mapping a large number of QTL for durable resistance to stripe rust in winter wheat Druchamp using SSR and SNP markers

    USDA-ARS?s Scientific Manuscript database

    Winter wheat Druchamp has both high-temperature adult-plant (HTAP) resistance and all-stage resistance to stripe rust caused by Puccinia striiformis f. sp. tritici (Pst). The HTAP resistance in Druchamp is durable as the variety has been resistant in adult-plant stage since it was introduced ...

  18. Evaluation of spring wheat cultivars to fungicide application for control of stripe rust in 2016

    USDA-ARS?s Scientific Manuscript database

    To evaluate spring wheat cultivars grown in the U.S. Pacific Northwest to fungicide application for control of stripe rust and assess their yield loss caused by the disease, this study was conducted in a field near Pullman, WA. Spring wheat genotype ‘Avocet S’ (AvS) was used as a susceptible check, ...

  19. De novo assembly and phasing of dikaryotic genomes from two isolates of Puccini coronata f. sp. avenae, the causal agent of oat crown rust

    Treesearch

    Marisa E. Miller; Ying Zhang; Vahid Omidvar; Jana Sperschneider; Benjamin Schwessinger; Castle Raley; Jonathan M. Palmer; Diana Garnica; Narayana Upadhyaya; John Rathjen; Jennifer M. Taylor; Robert F. Park; Peter N. Dodds; Cory D. Hirsch; Shahryar F. Kianian; Melania Figueroa

    2018-01-01

    Oat crown rust, caused by the fungus Pucinnia coronata f. sp. avenae, is a devastating disease that impacts worldwide oat production. For much of its life cycle, P. coronata f. sp. avenae is dikaryotic, with two separate haploid nuclei that may vary in virulence genotype, highlighting...

  20. Molecular mapping and improvement of leaf rust resistance in wheat breeding lines.

    PubMed

    Tsilo, Toi J; Kolmer, James A; Anderson, James A

    2014-08-01

    Leaf rust, caused by Puccinia triticina, is the most common and widespread disease of wheat (Triticum aestivum) worldwide. Deployment of host-plant resistance is one of the strategies to reduce losses due to leaf rust disease. The objective of this study was to map genes for adult-plant resistance to leaf rust in a recombinant inbred line (RIL) population originating from MN98550-5/MN99394-1. The mapping population of 139 RILs and five checks were evaluated in 2005, 2009, and 2010 in five environments. Natural infection occurred in the 2005 trials and trials in 2009 and 2010 were inoculated with leaf rust. Four quantitative trait loci (QTL) on chromosomes 2BS, 2DS, 7AL, and 7DS were detected. The QTL on 2BS explained up to 33.6% of the phenotypic variation in leaf rust response, whereas the QTL on 2DS, 7AL, and 7DS explained up to 15.7, 8.1, and 34.2%, respectively. Seedling infection type tests conducted with P. triticina races BBBD and SBDG confirmed that the QTL on 2BS and 2DS were Lr16 and Lr2a, respectively, and these genes were expressed in the seedling and field plot tests. The Lr2a gene mapped at the same location as Sr6. The QTL on 7DS was Lr34. The QTL on 7AL is a new QTL for leaf rust resistance. The joint effects of all four QTL explained 74% of the total phenotypic variation in leaf rust severity. Analysis of different combinations of QTL showed that the RILs containing all four or three of the QTL had the lowest average leaf rust severity in all five environments. Deployment of these QTL in combination or with other effective genes will lead to successful control of leaf rust.

  1. Genome-Wide Association Mapping of Leaf Rust Response in a Durum Wheat Worldwide Germplasm Collection.

    PubMed

    Aoun, Meriem; Breiland, Matthew; Kathryn Turner, M; Loladze, Alexander; Chao, Shiaoman; Xu, Steven S; Ammar, Karim; Anderson, James A; Kolmer, James A; Acevedo, Maricelis

    2016-11-01

    Leaf rust (caused by Erikss. []) is increasingly impacting durum wheat ( L. var. ) production with the recent appearance of races with virulence to widely grown cultivars in many durum producing areas worldwide. A highly virulent race on durum wheat was recently detected in Kansas. This race may spread to the northern Great Plains, where most of the US durum wheat is produced. The objective of this study was to identify sources of resistance to several races from the United States and Mexico at seedling stage in the greenhouse and at adult stage in field experiments. Genome-wide association study (GWAS) was used to identify single-nucleotide polymorphism (SNP) markers associated with leaf rust response in a worldwide durum wheat collection of 496 accessions. Thirteen accessions were resistant across all experiments. Association mapping revealed 88 significant SNPs associated with leaf rust response. Of these, 33 SNPs were located on chromosomes 2A and 2B, and 55 SNPs were distributed across all other chromosomes except for 1B and 7B. Twenty markers were associated with leaf rust response at seedling stage, while 68 markers were associated with leaf rust response at adult plant stage. The current study identified a total of 14 previously uncharacterized loci associated with leaf rust response in durum wheat. The discovery of these loci through association mapping (AM) is a significant step in identifying useful sources of resistance that can be used to broaden the relatively narrow leaf rust resistance spectrum in durum wheat germplasm. Copyright © 2016 Crop Science Society of America.

  2. Genome-Wide Association Mapping Reveals Novel QTL for Seedling Leaf Rust Resistance in a Worldwide Collection of Winter Wheat.

    PubMed

    Li, Genqiao; Xu, Xiangyang; Bai, Guihua; Carver, Brett F; Hunger, Robert; Bonman, J Michael; Kolmer, James; Dong, Hongxu

    2016-11-01

    Leaf rust of wheat ( L.) is a major disease that causes significant yield losses worldwide. The short-lived nature of leaf rust resistance () genes necessitates a continuous search for novel sources of resistance. We performed a genome-wide association study (GWAS) on a panel of 1596 wheat accessions. The panel was evaluated for leaf rust reaction by testing with a bulk of Eriks. () isolates collected from multiple fields of Oklahoma in 2013 and two predominant races in the fields of Oklahoma in 2015. The panel was genotyped with a set of 5011 single-nucleotide polymorphism (SNP) markers. A total of 14 quantitative trait loci (QTL) for leaf rust resistance were identified at a false discovery rate (FDR) of 0.01 using the mixed linear model (MLM). Of these, eight QTL reside in the vicinity of known genes or QTL, and more studies are needed to determine their relationship with known loci. is a new QTL to bread wheat but is close to a locus previously identified in durum wheat [ L. subsp. (Desf.) Husn.]. The other five QTL, including , , , , and , are likely novel loci for leaf rust resistance. The uneven distribution of the 14 QTL in the six subpopulations of the panel suggests that wheat breeders can enhance leaf rust resistance by selectively introgressing some of these QTL into their breeding materials. In addition, another 31 QTL were significantly associated with leaf rust resistance at a FDR of 0.05. Copyright © 2016 Crop Science Society of America.

  3. Mapping of a dominant rust resistance gene revealed two R genes around the major Rust_QTL in cultivated peanut (Arachis hypogaea L.).

    PubMed

    Mondal, Suvendu; Badigannavar, Anand M

    2018-05-09

    A consensus rust QTL was identified within a 1.25 cM map interval of A03 chromosome in cultivated peanut. This map interval contains a TIR-NB-LRR R gene and four pathogenesis-related genes. Disease resistance in plants is manifested due to the specific interaction between the R gene product and its cognate avirulence gene product (AVR) in the pathogen. Puccinia arachidis Speg. causes rust disease and inflicts economic damages to peanut. Till now, no experimental evidence is known for the action of R gene in peanut for rust resistance. A fine mapping approach towards the development of closely linked markers for rust resistance gene was undertaken in this study. Phenotyping of an RIL population at five environments for field rust score and subsequent QTL analysis has identified a 1.25 cM map interval that harbored a consensus major Rust_QTL in A03 chromosome. This Rust_QTL is flanked by two SSR markers: FRS72 and SSR_GO340445. Both the markers clearly identified strong association of the mapped region with rust reaction in both resistant and susceptible genotypes from a collection of 95 cultivated peanut germplasm. This 1.25 cM map interval contained 331.7 kb in the physical map of A. duranensis and had a TIR-NB-LRR category R gene (Aradu.Z87JB) and four glucan endo-1,3 β glucosidase genes (Aradu.RKA6 M, Aradu.T44NR, Aradu.IWV86 and Aradu.VG51Q). Another resistance gene analog was also found in the vicinity of mapped Rust_QTL. The sequence between SSR markers, FRS72 and FRS49, contains an LRR-PK (Aradu.JG217) which is equivalent to RHG4 in soybean. Probably, the protein kinase domain in AhRHG4 acts as an integrated decoy for the cognate AVR from Puccinia arachidis and helps the TIR-NB-LRR R-protein to initiate a controlled program cell death in resistant peanut plants.

  4. Haplotype structure around Bru1 reveals a narrow genetic basis for brown rust resistance in modern sugarcane cultivars.

    PubMed

    Costet, L; Le Cunff, L; Royaert, S; Raboin, L-M; Hervouet, C; Toubi, L; Telismart, H; Garsmeur, O; Rousselle, Y; Pauquet, J; Nibouche, S; Glaszmann, J-C; Hoarau, J-Y; D'Hont, A

    2012-09-01

    Modern sugarcane cultivars (Saccharum spp., 2n = 100-130) are high polyploid, aneuploid and of interspecific origin. A major gene (Bru1) conferring resistance to brown rust, caused by the fungus Puccinia melanocephala, has been identified in cultivar R570. We analyzed 380 modern cultivars and breeding materials covering the worldwide diversity with 22 molecular markers genetically linked to Bru1 in R570 within a 8.2 cM segment. Our results revealed a strong LD in the Bru1 region and strong associations between most of the markers and rust resistance. Two PCR markers, that flank the Bru1-bearing segment, were found completely associated with one another and only in resistant clones representing efficient molecular diagnostic for Bru1. On this basis, Bru1 was inferred in 86 % of the 194 resistant sugarcane accessions, revealing that it constitutes the main source of brown rust resistance in modern cultivars. Bru1 PCR diagnostic markers should be particularly useful to identify cultivars with potentially alternative sources of resistance to diversify the basis of brown rust resistance in breeding programs.

  5. First report of Puccinia psidii caused rust disease epiphytotic on the invasive shrub Rhodomyrtus tomentosa in Florida

    Treesearch

    M. B. Rayamajhi; P. D. Pratt; N. B. Klopfenstein; A. L. Ross-Davis; L. Rodgers

    2013-01-01

    Rhodomyrtus tomentosa (Aiton) Hassk. (downy-rose myrtle, family: Myrtaceae), of South Asian origin, is an invasive shrub that has formed monotypic stands in Florida (3). During the winter and spring of 2010 through 2012, a rust disease of epiphytotic proportion was observed on young foliage, stem terminals, and immature fruits of this shrub in natural areas of Martin...

  6. A genome-wide association study of resistance to stripe rust (Puccinia striiformis f. sp. tritici) in a worldwide collection of hexaploid spring wheat (Triticum aestivum L.)

    USDA-ARS?s Scientific Manuscript database

    New races of Puccinia striiformis f. sp. tritici (Pst), the causal pathogen of wheat stripe rust, show high virulence to previously deployed resistance genes and are causing large yield losses worldwide. To identify new sources of resistance we performed a genome-wide association study (GWAS) using...

  7. Approaches to predicting current and future distributions of Puccinia psidii in South America under climate change scenarios

    Treesearch

    N. B. Klopfenstein; J. W. Hanna; R. N. Graca; A. L. Ross-Davis; P. G. Cannon; A. C. Alfenas; M. -S. Kim

    2011-01-01

    Puccinia psidii is the cause of Eucalyptus/guava/myrtle rust disease of many host species in the Myrtaceae family, including guava (Psidium spp.), eucalypt (Eucalyptus spp.), rose apple (Syzygium jambos), and ohia (Metrosideros polymorpha) (Farr and Rossman 2010). First reported in 1884 on guava in Brazil (Maclachlan 1938), the rust has since been detected in other...

  8. De novo assembly and phasing of dikaryotic genomes from two isolates of Puccinia coronata f. sp. avenae, the causal agent of oat crown rust

    USDA-ARS?s Scientific Manuscript database

    Oat crown rust, caused by the fungus Puccinia coronata f. sp. avenae (Pca), is a devastating disease that impacts worldwide oat production. For much of its life cycle Pca is dikaryotic with two separate haploid nuclei that may vary in virulence genotypes, which highlights the importance of understan...

  9. Application of Comparative Genomics for the Identification and Monitoring of the Highly Virulent African Race, Ug99, of Puccinia graminis

    USDA-ARS?s Scientific Manuscript database

    Throughout human history, wheat stem rust caused by Puccinia graminis f.sp. tritici (Pgt) has been one of the most destructive diseases of cereal crops. Stem rust has been well controlled in the U.S. for nearly a half a century, but with the appearance of a new, highly virulent race of Pgt in Uganda...

  10. Changes in Canada thistle (Cirsium arvense) shoot density following inoculation with Puccinia punctiformis and induction of symptomatic and asymptomatic systemic disease

    USDA-ARS?s Scientific Manuscript database

    Canada thistle (Cirsium arvense, CT) is one of the worst weeds in temperate areas of the world. The rust fungus Puccinia punctiformis was first proposed as a biological control agent for CT in 1893. The rust causes systemic disease which ultimately kills CT plants. In 2013, it was demonstrated in fo...

  11. Molecular mapping of Yr53, a new gene for stripe rust resistance in durum wheat accession PI 480148 and its transfer to common wheat

    USDA-ARS?s Scientific Manuscript database

    Stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), is one of the most damaging diseases of wheat worldwide. It is essential to identify new genes for effective resistance against the disease. Durum wheat PI 480148, originally from Ethiopia, was resistant in all seedling tests with s...

  12. Limber Pine and White Pine Blister Rust Monitoring and Assessment Guide for Rocky Mountain National Park

    Treesearch

    Christy M. Cleaver; Kelly S. Burns; Anna W. Schoettle

    2017-01-01

    Limber pine, designated by Rocky Mountain National Park (RMNP) as a Species of Management Concern, is a keystone species that maintains ecosystem structure, function, and biodiversity. Limber pine is declining in the park due to the interacting effects of recent severe droughts and the climate-exasperated mountain pine beetle (Dendroctonus ponderosae) outbreak, and is...

  13. Carbon costs of constitutive and expressed resistance to a non-native pathogen in limber pine

    Treesearch

    Patrick J. Vogan; Anna W. Schoettle

    2016-01-01

    Increasing the frequency of resistance to the non-native fungus Cronartium ribicola (causative agent of white pine blister rust, WPBR) in limber pine populations is a primary management objective to sustain high-elevation forest communities. However, it is not known to what extent genetic disease resistance is costly to plant growth or carbon economy. In this...

  14. Influence of fire on mycorrhizal colonization of planted and natural whitebark pine seedlings: Ecology and management implications

    Treesearch

    Paul E. Trusty; Cathy L. Cripps

    2011-01-01

    Whitebark pine (Pinus albicaulis) is a threatened keystone species in subalpine zones of Western North America that plays a role in watershed dynamics and maintenance of high elevation biodiversity (Schwandt, 2006). Whitebark pine has experienced significant mortality due to white pine blister rust, mountain pine beetle outbreaks and successional replacement possibly...

  15. Limber pine seed and seedling planting experiment in Waterton Lakes National Park, Canada

    Treesearch

    Cyndi M. Smith; Graeme Poll; Cameron Gillies; Celina Praymak; Eileen Miranda; Justin Hill

    2011-01-01

    Limber pine plays an important role in the harsh environments in which it lives, providing numerous ecological services, especially because its large, wingless seeds serve as a high energy food source for many animals. Limber pine populations are declining due to a combination of white pine blister rust, mountain pine beetle, drought, and fire suppression. Outplanting...

  16. Natural regeneration of whitebark pine: Factors affecting seedling density

    Treesearch

    S. Goeking; D. Izlar

    2014-01-01

    Whitebark pine (Pinus albicaulis) is an ecologically important species in high-altitude areas of the western United States and Canada due to the habitat and food source it provides for Clark’s nutcrackers, red squirrels, grizzly bears, and other animals. Whitebark pine stands have recently experienced high mortality due to wildfire, white pine blister rust, and a...

  17. Geographic patterns of genetic variation, population structure and adaptive traits in Pinus aristata, Rocky Mountain bristlecone pine

    Treesearch

    Anna W. Schoettle; Betsy A. Goodrich; Valerie Hipkins; Christopher Richards; Julie Kray

    2011-01-01

    Pinus aristata Engelm., Rocky Mountain bristlecone pine, has a narrow geographic and elevational distribution and occurs in disjunct mountain-top populations throughout Colorado and New Mexico in its core range. The species' unique aesthetic and ecological traits combined with the threats of the exotic disease white pine blister rust (WPBR), climate change in high...

  18. Evaluating future success of whitebark pine ecosystem restoration under climate change using simulation modeling

    Treesearch

    Robert E. Keane; Lisa M. Holsinger; Mary F. Mahalovich; Diana F. Tomback

    2017-01-01

    Major declines of whitebark pine forests throughout western North America from the combined effects of mountain pine beetle (Dendroctonus ponderosae) outbreaks, fire exclusion policies, and the exotic disease white pine blister rust (WPBR) have spurred many restoration actions. However, projected future warming and drying may further exacerbate the species’ decline and...

  19. Major Gene for Field Stem Rust Resistance Co-Locates with Resistance Gene Sr12 in ‘Thatcher’ Wheat

    PubMed Central

    Hiebert, Colin W.; Kolmer, James A.; McCartney, Curt A.; Briggs, Jordan; Fetch, Tom; Bariana, Harbans; Choulet, Frederic; Rouse, Matthew N.; Spielmeyer, Wolfgang

    2016-01-01

    Stem rust, caused by Puccinia graminis (Pgt), is a damaging disease of wheat that can be controlled by utilizing effective stem rust resistance genes. ‘Thatcher’ wheat carries complex resistance to stem rust that is enhanced in the presence of the resistance gene Lr34. The purpose of this study was to examine APR in ‘Thatcher’ and look for genetic interactions with Lr34. A RIL population was tested for stem rust resistance in field nurseries in Canada, USA, and Kenya. BSA was used to find SNP markers associated with reduced stem rust severity. A major QTL was identified on chromosome 3BL near the centromere in all environments. Seedling testing showed that Sr12 mapped to the same region as the QTL for APR. The SNP markers were physically mapped and the region carrying the resistance was searched for sequences with homology to members of the NB-LRR resistance gene family. SNP marker from one NB-LRR-like sequence, NB-LRR3 co-segregated with Sr12. Two additional populations, including one that lacked Lr34, were tested in field nurseries. NB-LRR3 mapped near the maximum LOD for reduction in stem rust severity in both populations. Lines from a population that segregated for Sr12 and Lr34 were tested for seedling Pgt biomass and infection type, as well as APR to field stem rust which showed an interaction between the genes. We concluded that Sr12, or a gene closely linked to Sr12, was responsible for ‘Thatcher’-derived APR in several environments and this resistance was enhanced in the presence of Lr34. PMID:27309724

  20. Major Gene for Field Stem Rust Resistance Co-Locates with Resistance Gene Sr12 in 'Thatcher' Wheat.

    PubMed

    Hiebert, Colin W; Kolmer, James A; McCartney, Curt A; Briggs, Jordan; Fetch, Tom; Bariana, Harbans; Choulet, Frederic; Rouse, Matthew N; Spielmeyer, Wolfgang

    2016-01-01

    Stem rust, caused by Puccinia graminis (Pgt), is a damaging disease of wheat that can be controlled by utilizing effective stem rust resistance genes. 'Thatcher' wheat carries complex resistance to stem rust that is enhanced in the presence of the resistance gene Lr34. The purpose of this study was to examine APR in 'Thatcher' and look for genetic interactions with Lr34. A RIL population was tested for stem rust resistance in field nurseries in Canada, USA, and Kenya. BSA was used to find SNP markers associated with reduced stem rust severity. A major QTL was identified on chromosome 3BL near the centromere in all environments. Seedling testing showed that Sr12 mapped to the same region as the QTL for APR. The SNP markers were physically mapped and the region carrying the resistance was searched for sequences with homology to members of the NB-LRR resistance gene family. SNP marker from one NB-LRR-like sequence, NB-LRR3 co-segregated with Sr12. Two additional populations, including one that lacked Lr34, were tested in field nurseries. NB-LRR3 mapped near the maximum LOD for reduction in stem rust severity in both populations. Lines from a population that segregated for Sr12 and Lr34 were tested for seedling Pgt biomass and infection type, as well as APR to field stem rust which showed an interaction between the genes. We concluded that Sr12, or a gene closely linked to Sr12, was responsible for 'Thatcher'-derived APR in several environments and this resistance was enhanced in the presence of Lr34.

  1. Characterization of Lr75: a partial, broad-spectrum leaf rust resistance gene in wheat.

    PubMed

    Singla, Jyoti; Lüthi, Linda; Wicker, Thomas; Bansal, Urmil; Krattinger, Simon G; Keller, Beat

    2017-01-01

    Here, we describe a strategy to improve broad-spectrum leaf rust resistance by marker-assisted combination of two partial resistance genes. One of them represents a novel partial adult plant resistance gene, named Lr75. Leaf rust caused by the fungal pathogen Puccinia triticina is a damaging disease of wheat (Triticum aestivum L.). The combination of several, additively-acting partial disease resistance genes has been proposed as a suitable strategy to breed wheat cultivars with high levels of durable field resistance. The Swiss winter wheat cultivar 'Forno' continues to show near-immunity to leaf rust since its release in the 1980s. This resistance is conferred by the presence of at least six quantitative trait loci (QTL), one of which is associated with the morphological trait leaf tip necrosis. Here, we used a marker-informed strategy to introgress two 'Forno' QTLs into the leaf rust-susceptible Swiss winter wheat cultivar 'Arina'. The resulting backcross line 'ArinaLrFor' showed markedly increased leaf rust resistance in multiple locations over several years. One of the introgressed QTLs, QLr.sfr-1BS, is located on chromosome 1BS. We developed chromosome 1B-specific microsatellite markers by exploiting the Illumina survey sequences of wheat cv. 'Chinese Spring' and mapped QLr.sfr-1BS to a 4.3 cM interval flanked by the SSR markers gwm604 and swm271. QLr.sfr-1BS does not share a genetic location with any of the described leaf rust resistance genes present on chromosome 1B. Therefore, QLr.sfr-1BS is novel and was designated as Lr75. We conclude that marker-assisted combination of partial resistance genes is a feasible strategy to increase broad-spectrum leaf rust resistance. The identification of Lr75 adds a novel and highly useful gene to the small set of known partial, adult plant leaf rust resistance genes.

