Sample records for whitebark pine forests

  1. Altered species interactions and implications for natural regeneration in whitebark pine communities

    Treesearch

    Shawn T. McKinney; Diana F. Tomback; Carl E. Fiedler

    2011-01-01

    Whitebark pine (Pinus albicaulis) decline has altered trophic interactions and led to changes in community dynamics in many Rocky Mountain subalpine forests (McKinney and Tomback 2007). Here we discuss how altered species interactions, driven by disproportionate whitebark pine mortality, constrain the capability of whitebark pine forests to contribute genetic material...

  2. The status of whitebark pine along the Pacific Crest National Scenic Trail on the Umpqua National Forest.

    Treesearch

    Ellen Michaels Goheen; Donald J. Goheen; Katy Marshall; Robert S. Danchok; John A. Petrick; Diane E. White

    2002-01-01

    Because of concern over widespread population declines, the distribution, stand conditions, and health of whitebark pine (Pinus albicaulis Englem.) were evaluated along the Pacific Crest National Scenic Trail on the Umpqua National Forest. Whitebark pine occurred on 76 percent of the survey transects. In general, whitebark pine was found in stands...

  3. Highlights of the Forest Health Protection Whitebark Pine Restoration Program

    Treesearch

    John Schwandt

    2011-01-01

    In 2005, Forest Health Protection (FHP) initiated a rangewide health assessment for whitebark pine (Pinus albicaulis). This assessment summarized the forest health condition of whitebark pine throughout its range and also documented information needs, potential restoration strategies, and challenges to restoration that need to be addressed (Schwandt 2006). This led to...

  4. Ecosystem-based management in the whitebark pine zone

    Treesearch

    Robert E. Keane; Stephen F. Arno; Catherine A. Stewart

    2000-01-01

    Declining whitebark pine (Pinus albicaulis) forests have necessitated development of innovative methods to restore these ecologically valuable, high elevation ecosystems. We have began an extensive restoration study using prescribed fire and silvicultural cuttings to return native ecological processes to degenerating whitebark pine forests....

  5. Modeling the Effects of Climate Change on Whitebark Pine Along the Pacific Crest Trail

    NASA Astrophysics Data System (ADS)

    Anderson, R. S.; Nguyen, A.; Gill, N.; Kannan, S.; Patadia, N.; Meyer, M.; Schmidt, C.

    2012-12-01

    The Pacific Crest Trail (PCT), one of eight National Scenic Trails, stretches 2,650 miles from Mexico to the Canadian border. At high elevations along this trail, within Inyo and Sierra National Forests, populations of whitebark pine (Pinus albicaulis) have been diminishing due to infestation of the mountain pine beetle (Dendroctonus ponderosae) and are threatened due to a changing climate. Understanding the current and future condition of whitebark pine is a primary goal of forest managers due to its high ecological and economic importance, and it is currently a candidate for protection under the Endangered Species Act (ESA). Using satellite imagery, we analyzed the rate and spatial extent of whitebark pine tree mortality from 1984 to 2011 using the Landsat-based Detection of Trends in Disturbance and Recovery (LandTrendr) program. Climate data, soil properties, and biological features of the whitebark pine were incorporated in the Physiological Principles to Predict Growth (3-PG) model to predict future rates of growth and assess its applicability in modeling natural whitebark pine processes. Finally, the Random Forest algorithm was used with topographic data alongside recent and future climate data from the IPCC A2 and B1 climate scenarios for the years 2030, 2060, and 2090 to model the future distribution of whitebark pine. LandTrendr results indicate beetle related mortality covering 14,940 km2 of forest, 2,880 km2 of which are within whitebark pine forest. By 2090, our results show that under the A2 climate scenario, whitebark pine suitable habitat may be reduced by as much as 99.97% by the year 2090 within our study area. Under the B1 climate scenario, which has decreased CO2 emissions, 13.54% more habitat would be preserved in 2090.

  6. Invasive pathogen threatens bird-pine mutualism: implications for sustaining a high-elevation ecosystem.

    PubMed

    McKinney, Shawn T; Fiedler, Carl E; Tomback, Diana F

    2009-04-01

    Human-caused disruptions to seed-dispersal mutualisms increase the extinction risk for both plant and animal species. Large-seeded plants can be particularly vulnerable due to highly specialized dispersal systems and no compensatory regeneration mechanisms. Whitebark pine (Pinus albicaulis), a keystone subalpine species, obligately depends upon the Clark's Nutcracker (Nucifraga columbiana) for dispersal of its large, wingless seeds. Clark's Nutcracker, a facultative mutualist with whitebark pine, is sensitive to rates of energy gain, and emigrates from subalpine forests during periods of cone shortages. The invasive fungal pathogen Cronartium ribicola, which causes white pine blister rust, reduces whitebark pine cone production by killing cone-bearing branches and trees. Mortality from blister rust reaches 90% or higher in some whitebark pine forests in the Northern Rocky Mountains, USA, and the rust now occurs nearly rangewide in whitebark pine. Our objectives were to identify the minimum level of cone production necessary to elicit seed dispersal by nutcrackers and to determine how cone production is influenced by forest structure and health. We quantified forest conditions and ecological interactions between nutcrackers and whitebark pine in three Rocky Mountain ecosystems that differ in levels of rust infection and mortality. Both the frequency of nutcracker occurrence and probability of seed dispersal were strongly related to annual whitebark pine cone production, which had a positive linear association with live whitebark pine basal area, and negative linear association with whitebark pine tree mortality and rust infection. From our data, we estimated that a threshold level of approximately 1000 cones/ha is needed for a high likelihood of seed dispersal by nutcrackers (probability > or = 0.7), and that this level of cone production can be met by forests with live whitebark pine basal area > 5.0 m2/ha. The risk of mutualism disruption is greatest in northern most Montana (USA), where three-year mean cone production and live basal area fell below predicted threshold levels. There, nutcracker occurrence, seed dispersal, and whitebark pine regeneration were the lowest of the three ecosystems. Managers can use these threshold values to differentiate between restoration sites requiring planting of rust-resistant seedlings and sites where nutcracker seed dispersal can be expected.

  7. Native ectomycorrhizal fungi of limber and whitebark pine: Necessary for forest sustainability?

    Treesearch

    Cathy L. Cripps; Robert K. Antibus

    2011-01-01

    Ectomycorrhizal fungi are an important component of northern coniferous forests, including those of Pinus flexilis (limber pine) and P. albicaulis (whitebark pine) which are being decimated by white pine blister rust and mountain pine beetles. Ectomycorrhizal fungi are known to promote seedling establishment, tree health, and may play a role in forest sustainability....

  8. Health of whitebark pine forests after mountain pine beetle outbreaks

    Treesearch

    Sandra Kegley; John Schwandt; Ken Gibson; Dana Perkins

    2011-01-01

    Whitebark pine (Pinus albicaulis), a keystone high-elevation species, is currently at risk due to a combination of white pine blister rust (WPBR) (Cronartium ribicola), forest succession, and outbreaks of mountain pine beetle (MPB) (Dendroctonus ponderosae). While recent mortality is often quantified by aerial detection surveys (ADS) or ground surveys, little...

  9. Pinus albicaulis Engelm. (whitebark pine) in mixed-species stands throughout its US range: Broad-scale indicators of extent and recent decline

    Treesearch

    Sara A. Goeking; Deborah Kay Izlar

    2018-01-01

    We used data collected from >1400 plots by a national forest inventory to quantify population-level indicators for a tree species of concern. Whitebark pine (Pinus albicaulis) has recently experienced high mortality throughout its US range, where we assessed the area of land with whitebark pine present, size-class distribution of individual whitebark pine,...

  10. Collecting a whitebark snag for visitor center display

    Treesearch

    Jane Kapler Smith

    2006-01-01

    An educational display entitled "Whitebark pine forests-High country tapestry of life" is being assembled at the Montana Natural History Center (MNHC) in Missoula. It will include a whitebark pine snag and several animal specimens (two grizzly bears, a Clark's nutcracker, and a red squirrel), arrayed in front of a large photo of whitebark pine habitat....

  11. Lengthened cold stratification improves bulk whitebark pine germination

    Treesearch

    Nathan Robertson; Kent Eggleston; Emily Overton; Marie McLaughlin

    2013-01-01

    Crucial to the restoration of whitebark pine (Pinus albicaulis) ecosystems is the ability of forest managers to locate, propagate, and reintroduce viable, disease-resistant populations to these jeopardized systems. Currently, one of the most limiting steps in this process is the slow, labor-in - tensive, and expensive process of producing whitebark seedlings at forest...

  12. Restoring whitebark pine forests of the northern Rocky Mountains, USA

    Treesearch

    Robert E. Keane; Russell A. Parsons

    2010-01-01

    Whitebark pine (Pinus albicaulis) has been declining across much of its range in North America because of the combined effects of mountain pine beetle (Dendroctonus ponderosae) epidemics, fire exclusion policies, and widespread exotic blister rust infections. Whitebark pine seed is dispersed by a bird, the Clark's nutcracker (Nucifraga columbiana), which caches in...

  13. The importance of wilderness to whitebark pine research and management

    Treesearch

    Robert E. Keane

    2000-01-01

    Whitebark pine is a keystone species in upper subalpine forests of the northern Rocky Mountains, Cascades, and Sierra Nevada that has been declining because of recent mountain pine beetle and exotic blister rust epidemics, coupled with advancing succession resulting from fire exclusion. Whitebark pine and Wilderness have a mutually beneficial relationship because 1)...

  14. Whitebark Pine Guidelines for Planting Prescriptions

    Treesearch

    Glenda L. Scott; Ward W. McCaughey

    2006-01-01

    This paper reviews general literature, research studies, field observations, and standard Forest Service survival surveys of high-elevation whitebark pine plantations and presents a set of guidelines for outplanting prescriptions. When planting whitebark pine, the recommendations are: 1) reduce overstory competition; 2) reduce understory vegetation, especially grasses...

  15. Whitebark pine planting guidelines

    Treesearch

    Ward McCaughey; Glenda L. Scott; Kay L. Izlar

    2009-01-01

    This article incorporates new information into previous whitebark pine guidelines for planting prescriptions. Earlier 2006 guidelines were developed based on review of general literature, research studies, field observations, and standard US Forest Service survival surveys of high-elevation whitebark pine plantations. A recent study of biotic and abiotic factors...

  16. Workshop proceedings: research and management in whitebark pine ecosystems

    USGS Publications Warehouse

    Kendall, Katherine C.; Coen, Brenda

    1994-01-01

    The purpose of this workshop is to exchange information on on-going and soon-to-be-initiated whitebark pine research and management projects. By doing so we hope to encourage future work on this valuable species. We also hope to promote the use of consistent methods for evaluation and investigation of whitebark pine, and to provide avenues of collaboration. Speakers will present information on a variety of topics related to whitebark pine management and research. Featured presentation topics include anthropomorphic utilization of whitepark pine forests, whitebark pine natural regeneration, blister rust and the decline of whitebark pine, blister rust resistance studies, ecological mapping of the species, restoration and management projects, and survey/monitoring techniques. Information gained from these presentations may hopefully be used in the planning of future projects for the conservation of whitebark pine.

  17. Summary of preliminary step-trend analysis from the Interagency Whitebark Pine Long-termMonitoring Program—2004-2013

    USGS Publications Warehouse

    Legg, Kristin; Shanahan, Erin; Daley, Rob; Irvine, Kathryn M.

    2014-01-01

    In mixed and dominant stands, whitebark pine (Pinus albicaulis) occurs in over two million acres within the six national forests and two national parks that comprise the Greater Yellowstone Ecosystem (GYE). Currently, whitebark pine, an ecologically important species, is impacted by multiple ecological disturbances; white pine blister rust (Cronartium ribicola), mountain pine beetle (Dendroctonus ponderosae), wildfire, and climate change all pose significant threats to the persistence of whitebark pine populations. Substantial declines in whitebark pine populations have been documented throughout its range.Under the auspices of the Greater Yellowstone Coordinating Committee (GYCC), several agencies began a collaborative, long-term monitoring program to track and document the status of whitebark pine across the GYE. This alliance resulted in the formation of the Greater Yellowstone Whitebark Pine Monitoring Working Group (GYWPMWG), which consists of representatives from the U.S. Forest Service (USFS), National Park Service (NPS), U.S. Geological Survey (USGS), and Montana State University (MSU). This groundbased monitoring program was initiated in 2004 and follows a peer-reviewed protocol (GYWPMWG 2011). The program is led by the Greater Yellowstone Inventory and Monitoring Network (GRYN) of the National Park Service in coordination with multiple agencies. More information about this monitoring effort is available at: http://science. nature.nps.gov/im/units/gryn/monitor/whitebark_pine.cfm. The purpose of this report is to provide a draft summary of the first step-trend analysis for the interagency, long-term monitoring of whitebark pine health to the Interagency Grizzly Bear Study Team (IGBST) as part of a synthesis of the state of whitebark pine in the GYE. Due to the various stages of the analyses and reporting, this is the most efficient way to provide these results to the IGBST.

  18. Restoration of whitebark pine forests in the northern Rocky Mountains, USA

    Treesearch

    Robert E. Keane

    2011-01-01

    Whitebark pine (Pinus albicaulis) has been declining across much of its range in North America because of the combined effects of mountain pine beetle epidemics, fire exclusion policies, and widespread exotic blister rust infections. Whitebark pine seed is dispersed by a bird, the Clark's nutcracker, which caches seed in open, pattern-rich landscapes created by...

  19. Whitebark pine diameter growth response to removal of competition

    Treesearch

    Robert E. Keane; Kathy L. Gray; Laura J. Dickinson

    2007-01-01

    Silvicultural cutting treatments may be needed to restore whitebark pine (Pinus albicaulis) forests, but little is known of the response of this species to removal of competition through prescribed burning or silvicultural cuttings. We analyzed stem cross-sections from 48 whitebark pine trees in Montana around which most of the competing vegetation...

  20. A 20-year reassessment of the health and status of whitebark pine forests in the Bob Marshall Wilderness Complex, Montana

    Treesearch

    Molly L. Retzlaff; Signe B. Leirfallom; Robert E. Keane

    2016-01-01

    Whitebark pine plays a prominent role in high elevation ecosystems of the northern Rocky Mountains. It is an important food source for many birds and mammals as well as an essential component of watershed stabilization. Whitebark pine is vanishing from the landscape due to three main factors: white pine blister rust, mountain pine beetle outbreaks, and successional...

  1. Ecology of whitebark pine populations in relation to white pine blister rust infection in subalpine forests of the Lake Tahoe Basin: Implications for restoration

    Treesearch

    Patricia E. Maloney; Detlev R. Vogler; Camille E. Jensen; Annette Delfino Mix

    2012-01-01

    For over a century, white pine blister rust (WPBR), caused by the introduced fungal pathogen, Cronartium ribicola J.C. Fisch., has affected white pine (Subgenus Strobus) individuals, populations, and associated forest communities in North America. We surveyed eight populations of whitebark pine (Pinus albicaulis Engelm.) across a range of environmental conditions in...

  2. Community structure, biodiversity, and ecosystem services in treeline whitebark pine communities: Potential impacts from a non-native pathogen

    Treesearch

    Diana F. Tomback; Lynn M. Resler; Robert E. Keane; Elizabeth R. Pansing; Andrew J. Andrade; Aaron C. Wagner

    2016-01-01

    Whitebark pine (Pinus albicaulis) has the largest and most northerly distribution of any white pine (Subgenus Strobus) in North America, encompassing 18° latitude and 21° longitude in western mountains. Within this broad range, however, whitebark pine occurs within a narrow elevational zone, including upper subalpine and treeline forests, and functions...

  3. Management guide to ecosystem restoration treatments: Whitebark pine forests of the northern Rocky Mountains, U.S.A.

    Treesearch

    Robert E. Keane; Russell A. Parsons

    2010-01-01

    Whitebark pine is declining across much of its range in North America because of the combined effects of mountain pine beetle epidemics, fire exclusion policies, and widespread exotic blister rust infections. This management guide summarizes the extensive data collected at whitebark pine treatment sites for three periods: (1) pre-treatment, (2) 1 year post-treatment,...

  4. Spatiotemporal Dynamics of Fire in Whitebark Pine Stands on two Mountains in the Lolo National Forest, Montana, USA.

    NASA Astrophysics Data System (ADS)

    Larson, E. R.; Grissino-Mayer, H. D.

    2004-12-01

    Whitebark pine (Pinus albicaulis) is a long-lived tree species that exists throughout high elevation and treeline forest communities of western North America. It is the foundation of a diminishing ecosystem that supports Clark's nutcrackers (Nucifraga columbiana), red squirrels (Tamiasciurus hudsonicus), grizzly bears (Ursus arctos), and black bears (U. americana). Several factors are directly linked to the decline of the whitebark pine ecosystem: mortality from recent and widespread mountain pine beetle (Dendroctonus ponderosae) outbreaks, infestation by the invasive white pine blister rust (Cronartium ribicola, an exotic fungal canker that weakens and eventually kills white pines), and fire suppression that may have altered the historic fire regime and enabled fire-intolerant tree species to encroach upon whitebark pine stands. The synergistic effects of these factors have led to a dramatic decline in whitebark pine communities throughout its native range, and in response land managers and conservationists have called for research to better understand the ecological dynamics of this little studied ecosystem. My research uses dendrochronology to investigate the fire history of whitebark pine stands on three mountains in the Lolo National Forest, Montana, via fire-scar and age structure analyses. I present here the results from the fire-scar analyses from Morrell Mountain where I obtained 40 cross sections from dead and down whitebark pines. Individual tree mean fire return intervals (MFRI) range from 33 to 119 years, with a stand MFRI of 49 years that includes fire scars dating to the 16th century. Fire events scarred multiple trees in AD 1754, 1796, and 1843, indicating a mixed-severity fire regime. The majority of the samples recorded a frost event in AD 1601, perhaps evidence of the AD 1600 eruption of Mt. Huaynapatina in the Peruvian Andes. My research not only provides an historical framework for land managers, but also provides an opportunity to examine long-term spatiotemporal dynamics of fire activity over the northern Rocky Mountains in terms of climate change and atmospheric teleconnections.

  5. The push–pull tactic for mitigation of mountain pine beetle (Coleoptera: Curculionidae) damage in lodgepole and whitebark pines

    Treesearch

    Nancy E. Gillette; Constance J. Mehmel; Sylvia R. Mori; Jeffrey N. Webster; David L. Wood; Nadir Erbilgin; Donald R. Owen

    2012-01-01

    In an attempt to improve semiochemical-based treatments for protecting forest stands from bark beetle attack, we compared push-pull versus push-only tactics for protecting lodgepole pine (Pinus contorta Douglas ex Loudon) and whitebark pine (Pinus albicaulis Engelm.) stands from attack by mountain pine beetle (...

  6. Chapter 8 - Status and trends of whitebark pine distribution and health in California, Oregon, and Washington (Project WC-EM-B-12-02)

    Treesearch

    Bianca N.I. Eskelson; Vicente J. Monleon

    2018-01-01

    Whitebark pine (Pinus albicaulis Engelm.) is a keystone species that provides a variety of ecosystem services, such as soil stabilization and protracted snowmelts. Found in many upper subalpine forests in Western North America (Arno and Hoff 1989), whitebark pine is an important high-elevation food source for grizzly bears (Bjoernlie and others 2014) and numerous other...

  7. Restoring whitebark pine ecosystems in the face of climate change

    Treesearch

    Robert E. Keane; Lisa M. Holsinger; Mary F. Mahalovich; Diana F. Tomback

    2017-01-01

    Whitebark pine (Pinus albicaulis) forests have been declining throughout their range in western North America from the combined effects of mountain pine beetle (Dendroctonus ponderosae) outbreaks, fire exclusion policies, and the exotic disease white pine blister rust (Cronartium ribicola). Projected warming and drying trends in climate may exacerbate this decline;...

  8. Recent and future climate suitability for whitebark pine mortality from mountain pine beetles varies across the western US

    Treesearch

    Polly C. Buotte; Jeffrey A. Hicke; Haiganoush K. Preisler; John T. Abatzoglou; Kenneth F. Raffa; Jesse A. Logan

    2017-01-01

    Recent mountain pine beetle outbreaks in whitebark pine forests have been extensive and severe. Understanding the climate influences on these outbreaks is essential for developing management plans that account for potential future mountain pine beetle outbreaks, among other threats, and informing listing decisions under the Endangered Species Act. Prior research has...

  9. A range-wide restoration strategy for whitebark pine (Pinus albicaulis)

    Treesearch

    Robert E. Keane; D. F. Tomback; C. A. Aubry; A. D. Bower; E. M. Campbell; C. L. Cripps; M. B. Jenkins; M. F. Mahalovich; M. Manning; S. T. McKinney; M. P. Murray; D. L. Perkins; D. P. Reinhart; C. Ryan; A. W. Schoettle; C. M. Smith

    2012-01-01

    Whitebark pine (Pinus albicaulis), an important component of western high-elevation forests, has been declining in both the United States and Canada since the early Twentieth Century from the combined effects of mountain pine beetle (Dendroctonus ponderosae) outbreaks, fire exclusion policies, and the spread of the exotic disease white pine blister rust (caused by the...

  10. Whitebark pine vulnerability to climate-driven mountain pine beetle disturbance in the Greater Yellowstone Ecosystem.

    PubMed

    Logan, Jesse A; MacFarlane, William W; Willcox, Louisa

    2010-06-01

    Widespread outbreaks of mountain pine beetles (MPB) are occurring throughout the range of this native insect. Episodic outbreaks are a common occurrence in the beetles' primary host, lodgepole pine. Current outbreaks, however, are occurring in habitats where outbreaks either did not previously occur or were limited in scale. Herein, we address widespread, ongoing outbreaks in high-elevation, whitebark pine forests of the Greater Yellowstone Ecosystem, where, due to an inhospitable climate, past outbreaks were infrequent and short lived. We address the basic question: are these outbreaks truly unprecedented and a threat to ecosystem continuity? In order to evaluate this question we (1) present evidence that the current outbreak is outside the historic range of variability; (2) examine system resiliency to MPB disturbance based on adaptation to disturbance and host defenses to MPB attack; and (3) investigate the potential domain of attraction to large-scale MPB disturbance based on thermal developmental thresholds, spatial structure of forest types, and the confounding influence of an introduced pathogen. We conclude that the loss of dominant whitebark pine forests, and the ecological services they provide, is likely under continuing climate warming and that new research and strategies are needed to respond to the crisis facing whitebark pine.

  11. Silvics of whitebark pine (Pinus albicaulis)

    Treesearch

    Stephen F. Arno; Raymond J. Hoff

    1989-01-01

    Whitebark pine (Pinus albicaulis) is a long-lived tree inhabiting the upper subalpine forest and timberline zone on high mountains of Western North America. The species' habitat, life history, growth and yield, mortality factors, special uses, and genetics are described.

  12. Climate influences on whitebark pine mortality from mountain pine beetle in the Greater Yellowstone Ecosystem.

    PubMed

    Buotte, Polly C; Hicke, Jeffrey A; Preisler, Haiganoush K; Abatzoglou, John T; Raffa, Kenneth F; Logan, Jesse A

    2016-12-01

    Extensive mortality of whitebark pine, beginning in the early to mid-2000s, occurred in the Greater Yellowstone Ecosystem (GYE) of the western USA, primarily from mountain pine beetle but also from other threats such as white pine blister rust. The climatic drivers of this recent mortality and the potential for future whitebark pine mortality from mountain pine beetle are not well understood, yet are important considerations in whether to list whitebark pine as a threatened or endangered species. We sought to increase the understanding of climate influences on mountain pine beetle outbreaks in whitebark pine forests, which are less well understood than in lodgepole pine, by quantifying climate-beetle relationships, analyzing climate influences during the recent outbreak, and estimating the suitability of future climate for beetle outbreaks. We developed a statistical model of the probability of whitebark pine mortality in the GYE that included temperature effects on beetle development and survival, precipitation effects on host tree condition, beetle population size, and stand characteristics. Estimated probability of whitebark pine mortality increased with higher winter minimum temperature, indicating greater beetle winter survival; higher fall temperature, indicating synchronous beetle emergence; lower two-year summer precipitation, indicating increased potential for host tree stress; increasing beetle populations; stand age; and increasing percent composition of whitebark pine within a stand. The recent outbreak occurred during a period of higher-than-normal regional winter temperatures, suitable fall temperatures, and low summer precipitation. In contrast to lodgepole pine systems, area with mortality was linked to precipitation variability even at high beetle populations. Projections from climate models indicate future climate conditions will likely provide favorable conditions for beetle outbreaks within nearly all current whitebark pine habitat in the GYE by the middle of this century. Therefore, when surviving and regenerating trees reach ages suitable for beetle attack, there is strong potential for continued whitebark pine mortality due to mountain pine beetle. © 2016 by the Ecological Society of America.

  13. Chapter 15 - Composition and structure of whitebark and limber pine stands in the Interior West and the silvicultural implications (Project INT-EM-B-14-01)

    Treesearch

    James N. Long; John Shaw; Marcella Windmuller-Campione

    2018-01-01

    As forest communities continue to experience interactions between climate change and shifting disturbance regimes, there is anincreased need to link ecological understanding to applied management. Whitebark pine (Pinus albicaulis) and limber pine (P. flexilis) are important high-elevation five-needle pines in the...

  14. Evaluating future success of whitebark pine ecosystem restoration under climate change using simulation modeling

    Treesearch

    Robert E. Keane; Lisa M. Holsinger; Mary F. Mahalovich; Diana F. Tomback

    2017-01-01

    Major declines of whitebark pine forests throughout western North America from the combined effects of mountain pine beetle (Dendroctonus ponderosae) outbreaks, fire exclusion policies, and the exotic disease white pine blister rust (WPBR) have spurred many restoration actions. However, projected future warming and drying may further exacerbate the species’ decline and...

  15. Whitebark pine mortality related to white pine blister rust, mountain pine beetle outbreak, and water availability

    USGS Publications Warehouse

    Shanahan, Erin; Irvine, Kathryn M.; Thoma, David P.; Wilmoth, Siri K.; Ray, Andrew; Legg, Kristin; Shovic, Henry

    2016-01-01

    Whitebark pine (Pinus albicaulis) forests in the western United States have been adversely affected by an exotic pathogen (Cronartium ribicola, causal agent of white pine blister rust), insect outbreaks (Dendroctonus ponderosae, mountain pine beetle), and drought. We monitored individual trees from 2004 to 2013 and characterized stand-level biophysical conditions through a mountain pine beetle epidemic in the Greater Yellowstone Ecosystem. Specifically, we investigated associations between tree-level variables (duration and location of white pine blister rust infection, presence of mountain pine beetle, tree size, and potential interactions) with observations of individual whitebark pine tree mortality. Climate summaries indicated that cumulative growing degree days in years 2006–2008 likely contributed to a regionwide outbreak of mountain pine beetle prior to the observed peak in whitebark mortality in 2009. We show that larger whitebark pine trees were preferentially attacked and killed by mountain pine beetle and resulted in a regionwide shift to smaller size class trees. In addition, we found evidence that smaller size class trees with white pine blister rust infection experienced higher mortality than larger trees. This latter finding suggests that in the coming decades white pine blister rust may become the most probable cause of whitebark pine mortality. Our findings offered no evidence of an interactive effect of mountain pine beetle and white pine blister rust infection on whitebark pine mortality in the Greater Yellowstone Ecosystem. Interestingly, the probability of mortality was lower for larger trees attacked by mountain pine beetle in stands with higher evapotranspiration. Because evapotranspiration varies with climate and topoedaphic conditions across the region, we discuss the potential to use this improved understanding of biophysical influences on mortality to identify microrefugia that might contribute to successful whitebark pine conservation efforts. Using tree-level observations, the National Park Service-led Greater Yellowstone Interagency Whitebark Pine Long-term Monitoring Program provided important ecological insight on the size-dependent effects of white pine blister rust, mountain pine beetle, and water availability on whitebark pine mortality. This ongoing monitoring campaign will continue to offer observations that advance conservation in the Greater Yellowstone Ecosystem.

  16. No free lunch: Observations on seed predation, cone collection, and controlled germination of whitebark pine from the Canadian Rockies

    Treesearch

    Adrian Leslie; Brendan Wilson

    2011-01-01

    Whitebark pine is a keystone species of high elevation forests in western North America that is experiencing rapid decline due to fire exclusion policies, mountain pine beetle, and the introduced pathogen, white pine blister rust. Restoration activities include collecting cones and growing seedlings from individuals that show mechanisms for resistance to blister rust...

  17. Forest mortality in high-elevation whitebark pine (Pinus albicaulis) forests of eastern California, USA; influence of environmental context, bark beetles, climatic water deficit, and warming

    Treesearch

    Constance I. Millar; Robert D. Westfall; Diane L. Delany; Matthew J. Bokach; Alan L. Flint; Lorraine E. Flint

    2012-01-01

    Whitebark pine (Pinus albicaulis Engelm.) in subalpine zones of eastern California experienced significant mortality from 2007 to 2010. Dying stands were dense (mean basal area 47.5 m2/ha), young (mean 176 years), and even-age; mean stand mortality was 70%. Stands were at low elevations (mean 2993 m), on northerly aspects, and...

  18. Content of chemical elements in tree rings of lodgepole pine and whitebark pine from a subalpine Sierra Nevada forest

    Treesearch

    David L. Peterson; Darren R. Anderson

    1990-01-01

    The wood of lodgepole pines and whitebark pines from a high elevation site in the east central Sierra Nevada of California was analyzed for chemical content to determine whether there were any temporal patterns of chemical distribution in tree rings. Cores were taken from 10 trees of each species and divided into 5-year increments for chemical analysis. Correlation...

  19. Whitebark pine ecosystem restoration in western Montana

    Treesearch

    Robert E. Keane; Stephen F. Arno

    1996-01-01

    Whitebark pine (Pinus albicaulis) is a major tree species of upper subalpine forests of the northern Rocky Mountains (Schmidt and McDonald 1990). It is an important nutritional and structural component of wildlife habitat (Arno and Hoff 1990; Schmidt and McDonald 1990). Its large, nutlike seeds are a major food source for many birds and mammals (...

  20. 76 FR 70955 - Helena Nation Forest: Dalton Mountain Forest Restoration & Fuels Reduction Project

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-16

    ... allow reestablishment of controlled periodic fire; and capturing the value of removed trees in an... mixed-severity fire regime that is dominated by lodgepole pine. Tree mortality from a mountain pine... other tree species native to the area including aspen, whitebark pine, and ponderosa pine do not occur...

  1. Establishment patterns of whitebark pine following fire in the Canadian Rockies

    Treesearch

    Brendan Wilson

    2011-01-01

    I examined the regeneration of whitebark pine (Pinus albicaulis) and four other high elevation conifers in young subalpine forest following two stand replacing fires in the Canadian Rockies. These were the Vermilion Pass fire of 1968, located in Kootenay and Banff national parks, and the Rock Canyon Creek fire of 1960, located approximately 125 km further southeast in...

  2. Modeling contemporary climate profiles of whitebark pine (Pinus albicaulis) and predicting responses to global warming

    Treesearch

    Marcus V. Warwell; Gerald E. Rehfeldt; Nicholas L. Crookston

    2006-01-01

    The Random Forests multiple regression tree was used to develop an empirically-based bioclimate model for the distribution of Pinus albicaulis (whitebark pine) in western North America, latitudes 31° to 51° N and longitudes 102° to 125° W. Independent variables included 35 simple expressions of temperature and precipitation and their interactions....

  3. Inoculation and successful colonization of whitebark pine seedlings with native mycorrhizal fungi under greenhouse conditions

    Treesearch

    C. L. Cripps; E. Grimme

    2011-01-01

    Efforts to maintain and restore whitebark pine (Pinus albicaulis) forests in western North America have increased dramatically over the last two decades and now include the planting of nursery-grown rust resistant seedlings in openings and burned areas. Over 200,000 nursery seedlings have been planted in the western U.S. but survival rates are low and in many areas...

  4. Using landscape-level forest monitoring data to draw a representative picture of an iconic subalpine tree species

    Treesearch

    Sara A. Goeking; Deborah K. Izlar

    2015-01-01

    Whitebark pine (Pinus albicaulis) is an ecologically important species in high-altitude, mid-latitude areas of western North America due to the habitat and food source it provides for many wildlife species. Recent concerns about the long-term viability of whitebark pine stands have arisen in the face of high mortality due to a combination of fire...

  5. Use of pine nuts by grizzly and black bears in the Yellowstone area

    USGS Publications Warehouse

    Kendall, Katherine C.

    1983-01-01

    The large seeds (pine nuts) of whitebark pine are commonly eaten in the spring (March-May) and fall (September-November) by grizzly and black bears in Yellowstone National Park and adjacent areas (Craighead and Craighead 1972, Blanchard 1978, Mealey 1980) and western Montana (Tisch 1961; J. Sumner and J. J. Craighead, unpubl. rep., Montant Coop. Wildl. Res. Unit, Univ. Montana, Missoula, 1973). Similar nuts from limber pine are eaten by grizzly bears on the east Rocky Mountain Front of northwestern Montana (Schallenberger and Jonkel, annual rep., Border Grizzly Project, Univ. Montana, Missoula, 1980). The nuts of the European stone pine (P. cembra) are an important food for brown bears (U. arctos) throughout the taiga zone in the Soviet Union (Pavlov and Zhdanov 1972, Ustinov 1972, Yazan 1972). Both the production of whitebark pine cones (Forcella 1977, Blanchard 1978, Mealey 1980) and the quantity of nuts consumed by bears vary annually (Mealey 1975, Blancard 1978). Pine nuts are also an important food for red squirrels in whitebark forests. In fall, squirrels remove cones from trees and cache them in middens. Bears as well as other mammalian and avian seed predators compete with squirrels for whitebark nuts (Forcella 1977, Tomback 1977). Confusion about the ripening process of whitebark pine cones has resulted in errors in the literature on the availability of pine nuts as a bear food. Whitebark cones are indehiscent and do not disintegrate (Tomback 1981). Vertebrate foraging probably leaves few, if any, seed-bearing cones on trees by late fall; the cones remaining abscise sometime thereafter (Tomback 1981). Because cones do not abscise or release their seed in fall, bears may obtain pine nuts in 2 ways. Black bears may climb whitebark pine trees and break off cone-bearing brnahces to feed on cones (Tisch 1961, Mealey 1975, Forcella 1977); or both black bears and grizzly bears may raid squirrel caches to feed on pine nuts (Tisch 1961, Craighead and Craighead 1972, Blanchard 1978). The purpose of this study was to determine (1) the major source of pine nuts for bears, (2) why cone scales do not appear in bear scat containing pine nuts, and (3) what factors influence bear use of pine nuts.

  6. Status of whitebarkpine in the Greater Yellowstone Ecosystem: A step-trend analysis comparing 2004-2007 to 2008-2011

    USGS Publications Warehouse

    Shanahan, Erin; Irvine, Kathryn M.; Roberts, Dave; Litt, Andrea R.; Legg, Kristin; Daley, Rob; Chambers, Nina

    2014-01-01

    Whitebark pine (Pinus albicaulis) is a foundation and keystone species in upper subalpine environments of the northern Rocky Mountains that strongly influences the biodiversity and productivity of high-elevation ecosystems (Tomback et al. 2001, Ellison et al. 2005). Throughout its historic range, whitebark pine has decreased significantly as a major component of high-elevation forests. As a result, it is critical to understand the challenges to whitebark pine—not only at the tree and stand level, but also as these factors influence the distribution of whitebark pine across the Greater Yellowstone Ecosystem (GYE). In 2003, the National Park Service (NPS) Greater Yellowstone Inventory & Monitoring Network identified whitebark pine as one of twelve significant natural resource indicators or vital signs to monitor (Jean et al. 2005, Fancy et al. 2009) and initiated a long-term, collaborative monitoring program. Partners in this effort include the U.S. Geological Survey, U.S. Forest Service, and Montana State University with representatives from each comprising the Greater Yellowstone Whitebark Pine Monitoring Working Group. The objectives of the monitoring program are to assess trends in (1) the proportion of live, whitebark pine trees (>1.4-m tall) infected with white pine blister rust (blister rust); (2) to document blister rust infection severity by the occurrence and location of persisting and new infections; (3) to determine mortality of whitebark pine trees and describe potential factors contributing to the death of trees; and (4) to assess the multiple components of the recruitment of understory whitebark pine into the reproductive population. In this report we summarize the past eight years (2004-2011) of whitebark pine status and trend monitoring in the GYE. Our study area encompasses six national forests (NF), two national parks (NP), as well as state and private lands in portions of Wyoming, Montana, and Idaho; this area is collectively described as the GYE here and in other studies. The sampling design is a probabilistic, twostage cluster design with stands of whitebark pine as the primary units and 10x50 m belt transects as the secondary units. Primary sampling units (stands) were selected randomly from a sample frame of approximately 10,770 mapped pure and mixed whitebark pine stands ≥2.0 hectares in the GYE (Dixon 1997, Landenburger 2012). From 2004 through 2007 (monitoring transect establishment or initial time-step), we established 176 permanent belt transects (secondary sampling units=176) in 150 whitebark pine stands and permanently marked approximately 4,740 individual trees >1.4 m tall to monitor long-term changes in blister rust infection and survival rates. Between 2008 and 2011 (revisit time-step), these same 176 transects were surveyed and again all previously tagged trees were observed for changes in blister rust infection and survival status. Objective 1. Using a combined ratio estimator, we estimated the proportion of live trees infected in the GYE in the initial time-step (2004-2007) to be 0.22 (0.031 SE). Following the completion of all surveys in the revisit time-step (2008-2011), we estimated the proportion of live trees infected with white pine blister rust as 0.23 (0.028 SE; Table 2). We detected no significant change in the proportion of trees infected in the GYE between the two time-steps. Objective 2. We documented blister rust canker locations as occurring in the canopy or bole. We compared changes in canker position between the initial time-step (2004-2007) and the revisit time-step (2008-2011) in order to assess changes in infection severity. This analysis included the 3,795 trees tagged during the initial time-step that were located and documented as alive at the end of the revisit time-step. At the end of the revisit time-step, we found 1,217 trees infected with blister rust. This includes the 287 newly tagged trees in the revisit time step of which 14 had documented infections. Of these 1,217 trees, 780 trees were infected with blister rust in both time steps. Trees with only canopy cankers made up approximately 43% (519 trees) of the total number of trees infected with blister rust at the end of the revisit time-step, while trees with only bole cankers comprised 20% (252 trees), and those with both canopy and bole cankers included 37% (446 trees) of the infected sample. A bole infection is considered to be more consequential than a canopy canker, as it compromises not only the overall longevity of the tree, but its functional capacity for reproductive output as well (Kendall and Arno 1990, Campbell and Antos 2000, McDonald and Hoff 2001, Schwandt and Kegley 2004). In addition to infection location, we also documented infection transition between the canopy and bole. Of the 780 live trees that were infected with blister rust in both time-steps, approximately 31% (242) maintained canopy cankers and 36% (281) retained bole infections at the end of the revisit time-step. Infection transition from canopy to bole occurred in 30% (234) of the revisit time-step trees while 3% (23) transitioned from bole to canopy infections during this period. Objective 3. To determine whitebark pine mortality, we resurveyed all belt transects to reassess the life status of permanently tagged trees >1.4 m tall. We compared the total number of live tagged trees recorded during monitoring transect establishment to the total number of resurveyed dead tagged trees recorded during the revisit time-step and identified all potential mortality-influencing conditions (blister rust, mountain pine beetle, fire and other). By the end of the revisit time-step, we observed a total of 975 dead tagged whitebark pine trees; using a ratio estimator, this represents a loss of approximately 20% (SE=4.35%) of the original live tagged tree population (GYWPMWG 2012). Objective 4. To investigate the proportion of live, reproducing tagged trees, we divided the total number of positively identified cone-bearing trees by the total number of live trees in the tagged tree sample at the end of the revisit time-step. To approximate the average density of recruitment trees per stand, trees ≤1.4 m tall were summed by stand (within the 500 m² transect area) and divided by the total number of stands. Reproducing trees made up approximately 24% (996 trees) of the total live tagged population at the end of the revisit time-step. Differentiating between whitebark pine and limber pine seedlings or saplings is problematic given the absence of cones or cone scars. Therefore, understory summaries as presented in this report may include individuals of both species when they are sympatric in a stand. The average density of small trees ≤1.4 m tall was 53 understory trees per 500 m². Raw counts of these understory individuals ranged from 0-635 small trees per belt transect. In addition, a total of 287 trees were added to the tagged tree population by the end of 2011. These newly tagged trees were individuals that upon subsequent revisits had reached a height of >1.4 m tall and subsequently added to the sample. Throughout the past decade in the GYE, monitoring has helped document shifts in whitebark pine forests; whitebark pine stands have been impacted by insect, pathogen, wildland fire, and other disturbance events. Blister rust infection is ubiquitous throughout the ecosystem and infection proportions are variable across the region. And while we have documented mortality of whitebark pine, we have also recorded considerable recruitment. We provide this first step-trend report as a quantifiable baseline for understanding the state of whitebark pine in the GYE. Many aspects of whitebark pine health are highly variable across the range of its distribution in the GYE. Through sustained implementation of the monitoring program, we will continue efforts to document and quantify whitebark pine forest dynamics as they arise under periodic upsurges in insect, pathogen, fire episodes, and climatic events in the GYE. Since its inception, this monitoring program perseveres as one of the only sustained longterm efforts conducted in the GYE with a singular purpose to track the health and status of this prominent keystone species.

  7. FireWorks educational program and its effectiveness

    Treesearch

    Jane Kapler Smith; Nancy E. McMurray

    2004-01-01

    FireWorks is an educational program that provides interactive, hands-on activities for studying fire behavior, fire ecology, and human influences on three fire-dependent forest types-ponderosa pine (Pinus ponderosa), interior lodgepolepine (P. contorta var.latifolia), and whitebark pine (P. albicaulis)....

  8. The mountain pine beetle and whitebark pine waltz: Has the music changed?

    Treesearch

    Barbara J. Bentz; Greta Schen-Langenheim

    2007-01-01

    The mountain pine beetle, Dendroctonus ponderosae Hopkins (Coleoptera: Curculionidae, Scolytinae) (MPB), is a bark beetle native to western North American forests, spanning wide latitudinal and elevational gradients. MPB infest and reproduce within the phloem of most Pinus species from northern Baja California in Mexico to central British Columbia in...

  9. Guidelines for whitebark pine planting prescriptions

    Treesearch

    Glenda L. Scott; Ward W. McCaughey; Kay Izlar

    2011-01-01

    Whitebark pine (Pinus albicaulis) is a keystone species in high-elevation ecosystems of the western United States. Unfortunately many fragile subalpine ecosystems are losing whitebark pine as a functional community component due to the combined effects of an introduced disease, insects and succession. Planting whitebark pine is one part of a multifaceted restoration...

  10. Threats, status & management options for bristlecone pines and limber pines in Southern Rockies

    Treesearch

    A. W. Schoettle; K. S. Burns; F. Freeman; R. A. Sniezko

    2006-01-01

    High-elevation white pines define the most remote alpine-forest ecotones in western North America yet they are not beyond the reach of a lethal non-native pathogen. The pathogen (Cronartium ribicola), a native to Asia, causes the disease white pine blister rust (WPBR) and was introduced into western Canada in 1910. Whitebark (Pinus albicaulis) and...

  11. Excavation of red squirrel middens by grizzly bears in the whitebark pine zone

    USGS Publications Warehouse

    Mattson, D.J.; Reinhart, Daniel P.

    1997-01-01

    Whitebark pine seeds Pinus albicaulis are an important food of grizzly Ursus arctos horribilis bears wherever whitebark pine is abundant in the contiguous United States of America; availability of seeds affects the distribution of bears, and the level of conflict between bears and humans. Almost all of the seeds consumed by bears are excavated from middens where red squirrels Tamiasciurus hudsonicus have cached whitebark pine cones.Relationships among the occupancy of middens by squirrels, the excavation of middens by bears, and site features were investigated in this study. Data were collected from radio-marked bears and from middens located from line transects on two study sites in the Yellowstone ecosystem.Densities of active middens were positively related to lodgepole pine Pinus contorta basal area and negatively related to steepness of slope.The probability that a midden was occupied by a squirrel (i.e. active) was positively related to lodgepole pine basal area in the surrounding stand, size of the midden and size of the whitebark pine cone crop, and negatively related to elevation and to bear excavation during the previous 2-12 months.The probability that a midden had been excavated by a bear during the previous 12 months was positively related to size of the midden, and to whitebark pine basal area and cone crop, and negatively related to nearness of roads and town sites.The influence of midden size on bear use was attributable to a positive relationship with the number of excavated cones. The positive association between bear excavations and whitebark pine basal area or cone crops was attributable to availability of pine seeds.Grizzly bears would benefit from the minimization of roads and other human facilities in the whitebark pine zone and from increases in the availability of whitebark pine seeds, potentially achieved by increasing the numbers of cone-producing whitebark pine trees, especially in lower elevations of the whitebark pine zone where red squirrels are more abundant.

  12. Selecting the best stable isotope mixing model to estimate grizzly bear diets in the Greater Yellowstone Ecosystem

    PubMed Central

    Hopkins, John B.; Ferguson, Jake M.; Tyers, Daniel B.; Kurle, Carolyn M.

    2017-01-01

    Past research indicates that whitebark pine seeds are a critical food source for Threatened grizzly bears (Ursus arctos) in the Greater Yellowstone Ecosystem (GYE). In recent decades, whitebark pine forests have declined markedly due to pine beetle infestation, invasive blister rust, and landscape-level fires. To date, no study has reliably estimated the contribution of whitebark pine seeds to the diets of grizzlies through time. We used stable isotope ratios (expressed as δ13C, δ15N, and δ34S values) measured in grizzly bear hair and their major food sources to estimate the diets of grizzlies sampled in Cooke City Basin, Montana. We found that stable isotope mixing models that included different combinations of stable isotope values for bears and their foods generated similar proportional dietary contributions. Estimates generated by our top model suggest that whitebark pine seeds (35±10%) and other plant foods (56±10%) were more important than meat (9±8%) to grizzly bears sampled in the study area. Stable isotope values measured in bear hair collected elsewhere in the GYE and North America support our conclusions about plant-based foraging. We recommend that researchers consider model selection when estimating the diets of animals using stable isotope mixing models. We also urge researchers to use the new statistical framework described here to estimate the dietary responses of grizzlies to declines in whitebark pine seeds and other important food sources through time in the GYE (e.g., cutthroat trout), as such information could be useful in predicting how the population will adapt to future environmental change. PMID:28493929

  13. Selecting the best stable isotope mixing model to estimate grizzly bear diets in the Greater Yellowstone Ecosystem.

    PubMed

    Hopkins, John B; Ferguson, Jake M; Tyers, Daniel B; Kurle, Carolyn M

    2017-01-01

    Past research indicates that whitebark pine seeds are a critical food source for Threatened grizzly bears (Ursus arctos) in the Greater Yellowstone Ecosystem (GYE). In recent decades, whitebark pine forests have declined markedly due to pine beetle infestation, invasive blister rust, and landscape-level fires. To date, no study has reliably estimated the contribution of whitebark pine seeds to the diets of grizzlies through time. We used stable isotope ratios (expressed as δ13C, δ15N, and δ34S values) measured in grizzly bear hair and their major food sources to estimate the diets of grizzlies sampled in Cooke City Basin, Montana. We found that stable isotope mixing models that included different combinations of stable isotope values for bears and their foods generated similar proportional dietary contributions. Estimates generated by our top model suggest that whitebark pine seeds (35±10%) and other plant foods (56±10%) were more important than meat (9±8%) to grizzly bears sampled in the study area. Stable isotope values measured in bear hair collected elsewhere in the GYE and North America support our conclusions about plant-based foraging. We recommend that researchers consider model selection when estimating the diets of animals using stable isotope mixing models. We also urge researchers to use the new statistical framework described here to estimate the dietary responses of grizzlies to declines in whitebark pine seeds and other important food sources through time in the GYE (e.g., cutthroat trout), as such information could be useful in predicting how the population will adapt to future environmental change.

