Sample records for whole-exome sequencing wes

  1. Data Interoperability of Whole Exome Sequencing (WES) Based Mutational Burden Estimates from Different Laboratories

    PubMed Central

    Qiu, Ping; Pang, Ling; Arreaza, Gladys; Maguire, Maureen; Chang, Ken C. N.; Marton, Matthew J.; Levitan, Diane

    2016-01-01

    Immune checkpoint inhibitors, which unleash a patient’s own T cells to kill tumors, are revolutionizing cancer treatment. Several independent studies suggest that higher non-synonymous mutational burden assessed by whole exome sequencing (WES) in tumors is associated with improved objective response, durable clinical benefit, and progression-free survival in immune checkpoint inhibitors treatment. Next-generation sequencing (NGS) is a promising technology being used in the clinic to direct patient treatment. Cancer genome WES poses a unique challenge due to tumor heterogeneity and sequencing artifacts introduced by formalin-fixed, paraffin-embedded (FFPE) tissue. In order to evaluate the data interoperability of WES data from different sources to survey tumor mutational landscape, we compared WES data of several tumor/normal matched samples from five commercial vendors. A large data discrepancy was observed from vendors’ self-reported data. Independent data analysis from vendors’ raw NGS data shows that whole exome sequencing data from qualified vendors can be combined and analyzed uniformly to derive comparable quantitative estimates of tumor mutational burden. PMID:27136543

  2. Whole exome sequencing to estimate alloreactivity potential between donors and recipients in stem cell transplantation

    PubMed Central

    Sampson, Juliana K.; Sheth, Nihar U.; Koparde, Vishal N.; Scalora, Allison F.; Serrano, Myrna G.; Lee, Vladimir; Roberts, Catherine H.; Jameson-Lee, Max; Ferreira-Gonzalez, Andrea; Manjili, Masoud H.; Buck, Gregory A.; Neale, Michael C.; Toor, Amir A.

    2016-01-01

    Summary Whole exome sequencing (WES) was performed on stem cell transplant donor-recipient (D-R) pairs to determine the extent of potential antigenic variation at a molecular level. In a small cohort of D-R pairs, a high frequency of sequence variation was observed between the donor and recipient exomes independent of human leucocyte antigen (HLA) matching. Nonsynonymous, nonconservative single nucleotide polymorphisms were approximately twice as frequent in HLA-matched unrelated, compared with related D-R pairs. When mapped to individual chromosomes, these polymorphic nucleotides were uniformly distributed across the entire exome. In conclusion, WES reveals extensive nucleotide sequence variation in the exomes of HLA-matched donors and recipients. PMID:24749631

  3. Whole exome sequencing to estimate alloreactivity potential between donors and recipients in stem cell transplantation.

    PubMed

    Sampson, Juliana K; Sheth, Nihar U; Koparde, Vishal N; Scalora, Allison F; Serrano, Myrna G; Lee, Vladimir; Roberts, Catherine H; Jameson-Lee, Max; Ferreira-Gonzalez, Andrea; Manjili, Masoud H; Buck, Gregory A; Neale, Michael C; Toor, Amir A

    2014-08-01

    Whole exome sequencing (WES) was performed on stem cell transplant donor-recipient (D-R) pairs to determine the extent of potential antigenic variation at a molecular level. In a small cohort of D-R pairs, a high frequency of sequence variation was observed between the donor and recipient exomes independent of human leucocyte antigen (HLA) matching. Nonsynonymous, nonconservative single nucleotide polymorphisms were approximately twice as frequent in HLA-matched unrelated, compared with related D-R pairs. When mapped to individual chromosomes, these polymorphic nucleotides were uniformly distributed across the entire exome. In conclusion, WES reveals extensive nucleotide sequence variation in the exomes of HLA-matched donors and recipients. © 2014 John Wiley & Sons Ltd.

  4. Promises, pitfalls and practicalities of prenatal whole exome sequencing.

    PubMed

    Best, Sunayna; Wou, Karen; Vora, Neeta; Van der Veyver, Ignatia B; Wapner, Ronald; Chitty, Lyn S

    2018-01-01

    Prenatal genetic diagnosis provides information for pregnancy and perinatal decision-making and management. In several small series, prenatal whole exome sequencing (WES) approaches have identified genetic diagnoses when conventional tests (karyotype and microarray) were not diagnostic. Here, we review published prenatal WES studies and recent conference abstracts. Thirty-one studies were identified, with diagnostic rates in series of five or more fetuses varying between 6.2% and 80%. Differences in inclusion criteria and trio versus singleton approaches to sequencing largely account for the wide range of diagnostic rates. The data suggest that diagnostic yields will be greater in fetuses with multiple anomalies or in cases preselected following genetic review. Beyond its ability to improve diagnostic rates, we explore the potential of WES to improve understanding of prenatal presentations of genetic disorders and lethal fetal syndromes. We discuss prenatal phenotyping limitations, counselling challenges regarding variants of uncertain significance, incidental and secondary findings, and technical problems in WES. We review the practical, ethical, social and economic issues that must be considered before prenatal WES could become part of routine testing. Finally, we reflect upon the potential future of prenatal genetic diagnosis, including a move towards whole genome sequencing and non-invasive whole exome and whole genome testing. © 2017 John Wiley & Sons, Ltd. © 2017 John Wiley & Sons, Ltd.

  5. Using whole-exome sequencing to identify variants inherited from mosaic parents

    PubMed Central

    Rios, Jonathan J; Delgado, Mauricio R

    2015-01-01

    Whole-exome sequencing (WES) has allowed the discovery of genes and variants causing rare human disease. This is often achieved by comparing nonsynonymous variants between unrelated patients, and particularly for sporadic or recessive disease, often identifies a single or few candidate genes for further consideration. However, despite the potential for this approach to elucidate the genetic cause of rare human disease, a majority of patients fail to realize a genetic diagnosis using standard exome analysis methods. Although genetic heterogeneity contributes to the difficulty of exome sequence analysis between patients, it remains plausible that rare human disease is not caused by de novo or recessive variants. Multiple human disorders have been described for which the variant was inherited from a phenotypically normal mosaic parent. Here we highlight the potential for exome sequencing to identify a reasonable number of candidate genes when dominant disease variants are inherited from a mosaic parent. We show the power of WES to identify a limited number of candidate genes using this disease model and how sequence coverage affects identification of mosaic variants by WES. We propose this analysis as an alternative to discover genetic causes of rare human disorders for which typical WES approaches fail to identify likely pathogenic variants. PMID:24986828

  6. A prospective evaluation of whole-exome sequencing as a first-tier molecular test in infants with suspected monogenic disorders.

    PubMed

    Stark, Zornitza; Tan, Tiong Y; Chong, Belinda; Brett, Gemma R; Yap, Patrick; Walsh, Maie; Yeung, Alison; Peters, Heidi; Mordaunt, Dylan; Cowie, Shannon; Amor, David J; Savarirayan, Ravi; McGillivray, George; Downie, Lilian; Ekert, Paul G; Theda, Christiane; James, Paul A; Yaplito-Lee, Joy; Ryan, Monique M; Leventer, Richard J; Creed, Emma; Macciocca, Ivan; Bell, Katrina M; Oshlack, Alicia; Sadedin, Simon; Georgeson, Peter; Anderson, Charlotte; Thorne, Natalie; Melbourne Genomics Health Alliance; Gaff, Clara; White, Susan M

    2016-11-01

    To prospectively evaluate the diagnostic and clinical utility of singleton whole-exome sequencing (WES) as a first-tier test in infants with suspected monogenic disease. Singleton WES was performed as a first-tier sequencing test in infants recruited from a single pediatric tertiary center. This occurred in parallel with standard investigations, including single- or multigene panel sequencing when clinically indicated. The diagnosis rate, clinical utility, and impact on management of singleton WES were evaluated. Of 80 enrolled infants, 46 received a molecular genetic diagnosis through singleton WES (57.5%) compared with 11 (13.75%) who underwent standard investigations in the same patient group. Clinical management changed following exome diagnosis in 15 of 46 diagnosed participants (32.6%). Twelve relatives received a genetic diagnosis following cascade testing, and 28 couples were identified as being at high risk of recurrence in future pregnancies. This prospective study provides strong evidence for increased diagnostic and clinical utility of singleton WES as a first-tier sequencing test for infants with a suspected monogenic disorder. Singleton WES outperformed standard care in terms of diagnosis rate and the benefits of a diagnosis, namely, impact on management of the child and clarification of reproductive risks for the extended family in a timely manner.Genet Med 18 11, 1090-1096.

  7. Whole-exome sequencing analysis of Waardenburg syndrome in a Chinese family.

    PubMed

    Chen, Dezhong; Zhao, Na; Wang, Jing; Li, Zhuoyu; Wu, Changxin; Fu, Jie; Xiao, Han

    2017-01-01

    Waardenburg syndrome (WS) is a dominantly inherited, genetically heterogeneous auditory-pigmentary syndrome characterized by non-progressive sensorineural hearing loss and iris discoloration. By whole-exome sequencing (WES), we identified a nonsense mutation (c.598C>T) in PAX3 gene, predicted to be disease causing by in silico analysis. This is the first report of genetically diagnosed case of WS PAX3 c.598C>T nonsense mutation in Chinese ethnic origin by WES and in silico functional prediction methods.

  8. Whole-exome sequencing analysis of Waardenburg syndrome in a Chinese family

    PubMed Central

    Chen, Dezhong; Zhao, Na; Wang, Jing; Li, Zhuoyu; Wu, Changxin; Fu, Jie; Xiao, Han

    2017-01-01

    Waardenburg syndrome (WS) is a dominantly inherited, genetically heterogeneous auditory-pigmentary syndrome characterized by non-progressive sensorineural hearing loss and iris discoloration. By whole-exome sequencing (WES), we identified a nonsense mutation (c.598C>T) in PAX3 gene, predicted to be disease causing by in silico analysis. This is the first report of genetically diagnosed case of WS PAX3 c.598C>T nonsense mutation in Chinese ethnic origin by WES and in silico functional prediction methods. PMID:28690861

  9. Evaluation of somatic copy number estimation tools for whole-exome sequencing data.

    PubMed

    Nam, Jae-Yong; Kim, Nayoung K D; Kim, Sang Cheol; Joung, Je-Gun; Xi, Ruibin; Lee, Semin; Park, Peter J; Park, Woong-Yang

    2016-03-01

    Whole-exome sequencing (WES) has become a standard method for detecting genetic variants in human diseases. Although the primary use of WES data has been the identification of single nucleotide variations and indels, these data also offer a possibility of detecting copy number variations (CNVs) at high resolution. However, WES data have uneven read coverage along the genome owing to the target capture step, and the development of a robust WES-based CNV tool is challenging. Here, we evaluate six WES somatic CNV detection tools: ADTEx, CONTRA, Control-FREEC, EXCAVATOR, ExomeCNV and Varscan2. Using WES data from 50 kidney chromophobe, 50 bladder urothelial carcinoma, and 50 stomach adenocarcinoma patients from The Cancer Genome Atlas, we compared the CNV calls from the six tools with a reference CNV set that was identified by both single nucleotide polymorphism array 6.0 and whole-genome sequencing data. We found that these algorithms gave highly variable results: visual inspection reveals significant differences between the WES-based segmentation profiles and the reference profile, as well as among the WES-based profiles. Using a 50% overlap criterion, 13-77% of WES CNV calls were covered by CNVs from the reference set, up to 21% of the copy gains were called as losses or vice versa, and dramatic differences in CNV sizes and CNV numbers were observed. Overall, ADTEx and EXCAVATOR had the best performance with relatively high precision and sensitivity. We suggest that the current algorithms for somatic CNV detection from WES data are limited in their performance and that more robust algorithms are needed. © The Author 2015. Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  10. Molecular diagnosis of putative Stargardt disease probands by exome sequencing

    PubMed Central

    2012-01-01

    Background The commonest genetic form of juvenile or early adult onset macular degeneration is Stargardt Disease (STGD) caused by recessive mutations in the gene ABCA4. However, high phenotypic and allelic heterogeneity and a small but non-trivial amount of locus heterogeneity currently impede conclusive molecular diagnosis in a significant proportion of cases. Methods We performed whole exome sequencing (WES) of nine putative Stargardt Disease probands and searched for potentially disease-causing genetic variants in previously identified retinal or macular dystrophy genes. Follow-up dideoxy sequencing was performed for confirmation and to screen for mutations in an additional set of affected individuals lacking a definitive molecular diagnosis. Results Whole exome sequencing revealed seven likely disease-causing variants across four genes, providing a confident genetic diagnosis in six previously uncharacterized participants. We identified four previously missed mutations in ABCA4 across three individuals. Likely disease-causing mutations in RDS/PRPH2, ELOVL, and CRB1 were also identified. Conclusions Our findings highlight the enormous potential of whole exome sequencing in Stargardt Disease molecular diagnosis and research. WES adequately assayed all coding sequences and canonical splice sites of ABCA4 in this study. Additionally, WES enables the identification of disease-related alleles in other genes. This work highlights the importance of collecting parental genetic material for WES testing as the current knowledge of human genome variation limits the determination of causality between identified variants and disease. While larger sample sizes are required to establish the precision and accuracy of this type of testing, this study supports WES for inherited early onset macular degeneration disorders as an alternative to standard mutation screening techniques. PMID:22863181

  11. Rapid identification of kidney cyst mutations by whole exome sequencing in zebrafish

    PubMed Central

    Ryan, Sean; Willer, Jason; Marjoram, Lindsay; Bagwell, Jennifer; Mankiewicz, Jamie; Leshchiner, Ignaty; Goessling, Wolfram; Bagnat, Michel; Katsanis, Nicholas

    2013-01-01

    Forward genetic approaches in zebrafish have provided invaluable information about developmental processes. However, the relative difficulty of mapping and isolating mutations has limited the number of new genetic screens. Recent improvements in the annotation of the zebrafish genome coupled to a reduction in sequencing costs prompted the development of whole genome and RNA sequencing approaches for gene discovery. Here we describe a whole exome sequencing (WES) approach that allows rapid and cost-effective identification of mutations. We used our WES methodology to isolate four mutations that cause kidney cysts; we identified novel alleles in two ciliary genes as well as two novel mutants. The WES approach described here does not require specialized infrastructure or training and is therefore widely accessible. This methodology should thus help facilitate genetic screens and expedite the identification of mutants that can inform basic biological processes and the causality of genetic disorders in humans. PMID:24130329

  12. Performance comparison of two commercial human whole-exome capture systems on formalin-fixed paraffin-embedded lung adenocarcinoma samples.

    PubMed

    Bonfiglio, Silvia; Vanni, Irene; Rossella, Valeria; Truini, Anna; Lazarevic, Dejan; Dal Bello, Maria Giovanna; Alama, Angela; Mora, Marco; Rijavec, Erika; Genova, Carlo; Cittaro, Davide; Grossi, Francesco; Coco, Simona

    2016-08-30

    Next Generation Sequencing (NGS) has become a valuable tool for molecular landscape characterization of cancer genomes, leading to a better understanding of tumor onset and progression, and opening new avenues in translational oncology. Formalin-fixed paraffin-embedded (FFPE) tissue is the method of choice for storage of clinical samples, however low quality of FFPE genomic DNA (gDNA) can limit its use for downstream applications. To investigate the FFPE specimen suitability for NGS analysis and to establish the performance of two solution-based exome capture technologies, we compared the whole-exome sequencing (WES) data of gDNA extracted from 5 fresh frozen (FF) and 5 matched FFPE lung adenocarcinoma tissues using: SeqCap EZ Human Exome v.3.0 (Roche NimbleGen) and SureSelect XT Human All Exon v.5 (Agilent Technologies). Sequencing metrics on Illumina HiSeq were optimal for both exome systems and comparable among FFPE and FF samples, with a slight increase of PCR duplicates in FFPE, mainly in Roche NimbleGen libraries. Comparison of single nucleotide variants (SNVs) between FFPE-FF pairs reached overlapping values >90 % in both systems. Both WES showed high concordance with target re-sequencing data by Ion PGM™ in 22 lung-cancer genes, regardless the source of samples. Exon coverage of 623 cancer-related genes revealed high coverage efficiency of both kits, proposing WES as a valid alternative to target re-sequencing. High-quality and reliable data can be successfully obtained from WES of FFPE samples starting from a relatively low amount of input gDNA, suggesting the inclusion of NGS-based tests into clinical contest. In conclusion, our analysis suggests that the WES approach could be extended to a translational research context as well as to the clinic (e.g. to study rare malignancies), where the simultaneous analysis of the whole coding region of the genome may help in the detection of cancer-linked variants.

  13. Whole exome sequencing in neurogenetic odysseys: An effective, cost- and time-saving diagnostic approach.

    PubMed

    Córdoba, Marta; Rodriguez-Quiroga, Sergio Alejandro; Vega, Patricia Analía; Salinas, Valeria; Perez-Maturo, Josefina; Amartino, Hernán; Vásquez-Dusefante, Cecilia; Medina, Nancy; González-Morón, Dolores; Kauffman, Marcelo Andrés

    2018-01-01

    Diagnostic trajectories for neurogenetic disorders frequently require the use of considerable time and resources, exposing patients and families to so-called "diagnostic odysseys". Previous studies have provided strong evidence for increased diagnostic and clinical utility of whole-exome sequencing in medical genetics. However, specific reports assessing its utility in a setting such as ours- a neurogeneticist led academic group serving in a low-income country-are rare. To assess the diagnostic yield of WES in patients suspected of having a neurogenetic condition and explore the cost-effectiveness of its implementation in a research group located in an Argentinean public hospital. This is a prospective study of the clinical utility of WES in a series of 40 consecutive patients selected from a Neurogenetic Clinic of a tertiary Hospital in Argentina. We evaluated patients retrospectively for previous diagnostic trajectories. Diagnostic yield, clinical impact on management and economic diagnostic burden were evaluated. We demonstrated the clinical utility of Whole Exome Sequencing in our patient cohort, obtaining a diagnostic yield of 40% (95% CI, 24.8%-55.2%) among a diverse group of neurological disorders. The average age at the time of WES was 23 (range 3-70). The mean time elapsed from symptom onset to WES was 11 years (range 3-42). The mean cost of the diagnostic workup prior to WES was USD 1646 (USD 1439 to 1853), which is 60% higher than WES cost in our center. WES for neurogenetics proved to be an effective, cost- and time-saving approach for the molecular diagnosis of this heterogeneous and complex group of patients.

  14. Whole exome sequencing is an efficient, sensitive and specific method for determining the genetic cause of short-rib thoracic dystrophies.

    PubMed

    McInerney-Leo, A M; Harris, J E; Leo, P J; Marshall, M S; Gardiner, B; Kinning, E; Leong, H Y; McKenzie, F; Ong, W P; Vodopiutz, J; Wicking, C; Brown, M A; Zankl, A; Duncan, E L

    2015-12-01

    Short-rib thoracic dystrophies (SRTDs) are congenital disorders due to defects in primary cilium function. SRTDs are recessively inherited with mutations identified in 14 genes to date (comprising 398 exons). Conventional mutation detection (usually by iterative Sanger sequencing) is inefficient and expensive, and often not undertaken. Whole exome massive parallel sequencing has been used to identify new genes for SRTD (WDR34, WDR60 and IFT172); however, the clinical utility of whole exome sequencing (WES) has not been established. WES was performed in 11 individuals with SRTDs. Compound heterozygous or homozygous mutations were identified in six confirmed SRTD genes in 10 individuals (IFT172, DYNC2H1, TTC21B, WDR60, WDR34 and NEK1), giving overall sensitivity of 90.9%. WES data from 993 unaffected individuals sequenced using similar technology showed two individuals with rare (minor allele frequency <0.005) compound heterozygous variants of unknown significance in SRTD genes (specificity >99%). Costs for consumables, laboratory processing and bioinformatic analysis were

  15. Whole exome sequencing is an efficient, sensitive and specific method of mutation detection in osteogenesis imperfecta and Marfan syndrome

    PubMed Central

    McInerney-Leo, Aideen M; Marshall, Mhairi S; Gardiner, Brooke; Coucke, Paul J; Van Laer, Lut; Loeys, Bart L; Summers, Kim M; Symoens, Sofie; West, Jennifer A; West, Malcolm J; Paul Wordsworth, B; Zankl, Andreas; Leo, Paul J; Brown, Matthew A; Duncan, Emma L

    2013-01-01

    Osteogenesis imperfecta (OI) and Marfan syndrome (MFS) are common Mendelian disorders. Both conditions are usually diagnosed clinically, as genetic testing is expensive due to the size and number of potentially causative genes and mutations. However, genetic testing may benefit patients, at-risk family members and individuals with borderline phenotypes, as well as improving genetic counseling and allowing critical differential diagnoses. We assessed whether whole exome sequencing (WES) is a sensitive method for mutation detection in OI and MFS. WES was performed on genomic DNA from 13 participants with OI and 10 participants with MFS who had known mutations, with exome capture followed by massive parallel sequencing of multiplexed samples. Single nucleotide polymorphisms (SNPs) and small indels were called using Genome Analysis Toolkit (GATK) and annotated with ANNOVAR. CREST, exomeCopy and exomeDepth were used for large deletion detection. Results were compared with the previous data. Specificity was calculated by screening WES data from a control population of 487 individuals for mutations in COL1A1, COL1A2 and FBN1. The target capture of five exome capture platforms was compared. All 13 mutations in the OI cohort and 9/10 in the MFS cohort were detected (sensitivity=95.6%) including non-synonymous SNPs, small indels (<10 bp), and a large UTR5/exon 1 deletion. One mutation was not detected by GATK due to strand bias. Specificity was 99.5%. Capture platforms and analysis programs differed considerably in their ability to detect mutations. Consumable costs for WES were low. WES is an efficient, sensitive, specific and cost-effective method for mutation detection in patients with OI and MFS. Careful selection of platform and analysis programs is necessary to maximize success. PMID:24501682

  16. Whole exome sequencing in neurogenetic odysseys: An effective, cost- and time-saving diagnostic approach

    PubMed Central

    Córdoba, Marta; Rodriguez-Quiroga, Sergio Alejandro; Vega, Patricia Analía; Salinas, Valeria; Perez-Maturo, Josefina; Amartino, Hernán; Vásquez-Dusefante, Cecilia; Medina, Nancy; González-Morón, Dolores; Kauffman, Marcelo Andrés

    2018-01-01

    Background Diagnostic trajectories for neurogenetic disorders frequently require the use of considerable time and resources, exposing patients and families to so-called “diagnostic odysseys”. Previous studies have provided strong evidence for increased diagnostic and clinical utility of whole-exome sequencing in medical genetics. However, specific reports assessing its utility in a setting such as ours- a neurogeneticist led academic group serving in a low-income country—are rare. Objectives To assess the diagnostic yield of WES in patients suspected of having a neurogenetic condition and explore the cost-effectiveness of its implementation in a research group located in an Argentinean public hospital. Methods This is a prospective study of the clinical utility of WES in a series of 40 consecutive patients selected from a Neurogenetic Clinic of a tertiary Hospital in Argentina. We evaluated patients retrospectively for previous diagnostic trajectories. Diagnostic yield, clinical impact on management and economic diagnostic burden were evaluated. Results We demonstrated the clinical utility of Whole Exome Sequencing in our patient cohort, obtaining a diagnostic yield of 40% (95% CI, 24.8%-55.2%) among a diverse group of neurological disorders. The average age at the time of WES was 23 (range 3–70). The mean time elapsed from symptom onset to WES was 11 years (range 3–42). The mean cost of the diagnostic workup prior to WES was USD 1646 (USD 1439 to 1853), which is 60% higher than WES cost in our center. Conclusions WES for neurogenetics proved to be an effective, cost- and time-saving approach for the molecular diagnosis of this heterogeneous and complex group of patients. PMID:29389947

  17. Reporting results from whole-genome and whole-exome sequencing in clinical practice: a proposal for Canada?

    PubMed

    Zawati, Ma'n H; Parry, David; Thorogood, Adrian; Nguyen, Minh Thu; Boycott, Kym M; Rosenblatt, David; Knoppers, Bartha Maria

    2014-01-01

    This article proposes recommendations for the use of whole-genome and whole-exome (WGS/WES) sequencing in clinical practice, endorsed by the board of directors of the Canadian College of Medical Geneticists. The publication of statements and recommendations by several international and national organisations on clinical WGS/WES has prompted a need for Canadian-specific guidance. A multi-disciplinary group consisting of lawyers, ethicists, genetic researchers, and clinical geneticists was assembled to review existing guidelines on WGS/WES and identify provisions relevant to the Canadian context. Definitions were provided to orient the recommendations and to minimize confusion with other recommendations. Recommendations include the following: WGS/WES should be used in a judicious and cost-efficient manner; WGS/WES should be used to answer a clinical question; and physicians need to explain to adult patients the nature of the results that could arise, so as to allow them to make informed choices over whether to take the test and which results they wish to receive. Recommendations are also provided for WGS/WES in the pediatric context, and for when results implicate patients' family members. These recommendations are only a proposal to be developed into comprehensive Canadian-based guidelines. They aim to promote discussion about the reporting of WGS/WES results, and to encourage the ethical implementation of these new technologies in the clinical setting.

  18. Effectiveness of whole-exome sequencing and costs of the traditional diagnostic trajectory in children with intellectual disability.

    PubMed

    Monroe, Glen R; Frederix, Gerardus W; Savelberg, Sanne M C; de Vries, Tamar I; Duran, Karen J; van der Smagt, Jasper J; Terhal, Paulien A; van Hasselt, Peter M; Kroes, Hester Y; Verhoeven-Duif, Nanda M; Nijman, Isaäc J; Carbo, Ellen C; van Gassen, Koen L; Knoers, Nine V; Hövels, Anke M; van Haelst, Mieke M; Visser, Gepke; van Haaften, Gijs

    2016-09-01

    This study investigated whole-exome sequencing (WES) yield in a subset of intellectually disabled patients referred to our clinical diagnostic center and calculated the total costs of these patients' diagnostic trajectory in order to evaluate early WES implementation. We compared 17 patients' trio-WES yield with the retrospective costs of diagnostic procedures by comprehensively examining patient records and collecting resource use information for each patient, beginning with patient admittance and concluding with WES initiation. We calculated cost savings using scenario analyses to evaluate the costs replaced by WES when used as a first diagnostic tool. WES resulted in diagnostically useful outcomes in 29.4% of patients. The entire traditional diagnostic trajectory average cost was $16,409 per patient, substantially higher than the $3,972 trio-WES cost. WES resulted in average cost savings of $3,547 for genetic and metabolic investigations in diagnosed patients and $1,727 for genetic investigations in undiagnosed patients. The increased causal variant detection yield by WES and the relatively high costs of the entire traditional diagnostic trajectory suggest that early implementation of WES is a relevant and cost-efficient option in patient diagnostics. This information is crucial for centers considering implementation of WES and serves as input for future value-based research into diagnostics.Genet Med 18 9, 949-956.

  19. Single-cell whole exome and targeted sequencing in NPM1/FLT3 positive pediatric acute myeloid leukemia.

    PubMed

    Walter, Christiane; Pozzorini, Christian; Reinhardt, Katarina; Geffers, Robert; Xu, Zhenyu; Reinhardt, Dirk; von Neuhoff, Nils; Hanenberg, Helmut

    2018-02-01

    The small portion of leukemic stem cells (LSCs) in acute myeloid leukemia (AML) present in children and adolescents is often masked by the high background of AML blasts and normal hematopoietic cells. The aim of the current study was to establish a simple workflow for reliable genetic analysis of single LSC-enriched blasts from pediatric patients. For three AMLs with mutations in nucleophosmin 1 and/or fms-like tyrosine kinase 3, we performed whole genome amplification on sorted single-cell DNA followed by whole exome sequencing (WES). The corresponding bulk bone marrow DNAs were also analyzed by WES and by targeted sequencing (TS) that included 54 genes associated with myeloid malignancies. Analysis revealed that read coverage statistics were comparable between single-cell and bulk WES data, indicating high-quality whole genome amplification. From 102 single-cell variants, 72 single nucleotide variants and insertions or deletions (70%) were consistently found in the two bulk DNA analyses. Variants reliably detected in single cells were also present in TS. However, initial screening by WES with read counts between 50-72× failed to detect rare AML subclones in the bulk DNAs. In summary, our study demonstrated that single-cell WES combined with bulk DNA TS is a promising tool set for detecting AML subclones and possibly LSCs. © 2017 Wiley Periodicals, Inc.

  20. Effectiveness of exome and genome sequencing guided by acuity of illness for diagnosis of neurodevelopmental disorders

    PubMed Central

    Soden, Sarah E.; Saunders, Carol J.; Willig, Laurel K.; Farrow, Emily G.; Smith, Laurie D.; Petrikin, Josh E.; LePichon, Jean-Baptiste; Miller, Neil A.; Thiffault, Isabelle; Dinwiddie, Darrell L.; Twist, Greyson; Noll, Aaron; Heese, Bryce A.; Zellmer, Lee; Atherton, Andrea M.; Abdelmoity, Ahmed T.; Safina, Nicole; Nyp, Sarah S.; Zuccarelli, Britton; Larson, Ingrid A.; Modrcin, Ann; Herd, Suzanne; Creed, Mitchell; Ye, Zhaohui; Yuan, Xuan; Brodsky, Robert A.; Kingsmore, Stephen F.

    2014-01-01

    Neurodevelopmental disorders (NDDs) affect more than 3% of children and are attributable to single-gene mutations at more than 1000 loci. Traditional methods yield molecular diagnoses in less than one-half of children with NDD. Whole-genome sequencing (WGS) and whole-exome sequencing (WES) can enable diagnosis of NDD, but their clinical and cost-effectiveness are unknown. One hundred families with 119 children affected by NDD received diagnostic WGS and/or WES of parent-child trios, wherein the sequencing approach was guided by acuity of illness. Forty-five percent received molecular diagnoses. An accelerated sequencing modality, rapid WGS, yielded diagnoses in 73% of families with acutely ill children (11 of 15). Forty percent of families with children with nonacute NDD, followed in ambulatory care clinics (34 of 85), received diagnoses: 33 by WES and 1 by staged WES then WGS. The cost of prior negative tests in the nonacute patients was $19,100 per family, suggesting sequencing to be cost-effective at up to $7640 per family. A change in clinical care or impression of the pathophysiology was reported in 49% of newly diagnosed families. If WES or WGS had been performed at symptom onset, genomic diagnoses may have been made 77 months earlier than occurred in this study. It is suggested that initial diagnostic evaluation of children with NDD should include trio WGS or WES, with extension of accelerated sequencing modalities to high-acuity patients. PMID:25473036

  1. Molecular Diagnostic Experience of Whole-Exome Sequencing in Adult Patients

    PubMed Central

    Posey, Jennifer E.; Rosenfeld, Jill A.; James, Regis A.; Bainbridge, Matthew; Niu, Zhiyv; Wang, Xia; Dhar, Shweta; Wiszniewski, Wojciech; Akdemir, Zeynep H.C.; Gambin, Tomasz; Xia, Fan; Person, Richard E.; Walkiewicz, Magdalena; Shaw, Chad A.; Sutton, V. Reid; Beaudet, Arthur L.; Muzny, Donna; Eng, Christine M.; Yang, Yaping; Gibbs, Richard A.; Lupski, James R.; Boerwinkle, Eric; Plon, Sharon E.

    2015-01-01

    Purpose Whole exome sequencing (WES) is increasingly used as a diagnostic tool in medicine, but prior reports focus on predominantly pediatric cohorts with neurologic or developmental disorders. We describe the diagnostic yield and characteristics of whole exome sequencing in adults. Methods We performed a retrospective analysis of consecutive WES reports for adults from a diagnostic laboratory. Phenotype composition was determined using Human Phenotype Ontology terms. Results Molecular diagnoses were reported for 17.5% (85/486) of adults, lower than a primarily pediatric population (25.2%; p=0.0003); the diagnostic rate was higher (23.9%) in those 18–30 years of age compared to patients over 30 years (10.4%; p=0.0001). Dual Mendelian diagnoses contributed to 7% of diagnoses, revealing blended phenotypes. Diagnoses were more frequent among individuals with abnormalities of the nervous system, skeletal system, head/neck, and growth. Diagnostic rate was independent of family history information, and de novo mutations contributed to 61.4% of autosomal dominant diagnoses. Conclusion Early WES experience in adults demonstrates molecular diagnoses in a substantial proportion of patients, informing clinical management, recurrence risk and recommendations for relatives. A positive family history was not predictive, consistent with molecular diagnoses often revealed by de novo events, informing the Mendelian basis of genetic disease in adults. PMID:26633545

  2. Whole-exome sequencing links TMCO1 defect syndrome with cerebro-facio-thoracic dysplasia.

    PubMed

    Pehlivan, Davut; Karaca, Ender; Aydin, Hatip; Beck, Christine R; Gambin, Tomasz; Muzny, Donna M; Bilge Geckinli, B; Karaman, Ali; Jhangiani, Shalini N; Gibbs, Richard A; Lupski, James R

    2014-09-01

    Whole-exome sequencing (WES) is a type of disruptive technology that has tremendous influence on human and clinical genetics research. An efficient and cost-effective method, WES is now widely used as a diagnostic tool for identifying the molecular basis of genetic syndromes that are often challenging to diagnose. Here we report a patient with a clinical diagnosis of cerebro-facio-thoracic dysplasia (CFTD; MIM#213980) in whom we identified a homozygous splice-site mutation in the transmembrane and coiled-coil domains 1 (TMCO1) gene using WES. TMCO1 mutations cause craniofacial dysmorphism, skeletal anomalies characterized by multiple malformations of the vertebrae and ribs, and intellectual disability (MIM#614132). A retrospective review revealed that clinical manifestations of both syndromes are very similar and overlap remarkably. We propose that mutations of TMCO1 are not only responsible for craniofacial dysmorphism, skeletal anomalies and mental retardation syndrome but also for CFTD.

  3. Whole-exome sequencing links TMCO1 defect syndrome with cerebro-facio-thoracic dysplasia

    PubMed Central

    Pehlivan, Davut; Karaca, Ender; Aydin, Hatip; Beck, Christine R; Gambin, Tomasz; Muzny, Donna M; Bilge Geckinli, B; Karaman, Ali; Jhangiani, Shalini N; Gibbs, Richard A; Lupski, James R

    2014-01-01

    Whole-exome sequencing (WES) is a type of disruptive technology that has tremendous influence on human and clinical genetics research. An efficient and cost-effective method, WES is now widely used as a diagnostic tool for identifying the molecular basis of genetic syndromes that are often challenging to diagnose. Here we report a patient with a clinical diagnosis of cerebro-facio-thoracic dysplasia (CFTD; MIM#213980) in whom we identified a homozygous splice-site mutation in the transmembrane and coiled-coil domains 1 (TMCO1) gene using WES. TMCO1 mutations cause craniofacial dysmorphism, skeletal anomalies characterized by multiple malformations of the vertebrae and ribs, and intellectual disability (MIM#614132). A retrospective review revealed that clinical manifestations of both syndromes are very similar and overlap remarkably. We propose that mutations of TMCO1 are not only responsible for craniofacial dysmorphism, skeletal anomalies and mental retardation syndrome but also for CFTD. PMID:24424126

  4. Whole-Exome Sequencing in Adults With Chronic Kidney Disease: A Pilot Study.

    PubMed

    Lata, Sneh; Marasa, Maddalena; Li, Yifu; Fasel, David A; Groopman, Emily; Jobanputra, Vaidehi; Rasouly, Hila; Mitrotti, Adele; Westland, Rik; Verbitsky, Miguel; Nestor, Jordan; Slater, Lindsey M; D'Agati, Vivette; Zaniew, Marcin; Materna-Kiryluk, Anna; Lugani, Francesca; Caridi, Gianluca; Rampoldi, Luca; Mattoo, Aditya; Newton, Chad A; Rao, Maya K; Radhakrishnan, Jai; Ahn, Wooin; Canetta, Pietro A; Bomback, Andrew S; Appel, Gerald B; Antignac, Corinne; Markowitz, Glen S; Garcia, Christine K; Kiryluk, Krzysztof; Sanna-Cherchi, Simone; Gharavi, Ali G

    2018-01-16

    The utility of whole-exome sequencing (WES) for the diagnosis and management of adult-onset constitutional disorders has not been adequately studied. Genetic diagnostics may be advantageous in adults with chronic kidney disease (CKD), in whom the cause of kidney failure often remains unknown. To study the diagnostic utility of WES in a selected referral population of adults with CKD. Observational cohort. A major academic medical center. 92 adults with CKD of unknown cause or familial nephropathy or hypertension. The diagnostic yield of WES and its potential effect on clinical management. Whole-exome sequencing provided a diagnosis in 22 of 92 patients (24%), including 9 probands with CKD of unknown cause and encompassing 13 distinct genetic disorders. Among these, loss-of-function mutations were identified in PARN in 2 probands with tubulointerstitial fibrosis. PARN mutations have been implicated in a short telomere syndrome characterized by lung, bone marrow, and liver fibrosis; these findings extend the phenotype of PARN mutations to renal fibrosis. In addition, review of the American College of Medical Genetics actionable genes identified a pathogenic BRCA2 mutation in a proband who was diagnosed with breast cancer on follow-up. The results affected clinical management in most identified cases, including initiation of targeted surveillance, familial screening to guide donor selection for transplantation, and changes in therapy. The small sample size and recruitment at a tertiary care academic center limit generalizability of findings among the broader CKD population. Whole-exome sequencing identified diagnostic mutations in a substantial number of adults with CKD of many causes. Further study of the utility of WES in the evaluation and care of patients with CKD in additional settings is warranted. New York State Empire Clinical Research Investigator Program, Renal Research Institute, and National Human Genome Research Institute of the National Institutes of Health.

  5. Whole exome sequencing for determination of tumor mutation load in liquid biopsy from advanced cancer patients.

    PubMed

    Koeppel, Florence; Blanchard, Steven; Jovelet, Cécile; Genin, Bérengère; Marcaillou, Charles; Martin, Emmanuel; Rouleau, Etienne; Solary, Eric; Soria, Jean-Charles; André, Fabrice; Lacroix, Ludovic

    2017-01-01

    Tumor mutation load (TML) has been proposed as a biomarker of patient response to immunotherapy in several studies. TML is usually determined by tumor biopsy DNA (tDNA) whole exome sequencing (WES), therefore TML evaluation is limited by informative biopsy availability. Circulating cell free DNA (cfDNA) provided by liquid biopsy is a surrogate specimen to biopsy for molecular profiling. Nevertheless performing WES on DNA from plasma is technically challenging and the ability to determine tumor mutation load from liquid biopsies remains to be demonstrated. In the current study, WES was performed on cfDNA from 32 metastatic patients of various cancer types included into MOSCATO 01 (NCT01566019) and/or MATCHR (NCT02517892) molecular triage trials. Results from targeted gene sequencing (TGS) and WES performed on cfDNA were compared to results from tumor tissue biopsy. In cfDNA samples, WES mutation detection sensitivity was 92% compared to targeted sequencing (TGS). When comparing cfDNA-WES to tDNA-WES, mutation detection sensitivity was 53%, consistent with previously published prospective study comparing cfDNA-TGS to tDNA-TGS. For samples in which presence of tumor DNA was confirmed in cfDNA, tumor mutation load from liquid biopsy was correlated with tumor biopsy. Taken together, this study demonstrated that liquid biopsy may be applied to determine tumor mutation load. Qualification of liquid biopsy for interpretation is a crucial point to use cfDNA for mutational load estimation.