  2. Rust disease of eucalypts, caused by Puccinia psidii, did not originate via host jump from guava in Brazil

    Treesearch

    Rodrigo N. Graca; Amy L. Ross-Davis; Ned B. Klopfenstein; Mee-Sook Kim; Tobin L. Peever; Phil G. Cannon; Cristina P. Aun; Eduardo G. Mizubuti; Acelino C. Alfenas

    2013-01-01

    The rust fungus, Puccinia psidii, is a devastating pathogen of introduced eucalypts (Eucalyptus spp.) in Brazil where it was first observed in 1912. This pathogen is hypothesized to be endemic to South and Central America and to have first infected eucalypts via a host jump from native guava (Psidium guajava). Ten microsatellite markers were used to genotype 148 P....

  3. A new 2DS·2RL Robertsonian translocation transfers stem rust resistance gene Sr59 into wheat.

    PubMed

    Rahmatov, Mahbubjon; Rouse, Matthew N; Nirmala, Jayaveeramuthu; Danilova, Tatiana; Friebe, Bernd; Steffenson, Brian J; Johansson, Eva

    2016-07-01

    A new stem rust resistance gene Sr59 from Secale cereale was introgressed into wheat as a 2DS·2RL Robertsonian translocation. Emerging new races of the wheat stem rust pathogen (Puccinia graminis f. sp. tritici), from Africa threaten global wheat (Triticum aestivum L.) production. To broaden the resistance spectrum of wheat to these widely virulent African races, additional resistance genes must be identified from all possible gene pools. From the screening of a collection of wheat-rye (Secale cereale L.) chromosome substitution lines developed at the Swedish University of Agricultural Sciences, we described the line 'SLU238' 2R (2D) as possessing resistance to many races of P. graminis f. sp. tritici, including the widely virulent race TTKSK (isolate synonym Ug99) from Africa. The breakage-fusion mechanism of univalent chromosomes was used to produce a new Robertsonian translocation: T2DS·2RL. Molecular marker analysis and stem rust seedling assays at multiple generations confirmed that the stem rust resistance from 'SLU238' is present on the rye chromosome arm 2RL. Line TA5094 (#101) was derived from 'SLU238' and was found to be homozygous for the T2DS·2RL translocation. The stem rust resistance gene on chromosome 2RL arm was designated as Sr59. Although introgressions of rye chromosome arms into wheat have most often been facilitated by irradiation, this study highlights the utility of the breakage-fusion mechanism for rye chromatin introgression. Sr59 provides an additional asset for wheat improvement to mitigate yield losses caused by stem rust.

  4. Emerging hardwood pest problems and implications for the Central Hardwood region

    Treesearch

    Bruce D. Moltzan

    2003-01-01

    Over the last 100 years of human action there has been a correlated increase in the movement of insects and disease to the new world. Chestnut Blight, Dutch Elm Disease, Gypsy Moth, Butternut Canker, and White Pine Blister Rust are stern reminders of historically devastating exotic invasions. Sudden Oak Death, Asian Long-horned Beetle, Oak Wilt, Red Oak Borer, and Oak...

  5. Climate influences on whitebark pine mortality from mountain pine beetle in the Greater Yellowstone Ecosystem

    Treesearch

    Polly C. Buotte; Jeffrey A. Hicke; Haiganoush K. Preisler; John T. Abatzoglou; Kenneth F. Raffa; Jesse A. Logan

    2016-01-01

    Extensive mortality of whitebark pine, beginning in the early to mid-2000s, occurred in the Greater Yellowstone Ecosystem (GYE) of the western USA, primarily from mountain pine beetle but also from other threats such as white pine blister rust. The climatic drivers of this recent mortality and the potential for future whitebark pine mortality from mountain pine beetle...

  6. Synoptic climatology of the long-distance dispersal of white pine blister rust I. Development of an upper level synoptic classification

    Treesearch

    K. L. Frank; L. S. Kalkstein; B. W. Geils; H. W. Thistle

    2008-01-01

    This study developed a methodology to temporally classify large scale, upper level atmospheric conditions over North America, utilizing a newly-developed upper level synoptic classification (ULSC). Four meteorological variables: geopotential height, specific humidity, and u- and v-wind components, at the 500 hPa level over North America were obtained from the NCEP/NCAR...

  7. Agricultural Bioterrorism: Why It Is A Concern And What We Must Do

    DTIC Science & Technology

    2003-04-07

    that causes smallpox. • Fungus are any of a major group (Fungi) of saprophytic and parasitic lower plants that lack chlorophyll and include molds, rusts ...fever* • Sheep and goat pox* • Swine vesicular disease* • Vesicular stomatitis* Plant Pathogens • Rice blast (Magnaporthe griesea) • Wheat stem rust ...Puccinia graminis) • Wheat smut (Fusarium graminearum) Wheat Pathogens • Wheat dwarf geminivirus • Barley yellow dwarf virus • Pseudomonas fascovaginaei

  8. Climate change impacts on coffee rust disease

    NASA Astrophysics Data System (ADS)

    Alfonsi, W. M. V.; Koga-Vicente, A.; Pinto, H. S.; Alfonsi, E. L., Sr.; Coltri, P. P.; Zullo, J., Jr.; Patricio, F. R.; Avila, A. M. H. D.; Gonçalves, R. R. D. V.

    2016-12-01

    Changes in climate conditions and in extreme weather events may affect the food security due to impacts in agricultural production. Despite several researches have been assessed the impacts of extremes in yield crops in climate change scenarios, there is the need to consider the effects in pests and diseases which increase losses in the sector. Coffee Arabica is an important commodity in world and plays a key role in Brazilian agricultural exports. Although the coffee crop has a world highlight, its yield is affected by several factors abiotic or biotic. The weather as well pests and diseases directly influence the development and coffee crop yield. These problems may cause serious damage with significant economic impacts. The coffee rust, caused by the fungus Hemileia vastarix,is among the diseases of greatest impact for the crop. The disease emerged in Brazil in the 70s and is widely spread in all producing regions of coffee in Brazil, and in the world. Regions with favorable weather conditions for the pathogen may exhibit losses ranging from 30% to 50% of the total grain production. The evaluation of extreme weather events of coffee rust disease in futures scenarios was carried out using the climatic data from CMIP5 models, data field of coffee rust disease incidence and, incubation period simulation data for Brazilian municipalities. Two Regional Climate Models were selected, Eta-HadGEM2-ES and Eta-MIROC5, and the Representative Concentration Pathways 8.5 w/m2 was adopted. The outcomes pointed out that in these scenarios the period of incubation tends to decrease affecting the coffee rust disease incidence, which tends to increase. Nevertheless, the changing in average trends tends to benefit the reproduction of the pathogen. Once the temperature threshold for the disease reaches the adverse conditions it may be unfavorable for the incidence.

  9. Host-induced silencing of essential genes in Puccinia triticina through transgenic expression of RNAi sequences reduces severity of leaf rust infection in wheat.

    PubMed

    Panwar, Vinay; Jordan, Mark; McCallum, Brent; Bakkeren, Guus

    2018-05-01

    Leaf rust, caused by the pathogenic fungus Puccinia triticina (Pt), is one of the most serious biotic threats to sustainable wheat production worldwide. This obligate biotrophic pathogen is prevalent worldwide and is known for rapid adaptive evolution to overcome resistant wheat varieties. Novel disease control approaches are therefore required to minimize the yield losses caused by Pt. Having shown previously the potential of host-delivered RNA interference (HD-RNAi) in functional screening of Pt genes involved in pathogenesis, we here evaluated the use of this technology in transgenic wheat plants as a method to achieve protection against wheat leaf rust (WLR) infection. Stable expression of hairpin RNAi constructs with sequence homology to Pt MAP-kinase (PtMAPK1) or a cyclophilin (PtCYC1) encoding gene in susceptible wheat plants showed efficient silencing of the corresponding genes in the interacting fungus resulting in disease resistance throughout the T 2 generation. Inhibition of Pt proliferation in transgenic lines by in planta-induced RNAi was associated with significant reduction in target fungal transcript abundance and reduced fungal biomass accumulation in highly resistant plants. Disease protection was correlated with the presence of siRNA molecules specific to targeted fungal genes in the transgenic lines harbouring the complementary HD-RNAi construct. This work demonstrates that generating transgenic wheat plants expressing RNAi-inducing transgenes to silence essential genes in rust fungi can provide effective disease resistance, thus opening an alternative way for developing rust-resistant crops. © 2017 Her Majesty the Queen in Right of Canada. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  10. The use of Proline (Prothioconazole) to control pitch canker, Rhizoctonia foliage blight, and Fusiform rust in forest seedling nurseries and efforts to acquire registration

    Treesearch

    Tom E. Starkey; Scott A. Enebak

    2011-01-01

    Laboratory, greenhouse, and field trials have shown Proline® to be efficacious against three fungal pathogens that cause damage and seedling mortality in forest seedling nurseries. Disease control using Proline® has been obtained at 365 ml/ha (5 fl oz/ac) for the control of fusiform rust (Cronartium quercuum f.sp. fusiforme) on loblolly pine (Pinus taeda) in both...

  11. Remapping of the stripe rust resistance gene Yr10 in common wheat.

    PubMed

    Yuan, Cuiling; Wu, Jingzheng; Yan, Baiqiang; Hao, Qunqun; Zhang, Chaozhong; Lyu, Bo; Ni, Fei; Caplan, Allan; Wu, Jiajie; Fu, Daolin

    2018-06-01

    Yr10 is an important gene to control wheat stripe rust, and the search for Yr10 needs to be continued. Wheat stripe rust or yellow rust is a devastating fungal disease caused by Puccinia striiformis f. sp. tritici (Pst). Host disease resistance offers a primary source for controlling wheat stripe rust. The stripe rust resistance gene Yr10 confers the race-specific resistance to most tested Pst races in China including CYR29. Early studies proposed that Yr10 was a nucleotide-binding site, leucine-rich repeat gene archived as GenBank accession AF149112 (hereafter designated the Yr10 candidate gene or Yr10 CG ). In this study, we revealed that 15 Chinese wheat cultivars positive for Yr10 CG are susceptible to CYR29. We then expressed the Yr10 CG cDNA in the common wheat 'Bobwhite'. The Yr10 CG -cDNA positive transgenic plants were also susceptible to CYR29. Thus, it is highly unlikely that Yr10 CG corresponds to the Yr10 resistance gene. Using the Yr10 donor 'Moro' and the Pst-susceptible wheat 'Huixianhong', we generated two F 3 populations that displayed a single Mendelian segregation on the Yr10 gene, and used them to remap the Yr10 gene. Six markers were placed in the Yr10 region, with the Yr10 CG gene now mapping about 1.2-cM proximal to the Yr10 locus and the Xsdauw79 marker is completely linked to the Yr10 locus. Apparently, the Yr10 gene has not yet been identified. Fine mapping and positional cloning of Yr10 is important for gene pyramiding for stripe rust resistance in wheat.

  12. Fine Mapping of Ur-3, a Historically Important Rust Resistance Locus in Common Bean

    PubMed Central

    Hurtado-Gonzales, Oscar P.; Valentini, Giseli; Gilio, Thiago A. S.; Martins, Alexandre M.; Song, Qijian; Pastor-Corrales, Marcial A.

    2016-01-01

    Bean rust, caused by Uromyces appendiculatus, is a devastating disease of common bean (Phaseolus vulgaris) in the Americas and Africa. The historically important Ur-3 gene confers resistance to many races of the highly variable bean rust pathogen that overcome other rust resistance genes. Existing molecular markers tagging Ur-3 for use in marker-assisted selection produce false results. Here, we describe the fine mapping of the Ur-3 locus for the development of highly accurate markers linked to Ur-3. An F2 population from the cross Pinto 114 (susceptible) × Aurora (resistant with Ur-3) was evaluated for its reaction to four different races of U. appendiculatus. A bulked segregant analysis using the SNP chip BARCBEAN6K_3 placed the approximate location of Ur-3 in the lower arm of chromosome Pv11. Specific SSR and SNP markers and haplotype analysis of 18 sequenced bean varieties positioned Ur-3 in a 46.5 kb genomic region from 46.96 to 47.01 Mb on Pv11. We discovered in this region the SS68 KASP marker that was tightly linked to Ur-3. Validation of SS68 on a panel of 130 diverse common bean cultivars containing all known rust resistance genes revealed that SS68 was highly accurate and produced no false results. The SS68 marker will be of great value in pyramiding Ur-3 with other rust resistance genes. It will also significantly reduce time and labor associated with the current phenotypic detection of Ur-3. This is the first utilization of fine mapping to discover markers linked to rust resistance in common bean. PMID:28031244

  13. Fine Mapping of Ur-3, a Historically Important Rust Resistance Locus in Common Bean.

    PubMed

    Hurtado-Gonzales, Oscar P; Valentini, Giseli; Gilio, Thiago A S; Martins, Alexandre M; Song, Qijian; Pastor-Corrales, Marcial A

    2017-02-09

    Bean rust, caused by Uromyces appendiculatus , is a devastating disease of common bean ( Phaseolus vulgaris ) in the Americas and Africa. The historically important Ur-3 gene confers resistance to many races of the highly variable bean rust pathogen that overcome other rust resistance genes. Existing molecular markers tagging Ur-3 for use in marker-assisted selection produce false results. Here, we describe the fine mapping of the Ur-3 locus for the development of highly accurate markers linked to Ur-3 An F 2 population from the cross Pinto 114 (susceptible) × Aurora (resistant with Ur-3 ) was evaluated for its reaction to four different races of U. appendiculatus A bulked segregant analysis using the SNP chip BARCBEAN6K_3 placed the approximate location of Ur-3 in the lower arm of chromosome Pv11. Specific SSR and SNP markers and haplotype analysis of 18 sequenced bean varieties positioned Ur-3 in a 46.5 kb genomic region from 46.96 to 47.01 Mb on Pv11. We discovered in this region the SS68 KASP marker that was tightly linked to Ur-3 Validation of SS68 on a panel of 130 diverse common bean cultivars containing all known rust resistance genes revealed that SS68 was highly accurate and produced no false results. The SS68 marker will be of great value in pyramiding Ur-3 with other rust resistance genes. It will also significantly reduce time and labor associated with the current phenotypic detection of Ur-3 This is the first utilization of fine mapping to discover markers linked to rust resistance in common bean. Copyright © 2017 Hurtado-Gonzales et al.

  14. Characterization and Mapping of Leaf Rust and Stripe Rust Resistance Loci in Hexaploid Wheat Lines UC1110 and PI610750 under Mexican Environments.

    PubMed

    Lan, Caixia; Hale, Iago L; Herrera-Foessel, Sybil A; Basnet, Bhoja R; Randhawa, Mandeep S; Huerta-Espino, Julio; Dubcovsky, Jorge; Singh, Ravi P

    2017-01-01

    Growing resistant wheat varieties is a key method of minimizing the extent of yield losses caused by the globally important wheat leaf rust (LR) and stripe rust (YR) diseases. In this study, a population of 186 F 8 recombinant inbred lines (RILs) derived from a cross between a synthetic wheat derivative (PI610750) and an adapted common wheat line (cv. "UC1110") were phenotyped for LR and YR response at both seedling and adult plant stages over multiple seasons. Using a genetic linkage map consisting of single sequence repeats and diversity arrays technology markers, in combination with inclusive composite interval mapping analysis, we detected a new LR adult plant resistance (APR) locus, QLr.cim-2DS , contributed by UC1110. One co-located resistance locus to both rusts, QLr.cim-3DC/QYr.cim-3DC , and the known seedling resistance gene Lr26 were also mapped. QLr.cim-2DS and QLr.cim-3DC showed a marginally significant interaction for LR resistance in the adult plant stage. In addition, two previously reported YR APR loci, QYr.ucw-3BS and Yr48 , were found to exhibit stable performances in rust environments in both Mexico and the United States and showed a highly significant interaction in the field. Yr48 was also observed to confer intermediate seedling resistance against Mexican YR races, thus suggesting it should be re-classified as an all-stage resistance gene. We also identified 5 and 2 RILs that possessed all detected YR and LR resistance loci, respectively. With the closely linked molecular markers reported here, these RILs could be used as donors for multiple resistance loci to both rusts in wheat breeding programs.

  15. Mapping of stripe rust resistance QTL in Cappelle-Desprez × PBW343 RIL population effective in northern wheat belt of India.

    PubMed

    Pawar, Sushma Kumari; Sharma, Davinder; Duhan, Joginder Singh; Saharan, Mahender Singh; Tiwari, Ratan; Sharma, Indu

    2016-06-01

    Stripe rust caused by Puccinia striiformis f. sp. tritici is most important and devastating disease of wheat worldwide, which affects the grain yields, quality and nutrition. To elucidate, the genetic basis of resistance, a mapping population of recombinant inbred lines was developed from a cross between resistant Cappelle-Desprez and susceptible cultivar PBW343 using single-seed descent. Variety PBW343 had been one of the most popular cultivars of North Western Plains Zone, for more than a decade, before succumbing to the stripe rust. Cappelle-Desprez, a source of durable adult plant resistance, has maintained its resistance against stripe rust for a long time in Europe. Map construction and QTL analysis were completed with 1012 polymorphic (DArT and SSR) markers. Screenings for stripe rust disease were carried out in field condition for two consecutive crop seasons (2012-2013 and 2013-2014). Susceptible parent (PBW343) achieved a significant level of disease i.e., 100 % in both the years. In present investigations, resistance in Cappelle-Desprez was found stable and response to the rust ranged from 0 to 1.5 % over the years. The estimated broad-sense heritability (h 2 ) of stripe rust rAUDPC in the mapping population was 0.82. The relative area under the disease progress curve data showed continuous distributions, indicating that trait was controlled multigenically. Genomic region identified on chromosome 2D, was located within the short arm, with flanking markers (Xgwm484-Xcfd73), explained phenotypic variation (PVE) ranged from 13.9 to 31.8 %. The genomic region identified on chromosome 5B was found with the effect of maximum contribution with flanking DArT markers (1376633|F|0-1207571|F|0), PVE ranged from 24 to 27.0 %. This can, therefore, be utilized for marker assisted selection in developing much needed stripe rust resistant lines for the northern wheat belt of India.

  16. Mapping of Leaf Rust Resistance Genes and Molecular Characterization of the 2NS/2AS Translocation in the Wheat Cultivar Jagger.

    PubMed

    Xue, Shulin; Kolmer, James A; Wang, Shuwen; Yan, Liuling

    2018-05-31

    Winter wheat cultivar 'Jagger' was recently found to have an alien chromosomal segment 2NS that has Lr37 , a gene conferring resistance against leaf rust caused by Puccinia triticina The objective of this study was to map and characterize the gene(s) for seedling leaf rust resistance in Jagger. The recombinant inbred line (RIL) population of Jagger × '2174' was inoculated with leaf rust pathogen THBJG and BBBDB, and evaluated for infection type (IT) response. A major quantitative trait locus (QTL) for THBJG and BBBDB was coincidently mapped to chromosome arm 2AS, and the QTL accounted for 56.6-66.2% of total phenotypic variation in infection type (IT) response to THBJG, and 72.1-86.9% to BBBDB. The causal gene for resistance to these rust races was mapped to the 2NS segment in Jagger. The 2NS segment was located in a region of approximately 27.8 Mb starting from the telomere of chromosome arm 2AS, based on the sequences of the A genome in tetraploid wheat. The Lr17a gene on chromosome arm 2AS was delimited to 3.1 Mb in the genomic region, which was orthologous to the 2NS segment. Therefore, the Lr37 gene in the 2NS segment can be pyramided with other effective resistance genes, rather than Lr17a in wheat, to improve resistance to rust diseases. Copyright © 2018 Xue et al.

  17. Interannual variations in wheat rust development in China and the United States in relation to the El Nino/Southern oscillation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scherm, H.; Yang, X.B.

    The El Nino/Southern Oscillation (ENSO) is one of the most important and best-characterized mechanisms of global climatic variation. Because regional temperature and precipitation patterns are influenced by the ENSO and plant diseases are responsive to these factors, historical disease records may contain an ENSO-related signal. We used cross-spectral analysis to establish coherence and phase relationships between the Southern Oscillation Index (SOI), which is a measure of the ENSO, and long-term (>40 years) data on wheat stripe rust in five regions of northern China and wheat stem rust in four climatic divisions of the midwestern United States. Monthly SOI values weremore » averaged from March to June and October to March for analysis of the rust data from China and the United States, respectively, based when weather patterns in these regions are influenced by the ENSO. The coherence relationships showed consistent and significant (0.01 {le} P {le} 0.10) cooscillations between the rust and SOI series at temporal scales characteristic of the ENSO. The five stripe rust series were coherent with the SOI series at periodicities of 2.0 to 3.0 and 8.0 to 10.0 years, and three of the four stem rust series were coherent with the SOI series at a periodicity of 6.8 to 8.2 years. The phase relationships showed that, in most cases, the rust and SOI series cooscillated out of phase, suggesting that the associations between them are indirect. In a separate analysis of a shorter (18 years) stripe rust series form the Pacific Northwest of the United States, disease severity was significantly lower during El Nino years (warm phases of the ENSO) than during non-El Nino years (P {le} 0.0222) or during La Nina years (cold phases of the ENSO) (P {le}0.0253). Although no cause-and-effect relationships could be deduced, this analysis identified methods and directions for future research into relationships between climate and disease at extended temporal scales. 34 refs., 5 figs., 1 tab.« less

  18. Quantitative trait loci for resistance to stripe rust of wheat revealed using global field nurseries and opportunities for stacking resistance genes.