  14. Clark's Nutcracker Breeding Season Space Use and Foraging Behavior.

    PubMed

    Schaming, Taza D

    2016-01-01

    Considering the entire life history of a species is fundamental to developing effective conservation strategies. Decreasing populations of five-needle white pines may be leading to the decline of Clark's nutcrackers (Nucifraga columbiana). These birds are important seed dispersers for at least ten conifer species in the western U.S., including whitebark pine (Pinus albicaulis), an obligate mutualist of Clark's nutcrackers. For effective conservation of both Clark's nutcrackers and whitebark pine, it is essential to ensure stability of Clark's nutcracker populations. My objectives were to examine Clark's nutcracker breeding season home range size, territoriality, habitat selection, and foraging behavior in the southern Greater Yellowstone Ecosystem, a region where whitebark pine is declining. I radio-tracked Clark's nutcrackers in 2011, a population-wide nonbreeding year following a low whitebark pine cone crop, and 2012, a breeding year following a high cone crop. Results suggest Douglas-fir (Pseudotsuga menziesii) communities are important habitat for Clark's nutcrackers because they selected it for home ranges. In contrast, they did not select whitebark pine habitat. However, Clark's nutcrackers did adjust their use of whitebark pine habitat between years, suggesting that, in some springs, whitebark pine habitat may be used more than previously expected. Newly extracted Douglas-fir seeds were an important food source both years. On the other hand, cached seeds made up a relatively lower proportion of the diet in 2011, suggesting cached seeds are not a reliable spring food source. Land managers focus on restoring whitebark pine habitat with the assumption that Clark's nutcrackers will be available to continue seed dispersal. In the Greater Yellowstone Ecosystem, Clark's nutcracker populations may be more likely to be retained year-round when whitebark pine restoration efforts are located adjacent to Douglas-fir habitat. By extrapolation, whitebark pine restoration efforts in other regions may consider prioritizing restoration of whitebark pine stands near alternative seed sources.

  15. An ecosystem-scale model for the spread of a host-specific forest pathogen in the Greater Yellowstone Ecosystem

    USGS Publications Warehouse

    Hatala, J.A.; Dietze, M.C.; Crabtree, R.L.; Kendall, Katherine C.; Six, D.; Moorcroft, P.R.

    2011-01-01

    The introduction of nonnative pathogens is altering the scale, magnitude, and persistence of forest disturbance regimes in the western United States. In the high-altitude whitebark pine (Pinus albicaulis) forests of the Greater Yellowstone Ecosystem (GYE), white pine blister rust (Cronartium ribicola) is an introduced fungal pathogen that is now the principal cause of tree mortality in many locations. Although blister rust eradication has failed in the past, there is nonetheless substantial interest in monitoring the disease and its rate of progression in order to predict the future impact of forest disturbances within this critical ecosystem.This study integrates data from five different field-monitoring campaigns from 1968 to 2008 to create a blister rust infection model for sites located throughout the GYE. Our model parameterizes the past rates of blister rust spread in order to project its future impact on high-altitude whitebark pine forests. Because the process of blister rust infection and mortality of individuals occurs over the time frame of many years, the model in this paper operates on a yearly time step and defines a series of whitebark pine infection classes: susceptible, slightly infected, moderately infected, and dead. In our analysis, we evaluate four different infection models that compare local vs. global density dependence on the dynamics of blister rust infection. We compare models in which blister rust infection is: (1) independent of the density of infected trees, (2) locally density-dependent, (3) locally density-dependent with a static global infection rate among all sites, and (4) both locally and globally density-dependent. Model evaluation through the predictive loss criterion for Bayesian analysis supports the model that is both locally and globally density-dependent. Using this best-fit model, we predicted the average residence times for the four stages of blister rust infection in our model, and we found that, on average, whitebark pine trees within the GYE remain susceptible for 6.7 years, take 10.9 years to transition from slightly infected to moderately infected, and take 9.4 years to transition from moderately infected to dead. Using our best-fit model, we project the future levels of blister rust infestation in the GYE at critical sites over the next 20 years.

  16. Re-measurement of whitebark pine infection and mortality in the Canadian Rockies

    Treesearch

    Cyndi M. Smith; Brenda Shepherd; Cameron Gillies; Jon Stuart-Smith

    2011-01-01

    Whitebark pine (Pinus albicaulis) populations are under threat across the species' range from white pine blister rust (Cronartium ribicola), mountain pine beetle (Dendroctonus ponderosae), fire exclusion and climate change (Tomback and Achuff 2010). Loss of whitebark pine is predicted to have cascading effects on the following ecological services: provision of...

  17. Climate influences on whitebark pine mortality from mountain pine beetle in the Greater Yellowstone Ecosystem

    Treesearch

    Polly C. Buotte; Jeffrey A. Hicke; Haiganoush K. Preisler; John T. Abatzoglou; Kenneth F. Raffa; Jesse A. Logan

    2016-01-01

    Extensive mortality of whitebark pine, beginning in the early to mid-2000s, occurred in the Greater Yellowstone Ecosystem (GYE) of the western USA, primarily from mountain pine beetle but also from other threats such as white pine blister rust. The climatic drivers of this recent mortality and the potential for future whitebark pine mortality from mountain pine beetle...

  18. Potential for long-term seed storage for ex situ genetic conservation of high elevation white pine species – whitebark pine and foxtail pine case study

    Treesearch

    R.A. Sniezko; A.J. Kegley

    2017-01-01

    Whitebark pine (Pinus albicaulis) and foxtail pine (P. balfouriana) are conifers native to western North America. Due to several threats, including a non-native pathogen (Cronartium ribicola) and a changing climate, whitebark pine and foxtail pine are classified on the IUCN Red List as ‘endangered’ and ‘...

  19. Influence of fire on mycorrhizal colonization of planted and natural whitebark pine seedlings: Ecology and management implications

    Treesearch

    Paul E. Trusty; Cathy L. Cripps

    2011-01-01

    Whitebark pine (Pinus albicaulis) is a threatened keystone species in subalpine zones of Western North America that plays a role in watershed dynamics and maintenance of high elevation biodiversity (Schwandt, 2006). Whitebark pine has experienced significant mortality due to white pine blister rust, mountain pine beetle outbreaks and successional replacement possibly...

  20. A review of the literature on seed fate in whitebark pine and the life history traits of Clark’s nutcracker and pine squirrels.

    Treesearch

    Teresa J. Lorenz; Carol Aubry; Robin. Shoal

    2008-01-01

    Whitebark pine is a critical component of subalpine ecosystems in western North America, where it contributes to biodiversity and ecosystem function and in some communities is considered a keystone species. Whitebark pine is undergoing rangewide population declines attributed to the combined effects of mountain pine beetle, white pine blister rust, and fire suppression...

  1. Biodiversity losses: The downward spiral

    USGS Publications Warehouse

    Tomback, Diana F.; Kendall, Katherine C.; Tomback, Diana F.; Arno, Stephen F.; Keane, Robert E.

    2001-01-01

    The dramatic decline of whitebark pine (Pinus albicaulis) populations in the northwestern United States and southwestern Canada from the combined effects of fire exclusion, mountain pine beetles (Dendroctonus ponderosae), and white pine blister rust (Cronartium ribicola), and the projected decline of whitebark pine populations rangewide (Chapters 10 and 11) do not simply add up to local extirpations of a single tree species. Instead, the loss of whitebark pine has broad ecosystem-level consequences, eroding local plant and animal biodiversity, changing the time frame of succession, and altering the distribution of subalpine vegetation (Chapter 1). One potential casualty of this decline may be the midcontinental populations of the grizzly bear (Ursus arctos horribilis), which use whitebark pine seeds as a major food source (Chapter 7). Furthermore, whitebark pine is linked to other white pine ecosystems in the West through its seed-disperser, Clark's nutcracker (Nucifraga columbiana) (Chapter 5). Major declines in nutcracker populations ultimately seal the fate of several white pine ecosystems, and raise the question of whether restoration is possible once a certain threshold of decline is reached.

  2. Annual observations of conspicuous canker activity on whitebark pine (2003 to 2007)

    Treesearch

    Michael P. Murray

    2011-01-01

    Whitebark pine's (Pinus albicaulis) notable ecological values, combined with its precarious state, underscore the need for monitoring its health and dynamics. Populations of whitebark pine are in decline throughout most of its range. White pine blister rust, caused by the fungus Cronartium ribicola, has denuded stands since introduction during the early 1900s (...

  3. Using landscape genetics simulations for planting blister rust resistant whitebark pine in the US northern Rocky Mountains

    Treesearch

    Erin L. Landguth; Zachary A. Holden; Mary F. Mahalovich; Samuel A. Cushman

    2017-01-01

    Recent population declines to the high elevation western North America foundation species whitebark pine, have been driven by the synergistic effects of the invasive blister rust pathogen, mountain pine beetle (MPB), fire exclusion, and climate change. This has led to consideration for listing whitebark pine (WBP) as a threatened or endangered species under the...

  4. Natural regeneration of whitebark pine: Factors affecting seedling density

    Treesearch

    S. Goeking; D. Izlar

    2014-01-01

    Whitebark pine (Pinus albicaulis) is an ecologically important species in high-altitude areas of the western United States and Canada due to the habitat and food source it provides for Clark’s nutcrackers, red squirrels, grizzly bears, and other animals. Whitebark pine stands have recently experienced high mortality due to wildfire, white pine blister rust, and a...

  5. Regeneration and survival of whitebark pine after the 1988 Yellowstone fires

    Treesearch

    Diana F. Tomback; Anna W. Schoettle; Mario J. Perez; Kristen M. Grompone; Sabine Mellmann-Brown

    2011-01-01

    Successional whitebark pine (Pinus albicaulis) communities are dependent on fire and other disturbances for renewal (Arno 2001). Where whitebark pine regenerates results from cache site selection by Clark's nutcrackers (Nucifraga columbiana) in relation to the environmental tolerances of seeds and seedlings (Tomback 2001). After the 1988 Yellowstone fires, we...

  6. Monitoring direct and indirect climate effects on whitebark pine ecosystems at Crater Lake National park

    USGS Publications Warehouse

    Smith, S.B.; Odion, D.C.; Sarr, D.A.; Irvine, K.M.

    2011-01-01

    Whitebark pine (Pinus albicaulis) is the distinctive, often stunted, and picturesque tree line species in the American West. As a result of climate change, mountain pine beetles (Dendroctonus ponderosae) have moved up in elevation, adding to nonnative blister rust (Cronartium ribicola) disease as a major cause of mortality in whitebark pine. At Crater Lake National Park, Oregon, whitebark pine is declining at the rate of 1% per year. The Klamath Network, National Park Service, has elected to monitor whitebark pine and associated high-elevation vegetation. This program is designed to sample whitebark pine throughout the park to look for geographic patterns in its exposure to and mortality from disease and beetles. First-year monitoring has uncovered interesting patterns in blister rust distribution. Incidence of rust disease was higher on the west side of the park, where conditions are wetter and more humid than on the east side. However, correlating climate alone with rust disease is not straightforward. On the east side of the park, the odds of blister rust infection were much greater in plots having Ribes spp., shrubs that act as the alternate host for a portion of the rust's life cycle. However, on the park's west side, there was not a statistically significant increase in blister rust in plots with Ribes. This suggests that different species of Ribes associated with whitebark pine can increase pine exposure to blister rust disease. There is also convincing evidence of an association between total tree density and the incidence of blister rust. Warmer temperatures and possibly increased precipitation will affect both whitebark pine and Ribes physiology as well as tree density and mountain pine beetle numbers, all of which may interact with blister rust to cause future changes in tree line communities at Crater Lake. The Klamath Network monitoring program plans to document and study these ongoing changes.

  7. Climate change and tree-line ecosystems in the Sierra Nevada: Habitat suitability modelling to inform high-elevation forest dynamics monitoring

    USGS Publications Warehouse

    Moore, Peggy E.; Alvarez, Otto; McKinney, Shawn T.; Li, Wenkai; Brooks, Matthew L.; Guo, Qinghua

    2017-01-01

    Whitebark pine and foxtail pine serve foundational roles in the subalpine zone of the Sierra Nevada. They provide the dominant structure in tree-line forests and regulate key ecosystem processes and community dynamics. Climate change models suggest that there will be changes in temperature regimes and in the timing and magnitude of precipitation within the current distribution of these species, and these changes may alter the species’ distributional limits. Other stressors include the non-native pathogen white pine blister rust and mountain pine beetle, which have played a role in the decline of whitebark pine throughout much of its range. The National Park Service is monitoring status and trends of these species. This report provides complementary information in the form of habitat suitability models to predict climate change impacts on the future distribution of these species within Sierra Nevada national parks.We used maximum entropy modeling to build habitat suitability models by relating species occurrence to environmental variables. Species occurrence was available from 328 locations for whitebark pine and 244 for foxtail pine across the species’ distributions within the parks. We constructed current climate surfaces for modeling by interpolating data from weather stations. Climate surfaces included mean, minimum, and maximum temperature and total precipitation for January, April, July, and October. We downscaled five general circulation models for the 2050s and the 2090s from ~125 km2 to 1 km2 under both an optimistic and an extreme climate scenario to bracket potential climatic change and its influence on projected suitable habitat. To describe anticipated changes in the distribution of suitable habitat, we compared, for each species, climate scenario, and time period, the current models with future models in terms of proportional change in habitat size, elevation distribution, model center points, and where habitat is predicted to expand or contract.Overall, models indicated that suitable habitats for whitebark and foxtail pine are more likely to shift geographically within the parks by 2100 rather than decline precipitously. This implies park managers might focus conservation efforts on stressors other than climate change, working toward species resilience in the face of threats from introduced disease and elevated native insect damage. More specifically, further understanding of the incidence and severity of white pine blister rust and other stressors in high elevation white pines would help assess vulnerability from threats other than climate change.

  8. Exploring whitebark pine resilience in the crown of the continent

    Treesearch

    Stacey A. Burke; Michael S. Quinn

    2011-01-01

    Whitebark pine (Pinus albicaulis) populations are declining across western North America due to synergies of disturbances, both natural and anthropogenic. Losses at treeline may result in significant changes to the upper subalpine zone, which may result in a regime shift, thus affecting the ecological goods and services whitebark pine systems provide for other species...

  9. Targeted capture sequencing in Whitebark pine reveals range-wide demographic and adaptive patterns despite challenges of a large, repetitive genome

    Treesearch

    John V. Syring; Jacob A. Tennessen; Tara N. Jennings; Jill Wegrzyn; Camille Scelfo-Dalbey; Richard Cronn

    2016-01-01

    Whitebark pine (Pinus albicaulis) inhabits an expansive range in western North America, and it is a keystone species of subalpine environments. Whitebark is susceptible to multiple threats – climate change, white pine blister rust, mountain pine beetle, and fire exclusion – and it is suffering significant mortality range-wide, prompting the tree to be listed as ‘...

  10. FireWorks curriculum featuring ponderosa, lodgepole, and whitebark pine forests

    Treesearch

    Jane Kapler Smith; Nancy E. McMurray

    2000-01-01

    FireWorks is an educational program for students in grades 1-10. The program consists of the curriculum in this report and a trunk of laboratory materials, specimens, and reference materials. It provides interactive, hands-on activities for studying fire ecology, fire behavior, and the influences of people on three fire-dependent forest types - Pinus ponderosa...

  11. Whitebark Pine Germination, Rust Resistance, and Cold Hardiness Among Seed Sources in the Inland Northwest: Planting Strategies for Restoration

    Treesearch

    Mary F. Mahalovich; Karen E. Burr; David L. Foushee

    2006-01-01

    A synthesis of several studies highlights above-average performing seed sources (n = 108) of whitebark pine (Pinus albicaulis), which practitioners can utilize for restoration, wildlife habitat improvement, and operational planting programs. It is the first report of this magnitude of blister rust resistance for this species. Whitebark pine does have...

  12. Whitebark and limber pine restoration and monitoring in Glacier National Park

    Treesearch

    Jennifer M. Asebrook; Joyce Lapp; Tara. Carolin

    2011-01-01

    Whitebark pine (Pinus albicaulis) and limber pine (Pinus flexilis) are keystone species important to watersheds, grizzly and black bears, squirrels, birds, and other wildlife. Both high elevation five-needled pines have dramatically declined in Glacier National Park primarily due to white pine blister rust (Cronartium ribicola) and fire exclusion, with mountain pine...

  13. How to recognize blister rust infection on whitebark pine

    Treesearch

    Ray J. Hoff

    1992-01-01

    Color photographs show how white pine blister rust can be identified. In addition, the photographs show how pines resistant to the fungus could be identified. Such trees could be used to develop a new variety of whitebark pine that is resistant to blister rust.

  14. Using Landscape Genetics Simulations for Planting Blister Rust Resistant Whitebark Pine in the US Northern Rocky Mountains.

    PubMed

    Landguth, Erin L; Holden, Zachary A; Mahalovich, Mary F; Cushman, Samuel A

    2017-01-01

    Recent population declines to the high elevation western North America foundation species whitebark pine, have been driven by the synergistic effects of the invasive blister rust pathogen, mountain pine beetle (MPB), fire exclusion, and climate change. This has led to consideration for listing whitebark pine (WBP) as a threatened or endangered species under the Endangered Species Act, which has intensified interest in developing management strategies for maintaining and restoring the species. An important, but poorly studied, aspect of WBP restoration is the spatial variation in adaptive genetic variation and the potential of blister rust resistant strains to maintain viable populations in the future. Here, we present a simulation modeling framework to improve understanding of the long-term genetic consequences of the blister rust pathogen, the evolution of rust resistance, and scenarios of planting rust resistant genotypes of whitebark pine. We combine climate niche modeling and eco-evolutionary landscape genetics modeling to evaluate the effects of different scenarios of planting rust-resistant genotypes and impacts of wind field direction on patterns of gene flow. Planting scenarios showed different levels for local extirpation of WBP and increased population-wide blister rust resistance, suggesting that the spatial arrangement and choice of planting locations can greatly affect survival rates of whitebark pine. This study presents a preliminary, but potentially important, framework for facilitating the conservation of whitebark pine.

  15. Distribution of bark beetle attacks after whitebark pine restoration treatments: A case study

    Treesearch

    Kristen M. Waring; Diana L. Six

    2005-01-01

    Whitebark pine (Pinus albicaulis Engelm.), an important component of high elevation ecosystems in the western United States and Canada, is declining due to fire exclusion, white pine blister rust (Cronartium ribicola J.C. Fisch.), and mountain pine beetle (Dendroctonus ponderosae Hopkins). This study was...

  16. The influence of white pine blister rust on seed dispersal in whitebark pine

    Treesearch

    Shawn T. McKinney; Diana F. Tomback

    2007-01-01

    We tested the hypotheses that white pine blister rust (Cronartium ribicola J.C. Fisch.) damage in whitebark pine (Pinus albicaulis Engelm.) stands leads to reduced (1) seed cone density, (2) predispersal seed survival, and (3) likelihood of Clark's Nutcracker (Nucifraga columbiana (Wilson, 1811)) seed...

  17. 75 FR 10456 - Kootenai National Forest, Fortine Ranger District, Montana; Galton Environmental Impact Statement

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-08

    ... habitat for whitebark pine stand survival and regeneration; (12) Re-establish the natural role of fire in... management. This includes 226 acres of regeneration harvest (shelterwood and seedtree prescriptions) and 133 acres of regeneration harvest in clearcut with [[Page 10457

  18. Microsite and elevation zone effects on seed pilferage, germination, and seedling survival during early whitebark pine recruitment.

    PubMed

    Pansing, Elizabeth R; Tomback, Diana F; Wunder, Michael B; French, Joshua P; Wagner, Aaron C

    2017-11-01

    Tree recruitment is a spatially structured process that may undergo change over time because of variation in postdispersal processes. We examined seed pilferage, seed germination, and seedling survival in whitebark pine to determine whether 1) microsite type alters the initial spatial pattern of seed caches, 2) higher abiotic stress (i.e. higher elevations) exacerbates spatial distribution changes, and 3) these postdispersal processes are spatially clustered. At two study areas, we created a seed distribution pattern by burying seed caches in microsite types frequently used by whitebark pine's avian seed disperser (Clark's nutcracker) in upper subalpine forest and at treeline, the latter characterized by high abiotic environmental stress. We monitored caches for two years for pilferage, germination, and seedling survival. Odds of pilferage (both study areas), germination (northern study area), and survival (southern study area) were higher at treeline relative to subalpine forest. At the southern study area, we found higher odds of 1) pilferage near rocks and trees relative to no object in subalpine forest, 2) germination near rocks relative to trees within both elevation zones, and 3) seedling survival near rocks and trees relative to no object at treeline. No microsite effects were detected at the northern study area. Findings indicated that the microsite distribution of seed caches changes with seed/seedling stage. Higher odds of seedling survival near rocks and trees were observed at treeline, suggesting abiotic stress may limit safe site availability, thereby shifting the spatial distribution toward protective microsites. Higher odds of pilferage at treeline, however, suggest rodents may limit treeline recruitment. Further, odds of pilferage were higher near rocks and trees relative to no object in subalpine forest but did not differ among microsites at treeline, suggesting pilferage can modulate the spatial structure of regeneration, a finding supported by limited clustering of postdispersal processes.

  19. White pine blister rust resistance in Pinus monticola and P. albicaulis in the Pacific Northwest U.S. – A tale of two species

    Treesearch

    Richard A. Sniezko; Angelia Kegley; Robert Danchok

    2012-01-01

    Western white pine (Pinus monticola Dougl. ex D. Don) and whitebark pine (P. albicaulis Engelm.) are white pine species with similar latitudinal and longitudinal geographic ranges in Oregon and Washington (figs. 1 and 2). Throughout these areas, whitebark pine generally occurs at higher elevations than western white pine. Both...

  20. Non-Ribes alternate hosts of white pine blister rust: What this discovery means to whitebark pine

    Treesearch

    Paul J. Zambino; Bryce A. Richardson; Geral I. McDonald; Ned B. Klopfenstein; Mee-Sook Kim

    2006-01-01

    From early to present-day outbreaks, white pine blister rust caused by the fungus Cronartium ribicola, in combination with mountain pine beetle outbreaks and fire exclusion has caused ecosystem-wide effects for all five-needled pines (McDonald and Hoff 2001). To be successful, efforts to restore whitebark pine will require sound management decisions that incorporate an...

  1. Strategies for managing whitebark pine in the presence of white pine blister rust [Chapter 17

    Treesearch

    Raymond J. Hoff; Dennis E. Ferguson; Geral I. McDonald; Robert E. Keane

    2001-01-01

    Whitebark pine (Pinus albicaulis) is one of many North American white pine species (Pinus subgenus Strobus) susceptible to the fungal disease white pine blister rust (Cronartium ribicola). Blister rust has caused severe mortality (often reaching nearly 100 percent) in many stands of white bark pine north of 45° latitude in western North America. The rust is slowly...

  2. Insects of whitebark pine with emphasis on mountain pine beetle

    Treesearch

    Dale L. Bartos; Kenneth E. Gibson

    1990-01-01

    Few insects that live on whitebark pine (Pinus albicaulis) are considered pests or potential pests. Those that inhabit cones can cause reductions in reproduction of the tree by destroying seed crops. Decreases in food for animals ranging from squirrels to grizzly bears may also result. A single insect species, mountain pine beetle (Dendroctonus...

  3. Whitebark pine direct seeding trials in the Pacific Northwest

    Treesearch

    John Schwandt; Kristen Chadwick; Holly Kearns; Chris Jensen

    2011-01-01

    Whitebark pine (Pinus albicaulis) is a critical species in many high elevation ecosystems and is currently in serious decline due to white pine blister rust (Cronartium ribicola), mountain pine beetle (Dendroctonus ponderosae), and competition from other species (Schwandt 2006; Tomback and Achuff 2010; Tomback and others 2001). Many areas needing restoration are very...

  4. The effects of seed source health on whitebark pine (Pinus albicaulis) regeneration density after wildfire

    Treesearch

    Signe B. Leirfallom; Robert E. Keane; Diana F. Tomback; Solomon Z. Dobrowski

    2015-01-01

    Whitebark pine (Pinus albicaulis Engelm.) populations are declining nearly rangewide from a combination of factors, including mountain pine beetle (Dendroctonus ponderosae Hopkins, 1902) outbreaks, the exotic pathogen Cronartium ribicola J.C. Fisch. 1872, which causes the disease white pine blister rust, and successional replacement due to historical fire...

  5. Monitoring white pine blister rust infection and mortality in whitebark pine in the Greater Yellowstone ecosystem

    Treesearch

    Cathie Jean; Erin Shanahan; Rob Daley; Gregg DeNitto; Dan Reinhart; Chuck Schwartz

    2011-01-01

    There is a critical need for information on the status and trend of whitebark pine (Pinus albicaulis) in the Greater Yellowstone Ecosystem (GYE). Concerns over the combined effects of white pine blister rust (WPBR, Cronartium ribicola), mountain pine beetle (MPB, Dendroctonus ponderosae), and climate change prompted an interagency working group to design and implement...

  6. The relationship between whitebark pine health, cone production, and nutcracker occurrence across four National Parks

    Treesearch

    Lauren E. Barringer; Diana F. Tomback; Michael B. Wunder

    2011-01-01

    Whitebark pine (Pinus albicaulis) is declining in the central and northern Rocky Mountains from infection by the exotic pathogen Cronartium ribicola, which causes white pine blister rust, and from outbreaks of mountain pine beetle (Dendroctonus ponderosae). White pine blister rust has been present in Glacier and Waterton Lakes National Parks (NP) about two decades...

  7. Fire, red squirrels, whitebark pine, and Yellowstone grizzly bears

    USGS Publications Warehouse

    Podruzny, Shannon; Reinhart, Daniel P.; Mattson, David J.

    1999-01-01

    Whitebark pine (Pinus albicaulis) habitats are important to Yellowstone grizzly bears (Ursus arctos) as refugia and sources of food. Ecological relationships between whitebark pine, red squirrels (Tamiasciurus hudsonicus), and grizzly bear use of pine seeds on Mt. Washburn in Yellowstone National Park, Wyoming, were examined during 1984-86. Following large-scale fires in 1988, we repeated the study in 1995-97 to examine the effects of fire on availability of whitebark pine seed in red squirrel middens and on bear use of middens. Half of the total length of the original line transects burned. We found no red squirrel middens in burned areas. Post-fire linear-abundance (no./km) of active squirrel middens that were pooled from burned and unburned areas decreased 27% compared to pre-fire abundance, but increased in unburned portions of some habitat types. Mean size of active middens decreased 54% post-fire. Use of pine seeds by bears (linear abundance of excavated middens) in pooled burned and unburned habitats decreased by 64%, likely due to the combined effects of reduced midden availability and smaller midden size. We discourage any further large-scale losses of seed producing trees from management-prescribed fires or timber harvesting until the effects of fire on ecological relationships in the whitebark pine zone are better understood.

  8. Recreation in whitebark pine ecosystems: Demand, problems, and management strategies

    Treesearch

    David N. Cole

    1990-01-01

    Whitebark pine ecosystems are an important element of many of the most spectacular high-elevation landscapes in the western United States. They occupy upper subalpine and timberline zones in the prime recreation lands of the Cascades, the Sierra Nevada, and the Northern Rocky Mountains. This paper explores the nature of the recreational opportunities that the whitebark...

  9. Partnerships in the Pacific Northwest help save an endangered species, whitebark pine (Pinus albicaulis): an example of dynamic genetic conservation

    Treesearch

    Richard A. Sniezko; Michael P. Murray; Charlie V. Cartwright; Jenifer Beck; Dan Omdal; Amy Ramsey; Zolton Bair; George McFadden; Doug Manion; Katherine Fitch; Philip Wapato; Jennifer A. Gruhn; Michael Crawford; Regina M. Rochefort; John Syring; Jun-Jun Liu; Heather E. Lintz; Lorinda Bullington; Brianna A. McTeague; Angelia Kegley

    2017-01-01

    Whitebark pine (WBP, Pinus albicaulis) is a keystone species distributed widely at high elevations across western North America. It is in decline due to a combination of threats including infection from white pine blister rust (WPBR, caused by the non-native fungal pathogen Cronartium ribicola), mountain pine beetle (...

  10. Area-wide application of verbenone-releasing flakes reduces mortality of whitebark pine Pinus albicaulis caused by the mountain pine beetle Dendroctonus ponderosae

    Treesearch

    Nancy E. Gillette; E. Matthew Hansen; Constance J. Mehmel; Sylvia R. Mori; Jeffrey N. Webster; Nadir Erbilgin; David L. Wood

    2012-01-01

    DISRUPT Micro-Flake Verbenone Bark Beetle Anti-Aggregant flakes (Hercon Environmental, Inc., Emigsville, Pennsylvania) were applied in two large-scale tests to assess their efficacy for protecting whitebark pine Pinus albicaulis Engelm. from attack by mountain pine beetle Dendroctonus ponderosae Hopkins (Coleoptera: Scolytinae) (MPB). At two locations, five...

  11. Health, reproduction, and fuels in whitebark pine in the Frank Church River of No Return Wilderness Area in central Idaho (Project INT-F-05-02)

    Treesearch

    Lauren Fins; Ben Hoppus

    2013-01-01

    Whitebark pine (Pinus albicaulis Engelm.) is in serious decline across its range, largely due to the combined effects of Cronartium ribicola J. C. Fisch (an introduced fungal pathogen that causes white pine blister rust), replacement by late successional species, and widespread infestation of mountain pine beetle (...

  12. The relative contributions of disease and insects in the decline of a long-lived tree: a stochastic demographic model of whitebark pine (Pinus albicaulis)

    USGS Publications Warehouse

    Jules, Erik S; Jackson, Jenell I.; van Mantgem, Phillip J.; Beck, Jennifer S.; Murray, Michael P.; Sahara, E. April

    2016-01-01

    Pathogens and insect pests have become increasingly important drivers of tree mortality in forested ecosystems. Unfortunately, understanding the relative contributions of multiple mortality agents to the population decline of trees is difficult, because it requires frequent measures of tree survival, growth, and recruitment, as well as the incidence of mortality agents. We present a population model of whitebark pine (Pinus albicaulis), a high-elevation tree undergoing rapid decline in western North America. The loss of whitebark pine is thought to be primarily due to an invasive pathogen (white pine blister rust; Cronartium ribicola) and a native insect (mountain pine beetle; Dendroctonus ponderosae). We utilized seven plots in Crater Lake National Park (Oregon, USA) where 1220 trees were surveyed for health and the presence of blister rust and beetle activity annually from 2003–2014, except 2008. We constructed size-based projection matrices for nine years and calculated the deterministic growth rate (λ) using an average matrix and the stochastic growth rate (λs) by simulation for whitebark pine in our study population. We then assessed the roles of blister rust and beetles by calculating λ and λsusing matrices in which we removed trees with blister rust and, separately, trees with beetles. We also conducted life-table response experiments (LTRE) to determine which demographic changes contributed most to differences in λ between ambient conditions and the two other scenarios. The model suggests that whitebark pine in our plots are currently declining 1.1% per year (λ = 0.9888, λs = 0.9899). Removing blister rust from the models resulted in almost no increase in growth (λ = 0.9916, λs = 0.9930), while removing beetles resulted in a larger increase in growth (λ = 1.0028, λs = 1.0045). The LTRE demonstrated that reductions in stasis of the three largest size classes due to beetles contributed most to the smaller λ in the ambient condition. Our work demonstrates a method for assessing the relative effects of different mortality agents on declining tree populations, and it shows that the effects of insects and pathogens can be markedly different from one another. In our study, beetle activity significantly reduced tree population growth while a pathogen had minimal effect, thus management actions to stabilize our study population will likely need to include reducing beetle activity.

  13. Roger Lake research natural area: guidebook supplement 29.

    Treesearch

    J. Dana Visalli

    2006-01-01

    Roger Lake Research Natural Area (RNA), a 174.7-ha reserve in north-central Washington, contains a rich diversity of landforms, plant communities, and wildlife habitats. Spreading outward from the lake itself, sedge and sphagnum fens give way to upland coniferous forest, granitic cliffs, and a relictual, high-altitude big sagebrush-whitebark pine (Artemisia tridentata-...

  14. Seasonal differences in space use by Clark's Nutcrackers in the Cascade Range

    Treesearch

    Teresa J. Lorenz; Kimberly A. Sullivan

    2009-01-01

    Clark's Nutcrackers (Nucifraga columbiana) are important seed dispersers for at least ten species of conifer in western North America and are obligate mutualists for the whitebark pine (Pinus albicaulis), a subalpine tree. Despite the important role they play in forest regeneration, space use by nutcrackers has not been...

  15. Use of isotopic sulfur to determine whitebark pine consumption by Yellowstone bears: a reassessment

    USGS Publications Warehouse

    Schwartz, Charles C.; Teisberg, Justin E.; Fortin, Jennifer K.; Haroldson, Mark A.; Servheen, Christopher; Robbins, Charles T.; van Manen, Frank T.

    2014-01-01

    Use of naturally occurring stable isotopes to estimate assimilated diet of bears is one of the single greatest breakthroughs in nutritional ecology during the past 20 years. Previous research in the Greater Yellowstone Ecosystem (GYE), USA, established a positive relationship between the stable isotope of sulfur (δ34S) and consumption of whitebark pine (Pinus albicaulis) seeds. That work combined a limited sample of hair, blood clots, and serum. Here we use a much larger sample to reassess those findings. We contrasted δ34S values in spring hair and serum with abundance of seeds of whitebark pine in samples collected from grizzly (Ursus arctos) and American black bears (U. americanus) in the GYE during 2000–2010. Although we found a positive relationship between δ34S values in spring hair and pine seed abundance for grizzly bears, the coefficients of determination were small (R2 ≤ 0.097); we failed to find a similar relationship with black bears. Values of δ34S in spring hair were larger in black bears and δ34S values in serum of grizzly bears were lowest in September and October, a time when we expect δ34S to peak if whitebark pine seeds were the sole source of high δ34S. The relationship between δ34S in bear tissue and the consumption of whitebark pine seeds, as originally reported, may not be as clean a method as proposed. Data we present here suggest other foods have high values of δ34S, and there is spatial heterogeneity affecting the δ34S values in whitebark pine, which must be addressed.

  16. Protecting whitebark pines through a mountain pine beetle epidemic with verbenone-is it working?

    Treesearch

    Dana L. Perkins; Carl L. Jorgensen; Matt Rinella

    2011-01-01

    We initiated a multi-year project to protect individual cone-bearing whitebark pines (Pinus albicaulis) from mountain pine beetle (MPB), Dendroctonus ponderosae (Hopkins), attack with the anti-aggregating pheromone, verbenone (4,5,5-trimethylbicyclo [3.1.1] hept-3-en-2-one). Our objective was to protect trees through the course of the epidemic that began ca. 2000 in...

  17. Nitrogen Cycling Responses to Mountain Pine Beetle Disturbance in a High Elevation Whitebark Pine Ecosystem

    PubMed Central

    Keville, Megan P.; Reed, Sasha C.; Cleveland, Cory C.

    2013-01-01

    Ecological disturbances can significantly affect biogeochemical cycles in terrestrial ecosystems, but the biogeochemical consequences of the extensive mountain pine beetle outbreak in high elevation whitebark pine (WbP) (Pinus albicaulis) ecosystems of western North America have not been previously investigated. Mountain pine beetle attack has driven widespread WbP mortality, which could drive shifts in both the pools and fluxes of nitrogen (N) within these ecosystems. Because N availability can limit forest regrowth, understanding how beetle-induced mortality affects N cycling in WbP stands may be critical to understanding the trajectory of ecosystem recovery. Thus, we measured above- and belowground N pools and fluxes for trees representing three different times since beetle attack, including unattacked trees. Litterfall N inputs were more than ten times higher under recently attacked trees compared to unattacked trees. Soil inorganic N concentrations also increased following beetle attack, potentially driven by a more than two-fold increase in ammonium (NH4 +) concentrations in the surface soil organic horizon. However, there were no significant differences in mineral soil inorganic N or soil microbial biomass N concentrations between attacked and unattacked trees, implying that short-term changes in N cycling in response to the initial stages of WbP attack were restricted to the organic horizon. Our results suggest that while mountain pine beetle attack drives a pulse of N from the canopy to the forest floor, changes in litterfall quality and quantity do not have profound effects on soil biogeochemical cycling, at least in the short-term. However, continuous observation of these important ecosystems will be crucial to determining the long-term biogeochemical effects of mountain pine beetle outbreaks. PMID:23755166

  18. Nitrogen cycling responses to mountain pine beetle disturbance in a high elevation whitebark pine ecosystem.

    PubMed

    Keville, Megan P; Reed, Sasha C; Cleveland, Cory C

    2013-01-01

    Ecological disturbances can significantly affect biogeochemical cycles in terrestrial ecosystems, but the biogeochemical consequences of the extensive mountain pine beetle outbreak in high elevation whitebark pine (WbP) (Pinus albicaulis) ecosystems of western North America have not been previously investigated. Mountain pine beetle attack has driven widespread WbP mortality, which could drive shifts in both the pools and fluxes of nitrogen (N) within these ecosystems. Because N availability can limit forest regrowth, understanding how beetle-induced mortality affects N cycling in WbP stands may be critical to understanding the trajectory of ecosystem recovery. Thus, we measured above- and belowground N pools and fluxes for trees representing three different times since beetle attack, including unattacked trees. Litterfall N inputs were more than ten times higher under recently attacked trees compared to unattacked trees. Soil inorganic N concentrations also increased following beetle attack, potentially driven by a more than two-fold increase in ammonium (NH₄⁺) concentrations in the surface soil organic horizon. However, there were no significant differences in mineral soil inorganic N or soil microbial biomass N concentrations between attacked and unattacked trees, implying that short-term changes in N cycling in response to the initial stages of WbP attack were restricted to the organic horizon. Our results suggest that while mountain pine beetle attack drives a pulse of N from the canopy to the forest floor, changes in litterfall quality and quantity do not have profound effects on soil biogeochemical cycling, at least in the short-term. However, continuous observation of these important ecosystems will be crucial to determining the long-term biogeochemical effects of mountain pine beetle outbreaks.

  19. Nitrogen cycling responses to mountain pine beetle disturbance in a high elevation whitebark pine ecosystem

    USGS Publications Warehouse

    Keville, Megan P.; Reed, Sasha C.; Cleveland, Cory C.

    2013-01-01

    Ecological disturbances can significantly affect biogeochemical cycles in terrestrial ecosystems, but the biogeochemical consequences of the extensive mountain pine beetle outbreak in high elevation whitebark pine (WbP) (Pinus albicaulis) ecosystems of western North America have not been previously investigated. Mountain pine beetle attack has driven widespread WbP mortality, which could drive shifts in both the pools and fluxes of nitrogen (N) within these ecosystems. Because N availability can limit forest regrowth, understanding how beetle-induced mortality affects N cycling in WbP stands may be critical to understanding the trajectory of ecosystem recovery. Thus, we measured above- and belowground N pools and fluxes for trees representing three different times since beetle attack, including unattacked trees. Litterfall N inputs were more than ten times higher under recently attacked trees compared to unattacked trees. Soil inorganic N concentrations also increased following beetle attack, potentially driven by a more than two-fold increase in ammonium (NH4+) concentrations in the surface soil organic horizon. However, there were no significant differences in mineral soil inorganic N or soil microbial biomass N concentrations between attacked and unattacked trees, implying that short-term changes in N cycling in response to the initial stages of WbP attack were restricted to the organic horizon. Our results suggest that while mountain pine beetle attack drives a pulse of N from the canopy to the forest floor, changes in litterfall quality and quantity do not have profound effects on soil biogeochemical cycling, at least in the short-term. However, continuous observation of these important ecosystems will be crucial to determining the long-term biogeochemical effects of mountain pine beetle outbreaks.

  20. Analyzing Whitebark Pine Distribution in the Northern Rocky Mountains in Support of Grizzly Bear Recovery

    NASA Astrophysics Data System (ADS)

    Lawrence, R.; Landenburger, L.; Jewett, J.

    2007-12-01

    Whitebark pine seeds have long been identified as the most significant vegetative food source for grizzly bears in the Greater Yellowstone Ecosystem (GYE) and, hence, a crucial element of suitable grizzly bear habitat. The overall health and status of whitebark pine in the GYE is currently threatened by mountain pine beetle infestations and the spread of whitepine blister rust. Whitebark pine distribution (presence/absence) was mapped for the GYE using Landsat 7 Enhanced Thematic Mapper (ETM+) imagery and topographic data as part of a long-term inter-agency monitoring program. Logistic regression was compared with classification tree analysis (CTA) with and without boosting. Overall comparative classification accuracies for the central portion of the GYE covering three ETM+ images along a single path ranged from 91.6% using logistic regression to 95.8% with See5's CTA algorithm with the maximum 99 boosts. The analysis is being extended to the entire northern Rocky Mountain Ecosystem and extended over decadal time scales. The analysis is being extended to the entire northern Rocky Mountain Ecosystem and extended over decadal time scales.

  1. Determining Clark's nutcracker use of whitebark pine communities in regard to stand health in Waterton-Glacier International Peace Park

    Treesearch

    Jennifer D. Scott; Diana F. Tomback; Michael B. Wunder

    2011-01-01

    Whitebark pine (Pinus albicaulis), one of five stone pines worldwide, is found at treeline and subalpine elevations in the mountains of western North America (McCaughey and Schmidt 2001). Considered a keystone species, it helps maintain subalpine biodiversity, protects watersheds and promotes post-fire regeneration (Tomback and others 2001). The Clark's nutcracker...

  2. A test of high-dose verbenone for stand-level protection of lodgepole and whitebark pine from mountain pine beetle (Coleoptera: Curculionidae: Scolytinae) attacks

    Treesearch

    B. J. Bentz; S. Kegley; K. Gibson; R. Their

    2005-01-01

    The effcacy of verbenone as a stand-level protectant against mountain pine beetle, Dendroctonus ponderosae Hopkins, attacks was tested in lodgepole and whitebark pine stands at five geographically separated sites, including three consecutive years at one site. Forty and 20 high-dose pouches, with a verbenone emission rate up to 50 mg/d per pouch, were spaced in a grid...

  3. Blister rust resistance among 19 families of whitebark pine, Pinus albicaulis, from Oregon and Washington – early results from an artificial inoculation trial

    Treesearch

    Angelia Kegley; Richard A. Sniezko; Robert Danchok; Douglas P. Savin

    2012-01-01

    Whitebark pine is considered one of the most susceptible white pine species to white pine blister rust, the disease caused by the non-native pathogen Cronartium ribicola. High mortality from blister rust and other factors in much of the range in the United States and Canada have raised serious concerns about the future viability of this high-...

  4. Whitebark pine, grizzly bears, and red squirrels

    USGS Publications Warehouse

    Mattson, David J.; Kendall, Katherine C.; Reinhart, Daniel P.; Tomback, Diana F.; Arno, Stephen F.; Keane, Robert E.

    2001-01-01

    Appropriately enough, much of this book is devoted to discussing management challenges and techniques. However, the impetus for action—the desire to save whitebark pine (Pinus albicaulis) - necessarily arises from the extent to which we cherish it for its beauty and its connections with other things that we value. Whitebark pine is at the hub of a fascinating web of relationships. It is the stuff of great stories (cf. Quammen 1994). One of the more interesting of these stories pertains to the dependence of certain grizzly bear (Ursus arctos horribilis) populations on its seeds, and the role that red squirrels (Tamiasciurus hudsonicus) play as an agent of transfer between tree and bear.

  5. Clark’s nutcracker and whitebark pine: Can the birds help the embattled high-country pine survive?

    Treesearch

    Gail Wells; Martin Raphael; Teresa Lorenz

    2011-01-01

    Whitebark pine inhabits some of the most pristine high-elevation areas of the West. Despite being protected from direct human influence, the tree is declining from indirect effects of fire suppression and climate change. As a keystone species, its decline has widespread ramifications. Successful restoration requires understanding the behavioral ecology of Clark’s...

  6. The role of CVS (and FIA) data and genetic tests in assessing species vulnerability to invasive pests and changing climate

    Treesearch

    R.A. Sniezko; H.E. Lintz

    2017-01-01

    United States tree species and their associated ecosystems, managed forests, and urban plantings are increasingly vulnerable to non-native invasive pathogens and insects as well as effects associated with a changing climate. Some species, such as whitebark pine (Pinus albicaulis), have been proposed for listing under the Endangered Species Act. To...

  7. Whitebark pine (Pinus albicaulis) assisted migration trial

    Treesearch

    Sierra C. McLane; Sally N. Aitken

    2011-01-01

    Assisted migration - the translocation of a species into a climatically-suitable location outside of its current range - has been proposed as a means of saving vulnerable species from extinction as temperatures rise due to climate change. We explore this controversial technique using the keystone wildlife symbiote and ecosystem engineer, whitebark pine (Pinus...

  8. Observations on root disease of container whitebark pine seedlings treated with biological controls

    Treesearch

    R. Kasten Dumroese

    2008-01-01

    I observed that whitebark pine (Pinus albicaulis Engelm. [Pinaceae]) germinants treated with biological controls, one commercially available (Trichoderma harzianum strain T-22), and the other being studied for potential efficacy (Fusarium oxysporum isolate Q12), experienced less seedling mortality caused by root disease than did a...

  9. USE OF SULFUR AND NITROGEN STABLE ISOTOPES TO DETERMINE THE IMPORTANCE OF WHITEBARK PINE NUTS TO YELLOWSTONE GRIZZLY BEARS

    EPA Science Inventory

    Whitebark pine (Pinus albicaulis) is a masting species that produces relatively large, fat and protein-rich nuts that are consumed by grizzly bears (Ursus arctos horribilis). Trees produce abundant nut crops in some years and poor crops in other years. Grizzly bear survival in ...

  10. Assessing Clark's nutcracker seed-caching flights using maternally inherited mitochondrial DNA of whitebark pine

    Treesearch

    Bryce A. Richardson; Ned B. Klopfenstein; Steven J. Brunsfeld

    2002-01-01

    Maternally inherited mitochondrial DNA haplotypes in whitebark pine (Pinus albicaulis Engelm.) were used to examine the maternal genetic structure at three hierarchical spatial scales: fine scale, coarse scale, and interpopulation. These data were used to draw inferences into Clark’s nutcracker (Nucifraga columbiana Wilson)...

  11. Proceedings-symposium on whitebark pine ecosystems: Ecology and management of a high-mountain resource; 1989 March 29-31; Bozeman, MT

    Treesearch

    Wyman C. Schmidt; Kathy J. McDonald

    1990-01-01

    Includes 52 papers and 14 poster synopses that present current knowledge about ecosystems where whitebark pine and associated flora and fauna predominate. This was the first symposium to explore the ecology and management of these ecosystems, which are becoming increasingly important.

  12. Use of sulfur and nitrogen stable isotopes to determine the importance of whitebark pine nuts to Yellowstone grizzly bears

    USGS Publications Warehouse

    Felicetti, L.A.; Schwartz, C.C.; Rye, R.O.; Haroldson, M.A.; Gunther, K.A.; Phillips, D.L.; Robbins, C.T.

    2003-01-01

    Whitebark pine (Pinus albicaulis) is a masting species that produces relatively large, fat- and protein-rich nuts that are consumed by grizzly bears (Ursus arctos horribilis). Trees produce abundant nut crops in some years and poor crops in other years. Grizzly bear survival in the Greater Yellowstone Ecosystem is strongly linked to variation in pine-nut availability. Because whitebark pine trees are infected with blister rust (Cronartium ribicola), an exotic fungus that has killed the species throughout much of its range in the northern Rocky Mountains, we used stable isotopes to quantify the importance of this food resource to Yellowstone grizzly bears while healthy populations of the trees still exist. Whitebark pine nuts have a sulfur-isotope signature (9.2 ?? 1.3??? (mean ?? 1 SD)) that is distinctly different from those of all other grizzly bear foods (ranging from 1.9 ?? 1.7??? for all other plants to 3.1 ?? 2.6??? for ungulates). Feeding trials with captive grizzly bears were used to develop relationships between dietary sulfur-, carbon-, and nitrogen-isotope signatures and those of bear plasma. The sulfur and nitrogen relationships were used to estimate the importance of pine nuts to free-ranging grizzly bears from blood and hair samples collected between 1994 and 2001. During years of poor pine-nut availability, 72% of the bears made minimal use of pine nuts. During years of abundant cone availability, 8 ?? 10% of the bears made minimal use of pine nuts, while 67 ?? 19% derived over 51% of their assimilated sulfur and nitrogen (i.e., protein) from pine nuts. Pine nuts and meat are two critically important food resources for Yellowstone grizzly bears.

  13. Fine-scale genetic structure of whitebark pine (Pinus albicaulis) associations with watershed and growth form

    Treesearch

    Deborah L. Rogers; Constance I. Millar; Robert D. Westfall

    1999-01-01

    The fine-scale genetic structure of a subalpine conifer, whitebark pine (Pinus albicaulis Engelm.), was studied at nested geographic levels from watershed to adjacent stems in the eastern Sierra Nevada Range of California. A combination of several characteristics contributed to unpredicted genetic structure in this species. This includes being one of...

  14. Whitebark pine (Pinus albicaulis) in Cascadia: A climate change prognosis

    Treesearch

    Sierra C. McLane

    2011-01-01

    Species distribution models (SDMs) predict that whitebark pine (Pinus albicaulis) will lose much of its current climatic range in Cascadia (the Pacific Northwest in the United States plus British Columbia, Canada) by the 2080s as the climate warms. However, the same models indicate that the species will simultaneously gain a large, climatically-favorable habitat...