  6. Whole exome sequencing for determination of tumor mutation load in liquid biopsy from advanced cancer patients

    PubMed Central

    Blanchard, Steven; Jovelet, Cécile; Genin, Bérengère; Marcaillou, Charles; Martin, Emmanuel; Rouleau, Etienne; Solary, Eric; Soria, Jean-Charles; André, Fabrice; Lacroix, Ludovic

    2017-01-01

    Tumor mutation load (TML) has been proposed as a biomarker of patient response to immunotherapy in several studies. TML is usually determined by tumor biopsy DNA (tDNA) whole exome sequencing (WES), therefore TML evaluation is limited by informative biopsy availability. Circulating cell free DNA (cfDNA) provided by liquid biopsy is a surrogate specimen to biopsy for molecular profiling. Nevertheless performing WES on DNA from plasma is technically challenging and the ability to determine tumor mutation load from liquid biopsies remains to be demonstrated. In the current study, WES was performed on cfDNA from 32 metastatic patients of various cancer types included into MOSCATO 01 (NCT01566019) and/or MATCHR (NCT02517892) molecular triage trials. Results from targeted gene sequencing (TGS) and WES performed on cfDNA were compared to results from tumor tissue biopsy. In cfDNA samples, WES mutation detection sensitivity was 92% compared to targeted sequencing (TGS). When comparing cfDNA-WES to tDNA-WES, mutation detection sensitivity was 53%, consistent with previously published prospective study comparing cfDNA-TGS to tDNA-TGS. For samples in which presence of tumor DNA was confirmed in cfDNA, tumor mutation load from liquid biopsy was correlated with tumor biopsy. Taken together, this study demonstrated that liquid biopsy may be applied to determine tumor mutation load. Qualification of liquid biopsy for interpretation is a crucial point to use cfDNA for mutational load estimation. PMID:29161279

  7. Allele-specific copy-number discovery from whole-genome and whole-exome sequencing

    PubMed Central

    Wang, WeiBo; Wang, Wei; Sun, Wei; Crowley, James J.; Szatkiewicz, Jin P.

    2015-01-01

    Copy-number variants (CNVs) are a major form of genetic variation and a risk factor for various human diseases, so it is crucial to accurately detect and characterize them. It is conceivable that allele-specific reads from high-throughput sequencing data could be leveraged to both enhance CNV detection and produce allele-specific copy number (ASCN) calls. Although statistical methods have been developed to detect CNVs using whole-genome sequence (WGS) and/or whole-exome sequence (WES) data, information from allele-specific read counts has not yet been adequately exploited. In this paper, we develop an integrated method, called AS-GENSENG, which incorporates allele-specific read counts in CNV detection and estimates ASCN using either WGS or WES data. To evaluate the performance of AS-GENSENG, we conducted extensive simulations, generated empirical data using existing WGS and WES data sets and validated predicted CNVs using an independent methodology. We conclude that AS-GENSENG not only predicts accurate ASCN calls but also improves the accuracy of total copy number calls, owing to its unique ability to exploit information from both total and allele-specific read counts while accounting for various experimental biases in sequence data. Our novel, user-friendly and computationally efficient method and a complete analytic protocol is freely available at https://sourceforge.net/projects/asgenseng/. PMID:25883151

  8. Nasopharyngeal teratoma, congenital diaphragmatic hernia and Dandy-Walker malformation - a yet uncharacterized syndrome.

    PubMed

    Gupta, N; Shastri, S; Singh, P K; Jana, M; Mridha, A; Verma, G; Kabra, M

    2016-11-01

    An association of congenital diaphragmatic hernia, dandy walker malformation and nasopharyngeal teratoma is very rare. Here, we report a fourth case with this association where chromosomal microarray and whole exome sequencing (WES) was performed to understand the underlying genetic basis. Findings of few variants especially a novel variation in HIRA provided some insights. An association of congenital diaphragmatic hernia, dandy walker malformation and nasopharyngeal teratoma is very rare. Here, we report a fourth case with this association where chromosomal microarray and whole exome sequencing (WES) was performed to understand the underlying genetic basis. Findings of few variants especially a novel variation in HIRA provided some insights. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. Portero versus portador: Spanish interpretation of genomic terminology during whole exome sequencing results disclosure.

    PubMed

    Gutierrez, Amanda M; Robinson, Jill O; Statham, Emily E; Scollon, Sarah; Bergstrom, Katie L; Slashinski, Melody J; Parsons, Donald W; Plon, Sharon E; McGuire, Amy L; Street, Richard L

    2017-11-01

    Describe modifications to technical genomic terminology made by interpreters during disclosure of whole exome sequencing (WES) results. Using discourse analysis, we identified and categorized interpretations of genomic terminology in 42 disclosure sessions where Spanish-speaking parents received their child's WES results either from a clinician using a medical interpreter, or directly from a bilingual physician. Overall, 76% of genomic terms were interpreted accordantly, 11% were misinterpreted and 13% were omitted. Misinterpretations made by interpreters and bilingual physicians included using literal and nonmedical terminology to interpret genomic concepts. Modifications to genomic terminology made during interpretation highlight the need to standardize bilingual genomic lexicons. We recommend Spanish terms that can be used to refer to genomic concepts.

  10. Outcome of Whole Exome Sequencing for Diagnostic Odyssey Cases of an Individualized Medicine Clinic: The Mayo Clinic Experience.

    PubMed

    Lazaridis, Konstantinos N; Schahl, Kimberly A; Cousin, Margot A; Babovic-Vuksanovic, Dusica; Riegert-Johnson, Douglas L; Gavrilova, Ralitza H; McAllister, Tammy M; Lindor, Noralane M; Abraham, Roshini S; Ackerman, Michael J; Pichurin, Pavel N; Deyle, David R; Gavrilov, Dimitar K; Hand, Jennifer L; Klee, Eric W; Stephens, Michael C; Wick, Myra J; Atkinson, Elizabeth J; Linden, David R; Ferber, Matthew J; Wieben, Eric D; Farrugia, Gianrico

    2016-03-01

    To describe the experience and outcome of performing whole-exome sequencing (WES) for resolution of patients on a diagnostic odyssey in the first 18 months of an individualized medicine clinic (IMC). The IMC offered WES to physicians of Mayo Clinic practice for patients with suspected genetic disease. DNA specimens of the proband and relatives were submitted to WES laboratories. We developed the Genomic Odyssey Board with multidisciplinary expertise to determine the appropriateness for IMC services, review WES reports, and make the final decision about whether the exome findings explain the disease. This study took place from September 30, 2012, to March 30, 2014. In the first 18 consecutive months, the IMC received 82 consultation requests for patients on a diagnostic odyssey. The Genomic Odyssey Board deferred 7 cases and approved 75 cases to proceed with WES. Seventy-one patients met with an IMC genomic counselor. Fifty-one patients submitted specimens for WES testing, and the results have been received for all. There were 15 cases in which a diagnosis was made on the basis of WES findings; thus, the positive diagnostic yield of this practice was 29%. The mean cost per patient for this service was approximately $8000. Medicaid supported 27% of the patients, and 38% of patients received complete or partial insurance coverage. The significant diagnostic yield, moderate cost, and notable health marketplace acceptance for WES compared with conventional genetic testing make the former method a rational diagnostic approach for patients on a diagnostic odyssey. Copyright © 2016 Mayo Foundation for Medical Education and Research. Published by Elsevier Inc. All rights reserved.

  11. Looking beyond the exome: a phenotype-first approach to molecular diagnostic resolution in rare and undiagnosed diseases.

    PubMed

    Pena, Loren D M; Jiang, Yong-Hui; Schoch, Kelly; Spillmann, Rebecca C; Walley, Nicole; Stong, Nicholas; Rapisardo Horn, Sarah; Sullivan, Jennifer A; McConkie-Rosell, Allyn; Kansagra, Sujay; Smith, Edward C; El-Dairi, Mays; Bellet, Jane; Keels, Martha Ann; Jasien, Joan; Kranz, Peter G; Noel, Richard; Nagaraj, Shashi K; Lark, Robert K; Wechsler, Daniel S G; Del Gaudio, Daniela; Leung, Marco L; Hendon, Laura G; Parker, Collette C; Jones, Kelly L; Goldstein, David B; Shashi, Vandana

    2018-04-01

    PurposeTo describe examples of missed pathogenic variants on whole-exome sequencing (WES) and the importance of deep phenotyping for further diagnostic testing.MethodsGuided by phenotypic information, three children with negative WES underwent targeted single-gene testing.ResultsIndividual 1 had a clinical diagnosis consistent with infantile systemic hyalinosis, although WES and a next-generation sequencing (NGS)-based ANTXR2 test were negative. Sanger sequencing of ANTXR2 revealed a homozygous single base pair insertion, previously missed by the WES variant caller software. Individual 2 had neurodevelopmental regression and cerebellar atrophy, with no diagnosis on WES. New clinical findings prompted Sanger sequencing and copy number testing of PLA2G6. A novel homozygous deletion of the noncoding exon 1 (not included in the WES capture kit) was detected, with extension into the promoter, confirming the clinical suspicion of infantile neuroaxonal dystrophy. Individual 3 had progressive ataxia, spasticity, and magnetic resonance image changes of vanishing white matter leukoencephalopathy. An NGS leukodystrophy gene panel and WES showed a heterozygous pathogenic variant in EIF2B5; no deletions/duplications were detected. Sanger sequencing of EIF2B5 showed a frameshift indel, probably missed owing to failure of alignment.ConclusionThese cases illustrate potential pitfalls of WES/NGS testing and the importance of phenotype-guided molecular testing in yielding diagnoses.

  12. Whole-exome sequencing for mutation detection in pediatric disorders of insulin secretion: Maturity onset diabetes of the young and congenital hyperinsulinism.

    PubMed

    Johnson, S R; Leo, P J; McInerney-Leo, A M; Anderson, L K; Marshall, M; McGown, I; Newell, F; Brown, M A; Conwell, L S; Harris, M; Duncan, E L

    2018-06-01

    To assess the utility of whole-exome sequencing (WES) for mutation detection in maturity-onset diabetes of the young (MODY) and congenital hyperinsulinism (CHI). MODY and CHI are the two commonest monogenic disorders of glucose-regulated insulin secretion in childhood, with 13 causative genes known for MODY and 10 causative genes identified for CHI. The large number of potential genes makes comprehensive screening using traditional methods expensive and time-consuming. Ten subjects with MODY and five with CHI with known mutations underwent WES using two different exome capture kits (Nimblegen SeqCap EZ Human v3.0 Exome Enrichment Kit, Nextera Rapid Capture Exome Kit). Analysis was blinded to previously identified mutations, and included assessment for large deletions. The target capture of five exome capture technologies was also analyzed using sequencing data from >2800 unrelated samples. Four of five MODY mutations were identified using Nimblegen (including a large deletion in HNF1B). Although targeted, one mutation (in INS) had insufficient coverage for detection. Eleven of eleven mutations (six MODY, five CHI) were identified using Nextera Rapid (including the previously missed mutation). On reconciliation, all mutations concorded with previous data and no additional variants in MODY genes were detected. There were marked differences in the performance of the capture technologies. WES can be useful for screening for MODY/CHI mutations, detecting both point mutations and large deletions. However, capture technologies require careful selection. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. Whole-exome sequencing for diagnosis of hereditary ichthyosis.

    PubMed

    Sitek, J C; Kulseth, M A; Rypdal, K B; Skodje, T; Sheng, Y; Retterstøl, L

    2018-02-14

    Hereditary ichthyosis constitutes a diverse group of cornification disorders. Identification of the molecular cause facilitates optimal patient care. We wanted to estimate the diagnostic yield of applying whole-exome sequencing (WES) in the routine genetic workup of inherited ichthyosis. During a 3-year-period, all ichthyosis patients, except X-linked and mild vulgar ichthyosis, consecutively admitted to a university hospital clinic were offered WES with subsequent analysis of ichthyosis-related genes as a first-line genetic investigation. Clinical and molecular data have been collected retrospectively. Genetic variants causative for the ichthyosis were identified in 27 of 34 investigated patients (79.4%). In all, 31 causative mutations across 13 genes were disclosed, including 12 novel variants. TGM1 was the most frequently mutated gene, accounting for 43.7% of patients suffering from autosomal recessive congenital ichthyosis (ARCI). Whole-exome sequencing appears an effective tool in disclosing the molecular cause of patients with hereditary ichthyosis seen in clinical practice and should be considered a first-tier genetic test in these patients. © 2018 European Academy of Dermatology and Venereology.

  14. Brief Report: "SETD2" Mutation in a Child with Autism, Intellectual Disabilities and Epilepsy

    ERIC Educational Resources Information Center

    Lumish, Heidi S.; Wynn, Julia; Devinsky, Orrin; Chung, Wendy K.

    2015-01-01

    Whole exome sequencing (WES) has been utilized with increasing frequency to identify mutations underlying rare diseases. Autism spectrum disorders (ASD) and intellectual disability (ID) are genetically heterogeneous, and novel genes for these disorders are rapidly being identified, making these disorders ideal candidates for WES. Here we report a…

  15. Sustained therapeutic response to riboflavin in a child with a progressive neurological condition, diagnosed by whole-exome sequencing

    PubMed Central

    Shashi, Vandana; Petrovski, Slavé; Schoch, Kelly; Crimian, Rebecca; Case, Laura E.; Khalid, Roha; El-Dairi, Maysantoine A.; Jiang, Yong-Hui; Mikati, Mohamad A.; Goldstein, David B.

    2015-01-01

    One of the most promising outcomes of whole-exome sequencing (WES) is the alteration of medical management following an accurate diagnosis in patients with previously unresolved disorders. Although case reports of targeted therapies resulting from WES have been published, there are few reports with long-term follow-up that confirm a sustained therapeutic response. Following a diagnosis by WES of Brown–Vialetto–Van Laere Syndrome 2 (BVVLS2), high-dose riboflavin therapy was instituted in a 20-mo-old child. An immediate clinical response with stabilization of signs and symptoms was noted over the first 2–4 wk. Subsequent clinical follow-up over the following 8 mo demonstrates not just stabilization, but continuing and sustained improvements in all manifestations of this usually fatal condition, which generally includes worsening motor weakness, sensory ataxia, hearing, and vision impairments. This case emphasizes that early application of WES can transform patient care, enabling therapy that in addition to being lifesaving can sometimes reverse the disabling disease processes in a progressive condition. PMID:27148562

  16. Lynch Syndrome Patients' Views of and Preferences for Return of Results Following Whole Exome Sequencing

    PubMed Central

    Joseph, Galen; Guiltinan, Jenna; Kianmahd, Jessica; Youngblom, Janey; Blanco, Amie

    2015-01-01

    Whole exome sequencing (WES) uses next generation sequencing technology to provide information on nearly all functional, protein-coding regions in an individual's genome. Due to the vast amount of information and incidental findings that can be generated from this technology, patient preferences must be investigated to help clinicians consent and return results to patients. Patients (n=19) who were previously clinically diagnosed with Lynch syndrome, but received uninformative negative Lynch syndrome genetic results through traditional molecular testing methods participated in semi-structured interviews after WES testing but before return of results to explore their views of WES and preferences for return of results. Analyses of interview results found that nearly all participants believed that the benefits of receiving all possible results generated from WES outweighed the undesirable effects. The majority of participants conveyed that relative to coping with a cancer diagnosis, information generated from WES would be manageable. Importantly, participants' experience with Lynch syndrome influenced their notions of genetic determinism, tolerance for uncertain results, and family communication plans. Participants would prefer to receive WES results in person from a genetic counselor or medical geneticist so that an expert could help explain the meaning and implications of the potentially large quantity and range of complicated results. These results underscore the need to study various populations with regard to the clinical use of WES in order to effectively and empathetically communicate the possible implications of this new technology and return results. PMID:24449059

  17. Looking beyond the exome: a phenotype-first approach to molecular diagnostic resolution in rare and undiagnosed diseases

    PubMed Central

    Pena, Loren DM; Jiang, Yong-Hui; Schoch, Kelly; Spillmann, Rebecca C.; Walley, Nicole; Stong, Nicholas; Horn, Sarah Rapisardo; Sullivan, Jennifer A.; McConkie-Rosell, Allyn; Kansagra, Sujay; Smith, Edward C.; El-Dairi, Mays; Bellet, Jane; Ann Keels, Martha; Jasien, Joan; Kranz, Peter G.; Noel, Richard; Nagaraj, Shashi K.; Lark, Robert K.; Wechsler, Daniel SG; del Gaudio, Daniela; Leung, Marco L.; Hendon, Laura G.; Parker, Collette C.; Jones, Kelly L.; Goldstein, David B.; Shashi, Vandana

    2017-01-01

    Purpose To describe examples of missed pathogenic variants on whole exome sequencing (WES) and the importance of deep phenotyping for further diagnostic testing. Methods Guided by phenotypic information, three children with negative WES underwent targeted single gene testing. Results Individual 1 had a clinical diagnosis consistent with infantile systemic hyalinosis, although WES and an NGS-based ANTXR2 test were negative. Sanger sequencing of ANTXR2 revealed a homozygous single base pair insertion, previously missed by the WES variant caller software. Individual 2 had neurodevelopmental regression and cerebellar atrophy, with no diagnosis on WES. New clinical findings prompted Sanger sequencing and copy number testing of PLA2G6. A novel homozygous deletion of the non-coding exon 1 (not included in the WES capture kit) was detected, with extension into the promoter, confirming the clinical suspicion of infantile neuroaxonal dystrophy. Individual 3 had progressive ataxia, spasticity and MRI changes of vanishing white matter leukoencephalopathy. An NGS leukodystrophy gene panel and WES showed a heterozygous pathogenic variant in EIF2B5; no deletions/duplications were detected. Sanger sequencing of EIF2B5 showed a frameshift indel, likely missed due to failure of alignment. Conclusions These cases illustrate potential pitfalls of WES/NGS testing, and the importance of phenotype-guided molecular testing in yielding diagnoses. PMID:28914269

  18. Whole-Exome Sequencing of 10 Scientists: Evaluation of the Process and Outcomes.

    PubMed

    Lindor, Noralane M; Schahl, Kimberly A; Johnson, Kiley J; Hunt, Katherine S; Mensink, Kara A; Wieben, Eric D; Klee, Eric; Black, John L; Highsmith, W Edward; Thibodeau, Stephen N; Ferber, Matthew J; Aypar, Umut; Ji, Yuan; Graham, Rondell P; Fiksdal, Alexander S; Sarangi, Vivek; Ormond, Kelly E; Riegert-Johnson, Douglas L; McAllister, Tammy M; Farrugia, Gianrico; McCormick, Jennifer B

    2015-10-01

    To understand motivations, educational needs, and concerns of individuals contemplating whole-exome sequencing (WES) and determine what amount of genetic information might be obtained by sequencing a generally healthy cohort so as to more effectively counsel future patients. From 2012 to 2014, 40 medically educated, generally healthy scientists at Mayo Clinic were invited to have WES conducted on a research basis; 26 agreed to be in a drawing from which 10 participants were selected. The study involved pre- and posttest genetic counseling and completion of 4 surveys related to the experience and outcomes. Whole-exome sequencing was conducted on DNA from blood from each person. Most variants (76,305 per person; range, 74,505-77,387) were known benign allelic variants, variants in genes of unknown function, or variants of uncertain significance in genes of known function. The results of suspected pathogenic/pathogenic variants in Mendelian disorders and pharmacogenomic variants were disclosed. The mean number of suspected pathogenic/pathogenic variants was 2.2 per person (range, 1-4). Four pharmacogenomic genes were included for reporting; variants were found in 9 of 10 participants. This study provides data that may be useful in establishing reality-based patient expectations, outlines specific points to cover during counseling, and increases confidence in the feasibility of providing adequate preparation and counseling for WES in generally healthy individuals. Copyright © 2015 Mayo Foundation for Medical Education and Research. Published by Elsevier Inc. All rights reserved.

  19. Allele-specific copy-number discovery from whole-genome and whole-exome sequencing.

    PubMed

    Wang, WeiBo; Wang, Wei; Sun, Wei; Crowley, James J; Szatkiewicz, Jin P

    2015-08-18

    Copy-number variants (CNVs) are a major form of genetic variation and a risk factor for various human diseases, so it is crucial to accurately detect and characterize them. It is conceivable that allele-specific reads from high-throughput sequencing data could be leveraged to both enhance CNV detection and produce allele-specific copy number (ASCN) calls. Although statistical methods have been developed to detect CNVs using whole-genome sequence (WGS) and/or whole-exome sequence (WES) data, information from allele-specific read counts has not yet been adequately exploited. In this paper, we develop an integrated method, called AS-GENSENG, which incorporates allele-specific read counts in CNV detection and estimates ASCN using either WGS or WES data. To evaluate the performance of AS-GENSENG, we conducted extensive simulations, generated empirical data using existing WGS and WES data sets and validated predicted CNVs using an independent methodology. We conclude that AS-GENSENG not only predicts accurate ASCN calls but also improves the accuracy of total copy number calls, owing to its unique ability to exploit information from both total and allele-specific read counts while accounting for various experimental biases in sequence data. Our novel, user-friendly and computationally efficient method and a complete analytic protocol is freely available at https://sourceforge.net/projects/asgenseng/. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  20. Whole-exome sequencing revealed two novel mutations in Usher syndrome.

    PubMed

    Koparir, Asuman; Karatas, Omer Faruk; Atayoglu, Ali Timucin; Yuksel, Bayram; Sagiroglu, Mahmut Samil; Seven, Mehmet; Ulucan, Hakan; Yuksel, Adnan; Ozen, Mustafa

    2015-06-01

    Usher syndrome is a clinically and genetically heterogeneous autosomal recessive inherited disorder accompanied by hearing loss and retinitis pigmentosa (RP). Since the associated genes are various and quite large, we utilized whole-exome sequencing (WES) as a diagnostic tool to identify the molecular basis of Usher syndrome. DNA from a 12-year-old male diagnosed with Usher syndrome was analyzed by WES. Mutations detected were confirmed by Sanger sequencing. The pathogenicity of these mutations was determined by in silico analysis. A maternally inherited deleterious frameshift mutation, c.14439_14454del in exon 66 and a paternally inherited non-sense c.10830G>A stop-gain SNV in exon 55 of USH2A were found as two novel compound heterozygous mutations. Both of these mutations disrupt the C terminal of USH2A protein. As a result, WES revealed two novel compound heterozygous mutations in a Turkish USH2A patient. This approach gave us an opportunity to have an appropriate diagnosis and provide genetic counseling to the family within a reasonable time. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Clinical exome sequencing reports: current informatics practice and future opportunities.

    PubMed

    Swaminathan, Rajeswari; Huang, Yungui; Astbury, Caroline; Fitzgerald-Butt, Sara; Miller, Katherine; Cole, Justin; Bartlett, Christopher; Lin, Simon

    2017-11-01

    The increased adoption of clinical whole exome sequencing (WES) has improved the diagnostic yield for patients with complex genetic conditions. However, the informatics practice for handling information contained in whole exome reports is still in its infancy, as evidenced by the lack of a common vocabulary within clinical sequencing reports generated across genetic laboratories. Genetic testing results are mostly transmitted using portable document format, which can make secondary analysis and data extraction challenging. This paper reviews a sample of clinical exome reports generated by Clinical Laboratory Improvement Amendments-certified genetic testing laboratories at tertiary-care facilities to assess and identify common data elements. Like structured radiology reports, which enable faster information retrieval and reuse, structuring genetic information within clinical WES reports would help facilitate integration of genetic information into electronic health records and enable retrospective research on the clinical utility of WES. We identify elements listed as mandatory according to practice guidelines but are currently missing from some of the clinical reports, which might help to organize the data when stored within structured databases. We also highlight elements, such as patient consent, that, although they do not appear within any of the current reports, may help in interpreting some of the information within the reports. Integrating genetic and clinical information would assist the adoption of personalized medicine for improved patient care and outcomes. © The Author 2017. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. Military Health Care Dilemmas and Genetic Discrimination: A Family's Experience with Whole Exome Sequencing.

    PubMed

    Helm, Benjamin M; Langley, Katherine; Spangler, Brooke B; Schrier Vergano, Samantha A

    2015-01-01

    Whole-exome sequencing (WES) has increased our ability to analyze large parts of the human genome, bringing with it a plethora of ethical, legal, and social implications. A topic dominating discussion of WES is identification of "secondary findings" (SFs), defined as the identification of risk in an asymptomatic individual unrelated to the indication for the test. SFs can have considerable psychosocial impact on patients and families, and patients with an SF may have concerns regarding genomic privacy and genetic discrimination. The Genetic Information Nondiscrimination Act of 2008 (GINA) currently excludes protections for members of the military. This may cause concern in military members and families regarding genetic discrimination when considering genetic testing. In this report, we discuss a case involving a patient and family in which a secondary finding was discovered by WES. The family members have careers in the U.S. military, and a risk-predisposing condition could negatively affect employment. While beneficial medical management changes were made, the information placed exceptional stress on the family, who were forced to navigate career-sensitive "extra-medical" issues, to consider the impacts of uncovering risk-predisposition, and to manage the privacy of their genetic information. We highlight how information obtained from WES may collide with these issues and emphasize the importance of genetic counseling for anyone undergoing WES.

  3. Evaluation of three read-depth based CNV detection tools using whole-exome sequencing data.

    PubMed

    Yao, Ruen; Zhang, Cheng; Yu, Tingting; Li, Niu; Hu, Xuyun; Wang, Xiumin; Wang, Jian; Shen, Yiping

    2017-01-01

    Whole exome sequencing (WES) has been widely accepted as a robust and cost-effective approach for clinical genetic testing of small sequence variants. Detection of copy number variants (CNV) within WES data have become possible through the development of various algorithms and software programs that utilize read-depth as the main information. The aim of this study was to evaluate three commonly used, WES read-depth based CNV detection programs using high-resolution chromosomal microarray analysis (CMA) as a standard. Paired CMA and WES data were acquired for 45 samples. A total of 219 CNVs (size ranged from 2.3 kb - 35 mb) identified on three CMA platforms (Affymetrix, Agilent and Illumina) were used as standards. CNVs were called from WES data using XHMM, CoNIFER, and CNVnator with modified settings. All three software packages detected an elevated proportion of small variants (< 20 kb) compared to CMA. XHMM and CoNIFER had poor detection sensitivity (22.2 and 14.6%), which correlated with the number of capturing probes involved. CNVnator detected most variants and had better sensitivity (87.7%); however, suffered from an overwhelming detection of small CNVs below 20 kb, which required further confirmation. Size estimation of variants was exaggerated by CNVnator and understated by XHMM and CoNIFER. Low concordances of CNV, detected by three different read-depth based programs, indicate the immature status of WES-based CNV detection. Low sensitivity and uncertain specificity of WES-based CNV detection in comparison with CMA based CNV detection suggests that CMA will continue to play an important role in detecting clinical grade CNV in the NGS era, which is largely based on WES.

  4. Analysis of whole exome sequencing with cardiometabolic traits using family-based linkage and association in the IRAS Family Study

    PubMed Central

    Tabb, Keri L.; Hellwege, Jacklyn N.; Palmer, Nicholette D.; Dimitrov, Latchezar; Sajuthi, Satria; Taylor, Kent D.; NG, Maggie C.Y.; Hawkins, Gregory A.; Chen, Yii-Der Ida; Brown, W. Mark; McWilliams, David; Williams, Adrienne; Lorenzo, Carlos; Norris, Jill M.; Long, Jirong; Rotter, Jerome I.; Curran, Joanne E.; Blangero, John; Wagenknecht, Lynne E.; Langefeld, Carl D.; Bowden, Donald W.

    2017-01-01

    Summary Family-based methods are a potentially powerful tool to identify trait-defining genetic variants in extended families, particularly when used to complement conventional association analysis. We utilized two-point linkage analysis and single variant association analysis to evaluate whole exome sequencing (WES) data from 1,205 Hispanic Americans (78 families) from the Insulin Resistance Atherosclerosis Family Study. WES identified 211,612 variants above the minor allele frequency threshold of ≥0.005. These variants were tested for linkage and/or association with 50 cardiometabolic traits after quality control checks. Two-point linkage analysis yielded 10,580,600 LOD scores with 1,148 LOD scores ≥3, 183 LOD scores ≥4, and 29 LOD scores ≥5. The maximal novel LOD score was 5.50 for rs2289043:T>C, in UNC5C with subcutaneous adipose tissue volume. Association analysis identified 13 variants attaining genome-wide significance (p<5×10-08), with the strongest association between rs651821:C>T in APOA5, and triglyceride levels (p=3.67×10-10). Overall, there was a 5.2-fold increase in the number of informative variants detected by WES compared to exome chip analysis in this population, nearly 30% of which were novel variants relative to dbSNP build 138. Thus, integration of results from two-point linkage and single-variant association analysis from WES data enabled identification of novel signals potentially contributing to cardiometabolic traits. PMID:28067407

  5. A clinical utility study of exome sequencing versus conventional genetic testing in pediatric neurology.

    PubMed

    Vissers, Lisenka E L M; van Nimwegen, Kirsten J M; Schieving, Jolanda H; Kamsteeg, Erik-Jan; Kleefstra, Tjitske; Yntema, Helger G; Pfundt, Rolph; van der Wilt, Gert Jan; Krabbenborg, Lotte; Brunner, Han G; van der Burg, Simone; Grutters, Janneke; Veltman, Joris A; Willemsen, Michèl A A P

    2017-09-01

    Implementation of novel genetic diagnostic tests is generally driven by technological advances because they promise shorter turnaround times and/or higher diagnostic yields. Other aspects, including impact on clinical management or cost-effectiveness, are often not assessed in detail prior to implementation. We studied the clinical utility of whole-exome sequencing (WES) in complex pediatric neurology in terms of diagnostic yield and costs. We analyzed 150 patients (and their parents) presenting with complex neurological disorders of suspected genetic origin. In a parallel study, all patients received both the standard diagnostic workup (e.g., cerebral imaging, muscle biopsies or lumbar punctures, and sequential gene-by-gene-based testing) and WES simultaneously. Our unique study design allowed direct comparison of diagnostic yield of both trajectories and provided insight into the economic implications of implementing WES in this diagnostic trajectory. We showed that WES identified significantly more conclusive diagnoses (29.3%) than the standard care pathway (7.3%) without incurring higher costs. Exploratory analysis of WES as a first-tier diagnostic test indicates that WES may even be cost-saving, depending on the extent of other tests being omitted. Our data support such a use of WES in pediatric neurology for disorders of presumed genetic origin.Genet Med advance online publication 23 March 2017.

  6. A clinical utility study of exome sequencing versus conventional genetic testing in pediatric neurology

    PubMed Central

    Vissers, Lisenka E.L.M.; van Nimwegen, Kirsten J.M.; Schieving, Jolanda H.; Kamsteeg, Erik-Jan; Kleefstra, Tjitske; Yntema, Helger G.; Pfundt, Rolph; van der Wilt, Gert Jan; Krabbenborg, Lotte; Brunner, Han G.; van der Burg, Simone; Grutters, Janneke; Veltman, Joris A.; Willemsen, Michèl A.A.P.

    2017-01-01

    Purpose: Implementation of novel genetic diagnostic tests is generally driven by technological advances because they promise shorter turnaround times and/or higher diagnostic yields. Other aspects, including impact on clinical management or cost-effectiveness, are often not assessed in detail prior to implementation. Methods: We studied the clinical utility of whole-exome sequencing (WES) in complex pediatric neurology in terms of diagnostic yield and costs. We analyzed 150 patients (and their parents) presenting with complex neurological disorders of suspected genetic origin. In a parallel study, all patients received both the standard diagnostic workup (e.g., cerebral imaging, muscle biopsies or lumbar punctures, and sequential gene-by-gene–based testing) and WES simultaneously. Results: Our unique study design allowed direct comparison of diagnostic yield of both trajectories and provided insight into the economic implications of implementing WES in this diagnostic trajectory. We showed that WES identified significantly more conclusive diagnoses (29.3%) than the standard care pathway (7.3%) without incurring higher costs. Exploratory analysis of WES as a first-tier diagnostic test indicates that WES may even be cost-saving, depending on the extent of other tests being omitted. Conclusion: Our data support such a use of WES in pediatric neurology for disorders of presumed genetic origin. Genet Med advance online publication 23 March 2017 PMID:28333917

  7. Myopathic mtDNA Depletion Syndrome Due to Mutation in TK2 Gene.

    PubMed

    Martín-Hernández, Elena; García-Silva, María Teresa; Quijada-Fraile, Pilar; Rodríguez-García, María Elena; Hernández-Laín, Aurelio; Coca-Robinot, David; Rivera, Henry; Fernández-Toral, Joaquín; Arenas, Joaquín; Martín, MiguelÁngel; Martínez-Azorín, Francisco

    2016-02-29

    Whole-exome sequencing (WES) was used to identify the disease gene(s) in a Spanish girl with failure to thrive, muscle weakness, mild facial weakness, elevated creatine kinase (CK), deficiency of mitochondrial complex III and depletion of mtDNA. With WES data, it was possible to get the whole mtDNA sequencing and discard any pathogenic variant in this genome. The analysis of whole exome uncovered a homozygous pathogenic mutation in Thymidine kinase 2 gene (TK2; NM_004614.4:c.323C>T, p.T108M). TK2 mutations have been identified mainly in patients with the myopathic form of mtDNA depletion syndromes (MDS). This patient presents an atypical TK2 related-myopathic form of MDS, because despite having a very low content of mtDNA (<20%), she presents a slower and less severe evolution of the disease. In conclusion, our data confirm the role of TK2 gene in MDS and expanded the phenotypic spectrum.

  8. New splicing mutation in the choline kinase beta (CHKB) gene causing a muscular dystrophy detected by whole-exome sequencing.

    PubMed

    Oliveira, Jorge; Negrão, Luís; Fineza, Isabel; Taipa, Ricardo; Melo-Pires, Manuel; Fortuna, Ana Maria; Gonçalves, Ana Rita; Froufe, Hugo; Egas, Conceição; Santos, Rosário; Sousa, Mário

    2015-06-01

    Muscular dystrophies (MDs) are a group of hereditary muscle disorders that include two particularly heterogeneous subgroups: limb-girdle MD and congenital MD, linked to 52 different genes (seven common to both subgroups). Massive parallel sequencing technology may avoid the usual stepwise gene-by-gene analysis. We report the whole-exome sequencing (WES) analysis of a patient with childhood-onset progressive MD, also presenting mental retardation and dilated cardiomyopathy. Conventional sequencing had excluded eight candidate genes. WES of the trio (patient and parents) was performed using the ion proton sequencing system. Data analysis resorted to filtering steps using the GEMINI software revealed a novel silent variant in the choline kinase beta (CHKB) gene. Inspection of sequence alignments ultimately identified the causal variant (CHKB:c.1031+3G>C). This splice site mutation was confirmed using Sanger sequencing and its effect was further evaluated with gene expression analysis. On reassessment of the muscle biopsy, typical abnormal mitochondrial oxidative changes were observed. Mutations in CHKB have been shown to cause phosphatidylcholine deficiency in myofibers, causing a rare form of CMD (only 21 patients reported). Notwithstanding interpretative difficulties that need to be overcome before the integration of WES in the diagnostic workflow, this work corroborates its utility in solving cases from highly heterogeneous groups of diseases, in which conventional diagnostic approaches fail to provide a definitive diagnosis.

  9. Lessons learned from whole exome sequencing in multiplex families affected by a complex genetic disorder, intracranial aneurysm.

    PubMed

    Farlow, Janice L; Lin, Hai; Sauerbeck, Laura; Lai, Dongbing; Koller, Daniel L; Pugh, Elizabeth; Hetrick, Kurt; Ling, Hua; Kleinloog, Rachel; van der Vlies, Pieter; Deelen, Patrick; Swertz, Morris A; Verweij, Bon H; Regli, Luca; Rinkel, Gabriel J E; Ruigrok, Ynte M; Doheny, Kimberly; Liu, Yunlong; Broderick, Joseph; Foroud, Tatiana

    2015-01-01

    Genetic risk factors for intracranial aneurysm (IA) are not yet fully understood. Genomewide association studies have been successful at identifying common variants; however, the role of rare variation in IA susceptibility has not been fully explored. In this study, we report the use of whole exome sequencing (WES) in seven densely-affected families (45 individuals) recruited as part of the Familial Intracranial Aneurysm study. WES variants were prioritized by functional prediction, frequency, predicted pathogenicity, and segregation within families. Using these criteria, 68 variants in 68 genes were prioritized across the seven families. Of the genes that were expressed in IA tissue, one gene (TMEM132B) was differentially expressed in aneurysmal samples (n=44) as compared to control samples (n=16) (false discovery rate adjusted p-value=0.023). We demonstrate that sequencing of densely affected families permits exploration of the role of rare variants in a relatively common disease such as IA, although there are important study design considerations for applying sequencing to complex disorders. In this study, we explore methods of WES variant prioritization, including the incorporation of unaffected individuals, multipoint linkage analysis, biological pathway information, and transcriptome profiling. Further studies are needed to validate and characterize the set of variants and genes identified in this study.

  10. Molecular diagnostic experience of whole-exome sequencing in adult patients.

    PubMed

    Posey, Jennifer E; Rosenfeld, Jill A; James, Regis A; Bainbridge, Matthew; Niu, Zhiyv; Wang, Xia; Dhar, Shweta; Wiszniewski, Wojciech; Akdemir, Zeynep H C; Gambin, Tomasz; Xia, Fan; Person, Richard E; Walkiewicz, Magdalena; Shaw, Chad A; Sutton, V Reid; Beaudet, Arthur L; Muzny, Donna; Eng, Christine M; Yang, Yaping; Gibbs, Richard A; Lupski, James R; Boerwinkle, Eric; Plon, Sharon E

    2016-07-01

    Whole-exome sequencing (WES) is increasingly used as a diagnostic tool in medicine, but prior reports focus on predominantly pediatric cohorts with neurologic or developmental disorders. We describe the diagnostic yield and characteristics of WES in adults. We performed a retrospective analysis of consecutive WES reports for adults from a diagnostic laboratory. Phenotype composition was determined using Human Phenotype Ontology terms. Molecular diagnoses were reported for 17.5% (85/486) of adults, which is lower than that for a primarily pediatric population (25.2%; P = 0.0003); the diagnostic rate was higher (23.9%) for those 18-30 years of age compared to patients older than 30 years (10.4%; P = 0.0001). Dual Mendelian diagnoses contributed to 7% of diagnoses, revealing blended phenotypes. Diagnoses were more frequent among individuals with abnormalities of the nervous system, skeletal system, head/neck, and growth. Diagnostic rate was independent of family history information, and de novo mutations contributed to 61.4% of autosomal dominant diagnoses. Early WES experience in adults demonstrates molecular diagnoses in a substantial proportion of patients, informing clinical management, recurrence risk, and recommendations for relatives. A positive family history was not predictive, consistent with molecular diagnoses often revealed by de novo events, informing the Mendelian basis of genetic disease in adults.Genet Med 18 7, 678-685.

  11. Whole-exome sequencing identifies novel homozygous mutation in NPAS2 in family with nonobstructive azoospermia.

    PubMed

    Ramasamy, Ranjith; Bakırcıoğlu, M Emre; Cengiz, Cenk; Karaca, Ender; Scovell, Jason; Jhangiani, Shalini N; Akdemir, Zeynep C; Bainbridge, Matthew; Yu, Yao; Huff, Chad; Gibbs, Richard A; Lupski, James R; Lamb, Dolores J

    2015-08-01

    To investigate the genetic cause of nonobstructive azoospermia (NOA) in a consanguineous Turkish family through homozygosity mapping followed by targeted exon/whole-exome sequencing to identify genetic variations. Whole-exome sequencing (WES). Research laboratory. Two siblings in a consanguineous family with NOA. Validating all variants passing filter criteria with Sanger sequencing to confirm familial segregation and absence in the control population. Discovery of a mutation that could potentially cause NOA. A novel nonsynonymous mutation in the neuronal PAS-2 domain (NPAS2) was identified in a consanguineous family from Turkey. This mutation in exon 14 (chr2: 101592000 C>G) of NPAS2 is likely a disease-causing mutation as it is predicted to be damaging, it is a novel variant, and it segregates with the disease. Family segregation of the variants showed the presence of the homozygous mutation in the three brothers with NOA and a heterozygous mutation in the mother as well as one brother and one sister who were both fertile. The mutation is not found in the single-nucleotide polymorphism database, the 1000 Genomes Project, the Baylor College of Medicine cohort of 500 Turkish patients (not a population-specific polymorphism), or the matching 50 fertile controls. With the use of WES we identified a novel homozygous mutation in NPAS2 as a likely disease-causing variant in a Turkish family diagnosed with NOA. Our data reinforce the clinical role of WES in the molecular diagnosis of highly heterogeneous genetic diseases for which conventional genetic approaches have previously failed to find a molecular diagnosis. Copyright © 2015 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  12. Semiconductor Whole Exome Sequencing for the Identification of Genetic Variants in Colombian Patients Clinically Diagnosed with Long QT Syndrome.