    PubMed

    Bokore, Firdissa E; Cuthbert, Richard D; Knox, Ron E; Randhawa, Harpinder S; Hiebert, Colin W; DePauw, Ron M; Singh, Asheesh K; Singh, Arti; Sharpe, Andrew G; N'Diaye, Amidou; Pozniak, Curtis J; McCartney, Curt; Ruan, Yuefeng; Berraies, Samia; Meyer, Brad; Munro, Catherine; Hay, Andy; Ammar, Karim; Huerta-Espino, Julio; Bhavani, Sridhar

    2017-12-01

    Quantitative trait loci controlling stripe rust resistance were identified in adapted Canadian spring wheat cultivars providing opportunity for breeders to stack loci using marker-assisted breeding. Stripe rust or yellow rust, caused by Puccinia striiformis Westend. f. sp. tritici Erikss., is a devastating disease of common wheat (Triticum aestivum L.) in many regions of the world. The objectives of this research were to identify and map quantitative trait loci (QTL) associated with stripe rust resistance in adapted Canadian spring wheat cultivars that are effective globally, and investigate opportunities for stacking resistance. Doubled haploid (DH) populations from the crosses Vesper/Lillian, Vesper/Stettler, Carberry/Vesper, Stettler/Red Fife and Carberry/AC Cadillac were phenotyped for stripe rust severity and infection response in field nurseries in Canada (Lethbridge and Swift Current), New Zealand (Lincoln), Mexico (Toluca) and Kenya (Njoro), and genotyped with SNP markers. Six QTL for stripe rust resistance in the population of Vesper/Lillian, five in Vesper/Stettler, seven in Stettler/Red Fife, four in Carberry/Vesper and nine in Carberry/AC Cadillac were identified. Lillian contributed stripe rust resistance QTL on chromosomes 4B, 5A, 6B and 7D, AC Cadillac on 2A, 2B, 3B and 5B, Carberry on 1A, 1B, 4A, 4B, 7A and 7D, Stettler on 1A, 2A, 3D, 4A, 5B and 6A, Red Fife on 2D, 3B and 4B, and Vesper on 1B, 2B and 7A. QTL on 1A, 1B, 2A, 2B, 3B, 4A, 4B, 5B, 7A and 7D were observed in multiple parents. The populations are compelling sources of recombination of many stripe rust resistance QTL for stacking disease resistance. Gene pyramiding should be possible with little chance of linkage drag of detrimental genes as the source parents were mostly adapted cultivars widely grown in Canada.

  19. A 20-year reassessment of the health and status of whitebark pine forests in the Bob Marshall Wilderness Complex, Montana

    Treesearch

    Molly L. Retzlaff; Signe B. Leirfallom; Robert E. Keane

    2016-01-01

    Whitebark pine plays a prominent role in high elevation ecosystems of the northern Rocky Mountains. It is an important food source for many birds and mammals as well as an essential component of watershed stabilization. Whitebark pine is vanishing from the landscape due to three main factors: white pine blister rust, mountain pine beetle outbreaks, and successional...

  20. Valuing the forest for the trees: Willingness to pay for white pine blister rust management

    Treesearch

    James R. Meldrum; Patricia A. Champ; Craig A. Bond

    2011-01-01

    The nearly two million acres of high elevation forests in the Western United States are not an important source of timber or any other market products. However, that does not mean that the forests are not highly valuable. Visitors and nonvisitors alike value the unique five-needle pine trees found in these high elevation ecosystems. In this study, we estimate the...

  1. Developing proactive management options to sustain bristlecone and limber pine ecosystems in the presence of a non-native pathogen

    Treesearch

    A. W. Schoettle

    2004-01-01

    Limber pine and Rocky Mountain bristlecone pine are currently threatened by the non-native pathogen white pine blister rust (WPBR). Limber pine is experiencing mortality in the Northern Rocky Mountains and the infection front continues to move southward. The first report of WPBR on Rocky Mountain bristlecone pine was made in 2003 (Blodgett and Sullivan 2004), at a site...

  2. A review of the literature on seed fate in whitebark pine and the life history traits of Clark’s nutcracker and pine squirrels.

    Treesearch

    Teresa J. Lorenz; Carol Aubry; Robin. Shoal

    2008-01-01

    Whitebark pine is a critical component of subalpine ecosystems in western North America, where it contributes to biodiversity and ecosystem function and in some communities is considered a keystone species. Whitebark pine is undergoing rangewide population declines attributed to the combined effects of mountain pine beetle, white pine blister rust, and fire suppression...

  3. Flavonoid Accumulation Plays an Important Role in the Rust Resistance of Malus Plant Leaves.

    PubMed

    Lu, Yanfen; Chen, Qi; Bu, Yufen; Luo, Rui; Hao, Suxiao; Zhang, Jie; Tian, Ji; Yao, Yuncong

    2017-01-01

    Cedar-apple rust ( Gymnosporangium yamadai Miyabe) is a fungal disease that causes substantial injury to apple trees and results in fruit with reduced size and quality and a lower commercial value. The molecular mechanisms underlying the primary and secondary metabolic effects of rust spots on the leaves of Malus apple cultivars are poorly understood. Using HPLC, we found that the contents of flavonoid compounds, especially anthocyanin and catechin, were significantly increased in rust-infected symptomatic tissue (RIT). The expression levels of structural genes and MYB transcription factors related to flavonoid biosynthesis were one- to seven-fold higher in the RIT. Among these genes, CHS, DFR, ANS, FLS and MYB10 showed more than a 10-fold increase, suggesting that these genes were expressed at significantly higher levels in the RIT. Hormone concentration assays showed that the levels of abscisic acid (ABA), ethylene (ETH), jasmonate (JA) and salicylic acid (SA) were higher in the RIT and were consistent with the expression levels of McNCED, McACS, McLOX and McNPR1 , respectively. Our study explored the complicated crosstalk of the signal transduction pathways of ABA, ETH, JA and SA; the primary metabolism of glucose, sucrose, fructose and sorbitol; and the secondary metabolism of flavonoids involved in the rust resistance of Malus crabapple leaves.

  4. Identification of stem rust resistance genes in wheat cultivars in China using molecular markers.

    PubMed

    Xu, Xiaofeng; Yuan, Depeng; Li, Dandan; Gao, Yue; Wang, Ziyuan; Liu, Yang; Wang, Siting; Xuan, Yuanhu; Zhao, Hui; Li, Tianya; Wu, Yuanhua

    2018-01-01

    Wheat stem rust caused by Puccinia graminis f. sp. tritici Eriks. & E. Henn. ( Pgt ), is a major disease that has been effectively controlled using resistance genes. The appearance and spread of Pgt races such as Ug99, TKTTF, and TTTTF, which are virulent to most stem rust-resistant genes currently deployed in wheat breeding programs, renewed the interest in breeding cultivars resistant to wheat stem rust. It is therefore important to investigate the levels of resistance or vulnerability of wheat cultivars to Pgt races. Resistance to Pgt races 21C3CTHQM, 34MKGQM, and 34C3RTGQM was evaluated in 136 Chinese wheat cultivars at the seedling stage. A total of 124 cultivars (91.2%) were resistant to the three races. Resistance genes Sr2 , Sr24 , Sr25 , Sr26 , Sr31 , and Sr38 were analyzed using molecular markers closely linked to them, and 63 of the 136 wheat cultivars carried at least one of these genes: 21, 25, and 28 wheat cultivars likely carried Sr2 , Sr31 , and Sr38 , respectively. Cultivars "Kehan 3" and "Jimai 22" likely carried Sr25 . None of the cultivars carried Sr24 or Sr26 . These cultivars with known stem rust resistance genes provide valuable genetic material for breeding resistant wheat cultivars.

  5. Repair of the DSS-14 Pedestal Concrete

    NASA Technical Reports Server (NTRS)

    Mcclure, D.

    1985-01-01

    About three years after the Goldstone Deep Space Station antenna was dedicated, grout under the hydrostatic bearing runner was found to be interacting with the runner, causing rust to form between the runner and the sole plates upon which it rests. The rust formed unevenly and the runner could not be kept flat so in 1969 the grout was removed and replaced with a Portland cement and sand dry pack grout that was less likely to produce rust. In the years that followed, oil leaking from the runner assembly caused progressive deterioration of the drypack grout. In 1982 over one thousand hours of spacecraft tracking time were lost due to this deterioration. A plan was developed to rehabilitate the bearing. The plan called for raising the rotating structure free from the concrete pedestal and placing it on three pairs of external support columns. With the weight of the structure transferred to the columns, the pads and runner could be removed and the repair started. The very successful repair included the replacement of a significant portion of the antenna pedestal.

  6. Resistance to rust fungi in Lolium perenne depends on within-species variation and performance of the host species in grasslands of different plant diversity.

    PubMed

    Roscher, Christiane; Schumacher, Jens; Foitzik, Oliver; Schulze, Ernst-Detlef

    2007-08-01

    The hypothesis that plant species diversity and genetic variation of the host species decrease the severity of plant diseases is supported by studies of agricultural systems, but experimental evidence from more complex systems is scarce. In an experiment with grassland communities of varying species richness (1, 2, 4, 8, 16, and 60 species) and functional group richness (1, 2, 3, and 4 functional groups), we used different cultivars of Lolium perenne (perennial ryegrass) to study effects of biodiversity and cultivar identity on the occurrence and severity of foliar fungal diseases caused by Puccinia coronata (crown rust) and P. graminis (stem rust). Cultivar monocultures of perennial ryegrass revealed strong differences in pathogen susceptibility among these cultivars. Disease intensity caused by both rust fungi decreased significantly with growing species richness of species mixtures. The response to the diversity gradient was related to the decreased density and size of the host individuals with increasing species richness. The occurrence of other grass species known to be possible hosts of the pathogens in the experimental mixtures did not promote disease intensity in L. perenne, indicating that there was a high host specificity of pathogen strains. Differences in pathogen susceptibility among perennial ryegrass cultivars persisted independent of diversity treatment, host density and host individual size, but resulted in a cultivar-specific pattern of changes in pathogen infestation across the species-richness gradient. Our study provided evidence that within-species variation in pathogen susceptibility and competitive interactions of the host species with the environment, as caused by species diversity treatments, are key determinants of the occurrence and severity of fungal diseases.

  7. Detection of Puccinia kuehnii Causing Sugarcane Orange Rust with a Loop-Mediated Isothermal Amplification-Based Assay.

    PubMed

    Chandra, Amaresh; Keizerweerd, Amber T; Grisham, Michael P

    2016-03-01

    Puccinia kuehnii is a fungal pathogen that causes orange rust in sugarcane, which is now prevalent in many countries. At the early stage of disease, it is almost indistinguishable from brown rust, which is caused by Puccinia melanocephala. Although several PCR assays are available to detect these diseases, the loop-mediated isothermal amplification (LAMP)-based assay has been reported to be more economical and easier to perform. Under isothermal conditions, DNA is amplified with high specificity and rapidity. Moreover, visual judgment of color change without further post-amplification processing makes the method convenient. The present study was undertaken to detect P. kuehnii genomic DNA using four primers corresponding to a unique DNA sequence of P. kuehnii. The LAMP assay was found to be optimal when 8 mM MgSO4 was used and the reaction was incubated at 63 °C for 90 min. Positive samples showed a color change from orange to green upon SYBR Green I dye addition. Specificity of the LAMP test was checked with DNA of P. melanocephala, which showed no reaction. Sensitivity of the LAMP method was observed to be the same as real-time PCR at 0.1 ng, thus providing a rapid and more affordable option for early disease detection.

  8. Gall production on hawthorns caused by Gymnosporangium spp.in Hatay province, Turkey

    USDA-ARS?s Scientific Manuscript database

    Three hawthorn and related rust diseases caused by Gymnosporangium confusum on Crataegus monogyna, G. clavariiforme on C. orientalis, and G. sabinae on Pyrus communis were detected in Hatay province, Turkey. Gymnosporangium confusum was also found causing telial galls on Juniperus communis. Gymnospo...

  9. Targeted capture sequencing in Whitebark pine reveals range-wide demographic and adaptive patterns despite challenges of a large, repetitive genome

    Treesearch

    John V. Syring; Jacob A. Tennessen; Tara N. Jennings; Jill Wegrzyn; Camille Scelfo-Dalbey; Richard Cronn

    2016-01-01

    Whitebark pine (Pinus albicaulis) inhabits an expansive range in western North America, and it is a keystone species of subalpine environments. Whitebark is susceptible to multiple threats – climate change, white pine blister rust, mountain pine beetle, and fire exclusion – and it is suffering significant mortality range-wide, prompting the tree to be listed as ‘...

  10. Resistance Potential of Bread Wheat Genotypes Against Yellow Rust Disease Under Egyptian Climate.

    PubMed

    Mahmoud, Amer F; Hassan, Mohamed I; Amein, Karam A

    2015-12-01

    Yellow rust (stripe rust), caused by Puccinia striiformis f. sp. tritici, is one of the most destructive foliar diseases of wheat in Egypt and worldwide. In order to identify wheat genotypes resistant to yellow rust and develop molecular markers associated with the resistance, fifty F8 recombinant inbred lines (RILs) derived from a cross between resistant and susceptible bread wheat landraces were obtained. Artificial infection of Puccinia striiformis was performed under greenhouse conditions during two growing seasons and relative resistance index (RRI) was calculated. Two Egyptian bread wheat cultivars i.e. Giza-168 (resistant) and Sakha-69 (susceptible) were also evaluated. RRI values of two-year trial showed that 10 RILs responded with RRI value >6 <9 with an average of 7.29, which exceeded the Egyptian bread wheat cultivar Giza-168 (5.58). Thirty three RILs were included among the acceptable range having RRI value >2 <6. However, only 7 RILs showed RRI value <2. Five RILs expressed hypersensitive type of resistance (R) against the pathogen and showed the lowest Average Coefficient of Infection (ACI). Bulked segregant analysis (BSA) with eight simple sequence repeat (SSR), eight sequence-related amplified polymorphism (SRAP) and sixteen random amplified polymorphic DNA (RAPD) markers revealed that three SSR, three SRAP and six RAPD markers were found to be associated with the resistance to yellow rust. However, further molecular analyses would be performed to confirm markers associated with the resistance and suitable for marker-assisted selection. Resistant RILs identified in the study could be efficiently used to improve the resistance to yellow rust in wheat.

  11. Multi-location wheat stripe rust QTL analysis: genetic background and epistatic interactions.

    PubMed

    Vazquez, M Dolores; Zemetra, Robert; Peterson, C James; Chen, Xianming M; Heesacker, Adam; Mundt, Christopher C

    2015-07-01

    Epistasis and genetic background were important influences on expression of stripe rust resistance in two wheat RIL populations, one with resistance conditioned by two major genes and the other conditioned by several minor QTL. Stripe rust is a foliar disease of wheat (Triticum aestivum L.) caused by the air-borne fungus Puccinia striiformis f. sp. tritici and is present in most regions around the world where commercial wheat is grown. Breeding for durable resistance to stripe rust continues to be a priority, but also is a challenge due to the complexity of interactions among resistance genes and to the wide diversity and continuous evolution of the pathogen races. The goal of this study was to detect chromosomal regions for resistance to stripe rust in two winter wheat populations, 'Tubbs'/'NSA-98-0995' (T/N) and 'Einstein'/'Tubbs' (E/T), evaluated across seven environments and mapped with diversity array technology and simple sequence repeat markers covering polymorphic regions of ≈1480 and 1117 cM, respectively. Analysis of variance for phenotypic data revealed significant (P < 0.01) genotypic differentiation for stripe rust among the recombinant inbred lines. Results for quantitative trait loci/locus (QTL) analysis in the E/T population indicated that two major QTL located in chromosomes 2AS and 6AL, with epistatic interaction between them, were responsible for the main phenotypic response. For the T/N population, eight QTL were identified, with those in chromosomes 2AL and 2BL accounting for the largest percentage of the phenotypic variance.

  12. Simultaneous Transfer of Leaf Rust and Powdery Mildew Resistance Genes from Hexaploid Triticale Cultivar Sorento into Bread Wheat

    PubMed Central

    Li, Feng; Li, Yinghui; Cao, Lirong; Liu, Peiyuan; Geng, Miaomiao; Zhang, Qiang; Qiu, Lina; Sun, Qixin; Xie, Chaojie

    2018-01-01

    Wheat powdery mildew, caused by Blumeria graminis f. sp. tritici, and wheat leaf rust, caused by Puccinia triticina Eriks, are two important diseases that severely threaten wheat production. Sorento, a hexaploid triticale cultivar from Poland, shows high resistance to the wheat powdery mildew isolate E09 and the leaf rust isolate PHT in Beijing, China. To introduce resistance genes into common wheat, Sorento was crossed with wheat line Xuezao, which is susceptible to both diseases, and the F1 hybrids were then backcrossed with Xuezao as the recurrent male parent. By marker analysis, we demonstrate that the long arm of the 2R (2RL) chromosome confers resistance to both the leaf rust and powdery mildew isolates at adult-plant and seedling stages, while the long arm of 4R (4RL) confers resistance only to powdery mildew at both stages. The chromosomal composition of BC2F3 plants containing 2R or 2RL and 4R or 4RL in the form of substitution and translocation were confirmed by GISH (genomic in situ hybridization) and FISH (fluorescence in situ hybridization). Monosomic and disomic substitutions of a wheat chromosome with chromosome 2R or 4R, as well as one 4RS-4DL/4DS-4RL reciprocal translocation homozigote and one 2RL-1DL translocation hemizigote, were recovered. Such germplasms are of great value in wheat improvement. PMID:29459877

  13. Simultaneous Transfer of Leaf Rust and Powdery Mildew Resistance Genes from Hexaploid Triticale Cultivar Sorento into Bread Wheat.

    PubMed

    Li, Feng; Li, Yinghui; Cao, Lirong; Liu, Peiyuan; Geng, Miaomiao; Zhang, Qiang; Qiu, Lina; Sun, Qixin; Xie, Chaojie

    2018-01-01

    Wheat powdery mildew, caused by Blumeria graminis f. sp. tritici , and wheat leaf rust, caused by Puccinia triticina Eriks, are two important diseases that severely threaten wheat production. Sorento, a hexaploid triticale cultivar from Poland, shows high resistance to the wheat powdery mildew isolate E09 and the leaf rust isolate PHT in Beijing, China. To introduce resistance genes into common wheat, Sorento was crossed with wheat line Xuezao, which is susceptible to both diseases, and the F 1 hybrids were then backcrossed with Xuezao as the recurrent male parent. By marker analysis, we demonstrate that the long arm of the 2R (2RL) chromosome confers resistance to both the leaf rust and powdery mildew isolates at adult-plant and seedling stages, while the long arm of 4R (4RL) confers resistance only to powdery mildew at both stages. The chromosomal composition of BC 2 F 3 plants containing 2R or 2RL and 4R or 4RL in the form of substitution and translocation were confirmed by GISH (genomic in situ hybridization) and FISH (fluorescence in situ hybridization). Monosomic and disomic substitutions of a wheat chromosome with chromosome 2R or 4R, as well as one 4RS-4DL/4DS-4RL reciprocal translocation homozigote and one 2RL-1DL translocation hemizigote, were recovered. Such germplasms are of great value in wheat improvement.

  14. Enhanced resistance to stripe rust disease in transgenic wheat expressing the rice chitinase gene RC24.

    PubMed

    Huang, Xuan; Wang, Jian; Du, Zhen; Zhang, Chen; Li, Lan; Xu, Ziqin

    2013-10-01

    Stripe rust is a devastating fungal disease of wheat worldwide which is primarily caused by Puccinia striiformis f. sp tritici. Transgenic wheat (Triticum aestivum L.) expressing rice class chitinase gene RC24 were developed by particle bombardment of immature embryos and tested for resistance to Puccinia striiformis f.sp tritici. under greenhouse and field conditions. Putative transformants were selected on kanamycin-containing media. Polymease chain reaction indicated that RC24 was transferred into 17 transformants obtained from bombardment of 1,684 immature embryos. Integration of RC24 was confirmed by Southern blot with a RC24-labeled probe and expression of RC24 was verified by RT-PCR. Nine transgenic T1 lines exhibited enhanced resistance to stripe rust infection with lines XN8 and BF4 showing the highest level of resistance. Southern blot hybridization confirmed the stable inheritance of RC24 in transgenic T1 plants. Resistance to stripe rust in transgenic T2 and T3 XN8 and BF4 plants was confirmed over two consecutive years in the field. Increased yield (27-36 %) was recorded for transgenic T2 and T3 XN8 and BF4 plants compared to controls. These results suggest that rice class I chitinase RC24 can be used to engineer stripe rust resistance in wheat.