  15. Water availability drives signatures of local adaptation in whitebark pine (Pinus albicaulis Engelm.) across fine spatial scales of the Lake Tahoe Basin, USA

    Treesearch

    Brandon M. Lind; Christopher J. Friedline; Jill L. Wegrzyn; Patricia E. Maloney; Detlev R. Vogler; David B. Neale; Andrew J. Eckert

    2017-01-01

    Patterns of local adaptation at fine spatial scales are central to understanding how evolution proceeds, and are essential to the effective management of economically and ecologically important forest tree species. Here, we employ single and multilocus analyses of genetic data (n = 116 231 SNPs) to describe signatures of fine-scale...

  16. Coarse-scale restoration planning and design in Interior Columbia River Basin ecosystems: An example for restoring declining whitebark pine forests

    Treesearch

    Robert E. Keane; James P. Menakis; Wendel J. Hann

    1996-01-01

    During the last 2 years, many people from numerous government agencies and private institutions compiled a scientific assessment of the natural and human resources of the Interior Columbia River Basin (Jensen and Bourgeron 1993). This assessment is meant to guide the development of a coarse-scale Environmental Impact Statement for all 82 million hectares comprising the...

  17. Complex challenges of maintaining whitebark pine in Greater Yellowstone under climate change: A call for innovative research, management, and policy approaches

    Treesearch

    Andrew Hansen; Kathryn Ireland; Kristin Legg; Robert Keane; Edward Barge; Martha Jenkins; Michiel Pillet

    2016-01-01

    Climate suitability is projected to decline for many subalpine species, raising questions about managing species under a deteriorating climate. Whitebark pine (WBP) (Pinus albicaulis) in the Greater Yellowstone Ecosystem (GYE) crystalizes the challenges that natural resource managers of many high mountain ecosystems will likely face in the coming decades. We...

  18. DNA from bird-dispersed seed and wind-disseminated pollen provides insights into postglacial colonization and population genetic structure of whitebark pine (Pinus albicaulis)

    Treesearch

    Bryce A. Richardson; Steven J. Runsfeld; Ned B. Klopfenstein

    2002-01-01

    Uniparentally inherited mitochondrial (mt)DNA and chloroplast (cp)DNA microsatellites (cpSSRs) were used to examine population genetic structure and biogeographic patterns of bird-dispersed seed and wind-disseminated pollen of whitebark pine (Pinus albicaulis Engelm.). Sampling was conducted from 41 populations throughout the range of the species....

  19. Molecular genetic variation in whitebark pine (Pinus albicaulis Engelm.) in the Inland West

    Treesearch

    Mary F. Mahalovich; Valerie D. Hipkins

    2011-01-01

    Levels of genetic variation within and among 163 individual- tree collections and one bulk lot of whitebark pine were estimated using isozymes, mitochondrial DNA and chloroplast DNA; 79 of the samples are also part of a common garden study evaluating survival, rust resistance, late winter cold hardiness, and early height-growth. Within the species, 100 percent of the...

  20. Targeted Capture Sequencing in Whitebark Pine Reveals Range-Wide Demographic and Adaptive Patterns Despite Challenges of a Large, Repetitive Genome.

    PubMed

    Syring, John V; Tennessen, Jacob A; Jennings, Tara N; Wegrzyn, Jill; Scelfo-Dalbey, Camille; Cronn, Richard

    2016-01-01

    Whitebark pine (Pinus albicaulis) inhabits an expansive range in western North America, and it is a keystone species of subalpine environments. Whitebark is susceptible to multiple threats - climate change, white pine blister rust, mountain pine beetle, and fire exclusion - and it is suffering significant mortality range-wide, prompting the tree to be listed as 'globally endangered' by the International Union for Conservation of Nature and 'endangered' by the Canadian government. Conservation collections (in situ and ex situ) are being initiated to preserve the genetic legacy of the species. Reliable, transferrable, and highly variable genetic markers are essential for quantifying the genetic profiles of seed collections relative to natural stands, and ensuring the completeness of conservation collections. We evaluated the use of hybridization-based target capture to enrich specific genomic regions from the 27 GB genome of whitebark pine, and to evaluate genetic variation across loci, trees, and geography. Probes were designed to capture 7,849 distinct genes, and screening was performed on 48 trees. Despite the inclusion of repetitive elements in the probe pool, the resulting dataset provided information on 4,452 genes and 32% of targeted positions (528,873 bp), and we were able to identify 12,390 segregating sites from 47 trees. Variations reveal strong geographic trends in heterozygosity and allelic richness, with trees from the southern Cascade and Sierra Range showing the greatest distinctiveness and differentiation. Our results show that even under non-optimal conditions (low enrichment efficiency; inclusion of repetitive elements in baits), targeted enrichment produces high quality, codominant genotypes from large genomes. The resulting data can be readily integrated into management and gene conservation activities for whitebark pine, and have the potential to be applied to other members of 5-needle pine group (Pinus subsect. Quinquefolia) due to their limited genetic divergence.

  1. Comparative Transcriptomics Among Four White Pine Species

    PubMed Central

    Baker, Ethan A. G.; Wegrzyn, Jill L.; Sezen, Uzay U.; Falk, Taylor; Maloney, Patricia E.; Vogler, Detlev R.; Delfino-Mix, Annette; Jensen, Camille; Mitton, Jeffry; Wright, Jessica; Knaus, Brian; Rai, Hardeep; Cronn, Richard; Gonzalez-Ibeas, Daniel; Vasquez-Gross, Hans A.; Famula, Randi A.; Liu, Jun-Jun; Kueppers, Lara M.; Neale, David B.

    2018-01-01

    Conifers are the dominant plant species throughout the high latitude boreal forests as well as some lower latitude temperate forests of North America, Europe, and Asia. As such, they play an integral economic and ecological role across much of the world. This study focused on the characterization of needle transcriptomes from four ecologically important and understudied North American white pines within the Pinus subgenus Strobus. The populations of many Strobus species are challenged by native and introduced pathogens, native insects, and abiotic factors. RNA from the needles of western white pine (Pinus monticola), limber pine (Pinus flexilis), whitebark pine (Pinus albicaulis), and sugar pine (Pinus lambertiana) was sampled, Illumina short read sequenced, and de novo assembled. The assembled transcripts and their subsequent structural and functional annotations were processed through custom pipelines to contend with the challenges of non-model organism transcriptome validation. Orthologous gene family analysis of over 58,000 translated transcripts, implemented through Tribe-MCL, estimated the shared and unique gene space among the four species. This revealed 2025 conserved gene families, of which 408 were aligned to estimate levels of divergence and reveal patterns of selection. Specific candidate genes previously associated with drought tolerance and white pine blister rust resistance in conifers were investigated. PMID:29559535

  2. Genetic variation of whitebark pine (Pinus albicaulis) provenances and families from Oregon and Washington in juvenile height growth and needle color

    Treesearch

    Jim Hamlin; Angelia Kegley; Richard Sniezko

    2011-01-01

    A three year common garden study was conducted on whitebark pine (Pinus albicaulis) which included 215 families from the eight provenances or seed zones in Oregon and Washington. Total height and needle color were assessed. Height differed significantly among provenances and families, and was primarily associated with source elevation, longitude, and precipitation. A...

  3. Mapping regional distribution of a single tree species: Whitebark pine in the Greater Yellowstone Ecosystem

    USGS Publications Warehouse

    Landenburger, L.; Lawrence, R.L.; Podruzny, S.; Schwartz, C.C.

    2008-01-01

    Moderate resolution satellite imagery traditionally has been thought to be inadequate for mapping vegetation at the species level. This has made comprehensive mapping of regional distributions of sensitive species, such as whitebark pine, either impractical or extremely time consuming. We sought to determine whether using a combination of moderate resolution satellite imagery (Landsat Enhanced Thematic Mapper Plus), extensive stand data collected by land management agencies for other purposes, and modern statistical classification techniques (boosted classification trees) could result in successful mapping of whitebark pine. Overall classification accuracies exceeded 90%, with similar individual class accuracies. Accuracies on a localized basis varied based on elevation. Accuracies also varied among administrative units, although we were not able to determine whether these differences related to inherent spatial variations or differences in the quality of available reference data.

  4. Density dependence, whitebark pine, and vital rates of grizzly bears

    USGS Publications Warehouse

    van Manen, Frank T.; Haroldson, Mark A.; Bjornlie, Daniel D.; Ebinger, Michael R.; Thompson, Daniel J.; Costello, Cecily M.; White, Gary C.

    2016-01-01

    Understanding factors influencing changes in population trajectory is important for effective wildlife management, particularly for populations of conservation concern. Annual population growth of the grizzly bear (Ursus arctos) population in the Greater Yellowstone Ecosystem, USA has slowed from 4.2–7.6% during 1983–2001 to 0.3–2.2% during 2002–2011. Substantial changes in availability of a key food source and bear population density have occurred. Whitebark pine (Pinus albicaulis), the seeds of which are a valuable but variable fall food for grizzly bears, has experienced substantial mortality primarily due to a mountain pine beetle (Dendroctonus ponderosae) outbreak that started in the early 2000s. Positive growth rates of grizzly bears have resulted in populations reaching high densities in some areas and have contributed to continued range expansion. We tested research hypotheses to examine if changes in vital rates detected during the past decade were more associated with whitebark pine decline or, alternatively, increasing grizzly bear density. We focused our assessment on known-fate data to estimate survival of cubs-of-the-year (cubs), yearlings, and independent bears (≥2 yrs), and reproductive transition of females from having no offspring to having cubs. We used spatially and temporally explicit indices for grizzly bear density and whitebark pine mortality as individual covariates. Models indicated moderate support for an increase in survival of independent male bears over 1983–2012, whereas independent female survival did not change. Cub survival, yearling survival, and reproductive transition from no offspring to cubs all changed during the 30-year study period, with lower rates evident during the last 10–15 years. Cub survival and reproductive transition were negatively associated with an index of grizzly bear density, indicating greater declines where bear densities were higher. Our analyses did not support a similar relationship for the index of whitebark pine mortality. The results of our study support the interpretation that slowing of population growth during the last decade was associated more with increasing grizzly bear density than the decline in whitebark pine. Grizzly bear density and its potential effect on vital rates and population trajectory warrant consideration for management of the grizzly bear population in the Greater Yellowstone Ecosystem.

  5. Roadside bear viewing opportunities in Yellowstone National Park: characteristics, trends, and influence of whitebark pine

    USGS Publications Warehouse

    Haroldson, Mark A.; Gunther, Kerry

    2014-01-01

    Opportunities for viewing grizzly bears (Ursus arctos) and American black bears (U. americanus) from roadways in Yellowstone National Park (YNP) have increased in recent years. Unlike the panhandling bears common prior to the 1970s, current viewing usually involves bears feeding on natural foods. We define roadside bear viewing opportunities that cause traffic congestion as ‘‘bear-jams.’’ We investigated characteristics of bear-jams and their frequency relative to whitebark pine (Pinus albicaulis) cone production, an important fall food for bears, during 1990–2004. We observed a difference in diel distribution of bear-jams between species (x2=70.609, 4 df, P<0.001) with the occurrence of grizzly bear-jams being more crepuscular. We found evidence for decreasing distances between bears and roadways and increasing durations of bears-jams. The annual proportion of bear-jams for both species occurring after the week of 13–19 August were 3–4 times higher during poor cone crop years than good. We suggest that native foods found in road corridors may be especially important to some individual bears during years exhibiting poor whitebark pine crops. We discuss management implications of threats to whitebark pine and increasing habituation of bears to people.

  6. Limber Pine Dwarf Mistletoe (FIDL)

    Treesearch

    Jane E. Taylor; Robert L. Mathiason

    1999-01-01

    Limber pine dwarf mistletoe (Arceuthobium cyanocarpum (A. Nelson ex Rydberg) Coulter & Nelson) is a damaging parasite of limber pine (Pinus flexilis James), whitebark pine (P. albicaulis Engelm.), Rocky Mountain bristlecone pine (P. aristata Engelm.) and Great Basin bristlecone pine (P. longaeva D.K. Bailey). Limber pine dwarf mistletoe occurs in the Rocky...

  7. Comparative Transcriptomics Among Four White Pine Species.

    PubMed

    Baker, Ethan A G; Wegrzyn, Jill L; Sezen, Uzay U; Falk, Taylor; Maloney, Patricia E; Vogler, Detlev R; Delfino-Mix, Annette; Jensen, Camille; Mitton, Jeffry; Wright, Jessica; Knaus, Brian; Rai, Hardeep; Cronn, Richard; Gonzalez-Ibeas, Daniel; Vasquez-Gross, Hans A; Famula, Randi A; Liu, Jun-Jun; Kueppers, Lara M; Neale, David B

    2018-05-04

    Conifers are the dominant plant species throughout the high latitude boreal forests as well as some lower latitude temperate forests of North America, Europe, and Asia. As such, they play an integral economic and ecological role across much of the world. This study focused on the characterization of needle transcriptomes from four ecologically important and understudied North American white pines within the Pinus subgenus Strobus The populations of many Strobus species are challenged by native and introduced pathogens, native insects, and abiotic factors. RNA from the needles of western white pine ( Pinus monticola ), limber pine ( Pinus flexilis ), whitebark pine ( Pinus albicaulis) , and sugar pine ( Pinus lambertiana ) was sampled, Illumina short read sequenced, and de novo assembled. The assembled transcripts and their subsequent structural and functional annotations were processed through custom pipelines to contend with the challenges of non-model organism transcriptome validation. Orthologous gene family analysis of over 58,000 translated transcripts, implemented through Tribe-MCL, estimated the shared and unique gene space among the four species. This revealed 2025 conserved gene families, of which 408 were aligned to estimate levels of divergence and reveal patterns of selection. Specific candidate genes previously associated with drought tolerance and white pine blister rust resistance in conifers were investigated. Copyright © 2018 Baker et al.

  8. Whitebark pine, population density, and home-range size of grizzly bears in the greater Yellowstone ecosystem

    USGS Publications Warehouse

    Bjornlie, Daniel D.; van Manen, Frank T.; Ebinger, Michael R.; Haroldson, Mark A.; Thompson, Daniel J.; Costello, Cecily M.

    2014-01-01

    Changes in life history traits of species can be an important indicator of potential factors influencing populations. For grizzly bears (Ursus arctos) in the Greater Yellowstone Ecosystem (GYE), recent decline of whitebark pine (WBP; Pinus albicaulis), an important fall food resource, has been paired with a slowing of population growth following two decades of robust population increase. These observations have raised questions whether resource decline or density-dependent processes may be associated with changes in population growth. Distinguishing these effects based on changes in demographic rates can be difficult. However, unlike the parallel demographic responses expected from both decreasing food availability and increasing population density, we hypothesized opposing behavioral responses of grizzly bears with regard to changes in home-range size. We used the dynamic changes in food resources and population density of grizzly bears as a natural experiment to examine hypotheses regarding these potentially competing influences on grizzly bear home-range size. We found that home-range size did not increase during the period of whitebark pine decline and was not related to proportion of whitebark pine in home ranges. However, female home-range size was negatively associated with an index of population density. Our data indicate that home-range size of grizzly bears in the GYE is not associated with availability of WBP, and, for female grizzly bears, increasing population density may constrain home-range size.

  9. Whitebark Pine, Population Density, and Home-Range Size of Grizzly Bears in the Greater Yellowstone Ecosystem

    PubMed Central

    Bjornlie, Daniel D.; Van Manen, Frank T.; Ebinger, Michael R.; Haroldson, Mark A.; Thompson, Daniel J.; Costello, Cecily M.

    2014-01-01

    Changes in life history traits of species can be an important indicator of potential factors influencing populations. For grizzly bears (Ursus arctos) in the Greater Yellowstone Ecosystem (GYE), recent decline of whitebark pine (WBP; Pinus albicaulis), an important fall food resource, has been paired with a slowing of population growth following two decades of robust population increase. These observations have raised questions whether resource decline or density-dependent processes may be associated with changes in population growth. Distinguishing these effects based on changes in demographic rates can be difficult. However, unlike the parallel demographic responses expected from both decreasing food availability and increasing population density, we hypothesized opposing behavioral responses of grizzly bears with regard to changes in home-range size. We used the dynamic changes in food resources and population density of grizzly bears as a natural experiment to examine hypotheses regarding these potentially competing influences on grizzly bear home-range size. We found that home-range size did not increase during the period of whitebark pine decline and was not related to proportion of whitebark pine in home ranges. However, female home-range size was negatively associated with an index of population density. Our data indicate that home-range size of grizzly bears in the GYE is not associated with availability of WBP, and, for female grizzly bears, increasing population density may constrain home-range size. PMID:24520354

  10. Whitebark pine, population density, and home-range size of grizzly bears in the greater yellowstone ecosystem.

    PubMed

    Bjornlie, Daniel D; Van Manen, Frank T; Ebinger, Michael R; Haroldson, Mark A; Thompson, Daniel J; Costello, Cecily M

    2014-01-01

    Changes in life history traits of species can be an important indicator of potential factors influencing populations. For grizzly bears (Ursus arctos) in the Greater Yellowstone Ecosystem (GYE), recent decline of whitebark pine (WBP; Pinus albicaulis), an important fall food resource, has been paired with a slowing of population growth following two decades of robust population increase. These observations have raised questions whether resource decline or density-dependent processes may be associated with changes in population growth. Distinguishing these effects based on changes in demographic rates can be difficult. However, unlike the parallel demographic responses expected from both decreasing food availability and increasing population density, we hypothesized opposing behavioral responses of grizzly bears with regard to changes in home-range size. We used the dynamic changes in food resources and population density of grizzly bears as a natural experiment to examine hypotheses regarding these potentially competing influences on grizzly bear home-range size. We found that home-range size did not increase during the period of whitebark pine decline and was not related to proportion of whitebark pine in home ranges. However, female home-range size was negatively associated with an index of population density. Our data indicate that home-range size of grizzly bears in the GYE is not associated with availability of WBP, and, for female grizzly bears, increasing population density may constrain home-range size.

  11. Verbenone decreases whitebark pine mortality throughout a mountain pine beetle outbreak

    USDA-ARS?s Scientific Manuscript database

    Mountain pine beetle [Dendroctonus ponderosae (Hopkins)] outbreaks are killing large numbers of pine trees on millions of hectares in the western U.S. The ranges, impacts and frequencies of mountain pine beetle outbreaks are increasing, perhaps due to climate change. One of the species being impacte...

  12. Options for the management of white pine blister rust in the Rocky Mountain Region

    Treesearch

    Kelly S. Burns; Anna W. Schoettle; William R. Jacobi; Mary F. Mahalovich

    2008-01-01

    This publication synthesizes current information on the biology, distribution, and management of white pine blister rust (WPBR) in the Rocky Mountain Region. In this Region, WPBR occurs within the range of Rocky Mountain bristlecone pine (Pinus aristata), limber pine (P. flexilis), and whitebark pine (P. albicaulis...

  13. Cronartium ribicola resistance in whitebark pine, southwestern white pine, limber pine and Rocky Mountain bristlecone pine - preliminary screening results from first tests at Dorena GRC

    Treesearch

    Richard A. Sniezko; Angelia Kegley; Robert Danchok; Anna W. Schoettle; Kelly S. Burns; Dave Conklin

    2008-01-01

    All nine species of white pines (five-needle pines) native to the United States are highly susceptible to Cronartium ribicola, the fungus causing white pine blister rust. The presence of genetic resistance will be the key to maintaining or restoring white pines in many ecosystems and planning gene conservation activities. Operational genetic...

  14. Are high elevation pines equally vulnerable to climate change-induced mountain pine beetle attack?

    Treesearch

    Barbara J. Bentz; Erika L. Eidson

    2016-01-01

    Mountain pine beetle (Dendroctonus ponderosae) (MPB), a native insect to western North America, caused extensive tree mortality in pine ecosystems during a recent warm and dry period. More than 24 million acres were affected, including in the relatively low elevation lodgepole (Pinus contorta) and ponderosa (P. ponderosa) pines, and the high-elevation whitebark (P....

  15. Tree response and mountain pine beetle attack preference, reproduction, and emergence timing in mixed whitebark and lodgepole pines

    Treesearch

    Barbara J. Bentz; Celia Boone; Kenneth F. Raffa

    2015-01-01

    Mountain pine beetle (Dendroctonus ponderosae) is an important disturbance agent in Pinus ecosystems of western North America, historically causing significant tree mortality. Most recorded outbreaks have occurred in mid elevation lodgepole pine (Pinus contorta). In warm years, tree mortality also occurs at higher elevations in mixed species stands.

  16. Histological observations on needle colonization by Cronartium ribicola in susceptible and resistant seedlings of whitebark pine and limber pine

    Treesearch

    Jeffrey Stone; Anna Schoettle; Richard Sniezko; Angelia Kegley

    2011-01-01

    Resistance to white pine blister rust based on a hypersensitive response (HR) that is conferred by a dominant gene has been identified as functioning in needles of blister rust-resistant families of sugar pine, western white pine and southwestern white pine. The typical HR response displays a characteristic local necrosis at the site of infection in the needles during...

  17. The use of verbenone to protect whitebark pine from mountain pine beetle

    Treesearch

    Sandra Kegley; Ken Gibson

    2011-01-01

    Verbenone is a known anti-aggregation pheromone of mountain pine beetle (MPB), Dendroctonus ponderosae Hopkins, and has been tested in protecting susceptible host trees from attack since 1988. Inconsistent performance of verbenone during field trials caused formulations and release devices to change through time, resulting in three products currently registered with...

  18. Variability in chemical composition and abundance of the rare tertiary relict Pinus heldreichii in Serbia.

    PubMed

    Bojović, Srdjan; Nikolić, Biljana; Ristić, Mihailo; Orlović, Saša; Veselinović, Milorad; Rakonjac, Ljubinko; Dražić, Dragana

    2011-09-01

    The particular significance of the whitebark pine (Pinus heldreichii Christ.) stems from the fact that it is a tertiary relict and Balkanic subendemite covering a very narrow and intermittent area in Serbia. A representative pool of 48 adult trees originating from three populations, one recently discovered natural (Population I) and two planted populations (Populations II and III) was investigated in order to evaluate the intra- and interpopulation variability of the essential oil of the complete fund of P. heldreichii in Serbia. In the pine-needle-terpene profile, 104 compounds were detected, 84 of which could be identified. Among the essential-oil constituents, monoterpenes and sesquiterpenes dominated, comprising ca. 90% of the essential oil. The terpenic profile of Population I was characterized by a predominance of monoterpenes (e.g., limonene (1), α-pinene, and Δ(3) -carene (4)), while sesquiterpenes (e.g., germacrene D (2) and β-caryophyllene (3)) obviously preponderated in the profile of Populations II and III. This study also demonstrated that the abundance of whitebark pines in Serbia had significantly changed over the last few decades. The number of individuals in the natural population had increased, while the number of individuals in the planted populations had decreased. Today, the whitebark pine fund in Serbia comprises less than 250 trees. 2011 Verlag Helvetica Chimica Acta AG, Zürich.

  19. A paradigm shift for white pine blister rust: Non-Ribes alternate hosts for Cronartium ribicola in North America

    Treesearch

    Paul J. Zambino; Bryce A. Richardson; Geral I. McDonald; Ned B. Klopfenstein; Mee-Sook Kim

    2007-01-01

    Naturally occurring Cronartium ribicola infections were discovered in August and September, 2004 on Pedicularis racemosa and Castilleja miniata in a mixed stand of white pine blister rust-infected whitebark pine (Pinus albicaulis) and western white pine (P. monticola) in northern Idaho, at Roman Nose Lakes, ca 30 km west of Bonners Ferry. Infections were confirmed by...

  20. Preparing the landscape for invasion - Early intervention approaches for threatened high elevation white pine ecosystems

    Treesearch

    Anna W. Schoettle; Richard A. Sniezko; Kelly S. Burns; Freeman Floyd

    2007-01-01

    White pine blister rust is now a permanent resident of North America. The disease continued to cause tree mortality and impact ecosystems in many areas. However, not all high elevation white pine ecosystems have been invaded; the pathogen is still spreading within the distributions of the whitebark, limber, foxtail, Rocky Mountain bristlecone pine and has yet to infect...

  1. A 2-Cys peroxiredoxin in response to oxidative stress in the pine wood nematode, Bursaphelenchus xylophilus.

    PubMed

    Li, Zhen; Zhang, Qingwen; Zhou, Xuguo

    2016-06-07

    The pine wood nematode, Bursaphelenchus xylophilus, is the causal agent of pine wilt disease that has devastated pine forests in Asia. Parasitic nematodes are known to have evolved antioxidant stress responses that defend against host plant defenses. In this study, the infestation of whitebark pine, Pinus bungean, with B. xylophilus led to a significant increase in plant hydrogen peroxide (H2O2) and salicylic acid levels. Correspondingly, the expression of an antioxidative enzyme, 2-Cysteine peroxiredoxin (BxPrx), was elevated in B. xylophilus following the H2O2 treatments. Recombinant BxPrx, a thermal stabile and pH tolerant enzyme, exhibited high level of antioxidant activity against H2O2, suggesting that it is capable of protecting cells from free radical attacks. Immunohistochemical localization study showed that BxPrx was broadly expressed across different tissues and could be secreted outside the nematode. Finally, the number of BxPrx homologs in both dauer-like and fungi-feeding B. xylophilus were comparable based on bioinformatics analysis of existing EST libraries, indicating a potential role of BxPrx in both propagative and dispersal nematodes. These combined results suggest that BxPrx is a key genetic factor facilitating the infestation and distribution of B. xylophilus within pine hosts, and consequently the spread of pine wilt disease.

  2. Indicators of red squirrel (Tamiasciurus hudonicus) abundance in the whitebark pine zone

    USGS Publications Warehouse

    Mattson, D.J.; Reinhart, Daniel P.

    1996-01-01

    We investigated occupied squirrel middens and squirrel sightings and vocalizations as indicators of red squirrel (Tamiasciurus hudsonicus) abundance in the high-elevation whitebark pine (Pinus albicaulis) zone. Data were collected 1984-1989 from line transects located on 2 study sites in the Yellowstone ecosystem. We evaluated the performance of each measure on the basis of precision and biological considerations. We concluded that, of the 3 measures, active middens were the best indicator of red squirrel abundance. We also observed that the density of active middens dropped by 48%-66% between 1987 and 1989, following a severe drought and extensive wildfires that burned one of the study sites during 1988.

  3. The magnificent high-elevation five-needle white pines: Ecological roles and future outlook

    Treesearch

    Diana F. Tomback; Peter Achuff; Anna W. Schoettle; John W. Schwandt; Ron J. Mastrogiuseppe

    2011-01-01

    The High Five symposium is devoted to exchanging information about a small group of pines with little commercial value but great importance to the ecology of high-mountain ecosystems of the West. These High Five pines include the subalpine and treeline species - whitebark (Pinus albicaulis), Rocky Mountain bristlecone (P. aristata), Great Basin bristlecone (P. longaeva...

  4. The future of high-elevation, five-needle white pines in Western North America: Proceedings of the High Five Symposium

    Treesearch

    Robert E. Keane; Diana F. Tomback; Michael P. Murray; Cyndi M. Smith

    2011-01-01

    High elevation five-needle pines are rapidly declining throughout North America. The six species, whitebark (Pinus albicaulis Engelm.), limber (P. flexilis James), southwestern white (P. strobiformis Engelm.), foxtail (P. balfouriana Grev. & Balf.), Great Basin bristlecone (P. longaeva D.K. Bailey), and Rocky Mountain bristlecone pine (P. aristata Engelm.), have...

  5. Demography of the Yellowstone grizzly bears

    USGS Publications Warehouse

    Pease, C.M.; Mattson, D.J.

    1999-01-01

    We undertook a demographic analysis of the Yellowstone grizzly bears (Ursus arctos) to identify critical environmental factors controlling grizzly bear vital rates, and thereby to help evaluate the effectiveness of past management and to identify future conservation issues. We concluded that, within the limits of uncertainty implied by the available data and our methods of data analysis, the size of the Yellowstone grizzly bear population changed little from 1975 to 1995. We found that grizzly bear mortality rates are about double in years when the whitebark pine crop fails than in mast years, and that the population probably declines when the crop fails and increases in mast years. Our model suggests that natural variation in whitebark pine crop size over the last two decades explains more of the perceived fluctuations in Yellowstone grizzly population size than do other variables. Our analysis used demographic data from 202 radio-telemetered bears followed between 1975 and 1992 and accounted for whitebark pine (Pinus albicaulis) crop failures during 1993-1995. We used a maximum likelihood method to estimate demographic parameters and used the Akaike Information Criteria to judge the significance of various independent variables. We identified no independent variables correlated with grizzly bear fecundity. In order of importance, we found that grizzly bear mortality rates are correlated with season, whitebark pine crop size (mast vs. nonmast year), sex, management-trapping status (never management-trapped vs. management-trapped once or more), and age. The mortality rate of bears that were management-trapped at least once was almost double that of bears that were never management-trapped, implying a source/sink (i.e., never management-trapped/management-trapped) structure. The rate at which bears move between the source and sink, estimated as the management-trapping rate (h), is critical to estimating the finite rate of increase, I>I?. We quantified h by estimating the rate at which bears that have never been management-trapped are management-trapped for the first time. It differed across seasons, was higher in nonmast than mast years, and varied with age. We calculate that I>I?=1.00 from 1975 to 1983 (four mast and five nonmast years) and 1.02 from 1984 to 1995 (seven mast and five nonmast years). Overall, we find that I>I?=1.01A? 0.04 (mean A? 1 SE) from 1975 to 1995. Our models suggest that future management should concentrate on the threats to whitebark pine, such as those posed by white pine blister rust, global warming, and fire suppression. As is currently widely recognized by Yellowstone land managers, our model also suggests that future management must compensate for the increased grizzly bear mortality that is likely to be caused by an increasing number of humans in Yellowstone.

  6. Rust resistance in seedling families of Pinus albicaulis and Pinus strobiformis and implications for restoration

    Treesearch

    R. A. Sniezko; A. Kegley; R. Danchok; J. Hamlin; J. Hill; D. Conklin

    2011-01-01

    Infection and mortality levels from Cronartium ribicola, the fungus causing white pine blister rust, are very high in parts of the geographic range of Pinus albicaulis (whitebark pine) and P. strobiformis (Southwestern white pine). Genetic resistance to this non-native fungus will be one of the key factors in maintaining or restoring populations of these species in...

  7. Invasive pathogen threatens bird-pine mutualism: Implications for sustaining a high-elevation ecosystem

    Treesearch

    Shawn T. McKinney; Carl E. Fiedler; Diana F. Tomback

    2009-01-01

    Human-caused disruptions to seed-dispersal mutualisms increase the extinction risk for both plant and animal species. Large-seeded plants can be particularly vulnerable due to highly specialized dispersal systems and no compensatory regeneration mechanisms. Whitebark pine (Pinus albicaulis), a keystone subalpine species, obligately depends upon the Clark's...

  8. Verbenone Plus reduces levels of tree mortality attributed to mountain pine beetle infestations in whitebark pine, a tree species of concern

    Treesearch

    Christopher J. Fettig; Beverly M. Bulaon; Christopher P. Dabney; Christopher J. Hayes; Stepehen R. McKelvey

    2012-01-01

    In western North America, recent outbreaks of the mountain pine beetle, Dendroctonus ponderosae Hopkins, have been severe, long-lasting and well-documented. We review previous research that led to the identification of Verbenone Plus, a novel four-component semiochemical blend [acetophenone, (E)-2-hexen-1-ol + (Z)-2-hexen-1-ol, and (–)-verbenone]...

  9. Sugar pine seed harvest by Clark's nutcracker: Annual use of a transient resource in Crater Lake National Park, Oregon

    Treesearch

    Taylor J. Turner; Diana F. Tomback; Bradley Van Anderson; Michael Murray

    2011-01-01

    Clark's nutcrackers (Nucifraga columbiana) are well known for using conifer seeds as their principal nutriment source. Seeds are primarily harvested from whitebark (Pinus albicaulis), piñon (P. edulis), limber (P. flexilis), southwestern white (P. strobiformis), Jeffrey (P. jeffreyi), and ponderosa (P. ponderosa) pine as well as Douglas-fir (Pseudotsuga menziesii...

  10. Extirpations of grizzly bears in the contiguous United States of America, 1850-2000

    USGS Publications Warehouse

    Mattson, David J.; Merrill, Troy

    2002-01-01

    We investigated factors associated with the distribution of grizzly bears (Ursus arctos horribilis) in 1850 and their extirpation during 1850–1920 and 1920–1970 in the contiguous United States. We used autologistic regression to describe relations between grizzly bear range in 1850, 1920, and 1970 and potential explanatory factors specified for a comprehensive grid of cells, each 900 km2 in size. We also related persistence, 1920–1970, to range size and shape. Grizzly bear range in 1850 was positively related to occurrence in mountainous ecoregions and the ranges of oaks (Quercus spp.), piñon pines (Pinus edulis and P. monophylla), whitebark pine (P. albicaulis), and bison (Bos bison) and negatively related to occurrence in prairie and hot desert ecoregions. Relations with salmon (Oncorynchus spp.) range and human factors were complex. Persistence of grizzly bear range, 1850–1970, was positively related to occurrence in the Rocky Mountains, whitebark pine range, and local size of grizzly bear range at the beginning of each period, and negatively related to number of humans and the ranges of bison, salmon, and piñon pines. We speculate that foods affected persistence primarily by influencing the frequency of contact between humans and bears. With respect to current conservation, grizzly bears survived from 1920 to 1970 most often where ranges at the beginning of this period were either larger than 20,000 km2 or larger than 7,000 km2 but with a ratio of perimeter to area of <2. Without reductions in human lethality after 1970, there would have been no chance that core grizzly bear range would be as extensive as it is now. Although grizzly bear range in the Yellowstone region is currently the most robust of any to potential future increases in human lethality, bears in this region are threatened by the loss of whitebark pine.

  11. Population-Wide Failure to Breed in the Clark's Nutcracker (Nucifraga columbiana).

    PubMed

    Schaming, Taza D

    2015-01-01

    In highly variable environments, conditions can be so stressful in some years that entire populations forgo reproduction in favor of higher likelihood of surviving to breed in future years. In two out of five years, Clark's nutcrackers (Nucifraga Columbiana) in the Greater Yellowstone Ecosystem exhibited population-wide failure to breed. Clark's nutcrackers at the study site experienced substantial interannual differences in food availability and weather conditions, and the two nonbreeding years corresponded with low whitebark pine (Pinus albicaulis) cone crops the previous autumn (≤ an average of 8 ± 2 cones per tree versus ≥ an average of 20 ± 2 cones per tree during breeding years) and high snowpack in early spring (≥ 61.2 ± 5.5 cm versus ≤ 51.9 ± 4.4 cm during breeding years). The average adult body condition index during the breeding season was significantly lower in 2011 (-1.5 ± 1.1), a nonbreeding year, as compared to 2012 (6.2 ± 2.0), a breeding year. The environmental cues available to the birds prior to breeding, specifically availability of cached whitebark pine seeds, may have allowed them to predict that breeding conditions would be poor, leading to the decision to skip breeding. Alternatively, the Clark's nutcrackers may have had such low body energy stores that they chose not to or were unable to breed. Breeding plasticity would allow Clark's nutcrackers to exploit an unpredictable environment. However, if large-scale mortality of whitebark pines is leading to an increase in the number of nonbreeding years, there could be serious population-level and ecosystem-wide consequences.

  12. 75 FR 14496 - Endangered and Threatened Wildlife and Plants; Reinstatement of Protections for the Grizzly Bear...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-26

    ... Service did not adequately consider the impacts of global warming and other factors on whitebark pine nuts... the point where making a change to its status was appropriate. Subsequently, three lawsuits...

  13. Population-Wide Failure to Breed in the Clark’s Nutcracker (Nucifraga columbiana)

    PubMed Central

    Schaming, Taza D.

    2015-01-01

    In highly variable environments, conditions can be so stressful in some years that entire populations forgo reproduction in favor of higher likelihood of surviving to breed in future years. In two out of five years, Clark’s nutcrackers (Nucifraga Columbiana) in the Greater Yellowstone Ecosystem exhibited population-wide failure to breed. Clark’s nutcrackers at the study site experienced substantial interannual differences in food availability and weather conditions, and the two nonbreeding years corresponded with low whitebark pine (Pinus albicaulis) cone crops the previous autumn (≤ an average of 8 ± 2 cones per tree versus ≥ an average of 20 ± 2 cones per tree during breeding years) and high snowpack in early spring (≥ 61.2 ± 5.5 cm versus ≤ 51.9 ± 4.4 cm during breeding years). The average adult body condition index during the breeding season was significantly lower in 2011 (-1.5 ± 1.1), a nonbreeding year, as compared to 2012 (6.2 ± 2.0), a breeding year. The environmental cues available to the birds prior to breeding, specifically availability of cached whitebark pine seeds, may have allowed them to predict that breeding conditions would be poor, leading to the decision to skip breeding. Alternatively, the Clark’s nutcrackers may have had such low body energy stores that they chose not to or were unable to breed. Breeding plasticity would allow Clark’s nutcrackers to exploit an unpredictable environment. However, if large-scale mortality of whitebark pines is leading to an increase in the number of nonbreeding years, there could be serious population-level and ecosystem-wide consequences. PMID:25970294

  14. Comparison of genetic diversity and population structure of Pacific Coast whitebark pine across multiple markers

    Treesearch

    Andrew D. Bower; Bryce A. Richardson; Valerie Hipkins; Regina Rochefort; Carol Aubry

    2011-01-01

    Analysis of "neutral" molecular markers and "adaptive" quantitative traits are common methods of assessing genetic diversity and population structure. Molecular markers typically reflect the effects of demographic and stochastic processes but are generally assumed to not reflect natural selection. Conversely, quantitative (or "adaptive")...

  15. Yellowstone grizzly bear mortality, human habituation, and whitebark pine seed crops

    USGS Publications Warehouse

    Mattson, David J.; Blanchard, Bonnie M.; Knight, Richard R.

    1992-01-01

    The Yellowstone grizzly bear (Ursus arctos horribilis) population may be extirpated during the next 100-200 years unless mortality rates stabilize and remain at acceptable low levels. Consequently, we analyzed relationships between Yellowstone grizzly bear mortality and frequency of human habituation among bears and size of the whitebark pine (Pinus albicaulis) seed crop. During years of large seed crops, bears used areas within 5 km of roads and 8 km of developments half as intensively as during years of small seed crops because whitebark pine's high elevation distribution is typically remote from human facilities. On average, management trappings of bears were 6.2 times higher, mortality of adult females 2.3 times higher, and mortality of subadult males 3.3 times higher during years of small seed crops. We hypothesize that high mortality of adult females and subadult males during small seed crop years was a consequence of their tendency to range closest (of all sex-age cohorts) to human facilities; they also had a higher frequency of human habituation compared with adult males. We also hypothesize that low morality among subadult females during small seed crop years was a result of fewer energetic stressors compared with adult females and greater familiarity with their range compared with subadult males; mortality was low even though they ranged close to humans and exhibited a high frequency of human habituation. Human-habituated and food-conditioned bears were 2.9 times as likely to range within 4 km of developments and 3.1 times as often killed by humans compared with nonhabituated bears. We argue that destruction of habituated bears that use native foods near humans results in a decline in the overall ability of bears to use available habitat; and that the number and extent of human facilities in occupied grizzly bear habitat needs to be minimized unless habituated bears are preserved and successful ways to manage the associated risks to humans are developed.

  16. Genetic Diversity and Population Structure of Whitebark Pine (Pinus albicaulis Engelm.) in Western North America

    PubMed Central

    Liu, Jun-Jun; Sniezko, Richard; Murray, Michael; Wang, Ning; Chen, Hao; Zamany, Arezoo; Sturrock, Rona N.; Savin, Douglas; Kegley, Angelia

    2016-01-01

    Whitebark pine (WBP, Pinus albicaulis Engelm.) is an endangered conifer species due to heavy mortality from white pine blister rust (WPBR, caused by Cronartium ribicola) and mountain pine beetle (Dendroctonus ponderosae). Information about genetic diversity and population structure is of fundamental importance for its conservation and restoration. However, current knowledge on the genetic constitution and genomic variation is still limited for WBP. In this study, an integrated genomics approach was applied to characterize seed collections from WBP breeding programs in western North America. RNA-seq analysis was used for de novo assembly of the WBP needle transcriptome, which contains 97,447 protein-coding transcripts. Within the transcriptome, single nucleotide polymorphisms (SNPs) were discovered, and more than 22,000 of them were non-synonymous SNPs (ns-SNPs). Following the annotation of genes with ns-SNPs, 216 ns-SNPs within candidate genes with putative functions in disease resistance and plant defense were selected to design SNP arrays for high-throughput genotyping. Among these SNP loci, 71 were highly polymorphic, with sufficient variation to identify a unique genotype for each of the 371 individuals originating from British Columbia (Canada), Oregon and Washington (USA). A clear genetic differentiation was evident among seed families. Analyses of genetic spatial patterns revealed varying degrees of diversity and the existence of several genetic subgroups in the WBP breeding populations. Genetic components were associated with geographic variables and phenotypic rating of WPBR disease severity across landscapes, which may facilitate further identification of WBP genotypes and gene alleles contributing to local adaptation and quantitative resistance to WPBR. The WBP genomic resources developed here provide an invaluable tool for further studies and for exploitation and utilization of the genetic diversity preserved within this endangered conifer and other five-needle pines. PMID:27992468

  17. Development and characterization of thirteen microsatellite loci in Clark's nutcracker (Nucifraga columbiana)

    USGS Publications Warehouse

    Oyler-McCance, Sara J.; Fike, Jennifer A.; Castoe, Todd A.; Tomback, Diana F.; Wunder, Michael B.; Schaming, Taza D.

    2013-01-01

    Clark’s nutcrackers are important seed dispersers for two widely-distributed western North American conifers, whitebark pine and limber pine, which are declining due to outbreaks of mountain pine beetle and white pine blister rust. Because nutcracker seed dispersal services are key to maintaining viable populations of these imperiled pines, knowledge of movement patterns of Clark’s nutcrackers helps managers understand local extinction risks for these trees. To investigate population structure within Clark’s nutcracker, we developed primers for and characterized 13 polymorphic microsatellite loci. In a screen of 22 individuals from one population, levels of variability ranged from 6 to 15 alleles. No loci were found to be linked, although 4 loci revealed significant departures from Hardy–Weinberg equilibrium and evidence of null alleles. These microsatellite loci will enable population genetic analyses of Clark’s nutcrackers, which could provide insights into the spatial relationships between nutcrackers and the trees they help disperse.

  18. Mapping vegetation in Yellowstone National Park using spectral feature analysis of AVIRIS data

    USGS Publications Warehouse

    Kokaly, Raymond F.; Despain, Don G.; Clark, Roger N.; Livo, K. Eric

    2003-01-01

    Knowledge of the distribution of vegetation on the landscape can be used to investigate ecosystem functioning. The sizes and movements of animal populations can be linked to resources provided by different plant species. This paper demonstrates the application of imaging spectroscopy to the study of vegetation in Yellowstone National Park (Yellowstone) using spectral feature analysis of data from the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS). AVIRIS data, acquired on August 7, 1996, were calibrated to surface reflectance using a radiative transfer model and field reflectance measurements of a ground calibration site. A spectral library of canopy reflectance signatures was created by averaging pixels of the calibrated AVIRIS data over areas of known forest and nonforest vegetation cover types in Yellowstone. Using continuum removal and least squares fitting algorithms in the US Geological Survey's Tetracorder expert system, the distributions of these vegetation types were determined by comparing the absorption features of vegetation in the spectral library with the spectra from the AVIRIS data. The 0.68 μm chlorophyll absorption feature and leaf water absorption features, centered near 0.98 and 1.20 μm, were analyzed. Nonforest cover types of sagebrush, grasslands, willows, sedges, and other wetland vegetation were mapped in the Lamar Valley of Yellowstone. Conifer cover types of lodgepole pine, whitebark pine, Douglas fir, and mixed Engelmann spruce/subalpine fir forests were spectrally discriminated and their distributions mapped in the AVIRIS images. In the Mount Washburn area of Yellowstone, a comparison of the AVIRIS map of forest cover types to a map derived from air photos resulted in an overall agreement of 74.1% (kappa statistic=0.62).

  19. Mortality in Subalpine Forests of the Sierra Nevada, California, USA: Differential Response of Pines (Pinus albicaulis and P. flexilis) to Climate Variability

    NASA Astrophysics Data System (ADS)

    Millar, C. I.; Westfall, R. D.; Delany, D. L.

    2010-12-01

    Widespread forest mortality in high-elevation forests has been increasing across western North American mountains in recent years, with climate, insects, and disease the primary causes. Subalpine forests in the eastern Sierra Nevada, by contrast, have experienced far less mortality than other ranges, and mortality events have been patchy and episodic. This situation, and lack of significant effect of non-native white-pine blister rust, enable investigation of fine-scale response of two subalpine Sierran species, whitebark pine (Pinus albicaulis, PiAl) and limber pine (P. flexilis, PiFl), to climate variability. We report similarities and differences between the two major mortality events in these pines in the last 150 years: 1988-1992 for PiFl and 2006-ongoing for PiAl. In both species, the events occurred within monotypic, closed-canopy, relatively young stands (< 200 yrs PiAl, < 300 yrs in PiFl); were localized to central-eastern Sierra Nevada; and occurred at 2740-2840 m along the eastern edge of the escarpment on north/northeast aspects with slopes > 40%. Mortality patches averaged 40-80 ha in both species, with mean stand mortality of trees > 10 cm diameter 91% in PiAl and 60% in PiFl. The ultimate cause of tree death was mountain pine beetle (Dendroctonus ponderosae) in both species, with increasing 20th/21st C minimum temperatures combined with drought the pre-conditioning factors. Overall growth in the past 150 years suggests that PiFl is more drought hardy than PiAl but responds sensitively to the combined effects of drought and increasing warmth. After the 1988-1992 drought, surviving PiFl recovered growth. PiAl trees grew very poorly during that drought, and continued poor growth in the years until 2006 when the mortality event occurred in PiAl. A significant species effect is the apparent difference in levels of within-stand genetic diversity for climate factors. Differential growth between 19th C (cool, wet) and 20th/21st C (warming, drying) of PiFl trees that died versus survivors indicates that considerable within-stand genetic diversity for climate existed in PiFl. For PiFl, the late 20th C mortality event acted as strong natural selection to improve within-stand fitness for warmer and drier conditions. PiFl trees that survived the 1988-1992 drought remained healthy through subsequent droughts, including the drought that is currently causing PiAl mortality. By contrast, the PiAl stands do not appear to have contained adaptive genetic diversity for drought and warmth, and PiAl trees growth behavior over the past 150 years was similar in pattern to the PiFl trees that died. As a result, the mortality event in PiAl is creating forest openings, with unknown future stand conditions, rather than rapid within-species adaptation that occurred in PiFl.

  20. Modeling climate changes and wildfire interactions: Effects on whitebark pine (Pinus albicaulis) and implications for restoration, Glacier National Park, Montana, USA

    Treesearch

    Rachel A. Loehman; Allissa Corrow; Robert E. Keane

    2011-01-01

    Climate changes are projected to profoundly influence vegetation patterns and community compositions, either directly through increased species mortality and shifts in species distributions, or indirectly through disturbance dynamics such as increased wildfire activity and extent, shifting fire regimes, and pathogenesis. High-elevation landscapes have been shown to be...

  1. Body and diet composition of sympatric black and grizzly bears in the Greater Yellowstone Ecosystem

    USGS Publications Warehouse

    Schwartz, Charles C.; Fortin, Jennifer K.; Teisberg, Justin E.; Haroldson, Mark A.; Servheen, Christopher; Robbins, Charles T.; van Manen, Frank T.

    2013-01-01

    The Greater Yellowstone Ecosystem (GYE) has experienced changes in the distribution and availability of grizzly bear (Ursus arctos) food resources in recent decades. The decline of ungulates, fish, and whitebark pine seeds (Pinus albicaulis) has prompted questions regarding their ability to adapt. We examined body composition and diet of grizzly bears using bioelectrical impedance and stable isotopes to determine if 1) we can detect a change in diet quality associated with the decline in either ungulates or whitebark pine, and 2) the combined decline in ungulates, fish, and pine seeds resulted in a change in grizzly bear carrying capacity in the GYE. We contrasted body fat and mass in grizzly bears with a potential competitor, the American black bear (Ursus americanus), to address these questions. Grizzly bears assimilated more meat into their diet and were in better body condition than black bears throughout the study period, indicating the decline in ungulate resources did not affect grizzly bears more than black bears. We also found no difference in autumn fat levels in grizzly bears in years of good or poor pine seed production, and stable isotope analyses revealed this was primarily a function of switching to meat resources during poor seed-producing years. This dietary plasticity was consistent over the course of our study. We did not detect an overall downward trend in either body mass or the fraction of meat assimilated into the diet by grizzly bears over the past decade, but we did detect a downward trend in percent body fat in adult female grizzly bears after 2006. Whether this decline is an artifact of small sample size or due to the population reaching the ecological carrying capacity of the Yellowstone ecosystem warrants further investigation.