    PubMed

    Burgos, Mariana; Arenas, Alvaro; Cabrera, Rodrigo

    2016-08-01

    Inherited long QT syndrome (LQTS) is a cardiac channelopathy characterized by a prolongation of QT interval and the risk of syncope, cardiac arrest, and sudden cardiac death. Genetic diagnosis of LQTS is critical in medical practice as results can guide adequate management of patients and distinguish phenocopies such as catecholaminergic polymorphic ventricular tachycardia (CPVT). However, extensive screening of large genomic regions is required in order to reliably identify genetic causes. Semiconductor whole exome sequencing (WES) is a promising approach for the identification of variants in the coding regions of most human genes. DNA samples from 21 Colombian patients clinically diagnosed with LQTS were enriched for coding regions using multiplex polymerase chain reaction (PCR) and subjected to WES using a semiconductor sequencer. Semiconductor WES showed mean coverage of 93.6 % for all coding regions relevant to LQTS at >10× depth with high intra- and inter-assay depth heterogeneity. Fifteen variants were detected in 12 patients in genes associated with LQTS. Three variants were identified in three patients in genes associated with CPVT. Co-segregation analysis was performed when possible. All variants were analyzed with two pathogenicity prediction algorithms. The overall prevalence of LQTS and CPVT variants in our cohort was 71.4 %. All LQTS variants previously identified through commercial genetic testing were identified. Standardized WES assays can be easily implemented, often at a lower cost than sequencing panels. Our results show that WES can identify LQTS-causing mutations and permits differential diagnosis of related conditions in a real-world clinical setting. However, high heterogeneity in sequencing depth and low coverage in the most relevant genes is expected to be associated with reduced analytical sensitivity.

  13. Amplicon-based semiconductor sequencing of human exomes: performance evaluation and optimization strategies.

    PubMed

    Damiati, E; Borsani, G; Giacopuzzi, Edoardo

    2016-05-01

    The Ion Proton platform allows to perform whole exome sequencing (WES) at low cost, providing rapid turnaround time and great flexibility. Products for WES on Ion Proton system include the AmpliSeq Exome kit and the recently introduced HiQ sequencing chemistry. Here, we used gold standard variants from GIAB consortium to assess the performances in variants identification, characterize the erroneous calls and develop a filtering strategy to reduce false positives. The AmpliSeq Exome kit captures a large fraction of bases (>94 %) in human CDS, ClinVar genes and ACMG genes, but with 2,041 (7 %), 449 (13 %) and 11 (19 %) genes not fully represented, respectively. Overall, 515 protein coding genes contain hard-to-sequence regions, including 90 genes from ClinVar. Performance in variants detection was maximum at mean coverage >120×, while at 90× and 70× we measured a loss of variants of 3.2 and 4.5 %, respectively. WES using HiQ chemistry showed ~71/97.5 % sensitivity, ~37/2 % FDR and ~0.66/0.98 F1 score for indels and SNPs, respectively. The proposed low, medium or high-stringency filters reduced the amount of false positives by 10.2, 21.2 and 40.4 % for indels and 21.2, 41.9 and 68.2 % for SNP, respectively. Amplicon-based WES on Ion Proton platform using HiQ chemistry emerged as a competitive approach, with improved accuracy in variants identification. False-positive variants remain an issue for the Ion Torrent technology, but our filtering strategy can be applied to reduce erroneous variants.

  14. Case Report: Application of whole exome sequencing for accurate diagnosis of rare syndromes of mineralocorticoid excess

    PubMed Central

    Narayanan, Ranjit; Karuthedath Vellarikkal, Shamsudheen; Jayarajan, Rijith; Verma, Ankit; Dixit, Vishal; Scaria, Vinod; Sivasubbu, Sridhar

    2017-01-01

    Syndromes of mineralocorticoid excess (SME) are closely related clinical manifestations occurring within a specific set of diseases. Overlapping clinical manifestations of such syndromes often create a dilemma in accurate diagnosis, which is crucial for disease surveillance and management especially in rare genetic disorders. Here we demonstrate the use of whole exome sequencing (WES) for accurate diagnosis of rare SME and report that p.R337C variation in the HSD11B2 gene causes progressive apparent mineralocorticoid excess (AME) syndrome in a South Indian family of Mappila origin. PMID:29067160

  15. Debunking Occam's razor: Diagnosing multiple genetic diseases in families by whole-exome sequencing.

    PubMed

    Balci, T B; Hartley, T; Xi, Y; Dyment, D A; Beaulieu, C L; Bernier, F P; Dupuis, L; Horvath, G A; Mendoza-Londono, R; Prasad, C; Richer, J; Yang, X-R; Armour, C M; Bareke, E; Fernandez, B A; McMillan, H J; Lamont, R E; Majewski, J; Parboosingh, J S; Prasad, A N; Rupar, C A; Schwartzentruber, J; Smith, A C; Tétreault, M; Innes, A M; Boycott, K M

    2017-09-01

    Recent clinical whole exome sequencing (WES) cohorts have identified unanticipated multiple genetic diagnoses in single patients. However, the frequency of multiple genetic diagnoses in families is largely unknown. We set out to identify the rate of multiple genetic diagnoses in probands and their families referred for analysis in two national research programs in Canada. We retrospectively analyzed WES results for 802 undiagnosed probands referred over the past 5 years in either the FORGE or Care4Rare Canada WES initiatives. Of the 802 probands, 226 (28.2%) were diagnosed based on mutations in known disease genes. Eight (3.5%) had two or more genetic diagnoses explaining their clinical phenotype, a rate in keeping with the large published studies (average 4.3%; 1.4 - 7.2%). Seven of the 8 probands had family members with one or more of the molecularly diagnosed diseases. Consanguinity and multisystem disease appeared to increase the likelihood of multiple genetic diagnoses in a family. Our findings highlight the importance of comprehensive clinical phenotyping of family members to ultimately provide accurate genetic counseling. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. Using whole-exome sequencing to investigate the genetic bases of lysosomal storage diseases of unknown etiology.

    PubMed

    Wang, Nan; Zhang, Yeting; Gedvilaite, Erika; Loh, Jui Wan; Lin, Timothy; Liu, Xiuping; Liu, Chang-Gong; Kumar, Dibyendu; Donnelly, Robert; Raymond, Kimiyo; Schuchman, Edward H; Sleat, David E; Lobel, Peter; Xing, Jinchuan

    2017-11-01

    Lysosomes are membrane-bound, acidic eukaryotic cellular organelles that play important roles in the degradation of macromolecules. Mutations that cause the loss of lysosomal protein function can lead to a group of disorders categorized as the lysosomal storage diseases (LSDs). Suspicion of LSD is frequently based on clinical and pathologic findings, but in some cases, the underlying genetic and biochemical defects remain unknown. Here, we performed whole-exome sequencing (WES) on 14 suspected LSD cases to evaluate the feasibility of using WES for identifying causal mutations. By examining 2,157 candidate genes potentially associated with lysosomal function, we identified eight variants in five genes as candidate disease-causing variants in four individuals. These included both known and novel mutations. Variants were corroborated by targeted sequencing and, when possible, functional assays. In addition, we identified nonsense mutations in two individuals in genes that are not known to have lysosomal function. However, mutations in these genes could have resulted in phenotypes that were diagnosed as LSDs. This study demonstrates that WES can be used to identify causal mutations in suspected LSD cases. We also demonstrate cases where a confounding clinical phenotype may potentially reflect more than one lysosomal protein defect. © 2017 Wiley Periodicals, Inc.

  17. An evaluation of copy number variation detection tools for cancer using whole exome sequencing data.

    PubMed

    Zare, Fatima; Dow, Michelle; Monteleone, Nicholas; Hosny, Abdelrahman; Nabavi, Sheida

    2017-05-31

    Recently copy number variation (CNV) has gained considerable interest as a type of genomic/genetic variation that plays an important role in disease susceptibility. Advances in sequencing technology have created an opportunity for detecting CNVs more accurately. Recently whole exome sequencing (WES) has become primary strategy for sequencing patient samples and study their genomics aberrations. However, compared to whole genome sequencing, WES introduces more biases and noise that make CNV detection very challenging. Additionally, tumors' complexity makes the detection of cancer specific CNVs even more difficult. Although many CNV detection tools have been developed since introducing NGS data, there are few tools for somatic CNV detection for WES data in cancer. In this study, we evaluated the performance of the most recent and commonly used CNV detection tools for WES data in cancer to address their limitations and provide guidelines for developing new ones. We focused on the tools that have been designed or have the ability to detect cancer somatic aberrations. We compared the performance of the tools in terms of sensitivity and false discovery rate (FDR) using real data and simulated data. Comparative analysis of the results of the tools showed that there is a low consensus among the tools in calling CNVs. Using real data, tools show moderate sensitivity (~50% - ~80%), fair specificity (~70% - ~94%) and poor FDRs (~27% - ~60%). Also, using simulated data we observed that increasing the coverage more than 10× in exonic regions does not improve the detection power of the tools significantly. The limited performance of the current CNV detection tools for WES data in cancer indicates the need for developing more efficient and precise CNV detection methods. Due to the complexity of tumors and high level of noise and biases in WES data, employing advanced novel segmentation, normalization and de-noising techniques that are designed specifically for cancer data is necessary. Also, CNV detection development suffers from the lack of a gold standard for performance evaluation. Finally, developing tools with user-friendly user interfaces and visualization features can enhance CNV studies for a broader range of users.

  18. Whole-exome sequencing identifies novel compound heterozygous mutations in USH2A in Spanish patients with autosomal recessive retinitis pigmentosa.

    PubMed

    Méndez-Vidal, Cristina; González-Del Pozo, María; Vela-Boza, Alicia; Santoyo-López, Javier; López-Domingo, Francisco J; Vázquez-Marouschek, Carmen; Dopazo, Joaquin; Borrego, Salud; Antiñolo, Guillermo

    2013-01-01

    Retinitis pigmentosa (RP) is an inherited retinal dystrophy characterized by extreme genetic and clinical heterogeneity. Thus, the diagnosis is not always easily performed due to phenotypic and genetic overlap. Current clinical practices have focused on the systematic evaluation of a set of known genes for each phenotype, but this approach may fail in patients with inaccurate diagnosis or infrequent genetic cause. In the present study, we investigated the genetic cause of autosomal recessive RP (arRP) in a Spanish family in which the causal mutation has not yet been identified with primer extension technology and resequencing. We designed a whole-exome sequencing (WES)-based approach using NimbleGen SeqCap EZ Exome V3 sample preparation kit and the SOLiD 5500×l next-generation sequencing platform. We sequenced the exomes of both unaffected parents and two affected siblings. Exome analysis resulted in the identification of 43,204 variants in the index patient. All variants passing filter criteria were validated with Sanger sequencing to confirm familial segregation and absence in the control population. In silico prediction tools were used to determine mutational impact on protein function and the structure of the identified variants. Novel Usher syndrome type 2A (USH2A) compound heterozygous mutations, c.4325T>C (p.F1442S) and c.15188T>G (p.L5063R), located in exons 20 and 70, respectively, were identified as probable causative mutations for RP in this family. Family segregation of the variants showed the presence of both mutations in all affected members and in two siblings who were apparently asymptomatic at the time of family ascertainment. Clinical reassessment confirmed the diagnosis of RP in these patients. Using WES, we identified two heterozygous novel mutations in USH2A as the most likely disease-causing variants in a Spanish family diagnosed with arRP in which the cause of the disease had not yet been identified with commonly used techniques. Our data reinforce the clinical role of WES in the molecular diagnosis of highly heterogeneous genetic diseases where conventional genetic approaches have previously failed in achieving a proper diagnosis.

  19. CIDR

    Science.gov Websites

    NGS Pretesting and QC Using Illumina Infinium Arrays CIDR IGES Posters - 2017 A Comparison of Methods fragmentation methods for input into library construction protocol Development of a Low Input FFPE workflow for Evaluation of Copy Number Variation (CNV) detection methods in whole exome sequencing (WES) data CIDR AGBT

  20. Whole-exome sequencing gives additional benefits compared to candidate gene sequencing in the molecular diagnosis of children with growth hormone or IGF-1 insensitivity.

    PubMed

    Shapiro, Lucy; Chatterjee, Sumana; Ramadan, Dina G; Davies, Kate M; Savage, Martin O; Metherell, Louise A; Storr, Helen L

    2017-12-01

    GH insensitivity (GHI) is characterised by short stature, IGF-1 deficiency and normal/elevated serum GH. IGF-1 insensitivity results in pre- and post-natal growth failure with normal/high IGF-1 levels. The prevalence of genetic defects is unknown. To identify the underlying genetic diagnoses in a paediatric cohort with GH or IGF-1 insensitivity using candidate gene (CGS) and whole-exome sequencing (WES) and assess factors associated with the discovery of a genetic defect. We undertook a prospective study of 132 patients with short stature and suspected GH or IGF-1 insensitivity referred to our centre for genetic analysis. 107 (96 GHI, 88 probands; 11 IGF-1 insensitivity, 9 probands) underwent CGS. WES was performed in those with no defined genetic aetiology following CGS. A genetic diagnosis was discovered 38/107 (36%) patients (32% probands) by CGS. WES revealed 11 patients with genetic variants in genes known to cause short stature. A further 2 patients had hypomethylation in the H19/IGF2 region or mUPD7 consistent with Silver-Russell Syndrome (total with genetic diagnosis 51/107, 48% or 41/97, 42% probands). WES also identified homozygous putative variants in FANCA and PHKB in 2 patients. Low height SDS and consanguinity were highly predictive for identifying a genetic defect. Comprehensive genetic testing confirms the genetic heterogeneity of GH/IGF-1 insensitivity and successfully identified the genetic aetiology in a significant proportion of cases. WES is rapid and may isolate genetic variants that have been missed by traditional clinically driven genetic testing. This emphasises the benefits of specialist diagnostic centres. © 2017 European Society of Endocrinology.

  1. Variants in SKP1, PROB1, and IL17B genes at keratoconus 5q31.1–q35.3 susceptibility locus identified by whole-exome sequencing

    PubMed Central

    Karolak, Justyna A; Gambin, Tomasz; Pitarque, Jose A; Molinari, Andrea; Jhangiani, Shalini; Stankiewicz, Pawel; Lupski, James R; Gajecka, Marzena

    2017-01-01

    Keratoconus (KTCN) is a protrusion and thinning of the cornea, resulting in impairment of visual function. The extreme genetic heterogeneity makes it difficult to discover factors unambiguously influencing the KTCN phenotype. In this study, we used whole-exome sequencing (WES) and Sanger sequencing to reduce the number of candidate genes at the 5q31.1–q35.3 locus and to prioritize other potentially relevant variants in an Ecuadorian family with KTCN. We applied WES in two affected KTCN individuals from the Ecuadorian family that showed a suggestive linkage between the KTCN phenotype and the 5q31.1–q35.3 locus. Putative variants identified by WES were further evaluated in this family using Sanger sequencing. Exome capture discovered a total of 173 rare (minor allele frequency <0.001 in control population) nonsynonymous variants in both affected individuals. Among them, 16 SNVs were selected for further evaluation. Segregation analysis revealed that variants c.475T>G in SKP1, c.671G>A in PROB1, and c.527G>A in IL17B in the 5q31.1–q35.3 linkage region, and c.850G>A in HKDC1 in the 10q22 locus completely segregated with the phenotype in the studied KTCN family. We demonstrate that a combination of various techniques significantly narrowed the studied genomic region and reduced the list of the putative exonic variants. Moreover, since this locus overlapped two other chromosomal regions previously recognized in distinct KTCN studies, our findings suggest that this 5q31.1–q35.3 locus might be linked with KTCN. PMID:27703147

  2. Content Analysis of Informed Consent for Whole Genome Sequencing Offered by Direct-to-Consumer Genetic Testing Companies.

    PubMed

    Niemiec, Emilia; Borry, Pascal; Pinxten, Wim; Howard, Heidi Carmen

    2016-12-01

    Whole exome sequencing (WES) and whole genome sequencing (WGS) have become increasingly available in the research and clinical settings and are now also being offered by direct-to-consumer (DTC) genetic testing (GT) companies. This offer can be perceived as amplifying the already identified concerns regarding adequacy of informed consent (IC) for both WES/WGS and the DTC GT context. We performed a qualitative content analysis of Websites of four companies offering WES/WGS DTC regarding the following elements of IC: pre-test counseling, benefits and risks, and incidental findings (IFs). The analysis revealed concerns, including the potential lack of pre-test counseling in three of the companies studied, missing relevant information in the risks and benefits sections, and potentially misleading information for consumers. Regarding IFs, only one company, which provides opportunistic screening, provides basic information about their management. In conclusion, some of the information (and related practices) present on the companies' Web pages salient to the consent process are not adequate in reference to recommendations for IC for WGS or WES in the clinical context. Requisite resources should be allocated to ensure that commercial companies are offering high-throughput sequencing under responsible conditions, including an adequate consent process. © 2016 WILEY PERIODICALS, INC.

  3. Novel Genetic Variants of Sporadic Atrial Septal Defect (ASD) in a Chinese Population Identified by Whole-Exome Sequencing (WES)

    PubMed Central

    Liu, Yong; Cao, Yu; Li, Yaxiong; Lei, Dongyun; Li, Lin; Hou, Zong Liu; Han, Shen; Meng, Mingyao; Shi, Jianlin; Zhang, Yayong; Wang, Yi; Niu, Zhaoyi; Xie, Yanhua; Xiao, Benshan; Wang, Yuanfei; Li, Xiao; Yang, Lirong

    2018-01-01

    Background Recently, mutations in several genes have been described to be associated with sporadic ASD, but some genetic variants remain to be identified. The aim of this study was to use whole-exome sequencing (WES) combined with bioinformatics analysis to identify novel genetic variants in cases of sporadic congenital ASD, followed by validation by Sanger sequencing. Material/Methods Five Han patients with secundum ASD were recruited, and their tissue samples were analyzed by WES, followed by verification by Sanger sequencing of tissue and blood samples. Further evaluation using blood samples included 452 additional patients with sporadic secundum ASD (212 male and 240 female patients) and 519 healthy subjects (252 male and 267 female subjects) for further verification by a multiplexed MassARRAY system. Bioinformatic analyses were performed to identify novel genetic variants associated with sporadic ASD. Results From five patients with sporadic ASD, a total of 181,762 genomic variants in 33 exon loci, validated by Sanger sequencing, were selected and underwent MassARRAY analysis in 452 patients with ASD and 519 healthy subjects. Three loci with high mutation frequencies, the 138665410 FOXL2 gene variant, the 23862952 MYH6 gene variant, and the 71098693 HYDIN gene variant were found to be significantly associated with sporadic ASD (P<0.05); variants in FOXL2 and MYH6 were found in patients with isolated, sporadic ASD (P<5×10−4). Conclusions This was the first study that demonstrated variants in FOXL2 and HYDIN associated with sporadic ASD, and supported the use of WES and bioinformatics analysis to identify disease-associated mutations. PMID:29505555

  4. Novel Genetic Variants of Sporadic Atrial Septal Defect (ASD) in a Chinese Population Identified by Whole-Exome Sequencing (WES).

    PubMed

    Liu, Yong; Cao, Yu; Li, Yaxiong; Lei, Dongyun; Li, Lin; Hou, Zong Liu; Han, Shen; Meng, Mingyao; Shi, Jianlin; Zhang, Yayong; Wang, Yi; Niu, Zhaoyi; Xie, Yanhua; Xiao, Benshan; Wang, Yuanfei; Li, Xiao; Yang, Lirong; Wang, Wenju; Jiang, Lihong

    2018-03-05

    BACKGROUND Recently, mutations in several genes have been described to be associated with sporadic ASD, but some genetic variants remain to be identified. The aim of this study was to use whole-exome sequencing (WES) combined with bioinformatics analysis to identify novel genetic variants in cases of sporadic congenital ASD, followed by validation by Sanger sequencing. MATERIAL AND METHODS Five Han patients with secundum ASD were recruited, and their tissue samples were analyzed by WES, followed by verification by Sanger sequencing of tissue and blood samples. Further evaluation using blood samples included 452 additional patients with sporadic secundum ASD (212 male and 240 female patients) and 519 healthy subjects (252 male and 267 female subjects) for further verification by a multiplexed MassARRAY system. Bioinformatic analyses were performed to identify novel genetic variants associated with sporadic ASD. RESULTS From five patients with sporadic ASD, a total of 181,762 genomic variants in 33 exon loci, validated by Sanger sequencing, were selected and underwent MassARRAY analysis in 452 patients with ASD and 519 healthy subjects. Three loci with high mutation frequencies, the 138665410 FOXL2 gene variant, the 23862952 MYH6 gene variant, and the 71098693 HYDIN gene variant were found to be significantly associated with sporadic ASD (P<0.05); variants in FOXL2 and MYH6 were found in patients with isolated, sporadic ASD (P<5×10^-4). CONCLUSIONS This was the first study that demonstrated variants in FOXL2 and HYDIN associated with sporadic ASD, and supported the use of WES and bioinformatics analysis to identify disease-associated mutations.

  5. Identification of the PLA2G6 c.1579G>A Missense Mutation in Papillon Dog Neuroaxonal Dystrophy Using Whole Exome Sequencing Analysis

    PubMed Central

    Tsuboi, Masaya; Watanabe, Manabu; Nibe, Kazumi; Yoshimi, Natsuko; Kato, Akihisa; Sakaguchi, Masahiro; Yamato, Osamu; Tanaka, Miyuu; Kuwamura, Mitsuru; Kushida, Kazuya; Harada, Tomoyuki; Chambers, James Kenn; Sugano, Sumio; Uchida, Kazuyuki; Nakayama, Hiroyuki

    2017-01-01

    Whole exome sequencing (WES) has become a common tool for identifying genetic causes of human inherited disorders, and it has also recently been applied to canine genome research. We conducted WES analysis of neuroaxonal dystrophy (NAD), a neurodegenerative disease that sporadically occurs worldwide in Papillon dogs. The disease is considered an autosomal recessive monogenic disease, which is histopathologically characterized by severe axonal swelling, known as “spheroids,” throughout the nervous system. By sequencing all eleven DNA samples from one NAD-affected Papillon dog and her parents, two unrelated NAD-affected Papillon dogs, and six unaffected control Papillon dogs, we identified 10 candidate mutations. Among them, three candidates were determined to be “deleterious” by in silico pathogenesis evaluation. By subsequent massive screening by TaqMan genotyping analysis, only the PLA2G6 c.1579G>A mutation had an association with the presence or absence of the disease, suggesting that it may be a causal mutation of canine NAD. As a human homologue of this gene is a causative gene for infantile neuroaxonal dystrophy, this canine phenotype may serve as a good animal model for human disease. The results of this study also indicate that WES analysis is a powerful tool for exploring canine hereditary diseases, especially in rare monogenic hereditary diseases. PMID:28107443

  6. Walking the interactome for candidate prioritization in exome sequencing studies of Mendelian diseases

    DOE PAGES

    Smedley, Damian; Kohler, Sebastian; Czeschik, Johanna Christina; ...

    2014-07-30

    Here, whole-exome sequencing (WES) has opened up previously unheard of possibilities for identifying novel disease genes in Mendelian disorders, only about half of which have been elucidated to date. However, interpretation of WES data remains challenging. As a result, we analyze protein–protein association (PPA) networks to identify candidate genes in the vicinity of genes previously implicated in a disease. The analysis, using a random-walk with restart (RWR) method, is adapted to the setting of WES by developing a composite variant-gene relevance score based on the rarity, location and predicted pathogenicity of variants and the RWR evaluation of genes harboring themore » variants. Benchmarking using known disease variants from 88 disease-gene families reveals that the correct gene is ranked among the top 10 candidates in ≥50% of cases, a figure which we confirmed using a prospective study of disease genes identified in 2012 and PPA data produced before that date. In conclusion, we implement our method in a freely available Web server, ExomeWalker, that displays a ranked list of candidates together with information on PPAs, frequency and predicted pathogenicity of the variants to allow quick and effective searches for candidates that are likely to reward closer investigation.« less

  7. Walking the interactome for candidate prioritization in exome sequencing studies of Mendelian diseases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smedley, Damian; Kohler, Sebastian; Czeschik, Johanna Christina

    Here, whole-exome sequencing (WES) has opened up previously unheard of possibilities for identifying novel disease genes in Mendelian disorders, only about half of which have been elucidated to date. However, interpretation of WES data remains challenging. As a result, we analyze protein–protein association (PPA) networks to identify candidate genes in the vicinity of genes previously implicated in a disease. The analysis, using a random-walk with restart (RWR) method, is adapted to the setting of WES by developing a composite variant-gene relevance score based on the rarity, location and predicted pathogenicity of variants and the RWR evaluation of genes harboring themore » variants. Benchmarking using known disease variants from 88 disease-gene families reveals that the correct gene is ranked among the top 10 candidates in ≥50% of cases, a figure which we confirmed using a prospective study of disease genes identified in 2012 and PPA data produced before that date. In conclusion, we implement our method in a freely available Web server, ExomeWalker, that displays a ranked list of candidates together with information on PPAs, frequency and predicted pathogenicity of the variants to allow quick and effective searches for candidates that are likely to reward closer investigation.« less

  8. Clinical whole-exome sequencing for the diagnosis of rare disorders with congenital anomalies and/or intellectual disability: substantial interest of prospective annual reanalysis.

    PubMed

    Nambot, Sophie; Thevenon, Julien; Kuentz, Paul; Duffourd, Yannis; Tisserant, Emilie; Bruel, Ange-Line; Mosca-Boidron, Anne-Laure; Masurel-Paulet, Alice; Lehalle, Daphné; Jean-Marçais, Nolwenn; Lefebvre, Mathilde; Vabres, Pierre; El Chehadeh-Djebbar, Salima; Philippe, Christophe; Tran Mau-Them, Frederic; St-Onge, Judith; Jouan, Thibaud; Chevarin, Martin; Poé, Charlotte; Carmignac, Virginie; Vitobello, Antonio; Callier, Patrick; Rivière, Jean-Baptiste; Faivre, Laurence; Thauvin-Robinet, Christel

    2018-06-01

    PurposeCongenital anomalies and intellectual disability (CA/ID) are a major diagnostic challenge in medical genetics-50% of patients still have no molecular diagnosis after a long and stressful diagnostic "odyssey." Solo clinical whole-exome sequencing (WES) was applied in our genetics center to improve diagnosis in patients with CA/ID.MethodsThis retrospective study examined 416 consecutive tests performed over 3 years to demonstrate the effectiveness of periodically reanalyzing WES data. The raw data from each nonpositive test was reanalyzed at 12 months with the most recent pipeline and in the light of new data in the literature. The results of the reanalysis for patients enrolled in the third year are not yet available.ResultsOf the 416 patients included, data for 156 without a diagnosis were reanalyzed. We obtained 24 (15.4%) additional diagnoses: 12 through the usual diagnostic process (7 new publications, 4 initially misclassified, and 1 copy-number variant), and 12 through translational research by international data sharing. The final yield of positive results was 27.9% through a strict diagnostic approach, and 2.9% through an additional research strategy.ConclusionThis article highlights the effectiveness of periodically combining diagnostic reinterpretation of clinical WES data with translational research involving data sharing for candidate genes.

  9. Identification of two novel pathogenic compound heterozygous MYO7A mutations in Usher syndrome by whole exome sequencing.

    PubMed

    Jia, Ying; Li, Xiaoge; Yang, Dong; Xu, Yi; Guo, Ying; Li, Xin

    2018-01-01

    The current study aims to identify the pathogenic sites in a core pedigree of Usher syndrome (USH). A core pedigree of USH was analyzed by whole exome sequencing (WES). Mutations were verified by polymerase chain reaction (PCR) amplification and Sanger sequencing. Two pathogenic variations (c.849+2T>C and c.5994G>A) in MYO7A were successfully identified and individually separated from parents. One variant (c.849+2T>C) was nonsense mutation, causing the protein terminated in advance, and the other one (c.5994G>A) located near the boundary of exon could cause aberrant splicing. This study provides a meaningful exploration for identification of clinical core genetic pedigrees. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Whole-exome sequencing and high throughput genotyping identified KCNJ11 as the thirteenth MODY gene.

    PubMed

    Bonnefond, Amélie; Philippe, Julien; Durand, Emmanuelle; Dechaume, Aurélie; Huyvaert, Marlène; Montagne, Louise; Marre, Michel; Balkau, Beverley; Fajardy, Isabelle; Vambergue, Anne; Vatin, Vincent; Delplanque, Jérôme; Le Guilcher, David; De Graeve, Franck; Lecoeur, Cécile; Sand, Olivier; Vaxillaire, Martine; Froguel, Philippe

    2012-01-01

    Maturity-onset of the young (MODY) is a clinically heterogeneous form of diabetes characterized by an autosomal-dominant mode of inheritance, an onset before the age of 25 years, and a primary defect in the pancreatic beta-cell function. Approximately 30% of MODY families remain genetically unexplained (MODY-X). Here, we aimed to use whole-exome sequencing (WES) in a four-generation MODY-X family to identify a new susceptibility gene for MODY. WES (Agilent-SureSelect capture/Illumina-GAIIx sequencing) was performed in three affected and one non-affected relatives in the MODY-X family. We then performed a high-throughput multiplex genotyping (Illumina-GoldenGate assay) of the putative causal mutations in the whole family and in 406 controls. A linkage analysis was also carried out. By focusing on variants of interest (i.e. gains of stop codon, frameshift, non-synonymous and splice-site variants not reported in dbSNP130) present in the three affected relatives and not present in the control, we found 69 mutations. However, as WES was not uniform between samples, a total of 324 mutations had to be assessed in the whole family and in controls. Only one mutation (p.Glu227Lys in KCNJ11) co-segregated with diabetes in the family (with a LOD-score of 3.68). No KCNJ11 mutation was found in 25 other MODY-X unrelated subjects. Beyond neonatal diabetes mellitus (NDM), KCNJ11 is also a MODY gene ('MODY13'), confirming the wide spectrum of diabetes related phenotypes due to mutations in NDM genes (i.e. KCNJ11, ABCC8 and INS). Therefore, the molecular diagnosis of MODY should include KCNJ11 as affected carriers can be ideally treated with oral sulfonylureas.

  11. Whole-exome sequencing identifies novel compound heterozygous mutations in USH2A in Spanish patients with autosomal recessive retinitis pigmentosa

    PubMed Central

    Méndez-Vidal, Cristina; González-del Pozo, María; Vela-Boza, Alicia; Santoyo-López, Javier; López-Domingo, Francisco J.; Vázquez-Marouschek, Carmen; Dopazo, Joaquin; Borrego, Salud

    2013-01-01

    Purpose Retinitis pigmentosa (RP) is an inherited retinal dystrophy characterized by extreme genetic and clinical heterogeneity. Thus, the diagnosis is not always easily performed due to phenotypic and genetic overlap. Current clinical practices have focused on the systematic evaluation of a set of known genes for each phenotype, but this approach may fail in patients with inaccurate diagnosis or infrequent genetic cause. In the present study, we investigated the genetic cause of autosomal recessive RP (arRP) in a Spanish family in which the causal mutation has not yet been identified with primer extension technology and resequencing. Methods We designed a whole-exome sequencing (WES)-based approach using NimbleGen SeqCap EZ Exome V3 sample preparation kit and the SOLiD 5500×l next-generation sequencing platform. We sequenced the exomes of both unaffected parents and two affected siblings. Exome analysis resulted in the identification of 43,204 variants in the index patient. All variants passing filter criteria were validated with Sanger sequencing to confirm familial segregation and absence in the control population. In silico prediction tools were used to determine mutational impact on protein function and the structure of the identified variants. Results Novel Usher syndrome type 2A (USH2A) compound heterozygous mutations, c.4325T>C (p.F1442S) and c.15188T>G (p.L5063R), located in exons 20 and 70, respectively, were identified as probable causative mutations for RP in this family. Family segregation of the variants showed the presence of both mutations in all affected members and in two siblings who were apparently asymptomatic at the time of family ascertainment. Clinical reassessment confirmed the diagnosis of RP in these patients. Conclusions Using WES, we identified two heterozygous novel mutations in USH2A as the most likely disease-causing variants in a Spanish family diagnosed with arRP in which the cause of the disease had not yet been identified with commonly used techniques. Our data reinforce the clinical role of WES in the molecular diagnosis of highly heterogeneous genetic diseases where conventional genetic approaches have previously failed in achieving a proper diagnosis. PMID:24227914

  12. Not the End of the Odyssey: Parental Perceptions of Whole Exome Sequencing (WES) in Pediatric Undiagnosed Disorders.

    PubMed

    Rosell, Allyn McConkie; Pena, Loren D M; Schoch, Kelly; Spillmann, Rebecca; Sullivan, Jennifer; Hooper, Stephen R; Jiang, Yong-Hui; Mathey-Andrews, Nicolas; Goldstein, David B; Shashi, Vandana

    2016-10-01

    Due to the lack of empirical information on parental perceptions of primary results of whole exome sequencing (WES), we conducted a retrospective semi-structured interview with 19 parents of children who had undergone WES. Perceptions explored during the interview included factors that would contribute to parental empowerment such as: parental expectations, understanding of the WES and results, utilization of the WES information, and communication of findings to health/educational professionals and family members. Results of the WES had previously been communicated to families within a novel framework of clinical diagnostic categories: 5/19 had Definite diagnoses, 6/19 had Likely diagnoses, 3/19 had Possible diagnosis and 5/19 had No diagnosis. All parents interviewed expressed a sense of duty to pursue the WES in search of a diagnosis; however, their expectations were tempered by previous experiences with negative genetic testing results. Approximately half the parents worried that a primary diagnosis that would be lethal might be identified; however, the hope of a diagnosis outweighed this concern. Parents were accurately able to summarize their child's WES findings, understood the implications for recurrence risks, and were able to communicate these findings to family and medical/educational providers. The majority of those with a Definite/Likely diagnosis felt that their child's medical care was more focused, or there was a reduction in worry, despite the lack of a specific treatment. Irrespective of diagnostic outcome, parents recommended that follow-up visits be built into the process. Several parents expressed a desire to have all variants of unknown significance (VUS) reported to them so that they could investigate these themselves. Finally, for some families whose children had a Definite/Likely diagnosis, there was remaining frustration and a sense of isolation, due to the limited information that was available about the diagnosed rare disorders and the inability to connect to other families, suggesting that for families with rare genetic disorders, the diagnostic odyssey does not necessarily end with a diagnosis. Qualitative interviewing served a meaningful role in eliciting new information about parental motivations, expectations, and knowledge of WES. Our findings highlight a need for continued communication with families as we navigate the new landscape of genomic sequencing.

  13. Whole-exome sequencing and targeted gene sequencing provide insights into the role of PALB2 as a male breast cancer susceptibility gene.

    PubMed

    Silvestri, Valentina; Zelli, Veronica; Valentini, Virginia; Rizzolo, Piera; Navazio, Anna Sara; Coppa, Anna; Agata, Simona; Oliani, Cristina; Barana, Daniela; Castrignanò, Tiziana; Viel, Alessandra; Russo, Antonio; Tibiletti, Maria Grazia; Zanna, Ines; Masala, Giovanna; Cortesi, Laura; Manoukian, Siranoush; Azzollini, Jacopo; Peissel, Bernard; Bonanni, Bernardo; Peterlongo, Paolo; Radice, Paolo; Palli, Domenico; Giannini, Giuseppe; Chillemi, Giovanni; Montagna, Marco; Ottini, Laura

    2017-01-01

    Male breast cancer (MBC) is a rare disease whose etiology appears to be largely associated with genetic factors. BRCA1 and BRCA2 mutations account for about 10% of all MBC cases. Thus, a fraction of MBC cases are expected to be due to genetic factors not yet identified. To further explain the genetic susceptibility for MBC, whole-exome sequencing (WES) and targeted gene sequencing were applied to high-risk, BRCA1/2 mutation-negative MBC cases. Germ-line DNA of 1 male and 2 female BRCA1/2 mutation-negative breast cancer (BC) cases from a pedigree showing a first-degree family history of MBC was analyzed with WES. Targeted gene sequencing for the validation of WES results was performed for 48 high-risk, BRCA1/2 mutation-negative MBC cases from an Italian multicenter study of MBC. A case-control series of 433 BRCA1/2 mutation-negative MBC and female breast cancer (FBC) cases and 849 male and female controls was included in the study. WES in the family identified the partner and localizer of BRCA2 (PALB2) c.419delA truncating mutation carried by the proband, her father, and her paternal uncle (all affected with BC) and the N-acetyltransferase 1 (NAT1) c.97C>T nonsense mutation carried by the proband's maternal aunt. Targeted PALB2 sequencing detected the c.1984A>T nonsense mutation in 1 of the 48 BRCA1/2 mutation-negative MBC cases. NAT1 c.97C>T was not found in the case-control series. These results add strength to the evidence showing that PALB2 is involved in BC risk for both sexes and indicate that consideration should be given to clinical testing of PALB2 for BRCA1/2 mutation-negative families with multiple MBC and FBC cases. Cancer 2017;123:210-218. © 2016 American Cancer Society. © 2016 American Cancer Society.

  14. Whole-exome sequencing and digital PCR identified a novel compound heterozygous mutation in the NPHP1 gene in a case of Joubert syndrome and related disorders.

    PubMed

    Koyama, Shingo; Sato, Hidenori; Wada, Manabu; Kawanami, Toru; Emi, Mitsuru; Kato, Takeo

    2017-03-27

    Joubert syndrome and related disorders (JSRD) is a clinically and genetically heterogeneous condition with autosomal recessive or X-linked inheritance, which share a distinctive neuroradiological hallmark, the so-called molar tooth sign. JSRD is classified into six clinical subtypes based on associated variable multiorgan involvement. To date, 21 causative genes have been identified in JSRD, which makes genetic diagnosis difficult. We report here a case of a 28-year-old Japanese woman diagnosed with JS with oculorenal defects with a novel compound heterozygous mutation (p.Ser219*/deletion) in the NPHP1 gene. Whole-exome sequencing (WES) of the patient identified the novel nonsense mutation in an apparently homozygous state. However, it was absent in her mother and heterozygous in her father. A read depth-based copy number variation (CNV) detection algorithm using WES data of the family predicted a large heterozygous deletion mutation in the patient and her mother, which was validated by digital polymerase chain reaction, indicating that the patient was compound heterozygous for the paternal nonsense mutation and the maternal deletion mutation spanning the site of the single nucleotide change. It should be noted that analytical pipelines that focus purely on sequence information cannot distinguish homozygosity from hemizygosity because of its inability to detect large deletions. The ability to detect CNVs in addition to single nucleotide variants and small insertion/deletions makes WES an attractive diagnostic tool for genetically heterogeneous disorders.

  15. Whole Exome Sequencing, Familial Genomic Triangulation, and Systems Biology Converge to Identify a Novel Nonsense Mutation in TAB2-encoded TGF-beta Activated Kinase 1 in a Child with Polyvalvular Syndrome.