  15. Insights into Tan Spot and Stem Rust Resistance and Susceptibility by Studying the Pre-Green Revolution Global Collection of Wheat

    PubMed Central

    Abdullah, Sidrat; Sehgal, Sunish Kumar; Jin, Yue; Turnipseed, Brent; Ali, Shaukat

    2017-01-01

    Tan spot (TS), caused by the fungus Pyrenophora tritici-repentis (Died) Drechs, is an important foliar disease of wheat and has become a threat to world wheat production since the 1970s. In this study a globally diverse pre-1940s collection of 247 wheat genotypes was evaluated against Ptr ToxA, P. tritici-repentis race 1, and stem rust to determine if; (i) acquisition of Ptr ToxA by the P. tritici-repentis from Stagonospora nodorum led to increased pathogen virulence or (ii) incorporation of TS susceptibility during development stem rust resistant cultivars led to an increase in TS epidemics globally. Most genotypes were susceptible to stem rust; however, a range of reactions to TS and Ptr ToxA were observed. Four combinations of disease-toxin reactions were observed among the genotypes; TS susceptible-Ptr ToxA sensitive, TS susceptible-Ptr ToxA insensitive, TS resistant-Ptr ToxA insensitive, and TS resistant-Ptr ToxA toxin sensitive. A weak correlation (r = 0.14 for bread wheat and −0.082 for durum) was observed between stem rust susceptibility and TS resistance. Even though there were no reported epidemics in the pre-1940s, TS sensitive genotypes were widely grown in that period, suggesting that Ptr ToxA may not be an important factor responsible for enhanced prevalence of TS. PMID:28381959

  16. Proteomic characterization of the Rph15 barley resistance gene-mediated defence responses to leaf rust

    PubMed Central

    2012-01-01

    Background Leaf rust, caused by the biotrophic fungal pathogen Puccinia hordei, is one of the most important foliar disease of barley (Hordeum vulgare) and represents a serious threat in many production regions of the world. The leaf rust resistance gene Rph15 is of outstanding interest for resistance breeding because it confers resistance to over 350 Puccinia hordei isolates collected from around the world. Molecular and biochemical mechanisms responsible for the Rph15 effectiveness are currently not investigated. The aim of the present work was to study the Rph15-based defence responses using a proteomic approach. Results Protein pattern changes in response to the leaf rust pathogen infection were investigated in two barley near isogenic lines (NILs), Bowman (leaf rust susceptible) and Bowman-Rph15 (leaf rust resistant), differing for the introgression of the leaf rust resistance gene Rph15. Two infection time points, 24 hours and four days post inoculation (dpi), were analysed. No statistically significant differences were identified at the early time point, while at 4 dpi eighteen protein spots were significantly up or down regulated with a fold-change equal or higher than two in response to pathogen infection. Almost all the pathogen-responsive proteins were identified in the Bowman-Rph15 resistant NIL. Protein spots were characterized by LC-MS/MS analysis and found to be involved in photosynthesis and energy metabolism, carbohydrate metabolism, protein degradation and defence. Proteomic data were complemented by transcriptional analysis of the respective genes. The identified proteins can be related to modulation of the photosynthetic apparatus components, re-direction of the metabolism to sustain defence responses and deployment of defence proteins. Conclusions The identification of leaf rust infection-modulated defence responses restricted to the resistant NIL support the hypothesis that basal defence responses of Bowman, but not the Rph15 resistance gene-based ones, are suppressed or delayed by pathogen effectors to levels below the detection power of the adopted proteomic approach. Additionally, Rph15-mediated resistance processes identified mainly resides on a modulation of primary metabolism, affecting photosyntesis and carbohydrate pool. PMID:23167439

  17. 78 FR 27855 - Black Stem Rust; Additions of Rust-Resistant Species and Varieties

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-13

    .... APHIS-2012-0108] Black Stem Rust; Additions of Rust-Resistant Species and Varieties AGENCY: Animal and... stem rust quarantine and regulations by adding two varieties to the list of rust-resistant Berberis species and varieties and one variety to the list of rust-resistant Mahonia species and varieties. This...

  18. Demonstration of Smart Fluorescent and Self-Healing Coatings for Severely Corrosive Environments at Vehicle Wash Facilities

    DTIC Science & Technology

    2009-08-01

    as well as pipe and tank exteriors providing early detection of coating erosion, cracks , and intercoat blistering. A fluorescing coating used ERDC...poor with widespread areas of peeling and cracking on the exterior siding. Areas of exposed galvanizing were rusting. Structural steel elements...and application of TT-P-86 Type 2 red lead paint and red and white colored alkyd enamel topcoats. The average dry film thickness on the exterior

  19. Mapping of quantitative adult plant field resistance to leaf rust and stripe rust in two European winter wheat populations reveals co-location of three QTL conferring resistance to both rust pathogens.

    PubMed

    Buerstmayr, Maria; Matiasch, Lydia; Mascher, Fabio; Vida, Gyula; Ittu, Marianna; Robert, Olivier; Holdgate, Sarah; Flath, Kerstin; Neumayer, Anton; Buerstmayr, Hermann

    2014-09-01

    We detected several, most likely novel QTL for adult plant resistance to rusts. Notably three QTL improved resistance to leaf rust and stripe rust simultaneously indicating broad spectrum resistance QTL. The rusts of wheat (Puccinia spp.) are destructive fungal wheat diseases. The deployment of resistant cultivars plays a central role in integrated rust disease management. Durability of resistance would be preferred, but is difficult to analyse. The Austrian winter wheat cultivar Capo was released in the 1989 and grown on a large acreage during more than two decades and maintained a good level of quantitative leaf rust and stripe rust resistance. Two bi-parental mapping populations: Capo × Arina and Capo × Furore were tested in multiple environments for severity of leaf rust and stripe rust at the adult plant stage in replicated field experiments. Quantitative trait loci associated with leaf rust and stripe rust severity were mapped using DArT and SSR markers. Five QTL were detected in multiple environments associated with resistance to leaf rust designated as QLr.ifa-2AL, QLr.ifa-2BL, QLr.ifa-2BS, QLr.ifa-3BS, and QLr.ifa-5BL, and five for resistance to stripe rust QYr.ifa-2AL, QYr.ifa-2BL, QYr.ifa-3AS, QYr.ifa-3BS, and QYr.ifa-5A. For all QTL apart from two (QYr.ifa-3AS, QLr.ifa-5BL) Capo contributed the resistance improving allele. The leaf rust and stripe rust resistance QTL on 2AL, 2BL and 3BS mapped to the same chromosome positions, indicating either closely linked genes or pleiotropic gene action. These three multiple disease resistance QTL (QLr.ifa-2AL/QYr.ifa-2AL, QLr.ifa.2BL/QYr.ifa-2BL, QLr.ifa-3BS/QYr.ifa.3BS) potentially contribute novel resistance sources for stripe rust and leaf rust. The long-lasting resistance of Capo apparently rests upon a combination of several genes. The described germplasm, QTL and markers are applicable for simultaneous resistance improvement against leaf rust and stripe rust.

  20. Molecular and cytogenetic characterization of a durum wheat-Aegilops speltoides chromosome translocation conferring resistance to stem rust.

    PubMed

    Faris, Justin D; Xu, Steven S; Cai, Xiwen; Friesen, Timothy L; Jin, Yue

    2008-01-01

    Stem rust is a serious disease of wheat that has caused historical epidemics, but it has not been a threat in recent decades in North America owing to the eradication of the alternative host and deployment of resistant cultivars. However, the recent emergence of Ug99 (or race TTKS) poses a threat to global wheat production because most currently grown wheat varieties are susceptible. In this study, we evaluated a durum wheat-Aegilops speltoides chromosome translocation line (DAS15) for reaction to Ug99 and six other races of stem rust, and used molecular and cytogenetic tools to characterize the translocation. DAS15 was resistant to all seven races of stem rust. Two durum-Ae. speltoides translocated chromosomes were detected in DAS15. One translocation involved the short arm, centromere, and a major portion of the long arm of Ae. speltoides chromosome 2S and a small terminal segment from durum chromosome arm 2BL. Thus, this translocated chromosome is designated T2BL-2SL*2SS. Cytogenetic mapping assigned the resistance gene(s) in DAS15 to the Ae. speltoides segment in T2BL-2SL*2SS. The Ae. speltoides segment in the other translocated chromosome did not harbour stem rust resistance. A comparison of DAS15 and the wheat stocks carrying the Ae. speltoides-derived resistance genes Sr32 and Sr39 indicated that stem rust resistance gene present in DAS15 is likely novel and will be useful for developing germplasm with resistance to Ug99. Efforts to reduce Ae. speltoides chromatin in T2BL-2SL*2SS are currently in progress.

  1. Complementary epistasis involving Sr12 explains adult plant resistance to stem rust in Thatcher wheat (Triticum aestivum L.).

    PubMed

    Rouse, Matthew N; Talbert, Luther E; Singh, Davinder; Sherman, Jamie D

    2014-07-01

    Quantitative trait loci conferring adult plant resistance to Ug99 stem rust in Thatcher wheat display complementary gene action suggesting multiple quantitative trait loci are needed for effective resistance. Adult plant resistance (APR) in wheat (Triticum aestivum L.) to stem rust, caused by Puccinia graminis f. sp. tritici (Pgt), is desirable because this resistance can be Pgt race non-specific. Resistance derived from cultivar Thatcher can confer high levels of APR to the virulent Pgt race TTKSK (Ug99) when combined with stem rust resistance gene Sr57 (Lr34). To identify the loci conferring APR in Thatcher, we evaluated 160 RILs derived from Thatcher crossed to susceptible cultivar McNeal for field stem rust reaction in Kenya for two seasons and in St. Paul for one season. All RILs and parents were susceptible as seedlings to race TTKSK. However, adult plant stem rust severities in Kenya varied from 5 to 80 %. Composite interval mapping identified four quantitative trait loci (QTL). Three QTL were inherited from Thatcher and one, Sr57, was inherited from McNeal. The markers closest to the QTL peaks were used in an ANOVA to determine the additive and epistatic effects. A QTL on 3BS was detected in all three environments and explained 27-35 % of the variation. The peak of this QTL was at the same location as the Sr12 seedling resistance gene effective to race SCCSC. Epistatic interactions were significant between Sr12 and QTL on chromosome arms 1AL and 2BS. Though Sr12 cosegregated with the largest effect QTL, lines with Sr12 were not always resistant. The data suggest that Sr12 or a linked gene, though not effective to race TTKSK alone, confers APR when combined with other resistance loci.

  2. Ornamental and Turf Pest Control. Bulletin 764.

    ERIC Educational Resources Information Center

    Bowyer, Timothy H.; And Others

    This manual gives descriptions of and methods for control of diseases and insect pests of ornamental plants, weeds, and diseases and insect pests of turf plants. Included are diseases caused by fungi such as cankers, leaf galls, and rust; diseases caused by bacteria such as bacterial blight and crown gall; and diseases caused by nematodes and…

  3. Pre-terrestrial origin of rust in the Nakhla meteorite

    NASA Technical Reports Server (NTRS)

    Wentworth, Susan J.; Gooding, James L.

    1990-01-01

    The authors present quantative elemental compositions and summarize textural evidence for the pre-terrestrial origin of rust on the Nakhla meteorite. The material in question is called 'rust' because its phase composition remains unknown. Compelling evidence for the pre-terrestrial origin of the rust is found in rust veins truncated by fusion crust and preserved as faults in sutured igneous crystals. Rust veins that approach the meteorite's fusion crust become discontinuous and exhibit vugs that suggest partial decrepitation; no veins that penetrate the fusion crust have been found. Because the rust probably contains volatile compounds, it is reasonable to expect that heating near the ablation surface (formed during atmospheric entry to Earth) would encourage devolatilization of the rust. Hence, the absence of rust veins in fusion crust and vugs in rust veins near fusion crust clearly imply that the rust existed in the meteorite before atmospheric entry.

  4. Stripe rust and leaf rust resistance QTL mapping, epistatic interactions, and co-localization with stem rust resistance loci in spring wheat evaluated over three continents.

    PubMed

    Singh, A; Knox, R E; DePauw, R M; Singh, A K; Cuthbert, R D; Campbell, H L; Shorter, S; Bhavani, S

    2014-11-01

    In wheat, advantageous gene-rich or pleiotropic regions for stripe, leaf, and stem rust and epistatic interactions between rust resistance loci should be accounted for in plant breeding strategies. Leaf rust (Puccinia triticina Eriks.) and stripe rust (Puccinia striiformis f. tritici Eriks) contribute to major production losses in many regions worldwide. The objectives of this research were to identify and study epistatic interactions of quantitative trait loci (QTL) for stripe and leaf rust resistance in a doubled haploid (DH) population derived from the cross of Canadian wheat cultivars, AC Cadillac and Carberry. The relationship of leaf and stripe rust resistance QTL that co-located with stem rust resistance QTL previously mapped in this population was also investigated. The Carberry/AC Cadillac population was genotyped with DArT(®) and simple sequence repeat markers. The parents and population were phenotyped for stripe rust severity and infection response in field rust nurseries in Kenya (Njoro), Canada (Swift Current), and New Zealand (Lincoln); and for leaf rust severity and infection response in field nurseries in Canada (Swift Current) and New Zealand (Lincoln). AC Cadillac was a source of stripe rust resistance QTL on chromosomes 2A, 2B, 3A, 3B, 5B, and 7B; and Carberry was a source of resistance on chromosomes 2B, 4B, and 7A. AC Cadillac contributed QTL for resistance to leaf rust on chromosome 2A and Carberry contributed QTL on chromosomes 2B and 4B. Stripe rust resistance QTL co-localized with previously reported stem rust resistance QTL on 2B, 3B, and 7B, while leaf rust resistance QTL co-localized with 4B stem rust resistance QTL. Several epistatic interactions were identified both for stripe and leaf rust resistance QTL. We have identified useful combinations of genetic loci with main and epistatic effects. Multiple disease resistance regions identified on chromosomes 2A, 2B, 3B, 4B, 5B, and 7B are prime candidates for further investigation and validation of their broad resistance.

  5. 75 FR 29191 - Black Stem Rust; Additions of Rust-Resistant Varieties

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-25

    .... APHIS-2010-0035] Black Stem Rust; Additions of Rust-Resistant Varieties AGENCY: Animal and Plant Health Inspection Service, USDA. ACTION: Direct final rule. SUMMARY: We are amending the black stem rust quarantine and regulations by adding 21 varieties to the list of rust-resistant Berberis species or cultivars and...

  6. Loci associated with resistance to stripe rust (Puccinia striiformis f. sp. tritici) in a core collection of spring wheat (Triticum aestivum).

    PubMed

    Muleta, Kebede T; Bulli, Peter; Rynearson, Sheri; Chen, Xianming; Pumphrey, Michael

    2017-01-01

    Stripe rust, caused by Puccinia striiformis Westend. f. sp. tritici Erikss. (Pst) remains one of the most significant diseases of wheat worldwide. We investigated stripe rust resistance by genome-wide association analysis (GWAS) in 959 spring wheat accessions from the United States Department of Agriculture-Agricultural Research Service National Small Grains Collection, representing major global production environments. The panel was characterized for field resistance in multi-environment field trials and seedling resistance under greenhouse conditions. A genome-wide set of 5,619 informative SNP markers were used to examine the population structure, linkage disequilibrium and marker-trait associations in the germplasm panel. Based on model-based analysis of population structure and hierarchical Ward clustering algorithm, the accessions were clustered into two major subgroups. These subgroups were largely separated according to geographic origin and improvement status of the accessions. A significant correlation was observed between the population sub-clusters and response to stripe rust infection. We identified 11 and 7 genomic regions with significant associations with stripe rust resistance at adult plant and seedling stages, respectively, based on a false discovery rate multiple correction method. The regions harboring all, except three, of the QTL identified from the field and greenhouse studies overlap with positions of previously reported QTL. Further work should aim at validating the identified QTL using proper germplasm and populations to enhance their utility in marker assisted breeding.

  7. Loci associated with resistance to stripe rust (Puccinia striiformis f. sp. tritici) in a core collection of spring wheat (Triticum aestivum)

    PubMed Central

    Bulli, Peter; Rynearson, Sheri; Chen, Xianming; Pumphrey, Michael

    2017-01-01

    Stripe rust, caused by Puccinia striiformis Westend. f. sp. tritici Erikss. (Pst) remains one of the most significant diseases of wheat worldwide. We investigated stripe rust resistance by genome-wide association analysis (GWAS) in 959 spring wheat accessions from the United States Department of Agriculture-Agricultural Research Service National Small Grains Collection, representing major global production environments. The panel was characterized for field resistance in multi-environment field trials and seedling resistance under greenhouse conditions. A genome-wide set of 5,619 informative SNP markers were used to examine the population structure, linkage disequilibrium and marker-trait associations in the germplasm panel. Based on model-based analysis of population structure and hierarchical Ward clustering algorithm, the accessions were clustered into two major subgroups. These subgroups were largely separated according to geographic origin and improvement status of the accessions. A significant correlation was observed between the population sub-clusters and response to stripe rust infection. We identified 11 and 7 genomic regions with significant associations with stripe rust resistance at adult plant and seedling stages, respectively, based on a false discovery rate multiple correction method. The regions harboring all, except three, of the QTL identified from the field and greenhouse studies overlap with positions of previously reported QTL. Further work should aim at validating the identified QTL using proper germplasm and populations to enhance their utility in marker assisted breeding. PMID:28591221

  8. Rapid detection of Puccinia triticina causing leaf rust of wheat by PCR and loop mediated isothermal amplification

    PubMed Central

    Kulshreshtha, Deepika; Gupta, Sangeeta; Singh, Kartar; Bhardwaj, Subhash C.

    2018-01-01

    Leaf rust of wheat caused by Puccinia triticina has significant impact on wheat production worldwide. Effective and quick detection methodologies are required to mitigate yield loss and time constraints associated with monitoring and management of leaf rust of wheat. In the present study, detection of P. triticina has been simplified by developing a rapid, reliable, efficient and visual colorimetric method i.e., loop mediated isothermal amplification of DNA (LAMP). Based on in silico analysis of P. triticina genome, PTS68, a simple sequence repeat was found highly specific to leaf rust fungus. A marker (PtRA68) was developed and its specificity was validated through PCR technique which gave a unique and sharp band of 919 bp in P. triticina pathotypes only. A novel gene amplification method LAMP which enables visual detection of pathogen by naked eye was developed for leaf rust pathogen. A set of six primers was designed from specific region of P. triticina and conditions were optimised to complete the observation process in 60 minutes at 65o C. The assay developed in the study could detect presence of P. triticina on wheat at 24 hpi (pre-symptomatic stage) which was much earlier than PCR without requiring thermal cycler. Sensitivity of LAMP assay developed in the study was 100 fg which was more sensitive than conventional PCR (50 pg) and equivalent to qPCR (100 fg). The protocol developed in the study was utilized for detection of leaf rust infected samples collected from different wheat fields. LAMP based colorimetric detection assay showed sky blue color in positive reaction and violet color in negative reaction after addition of 120 μM hydroxyl napthol blue (HNB) solution to reaction mixture. Similarly, 0.6 mg Ethidium bromide/ml was added to LAMP products, placed on transilluminator to witness full brightness in positive reaction and no such brightness could be seen in negative reaction mixture. Further, LAMP products spread in a ladder like banding pattern in gel electrophoresis. Our assay is significantly faster than the conventional methods used in the identification of P. triticina. The assay developed in the study shall be very much useful in the development of diagnostic kit for monitoring disease, creation of prediction model and efficient management of disease. PMID:29698484

  9. Rapid detection of Puccinia triticina causing leaf rust of wheat by PCR and loop mediated isothermal amplification.

    PubMed

    Manjunatha, C; Sharma, Sapna; Kulshreshtha, Deepika; Gupta, Sangeeta; Singh, Kartar; Bhardwaj, Subhash C; Aggarwal, Rashmi

    2018-01-01

    Leaf rust of wheat caused by Puccinia triticina has significant impact on wheat production worldwide. Effective and quick detection methodologies are required to mitigate yield loss and time constraints associated with monitoring and management of leaf rust of wheat. In the present study, detection of P. triticina has been simplified by developing a rapid, reliable, efficient and visual colorimetric method i.e., loop mediated isothermal amplification of DNA (LAMP). Based on in silico analysis of P. triticina genome, PTS68, a simple sequence repeat was found highly specific to leaf rust fungus. A marker (PtRA68) was developed and its specificity was validated through PCR technique which gave a unique and sharp band of 919 bp in P. triticina pathotypes only. A novel gene amplification method LAMP which enables visual detection of pathogen by naked eye was developed for leaf rust pathogen. A set of six primers was designed from specific region of P. triticina and conditions were optimised to complete the observation process in 60 minutes at 65o C. The assay developed in the study could detect presence of P. triticina on wheat at 24 hpi (pre-symptomatic stage) which was much earlier than PCR without requiring thermal cycler. Sensitivity of LAMP assay developed in the study was 100 fg which was more sensitive than conventional PCR (50 pg) and equivalent to qPCR (100 fg). The protocol developed in the study was utilized for detection of leaf rust infected samples collected from different wheat fields. LAMP based colorimetric detection assay showed sky blue color in positive reaction and violet color in negative reaction after addition of 120 μM hydroxyl napthol blue (HNB) solution to reaction mixture. Similarly, 0.6 mg Ethidium bromide/ml was added to LAMP products, placed on transilluminator to witness full brightness in positive reaction and no such brightness could be seen in negative reaction mixture. Further, LAMP products spread in a ladder like banding pattern in gel electrophoresis. Our assay is significantly faster than the conventional methods used in the identification of P. triticina. The assay developed in the study shall be very much useful in the development of diagnostic kit for monitoring disease, creation of prediction model and efficient management of disease.

  10. The Corrosion Control of Fastening Systems for Aircraft Carrier Steam Catapults

    DTIC Science & Technology

    1976-03-31

    mixture AT Aluminum powder and titanium powder 1:1 mixture MP Multiphase MP35N (powder) NA Nickel Aluminide base coat and aluminum top coat T Titanium ...Subsequent lifting or peeling was also accomplished by the use of a knife blade on areas not in contact with the "Fette Head". The densification process "s...75 of big bolt. White Titanium corrosion products elsewhere. After 552 hr. 57 salt spray AT .002 Aluminum/ Red rust in recess bottom around Titanium

  11. 7 CFR 42.112 - Defects of containers: Tables IV, V, VI, and VII.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Rust (rust stain confined to the top or bottom double seam or rust that can be removed with a soft cloth is not scored a defect): (a) Rust stain (nonmilitary purchases) 206 (b) Rust stain (military purchases) 108 (c) Pitted rust 109 Wet cans (excluding refrigerated containers) 207 Dent: (a) Materially...