  2. Combining state-and-transition simulations and species distribution models to anticipate the effects of climate change

    USGS Publications Warehouse

    Miller, Brian W.; Frid, Leonardo; Chang, Tony; Piekielek, N. B.; Hansen, Andrew J.; Morisette, Jeffrey T.

    2015-01-01

    State-and-transition simulation models (STSMs) are known for their ability to explore the combined effects of multiple disturbances, ecological dynamics, and management actions on vegetation. However, integrating the additional impacts of climate change into STSMs remains a challenge. We address this challenge by combining an STSM with species distribution modeling (SDM). SDMs estimate the probability of occurrence of a given species based on observed presence and absence locations as well as environmental and climatic covariates. Thus, in order to account for changes in habitat suitability due to climate change, we used SDM to generate continuous surfaces of species occurrence probabilities. These data were imported into ST-Sim, an STSM platform, where they dictated the probability of each cell transitioning between alternate potential vegetation types at each time step. The STSM was parameterized to capture additional processes of vegetation growth and disturbance that are relevant to a keystone species in the Greater Yellowstone Ecosystem—whitebark pine (Pinus albicaulis). We compared historical model runs against historical observations of whitebark pine and a key disturbance agent (mountain pine beetle, Dendroctonus ponderosae), and then projected the simulation into the future. Using this combination of correlative and stochastic simulation models, we were able to reproduce historical observations and identify key data gaps. Results indicated that SDMs and STSMs are complementary tools, and combining them is an effective way to account for the anticipated impacts of climate change, biotic interactions, and disturbances, while also allowing for the exploration of management options.

  3. Space-time modelling of lightning-caused ignitions in the Blue Mountains, Oregon

    USGS Publications Warehouse

    Diaz-Avalos, Carlos; Peterson, D.L.; Alvarado, Ernesto; Ferguson, Sue A.; Besag, Julian E.

    2001-01-01

    Generalized linear mixed models (GLMM) were used to study the effect of vegetation cover, elevation, slope, and precipitation on the probability of ignition in the Blue Mountains, Oregon, and to estimate the probability of ignition occurrence at different locations in space and in time. Data on starting location of lightning-caused ignitions in the Blue Mountains between April 1986 and September 1993 constituted the base for the analysis. The study area was divided into a pixela??time array. For each pixela??time location we associated a value of 1 if at least one ignition occurred and 0 otherwise. Covariate information for each pixel was obtained using a geographic information system. The GLMMs were fitted in a Bayesian framework. Higher ignition probabilities were associated with the following cover types: subalpine herbaceous, alpine tundra, lodgepole pine (Pinus contorta Dougl. ex Loud.), whitebark pine (Pinus albicaulis Engelm.), Engelmann spruce (Picea engelmannii Parry ex Engelm.), subalpine fir (Abies lasiocarpa (Hook.) Nutt.), and grand fir (Abies grandis (Dougl.) Lindl.). Within each vegetation type, higher ignition probabilities occurred at lower elevations. Additionally, ignition probabilities are lower in the northern and southern extremes of the Blue Mountains. The GLMM procedure used here is suitable for analysing ignition occurrence in other forested regions where probabilities of ignition are highly variable because of a spatially complex biophysical environment.

  4. Understanding the role of wildland fire, insects, and disease in predicting climate change effects on whitebark pine: Simulating vegetation, disturbance, and climate dynamics in a northern Rocky Mountain landscape

    Treesearch

    Robert Keane; Rachel Loehman

    2010-01-01

    Climate changes are projected to profoundly influence vegetation patterns and community compositions, either directly through increased species mortality and shifts in species distributions, or indirectly through disturbance dynamics such as increased wildfire activity and extent, shifting fire regimes, and pathogenesis. High-elevation landscapes have been shown to be...

  5. Changes in mortality of Yellowstone's grizzly bears

    USGS Publications Warehouse

    Mattson, David J.

    1998-01-01

    Records of grizzly bear (Ursus arctos) deaths are currently used by managers to indicate trends in actual grizzly bear mortality and to judge the effectiveness of management. Two assumptions underlie these current uses: first, that recorded mortality is an unbiased indicator of actual mortality, and second, that changes in mortality after implementation of management strategies are sufficient grounds to infer the effects of management. I examined the defensibility of these 2 assumptions relative to alternate explanations, circumstantial evidence, and the potential costs of error. The potentially complex relation between actual and recorded mortality, as currently tallied and used, was reason to expect that the association between these 2 values would be weak. This expectation was supported by the prevalence (60-76%) of radio-marked bears among recorded deaths, the variation in apparent likelihood of documentation among causes of death, and variation in the prevalence of different causes over time. For these reasons, recorded mortality is likely to be an unreliable indicator of actual mortality. Use of whitebark pine (Pinus albicaulis) seeds by grizzly bears had a major effect on annual variation in recorded mortality. Low numbers of recorded deaths, 1984-92, were attributable to relatively frequent large whitebark pine seed crops. There was little or no residual trend potentially ascribed to management intervention during 1976-92. Management intervention was probably responsible for observed changes in recorded causes of death and stabilized recorded mortality over the period covered by this analysis.

  6. Thirty Years of Change in Subalpine Forest Cover from Landsat Image Analysis in the Sierra Nevada Mountains of California

    NASA Technical Reports Server (NTRS)

    Potter, Christopher

    2015-01-01

    Landsat imagery was analyzed to understand changes in subalpine forest stands since the mid-1980s in the Sierra-Nevada region of California. At locations where long-term plot measurements have shown that stands are becoming denser in the number of small tree stems (compared to the early 1930s), the 30-year analysis of Landsat greenness index (NDVI) indicated that no consistent increases in canopy leaf cover have occurred at these same locations since the mid-1980s. Interannual variations in stand NDVI closely followed snow accumulation amounts recorded at nearby stations. In contrast, at eastern Sierra whitebark pine stand locations where it has been observed that widespread tree mortality has occurred, decreasing NDVI trends over the past 5-10 years were consistent with rapid loss of forest canopy cover. Landsat imagery was further analyzed to understand patterns of post-wildfire vegetation recovery, focusing on high burn severity (HBS) patches within burned areas dating from the late 1940s. Analysis of landscape metrics showed that the percentage of total HBS area comprised by the largest patch of recovered woody cover was relatively small in all fires that occurred since 1995, but increased rapidly with time since fire. Patch complexity of recovered woody cover decreased notably after more than 50 years of regrowth, but was not readily associated with time for fires that occurred since the mid 1990s. The aggregation level of patches with recovery of woody cover increased steadily with time since fire. The study approach using satellite remote sensing can be expanded to assess the consequences of stand-replacing wildfires in all forests of the region.

  7. Influence of whitebark pine decline on fall habitat use and movements of grizzly bears in the Greater Yellowstone Ecosystem

    USGS Publications Warehouse

    Costello, Cecily M.; van Manen, Frank T.; Haroldson, Mark A.; Ebinger, Michael R.; Cain, Steven L.; Gunther, Kerry A.; Bjornlie, Daniel D.

    2014-01-01

    When abundant, seeds of the high-elevation whitebark pine (WBP; Pinus albicaulis) are an important fall food for grizzly bears (Ursus arctos) in the Greater Yellowstone Ecosystem. Rates of bear mortality and bear/human conflicts have been inversely associated with WBP productivity. Recently, mountain pine beetles (Dendroctonus ponderosae) have killed many cone-producing WBP trees. We used fall (15 August–30 September) Global Positioning System locations from 89 bear years to investigate temporal changes in habitat use and movements during 2000–2011. We calculated Manly–Chesson (MC) indices for selectivity of WBP habitat and secure habitat (≥500 m from roads and human developments), determined dates of WBP use, and documented net daily movement distances and activity radii. To evaluate temporal trends, we used regression, model selection, and candidate model sets consisting of annual WBP production, sex, and year. One-third of sampled grizzly bears had fall ranges with little or no mapped WBP habitat. Most other bears (72%) had a MC index above 0.5, indicating selection for WBP habitats. From 2000 to 2011, mean MC index decreased and median date of WBP use shifted about 1 week later. We detected no trends in movement indices over time. Outside of national parks, there was no correlation between the MC indices for WBP habitat and secure habitat, and most bears (78%) selected for secure habitat. Nonetheless, mean MC index for secure habitat decreased over the study period during years of good WBP productivity. The wide diet breadth and foraging plasticity of grizzly bears likely allowed them to adjust to declining WBP. Bears reduced use of WBP stands without increasing movement rates, suggesting they obtained alternative fall foods within their local surroundings. However, the reduction in mortality risk historically associated with use of secure, high-elevation WBP habitat may be diminishing for bears residing in multiple-use areas.

  8. Influence of whitebark pine decline on fall habitat use and movements of grizzly bears in the Greater Yellowstone Ecosystem

    PubMed Central

    Costello, Cecily M; van Manen, Frank T; Haroldson, Mark A; Ebinger, Michael R; Cain, Steven L; Gunther, Kerry A; Bjornlie, Daniel D

    2014-01-01

    When abundant, seeds of the high-elevation whitebark pine (WBP; Pinus albicaulis) are an important fall food for grizzly bears (Ursus arctos) in the Greater Yellowstone Ecosystem. Rates of bear mortality and bear/human conflicts have been inversely associated with WBP productivity. Recently, mountain pine beetles (Dendroctonus ponderosae) have killed many cone-producing WBP trees. We used fall (15 August–30 September) Global Positioning System locations from 89 bear years to investigate temporal changes in habitat use and movements during 2000–2011. We calculated Manly–Chesson (MC) indices for selectivity of WBP habitat and secure habitat (≥500 m from roads and human developments), determined dates of WBP use, and documented net daily movement distances and activity radii. To evaluate temporal trends, we used regression, model selection, and candidate model sets consisting of annual WBP production, sex, and year. One-third of sampled grizzly bears had fall ranges with little or no mapped WBP habitat. Most other bears (72%) had a MC index above 0.5, indicating selection for WBP habitats. From 2000 to 2011, mean MC index decreased and median date of WBP use shifted about 1 week later. We detected no trends in movement indices over time. Outside of national parks, there was no correlation between the MC indices for WBP habitat and secure habitat, and most bears (78%) selected for secure habitat. Nonetheless, mean MC index for secure habitat decreased over the study period during years of good WBP productivity. The wide diet breadth and foraging plasticity of grizzly bears likely allowed them to adjust to declining WBP. Bears reduced use of WBP stands without increasing movement rates, suggesting they obtained alternative fall foods within their local surroundings. However, the reduction in mortality risk historically associated with use of secure, high-elevation WBP habitat may be diminishing for bears residing in multiple-use areas. PMID:24963393

  9. Influence of whitebark pine decline on fall habitat use and movements of grizzly bears in the Greater Yellowstone Ecosystem.

    PubMed

    Costello, Cecily M; van Manen, Frank T; Haroldson, Mark A; Ebinger, Michael R; Cain, Steven L; Gunther, Kerry A; Bjornlie, Daniel D

    2014-05-01

    When abundant, seeds of the high-elevation whitebark pine (WBP; Pinus albicaulis) are an important fall food for grizzly bears (Ursus arctos) in the Greater Yellowstone Ecosystem. Rates of bear mortality and bear/human conflicts have been inversely associated with WBP productivity. Recently, mountain pine beetles (Dendroctonus ponderosae) have killed many cone-producing WBP trees. We used fall (15 August-30 September) Global Positioning System locations from 89 bear years to investigate temporal changes in habitat use and movements during 2000-2011. We calculated Manly-Chesson (MC) indices for selectivity of WBP habitat and secure habitat (≥500 m from roads and human developments), determined dates of WBP use, and documented net daily movement distances and activity radii. To evaluate temporal trends, we used regression, model selection, and candidate model sets consisting of annual WBP production, sex, and year. One-third of sampled grizzly bears had fall ranges with little or no mapped WBP habitat. Most other bears (72%) had a MC index above 0.5, indicating selection for WBP habitats. From 2000 to 2011, mean MC index decreased and median date of WBP use shifted about 1 week later. We detected no trends in movement indices over time. Outside of national parks, there was no correlation between the MC indices for WBP habitat and secure habitat, and most bears (78%) selected for secure habitat. Nonetheless, mean MC index for secure habitat decreased over the study period during years of good WBP productivity. The wide diet breadth and foraging plasticity of grizzly bears likely allowed them to adjust to declining WBP. Bears reduced use of WBP stands without increasing movement rates, suggesting they obtained alternative fall foods within their local surroundings. However, the reduction in mortality risk historically associated with use of secure, high-elevation WBP habitat may be diminishing for bears residing in multiple-use areas.

  10. Assessment of imperfect detection of blister rust in whitebark pine within the Greater Yellowstone Ecosystem

    USGS Publications Warehouse

    Wright, Wilson J.; Irvine, Kathryn M.

    2017-01-01

    We examined data on white pine blister rust (blister rust) collected during the monitoring of whitebark pine trees in the Greater Yellowstone Ecosystem (from 2004-2015). Summaries of repeat observations performed by multiple independent observers are reviewed and discussed. These summaries show variability among observers and the potential for errors being made in blister rust status. Based on this assessment, we utilized occupancy models to analyze blister rust prevalence while explicitly accounting for imperfect detection. Available covariates were used to model both the probability of a tree being infected with blister rust and the probability of an observer detecting the infection. The fitted model provided strong evidence that the probability of blister rust infection increases as tree diameter increases and decreases as site elevation increases. Most importantly, we found evidence of heterogeneity in detection probabilities related to tree size and average slope of a transect. These results suggested that detecting the presence of blister rust was more difficult in larger trees. Also, there was evidence that blister rust was easier to detect on transects located on steeper slopes. Our model accounted for potential impacts of observer experience on blister rust detection probabilities and also showed moderate variability among the different observers in their ability to detect blister rust. Based on these model results, we suggest that multiple observer sampling continue in future field seasons in order to allow blister rust prevalence estimates to be corrected for imperfect detection. We suggest that the multiple observer effort be spread out across many transects (instead of concentrated at a few each field season) while retaining the overall proportion of trees with multiple observers around 5-20%. Estimates of prevalence are confounded with detection unless it is explicitly accounted for in an analysis and we demonstrate how an occupancy model can be used to do account for this source of observation error.

  11. Natural range of variation for yellow pine and mixed-conifer forests in the Sierra Nevada, southern Cascades, and Modoc and Inyo National Forests, California, USA

    Treesearch

    Hugh D. Safford; Jens T. Stevens

    2017-01-01

    Yellow pine and mixed-conifer (YPMC) forests are the predominant montane forest type in the Sierra Nevada, southern Cascade Range, and neighboring forested areas on the Modoc and Inyo National Forests (the "assessment area"). YPMC forests occur above the oak woodland belt and below red fir forests, and are dominated by the yellow pines (ponderosa pine [

  12. Low tortoise abundances in pine forest plantations in forest-shrubland transition areas

    PubMed Central

    Rodríguez-Caro, Roberto C.; Oedekoven, Cornelia S.; Graciá, Eva; Anadón, José D.; Buckland, Stephen T.; Esteve-Selma, Miguel A.; Martinez, Julia; Giménez, Andrés

    2017-01-01

    In the transition between Mediterranean forest and the arid subtropical shrublands of the southeastern Iberian Peninsula, humans have transformed habitat since ancient times. Understanding the role of the original mosaic landscapes in wildlife species and the effects of the current changes as pine forest plantations, performed even outside the forest ecological boundaries, are important conservation issues. We studied variation in the density of the endangered spur-thighed tortoise (Testudo graeca) in three areas that include the four most common land types within the species’ range (pine forests, natural shrubs, dryland crop fields, and abandoned crop fields). Tortoise densities were estimated using a two-stage modeling approach with line transect distance sampling. Densities in dryland crop fields, abandoned crop fields and natural shrubs were higher (>6 individuals/ha) than in pine forests (1.25 individuals/ha). We also found large variation in density in the pine forests. Recent pine plantations showed higher densities than mature pine forests where shrub and herbaceous cover was taller and thicker. We hypothesize that mature pine forest might constrain tortoise activity by acting as partial barriers to movements. This issue is relevant for management purposes given that large areas in the tortoise’s range have recently been converted to pine plantations. PMID:28273135

  13. Low tortoise abundances in pine forest plantations in forest-shrubland transition areas.

    PubMed

    Rodríguez-Caro, Roberto C; Oedekoven, Cornelia S; Graciá, Eva; Anadón, José D; Buckland, Stephen T; Esteve-Selma, Miguel A; Martinez, Julia; Giménez, Andrés

    2017-01-01

    In the transition between Mediterranean forest and the arid subtropical shrublands of the southeastern Iberian Peninsula, humans have transformed habitat since ancient times. Understanding the role of the original mosaic landscapes in wildlife species and the effects of the current changes as pine forest plantations, performed even outside the forest ecological boundaries, are important conservation issues. We studied variation in the density of the endangered spur-thighed tortoise (Testudo graeca) in three areas that include the four most common land types within the species' range (pine forests, natural shrubs, dryland crop fields, and abandoned crop fields). Tortoise densities were estimated using a two-stage modeling approach with line transect distance sampling. Densities in dryland crop fields, abandoned crop fields and natural shrubs were higher (>6 individuals/ha) than in pine forests (1.25 individuals/ha). We also found large variation in density in the pine forests. Recent pine plantations showed higher densities than mature pine forests where shrub and herbaceous cover was taller and thicker. We hypothesize that mature pine forest might constrain tortoise activity by acting as partial barriers to movements. This issue is relevant for management purposes given that large areas in the tortoise's range have recently been converted to pine plantations.

  14. The importance of shortleaf pine for wildlife and diversity in mixed oak-pine forests and in pine-grassland woodlands

    Treesearch

    Ronald E. Masters

    2007-01-01

    Shortleaf pine, by virtue of its wide distribution and occurrence in many forest types in eastern North America, is an important species that provides high habitat value for many wildlife species. Shortleaf pine functions as a structural habitat element in both mixed oak-pine forests and in pine-grassland woodlands. It also adds diversity throughout all stages of plant...

  15. A Common-Pool Resource Approach to Forest Health: The Case of the Southern Pine Beetle

    Treesearch

    John Schelhas; Joseph Molnar

    2012-01-01

    The southern pine beetle, Dendroctonus frontalis, is a major threat to pine forest health in the South, and is expected to play an increasingly important role in the future of the South’s pine forests (Ward and Mistretta 2002). Once a forest stand is infected with southern pine beetle (SPB), elimination and isolation of the infested and immediately...

  16. 75 FR 23666 - Huron-Manistee National Forests, White Pines Wind Farm Project, Mason County, MI

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-04

    ... DEPARTMENT OF AGRICULTURE Forest Service Huron-Manistee National Forests, White Pines Wind Farm... environmental impact statement for the White Pines Wind Farm Project on National Forest System (NFS) lands... terminates the environmental analysis process for the White Pines Wind Farm Project. DATES: The Notice of...

  17. Ecology of southwestern ponderosa pine forests

    Treesearch

    William H. Moir; Brian W. Geils; Mary Ann Benoit; Dan Scurlock

    1997-01-01

    Ponderosa pine forests are important because of their wide distribution, commercial value, and because they provide habitat for many plants and animals. Ponderosa pine forests are noted for their variety of passerine birds resulting from variation in forest composition and structure modified by past and present human use. Subsequent chapters discuss how ponderosa pine...

  18. Southern pine beetles in central hardwood forests: frequency, spatial extent, and changes to forest structure

    Treesearch

    John Nowak; Kier Klepzig; D R Coyle; William Carothers; Kamal J K Gandhi

    2015-01-01

    EXCERPT FROM: Natural Disturbances and Historic Range Variation 2015. The southern pine beetle (SPB) is a major disturbance in pine forests throughout the range of southern yellow pines, and is a significant influence on forests throughout several Central Hardwood Region (CHR) ecoregions...

  19. Red Pine in the Northern Lake States

    Treesearch

    Thomas L. Schmidt

    2003-01-01

    Red pine is an important tree species for the Northern Lake States. About 4 percent of the total area of timberland is dominated by red pine but most other forest types also have red pine as a component. The red pine forest type in the region has dramatically increased in area since the 1930s. Stand-size class distribution of the red pine forest type has changed over...

  20. An Old-Growth Definition for Wet Pine Forests, Woodlands, and Savannas

    Treesearch

    William R. Harms

    1996-01-01

    The ecological, site, and vegetation characteristics of pine wetland forests of the flatwoods region of the Southeastern United States are described. Provisional working definitions of old-growth characteristics are provided for longleaf pine, slash pine, and pond pine forests. These definitions can be used to identify and evaluate stands for retention in old-growth...

  1. Putting Climate Adaptation on the Map: Developing Spatial Management Strategies for Whitebark Pine in the Greater Yellowstone Ecosystem.

    PubMed

    Ireland, Kathryn B; Hansen, Andrew J; Keane, Robert E; Legg, Kristin; Gump, Robert L

    2018-06-01

    Natural resource managers face the need to develop strategies to adapt to projected future climates. Few existing climate adaptation frameworks prescribe where to place management actions to be most effective under anticipated future climate conditions. We developed an approach to spatially allocate climate adaptation actions and applied the method to whitebark pine (WBP; Pinus albicaulis) in the Greater Yellowstone Ecosystem (GYE). WBP is expected to be vulnerable to climate-mediated shifts in suitable habitat, pests, pathogens, and fire. We spatially prioritized management actions aimed at mitigating climate impacts to WBP under two management strategies: (1) current management and (2) climate-informed management. The current strategy reflected management actions permissible under existing policy and access constraints. Our goal was to understand how consideration of climate might alter the placement of management actions, so the climate-informed strategies did not include these constraints. The spatial distribution of actions differed among the current and climate-informed management strategies, with 33-60% more wilderness area prioritized for action under climate-informed management. High priority areas for implementing management actions include the 1-8% of the GYE where current and climate-informed management agreed, since this is where actions are most likely to be successful in the long-term and where current management permits implementation. Areas where climate-informed strategies agreed with one another but not with current management (6-22% of the GYE) are potential locations for experimental testing of management actions. Our method for spatial climate adaptation planning is applicable to any species for which information regarding climate vulnerability and climate-mediated risk factors is available.

  2. Putting Climate Adaptation on the Map: Developing Spatial Management Strategies for Whitebark Pine in the Greater Yellowstone Ecosystem

    NASA Astrophysics Data System (ADS)

    Ireland, Kathryn B.; Hansen, Andrew J.; Keane, Robert E.; Legg, Kristin; Gump, Robert L.

    2018-06-01

    Natural resource managers face the need to develop strategies to adapt to projected future climates. Few existing climate adaptation frameworks prescribe where to place management actions to be most effective under anticipated future climate conditions. We developed an approach to spatially allocate climate adaptation actions and applied the method to whitebark pine (WBP; Pinus albicaulis) in the Greater Yellowstone Ecosystem (GYE). WBP is expected to be vulnerable to climate-mediated shifts in suitable habitat, pests, pathogens, and fire. We spatially prioritized management actions aimed at mitigating climate impacts to WBP under two management strategies: (1) current management and (2) climate-informed management. The current strategy reflected management actions permissible under existing policy and access constraints. Our goal was to understand how consideration of climate might alter the placement of management actions, so the climate-informed strategies did not include these constraints. The spatial distribution of actions differed among the current and climate-informed management strategies, with 33-60% more wilderness area prioritized for action under climate-informed management. High priority areas for implementing management actions include the 1-8% of the GYE where current and climate-informed management agreed, since this is where actions are most likely to be successful in the long-term and where current management permits implementation. Areas where climate-informed strategies agreed with one another but not with current management (6-22% of the GYE) are potential locations for experimental testing of management actions. Our method for spatial climate adaptation planning is applicable to any species for which information regarding climate vulnerability and climate-mediated risk factors is available.

  3. Resilience of ponderosa and lodgepole pine forests to mountain pine beetle disturbance and limited regeneration

    USGS Publications Warehouse

    Briggs, Jenny S.; Hawbaker, Todd J.; Vandendriesche, Don

    2015-01-01

    After causing widespread mortality in lodgepole pine forests in North America, the mountain pine beetle (MPB) has recently also affected ponderosa pine, an alternate host species that may have different levels of resilience to this disturbance. We collected field data in ponderosa pine- and lodgepole pine-dominated forests attacked by MPB in Colorado and then simulated stand growth over 200 years using the Forest Vegetation Simulator. We compared scenarios of no disturbance with scenarios of MPB-caused mortality, both with and without regeneration. Results indicated that basal area and tree density recovered to predisturbance levels relatively rapidly (within 1‐8 decades) in both forest types. However, convergence of the disturbed conditions with simulated undisturbed conditions took longer (12‐20+ decades) and was delayed by the absence of regeneration. In MPB-affected ponderosa pine forests without regeneration, basal area did not converge with undisturbed conditions within 200 years, implying lower resilience in this ecosystem. Surface fuels accumulated rapidly in both forest types after MPB-induced mortality, remaining high for 3‐6 decades in simulations. Our results suggest that future patterns of succession, regeneration, fuel loading, climate, and disturbance interactions over long time periods should be considered in management strategies addressing MPB effects in either forest type, but particularly in ponderosa pine.

  4. Ecological Impacts of Southern Pine Beetle

    Treesearch

    Maria D. Tchakerian; Robert N. Coulson

    2011-01-01

    The southern pine beetle (SPB) is the most important biotic disturbance in southern pine forests and causes extensive changes to the forest environment. In this chapter we provide an overview of the ecological impacts of the SPB on forest conditions (the state of the forest) and on forest resources (uses and values associated with the forest). We define ecological...

  5. Guide to the Blacks Mountain Experimental Forest - A sustained yield experiment in ponderosa pine in northeastern California

    Treesearch

    E.I. Kotok

    1938-01-01

    Experimental forests, watersheds, and ranges are the field laboratories in the research structure of the Forest Service. The California Forest and Range Experiment Station maintains four experimental forests representing the more important timber types in the Pine Region.The Blacks Mountain Experimental Forest represents the ponderosa pine...

  6. Southern pine beetle infestations in relation to forest stand conditions, previous thinning, and prescribed burning: evaluation of the Southern Pine Beetle Prevention Program

    Treesearch

    John T. Nowak; James R. Meeker; David R. Coyle; Chris A. Steiner; Cavell Brownie

    2015-01-01

    Since 2003, the Southern Pine Beetle Prevention Program (SPBPP) (a joint effort of the USDA Forest Service and Southern Group of State Foresters) has encouraged and provided cost-share assistance for silvicultural treatments to reduce stand/forest susceptibility to the southern pine beetle (SPB)(Dendroctonus frontalis Zimmermann) in the southeastern United States....

  7. Are Scots pine forest edges particularly prone to drought-stress?

    NASA Astrophysics Data System (ADS)

    Buras, Allan; Schunk, Christian; Taeger, Steffen; Lemme, Hannes; Gößwein, Sebastian; Menzel, Annette

    2017-04-01

    In 2016, Scots pine (Pinus sylvestris L.) forests experienced a pronounced dieback in several regions across Germany. Being an economically important tree species, a thorough identification of the reasons for this dieback is of high interest. The dieback is likely to be associated with a record drought event which occurred in summer 2015. However, visual observations indicate that forest edges were particularly affected. This observation is supported by a study from Sweden which showed that Scots pine trees growing at a north-facing forest edge expressed a higher water use if compared to trees from the interior (Cienciala et al., 2002). We therefore hypothesize that Scots pine trees are more prone to drought-stress induced dieback when growing at the forest edge. To test this hypothesis, we investigated the growth performance of Scots pine across three affected stands in Franconia, southern Germany. The stands were selected to represent differing conditions along a gradient of forest fragmentation, ranging from the forest interior, over a forest edge situation, to a small forest island. By means of dendroclimatology and UAV-borne remote sensing, Scots pine growth performance and vitality was compared among the three stands. Our results revealed differing Scots pine growth reactions between the forest interior and forest edge as indicated by the identification of different responder groups (Buras et al., 2016). The forest edge and the forest island expressed significantly higher correlations with the drought-index SPEI (Vicente-Serrano et al., 2009) if compared to the forest interior. Moreover, NDVI of Scots Pine canopies significantly decreased towards the forest edge, this indicating lower vitality of corresponding trees. In conclusion, our results highlight Scots pine to be more prone to drought-stress when growing at the forest edge. This finding has important implications for forest management activities in the context of climate change adaptation, since foresters may need to revise concepts of Scots pine management at forest edges and in forest islands under an increasingly warmer and drier climate. 1. Cienciala, E. et al. The effect of a north-facing forest edge on tree water use in a boreal Scots pine stand. Can. J. For. Res. 32, 693-702 (2002). 2. Buras, A. et al. Tuning the Voices of a Choir: Detecting Ecological Gradients in Time-Series Populations. PLOS ONE 11, e0158346 (2016). 3. Vicente-Serrano, S. M., Beguería, S. & López-Moreno, J. I. A Multiscalar Drought Index Sensitive to Global Warming: The Standardized Precipitation Evapotranspiration Index. J. Climate 23, 1696-1718 (2009).

  8. Many ways to manage lodgepole pine forests

    Treesearch

    Lucia Solorzano

    1997-01-01

    Research underway at the Tenderfoot Creek Experimental Forest near White Sulphur Springs will provide insights on how to sustain lodgepole pine forests and water flow patterns over large areas. Lodgepole pine dominates a high percentage of forests in the northern Rocky Mountains. including the Bitterroot National Forest. About half the stands at Tenderfoot are two-aged...

  9. Evaluating potential fire behavior in lodgepole pine-dominated forests after a mountain pine beetle epidemic in north-central Colorado

    Treesearch

    Jennifer G. Klutsch; Mike A. Battaglia; Daniel R. West; Sheryl L. Costello; Jose F. Negron

    2011-01-01

    A mountain pine beetle outbreak in Colorado lodgepole pine forests has altered stand and fuel characteristics that affect potential fire behavior. Using the Fire and Fuels Extension to the Forest Vegetation Simulator, potential fire behavior was modeled for uninfested and mountain pine beetle-affected plots 7 years after outbreak initiation and 10 and 80% projected...

  10. Effects of dwarf mistletoe on stand structure of lodgepole pine forests 21-28 years post-mountain pine beetle epidemic in central Oregon

    Treesearch

    Michelle C. Agne; David C. Shaw; Travis J. Woolley; Mónica E. Queijeiro-Bolaños; Mai-He. Li

    2014-01-01

    Lodgepole pine (Pinus contorta) forests are widely distributed throughout North America and are subject to mountain pine beetle (Dendroctonus ponderosae) epidemics, which have caused mortality over millions of hectares of mature trees in recent decades. Mountain pine beetle is known to influence stand structure, and has the ability to impact many forest processes....

  11. Limber Pine (Pinus flexilis James), a Flexible Generalist of Forest Communities in the Intermountain West.

    PubMed

    Windmuller-Campione, Marcella A; Long, James N

    2016-01-01

    As forest communities continue to experience interactions between climate change and shifting disturbance regimes, there is an increased need to link ecological understanding to applied management. Limber pine (Pinus flexilis James.), an understudied species of western North America, has been documented to dominate harsh environments and thought to be competitively excluded from mesic environments. An observational study was conducted using the Forest Inventory and Analysis Database (FIAD) to test the competitive exclusion hypothesis across a broad elevational and geographic area within the Intermountain West, USA. We anticipated that competitive exclusion would result in limber pine's absence from mid-elevation forest communities, creating a bi-modal distribution. Using the FIAD database, limber pine was observed to occur with 22 different overstory species, which represents a surprising number of the woody, overstory species commonly observed in the Intermountain West. There were no biologically significant relationships between measures of annual precipitation, annual temperature, or climatic indices (i.e. Ombrothermic Index) and limber pine dominance. Limber pine was observed to be a consistent component of forest communities across elevation classes. Of the plots that contained limber pine regeneration, nearly half did not have a live or dead limber pine in the overstory. However, limber pine regeneration was greater in plots with higher limber pine basal area and higher average annual precipitation. Our results suggest limber pine is an important habitat generalist, playing more than one functional role in forest communities. Generalists, like limber pine, may be increasingly important, as managers are challenged to build resistance and resilience to future conditions in western forests. Additional research is needed to understand how different silvicultural systems can be used to maintain multi-species forest communities.

  12. Successional trends of six mature shortleaf pine forests in Missouri

    Treesearch

    Michael C. Stambaugh; Rose-Marie Muzika

    2007-01-01

    Many of Missouri's mature oak-shortleaf pine (Quercus-Pinus echinata) forests are in a mid-transition stage characterized by partial pine overstory, limited pine recruitment, and minimal pine regeneration. Restoration of shortleaf pine communities at a large scale necessitates the understanding and management of natural regeneration. To...

  13. Restoring fire in lodgepole pine forests of the Intermountain west

    Treesearch

    Colin C. Hardy; Ward W. McCaughey

    1997-01-01

    We are developing new management treatments for regenerating and sustaining lodgepole pine (Pinus contorta) forests through emulation of natural disturbance processes. Lodgepole pine is the principal forest cover on over 26 million hectares in western North America. While infrequent, stand replacing fires following mountain pine beetle outbreaks are common to the...

  14. Latent resilience in ponderosa pine forest: effects of resumed frequent fire.

    PubMed

    Larson, Andrew J; Belote, R Travis; Cansler, C Alina; Parks, Sean A; Dietz, Matthew S

    2013-09-01

    Ecological systems often exhibit resilient states that are maintained through negative feedbacks. In ponderosa pine forests, fire historically represented the negative feedback mechanism that maintained ecosystem resilience; fire exclusion reduced that resilience, predisposing the transition to an alternative ecosystem state upon reintroduction of fire. We evaluated the effects of reintroduced frequent wildfire in unlogged, fire-excluded, ponderosa pine forest in the Bob Marshall Wilderness, Montana, USA. Initial reintroduction of fire in 2003 reduced tree density and consumed surface fuels, but also stimulated establishment of a dense cohort of lodgepole pine, maintaining a trajectory toward an alternative state. Resumption of a frequent fire regime by a second fire in 2011 restored a low-density forest dominated by large-diameter ponderosa pine by eliminating many regenerating lodgepole pines and by continuing to remove surface fuels and small-diameter lodgepole pine and Douglas-fir that established during the fire suppression era. Our data demonstrate that some unlogged, fire-excluded, ponderosa pine forests possess latent resilience to reintroduced fire. A passive model of simply allowing lightning-ignited fires to burn appears to be a viable approach to restoration of such forests.

  15. Forest inventory and management-based visual preference models of southern pine stands

    Treesearch

    Victor A. Rudis; James H. Gramann; Edward J. Ruddell; Joanne M. Westphal

    1988-01-01

    Statistical models explaining students' ratings of photographs of within stand forest scenes were constructed for 99 forest inventory plots in east Texas pine and oak-pine forest types. Models with parameters that are sensitive to visual preference yet compatible with forest management and timber inventories are presented. The models suggest that the density of...

  16. Fate of residual canopy trees following harvesting to underplant longleaf pine seedlings in loblolly pine stands in Georgia

    Treesearch

    Benjamin O. Knapp; G. Geoff Wang; Joan L. Walker; Robert N. Addington

    2016-01-01

    Over the past few decades, reports of forest health problems have concerned scientists and forest managers in loblolly pine forests of the southeastern United States. Several interacting factors likely contribute to observed reductions in loblolly pine health, including low resource availability on many upland sites that were once dominated by longleaf pine. Currently...

  17. Does tree diversity increase wood production in pine forests?

    PubMed

    Vilà, Montserrat; Vayreda, Jordi; Gracia, Carles; Ibáñez, Joan Josep

    2003-04-01

    Recent experimental advances on the positive effect of species richness on ecosystem productivity highlight the need to explore this relationship in communities other than grasslands and using non-synthetic experiments. We investigated whether wood production in forests dominated by Aleppo pine (Pinus halepensis) and Pyrenean Scots pine (Pinus sylvestris) differed between monospecific and mixed forests (2-5 species) using the Ecological and Forest Inventory of Catalonia (IEFC) database which contains biotic and environmental characteristics for 10,644 field plots distributed within a 31,944 km(2) area in Catalonia (NE Spain). We found that in Pyrenean Scots pine forests wood production was not significantly different between monospecific and mixed plots. In contrast, in Aleppo pine forests wood production was greater in mixed plots than in monospecific plots. However, when climate, bedrock types, radiation and successional stage per plot were included in the analysis, species richness was no longer a significant factor. Aleppo pine forests had the highest productivity in plots located in humid climates and on marls and sandstone bedrocks. Climate did not influence wood production in Pyrenean Scots pine forests, but it was highest on sandstone and consolidated alluvial materials. For both pine forests wood production was negatively correlated with successional stage. Radiation did not influence wood production. Our analysis emphasizes the influence of macroenvironmental factors and temporal variation on tree productivity at the regional scale. Well-conducted forest surveys are an excellent source of data to test for the association between diversity and productivity driven by large-scale environmental factors.

  18. Forecasts of forest conditions

    Treesearch

    Robert Huggett; David N. Wear; Ruhong Li; John Coulston; Shan Liu

    2013-01-01

    Key FindingsAmong the five forest management types, only planted pine is expected to increase in area. In 2010 planted pine comprised 19 percent of southern forests. By 2060, planted pine is forecasted to comprise somewhere between 24 and 36 percent of forest area.Although predicted rates of change vary, all forecasts reveal...

  19. Longleaf Pine Forests...in the Mountains?

    Treesearch

    Morgan Varner

    1999-01-01

    While most people familiar with Alabama's forests associate longleaf pine with the gently rolling hills of lower Alabama, longleaf pine forests extend up into the hills, ridges and mountains of north Alabama. These forests, termed "montane" or "mountain longleaf," still thrive in several spots, but are becoming increasingly rare. These rare...

  20. Limber Pine (Pinus flexilis James), a Flexible Generalist of Forest Communities in the Intermountain West

    PubMed Central

    Windmuller-Campione, Marcella A.; Long, James N.

    2016-01-01

    As forest communities continue to experience interactions between climate change and shifting disturbance regimes, there is an increased need to link ecological understanding to applied management. Limber pine (Pinus flexilis James.), an understudied species of western North America, has been documented to dominate harsh environments and thought to be competitively excluded from mesic environments. An observational study was conducted using the Forest Inventory and Analysis Database (FIAD) to test the competitive exclusion hypothesis across a broad elevational and geographic area within the Intermountain West, USA. We anticipated that competitive exclusion would result in limber pine’s absence from mid-elevation forest communities, creating a bi-modal distribution. Using the FIAD database, limber pine was observed to occur with 22 different overstory species, which represents a surprising number of the woody, overstory species commonly observed in the Intermountain West. There were no biologically significant relationships between measures of annual precipitation, annual temperature, or climatic indices (i.e. Ombrothermic Index) and limber pine dominance. Limber pine was observed to be a consistent component of forest communities across elevation classes. Of the plots that contained limber pine regeneration, nearly half did not have a live or dead limber pine in the overstory. However, limber pine regeneration was greater in plots with higher limber pine basal area and higher average annual precipitation. Our results suggest limber pine is an important habitat generalist, playing more than one functional role in forest communities. Generalists, like limber pine, may be increasingly important, as managers are challenged to build resistance and resilience to future conditions in western forests. Additional research is needed to understand how different silvicultural systems can be used to maintain multi-species forest communities. PMID:27575596

  1. White pine in the American West: A vanishing species - can we save it?

    Treesearch

    Leon F. Neuenschwander; James W. Byler; Alan E. Harvey; Geral I. McDonald; Denise S. Ortiz; Harold L. Osborne; Gerry C. Snyder; Arthur Zack

    1999-01-01

    Forest scientists ask that everyone, from the home gardener to the forest manager, help revive western white pine by planting it everywhere, even in nonforest environments such as our neighborhood streets, parks, and backyards. White pine, long ago considered the "King Pine," once dominated the moist inland forests of the Northwest, eventually spawning whole...

  2. Simulating the effects of the southern pine beetle on regional dynamics 60 years into the future

    Treesearch

    Jennifer K. Costanza; Jiri Hulcr; Frank H. Koch; Todd Earnhardt; Alexa J. McKerrow; Rob R. Dunn; Jaime A. Collazo

    2012-01-01

    We developed a spatially explicit model that simulated future southern pine beetle (Dendroctonus frontalis, SPB) dynamics and pine forest management for a real landscape over 60 years to inform regional forest management. The SPB has a considerable effect on forest dynamics in the Southeastern United States, especially in loblolly pine (...

  3. The effect of spatially variable overstory on the understory light environment of an open-canopied longleaf pine forest

    Treesearch

    Michael A. Battaglia; Pu Mou; Brian Palik; Robert J. Mitchell

    2002-01-01

    Spatial aggregation of forest structure strongly regulates understory light and its spatial variation in longleaf pine (Pinus palustris Mill.) forest ecosystems. Previous studies have demonstrated that light availability strongly influences longleaf pine seedling growth. In this study, the relationship between spatial structure of a longleaf pine...

  4. Historic forests and endemic mountain pine beetle and dwarf mistletoe

    Treesearch

    Jose Negron

    2012-01-01

    Mountain pine beetle has always been a significant disturbance agent in ponderosa and lodgepole pine forests in Colorado. Most studies have examined the impacts to forest structure associated with epidemic populations of a single disturbance agent. In this paper we address the role of endemic populations of mountain pine and their interactions with dwarf mistletoe...

  5. Vertical distribution and persistence of soil organic carbon in fire-adapted longleaf pine forests

    Treesearch

    John R. Butnor; Lisa J. Samuelson; Kurt H. Johnsen; Peter H. Anderson; Carlos A. Gonzalez Benecke; Claudia M. Boot; M. Francesca Cotrufo; Katherine A. Heckman; Jason A. Jackson; Thomas A. Stokes; Stanley J. Zarnoch

    2017-01-01

    Longleaf pine (Pinus palustris Miller) forests in the southern United States are being restored and actively managed for a variety of goals including: forest products, biodiversity, C sequestration and forest resilience in the face of repeated isturbances from hurricanes and climate change. Managed southern pine forests can be sinks for atmospheric...

  6. Ground water differences on pine and hardwood forests of the Udell Experimental Forest in Michigan.

    Treesearch

    Dean H. Urie

    1977-01-01

    Ground water recharge under hardwood and pine forests was measured from 1962 to 1971 on the Udell Experimental Forest in Michigan. Hardwood forests produced more net ground water than pine forests by an average of 50 and 100 mm/year, using two methods of analysis. Shallow water-table lands yield 80 to 100 mm/year less water than deep, well-drained sands. Water yield...

  7. Description of Vegetation in Several Periodically Burned Longleaf Pine Forests on the Kisatchie National Forest

    Treesearch

    James D. Haywood; Finis L. Harris

    1999-01-01

    Abstract - In January 1993, the Kisatchie National Forest and Southern Research Station began a cooperative project on two Ranger Districts to monitor how prescribed burning affects tree, shrub, and herbaceous vegetation in upland longleaf pine (Pinus palustris Mill.) forests in Louisiana. Longleaf pine is the dominant species on...

  8. Contributions of silvicultural studies at Fort Valley to watershed management of Arizona's ponderosa pine forests (P-53)

    Treesearch

    Gerald J. Gottfried; Peter F. Ffolliott; Daniel G. Neary

    2008-01-01

    Watershed management and water yield augmentation have been important objectives for chaparral, ponderosa pine, and mixed conifer management in Arizona and New Mexico. The ponderosa pine forests and other vegetation types generally occur in relatively high precipitation zones where the potential for increased water yields is great. The ponderosa pine forests have been...

  9. Photosynthetically active radiation measurements in pure pine and mixed pine forests in Poland

    Treesearch

    Jaroslaw Smialkowski

    1998-01-01

    Photosynthetically active radiation (PAR) has been measured in pure pine and mixed pine forests on 15 sites in two transects in Poland: the "climatic" (from the western to the eastern border), and the "Silesian" (from the most to the less polluted part of the country). PAR was measured by using the standard procedure developed by the USDA Forest...

  10. Contributions of silvicultural studies at Fort Valley to watershed management of Arizona's ponderosa pine forests

    Treesearch

    Gerald J. Gottfried; Peter F. Ffolliott; Daniel G. Neary

    2008-01-01

    Watershed management and water yield augmentation have been important objectives for chaparral, ponderosa pine, and mixed conifer management in Arizona and New Mexico. The ponderosa pine forests and other vegetation types generally occur in relatively high precipitation zones where the potential for increased water yields is great. The ponderosa pine forests have been...

  11. Blister rust control in the management of western white pine

    Treesearch

    Kenneth P. Davis; Virgil D. Moss

    1940-01-01

    The forest industry of the western white pine region depends on the production of white pine as a major species on about 2,670,000 acres of commercial forest land. Continued production of this species and maintenance of the forest industry at anything approaching its present level is impossible unless the white pine blister rust is controlled. Existing merchantable...

  12. Protecting and restoring longleaf pine forests on the Kisatchie National Forest in Louisiana

    Treesearch

    James D. Haywood; Michael Elliot-Smith; Finis Harris; Alton Martin

    2000-01-01

    Longleaf pine (Pinus palustris Mill.) forests once constituted a major ecosystem in the Southern United States stretching from southeastern Virginia south to central Florida and west into East Texas. These forests covered a wide range of site conditions, from wet pine flatwoods to dry mountain slopes. Intensive exploitation reduced the extent of old-...

  13. Measuring moisture dynamics to predict fire severity in longleaf pine forests.

    Treesearch

    Sue A. Ferguson; Julia E. Ruthford; Steven J. McKay; David Wright; Clint Wright; Roger Ottmar

    2002-01-01

    To understand the combustion limit of biomass fuels in a longleaf pine (Pinus palustris) forest, an experiment was conducted to monitor the moisture content of potentially flammable forest floor materials (litter and duff) at Eglin Air Force Base in the Florida Panhandle. While longleaf pine forests are fire dependent ecosystems, a long history of...

  14. Role of fire in restoration of a ponderosa pine forest, Washington

    Treesearch

    Richy J. Harrod; Richard W. Fonda; Mara K. McGrath

    2007-01-01

    Ponderosa pine forests in the Eastern Cascades of Washington support dense, overstocked stands in which crown fires are probable, owing to postsettlement sheep grazing, logging, and fire exclusion. In 1991, the Okanogan-Wenatchee National Forests began to apply long-term management techniques to reverse postsettlement changes in ponderosa pine forests. For 9 years, the...

  15. Understanding ponderosa pine forest-grassland vegetation dynamics at Fort Valley Experimental Forest using phytolith analysis

    Treesearch

    Becky K. Kerns; Margaret M. Moore; Stephen C. Hart

    2008-01-01

    In the last century, ponderosa pine forests in the Southwest have changed from more open park-like stands of older trees to denser stands of younger, small-diameter trees. Considerable information exists regarding ponderosa pine forest fire history and recent shifts in stand structure and composition, yet quantitative studies investigating understory reference...

  16. Grazing Potential of Louisiana Pine Forest-Ranges

    Treesearch

    Herbert S. Sternitzke

    1975-01-01

    Louisiana's 5 million acres of pine forest-range have an estimated forage potential for 135,776 yearlong cow-calf units. Two-thirds of the units can be sustained on loblolly-shortleaf pine ranges; the rest, on longleaf-slash pine ranges.

  17. Limber pine forests on the leading edge of white pine blister rust distribution in Northern Colorado

    Treesearch

    Jennifer G. Klutsch; Betsy A. Goodrich; Anna W. Schoettle

    2011-01-01

    The combined threats of the current mountain pine beetle (Dendroctonus ponderosae, MPB) epidemic with the imminent invasion of white pine blister rust (caused by the non-native fungus Cronartium ribicola, WPBR) in limber pine (Pinus flexilis) forests in northern Colorado threatens the limber pine's regeneration cycle and ecosystem function. Over one million...

  18. Plant and bird diversity in natural forests and in native and exotic plantations in NW Portugal

    NASA Astrophysics Data System (ADS)

    Proença, Vânia M.; Pereira, Henrique M.; Guilherme, João; Vicente, Luís

    2010-03-01

    Forest ecosystems have been subjected to continuous dynamics between deforestation and forestation. Assessing the effects of these processes on biodiversity could be essential for conservation planning. We analyzed patterns of species richness, diversity and evenness of plants and birds in patches of natural forest of Quercus spp. and in stands of native Pinus pinaster and exotic Eucalyptus globulus in NW Portugal. We analyzed data of forest and non-forest species separately, at the intra-patch, patch and inter-patch scales. Forest plant richness, diversity and evenness were higher in oak forest than in pine and eucalypt plantations. In total, 52 species of forest plants were observed in oak forest, 33 in pine plantation and 28 in eucalypt plantation. Some forest species, such as Euphorbia dulcis, Omphalodes nitida and Eryngium juresianum, were exclusively or mostly observed in oak forest. Forest bird richness and diversity were higher in both oak and pine forests than in eucalypt forest; evenness did not differ among forests. In total, 16 species of forest birds were observed in oak forest, 18 in pine forest and 11 in eucalypt forest. Species such as Certhia brachydactyla, Sitta europaea and Dendrocopos major were common in oak and/or pine patches but were absent from eucalypt stands. Species-area relationships of forest plants and forest birds in oak patches had consistently a higher slope, at both the intra and inter-patch scales, than species-area relationships of forest species in plantations and non-forest species in oak forest. These findings demonstrate the importance of oak forest for the conservation of forest species diversity, pointing the need to conserve large areas of oak forest due to the apparent vulnerability of forest species to area loss. Additionally, diversity patterns in pine forest were intermediate between oak forest and eucalypt forest, suggesting that forest species patterns may be affected by forest naturalness.