    PubMed

    Ackerman, Jaeger P; Smestad, John A; Tester, David J; Qureshi, Muhammad Y; Crabb, Beau A; Mendelsohn, Nancy J; Ackerman, Michael J

    2016-09-01

    To use whole exome sequencing (WES) of a family trio to identify a genetic cause for polyvalvular syndrome. A male child was born with mild pulmonary valve stenosis and mild aortic root dilatation, and an atrial septal defect, ventricular septal defect, and patent ductus arteriosus that were closed surgically. Subsequently, the phenotype of polyvalvular syndrome with involvement of both semilunar and both atrioventricular valves emerged. His family history was negative for congenital heart disease. Because of hypotonia, myopia, soft pale skin, joint hypermobility, and mild facial dysmorphism, either Noonan syndrome- or William syndrome-spectrum disorders were suspected clinically. However, chromosomal analysis was normal and commercially available Noonan syndrome and William syndrome genetic tests were negative. Whole exome sequencing of the patient and both parents was performed. Variants were analyzed by sporadic and autosomal recessive inheritance models. A sporadic mutation, annotated as c.1491 T > A, in TAB2, resulting in a nonsense mutation, p.Y497X, in the TAB2-encoded TGF-beta activated kinase 1 (TAK1) was identified as the most likely disease-susceptibility gene. This mutation results in elimination of the terminal 197 amino acids, including the C-terminal binding motif critical for interactions with TRAF6 and TAK1. The combination of WES, genomic triangulation, and systems biology has uncovered perturbations in TGF-beta activated kinase 1 signaling as a novel pathogenic substrate for polyvalvular syndrome. © 2016 Wiley Periodicals, Inc.

  16. Combination of Scoring Criteria and Whole Exome Sequencing Analysis of Synchronous Endometrial and Ovarian Carcinomas.

    PubMed

    Yang, Lingyi; Zhang, Lin; Huang, Qiujuan; Liu, Changxu; Qi, Lisha; Li, Lingmei; Qu, Tongyuan; Wang, Yalei; Liu, Suxiang; Meng, Bin; Sun, Baocun; Cao, Wenfeng

    2018-05-01

    The purpose of this study was to distinguish synchronous primary endometrial and ovarian carcinomas from single primary tumor with metastasis by clinical pathologic criteria and whole exome sequencing (WES). Fifty-two patients with synchronous endometrial and ovarian carcinomas (SEOCs) between 2010 and 2017 were reviewed and subjected to WES. On the basis of the Scully criteria, 11 cases were supposed as synchronous primary endometrial and ovarian carcinomas, 38 cases as single primary tumor with metastasis, and the remaining 3 cases (S50-S52) cannot be defined. Through a quantization scoring analysis, 9 cases that were scored 0-1 point were defined as synchronous primary endometrial and ovarian carcinomas, and 42 cases that were scored 3-8 points were defined as single primary tumor with metastasis. Two of the undefined cases were classified into metastatic disease, and another one that scored 2 points (S52) was subjected to WES. S52 was deemed synchronous primary endometrial and ovarian carcinomas, with few shared somatic mutations and overlapping copy number varieties. The finding of a serous component examined from the uterine endometrium samples further illustrated that the case was synchronous primary endometrial and ovarian carcinomas. By scoring criterion, SEOCs were divided into 2 groups: synchronous primary endometrial and ovarian carcinoma group and single primary tumor with metastasis group. The analysis of clonality indicated that the case that scored 2 (S52) can be considered as synchronous primary endometrial and ovarian carcinomas. Scoring criteria of clinical pathology, along with the study of the WES, may further identify the classification of SEOCs.

  17. Comparison and integration of deleteriousness prediction methods for nonsynonymous SNVs in whole exome sequencing studies

    PubMed Central

    Dong, Chengliang; Wei, Peng; Jian, Xueqiu; Gibbs, Richard; Boerwinkle, Eric; Wang, Kai; Liu, Xiaoming

    2015-01-01

    Accurate deleteriousness prediction for nonsynonymous variants is crucial for distinguishing pathogenic mutations from background polymorphisms in whole exome sequencing (WES) studies. Although many deleteriousness prediction methods have been developed, their prediction results are sometimes inconsistent with each other and their relative merits are still unclear in practical applications. To address these issues, we comprehensively evaluated the predictive performance of 18 current deleteriousness-scoring methods, including 11 function prediction scores (PolyPhen-2, SIFT, MutationTaster, Mutation Assessor, FATHMM, LRT, PANTHER, PhD-SNP, SNAP, SNPs&GO and MutPred), 3 conservation scores (GERP++, SiPhy and PhyloP) and 4 ensemble scores (CADD, PON-P, KGGSeq and CONDEL). We found that FATHMM and KGGSeq had the highest discriminative power among independent scores and ensemble scores, respectively. Moreover, to ensure unbiased performance evaluation of these prediction scores, we manually collected three distinct testing datasets, on which no current prediction scores were tuned. In addition, we developed two new ensemble scores that integrate nine independent scores and allele frequency. Our scores achieved the highest discriminative power compared with all the deleteriousness prediction scores tested and showed low false-positive prediction rate for benign yet rare nonsynonymous variants, which demonstrated the value of combining information from multiple orthologous approaches. Finally, to facilitate variant prioritization in WES studies, we have pre-computed our ensemble scores for 87 347 044 possible variants in the whole-exome and made them publicly available through the ANNOVAR software and the dbNSFP database. PMID:25552646

  18. New mutations in non-syndromic primary ovarian insufficiency patients identified via whole-exome sequencing.

    PubMed

    Patiño, Liliana Catherine; Beau, Isabelle; Carlosama, Carolina; Buitrago, July Constanza; González, Ronald; Suárez, Carlos Fernando; Patarroyo, Manuel Alfonso; Delemer, Brigitte; Young, Jacques; Binart, Nadine; Laissue, Paul

    2017-07-01

    Is it possible to identify new mutations potentially associated with non-syndromic primary ovarian insufficiency (POI) via whole-exome sequencing (WES)? WES is an efficient tool to study genetic causes of POI as we have identified new mutations, some of which lead to protein destablization potentially contributing to the disease etiology. POI is a frequently occurring complex pathology leading to infertility. Mutations in only few candidate genes, mainly identified by Sanger sequencing, have been definitively related to the pathogenesis of the disease. This is a retrospective cohort study performed on 69 women affected by POI. WES and an innovative bioinformatics analysis were used on non-synonymous sequence variants in a subset of 420 selected POI candidate genes. Mutations in BMPR1B and GREM1 were modeled by using fragment molecular orbital analysis. Fifty-five coding variants in 49 genes potentially related to POI were identified in 33 out of 69 patients (48%). These genes participate in key biological processes in the ovary, such as meiosis, follicular development, granulosa cell differentiation/proliferation and ovulation. The presence of at least two mutations in distinct genes in 42% of the patients argued in favor of a polygenic nature of POI. It is possible that regulatory regions, not analyzed in the present study, carry further variants related to POI. WES and the in silico analyses presented here represent an efficient approach for mapping variants associated with POI etiology. Sequence variants presented here represents potential future genetic biomarkers. This study was supported by the Universidad del Rosario and Colciencias (Grants CS/CIGGUR-ABN062-2016 and 672-2014). Colciencias supported Liliana Catherine Patiño´s work (Fellowship: 617, 2013). The authors declare no conflict of interest. © The Author 2017. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  19. Molecular Diagnostic Yield of Chromosomal Microarray Analysis and Whole-Exome Sequencing in Children With Autism Spectrum Disorder.

    PubMed

    Tammimies, Kristiina; Marshall, Christian R; Walker, Susan; Kaur, Gaganjot; Thiruvahindrapuram, Bhooma; Lionel, Anath C; Yuen, Ryan K C; Uddin, Mohammed; Roberts, Wendy; Weksberg, Rosanna; Woodbury-Smith, Marc; Zwaigenbaum, Lonnie; Anagnostou, Evdokia; Wang, Zhuozhi; Wei, John; Howe, Jennifer L; Gazzellone, Matthew J; Lau, Lynette; Sung, Wilson W L; Whitten, Kathy; Vardy, Cathy; Crosbie, Victoria; Tsang, Brian; D'Abate, Lia; Tong, Winnie W L; Luscombe, Sandra; Doyle, Tyna; Carter, Melissa T; Szatmari, Peter; Stuckless, Susan; Merico, Daniele; Stavropoulos, Dimitri J; Scherer, Stephen W; Fernandez, Bridget A

    2015-09-01

    The use of genome-wide tests to provide molecular diagnosis for individuals with autism spectrum disorder (ASD) requires more study. To perform chromosomal microarray analysis (CMA) and whole-exome sequencing (WES) in a heterogeneous group of children with ASD to determine the molecular diagnostic yield of these tests in a sample typical of a developmental pediatric clinic. The sample consisted of 258 consecutively ascertained unrelated children with ASD who underwent detailed assessments to define morphology scores based on the presence of major congenital abnormalities and minor physical anomalies. The children were recruited between 2008 and 2013 in Newfoundland and Labrador, Canada. The probands were stratified into 3 groups of increasing morphological severity: essential, equivocal, and complex (scores of 0-3, 4-5, and ≥6). All probands underwent CMA, with WES performed for 95 proband-parent trios. The overall molecular diagnostic yield for CMA and WES in a population-based ASD sample stratified in 3 phenotypic groups. Of 258 probands, 24 (9.3%, 95%CI, 6.1%-13.5%) received a molecular diagnosis from CMA and 8 of 95 (8.4%, 95%CI, 3.7%-15.9%) from WES. The yields were statistically different between the morphological groups. Among the children who underwent both CMA and WES testing, the estimated proportion with an identifiable genetic etiology was 15.8% (95%CI, 9.1%-24.7%; 15/95 children). This included 2 children who received molecular diagnoses from both tests. The combined yield was significantly higher in the complex group when compared with the essential group (pairwise comparison, P = .002). [table: see text]. Among a heterogeneous sample of children with ASD, the molecular diagnostic yields of CMA and WES were comparable, and the combined molecular diagnostic yield was higher in children with more complex morphological phenotypes in comparison with the children in the essential category. If replicated in additional populations, these findings may inform appropriate selection of molecular diagnostic testing for children affected by ASD.

  20. Coinheritance of biallelic SLURP1 and SLC39A4 mutations cause a severe genodermatosis with skin peeling and hair loss all over the body.

    PubMed

    Harms, F L; Nampoothiri, S; Kortüm, F; Thomas, J; Panicker, V V; Alawi, M; Altmüller, J; Yesodharan, D; Kutsche, K

    2018-06-27

    Next-generation sequencing (NGS), especially multi-gene panels and whole-exome sequencing (WES), is a tool for identifying the cause of monogenic disorders and has played a role in uncovering the genetic cause of previously uncharacterized genodermatoses. 1 By the application of NGS, the concept of apparently novel or atypical clinical presentations has been challenged by the finding of two or more genetic diagnoses in affected individuals. Approximately 5% of cases in which WES was informative had dual or multiple molecular diagnoses. 2 This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  1. Panel-based whole exome sequencing identifies novel mutations in microphthalmia and anophthalmia patients showing complex Mendelian inheritance patterns.

    PubMed

    Riera, Marina; Wert, Ana; Nieto, Isabel; Pomares, Esther

    2017-11-01

    Microphthalmia and anophthalmia (MA) are congenital eye abnormalities that show an extremely high clinical and genetic complexity. In this study, we evaluated the implementation of whole exome sequencing (WES) for the genetic analysis of MA patients. This approach was used to investigate three unrelated families in which previous single-gene analyses failed to identify the molecular cause. A total of 47 genes previously associated with nonsyndromic MA were included in our panel. WES was performed in one affected patient from each family using the AmpliSeq TM Exome technology and the Ion Proton TM platform. A novel heterozygous OTX2 missense mutation was identified in a patient showing bilateral anophthalmia who inherited the variant from a parent who was a carrier, but showed no sign of the condition. We also describe a new PAX6 missense variant in an autosomal-dominant pedigree affected by mild bilateral microphthalmia showing high intrafamiliar variability, with germline mosaicism determined to be the most plausible molecular cause of the disease. Finally, a heterozygous missense mutation in RBP4 was found to be responsible in an isolated case of bilateral complex microphthalmia. This study highlights that panel-based WES is a reliable and effective strategy for the genetic diagnosis of MA. Furthermore, using this technique, the mutational spectrum of these diseases was broadened, with novel variants identified in each of the OTX2, PAX6, and RBP4 genes. Moreover, we report new cases of reduced penetrance, mosaicism, and variable phenotypic expressivity associated with MA, further demonstrating the heterogeneity of such disorders. © 2017 The Authors. Molecular Genetics & Genomic Medicine published by Wiley Periodicals, Inc.

  2. Next-generation sequencing in schizophrenia and other neuropsychiatric disorders.

    PubMed

    Schreiber, Matthew; Dorschner, Michael; Tsuang, Debby

    2013-10-01

    Schizophrenia is a debilitating lifelong illness that lacks a cure and poses a worldwide public health burden. The disease is characterized by a heterogeneous clinical and genetic presentation that complicates research efforts to identify causative genetic variations. This review examines the potential of current findings in schizophrenia and in other related neuropsychiatric disorders for application in next-generation technologies, particularly whole-exome sequencing (WES) and whole-genome sequencing (WGS). These approaches may lead to the discovery of underlying genetic factors for schizophrenia and may thereby identify and target novel therapeutic targets for this devastating disorder. © 2013 Wiley Periodicals, Inc.

  3. Whole-exome sequencing identified a homozygous FNBP4 mutation in a family with a condition similar to microphthalmia with limb anomalies.

    PubMed

    Kondo, Yukiko; Koshimizu, Eriko; Megarbane, Andre; Hamanoue, Haruka; Okada, Ippei; Nishiyama, Kiyomi; Kodera, Hirofumi; Miyatake, Satoko; Tsurusaki, Yoshinori; Nakashima, Mitsuko; Doi, Hiroshi; Miyake, Noriko; Saitsu, Hirotomo; Matsumoto, Naomichi

    2013-07-01

    Microphthalmia with limb anomalies (MLA), also known as Waardenburg anophthalmia syndrome or ophthalmoacromelic syndrome, is a rare autosomal recessive disorder. Recently, we and others successfully identified SMOC1 as the causative gene for MLA. However, there are several MLA families without SMOC1 abnormality, suggesting locus heterogeneity in MLA. We aimed to identify a pathogenic mutation in one Lebanese family having an MLA-like condition without SMOC1 mutation by whole-exome sequencing (WES) combined with homozygosity mapping. A c.683C>T (p.Thr228Met) in FNBP4 was found as a primary candidate, drawing the attention that FNBP4 and SMOC1 may potentially modulate BMP signaling. Copyright © 2013 Wiley Periodicals, Inc.

  4. Panel-based Genetic Diagnostic Testing for Inherited Eye Diseases is Highly Accurate and Reproducible and More Sensitive for Variant Detection Than Exome Sequencing

    PubMed Central

    Bujakowska, Kinga M.; Sousa, Maria E.; Fonseca-Kelly, Zoë D.; Taub, Daniel G.; Janessian, Maria; Wang, Dan Yi; Au, Elizabeth D.; Sims, Katherine B.; Sweetser, David A.; Fulton, Anne B.; Liu, Qin; Wiggs, Janey L.; Gai, Xiaowu; Pierce, Eric A.

    2015-01-01

    Purpose Next-generation sequencing (NGS) based methods are being adopted broadly for genetic diagnostic testing, but the performance characteristics of these techniques have not been fully defined with regard to test accuracy and reproducibility. Methods We developed a targeted enrichment and NGS approach for genetic diagnostic testing of patients with inherited eye disorders, including inherited retinal degenerations, optic atrophy and glaucoma. In preparation for providing this Genetic Eye Disease (GEDi) test on a CLIA-certified basis, we performed experiments to measure the sensitivity, specificity, reproducibility as well as the clinical sensitivity of the test. Results The GEDi test is highly reproducible and accurate, with sensitivity and specificity for single nucleotide variant detection of 97.9% and 100%, respectively. The sensitivity for variant detection was notably better than the 88.3% achieved by whole exome sequencing (WES) using the same metrics, due to better coverage of targeted genes in the GEDi test compared to commercially available exome capture sets. Prospective testing of 192 patients with IRDs indicated that the clinical sensitivity of the GEDi test is high, with a diagnostic rate of 51%. Conclusion The data suggest that based on quantified performance metrics, selective targeted enrichment is preferable to WES for genetic diagnostic testing. PMID:25412400

  5. Whole exome sequencing using Ion Proton system enables reliable genetic diagnosis of inherited retinal dystrophies

    PubMed Central

    Riera, Marina; Navarro, Rafael; Ruiz-Nogales, Sheila; Méndez, Pilar; Burés-Jelstrup, Anniken; Corcóstegui, Borja; Pomares, Esther

    2017-01-01

    Inherited retinal dystrophies (IRD) comprise a wide group of clinically and genetically complex diseases that progressively affect the retina. Over recent years, the development of next-generation sequencing (NGS) methods has transformed our ability to diagnose heterogeneous diseases. In this work, we have evaluated the implementation of whole exome sequencing (WES) for the molecular diagnosis of IRD. Using Ion ProtonTM system, we simultaneously analyzed 212 genes that are responsible for more than 25 syndromic and non-syndromic IRD. This approach was used to evaluate 59 unrelated families, with the pathogenic variant(s) successfully identified in 71.18% of cases. Interestingly, the mutation detection rate varied substantially depending on the IRD subtype. Overall, we found 63 different mutations (21 novel) in 29 distinct genes, and performed in vivo functional studies to determine the deleterious impact of variants identified in MERTK, CDH23, and RPGRIP1. In addition, we provide evidences that support CDHR1 as a gene responsible for autosomal recessive retinitis pigmentosa with early macular affectation, and present data regarding the disease mechanism of this gene. Altogether, these results demonstrate that targeted WES of all IRD genes is a reliable, hypothesis-free approach, and a cost- and time-effective strategy for the routine genetic diagnosis of retinal dystrophies. PMID:28181551

  6. Whole-exome sequencing identifies novel MPL and JAK2 mutations in triple-negative myeloproliferative neoplasms

    PubMed Central

    Milosevic Feenstra, Jelena D.; Nivarthi, Harini; Gisslinger, Heinz; Leroy, Emilie; Rumi, Elisa; Chachoua, Ilyas; Bagienski, Klaudia; Kubesova, Blanka; Pietra, Daniela; Gisslinger, Bettina; Milanesi, Chiara; Jäger, Roland; Chen, Doris; Berg, Tiina; Schalling, Martin; Schuster, Michael; Bock, Christoph; Constantinescu, Stefan N.; Cazzola, Mario

    2016-01-01

    Essential thrombocythemia (ET) and primary myelofibrosis (PMF) are chronic diseases characterized by clonal hematopoiesis and hyperproliferation of terminally differentiated myeloid cells. The disease is driven by somatic mutations in exon 9 of CALR or exon 10 of MPL or JAK2-V617F in >90% of the cases, whereas the remaining cases are termed “triple negative.” We aimed to identify the disease-causing mutations in the triple-negative cases of ET and PMF by applying whole-exome sequencing (WES) on paired tumor and control samples from 8 patients. We found evidence of clonal hematopoiesis in 5 of 8 studied cases based on clonality analysis and presence of somatic genetic aberrations. WES identified somatic mutations in 3 of 8 cases. We did not detect any novel recurrent somatic mutations. In 3 patients with clonal hematopoiesis analyzed by WES, we identified a somatic MPL-S204P, a germline MPL-V285E mutation, and a germline JAK2-G571S variant. We performed Sanger sequencing of the entire coding region of MPL in 62, and of JAK2 in 49 additional triple-negative cases of ET or PMF. New somatic (T119I, S204F, E230G, Y591D) and 1 germline (R321W) MPL mutation were detected. All of the identified MPL mutations were gain-of-function when analyzed in functional assays. JAK2 variants were identified in 5 of 57 triple-negative cases analyzed by WES and Sanger sequencing combined. We could demonstrate that JAK2-V625F and JAK2-F556V are gain-of-function mutations. Our results suggest that triple-negative cases of ET and PMF do not represent a homogenous disease entity. Cases with polyclonal hematopoiesis might represent hereditary disorders. PMID:26423830

  7. Whole-exome sequencing identifies novel MPL and JAK2 mutations in triple-negative myeloproliferative neoplasms.

    PubMed

    Milosevic Feenstra, Jelena D; Nivarthi, Harini; Gisslinger, Heinz; Leroy, Emilie; Rumi, Elisa; Chachoua, Ilyas; Bagienski, Klaudia; Kubesova, Blanka; Pietra, Daniela; Gisslinger, Bettina; Milanesi, Chiara; Jäger, Roland; Chen, Doris; Berg, Tiina; Schalling, Martin; Schuster, Michael; Bock, Christoph; Constantinescu, Stefan N; Cazzola, Mario; Kralovics, Robert

    2016-01-21

    Essential thrombocythemia (ET) and primary myelofibrosis (PMF) are chronic diseases characterized by clonal hematopoiesis and hyperproliferation of terminally differentiated myeloid cells. The disease is driven by somatic mutations in exon 9 of CALR or exon 10 of MPL or JAK2-V617F in >90% of the cases, whereas the remaining cases are termed "triple negative." We aimed to identify the disease-causing mutations in the triple-negative cases of ET and PMF by applying whole-exome sequencing (WES) on paired tumor and control samples from 8 patients. We found evidence of clonal hematopoiesis in 5 of 8 studied cases based on clonality analysis and presence of somatic genetic aberrations. WES identified somatic mutations in 3 of 8 cases. We did not detect any novel recurrent somatic mutations. In 3 patients with clonal hematopoiesis analyzed by WES, we identified a somatic MPL-S204P, a germline MPL-V285E mutation, and a germline JAK2-G571S variant. We performed Sanger sequencing of the entire coding region of MPL in 62, and of JAK2 in 49 additional triple-negative cases of ET or PMF. New somatic (T119I, S204F, E230G, Y591D) and 1 germline (R321W) MPL mutation were detected. All of the identified MPL mutations were gain-of-function when analyzed in functional assays. JAK2 variants were identified in 5 of 57 triple-negative cases analyzed by WES and Sanger sequencing combined. We could demonstrate that JAK2-V625F and JAK2-F556V are gain-of-function mutations. Our results suggest that triple-negative cases of ET and PMF do not represent a homogenous disease entity. Cases with polyclonal hematopoiesis might represent hereditary disorders. © 2016 by The American Society of Hematology.

  8. Global developmental delay and intellectual disability associated with a de novo TOP2B mutation.

    PubMed

    Lam, Ching-Wan; Yeung, Wai-Lan; Law, Chun-Yiu

    2017-06-01

    More than 100 genes had been identified for autism spectrum disorder (ASD). With the advancement of whole-exome/genome sequencing (WES/WGS), disease-causing gene in ASD can be identified in a holistic and unbiased approach. The identification of new ASD genes can further explore the molecular basis of ASD. We report a 15yo girl with developmental delay, intellectual disability, hypotonia, microcephaly and autistic feature. She first presented at 6months old with primitive response to noise. Physical examination showed the patient was hypotonic despite normal muscle power and reflexes. She also had progressive microcephaly. Developmental assessment at 6y showed the patient had a corresponding functional age of 1y. The patient also had autistic feature. The patient had no abnormal biochemical or radiological findings. To investigate the molecular basis of the clinical presentation, we applied clinical whole-exome sequencing (WES) for the proband and the family, and we identified a novel de novo heterozygous missense pathogenic variant, TOP2B: NM_001068.2:c.172C>T; NP_001059.2:p.His58Tyr. TOP2B encodes for the enzyme, topoisomerase II isoenzyme beta which is abundant in both developing and adult brain. Defect of topoisomerase is also known to cause ASD. Using clinical WES, we were able to identify the disease-causing gene for this patient in a holistic approach and end the diagnostic odyssey with a therapeutic impact. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Application of Whole Exome Sequencing in Six Families with an Initial Diagnosis of Autosomal Dominant Retinitis Pigmentosa: Lessons Learned

    PubMed Central

    Fernandez-San Jose, Patricia; Liu, Yichuan; March, Michael; Pellegrino, Renata; Golhar, Ryan; Corton, Marta; Blanco-Kelly, Fiona; López-Molina, Maria Isabel; García-Sandoval, Blanca; Guo, Yiran; Tian, Lifeng; Liu, Xuanzhu; Guan, Liping; Zhang, Jianguo; Keating, Brendan; Xu, Xun

    2015-01-01

    This study aimed to identify the genetics underlying dominant forms of inherited retinal dystrophies using whole exome sequencing (WES) in six families extensively screened for known mutations or genes. Thirty-eight individuals were subjected to WES. Causative variants were searched among single nucleotide variants (SNVs) and insertion/deletion variants (indels) and whenever no potential candidate emerged, copy number variant (CNV) analysis was performed. Variants or regions harboring a candidate variant were prioritized and segregation of the variant with the disease was further assessed using Sanger sequencing in case of SNVs and indels, and quantitative PCR (qPCR) for CNVs. SNV and indel analysis led to the identification of a previously reported mutation in PRPH2. Two additional mutations linked to different forms of retinal dystrophies were identified in two families: a known frameshift deletion in RPGR, a gene responsible for X-linked retinitis pigmentosa and p.Ser163Arg in C1QTNF5 associated with Late-Onset Retinal Degeneration. A novel heterozygous deletion spanning the entire region of PRPF31 was also identified in the affected members of a fourth family, which was confirmed with qPCR. This study allowed the identification of the genetic cause of the retinal dystrophy and the establishment of a correct diagnosis in four families, including a large heterozygous deletion in PRPF31, typically considered one of the pitfalls of this method. Since all findings in this study are restricted to known genes, we propose that targeted sequencing using gene-panel is an optimal first approach for the genetic screening and that once known genetic causes are ruled out, WES might be used to uncover new genes involved in inherited retinal dystrophies. PMID:26197217

  10. RefCNV: Identification of Gene-Based Copy Number Variants Using Whole Exome Sequencing.

    PubMed

    Chang, Lun-Ching; Das, Biswajit; Lih, Chih-Jian; Si, Han; Camalier, Corinne E; McGregor, Paul M; Polley, Eric

    2016-01-01

    With rapid advances in DNA sequencing technologies, whole exome sequencing (WES) has become a popular approach for detecting somatic mutations in oncology studies. The initial intent of WES was to characterize single nucleotide variants, but it was observed that the number of sequencing reads that mapped to a genomic region correlated with the DNA copy number variants (CNVs). We propose a method RefCNV that uses a reference set to estimate the distribution of the coverage for each exon. The construction of the reference set includes an evaluation of the sources of variability in the coverage distribution. We observed that the processing steps had an impact on the coverage distribution. For each exon, we compared the observed coverage with the expected normal coverage. Thresholds for determining CNVs were selected to control the false-positive error rate. RefCNV prediction correlated significantly (r = 0.96-0.86) with CNV measured by digital polymerase chain reaction for MET (7q31), EGFR (7p12), or ERBB2 (17q12) in 13 tumor cell lines. The genome-wide CNV analysis showed a good overall correlation (Spearman's coefficient = 0.82) between RefCNV estimation and publicly available CNV data in Cancer Cell Line Encyclopedia. RefCNV also showed better performance than three other CNV estimation methods in genome-wide CNV analysis.

  11. A de novo whole gene deletion of XIAP detected by exome sequencing analysis in very early onset inflammatory bowel disease: a case report.

    PubMed

    Kelsen, Judith R; Dawany, Noor; Martinez, Alejandro; Martinez, Alejuandro; Grochowski, Christopher M; Maurer, Kelly; Rappaport, Eric; Piccoli, David A; Baldassano, Robert N; Mamula, Petar; Sullivan, Kathleen E; Devoto, Marcella

    2015-11-18

    Children with very early-onset inflammatory bowel disease (VEO-IBD), those diagnosed at less than 5 years of age, are a unique population. A subset of these patients present with a distinct phenotype and more severe disease than older children and adults. Host genetics is thought to play a more prominent role in this young population, and monogenic defects in genes related to primary immunodeficiencies are responsible for the disease in a small subset of patients with VEO-IBD. We report a child who presented at 3 weeks of life with very early-onset inflammatory bowel disease (VEO-IBD). He had a complicated disease course and remained unresponsive to medical and surgical therapy. The refractory nature of his disease, together with his young age of presentation, prompted utilization of whole exome sequencing (WES) to detect an underlying monogenic primary immunodeficiency and potentially target therapy to the identified defect. Copy number variation analysis (CNV) was performed using the eXome-Hidden Markov Model. Whole exome sequencing revealed 1,380 nonsense and missense variants in the patient. Plausible candidate variants were not detected following analysis of filtered variants, therefore, we performed CNV analysis of the WES data, which led us to identify a de novo whole gene deletion in XIAP. This is the first reported whole gene deletion in XIAP, the causal gene responsible for XLP2 (X-linked lymphoproliferative Disease 2). XLP2 is a syndrome resulting in VEO-IBD and can increase susceptibility to hemophagocytic lymphohistocytosis (HLH). This identification allowed the patient to be referred for bone marrow transplantation, potentially curative for his disease and critical to prevent the catastrophic sequela of HLH. This illustrates the unique etiology of VEO-IBD, and the subsequent effects on therapeutic options. This cohort requires careful and thorough evaluation for monogenic defects and primary immunodeficiencies.

  12. Exome Sequencing Discerns Syndromes in Patients from Consanguineous Families with Congenital Anomalies of the Kidneys and Urinary Tract

    PubMed Central

    Vivante, Asaf; Hwang, Daw-Yang; Kohl, Stefan; Chen, Jing; Shril, Shirlee; Schulz, Julian; van der Ven, Amelie; Daouk, Ghaleb; Soliman, Neveen A.; Kumar, Aravind Selvin; Senguttuvan, Prabha; Kehinde, Elijah O.; Tasic, Velibor

    2017-01-01

    Congenital anomalies of the kidneys and urinary tract (CAKUT) are the leading cause of CKD in children, featuring a broad variety of malformations. A monogenic cause can be detected in around 12% of patients. However, the morphologic clinical phenotype of CAKUT frequently does not indicate specific genes to be examined. To determine the likelihood of detecting causative recessive mutations by whole-exome sequencing (WES), we analyzed individuals with CAKUT from 33 different consanguineous families. Using homozygosity mapping and WES, we identified the causative mutations in nine of the 33 families studied (27%). We detected recessive mutations in nine known disease–causing genes: ZBTB24, WFS1, HPSE2, ATRX, ASPH, AGXT, AQP2, CTNS, and PKHD1. Notably, when mutated, these genes cause multiorgan syndromes that may include CAKUT as a feature (syndromic CAKUT) or cause renal diseases that may manifest as phenocopies of CAKUT. None of the above monogenic disease–causing genes were suspected on clinical grounds before this study. Follow-up clinical characterization of those patients allowed us to revise and detect relevant new clinical features in a more appropriate pathogenetic context. Thus, applying WES to the diagnostic approach in CAKUT provides opportunities for an accurate and early etiology–based diagnosis and improved clinical management. PMID:27151922

  13. Post-mortem whole-exome analysis in a large sudden infant death syndrome cohort with a focus on cardiovascular and metabolic genetic diseases.

    PubMed

    Neubauer, Jacqueline; Lecca, Maria Rita; Russo, Giancarlo; Bartsch, Christine; Medeiros-Domingo, Argelia; Berger, Wolfgang; Haas, Cordula

    2017-04-01

    Sudden infant death syndrome (SIDS) is described as the sudden and unexplained death of an apparently healthy infant younger than one year of age. Genetic studies indicate that up to 35% of SIDS cases might be explained by familial or genetic diseases such as cardiomyopathies, ion channelopathies or metabolic disorders that remained undetected during conventional forensic autopsy procedures. Post-mortem genetic testing by using massive parallel sequencing (MPS) approaches represents an efficient and rapid tool to further investigate unexplained death cases and might help to elucidate pathogenic genetic variants and mechanisms in cases without a conclusive cause of death. In this study, we performed whole-exome sequencing (WES) in 161 European SIDS infants with focus on 192 genes associated with cardiovascular and metabolic diseases. Potentially causative variants were detected in 20% of the SIDS cases. The majority of infants had variants with likely functional effects in genes associated with channelopathies (9%), followed by cardiomyopathies (7%) and metabolic diseases (1%). Although lethal arrhythmia represents the most plausible and likely cause of death, the majority of SIDS cases still remains elusive and might be explained by a multifactorial etiology, triggered by a combination of different genetic and environmental risk factors. As WES is not substantially more expensive than a targeted sequencing approach, it represents an unbiased screening of the exome, which could help to investigate different pathogenic mechanisms within the genetically heterogeneous SIDS cohort. Additionally, re-analysis of the datasets provides the basis to identify new candidate genes in sudden infant death.

  14. Detection of copy number variations in epilepsy using exome data.

    PubMed

    Tsuchida, N; Nakashima, M; Kato, M; Heyman, E; Inui, T; Haginoya, K; Watanabe, S; Chiyonobu, T; Morimoto, M; Ohta, M; Kumakura, A; Kubota, M; Kumagai, Y; Hamano, S-I; Lourenco, C M; Yahaya, N A; Ch'ng, G-S; Ngu, L-H; Fattal-Valevski, A; Weisz Hubshman, M; Orenstein, N; Marom, D; Cohen, L; Goldberg-Stern, H; Uchiyama, Y; Imagawa, E; Mizuguchi, T; Takata, A; Miyake, N; Nakajima, H; Saitsu, H; Miyatake, S; Matsumoto, N

    2018-03-01

    Epilepsies are common neurological disorders and genetic factors contribute to their pathogenesis. Copy number variations (CNVs) are increasingly recognized as an important etiology of many human diseases including epilepsy. Whole-exome sequencing (WES) is becoming a standard tool for detecting pathogenic mutations and has recently been applied to detecting CNVs. Here, we analyzed 294 families with epilepsy using WES, and focused on 168 families with no causative single nucleotide variants in known epilepsy-associated genes to further validate CNVs using 2 different CNV detection tools using WES data. We confirmed 18 pathogenic CNVs, and 2 deletions and 2 duplications at chr15q11.2 of clinically unknown significance. Of note, we were able to identify small CNVs less than 10 kb in size, which might be difficult to detect by conventional microarray. We revealed 2 cases with pathogenic CNVs that one of the 2 CNV detection tools failed to find, suggesting that using different CNV tools is recommended to increase diagnostic yield. Considering a relatively high discovery rate of CNVs (18 out of 168 families, 10.7%) and successful detection of CNV with <10 kb in size, CNV detection by WES may be able to surrogate, or at least complement, conventional microarray analysis. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. Whole-exome sequencing reveals the spectrum of gene mutations and the clonal evolution patterns in paediatric acute myeloid leukaemia.

    PubMed

    Shiba, Norio; Yoshida, Kenichi; Shiraishi, Yuichi; Okuno, Yusuke; Yamato, Genki; Hara, Yusuke; Nagata, Yasunobu; Chiba, Kenichi; Tanaka, Hiroko; Terui, Kiminori; Kato, Motohiro; Park, Myoung-Ja; Ohki, Kentaro; Shimada, Akira; Takita, Junko; Tomizawa, Daisuke; Kudo, Kazuko; Arakawa, Hirokazu; Adachi, Souichi; Taga, Takashi; Tawa, Akio; Ito, Etsuro; Horibe, Keizo; Sanada, Masashi; Miyano, Satoru; Ogawa, Seishi; Hayashi, Yasuhide

    2016-11-01

    Acute myeloid leukaemia (AML) is a molecularly and clinically heterogeneous disease. Targeted sequencing efforts have identified several mutations with diagnostic and prognostic values in KIT, NPM1, CEBPA and FLT3 in both adult and paediatric AML. In addition, massively parallel sequencing enabled the discovery of recurrent mutations (i.e. IDH1/2 and DNMT3A) in adult AML. In this study, whole-exome sequencing (WES) of 22 paediatric AML patients revealed mutations in components of the cohesin complex (RAD21 and SMC3), BCORL1 and ASXL2 in addition to previously known gene mutations. We also revealed intratumoural heterogeneities in many patients, implicating multiple clonal evolution events in the development of AML. Furthermore, targeted deep sequencing in 182 paediatric AML patients identified three major categories of recurrently mutated genes: cohesion complex genes [STAG2, RAD21 and SMC3 in 17 patients (8·3%)], epigenetic regulators [ASXL1/ASXL2 in 17 patients (8·3%), BCOR/BCORL1 in 7 patients (3·4%)] and signalling molecules. We also performed WES in four patients with relapsed AML. Relapsed AML evolved from one of the subclones at the initial phase and was accompanied by many additional mutations, including common driver mutations that were absent or existed only with lower allele frequency in the diagnostic samples, indicating a multistep process causing leukaemia recurrence. © 2016 John Wiley & Sons Ltd.

  16. Reference genotype and exome data from an Australian Aboriginal population for health-based research

    PubMed Central

    Tang, Dave; Anderson, Denise; Francis, Richard W.; Syn, Genevieve; Jamieson, Sarra E.; Lassmann, Timo; Blackwell, Jenefer M.

    2016-01-01

    Genetic analyses, including genome-wide association studies and whole exome sequencing (WES), provide powerful tools for the analysis of complex and rare genetic diseases. To date there are no reference data for Aboriginal Australians to underpin the translation of health-based genomic research. Here we provide a catalogue of variants called after sequencing the exomes of 72 Aboriginal individuals to a depth of 20X coverage in ∼80% of the sequenced nucleotides. We determined 320,976 single nucleotide variants (SNVs) and 47,313 insertions/deletions using the Genome Analysis Toolkit. We had previously genotyped a subset of the Aboriginal individuals (70/72) using the Illumina Omni2.5 BeadChip platform and found ~99% concordance at overlapping sites, which suggests high quality genotyping. Finally, we compared our SNVs to six publicly available variant databases, such as dbSNP and the Exome Sequencing Project, and 70,115 of our SNVs did not overlap any of the single nucleotide polymorphic sites in all the databases. Our data set provides a useful reference point for genomic studies on Aboriginal Australians. PMID:27070114

  17. Reference genotype and exome data from an Australian Aboriginal population for health-based research.

    PubMed

    Tang, Dave; Anderson, Denise; Francis, Richard W; Syn, Genevieve; Jamieson, Sarra E; Lassmann, Timo; Blackwell, Jenefer M

    2016-04-12

    Genetic analyses, including genome-wide association studies and whole exome sequencing (WES), provide powerful tools for the analysis of complex and rare genetic diseases. To date there are no reference data for Aboriginal Australians to underpin the translation of health-based genomic research. Here we provide a catalogue of variants called after sequencing the exomes of 72 Aboriginal individuals to a depth of 20X coverage in ∼80% of the sequenced nucleotides. We determined 320,976 single nucleotide variants (SNVs) and 47,313 insertions/deletions using the Genome Analysis Toolkit. We had previously genotyped a subset of the Aboriginal individuals (70/72) using the Illumina Omni2.5 BeadChip platform and found ~99% concordance at overlapping sites, which suggests high quality genotyping. Finally, we compared our SNVs to six publicly available variant databases, such as dbSNP and the Exome Sequencing Project, and 70,115 of our SNVs did not overlap any of the single nucleotide polymorphic sites in all the databases. Our data set provides a useful reference point for genomic studies on Aboriginal Australians.