  12. 7 CFR 42.112 - Defects of containers: Tables IV, V, VI, and VII.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Rust (rust stain confined to the top or bottom double seam or rust that can be removed with a soft cloth is not scored a defect): (a) Rust stain (nonmilitary purchases) 206 (b) Rust stain (military purchases) 108 (c) Pitted rust 109 Wet cans (excluding refrigerated containers) 207 Dent: (a) Materially...

  13. 7 CFR 42.112 - Defects of containers: Tables IV, V, VI, and VII.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Rust (rust stain confined to the top or bottom double seam or rust that can be removed with a soft cloth is not scored a defect): (a) Rust stain (nonmilitary purchases) 206 (b) Rust stain (military purchases) 108 (c) Pitted rust 109 Wet cans (excluding refrigerated containers) 207 Dent: (a) Materially...

  14. 7 CFR 42.112 - Defects of containers: Tables IV, V, VI, and VII.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Rust (rust stain confined to the top or bottom double seam or rust that can be removed with a soft cloth is not scored a defect): (a) Rust stain (nonmilitary purchases) 206 (b) Rust stain (military purchases) 108 (c) Pitted rust 109 Wet cans (excluding refrigerated containers) 207 Dent: (a) Materially...

  15. Virulence diversity of Phakopsora pachyrhizi isolates from East Africa compared to a geographically diverse collection

    USDA-ARS?s Scientific Manuscript database

    Soybean rust, caused by the biotrophic pathogen Phakopsora pachyrhizi, is a highly destructive disease causing substantial yield losses in many soybean producing regions throughout the world. Knowledge about P. pachyrhizi virulence is needed to guide development and deployment of soybean germplasm w...

  16. Relationship between the specific surface area of rust and the electrochemical behavior of rusted steel in a wet-dry acid corrosion environment

    NASA Astrophysics Data System (ADS)

    Liu, Wei; Zhao, Qing-he; Li, Shuan-zhu

    2017-01-01

    The relationship between the specific surface area (SSA) of rust and the electrochemical behavior of rusted steel under wet-dry acid corrosion conditions was investigated. The results showed that the corrosion current density first increased and then decreased with increasing SSA of the rust during the corrosion process. The structure of the rust changed from single-layer to double-layer, and the γ-FeOOH content decreased in the inner layer of the rust with increasing corrosion time; by contrast, the γ-FeOOH content in the outer layer was constant. When the SSA of the rust was lower than the critical SSA corresponding to the relative humidity during the drying period, condensed water in the micropores of the rust could evaporate, which prompted the diffusion of O2 into the rust and the following formation process of γ-FeOOH, leading to an increase of corrosion current density with increasing corrosion time. However, when the SSA of the rust reached or exceeded the critical SSA, condensate water in the micro-pores of the inner layer of the rust could not evaporate which inhibited the diffusion of O2 and decreased the γ-FeOOH content in the inner rust, leading to a decrease of corrosion current density with increasing corrosion time.

  17. 7 CFR 319.73-2 - Products prohibited importation.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... the fungus Hemileia vastatrix (Berkely and Broome), which causes an injurious rust disease, the..., seeds of all kinds when in pulp, including coffee berries or fruits, are prohibited importation into all...

  18. Rust transformation/rust compatible primers

    NASA Technical Reports Server (NTRS)

    Emeric, Dario A.; Miller, Christopher E.

    1993-01-01

    Proper surface preparation has been the key to obtain good performance by a surface coating. The major obstacle in preparing a corroded or rusted surface is the complete removal of the contaminants and the corrosion products. Sandblasting has been traditionally used to remove the corrosion products before painting. However, sandblasting can be expensive, may be prohibited by local health regulations and is not applicable in every situation. To get around these obstacles, Industry developed rust converters/rust transformers and rust compatible primers (high solids epoxies). The potential use of these products for military equipment led personnel of the Belvoir Research, Development and Engineering Center (BRDEC) to evaluate the commercially available rust transformers and rust compatible primers. Prior laboratory experience with commercially available rust converters, as well as field studies in Hawaii and Puerto Rico, revealed poor performance, several inherent limitations, and lack of reliability. It was obvious from our studies that the performance of rust converting products was more dependent on the amount and type of rust present, as well as the degree of permeability of the coating, than on the product's ability to form an organometallic complex with the rust. Based on these results, it was decided that the Military should develop their own rust converter formulation and specification. The compound described in the specification is for use on a rusted surface before the application of an organic coating (bituminous compounds, primer or topcoat). These coatings should end the need for sandblasting or the removing of the adherent corrosion products. They also will prepare the surface for the application of the organic coating. Several commercially available rust compatible primers (RCP) were also tested using corroded surfaces. All of the evaluated RCP failed our laboratory tests for primers.

  19. Relation Between Open Circuit Potential and Polarization Resistance with Rust and Corrosion Monitoring of Mild Steel

    NASA Astrophysics Data System (ADS)

    Choudhary, S.; Garg, A.; Mondal, K.

    2016-07-01

    The present work discusses continuous corrosion assessment from a unique correlation of open circuit potential (OCP) and linear polarization resistance with rust formation on mild steel after prolong exposure in 3.5% NaCl salt fog environment. The OCP measurement and linear polarization tests were carried out of the rusted samples only without the removal of rust. It also discusses the strong influence of the composition, fraction, and morphology of the rust layers with OCP and linear polarization resistance. The rust characterization was done after the measurement of OCP and linear polarization resistance of the rusted steel samples. Therefore, monitoring of both the OCP and linear polarization resistance of the rusted mild steels coupled with rust characterization could be used for easy and dynamic assessment of the nature of corrosion.

  20. Identification of New Resistance Loci to African Stem Rust Race TTKSK in Tetraploid Wheats Based on Linkage and Genome-Wide Association Mapping.

    PubMed

    Laidò, Giovanni; Panio, Giosuè; Marone, Daniela; Russo, Maria A; Ficco, Donatella B M; Giovanniello, Valentina; Cattivelli, Luigi; Steffenson, Brian; de Vita, Pasquale; Mastrangelo, Anna M

    2015-01-01

    Stem rust, caused by Puccinia graminis Pers. f. sp. tritici Eriks. and E. Henn. (Pgt), is one of the most destructive diseases of wheat. Races of the pathogen in the "Ug99 lineage" are of international concern due to their virulence for widely used stem rust resistance genes and their spread throughout Africa. Disease resistant cultivars provide one of the best means for controlling stem rust. To identify quantitative trait loci (QTL) conferring resistance to African stem rust race TTKSK at the seedling stage, we evaluated an association mapping (AM) panel consisting of 230 tetraploid wheat accessions under greenhouse conditions. A high level of phenotypic variation was observed in response to race TTKSK in the AM panel, allowing for genome-wide association mapping of resistance QTL in wild, landrace, and cultivated tetraploid wheats. Thirty-five resistance QTL were identified on all chromosomes, and seventeen are of particular interest as identified by multiple associations. Many of the identified resistance loci were coincident with previously identified rust resistance genes; however, nine on chromosomes 1AL, 2AL, 4AL, 5BL, and 7BS may be novel. To validate AM results, a biparental population of 146 recombinant inbred lines was also considered, which derived from a cross between the resistant cultivar "Cirillo" and susceptible "Neodur." The stem rust resistance of Cirillo was conferred by a single gene on the distal region of chromosome arm 6AL in an interval map coincident with the resistance gene Sr13, and confirmed one of the resistance loci identified by AM. A search for candidate resistance genes was carried out in the regions where QTL were identified, and many of them corresponded to NBS-LRR genes and protein kinases with LRR domains. The results obtained in the present study are of great interest as a high level of genetic variability for resistance to race TTKSK was described in a germplasm panel comprising most of the tetraploid wheat sub-species.

  1. Below-ground plant parts emit herbivore-induced volatiles: olfactory responses of a predatory mite to tulip bulbs infested by rust mites.

    PubMed

    Aratchige, N S; Lesna, I; Sabelis, M W

    2004-01-01

    Although odour-mediated interactions among plants, spider mites and predatory mites have been extensively studied above-ground, belowground studies are in their infancy. In this paper, we investigate whether feeding by rust mites (Aceria tulipae) cause tulip bulbs to produce odours that attract predatory mites (Neoseiulus cucumeris). Since our aim was to demonstrate such odours and not their relevance under soil conditions, the experiments were carried out using a classic Y-tube olfactometer in which the predators moved on a Y-shaped wire in open air. We found that food-deprived female predators can discriminate between odours from infested bulbs and odours from uninfested bulbs or artificially wounded bulbs. No significant difference in attractiveness to predators was found between clean bulbs and bulbs either wounded 30 min or 3 h before the experiment. These results indicate that it may not be simply the wounding of the bulbs, but rather the feeding by rust mites, which causes the bulb to release odours that attract N. cucumeris. Since bulbs are belowground plant structures, the olfactometer results demonstrate the potential for odour-mediated interactions in the soil. However, their importance in the actual soil medium remains to be demonstrated.

  2. Reduction of ethanol yield from switchgrass infected with rust caused by Puccinia emaculata

    DOE PAGES

    Sykes, Virginia R.; Allen, Fred L.; Mielenz, Jonathan R.; ...

    2015-10-16

    Switchgrass ( Panicum virgatum) is an important biofuel crop candidate thought to have low disease susceptibility. As switchgrass production becomes more prevalent, monoculture and production fields in close proximity to one another may increase the spread and severity of diseases such as switchgrass rust caused by the pathogen Puccinia emaculata. The objective of this research was to examine the impact of rust on ethanol yield in switchgrass. In 2010 and 2012, naturally infected leaves from field-grown Alamo and Kanlow in Knoxville, TN (2010, 2012) and Crossville, TN (2012) were visually categorized as exhibiting low, medium, or high disease based onmore » the degree of chlorosis and sporulation. P. emaculata was isolated from each disease range to confirm infection. Samples from 2010 were acid/heat pretreated and subjected to two runs of simultaneous saccharification and fermentation (SSF) with Saccharomyces cerevisiae D 5A to measure ethanol yield. Near-infrared spectroscopy (NIRS) was used to estimate ethanol yield for 2012 samples. SSF and NIRS data were analyzed separately using ANOVA. Disease level effects were significant within both models (P < 0.05) and both models explained a large amount of variation in ETOH (SSF: R 2 = 0.99, NIRS: R 2 = 0.99). In the SSF dataset, ethanol was reduced by 35 % in samples exhibiting medium disease symptoms and by 55 % in samples exhibiting high disease symptoms. In the NIRS dataset, estimated ethanol was reduced by 10 % in samples exhibiting medium disease symptoms and by 21 % in samples exhibiting high disease symptoms. Lastly, results indicate that switchgrass rust will likely have a negative impact on ethanol yield in switchgrass grown as a biofuel crop.« less

  3. Reduction of ethanol yield from switchgrass infected with rust caused by Puccinia emaculata

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sykes, Virginia R.; Allen, Fred L.; Mielenz, Jonathan R.

    Switchgrass ( Panicum virgatum) is an important biofuel crop candidate thought to have low disease susceptibility. As switchgrass production becomes more prevalent, monoculture and production fields in close proximity to one another may increase the spread and severity of diseases such as switchgrass rust caused by the pathogen Puccinia emaculata. The objective of this research was to examine the impact of rust on ethanol yield in switchgrass. In 2010 and 2012, naturally infected leaves from field-grown Alamo and Kanlow in Knoxville, TN (2010, 2012) and Crossville, TN (2012) were visually categorized as exhibiting low, medium, or high disease based onmore » the degree of chlorosis and sporulation. P. emaculata was isolated from each disease range to confirm infection. Samples from 2010 were acid/heat pretreated and subjected to two runs of simultaneous saccharification and fermentation (SSF) with Saccharomyces cerevisiae D 5A to measure ethanol yield. Near-infrared spectroscopy (NIRS) was used to estimate ethanol yield for 2012 samples. SSF and NIRS data were analyzed separately using ANOVA. Disease level effects were significant within both models (P < 0.05) and both models explained a large amount of variation in ETOH (SSF: R 2 = 0.99, NIRS: R 2 = 0.99). In the SSF dataset, ethanol was reduced by 35 % in samples exhibiting medium disease symptoms and by 55 % in samples exhibiting high disease symptoms. In the NIRS dataset, estimated ethanol was reduced by 10 % in samples exhibiting medium disease symptoms and by 21 % in samples exhibiting high disease symptoms. Lastly, results indicate that switchgrass rust will likely have a negative impact on ethanol yield in switchgrass grown as a biofuel crop.« less

  4. Determination of Radiographic Healing: An Assessment of Consistency Using RUST and Modified RUST in Metadiaphyseal Fractures.

    PubMed

    Litrenta, Jody; Tornetta, Paul; Mehta, Samir; Jones, Clifford; OʼToole, Robert V; Bhandari, Mohit; Kottmeier, Stephen; Ostrum, Robert; Egol, Kenneth; Ricci, William; Schemitsch, Emil; Horwitz, Daniel

    2015-11-01

    To determine the reliability of the Radiographic Union Scale for Tibia (RUST) score and a new modified RUST score in quantifying healing and to define a value for radiographic union in a large series of metadiaphyseal fractures treated with plates or intramedullary nails. Healing was evaluated using 2 methods: (1) evaluation of interrater agreement in a series of radiographs and (2) analysis of prospectively gathered data from 2 previous large multicenter trials to define thresholds for radiographic union. Part 1: 12 orthopedic trauma surgeons evaluated a series of radiographs of 27 distal femur fractures treated with either plate or retrograde nail fixation at various stages of healing in random order using a modified RUST score. For each radiographic set, the reviewer indicated if the fracture was radiographically healed. Part 2: The radiographic results of 2 multicenter randomized trials comparing plate versus nail fixation of 81 distal femur and 46 proximal tibia fractures were reviewed. Orthopaedic surgeons at 24 trauma centers scored radiographs at 3, 6, and 12 months postoperatively using the modified RUST score above. Additionally, investigators indicated if the fracture was healed or not healed. The intraclass correlation coefficient (ICC) with 95% confidence intervals was determined for each cortex, the standard and modified RUST score, and the assignment of union for part 1 data. The RUST and modified RUST that defined "union" were determined for both parts of the study. ICC: The modified RUST score demonstrated slightly higher ICCs than the standard RUST (0.68 vs. 0.63). Nails had substantial agreement, whereas plates had moderate agreement using both modified and standard RUST (0.74 and 0.67 vs. 0.59 and 0.53). The average standard and modified RUST at union among all fractures was 8.5 and 11.4. Nails had higher standard and modified RUST scores than plates at union. The ICC for union was 0.53 (nails: 0.58; plates: 0.51), which indicates moderate agreement. However, the majority of reviewers assigned union for a standard RUST of 9 and a modified RUST of 11, and >90% considered a score of 10 on the RUST and 13 on the modified RUST united. The ICC for the modified RUST is slightly higher than the standard RUST in metadiaphyseal fractures and had substantial agreement. The ICC for the assessment of union was moderate agreement; however, definite union would be 10 and 13 with over 90% of reviewers assigning union. These are the first data-driven estimates of radiographic union for these scores.

  5. In vivo assessment of plant extracts for control of plant diseases: A sesquiterpene ketolactone isolated from Curcuma zedoaria suppresses wheat leaf rust.

    PubMed

    Han, Jae Woo; Shim, Sang Hee; Jang, Kyoung Soo; Choi, Yong Ho; Dang, Quang Le; Kim, Hun; Choi, Gyung Ja

    2018-02-01

    As an alternative to synthetic pesticides, natural materials such as plant extracts and microbes have been considered to control plant diseases. In this study, methanol extracts of 120 plants were explored for in vivo antifungal activity against Rhizoctonia solani, Botrytis cinerea, Phytophthora infestans, Puccinia triticina, and Blumeria graminis f. sp. hordei. Of the 120 plant extracts, eight plant extracts exhibited a disease control efficacy of more than 90% against at least one of five plant diseases. In particular, a methanol extract of Curcuma zedoaria rhizomes exhibited strong activity against wheat leaf rust caused by P. triticina. When the C. zedoaria methanol extracts were partitioned with various solvents, the layers of n-hexane, methylene chloride, and ethyl acetate showed disease control values of 100, 80, and 43%, respectively, against wheat leaf rust. From the C. zedoaria rhizome extracts, an antifungal substance was isolated and identified as a sesquiterpene ketolactone based on the mass and nuclear magnetic resonance spectral data. The active compound controlled the development of rice sheath blight, wheat leaf rust, and tomato late blight. Considering the in vivo antifungal activities of the sesquiterpene ketolactone and the C. zedoaria extracts, these results suggest that C. zedoaria can be used as a potent fungicide in organic agriculture.

  6. Postulation of rust resistance genes in Nordic spring wheat genotypes and identification of widely effective sources of resistance against the Australian rust flora.

    PubMed

    Randhawa, Mandeep; Bansal, Urmil; Lillemo, Morten; Miah, Hanif; Bariana, Harbans

    2016-11-01

    Wild relatives, landraces and cultivars from different geographical regions have been demonstrated as the sources of genetic variation for resistance to rust diseases. This study involved assessment of diversity for resistance to three rust diseases among a set of Nordic spring wheat cultivars. These cultivars were tested at the seedling stage against several pathotypes of three rust pathogens in the greenhouse. All stage stem rust resistance genes Sr7b, Sr8a, Sr12, Sr15, Sr17, Sr23 and Sr30, and leaf rust resistance genes Lr1, Lr3a, Lr13, Lr14a, Lr16 and Lr20 were postulated either singly or in different combinations among these cultivars. A high proportion of cultivars were identified to carry linked rust resistance genes Sr15 and Lr20. Although 51 cultivars showed variation against Puccinia striiformis f. sp. tritici (Pst) pathotypes used in this study, results were not clearly contrasting to enable postulation of stripe rust resistance genes in these genotypes. Stripe rust resistance gene Yr27 was postulated in four cultivars and Yr1 was present in cultivar Zebra. Cultivar Tjalve produced low stripe rust response against all Pst pathotypes indicating the presence either of a widely effective resistance gene or combination of genes with compensating pathogenic specificities. Several cultivars carried moderate to high level of APR to leaf rust and stripe rust. Seedling stem rust susceptible cultivar Aston exhibited moderately resistant to moderately susceptible response, whereas other cultivars belonging to this class were rated moderately susceptible or higher. Molecular markers linked with APR genes Yr48, Lr34/Yr18/Sr57, Lr68 and Sr2 detected the presence of these genes in some genotypes.

  7. Numerical model of RC beam response to corrosion

    NASA Astrophysics Data System (ADS)

    German, Magdalena; Pamin, Jerzy

    2018-01-01

    The chloride-induced corrosion of reinforcement used to be represented by Tuutti's model with initiation and propagation phases. During the initiation phase chlorides penetrate the concrete cover and accumulate around reinforcement bars. The chloride concentration in concrete increases until it reaches a chloride threshold value, causing deterioration of the passive layer of reinforcement. Then the propagation phase begins. During the propagation phase steel has no natural anti-corrosion protection, a corrosion current flows and this induces the production of rust. A growing volume of corrosion products generates stresses in concrete, which leads to cracking, splitting, delamination and loss of strength. The mechanical response of RC elements to reinforcement corrosion has mostly been examined on the basis of a 2D cross-section analysis. However, with this approach it is not possible to represent both corrosion and static loading. In the paper a 3D finite element model of an RC beam with the two actions applied is presented. Rust is represented as an interface between steel and concrete, considering the volumetric expansion of rust.

  8. 16 CFR 23.10 - Misuse of “corrosion proof,” “noncorrosive,” “corrosion resistant,” “rust proof,” “rust resistant...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... INDUSTRIES § 23.10 Misuse of “corrosion proof,” “noncorrosive,” “corrosion resistant,” “rust proof,” “rust...,” “rust proof,” or any other term of similar meaning to describe an industry product unless all parts of the product will be immune from rust and other forms of corrosion during the life expectancy of the...

  9. 16 CFR 23.10 - Misuse of “corrosion proof,” “noncorrosive,” “corrosion resistant,” “rust proof,” “rust resistant...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... INDUSTRIES § 23.10 Misuse of “corrosion proof,” “noncorrosive,” “corrosion resistant,” “rust proof,” “rust...,” “rust proof,” or any other term of similar meaning to describe an industry product unless all parts of the product will be immune from rust and other forms of corrosion during the life expectancy of the...

  10. 16 CFR 23.10 - Misuse of “corrosion proof,” “noncorrosive,” “corrosion resistant,” “rust proof,” “rust resistant...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... INDUSTRIES § 23.10 Misuse of “corrosion proof,” “noncorrosive,” “corrosion resistant,” “rust proof,” “rust...,” “rust proof,” or any other term of similar meaning to describe an industry product unless all parts of the product will be immune from rust and other forms of corrosion during the life expectancy of the...

  11. A green method of diaphragm spring's anti-rusting with high quality and efficiency

    NASA Astrophysics Data System (ADS)

    Huang, Xinming; Hua, Wenlin

    2017-10-01

    This paper introduces a green method of diaphragm spring's anti-rusting, which is of high quality, high efficiency and low consumption. It transforms the phosphating way of anti-rusting to physical anti-rusting that directly coat anti-rusting oil on the surface of the spring, and transforms the manual-oiling or oil-immersion to fully-automatically ultrasonic oiling. Hence, this method will completely change the way of diaphgragm spring's anti-rusting.

  12. 16 CFR 23.10 - Misuse of “corrosion proof,” “noncorrosive,” “corrosion resistant,” “rust proof,” “rust resistant...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... INDUSTRIES § 23.10 Misuse of “corrosion proof,” “noncorrosive,” “corrosion resistant,” “rust proof,” “rust...,” “rust proof,” or any other term of similar meaning to describe an industry product unless all parts of the product will be immune from rust and other forms of corrosion during the life expectancy of the...