  19. A presettlement fire history in an oak-pine forest near Basin Lake, Algonquin Park, Ontario

    Treesearch

    Richard P. Guyette; Daniel C. Dey

    1995-01-01

    Fire scars from natural remnants of red pine (Pinus resinosa Ait.) in an oak-pine forest near Basin Lake, Algonquin Park, Ontario, were dated using dendrochronological methods. A fire scar chronology was constructed from 28 dated fire scars on 26 pine remnants found in a 1 km2 area of this forest. From pith and outside ring...

  20. Has Virginia pine declined? The use of Forest Health Monitoring and other information in the determination

    Treesearch

    William G. Burkman; William A. Bechtold

    2000-01-01

    This paper examines the current status of Virginia pine, focusing on Forest Health Monitoring (FHM) results and using Forest Inventory and Analysis (FIA) information to determine if Virginia pine is showing a decline. An examination of crown condition data from live trees in the FHM program from 1991 through 1997 showed that Virginia pine had significantly...

  1. Has Virginia pine declined? The use of forest health monitoring and other information in the determination

    Treesearch

    William G. Burkman; William A. Bechtold

    2000-01-01

    This paper examines the current status of Virginia pine, focusing on Forest Health Monitoring (FHM) results and using Forest Inventory and Analysis (FIA) information to determine if Virginia pine is showing a decline. An examination of crown condition data from live trees in the FHM program from 1991 through 1997 showed that Virginia pine had significantly poorer crown...

  2. Southern Pine Beetle Information System (SPBIS)

    Treesearch

    Valli Peacher

    2011-01-01

    The southern pine beetle (SPB) is the most destructive forest insect in the South. The SPB attacks all species of southern pine, but loblolly and shortleaf are most susceptible. The Southern Pine Beetle Information System (SPBIS) is the computerized database used by the national forests in the Southern Region for tracking individual southern pine beetle infestations....

  3. Effects of exotic species on Yellowstone's grizzly bears

    USGS Publications Warehouse

    Reinhart, Daniel P.; Haroldson, Mark A.; Mattson, D.J.; Gunther, Kerry A.

    2001-01-01

    Humans have affected grizzly bears (Ursus arctos horribilis) by direct mortality, competition for space and resources, and introduction of exotic species. Exotic organisms that have affected grizzly bears in the Greater Yellowstone Area include common dandelion (Taraxacum officinale), nonnative clovers (Trifolium spp.), domesticated livestock, bovine brucellosis (Brucella abortus), lake trout (Salvelinus namaycush), and white pine blister rust (Cronartium ribicola). Some bears consume substantial amounts of dandelion and clover. However, these exotic foods provide little digested energy compared to higher-quality bear foods. Domestic livestock are of greater energetic value, but use of this food by bears often leads to conflicts with humans and subsequent increases in bear mortality. Lake trout, blister rust, and brucellosis diminish grizzly bears foods. Lake trout prey on native cutthroat trout (Oncorhynchus clarkii) in Yellowstone Lake; white pine blister rust has the potential to destroy native whitebark pine (Pinus albicaulis) stands; and management response to bovine brucellosis, a disease found in the Yellowstone bison (Bison bison) and elk (Cervus elaphus), could reduce populations of these 2 species. Exotic species will likely cause more harm than good for Yellowstone grizzly bears. Managers have few options to mitigate or contain the impacts of exotics on Yellowstone's grizzly bears. Moreover, their potential negative impacts have only begun to unfold. Exotic species may lead to the loss of substantial highquality grizzly bear foods, including much of the bison, trout, and pine seeds that Yellowstone grizzly bears currently depend upon.

  4. Resistance to wildfire and early regeneration in natural broadleaved forest and pine plantation

    NASA Astrophysics Data System (ADS)

    Proença, Vânia; Pereira, Henrique M.; Vicente, Luís

    2010-11-01

    The response of an ecosystem to disturbance reflects its stability, which is determined by two components: resistance and resilience. We addressed both components in a study of early post-fire response of natural broadleaved forest ( Quercus robur, Ilex aquifolium) and pine plantation ( Pinus pinaster, Pinus sylvestris) to a wildfire that burned over 6000 ha in NW Portugal. Fire resistance was assessed from fire severity, tree mortality and sapling persistence. Understory fire resistance was similar between forests: fire severity at the surface level was moderate to low, and sapling persistence was low. At the canopy level, fire severity was generally low in broadleaved forest but heterogeneous in pine forest, and mean tree mortality was significantly higher in pine forest. Forest resilience was assessed by the comparison of the understory composition, species diversity and seedling abundance in unburned and burned plots in each forest type. Unburned broadleaved communities were dominated by perennial herbs (e.g., Arrhenatherum elatius) and woody species (e.g., Hedera hibernica, Erica arborea), all able to regenerate vegetatively. Unburned pine communities presented a higher abundance of shrubs, and most dominant species relied on post-fire seeding, with some species also being able to regenerate vegetatively (e.g., Ulex minor, Daboecia cantabrica). There were no differences in diversity measures in broadleaved forest, but burned communities in pine forest shared less species and were less rich and diverse than unburned communities. Seedling abundance was similar in burned and unburned plots in both forests. The slower reestablishment of understory pine communities is probably explained by the slower recovery rate of dominant species. These findings are ecologically relevant: the higher resistance and resilience of native broadleaved forest implies a higher stability in the maintenance of forest processes and the delivery of ecosystem services.

  5. Longleaf pine forests and woodlands: old growth under fire!

    Treesearch

    Joan L. Walker

    1999-01-01

    The author discusses a once widespread forest type of the Southeast – longleaf pine dominated forests and woodlands. This system depends on fire – more or less frequent, and often of low intensity. Because human-mediated landscape fragmentation has drastically changed the behavior of fire on longleaf pine dominated landscapes, these forests and woodlands will never be...

  6. Forest changes since Euro-American settlement and ecosystem restoration in the Lake Tahoe Basin, USA

    Treesearch

    Alan H. Taylor

    2007-01-01

    Pre Euro-American settlement forest structure and fire regimes for Jeffrey pine-white fir, red fir-western white pine, and lodgepole pine forests were quantified using stumps from trees cut in the 19th century to establish a baseline reference for ecosystem management in the Lake Tahoe Basin. Contemporary forests varied in different ways compared...

  7. Forest floor fuels in red and jack pine stands

    Treesearch

    James K. Brown

    1966-01-01

    An investigation to determine the quantity and density of forest floor fuels in red pine (Pinus resinosa Ait.) and jack pine (Pinus banksiana Lamb.) stands was conducted on National Forests in Michigan and Minnesota. The study was designed to answer three questions: How much fuel per acre exits in individual layers of the forest floor? How reliably can weight of...

  8. Deriving biomass models for small-diameter loblolly pine on the Crossett Experimental Forest

    Treesearch

    K.M. McElligott; D.C. Bragg

    2013-01-01

    Foresters and landowners have a growing interest in carbon sequestration and cellulosic biofuels in southern pine forests, and hence need to be able to accurately predict them. To this end, we derived a set of aboveground biomass models using data from 62 small-diameter loblolly pines (Pinus taeda) sampled on the Crossett Experimental Forest in...

  9. Understanding ponderosa pine forest-grassland vegetation dynamics at Fort Valley Experimental Forest using phytolith analysis (P-53)

    Treesearch

    Becky K. Kerns; Margaret M. Moore; Stephen C. Hart

    2008-01-01

    In the last century, ponderosa pine forests in the Southwest have changed from more open park-like stands of older trees to denser stands of younger, smalldiameter trees. Considerable information exists regarding ponderosa pine forest fire history and recent shifts in stand structure and composition, yet quantitative studies investigating understory reference...

  10. Restoring fire-adapted forested ecosystems—research in longleaf pine on the Kisatchie National Forest.

    Treesearch

    James D. Haywood

    2007-01-01

    Prescribed burning research on the Kisatchie National Forest, Louisiana spanned the last five decades and led to a greater understanding of fire behavior and the importance of burning in longleaf pine (Pinus palustris P. Mill.) forests. Early research found that biennial burning in May favored the growth of longleaf pine seedlings. However, burning...

  11. Impact Assessment of Pine Wilt Disease Using the Species Distribution Model and the CLIMEX Model

    NASA Astrophysics Data System (ADS)

    KIM, J. U.; Jung, H.

    2016-12-01

    The plant disease triangle consists of the host plant, pathogen and environment, but their interaction has not been considered in climate change adaptation policy. Our objectives are to predict the changes of a coniferous forest, pine wood nematodes (Bursaphelenchus xylophilus) and pine sawyer beetles (Monochamus spp.), which is a cause of pine wilt disease in the Republic of Korea. We analyzed the impact of pine wilt disease on climate change by using the species distribution model (SDM) and the CLIMEX model. Area of coniferous forest will decline and move to northern and high-altitude area. But pine wood nematodes and pine sawyer beetles are going to spread because they are going to be in a more favorable environment in the future. Coniferous forests are expected to have high vulnerability because of the decrease in area and the increase in the risk of pine wilt disease. Such changes to forest ecosystems will greatly affect climate change in the future. If effective and appropriate prevention and control policies are not implemented, coniferous forests will be severely damaged. An adaptation policy should be created in order to protect coniferous forests from the viewpoint of biodiversity. Thus we need to consider the impact assessment of climate change for establishing an effective adaptation policy. The impact assessment of pine wilt disease using a plant disease triangle drew suitable results to support climate change adaptation policy.

  12. Final Environmental Assessment, Construct Guard House at Cape Cod Air Force Station, Massachusetts

    DTIC Science & Technology

    2004-01-01

    Pine - Scrub Oak Forest Northern Pine Barren with Oak Forest... barren vegetation communities were identified on Cape Cod AFS, pitch pine – scrub oak barren and northern pine barren with oak trees. The majority of...area on the east side of the access road just north of the installation is northern pine barren with oak trees. Pitch pine and scarlet oak

  13. Treatments that enhance the decomposition of forest fuels for use in partially harvested stands in the moist forests of the northern Rocky Mountains (Priest River Experimental Forest)

    Treesearch

    Russell T. Graham; Theresa B. Jain

    2007-01-01

    The moist forests of the Rocky Mountains typically support late seral western hemlock, moist grand fir, or western redcedar forests. In addition to these species, Douglas-fir, western white pine, western larch, ponderosa pine, and lodgepole pine can occur creating a multitude of species compositions, structures, and successional stages that can be arrayed in a variety...

  14. A Comparison of the Ecological Effects of Herbicide and Prescribed Fire in a Mature Longleaf Pine Forest: Response of Juvenile and Overstory Pine

    Treesearch

    Jennifer L. Gagnon; Steven B. Jack

    2004-01-01

    Prescribed fire may be removed as a forest management tool by regulatory agencies concerned about air quality issues. Herbicides have been proposed as substitutes for prescribed fires in southern pine forests, but we are aware of no studies that examine the effects of herbicide application in mature, fire maintained longleaf pine (Pinus palustris...

  15. Climate Change and Ecosystem Services Output Efficiency in Southern Loblolly Pine Forests.

    PubMed

    Susaeta, Andres; Adams, Damian C; Carter, Douglas R; Dwivedi, Puneet

    2016-09-01

    Forests provide myriad ecosystem services that are vital to humanity. With climate change, we expect to see significant changes to forests that will alter the supply of these critical services and affect human well-being. To better understand the impacts of climate change on forest-based ecosystem services, we applied a data envelopment analysis method to assess plot-level efficiency in the provision of ecosystem services in Florida natural loblolly pine (Pinus taeda L.) forests. Using field data for n = 16 loblolly pine forest plots, including inputs such as site index, tree density, age, precipitation, and temperatures for each forest plot, we assessed the relative plot-level production of three ecosystem services: timber, carbon sequestered, and species richness. The results suggested that loblolly pine forests in Florida were largely inefficient in the provision of these ecosystem services under current climatic conditions. Climate change had a small negative impact on the loblolly pine forests efficiency in the provision of ecosystem services. In this context, we discussed the reduction of tree density that may not improve ecosystem services production.

  16. Climate Change and Ecosystem Services Output Efficiency in Southern Loblolly Pine Forests

    NASA Astrophysics Data System (ADS)

    Susaeta, Andres; Adams, Damian C.; Carter, Douglas R.; Dwivedi, Puneet

    2016-09-01

    Forests provide myriad ecosystem services that are vital to humanity. With climate change, we expect to see significant changes to forests that will alter the supply of these critical services and affect human well-being. To better understand the impacts of climate change on forest-based ecosystem services, we applied a data envelopment analysis method to assess plot-level efficiency in the provision of ecosystem services in Florida natural loblolly pine ( Pinus taeda L.) forests. Using field data for n = 16 loblolly pine forest plots, including inputs such as site index, tree density, age, precipitation, and temperatures for each forest plot, we assessed the relative plot-level production of three ecosystem services: timber, carbon sequestered, and species richness. The results suggested that loblolly pine forests in Florida were largely inefficient in the provision of these ecosystem services under current climatic conditions. Climate change had a small negative impact on the loblolly pine forests efficiency in the provision of ecosystem services. In this context, we discussed the reduction of tree density that may not improve ecosystem services production.

  17. Algological and Mycological Characterization of Soils under Pine and Birch Forests in the Pasvik Reserve

    NASA Astrophysics Data System (ADS)

    Korneikova, M. V.; Redkina, V. V.; Shalygina, R. R.

    2018-02-01

    The structure of algological and mycological complexes in Al-Fe-humus podzols (Albic Podzols) under pine and birch forests of the Pasvik Reserve is characterized. The number of micromycetes is higher in more acid soils of the pine forest, while the species diversity is greater under the birch forest. The genus Penicillium includes the largest number of species. The greatest abundance and occurrence frequency are typical for Penicillium spinulosum, P. glabrum, and Trichoderma viride in pine forest and for Umbelopsis isabellina, Mucor sp., Mortierella alpina, P. glabrum, Aspergillus ustus, Trichoderma viride, and T. koningii in birch forest. Cyanobacteria-algal cenoses of the investigated soils are predominated by green algae. Soils under birch forest are distinguished by a greater diversity of algal groups due to the presence of diatoms and xanthophytes. Species of frequent occurrence are represented by Pseudococcomyxa simplex and Parietochloris alveolaris in soils of the pine forest and by Tetracystis cf. aplanospora, Halochlorella rubescens, Pseudococcomyxa simplex, Fottea stichococcoides, Klebsormidium flaccidum, Hantzschia amphioxys, Microcoleus vaginatus, and Aphanocapsa sp. in soils under birch forest

  18. Quantitative Classification and Environmental Interpretation of Secondary Forests 18 Years After the Invasion of Pine Forests by Bursaphelenchus xylophilus (Nematoda: Aphelenchoididae) in China

    PubMed Central

    Wang, Zhuang; Luo, You-Qing; Shi, Juan; Gao, Ruihe; Wang, Guoming

    2014-01-01

    Abstract With growing concerns over the serious ecological problems in pine forests ( Pinus massoniana , P. thunbergii ) caused by the invasion of Bursaphelenchus xylophilus (the pine wood nematode), a particular challenge is to determine the succession and restoration of damaged pine forests in Asia. We used two-way indicator species analysis and canonical correlation analysis for the hierarchical classification of existing secondary forests that have been restored since the invasion of B. xylophilus 18 years ago. Biserial correlation analysis was used to relate the spatial distribution of species to environmental factors. After 18 years of natural recovery, the original pine forest had evolved into seven types of secondary forest. Seven environmental factors, namely soil depth, humus depth, soil pH, aspect, slope position, bare rock ratio, and distance to the sea, were significantly correlated with species distribution. Furthermore, we proposed specific reform measures and suggestions for the different types of secondary forest formed after the damage and identified the factors driving the various forms of restoration. These results suggest that it is possible to predict the restoration paths of damaged pine forests, which would reduce the negative impact of B. xylophilus invasions. PMID:25527600

  19. Pine dwarfmistletoe on the Pringle Falls Experimental Forest.

    Treesearch

    L.F. Roth

    1953-01-01

    Dwarfmistletoe (Arceuthobium campylopodum forma typicum (Engelm.) Gill) is widespread in the ponderosa pine forests of Oregon and Washington. The importance of dwarfmistletoe as a damaging agent in the pine forest of the Pacific Northwest was described by Weir in 1916. In some localities present infestations are so heavy that...

  20. Managing Gambel oak in southwestern ponderosa pine forests: the status of our knowledge

    Treesearch

    Scott R. Abella

    2008-01-01

    Gambel oak (Quercus gambelii) is a key deciduous species in southwestern ponderosa pine (Pinus ponderosa) forests and is important for wildlife habitat, soil processes, and human values. This report (1) summarizes Gambel oak's biological characteristics and importance in ponderosa pine forests, (2) synthesizes literature on...

  1. Forest development and carbon dynamics after mountain pine beetle outbreaks

    Treesearch

    E. Matthew Hansen

    2014-01-01

    Mountain pine beetles periodically infest pine forests in western North America, killing many or most overstory pine stems. The surviving secondary stand structure, along with recruited seedlings, will form the future canopy. Thus, even-aged pine stands become multiaged and multistoried. The species composition of affected stands will depend on the presence of nonpines...

  2. Mathematical model of forest succession and land use for the North Carolina Piedmont

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, W.C.

    1977-01-01

    A linear, constant-coefficient compartment model was constructed to simulate temporal changes in the areal extent of major forest types in the North Carolina Piedmont. Model structure and transfer coefficients were derived from published ecological literature and available USDA Forest Service statistical summaries. The results show the importance of old-field abandonment to the perpetuation of extensive loblolly pine (Pinus taeda) forests in the Piedmont. Should abandonment cease, post-harvest treatment and planting of loblolly pine would have to be increased considerably over current levels to maintain an extensive loblolly pine forest type. Extrapolation of current rates of change forward 250 years wouldmore » result in a sizeable increase in the area of loblolly pine and loblolly pine-oak types, a slight increase in oak-hickory, a sizeable decline in shortleaf and Virginia pine (Pinus echinata, Pinus virginiana, resp.) types and a slight decline for other mixed pine-hardwood and lowland and dry upland hardwood categories compared to current conditions. The technique can be a useful tool either to assess some long-term effects of present management and use trends or to suggest strategies necessary to obtain a desired regional mixture of forest types.« less

  3. Snow interception, accumulation, accumulation, and melt in lodgepole pine forests in the Blue Mountains of eastern Oregon.

    Treesearch

    Norman H. Miner; James M. Trappe

    1957-01-01

    Lodgepole pine (Pinus contorta) forests in the Blue Mountains of eastern Oregon occupy important water-producing lands. These forests generally occur at middle to high elevations on north slopes, where a substantial portion of the precipitation is snow. To learn more about the influence of lodgepole pine forests on accumulation of mow and rate of...

  4. Proceedings of the ninth Lake States Forest Tree Improvement Conference, August 22-23, 1969.

    Treesearch

    USDA

    1970-01-01

    Presents nine papers concerning recent research in forest genetics, physiology, and allied fields. Species discussed include Scotch pine, red pine, jack pine, white pine, larch, white spruce, black spruce, balsam fir, yellow birch, sugar maple, red oak, American elm, and aspen.

  5. Availability of yellow pine sawtimber in Alabama

    Treesearch

    William H. McWilliams

    1991-01-01

    Alabama's timberland supports 76.2 billion board feet of sawtimber (International 1/4-inch Rule), of which 55 percent is contributed by yellow pine species. Currently, yellow pine sawtimber volume totals 41.8 billion board feet. The recent inventory conducted by the USDA-Forest Service, Southern Forest Experiment Station, Forest Inventory and Analysis Unit (SO-...

  6. Price and Welfare Effects of Catastrophic Forest Damage from Southern Pine Beetle Epidemics

    Treesearch

    Thomas P. Holmes

    1991-01-01

    Southern pine beetle (Dendroctonus frontalis) epidemics are periodically responsible for catastrophic levels of mortality to southern yellow pine forests. Traditional forest damage appraisal techniques developed for site specific economic analysis are theoretically weak since they do not consider aggregate impacts across ecosystems and related markets. Because the...

  7. Predicting small-diameter loblolly pine aboveground biomass in naturally regenerated stands

    Treesearch

    Kristin M. McElligott; Don C. Bragg; Jamie L. Schuler

    2015-01-01

    There is growing interest in managing southern pine forests for both carbon sequestration and bioenergy. For instance, thinning otherwise unmerchantable trees in naturally regenerated pine-dominated forests should generate biomass without conflicting with more traditional forest products. However, we lack the tools to accurately quantify the biomass in these...

  8. Associations among breeding birds and gambel oak in Southwestern ponderosa pine forests

    Treesearch

    Stephanie Jentsch; R. William Mannan; Brett G. Dickson; William M. Block

    2008-01-01

    Ponderosa pine (Pinus ponderosa) forests with Gambel oak (Quercus gambelii) are associated with higher bird abundance and diversity than are ponderosa pine forests lacking Gambel oak. Little is known, however, about specific structural characteristics of Gambel oak trees, clumps, and stands that may be important to birds in...

  9. Financial results of ponderosa pine forest restoration in southwestern Colorado

    Treesearch

    Dennis L. Lynch

    2001-01-01

    From 1996 to 1998, the Ponderosa Pine Partnership conducted an experimental forest restoration project on 493 acres of small diameter ponderosa pine in the San Juan National Forest, Montezuma County, Colorado. The ecological basis and the financial analysis for this project are discussed. Specific financial results of the project including products sold, revenues...

  10. Fire effects on Gambel oak in southwestern ponderosa pine-oak forests

    Treesearch

    Scott R. Abella; Peter Z. Fulé

    2008-01-01

    Gambel oak (Quercus gambelii) is ecologically and aesthetically valuable in southwestern ponderosa pine (Pinus ponderosa) forests. Fire effects on Gambel oak are important because fire may be used in pine-oak forests to manage oak directly or to accomplish other management objectives. We used published literature to: (1) ascertain...

  11. Regenerating the Natural Longleaf Pine Forest

    Treesearch

    William D. Boyer

    1979-01-01

    Natural regeneration by the shldterwood system is a reliable, low-cost alternative for existing longleaf pine (Pine palustris Mill.) forests. The system is well suited to the nautral attributes and requirements of the species. It may be attractive to landownders wishing to retain a natural forest and aboid high costs of site preparation and...

  12. Species composition influences management outcomes following mountain pine beetle in lodgepole pine-dominated forests

    Treesearch

    Kristen Pelz; C. C. Rhoades; R. M. Hubbard; M. A. Battaglia; F. W. Smith

    2015-01-01

    Mountain pine beetle outbreaks have killed lodgepole pine on more than one million hectares of Colorado and southern Wyoming forest during the last decade and have prompted harvest operations throughout the region. In northern Colorado, lodgepole pine commonly occurs in mixed stands with subalpine fir, Engelmann spruce, and aspen. Variation in tree species composition...

  13. Determining fire history from old white pine stumps in an oak-pine forest

    Treesearch

    Richard P. Guyette; Daniel C. Dey; Chris McDonell

    1995-01-01

    Fire scars on stumps of white pine (Pinus strobus L.) in a red oak (Quercus rubra L.) white pine forest near Bracebridge, Ontario, were dated using dendrochronological methods. A chronological record of fires that caused basal scarring is preserved in the remnant white pine stumps, which were estimated to be up to 135 years old...

  14. Shortleaf pine (Pinus echinata Mill.) and hardwood regeneration after thinning natural shortleaf pine forests in southern United States

    Treesearch

    Anup KC; Thomas B. Lynch; James M. Guldin

    2016-01-01

    Understory pine and hardwood regeneration in the Ozark and Ouachita National Forests were measured in 1995 for the first time following thinning and hardwood control at plot establishment 1985-87. Red maple (Acer rubrum), shortleaf pine and flowering dogwood (Cornus florida) were the most frequently recorded species. Understory shortleaf pine stems have declined...

  15. Recent trends in the afforestation and reforestation of nonindustrial private pine forests in Alabama

    Treesearch

    William H. McWilliams

    1992-01-01

    A shrinking of Alabama's nonindustrial private pine forest prompted an analysis of recent trends in afforestation and regeneration. There has been an 828,100-acre addition to the nonindustrial pine-site timberland base from nonforest land uses. Planting has replaced natural seeding as the major cause of afforestation to pine. The area of nonindustrial pine-site...

  16. Effects of Dwarf Mistletoe on Stand Structure of Lodgepole Pine Forests 21-28 Years Post-Mountain Pine Beetle Epidemic in Central Oregon

    PubMed Central

    Agne, Michelle C.; Shaw, David C.; Woolley, Travis J.; Queijeiro-Bolaños, Mónica E.

    2014-01-01

    Lodgepole pine (Pinus contorta) forests are widely distributed throughout North America and are subject to mountain pine beetle (Dendroctonus ponderosae) epidemics, which have caused mortality over millions of hectares of mature trees in recent decades. Mountain pine beetle is known to influence stand structure, and has the ability to impact many forest processes. Dwarf mistletoe (Arceuthobium americanum) also influences stand structure and occurs frequently in post-mountain pine beetle epidemic lodgepole pine forests. Few studies have incorporated both disturbances simultaneously although they co-occur frequently on the landscape. The aim of this study is to investigate the stand structure of lodgepole pine forests 21–28 years after a mountain pine beetle epidemic with varying levels of dwarf mistletoe infection in the Deschutes National Forest in central Oregon. We compared stand density, stand basal area, canopy volume, proportion of the stand in dominant/codominant, intermediate, and suppressed cohorts, average height and average diameter of each cohort, across the range of dwarf mistletoe ratings to address differences in stand structure. We found strong evidence of a decrease in canopy volume, suppressed cohort height, and dominant/codominant cohort diameter with increasing stand-level dwarf mistletoe rating. There was strong evidence that as dwarf mistletoe rating increases, proportion of the stand in the dominant/codominant cohort decreases while proportion of the stand in the suppressed cohort increases. Structural differences associated with variable dwarf mistletoe severity create heterogeneity in this forest type and may have a significant influence on stand productivity and the resistance and resilience of these stands to future biotic and abiotic disturbances. Our findings show that it is imperative to incorporate dwarf mistletoe when studying stand productivity and ecosystem recovery processes in lodgepole pine forests because of its potential to influence stand structure. PMID:25221963

  17. Thirty year change in lodgepole and lodgepole/mixed conifer forest structure following 1980s mountain pine beetle outbreak in western Colorado, USA

    Treesearch

    Kristen A. Pelz; Frederick W. Smith

    2012-01-01

    Current mortality in lodgepole pine caused by mountain pine beetle (MPB) throughout much of western North America has resulted in concern about future forest structure. To better understand the long-term effects of the current mortality, and how it might differ depending on forest species composition, we measured forest vegetation and woody fuel accumulations...

  18. Mountain pine beetle infestations and Sudden Aspen Decline in Colorado: Can the Forest Inventory and Analysis annual inventory system address the issues?

    Treesearch

    Michael T. Thompson

    2009-01-01

    There are two events occurring in Colorado that are concerning forest managers in Colorado. There is severe and widespread mortality of lodgepole pine due to the mountain pine beetle and aspen forests in some areas of the state have experienced widespread, severe, and rapid crown deterioration leading to mortality. Implementation of the Forest Inventory and Analysis...

  19. Urbanization effects on soil nitrogen transformations and microbial biomass in the subtropics

    Treesearch

    Heather A. Enloe; B. Graeme Lockaby; Wayne C. Zipperer; Greg L. Somers

    2015-01-01

    As urbanization can involve multiple alterations to the soil environment, it is uncertain how urbanization effects soil nitrogen cycling. We established 22–0.04 ha plots in six different land cover types—rural slash pine (Pinus elliottii) plantations (n=3), rural natural pine forests (n=3), rural natural oak forests (n=4), urban pine forests (n=3), urban oak forests (n...

  20. An interdisciplinary, outcome-based approach to astmospheric CO2 mitigation with planted southern pine forests

    NASA Astrophysics Data System (ADS)

    Martin, T.; Fox, T.; Peter, G.; Monroe, M.

    2012-12-01

    The Pine Integrated Network: Education, Mitigation and Adaptation Project ("PINEMAP") was funded by National Institute of Food and Agriculture to produce outcomes of enhanced climate change mitigation and adaptation in planted southern pine ecosystems. The PINEMAP project leverages a strong group of existing networks to produce synergy and cooperation on applied forestry research in the region. Over the last 50 years, cooperative research on planted southern pine management among southeastern U.S. universities, government agencies, and corporate forest landowners has developed and facilitated the widespread implementation of improved genetic and silvicultural technology. The impact of these regional research cooperatives is difficult to overstate, with current members managing 55% of the privately owned planted pine forestland, and producing 95% of the pine seedlings planted each year. The PINEMAP team includes the eight major forestry cooperative research programs, scientists from eleven land grant institutions, the US Forest Service, and climate modeling and adaptation specialists associated with the multi-state SE Climate Consortium and state climate offices. Our goal is to create and disseminate the knowledge that enables landowners to: harness planted pine forest productivity to mitigate atmospheric CO2; more efficiently use nitrogen and other fertilizer inputs; and adapt their forest management to increase resilience in the face of changing climate. We integrate our team's infrastructure and expertise to: 1) develop breeding, genetic deployment and innovative management systems to increase C sequestration and resilience to changing climate of planted southern pine forests ; 2) understand interactive effects of policy, biology, and climate change on sustainable management; 3) transfer new management and genetic technologies to private industrial and non-industrial landowners; and 4) educate a diverse cross-section of the public about the relevance of forests, forest management, and climate change. These efforts will enable our stakeholders to enhance the productivity of southern pine forests, while maintaining social, economic, and ecological sustainability.

  1. Driving factors of a vegetation shift from Scots pine to pubescent oak in dry Alpine forests.

    PubMed

    Rigling, Andreas; Bigler, Christof; Eilmann, Britta; Feldmeyer-Christe, Elisabeth; Gimmi, Urs; Ginzler, Christian; Graf, Ulrich; Mayer, Philipp; Vacchiano, Giorgio; Weber, Pascale; Wohlgemuth, Thomas; Zweifel, Roman; Dobbertin, Matthias

    2013-01-01

    An increasing number of studies have reported on forest declines and vegetation shifts triggered by drought. In the Swiss Rhone valley (Valais), one of the driest inner-Alpine regions, the species composition in low elevation forests is changing: The sub-boreal Scots pine (Pinus sylvestris L.) dominating the dry forests is showing high mortality rates. Concurrently the sub-Mediterranean pubescent oak (Quercus pubescens Willd.) has locally increased in abundance. However, it remains unclear whether this local change in species composition is part of a larger-scale vegetation shift. To study variability in mortality and regeneration in these dry forests we analysed data from the Swiss national forest inventory (NFI) on a regular grid between 1983 and 2003, and combined it with annual mortality data from a monitoring site. Pine mortality was found to be highest at low elevation (below 1000 m a.s.l.). Annual variation in pine mortality was correlated with a drought index computed for the summer months prior to observed tree death. A generalized linear mixed-effects model indicated for the NFI data increased pine mortality on dryer sites with high stand competition, particularly for small-diameter trees. Pine regeneration was low in comparison to its occurrence in the overstorey, whereas oak regeneration was comparably abundant. Although both species regenerated well at dry sites, pine regeneration was favoured at cooler sites at higher altitude and oak regeneration was more frequent at warmer sites, indicating a higher adaptation potential of oaks under future warming. Our results thus suggest that an extended shift in species composition is actually occurring in the pine forests in the Valais. The main driving factors are found to be climatic variability, particularly drought, and variability in stand structure and topography. Thus, pine forests at low elevations are developing into oak forests with unknown consequences for these ecosystems and their goods and services. © 2012 Blackwell Publishing Ltd.

  2. First report of the white pine blister rust fungus, Cronartium ribicola, infecting Pinus flexilis on Pine Mountain, Humboldt National Forest, Elko County, northeastern Nevada, U.S.A.

    Treesearch

    Detlev R. Vogler; Patricia E. Maloney; Tom Burt; Jacob W. Snelling

    2017-01-01

    In 2013, while surveying for five-needle white pine cone crops in northeastern Nevada, we observed white pine blister rust, caused by the rust pathogen Cronartium ribicola Fisch., infecting branches and stems of limber pines (Pinus flexilis James) on Pine Mountain (41.76975°N, 115.61622°W), Humboldt National Forest,...

  3. Harvest Activity and Residual Pine Stocking on Prvate Timberland in Arkansas, 1978-88

    Treesearch

    William H. McWilliams

    1989-01-01

    Commercial harvesting, carried out on 39 percent of the privately owned timberland (5.3 million acres) in Arkansas from 1978-88, had a heavy impact on forest industry timberland. On a percentage basis, cutting was heaviest in pine forest types. Fifty-four percent of the heavily cut pine and mixed pine-hardwood stands were at least 60 percent stocked with pine following...

  4. Identifying "redtops": Classification of satellite imagery for tracking mountain pine beetle progression through a pine forest

    Treesearch

    Richard Cutler; Leslie Brown; James Powell; Barbara Bentz; Adele Cutler

    2003-01-01

    Mountain pine beetles (Dendroctonus ponderosae Hopkins) are a pest indigenous to the pine forests of the western United States. Capable of exponential population growth, mountain pine beetles can destroy thousands of acres of trees in a short period of time. The research reported here is part of a larger project to demonstrate the application of, and evaluate,...

  5. Interaction of an invasive bark beetle with a native forest pathogen: Potential effect of dwarf mistletoe on range expansion of mountain pine beetle in jack pine forests

    Treesearch

    Jennifer Klutsch; Nadir Erbilgin

    2012-01-01

    In recent decades, climate change has facilitated shifts in species ranges that have the potential to significantly affect ecosystem dynamics and resilience. Mountain pine beetle (Dendroctonus ponderosae) is expanding east from British Columbia, where it has killed millions of pine trees, primarily lodgepole pine (Pinus contorta...

  6. Effects of fire season on vegetation in longleaf pine (Pinus palustris) forests

    Treesearch

    Bryan T. Mudder; G. Geoff Wang; Joan L. Walker; J. Drew Lanham; Ralph Costa

    2010-01-01

    Forest managers in the Southeastern United States are interested in the restoration of not only longleaf pine (Pinus palustris) trees, but also the characteristic forest structure and ground-layer vegetation of the longleaf pine ecosystem. Season of burn, fire intensity, and fire frequency are critical components of a fire regime that supports...

  7. Needs and Opportunities for Longleaf Pine Ecosystem Restoration in Florida

    Treesearch

    Kenneth W. Outcalt

    1997-01-01

    Data from permanent plots measured periodically by Forest Inventory and Analyses of the Southern Research Station, USDA Forest Service shows a continuing decline in the longleaf pine (Pinus pulustris Mill,) ecosystem in Florida from 1987 to 1995. Conversion to some other forest type resulted in a net loss of 58,000 ha natural stands of longleaf pine...

  8. White Pine Site Index for the Southern Forest Survey

    Treesearch

    Bernard R. Parresol; John S. Vissage

    1998-01-01

    Second-growth white pine age-height data a A base-ageinvariant polymorphic site index equation was used to model the white pine (Pinus strobus L.) site-quality data provided by Frothingham (1914). These data are the accepted standard used by the Southern Forest Inventory and Analysis unit of the U.S. Department of Agriculture, Forest Service. An all...

  9. Guide to understory burning in ponderosa pine-larch-fir forests in the Intermountain West

    Treesearch

    Bruce M. Kilgore; George A. Curtis

    1987-01-01

    Summarizes the objectives, prescriptions, and techniques used in prescribed burning beneath the canopy of ponderosa pine stands, and stands of ponderosa pine mixed with western larch, Douglas-fir, and grand fir. Information was derived from 12 districts in two USDA Forest Service Regions and seven National Forests in Montana and Oregon.

  10. Changes in Gambel oak densities in southwestern ponderosa pine forests since Euro-American settlement

    Treesearch

    Scott R. Abella; Peter Z. Fulé

    2008-01-01

    Densities of small-diameter ponderosa pine (Pinus ponderosa) trees have increased in southwestern ponderosa pine forests during a period of fire exclusion since Euro-American settlement in the late 1800s. However, less well known are potential changes in Gambel oak (Quercus gambelii) densities during this period in these forests....

  11. A historical overview

    Treesearch

    Dan Scurlock; Deborah M. Finch

    1997-01-01

    This chapter reviews the historical: 1) occupancy, use of and impacts on ponderosa pine forests by early American Indians and European settlers; and 2) the human use of and impacts on birds in ponderosa pine forests. Contemporary ecology and human use of ponderosa pine forests are described in this publication by Moir et al. and Raish et al. Recent human impacts on...

  12. Lessons learned from prescribed fire in ponderosa pine forests of the southern Sierra Nevada

    Treesearch

    Karen E. Bagne; Kathryn L. Purcell

    2009-01-01

    Prescribed fire is a commonly used management tool in fire-suppressed ponderosa pine (Pinus ponderosa) forests, but effects of these fires on birds are largely unstudied. We investigated both direct and indirect impacts on breeding birds in ponderosa pine forests of the southern Sierra Nevada where fires were applied in the spring. Following...

  13. Stand structure in eastside old-growth ponderosa pine forests of Oregon and northern California.

    Treesearch

    Andrew Youngblood; Timothy Max; Kent Coe

    2004-01-01

    Quantitative metrics of horizontal and vertical structural attributes in eastside old-growth ponderosa pine (Pinus ponderosa P. and C. Lawson var. ponderosa) forests were measured to guide the design of restoration prescriptions. The age, size structure, and the spatial patterns were investigated in old-growth ponderosa pine forests at three...

  14. Effects of the amount and composition of the forest floor on emergence and early establishment of loblolly pine seedlings

    Treesearch

    Michael G. Shelton

    1995-01-01

    Five forest floor weights (0, 10, 20, 30, and 40 MgJha), three forest floor compositions (pine, pine-hardwood, and hardwood), and two seed placements (forest floor and soil surface) were tested in a three-factorial. split-plot design with four incomplete, randomized blocks. The experiment was conducted in a nursery setting and used wooden frames to define 0.145-m

  15. Assessing the impact of a mountain pine beetle infestation on stand structure of lodgepole pine forests in Colorado using the Forest Inventory and Analysis Annual forest inventory

    Treesearch

    Michael T. Thompson

    2017-01-01

    The Forest Inventory and Analysis (FIA) annual inventory system began in Colorado in 2002, which coincided with the onset of a major mountain pine beetle (Dendroctonus ponderosae) epidemic. The mortality event, coupled with 11 years of annual inventory data, provided an opportunity to assess the usefulness of the FIA annual inventory system for quantifying the effects...

  16. Dietary breadth of grizzly bears in the Greater Yellowstone Ecosystem

    USGS Publications Warehouse

    Gunther, Kerry A.; Shoemaker, Rebecca; Frey, Kevin L.; Haroldson, Mark A.; Cain, Steven L.; van Manen, Frank T.; Fortin, Jennifer K.

    2014-01-01

    Grizzly bears (Ursus arctos) in the Greater Yellowstone Ecosystem (GYE) are opportunistic omnivores that eat a great diversity of plant and animal species. Changes in climate may affect regional vegetation, hydrology, insects, and fire regimes, likely influencing the abundance, range, and elevational distribution of the plants and animals consumed by GYE grizzly bears. Determining the dietary breadth of grizzly bears is important to document future changes in food resources and how those changes may affect the nutritional ecology of grizzlies. However, no synthesis exists of all foods consumed by grizzly bears in the GYE. We conducted a review of available literature and compiled a list of species consumed by grizzly bears in the GYE. We documented >266 species within 200 genera from 4 kingdoms, including 175 plant, 37 invertebrate, 34 mammal, 7 fungi, 7 bird, 4 fish, 1 amphibian, and 1 algae species as well as 1 soil type consumed by grizzly bears. The average energy values of the ungulates (6.8 kcal/g), trout (Oncorhynchus spp., 6.1 kcal/g), and small mammals (4.5 kcal/g) eaten by grizzlies were higher than those of the plants (3.0 kcal/g) and invertebrates (2.7 kcal/g) they consumed. The most frequently detected diet items were graminoids, ants (Formicidae), whitebark pine seeds (Pinus albicaulis), clover (Trifolium spp.), and dandelion (Taraxacum spp.). The most consistently used foods on a temporal basis were graminoids, ants, whitebark pine seeds, clover, elk (Cervus elaphus), thistle (Cirsium spp.), and horsetail (Equisetum spp.). Historically, garbage was a significant diet item for grizzlies until refuse dumps were closed. Use of forbs increased after garbage was no longer readily available. The list of foods we compiled will help managers of grizzly bears and their habitat document future changes in grizzly bear food habits and how bears respond to changing food resources.

  17. Sensitivity of pine flatwoods hydrology to climate change and forest management in Florida, USA

    Treesearch

    Jianbiao Lu; Ge Sun; Steven G. McNulty; Nicholas B. Comerford

    2009-01-01

    Pine flatwoods (a mixture of cypress wetlands and managed pine uplands) is an important ecosystem in the southeastern U.S. However, long-term hydrologic impacts of forest management and climate change on this heterogeneous landscape are not well understood. Therefore, this study examined the sensitivity of cypress-pine flatwoods...

  18. Impacts of logging and prescribed burning in longleaf pine forests managed under uneven-aged silviculture

    Treesearch

    Ferhat Kara; Edward Francis Loewenstein

    2015-01-01

    The longleaf pine (Pinus palustris Mill.) ecosystem has historically been very important in the southeastern United States due to its extensive area and high biodiversity. Successful regeneration of longleaf pine forests requires an adequate number of well distributed seedlings. Thus, mortality of longleaf pine seedlings during logging operations...

  19. Longleaf pine can catch up

    Treesearch

    William D. Boyer

    1997-01-01

    One of the principal southern pines, longleaf (Pinus palustris Mill.) is the key tree species in a fire-dependent ecosystem. In pm-settlement times, longleaf pine forests covered much of the southeastern United States.Once the most extensive forest ecosystem in North America dominated by a single species longleaf pine now occupies only about 3...

  20. Development of understory tree vegetation after thinning naturally occurring shortleaf pine forests

    Treesearch

    K.C. Anup; Thomas B. Lynch; Douglas Stevenson; Duncan Wilson; James M. Guldin; Bob Heinemann; Randy Holeman; Dennis Wilson; Keith Anderson

    2015-01-01

    During the 25 years since establishment of more than 200 growth study plots in even-aged, naturally regenerated shortleaf pine (Pinus echinata Mill.) forests, there has been considerable development of hardwood understory trees, shrubs, and some shortleaf pine regeneration. During the period from 1985-1987, even-aged shortleaf pine growth-study...

  1. Radiographic Analysis of Shortleaf Pine Seeds From the Ouachita and Ozark National Forests

    Treesearch

    Alex C. Mangini; William W. Bruce; James L. Hanula

    2004-01-01

    Abstract - Shortleaf pine, Pinus echinata Mill., is indigenous to the Ouachita Mountains and the Magazine Mountain area of Arkansas. Natural regeneration of shortleaf pine is a priority on National Forest lands in this area. Insects infesting cones and seeds of shortleaf pine reduce the healthy seeds available for natural...

  2. Disturbance from southern pine beetle, suppression, and wildfire affects vegetation composition in central Louisiana: a case study

    Treesearch

    T.W. Coleman; Alton Martin; J.R. Meeker

    2010-01-01

    We assessed plant composition and forest succession following tree mortality from infestation of southern pine beetle (Dendroctonus frontalis), associated suppression, and wildfire in two forest types, pine (Pinus spp.) with mixed hardwood and longleaf pine (P. palustris). In this case study, vegetation was...

  3. Mountain pine beetle-killed lodgepole pine for the production of submicron lignocellulose fibrils

    Treesearch

    Ingrid Hoeger; Rolland Gleisner; Jose Negron; Orlando J. Rojas; J. Y. Zhu

    2014-01-01

    The elevated levels of tree mortality attributed to mountain pine beetle (MPB) (Dendroctonus ponderosae Hopkins) in western North American forests create forest management challenges. This investigation introduces the production of submicron or nanometer lignocellulose fibrils for value-added materials from the widely available resource represented by dead pines after...

  4. Ponderosa pine ecosystems

    Treesearch

    Russell T. Graham; Theresa B. Jain

    2005-01-01

    Ponderosa pine is a wide-ranging conifer occurring throughout the United States, southern Canada, and northern Mexico. Since the 1800s, ponderosa pine forests have fueled the economies of the West. In western North America, ponderosa pine grows predominantly in the moist and dry forests. In the Black Hills of South Dakota and the southern portion of its range, the...

  5. Integrating management strategies for the mountain pine beetle with multiple-resource management of lodgepole pine forests

    Treesearch

    Mark D. McGregor; Dennis M. Cole

    1985-01-01

    Provides guidelines for integrating practices for managing mountain pine beetle populations with silvicultural practices for enhancing multiple resource values of lodgepole pine forests. Summarizes published and unpublished technical information and recent research on the ecology of pest and host and presents visual and classification criteria for recognizing...

  6. A race against beetles: Conservation of limber pine

    Treesearch

    Anna Schoettle; Kelly Burns; Sheryl Costello; Jeff Witcosky; Brian Howell; Jeff Connor

    2008-01-01

    The Rocky Mountain Research Station, Forest Health Management, Rocky Mountain National Park, Arapaho-Roosevelt National Forest, and the Medicine Bow NF are coordinating efforts to conserve limber pine along the Front Range of the southern Rockies. Mountain pine beetle (MPB) populations are increasing dramatically in the area and killing limber pines in their...

  7. Response of southern Appalachian table mountain pine (Pinus pungens) and pitch pine (P. rigida) stands to prescribed burning

    Treesearch

    N.T. Welch; Thomas A. Waldrop; E.R. Buckner

    2000-01-01

    Southern Appalachian table mountain pine (Pinus pungens) and pitch pine (P. rigida) forests require disturbance for regeneration. Lightning-ignited fires and cultural burning practices provided the disturbance that prehistorically and historically maintained these forests. Burning essentially ceased on public lands in the early...

  8. Deception Creek Experimental Forest

    Treesearch

    Theresa B. Jain; Russell T. Graham

    1996-01-01

    Deception Creek Experimental Forest is in one of the most productive forests in the Rocky Mountains. When the forest was established in 1933, large, old-age western white pine (Pinus monticola) were important for producing lumber products. The forest, located in the Coeur d'Alene Mountains, is in the heart of the western white pine forest type. Therefore, research...

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zarnoch, Stanley J.; Blake, John I.; Parresol, Bernard R.

    Snags are standing dead trees that are an important component in the nesting habitat of birds and other species. Although snag availability is believed to limit populations in managed and non-managed forests, little data are available to evaluate the relative effect of stand conditions and management on snag occurrence. We analyzed point sample data from an intensive forest inventory within an 80,000 ha landscape for four major forest types to support the hypotheses that routine low-intensity prescribed fire would increase, and thinning would decrease, snag occurrence. We employed path analysis to define a priori causal relationships to determine the directmore » and indirect effects of site quality, age, relative stand density index and fire for all forest types and thinning effects for loblolly pine and longleaf pine. Stand age was an important direct effect for loblolly pine, mixed pine-hardwoods and hardwoods, but not for longleaf pine. Snag occurrence in loblolly pine was increased by prescribed fire and decreased by thinning which confirmed our initial hypotheses. Although fire was not important in mixed pine-hardwoods, it was for hardwoods but the relationship depended on site quality. For longleaf pine the relative stand density index was the dominant variable affecting snag occurrence, which increased as the density index decreased. Site quality, age and thinning had significant indirect effects on snag occurrence in longleaf pine through their effects on the density index. Although age is an important condition affecting snag occurrence for most forest types, path analysis revealed that fire and density management practices within certain forest types can also have major beneficial effects, particularly in stands less than 60 years old.« less

  10. Probability of infestation and extent of mortality models for mountain pine beetle in lodgepole pine forests in Colorado

    Treesearch

    Jose F. Negron; Jennifer G. Klutsch

    2017-01-01

    The mountain pine beetle, Dendroctonus ponderosae Hopkins, is a significant agent of tree mortality in lodgepole pine (Pinus contorta Dougl. ex Loud.) forests throughout western North America. A large outbreak of mountain pine beetle caused extensive tree mortality in north-central Colorado beginning in the late 1990s. We use data from a network of plots established in...