  18. Whole-exome sequencing supports genetic heterogeneity in childhood apraxia of speech.

    PubMed

    Worthey, Elizabeth A; Raca, Gordana; Laffin, Jennifer J; Wilk, Brandon M; Harris, Jeremy M; Jakielski, Kathy J; Dimmock, David P; Strand, Edythe A; Shriberg, Lawrence D

    2013-10-02

    Childhood apraxia of speech (CAS) is a rare, severe, persistent pediatric motor speech disorder with associated deficits in sensorimotor, cognitive, language, learning and affective processes. Among other neurogenetic origins, CAS is the disorder segregating with a mutation in FOXP2 in a widely studied, multigenerational London family. We report the first whole-exome sequencing (WES) findings from a cohort of 10 unrelated participants, ages 3 to 19 years, with well-characterized CAS. As part of a larger study of children and youth with motor speech sound disorders, 32 participants were classified as positive for CAS on the basis of a behavioral classification marker using auditory-perceptual and acoustic methods that quantify the competence, precision and stability of a speaker's speech, prosody and voice. WES of 10 randomly selected participants was completed using the Illumina Genome Analyzer IIx Sequencing System. Image analysis, base calling, demultiplexing, read mapping, and variant calling were performed using Illumina software. Software developed in-house was used for variant annotation, prioritization and interpretation to identify those variants likely to be deleterious to neurodevelopmental substrates of speech-language development. Among potentially deleterious variants, clinically reportable findings of interest occurred on a total of five chromosomes (Chr3, Chr6, Chr7, Chr9 and Chr17), which included six genes either strongly associated with CAS (FOXP1 and CNTNAP2) or associated with disorders with phenotypes overlapping CAS (ATP13A4, CNTNAP1, KIAA0319 and SETX). A total of 8 (80%) of the 10 participants had clinically reportable variants in one or two of the six genes, with variants in ATP13A4, KIAA0319 and CNTNAP2 being the most prevalent. Similar to the results reported in emerging WES studies of other complex neurodevelopmental disorders, our findings from this first WES study of CAS are interpreted as support for heterogeneous genetic origins of this pediatric motor speech disorder with multiple genes, pathways and complex interactions. We also submit that our findings illustrate the potential use of WES for both gene identification and case-by-case clinical diagnostics in pediatric motor speech disorders.

  19. Application of whole-exome sequencing to unravel the molecular basis of undiagnosed syndromic congenital neutropenia with intellectual disability.

    PubMed

    Gauthier-Vasserot, Alexandra; Thauvin-Robinet, Christel; Bruel, Ange-Line; Duffourd, Yannis; St-Onge, Judith; Jouan, Thibaud; Rivière, Jean-Baptiste; Heron, Delphine; Donadieu, Jean; Bellanné-Chantelot, Christine; Briandet, Claire; Huet, Frédéric; Kuentz, Paul; Lehalle, Daphné; Duplomb-Jego, Laurence; Gautier, Elodie; Maystadt, Isabelle; Pinson, Lucile; Amram, Daniel; El Chehadeh, Salima; Melki, Judith; Julia, Sophia; Faivre, Laurence; Thevenon, Julien

    2017-01-01

    Neutropenia can be qualified as congenital when of neonatal onset or when associated with extra-hematopoietic manifestations. Overall, 30% of patients with congenital neutropenia (CN) remain without a molecular diagnosis after a multidisciplinary consultation and tedious diagnostic strategy. In the rare situations when neutropenia is identified and associated with intellectual disability (ID), there are few diagnostic hypotheses to test. This retrospective multicenter study reports on a clinically heterogeneous cohort of 10 unrelated patients with CN associated with ID and no molecular diagnosis prior to whole-exome sequencing (WES). WES provided a diagnostic yield of 40% (4/10). The results suggested that in many cases neutropenia and syndromic manifestations could not be assigned to the same molecular alteration. Three sub-groups of patients were highlighted: (i) severe, symptomatic chronic neutropenia, detected early in life, and related to a known mutation in the CN spectrum (ELANE); (ii) mild to moderate benign intermittent neutropenia, detected later, and associated with mutations in genes implicated in neurodevelopmental disorders (CHD2, HUWE1); and (iii) moderate to severe intermittent neutropenia as a probably undiagnosed feature of a newly reported syndrome (KAT6A). Unlike KAT6A, which seems to be associated with a syndromic form of CN, the other reported mutations may not explain the entire clinical picture. Although targeted gene sequencing can be discussed for the primary diagnosis of severe CN, we suggest that performing WES for the diagnosis of disorders associating CN with ID will not only provide the etiological diagnosis but will also pave the way towards personalized care and follow-up. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  20. Whole-exome sequencing for RH genotyping and alloimmunization risk in children with sickle cell anemia

    PubMed Central

    Flanagan, Jonathan M.; Vege, Sunitha; Luban, Naomi L. C.; Brown, R. Clark; Ware, Russell E.; Westhoff, Connie M.

    2017-01-01

    RH genes are highly polymorphic and encode the most complex of the 35 human blood group systems. This genetic diversity contributes to Rh alloimmunization in patients with sickle cell anemia (SCA) and is not avoided by serologic Rh-matched red cell transfusions. Standard serologic testing does not distinguish variant Rh antigens. Single nucleotide polymorphism (SNP)–based DNA arrays detect many RHD and RHCE variants, but the number of alleles tested is limited. We explored a next-generation sequencing (NGS) approach using whole-exome sequencing (WES) in 27 Rh alloimmunized and 27 matched non-alloimmunized patients with SCA who received chronic red cell transfusions and were enrolled in a multicenter study. We demonstrate that WES provides a comprehensive RH genotype, identifies SNPs not interrogated by DNA array, and accurately determines RHD zygosity. Among this multicenter cohort, we demonstrate an association between an altered RH genotype and Rh alloimmunization: 52% of Rh immunized vs 19% of non-immunized patients expressed variant Rh without co-expression of the conventional protein. Our findings suggest that RH allele variation in patients with SCA is clinically relevant, and NGS technology can offer a comprehensive alternative to targeted SNP-based testing. This is particularly relevant as NGS data becomes more widely available and could provide the means for reducing Rh alloimmunization in children with SCA. PMID:29296782

  1. Whole exome sequencing confirms the clinical diagnosis of Marfan syndrome combined with X-linked hypophosphatemia.

    PubMed

    Sheng, Xunlun; Chen, Xue; Lei, Bo; Chen, Rui; Wang, Hui; Zhang, Fangxia; Rong, Weining; Ha, Ruoshui; Liu, Yani; Zhao, Feng; Yang, Peizeng; Zhao, Chen

    2015-06-04

    To determine the genetic lesions and to modify the clinical diagnosis for a Chinese family with significant intrafamilial phenotypic diversities and unusual presentations. Three affected patients and the asymptomatic father were included and received comprehensive systemic examinations. Whole exome sequencing (WES) was performed for mutation detection. Structural modeling test was applied to analyze the potential structural changes caused by the missense substitution. The proband showed a wide spectrum of systemic anomalies, including bilateral ectopia lentis, atrial septal defect, ventricular septal defect, widening of tibial metaphysis with medial bowing, and dolichostenomelia in digits, while her mother and elder brother only demonstrated similar skeletal changes. A recurrent mutation, PHEX p.R291*, was found in all patients, while a de novo mutation, FBN1 p.C792F, was only detected in the proband. The FBN1 substitution was also predicted to cause significant conformational change in fibrillin-1 protein, thus changing its physical and biological properties. Taken together, we finalized the diagnosis for this family as X-linked hypophosphatemia (XLH), and diagnosed this girl as Marfan syndrome combined with XLH, and congenital heart disease. Our study also emphasizes the importance of WES in assisting the clinical diagnosis for complicated cases when the original diagnoses are challenged.

  2. Genetic counselors' views and experiences with the clinical integration of genome sequencing.

    PubMed

    Machini, Kalotina; Douglas, Jessica; Braxton, Alicia; Tsipis, Judith; Kramer, Kate

    2014-08-01

    In recent years, new sequencing technologies known as next generation sequencing (NGS) have provided scientists the ability to rapidly sequence all known coding as well as non-coding sequences in the human genome. As the two emerging approaches, whole exome (WES) and whole genome (WGS) sequencing, have started to be integrated in the clinical arena, we sought to survey health care professionals who are likely to be involved in the implementation process now and/or in the future (e.g., genetic counselors, geneticists and nurse practitioners). Two hundred twenty-one genetic counselors- one third of whom currently offer WES/WGS-participated in an anonymous online survey. The aims of the survey were first, to identify barriers to the implementation of WES/WGS, as perceived by survey participants; second, to provide the first systematic report of current practices regarding the integration of WES/WGS in clinic and/or research across the US and Canada and to illuminate the roles and challenges of genetic counselors participating in this process; and third to evaluate the impact of WES/WGS on patient care. Our results showed that genetic counseling practices with respect to WES/WGS are consistent with the criteria set forth in the ACMG 2012 policy statement, which highlights indications for testing, reporting, and pre/post test considerations. Our respondents described challenges related to offering WES/WGS, which included billing issues, the duration and content of the consent process, result interpretation and disclosure of incidental findings and variants of unknown significance. In addition, respondents indicated that specialty area (i.e., prenatal and cancer), lack of clinical utility of WES/WGS and concerns about interpretation of test results were factors that prevented them from offering this technology to patients. Finally, study participants identified the aspects of their professional training which have been most beneficial in aiding with the integration of WES/WGS into the clinical setting (molecular/clinical genetics, counseling and bioethics) and suggested that counseling aids (to assist them when explaining aspects of these tests to patients) and webinars focused on WES/WGS (for genetic counselors and other health care professionals) would be useful educational tools. Future research should permit us to further enhance our knowledge of pitfalls and benefits associated with the introduction of these powerful technologies in patient care and to further explore the roles and opportunities for genetic counselors in this rapidly evolving field.

  3. SLC52A2 mutations cause SCABD2 phenotype: A second report.

    PubMed

    Babanejad, Mojgan; Adeli, Omid Ali; Nikzat, Nooshin; Beheshtian, Maryam; Azarafra, Hakimeh; Sadeghnia, Farnaz; Mohseni, Marzieh; Najmabadi, Hossein; Kahrizi, Kimia

    2018-01-01

    Autosomal recessive cerebellar ataxias (ARCAs) are a large group of neurodegenerative disorders that manifest mainly in children and young adults. Most ARCAs are heterogeneous with respect to age at onset, severity of disease progression, and frequency of extracerebellar and systemic signs. The phenotype of a consanguineous Iranian family was characterized using clinical testing and pedigree analysis. Whole-exome sequencing was used to identify the disease-causing gene in this family. Using whole exome sequencing (WES), a novel missense mutation in SLC52A2 gene is reported in a consanguineous Iranian family with progressive severe hearing loss, optic atrophy and ataxia. This is the second report of the genotype-phenotype correlation between this syndrome named spinocerebellar ataxia with blindness and deafness type 2 (SCABD2) and SLC52A2 gene. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Whole exome sequencing in an Italian family with isolated maxillary canine agenesis and canine eruption anomalies.

    PubMed

    Barbato, Ersilia; Traversa, Alice; Guarnieri, Rosanna; Giovannetti, Agnese; Genovesi, Maria Luce; Magliozzi, Maria Rosa; Paolacci, Stefano; Ciolfi, Andrea; Pizzi, Simone; Di Giorgio, Roberto; Tartaglia, Marco; Pizzuti, Antonio; Caputo, Viviana

    2018-07-01

    The aim of this study was the clinical and molecular characterization of a family segregating a trait consisting of a phenotype specifically involving the maxillary canines, including agenesis, impaction and ectopic eruption, characterized by incomplete penetrance and variable expressivity. Clinical standardized assessment of 14 family members and a whole-exome sequencing (WES) of three affected subjects were performed. WES data analyses (sequence alignment, variant calling, annotation and prioritization) were carried out using an in-house implemented pipeline. Variant filtering retained coding and splice-site high quality private and rare variants. Variant prioritization was performed taking into account both the disruptive impact and the biological relevance of individual variants and genes. Sanger sequencing was performed to validate the variants of interest and to carry out segregation analysis. Prioritization of variants "by function" allowed the identification of multiple variants contributing to the trait, including two concomitant heterozygous variants in EDARADD (c.308C>T, p.Ser103Phe) and COL5A1 (c.1588G>A, p.Gly530Ser), specifically associated with a more severe phenotype (i.e. canine agenesis). Differently, heterozygous variants in genes encoding proteins with a role in the WNT pathway were shared by subjects showing a phenotype of impacted/ectopic erupted canines. This study characterized the genetic contribution underlying a complex trait consisting of isolated canine anomalies in a medium-sized family, highlighting the role of WNT and EDA cell signaling pathways in tooth development. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. New COL6A6 variant detected by whole-exome sequencing is linked to break points in intron 4 and 3′-UTR, deleting exon 5 of RHO, and causing adRP

    PubMed Central

    de Sousa Dias, Miguel; Hernan, Imma; Delás, Barbara; Pascual, Beatriz; Borràs, Emma; Gamundi, Maria José; Mañé, Begoña; Fernández-San José, Patricia; Ayuso, Carmen

    2015-01-01

    Purpose This study aimed to test a newly devised cost-effective multiplex PCR assay for the molecular diagnosis of autosomal dominant retinitis pigmentosa (adRP), as well as the use of whole-exome sequencing (WES) to detect disease-causing mutations in adRP. Methods Genomic DNA was extracted from peripheral blood lymphocytes of index patients with adRP and their affected and unaffected family members. We used a newly devised multiplex PCR assay capable of amplifying the genetic loci of RHO, PRPH2, RP1, PRPF3, PRPF8, PRPF31, IMPDH1, NRL, CRX, KLHL7, and NR2E3 to molecularly diagnose 18 index patients with adRP. We also performed WES in affected and unaffected members of four families with adRP in whom a disease-causing mutation was previously not found. Results We identified five previously reported mutations (p.Arg677X in the RP1 gene, p.Asp133Val and p.Arg195Leu in the PRPH2 gene, and p.Pro171Leu and p.Pro215Leu in the RHO gene) and one novel mutation (p.Val345Gly in the RHO gene) representing 33% detection of causative mutations in our adRP cohort. Comparative WES analysis showed a new variant (p.Gly103Arg in the COL6A6 gene) that segregated with the disease in one family with adRP. As this variant was linked with the RHO locus, we sequenced the complete RHO gene, which revealed a deletion in intron 4 that encompassed all of exon 5 and 28 bp of the 3′-untranslated region (UTR). Conclusions The novel multiplex PCR assay with next-generation sequencing (NGS) proved effective for detecting most of the adRP-causing mutations. A WES approach led to identification of a deletion in RHO through detection of a new linked variant in COL6A6. No pathogenic variants were identified in the remaining three families. Moreover, NGS and WES were inefficient for detecting the complete deletion of exon 5 in the RHO gene in one family with adRP. Carriers of this deletion showed variable clinical status, and two of these carriers had not previously been diagnosed with RP. PMID:26321861

  6. Exome Sequencing Discerns Syndromes in Patients from Consanguineous Families with Congenital Anomalies of the Kidneys and Urinary Tract.

    PubMed

    Vivante, Asaf; Hwang, Daw-Yang; Kohl, Stefan; Chen, Jing; Shril, Shirlee; Schulz, Julian; van der Ven, Amelie; Daouk, Ghaleb; Soliman, Neveen A; Kumar, Aravind Selvin; Senguttuvan, Prabha; Kehinde, Elijah O; Tasic, Velibor; Hildebrandt, Friedhelm

    2017-01-01

    Congenital anomalies of the kidneys and urinary tract (CAKUT) are the leading cause of CKD in children, featuring a broad variety of malformations. A monogenic cause can be detected in around 12% of patients. However, the morphologic clinical phenotype of CAKUT frequently does not indicate specific genes to be examined. To determine the likelihood of detecting causative recessive mutations by whole-exome sequencing (WES), we analyzed individuals with CAKUT from 33 different consanguineous families. Using homozygosity mapping and WES, we identified the causative mutations in nine of the 33 families studied (27%). We detected recessive mutations in nine known disease-causing genes: ZBTB24, WFS1, HPSE2, ATRX, ASPH, AGXT, AQP2, CTNS, and PKHD1 Notably, when mutated, these genes cause multiorgan syndromes that may include CAKUT as a feature (syndromic CAKUT) or cause renal diseases that may manifest as phenocopies of CAKUT. None of the above monogenic disease-causing genes were suspected on clinical grounds before this study. Follow-up clinical characterization of those patients allowed us to revise and detect relevant new clinical features in a more appropriate pathogenetic context. Thus, applying WES to the diagnostic approach in CAKUT provides opportunities for an accurate and early etiology-based diagnosis and improved clinical management. Copyright © 2016 by the American Society of Nephrology.

  7. Homozygous and hemizygous CNV detection from exome sequencing data in a Mendelian disease cohort

    PubMed Central

    Gambin, Tomasz; Akdemir, Zeynep C.; Yuan, Bo; Gu, Shen; Chiang, Theodore; Carvalho, Claudia M.B.; Shaw, Chad; Jhangiani, Shalini; Boone, Philip M.; Eldomery, Mohammad K.; Karaca, Ender; Bayram, Yavuz; Stray-Pedersen, Asbjørg; Muzny, Donna; Charng, Wu-Lin; Bahrambeigi, Vahid; Belmont, John W.; Boerwinkle, Eric; Beaudet, Arthur L.; Gibbs, Richard A.

    2017-01-01

    Abstract We developed an algorithm, HMZDelFinder, that uses whole exome sequencing (WES) data to identify rare and intragenic homozygous and hemizygous (HMZ) deletions that may represent complete loss-of-function of the indicated gene. HMZDelFinder was applied to 4866 samples in the Baylor–Hopkins Center for Mendelian Genomics (BHCMG) cohort and detected 773 HMZ deletion calls (567 homozygous or 206 hemizygous) with an estimated sensitivity of 86.5% (82% for single-exonic and 88% for multi-exonic calls) and precision of 78% (53% single-exonic and 96% for multi-exonic calls). Out of 773 HMZDelFinder-detected deletion calls, 82 were subjected to array comparative genomic hybridization (aCGH) and/or breakpoint PCR and 64 were confirmed. These include 18 single-exon deletions out of which 8 were exclusively detected by HMZDelFinder and not by any of seven other CNV detection tools examined. Further investigation of the 64 validated deletion calls revealed at least 15 pathogenic HMZ deletions. Of those, 7 accounted for 17–50% of pathogenic CNVs in different disease cohorts where 7.1–11% of the molecular diagnosis solved rate was attributed to CNVs. In summary, we present an algorithm to detect rare, intragenic, single-exon deletion CNVs using WES data; this tool can be useful for disease gene discovery efforts and clinical WES analyses. PMID:27980096

  8. Exome sequencing in Jewish and Arab patients with rhabdomyolysis reveals single-gene etiology in 43% of cases.

    PubMed

    Vivante, Asaf; Ityel, Hadas; Pode-Shakked, Ben; Chen, Jing; Shril, Shirlee; van der Ven, Amelie T; Mann, Nina; Schmidt, Johanna Magdalena; Segel, Reeval; Aran, Adi; Zeharia, Avraham; Staretz-Chacham, Orna; Bar-Yosef, Omer; Raas-Rothschild, Annick; Landau, Yuval E; Lifton, Richard P; Anikster, Yair; Hildebrandt, Friedhelm

    2017-12-01

    Rhabdomyolysis is a clinical emergency that may cause acute kidney injury (AKI). It can be acquired or due to monogenic mutations. Around 60 different rare monogenic forms of rhabdomyolysis have been reported to date. In the clinical setting, identifying the underlying molecular diagnosis is challenging due to nonspecific presentation, the high number of causative genes, and current lack of data on the prevalence of monogenic forms. We employed whole exome sequencing (WES) to reveal the percentage of rhabdomyolysis cases explained by single-gene (monogenic) mutations in one of 58 candidate genes. We investigated a cohort of 21 unrelated families with rhabdomyolysis, in whom no underlying etiology had been previously established. Using WES, we identified causative mutations in candidate genes in nine of the 21 families (43%). We detected disease-causing mutations in eight of 58 candidate genes, grouped into the following categories: (1) disorders of fatty acid metabolism (CPT2), (2) disorders of glycogen metabolism (PFKM and PGAM2), (3) disorders of abnormal skeletal muscle relaxation and contraction (CACNA1S, MYH3, RYR1 and SCN4A), and (4) disorders of purine metabolism (AHCY). Our findings demonstrate a very high detection rate for monogenic etiologies using WES and reveal broad genetic heterogeneity for rhabdomyolysis. These results highlight the importance of molecular genetic diagnostics for establishing an etiologic diagnosis. Because these patients are at risk for recurrent episodes of rhabdomyolysis and subsequent risk for AKI, WES allows adequate prophylaxis and treatment for these patients and their family members and enables a personalized medicine approach.

  9. Gene identification in the congenital disorders of glycosylation type I by whole-exome sequencing.

    PubMed

    Timal, Sharita; Hoischen, Alexander; Lehle, Ludwig; Adamowicz, Maciej; Huijben, Karin; Sykut-Cegielska, Jolanta; Paprocka, Justyna; Jamroz, Ewa; van Spronsen, Francjan J; Körner, Christian; Gilissen, Christian; Rodenburg, Richard J; Eidhof, Ilse; Van den Heuvel, Lambert; Thiel, Christian; Wevers, Ron A; Morava, Eva; Veltman, Joris; Lefeber, Dirk J

    2012-10-01

    Congenital disorders of glycosylation type I (CDG-I) form a growing group of recessive neurometabolic diseases. Identification of disease genes is compromised by the enormous heterogeneity in clinical symptoms and the large number of potential genes involved. Until now, gene identification included the sequential application of biochemical methods in blood samples and fibroblasts. In genetically unsolved cases, homozygosity mapping has been applied in consanguineous families. Altogether, this time-consuming diagnostic strategy led to the identification of defects in 17 different CDG-I genes. Here, we applied whole-exome sequencing (WES) in combination with the knowledge of the protein N-glycosylation pathway for gene identification in our remaining group of six unsolved CDG-I patients from unrelated non-consanguineous families. Exome variants were prioritized based on a list of 76 potential CDG-I candidate genes, leading to the rapid identification of one known and two novel CDG-I gene defects. These included the first X-linked CDG-I due to a de novo mutation in ALG13, and compound heterozygous mutations in DPAGT1, together the first two steps in dolichol-PP-glycan assembly, and mutations in PGM1 in two cases, involved in nucleotide sugar biosynthesis. The pathogenicity of the mutations was confirmed by showing the deficient activity of the corresponding enzymes in patient fibroblasts. Combined with these results, the gene defect has been identified in 98% of our CDG-I patients. Our results implicate the potential of WES to unravel disease genes in the CDG-I in newly diagnosed singleton families.

  10. SeqHBase: a big data toolset for family based sequencing data analysis.

    PubMed

    He, Min; Person, Thomas N; Hebbring, Scott J; Heinzen, Ethan; Ye, Zhan; Schrodi, Steven J; McPherson, Elizabeth W; Lin, Simon M; Peissig, Peggy L; Brilliant, Murray H; O'Rawe, Jason; Robison, Reid J; Lyon, Gholson J; Wang, Kai

    2015-04-01

    Whole-genome sequencing (WGS) and whole-exome sequencing (WES) technologies are increasingly used to identify disease-contributing mutations in human genomic studies. It can be a significant challenge to process such data, especially when a large family or cohort is sequenced. Our objective was to develop a big data toolset to efficiently manipulate genome-wide variants, functional annotations and coverage, together with conducting family based sequencing data analysis. Hadoop is a framework for reliable, scalable, distributed processing of large data sets using MapReduce programming models. Based on Hadoop and HBase, we developed SeqHBase, a big data-based toolset for analysing family based sequencing data to detect de novo, inherited homozygous, or compound heterozygous mutations that may contribute to disease manifestations. SeqHBase takes as input BAM files (for coverage at every site), variant call format (VCF) files (for variant calls) and functional annotations (for variant prioritisation). We applied SeqHBase to a 5-member nuclear family and a 10-member 3-generation family with WGS data, as well as a 4-member nuclear family with WES data. Analysis times were almost linearly scalable with number of data nodes. With 20 data nodes, SeqHBase took about 5 secs to analyse WES familial data and approximately 1 min to analyse WGS familial data. These results demonstrate SeqHBase's high efficiency and scalability, which is necessary as WGS and WES are rapidly becoming standard methods to study the genetics of familial disorders. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  11. RareVariantVis: new tool for visualization of causative variants in rare monogenic disorders using whole genome sequencing data.

    PubMed

    Stokowy, Tomasz; Garbulowski, Mateusz; Fiskerstrand, Torunn; Holdhus, Rita; Labun, Kornel; Sztromwasser, Pawel; Gilissen, Christian; Hoischen, Alexander; Houge, Gunnar; Petersen, Kjell; Jonassen, Inge; Steen, Vidar M

    2016-10-01

    The search for causative genetic variants in rare diseases of presumed monogenic inheritance has been boosted by the implementation of whole exome (WES) and whole genome (WGS) sequencing. In many cases, WGS seems to be superior to WES, but the analysis and visualization of the vast amounts of data is demanding. To aid this challenge, we have developed a new tool-RareVariantVis-for analysis of genome sequence data (including non-coding regions) for both germ line and somatic variants. It visualizes variants along their respective chromosomes, providing information about exact chromosomal position, zygosity and frequency, with point-and-click information regarding dbSNP IDs, gene association and variant inheritance. Rare variants as well as de novo variants can be flagged in different colors. We show the performance of the RareVariantVis tool in the Genome in a Bottle WGS data set. https://www.bioconductor.org/packages/3.3/bioc/html/RareVariantVis.html tomasz.stokowy@k2.uib.no Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  12. Identification of a novel missense mutation of MAF in a Japanese family with congenital cataract by whole exome sequencing: a clinical report and review of literature.

    PubMed

    Narumi, Yoko; Nishina, Sachiko; Tokimitsu, Motoharu; Aoki, Yoko; Kosaki, Rika; Wakui, Keiko; Azuma, Noriyuki; Murata, Toshinori; Takada, Fumio; Fukushima, Yoshimitsu; Kosho, Tomoki

    2014-05-01

    Congenital cataracts are the most important cause of severe visual impairment in infants. Genetic factors contribute to the disease development and 29 genes are known to cause congenital cataracts. Identifying the genetic cause of congenital cataracts can be difficult because of genetic heterogeneity. V-maf avian musculoaponeurotic fibrosarcoma oncogene homolog (MAF) encodes a basic region/leucine zipper transcription factor that plays a key role as a regulator of embryonic lens fiber cell development. MAF mutations have been reported to cause juvenile-onset pulverulent cataract, microcornea, iris coloboma, and other anterior segment dysgenesis. We report on six patients in a family who have congenital cataracts were identified MAF mutation by whole exome sequencing (WES). The heterozygous MAF mutation Q303L detected in the present family occurs in a well conserved glutamine residue at the basic region of the DNA-binding domain. All affected members showed congenital cataracts. Three of the six members showed microcornea and one showed iris coloboma. Congenital cataracts with MAF mutation exhibited phenotypically variable cataracts within the family. Review of the patients with MAF mutations supports the notion that congenital cataracts caused by MAF mutations could be accompanied by microcornea and/or iris coloboma. WES is a useful tool for detecting disease-causing mutations in patients with genetically heterogeneous conditions. © 2014 Wiley Periodicals, Inc.

  13. Integrated analysis of whole-exome sequencing and transcriptome profiling in males with autism spectrum disorders.

    PubMed

    Codina-Solà, Marta; Rodríguez-Santiago, Benjamín; Homs, Aïda; Santoyo, Javier; Rigau, Maria; Aznar-Laín, Gemma; Del Campo, Miguel; Gener, Blanca; Gabau, Elisabeth; Botella, María Pilar; Gutiérrez-Arumí, Armand; Antiñolo, Guillermo; Pérez-Jurado, Luis Alberto; Cuscó, Ivon

    2015-01-01

    Autism spectrum disorders (ASD) are a group of neurodevelopmental disorders with high heritability. Recent findings support a highly heterogeneous and complex genetic etiology including rare de novo and inherited mutations or chromosomal rearrangements as well as double or multiple hits. We performed whole-exome sequencing (WES) and blood cell transcriptome by RNAseq in a subset of male patients with idiopathic ASD (n = 36) in order to identify causative genes, transcriptomic alterations, and susceptibility variants. We detected likely monogenic causes in seven cases: five de novo (SCN2A, MED13L, KCNV1, CUL3, and PTEN) and two inherited X-linked variants (MAOA and CDKL5). Transcriptomic analyses allowed the identification of intronic causative mutations missed by the usual filtering of WES and revealed functional consequences of some rare mutations. These included aberrant transcripts (PTEN, POLR3C), deregulated expression in 1.7% of mutated genes (that is, SEMA6B, MECP2, ANK3, CREBBP), allele-specific expression (FUS, MTOR, TAF1C), and non-sense-mediated decay (RIT1, ALG9). The analysis of rare inherited variants showed enrichment in relevant pathways such as the PI3K-Akt signaling and the axon guidance. Integrative analysis of WES and blood RNAseq data has proven to be an efficient strategy to identify likely monogenic forms of ASD (19% in our cohort), as well as additional rare inherited mutations that can contribute to ASD risk in a multifactorial manner. Blood transcriptomic data, besides validating 88% of expressed variants, allowed the identification of missed intronic mutations and revealed functional correlations of genetic variants, including changes in splicing, expression levels, and allelic expression.

  14. Whole exome sequencing is necessary to clarify ID/DD cases with de novo copy number variants of uncertain significance: Two proof-of-concept examples.

    PubMed

    Giorgio, Elisa; Ciolfi, Andrea; Biamino, Elisa; Caputo, Viviana; Di Gregorio, Eleonora; Belligni, Elga Fabia; Calcia, Alessandro; Gaidolfi, Elena; Bruselles, Alessandro; Mancini, Cecilia; Cavalieri, Simona; Molinatto, Cristina; Cirillo Silengo, Margherita; Ferrero, Giovanni Battista; Tartaglia, Marco; Brusco, Alfredo

    2016-07-01

    Whole exome sequencing (WES) is a powerful tool to identify clinically undefined forms of intellectual disability/developmental delay (ID/DD), especially in consanguineous families. Here we report the genetic definition of two sporadic cases, with syndromic ID/DD for whom array-Comparative Genomic Hybridization (aCGH) identified a de novo copy number variant (CNV) of uncertain significance. The phenotypes included microcephaly with brachycephaly and a distinctive facies in one proband, and hypotonia in the legs and mild ataxia in the other. WES allowed identification of a functionally relevant homozygous variant affecting a known disease gene for rare syndromic ID/DD in each proband, that is, c.1423C>T (p.Arg377*) in the Trafficking Protein Particle Complex 9 (TRAPPC9), and c.154T>C (p.Cys52Arg) in the Very Low Density Lipoprotein Receptor (VLDLR). Four mutations affecting TRAPPC9 have been previously reported, and the present finding further depicts this syndromic form of ID, which includes microcephaly with brachycephaly, corpus callosum hypoplasia, facial dysmorphism, and overweight. VLDLR-associated cerebellar hypoplasia (VLDLR-CH) is characterized by non-progressive congenital ataxia and moderate-to-profound intellectual disability. The c.154T>C (p.Cys52Arg) mutation was associated with a very mild form of ataxia, mild intellectual disability, and cerebellar hypoplasia without cortical gyri simplification. In conclusion, we report two novel cases with rare causes of autosomal recessive ID, which document how interpreting de novo array-CGH variants represents a challenge in consanguineous families; as such, clinical WES should be considered in diagnostic testing. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  15. Whole Exome Sequencing Identifies New Host Genomic Susceptibility Factors in Empyema Caused by Streptococcus pneumoniae in Children: A Pilot Study.

    PubMed

    Salas, Antonio; Pardo-Seco, Jacobo; Barral-Arca, Ruth; Cebey-López, Miriam; Gómez-Carballa, Alberto; Rivero-Calle, Irene; Pischedda, Sara; Currás-Tuala, María-José; Amigo, Jorge; Gómez-Rial, José; Martinón-Torres, Federico

    2018-05-03

    Pneumonia is the leading cause of death amongst infectious diseases. Streptococcus pneumoniae is responsible for about 25% of pneumonia cases worldwide, and it is a major cause of childhood mortality. We carried out a whole exome sequencing (WES) study in eight patients with complicated cases of pneumococcal pneumonia (empyema). An initial assessment of statistical association of WES variation with pneumonia was carried out using data from the 1000 Genomes Project (1000G) for the Iberian Peninsula (IBS) as reference controls. Pseudo-replication statistical analyses were carried out using different European control groups. Association tests pointed to single nucleotide polymorphism (SNP) rs201967957 (gene MEIS1 ; chromosome 2; p -value IBS = 3.71 × 10 -13 ) and rs576099063 (gene TSPAN15 ; chromosome 10; p -value IBS = 2.36 × 10 -8 ) as the best candidate variants associated to pneumococcal pneumonia. A burden gene test of pathogenicity signaled four genes, namely, OR9G9 , MUC6 , MUC3A and APOB , which carry significantly increased pathogenic variation when compared to controls. By analyzing various transcriptomic data repositories, we found strong supportive evidence for the role of MEIS1, TSPAN15 and APOBR (encoding the receptor of the APOB protein) in pneumonia in mouse and human models. Furthermore, the association of the olfactory receptor gene OR9G9 has recently been related to some viral infectious diseases, while the role of mucin genes ( MUC6 and MUC3A ), encoding mucin glycoproteins, are well-known factors related to chronic obstructive airway disease. WES emerges as a promising technique to disentangle the genetic basis of host genome susceptibility to infectious respiratory diseases.

  16. CoDE-seq, an augmented whole-exome sequencing, enables the accurate detection of CNVs and mutations in Mendelian obesity and intellectual disability.

    PubMed

    Montagne, Louise; Derhourhi, Mehdi; Piton, Amélie; Toussaint, Bénédicte; Durand, Emmanuelle; Vaillant, Emmanuel; Thuillier, Dorothée; Gaget, Stefan; De Graeve, Franck; Rabearivelo, Iandry; Lansiaux, Amélie; Lenne, Bruno; Sukno, Sylvie; Desailloud, Rachel; Cnop, Miriam; Nicolescu, Ramona; Cohen, Lior; Zagury, Jean-François; Amouyal, Mélanie; Weill, Jacques; Muller, Jean; Sand, Olivier; Delobel, Bruno; Froguel, Philippe; Bonnefond, Amélie

    2018-05-16

    The molecular diagnosis of extreme forms of obesity, in which accurate detection of both copy number variations (CNVs) and point mutations, is crucial for an optimal care of the patients and genetic counseling for their families. Whole-exome sequencing (WES) has benefited considerably this molecular diagnosis, but its poor ability to detect CNVs remains a major limitation. We aimed to develop a method (CoDE-seq) enabling the accurate detection of both CNVs and point mutations in one step. CoDE-seq is based on an augmented WES method, using probes distributed uniformly throughout the genome. CoDE-seq was validated in 40 patients for whom chromosomal DNA microarray was available. CNVs and mutations were assessed in 82 children/young adults with suspected Mendelian obesity and/or intellectual disability and in their parents when available (n total  = 145). CoDE-seq not only detected all of the 97 CNVs identified by chromosomal DNA microarrays but also found 84 additional CNVs, due to a better resolution. When compared to CoDE-seq and chromosomal DNA microarrays, WES failed to detect 37% and 14% of CNVs, respectively. In the 82 patients, a likely molecular diagnosis was achieved in >30% of the patients. Half of the genetic diagnoses were explained by CNVs while the other half by mutations. CoDE-seq has proven cost-efficient and highly effective as it avoids the sequential genetic screening approaches currently used in clinical practice for the accurate detection of CNVs and point mutations. Copyright © 2018 The Authors. Published by Elsevier GmbH.. All rights reserved.

  17. Whole Exome Sequencing Identifies New Host Genomic Susceptibility Factors in Empyema Caused by Streptococcus pneumoniae in Children: A Pilot Study

    PubMed Central

    Salas, Antonio; Barral-Arca, Ruth; Cebey-López, Miriam; Pischedda, Sara; Currás-Tuala, María-José; Gómez-Rial, José

    2018-01-01

    Pneumonia is the leading cause of death amongst infectious diseases. Streptococcus pneumoniae is responsible for about 25% of pneumonia cases worldwide, and it is a major cause of childhood mortality. We carried out a whole exome sequencing (WES) study in eight patients with complicated cases of pneumococcal pneumonia (empyema). An initial assessment of statistical association of WES variation with pneumonia was carried out using data from the 1000 Genomes Project (1000G) for the Iberian Peninsula (IBS) as reference controls. Pseudo-replication statistical analyses were carried out using different European control groups. Association tests pointed to single nucleotide polymorphism (SNP) rs201967957 (gene MEIS1; chromosome 2; p-valueIBS = 3.71 × 10−13) and rs576099063 (gene TSPAN15; chromosome 10; p-valueIBS = 2.36 × 10−8) as the best candidate variants associated to pneumococcal pneumonia. A burden gene test of pathogenicity signaled four genes, namely, OR9G9, MUC6, MUC3A and APOB, which carry significantly increased pathogenic variation when compared to controls. By analyzing various transcriptomic data repositories, we found strong supportive evidence for the role of MEIS1, TSPAN15 and APOBR (encoding the receptor of the APOB protein) in pneumonia in mouse and human models. Furthermore, the association of the olfactory receptor gene OR9G9 has recently been related to some viral infectious diseases, while the role of mucin genes (MUC6 and MUC3A), encoding mucin glycoproteins, are well-known factors related to chronic obstructive airway disease. WES emerges as a promising technique to disentangle the genetic basis of host genome susceptibility to infectious respiratory diseases. PMID:29751582

  18. Dynamic software design for clinical exome and genome analyses: insights from bioinformaticians, clinical geneticists, and genetic counselors.

    PubMed

    Shyr, Casper; Kushniruk, Andre; van Karnebeek, Clara D M; Wasserman, Wyeth W

    2016-03-01

    The transition of whole-exome and whole-genome sequencing (WES/WGS) from the research setting to routine clinical practice remains challenging. With almost no previous research specifically assessing interface designs and functionalities of WES and WGS software tools, the authors set out to ascertain perspectives from healthcare professionals in distinct domains on optimal clinical genomics user interfaces. A series of semi-scripted focus groups, structured around professional challenges encountered in clinical WES and WGS, were conducted with bioinformaticians (n = 8), clinical geneticists (n = 9), genetic counselors (n = 5), and general physicians (n = 4). Contrary to popular existing system designs, bioinformaticians preferred command line over graphical user interfaces for better software compatibility and customization flexibility. Clinical geneticists and genetic counselors desired an overarching interactive graphical layout to prioritize candidate variants--a "tiered" system where only functionalities relevant to the user domain are made accessible. They favored a system capable of retrieving consistent representations of external genetic information from third-party sources. To streamline collaboration and patient exchanges, the authors identified user requirements toward an automated reporting system capable of summarizing key evidence-based clinical findings among the vast array of technical details. Successful adoption of a clinical WES/WGS system is heavily dependent on its ability to address the diverse necessities and predilections among specialists in distinct healthcare domains. Tailored software interfaces suitable for each group is likely more appropriate than the current popular "one size fits all" generic framework. This study provides interfaces for future intervention studies and software engineering opportunities. © The Author 2015. Published by Oxford University Press on behalf of the American Medical Informatics Association.

  19. Dynamic software design for clinical exome and genome analyses: insights from bioinformaticians, clinical geneticists, and genetic counselors

    PubMed Central

    Shyr, Casper; Kushniruk, Andre; van Karnebeek, Clara D.M.

    2016-01-01

    Background The transition of whole-exome and whole-genome sequencing (WES/WGS) from the research setting to routine clinical practice remains challenging. Objectives With almost no previous research specifically assessing interface designs and functionalities of WES and WGS software tools, the authors set out to ascertain perspectives from healthcare professionals in distinct domains on optimal clinical genomics user interfaces. Methods A series of semi-scripted focus groups, structured around professional challenges encountered in clinical WES and WGS, were conducted with bioinformaticians (n = 8), clinical geneticists (n = 9), genetic counselors (n = 5), and general physicians (n = 4). Results Contrary to popular existing system designs, bioinformaticians preferred command line over graphical user interfaces for better software compatibility and customization flexibility. Clinical geneticists and genetic counselors desired an overarching interactive graphical layout to prioritize candidate variants—a “tiered” system where only functionalities relevant to the user domain are made accessible. They favored a system capable of retrieving consistent representations of external genetic information from third-party sources. To streamline collaboration and patient exchanges, the authors identified user requirements toward an automated reporting system capable of summarizing key evidence-based clinical findings among the vast array of technical details. Conclusions Successful adoption of a clinical WES/WGS system is heavily dependent on its ability to address the diverse necessities and predilections among specialists in distinct healthcare domains. Tailored software interfaces suitable for each group is likely more appropriate than the current popular “one size fits all” generic framework. This study provides interfaces for future intervention studies and software engineering opportunities. PMID:26117142

  20. Whole-Exome Sequencing in Age-Related Macular Degeneration Identifies Rare Variants in COL8A1, a Component of Bruch's Membrane.