  13. 16 CFR 23.10 - Misuse of “corrosion proof,” “noncorrosive,” “corrosion resistant,” “rust proof,” “rust resistant...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... INDUSTRIES § 23.10 Misuse of “corrosion proof,” “noncorrosive,” “corrosion resistant,” “rust proof,” “rust...,” “rust proof,” or any other term of similar meaning to describe an industry product unless all parts of the product will be immune from rust and other forms of corrosion during the life expectancy of the...

  14. Mapping Stripe Rust Resistance in a BrundageXCoda Winter Wheat Recombinant Inbred Line Population

    PubMed Central

    Case, Austin J.; Naruoka, Yukiko; Chen, Xianming; Garland-Campbell, Kimberly A.; Zemetra, Robert S.; Carter, Arron H.

    2014-01-01

    A recombinant inbred line (RIL) mapping population developed from a cross between winter wheat (Triticum aestivum L.) cultivars Coda and Brundage was evaluated for reaction to stripe rust (caused by Puccinia striiformis f. sp. tritici). Two hundred and sixty eight RIL from the population were evaluated in replicated field trials in a total of nine site-year locations in the U.S. Pacific Northwest. Seedling reaction to stripe rust races PST-100, PST-114 and PST-127 was also examined. A linkage map consisting of 2,391 polymorphic DNA markers was developed covering all chromosomes of wheat with the exception of 1D. Two QTL on chromosome 1B were associated with adult plant and seedling reaction and were the most significant QTL detected. Together these QTL reduced adult plant infection type from a score of seven to a score of two reduced disease severity by an average of 25% and provided protection against race PST-100, PST-114 and PST-127 in the seedling stage. The location of these QTL and the race specificity provided by them suggest that observed effects at this locus are due to a complementation of the previously known but defeated resistances of the cultivar Tres combining with that of Madsen (the two parent cultivars of Coda). Two additional QTL on chromosome 3B and one on 5B were associated with adult plant reaction only, and a single QTL on chromosome 5D was associated with seedling reaction to PST-114. Coda has been resistant to stripe rust since its release in 2000, indicating that combining multiple resistance genes for stripe rust provides durable resistance, especially when all-stage resistance genes are combined in a fashion to maximize the number of races they protect against. Identified molecular markers will allow for an efficient transfer of these genes into other cultivars, thereby continuing to provide excellent resistance to stripe rust. PMID:24642574

  15. Characterization of Novel Gene Yr79 and Four Additional Quantitative Trait Loci for All-Stage and High-Temperature Adult-Plant Resistance to Stripe Rust in Spring Wheat PI 182103.

    PubMed

    Feng, Junyan; Wang, Meinan; See, Deven R; Chao, Shiaoman; Zheng, Youliang; Chen, Xianming

    2018-06-01

    Stripe rust, caused by Puccinia striiformis f. sp. tritici, is an important disease of wheat worldwide. Exploring new resistance genes is essential for breeding resistant wheat cultivars. PI 182103, a spring wheat landrace originally from Pakistan, has shown a high level of resistance to stripe rust in fields for many years, but genes for resistance to stripe rust in the variety have not been studied. To map the resistance gene(s) in PI 182103, 185 recombinant inbred lines (RILs) were developed from a cross with Avocet Susceptible (AvS). The RIL population was genotyped with simple sequence repeat (SSR) and single nucleotide polymorphism markers and tested with races PST-100 and PST-114 at the seedling stage under controlled greenhouse conditions and at the adult-plant stage in fields at Pullman and Mt. Vernon, Washington under natural infection by the stripe rust pathogen in 2011, 2012, and 2013. A total of five quantitative trait loci (QTL) were detected. QyrPI182103.wgp-2AS and QyrPI182103.wgp-3AL were detected at the seedling stage, QyrPI182103.wgp-4DL was detected only in Mt. Vernon field tests, and QyrPI182103.wgp-5BS was detected in both seedling and field tests. QyrPI182103.wgp-7BL was identified as a high-temperature adult-plant resistance gene and detected in all field tests. Interactions among the QTL were mostly additive, but some negative interactions were detected. The 7BL QTL was mapped in chromosomal bin 7BL 0.40 to 0.45 and identified as a new gene, permanently designated as Yr79. SSR markers Xbarc72 and Xwmc335 flanking the Yr79 locus were highly polymorphic in various wheat genotypes, indicating that the molecular markers are useful for incorporating the new gene for potentially durable stripe rust resistance into new wheat cultivars.

  16. Genome-Wide Association Study for Identification and Validation of Novel SNP Markers for Sr6 Stem Rust Resistance Gene in Bread Wheat.

    PubMed

    Mourad, Amira M I; Sallam, Ahmed; Belamkar, Vikas; Wegulo, Stephen; Bowden, Robert; Jin, Yue; Mahdy, Ezzat; Bakheit, Bahy; El-Wafaa, Atif A; Poland, Jesse; Baenziger, Peter S

    2018-01-01

    Stem rust (caused by Puccinia graminis f. sp. tritici Erikss. & E. Henn.), is a major disease in wheat ( Triticum aestivium L.). However, in recent years it occurs rarely in Nebraska due to weather and the effective selection and gene pyramiding of resistance genes. To understand the genetic basis of stem rust resistance in Nebraska winter wheat, we applied genome-wide association study (GWAS) on a set of 270 winter wheat genotypes (A-set). Genotyping was carried out using genotyping-by-sequencing and ∼35,000 high-quality SNPs were identified. The tested genotypes were evaluated for their resistance to the common stem rust race in Nebraska (QFCSC) in two replications. Marker-trait association identified 32 SNP markers, which were significantly (Bonferroni corrected P < 0.05) associated with the resistance on chromosome 2D. The chromosomal location of the significant SNPs (chromosome 2D) matched the location of Sr6 gene which was expected in these genotypes based on pedigree information. A highly significant linkage disequilibrium (LD, r 2 ) was found between the significant SNPs and the specific SSR marker for the Sr6 gene ( Xcfd43 ). This suggests the significant SNP markers are tagging Sr6 gene. Out of the 32 significant SNPs, eight SNPs were in six genes that are annotated as being linked to disease resistance in the IWGSC RefSeq v1.0. The 32 significant SNP markers were located in nine haplotype blocks. All the 32 significant SNPs were validated in a set of 60 different genotypes (V-set) using single marker analysis. SNP markers identified in this study can be used in marker-assisted selection, genomic selection, and to develop KASP (Kompetitive Allele Specific PCR) marker for the Sr6 gene. Novel SNPs for Sr6 gene, an important stem rust resistant gene, were identified and validated in this study. These SNPs can be used to improve stem rust resistance in wheat.

  17. Characterization and comparative analysis of the genome of Puccinia sorghi Schwein, the causal agent of maize common rust.

    PubMed

    Rochi, Lucia; Diéguez, María José; Burguener, Germán; Darino, Martín Alejandro; Pergolesi, María Fernanda; Ingala, Lorena Romina; Cuyeu, Alba Romina; Turjanski, Adrián; Kreff, Enrique Domingo; Sacco, Francisco

    2018-03-01

    Rust fungi are one of the most devastating pathogens of crop plants. The biotrophic fungus Puccinia sorghi Schwein (Ps) is responsible for maize common rust, an endemic disease of maize (Zea mays L.) in Argentina that causes significant yield losses in corn production. In spite of this, the Ps genomic sequence was not available. We used Illumina sequencing to rapidly produce the 99.6Mbdraft genome sequence of Ps race RO10H11247, derived from a single-uredinial isolate from infected maize leaves collected in the Argentine Corn Belt Region during 2010. High quality reads were obtained from 200bppaired-end and 5000bpmate-paired libraries and assembled in 15,722 scaffolds. A pipeline which combined an ab initio program with homology-based models and homology to in planta enriched ESTs from four cereal pathogenic fungus (the three sequenced wheat rusts and Ustilago maydis) was used to identify 21,087 putative coding sequences, of which 1599 might be part of the Ps RO10H11247 secretome. Among the 458 highly conserved protein families from the euKaryotic Orthologous Groups (KOG) that occur in a wide range of eukaryotic organisms, 97.5% have at least one member with high homology in the Ps assembly (TBlastN, E-value⩽e-10) covering more than 50% of the length of the KOG protein. Comparative studies with the three sequenced wheat rust fungus, and microsynteny analysis involving Puccinia striiformis f. sp. tritici (Pst, wheat stripe rust fungus), support the quality achieved. The results presented here show the effectiveness of the Illumina strategy for sequencing dikaryotic genomes of non-model organisms and provides reliable DNA sequence information for genomic studies, including pathogenic mechanisms of this maize fungus and molecular marker design. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Rapid Phenotyping Adult Plant Resistance to Stem Rust in Wheat Grown under Controlled Conditions.

    PubMed

    Riaz, Adnan; T Hickey, Lee

    2017-01-01

    Stem rust (SR) or black rust caused by Puccinia graminis f. sp. tritici is one of the most common diseases of wheat (Triticum aestivum L.) crops globally. Among the various control measures, the most efficient and sustainable approach is the deployment of genetically resistant cultivars. Traditionally, wheat breeding programs deployed genetic resistance in cultivars, but unknowingly this is often underpinned by a single seedling resistance gene, which is readily overcome by the pathogen. Nowadays, adult plant resistance (APR) is a widely adopted form of rust resistance because more durable mechanisms often underpin it. However, only a handful of SR APR genes are available, so breeders currently strive to combine seedling and APR genes. Phenotyping adult wheat plants for resistance to SR typically involves evaluation in the field. But establishing a rust nursery can be challenging, and screening is limited to once a year. This slows down research efforts to isolate new APR genes and breeding of genetically resistant cultivars.In this study, we report a protocol for rapid evaluation of adult wheat plants for resistance to stem rust. We demonstrate the technique by evaluating a panel of 16 wheat genotypes consisting of near isogenic lines (NILs) for known Sr genes (i.e., Sr2, Sr33, Sr45, Sr50, Sr55, Sr57, and Sr58) and three landraces carrying uncharacterized APR from the N. I. Vavilov Institute of Plant Genetic Resources (VIR). The method can be completed in just 10 weeks and involves two inoculations: first conducted at seedling stage and a second at the adult stage (using the same plants). The technique can detect APR, such as that conferred by APR gene Sr2, along with pseudo-black chaff (the morphological marker). Phenotyping can be conducted throughout the year, and is fast and resource efficient. Further, the phenotyping method can be applied to screen breeding populations or germplasm accessions using local or exotic races of SR.

  19. Using transcription of six Puccinia triticina races to identify the secretome during infection of wheat

    USDA-ARS?s Scientific Manuscript database

    Wheat leaf rust, caused by the basidiomycete Puccinia triticina, can cause yield losses of up to 20% in wheat-producing regions. During infection, the fungus forms haustoria that secrete proteins into the plant cell and effect changes in plant transcription, metabolism and defense. It is hypothesize...

  20. Detection and validation of genomic regions associated with resistance to rust diseases in a worldwide hexaploid wheat landrace collection using BayesR and mixed linear model approaches.

    PubMed

    Pasam, Raj K; Bansal, Urmil; Daetwyler, Hans D; Forrest, Kerrie L; Wong, Debbie; Petkowski, Joanna; Willey, Nicholas; Randhawa, Mandeep; Chhetri, Mumta; Miah, Hanif; Tibbits, Josquin; Bariana, Harbans; Hayden, Matthew J

    2017-04-01

    BayesR and MLM association mapping approaches in common wheat landraces were used to identify genomic regions conferring resistance to Yr, Lr, and Sr diseases. Deployment of rust resistant cultivars is the most economically effective and environmentally friendly strategy to control rust diseases in wheat. However, the highly evolving nature of wheat rust pathogens demands continued identification, characterization, and transfer of new resistance alleles into new varieties to achieve durable rust control. In this study, we undertook genome-wide association studies (GWAS) using a mixed linear model (MLM) and the Bayesian multilocus method (BayesR) to identify QTL contributing to leaf rust (Lr), stem rust (Sr), and stripe rust (Yr) resistance. Our study included 676 pre-Green Revolution common wheat landrace accessions collected in the 1920-1930s by A.E. Watkins. We show that both methods produce similar results, although BayesR had reduced background signals, enabling clearer definition of QTL positions. For the three rust diseases, we found 5 (Lr), 14 (Yr), and 11 (Sr) SNPs significant in both methods above stringent false-discovery rate thresholds. Validation of marker-trait associations with known rust QTL from the literature and additional genotypic and phenotypic characterisation of biparental populations showed that the landraces harbour both previously mapped and potentially new genes for resistance to rust diseases. Our results demonstrate that pre-Green Revolution landraces provide a rich source of genes to increase genetic diversity for rust resistance to facilitate the development of wheat varieties with more durable rust resistance.

  1. Characterization of molecular diversity and genome-wide mapping of loci associated with resistance to stripe rust and stem rust in Ethiopian bread wheat accessions.

    PubMed

    Muleta, Kebede T; Rouse, Matthew N; Rynearson, Sheri; Chen, Xianming; Buta, Bedada G; Pumphrey, Michael O

    2017-08-04

    The narrow genetic basis of resistance in modern wheat cultivars and the strong selection response of pathogen populations have been responsible for periodic and devastating epidemics of the wheat rust diseases. Characterizing new sources of resistance and incorporating multiple genes into elite cultivars is the most widely accepted current mechanism to achieve durable varietal performance against changes in pathogen virulence. Here, we report a high-density molecular characterization and genome-wide association study (GWAS) of stripe rust and stem rust resistance in 190 Ethiopian bread wheat lines based on phenotypic data from multi-environment field trials and seedling resistance screening experiments. A total of 24,281 single nucleotide polymorphism (SNP) markers filtered from the wheat 90 K iSelect genotyping assay was used to survey Ethiopian germplasm for population structure, genetic diversity and marker-trait associations. Upon screening for field resistance to stripe rust in the Pacific Northwest of the United States and Ethiopia over multiple growing seasons, and against multiple races of stripe rust and stem rust at seedling stage, eight accessions displayed resistance to all tested races of stem rust and field resistance to stripe rust in all environments. Our GWAS results show 15 loci were significantly associated with seedling and adult plant resistance to stripe rust at false discovery rate (FDR)-adjusted probability (P) <0.10. GWAS also detected 9 additional genomic regions significantly associated (FDR-adjusted P < 0.10) with seedling resistance to stem rust in the Ethiopian wheat accessions. Many of the identified resistance loci were mapped close to previously identified rust resistance genes; however, three loci on the short arms of chromosomes 5A and 7B for stripe rust resistance and two on chromosomes 3B and 7B for stem rust resistance may be novel. Our results demonstrate that considerable genetic variation resides within the landrace accessions that can be utilized to broaden the genetic base of rust resistance in wheat breeding germplasm. The molecular markers identified in this study should be useful in efficiently targeting the associated resistance loci in marker-assisted breeding for rust resistance in Ethiopia and other countries.

  2. Genetic variability among elite popcorn lines based on molecular and morphoagronomic characteristics.

    PubMed

    Dos Santos, J F; Mangolin, C A; Machado, M F P S; Scapim, C A; Giordani, W; Gonçalves, L S A

    2017-06-29

    Knowledge of genetic diversity among genotypes and relationships among elite lines is of great importance for the development of breeding programs. Therefore, the objective of this study was to evaluate genetic variability based on the morphoagronomic and molecular characterization of 18 elite popcorn (Zea mays var. everta) lines to be used by Universidade Estadual de Maringá breeding programs. We used 31 microsatellite primers (widely distributed in the genome), and 16 morphological descriptors (including the resistance to maize white spot, common rust, polysora rust of maize, cercospora and leaf blights). The molecular data revealed variability among the lines, which were divided into four groups that were partially concordant with unweighted pair group method with arithmetic mean (UPMGA) and Bayesian clusters. The lines G3, G4, G11, and G13 exhibited favorable morphological characters and low disease incidence rates. The four groups were confirmed using the Gower distance in the UPGMA cluster; however, there was no association with the dissimilarity patterns obtained using the molecular data. The absence of a correlation suggests that both characterizations (morphoagronomic and molecular) are important for discriminating among elite popcorn lines.

  3. Evaluation of 19,460 Wheat Accessions Conserved in the Indian National Genebank to Identify New Sources of Resistance to Rust and Spot Blotch Diseases.

    PubMed

    Kumar, Sundeep; Archak, Sunil; Tyagi, R K; Kumar, Jagdish; Vk, Vikas; Jacob, Sherry R; Srinivasan, Kalyani; Radhamani, J; Parimalan, R; Sivaswamy, M; Tyagi, Sandhya; Yadav, Mamata; Kumari, Jyotisna; Deepali; Sharma, Sandeep; Bhagat, Indoo; Meeta, Madhu; Bains, N S; Chowdhury, A K; Saha, B C; Bhattacharya, P M; Kumari, Jyoti; Singh, M C; Gangwar, O P; Prasad, P; Bharadwaj, S C; Gogoi, Robin; Sharma, J B; Gm, Sandeep Kumar; Saharan, M S; Bag, Manas; Roy, Anirban; Prasad, T V; Sharma, R K; Dutta, M; Sharma, Indu; Bansal, K C

    2016-01-01

    A comprehensive germplasm evaluation study of wheat accessions conserved in the Indian National Genebank was conducted to identify sources of rust and spot blotch resistance. Genebank accessions comprising three species of wheat-Triticum aestivum, T. durum and T. dicoccum were screened sequentially at multiple disease hotspots, during the 2011-14 crop seasons, carrying only resistant accessions to the next step of evaluation. Wheat accessions which were found to be resistant in the field were then assayed for seedling resistance and profiled using molecular markers. In the primary evaluation, 19,460 accessions were screened at Wellington (Tamil Nadu), a hotspot for wheat rusts. We identified 4925 accessions to be resistant and these were further evaluated at Gurdaspur (Punjab), a hotspot for stripe rust and at Cooch Behar (West Bengal), a hotspot for spot blotch. The second round evaluation identified 498 accessions potentially resistant to multiple rusts and 868 accessions potentially resistant to spot blotch. Evaluation of rust resistant accessions for seedling resistance against seven virulent pathotypes of three rusts under artificial epiphytotic conditions identified 137 accessions potentially resistant to multiple rusts. Molecular analysis to identify different combinations of genetic loci imparting resistance to leaf rust, stem rust, stripe rust and spot blotch using linked molecular markers, identified 45 wheat accessions containing known resistance genes against all three rusts as well as a QTL for spot blotch resistance. The resistant germplasm accessions, particularly against stripe rust, identified in this study can be excellent potential candidates to be employed for breeding resistance into the background of high yielding wheat cultivars through conventional or molecular breeding approaches, and are expected to contribute toward food security at national and global levels.

  4. Evaluation of 19,460 Wheat Accessions Conserved in the Indian National Genebank to Identify New Sources of Resistance to Rust and Spot Blotch Diseases

    PubMed Central

    Jacob, Sherry R.; Srinivasan, Kalyani; Radhamani, J.; Parimalan, R.; Sivaswamy, M.; Tyagi, Sandhya; Yadav, Mamata; Kumari, Jyotisna; Deepali; Sharma, Sandeep; Bhagat, Indoo; Meeta, Madhu; Bains, N. S.; Chowdhury, A. K.; Saha, B. C.; Bhattacharya, P. M.; Kumari, Jyoti; Singh, M. C.; Gangwar, O. P.; Prasad, P.; Bharadwaj, S. C.; Gogoi, Robin; Sharma, J. B.; GM, Sandeep Kumar; Saharan, M. S.; Bag, Manas; Roy, Anirban; Prasad, T. V.; Sharma, R. K.; Dutta, M.; Sharma, Indu; Bansal, K. C.

    2016-01-01

    A comprehensive germplasm evaluation study of wheat accessions conserved in the Indian National Genebank was conducted to identify sources of rust and spot blotch resistance. Genebank accessions comprising three species of wheat–Triticum aestivum, T. durum and T. dicoccum were screened sequentially at multiple disease hotspots, during the 2011–14 crop seasons, carrying only resistant accessions to the next step of evaluation. Wheat accessions which were found to be resistant in the field were then assayed for seedling resistance and profiled using molecular markers. In the primary evaluation, 19,460 accessions were screened at Wellington (Tamil Nadu), a hotspot for wheat rusts. We identified 4925 accessions to be resistant and these were further evaluated at Gurdaspur (Punjab), a hotspot for stripe rust and at Cooch Behar (West Bengal), a hotspot for spot blotch. The second round evaluation identified 498 accessions potentially resistant to multiple rusts and 868 accessions potentially resistant to spot blotch. Evaluation of rust resistant accessions for seedling resistance against seven virulent pathotypes of three rusts under artificial epiphytotic conditions identified 137 accessions potentially resistant to multiple rusts. Molecular analysis to identify different combinations of genetic loci imparting resistance to leaf rust, stem rust, stripe rust and spot blotch using linked molecular markers, identified 45 wheat accessions containing known resistance genes against all three rusts as well as a QTL for spot blotch resistance. The resistant germplasm accessions, particularly against stripe rust, identified in this study can be excellent potential candidates to be employed for breeding resistance into the background of high yielding wheat cultivars through conventional or molecular breeding approaches, and are expected to contribute toward food security at national and global levels. PMID:27942031

  5. Biodiversity losses: The downward spiral

    USGS Publications Warehouse

    Tomback, Diana F.; Kendall, Katherine C.; Tomback, Diana F.; Arno, Stephen F.; Keane, Robert E.