  11. Growth performance of loblolly shortleaf, and pitch X loblolly pine hybrid growing along the western margin of commercial pine range

    Treesearch

    K.C. Dipesh; Rodney E. Will; Thomas C Hennessey; Thomas B. Lynch; Robert Heinemann; Randal Holeman

    2015-01-01

    Expansion of the commercial pine range is one of the opportunities to improve forest production and counterbalance the loss of forest land to other uses. The potential genotypes for the purpose are fast-growing loblolly pine (Pinus taeda L.), the slower growing, but more drought tolerant shortleaf pine (P. echinata Mill.), and the more cold tolerant pitch x loblolly...

  12. Habitat of birds in ponderosa pine and aspen/birch forest in the Black Hills, South Dakota

    Treesearch

    Todd R. Mills; Mark A. Rumble; Lester D. Flake

    2000-01-01

    Birds with both eastern and western distributions occur in the Black Hills of western South Dakota. This forest is mostly ponderosa pine (Pinus ponderosa) and is managed for timber. Logging alters forest characteristics and the bird community. We studied habitat relations of breeding songbirds at the stand- and site-level scales in ponderosa pine and...

  13. Heterogeneous nonmarket benefits of managing white pine bluster rust in high-elevation pine forests

    Treesearch

    James R. Meldrum; Patricia A. Champ; Craig A. Bond

    2013-01-01

    This article describes a nonmarket valuation study about benefits of managing the invasive disease white pine blister rust in highelevation forests in the Western United States. Results demonstrate that, on average, households in the Western United States are willing to pay $154 to improve the resiliency of these forests. Factor analysis shows that long-run protection...

  14. Patterns of conifer regeneration following high severity wildfire in ponderosa pine - dominated forests of the Colorado Front Range

    Treesearch

    Marin E. Chambers; Paula J. Fornwalt; Sparkle L. Malone; Michael Battaglia

    2016-01-01

    Many recent wildfires in ponderosa pine (Pinus ponderosa Lawson & C. Lawson) - dominated forests of the western United States have burned more severely than historical ones, generating concern about forest resilience. This concern stems from uncertainty about the ability of ponderosa pine and other co-occurring conifers to regenerate in areas where no...

  15. Is the footprint of longleaf pine in the Southeastern United States still shrinking?

    Treesearch

    Christopher M. Oswalt; Christopher W. Woodall; Horace W. Brooks

    2015-01-01

    Longleaf pine (Pinus palustris Mill.) was once one of the most ecologically important tree species in the southern United States. Longleaf pine and the accompanying longleaf forest ecosystems covered vast swaths of the South. Longleaf forests covered an estimated 92 million acres at their peak distribution and represented one of the most extensive forest ecosystems in...

  16. Breeding Birds of Late-Rotation Pine Hardwood Stands: Community Characteristics and Similarity to Other Regional Pine Forests

    Treesearch

    Daniel R. Petit; Lisa J. Petit; Thomas E. Martin; others

    1994-01-01

    The relative abundances of bird species and the ecological characteristics of the overall avian community were quantified within 20 late-rotation pine-hardwood sites in the Ouschitn and Ozark National Forests in Arkansas and Oklahoma during 1992 and 1993. In addition, similarities in species composition and guild representation were compared with those of forest...

  17. Effects of bark beetle attack on canopy fuel flammability and crown fire potential in lodgepole pine and Engelmann spruce forests

    Treesearch

    Wesley G. Page; Martin E. Alexander; Michael J. Jenkins

    2015-01-01

    Large wildland fires in conifer forests typically involve some degree of crowning, with their initiation and propagation dependent upon several characteristics of the canopy fuels. Recent outbreaks of mountain pine beetle (Dendroctonus ponderosae Hopkins) in lodgepole pine (Pinus contorta Dougl. var. latifolia E ngelm.) forests and spruce beetle (Dendroctonus...

  18. Urbanization effects on leaf litter decomposition, foliar nutrient dynamics and aboveground net primary productivity in the subtropics

    Treesearch

    Heather A. Enloe; B. Graeme Lockaby; Wayne C. Zipperer; Greg L. Somers

    2015-01-01

    Urbanization can alter nutrient cycling. This research evaluated how urbanization affected nutrient dynamics in the subtropics. We established 17–0.04 ha plots in five different land cover types—slash pine (Pinus elliottii) plantations (n=3), rural natural pine forests (n= 3), rural natural oak forests (n=4), urban pine forests (n=3) and urban oak forests (n=4) in the...

  19. [Effects of selective cutting on the carbon density and net primary productivity of a mixed broadleaved-Korean pine forest in Northeast China].

    PubMed

    Liu, Qi; Cai, Hui-Ying; Jin, Guang-Ze

    2013-10-01

    To accurately quantify forest carbon density and net primary productivity (NPP) is of great significance in estimating the role of forest ecosystems in global carbon cycle. By using the forest inventory and allometry approaches, this paper measured the carbon density and NPP of the virgin broadleaved-Korean pine (Pinus koraiensis) forest and of the broadleaved-Korean pine forest after 34 years selective-cutting (the cutting intensity was 30%, and the cutting trees were in large diameter class). The total carbon density of the virgin and selective-cutting broadleaved-Korean pine forests was (397.95 +/- 93.82) and (355.61 +/- 59.37) t C x hm(-2), respectively. In the virgin forest, the carbon density of the vegetation, debris, and soil accounted for 31.0%, 3.1%, and 65.9% of the total carbon pool, respectively; in the selective-cutting forest, the corresponding values were 31.7%, 2.9%, and 65.4%, respectively. No significant differences were observed in the total carbon density and the carbon density of each component between the two forests. The total NPP of the virgin and selective-cutting forests was (36.27 +/- 0.36) and (6.35 +/- 0.70) t C x hm(-2) x a(-1), among which, the NPP of overstory, understory, and fine roots in virgin forest and selective-cutting forest accounted for 60.3%, 2.0%, and 37.7%, and 66.1%, 2.0%, and 31.2%, respectively. No significant differences were observed in the total NPP and the contribution rate of each component between the two forests. However, the ratios of the needle and broadleaf NPPs of the virgin and selective-cutting forests were 47.24:52.76 and 20.48:79.52, respectively, with a significant difference. The results indicated that the carbon density and NPP of the broadleaved-Korean pine forest after 34 years selective-cutting recovered to the levels of the virgin broadleaved-Korean pine forest.

  20. Forest diversity and disturbance: changing influences and the future of Virginia's Forests

    Treesearch

    Christine J. Small; James L. Chamberlain

    2015-01-01

    The Virginia landscape supports a remarkable diversity of forests, from maritime dunes, swamp forests, and pine savannas of the Atlantic coastal plain, to post-agricultural pine-hardwood forests of the piedmont, to mixed oak, mixed-mesophytic, northern hardwood, and high elevation conifer forests in Appalachian mountain provinces. Virginia’s forests also have been...

  1. Madrean pine-oak forest in Arizona: altered fire regimes, altered communities

    Treesearch

    Andrew M. Barton

    2005-01-01

    In Madrean pine-oak forests in the Chiricahua Mountains, surface fire favors pines, which exhibit high top-survival, but resprouting allows oaks to rebound during inter-fire periods. These patterns plus age structure and radial growth data suggest that frequent presettlement surface fire maintained open stands, promoted a high pine:oak ratio, and excluded less fire...

  2. Restoring Upland Forests to Longleaf Pine: Initial Effects on Fuel Load, Fire Danger, Forest Vegetation, and Beetle Populations

    Treesearch

    James D. Haywood; Tessa A. Bauman; Richard A. Goyer; Finis L. Harris

    2004-01-01

    Without fire in the Southeastern United States, loblolly pine (Pinus taeda L.) often becomes the overstory dominant on sites historically dominated by longleaf pine (P. palustris Mill.). Beneath the loblolly pine canopy a mature midstory and understory develops of woody vegetation supporting draped fuels. The resulting deep shade...

  3. Natural regeneration in the western white pine type

    Treesearch

    Irvine T. Haig; Kenneth P. Davis; Robert H. Weidman

    1941-01-01

    The purpose of this bulletin is to bring together the available information on natural regeneration of the western white pine type, based on about 25 years of forest research and 30 years of national-forest timber-cutting experience. Western white pine (Pinus monticola) forms the key species of the valuable western white pine type of northern Idaho and contiguous...

  4. Forest Restoration following Southern Pine Beetle

    Treesearch

    John D. Waldron

    2011-01-01

    Forest restoration is the process of transforming a damaged or unhealthy forest into a healthy one. After the southern pine beetle (SPB) has damaged a forest, it is sometimes, if not most times, necessary to restore that forest. It is important to know the restoration goals, conditions prior to SPB, current conditions, and potential future conditions of the forest...

  5. The South's forestland - on the hot seat to provide more

    Treesearch

    Raymond M. Sheffield; James G. Dickson

    1998-01-01

    Forests of the Southern United States range from tropical/subtropical forests on the southern extremities of the region, oak savanna forests on the western fringe, to central hardwood forests, and high elevation boreal forests in the north. Upland and bottomland hardwood, southern pine, and mixed pine-hardwood forests are found on the more moderate sites between these...

  6. Involvement of allelopathy in inhibition of understory growth in red pine forests.

    PubMed

    Kato-Noguchi, Hisashi; Kimura, Fukiko; Ohno, Osamu; Suenaga, Kiyotake

    2017-11-01

    Japanese red pine (Pinus densiflora Sieb. et Zucc.) forests are characterized by sparse understory vegetation although sunlight intensity on the forest floor is sufficient for undergrowth. The possible involvement of pine allelopathy in the establishment of the sparse understory vegetation was investigated. The soil of the red pine forest floor had growth inhibitory activity on six test plant species including Lolium multiflorum, which was observed at the edge of the forest but not in the forest. Two growth inhibitory substances were isolated from the soil and characterized to be 15-hydroxy-7-oxodehydroabietate and 7-oxodehydroabietic acid. Those compounds are probably formed by degradation process of resin acids. Resin acids are produced by pine and delivered into the soil under the pine trees through balsam and defoliation. Threshold concentrations of 15-hydroxy-7-oxodehydroabietate and 7-oxodehydroabietic acid for the growth inhibition of L. multiflorum were 30 and 10μM, respectively. The concentrations of 15-hydroxy-7-oxodehydroabietate and 7-oxodehydroabietic acid in the soil were 312 and 397μM, respectively, which are sufficient concentrations to cause the growth inhibition because of the threshold. These results suggest that those compounds are able to work as allelopathic agents and may prevent from the invasion of herbaceous plants into the forests by inhibiting their growth. Therefore, allelopathy of red pine may be involved in the formation of the sparse understory vegetation. Copyright © 2017 Elsevier GmbH. All rights reserved.

  7. Proceedings of the Eighth Lake States Forest Tree Improvement conference, Sept. 12-13, 1967.

    Treesearch

    NCFES

    1968-01-01

    Presents 11 papers concerning recent research in forest genetics, physiology, and allied fields. Species discussed include red pine, jack pine, Scotch pine, black spruce, larch, yellow birch, sugar maple, silver maple, cottonwood, and walnut.

  8. Impacts of prescribed fire on Pinus rigida Mill. in upland forests of the Atlantic Coastal Plain.

    PubMed

    Carlo, Nicholas J; Renninger, Heidi J; Clark, Kenneth L; Schäfer, Karina V R

    2016-08-01

    A comparative analysis of the impacts of prescribed fire on three upland forest stands in the Northeastern Atlantic Plain, NJ, USA, was conducted. Effects of prescribed fire on water use and gas exchange of overstory pines were estimated via sap-flux rates and photosynthetic measurements on Pinus rigida Mill. Each study site had two sap-flux plots, one experiencing prescribed fire and one control (unburned) plot for comparison before and after the fire. We found that photosynthetic capacity in terms of Rubisco-limited carboxylation rate and intrinsic water-use efficiency was unaffected, while light compensation point and dark respiration rate were significantly lower in the burned vs control plots post-fire. Furthermore, quantum yield in pines in the pine-dominated stands was less affected than pines in the mixed oak/pine stand, as there was an increase in quantum yield in the oak/pine stand post-fire compared with the control (unburned) plot. We attribute this to an effect of forest type but not fire per se. Average daily sap-flux rates of the pine trees increased compared with control (unburned) plots in pine-dominated stands and decreased in the oak/pine stand compared with control (unburned) plots, potentially due to differences in fuel consumption and pre-fire sap-flux rates. Finally, when reference canopy stomatal conductance was analyzed, pines in the pine-dominated stands were more sensitive to changes in vapor pressure deficit (VPD), while stomatal responses of pines in the oak/pine stand were less affected by VPD. Therefore, prescribed fire affects physiological functioning and water use of pines, but the effects may be modulated by forest stand type and fuel consumption pattern, which suggests that these factors may need to be taken into account for forest management in fire-dominated systems. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. [Early responses of soil fauna in three typical forests of south subtropical China to simulated N deposition addition].

    PubMed

    Xu, Guolian; Mo, Jiangming; Zhou, Guoyi

    2005-07-01

    In this paper, simulated N deposition addition (0, 50, 100 and 150 kg x hm(-2) x yr(-1)) by spreading water or NH4NO3 was conducted to study the early responses of soil fauna in three typical native forests (monsoon evergreen broadleaf forest, pine forest, and broadleaf-pine mixed forest) of subtropical China. The results showed that in monsoon evergreen broadleaf forest, N deposition addition had an obviously negative effect on the three indexes for soil fauna, but in pine forest, the positive effect was significant (P < 0. 05), and the soil fauna community could reach the level in mixed forest, even that in monsoon evergreen broadleaf forest at sometime. The responses in mixed forest were not obvious. In monsoon evergreen broadleaf forest, the negative effects were significant (P < 0.05) under medium N deposition, but not under low N deposition. In pine forest, the positive effect was significant (P < 0.05) under high N deposition, especially for the number of soil fauna groups. The results obtained might imply the N saturation-response mechanisms of forest ecosystems in subtropical China, and the conclusions from this study were also consisted with some related researches.

  10. [Organic carbon and carbon mineralization characteristics in nature forestry soil].

    PubMed

    Yang, Tian; Dai, Wei; An, Xiao-Juan; Pang, Huan; Zou, Jian-Mei; Zhang, Rui

    2014-03-01

    Through field investigation and indoor analysis, the organic carbon content and organic carbon mineralization characteristics of six kinds of natural forest soil were studied, including the pine forests, evergreen broad-leaved forest, deciduous broad-leaved forest, mixed needle leaf and Korean pine and Chinese pine forest. The results showed that the organic carbon content in the forest soil showed trends of gradual decrease with the increase of soil depth; Double exponential equation fitted well with the organic carbon mineralization process in natural forest soil, accurately reflecting the mineralization reaction characteristics of the natural forest soil. Natural forest soil in each layer had the same mineralization reaction trend, but different intensity. Among them, the reaction intensity in the 0-10 cm soil of the Korean pine forest was the highest, and the intensities of mineralization reaction in its lower layers were also significantly higher than those in the same layers of other natural forest soil; comparison of soil mineralization characteristics of the deciduous broad-leaved forest and coniferous and broad-leaved mixed forest found that the differences of litter species had a relatively strong impact on the active organic carbon content in soil, leading to different characteristics of mineralization reaction.

  11. Effects of overstory retention, herbicides, and fertilization on sub-canopy vegetation structure and functional group composition in loblolly pine forests restored to longleaf pine

    Treesearch

    Benjamin O. Knapp; Joan L. Walker; G. Geoff Wang; Huifeng Hu; Robert N.  Addington

    2014-01-01

    The desirable structure of longleaf pine forests, which generally includes a relatively open canopy of pines, very few woody stems in the mid-story, and a well-developed, herbaceous ground layer, provides critical habitat for flora and fauna and contributes to ecosystem function. Current efforts to restore longleaf pine to upland sites dominated by second-growth...

  12. Shortleaf pine in perspective: outlook for the national forests

    Treesearch

    James R. Crouch

    1986-01-01

    Shortleaf pine occupies more acreage on southern national forests than does any other softwood species but major concentrations on national forest lands occur only in Arkansas, Texas and Missouri. National forests in these states intend to continue to regenerate most shortleaf stands to shortleaf.

  13. Long-term flow dynamics of three coastal experimental forested watersheds

    Treesearch

    Devendra M. Amatya; Artur Radecki-Pawlik

    2005-01-01

    Three 1st2nd, and 3rd order experimental forested watersheds located within Francis Marion National Forest in Coastal South Carolina were monitored for rainfall and stream outflows. These watersheds were WS80, a pine-hardwood forest (206 ha); WS79 a predominantly pine forest (500 ha); and WS78, a...

  14. Deception Creek Experimental Forest (Idaho)

    Treesearch

    Russell T. Graham; Theresa B. Jain

    2004-01-01

    Deception Creek Experimental Forest is located in one of the most productive forests of the Rocky Mountains. When the forest was established in 1933, large, old western white pines were important for producing lumber products, matches, and toothpicks. Deception Creek is located in the heart of the western white pine forest type, allowing researchers to focus on the...

  15. A review of precipitation and temperature control on seedling emergence and establishment for ponderosa and lodgepole pine forest regeneration

    Treesearch

    M. D. Petrie; A. M. Wildeman; J. B. Bradford; Robert Hubbard; W. K. Lauenroth

    2016-01-01

    The persistence of ponderosa pine and lodgepole pine forests in the 21st century depends to a large extent on how seedling emergence and establishment are influenced by driving climate and environmental variables, which largely govern forest regeneration. We surveyed the literature, and identified 96 publications that reported data on dependent variables of seedling...

  16. Secondary forest succession following reproduction cutting on the Upper Coastal Plain of southeastern Arkansas, USA

    Treesearch

    Michael D. Cain; Michael G. Shelton

    2001-01-01

    To contribute to an understanding of forest management on secondary forest succession, we conducted vegetation surveys in a chronosequence of pine stands ranging in age from 1 to 59 years. Adjacent areas were compared at 1, 7, 12, and 17 years following two reproduction cutting methods (clearcuts or pine seed-tree cuts); a 59-year-old pine stand that...

  17. Tree mortality in drought-stressed mixed-conifer and ponderosa pine forests, Arizona, USA

    Treesearch

    Joseph L. Ganey; Scott C. Vojta

    2011-01-01

    We monitored tree mortality in northern Arizona (USA) mixed-conifer and ponderosa pine (Pinus ponderosa Dougl. ex Laws) forests from 1997 to 2007, a period of severe drought in this area. Mortality was pervasive, occurring on 100 and 98% of 53 mixed-conifer and 60 ponderosa pine plots (1-ha each), respectively. Most mortality was attributable to a suite of forest...

  18. Response of Yellowstone grizzly bears to changes in food resources: A synthesis. Final report to the Interagency Grizzly Bear Committee and Yellowstone Ecosystem Subcommittee

    USGS Publications Warehouse

    ,; van Manen, Frank T.; Costello, Cecily M.; Haroldson, Mark A.; Bjornlie, Daniel D.; Ebinger, Michael R.; Gunther, Kerry A.; Mahalovich, Mary Frances; Thompson, Daniel J.; Higgs, Megan D.; Irvine, Kathryn M.; Legg, Kristin; Tyers, Daniel B.; Landenburger, Lisa; Cain, Steven L.; Frey, Kevin L.; Aber, Bryan C.; Schwartz, Charles C.

    2013-01-01

    The Yellowstone grizzly bear (Ursus arctos) was listed as a threatened species in 1975 (Federal Register 40 FR:31734-31736). Since listing, recovery efforts have focused on increasing population size, improving habitat security, managing bear mortalities, and reducing bear-human conflicts. The Interagency Grizzly Bear Committee (IGBC; partnership of federal and state agencies responsible for grizzly bear recovery in the lower 48 states) and its Yellowstone Ecosystem Subcommitte (YES; federal, state, county, and tribal partners charged with recovery of grizzly bears in the Greater Yelowston Ecosystem [GYE]) tasked the Interagency Grizzly Bear Study Team to provide information and further research relevant to three concerns arising from the 9th Circuit Court of Appeals November 2011 decision: 1) the ability of grizzly bears as omnivores to find alternative foods to whitebark pine seeds; 2) literature to support their conclusions; and 3) the non-intuitive biological reality that impacts can occur to individuals without causing the overall population to decline. Specifically, the IGBC and YES requested a comprehensive synthesis of the current state of knowledge regarding whitebark pinbe decline and individual and population-level responses of grizzly bears to changing food resources in the GYE. This research was particularly relevant to grizzly bear conservation given changes in the population trajectory observed during the last decade.

  19. The forest fire season at different elevations in Idaho

    Treesearch

    J. A. Larsen

    1925-01-01

    In any fire-ridden forest region, such as north Idaho, there is great need for a tangible basis by which to judge the length and the intensity of the fire season in different forest types and at different elevations. The major and natural forest types, such as the western yellow pine forests, the western white-pine forests, and the subalpine forests occur in...

  20. Restoring forest structure and process stabilizes forest carbon in wildfire-prone southwestern ponderosa pine forests

    Treesearch

    Matthew D. Hurteau; Shuang Liang; Katherine L. Martin; Malcolm P. North; George W. Koch; Bruce A. Hungate

    2016-01-01

    Changing climate and a legacy of fire-exclusion have increased the probability of high-severity wildfire, leading to an increased risk of forest carbon loss in ponderosa pine forests in the southwestern USA. Efforts to reduce high-severity fire risk through forest thinning and prescribed burning require both the removal and emission of carbon from these forests, and...

  1. Changes in transpiration and foliage growth in lodgepole pine trees following mountain pine beetle attack and mechanical girdling

    Treesearch

    Robert M. Hubbard; Charles C. Rhoades; Kelly Elder; Jose Negron

    2013-01-01

    The recent mountain pine beetle outbreak in North American lodgepole pine forests demonstrates the importance of insect related disturbances in changing forest structure and ecosystem processes. Phloem feeding by beetles disrupts transport of photosynthate from tree canopies and fungi introduced to the tree's vascular system by the bark beetles inhibit water...

  2. AmeriFlux CA-SJ3 Saskatchewan - Western Boreal, Jack Pine forest harvested in 1975 (BOREAS Young Jack Pine)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barr, Alan

    This is the AmeriFlux version of the carbon flux data for the site CA-SJ3 Saskatchewan - Western Boreal, Jack Pine forest harvested in 1975 (BOREAS Young Jack Pine). Site Description - 53.87581° N, 104.64529° W, BOREAS 1994, 1996, BERMS climate and flux measurements to begin Spring 2003

  3. The concept: Restoring ecological structure and process in ponderosa pine forests

    Treesearch

    Stephen F. Arno

    1996-01-01

    Elimination of the historic pattern of frequent low-intensity fires in ponderosa pine and pine-mixed conifer forests has resulted in major ecological disruptions. Prior to 1900, open stands of large, long-lived, fire-resistant ponderosa pine were typical. These were accompanied in some areas by other fire-dependent species such as western larch. Today, as a result of...

  4. Soil properties in 35 y old pine and hardwood plantations after conversion from mixed pine-hardwood forest

    Treesearch

    D. Andrew Scott; Michael G. Messina

    2009-01-01

    Past management practices have changed much of the native mixed pine-hardwood forests on upland alluvial terraces of the western Gulf Coastal Plain to either pine monocultures or hardwood (angiosperm) stands. Changes in dominant tree species can alter soil chemical, biological, and physical properties and processes, thereby changing soil attributes, and ultimately,...

  5. Strategies, tools, and challenges for sustaining and restoring high elevation five-needle white pine forests in western North America

    Treesearch

    Robert E. Keane; Anna W. Schoettle

    2011-01-01

    Many ecologically important, five-needle white pine forests that historically dominated the high elevation landscapes of western North America are now being heavily impacted by mountain pine beetle (Dendroctonus spp.) outbreaks, the exotic disease white pine blister rust (WPBR), and altered high elevation fire regimes. Management intervention using specially designed...

  6. Long-term efficacy of diameter-limit cutting to reduce mountain pine beetle-caused tree mortality in a lodgepole pine forest

    Treesearch

    J. C. Vandygriff; E. Hansen; Barbara Bentz; K. K. Allen; G. D. Amman; L. A. Rasmussen

    2015-01-01

    Mountain pine beetle, Dendroctonus ponderosae Hopkins, is the most significant mortality agent in pine forests of western North America. Silvicultural treatments that reduce the number of susceptible host trees, alter age and size class distributions, and diversify species composition are considered viable, long-term options for reducing stand susceptibility...

  7. Regeneration of different plant functional types in a Masson pine forest following pine wilt disease.

    PubMed

    Hu, Guang; Xu, Xuehong; Wang, Yuling; Lu, Gao; Feeley, Kenneth J; Yu, Mingjian

    2012-01-01

    Pine wilt disease is a severe threat to the native pine forests in East Asia. Understanding the natural regeneration of the forests disturbed by pine wilt disease is thus critical for the conservation of biodiversity in this realm. We studied the dynamics of composition and structure within different plant functional types (PFTs) in Masson pine forests affected by pine wilt disease (PWD). Based on plant traits, all species were assigned to four PFTs: evergreen woody species (PFT1), deciduous woody species (PFT2), herbs (PFT3), and ferns (PFT4). We analyzed the changes in these PFTs during the initial disturbance period and during post-disturbance regeneration. The species richness, abundance and basal area, as well as life-stage structure of the PFTs changed differently after pine wilt disease. The direction of plant community regeneration depended on the differential response of the PFTs. PFT1, which has a higher tolerance to disturbances, became dominant during the post-disturbance regeneration, and a young evergreen-broad-leaved forest developed quickly after PWD. Results also indicated that the impacts of PWD were dampened by the feedbacks between PFTs and the microclimate, in which PFT4 played an important ecological role. In conclusion, we propose management at the functional type level instead of at the population level as a promising approach in ecological restoration and biodiversity conservation.

  8. Are prescribed fire and thinning dominant processes affecting snag occurrence at a landscape scale?

    DOE PAGES

    Zarnoch, Stanley J.; Blake, John I.; Parresol, Bernard R.

    2014-11-01

    Snags are standing dead trees that are an important component in the nesting habitat of birds and other species. Although snag availability is believed to limit populations in managed and non-managed forests, little data are available to evaluate the relative effect of stand conditions and management on snag occurrence. We analyzed point sample data from an intensive forest inventory within an 80,000 ha landscape for four major forest types to support the hypotheses that routine low-intensity prescribed fire would increase, and thinning would decrease, snag occurrence. We employed path analysis to define a priori causal relationships to determine the directmore » and indirect effects of site quality, age, relative stand density index and fire for all forest types and thinning effects for loblolly pine and longleaf pine. Stand age was an important direct effect for loblolly pine, mixed pine-hardwoods and hardwoods, but not for longleaf pine. Snag occurrence in loblolly pine was increased by prescribed fire and decreased by thinning which confirmed our initial hypotheses. Although fire was not important in mixed pine-hardwoods, it was for hardwoods but the relationship depended on site quality. For longleaf pine the relative stand density index was the dominant variable affecting snag occurrence, which increased as the density index decreased. Site quality, age and thinning had significant indirect effects on snag occurrence in longleaf pine through their effects on the density index. Although age is an important condition affecting snag occurrence for most forest types, path analysis revealed that fire and density management practices within certain forest types can also have major beneficial effects, particularly in stands less than 60 years old.« less

  9. Longleaf pine

    Treesearch

    William D. Boyer; Donald W. Patterson

    1983-01-01

    Abstract:This report describes the longleaf pine forest type and the characteristics of both tree and forest that can affect management decisions.Longleaf pine is highly adaptable to a range of management goals and silvicultural systems.Management options and appropriate silvicultural methods for the regeneration and management of this species are...

  10. Analysis of Landsat-4 Thematic Mapper data for classification of forest stands in Baldwin County, Alabama

    NASA Technical Reports Server (NTRS)

    Hill, C. L.

    1984-01-01

    A computer-implemented classification has been derived from Landsat-4 Thematic Mapper data acquired over Baldwin County, Alabama on January 15, 1983. One set of spectral signatures was developed from the data by utilizing a 3x3 pixel sliding window approach. An analysis of the classification produced from this technique identified forested areas. Additional information regarding only the forested areas. Additional information regarding only the forested areas was extracted by employing a pixel-by-pixel signature development program which derived spectral statistics only for pixels within the forested land covers. The spectral statistics from both approaches were integrated and the data classified. This classification was evaluated by comparing the spectral classes produced from the data against corresponding ground verification polygons. This iterative data analysis technique resulted in an overall classification accuracy of 88.4 percent correct for slash pine, young pine, loblolly pine, natural pine, and mixed hardwood-pine. An accuracy assessment matrix has been produced for the classification.

  11. The weight of the past: land-use legacies and recolonization of pine plantations by oak trees.

    PubMed

    Navarro-González, Irene; Pérez-Luque, Antonio J; Bonet, Francisco J; Zamora, Regino

    2013-09-01

    Most of the world's plantations were established on previously disturbed sites with an intensive land-use history. Our general hypothesis was that native forest regeneration within forest plantations depends largely on in situ biological legacies as a source of propagules. To test this hypothesis, we analyzed native oak regeneration in 168 pine plantation plots in southern Spain in relation to land use in 1956, oak patch proximity, and pine tree density. Historical land-use patterns were determined from aerial photography from 1956, and these were compared with inventory data from 2004-2005 and additional orthophoto images. Our results indicate that oak forest regeneration in pine plantations depends largely on land-use legacies, although nearby, well-conserved areas can provide propagules for colonization from outside the plantation, and pine tree density also affected oak recruit density. More intense land uses in the past meant fewer biological legacies and, therefore, lower likelihood of regenerating native forest. That is, oak recruit density was lower when land use in 1956 was croplands (0.004 +/- 0.002 recruits/m2 [mean +/- SE]) or pasture (0.081 +/- 0.054 recruits/m2) instead of shrubland (0.098 +/- 0.031 recruits/m2) or oak formations (0.314 +/- 0.080 recruits/m2). Our study shows that land use in the past was more important than propagule source distance or pine tree density in explaining levels of native forest regeneration in plantations. Thus, strategies for restoring native oak forests in pine plantations may benefit from considering land-use legacies as well as distance to propagule sources and pine density.

  12. Mountain pine beetle, a major disturbance agent in US Western coniferous forests: A synthesis of the state of knowledge [Research In Review

    Treesearch

    Jose F. Negron; Christopher J. Fettig

    2014-01-01

    In recent years, the mountain pine beetle, Dendroctonus ponderosae, has impacted 8.9 million hectares of forests in the western United States. Historically a common occurrence in western forests, particularly in lodgepole and ponderosa pine, the magnitude and extent of recent outbreaks have exceeded past events since written records are available and have occurred in...

  13. The effects of bark beetle outbreaks on forest development, fuel loads and potential fire behavior in salvage logged and untreated lodgepole pine forests

    Treesearch

    B. J. Collins; C. C. Rhoades; M. A. Battaglia; R. M. Hubbard

    2012-01-01

    Recent mountain pine beetle infestations have resulted in widespread tree mortality and the accumulation of dead woody fuels across the Rocky Mountain region, creating concerns over future forest stand conditions and fire behavior. We quantified how salvage logging influenced tree regeneration and fuel loads relative to nearby, uncut stands for 24 lodgepole pine...

  14. Evaluating the role of cutting treatments, fire and soil seed banks in an experimental framework in ponderosa pine forests of the Black Hills, South Dakota

    Treesearch

    Cody L. Wienk; Carolyn Hull Sieg; Guy R. McPherson

    2004-01-01

    Pinus ponderosa Laws. (ponderosa pine) forests have changed considerably during the past century, partly because recurrent fires have been absent for a century or more. A number of studies have explored the influence of timber harvest or burning on understory production in ponderosa pine forests, but study designs incorporating cutting and prescribed...

  15. Predicting the effects of tropospheric ozone on regional productivity of ponderosa pine and white fir.

    Treesearch

    D.A. Weinstein; J.A. Laurence; W.A. Retzlaff; J.S. Kern; E.H. Lee; W.E. Hogsett; J. Weber

    2005-01-01

    We simulated forest dynamics of the regional ponderosa pine-white fir conifer forest of the San Bernadino and Sierra Nevada mountains of California to determine the effects of high ozone concentrations over the next century and to compare the responses to our similar study for loblolly pine forests of the southeast. As in the earlier study, we linked two models, TREGRO...

  16. A forest transect of pine mountain, Kentucky: changes since E. Lucy Braun and chestnut blight

    Treesearch

    Tracy S. Hawkins

    2006-01-01

    In 1997, forest composition and structure were determined for Hi Lewis Pine Barrens State Nature Preserve, a 68-ha tract on the south slope of Pine Mountain, Harlan County, Kentucky. Data collected from 28 0.04-ha plots were used to delineate forest types. Percent canopy compositions were compared with those reported by Dr. E. Lucy Braun prior to the peak of chestnut...

  17. Patterns and determinants of plant biodiversity in non-commercial forests of eastern China

    PubMed Central

    Wu, Chuping; Vellend, Mark; Yuan, Weigao; Jiang, Bo; Liu, Jiajia; Shen, Aihua; Liu, Jinliang; Zhu, Jinru

    2017-01-01

    Non-commercial forests represent important habitats for the maintenance of biodiversity and ecosystem function in China, yet no studies have explored the patterns and determinants of plant biodiversity in these human dominated landscapes. Here we test the influence of (1) forest type (pine, mixed, and broad-leaved), (2) disturbance history, and (3) environmental factors, on tree species richness and composition in 600 study plots in eastern China. In total, we found 143 species in 53 families of woody plants, with a number of species rare and endemic in the study region. Species richness in mixed forest and broad-leaved forest was higher than that in pine forest, and was higher in forests with less disturbance. Species composition was influenced by environment factors in different ways in different forest types, with important variables including elevation, soil depth and aspect. Surprisingly, we found little effect of forest age after disturbance on species composition. Most non-commercial forests in this region are dominated by species poor pine forests and mixed young forests. As such, our results highlight the importance of broad-leaved forests for regional plant biodiversity conservation. To increase the representation of broad-leaved non-commercial forests, specific management practices such as thinning of pine trees could be undertaken. PMID:29161324

  18. Patterns and determinants of plant biodiversity in non-commercial forests of eastern China.

    PubMed

    Wu, Chuping; Vellend, Mark; Yuan, Weigao; Jiang, Bo; Liu, Jiajia; Shen, Aihua; Liu, Jinliang; Zhu, Jinru; Yu, Mingjian

    2017-01-01

    Non-commercial forests represent important habitats for the maintenance of biodiversity and ecosystem function in China, yet no studies have explored the patterns and determinants of plant biodiversity in these human dominated landscapes. Here we test the influence of (1) forest type (pine, mixed, and broad-leaved), (2) disturbance history, and (3) environmental factors, on tree species richness and composition in 600 study plots in eastern China. In total, we found 143 species in 53 families of woody plants, with a number of species rare and endemic in the study region. Species richness in mixed forest and broad-leaved forest was higher than that in pine forest, and was higher in forests with less disturbance. Species composition was influenced by environment factors in different ways in different forest types, with important variables including elevation, soil depth and aspect. Surprisingly, we found little effect of forest age after disturbance on species composition. Most non-commercial forests in this region are dominated by species poor pine forests and mixed young forests. As such, our results highlight the importance of broad-leaved forests for regional plant biodiversity conservation. To increase the representation of broad-leaved non-commercial forests, specific management practices such as thinning of pine trees could be undertaken.

  19. Historical land-use influences the long-term stream turbidity response to a wildfire.

    PubMed

    Harrison, Evan T; Dyer, Fiona; Wright, Daniel W; Levings, Chris

    2014-02-01

    Wildfires commonly result in an increase in stream turbidity. However, the influence of pre-fire land-use practices on post-fire stream turbidity is not well understood. The Lower Cotter Catchment (LCC) in south-eastern Australia is part of the main water supply catchment for Canberra with land in the catchment historically managed for a mix of conservation (native eucalypt forest) and pine (Pinus radiata) plantation. In January 2003, wildfires burned almost all of the native and pine forests in the LCC. A study was established in 2005 to determine stream post-fire turbidity recovery within the native and pine forest areas of the catchment. Turbidity data loggers were deployed in two creeks within burned native forest and burned pine forest areas to determine turbidity response to fire in these areas. As a part of the study, we also determined changes in bare soil in the native and pine forest areas since the fire. The results suggest that the time, it takes turbidity levels to decrease following wildfire, is dependent upon the preceding land-use. In the LCC, turbidity levels decreased more rapidly in areas previously with native vegetation compared to areas which were previously used for pine forestry. This is likely because of a higher percentage of bare soil areas for a longer period of time in the ex-pine forest estate and instream stores of fine sediment from catchment erosion during post-fire storm events. The results of our study show that the previous land-use may exert considerable control over on-going turbidity levels following a wildfire.

  20. Effects of mountain pine beetle on fuels and expected fire behavior in lodgepole pine forests, Colorado, USA

    Treesearch

    Tania Schoennagel; Thomas T. Veblen; Jose F. Negron; Jeremy M. Smith

    2012-01-01

    In Colorado and southern Wyoming, mountain pine beetle (MPB) has affected over 1.6 million ha of predominantly lodgepole pine forests, raising concerns about effects of MPB-caused mortality on subsequent wildfire risk and behavior. Using empirical data we modeled potential fire behavior across a gradient of wind speeds and moisture scenarios in Green stands compared...

  1. Silvicultural Considerations in Managing Southern Pine Stands in the Context of Southern Pine Beetle

    Treesearch

    James M. Guldin

    2011-01-01

    Roughly 30 percent of the 200 million acres of forest land in the South supports stands dominated by southern pines. These are among the most productive forests in the nation. Adapted to disturbance, southern pines are relatively easy to manage with even-aged methods such as clearcutting and planting, or the seed tree and shelterwood methods with natural regeneration....

  2. Evolution of a research prototype expert system for endemic populations of mountain pine beetle in lodgepole pine forests

    Treesearch

    Dale L. Bartos; Kent B. Downing

    1989-01-01

    A knowledge acquisition program was written to aid in obtaining knowledge from the experts concerning endemic populations of mountain pine beetle in lodgepole pine forest. An application expert system is then automatically generated by the knowledge acquisition program that contains the codified base of expert knowledge. Data can then be entered into the expert system...

  3. Longleaf pine stumpwood supply in four southeastern survey units

    Treesearch

    E.L. Demmon

    1936-01-01

    This release presents advanc3 ·information on the amount of longleaf pine stumpviOod in four Forest Survey Units. The wood referred to is that in the seasoned stumps resulting from the cutting of the longleaf pine of the original forest. These stumps, together with other highly rosinimpregnated wood in the tops and limbs of fallen old-growth longleaf pine, are used in...

  4. Early survival and growth of planted shortleaf pine seedlings as a function of initial size and overstory stocking

    Treesearch

    John M. Kabrick; Daniel C. Dey; Stephen R. Shifley; Jason L. Villwock

    2011-01-01

    Shortleaf pine was once abundant throughout the Missouri Ozarks and there is renewed interest in its restoration. Past research suggested that the greatest survival and growth of shortleaf pine seedlings occurred where there was little competition for sunlight. This study, in the oak and oak-pine forests of the Sinkin Experimental Forest in southeastern Missouri,...

  5. Slash disposal and site preparation in converting old-growth sugar pine-fir forests to regulated stands

    Treesearch

    Donald T. Gordon; Richard D. Cosens

    1952-01-01

    Records of permanent sample plots and extensive observations by forest management research workers indicate that tree selection methods of cutting in sugar pine-fir types have not favored the establishment of sugar pine reproduction. Since sugar pine is a highly prized lumber producing species in the California region, special measures to preserve or increase its place...

  6. Severity of a mountain pine beetle outbreak across a range of stand conditions in Fraser Experimental Forest, Colorado, United States

    Treesearch

    Anthony G. Vorster; Paul H. Evangelista; Thomas J. Stohlgren; Sunil Kumar; Charles C. Rhoades; Robert M. Hubbard; Antony S. Cheng; Kelly Elder

    2017-01-01

    The recent mountain pine beetle (Dendroctonus ponderosae Hopkins) outbreaks had unprecedented effects on lodgepole pine (Pinus contorta var. latifolia) in western North America. We used data from 165 forest inventory plots to analyze stand conditions that regulate lodgepole pine mortality across a wide range of stand structure and species composition at the Fraser...

  7. Management guide to ecosystem restoration treatments: two-aged lodgepole pine forests of central Montana, USA

    Treesearch

    Sharon M. Hood; Helen Y. Smith; David K. Wright; Lance S. Glasgow

    2012-01-01

    Lodgepole pine is one of the most widely distributed conifers in North America, with a mixed-severity rather than stand-replacement fire regime throughout much of its range. These lodgepole pine forests are patchy and often two-aged. Fire exclusion can reduce two-aged lodgepole pine heterogeneity. This management guide summarizes the effects of thinning and prescribed...

  8. The U.S. Forest Service's renewed focus on gene conservation of five-needle pine species

    Treesearch

    2011-01-01

    The U.S. Forest Service (FS) has been actively working with five-needle pine species for decades. The main focus of this interest has been in restoration efforts involving disease-resistance screening activities in western white (Pinus monticola), sugar (Pinus lambertiana), and eastern white (Pinus strobus) pines in the face of white pine blister rust (WPBR), caused by...

  9. The proactive strategy for sustaining five-needle pine populations: An example of its implementation in the southern Rocky Mountains

    Treesearch

    A. W. Schoettle; B. A. Goodrich; J. G. Klutsch; K. S. Burns; S. Costello; R. A. Sniezko

    2011-01-01

    The imminent invasion of the non-native fungus, Cronartium ribicola J.C. Fisch., that causes white pine blister rust (WPBR) and the current mountain pine beetle (Dendroctonus ponderosae Hopkins, MPB) epidemic in northern Colorado limber pine forests will severely affect the forest regeneration cycle necessary for functioning ecosystems. The slow growth and maturity of...

  10. II. Pathogens

    Treesearch

    Ned B. Klopfenstein; Brian W. Geils

    2011-01-01

    Invasive fungal pathogens have caused immeasurably large ecological and economic damage to forests. It is well known that invasive fungal pathogens can cause devastating forest diseases (e.g., white pine blister rust, chestnut blight, Dutch elm disease, dogwood anthracnose, butternut canker, Scleroderris canker of pines, sudden oak death, pine pitch canker) (Maloy 1997...

  11. Chapter 5. Dynamics of ponderosa and Jeffrey pine forests

    Treesearch

    Penelope Morgan

    1994-01-01

    Ponderosa (Pinus ponderosa) and Jeffrey pine (Pinus jefferyi) forests are ecologically diverse ecosystems. The communities and landscapes in which these trees dominate are variable and often complex. Because of the economic value of resources, people have used these forests extensively.

  12. Capturing forest dependency in the central Himalayan region: Variations between Oak (Quercus spp.) and Pine (Pinus spp.) dominated forest landscapes.

    PubMed

    Chakraborty, Anusheema; Joshi, Pawan Kumar; Sachdeva, Kamna

    2018-05-01

    Our study explores the nexus between forests and local communities through participatory assessments and household surveys in the central Himalayan region. Forest dependency was compared among villages surrounded by oak-dominated forests (n = 8) and pine-dominated forests (n = 9). Both quantitative and qualitative analyses indicate variations in the degree of dependency based on proximity to nearest forest type. Households near oak-dominated forests were more dependent on forests (83.8%) compared to households near pine-dominated forests (69.1%). Forest dependency is mainly subsistence-oriented for meeting basic household requirements. Livestock population, cultivated land per household, and non-usage of alternative fuels are the major explanatory drivers of forest dependency. Our findings can help decision and policy makers to establish nested governance mechanisms encouraging prioritized site-specific conservation options among forest-adjacent households. Additionally, income diversification with respect to alternate livelihood sources, institutional reforms, and infrastructure facilities can reduce forest dependency, thereby, allowing sustainable forest management.

  13. The Crossett Experimental Forest's contributions to southern pine improvement programs

    Treesearch

    Don C. Bragg; Jess Riddle; Joshua Adams; James M. Guldin

    2016-01-01

    Long renowned for its contributions to silvicultural practices in naturally regenerated loblolly (Pinus taeda) and shortleaf (Pinus echinata) pine, the Crossett Experimental Forest (CEF) has also played an important, if much less well known, role in southern pine tree improvement. A decades-long program centered at Crossett...

  14. Proceedings of the 12th biennial southern silvicultural research conference

    Treesearch

    Kristina F. Connor; [Editor

    2004-01-01

    Ninety-two papers and thirty-six poster summaries address a range of issues affecting southern forests. Papers are grouped in 15 sessions that include wildlife ecology; fire ecology; natural pine management; forest health; growth and yield; upland hardwoods - natural regeneration; hardwood intermediate treatments; longleaf pine; pine plantation silviculture; site...

  15. One seed source of Jeffrey pine shows resistance to dwarf mistletoe

    Treesearch

    Robert F. Scharpf; Bohun B. Kinloch; James L. Jenkinson

    1992-01-01

    Four seed sources of Jeffrey pine (Pinus jeffreyi) were selected for testing through controlled inoculation for resistance to dwarf mistletoe (Arceuthobium campylopodum). The pines were 7 years old and part of a progeny test planting established by the USDA Forest Service's Institute of Forest Genetics, Placewille,...

  16. Ecological consequences of mountain pine beetle outbreaks for wildlife in western North American forests

    Treesearch

    Victoria A. Saab; Quresh S. Latif; Mary M. Rowland; Tracey N. Johnson; Anna D. Chalfoun; Steven W. Buskirk; Joslin E. Heyward; Matthew A. Dresser

    2014-01-01

    Mountain pine beetle (Dendroctonus ponderosae) (MPB) outbreaks are increasingly prevalent in western North America, causing considerable ecological change in pine (Pinus spp.) forests with important implications for wildlife. We reviewed studies examining wildlife responses to MPB outbreaks and postoutbreak salvage logging to...

  17. Proceedings of the IUFRO joint conference: Genetics of five-needle pines, rusts of forest trees, and Strobusphere; 2014 June 15–20; Fort Collins, CO

    Treesearch

    Anna W. Schoettle; Richard A. Sniezko; John T. Kliejunas

    2018-01-01

    Proceedings from the 2014 IUFRO Joint Conference: Genetics of five-needle pines, rusts of forest trees, and Strobusphere in Fort Collins, Colorado. The published proceedings include 91 papers pertaining to research conducted on the genetics and pathology of five-needle pines and rusts of forest trees. Topic areas are: ecology and climate change, common garden genetics...

  18. Uptake and Distribution of Nitrogen from Acidic Fog within a Ponderosa Pine (Pinus ponderosa Laws.)/Litter/Soil System

    Treesearch

    Mark E. Fenn; Theodor D. Leininger

    1995-01-01

    The magnitude and importance of wet deposition of N in forests of the South Coast (Los Angeles) Air Basin have not been well characterized. We exposed 3-yr-old ponderosa pine (Pinus ponderos Laws.) seedlings growing in native forest soil to acidic fog treatments (pH 3.1) simulating fog chemistry from a pine forest near Los Angeles, California. Fog solutions contained...

  19. Indigenous vegetation in a Southern Arkansas pine-hardwood forest after a half century without catastrophic disturbances

    Treesearch

    Michael D. Cain; Michael G. Shelton

    1994-01-01

    In 1992 we analyzed the composition of a 32-ha pine-hardwood forest that originated from the partial cutting of the existing virgin forest around 1915. The area has been reserved from timber management since 1935. Pines >9 cm in diameter at a height of 1.37 m accounted for 61% of overstory and midstory basal area but only 21% of density. Of those trees that had...

  20. Short-term ecological consequences of collaborative restoration treatments in ponderosa pine forests of Colorado

    Treesearch

    Jennifer S. Briggs; Paula J. Fornwalt; Jonas A. Feinstein

    2017-01-01

    Ecological restoration treatments are being implemented at an increasing rate in ponderosa pine and other dry conifer forests across the western United States, via the USDA Forest Service’s Collaborative Forest Landscape Restoration (CFLR) program. In this program, collaborative stakeholder groups work with National Forests (NFs) to adaptively implement and monitor...

  1. 2004 report on the health of Colorado's forests: Special issue: Ponderosa pine forests

    Treesearch

    Paige Lewis; Merrill R. Kaufmann; Laurie S. Huckaby; Dave Leatherman

    2005-01-01

    The 2004 Report on the Health of Colorado's Forests begins with an overview of significant incidents and trends in forest insect and disease activity across the state. The remainder of the Report provides an in-depth examination of the ecology, condition and management of Colorado's ponderosa pine forests. Unlike previous editions, which highlighted a range...

  2. Ecological, Physical, and Socioeconomic Relationships Within Southern National Forests- Proceedings of the Southern Evaluation Project Workshop

    Treesearch

    Henry A. Pearson; Fred E. Smeins; Ronald E. Thill

    1987-01-01

    The results of 43 projects, which evaluated the flora, fauna, watersheds, socioeconomics,and forest pests located on southern National Forests were presented and discussed in 4 major categories: Management Outlook and Evaluation, Loblolly-Shortleaf Pine Type, Longleaf-Slash Pine Type, and Watersheds, Socioeconomics,and Forest Pests.