    PubMed

    Corominas, Jordi; Colijn, Johanna M; Geerlings, Maartje J; Pauper, Marc; Bakker, Bjorn; Amin, Najaf; Lores Motta, Laura; Kersten, Eveline; Garanto, Alejandro; Verlouw, Joost A M; van Rooij, Jeroen G J; Kraaij, Robert; de Jong, Paulus T V M; Hofman, Albert; Vingerling, Johannes R; Schick, Tina; Fauser, Sascha; de Jong, Eiko K; van Duijn, Cornelia M; Hoyng, Carel B; Klaver, Caroline C W; den Hollander, Anneke I

    2018-04-26

    Genome-wide association studies and targeted sequencing studies of candidate genes have identified common and rare variants that are associated with age-related macular degeneration (AMD). Whole-exome sequencing (WES) studies allow a more comprehensive analysis of rare coding variants across all genes of the genome and will contribute to a better understanding of the underlying disease mechanisms. To date, the number of WES studies in AMD case-control cohorts remains scarce and sample sizes are limited. To scrutinize the role of rare protein-altering variants in AMD cause, we performed the largest WES study in AMD to date in a large European cohort consisting of 1125 AMD patients and 1361 control participants. Genome-wide case-control association study of WES data. One thousand one hundred twenty-five AMD patients and 1361 control participants. A single variant association test of WES data was performed to detect variants that are associated individually with AMD. The cumulative effect of multiple rare variants with 1 gene was analyzed using a gene-based CMC burden test. Immunohistochemistry was performed to determine the localization of the Col8a1 protein in mouse eyes. Genetic variants associated with AMD. We detected significantly more rare protein-altering variants in the COL8A1 gene in patients (22/2250 alleles [1.0%]) than in control participants (11/2722 alleles [0.4%]; P = 7.07×10 -5 ). The association of rare variants in the COL8A1 gene is independent of the common intergenic variant (rs140647181) near the COL8A1 gene previously associated with AMD. We demonstrated that the Col8a1 protein localizes at Bruch's membrane. This study supported a role for protein-altering variants in the COL8A1 gene in AMD pathogenesis. We demonstrated the presence of Col8a1 in Bruch's membrane, further supporting the role of COL8A1 variants in AMD pathogenesis. Protein-altering variants in COL8A1 may alter the integrity of Bruch's membrane, contributing to the accumulation of drusen and the development of AMD. Copyright © 2018 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.

  1. Whole-Exome Sequencing of Metastatic Cancer and Biomarkers of Treatment Response.

    PubMed

    Beltran, Himisha; Eng, Kenneth; Mosquera, Juan Miguel; Sigaras, Alexandros; Romanel, Alessandro; Rennert, Hanna; Kossai, Myriam; Pauli, Chantal; Faltas, Bishoy; Fontugne, Jacqueline; Park, Kyung; Banfelder, Jason; Prandi, Davide; Madhukar, Neel; Zhang, Tuo; Padilla, Jessica; Greco, Noah; McNary, Terra J; Herrscher, Erick; Wilkes, David; MacDonald, Theresa Y; Xue, Hui; Vacic, Vladimir; Emde, Anne-Katrin; Oschwald, Dayna; Tan, Adrian Y; Chen, Zhengming; Collins, Colin; Gleave, Martin E; Wang, Yuzhuo; Chakravarty, Dimple; Schiffman, Marc; Kim, Robert; Campagne, Fabien; Robinson, Brian D; Nanus, David M; Tagawa, Scott T; Xiang, Jenny Z; Smogorzewska, Agata; Demichelis, Francesca; Rickman, David S; Sboner, Andrea; Elemento, Olivier; Rubin, Mark A

    2015-07-01

    Understanding molecular mechanisms of response and resistance to anticancer therapies requires prospective patient follow-up and clinical and functional validation of both common and low-frequency mutations. We describe a whole-exome sequencing (WES) precision medicine trial focused on patients with advanced cancer. To understand how WES data affect therapeutic decision making in patients with advanced cancer and to identify novel biomarkers of response. Patients with metastatic and treatment-resistant cancer were prospectively enrolled at a single academic center for paired metastatic tumor and normal tissue WES during a 19-month period (February 2013 through September 2014). A comprehensive computational pipeline was used to detect point mutations, indels, and copy number alterations. Mutations were categorized as category 1, 2, or 3 on the basis of actionability; clinical reports were generated and discussed in precision tumor board. Patients were observed for 7 to 25 months for correlation of molecular information with clinical response. Feasibility, use of WES for decision making, and identification of novel biomarkers. A total of 154 tumor-normal pairs from 97 patients with a range of metastatic cancers were sequenced, with a mean coverage of 95X and 16 somatic alterations detected per patient. In total, 16 mutations were category 1 (targeted therapy available), 98 were category 2 (biologically relevant), and 1474 were category 3 (unknown significance). Overall, WES provided informative results in 91 cases (94%), including alterations for which there is an approved drug, there are therapies in clinical or preclinical development, or they are considered drivers and potentially actionable (category 1-2); however, treatment was guided in only 5 patients (5%) on the basis of these recommendations because of access to clinical trials and/or off-label use of drugs. Among unexpected findings, a patient with prostate cancer with exceptional response to treatment was identified who harbored a somatic hemizygous deletion of the DNA repair gene FANCA and putative partial loss of function of the second allele through germline missense variant. Follow-up experiments established that loss of FANCA function was associated with platinum hypersensitivity both in vitro and in patient-derived xenografts, thus providing biologic rationale and functional evidence for his extreme clinical response. The majority of advanced, treatment-resistant tumors across tumor types harbor biologically informative alterations. The establishment of a clinical trial for WES of metastatic tumors with prospective follow-up of patients can help identify candidate predictive biomarkers of response.

  2. Homozygous and hemizygous CNV detection from exome sequencing data in a Mendelian disease cohort.

    PubMed

    Gambin, Tomasz; Akdemir, Zeynep C; Yuan, Bo; Gu, Shen; Chiang, Theodore; Carvalho, Claudia M B; Shaw, Chad; Jhangiani, Shalini; Boone, Philip M; Eldomery, Mohammad K; Karaca, Ender; Bayram, Yavuz; Stray-Pedersen, Asbjørg; Muzny, Donna; Charng, Wu-Lin; Bahrambeigi, Vahid; Belmont, John W; Boerwinkle, Eric; Beaudet, Arthur L; Gibbs, Richard A; Lupski, James R

    2017-02-28

    We developed an algorithm, HMZDelFinder, that uses whole exome sequencing (WES) data to identify rare and intragenic homozygous and hemizygous (HMZ) deletions that may represent complete loss-of-function of the indicated gene. HMZDelFinder was applied to 4866 samples in the Baylor-Hopkins Center for Mendelian Genomics (BHCMG) cohort and detected 773 HMZ deletion calls (567 homozygous or 206 hemizygous) with an estimated sensitivity of 86.5% (82% for single-exonic and 88% for multi-exonic calls) and precision of 78% (53% single-exonic and 96% for multi-exonic calls). Out of 773 HMZDelFinder-detected deletion calls, 82 were subjected to array comparative genomic hybridization (aCGH) and/or breakpoint PCR and 64 were confirmed. These include 18 single-exon deletions out of which 8 were exclusively detected by HMZDelFinder and not by any of seven other CNV detection tools examined. Further investigation of the 64 validated deletion calls revealed at least 15 pathogenic HMZ deletions. Of those, 7 accounted for 17-50% of pathogenic CNVs in different disease cohorts where 7.1-11% of the molecular diagnosis solved rate was attributed to CNVs. In summary, we present an algorithm to detect rare, intragenic, single-exon deletion CNVs using WES data; this tool can be useful for disease gene discovery efforts and clinical WES analyses. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  3. Investigation of rare and low-frequency variants using high-throughput sequencing with pooled DNA samples

    PubMed Central

    Wang, Jingwen; Skoog, Tiina; Einarsdottir, Elisabet; Kaartokallio, Tea; Laivuori, Hannele; Grauers, Anna; Gerdhem, Paul; Hytönen, Marjo; Lohi, Hannes; Kere, Juha; Jiao, Hong

    2016-01-01

    High-throughput sequencing using pooled DNA samples can facilitate genome-wide studies on rare and low-frequency variants in a large population. Some major questions concerning the pooling sequencing strategy are whether rare and low-frequency variants can be detected reliably, and whether estimated minor allele frequencies (MAFs) can represent the actual values obtained from individually genotyped samples. In this study, we evaluated MAF estimates using three variant detection tools with two sets of pooled whole exome sequencing (WES) and one set of pooled whole genome sequencing (WGS) data. Both GATK and Freebayes displayed high sensitivity, specificity and accuracy when detecting rare or low-frequency variants. For the WGS study, 56% of the low-frequency variants in Illumina array have identical MAFs and 26% have one allele difference between sequencing and individual genotyping data. The MAF estimates from WGS correlated well (r = 0.94) with those from Illumina arrays. The MAFs from the pooled WES data also showed high concordance (r = 0.88) with those from the individual genotyping data. In conclusion, the MAFs estimated from pooled DNA sequencing data reflect the MAFs in individually genotyped samples well. The pooling strategy can thus be a rapid and cost-effective approach for the initial screening in large-scale association studies. PMID:27633116

  4. TRTH-30. PRELIMINARY EXPERIENCE WITH SERIAL WHOLE EXOME SEQUENCING OF PEDIATRIC CNS TUMORS AT DIAGNOSIS AND RECURRENCE.

    PubMed Central

    Szalontay, Luca; Pendrick, Danielle; Feldstein, Neil; Anderson, Richard; Stark, Eileen; Bender, Julia Glade; Oberg, Jennifer; Hsiao, Susan; Turk, Andrew; Sireci, Anthony; Mansukhani, Mahesh; Garvin, James

    2017-01-01

    Abstract INTRODUCTION: Whole exome sequencing (WES) of newly diagnosed pediatric central nervous system (CNS) tumors is quickly becoming part of routine care. Through the Precision in Pediatric Sequencing (PiPseq) program at Columbia University, we have found potentially actionable mutations in more than 40% of evaluable CNS cases at diagnosis. More recently, we have integrated this approach into the management of patients undergoing surgery for CNS tumor recurrence. METHOD: After obtaining informed consent, tumor-normal WES with transcriptome analysis was performed in a CLIA-certified laboratory on fresh frozen or paraffin embedded CNS tumor samples and peripheral blood. RESULTS: 7 cases (5 male, 2 female; median age 5 years) with adequate diagnostic and recurrent tumor tissue were tested. No case had a somatic mutation of established clinical utility (tier 1). Among 3 embryonal tumors, a splice site variant in TSC1 (tier 2 mutation of potential utility) was detected in a medulloblastoma, but only at recurrence and not at initial diagnosis. FOXR2 overexpression was detected at diagnosis and confirmed at early progression of a temporal lobe tumor, prompting revision of the initial diagnosis of high grade glioma to CNS neuroblastoma subtype of PNET, and treated accordingly. In a third patient initially diagnosed with medulloblastoma, overexpression of PDGFRA, MDM4, CDKN2A, EGFR, OLIG2, and GFAP supported a change in diagnosis to glioblastoma. Two gliomas had tier 2 mutations detected at initial diagnosis and progression: SETD2 p.R2040* (optic nerve lesion, called pseudotumor initially but glioma at progression), and H3F3A p.K28M (thalamic low grade glioma). In one patient with ependymoma, copy number gain of 1q25 (associated with poor prognosis) was seen only in the recurrence specimen. CONCLUSION: Our preliminary experience suggests that in pediatric CNS tumor patients referred for reoperation at recurrence, repeat WES may reveal a previously unrecognized treatment option, at least in embryonal tumors.

  5. Development and validation of a whole-exome sequencing test for simultaneous detection of point mutations, indels and copy-number alterations for precision cancer care

    PubMed Central

    Rennert, Hanna; Eng, Kenneth; Zhang, Tuo; Tan, Adrian; Xiang, Jenny; Romanel, Alessandro; Kim, Robert; Tam, Wayne; Liu, Yen-Chun; Bhinder, Bhavneet; Cyrta, Joanna; Beltran, Himisha; Robinson, Brian; Mosquera, Juan Miguel; Fernandes, Helen; Demichelis, Francesca; Sboner, Andrea; Kluk, Michael; Rubin, Mark A; Elemento, Olivier

    2016-01-01

    We describe Exome Cancer Test v1.0 (EXaCT-1), the first New York State-Department of Health-approved whole-exome sequencing (WES)-based test for precision cancer care. EXaCT-1 uses HaloPlex (Agilent) target enrichment followed by next-generation sequencing (Illumina) of tumour and matched constitutional control DNA. We present a detailed clinical development and validation pipeline suitable for simultaneous detection of somatic point/indel mutations and copy-number alterations (CNAs). A computational framework for data analysis, reporting and sign-out is also presented. For the validation, we tested EXaCT-1 on 57 tumours covering five distinct clinically relevant mutations. Results demonstrated elevated and uniform coverage compatible with clinical testing as well as complete concordance in variant quality metrics between formalin-fixed paraffin embedded and fresh-frozen tumours. Extensive sensitivity studies identified limits of detection threshold for point/indel mutations and CNAs. Prospective analysis of 337 cancer cases revealed mutations in clinically relevant genes in 82% of tumours, demonstrating that EXaCT-1 is an accurate and sensitive method for identifying actionable mutations, with reasonable costs and time, greatly expanding its utility for advanced cancer care. PMID:28781886

  6. [A boy with Meier-Gorlin syndrome carrying a novel ORC6 mutation and uniparental disomy of chromosome 16].

    PubMed

    Li, Juan; Ding, Yu; Chang, Guoying; Cheng, Qing; Li, Xin; Wang, Jian; Wang, Xiumin; Shen, Yiping

    2017-02-10

    To identify the genetic cause for a 11-year-old Chinese boy with Meier-Gorlin syndrome (MGS). Chromosomal microarray analysis (CMA) was used to detect potential variations, while whole exome sequencing (WES) was used to identify sequence variants. Sanger sequencing was used to confirm the suspected variants. The boy has featured short stature, microtia, small patella, slender body build, craniofacial anomalies, and small testes with normal gonadotropin. A complete uniparental disomy of chromosome 16 was revealed by CMA. WES has identified a novel homozygous mutation c.67A>G (p.Lys23Glu) in ORC6 gene mapped to chromosome 16. As predicted by Alamut functional software, the mutation may affect the function of structural domain of the ORC6 protein. The patient is probably the first diagnosed MGS case in China, who carried a novel homozygous mutation of the ORC6 gene and uniparental disomy of chromosome 16. The effect of this novel mutation on the growth and development needs to be further investigated.

  7. Effective Immunological Guidance of Genetic Analyses Including Exome Sequencing in Patients Evaluated for Hemophagocytic Lymphohistiocytosis.

    PubMed

    Ammann, Sandra; Lehmberg, Kai; Zur Stadt, Udo; Klemann, Christian; Bode, Sebastian F N; Speckmann, Carsten; Janka, Gritta; Wustrau, Katharina; Rakhmanov, Mirzokhid; Fuchs, Ilka; Hennies, Hans C; Ehl, Stephan

    2017-11-01

    We report our experience in using flow cytometry-based immunological screening prospectively as a decision tool for the use of genetic studies in the diagnostic approach to patients with hemophagocytic lymphohistiocytosis (HLH). We restricted genetic analysis largely to patients with abnormal immunological screening, but included whole exome sequencing (WES) for those with normal findings upon Sanger sequencing. Among 290 children with suspected HLH analyzed between 2010 and 2014 (including 17 affected, but asymptomatic siblings), 87/162 patients with "full" HLH and 79/111 patients with "incomplete/atypical" HLH had normal immunological screening results. In 10 patients, degranulation could not be tested. Among the 166 patients with normal screening, genetic analysis was not performed in 107 (all with uneventful follow-up), while 154 single gene tests by Sanger sequencing in the remaining 59 patients only identified a single atypical CHS patient. Flow cytometry correctly predicted all 29 patients with FHL-2, XLP1 or 2. Among 85 patients with defective NK degranulation (including 13 asymptomatic siblings), 70 were Sanger sequenced resulting in a genetic diagnosis in 55 (79%). Eight patients underwent WES, revealing mutations in two known and one unknown cytotoxicity genes and one metabolic disease. FHL3 was the most frequent genetic diagnosis. Immunological screening provided an excellent decision tool for the need and depth of genetic analysis of HLH patients and provided functionally relevant information for rapid patient classification, contributing to a significant reduction in the time from diagnosis to transplantation in recent years.

  8. Whole-exome sequencing reveals an inherited R566X mutation of the epithelial sodium channel β-subunit in a case of early-onset phenotype of Liddle syndrome.

    PubMed

    Polfus, Linda M; Boerwinkle, Eric; Gibbs, Richard A; Metcalf, Ginger; Muzny, Donna; Veeraraghavan, Narayanan; Grove, Megan; Shete, Sanjay; Wallace, Stephanie; Milewicz, Dianna; Hanchard, Neil; Lupski, James R; Hashmi, Syed Shahrukh; Gupta-Malhotra, Monesha

    2016-11-01

    To comprehensively evaluate a European-American child with severe hypertension, whole-exome sequencing (WES) was performed on the child and parents, which identified causal variation of the proband's early-onset disease. The proband's hypertension was resistant to treatment, requiring a multiple drug regimen including amiloride, spironolactone, and hydrochlorothiazide. We suspected a monogenic form of hypertension because of the persistent hypokalemia with low plasma levels of renin and aldosterone. To address this, we focused on rare functional variants and indels, and performed gene-based tests incorporating linkage scores and allele frequency and filtered on deleterious functional mutations. Drawing upon clinical presentation, 27 genes were selected evidenced to cause monogenic hypertension and matched to the gene-based results. This resulted in the identification of a stop-gain mutation in an epithelial sodium channel (ENaC), SCNN1B , an established Liddle syndrome gene, shared by the child and her father. Interestingly, the father also harbored a missense mutation (p.Trp552Arg) in the α-subunit of the ENaC trimer, SCNN1A , possibly pointing to pseudohypoaldosteronism type I. This case is unique in that we present the early-onset disease and treatment response caused by a canonical stop-gain mutation (p.Arg566*) as well as ENaC digenic hits in the father, emphasizing the utility of WES informing precision medicine.

  9. Genetic architecture of retinal and macular degenerative diseases: the promise and challenges of next-generation sequencing

    PubMed Central

    2013-01-01

    Inherited retinal degenerative diseases (RDDs) display wide variation in their mode of inheritance, underlying genetic defects, age of onset, and phenotypic severity. Molecular mechanisms have not been delineated for many retinal diseases, and treatment options are limited. In most instances, genotype-phenotype correlations have not been elucidated because of extensive clinical and genetic heterogeneity. Next-generation sequencing (NGS) methods, including exome, genome, transcriptome and epigenome sequencing, provide novel avenues towards achieving comprehensive understanding of the genetic architecture of RDDs. Whole-exome sequencing (WES) has already revealed several new RDD genes, whereas RNA-Seq and ChIP-Seq analyses are expected to uncover novel aspects of gene regulation and biological networks that are involved in retinal development, aging and disease. In this review, we focus on the genetic characterization of retinal and macular degeneration using NGS technology and discuss the basic framework for further investigations. We also examine the challenges of NGS application in clinical diagnosis and management. PMID:24112618

  10. Two rare AKAP9 variants are associated with Alzheimer disease in African Americans

    PubMed Central

    Logue, Mark W.; Schu, Matthew; Vardarajan, Badri N.; Farrell, John; Bennett, David A.; Buxbaum, Joseph D.; Byrd, Goldie S.; Ertekin-Taner, Nilufer; Evans, Denis; Foroud, Tatiana; Goate, Alison; Graff-Radford, Neill R.; Kamboh, M. Ilyas; Kukull, Walter A.; Manly, Jennifer J.; Haines, Jonathan L.; Mayeux, Richard; Pericak-Vance, Margaret A.; Schellenberg, Gerard D.; Lunetta, Kathryn L.; Baldwin, Clinton T.; Fallin, M. Daniele; Farrer, Lindsay A.

    2014-01-01

    Background Less is known about the genetic basis of Alzheimer disease (AD) in African Americans (AAs) than in non-Hispanic whites. Methods Whole exome sequencing (WES) was performed on seven AA AD cases. Disease association with potentially AD-related variants from WES was assessed in an AA discovery cohort of 422 cases and 394 controls. Replication was sought in an AA sample of 1,037 cases and 1,869 controls from the Alzheimer Disease Genetics Consortium (ADGC). Results Forty-four SNPs from WES passed filtering criteria and were successfully genotyped, Nominally significant (p<0.05) association to AD was observed with two African-descent specific AKAP9 SNPs in tight linkage disequilibrium: rs144662445 (p=0.014) and rs149979685 (p=0.037). These associations were replicated in the ADGC sample (rs144662445: p=0.0022, odds ratio [OR]=2.75; rs149979685: p=0.0022, OR=3.61). Conclusions Because AKAP9 was not previously linked to AD risk, this study indicates a potential new disease mechanism. PMID:25172201

  11. One Size Doesn't Fit All - RefEditor: Building Personalized Diploid Reference Genome to Improve Read Mapping and Genotype Calling in Next Generation Sequencing Studies

    PubMed Central

    Yuan, Shuai; Johnston, H. Richard; Zhang, Guosheng; Li, Yun; Hu, Yi-Juan; Qin, Zhaohui S.

    2015-01-01

    With rapid decline of the sequencing cost, researchers today rush to embrace whole genome sequencing (WGS), or whole exome sequencing (WES) approach as the next powerful tool for relating genetic variants to human diseases and phenotypes. A fundamental step in analyzing WGS and WES data is mapping short sequencing reads back to the reference genome. This is an important issue because incorrectly mapped reads affect the downstream variant discovery, genotype calling and association analysis. Although many read mapping algorithms have been developed, the majority of them uses the universal reference genome and do not take sequence variants into consideration. Given that genetic variants are ubiquitous, it is highly desirable if they can be factored into the read mapping procedure. In this work, we developed a novel strategy that utilizes genotypes obtained a priori to customize the universal haploid reference genome into a personalized diploid reference genome. The new strategy is implemented in a program named RefEditor. When applying RefEditor to real data, we achieved encouraging improvements in read mapping, variant discovery and genotype calling. Compared to standard approaches, RefEditor can significantly increase genotype calling consistency (from 43% to 61% at 4X coverage; from 82% to 92% at 20X coverage) and reduce Mendelian inconsistency across various sequencing depths. Because many WGS and WES studies are conducted on cohorts that have been genotyped using array-based genotyping platforms previously or concurrently, we believe the proposed strategy will be of high value in practice, which can also be applied to the scenario where multiple NGS experiments are conducted on the same cohort. The RefEditor sources are available at https://github.com/superyuan/refeditor. PMID:26267278

  12. Exome sequence analysis suggests genetic burden contributes to phenotypic variability and complex neuropathy

    PubMed Central

    Gonzaga-Jauregui, Claudia; Harel, Tamar; Gambin, Tomasz; Kousi, Maria; Griffin, Laurie B.; Francescatto, Ludmila; Ozes, Burcak; Karaca, Ender; Jhangiani, Shalini; Bainbridge, Matthew N.; Lawson, Kim S.; Pehlivan, Davut; Okamoto, Yuji; Withers, Marjorie; Mancias, Pedro; Slavotinek, Anne; Reitnauer, Pamela J; Goksungur, Meryem T.; Shy, Michael; Crawford, Thomas O.; Koenig, Michel; Willer, Jason; Flores, Brittany N.; Pediaditrakis, Igor; Us, Onder; Wiszniewski, Wojciech; Parman, Yesim; Antonellis, Anthony; Muzny, Donna M.; Katsanis, Nicholas; Battaloglu, Esra; Boerwinkle, Eric; Gibbs, Richard A.; Lupski, James R.

    2015-01-01

    Charcot-Marie-Tooth (CMT) disease is a clinically and genetically heterogeneous distal symmetric polyneuropathy. Whole-exome sequencing (WES) of 40 individuals from 37 unrelated families with CMT-like peripheral neuropathy refractory to molecular diagnosis identified apparent causal mutations in ~45% (17/37) of families. Three candidate disease genes are proposed, supported by a combination of genetic and in vivo studies. Aggregate analysis of mutation data revealed a significantly increased number of rare variants across 58 neuropathy associated genes in subjects versus controls; confirmed in a second ethnically discrete neuropathy cohort, suggesting mutation burden potentially contributes to phenotypic variability. Neuropathy genes shown to have highly penetrant Mendelizing variants (HMPVs) and implicated by burden in families were shown to interact genetically in a zebrafish assay exacerbating the phenotype established by the suppression of single genes. Our findings suggest that the combinatorial effect of rare variants contributes to disease burden and variable expressivity. PMID:26257172

  13. Whole-exome sequencing for variant discovery in blepharospasm.

    PubMed

    Tian, Jun; Vemula, Satya R; Xiao, Jianfeng; Valente, Enza Maria; Defazio, Giovanni; Petrucci, Simona; Gigante, Angelo Fabio; Rudzińska-Bar, Monika; Wszolek, Zbigniew K; Kennelly, Kathleen D; Uitti, Ryan J; van Gerpen, Jay A; Hedera, Peter; Trimble, Elizabeth J; LeDoux, Mark S

    2018-05-16

    Blepharospasm (BSP) is a type of focal dystonia characterized by involuntary orbicularis oculi spasms that are usually bilateral, synchronous, and symmetrical. Despite strong evidence for genetic contributions to BSP, progress in the field has been constrained by small cohorts, incomplete penetrance, and late age of onset. Although several genetic etiologies for dystonia have been identified through whole-exome sequencing (WES), none of these are characteristically associated with BSP as a singular or predominant manifestation. We performed WES on 31 subjects from 21 independent pedigrees with BSP. The strongest candidate sequence variants derived from in silico analyses were confirmed with bidirectional Sanger sequencing and subjected to cosegregation analysis. Cosegregating deleterious variants (GRCH37/hg19) in CACNA1A (NM_001127222.1: c.7261_7262delinsGT, p.Pro2421Val), REEP4 (NM_025232.3: c.109C>T, p.Arg37Trp), TOR2A (NM_130459.3: c.568C>T, p.Arg190Cys), and ATP2A3 (NM_005173.3: c.1966C>T, p.Arg656Cys) were identified in four independent multigenerational pedigrees. Deleterious variants in HS1BP3 (NM_022460.3: c.94C>A, p.Gly32Cys) and GNA14 (NM_004297.3: c.989_990del, p.Thr330ArgfsTer67) were identified in a father and son with segmental cranio-cervical dystonia first manifest as BSP. Deleterious variants in DNAH17, TRPV4, CAPN11, VPS13C, UNC13B, SPTBN4, MYOD1, and MRPL15 were found in two or more independent pedigrees. To our knowledge, none of these genes have previously been associated with isolated BSP, although other CACNA1A mutations have been associated with both positive and negative motor disorders including ataxia, episodic ataxia, hemiplegic migraine, and dystonia. Our WES datasets provide a platform for future studies of BSP genetics which will demand careful consideration of incomplete penetrance, pleiotropy, population stratification, and oligogenic inheritance patterns. © 2018 The Authors. Molecular Genetics & Genomic Medicine published by Wiley Periodicals, Inc.

  14. Mutations in HIVEP2 are associated with developmental delay, intellectual disability, and dysmorphic features.

    PubMed

    Steinfeld, Hallie; Cho, Megan T; Retterer, Kyle; Person, Rick; Schaefer, G Bradley; Danylchuk, Noelle; Malik, Saleem; Wechsler, Stephanie Burns; Wheeler, Patricia G; van Gassen, Koen L I; Terhal, P A; Verhoeven, Virginie J M; van Slegtenhorst, Marjon A; Monaghan, Kristin G; Henderson, Lindsay B; Chung, Wendy K

    2016-07-01

    Human immunodeficiency virus type I enhancer binding protein 2 (HIVEP2) has been previously associated with intellectual disability and developmental delay in three patients. Here, we describe six patients with developmental delay, intellectual disability, and dysmorphic features with de novo likely gene-damaging variants in HIVEP2 identified by whole-exome sequencing (WES). HIVEP2 encodes a large transcription factor that regulates various neurodevelopmental pathways. Our findings provide further evidence that pathogenic variants in HIVEP2 lead to intellectual disabilities and developmental delay.

  15. Mosaic parental germline mutations causing recurrent forms of malformations of cortical development

    PubMed Central

    Zillhardt, Julia Lauer; Poirier, Karine; Broix, Loïc; Lebrun, Nicolas; Elmorjani, Adrienne; Martinovic, Jelena; Saillour, Yoann; Muraca, Giuseppe; Nectoux, Juliette; Bessieres, Bettina; Fallet-Bianco, Catherine; Lyonnet, Stanislas; Dulac, Olivier; Odent, Sylvie; Rejeb, Imen; Jemaa, Lamia Ben; Rivier, Francois; Pinson, Lucile; Geneviève, David; Musizzano, Yuri; Bigi, Nicole; Leboucq, Nicolas; Giuliano, Fabienne; Philip, Nicole; Vilain, Catheline; Van Bogaert, Patrick; Maurey, Hélène; Beldjord, Cherif; Artiguenave, François; Boland, Anne; Olaso, Robert; Masson, Cécile; Nitschké, Patrick; Deleuze, Jean-François; Bahi-Buisson, Nadia; Chelly, Jamel

    2016-01-01

    To unravel missing genetic causes underlying monogenic disorders with recurrence in sibling, we explored the hypothesis of parental germline mosaic mutations in familial forms of malformation of cortical development (MCD). Interestingly, four families with parental germline variants, out of 18, were identified by whole-exome sequencing (WES), including a variant in a new candidate gene, syntaxin 7. In view of this high frequency, revision of diagnostic strategies and reoccurrence risk should be considered not only for the recurrent forms, but also for the sporadic cases of MCD. PMID:26395554

  16. Mapping autosomal recessive intellectual disability: combined microarray and exome sequencing identifies 26 novel candidate genes in 192 consanguineous families.

    PubMed

    Harripaul, R; Vasli, N; Mikhailov, A; Rafiq, M A; Mittal, K; Windpassinger, C; Sheikh, T I; Noor, A; Mahmood, H; Downey, S; Johnson, M; Vleuten, K; Bell, L; Ilyas, M; Khan, F S; Khan, V; Moradi, M; Ayaz, M; Naeem, F; Heidari, A; Ahmed, I; Ghadami, S; Agha, Z; Zeinali, S; Qamar, R; Mozhdehipanah, H; John, P; Mir, A; Ansar, M; French, L; Ayub, M; Vincent, J B

    2018-04-01

    Approximately 1% of the global population is affected by intellectual disability (ID), and the majority receive no molecular diagnosis. Previous studies have indicated high levels of genetic heterogeneity, with estimates of more than 2500 autosomal ID genes, the majority of which are autosomal recessive (AR). Here, we combined microarray genotyping, homozygosity-by-descent (HBD) mapping, copy number variation (CNV) analysis, and whole exome sequencing (WES) to identify disease genes/mutations in 192 multiplex Pakistani and Iranian consanguineous families with non-syndromic ID. We identified definite or candidate mutations (or CNVs) in 51% of families in 72 different genes, including 26 not previously reported for ARID. The new ARID genes include nine with loss-of-function mutations (ABI2, MAPK8, MPDZ, PIDD1, SLAIN1, TBC1D23, TRAPPC6B, UBA7 and USP44), and missense mutations include the first reports of variants in BDNF or TET1 associated with ID. The genes identified also showed overlap with de novo gene sets for other neuropsychiatric disorders. Transcriptional studies showed prominent expression in the prenatal brain. The high yield of AR mutations for ID indicated that this approach has excellent clinical potential and should inform clinical diagnostics, including clinical whole exome and genome sequencing, for populations in which consanguinity is common. As with other AR disorders, the relevance will also apply to outbred populations.

  17. Whole-exome analysis to detect congenital hemolytic anemia mimicking congenital dyserythropoietic anemia.

    PubMed

    Hamada, Motoharu; Doisaki, Sayoko; Okuno, Yusuke; Muramatsu, Hideki; Hama, Asahito; Kawashima, Nozomu; Narita, Atsushi; Nishio, Nobuhiro; Yoshida, Kenichi; Kanno, Hitoshi; Manabe, Atsushi; Taga, Takashi; Takahashi, Yoshiyuki; Miyano, Satoru; Ogawa, Seishi; Kojima, Seiji

    2018-06-23

    Congenital dyserythropoietic anemia (CDA) is a heterogeneous group of rare congenital disorders characterized by ineffective erythropoiesis and dysplastic changes in erythroblasts. Diagnosis of CDA is based primarily on the morphology of bone marrow erythroblasts; however, genetic tests have recently become more important. Here, we performed genetic analysis of 10 Japanese patients who had been diagnosed with CDA based on laboratory findings and morphological characteristics. We examined 10 CDA patients via central review of bone marrow morphology and genetic analysis for congenital bone marrow failure syndromes. Sanger sequencing for CDAN1, SEC23B, and KLF1 was performed for all patients. We performed whole-exome sequencing in patients without mutation in these genes. Three patients carried pathogenic CDAN1 mutations, whereas no SEC23B mutations were identified in our cohort. WES unexpectedly identified gene mutations known to cause congenital hemolytic anemia in two patients: canonical G6PD p.Val394Leu mutation and SPTA1 p.Arg28His mutation. Comprehensive genetic analysis is warranted for more effective diagnosis of patients with suspected CDA.

  18. Whole exome sequencing identified 1 base pair novel deletion in BCL2-associated athanogene 3 (BAG3) gene associated with severe dilated cardiomyopathy (DCM) requiring heart transplant in multiple family members.

    PubMed

    Rafiq, Muhammad Arshad; Chaudhry, Ayeshah; Care, Melanie; Spears, Danna A; Morel, Chantal F; Hamilton, Robert M

    2017-03-01

    Dilated cardiomyopathy (DCM) is characterized by dilation and impaired contraction of the left ventricle or both ventricles. Among hereditary DCM, the genetic causes are heterogeneous, and include mutations encoding cytoskeletal, nucleoskeletal, mitochondrial, and calcium-handling proteins. We report three severely affected males, in a four-generation pedigree, with DCM phenotype who underwent cardiac transplant. Cardiomegaly with marked biventricular dilation and fibrosis were noticeable histopathological findings. The affected males had tested negative on a 46-gene pancardiomyopathy panel. Whole Exome Sequencing (WES) was performed to reveal mutation in the gene responsible in generation of DCM phenotypes. The 1-bp (Chr10:121435979delC; c.913delC) novel heterozygous deletion in exon 4 of BAG3, was identified in three affected males, resulted in frame-shift and a premature termination codon (p.Met306-Stop) producing a truncated BAG3 protein lacking functionally important PXXP and BAG domains. WES data were further utilized to map 10 SNP markers around the discovered mutation to generate shared disease haplotype in all affected individuals encompassing 11 Mb on 10q25.3-26.2 harboring BAG3. Finally genotypes were inferred for the unavailable/deceased individuals in the pedigrees. Here we propose that Chr10:121435979delC in BAG3 is a causal mutation in these subjects. Our and earlier studies indicate that BAG3 mutations are associated with DCM phenotypes. BAG3 should be added to cardiomyopathy gene panels for screening of DCM patients, and patients previously considered gene elusive should undergo sequencing of the BAG3 gene. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  19. Genomic landscape of ovarian clear cell carcinoma via whole exome sequencing.

    PubMed

    Kim, Se Ik; Lee, Ji Won; Lee, Maria; Kim, Hee Seung; Chung, Hyun Hoon; Kim, Jae-Weon; Park, Noh Hyun; Song, Yong-Sang; Seo, Jeong-Sun

    2018-02-01

    To analyze whole exome sequencing (WES) data on ovarian clear cell carcinoma (OCCC) in Korean patients via the technique of next generation sequencing (NGS). Genomic profiles were compared between endometriosis-associated OCCC (EMS-OCCC) and Non-EMS-OCCC. We used serum samples and cancer tissues, stored at the Seoul National University Hospital Human Biobank, that were initially collected from women diagnosed with OCCC between 2012 and 2016. In total, 15 patients were enrolled: 5 with pathologically confirmed EMS-OCCC and 10 with Non-EMS-OCCC. We performed NGS WES on 15 fresh frozen OCCC tissues and matched serum samples, enabling comprehensive genomic characterization of OCCC. OCCC was characterized by complex genomic alterations, with a median of 178 exonic mutations (range, 111-25,798) and a median of 343 somatic copy number variations (range, 43-1,820) per tumor sample. In all, 54 somatic mutations were discovered across 14 genes, including PIK3CA (40%), ARID1A (40%), and KRAS (20%) in the 15 Korean OCCCs. Copy number gains in NTRK1 (33%), MYC (40%), and GNAS (47%) and copy number losses in TET2 (73%), TSC1 (67%), BRCA2 (60%), and SMAD4 (47%) were frequent. The significantly altered pathways were associated with proliferation and survival (including the PI3K/AKT, TP53, and ERBB2 pathways) in 87% of OCCCs and with chromatin remodeling in 47% of OCCCs. No significant differences in frequencies of genetic alterations were detected between EMS-OCCC and Non-EMS-OCCC groups. We successfully characterized the genomic landscape of 15 Korean patients with OCCC. We identified potential therapeutic targets for the treatment of this malignancy. Copyright © 2017. Published by Elsevier Inc.

  20. Exome Sequencing and Linkage Analysis Identified Novel Candidate Genes in Recessive Intellectual Disability Associated with Ataxia.

    PubMed

    Jazayeri, Roshanak; Hu, Hao; Fattahi, Zohreh; Musante, Luciana; Abedini, Seyedeh Sedigheh; Hosseini, Masoumeh; Wienker, Thomas F; Ropers, Hans Hilger; Najmabadi, Hossein; Kahrizi, Kimia

    2015-10-01

    Intellectual disability (ID) is a neuro-developmental disorder which causes considerable socio-economic problems. Some ID individuals are also affected by ataxia, and the condition includes different mutations affecting several genes. We used whole exome sequencing (WES) in combination with homozygosity mapping (HM) to identify the genetic defects in five consanguineous families among our cohort study, with two affected children with ID and ataxia as major clinical symptoms. We identified three novel candidate genes, RIPPLY1, MRPL10, SNX14, and a new mutation in known gene SURF1. All are autosomal genes, except RIPPLY1, which is located on the X chromosome. Two are housekeeping genes, implicated in transcription and translation regulation and intracellular trafficking, and two encode mitochondrial proteins. The pathogenesis of these variants was evaluated by mutation classification, bioinformatic methods, review of medical and biological relevance, co-segregation studies in the particular family, and a normal population study. Linkage analysis and exome sequencing of a small number of affected family members is a powerful new technique which can be used to decrease the number of candidate genes in heterogenic disorders such as ID, and may even identify the responsible gene(s).

  1. Targeted gene panel sequencing in children with very early onset inflammatory bowel disease--evaluation and prospective analysis.