    2001-01-01

    The dramatic decline of whitebark pine (Pinus albicaulis) populations in the northwestern United States and southwestern Canada from the combined effects of fire exclusion, mountain pine beetles (Dendroctonus ponderosae), and white pine blister rust (Cronartium ribicola), and the projected decline of whitebark pine populations rangewide (Chapters 10 and 11) do not simply add up to local extirpations of a single tree species. Instead, the loss of whitebark pine has broad ecosystem-level consequences, eroding local plant and animal biodiversity, changing the time frame of succession, and altering the distribution of subalpine vegetation (Chapter 1). One potential casualty of this decline may be the midcontinental populations of the grizzly bear (Ursus arctos horribilis), which use whitebark pine seeds as a major food source (Chapter 7). Furthermore, whitebark pine is linked to other white pine ecosystems in the West through its seed-disperser, Clark's nutcracker (Nucifraga columbiana) (Chapter 5). Major declines in nutcracker populations ultimately seal the fate of several white pine ecosystems, and raise the question of whether restoration is possible once a certain threshold of decline is reached.

  6. Microscopic and Molecular Characterization of the Prehaustorial Resistance against Wheat Leaf Rust (Puccinia triticina) in Einkorn (Triticum monococcum)

    PubMed Central

    Serfling, Albrecht; Templer, Sven E.; Winter, Peter; Ordon, Frank

    2016-01-01

    Puccinia triticina f. sp. tritici (Eriks.), the causal agent of leaf rust, causes substantial yield losses in wheat production. In wheat many major leaf rust resistance genes have been overcome by virulent races. In contrast, the prehaustorial resistance (phr) against wheat leaf rust detected in the diploid wheat Einkorn (Triticum monoccocum var. monococcum) accession PI272560 confers race-independent resistance against isolates virulent on accessions harboring resistance genes located on the A-genome of Triticum aestivum. Phr in PI272560 leads to abortion of fungal development during the formation of haustorial mother cells and to increased hydrogen peroxide concentration in comparison to the susceptible accession 36554 (Triticum boeoticum ssp. thaoudar var. reuteri). Increased peroxidase and endochitinase activity was detected in PI272560 within 6 h after inoculation (hai). Comparative transcriptome profiling using Massive Analysis of cDNA Ends (MACE) in infected and non-infected leaves detected 14220 differentially expressed tags in PI272560 and 15472 in accession 36554. Of these 2908 and 3004, respectively, could be assigned to Gene Ontology (GO) categories of which 463 were detected in both accessions and 311 were differentially expressed between the accessions. In accordance with the concept of non-host resistance in PI272560, genes with similarity to peroxidases, chitinases, β-1,3-glucanases and other pathogenesis-related genes were up-regulated within the first 8 hai, whereas up-regulation of such genes was delayed in 36554. Moreover, a Phosphoribulokinase gene contributing to non-host resistance in rice against stripe rust was exclusively expressed in the resistant accession PI272560. Gene expression underpinned physiological and phenotypic observations at the site of infection and are in accordance with the concept of non-host resistance. PMID:27881987

  7. Genome-Wide Association Mapping for Seedling and Adult Plant Resistance to Stripe Rust in Synthetic Hexaploid Wheat

    PubMed Central

    Makdis, Farid; Badebo, Ayele; Ogbonnaya, Francis C.

    2014-01-01

    Use of genetic diversity from related wild and domesticated species has made a significant contribution to improving wheat productivity. Synthetic hexaploid wheats (SHWs) exhibit natural genetic variation for resistance and/or tolerance to biotic and abiotic stresses. Stripe rust caused by (Puccinia striiformis f. sp. tritici; Pst), is an important disease of wheat worldwide. To characterise loci conferring resistance to stripe rust in SHWs, we conducted a genome-wide association study (GWAS) with a panel of 181 SHWs using the wheat 9K SNP iSelect array. The SHWs were evaluated for their response to the prevailing races of Pst at the seedling and adult plant stages, the latter in replicated field trials at two sites in Ethiopia in 2011. About 28% of the SHWs exhibited immunity at the seedling stage while 56% and 83% were resistant to Pst at the adult plant stage at Meraro and Arsi Robe, respectively. A total of 27 SNPs in nine genomic regions (1BS, 2AS, 2BL, 3BL, 3DL, 5A, 5BL, 6DS and 7A) were linked with resistance to Pst at the seedling stage, while 38 SNPs on 18 genomic regions were associated with resistance at the adult plant stage. Six genomic regions were commonly detected at both locations using a mixed linear model corrected for population structure, kinship relatedness and adjusted for false discovery rate (FDR). The loci on chromosome regions 1AS, 3DL, 6DS and 7AL appeared to be novel QTL; our results confirm that resynthesized wheat involving its progenitor species is a rich source of new stripe (yellow) rust resistance that may be useful in choosing SHWs and incorporating diverse yellow rust (YR) resistance loci into locally adapted wheat cultivars. PMID:25153126

  8. Mapping genes for resistance to stripe rust in spring wheat landrace PI 480035

    PubMed Central

    Krishnan, Vandhana; Jiwan, Derick; Chen, Xianming; Skinner, Daniel Z.; See, Deven R.

    2017-01-01

    Stripe rust caused by Puccinia striiformis Westend. f. sp. tritici Erikks. is an economically important disease of wheat (Triticum aestivum L.). Hexaploid spring wheat landrace PI 480035 was highly resistant to stripe rust in the field in Washington during 2011 and 2012. The objective of this research was to identify quantitative trait loci (QTL) for stripe rust resistance in PI 480035. A spring wheat, “Avocet Susceptible” (AvS), was crossed with PI 480035 to develop a biparental population of 110 recombinant inbred lines (RIL). The population was evaluated in the field in 2013 and 2014 and seedling reactions were examined against three races (PSTv-14, PSTv-37, and PSTv-40) of the pathogen under controlled conditions. The population was genotyped with genotyping-by-sequencing and microsatellite markers across the whole wheat genome. A major QTL, QYr.wrsggl1-1BS was identified on chromosome 1B. The closest flanking markers were Xgwm273, Xgwm11, and Xbarc187 1.01 cM distal to QYr.wrsggl1-1BS, Xcfd59 0.59 cM proximal and XA365 3.19 cM proximal to QYr.wrsggl1-1BS. Another QTL, QYr.wrsggl1-3B, was identified on 3B, which was significant only for PSTv-40 and was not significant in the field, indicating it confers a race-specific resistance. Comparison with markers associated with previously reported Yr genes on 1B (Yr64, Yr65, and YrH52) indicated that QYr.wrsggl1-1BS is potentially a novel stripe rust resistance gene that can be incorporated into modern breeding materials, along with other all-stage and adult-plant resistance genes to develop cultivars that can provide durable resistance. PMID:28542451

  9. A single-nucleotide polymorphism that accounts for allelic variation in the Lr34 gene and leaf rust reaction in hard winter wheat.

    PubMed

    Cao, Shuanghe; Carver, Brett F; Zhu, Xinkai; Fang, Tilin; Chen, Yihua; Hunger, Robert M; Yan, Liuling

    2010-07-01

    Leaf rust, caused by Puccinia triticina Eriks, is one of the most common and persistent wheat diseases in the US Great Plains. We report that the Lr34 gene was mapped in the center of a QTL for leaf rust reaction and explained 18-35% of the total phenotypic variation in disease severity of adult plants in a Jagger x 2174 population of recombinant inbred lines (RILs) field-tested for 3 years. The sequence of the complete Lr34 gene was determined for the susceptible Jagger allele and for the resistant 2174 allele. The two alleles had exactly the same sequence as the resistant allele reported previously in Chinese Spring at three polymorphic sites in intron 4, exon 11, and exon 12. A G/T polymorphism was found in exon 22, where a premature stop codon was found in the susceptible Jagger allele (Lr34E22s), confirming a previous report, due to a point mutation compared with the resistant 2174 allele (Lr34E22r). We have experimentally demonstrated a tight association between the point mutation at exon 22 of Lr34 and leaf rust susceptibility in a segregating biparental population. A PCR marker was developed to distinguish between the Lr34E22r and Lr34E22s alleles. A survey of 33 local hard winter wheat cultivars indicated that 7 cultivars carry the Lr34E22s allele and 26 cultivars carry the Lr34E22r allele. This study significantly improves our genetic understanding of allelic variation in the Lr34 gene and provides a functional molecular tool to improve leaf rust resistance in a major US wheat gene pool.

  10. Molecular mapping and marker development for the Triticum dicoccoides-derived stripe rust resistance gene YrSM139-1B in bread wheat cv. Shaanmai 139.

    PubMed

    Zhang, Hong; Zhang, Lu; Wang, Changyou; Wang, Yajuan; Zhou, Xinli; Lv, Shikai; Liu, Xinlun; Kang, Zhensheng; Ji, Wanquan

    2016-02-01

    YrSM139-1B maybe a new gene for effective resistance to stripe rust and useful flanking markers for marker-assisted selection were developed. Stripe rust, caused by Puccinia striiformis f. sp. tritici, is an important foliar disease of wheat. Two dominant stripe rust resistant genes YrSM139-1B and YrSM139-2D were pyramided in bread wheat cultivar Shaanmai 139; one from wild emmer and the other from Thinopyrum intermedium. Three near-isogenic F7:8 line pairs (contrasting RILs), N122-1013R/S, N122-185R/S, and N122-1812R/S, independently derived from different F2 plants and differing at the YrSM139-1B locus were generated from the cross Shaanmai 139 × Hu 901-19 through marker-assisted selection. A large F2:3 population from cross N122-1013R × N122-1013S tested for stripe rust response and subjected to analysis with markers in the 1BS10-0.5 bin region using SSR expressed sequence tags (EST) and site-specific sequence markers developed from the 90 K Illumina iSelect SNP array. Five EST-STS markers and four allele-specific PCR markers were mapped to the YrSM139-1B region. The 30.5 cM genetic map for YrSM139-1B consisted of nine markers, two of which were closer to YrSM139-1B than Xgwm273, which was used in producing the contrasting RIL pairs. Race response data and allelism tests showed that YrSM139-1B is different from Yr10, Yr15, and Yr24/26/CH42.

  11. Specificity of a Rust Resistance Suppressor on 7DL in the Spring Wheat Cultivar Canthatch.

    PubMed

    Talajoor, Mina; Jin, Yue; Wan, Anmin; Chen, Xianming; Bhavani, Sridhar; Tabe, Linda; Lagudah, Evans; Huang, Li

    2015-04-01

    The spring wheat 'Canthatch' has been shown to suppress stem rust resistance genes in the background due to the presence of a suppressor gene located on the long arm of chromosome 7D. However, it is unclear whether the suppressor also suppresses resistance genes against leaf rust and stripe rust. In this study, we investigated the specificity of the resistance suppression. To determine whether the suppression is genome origin specific, chromosome location specific, or rust species or race specific, we introduced 11 known rust resistance genes into the Canthatch background, including resistance to leaf, stripe, or stem rusts, originating from A, B, or D genomes and located on different chromosome homologous groups. F1 plants of each cross were tested with the corresponding rust race, and the infection types were scored and compared with the parents. Our results show that the Canthatch 7DL suppressor only suppressed stem rust resistance genes derived from either the A or B genome, and the pattern of the suppression is gene specific and independent of chromosomal location.

  12. Sporting Good Lubricants

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Sun Coast Chemicals was originally contracted by Lockheed Martin Space Operations to formulate a spray lubricant free of environmental drawbacks for the Mobile Launch Platform used to haul the Space Shuttle from the Kennedy Space Center Vehicle Assembly Building to a launch pad. From this work, Sun Coast introduced Train Track Lubricant, Penetrating Spray Lube, and Biodegradable Hydraulic Fluid. Based on the original lubricant work, two more products have also been introduced. First, the X-1R Super Gun Cleaner and Lubricant protects guns from rust and corrosion caused by environmental conditions. Second, the X-1R Tackle Pack, endorsed by both fresh and saltwater guides and certain reel manufacturers, penetrates, cleans, reduces friction, lubricates, and provides extra protection against rust and corrosion.

  13. Mapping of stripe rust resistance gene in an Aegilops caudate introgression line in wheat and its genetic association with leaf rust resistance.

    PubMed

    Toor, Puneet Inder; Kaur, Satinder; Bansal, Mitaly; Yadav, Bharat; Chhuneja, Parveen

    2016-12-01

    A pair of stripe rust and leaf rust resistance genes was introgressed from Aegilops caudata, a nonprogenitor diploid species with the CC genome, to cultivated wheat. Inheritance and genetic mapping of stripe rust resistance gene in backcrossrecombinant inbred line (BC-RIL) population derived from the cross of a wheat-Ae. caudata introgression line (IL) T291- 2(pau16060) with wheat cv. PBW343 is reported here. Segregation of BC-RILs for stripe rust resistance depicted a single major gene conditioning adult plant resistance (APR) with stripe rust reaction varying from TR-20MS in resistant RILs signifying the presence of some minor genes as well. Genetic association with leaf rust resistance revealed that two genes are located at a recombination distance of 13%. IL T291-2 had earlier been reported to carry introgressions on wheat chromosomes 2D, 3D, 4D, 5D, 6D and 7D. Genetic mapping indicated the introgression of stripe rust resistance gene on wheat chromosome 5DS in the region carrying leaf rust resistance gene LrAc, but as an independent introgression. Simple sequence repeat (SSR) and sequence-tagged site (STS) markers designed from the survey sequence data of 5DS enriched the target region harbouring stripe and leaf rust resistance genes. Stripe rust resistance locus, temporarily designated as YrAc, mapped at the distal most end of 5DS linked with a group of four colocated SSRs and two resistance gene analogue (RGA)-STS markers at a distance of 5.3 cM. LrAc mapped at a distance of 9.0 cM from the YrAc and at 2.8 cM from RGA-STS marker Ta5DS_2737450, YrAc and LrAc appear to be the candidate genes for marker-assisted enrichment of the wheat gene pool for rust resistance.

  14. Screening and incorporation of rust resistance from Allium cepa into bunching onion (Allium fistulosum) via alien chromosome addition.

    PubMed

    Wako, Tadayuki; Yamashita, Ken-ichiro; Tsukazaki, Hikaru; Ohara, Takayoshi; Kojima, Akio; Yaguchi, Shigenori; Shimazaki, Satoshi; Midorikawa, Naoko; Sakai, Takako; Yamauchi, Naoki; Shigyo, Masayoshi

    2015-04-01

    Bunching onion (Allium fistulosum L.; 2n = 16), bulb onion (Allium cepa L. Common onion group), and shallot (Allium cepa L. Aggregatum group) cultivars were inoculated with rust fungus, Puccinia allii, isolated from bunching onion. Bulb onions and shallots are highly resistant to rust, suggesting they would serve as useful resources for breeding rust resistant bunching onions. To identify the A. cepa chromosome(s) related to rust resistance, a complete set of eight A. fistulosum - shallot monosomic alien addition lines (MAALs) were inoculated with P. allii. At the seedling stage, FF+1A showed a high level of resistance in controlled-environment experiments, suggesting that the genes related to rust resistance could be located on shallot chromosome 1A. While MAAL, multi-chromosome addition line, and hypoallotriploid adult plants did not exhibit strong resistance to rust. In contrast to the high resistance of shallot, the addition line FF+1A+5A showed reproducibly high levels of rust resistance.

  15. Effector proteins of rust fungi.

    PubMed

    Petre, Benjamin; Joly, David L; Duplessis, Sébastien

    2014-01-01

    Rust fungi include many species that are devastating crop pathogens. To develop resistant plants, a better understanding of rust virulence factors, or effector proteins, is needed. Thus far, only six rust effector proteins have been described: AvrP123, AvrP4, AvrL567, AvrM, RTP1, and PGTAUSPE-10-1. Although some are well established model proteins used to investigate mechanisms of immune receptor activation (avirulence activities) or entry into plant cells, how they work inside host tissues to promote fungal growth remains unknown. The genome sequences of four rust fungi (two Melampsoraceae and two Pucciniaceae) have been analyzed so far. Genome-wide analyses of these species, as well as transcriptomics performed on a broader range of rust fungi, revealed hundreds of small secreted proteins considered as rust candidate secreted effector proteins (CSEPs). The rust community now needs high-throughput approaches (effectoromics) to accelerate effector discovery/characterization and to better understand how they function in planta. However, this task is challenging due to the non-amenability of rust pathosystems (obligate biotrophs infecting crop plants) to traditional molecular genetic approaches mainly due to difficulties in culturing these species in vitro. The use of heterologous approaches should be promoted in the future.

  16. Genetics and mapping of the R₁₁ gene conferring resistance to recently emerged rust races, tightly linked to male fertility restoration, in sunflower (Helianthus annuus L.).

    PubMed

    Qi, L L; Seiler, G J; Vick, B A; Gulya, T J

    2012-09-01

    Sunflower oil is one of the major sources of edible oil. As the second largest hybrid crop in the world, hybrid sunflowers are developed by using the PET1 cytoplasmic male sterility system that contributes to a 20 % yield advantage over the open-pollinated varieties. However, sunflower production in North America has recently been threatened by the evolution of new virulent pathotypes of sunflower rust caused by the fungus Puccinia helianthi Schwein. Rf ANN-1742, an 'HA 89' backcross restorer line derived from wild annual sunflower (Helianthus annuus L.), was identified as resistant to the newly emerged rust races. The aim of this study was to elucidate the inheritance of rust resistance and male fertility restoration and identify the chromosome location of the underlying genes in Rf ANN-1742. Chi-squared analysis of the segregation of rust response and male fertility in F(2) and F(3) populations revealed that both traits are controlled by single dominant genes, and that the rust resistance gene is closely linked to the restorer gene in the coupling phase. The two genes were designated as R ( 11 ) and Rf5, respectively. A set of 723 mapped SSR markers of sunflower was used to screen the polymorphism between HA 89 and the resistant plant. Bulked segregant analysis subsequently located R ( 11 ) on linkage group (LG) 13 of sunflower. Based on the SSR analyses of 192 F(2) individuals, R ( 11 ) and Rf5 both mapped to the lower end of LG13 at a genetic distance of 1.6 cM, and shared a common marker, ORS728, which was mapped 1.3 cM proximal to Rf5 and 0.3 cM distal to R ( 11 ) (Rf5/ORS728/R ( 11 )). Two additional SSRs were linked to Rf5 and R ( 11 ): ORS995 was 4.5 cM distal to Rf5 and ORS45 was 1.0 cM proximal to R ( 11 ). The advantage of such an introduced alien segment harboring two genes is its large phenotypic effect and simple inheritance, thereby facilitating their rapid deployment in sunflower breeding programs. Suppressed recombination was observed in LGs 2, 9, and 11 as it was evident that no recombination occurred in the introgressed regions of LGs 2, 9, and 11 detected by 5, 9, and 22 SSR markers, respectively. R ( 11 ) is genetically independent from the rust R-genes R ( 1 ), R ( 2 ), and R ( 5 ), but may be closely linked to the rust R-gene R ( adv ) derived from wild Helianthus argophyllus, forming a large rust R-gene cluster of R ( adv )/R ( 11 )/R ( 4 ) in the lower end of LG13. The relationship of Rf5 with Rf1 is discussed based on the marker association analysis.

  17. Identification and characterization of wheat stem rust resistance gene Sr21 effective against the Ug99 race group at high temperature

    PubMed Central

    Chen, Shisheng; Zhang, Wenjun; Bolus, Stephen; Rouse, Matthew N.

    2018-01-01

    Wheat stem rust, caused by Puccinia graminis f. sp. tritici (Pgt), is a devastating foliar disease. The Ug99 race group has combined virulence to most stem rust (Sr) resistance genes deployed in wheat and is a threat to global wheat production. Here we identified a coiled-coil, nucleotide-binding leucine-rich repeat protein (NLR) completely linked to the Ug99 resistance gene Sr21 from Triticum monococcum. Loss-of-function mutations and transgenic complementation confirmed that this gene is Sr21. Sr21 transcripts were significantly higher at high temperatures, and this was associated with significant upregulation of pathogenesis related (PR) genes and increased levels of resistance at those temperatures. Introgression of Sr21 into hexaploid wheat resulted in lower levels of resistance than in diploid wheat, but transgenic hexaploid wheat lines with high levels of Sr21 expression showed high levels of resistance. Sr21 can be a valuable component of transgenic cassettes or gene pyramids combining multiple resistance genes against Ug99. PMID:29614079

  18. Diseases Which Challenge Global Wheat Production - The Cereal Rusts

    USDA-ARS?s Scientific Manuscript database

    The rusts of wheat are common and widespread diseases in the US and throughout the world. Wheat rusts have been important throughout the history of wheat cultivation and are currently important diseases that are responsible for regularly occurring yield losses in wheat. The wheat rust fungi are obli...

  19. 7 CFR 301.38-1 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ..., DEPARTMENT OF AGRICULTURE DOMESTIC QUARANTINE NOTICES Black Stem Rust § 301.38-1 Definitions. In this subpart... Agriculure. Black stem rust. The disease commonly known as the black stem rust of grains (Puccinia graminis... clonally propagated only if its parent stock is, or was derived from, a seed-propagated black stem rust...

  20. 7 CFR 301.38-1 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ..., DEPARTMENT OF AGRICULTURE DOMESTIC QUARANTINE NOTICES Black Stem Rust § 301.38-1 Definitions. In this subpart... Agriculure. Black stem rust. The disease commonly known as the black stem rust of grains (Puccinia graminis... clonally propagated only if its parent stock is, or was derived from, a seed-propagated black stem rust...

  1. 7 CFR 301.38-1 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ..., DEPARTMENT OF AGRICULTURE DOMESTIC QUARANTINE NOTICES Black Stem Rust § 301.38-1 Definitions. In this subpart... Agriculure. Black stem rust. The disease commonly known as the black stem rust of grains (Puccinia graminis... clonally propagated only if its parent stock is, or was derived from, a seed-propagated black stem rust...

  2. 7 CFR 301.38-1 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ..., DEPARTMENT OF AGRICULTURE DOMESTIC QUARANTINE NOTICES Black Stem Rust § 301.38-1 Definitions. In this subpart... Agriculure. Black stem rust. The disease commonly known as the black stem rust of grains (Puccinia graminis... clonally propagated only if its parent stock is, or was derived from, a seed-propagated black stem rust...