  3. Reintroducing fire into a ponderosa pine forest with and without cattle grazing: understory vegetation response

    Treesearch

    Becky K. Kerns; Michelle Buonopane; Walter G. Thies; Christine. Niwa

    2011-01-01

    Reestablishing historical fire regimes is a high priority for North American coniferous forests, particularly ponderosa pine (Pinus ponderosa) ecosystems. These forests are also used extensively for cattle (Bos spp.) grazing. Prescribed fires are being applied on or planned for millions of hectares of these forests to reduce...

  4. Ponderosa pine forest reconstruction: Comparisons with historical data

    Treesearch

    David W. Huffman; Margaret M. Moore; W. Wallace Covington; Joseph E. Crouse; Peter Z. Fule

    2001-01-01

    Dendroecological forest reconstruction techniques are used to estimate presettlement structure of northern Arizona ponderosa pine forests. To test the accuracy of these techniques, we remeasured 10 of the oldest forest plots in Arizona, a subset of 51 historical plots established throughout the region from 1909 to 1913, and compared reconstruction outputs to historical...

  5. Stand and fuel treatments for restoring old-growth ponderosa pine forests in the interior west (Boise Basin Experimental Forest)

    Treesearch

    Russell T. Graham; Theresa B. Jain

    2007-01-01

    Fire exclusion, especially in the dry forests (i.e. those dominated or potentially dominated by ponderosa pine) has most often altered tree and shrub composition and structure and, though often overlooked in many locales, the forest floor from conditions that occurred historically (pre-1900).

  6. Cheesman Lake-a historical ponderosa pine landscape guiding restoration in the South Platte Watershed of the Colorado Front Range

    Treesearch

    Merrill R. Kaufmann; Paula J. Fornwalt; Laurie S. Huckaby; Jason M. Stoker

    2001-01-01

    An unlogged and ungrazed ponderosa pine/Douglas-fir landscape in the Colorado Front Range provides critical information for restoring forests in the South Platte watershed. A frame-based model was used to describe the relationship among the four primary patch conditions in the 35-km2 Cheesman Lake landscape: (1) openings, (2) ponderosa pine forest, (3) ponderosa pine/...

  7. Mountain pine beetle infestation: GCxGCTOFMS and GC-MS of lodgepole pine (pinus contorta) acetone extractives

    Treesearch

    Roderquita K. Moore; Michael Leitch; Erick Arellano-ruiz; Jonathon Smaglick; Doreen Mann

    2015-01-01

    The Rocky Mountains and western U.S. forests are impacted by the infestation of mountain pine beetles (MPB). MPB outbreak is killing pine and spruce trees at an alarming rate. These trees present a fuel build-up in the forest, which can result in catastrophic wildland fires. MPB carry blue-stain fungi from the genus Ophiostoma and transmit infection by burrowing into...

  8. Death of an ecosystem: perspectives on western white pine ecosystems of North America at the end of the twentieth century

    Treesearch

    Alan E. Harvey; James W. Byler; Geral I. McDonald; Leon F. Neuenschwander; Jonalea R. Tonn

    2008-01-01

    The effective loss of western white pine (Pinus monticola Dougl.) in the white pine ecosystem has far-reaching effects on the sustainability of local forests and both regional and global forestry issues. Continuing trends in management of this forest type has the potential to put western white pine, as well as the ecosystem it once dominated, at very...

  9. The status of our scientific understanding of lodgepole pine and mountain pine beetles - a focus on forest ecology and fire behavior

    Treesearch

    Merrill R. Kaufmann; Gregory H. Aplet; Michael G. Babler; William L. Baker; Barbara Bentz; Michael Harrington; Brad C. Hawkes; Laurie Stroh Huckaby; Michael J. Jenkins; Daniel M. Kashian; Robert E. Keane; Dominik Kulakowski; Ward McCaughey; Charles McHugh; Jose Negron; John Popp; William H. Romme; Wayne Shepperd; Frederick W. Smith; Elaine Kennedy Sutherland; Daniel Tinker; Thomas T. Veblen

    2008-01-01

    Mountain pine beetle populations have reached outbreak levels in lodgepole pine forests throughout North America. The geographic focus of this report centers on the southern Rocky Mountains of Colorado and southern Wyoming. The epidemic extends much more widely, however, from the southern Rocky Mountains in Colorado in the United States to the northern Rocky Mountains...

  10. Mismatch between herbivore behavior and demographics contributes to scale-dependence of host susceptibility in two pine species

    USGS Publications Warehouse

    Ylioja, T.; Slone, D.H.; Ayres, M.P.

    2005-01-01

    The impacts on forests of tree-killing bark beetles can depend on the species composition of potential host trees. Host susceptibility might be an intrinsic property of tree species, or it might depend on spatial patterning of alternative host species. We compared the susceptibility of loblolly pine (Pinus taeda) and Virginia pine (P. virginiana) to southern pine beetle (Dendroctonus frontalis) at two hierarchical levels of geographic scale: within beetle infestations in heterospecific stands (extent ranging from 0.28 to 0.65 ha), and across a forest landscape (extent 72,500 ha) that was dominated by monospecific stands. In the former, beetles preferentially attacked Virginia pine (tree mortality = 65-100% in Virginia pine versus 0-66% in loblolly pine), but in the latter, loblolly stands were more susceptible than Virginia stands. This hierarchical transition in host susceptibility was predicted from knowledge of (1) a behavioral preference of beetles for attacking loblolly versus Virginia pine, (2) a negative correlation between preference and performance, and (3) a mismatch in the domain of scale between demographics and host selection by individuals. There is value for forest management in understanding the processes that can produce hierarchical transitions in ecological patterns. Copyright ?? 2005 by the Society of American Foresters.

  11. Fortifying the forest: thinning and burning increase resistance to a bark beetle outbreak and promote forest resilience.

    PubMed

    Hood, Sharon M; Baker, Stephen; Sala, Anna

    2016-10-01

    Fire frequency in low-elevation coniferous forests in western North America has greatly declined since the late 1800s. In many areas, this has increased tree density and the proportion of shade-tolerant species, reduced resource availability, and increased forest susceptibility to forest insect pests and high-severity wildfire. In response, treatments are often implemented with the goal of increasing ecosystem resilience by increasing resistance to disturbance. We capitalized on an existing replicated study of fire and stand density treatments in a ponderosa pine (Pinus ponderosa)-Douglas-fir (Pseudotsuga menziesii) forest in western Montana, USA, that experienced a naturally occurring mountain pine beetle (MPB; Dendroctonus ponderosae) outbreak 5 yr after implementation of fuels treatments. We explored whether treatment effects on tree-level defense and stand structure affected resistance to MPB. Mortality from MPB was highest in the denser, untreated control and burn-only treatments, with approximately 50% and 39%, respectively, of ponderosa pine killed during the outbreak, compared to almost no mortality in the thin-only and thin-burn treatments. Thinning treatments, with or without fire, dramatically increased tree growth and resin ducts relative to control and burn-only treatments. Prescribed burning did not increase resin ducts but did cause changes in resin chemistry that may have affected MPB communication and lowered attack success. While ponderosa pine remained dominant in the thin and thin-burn treatments after the outbreak, the high pine mortality in the control and burn-only treatment caused a shift in species dominance to Douglas-fir. The high Douglas-fir component in the control and burn-only treatments due to 20th century fire exclusion, coupled with high pine mortality from MPB, has likely reduced resilience of this forest beyond the ability to return to a ponderosa pine-dominated system in the absence of further fire or mechanical treatment. Our results show treatments designed to increase resistance to high-severity fire in ponderosa pine-dominated forests in the Northern Rockies can also increase resistance to MPB, even during an outbreak. This study suggests that fuel and restoration treatments in fire-dependent ponderosa pine forests that reduce tree density increase ecosystem resilience in the short term, while the reintroduction of fire is important for long-term resilience. © 2016 by the Ecological Society of America.

  12. Three studies on ponderosa pine management on the Warm Springs Indian Reservation: stocking control in uneven-aged stands, forest products from fire-damage trees, and fuels reduction

    Treesearch

    John V. Arena

    2005-01-01

    Over 60,000 acres of ponderosa pine (Pinus ponderosa P. and C. Lawson) forest on the Warm Springs Indian Reservation (WSIR) in Oregon are managed using an uneven-age system. Three on-going studies on WSIR address current issues in the management of pine forests: determining levels of growing stock for uneven-age management, fire effects on wood...

  13. Resiliency of an interior ponderosa pine forest to bark beetle infestations following fuel-reduction and forest-restoration treatments

    Treesearch

    Christopher J Fettig; Stephen R. McKelvey

    2014-01-01

    Mechanical thinning and the application of prescribed fire are commonly used to restore fire-adapted forest ecosystems in the western United States. During a 10-year period, we monitored the effects of fuel-reduction and forest-restoration treatments on levels of tree mortality in an interior ponderosa pine, Pinus ponderosa Dougl. ex Laws., forest...

  14. Woodpecker abundance and habitat use in three forest types in eastern Texas

    Treesearch

    Clifford E. Shackelford; Richard N. Conner

    1997-01-01

    Woodpeckers were censused in 60 fixed-radius (300 m) circular plots (divided into eight 45B-arc pie-shaped sectors) in mature forests (60 to 80 years-old) of three forest types (20 plots per type) in eastern Texas: bottomland hardwood forest; longleaf pine (Pinus palustris) savanna; and mixed pine-hardwood forest. A total of 2,242 individual woodpeckers of eight...

  15. A hierarchical approach to forest landscape pattern characterization.

    PubMed

    Wang, Jialing; Yang, Xiaojun

    2012-01-01

    Landscape spatial patterns have increasingly been considered to be essential for environmental planning and resources management. In this study, we proposed a hierarchical approach for landscape classification and evaluation by characterizing landscape spatial patterns across different hierarchical levels. The case study site is the Red Hills region of northern Florida and southwestern Georgia, well known for its biodiversity, historic resources, and scenic beauty. We used one Landsat Enhanced Thematic Mapper image to extract land-use/-cover information. Then, we employed principal-component analysis to help identify key class-level landscape metrics for forests at different hierarchical levels, namely, open pine, upland pine, and forest as a whole. We found that the key class-level landscape metrics varied across different hierarchical levels. Compared with forest as a whole, open pine forest is much more fragmented. The landscape metric, such as CONTIG_MN, which measures whether pine patches are contiguous or not, is more important to characterize the spatial pattern of pine forest than to forest as a whole. This suggests that different metric sets should be used to characterize landscape patterns at different hierarchical levels. We further used these key metrics, along with the total class area, to classify and evaluate subwatersheds through cluster analysis. This study demonstrates a promising approach that can be used to integrate spatial patterns and processes for hierarchical forest landscape planning and management.

  16. Nitrogen cycling following mountain pine beetle disturbance in lodgepole pine forests of Greater Yellowstone

    Treesearch

    Jacob M. Griffin; Monica G. Turner; Martin Simard

    2011-01-01

    Widespread bark beetle outbreaks are currently affecting multiple conifer forest types throughout western North America, yet many ecosystem-level consequences of this disturbance are poorly understood. We quantified the effect of mountain pine beetle (Dendroctonus ponderosae) outbreak on nitrogen (N) cycling through litter, soil, and vegetation in...

  17. Shortleaf Pine Seed Production in the Piedmont

    Treesearch

    David L. Bramlett

    1965-01-01

    Shortleaf pine occupies millions of acres of commercial forest land in the Southeastern United States and is one of the preferred pine species throughout much of its range. Natural regeneration of this species after harvest, however, is a major problem for forest managers. Adequate seed production is the first requirement of successful natural regeneration, and annual...

  18. Choosing suitable times for prescribed burning in southern New Jersey

    Treesearch

    S. Little; H. A. Somes; J. P. Allen

    1952-01-01

    Prescribed burning is useful in managing pine-oak forests in the Pine Region of southern New Jersey. It favors reproduction of pine by preparing suitable seed beds; it checks the development of hardwood reproduction; and it protects against wild fires by reducing the amount of fuel on the forest floor.

  19. Risk Assessment for the Southern Pine Beetle

    Treesearch

    Andrew Birt

    2011-01-01

    The southern pine beetle (SPB) causes significant damage (tree mortality) to pine forests. Although this tree mortality has characteristic temporal and spatial patterns, the precise location and timing of damage is to some extent unpredictable. Consequently, although forest managers are able to identify stands that are predisposed to SPB damage, they are unable to...

  20. Pine pollen collections dates - annual and geographic variation

    Treesearch

    J. W. Duffield

    1953-01-01

    Activity in pine breeding has increased throughout the temperate forest regions of the world since the Institute of Forest Genetics issued its first summary of pollen collection dates in 1947. Cooperation between pine breeders has increased at the same time. The information most essential for conducting cooperative breeding operations are the dates of pollen collection...

  1. Comparison of Monterey pine stress in urban and natural forests

    Treesearch

    David J. Nowak; Joe R. McBride

    1991-01-01

    Monterey pine street trees within Carmel, California and its immediate vicinity, as well as forest-grown Monterey pine within adjacent natural stands, were sampled with regard to visual stress characteristics, and various environmental and biological variables. Two stress indices were computed, one hypothesized before data collection was based on relative foliage...

  2. Madrean pine-oak forest in Arizona: past dynamics, present problems

    Treesearch

    Andrew M. Barton

    2008-01-01

    This paper synthesizes research on presettlement dynamics and modern disruption of Madrean pine-oak forests in Arizona. In response to surface fires characteristic of presettlement times, pines were fire resistant, exhibiting high top-survival, whereas oaks were fire resilient, exhibiting lower top-survival but pronounced resprouting. Thus, low-severity fire favors...

  3. Landscape-scale genetic variation in a forest outbreak species, the mountain pine beetle (Dendroctonus ponderosae)

    Treesearch

    K. E. Mock; B. J. Bentz; E. M. O' Neill; J. P. Chong; J. Orwin; M. E. Pfrender

    2007-01-01

    The mountain pine beetle Dendroctonus ponderosae is a native species currently experiencing large-scale outbreaks in western North American pine forests. We sought to describe the pattern of genetic variation across the range of this species, to determine whether there were detectable genetic differences between D. ponderosae...

  4. Nature of resistance of pines to bark beetles

    Treesearch

    Robert Z. Callaham

    1966-01-01

    Patterns of susceptibility of pines to attack by certain species of Dendroctonus bark beetles suggest that a resistance mechanism exists. This situation was first called to my attention in 1949 by John M. Miller, entomologist at the Berkeley Forest Insect Laboratory. He was studying the resistance of pines to insects, at the Institute of Forest...

  5. Western dwarf mistletoe infects understory Jeffrey pine seedlings on Cleveland National Forest, California

    Treesearch

    Robert F. Scharpf; Detlev Vogler

    1986-01-01

    Many young, understory Jeffrey pines (Pinus jeffreyi Grev. & Balf.) were found to be infected by western dwarf mistletoe (Arceuthobium campylopodum Engelm.) on Laguna Mountain, Cleveland National Forest, in southern California. Under heavily infected overstory, about three-fourths of the young pines (about 15 years old on the...

  6. Uneven-aged management of longleaf pine forests: a scientist and manager dialogue

    Treesearch

    Dale G. Brockway; Kenneth W. Outcalt; James M. Guldin; William D. Boyer; Joan L. Walker; D. Craig Rudolph; Robert B. Rummer; James P. Barnett; Shibu Jose; Jarek Nowak

    2005-01-01

    Interest in appropriate management approaches for sustaining longleaf pine (Pinus palustris Mill.) forests has increased substantially during the recent decade. Although long-leaf pine can be managed using even-aged techniques, interest in uneven-aged methods has grown significantly as a result of concern for sustaining the wide range of ecological...

  7. Relationships of red pine seed source, seed weight, seedling weight, and height growth in Kane test plantation

    Treesearch

    A. F. Hough

    1952-01-01

    In 1928 the Lake States Forest Experiment Station of the U. S. Forest Service began studies of various races or strains of red pine (Pinus resinosa Ait.), to find out how well red pine is adapted to climatic regions distant from its natural seed sources.

  8. Forest Statistics for Minnesota's Northern Pine Unit.

    Treesearch

    Pat Murray

    1991-01-01

    The fifth inventory of Minnesota's Northern Pine Unit reports 11.1 million acres of land, of which 6.3 million acres are forested. This bulletin presents statistical highlights and contains detailed tables of forest area, as well as timber volume, growth, removals, mortality, and ownership.

  9. Flammulated Owls (Otus flammeolus) breeding in deciduous forests

    Treesearch

    Carl D. Marti

    1997-01-01

    The first studies of nesting Flammulated Owls (Otus flammeolus) established the idea that the species needs ponderosa pine (Pinus ponderosa) forests for breeding. In northern Utah, Flammulated Owls nested in montane deciduous forests dominated by quaking aspen (Populus tremuloides). No pines were present but...

  10. Proceedings of the Fifth Biennial Southern Silvicultural Research Conference

    Treesearch

    James H. Miller; [Compiler

    1989-01-01

    Forest Service, forest industry, and university representatives present 4 general session papers giving projections for the 2030 forest and an additional 93 papers dealing with 15 subject areas: atmospheric influences, ecophysiology, seedling production, site preparation, pine regeneration, pine management, hardwood regeneration, hardwood management, vegetation,...

  11. Ecosystem carbon density and allocation across a chronosequence of longleaf pine forests

    Treesearch

    Lisa J. Samuelson; Thomas A. Stokes; John R. Butnor; Kurt H. Johnsen; Carlos A. Gonzalez-Benecke; Timothy A. Martin; Wendell P. Cropper; Pete H. Anderson; Michael R. Ramirez; John C. Lewis

    2017-01-01

    Forests can partially offset greenhouse gas emissions and contribute to climate change mitigation, mainly through increases in live biomass. We quantified carbon (C) density in 20 managed longleaf pine (Pinus palustris Mill.) forests ranging in age from 5...

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, Ken

    This is the AmeriFlux version of the carbon flux data for the site US-Dix Fort Dix. Site Description - The Fort Dix site is located in the upland forests of the New Jersey Pine Barrens, the largest continuous forested landscape on the Northeastern coastal plain. Upland forests occupy 62% of the 1.1 million acre Pine Barrens and can be divided into three dominant stand types, Oak/Pine (19.1%), Pine/Oak (13.1%), and Pitch Pine/Scrub oak (14.3%). The majority of mature upland forests are the product of regeneration following late 19th century logging and charcoaling activities. Gypsy moths first appeared in the Pinemore » Barrens of New Jersey in 1966. Since the time of arrival, the upland forest stands have undergone several episodes of defoliation, the most significant occurred in 1972, 1981, and 1990. In recent years, the overstory oaks and understory oaks and shrubs of the Fort Dix stand, underwent two periods of defoliation by Gypsy moth, in 2006 and 2007. During these two years, maximum leaf area reached only 70% of the 2005 summer maximum.« less

  13. Sampling and modeling visual component dynamics of forested areas

    Treesearch

    Victor A. Rudis

    1990-01-01

    A scaling device and sample design have been employed to assess vegetative screening of forested stands as part of an extensive forest inventory.Referenced in a poster presentation are results from East Texas pine and oak-pine stands and Alabama forested areas.Refinements for optimizing measures to distinguish differences in scenic beauty, disturbances, and stand...

  14. Water balance of pine forests: Synthesis of new and published results

    Treesearch

    Pantana Tor-ngern; Ram Oren; Sari Palmroth; Kimberly Novick; Andrew Oishi; Sune Linder; Mikaell Ottosson-Lofvenius; Torgny Nasholm

    2018-01-01

    The forest hydrologic cycle is expected to have important feedback responses to climate change, impacting processes ranging from local water supply and primary productivity to global water and energy cycles. Here, we analyzed water budgets of pine forests worldwide. We first estimated local water balance of forests dominated by two wide-ranging species: Pinus...

  15. 3-PG simulations of young ponderosa pine plantations under varied management intensity: why do they grow so differently?

    Treesearch

    Liang Wei; Marshall John; Jianwei Zhang; Hang Zhou; Robert Powers

    2014-01-01

    Models can be powerful tools for estimating forest productivity and guiding forest management, but their credibility and complexity are often an issue for forest managers. We parameterized a process-based forest growth model, 3-PG (Physiological Principles Predicting Growth), to simulate growth of ponderosa pine (Pinus ponderosa) plantations in...

  16. The southern pine beetle prevention initiative: working for healthier forests

    Treesearch

    John Nowak; Christopher Asaro; Kier Klepzig; Ronald Billings

    2008-01-01

    The southern pine beetle (SPB) is the most destructive forest pest in the South. After a recent SPB outbreak, the US Forest Service (Forest Health Protection and Southern Research Station [SRS]) received SPB Initiative (SPBI) funding to focus more resources on proactive SPB prevention work. This funding is being used for on-the-ground accomplishments, landowner...

  17. Forests in transition: Post-epidemic vegetation conditions [Chapter 4

    Treesearch

    Rob Hubbard; Michael Battaglia; Chuck Rhoades; Jim Thinnes; Tom Martin; Jeff Underhill; Mark Westfahl

    2014-01-01

    More than 23 million acres of lodgepole pine forests across the western U.S. have experienced overstory mortality following the recent mountain pine beetle (MPB) epidemic (USDA Forest Service 2013). Unknowns regarding the immediate and long-term consequences of the epidemic challenge the ability of managers to make informed decisions aimed at sustaining forest health...

  18. Reference conditions for old-growth pine forests in the Upper West Gulf Coastal Plain

    Treesearch

    Don C. Bragg

    2002-01-01

    Ecosystem restoration has become an important component of forest management. especially on public lands. However, determination of manageable reference conditions has lagged behind the interest. This paper presents a case study from pine-dominated forests in the Upper West Gulf Coastal Plain (UWGCP), with special emphasis on southern Arkansas. Decades of forest...

  19. Contrasting responses to drought of forest floor CO2 efflux in a loblolly pine plantation and a nearby Oak-Hickory forest

    Treesearch

    S. Palmroth; Chris A. Maier; Heather R. McCarthy; A. C. Oishi; H. S. Kim; Kurt H. Johnsen; Gabrial G. Katul; Ram Oren

    2005-01-01

    Forest floor C02 efflux (Fff) depends on vegetation type, climate, and soil physical properties. We assessed the effects of biological factors on Fff by comparing a maturing pine plantation (PP) and a nearby mature Oak-Hickory-type hardwood forest (HW). Fff was measured...

  20. Economic evaluation of restoring the shortleaf pine-bluestem grass ecosystem on the Ouachita National Forest

    Treesearch

    Michael M. Huebschmann; Daniel S. Tilley; Thomas B. Lynch; David K. Lewis; James M. Guldin

    2002-01-01

    The USDA Forest Service is restoring pre-European settlement forest conditions on about 10 percent (155,000 acres) of the Ouachita National Forest in western Arkansas. These conditions - characterized by large, scattered shortleaf pine and hardwoods maintained on 120-year rotations, with bluestem grass and associated herbaceous vegetation in the understory - are...

  1. White pine blister rust at mountain home demonstration state forest: a case study of the epidemic and prospects for genetic control.

    Treesearch

    Bohun B. Kinloch; Dulitz Jr.

    1990-01-01

    The behavior of white pine blister rust at Mountain Home State Demonstration Forest and surrounding areas in the southern Sierra Nevada of California indicates that the epidemic has not yet stabilized and that the most likely prognosis is a pandemic on white pines in this region within the next few decades. The impact on sugar pines, from young regeneration to old...

  2. Amounts and spatial distribution of downed woody debris, snags, windthrow, and forest floor mass within streamside management zones occurring in shortleaf pine stands five years after harvesting

    Treesearch

    Hal Liechty

    2007-01-01

    Shortleaf pine (Pinus echinata Mill.) is a dominant tree species in pine and pine-hardwood forest communities located on ridges and upper- to mid-slope positions in the Ouachita Mountains. The stream reaches located in these stands flow infrequently and are classified as ephemeral or intermittent, have low stream orders, and have relatively narrow...

  3. Development of a Site Comparison Index: Southeast Upland Forests

    DTIC Science & Technology

    2007-05-01

    was recorded to 0.1 cm, and only individual trees with a DBH =/> 5 cm were tallied. Pine snags and deciduous snags were also measured. Forty-three... tree species (plus Pine Snags and Deciduous Snags) represent- ing 7031 individuals were identified at the 40 sites, ranging from 1433 Loblolly Pines...of 40 sites. Based on basal areas of 24 tree species (N=6903), pine and deciduous snags. Table 1. Ten forest communities independently

  4. Reproducing pine stands on the eastern shore of Maryland using a seed-tree cutting and preparing seedbeds with machinery and summer fires

    Treesearch

    S. Little; J. J. Mohr

    1954-01-01

    Pure pine stands are the most profitable forest crop on upland sites of the Eastern Shore of Maryland. The stands have been common in the past, because loblolly pine and pond pine usually made up most of the first forest growth on abandoned farmland. And apparently nearly all upland sites have been tilled at one time or another.

  5. Helicopter spraying with 2,4,5-T to release young white pines

    Treesearch

    Thomas W. McConkey

    1958-01-01

    When forest fires swept over southwestern Maine in 1947, some 130,000 acres of forest land were burned over. This was mostly white pine land--sites too poor to grow good hardwood stands. After the fire, white pine reproduction became established on 5,000 to 6,000 acres of this land. But by 1954 most of the young pine was suppressed or at least was in competition with...

  6. Comparison of forest edge effects on throughfall deposition in different forest types.

    PubMed

    Wuyts, Karen; De Schrijver, An; Staelens, Jeroen; Gielis, Leen; Vandenbruwane, Jeroen; Verheyen, Kris

    2008-12-01

    This study examined the influence of distance to the forest edge, forest type, and time on Cl-, SO4(2-), NO3(-), and NH4+ throughfall deposition in forest edges. The forests were dominated by pedunculate oak, silver birch, or Corsican/Austrian pine, and were situated in two regions of Flanders (Belgium). Along transects, throughfall deposition was monitored at distances of 0-128 m from the forest edge. A repeated-measures analysis demonstrated that time, forest type, and distance to the forest edge significantly influenced throughfall deposition of the ions studied. The effect of distance to the forest edge depended significantly on forest type in the deposition of Cl-, SO4(2-), and NO3(-): the edge effect was significantly greater in pine stands than in deciduous birch and oak stands. This finding supports the possibility of converting pine plantations into oak or birch forests in order to mitigate the input of nitrogen and potentially acidifying deposition.

  7. Rapid Increases in Forest Understory Diversity and Productivity following a Mountain Pine Beetle (Dendroctonus ponderosae) Outbreak in Pine Forests

    PubMed Central

    Pec, Gregory J.; Karst, Justine; Sywenky, Alexandra N.; Cigan, Paul W.; Erbilgin, Nadir; Simard, Suzanne W.; Cahill, James F.

    2015-01-01

    The current unprecedented outbreak of mountain pine beetle (Dendroctonus ponderosae) in lodgepole pine (Pinus contorta) forests of western Canada has resulted in a landscape consisting of a mosaic of forest stands at different stages of mortality. Within forest stands, understory communities are the reservoir of the majority of plant species diversity and influence the composition of future forests in response to disturbance. Although changes to stand composition following beetle outbreaks are well documented, information on immediate responses of forest understory plant communities is limited. The objective of this study was to examine the effects of D. ponderosae-induced tree mortality on initial changes in diversity and productivity of understory plant communities. We established a total of 110 1-m2 plots across eleven mature lodgepole pine forests to measure changes in understory diversity and productivity as a function of tree mortality and below ground resource availability across multiple years. Overall, understory community diversity and productivity increased across the gradient of increased tree mortality. Richness of herbaceous perennials increased with tree mortality as well as soil moisture and nutrient levels. In contrast, the diversity of woody perennials did not change across the gradient of tree mortality. Understory vegetation, namely herbaceous perennials, showed an immediate response to improved growing conditions caused by increases in tree mortality. How this increased pulse in understory richness and productivity affects future forest trajectories in a novel system is unknown. PMID:25859663

  8. Rapid Increases in forest understory diversity and productivity following a mountain pine beetle (Dendroctonus ponderosae) outbreak in pine forests.

    PubMed

    Pec, Gregory J; Karst, Justine; Sywenky, Alexandra N; Cigan, Paul W; Erbilgin, Nadir; Simard, Suzanne W; Cahill, James F

    2015-01-01

    The current unprecedented outbreak of mountain pine beetle (Dendroctonus ponderosae) in lodgepole pine (Pinus contorta) forests of western Canada has resulted in a landscape consisting of a mosaic of forest stands at different stages of mortality. Within forest stands, understory communities are the reservoir of the majority of plant species diversity and influence the composition of future forests in response to disturbance. Although changes to stand composition following beetle outbreaks are well documented, information on immediate responses of forest understory plant communities is limited. The objective of this study was to examine the effects of D. ponderosae-induced tree mortality on initial changes in diversity and productivity of understory plant communities. We established a total of 110 1-m2 plots across eleven mature lodgepole pine forests to measure changes in understory diversity and productivity as a function of tree mortality and below ground resource availability across multiple years. Overall, understory community diversity and productivity increased across the gradient of increased tree mortality. Richness of herbaceous perennials increased with tree mortality as well as soil moisture and nutrient levels. In contrast, the diversity of woody perennials did not change across the gradient of tree mortality. Understory vegetation, namely herbaceous perennials, showed an immediate response to improved growing conditions caused by increases in tree mortality. How this increased pulse in understory richness and productivity affects future forest trajectories in a novel system is unknown.

  9. Climate change and ecosystem disruption: the health impacts of the North American Rocky Mountain pine beetle infestation.

    PubMed

    Embrey, Sally; Remais, Justin V; Hess, Jeremy

    2012-05-01

    In the United States and Canada, pine forest ecosystems are being dramatically affected by an unprecedented pine beetle infestation attributed to climate change. Both decreased frequency of extremely cold days and warmer winter temperature averages have led to an enphytotic devastating millions of acres of pine forest. The associated ecosystem disruption has the potential to cause significant health impacts from a range of exposures, including increased runoff and water turbidity, forest fires, and loss of ecosystem services. We review direct and indirect health impacts and possible prevention strategies. The pine beetle infestation highlights the need for public health to adopt an ecological, systems-oriented view to anticipate the full range of potential health impacts from climate change and facilitate effective planned adaptation.

  10. Climate Change and Ecosystem Disruption: The Health Impacts of the North American Rocky Mountain Pine Beetle Infestation

    PubMed Central

    Remais, Justin V.; Hess, Jeremy

    2012-01-01

    In the United States and Canada, pine forest ecosystems are being dramatically affected by an unprecedented pine beetle infestation attributed to climate change. Both decreased frequency of extremely cold days and warmer winter temperature averages have led to an enphytotic devastating millions of acres of pine forest. The associated ecosystem disruption has the potential to cause significant health impacts from a range of exposures, including increased runoff and water turbidity, forest fires, and loss of ecosystem services. We review direct and indirect health impacts and possible prevention strategies. The pine beetle infestation highlights the need for public health to adopt an ecological, systems-oriented view to anticipate the full range of potential health impacts from climate change and facilitate effective planned adaptation. PMID:22420788

  11. Common Herbaceous Plants of Southern Forest Range

    Treesearch

    Harold E. Grelen; Ralph H. Hughes

    1984-01-01

    Illustrations and descriptions are given for approximately 125 species of grasses, grasslikes (sedges and rushes), and forbs representative of the pine and pine-hardwood forests of the southeastern United States.

  12. [Soil organic carbon pools and their turnover under two different types of forest in Xiao-xing'an Mountains, Northeast China].

    PubMed

    Gao, Fei; Jiang, Hang; Cui, Xiao-yang

    2015-07-01

    Soil samples collected from virgin Korean pine forest and broad-leaved secondary forest in Xiaoxing'an Mountains, Northeast China were incubated in laboratory at different temperatures (8, 18 and 28 °C) for 160 days, and the data from the incubation experiment were fitted to a three-compartment, first-order kinetic model which separated soil organic carbon (SOC) into active, slow, and resistant carbon pools. Results showed that the soil organic carbon mineralization rates and the cumulative amount of C mineralized (all based on per unit of dry soil mass) of the broad-leaved secondary forest were both higher than that of the virgin Korean pine forest, whereas the mineralized C accounted for a relatively smaller part of SOC in the broad-leaved secondary forest soil. Soil active and slow carbon pools decreased with soil depth, while their proportions in SOC increased. Soil resistant carbon pool and its contribution to SOC were both greater in the broad-leaved secondary forest soil than in the virgin Korean pine forest soil, suggesting that the broad-leaved secondary forest soil organic carbon was relatively more stable. The mean retention time (MRT) of soil active carbon pool ranged from 9 to 24 d, decreasing with soil depth; while the MRT of slow carbon pool varied between 7 and 24 a, increasing with soil depth. Soil active carbon pool and its proportion in SOC increased linearly with incubation temperature, and consequently, decreased the slow carbon pool. Virgin Korean pine forest soils exhibited a higher increasing rate of active carbon pool along temperature gradient than the broad-leaved secondary forest soils, indicating that the organic carbon pool of virgin Korean pine forest soil was relatively more sensitive to temperature change.

  13. A participatory assessment of post-fire management alternatives in eastern Spain

    NASA Astrophysics Data System (ADS)

    Llovet, Joan

    2015-04-01

    Transformational socio-economic changes during the last decades of the 20th century led to the abandonment of mountainous areas in western Mediterranean countries (Puigdefábregas and Mendizábal, 1998). This process was accelerated in the Ayora Valley (inland Valencia province, E Spain) by a major forest fire in 1979. Restoration and management actions were implemented through the 1990's to promote the recovery of the area affected by this fire. In 2010 these past actions were assessed using an integrated and participatory evaluation protocol (IAPro). The selected actions were shrubland regenerated after the fire (no-action); pine plantation over the shrubland; pine forest regenerated after the fire (no-action); and thinning of densely regenerated pines. The assessment involved the identification and engagement of a comprehensive and representative set of local and regional stakeholders who provided a baseline assessment, identified and prioritized essential indicators, considered data collected against those indicators, and participated in re-assessment of actions after an outranking multi-criteria decision aiding integration (MCDA) conducted by the expert team (Roy and Bertier, 1973). This process facilitated a collaborative integration of biophysical indicators (i.e. carbon sequestration, water and soil conservation, soil quality, biodiversity, fire risk and forest health) and socio-economic indicators (i.e. productive, recreational and touristic, aesthetic, and cultural values, cost of the actions, and impact on family finances). It was completed with activities for exchanging experiences and sharing knowledge with the platform of stakeholders. Stakeholder platform suggested that fire risk was the most important indicator, followed by water conservation and soil conservation. Least important indicators were cost of actions, aesthetic value, and recreational and touristic value. Data collected on each action showed the thinned pine forest action with the lowest value on the fire risk criterion; shrubland had a fire risk three times higher, whereas pine plantation and dense pine forest showed a fire risk four times higher than thinned pine forest. Thinned pine forest showed the highest impact on family finances, as well as productive, cultural, recreational and touristic, and aesthetic values. The best value on forest health corresponded to shrubland, and the worst were the dense pine forest and thinned pine forest. Pine plantation showed the highest cost, whereas no-actions had not direct costs. The rest of indicators showed low or inexistent differences between actions. The indicator priorities combined with data collected through the MCDA integration showed that the thinning of densely regenerated pine forest action, outranked the other actions in most of the criteria. The second action was pine plantation, whereas shrubland and dense pine forest obtained the lowest assessment. As conclusion, the participatory methodology was fundamental in understanding the impact of perceptions and stakeholders' priorities in a usually very technical and non-participatory process. Similar methodologies could enhance knowledge exchange between scientists, managers and stakeholders, while improve society-science collaboration in land management and restoration research and practice. Acknowledgements Inhabitants and other people related to the Ayora Valley kindly collaborated with our work. Some collaborators helped us in both field work and meetings with stakeholders. This research has been supported by the projects PRACTICE (EU grant number 226818), RECARE (EU grant number 603498) and GRACCIE (Consolider program, Spanish Ministry of Education and Science grant number CSD2007-00067). The CEAM Foundation is supported by Generalitat Valenciana. References Puigdefábregas, J. and Mendizábal, T. 1998. Perspectives on desertification: Western Mediterranean. Journal of Arid Environments 39: 209-224. Roy, B. and Bertier, P. 1973. La méthode ELECTRE II - Une application au média-planning. In: M. Ross (editor) OR'72. North-Holland Publishing Company, Amsterdam, pp 291-302.

  14. Wildlife and shortleaf pine management

    Treesearch

    T. Bently Wigley

    1986-01-01

    Shortleaf pine forests (Pinus echinata) are used for multiple purposes. This paper discusses the effects that timber management, livestock grazing, and recreational uses of the shortleaf forest may have on its wildlife resources.

  15. Timber, Browse, and Herbage on Selected Loblolly-Shortleaf Pine-Hardwood Forest Stands

    Treesearch

    Gale L. Wolters; Alton Martin; Warren P. Clary

    1977-01-01

    A thorough vegetation inventory was made on loblolly-shortleaf pine-hardwood stands scheduled by forest industry for clearcutting, site preparation, and planting to pine in north central Louisiana and southern Arkansas. Overstory timber, on the average, contained about equal proportions of softwood and hardwood basal area. Browse plants ranged from 5,500 to over 70,...

  16. Fuel accumulations in Piedmont loblolly pine plantations

    Treesearch

    Ernst V. Brender; W. Henry McNab; Shelton Williams

    1976-01-01

    Weight of minor vegetation under unthinned loblolly pine (Pinus taeda L.) plantations was closely related to stand age and basal area stocking. Weight of this vegetation peaked 3 years after clearcutting and planting, then diminished as the pine canopy became denser. Forest floor weight increased steadily through age 23, when it began to level off. Equilibrium forest...

  17. Longleaf pine site response to repeated fertilization and forest floor removal by raking and prescribed burning

    Treesearch

    Kim Ludovici; Robert Eaton; Stanley Zarnoch

    2018-01-01

    Removal of forest floor litter by pine needle raking and prescribed burning is a common practice in longleaf pine (Pinus palustris Mill.) stands on Coastal Plain sites in the Southeastern United States. Repeated removal of litter by raking and the loss of surface organic matter from controlled burns can affect the...

  18. Explaining the apparent resiliency of loblolly pine plantation to organic matter removal

    Treesearch

    Jeff A. Hatten; Eric B. Surce; Zakiya Leggett; Jason Mack; Scott D. Roberts; Janet Dewey; Brian Strahm

    2015-01-01

    We utilized 15-year measurements from an organic matter manipulation experiment in a loblolly pine plantation in the Upper Coastal Plain of Alabama to examine the apparent resiliency of a loblolly pine stand to organic matter removal. Treatments included complete removal of harvest residues and forest floor (removed), doubling of harvest residues and forest floor (...

  19. Vegetation response to stand structure and prescribed fire in an interior ponderosa pine ecosystem

    Treesearch

    Jianwei Zhang; Martin W. Ritchie; William W. Oliver

    2008-01-01

    A large-scale interior ponderosa pine (Pinus ponderosa Dougl. ex P. & C. Laws.) study was conducted at the Blacks Mountain Experimental Forest in northeastern California. The primary purpose of the study was to determine the influence of structural diversity on the dynamics of interior pine forests at the landscape scale. High structural...

  20. Remanat old-growth longleaf pine (Pinus palustris Mill.) savannas and forests of the southeastern USA: Status and threats

    Treesearch

    J. Moragan Varner; John S. Kush

    2004-01-01

    Old-growth savannas and forests dominated by longleaf pine (Pinus palustris Mill.) are of great conservation and research interest. Comprehensive inventories of old-growth communities, however, are lacking for most of longleaf pine's natural range. We searched the literature, interviewed regional experts, queried email discussion lists and...

  1. Some harvest options and their consequences for the aspen, birch, and associated forest types of the Lake States.

    Treesearch

    L.F Ohmann; H.O. Batzer; R.R. Buech; D.C. Lothner; D. A. Perala; A.L. Schipper; E.S. Verry

    1978-01-01

    Describes some harvest options and their consequences in terms of timber investment return, water yield and quality, wildlife, visual quality, and disease and insect impact for the aspen, white birch, red pine, white pine, jack pine, black spruce, spruce-fir, and white-cedar forest types of the Lake States.

  2. Carbon sequestration in the New Jersey Pine Barrens under different scenarios of fire management

    Treesearch

    Robert M. Scheller; Steve Van Tuyl; Kenneth L. Clark; John Hom; Inga. La Puma

    2011-01-01

    The New Jersey Pine Barrens (NJPB) is the largest forested area along the northeastern coast of the United States. The NJPB are dominated by pine (Pinus spp.) and oak (Quercus spp.) stands that are fragmented and subject to frequent disturbance and forest management. Over long time periods (>50 years), the balance between oak...

  3. Aerial Detection, Ground Evaluation, and Monitoring of the Southern Pine Beetle: State Perspectives

    Treesearch

    Ronald F. Billings

    2011-01-01

    The southern pine beetle (SPB), is recognized as the most serious insect pest of southern pine forests. Outbreaks occur almost every year somewhere within its wide range, requiring intensive suppression efforts to minimize resource losses to Federal, State, and private forests. Effective management involves annual monitoring of SPB populations and aerial detection and...

  4. Pest Fact Sheet 2007: Southern Pine Beetle prevention initiative: Working for healthier forests

    Treesearch

    R-8 and Southern Research Station U.S. Department of Agriculture Forest Service Forest Health Protection

    2007-01-01

    From 1999 to 2003, southern pine beetle (SPB) caused unprecedented damage to pine forests in southern Appalachian mountains. These losses severely impacted the natural resource base that supports the South's tourism and wood-based manufacturing industries and also destroyed the habitat of threatened and endangered species, such as the red-cockaded woodpecker....

  5. Tradeoffs in overstory and understory aboveground net primary productivity in southwestern ponderosa pine stands

    Treesearch

    Kyla E. Sabo; Stephen C. Hart; Carolyn Hull Sieg; John Duff Bailey

    2008-01-01

    Previous studies in ponderosa pine forests have quantified the relationship between overstory stand characteristics and understory production using tree measurements such as basal area. We built on these past studies by evaluating the tradeoff between overstory and understory aboveground net primary productivity (ANPP) in southwestern ponderosa pine forests at the...

  6. Population Dynamics of Southern Pine Beetle in Forest Landscapes

    Treesearch

    Andrew Birt

    2011-01-01

    Southern pine beetle (SPB) is an important pest of Southeastern United States pine forests. Periodic regional outbreaks are characterized by localized areas of tree mortality (infestations) surrounded by areas with little or no damage. Ultimately, this spatiotemporal pattern of tree mortality is driven by the dynamics of SPB populations—more specifically, by rates of...

  7. Interacting genes in the pine-fusiform rust forest pathosystem

    Treesearch

    H.V. Amerson; T.L. Kubisiak; S.A. Garcia; G.C. Kuhlman; C.D. Nelson; S.E. McKeand; T.J. Mullin; B. Li

    2005-01-01

    Fusiform rust (FR) disease of pines, caused by Cronartium quercuum f.sp. fusiforme (Cqf), is the most destructive disease in pine plantations of the southern U. S. The NCSU fusiform rust program, in conjunction with the USDA-Forest Service in Saucier, MS and Athens, GA, has research underway to elucidate some of the genetic interactions in this...

  8. Bark beetles responses to stand structure and prescribed fire at Black Mountain Experimental Forest, California, USA: 5-year data

    Treesearch

    C.J. Fettig; S.R. McKelvey

    2010-01-01

    Highly effective fire suppression and selective harvesting of large-diameter, fire-tolerant tree species, such as ponderosa pine (Pinus ponderosa C. Lawson) and Jeffrey pine (P. jeffreyi Balf.), have resulted in substantial changes to the structure and composition of interior ponderosa pine forests. Mechanical thinning and the...

  9. Ecosystem and understory water and energy exchange for a mature, naturally regenerated pine flatwoods forest in north Florida

    Treesearch

    Thomas L. Powell; Gregory Starr; Kenneth L. Clark; Timothy A. Martin; Henry L. Gholz

    2005-01-01

    Eddy covariance was used to measure energy fluxes from July 2000 - June 2002 above the tree canopy and above the understory in a mature, naturally regenerated slash pine (Pinus elliottii Engelm. var. elliottii) - longleaf pine (Pinus palustris Mill.) flatwoods forest. Understory latent energy (eE) and sensible...

  10. Regeneration of southern pine stands under ecosystem management in the Piedmont

    Treesearch

    James W. McMinn; Alexander Clark

    1999-01-01

    Ecosystem-oriented management is being used on southern National Forests to conserve biodiversity, improve the balance among forest values, and achieve sustainable conditions. This paper reports on the regeneration phase of a study to identify the implications of ecosystem management practices on loblolly pine (Pinus taeda L.) and shortleaf (I? echinata Mill) pine...

  11. Estimating long-term carbon sequestration patterns in even- and uneven-aged southern pine stands

    Treesearch

    Don C. Bragg; James M. Guldin

    2010-01-01

    Carbon (C) sequestration has become an increasingly important consideration for forest management in North America, and has particular potential in pine-dominated forests of the southern United States. Using existing literature on plantations and long-term studies of naturally regenerated loblolly (Pinus taeda) and shortleaf (Pinus echinata) pine-dominated stands on...

  12. Historical and contemporary lessons from ponderosa pine genetic studies at the Fort Valley Experimental Forest, Arizona

    Treesearch

    Laura E. DeWald; Mary Frances Mahalovich

    2008-01-01

    Forest management will protect genetic integrity of tree species only if their genetic diversity is understood and considered in decision-making. Genetic knowledge is particularly important for species such as ponderosa pine (Pinus ponderosa Dougl. ex Laws.) that are distributed across wide geographic distances and types of climates. A ponderosa pine...

  13. Molecular and genetic basis for partial resistance of western white pine against Cronartium ribicola.

    Treesearch

    Jun-Jun Liu; Arezoo Zamany; Richard Sniezko

    2012-01-01

    Western white pine (Pinus monticola Douglas ex D. Don) is an important forest species in North America. Forest genetics programs have been breeding for durable genetic resistance against white pine blister rust (WPBR) caused by Cronartium ribicola in the past few decades. As various genetic resistance resources are screened and...

  14. Growing stock levels in even-aged ponderosa pine

    Treesearch

    Clifford A. Myers

    1967-01-01

    Growth of the most widely distributed pine in North America is under joint study by the western Forest and Range Experiment Stations of the U. S. Forest Service. Young, even-aged ponderosa pine (Pinus ponderosa Laws.) stands are being examined over a wide range of tree sizes, stand densities, and site index. The single plan that co-...

  15. A multi-century analysis of disturbance dynamics in pine-oak forests of the Missouri Ozark Highlands

    Treesearch

    Chad King; Rose-Marie Muzika

    2013-01-01

    Using dendrochronology and growth release approaches, we analyzed the disturbance history of shortleaf pine (Pinus echinata Mich.) white oak (Quercus alba L.) forests in the Missouri Ozark Highlands. The objectives of this study were to (1) identify growth release events using living and remnant shortleaf pine and white oak, (2)...

  16. Controlling the Southern Pine Beetle: Small Landowner Perceptions and Practices

    Treesearch

    Joseph J. Molnar; John Schelhas; Carrie Holeski

    2003-01-01

    The southern pine beetle, Dendroctonus frontalis (Zimmermann) (Coleoptera: Scolytidae) is one of the most serious threats to pine forest health in the South (4,24,29,30). Once a forest stand is infested, there are few options for immediate elimination and isolation of infested trees. The most effective approach to preventing losses from the southern...

  17. Genetic structure, diversity, and inbreeding of eastern white pine under different management conditions

    Treesearch

    Paula E. Marquardt; Craig S. Echt; Bryan K. Epperson; Dan M. Pubanz

    2007-01-01

    Resource sustainability requires a thorough understanding of the influence of forest management programs on the conservation of genetic diversity in tree populations. To observe how differences in forest structure affect the genetic structure of eastern white pine (Pinus strobus L.), we evaluated six eastern white pine sites across the 234000 acre (1...

  18. Western white pine growth relative to forest openings

    Treesearch

    Theresa B. Jain; Russell T. Graham; Penelope Morgan

    2004-01-01

    In northern Rocky Mountains moist forests, timber harvesting, fire exclusion, and an introduced stem disease have contributed to the decline in western white pine (Pinus monticola Dougl. ex D. Don) abundance (from 90% to 10% of the area). Relations between canopy openings (0.1-15 ha) and western white pine growth within different physical settings are identified....

  19. Simulating historical disturbance regimes and stand structures in old-forest ponderosa pine/Douglas-fir forests

    Treesearch

    Mike Hillis; Vick Applegate; Steve Slaughter; Michael G. Harrington; Helen Smith

    2001-01-01

    Forest Service land managers, with the collaborative assistance from research, applied a disturbance based restoration strategy to rehabilitate a greatly-altered, high risk Northern Rocky Mountain old-forest ponderosa pine-Douglas-fir stand. Age-class structure and fire history for the site have been documented in two research papers (Arno and others 1995, 1997)....