    PubMed

    Kammermeier, Jochen; Drury, Suzanne; James, Chela T; Dziubak, Robert; Ocaka, Louise; Elawad, Mamoun; Beales, Philip; Lench, Nicholas; Uhlig, Holm H; Bacchelli, Chiara; Shah, Neil

    2014-11-01

    Multiple monogenetic conditions with partially overlapping phenotypes can present with inflammatory bowel disease (IBD)-like intestinal inflammation. With novel genotype-specific therapies emerging, establishing a molecular diagnosis is becoming increasingly important. We have introduced targeted next-generation sequencing (NGS) technology as a prospective screening tool in children with very early onset IBD (VEOIBD). We evaluated the coverage of 40 VEOIBD genes in two separate cohorts undergoing targeted gene panel sequencing (TGPS) (n=25) and whole exome sequencing (WES) (n=20). TGPS revealed causative mutations in four genes (IL10RA, EPCAM, TTC37 and SKIV2L) discovered unexpected phenotypes and directly influenced clinical decision making by supporting as well as avoiding haematopoietic stem cell transplantation. TGPS resulted in significantly higher median coverage when compared with WES, fewer coverage deficiencies and improved variant detection across established VEOIBD genes. Excluding or confirming known VEOIBD genotypes should be considered early in the disease course in all cases of therapy-refractory VEOIBD, as it can have a direct impact on patient management. To combine both described NGS technologies would compensate for the limitations of WES for disease-specific application while offering the opportunity for novel gene discovery in the research setting. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  2. Whole Exome Sequencing in Dominant Cataract Identifies a New Causative Factor, CRYBA2, and a Variety of Novel Alleles in Known Genes

    PubMed Central

    Reis, Linda M.; Tyler, Rebecca C.; Muheisen, Sanaa; Raggio, Victor; Salviati, Leonardo; Han, Dennis P.; Costakos, Deborah; Yonath, Hagith; Hall, Sarah; Power, Patricia; Semina, Elena V.

    2013-01-01

    Pediatric cataracts are observed in 1–15 per 10,000 births with 10–25% of cases attributed to genetic causes; autosomal dominant inheritance is the most commonly observed pattern. Since the specific cataract phenotype is not sufficient to predict which gene is mutated, whole exome sequencing (WES) was utilized to concurrently screen all known cataract genes and to examine novel candidate factors for a disease-causing mutation in probands from 23 pedigrees affected with familial dominant cataract. Review of WES data for 36 known cataract genes identified causative mutations in nine pedigrees (39%) in CRYAA, CRYBB1, CRYBB3, CRYGC (2), CRYGD, GJA8 (2), and MIP and an additional likely causative mutation in EYA1; the CRYBB3 mutation represents the first dominant allele in this gene and demonstrates incomplete penetrance. Examination of crystallin genes not yet linked to human disease identified a novel cataract gene, CRYBA2, a member of the βγ-crystallin superfamily. The p.(Val50Met) mutation in CRYBA2 cosegregated with disease phenotype in a four-generation pedigree with autosomal dominant congenital cataracts with incomplete penetrance. Expression studies detected cryba2 transcripts during early lens development in zebrafish, supporting its role in congenital disease. Our data highlight the extreme genetic heterogeneity of dominant cataract as the eleven causative/likely causative mutations affected nine different genes and the majority of mutant alleles were novel. Furthermore, these data suggest that less than half of dominant cataract can be explained by mutations in currently known genes. PMID:23508780

  3. Whole-exome sequencing reveals novel mutations and epigenetic regulation in hypopharyngeal carcinoma

    PubMed Central

    Wu, Ping; Wu, Honglong; Tang, Yaoyun; Luo, Shi; Fang, Xing; Xie, Chubo; He, Jian; Zhao, Suping; Wang, Xiaofeng; Xu, Jiajia; Chen, Xi; Li, Dongfang; Yang, Huanming; Wang, Jian

    2017-01-01

    Hypopharyngeal cancer (HPC) frequently presents at an advanced stage, resulting in poor prognosis. Although combined surgical therapy and chemoradiotherapy have improved the survival for patients with HPC over the past 3 decades, the mortality rate in late-stage diagnosis of HPC is unsatisfactory. In this study, we performed whole-exome sequencing (WES) of 23 hypopharyngeal tumor and paired adjacent normal tissue to identify novel candidate driver genes associated with hypopharyngeal carcinoma. We identified several copy number variants (CNVs) and 15 somatic mutation genes that were associated with hypopharyngeal carcinoma. Mutations in nine new genes (PRB4, NSD1, REC8, ZNF772, ZNF69, EI24, CYFIP2, NEFH, KRTAP4-5) were also indentified. PRB4 and NSD1 expression were significantly upregulated in hypopharyngeal carcinoma, which was confirmed in an independent cohort using IHC. There was a positive relationship between PRB4 and NSD1. Downregulation of PRB4 by siRNA could inhibit cell growth, colony formation and cell invasion. Notably, we here demonstrate that NSD1 could bind to the promoter regions of PRB4 and activate promoter activity by reducing the binding of H3K27me2 and increasing the binding of H3K36me2 on PRB4 promoter. In summary, we pinpoint the predominant mutations in hypopharyngeal carcinoma by WES, highlighting the substantial genetic alterations contributing to hypopharyngeal carcinoma tumorigenesis. We also indentify a novel epigenetically regulatory between PRB4 and NSD1 that contribute to hypopharyngeal carcinoma tumorigenesis. They may become potential prognostic biomarkers and therapeutic target for hypopharyngeal carcinoma treatment. PMID:29156722

  4. A dominant variant in the PDE1C gene is associated with nonsyndromic hearing loss.

    PubMed

    Wang, Li; Feng, Yong; Yan, Denise; Qin, Litao; Grati, M'hamed; Mittal, Rahul; Li, Tao; Sundhari, Abhiraami Kannan; Liu, Yalan; Chapagain, Prem; Blanton, Susan H; Liao, Shixiu; Liu, Xuezhong

    2018-06-02

    Identification of genes with variants causing non-syndromic hearing loss (NSHL) is challenging due to genetic heterogeneity. The difficulty is compounded by technical limitations that in the past prevented comprehensive gene identification. Recent advances in technology, using targeted capture and next-generation sequencing (NGS), is changing the face of gene identification and making it possible to rapidly and cost-effectively sequence the whole human exome. Here, we characterize a five-generation Chinese family with progressive, postlingual autosomal dominant nonsyndromic hearing loss (ADNSHL). By combining population-specific mutation arrays, targeted deafness genes panel, whole exome sequencing (WES), we identified PDE1C (Phosphodiesterase 1C) c.958G>T (p.A320S) as the disease-associated variant. Structural modeling insights into p.A320S strongly suggest that the sequence alteration will likely affect the substrate-binding pocket of PDE1C. By whole-mount immunofluorescence on postnatal day 3 mouse cochlea, we show its expression in outer (OHC) and inner (IHC) hair cells cytosol co-localizing with Lamp-1 in lysosomes. Furthermore, we provide evidence that the variant alters the PDE1C hydrolytic activity for both cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP). Collectively, our findings indicate that the c.958G>T variant in PDE1C may disrupt the cross talk between cGMP-signaling and cAMP pathways in Ca 2+ homeostasis.

  5. Identification of a rare BMP pathway mutation in a non-syndromic human brain arteriovenous malformation via exome sequencing.

    PubMed

    Walcott, Brian P; Winkler, Ethan A; Zhou, Sirui; Birk, Harjus; Guo, Diana; Koch, Matthew J; Stapleton, Christopher J; Spiegelman, Dan; Dionne-Laporte, Alexandre; Dion, Patrick A; Kahle, Kristopher T; Rouleau, Guy A; Lawton, Michael T

    2018-01-01

    Brain arteriovenous malformations (AVMs) are abnormal connections between arteries and veins that can result in hemorrhagic stroke. A genetic basis for AVMs is suspected, and we investigated potential mutations in a 14-year-old girl who developed a recurrent brain AVM. Whole-exome sequencing (WES) of AVM lesion tissue and blood was performed accompanied by in silico modeling, protein expression observation in lesion tissue and zebrafish modeling. A stop-gain mutation (c.C739T:p.R247X) in the gene SMAD family member 9 ( SMAD9 ) was discovered. In the human brain tissue, immunofluorescent staining demonstrated a vascular predominance of SMAD9 at the protein level. Vascular SMAD9 was markedly reduced in AVM peri-nidal blood vessels, which was accompanied by a decrease in phosphorylated SMAD4, a downstream effector protein of the bone morphogenic protein signaling pathway. Zebrafish modeling ( Tg kdrl:eGFP ) of the morpholino splice site and translation-blocking knockdown of SMAD9 resulted in abnormal cerebral artery-to-vein connections with morphologic similarities to human AVMs. Orthogonal trajectories of evidence established a relationship between the candidate mutation discovered in SMAD9 via WES and the clinical phenotype. Replication in similar rare cases of recurrent AVM, or even more broadly sporadic AVM, may be informative in building a more comprehensive understanding of AVM pathogenesis.

  6. Exome sequencing identifies a novel FOXP3 mutation in a 2-generation family with inflammatory bowel disease.

    PubMed

    Okou, David T; Mondal, Kajari; Faubion, William A; Kobrynski, Lisa J; Denson, Lee A; Mulle, Jennifer G; Ramachandran, Dhanya; Xiong, Yuning; Svingen, Phyllis; Patel, Viren; Bose, Promita; Waters, Jon P; Prahalad, Sampath; Cutler, David J; Zwick, Michael E; Kugathasan, Subra

    2014-05-01

    Inflammatory bowel disease (IBD) is heritable, but a total of 163 variants commonly implicated in IBD pathogenesis account for only 25% of the heritability. Rare, highly penetrant genetic variants may also explain mendelian forms of IBD and some of the missing heritability. To test the hypothesis that rare loss-of-function mutations can be causative, we performed whole exome sequencing (WES) on 5 members of a 2-generation family of European ancestry presenting with an early-onset and atypical form of IBD. WES was performed for all of the 5 family members; the mother and 3 male offspring were affected, whereas the father was unaffected. Mapping, annotation, and filtering criteria were used to reduce candidate variants. For functional testing we performed forkhead box P3 (FOXP3) staining and a T-cell suppression assay. We identified a novel missense variant in exon 6 of the X-linked FOXP3 gene. The c.694A>C substitution in FOXP3 results in a cysteine-to-glycine change at the protein position 232 that is completely conserved among all vertebrates. This variant (heterozygous in the mother and hemizygous in all 3 affected sons) did not impair FOXP3 protein expression, but significantly reduced the ability of the host's T regulatory cells to suppress an inappropriate autoimmune response. The variant results in a milder immune dysregulation, polyendocrinopathy, enteropathy, and X-linked phenotype with early-onset IBD. Our study illustrates the successful application of WES for making a definitive molecular diagnosis in a case of multiply affected families, with atypical IBD-like phenotype. Our results also have important implications for disease biology and disease-directed therapeutic development.

  7. Increased Frequency of De Novo Copy Number Variations in Congenital Heart Disease by Integrative Analysis of SNP Array and Exome Sequence Data

    PubMed Central

    Rodriguez-Murillo, Laura; Fromer, Menachem; Mazaika, Erica; Vardarajan, Badri; Italia, Michael; Leipzig, Jeremy; DePalma, Steven R.; Golhar, Ryan; Sanders, Stephan J.; Yamrom, Boris; Ronemus, Michael; Iossifov, Ivan; Willsey, A. Jeremy; State, Matthew W.; Kaltman, Jonathan R.; White, Peter S.; Shen, Yufeng; Warburton, Dorothy; Brueckner, Martina; Seidman, Christine; Goldmuntz, Elizabeth; Gelb, Bruce D.; Lifton, Richard; Seidman, Jonathan; Hakonarson, Hakon; Chung, Wendy K.

    2014-01-01

    Rationale Congenital heart disease (CHD) is among the most common birth defects. Most cases are of unknown etiology. Objective To determine the contribution of de novo copy number variants (CNVs) in the etiology of sporadic CHD. Methods and Results We studied 538 CHD trios using genome-wide dense single nucleotide polymorphism (SNP) arrays and/or whole exome sequencing (WES). Results were experimentally validated using digital droplet PCR. We compared validated CNVs in CHD cases to CNVs in 1,301 healthy control trios. The two complementary high-resolution technologies identified 63 validated de novo CNVs in 51 CHD cases. A significant increase in CNV burden was observed when comparing CHD trios with healthy trios, using either SNP array (p=7x10−5, Odds Ratio (OR)=4.6) or WES data (p=6x10−4, OR=3.5) and remained after removing 16% of de novo CNV loci previously reported as pathogenic (p=0.02, OR=2.7). We observed recurrent de novo CNVs on 15q11.2 encompassing CYFIP1, NIPA1, and NIPA2 and single de novo CNVs encompassing DUSP1, JUN, JUP, MED15, MED9, PTPRE SREBF1, TOP2A, and ZEB2, genes that interact with established CHD proteins NKX2-5 and GATA4. Integrating de novo variants in WES and CNV data suggests that ETS1 is the pathogenic gene altered by 11q24.2-q25 deletions in Jacobsen syndrome and that CTBP2 is the pathogenic gene in 10q sub-telomeric deletions. Conclusions We demonstrate a significantly increased frequency of rare de novo CNVs in CHD patients compared with healthy controls and suggest several novel genetic loci for CHD. PMID:25205790

  8. Exome sequencing in children of women with skewed X-inactivation identifies atypical cases and complex phenotypes.

    PubMed

    Giorgio, Elisa; Brussino, Alessandro; Biamino, Elisa; Belligni, Elga Fabia; Bruselles, Alessandro; Ciolfi, Andrea; Caputo, Viviana; Pizzi, Simone; Calcia, Alessandro; Di Gregorio, Eleonora; Cavalieri, Simona; Mancini, Cecilia; Pozzi, Elisa; Ferrero, Marta; Riberi, Evelise; Borelli, Iolanda; Amoroso, Antonio; Ferrero, Giovanni Battista; Tartaglia, Marco; Brusco, Alfredo

    2017-05-01

    More than 100 X-linked intellectual disability (X-LID) genes have been identified to be involved in 10-15% of intellectual disability (ID). To identify novel possible candidates, we selected 18 families with a male proband affected by isolated or syndromic ID. Pedigree and/or clinical presentation suggested an X-LID disorder. After exclusion of known genetic diseases, we identified seven cases whose mother showed a skewed X-inactivation (>80%) that underwent whole exome sequencing (WES, 50X average depth). WES allowed to solve the genetic basis in four cases, two of which (Coffin-Lowry syndrome, RPS6K3 gene; ATRX syndrome, ATRX gene) had been missed by previous clinical/genetics tests. One further ATRX case showed a complex phenotype including pontocerebellar atrophy (PCA), possibly associated to an unidentified PCA gene mutation. In a case with suspected Lujan-Fryns syndrome, a c.649C>T (p.Pro217Ser) MECP2 missense change was identified, likely explaining the neurological impairment, but not the marfanoid features, which were possibly associated to the p.Thr1020Ala variant in fibrillin 1. Finally, a c.707T>G variant (p.Phe236Cys) in the DMD gene was identified in a patient retrospectively recognized to be affected by Becker muscular dystrophy (BMD, OMIM 300376). Overall, our data show that WES may give hints to solve complex ID phenotypes with a likely X-linked transmission, and that a significant proportion of these orphan conditions might result from concomitant mutations affecting different clinically associated genes. Copyright © 2016 European Paediatric Neurology Society. Published by Elsevier Ltd. All rights reserved.

  9. Ethical issues in consumer genome sequencing: Use of consumers' samples and data

    PubMed Central

    Niemiec, Emilia; Howard, Heidi Carmen

    2016-01-01

    High throughput approaches such as whole genome sequencing (WGS) and whole exome sequencing (WES) create an unprecedented amount of data providing powerful resources for clinical care and research. Recently, WGS and WES services have been made available by commercial direct-to-consumer (DTC) companies. The DTC offer of genetic testing (GT) has already brought attention to potentially problematic issues such as the adequacy of consumers' informed consent and transparency of companies' research activities. In this study, we analysed the websites of four DTC GT companies offering WGS and/or WES with regard to their policies governing storage and future use of consumers' data and samples. The results are discussed in relation to recommendations and guiding principles such as the “Statement of the European Society of Human Genetics on DTC GT for health-related purposes” (2010) and the “Framework for responsible sharing of genomic and health-related data” (Global Alliance for Genomics and Health, 2014). The analysis reveals that some companies may store and use consumers' samples or sequencing data for unspecified research and share the data with third parties. Moreover, the companies do not provide sufficient or clear information to consumers about this, which can undermine the validity of the consent process. Furthermore, while all companies state that they provide privacy safeguards for data and mention the limitations of these, information about the possibility of re-identification is lacking. Finally, although the companies that may conduct research do include information regarding proprietary claims and commercialisation of the results, it is not clear whether consumers are aware of the consequences of these policies. These results indicate that DTC GT companies still need to improve the transparency regarding handling of consumers' samples and data, including having an explicit and clear consent process for research activities. PMID:27047756

  10. Whole Exome Sequencing in Pediatric Neurology Patients: Clinical Implications and Estimated Cost Analysis.

    PubMed

    Nolan, Danielle; Carlson, Martha

    2016-06-01

    Genetic heterogeneity in neurologic disorders has been an obstacle to phenotype-based diagnostic testing. The authors hypothesized that information compiled via whole exome sequencing will improve clinical diagnosis and management of pediatric neurology patients. The authors performed a retrospective chart review of patients evaluated in the University of Michigan Pediatric Neurology clinic between 6/2011 and 6/2015. The authors recorded previous diagnostic testing, indications for whole exome sequencing, and whole exome sequencing results. Whole exome sequencing was recommended for 135 patients and obtained in 53 patients. Insurance barriers often precluded whole exome sequencing. The most common indication for whole exome sequencing was neurodevelopmental disorders. Whole exome sequencing improved the presumptive diagnostic rate in the patient cohort from 25% to 48%. Clinical implications included family planning, medication selection, and systemic investigation. Compared to current second tier testing, whole exome sequencing can result in lower long-term charges and more timely diagnosis. Overcoming barriers related to whole exome sequencing insurance authorization could allow for more efficient and fruitful diagnostic neurological evaluations. © The Author(s) 2016.

  11. Next-generation sequencing in familial breast cancer patients from Lebanon.

    PubMed

    Jalkh, Nadine; Chouery, Eliane; Haidar, Zahraa; Khater, Christina; Atallah, David; Ali, Hamad; Marafie, Makia J; Al-Mulla, Mohamed R; Al-Mulla, Fahd; Megarbane, Andre

    2017-02-15

    Familial breast cancer (BC) represents 5 to 10% of all BC cases. Mutations in two high susceptibility BRCA1 and BRCA2 genes explain 16-40% of familial BC, while other high, moderate and low susceptibility genes explain up to 20% more of BC families. The Lebanese reported prevalence of BRCA1 and BRCA2 deleterious mutations (5.6% and 12.5%) were lower than those reported in the literature. In the presented study, 45 Lebanese patients with a reported family history of BC were tested using Whole Exome Sequencing (WES) technique followed by Sanger sequencing validation. Nineteen pathogenic mutations were identified in this study. These 19 mutations were found in 13 different genes such as: ABCC12, APC, ATM, BRCA1, BRCA2, CDH1, ERCC6, MSH2, POLH, PRF1, SLX4, STK11 and TP53. In this first application of WES on BC in Lebanon, we detected six BRCA1 and BRCA2 deleterious mutations in seven patients, with a total prevalence of 15.5%, a figure that is lower than those reported in the Western literature. The p.C44F mutation in the BRCA1 gene appeared twice in this study, suggesting a founder effect. Importantly, the overall mutation prevalence was equal to 40%, justifying the urgent need to deploy WES for the identification of genetic variants responsible for familial BC in the Lebanese population.

  12. Navigating highly homologous genes in a molecular diagnostic setting: a resource for clinical next-generation sequencing.

    PubMed

    Mandelker, Diana; Schmidt, Ryan J; Ankala, Arunkanth; McDonald Gibson, Kristin; Bowser, Mark; Sharma, Himanshu; Duffy, Elizabeth; Hegde, Madhuri; Santani, Avni; Lebo, Matthew; Funke, Birgit

    2016-12-01

    Next-generation sequencing (NGS) is now routinely used to interrogate large sets of genes in a diagnostic setting. Regions of high sequence homology continue to be a major challenge for short-read technologies and can lead to false-positive and false-negative diagnostic errors. At the scale of whole-exome sequencing (WES), laboratories may be limited in their knowledge of genes and regions that pose technical hurdles due to high homology. We have created an exome-wide resource that catalogs highly homologous regions that is tailored toward diagnostic applications. This resource was developed using a mappability-based approach tailored to current Sanger and NGS protocols. Gene-level and exon-level lists delineate regions that are difficult or impossible to analyze via standard NGS. These regions are ranked by degree of affectedness, annotated for medical relevance, and classified by the type of homology (within-gene, different functional gene, known pseudogene, uncharacterized noncoding region). Additionally, we provide a list of exons that cannot be analyzed by short-amplicon Sanger sequencing. This resource can help guide clinical test design, supplemental assay implementation, and results interpretation in the context of high homology.Genet Med 18 12, 1282-1289.

  13. Single-Cell Sequencing for Drug Discovery and Drug Development.

    PubMed

    Wu, Hongjin; Wang, Charles; Wu, Shixiu

    2017-01-01

    Next-generation sequencing (NGS), particularly single-cell sequencing, has revolutionized the scale and scope of genomic and biomedical research. Recent technological advances in NGS and singlecell studies have made the deep whole-genome (DNA-seq), whole epigenome and whole-transcriptome sequencing (RNA-seq) at single-cell level feasible. NGS at the single-cell level expands our view of genome, epigenome and transcriptome and allows the genome, epigenome and transcriptome of any organism to be explored without a priori assumptions and with unprecedented throughput. And it does so with single-nucleotide resolution. NGS is also a very powerful tool for drug discovery and drug development. In this review, we describe the current state of single-cell sequencing techniques, which can provide a new, more powerful and precise approach for analyzing effects of drugs on treated cells and tissues. Our review discusses single-cell whole genome/exome sequencing (scWGS/scWES), single-cell transcriptome sequencing (scRNA-seq), single-cell bisulfite sequencing (scBS), and multiple omics of single-cell sequencing. We also highlight the advantages and challenges of each of these approaches. Finally, we describe, elaborate and speculate the potential applications of single-cell sequencing for drug discovery and drug development. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  14. Integrated genomic sequencing reveals mutational landscape of T-cell prolymphocytic leukemia

    PubMed Central

    Kiel, Mark J.; Velusamy, Thirunavukkarasu; Rolland, Delphine; Sahasrabuddhe, Anagh A.; Chung, Fuzon; Bailey, Nathanael G.; Schrader, Alexandra; Li, Bo; Li, Jun Z.; Ozel, Ayse B.; Betz, Bryan L.; Miranda, Roberto N.; Medeiros, L. Jeffrey; Zhao, Lili; Herling, Marco

    2014-01-01

    The comprehensive genetic alterations underlying the pathogenesis of T-cell prolymphocytic leukemia (T-PLL) are unknown. To address this, we performed whole-genome sequencing (WGS), whole-exome sequencing (WES), high-resolution copy-number analysis, and Sanger resequencing of a large cohort of T-PLL. WGS and WES identified novel mutations in recurrently altered genes not previously implicated in T-PLL including EZH2, FBXW10, and CHEK2. Strikingly, WGS and/or WES showed largely mutually exclusive mutations affecting IL2RG, JAK1, JAK3, or STAT5B in 38 of 50 T-PLL genomes (76.0%). Notably, gain-of-function IL2RG mutations are novel and have not been reported in any form of cancer. Further, high-frequency mutations in STAT5B have not been previously reported in T-PLL. Functionally, IL2RG-JAK1-JAK3-STAT5B mutations led to signal transducer and activator of transcription 5 (STAT5) hyperactivation, transformed Ba/F3 cells resulting in cytokine-independent growth, and/or enhanced colony formation in Jurkat T cells. Importantly, primary T-PLL cells exhibited constitutive activation of STAT5, and targeted pharmacologic inhibition of STAT5 with pimozide induced apoptosis in primary T-PLL cells. These results for the first time provide a portrait of the mutational landscape of T-PLL and implicate deregulation of DNA repair and epigenetic modulators as well as high-frequency mutational activation of the IL2RG-JAK1-JAK3-STAT5B axis in the pathogenesis of T-PLL. These findings offer opportunities for novel targeted therapies in this aggressive leukemia. PMID:24825865

  15. Integrated genomic sequencing reveals mutational landscape of T-cell prolymphocytic leukemia.

    PubMed

    Kiel, Mark J; Velusamy, Thirunavukkarasu; Rolland, Delphine; Sahasrabuddhe, Anagh A; Chung, Fuzon; Bailey, Nathanael G; Schrader, Alexandra; Li, Bo; Li, Jun Z; Ozel, Ayse B; Betz, Bryan L; Miranda, Roberto N; Medeiros, L Jeffrey; Zhao, Lili; Herling, Marco; Lim, Megan S; Elenitoba-Johnson, Kojo S J

    2014-08-28

    The comprehensive genetic alterations underlying the pathogenesis of T-cell prolymphocytic leukemia (T-PLL) are unknown. To address this, we performed whole-genome sequencing (WGS), whole-exome sequencing (WES), high-resolution copy-number analysis, and Sanger resequencing of a large cohort of T-PLL. WGS and WES identified novel mutations in recurrently altered genes not previously implicated in T-PLL including EZH2, FBXW10, and CHEK2. Strikingly, WGS and/or WES showed largely mutually exclusive mutations affecting IL2RG, JAK1, JAK3, or STAT5B in 38 of 50 T-PLL genomes (76.0%). Notably, gain-of-function IL2RG mutations are novel and have not been reported in any form of cancer. Further, high-frequency mutations in STAT5B have not been previously reported in T-PLL. Functionally, IL2RG-JAK1-JAK3-STAT5B mutations led to signal transducer and activator of transcription 5 (STAT5) hyperactivation, transformed Ba/F3 cells resulting in cytokine-independent growth, and/or enhanced colony formation in Jurkat T cells. Importantly, primary T-PLL cells exhibited constitutive activation of STAT5, and targeted pharmacologic inhibition of STAT5 with pimozide induced apoptosis in primary T-PLL cells. These results for the first time provide a portrait of the mutational landscape of T-PLL and implicate deregulation of DNA repair and epigenetic modulators as well as high-frequency mutational activation of the IL2RG-JAK1-JAK3-STAT5B axis in the pathogenesis of T-PLL. These findings offer opportunities for novel targeted therapies in this aggressive leukemia. © 2014 by The American Society of Hematology.

  16. Robustness of Next Generation Sequencing on Older Formalin-Fixed Paraffin-Embedded Tissue

    PubMed Central

    Carrick, Danielle Mercatante; Mehaffey, Michele G.; Sachs, Michael C.; Altekruse, Sean; Camalier, Corinne; Chuaqui, Rodrigo; Cozen, Wendy; Das, Biswajit; Hernandez, Brenda Y.; Lih, Chih-Jian; Lynch, Charles F.; Makhlouf, Hala; McGregor, Paul; McShane, Lisa M.; Phillips Rohan, JoyAnn; Walsh, William D.; Williams, Paul M.; Gillanders, Elizabeth M.; Mechanic, Leah E.; Schully, Sheri D.

    2015-01-01

    Next Generation Sequencing (NGS) technologies are used to detect somatic mutations in tumors and study germ line variation. Most NGS studies use DNA isolated from whole blood or fresh frozen tissue. However, formalin-fixed paraffin-embedded (FFPE) tissues are one of the most widely available clinical specimens. Their potential utility as a source of DNA for NGS would greatly enhance population-based cancer studies. While preliminary studies suggest FFPE tissue may be used for NGS, the feasibility of using archived FFPE specimens in population based studies and the effect of storage time on these specimens needs to be determined. We conducted a study to determine whether DNA in archived FFPE high-grade ovarian serous adenocarcinomas from Surveillance, Epidemiology and End Results (SEER) registries Residual Tissue Repositories (RTR) was present in sufficient quantity and quality for NGS assays. Fifty-nine FFPE tissues, stored from 3 to 32 years, were obtained from three SEER RTR sites. DNA was extracted, quantified, quality assessed, and subjected to whole exome sequencing (WES). Following DNA extraction, 58 of 59 specimens (98%) yielded DNA and moved on to the library generation step followed by WES. Specimens stored for longer periods of time had significantly lower coverage of the target region (6% lower per 10 years, 95% CI: 3-10%) and lower average read depth (40x lower per 10 years, 95% CI: 18-60), although sufficient quality and quantity of WES data was obtained for data mining. Overall, 90% (53/59) of specimens provided usable NGS data regardless of storage time. This feasibility study demonstrates FFPE specimens acquired from SEER registries after varying lengths of storage time and under varying storage conditions are a promising source of DNA for NGS. PMID:26222067

  17. IMPACT: a whole-exome sequencing analysis pipeline for integrating molecular profiles with actionable therapeutics in clinical samples

    PubMed Central

    Hintzsche, Jennifer; Kim, Jihye; Yadav, Vinod; Amato, Carol; Robinson, Steven E; Seelenfreund, Eric; Shellman, Yiqun; Wisell, Joshua; Applegate, Allison; McCarter, Martin; Box, Neil; Tentler, John; De, Subhajyoti

    2016-01-01

    Objective Currently, there is a disconnect between finding a patient’s relevant molecular profile and predicting actionable therapeutics. Here we develop and implement the Integrating Molecular Profiles with Actionable Therapeutics (IMPACT) analysis pipeline, linking variants detected from whole-exome sequencing (WES) to actionable therapeutics. Methods and materials The IMPACT pipeline contains 4 analytical modules: detecting somatic variants, calling copy number alterations, predicting drugs against deleterious variants, and analyzing tumor heterogeneity. We tested the IMPACT pipeline on whole-exome sequencing data in The Cancer Genome Atlas (TCGA) lung adenocarcinoma samples with known EGFR mutations. We also used IMPACT to analyze melanoma patient tumor samples before treatment, after BRAF-inhibitor treatment, and after BRAF- and MEK-inhibitor treatment. Results IMPACT Food and Drug Administration (FDA) correctly identified known EGFR mutations in the TCGA lung adenocarcinoma samples. IMPACT linked these EGFR mutations to the appropriate FDA-approved EGFR inhibitors. For the melanoma patient samples, we identified NRAS p.Q61K as an acquired resistance mutation to BRAF-inhibitor treatment. We also identified CDKN2A deletion as a novel acquired resistance mutation to BRAFi/MEKi inhibition. The IMPACT analysis pipeline predicts these somatic variants to actionable therapeutics. We observed the clonal dynamic in the tumor samples after various treatments. We showed that IMPACT not only helped in successful prioritization of clinically relevant variants but also linked these variations to possible targeted therapies. Conclusion IMPACT provides a new bioinformatics strategy to delineate candidate somatic variants and actionable therapies. This approach can be applied to other patient tumor samples to discover effective drug targets for personalized medicine. IMPACT is publicly available at http://tanlab.ucdenver.edu/IMPACT. PMID:27026619

  18. IMPACT: a whole-exome sequencing analysis pipeline for integrating molecular profiles with actionable therapeutics in clinical samples.

    PubMed

    Hintzsche, Jennifer; Kim, Jihye; Yadav, Vinod; Amato, Carol; Robinson, Steven E; Seelenfreund, Eric; Shellman, Yiqun; Wisell, Joshua; Applegate, Allison; McCarter, Martin; Box, Neil; Tentler, John; De, Subhajyoti; Robinson, William A; Tan, Aik Choon

    2016-07-01

    Currently, there is a disconnect between finding a patient's relevant molecular profile and predicting actionable therapeutics. Here we develop and implement the Integrating Molecular Profiles with Actionable Therapeutics (IMPACT) analysis pipeline, linking variants detected from whole-exome sequencing (WES) to actionable therapeutics. The IMPACT pipeline contains 4 analytical modules: detecting somatic variants, calling copy number alterations, predicting drugs against deleterious variants, and analyzing tumor heterogeneity. We tested the IMPACT pipeline on whole-exome sequencing data in The Cancer Genome Atlas (TCGA) lung adenocarcinoma samples with known EGFR mutations. We also used IMPACT to analyze melanoma patient tumor samples before treatment, after BRAF-inhibitor treatment, and after BRAF- and MEK-inhibitor treatment. IMPACT Food and Drug Administration (FDA) correctly identified known EGFR mutations in the TCGA lung adenocarcinoma samples. IMPACT linked these EGFR mutations to the appropriate FDA-approved EGFR inhibitors. For the melanoma patient samples, we identified NRAS p.Q61K as an acquired resistance mutation to BRAF-inhibitor treatment. We also identified CDKN2A deletion as a novel acquired resistance mutation to BRAFi/MEKi inhibition. The IMPACT analysis pipeline predicts these somatic variants to actionable therapeutics. We observed the clonal dynamic in the tumor samples after various treatments. We showed that IMPACT not only helped in successful prioritization of clinically relevant variants but also linked these variations to possible targeted therapies. IMPACT provides a new bioinformatics strategy to delineate candidate somatic variants and actionable therapies. This approach can be applied to other patient tumor samples to discover effective drug targets for personalized medicine.IMPACT is publicly available at http://tanlab.ucdenver.edu/IMPACT. © The Author 2016. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. Exome Sequencing Identifies a Founder Frameshift Mutation in an Alternative Exon of USH1C as the Cause of Autosomal Recessive Retinitis Pigmentosa with Late-Onset Hearing Loss

    PubMed Central

    Khateb, Samer; Zelinger, Lina; Ben-Yosef, Tamar; Crystal-Shalit, Ornit; Gross, Menachem; Banin, Eyal; Sharon, Dror

    2012-01-01

    We used a combined approach of homozygosity mapping and whole exome sequencing (WES) to search for the genetic cause of autosomal recessive retinitis pigmentosa (arRP) in families of Yemenite Jewish origin. Homozygosity mapping of two arRP Yemenite Jewish families revealed a few homozygous regions. A subsequent WES analysis of the two index cases revealed a shared homozygous novel nucleotide deletion (c.1220delG) leading to a frameshift (p.Gly407Glufs*56) in an alternative exon (#15) of USH1C. Screening of additional Yemenite Jewish patients revealed a total of 16 homozygous RP patients (with a carrier frequency of 0.008 in controls). Funduscopic and electroretinography findings were within the spectrum of typical RP. While other USH1C mutations usually cause Usher type I (including RP, vestibular dysfunction and congenital deafness), audiometric screening of 10 patients who are homozygous for c.1220delG revealed that patients under 40 years of age had normal hearing while older patients showed mild to severe high tone sensorineural hearing loss. This is the first report of a mutation in a known USH1 gene that causes late onset rather than congenital sensorineural hearing loss. The c.1220delG mutation of USH1C accounts for 23% of RP among Yemenite Jewish patients in our cohort. PMID:23251578

  20. In-depth comparison of somatic point mutation callers based on different tumor next-generation sequencing depth data

    NASA Astrophysics Data System (ADS)

    Cai, Lei; Yuan, Wei; Zhang, Zhou; He, Lin; Chou, Kuo-Chen

    2016-11-01

    Four popular somatic single nucleotide variant (SNV) calling methods (Varscan, SomaticSniper, Strelka and MuTect2) were carefully evaluated on the real whole exome sequencing (WES, depth of ~50X) and ultra-deep targeted sequencing (UDT-Seq, depth of ~370X) data. The four tools returned poor consensus on candidates (only 20% of calls were with multiple hits by the callers). For both WES and UDT-Seq, MuTect2 and Strelka obtained the largest proportion of COSMIC entries as well as the lowest rate of dbSNP presence and high-alternative-alleles-in-control calls, demonstrating their superior sensitivity and accuracy. Combining different callers does increase reliability of candidates, but narrows the list down to very limited range of tumor read depth and variant allele frequency. Calling SNV on UDT-Seq data, which were of much higher read-depth, discovered additional true-positive variations, despite an even more tremendous growth in false positive predictions. Our findings not only provide valuable benchmark for state-of-the-art SNV calling methods, but also shed light on the access to more accurate SNV identification in the future.

  1. A comprehensive characterization of rare mitochondrial DNA variants in neuroblastoma.

    PubMed

    Calabrese, Francesco Maria; Clima, Rosanna; Pignataro, Piero; Lasorsa, Vito Alessandro; Hogarty, Michael D; Castellano, Aurora; Conte, Massimo; Tonini, Gian Paolo; Iolascon, Achille; Gasparre, Giuseppe; Capasso, Mario

    2016-08-02

    Neuroblastoma, a tumor of the developing sympathetic nervous system, is a common childhood neoplasm that is often lethal. Mitochondrial DNA (mtDNA) mutations have been found in most tumors including neuroblastoma. We extracted mtDNA data from a cohort of neuroblastoma samples that had undergone Whole Exome Sequencing (WES) and also used snap-frozen samples in which mtDNA was entirely sequenced by Sanger technology. We next undertook the challenge of determining those mutations that are relevant to, or arisen during tumor development. The bioinformatics pipeline used to extract mitochondrial variants from matched tumor/blood samples was enriched by a set of filters inclusive of heteroplasmic fraction, nucleotide variability, and in silico prediction of pathogenicity. Our in silico multistep workflow applied both on WES and Sanger-sequenced neuroblastoma samples, allowed us to identify a limited burden of somatic and germline mitochondrial mutations with a potential pathogenic impact. The few singleton germline and somatic mitochondrial mutations emerged, according to our in silico analysis, do not appear to impact on the development of neuroblastoma. Our findings are consistent with the hypothesis that most mitochondrial somatic mutations can be considered as 'passengers' and consequently have no discernible effect in this type of cancer.

  2. Whole exome sequencing with genomic triangulation implicates CDH2-encoded N-cadherin as a novel pathogenic substrate for arrhythmogenic cardiomyopathy.

    PubMed

    Turkowski, Kari L; Tester, David J; Bos, J Martijn; Haugaa, Kristina H; Ackerman, Michael J

    2017-03-01

    Arrhythmogenic cardiomyopathy (ACM) is a heritable disease characterized by fibrofatty replacement of cardiomyocytes, has a prevalence of approximately 1 in 5000 individuals, and accounts for approximately 20% of sudden cardiac death in the young (≤35 years). ACM is most often inherited as an autosomal dominant trait with incomplete penetrance and variable expression. While mutations in several genes that encode key desmosomal proteins underlie about half of all ACM, the remainder is elusive genetically. Here, whole exome sequencing (WES) was performed with genomic triangulation in an effort to identify a novel explanation for a phenotype-positive, genotype-negative multi-generational pedigree with a presumed autosomal dominant, maternal inheritance of ACM. WES and genomic triangulation was performed on a symptomatic 14-year-old female proband, her affected mother and affected sister, and her unaffected father to elucidate a novel ACM-susceptibility gene for this pedigree. Following variant filtering using Ingenuity® Variant Analysis, gene priority ranking was performed on the candidate genes using ToppGene and Endeavour. The phylogenetic and physiochemical properties of candidate mutations were assessed further by 6 in silico prediction tools. Species alignment and amino acid conservation analysis was performed using the Uniprot Consortium. Tissue expression data was abstracted from Expression Atlas. Following WES and genomic triangulation, CDH2 emerged as a novel, autosomal dominant, ACM-susceptibility gene. The CDH2-encoded N-cadherin is a cell-cell adhesion protein predominately expressed in the heart. Cardiac dysfunction has been demonstrated in prior CDH2 knockout and over-expression animal studies. Further in silico mutation prediction, species conservation, and protein expression analysis supported the ultra-rare (minor allele frequency <0.005%) p.Asp407Asn-CDH2 variant as a likely pathogenic variant. Herein, it is demonstrated that genetic mutations in CDH2-encoded N-cadherin may represent a novel pathogenetic basis for ACM in humans. The prevalence of CDH2-mediated ACM in heretofore genetically elusive ACM remains to be determined. © 2017 Wiley Periodicals, Inc.

  3. [Pharmacogenomics study of 620 whole-exome sequencing: focusing on aspirin application].