  3. 7 CFR 301.38-1 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ..., DEPARTMENT OF AGRICULTURE DOMESTIC QUARANTINE NOTICES Black Stem Rust § 301.38-1 Definitions. In this subpart... Agriculure. Black stem rust. The disease commonly known as the black stem rust of grains (Puccinia graminis... clonally propagated only if its parent stock is, or was derived from, a seed-propagated black stem rust...

  4. Epidemiology and control of rusts of wheat and barley

    USDA-ARS?s Scientific Manuscript database

    Rusts of wheat and barley were monitored throughout the Pacific Northwest (PNW) using trap plots and through field surveys during the 2008 growing season. Through collaborators in other states, stripe rusts of wheat and barley were monitored throughout the US. In 2008, stripe rust occurred in 18 st...

  5. Sealing and anti-corrosive action of tannin rust converters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gust, J.; Bobrowicz, J.

    1993-01-01

    A possibility of the application of mercury porosimetry in the investigation on porosity in corrosion products of the carbon steel along with the degree of sealing by the use of tannin rust converters is presented. The effect of the atmospheric humidity on the rust conversion including the time of that conversion on the degree of rust sealing is discussed. The results of the corrosion investigation of carbon steel covered with a layer of the rust converted with tannin-containing agents are presented.

  6. Changing the Game: Using Integrative Genomics to Probe Virulence Mechanisms of the Stem Rust Pathogen Puccinia graminis f. sp. tritici.

    PubMed

    Figueroa, Melania; Upadhyaya, Narayana M; Sperschneider, Jana; Park, Robert F; Szabo, Les J; Steffenson, Brian; Ellis, Jeff G; Dodds, Peter N

    2016-01-01

    The recent resurgence of wheat stem rust caused by new virulent races of Puccinia graminis f. sp. tritici (Pgt) poses a threat to food security. These concerns have catalyzed an extensive global effort toward controlling this disease. Substantial research and breeding programs target the identification and introduction of new stem rust resistance (Sr) genes in cultivars for genetic protection against the disease. Such resistance genes typically encode immune receptor proteins that recognize specific components of the pathogen, known as avirulence (Avr) proteins. A significant drawback to deploying cultivars with single Sr genes is that they are often overcome by evolution of the pathogen to escape recognition through alterations in Avr genes. Thus, a key element in achieving durable rust control is the deployment of multiple effective Sr genes in combination, either through conventional breeding or transgenic approaches, to minimize the risk of resistance breakdown. In this situation, evolution of pathogen virulence would require changes in multiple Avr genes in order to bypass recognition. However, choosing the optimal Sr gene combinations to deploy is a challenge that requires detailed knowledge of the pathogen Avr genes with which they interact and the virulence phenotypes of Pgt existing in nature. Identifying specific Avr genes from Pgt will provide screening tools to enhance pathogen virulence monitoring, assess heterozygosity and propensity for mutation in pathogen populations, and confirm individual Sr gene functions in crop varieties carrying multiple effective resistance genes. Toward this goal, much progress has been made in assembling a high quality reference genome sequence for Pgt, as well as a Pan-genome encompassing variation between multiple field isolates with diverse virulence spectra. In turn this has allowed prediction of Pgt effector gene candidates based on known features of Avr genes in other plant pathogens, including the related flax rust fungus. Upregulation of gene expression in haustoria and evidence for diversifying selection are two useful parameters to identify candidate Avr genes. Recently, we have also applied machine learning approaches to agnostically predict candidate effectors. Here, we review progress in stem rust pathogenomics and approaches currently underway to identify Avr genes recognized by wheat Sr genes.

  7. Comparative transcriptome analysis and identification of candidate effectors in two related rust species (Gymnosporangium yamadae and Gymnosporangium asiaticum).

    PubMed

    Tao, Si-Qi; Cao, Bin; Tian, Cheng-Ming; Liang, Ying-Mei

    2017-08-23

    Rust fungi constitute the largest group of plant fungal pathogens. However, a paucity of data, including genomic sequences, transcriptome sequences, and associated molecular markers, hinders the development of inhibitory compounds and prevents their analysis from an evolutionary perspective. Gymnosporangium yamadae and G. asiaticum are two closely related rust fungal species, which are ecologically and economically important pathogens that cause apple rust and pear rust, respectively, proved to be devastating to orchards. In this study, we investigated the transcriptomes of these two Gymnosporangium species during the telial stage of their lifecycles. The aim of this study was to understand the evolutionary patterns of these two related fungi and to identify genes that developed by selection. The transcriptomes of G. yamadae and G. asiaticum were generated from a mixture of RNA from three biological replicates of each species. We obtained 49,318 and 54,742 transcripts, with N50 values of 1957 and 1664, for G. yamadae and G. asiaticum, respectively. We also identified a repertoire of candidate effectors and other gene families associated with pathogenicity. A total of 4947 pairs of putative orthologues between the two species were identified. Estimation of the non-synonymous/synonymous substitution rate ratios for these orthologues identified 116 pairs with Ka/Ks values greater than1 that are under positive selection and 170 pairs with Ka/Ks values of 1 that are under neutral selection, whereas the remaining 4661 genes are subjected to purifying selection. We estimate that the divergence time between the two species is approximately 5.2 Mya. This study constitutes a de novo assembly and comparative analysis between the transcriptomes of the two rust species G. yamadae and G. asiaticum. The results identified several orthologous genes, and many expressed genes were identified by annotation. Our analysis of Ka/Ks ratios identified orthologous genes subjected to positive or purifying selection. An evolutionary analysis of these two species provided a relatively precise divergence time. Overall, the information obtained in this study increases the genetic resources available for research on the genetic diversity of the Gymnosporangium genus.

  8. Comparative Transcriptomics Among Four White Pine Species

    PubMed Central

    Baker, Ethan A. G.; Wegrzyn, Jill L.; Sezen, Uzay U.; Falk, Taylor; Maloney, Patricia E.; Vogler, Detlev R.; Delfino-Mix, Annette; Jensen, Camille; Mitton, Jeffry; Wright, Jessica; Knaus, Brian; Rai, Hardeep; Cronn, Richard; Gonzalez-Ibeas, Daniel; Vasquez-Gross, Hans A.; Famula, Randi A.; Liu, Jun-Jun; Kueppers, Lara M.; Neale, David B.

    2018-01-01

    Conifers are the dominant plant species throughout the high latitude boreal forests as well as some lower latitude temperate forests of North America, Europe, and Asia. As such, they play an integral economic and ecological role across much of the world. This study focused on the characterization of needle transcriptomes from four ecologically important and understudied North American white pines within the Pinus subgenus Strobus. The populations of many Strobus species are challenged by native and introduced pathogens, native insects, and abiotic factors. RNA from the needles of western white pine (Pinus monticola), limber pine (Pinus flexilis), whitebark pine (Pinus albicaulis), and sugar pine (Pinus lambertiana) was sampled, Illumina short read sequenced, and de novo assembled. The assembled transcripts and their subsequent structural and functional annotations were processed through custom pipelines to contend with the challenges of non-model organism transcriptome validation. Orthologous gene family analysis of over 58,000 translated transcripts, implemented through Tribe-MCL, estimated the shared and unique gene space among the four species. This revealed 2025 conserved gene families, of which 408 were aligned to estimate levels of divergence and reveal patterns of selection. Specific candidate genes previously associated with drought tolerance and white pine blister rust resistance in conifers were investigated. PMID:29559535

  9. Determination of the role of Berberis spp. in wheat stem rust in China

    USDA-ARS?s Scientific Manuscript database

    Previous studies on the relationship of barberry (Berberis spp.) and wheat stem rust suggested that although some barberry species can serve as alternate hosts for the stem rust fungus Puccinia graminis f. sp. tritici (Pgt), barberry plants play no role in wheat stem rust development and virulence v...

  10. Puccinia coronata f. sp. avenae: a threat to global oat production.

    PubMed

    Nazareno, Eric S; Li, Feng; Smith, Madeleine; Park, Robert F; Kianian, Shahryar F; Figueroa, Melania

    2018-05-01

    Puccinia coronata f. sp. avenae (Pca) causes crown rust disease in cultivated and wild oat (Avena spp.). The significant yield losses inflicted by this pathogen make crown rust the most devastating disease in the oat industry. Pca is a basidiomycete fungus with an obligate biotrophic lifestyle, and is classified as a typical macrocyclic and heteroecious fungus. The asexual phase in the life cycle of Pca occurs in oat, whereas the sexual phase takes place primarily in Rhamnus species as the alternative host. Epidemics of crown rust happens in areas with warm temperatures (20-25 °C) and high humidity. Infection by the pathogen leads to plant lodging and shrivelled grain of poor quality. Disease symptoms: Infection of susceptible oat varieties gives rise to orange-yellow round to oblong uredinia (pustules) containing newly formed urediniospores. Pustules vary in size and can be larger than 5 mm in length. Infection occurs primarily on the surfaces of leaves, although occasional symptoms develop in the oat leaf sheaths and/or floral structures, such as awns. Symptoms in resistant oat varieties vary from flecks to small pustules, typically accompanied by chlorotic halos and/or necrosis. The pycnial and aecial stages are mostly present in the leaves of Rhamnus species, but occasionally symptoms can also be observed in petioles, young stems and floral structures. Aecial structures display a characteristic hypertrophy and can differ in size, occasionally reaching more than 5 mm in diameter. Taxonomy: Pca belongs to the kingdom Fungi, phylum Basidiomycota, class Pucciniomycetes, order Pucciniales and family Pucciniaceae. Host range: Puccinia coronata sensu lato can infect 290 species of grass hosts. Pca is prevalent in all oat-growing regions and, compared with other cereal rusts, displays a broad telial host range. The most common grass hosts of Pca include cultivated hexaploid oat (Avena sativa) and wild relatives, such as bluejoint grass, perennial ryegrass and fescue. Alternative hosts include several species of Rhamnus, with R. cathartica (common buckthorn) as the most important alternative host in Europe and North America. Most crown rust management strategies involve the use of rust-resistant crop varieties and the application of fungicides. The attainment of the durability of resistance against Pca is difficult as it is a highly variable pathogen with a great propensity to overcome the genetic resistance of varieties. Thus, adult plant resistance is often exploited in oat breeding programmes to develop new crown rust-resistant varieties. Useful website: https://www.ars.usda.gov/midwest-area/st-paul-mn/cereal-disease-lab/docs/cereal-rusts/race-surveys/. © 2017 BSPP AND JOHN WILEY & SONS LTD.

  11. Correlation between RUST assessments of fracture healing to structural and biomechanical properties.

    PubMed

    Cooke, Margaret E; Hussein, Amira I; Lybrand, Kyle E; Wulff, Alexander; Simmons, Erin; Choi, Jeffrey H; Litrenta, Jody; Ricci, William M; Nascone, Jason W; O'Toole, Robert V; Morgan, Elise F; Gerstenfeld, Louis C; Tornetta, Paul

    2018-03-01

    Radiographic Union Score for Tibia (RUST) and modified RUST (mRUST) are radiographic tools for quantitatively evaluating fracture healing using a cortical scoring system. This tool has high intra-class correlation coefficients (ICCs); however, little evidence has evaluated the scores against the physical properties of bone healing. Closed, stabilized fractures were made in the femora of C3H/HeJ male mice (8-12 week-old) of two dietary groups: A control and a phosphate restricted diet group. Micro-computed tomography (µCT) and torsion testing were carried out at post-operative days (POD) 14, 21, 35, and 42 (n = 10-16) per group time-point. Anteroposterior and lateral radiographic views were constructed from the µCT scans and scored by five raters. The raters also indicated if the fracture were healed. ICCs were 0.71 (mRUST) and 0.63 (RUST). Both RUST scores were positively correlated with callus bone mineral density (BMD) (r = 0.85 and 0.80, p < 0.001) and bone volume fraction (BV/TV) (r = 0.86 and 0.80, p < 0.001). Both RUST scores positively correlated with callus strength (r = 0.35 and 0.26, p < 0.012) and rigidity (r = 0.50 and 0.39, p < 0.001). Radiographically healed calluses had a mRUST ≥13 and a RUST ≥10 and had excellent relationship to structural and biomechanical metrics. Effect of delayed healing due to phosphate dietary restrictions was found at later time points with all mechanical properties (p < 0.011), however no differences found in the RUST scores (p > 0.318). Clinical relevance of this study is both RUST scores showed high correlation to physical properties of healing and generally distinguished healed vs. non-healed fractures. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:945-953, 2018. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  12. Identification and characterization of pleiotropic and co-located resistance loci to leaf rust and stripe rust in bread wheat cultivar Sujata.

    PubMed

    Lan, Caixia; Zhang, Yelun; Herrera-Foessel, Sybil A; Basnet, Bhoja R; Huerta-Espino, Julio; Lagudah, Evans S; Singh, Ravi P

    2015-03-01

    Two new co-located resistance loci, QLr.cim - 1AS/QYr.cim - 1AS and QLr.cim - 7BL/YrSuj , in combination with Lr46 / Yr29 and Lr67/Yr46 , and a new leaf rust resistance quantitative trait loci, conferred high resistance to rusts in adult plant stage. The tall Indian bread wheat cultivar Sujata displays high and low infection types to leaf rust and stripe rust, respectively, at the seedling stage in greenhouse tests. It was also highly resistant to both rusts at adult plant stage in field trials in Mexico. The genetic basis of this resistance was investigated in a population of 148 F5 recombinant inbred lines (RILs) derived from the cross Avocet × Sujata. The parents and RIL population were characterized in field trials for resistance to leaf rust during 2011 at El Batán, and 2012 and 2013 at Ciudad Obregón, Mexico, and for stripe rust during 2011 and 2012 at Toluca, Mexico; they were also characterized three times for stripe rust at seedling stage in the greenhouse. The RILs were genotyped with diversity arrays technology and simple sequence repeat markers. The final genetic map was constructed with 673 polymorphic markers. Inclusive composite interval mapping analysis detected two new significant co-located resistance loci, QLr.cim-1AS/QYr.cim-1AS and QLr.cim-7BL/YrSuj, on chromosomes 1AS and 7BL, respectively. The chromosomal position of QLr.cim-7BL overlapped with the seedling stripe rust resistance gene, temporarily designated as YrSuj. Two previously reported pleiotropic adult plant resistance genes, Lr46/Yr29 and Lr67/Yr46, and a new leaf rust resistance quantitative trait loci derived from Avocet were also mapped in the population. The two new co-located resistance loci are expected to contribute to breeding durable rust resistance in wheat. Closely linked molecular markers can be used to transfer all four resistance loci simultaneously to modern wheat varieties.

  13. Wheat Gene TaATG8j Contributes to Stripe Rust Resistance.

    PubMed

    Mamun, Md Abdullah-Al; Tang, Chunlei; Sun, Yingchao; Islam, Md Nazrul; Liu, Peng; Wang, Xiaojie; Kang, Zhensheng

    2018-06-05

    Autophagy-related 8 (ATG8) protein has been reported to be involved in plant's innate immune response, but it is not clear whether such genes play a similar role in cereal crops against obligate biotrophic fungal pathogens. Here, we reported an ATG8 gene from wheat ( Triticum aestivum ), designated TaATG8j . This gene has three copies located in chromosomes 2AS, 2BS, and 2DS. The transcriptions of all three copies were upregulated in plants of the wheat cultivar Suwon 11, inoculated with an avirulent race (CYR23) of Puccinia striiformis f. sp. tritici ( Pst ), the causal fungal pathogen of stripe rust. The transient expression of TaATG8j in Nicotiana benthamiana showed that TaATG8j proteins were distributed throughout the cytoplasm, but mainly in the nucleus and plasma membrane. The overexpression of TaATG8j in N. benthamiana slightly delayed the cell death caused by the mouse apoptotic protein BAX (BCL2-associated X protein). However, the expression of TaATG8j in yeast ( Schizosaccharomyces pombe ) induced cell death. The virus-induced gene silencing of all TaATG8j copies rendered Suwon 11 susceptible to the avirulent Pst race CYR23, accompanied by an increased fungal biomass and a decreased necrotic area per infection site. These results indicate that TaATG8j contributes to wheat resistance against stripe rust fungus by regulating cell death, providing information for the understanding of the mechanisms of wheat resistance to the stripe rust pathogen.

  14. Marker-Assisted Molecular Profiling, Deletion Mutant Analysis, and RNA-Seq Reveal a Disease Resistance Cluster Associated with Uromyces appendiculatus Infection in Common Bean Phaseolus vulgaris L.

    PubMed

    Todd, Antonette R; Donofrio, Nicole; Sripathi, Venkateswara R; McClean, Phillip E; Lee, Rian K; Pastor-Corrales, Marcial; Kalavacharla, Venu Kal

    2017-05-23

    Common bean ( Phaseolus vulgaris L.) is an important legume, useful for its high protein and dietary fiber. The fungal pathogen Uromyces appendiculatus (Pers.) Unger can cause major loss in susceptible varieties of the common bean. The Ur-3 locus provides race specific resistance to virulent strains or races of the bean rust pathogen along with Crg , (Complements resistance gene), which is required for Ur-3 -mediated rust resistance. In this study, we inoculated two common bean genotypes (resistant "Sierra" and susceptible crg) with rust race 53 of U. appendiculatus , isolated leaf RNA at specific time points, and sequenced their transcriptomes. First, molecular markers were used to locate and identify a 250 kb deletion on chromosome 10 in mutant crg (which carries a deletion at the Crg locus). Next, we identified differential expression of several disease resistance genes between Mock Inoculated (MI) and Inoculated (I) samples of "Sierra" leaf RNA within the 250 kb delineated region. Both marker assisted molecular profiling and RNA-seq were used to identify possible transcriptomic locations of interest regarding the resistance in the common bean to race 53. Identification of differential expression among samples in disease resistance clusters in the bean genome may elucidate significant genes underlying rust resistance. Along with preserving favorable traits in the crop, the current research may also aid in global sustainability of food stocks necessary for many populations.

  15. Marker-Assisted Molecular Profiling, Deletion Mutant Analysis, and RNA-Seq Reveal a Disease Resistance Cluster Associated with Uromyces appendiculatus Infection in Common Bean Phaseolus vulgaris L.

    PubMed Central

    Todd, Antonette R.; Donofrio, Nicole; Sripathi, Venkateswara R.; McClean, Phillip E.; Lee, Rian K.; Pastor-Corrales, Marcial; Kalavacharla, Venu (Kal)

    2017-01-01

    Common bean (Phaseolus vulgaris L.) is an important legume, useful for its high protein and dietary fiber. The fungal pathogen Uromyces appendiculatus (Pers.) Unger can cause major loss in susceptible varieties of the common bean. The Ur-3 locus provides race specific resistance to virulent strains or races of the bean rust pathogen along with Crg, (Complements resistance gene), which is required for Ur-3-mediated rust resistance. In this study, we inoculated two common bean genotypes (resistant “Sierra” and susceptible crg) with rust race 53 of U. appendiculatus, isolated leaf RNA at specific time points, and sequenced their transcriptomes. First, molecular markers were used to locate and identify a 250 kb deletion on chromosome 10 in mutant crg (which carries a deletion at the Crg locus). Next, we identified differential expression of several disease resistance genes between Mock Inoculated (MI) and Inoculated (I) samples of “Sierra” leaf RNA within the 250 kb delineated region. Both marker assisted molecular profiling and RNA-seq were used to identify possible transcriptomic locations of interest regarding the resistance in the common bean to race 53. Identification of differential expression among samples in disease resistance clusters in the bean genome may elucidate significant genes underlying rust resistance. Along with preserving favorable traits in the crop, the current research may also aid in global sustainability of food stocks necessary for many populations. PMID:28545258

  16. Genetic characterization of stem rust resistance in a global spring wheat germplasm collection

    USDA-ARS?s Scientific Manuscript database

    Stem rust is considered one of the most damaging diseases of wheat. The recent emergence of the stem rust Ug99 race group poses a serious threat to world wheat production. Utilization of genetic resistance in cultivar development is the optimal way to control stem rust. Here we report association ma...

  17. Potential impacts of ambient ozone on wheat rust diseases and the role of plant ozone sensitivity

    USDA-ARS?s Scientific Manuscript database

    The resurgence of rust diseases and the continued rise in tropospheric ozone (O3) levels have the potential to limit global wheat production. We conducted a series of experiments to understand the potential interactions between these two stress factors. Both stem rust and leaf rust were increased o...

  18. Aecidium kalanchoe sp. nov., a new rust on Kalanchoe blossfeldiana (Crassulaceae).

    PubMed

    Hernádez, José R; Aime, M Catherine; Newbry, Brad

    2004-07-01

    A rust fungus found on cultivars of Kalanchoe blossfeldiana (Crassulaceae) is described as a new species, Aecidium kalanchoe sp. nov., and compared to the other described rusts on members of the Crassulaceae. Only one other rust is known to parasitize Kalanchoe spp. A DNA sequence of A. kalanchoe suggests that the teleomorph is related to Puccinia.

  19. Geographic Variation in Melampsora Rust Resistance in Eastern Cottonwood in the Lower Mississippi Valley

    Treesearch

    D. T. Cooper; T. H. Filer

    1976-01-01

    Eastern cottonwood clones originating from 36 young natural stands along the Mississippi River from Memphis, Tennessee, to Baton Rouge, Louisiana, were evaluated in a nursery near Greenville, Mississippi for resistance to Melampsora rust. In general, the northern sources had more rust and were more variable in rust susceptibility than the southern sources. Eleven...

  20. 76 FR 13970 - Notice of Request for Extension of Approval of an Information Collection; Black Stem Rust...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-15

    ...] Notice of Request for Extension of Approval of an Information Collection; Black Stem Rust; Identification Requirements for Addition of Rust-Resistant Varieties AGENCY: Animal and Plant Health Inspection Service, USDA... black stem rust quarantine and regulations. DATES: We will consider all comments that we receive on or...

Top