  20. Mexican spotted owl home range and habitat use in pine-oak forest: Implications for forest management

    Treesearch

    Joseph L. Ganey; William M. Block; Jeffrey S. Jenness; Randolph A. Wilson

    1998-01-01

    To better understand the habitat relationships of the Mexican spotted owl (Strix occidentalis lucida), and how such relationships might influence forest management, we studied home-range and habitat use of radio-marked owls in ponderosa pine (Pinus ponderosa) Gambel oak (Quercus gambelii) forest. Annual home-range size (95% adaptive-kernel estimate) averaged 895 ha...

  1. Fuel loadings 5 years after a bark beetle outbreak in south-western USA ponderosa pine forests

    Treesearch

    Chad M. Hoffman; Carolyn Hull Sieg; Joel D. McMillin; Peter Z. Fule

    2012-01-01

    Landscape-level bark beetle (Coleoptera: Curculionidae, Scolytinae) outbreaks occurred in Arizona ponderosa pine (Pinus ponderosa Dougl. ex Law.) forests from 2001 to 2003 in response to severe drought and suitable forest conditions.We quantified surface fuel loadings and depths, and calculated canopy fuels based on forest structure attributes in 60 plots established 5...

  2. Eighty-eight years of change in a managed ponderosa pine forest

    Treesearch

    Helen Y. Smith; Stephen F. Arno

    1999-01-01

    This publication gives an overview of structural and other ecological changes associated with forest management and fire suppression since the early 1900's in a ponderosa pine forest, the most widespread forest type in the Western United States. Three sources of information are presented: (1) changes seen in a series of repeat photographs taken between 1909 and...

  3. Genetic improvement of shortleaf pine on the Mark Twain, Ouachita, and Ozark National Forests

    Treesearch

    Charly Studyvin; David Gwaze

    2007-01-01

    A genetic conservation and breeding program for shortleaf pine (Pinus echinata Mill.) was initiated in the 1960s by the Mark Twain National Forest in Missouri. Superior trees were selected from natural stands throughout the Forest. Fifty of the top-ranked superior trees were grafted into a first generation seed orchard at the Ouachita National Forest...

  4. A Prospectus on Restoring Late Successional Forest Structure to Eastside Pine Ecosystems Through Large-Scale, Interdisciplinary Research

    Treesearch

    Steve Zack; William F. Laudenslayer; Luke George; Carl Skinner; William Oliver

    1999-01-01

    At two different locations in northeast California, an interdisciplinary team of scientists is initiating long-term studies to quantify the effects of forest manipulations intended to accelerate andlor enhance late-successional structure of eastside pine forest ecosystems. One study, at Blacks Mountain Experimental Forest, uses a split-plot, factorial, randomized block...

  5. Old-growth Montane Longleaf Pine Forest Age Structure: A Preliminary Assessment

    Treesearch

    J. Morgan Varner; John S. Kush; Ralph S. Meldahl

    1998-01-01

    Presettlement longleaf pine forests of the Southeast have been described as uneven-aged forests comprised of even-aged patches. Less than 4000 ha of old-growth longleaf forest remains. From these few sites remaining, a limited volume of age related literature has evolved, and these studies have been limited to the Lower Coastal Plain physiographic province. This study...

  6. Status of the Longleaf Pine Forests of the West Gulf Coastal Plain

    Treesearch

    Kenneth W. Outcalt

    1997-01-01

    Datafrom the USDA Forest Service, forest inventory and analyses permanent field plot were used to track changes in longleaf pine (Pinuspalustris Mill.) communities in Texas and Louisiana between 1985 and 1995. The decline of longleaf forest has continued in Louisiana. Texas had much less longleaf type in 1985, but unlike Louisiana there has been a small increase in the...

  7. Light intensity related to stand density in mature stands of the western white pine type

    Treesearch

    C. A. Wellner

    1948-01-01

    Where tolerance of forest trees or subordinate vegetation is a factor in management, the forester needs a simple field method of Estimating or forecasting light intensities in forest stands. The following article describes a method developed for estimating light intensity beneath the canopy in western white pine forests which may have application in other types.

  8. A forest health inventory assessment of red fir (Abies magnifica) in upper montane California

    Treesearch

    Leif Mortenson; Andrew N. Gray; David C. Shaw

    2015-01-01

    We investigated the forest health of red fir (Abies magnifica) and how it compared with commonly-associated species Jeffrey pine (Pinus jeffreyi), lodgepole pine (Pinus contorta) and white fir (Abies concolor) in the upper montane forests of California. We evaluated tree mortality rates...

  9. Louisiana’s Palustris Experimental Forest: 75 years of research that transformed the South

    Treesearch

    James P. Barnett; James D. Haywood; Henry A. Pearson

    2011-01-01

    The Palustris Experimental Forest, located on Kisatchie National Forest, has been in existence for 75 years. Research at Palustris has focused on southern pine reforestation technology, including seed production, bareroot nursery production, direct seeding, and planting container seedlings. After establishing pine plantations, researchers developed stand management...

  10. Effects of site preparation for pine forest/switchgrass Intercropping on water quality

    Treesearch

    A. Muwamba; D. M. Amatya; H. Ssegane; G.M. Chescheir; T. Appelboom; E.W. Tollner; J. E. Nettles; M. A. Youssef; F. Birgand; R. W. Skaggs; S. Tian

    2015-01-01

    A study was initiated to investigate the sustainability effects of intercropping switchgrass (Panicum virgatum L.) in a loblolly pine (Pinus taeda L.) plantation. This forest-based biofuel system could possibly provide biomass from the perennial energy grass while maintaining the economics and environmental benefits of a forest...

  11. Draft genome of the mountain pine beetle, Dendroctonus ponderosae Hopkins, a major forest pest

    PubMed Central

    2013-01-01

    Background The mountain pine beetle, Dendroctonus ponderosae Hopkins, is the most serious insect pest of western North American pine forests. A recent outbreak destroyed more than 15 million hectares of pine forests, with major environmental effects on forest health, and economic effects on the forest industry. The outbreak has in part been driven by climate change, and will contribute to increased carbon emissions through decaying forests. Results We developed a genome sequence resource for the mountain pine beetle to better understand the unique aspects of this insect's biology. A draft de novo genome sequence was assembled from paired-end, short-read sequences from an individual field-collected male pupa, and scaffolded using mate-paired, short-read genomic sequences from pooled field-collected pupae, paired-end short-insert whole-transcriptome shotgun sequencing reads of mRNA from adult beetle tissues, and paired-end Sanger EST sequences from various life stages. We describe the cytochrome P450, glutathione S-transferase, and plant cell wall-degrading enzyme gene families important to the survival of the mountain pine beetle in its harsh and nutrient-poor host environment, and examine genome-wide single-nucleotide polymorphism variation. A horizontally transferred bacterial sucrose-6-phosphate hydrolase was evident in the genome, and its tissue-specific transcription suggests a functional role for this beetle. Conclusions Despite Coleoptera being the largest insect order with over 400,000 described species, including many agricultural and forest pest species, this is only the second genome sequence reported in Coleoptera, and will provide an important resource for the Curculionoidea and other insects. PMID:23537049

  12. [Effect of climate change on net primary productivity of Korean pine (Pinus koraiensis) at different successional stages of broad-leaved Korean pine forest].

    PubMed

    Qiu, Yang; Gao, Lu-Shuang; Zhang, Xue; Guo, Jing; Ma, Zhi-Yuan

    2014-07-01

    Pinus koraiensis in broad-leaved Korean pine forests of Changbai Mountain at different successional stages (secondary poplar-birch forest, secondary coniferous and broad-leaved forest and the primitive Korean pine forest) were selected in this paper as the research objects. In this research, the annual growth of net primary productivity (NPP) (1921-2006) of P. koraiensis was obtained by combining the tree-ring chronology and relative growth formulae, the correlation between NPP of P. koraiensis and climatic factors was developed, and the annual growth of NPP of P. koraiensis at different successional stages in relation to climatic variation within different climate periods were analyzed. The results showed that, in the research period, the correlations between climatic factors and NPP of P. koraiensis at different successional stages were different. With increasing the temperature, the correlations between NPP of P. koraiensis in the secondary poplar-birch forest and the minimum temperatures of previous and current growing seasons changed from being significantly negative to being significantly positive. The positive correlation between NPP of P. koraiensis in the secondary coniferous and broad-leaved forest and the minimum temperature in current spring changed into significantly positive correlation between NPP of P. koraiensis and the temperatures in previous and current growing seasons. The climatic factors had a stronger hysteresis effect on NPP of P. koraiensis in the secondary coniferous and broad-leaved forest, but NPP of P. koraiensis in the primitive Korean pine forest had weaker correlation with temperature but stronger positive correlation with the precipitation of previous growing season. The increases of minimum and mean temperatures were obvious, but no significant variations of the maximum temperature and precipitation were observed at our site. The climatic variation facilitated the increase of the NPP of P. koraiensis in the secondary poplar-birch forest at the initial successional stage and in secondary coniferous and broad-leaved forest at the intermediate successional stage, and this effect was especially obvious for the secondary coniferous and broad-leaved forest, but very small for the primitive Korean pine forest which was at the climax phase.

  13. Snowmelt timing, phenology, and growing season length in conifer forests of Crater Lake National Park, USA

    NASA Astrophysics Data System (ADS)

    O'Leary, Donal S.; Kellermann, Jherime L.; Wayne, Chris

    2018-02-01

    Anthropogenic climate change is having significant impacts on montane and high-elevation areas globally. Warmer winter temperatures are driving reduced snowpack in the western USA with broad potential impacts on ecosystem dynamics of particular concern for protected areas. Vegetation phenology is a sensitive indicator of ecological response to climate change and is associated with snowmelt timing. Human monitoring of climate impacts can be resource prohibitive for land management agencies, whereas remotely sensed phenology observations are freely available at a range of spatiotemporal scales. Little work has been done in regions dominated by evergreen conifer cover, which represents many mountain regions at temperate latitudes. We used moderate resolution imaging spectroradiometer (MODIS) data to assess the influence of snowmelt timing and elevation on five phenology metrics (green up, maximum greenness, senescence, dormancy, and growing season length) within Crater Lake National Park, Oregon, USA from 2001 to 2012. Earlier annual mean snowmelt timing was significantly correlated with earlier onset of green up at the landscape scale. Snowmelt timing and elevation have significant explanatory power for phenology, though with high variability. Elevation has a moderate control on early season indicators such as snowmelt timing and green up and less on late-season variables such as senescence and growing season length. PCA results show that early season indicators and late season indicators vary independently. These results have important implications for ecosystem dynamics, management, and conservation, particularly of species such as whitebark pine ( Pinus albicaulis) in alpine and subalpine areas.

  14. Rapid changes in the range limits of Scots pine 4000 years ago

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gear, A.J.; Huntley, B.

    Paleoecological data provide estimates of response rates to past climate changes. Fossil Pinus sylvestris stumps in far northern Scotland demonstrate former presence of pine trees where conventional pollen evidence of pine forests is lacking. Radiocarbon, dendrochronological, and fine temporal-resolution palynological data show that pine forest were present for about four centuries some 4,000 years ago; the forests expanded and then retreated rapidly some 70 to 80 kilometers. Despite the rapidity of this response to climate change, it occurred at rates slower by an order of magnitude than those necessary to maintain equilibrium with forecast climate changes attributed to the greenhousemore » effect.« less

  15. Vegetation composition and structure of southern coastal plain pine forests: An ecological comparison

    USGS Publications Warehouse

    Hedman, C.W.; Grace, S.L.; King, S.E.

    2000-01-01

    Longleaf pine (Pinus palustris) ecosystems are characterized by a diverse community of native groundcover species. Critics of plantation forestry claim that loblolly (Pinus taeda) and slash pine (Pinus elliottii) forests are devoid of native groundcover due to associated management practices. As a result of these practices, some believe that ecosystem functions characteristic of longleaf pine are lost under loblolly and slash pine plantation management. Our objective was to quantify and compare vegetation composition and structure of longleaf, loblolly, and slash pine forests of differing ages, management strategies, and land-use histories. Information from this study will further our understanding and lead to inferences about functional differences among pine cover types. Vegetation and environmental data were collected in 49 overstory plots across Southlands Experiment Forest in Bainbridge, GA. Nested plots, i.e. midstory, understory, and herbaceous, were replicated four times within each overstory plot. Over 400 species were identified. Herbaceous species richness was variable for all three pine cover types. Herbaceous richness for longleaf, slash, and loblolly pine averaged 15, 13, and 12 species per m2, respectively. Longleaf pine plots had significantly more (p < 0.029) herbaceous species and greater herbaceous cover (p < 0.001) than loblolly or slash pine plots. Longleaf and slash pine plots were otherwise similar in species richness and stand structure, both having lower overstory density, midstory density, and midstory cover than loblolly pine plots. Multivariate analyses provided additional perspectives on vegetation patterns. Ordination and classification procedures consistently placed herbaceous plots into two groups which we refer to as longleaf pine benchmark (34 plots) and non-benchmark (15 plots). Benchmark plots typically contained numerous herbaceous species characteristic of relic longleaf pine/wiregrass communities found in the area. Conversely, non-benchmark plots contained fewer species characteristic of relic longleaf pine/wiregrass communities and more ruderal species common to highly disturbed sites. The benchmark group included 12 naturally regenerated longleaf plots and 22 loblolly, slash, and longleaf pine plantation plots encompassing a broad range of silvicultural disturbances. Non-benchmark plots included eight afforested old-field plantation plots and seven cutover plantation plots. Regardless of overstory species, all afforested old fields were low either in native species richness or in abundance. Varying degrees of this groundcover condition were also found in some cutover plantation plots that were classified as non-benchmark. Environmental variables strongly influencing vegetation patterns included agricultural history and fire frequency. Results suggest that land-use history, particularly related to agriculture, has a greater influence on groundcover composition and structure in southern pine forests than more recent forest management activities or pine cover type. Additional research is needed to identify the potential for afforested old fields to recover native herbaceous species. In the interim, high-yield plantation management should initially target old-field sites which already support reduced numbers of groundcover species. Sites which have not been farmed in the past 50-60 years should be considered for longleaf pine restoration and multiple-use objectives, since they have the greatest potential for supporting diverse native vegetation. (C) 2000 Elsevier Science B.V.

  16. Restoring a legacy: longleaf pine research at the Forest Service Escambia Experimental Forest

    Treesearch

    Kristina F. Connor; Dale G. Brockway; William D. Boyer

    2014-01-01

    Longleaf pine ecosystems are a distinct part of the forest landscape in the southeastern USA. These biologically diverse ecosystems, the native habitat of numerous federally listed species, once dominated more than 36.4 million ha but now occupy only 1.4 million ha of forested land in the region. The Escambia Experimental Forest was established in 1947 through a 99-...

  17. AmeriFlux US-Vcp Valles Caldera Ponderosa Pine

    DOE Data Explorer

    Litvak, Marcy [University of New Mexico

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-Vcp Valles Caldera Ponderosa Pine. Site Description - The Valles Caldera Ponderosa Pine site is located in the 1200km2 Jemez River basin of the Jemez Mountains in north-central New Mexico at the southern margin of the Rocky Mountain ecoregion. The Ponderosa Pine forest is the warmest and lowest (below 2700m) zone of the forests in the Valles Caldera National Preserve. Its vegetation is composed of a Ponderosa Pine (Pinus Ponderosa) overstory and a Gambel Oak (Quercus gambelii) understory.

  18. Fire Impacts on Mixed Pine-oak Forests Assessed with High Spatial Resolution Imagery, Imaging Spectroscopy, and LiDAR

    NASA Astrophysics Data System (ADS)

    Meng, R.; Wu, J.; Zhao, F. R.; Kathy, S. L.; Dennison, P. E.; Cook, B.; Hanavan, R. P.; Serbin, S.

    2016-12-01

    As a primary disturbance agent, fire significantly influences forest ecosystems, including the modification or resetting of vegetation composition and structure, which can then significantly impact landscape-scale plant function and carbon stocks. Most ecological processes associated with fire effects (e.g. tree damage, mortality, and vegetation recovery) display fine-scale, species specific responses but can also vary spatially within the boundary of the perturbation. For example, both oak and pine species are fire-adapted, but fire can still induce changes in composition, structure, and dominance in a mixed pine-oak forest, mainly because of their varying degrees of fire adaption. Evidence of post-fire shifts in dominance between oak and pine species has been documented in mixed pine-oak forests, but these processes have been poorly investigated in a spatially explicit manner. In addition, traditional field-based means of quantifying the response of partially damaged trees across space and time is logistically challenging. Here we show how combining high resolution satellite imagery (i.e. Worldview-2,WV-2) and airborne imaging spectroscopy and LiDAR (i.e. NASA Goddard's Lidar, Hyperspectral and Thermal airborne imager, G-LiHT) can be effectively used to remotely quantify spatial and temporal patterns of vegetation recovery following a top-killing fire that occurred in 2012 within mixed pine-oak forests in the Long Island Central Pine Barrens Region, New York. We explore the following questions: 1) what are the impacts of fire on species composition, dominance, plant health, and vertical structure; 2) what are the recovery trajectories of forest biomass, structure, and spectral properties for three years following the fire; and 3) to what extent can fire impacts be captured and characterized by multi-sensor remote sensing techniques from active and passive optical remote sensing.

  19. Pyrene degradation in forest humus microcosms with or without pine and its mycorrhizal fungus.

    PubMed

    Koivula, Teija T; Salkinoja-Salonen, Mirja; Peltola, Rainer; Romantschuk, Martin

    2004-01-01

    The mineralization potential of forest humus and the self-cleaning potential of a boreal coniferous forest environment for polycyclic aromatic hydrocarbon (PAH) compounds was studied using a model ecosystem of acid forest humus (pH = 3.6) and pyrene as the model compound. The matrix was natural humus or humus mixed with oil-polluted soil in the presence and absence of Scots pine (Pinus sylvestris L.) and its mycorrhizal fungus (Paxillus involutus). The rates of pyrene mineralization in the microcosms with humus implants (without pine) were initially insignificant but increased from Day 64 onward to 47 microg kg(-1) d(-1) and further to 144 microg kg(-1) d(-1) after Day 105. In the pine-planted humus microcosms the rate of mineralization also increased, reaching 28 microg kg(-1) d(-1) after Day 105. The 14CO2 emission was already considerable in nonplanted microcosms containing oily soil at Day 21 and the pyrene mineralization continued throughout the study. The pyrene was converted to CO2 at rates of 0.07 and 0.6 microg kg(-1) d(-1) in the oily-soil implanted microcosms with and without pine, respectively. When the probable assimilation of 14CO2 by the pine and ground vegetation was taken into account the most efficient microcosm mineralized 20% of the 91.2 mg kg(-1) pyrene in 180 d. The presence of pine and its mycorrhizal fungus had no statistically significant effect on mineralization yields. The rates of pyrene mineralization observed in this study for forest humus exceeded the total annual deposition rate of PAHs in southern Finland. This indicates that accumulation in forest soil is not to be expected.

  20. Longleaf pine: A sustainable approach for increasing terrestrial carbon in the southern United States

    Treesearch

    John S. Kush; Ralph S. Meldahl; Charles K. McMahon; William D. Boyer

    2004-01-01

    Natural communities dominated by longleaf pine (Pinus palustris Mill.) once covered an estimated two thirds of the forested area in the southeastern United States. Today, less than 1.2 million ha remain. However, over the past 10-15 years, public land managers have begun to restore many longleaf pine forests. More recently incentive programs have...

  1. Cone and seed yields in white spruce seed production areas

    Treesearch

    John A. Pitcher

    1966-01-01

    The source of seed is an important consideration in the reforestation program on the National Forests in the North Central Region. Thirty-five seed production areas have been set up in the Region, along the lines proposed by the North Central Forest Experiment Station, to provide control of seed source. Red pine, white pine, shortleaf and loblolly pine, and white...

  2. Forest statistics for southeast Georgia, 1988

    Treesearch

    Tony G. Johnson

    1988-01-01

    Since 1981, area of timberland in Southeast Georgia increased less than 1 percent and now totals 7.2 million acres. About 39 percent of the timberland is under forest industry control. Pine plantation acreage increased by 37 percent to 2.5 million acres. New pine stands were established annually on 155,000 acres, exceeding pine stands harvested by 4 percent. Number of...

  3. Impacts of switchgrass intercropping in traditional pine forests on hydrology and water quality in the southeastern United States.

    Treesearch

    Devendra Amatya; G.M. Chescheir; J.E. Nettles

    2016-01-01

    Preliminary results indicate that switchgrass (Panicum virgatum L.), grown as a cellulosic biofuel between managed loblolly pine (Pinus taeda L.) beds on the Atlantic Coastal Plain forests has no significant effect on shallow ground water table and stream outflows. Although management operations (e.g. harvesting, shearing between pine rows, raking, and bedding)...

  4. Utilization of the Southern Pines - Volume 1

    Treesearch

    Peter Koch

    1972-01-01

    The southern pines comprise the primary softwood timber species in the United States. Further, their relative importance is increasing. It is estimated that by the year 2000, 51 percent of the softwood used in this country will come from the South (USDA Forest Service 1965, p. 112). These pines occupy about 20 percent of the 509 million acres of commercial forest land...

  5. History and current condition of longleaf pine in the Southern United States

    Treesearch

    Christopher M. Oswalt; Jason A. Cooper; Dale G. Brockway; Horace W. Brooks; Joan L. Walker; Kristina F. Connor; Sonja N. Oswalt; Roger C. Conner

    2012-01-01

    Longleaf pine (Pinus palustris Mill.) was once one of the most ecologically important tree species in the Southern United States. Longleaf pine and its accompanying forest ecosystems covered vast swaths of the Southern United States, spanning an estimated 92 million acres. Although once one of the most extensive forest ecosystems in North America, only a fraction of...

  6. Research on stand management options for reducing fuels and restoring two-aged lodgepole pine communities on the Tenderfoot Creek Experimental Forest

    Treesearch

    Ward McCaughey

    2003-01-01

    Fire-dependent lodgepole pine stands comprise significant acreages of midand upper-elevation forests in the Northern Rockies, providing wood products, wildlife habitat, livestock forage, water, recreational opportunities, and expansive viewsheds. Many lodgepole pine stands are in late-successional stages and at risk to pests and catastrophic-scale fires. Tenderfoot...

  7. Pine seed tree growth and yield on the Crossett Experimental Forest

    Treesearch

    Don C. Bragg

    2010-01-01

    In late 2002, three small tracts of loblolly (Pinus taeda) and shortleaf (Pinus echinata) pine on the Crossett Experimental Forest in Ashley County, AR, were cut using a seed tree method. Immediately after harvest, these cutting units averaged 7.7 stems and 13.8 square feet of pine basal area per acre. By 2006, live seed tree...

  8. Fuel and stand characteristics in ponderosa pine infested with mountain pine beetle, Ips spp., and southwestern dwarf mistletoe in Colorado's northern Front Range

    Treesearch

    Jennifer Gene Klutsch

    2008-01-01

    The effect of forest disturbances, such as bark beetles and dwarf mistletoes, on fuel dynamics is important for understanding forest dynamics and heterogeneity. Fuel loads and other fuel parameters were assessed in areas of ponderosa pine (Pinus ponderosa Laws.) infested with southwestern dwarf mistletoe (Arceuthobium vaginatum...

  9. Landowner and manager awareness and perceptions of pine health issues and southern pine management activities in the southeastern United States

    Treesearch

    David R. Coyle; Gary T. Green; Brittany F. Barnes; Kier Klepzig; John T. Nowak; J.K. Gandhi

    2016-01-01

    We assessed awareness and perceptions of forest landowners and managers in the southeastern United Statesregarding their stand health especially under the context of the southern pine decline (SPD) phenomenon. E-mailand paper surveys were sent to 4,670 forest landowners and managers in Florida, Georgia, and South Carolinawith an...

  10. Growth reductions in naturally regenerated southern pine stands in Alabama and Georgia

    Treesearch

    G.A. Ruark; C.E. Thomas; W.A. Bechtold; D.M. May

    1991-01-01

    Data from Forest Inventory and analysis (FIA) units of the USDA Forest Service were used to compare average annual stand-level basal area accretion onto survivor pines in naturally regenerated pine stands throughout Alabama and Georgia. Growth rates measured between 1972-82 were compared to growth rates during the previous 10-year survey cycle in each state. Separate...

  11. Influence of reproduction cutting methods on structure, growth and regeneration of longleaf pine forests in flatwoods and uplands

    Treesearch

    Dale G. Brockway; Kenneth W. Outcalt

    2017-01-01

    Though longleaf pine (Pinus palustris Mill.) forests have been primarily managed with even-aged methods, interest is increasing in uneven-aged systems, as a means of achieving a wider range of stewardship goals. Selection silviculture has been practiced on a limited scale in longleaf pine, but difficulty with using traditional approaches and...

  12. Effects of salvage logging on fire risks after bark beetle outbreaks in Colorado lodgepole pine forests

    Treesearch

    Bryon J. Collins; Chuck C. Rhoades; Michael A. Battaglia; Robert M. Hubbard

    2012-01-01

    Most mature lodgepole pine (Pinus contorta var. latifolia Engelm. ex Wats.) forests in the central and southern Rocky Mountains originated after stand-replacing wildfires or logging (Brown 1975, Lotan and Perry 1983, Romme 1982). In recent years, mountain pine beetle (Dendroctonus ponderosae Hopkins) outbreaks have created a widespread, synchronous disturbance (i.e.,...

  13. Impact of fire in two old-growth montane longleaf pine stands

    Treesearch

    John S. Kush; John C. Gilbert; Crystal Lupo; Na Zhou; Becky Barlow

    2013-01-01

    The structure of longleaf pine (Pinus palustris Mill.) forests of the Southeastern United States Coastal Plains has been the focus of numerous studies. By comparison, the forests in the mountains of Alabama and Georgia are not well understood. Less than 1 percent of longleaf pine stands found in the montane portion of longleaf’s range are considered...

  14. Thirty years of management on a small longleaf pine forest

    Treesearch

    William D. Boyer

    1981-01-01

    Results from 30 years of management of this demonstration farm forty should interest any landowner with a small tract of longleaf pine forest.In this case, the starting point for management was a poorly-stocked stand of second-growth longleaf pine on an average Coastal Plain site.Despite no capital outlays and relativcly small expenses, principally for prescribed...

  15. An Old-Growth Definition for Dry and Dry-Mesic Oak-Pine Forests.

    Treesearch

    David L. White; F. Thomas Lloyd

    1998-01-01

    Dry and dry-mesic oak-pine forests are widely distributed from New Jersey to Texas, but representative old-growth stands are rare. Historical accounts of composition, along with information from existing old-growth stands, were used to characterize this type. Shortleaf pine and white oak were the most widely distributed trees across all old-growth stands. Shortleaf was...

  16. Earthworms, arthropods and plant litter decomposition in aspen (Populus tremuloides) and lodgepole pine(Pinus contorta) forests in Colorado, USA

    Treesearch

    Grizelle Gonzalez; Timothy R. Seastedt; Zugeily Donato

    2003-01-01

    We compared the abundance and community composition of earthworms, soil macroarthropods, and litter microarthropods to test faunal effects on plant litter decomposition rates in two forests in the subalpine in Colorado, USA. Litterbags containing recently senesced litter of Populus tremuloides (aspen) and Pinus contorta (lodgepole pine) were placed in aspen and pine...

  17. Conceptual framework for studying the effects of fuels treatments on avian communities in ponderosa pine forests of northern Arizona

    Treesearch

    Brett G. Dickson; William M. Block; Thomas D. Sisk

    2004-01-01

    Many ponderosa pine (Pinus ponderosa) forests in the western US are dense and contain excessive accumulations of ground and ladder fuels, resulting in forests at high risk of catastrophic fire. Prescribed fire and thinning are two potential tools used in the reduction of forest fuels, although the ecological and economic consequences of applying...

  18. Restoration of northern Rocky Mountain moist forests: Integrating fuel treatments from the site to the landscape

    Treesearch

    Theresa B. Jain; Russell T. Graham; Jonathan Sandquist; Matthew Butler; Karen Brockus; Daniel Frigard; David Cobb; Han Sup-Han; Jeff Halbrook; Robert Denner; Jeffrey S. Evans

    2008-01-01

    Restoration and fuel treatments in the moist forests of the northern Rocky Mountains are complex and far different from those applicable to the dry ponderosa pine forests. In the moist forests, clearcuts are the favored method to use for growing early-seral western white pine and western larch. Nevertheless, clearcuts and their associated roads often affect wildlife...

  19. Arkansas, 2009 forest inventory and analysis factsheet

    Treesearch

    James F. Rosson

    2011-01-01

    The summary includes estimates of forest land area (table 1), ownership (table 2), forest-type groups (table 3), volume (tables 4 and 5), biomass (tables 6 and 7), and pine plantation area (table 8) along with maps of Arkansas’ survey units (fig. 1), percent forest by county (fig. 2), and distribution of pine plantations (fig. 3). The estimates are presented by survey...

  20. Changes in Organic Matter And Nutrients in Forest Floor After Applying Several Reproductive Cutting Methods in Shortleaf Pine-Hardwood Stands

    Treesearch

    Hal O. Liechty; Michael G. Shelton

    2004-01-01

    Abstract - This study was initiated to determine the effects of various regeneration cutting methods on forest floor mass and nutrient content in shortleaf pine-hardwood communities in the Ouachita and Ozark National Forests. Clearcutting generally altered forest floor concentrations of N, P, and S as well as loss on ignition by increasing the amount...

  1. Innovation and forest industry: domesticating the pine forests of the southern United States,1920–1999

    Treesearch

    John A. Stanturf; Robert C. Kellison; F.S. Broerman; Stephen B. Jones

    2003-01-01

    The history of forest management in the southern United States has been a process of intensification and the pine forests of the Coastal Plain can be regarded as in the early stage of crop domestication. Silviculture research into tree improvement and other aspects of plantation establishment and management has been critical to the domestication process, which began in...

  2. Examining Historical and Current Mixed-Severity Fire Regimes in Ponderosa Pine and Mixed-Conifer Forests of Western North America

    PubMed Central

    Odion, Dennis C.; Hanson, Chad T.; Arsenault, André; Baker, William L.; DellaSala, Dominick A.; Hutto, Richard L.; Klenner, Walt; Moritz, Max A.; Sherriff, Rosemary L.; Veblen, Thomas T.; Williams, Mark A.

    2014-01-01

    There is widespread concern that fire exclusion has led to an unprecedented threat of uncharacteristically severe fires in ponderosa pine (Pinus ponderosa Dougl. ex. Laws) and mixed-conifer forests of western North America. These extensive montane forests are considered to be adapted to a low/moderate-severity fire regime that maintained stands of relatively old trees. However, there is increasing recognition from landscape-scale assessments that, prior to any significant effects of fire exclusion, fires and forest structure were more variable in these forests. Biota in these forests are also dependent on the resources made available by higher-severity fire. A better understanding of historical fire regimes in the ponderosa pine and mixed-conifer forests of western North America is therefore needed to define reference conditions and help maintain characteristic ecological diversity of these systems. We compiled landscape-scale evidence of historical fire severity patterns in the ponderosa pine and mixed-conifer forests from published literature sources and stand ages available from the Forest Inventory and Analysis program in the USA. The consensus from this evidence is that the traditional reference conditions of low-severity fire regimes are inaccurate for most forests of western North America. Instead, most forests appear to have been characterized by mixed-severity fire that included ecologically significant amounts of weather-driven, high-severity fire. Diverse forests in different stages of succession, with a high proportion in relatively young stages, occurred prior to fire exclusion. Over the past century, successional diversity created by fire decreased. Our findings suggest that ecological management goals that incorporate successional diversity created by fire may support characteristic biodiversity, whereas current attempts to “restore” forests to open, low-severity fire conditions may not align with historical reference conditions in most ponderosa pine and mixed-conifer forests of western North America. PMID:24498383

  3. Examining historical and current mixed-severity fire regimes in ponderosa pine and mixed-conifer forests of western North America.

    PubMed

    Odion, Dennis C; Hanson, Chad T; Arsenault, André; Baker, William L; Dellasala, Dominick A; Hutto, Richard L; Klenner, Walt; Moritz, Max A; Sherriff, Rosemary L; Veblen, Thomas T; Williams, Mark A

    2014-01-01

    There is widespread concern that fire exclusion has led to an unprecedented threat of uncharacteristically severe fires in ponderosa pine (Pinus ponderosa Dougl. ex. Laws) and mixed-conifer forests of western North America. These extensive montane forests are considered to be adapted to a low/moderate-severity fire regime that maintained stands of relatively old trees. However, there is increasing recognition from landscape-scale assessments that, prior to any significant effects of fire exclusion, fires and forest structure were more variable in these forests. Biota in these forests are also dependent on the resources made available by higher-severity fire. A better understanding of historical fire regimes in the ponderosa pine and mixed-conifer forests of western North America is therefore needed to define reference conditions and help maintain characteristic ecological diversity of these systems. We compiled landscape-scale evidence of historical fire severity patterns in the ponderosa pine and mixed-conifer forests from published literature sources and stand ages available from the Forest Inventory and Analysis program in the USA. The consensus from this evidence is that the traditional reference conditions of low-severity fire regimes are inaccurate for most forests of western North America. Instead, most forests appear to have been characterized by mixed-severity fire that included ecologically significant amounts of weather-driven, high-severity fire. Diverse forests in different stages of succession, with a high proportion in relatively young stages, occurred prior to fire exclusion. Over the past century, successional diversity created by fire decreased. Our findings suggest that ecological management goals that incorporate successional diversity created by fire may support characteristic biodiversity, whereas current attempts to "restore" forests to open, low-severity fire conditions may not align with historical reference conditions in most ponderosa pine and mixed-conifer forests of western North America.

  4. Understory vegetation response to mechanical mastication and other fuels treatments in a ponderosa pine forest

    Treesearch

    Jeffrey M. Kane; J. Morgan Varner; Eric E. Knapp

    2010-01-01

    Questions: What influence does mechanical mastication and other fuel treatments have on: (1) canopy and forest floor response variables that influence understory plant development; (2) initial understory vegetation cover, diversity, and composition; and (3) shrub and non-native species density in a secondgrowth ponderosa pine forest....

  5. Thermomechanical pulping of loblolly pine juvenile wood

    Treesearch

    Gary C. Myers

    2002-01-01

    Intensive forest management, with a heavy emphasis on ecosystem management and restoring or maintaining forest health, will result in the removal of smaller diameter materials from the forest. This increases the probability of higher juvenile wood content in the harvested materials. The purpose of this study was to compare the performance of loblolly pine juvenile and...

  6. Guide to fuel treatments in dry forests of the Western United States: assessing forest structure and fire hazard.

    Treesearch

    Morris C. Johnson; David L. Peterson; Crystal L. Raymond

    2007-01-01

    Guide to Fuel Treatments analyzes a range of fuel treatments for representative dry forest stands in the Western United States with overstories dominated by ponderosa pine (Pinus ponderosa), Douglas-fir (Pseudotsuga menziesii), and pinyon pine (Pinus edulis). Six silvicultural options (no thinning; thinning...

  7. A guide for salvaging white pine injured by forest fires

    Treesearch

    Thomas W. McConkey; Donald R. Gedney

    1951-01-01

    White pine forests are severely damaged by forest fires. Generally a fire kills all trees less than 20 feet high immediately. Larger trees may die later, depending on the degree of injury. Salvage operations must be started soon after a fire, because insects and fungi quickly attack trees that are killed.

  8. Natural regeneration following timber harvest in interior cedar-hemlock-white pine forests

    Treesearch

    Dennis E. Ferguson

    1994-01-01

    Natural regeneration of interior cedar-hemlock-white pine forests is usually prompt and abundant. These productive sites support up to 10 commercial timber species. Retrospective examination of cutover forest stands allowed determination of variables that are important predictors of regeneration. This report discusses variables such as habitat type, slope, aspect,...

  9. Structure and regrowth of longleaf pine forests following uneven-aged silviculture and hurricane disturbance at the Escambia Experimental Forest

    Treesearch

    Kimberly Bohn; Christel Chancy; Dale Brockway

    2015-01-01

    In recent decades, considerable attention has been placed on restoring and managing longleaf pine (Pinus palustris Mill.) ecosystems across the southeastern United States. Although, historically, these forests have been successfully regenerated following even-aged shelterwood reproduction methods, uneven-aged silviculture has received increasing...

  10. Tree canopy types constrain plant distributions in ponderosa pine-Gambel oak forests, northern Arizona

    Treesearch

    Scott R. Abella

    2009-01-01

    Trees in many forests affect the soils and plants below their canopies. In current high-density southwestern ponderosa pine (Pinus ponderosa) forests, managers have opportunities to enhance multiple ecosystem values by manipulating tree density, distribution, and canopy cover through tree thinning. I performed a study in northern Arizona ponderosa...

  11. Restoring longleaf pine forest ecosystems in the southern United States

    Treesearch

    Dale G. Brockway; Kenneth W. Outcalt; Donald J. Tomczak; E. E. Johnson

    2002-01-01

    Longleafpine (Pinus palustris) forests were historically one of the most extensive ecosystems in North America, covering 38 million ha along the coastal plain from Texas to Virginia and extending into central Florida and the Piedmont and mountains of Alabama and Georgia. Throughout its domain. longleaf pine occurred in forests, woodlands and savannas...

  12. Interactions among the mountain pine beetle, fires, and fuels

    Treesearch

    Michael J. Jenkins; Justin B. Runyon; Christopher J. Fettig; Wesley G. Page; Barbara J. Bentz

    2014-01-01

    Bark beetle outbreaks and wildfires are principal drivers of change in western North American forests, and both have increased in severity and extent in recent years. These two agents of disturbance interact in complex ways to shape forest structure and composition. For example, mountain pine beetle, Dendroctonus ponderosae Hopkins, epidemics alter forest fuels with...

  13. Joint proceedings of the 10th Lake States Forest Tree Improvement Conference & 7th Central States Forest Tree Improvement Conference, September 22-24, 1971.

    Treesearch

    USDA FS

    1973-01-01

    Presents 12 papers concerning recent research in forest genetics, physiology, and allied fields. Species discussed include cottonwood, white spruce, jack pine, white pine, aspen, and others. Emphasizes the role of tree improvement in increasing wood-fiber production.

  14. A new hybrid Christmas tree

    Treesearch

    William B. Critchfield

    1965-01-01

    A hybrid pine developed in the course of forest-tree improvement research. by the U. S. Forest Service has caught the interest of Christmas tree growers. It is a hybrid between two races of lodgepole pine (Pinus contorta) produced at the Institute of Forest Genetics at Placerville, California, and has some desirable attributes for use as a Christmas...

  15. [Effects of different forest restoration approaches on the soil quality in red soil region of Southern China].

    PubMed

    Wang, Yun; Ouyang, Zhi-Yun; Zheng, Hua; Zeng, Jing; Chen, Fa-Lin; Zhang, Kai

    2013-05-01

    In 2008-2009, an investigation was conducted on the effects of three typical forest restoration approaches, i. e., naturally restored secondary forest, artificially restored native species Pinus massoniana plantation (Masson pine plantation), and introduced species Pinus elliottii plantation (slash pine plantation), on the soil quality in red soil region of Southern China. The results showed that the soil moisture content, bulk density, particle composition, and the contents of total carbon (C), total nitrogen (N), total phosphorus (P), organic C, available N, available P, and available potassium (K) in natural secondary forest were all superior to those in artificial plantations. The soil physical, chemical, and microbial properties were integrated into a soil quality index, which was significantly higher (1.20 +/- 0.10) in natural secondary forest than in Masson pine plantation (0.59 +/- 0.03) and slash pine plantation (0.59 +/- 0.06). Our results suggested as compared with the restoration with native species P. massoniana and with introduced P. elliottii, natural restoration could be a better forest restoration approach to improve the soil quality in red soil region of Southern China.

  16. Possible effects of elk harvest on fall distribution of grizzly bears in the Greater Yellowstone Ecosystem

    USGS Publications Warehouse

    Haroldson, M.A.; Schwartz, C.C.; Cherry, S.; Moody, D.

    2004-01-01

     The tradition of early elk (Cervus elaphus) hunting seasons adjacent to Yellowstone National Park (YNP), USA, provides grizzly bears (Ursus arctos horribilis) with ungulate remains left by hunters. We investigated the fall (Aug–Oct) distribution of grizzly bears relative to the boundaries of YNP and the opening of September elk hunting seasons. Based on results from exact tests of conditional independence, we estimated the odds of radiomarked bears being outside YNP during the elk hunt versus before the hunt. Along the northern boundary, bears were 2.40 times more likely to be outside YNP during the hunt in good whitebark pine (Pinus albicaulis) seed-crop years and 2.72 times more likely in poor seed-crop years. The level of confidence associated with 1-sided confidence intervals with a lower endpoint of 1 was approximately 94% in good seed-crop years and 61% in poor years. Along the southern boundary of YNP, radiomarked bears were 2.32 times more likely to be outside the park during the hunt in good whitebark pine seed-crop years and 4.35 times more likely in poor seed-crop years. The level of confidence associated with 1-sided confidence intervals with a lower endpoint of 1 was approximately 93% in both cases. Increased seasonal bear densities and human presence in early hunt units increases potential for conflicts between bears and hunters. Numbers of reported hunting-related grizzly bear mortalities have increased in the Greater Yellowstone Ecosystem (GYE) during the last decade, and nearly half of this increase is due to bear deaths occurring in early hunt units during September. Human-caused grizzly bear mortality thresholds established by the U.S. Fish and Wildlife Service (USFWS) have not been exceeded in recent years. This is because agency actions have reduced other sources of human-caused mortalities, and because population parameters that mortality thresholds are based on have increased. Agencies must continue to monitor and manage hunter-caused grizzly bear mortality at sustainable levels to ensure the long-term health of the GYE population.

  17. Limited Growth Recovery after Drought-Induced Forest Dieback in Very Defoliated Trees of Two Pine Species

    PubMed Central

    Guada, Guillermo; Camarero, J. Julio; Sánchez-Salguero, Raúl; Cerrillo, Rafael M. Navarro

    2016-01-01

    Mediterranean pine forests display high resilience after extreme climatic events such as severe droughts. However, recent dry spells causing growth decline and triggering forest dieback challenge the capacity of some forests to recover following major disturbances. To describe how resilient the responses of forests to drought can be, we quantified growth dynamics in plantations of two pine species (Scots pine, black pine) located in south-eastern Spain and showing drought-triggered dieback. Radial growth was characterized at inter- (tree-ring width) and intra-annual (xylogenesis) scales in three defoliation levels. It was assumed that the higher defoliation the more negative the impact of drought on tree growth. Tree-ring width chronologies were built and xylogenesis was characterized 3 years after the last severe drought occurred. Annual growth data and the number of tracheids produced in different stages of xylem formation were related to climate data at several time scales. Drought negatively impacted growth of the most defoliated trees in both pine species. In Scots pine, xylem formation started earlier in the non-defoliated than in the most defoliated trees. Defoliated trees presented the shortest duration of the radial-enlargement phase in both species. On average the most defoliated trees formed 60% of the number of mature tracheids formed by the non-defoliated trees in both species. Since radial enlargement is the xylogenesis phase most tightly related to final growth, this explains why the most defoliated trees grew the least due to their altered xylogenesis phases. Our findings indicate a very limited resilience capacity of drought-defoliated Scots and black pines. Moreover, droughts produce legacy effects on xylogenesis of highly defoliated trees which could not recover previous growth rates and are thus more prone to die. PMID:27066053

  18. Effects of sea-level rise and anthropogenic development on priority bird species habitats in coastal Georgia, USA.

    PubMed

    Brittain, Ross A; Craft, Christopher B

    2012-02-01

    We modeled changes in area of five habitats, tidal-freshwater forest, salt marsh, maritime shrub-scrub (shrub), maritime broadleaf forest (oak) and maritime narrowleaf (pine) forest, in coastal Georgia, USA, to evaluate how simultaneous habitat loss due to predicted changes in sea level rise (SLR) and urban development will affect priority bird species of the south Atlantic coastal plain by 2100. Development rates, based on regional growth plans, were modeled at 1% and 2.5% annual urban growth, while SLR rates, based on the Intergovernmental Panel on Climate Change's A1B mean and maximum scenarios, were modeled at 52 cm and 82 cm, respectively. SLR most greatly affected the shrub habitat with predicted losses of 35-43%. Salt marsh and tidal forest also were predicted to lose considerable area to SLR (20-45 and 23-35%, respectively), whereas oak and pine forests had lesser impact from SLR, 18-22% and 11-15%, respectively. Urban development resulted in losses of considerable pine (48-49%) and oak (53-55%) habitat with lesser loss of shrub habitat (21-24%). Under maximum SLR and urban growth, shrub habitat may lose up to 59-64% compared to as much as 62-65% pine forest and 74-75% oak forest. Conservation efforts should focus on protection of shrub habitat because of its small area relative to other terrestrial habitats and use by Painted Buntings (Passerina ciris), a Partners In Flight (PIF) extremely high priority species. Tidal forests also deserve protection because they are a likely refuge for forest species, such as Northern Parula and Acadian Flycatcher, with the decline of oak and pine forests due to urban development.

  19. Associations between regional moisture gradient, tree species dominance, and downed wood abundance

    NASA Astrophysics Data System (ADS)

    Johnson, A. C.; Mills, J.

    2007-12-01

    Downed wood functions as a source of nurse logs, physical structure in streams, food, and carbon. Because downed wood is important in upland and aquatic habitats, an understanding of wood recruitment along a continuum from wet to dry landscapes is critical for both preservation of biodiversity and restoration of natural ecosystem structure and function. We assessed downed wood in public and private forests of Washington and Oregon by using a subset of the Forest Inventory and Analysis (FIA) database including 15,842 sampled conditions. Multivariate regression trees, ANOVA, and t-tests were used to discern environmental conditions most closely associated with abundance of woody debris. Of the 16 parameters included in the analysis, rainfall, forest ownership, number of damaged standing trees, and forest elevation were most indicative of woody debris abundance. The Hemlock/spruce Group, including hemlock, spruce, cedar, and white pine, most associated with wetter soils, had significantly more downed wood than 12 other forest groups. The Ponderosa Pine Group, indicative of drier sites with higher fire frequencies, included ponderosa pine, sugar pine, and incense cedar, and had significantly less downed wood volume. Overall, the amount of woody debris in either the Spruce/hemlock Group or the Ponderosa Pine Group did not change significantly as tree age increased from 5 to 350 years. Plots within the Hemlock/spruce with greater standing tree volume also had significantly greater downed wood volume. In contrast, greater downed wood volume was not associated with greater standing tree volume in the Ponderosa Pine Group. Knowledge of linkages among environmental variables and stand characteristics are useful in development of regional forest models aimed at understanding the effects of climate change and disturbance on forest succession.

  20. Reforesting severely degraded grassland in the Lesser Himalaya of Nepal: Effects on soil hydraulic conductivity and overland flow production

    NASA Astrophysics Data System (ADS)

    Ghimire, Chandra Prasad; Bonell, Mike; Bruijnzeel, L. Adrian; Coles, Neil A.; Lubczynski, Maciek W.

    2013-12-01

    degraded hillslopes in the Lesser Himalaya challenge local communities as a result of the frequent occurrence of overland flow and erosion during the rainy season and water shortages during the dry season. Reforestation is often perceived as an effective way of restoring predisturbance hydrological conditions but heavy usage of reforested land in the region has been shown to hamper full recovery of soil hydraulic properties. This paper investigates the effect of reforestation and forest usage on field-saturated soil hydraulic conductivities (Kfs) near Dhulikhel, Central Nepal, by comparing degraded pasture, a footpath within the pasture, a 25 year old pine reforestation, and little disturbed natural forest. The hillslope hydrological implications of changes in Kfs with land-cover change were assessed via comparisons with measured rainfall intensities over different durations. High surface and near-surface Kfs in natural forest (82-232 mm h-1) rule out overland flow occurrence and favor vertical percolation. Conversely, corresponding Kfs for degraded pasture (18-39 mm h-1) and footpath (12-26 mm h-1) were conducive to overland flow generation during medium- to high-intensity storms and thus to local flash flooding. Pertinently, surface and near-surface Kfs in the heavily used pine forest remained similar to those for degraded pasture. Estimated monsoonal overland flow totals for degraded pasture, pine forest, and natural forest were 21.3%, 15.5%, and 2.5% of incident rainfall, respectively, reflecting the relative ranking of surface Kfs. Along with high water use by the pines, this lack of recovery of soil hydraulic properties under pine reforestation is shown to be a critical factor in the regionally observed decline in base flows following large-scale planting of pines and has important implications for regional forest management.

Top