    PubMed

    Yang, L; Lu, Y L; Wang, H J; Zhou, W H

    2016-05-01

    To investigate the allele frequencies of aspirin-response-related variants in different population. The allele frequencies of reported clinically significant aspirin-response-related variants were evaluated based on 620 whole exome sequencing (WES) data collected from 2013 to 2016 in Children's Hospital of Fudan University.Then the local allele frequencies were compared with 1 000 Genomes project database, and χ(2) test was used. Thirty-eight aspirin-response-related variants that had clinical significance had been detected in the 620 WES data.Ten (26%) of them were related with drug efficacy while 28 (74%) were related with toxicity or adverse drug reaction (ADR). These variants were distributed in 33 genes.There were 23 aspirin-related variants further analysised, and the frequency of 7 (rs1050891, rs6065, rs7862221, rs1065776, rs3818822, rs3775291 and rs1126643) had no significant difference compared with frequency of European and East Asian population of 1 000 Genome project (P>0.01 for both), 10 (rs2228079, rs1613662, rs4523, rs28360521, rs1131882, rs1047626, rs3856806, rs2768759, rs7572857 and rs1126510) of them had no significant difference compared with East Asian but were significantly different from European population, 1 (rs2075797) had no significant difference compared with frequency of European and different with frequency of East Asian, and 5 variants(rs10279545, rs730012, rs16851030, rs1353411, rs1800469)were different from frequency of both East Asian(0.019, 0.058, 0.167, 0.452, 0.340 vs. 0.100, 0.151, 0.396, 0.568, 0.453, χ(2)=21.798, 20.400, 67.543, 16.531, 15.807, P all<0.01) and European population(0.531, 0.312, 0.037, 0.179, 0.688, χ(2)=325.799, 92.877, 144.811, 156.471, 174.533, P all<0.01). Most variants that have clinical significance in aspirin response are related with drug efficacy or drug toxicity or ADR, indicating the urgency of variants screen in clinical practice.Significant population-specificity is detected in local 620 WES data in aspirin-response-related variants.

  4. Spinal motor neuron involvement in a patient with homozygous PRUNE mutation.

    PubMed

    Iacomino, Michele; Fiorillo, Chiara; Torella, Annalaura; Severino, Mariasavina; Broda, Paolo; Romano, Catia; Falsaperla, Raffaele; Pozzolini, Giulia; Minetti, Carlo; Striano, Pasquale; Nigro, Vincenzo; Zara, Federico

    2018-05-01

    In the last few years, whole exome sequencing (WES) allowed the identification of PRUNE mutations in patients featuring a complex neurological phenotype characterized by severe neurodevelopmental delay, microcephaly, epilepsy, optic atrophy, and brain or cerebellar atrophy. We describe an additional patient with homozygous PRUNE mutation who presented with spinal muscular atrophy phenotype, in addition to the already known brain developmental disorder. This novel feature expands the clinical consequences of PRUNE mutations and allow to converge PRUNE syndrome with previous descriptions of neurodevelopmental/neurodegenerative disorders linked to altered microtubule dynamics. Copyright © 2017 European Paediatric Neurology Society. Published by Elsevier Ltd. All rights reserved.

  5. Integrated tumor and germline whole-exome sequencing identifies mutations in MAPK and PI3K pathway genes in an adolescent with rosette-forming glioneuronal tumor of the fourth ventricle

    PubMed Central

    Lin, Frank Y.; Bergstrom, Katie; Person, Richard; Bavle, Abhishek; Ballester, Leomar Y.; Scollon, Sarah; Raesz-Martinez, Robin; Jea, Andrew; Birchansky, Sherri; Wheeler, David A.; Berg, Stacey L.; Chintagumpala, Murali M.; Adesina, Adekunle M.; Eng, Christine; Roy, Angshumoy; Plon, Sharon E.; Parsons, D. Williams

    2016-01-01

    The integration of genome-scale studies such as whole-exome sequencing (WES) into the clinical care of children with cancer has the potential to provide insight into the genetic basis of an individual's cancer with implications for clinical management. This report describes the results of clinical tumor and germline WES for a patient with a rare tumor diagnosis, rosette-forming glioneuronal tumor of the fourth ventricle (RGNT). Three pathogenic gene alterations with implications for clinical care were identified: somatic activating hotspot mutations in FGFR1 (p.N546K) and PIK3CA (p.H1047R) and a germline pathogenic variant in PTPN11 (p.N308S) diagnostic for Noonan syndrome. The molecular landscape of RGNT is not well-described, but these data are consistent with prior observations regarding the importance of the interconnected MAPK and PI3K/AKT/mTOR signaling pathways in this rare tumor. The co-occurrence of FGFR1, PIK3CA, and PTPN11 alterations provides further evidence for consideration of RGNT as a distinct molecular entity from pediatric low-grade gliomas and suggests potential therapeutic strategies for this patient in the event of tumor recurrence as novel agents targeting these pathways enter pediatric clinical trials. Although RGNT has not been definitively linked with cancer predisposition syndromes, two prior cases have been reported in patients with RASopathies (Noonan syndrome and neurofibromatosis type 1 [NF1]), providing an additional link between these tumors and the mitogen-activated protein kinase (MAPK) signaling pathway. In summary, this case provides an example of the potential for genome-scale sequencing technologies to provide insight into the biology of rare tumors and yield both tumor and germline results of potential relevance to patient care. PMID:27626068

  6. Whole-Exome Sequencing to Identify Rare Variants and Gene Networks that Increase Susceptibility to Scleroderma in African Americans.

    PubMed

    Gourh, Pravitt; Remmers, Elaine F; Boyden, Steven E; Alexander, Theresa; Morgan, Nadia D; Shah, Ami A; Mayes, Maureen D; Doumatey, Ayo; Bentley, Amy R; Shriner, Daniel; Domsic, Robyn T; Medsger, Thomas A; Steen, Virginia D; Ramos, Paula S; Silver, Richard M; Korman, Benjamin; Varga, John; Schiopu, Elena; Khanna, Dinesh; Hsu, Vivien; Gordon, Jessica K; Saketkoo, Lesley Ann; Gladue, Heather; Kron, Brynn; Criswell, Lindsey A; Derk, Chris T; Bridges, S Louis; Shanmugam, Victoria K; Kolstad, Kathleen D; Chung, Lorinda; Jan, Reem; Bernstein, Elana J; Goldberg, Avram; Trojanowski, Marcin; Kafaja, Suzanne; Maksimowicz-McKinnon, Kathleen M; Mullikin, James C; Adeyemo, Adebowale; Rotimi, Charles; Boin, Francesco; Kastner, Daniel L; Wigley, Fredrick M

    2018-05-06

    Whole-exome sequencing (WES) studies in systemic sclerosis (SSc) patients of European American (EA) ancestry have identified variants in the ATP8B4 gene and enrichment of variants in genes in the extracellular matrix (ECM)-related pathway increasing SSc susceptibility. Our goal was to evaluate the association of the ATP8B4 gene and the ECM-related pathway with SSc in a cohort of African Americans (AA). SSc patients of AA ancestry were enrolled from 23 academic centers across the United States under the Genome Research in African American Scleroderma Patients (GRASP) consortium. Unrelated AA individuals without serological evidence of autoimmunity enrolled in the Howard University Family Study were used as unaffected controls. Functional variants in genes reported in the two WES studies in EA SSc were selected for gene association testing using the optimized sequence kernel association test (SKAT-O) and pathway analysis by Ingenuity pathway analysis in 379 patients and 411 controls. Principal components analysis demonstrated that the patients and controls had similar ancestral backgrounds with about equal proportions of mean European admixture. Using SKAT-O, we examined the association of individual genes that were previously reported in EAs, and none remained significant including ATP8B4 (P U nCorr =0.98). However, we confirm the previously reported association of the ECM-related pathway with enrichment of variants within the COL13A1, COL18A1, COL22A1, COL4A3, COL4A4, COL5A2, PROK1, and SERPINE1 genes (P C orr =1.95×10 -4 ). This is the largest genetic study in AAs with SSc to date, corroborating the role of functional variants aggregating in a fibrotic pathway and increasing SSc susceptibility. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  7. Next-generation sequencing improves treatment efficacy and reduces hospitalization in children with drug-resistant epilepsy.

    PubMed

    Peng, Jing; Pang, Nan; Wang, Ying; Wang, Xiao-Le; Chen, Jian; Xiong, Juan; Peng, Pan; Zhu, Can-Hui; Kessi, Miriam Barakael; He, Fang; Yin, Fei

    2018-06-22

    The purposes of this study were three-fold: (i) to determine the contribution of known genes to the causation of a broad-spectrum of pediatric drug-resistant epilepsy (DRE), (ii) to compare the diagnostic yield and cost among different next-generation sequencing (NGS) approaches, and especially (iii) to assess how NGS approaches can benefit patients by improving diagnosis and treatment efficiency. This study enrolled 273 pediatric DRE patients with no obvious acquired etiology. Seventy-four patients underwent whole-exome sequencing (WES), 141 patients had epilepsy-related gene panel testing, and another 58 patients had clinical WES gene panel testing. We obtained these patients' seizure and hospitalization frequency by periodic follow-up phone calls and outpatient visits. Genetic diagnosis was achieved in 86 patients (31.5%) and involved 93 likely disease-causing mutations in 33 genes. In this study, the detection rates of the epilepsy-related gene panel, the clinical WES gene panel, and WES were 32.6% (46/141), 44.8% (26/58), and 17.3% (13/74), respectively. Moreover, 34 patients accepted corrective therapy according to their mutant genes, after which 52.9% (18/34) became seizure-free and 38.2% (13/34) achieved seizure reduction. In the end, patients with either positive or negative genetic results had significantly fewer hospitalization incidents (times/half year) than before (positive genetic results group 0.58 ± 1.14 vs 0.10 ± 0.26; negative genetic results group 0.72 ± 1.65 vs 0.12 ± 0.33). These results offer further proof that NGS approaches represent powerful tools for establishing a definitive diagnosis. Moreover, this study indicated how NGS can improve treatment efficacy and reduce hospitalization in children with DRE. © 2018 John Wiley & Sons Ltd.

  8. LRRTM4-C538Y novel gene mutation is associated with hereditary macular degeneration with novel dysfunction of ON-type bipolar cells.

    PubMed

    Kawamura, Yuichi; Suga, Akiko; Fujimaki, Takuro; Yoshitake, Kazutoshi; Tsunoda, Kazushige; Murakami, Akira; Iwata, Takeshi

    2018-05-14

    The macula is a unique structure in higher primates, where cone and rod photoreceptors show highest density in the fovea and the surrounding area, respectively. The hereditary macular dystrophies represent a heterozygous group of rare disorders characterized by central visual loss and atrophy of the macula and surrounding retina. Here we report an atypical absence of ON-type bipolar cell response in a Japanese patient with autosomal dominant macular dystrophy (adMD). To identify a causal genetic mutation for the adMD, we performed whole-exome sequencing (WES) on four affected and four-non affected members of the family for three generations, and identified a novel p.C538Y mutation in a post-synaptic gene, LRRTM4. WES analysis revealed seven rare genetic variations in patients. We further referred to our in-house WES data from 1360 families with inherited retinal diseases, and found that only p.C538Y mutation in LRRTM4 was associated with adMD-affected patients. Combinatorial filtration using public database of single-nucleotide polymorphism frequency and genotype-phenotype annotated database identified novel mutation in atypical adMD.

  9. Newborn Screening in the Era of Precision Medicine.

    PubMed

    Yang, Lan; Chen, Jiajia; Shen, Bairong

    2017-01-01

    As newborn screening success stories gained general confirmation during the past 50 years, scientists quickly discovered diagnostic tests for a host of genetic disorders that could be treated at birth. Outstanding progress in sequencing technologies over the last two decades has made it possible to comprehensively profile newborn screening (NBS) and identify clinically relevant genomic alterations. With the rapid developments in whole-genome sequencing (WGS) and whole-exome sequencing (WES) recently, we can detect newborns at the genomic level and be able to direct the appropriate diagnosis to the different individuals at the appropriate time, which is also encompassed in the concept of precision medicine. Besides, we can develop novel interventions directed at the molecular characteristics of genetic diseases in newborns. The implementation of genomics in NBS programs would provide an effective premise for the identification of the majority of genetic aberrations and primarily help in accurate guidance in treatment and better prediction. However, there are some debate correlated with the widespread application of genome sequencing in NBS due to some major concerns such as clinical analysis, result interpretation, storage of sequencing data, and communication of clinically relevant mutations to pediatricians and parents, along with the ethical, legal, and social implications (so-called ELSI). This review is focused on these critical issues and concerns about the expanding role of genomics in NBS for precision medicine. If WGS or WES is to be incorporated into NBS practice, considerations about these challenges should be carefully regarded and tackled properly to adapt the requirement of genome sequencing in the era of precision medicine.

  10. WES homozygosity mapping in a recessive form of Charcot-Marie-Tooth neuropathy reveals intronic GDAP1 variant leading to a premature stop codon.

    PubMed

    Masingue, Marion; Perrot, Jimmy; Carlier, Robert-Yves; Piguet-Lacroix, Guenaelle; Latour, Philippe; Stojkovic, Tanya

    2018-05-01

    Charcot-Marie-Tooth disease (CMT) refers to a group of clinically and genetically heterogeneous inherited neuropathies. Ganglioside-induced differentiation-associated protein 1 GDAP1-related CMT has been reported in an autosomal dominant or recessive form in patients presenting either axonal or demyelinating neuropathy. We report two Sri Lankan sisters born to consanguineous parents and presenting with a severe axonal sensorimotor neuropathy. The early onset of the disease, the distal and proximal weakness and atrophy leading to major disability, along with areflexia, and, most notably, vocal cord and diaphragm paralysis were highly evocative of a GDAP1-related CMT. However, sequencing of the coding regions of the gene was normal. Whole-exome sequencing (WES) was performed and revealed that the largest region of homozygosity was around GDAP1 with several variants, mostly in non-coding regions. In view of the high clinical suspicion of GDAP1 gene involvement, we examined the variants in this gene and this, along with functional studies, allowed us to identify an alternative splicing site revealing a cryptic in-frame stop codon in intron 4 responsible for a severe loss of wild-type GDAP1. This work is the first to describe a deleterious mutation in GDAP1 gene outside of coding sequences or intronic junctions and emphasizes the importance of interpreting molecular analysis, and in particular WES results, in light of the clinical and electrophysiological phenotype.

  11. Diagnostic Yield of Next-Generation Sequencing in Very Early-Onset Inflammatory Bowel Diseases: A Multicenter Study.

    PubMed

    Charbit-Henrion, Fabienne; Parlato, Marianna; Hanein, Sylvain; Duclaux-Loras, Rémi; Nowak, Jan; Begue, Bernadette; Rakotobe, Sabine; Bruneau, Julie; Fourrage, Cécile; Alibeu, Olivier; Rieux-Laucat, Frédéric; Lévy, Eva; Stolzenberg, Marie-Claude; Mazerolles, Fabienne; Latour, Sylvain; Lenoir, Christelle; Fischer, Alain; Picard, Capucine; Aloi, Marina; Amil Dias, Jorge; Ben Hariz, Mongi; Bourrier, Anne; Breuer, Christian; Breton, Anne; Bronski, Jiri; Buderus, Stephan; Cananzi, Mara; Coopman, Stéphanie; Crémilleux, Clara; Dabadie, Alain; Dumant-Forest, Clémentine; Egritas Gurkan, Odul; Fabre, Alexandre; Fischer, Aude; German Diaz, Marta; Gonzalez-Lama, Yago; Goulet, Olivier; Guariso, Graziella; Gurcan, Neslihan; Homan, Matjaz; Hugot, Jean-Pierre; Jeziorski, Eric; Karanika, Evi; Lachaux, Alain; Lewindon, Peter; Lima, Rosa; Magro, Fernando; Major, Janos; Malamut, Georgia; Mas, Emmanuel; Mattyus, Istvan; Mearin, Luisa M; Melek, Jan; Navas-Lopez, Victor Manuel; Paerregaard, Anders; Pelatan, Cecile; Pigneur, Bénédicte; Pinto Pais, Isabel; Rebeuh, Julie; Romano, Claudio; Siala, Nadia; Strisciuglio, Caterina; Tempia-Caliera, Michela; Tounian, Patrick; Turner, Dan; Urbonas, Vaidotas; Willot, Stéphanie; Ruemmele, Frank M; Cerf-Bensussan, Nadine

    2018-05-18

    An expanding number of monogenic defects have been identified as causative of severe forms of very early-onset inflammatory bowel diseases (VEO-IBD). The present study aimed at defining how next-generation sequencing (NGS) methods can be used to improve identification of known molecular diagnosis and adapt treatment. 207 children were recruited in 45 Paediatric centres through an international collaborative network (ESPGHAN GENIUS working group) with a clinical presentation of severe VEO-IBD (n=185) or an anamnesis suggestive of a monogenic disorder (n=22). Patients were divided at inclusion into three phenotypic subsets: predominantly small bowel inflammation, colitis with perianal lesions, and colitis only. Methods to obtain molecular diagnosis included functional tests followed by specific Sanger sequencing, custom-made targeted NGS, and in selected cases whole exome sequencing (WES) of parents-child trios. Genetic findings were validated clinically and/or functionally. Molecular diagnosis was achieved in 66/207 children (32%): 61% with small bowel inflammation, 39% with colitis and perianal lesions and 18% with colitis only. Targeted NGS pinpointed gene mutations causative of atypical presentations and identified large exonic copy number variations previously missed by WES. Our results lead us to propose an optimised diagnostic strategy to identify known monogenic causes of severe IBD.

  12. Novel mutations in LRP6 highlight the role of WNT signaling in tooth agenesis

    PubMed Central

    Ludwig, Kerstin U.; Sullivan, Robert; van Rooij, Iris A.L.M.; Thonissen, Michelle; Swinnen, Steven; Phan, Milien; Conte, Federica; Ishorst, Nina; Gilissen, Christian; RoaFuentes, Laury; van de Vorst, Maartje; Henkes, Arjen; Steehouwer, Marloes; van Beusekom, Ellen; Bloemen, Marjon; Vankeirsbilck, Bruno; Bergé, Stefaan; Hens, Greet; Schoenaers, Joseph; Poorten, Vincent Vander; Roosenboom, Jasmien; Verdonck, An; Devriendt, Koen; Roeleveldt, Nel; Jhangiani, Shalini N.; Vissers, Lisenka E.L.M.; Lupski, James R.; de Ligt, Joep; Von den Hoff, Johannes W.; Pfundt, Rolph; Brunner, Han G.; Zhou, Huiqing; Dixon, Jill; Mangold, Elisabeth; van Bokhoven, Hans; Dixon, Michael J.; Kleefstra, Tjitske

    2016-01-01

    Purpose Here we aimed to identify a novel genetic cause of tooth agenesis (TA) and/or orofacial clefting (OFC) by combining whole exome sequencing (WES) and targeted re-sequencing in a large cohort of TA and OFC patients. Methods WES was performed in two unrelated patients, one with severe TA and OFC and another with severe TA only. After identifying deleterious mutations in a gene encoding the low density lipoprotein receptor-related protein 6 (LRP6), all its exons were re-sequenced with molecular inversion probes, in 67 patients with TA, 1,072 patients with OFC and in 706 controls. Results We identified a frameshift (c.4594delG, p.Cys1532fs) and a canonical splice site mutation (c.3398-2A>C, p.?) in LRP6 respectively in the patient with TA and OFC, and in the patient with severe TA only. The targeted re-sequencing showed significant enrichment of unique LRP6 variants in TA patients, but not in nonsyndromic OFC. From the 5 variants in patients with TA, 2 affect the canonical splice site and 3 were missense variants; all variants segregated with the dominant phenotype and in 1 case the missense mutation occurred de novo. Conclusion Mutations in LRP6 cause tooth agenesis in man. PMID:26963285

  13. Syndromic intellectual disability: a new phenotype caused by an aromatic amino acid decarboxylase gene (DDC) variant.

    PubMed

    Graziano, Claudio; Wischmeijer, Anita; Pippucci, Tommaso; Fusco, Carlo; Diquigiovanni, Chiara; Nõukas, Margit; Sauk, Martin; Kurg, Ants; Rivieri, Francesca; Blau, Nenad; Hoffmann, Georg F; Chaubey, Alka; Schwartz, Charles E; Romeo, Giovanni; Bonora, Elena; Garavelli, Livia; Seri, Marco

    2015-04-01

    The causative variant in a consanguineous family in which the three patients (two siblings and a cousin) presented with intellectual disability, Marfanoid habitus, craniofacial dysmorphisms, chronic diarrhea and progressive kyphoscoliosis, has been identified through whole exome sequencing (WES) analysis. WES study identified a homozygous DDC variant in the patients, c.1123C>T, resulting in p.Arg375Cys missense substitution. Mutations in DDC cause a recessive metabolic disorder (aromatic amino acid decarboxylase, AADC, deficiency, OMIM #608643) characterized by hypotonia, oculogyric crises, excessive sweating, temperature instability, dystonia, severe neurologic dysfunction in infancy, and specific abnormalities of neurotransmitters and their metabolites in the cerebrospinal fluid (CSF). In our family, analysis of neurotransmitters and their metabolites in patient's CSF shows a pattern compatible with AADC deficiency, although the clinical signs are different from the classic form. Our work expands the phenotypic spectrum associated with DDC variants, which therefore can cause an additional novel syndrome without typical movement abnormalities. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Mutations in riboflavin transporter present with severe sensory loss and deafness in childhood.

    PubMed

    Srour, Myriam; Putorti, Maria Lisa; Schwartzentruber, Jeremy; Bolduc, Véronique; Shevell, Michael Israel; Poulin, Chantal; O'ferrall, Erin; Buhas, Daniela; Majewski, Jacek; Brais, Bernard

    2014-11-01

    We have identified a large consanguineous Lebanese family with 5 individuals with severe childhood-onset recessive sensory loss associated with deafness and variable optic atrophy. Autozygosity mapping was performed in all affected individuals, followed by whole-exome sequencing (WES) in 2 individuals. WES identified a homozygous missense mutation (c.916G>A, p.G306R) in the cerebral riboflavin transporter SLC52A2, recently shown to cause Brown-Vialetto-Van-Laere syndrome (BVVLS), which is considered primarily a motor neuronopathy. Our patients have a phenotype distinct from BVVLS, characterized by severe progressive sensory loss mainly affecting vibration and proprioception that evolves to include sensorineural hearing loss in childhood, variable degrees of optic atrophy, and marked upper extremity weakness and atrophy. Treatment of 3 patients with 400 mg/day riboflavin over 3 months produced definite clinical improvement. Mutations in SLC52A2 result in a recognizable phenotype distinct from BVVLS. Early recognition of this disorder is critical, given its potential treatability. © 2014 Wiley Periodicals, Inc.

  15. Early-Onset Severe Encephalopathy with Epilepsy: The BRAT1 Gene Should Be Added to the List of Causes.

    PubMed

    van de Pol, Laura A; Wolf, Nicole I; van Weissenbruch, Mirjam M; Stam, Cornelie J; Weiss, Janneke M; Waisfisz, Quinten; Kevelam, Sietske H; Bugiani, Mariana; van de Kamp, Jiddeke M; van der Knaap, Marjo S

    2015-12-01

    A variety of pathologies can underlie early-onset severe encephalopathy with epilepsy. To aid the diagnostic process in such patients we present an overview of causes, including the rapidly expanding list of genes involved. When no explanation is found, whole-exome sequencing (WES) can be used in an attempt to identify gene defects in patients suspected to suffer from a genetic form. We describe three siblings, born to consanguineous parents, with a lethal severe epileptic encephalopathy with early-infantile onset, including their magnetic resonance imaging, electroencephalography and, in one case, neuropathological findings. Using WES a homozygous frameshift mutation in the BRAT1 gene, c.638dup p.(Val214Glyfs*189), was identified. We present our cases in the context of all published cases with mutations in the BRAT1 gene and conclude that BRAT1 should be added to the growing list of genes related to early-onset severe encephalopathy with epilepsy. Georg Thieme Verlag KG Stuttgart · New York.

  16. De Novo Coding Variants Are Strongly Associated with Tourette Disorder

    PubMed Central

    Willsey, A. Jeremy; Fernandez, Thomas V.; Yu, Dongmei; King, Robert A.; Dietrich, Andrea; Xing, Jinchuan; Sanders, Stephan J.; Mandell, Jeffrey D.; Huang, Alden Y.; Richer, Petra; Smith, Louw; Dong, Shan; Samocha, Kaitlin E.; Neale, Benjamin M.; Coppola, Giovanni; Mathews, Carol A.; Tischfield, Jay A.; Scharf, Jeremiah M.; State, Matthew W.; Heiman, Gary A.

    2017-01-01

    SUMMARY Whole-exome sequencing (WES) and de novo variant detection have proven a powerful approach to gene discovery in complex neurodevelopmental disorders. We have completed WES of 325 Tourette disorder trios from the Tourette International Collaborative Genetics cohort and a replication sample of 186 trios from the Tourette Syndrome Association International Consortium on Genetics (511 total). We observe strong and consistent evidence for the contribution of de novo likely gene-disrupting (LGD) variants (rate ratio [RR] 2.32, p = 0.002). Additionally, de novo damaging variants (LGD and probably damaging missense) are overrepresented in probands (RR 1.37, p = 0.003). We identify four likely risk genes with multiple de novo damaging variants in unrelated probands: WWC1 (WW and C2 domain containing 1), CELSR3 (Cadherin EGF LAG seven-pass G-type receptor 3), NIPBL (Nipped-B-like), and FN1 (fibronectin 1). Overall, we estimate that de novo damaging variants in approximately 400 genes contribute risk in 12% of clinical cases. PMID:28472652

  17. A clinically driven variant prioritization framework outperforms purely computational approaches for the diagnostic analysis of singleton WES data.

    PubMed

    Stark, Zornitza; Dashnow, Harriet; Lunke, Sebastian; Tan, Tiong Y; Yeung, Alison; Sadedin, Simon; Thorne, Natalie; Macciocca, Ivan; Gaff, Clara; Oshlack, Alicia; White, Susan M; James, Paul A

    2017-11-01

    Rapid identification of clinically significant variants is key to the successful application of next generation sequencing technologies in clinical practice. The Melbourne Genomics Health Alliance (MGHA) variant prioritization framework employs a gene prioritization index based on clinician-generated a priori gene lists, and a variant prioritization index (VPI) based on rarity, conservation and protein effect. We used data from 80 patients who underwent singleton whole exome sequencing (WES) to test the ability of the framework to rank causative variants highly, and compared it against the performance of other gene and variant prioritization tools. Causative variants were identified in 59 of the patients. Using the MGHA prioritization framework the average rank of the causative variant was 2.24, with 76% ranked as the top priority variant, and 90% ranked within the top five. Using clinician-generated gene lists resulted in ranking causative variants an average of 8.2 positions higher than prioritization based on variant properties alone. This clinically driven prioritization approach significantly outperformed purely computational tools, placing a greater proportion of causative variants top or in the top 5 (permutation P-value=0.001). Clinicians included 40 of the 49 WES diagnoses in their a priori list of differential diagnoses (81%). The lists generated by PhenoTips and Phenomizer contained 14 (29%) and 18 (37%) of these diagnoses respectively. These results highlight the benefits of clinically led variant prioritization in increasing the efficiency of singleton WES data analysis and have important implications for developing models for the funding and delivery of genomic services.

  18. Assessing copy number from exome sequencing and exome array CGH based on CNV spectrum in a large clinical cohort.

    PubMed

    Retterer, Kyle; Scuffins, Julie; Schmidt, Daniel; Lewis, Rachel; Pineda-Alvarez, Daniel; Stafford, Amanda; Schmidt, Lindsay; Warren, Stephanie; Gibellini, Federica; Kondakova, Anastasia; Blair, Amanda; Bale, Sherri; Matyakhina, Ludmila; Meck, Jeanne; Aradhya, Swaroop; Haverfield, Eden

    2015-08-01

    Detection of copy-number variation (CNV) is important for investigating many genetic disorders. Testing a large clinical cohort by array comparative genomic hybridization provides a deep perspective on the spectrum of pathogenic CNV. In this context, we describe a bioinformatics approach to extract CNV information from whole-exome sequencing and demonstrate its utility in clinical testing. Exon-focused arrays and whole-genome chromosomal microarray analysis were used to test 14,228 and 14,000 individuals, respectively. Based on these results, we developed an algorithm to detect deletions/duplications in whole-exome sequencing data and a novel whole-exome array. In the exon array cohort, we observed a positive detection rate of 2.4% (25 duplications, 318 deletions), of which 39% involved one or two exons. Chromosomal microarray analysis identified 3,345 CNVs affecting single genes (18%). We demonstrate that our whole-exome sequencing algorithm resolves CNVs of three or more exons. These results demonstrate the clinical utility of single-exon resolution in CNV assays. Our whole-exome sequencing algorithm approaches this resolution but is complemented by a whole-exome array to unambiguously identify intragenic CNVs and single-exon changes. These data illustrate the next advancements in CNV analysis through whole-exome sequencing and whole-exome array.Genet Med 17 8, 623-629.

  19. Successful diagnosis of HIBCH deficiency from exome sequencing and positive retrospective analysis of newborn screening cards in two siblings presenting with Leigh’s disease

    PubMed Central

    Stiles, Ashlee R.; Ferdinandusse, Sacha; Besse, Arnaud; Appadurai, Vivek; Leydiker, Karen B.; Cambray-Forker, E.J.; Bonnen, Penelope E.; Abdenur, Jose E.

    2016-01-01

    Purpose 3-hydroxyisobutryl-CoA hydrolase (HIBCH) deficiency is a rare disorder of valine metabolism. We present a family with the oldest reported subjects with HIBCH deficiency and provide support that HIBCH deficiency should be included in the differential for elevated hydroxy-C4-carnitine in newborn screening (NBS). Methods Whole exome sequencing (WES) was performed on one affected sibling. HIBCH enzymatic activity was measured in patient fibroblasts. Acylcarnitines were measured by electrospray ionization tandem mass spectrometry (ESI-MS/MS). Disease incidence was estimated using a cohort of 61,434 individuals. Results Two siblings presented with infantile-onset, progressive neurodegenerative disease. WES identified a novel homozygous variant in HIBCH c.196C>T; p.Arg66Trp. HIBCH enzymatic activity was significantly reduced in patients’ fibroblasts. Acylcarnitine analysis showed elevated hydroxy-C4-carnitine in blood spots of both affected siblings, including in their NBS cards, while plasma acylcarnitines were normal. Estimates show HIBCH deficiency incidence as high as 1 in ~130,000 individuals. Conclusion We describe a novel family with HIBCH deficiency at the biochemical, enzymatic and molecular level. Disease incidence estimates indicate HIBCH deficiency may be under-diagnosed. This together with the elevated hydroxy-C4-carnitine found in the retrospective analysis of our patient’s NBS cards suggests that this disorder could be screened by NBS programs and should be added to the differential diagnosis for elevated hydroxy-C4-carnitine which is already measured in most NBS programs using MS/MS. PMID:26026795

  20. A comprehensive characterization of rare mitochondrial DNA variants in neuroblastoma

    PubMed Central

    Pignataro, Piero; Lasorsa, Vito Alessandro; Hogarty, Michael D.; Castellano, Aurora; Conte, Massimo; Tonini, Gian Paolo; Iolascon, Achille; Gasparre, Giuseppe; Capasso, Mario

    2016-01-01

    Background Neuroblastoma, a tumor of the developing sympathetic nervous system, is a common childhood neoplasm that is often lethal. Mitochondrial DNA (mtDNA) mutations have been found in most tumors including neuroblastoma. We extracted mtDNA data from a cohort of neuroblastoma samples that had undergone Whole Exome Sequencing (WES) and also used snap-frozen samples in which mtDNA was entirely sequenced by Sanger technology. We next undertook the challenge of determining those mutations that are relevant to, or arisen during tumor development. The bioinformatics pipeline used to extract mitochondrial variants from matched tumor/blood samples was enriched by a set of filters inclusive of heteroplasmic fraction, nucleotide variability, and in silico prediction of pathogenicity. Results Our in silico multistep workflow applied both on WES and Sanger-sequenced neuroblastoma samples, allowed us to identify a limited burden of somatic and germline mitochondrial mutations with a potential pathogenic impact. Conclusions The few singleton germline and somatic mitochondrial mutations emerged, according to our in silico analysis, do not appear to impact on the development of neuroblastoma. Our findings are consistent with the hypothesis that most mitochondrial somatic mutations can be considered as ‘passengers’ and consequently have no discernible effect in this type of cancer. PMID:27351283

  1. The Genetic Basis of Pericentral Retinitis Pigmentosa—A Form of Mild Retinitis Pigmentosa

    PubMed Central

    Comander, Jason; Weigel-DiFranco, Carol; Maher, Matthew; Place, Emily; Wan, Aliete; Harper, Shyana; Sandberg, Michael A.; Navarro-Gomez, Daniel; Pierce, Eric A.

    2017-01-01

    Pericentral retinitis pigmentosa (RP) is an atypical form of RP that affects the near-peripheral retina first and tends to spare the far periphery. This study was performed to further define the genetic basis of this phenotype. We identified a cohort of 43 probands with pericentral RP based on a comprehensive analysis of their retinal phenotype. Genetic analyses of DNA samples from these patients were performed using panel-based next-generation sequencing, copy number variations, and whole exome sequencing (WES). Mutations provisionally responsible for disease were found in 19 of the 43 families (44%) analyzed. These include mutations in RHO (five patients), USH2A (four patients), and PDE6B (two patients). Of 28 putatively pathogenic alleles, 15 (54%) have been previously identified in patients with more common forms of typical RP, while the remaining 13 mutations (46%) were novel. Burden testing of WES data successfully identified HGSNAT as a cause of pericentral RP in at least two patients, suggesting it is also a relatively common cause of pericentral RP. While additional sequencing might uncover new genes specifically associated with pericentral RP, the current results suggest that genetically pericentral RP is not a separate clinical entity, but rather is part of the spectrum of mild RP phenotypes. PMID:28981474

  2. CEP78 is mutated in a distinct type of Usher syndrome.

    PubMed

    Fu, Qing; Xu, Mingchu; Chen, Xue; Sheng, Xunlun; Yuan, Zhisheng; Liu, Yani; Li, Huajin; Sun, Zixi; Li, Huiping; Yang, Lizhu; Wang, Keqing; Zhang, Fangxia; Li, Yumei; Zhao, Chen; Sui, Ruifang; Chen, Rui

    2017-03-01

    Usher syndrome is a genetically heterogeneous disorder featured by combined visual impairment and hearing loss. Despite a dozen of genes involved in Usher syndrome having been identified, the genetic basis remains unknown in 20-30% of patients. In this study, we aimed to identify the novel disease-causing gene of a distinct subtype of Usher syndrome. Ophthalmic examinations and hearing tests were performed on patients with Usher syndrome in two consanguineous families. Target capture sequencing was initially performed to screen causative mutations in known retinal disease-causing loci. Whole exome sequencing (WES) and whole genome sequencing (WGS) were applied for identifying novel disease-causing genes. RT-PCR and Sanger sequencing were performed to evaluate the splicing-altering effect of identified CEP78 variants. Patients from the two independent families show a mild Usher syndrome phenotype featured by juvenile or adult-onset cone-rod dystrophy and sensorineural hearing loss. WES and WGS identified two homozygous rare variants that affect mRNA splicing of a ciliary gene CEP78 . RT-PCR confirmed that the two variants indeed lead to abnormal splicing, resulting in premature stop of protein translation due to frameshift. Our results provide evidence that CEP78 is a novel disease-causing gene for Usher syndrome, demonstrating an additional link between ciliopathy and Usher protein network in photoreceptor cells and inner ear hair cells. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  3. Lessons learned from additional research analyses of unsolved clinical exome cases.

    PubMed

    Eldomery, Mohammad K; Coban-Akdemir, Zeynep; Harel, Tamar; Rosenfeld, Jill A; Gambin, Tomasz; Stray-Pedersen, Asbjørg; Küry, Sébastien; Mercier, Sandra; Lessel, Davor; Denecke, Jonas; Wiszniewski, Wojciech; Penney, Samantha; Liu, Pengfei; Bi, Weimin; Lalani, Seema R; Schaaf, Christian P; Wangler, Michael F; Bacino, Carlos A; Lewis, Richard Alan; Potocki, Lorraine; Graham, Brett H; Belmont, John W; Scaglia, Fernando; Orange, Jordan S; Jhangiani, Shalini N; Chiang, Theodore; Doddapaneni, Harsha; Hu, Jianhong; Muzny, Donna M; Xia, Fan; Beaudet, Arthur L; Boerwinkle, Eric; Eng, Christine M; Plon, Sharon E; Sutton, V Reid; Gibbs, Richard A; Posey, Jennifer E; Yang, Yaping; Lupski, James R

    2017-03-21

    Given the rarity of most single-gene Mendelian disorders, concerted efforts of data exchange between clinical and scientific communities are critical to optimize molecular diagnosis and novel disease gene discovery. We designed and implemented protocols for the study of cases for which a plausible molecular diagnosis was not achieved in a clinical genomics diagnostic laboratory (i.e. unsolved clinical exomes). Such cases were recruited to a research laboratory for further analyses, in order to potentially: (1) accelerate novel disease gene discovery; (2) increase the molecular diagnostic yield of whole exome sequencing (WES); and (3) gain insight into the genetic mechanisms of disease. Pilot project data included 74 families, consisting mostly of parent-offspring trios. Analyses performed on a research basis employed both WES from additional family members and complementary bioinformatics approaches and protocols. Analysis of all possible modes of Mendelian inheritance, focusing on both single nucleotide variants (SNV) and copy number variant (CNV) alleles, yielded a likely contributory variant in 36% (27/74) of cases. If one includes candidate genes with variants identified within a single family, a potential contributory variant was identified in a total of ~51% (38/74) of cases enrolled in this pilot study. The molecular diagnosis was achieved in 30/63 trios (47.6%). Besides this, the analysis workflow yielded evidence for pathogenic variants in disease-associated genes in 4/6 singleton cases (66.6%), 1/1 multiplex family involving three affected siblings, and 3/4 (75%) quartet families. Both the analytical pipeline and the collaborative efforts between the diagnostic and research laboratories provided insights that allowed recent disease gene discoveries (PURA, TANGO2, EMC1, GNB5, ATAD3A, and MIPEP) and increased the number of novel genes, defined in this study as genes identified in more than one family (DHX30 and EBF3). An efficient genomics pipeline in which clinical sequencing in a diagnostic laboratory is followed by the detailed reanalysis of unsolved cases in a research environment, supplemented with WES data from additional family members, and subject to adjuvant bioinformatics analyses including relaxed variant filtering parameters in informatics pipelines, can enhance the molecular diagnostic yield and provide mechanistic insights into Mendelian disorders. Implementing these approaches requires collaborative clinical molecular diagnostic and research efforts.

  4. Identification of Inherited Retinal Disease-Associated Genetic Variants in 11 Candidate Genes.

    PubMed

    Astuti, Galuh D N; van den Born, L Ingeborgh; Khan, M Imran; Hamel, Christian P; Bocquet, Béatrice; Manes, Gaël; Quinodoz, Mathieu; Ali, Manir; Toomes, Carmel; McKibbin, Martin; El-Asrag, Mohammed E; Haer-Wigman, Lonneke; Inglehearn, Chris F; Black, Graeme C M; Hoyng, Carel B; Cremers, Frans P M; Roosing, Susanne

    2018-01-10

    Inherited retinal diseases (IRDs) display an enormous genetic heterogeneity. Whole exome sequencing (WES) recently identified genes that were mutated in a small proportion of IRD cases. Consequently, finding a second case or family carrying pathogenic variants in the same candidate gene often is challenging. In this study, we searched for novel candidate IRD gene-associated variants in isolated IRD families, assessed their causality, and searched for novel genotype-phenotype correlations. Whole exome sequencing was performed in 11 probands affected with IRDs. Homozygosity mapping data was available for five cases. Variants with minor allele frequencies ≤ 0.5% in public databases were selected as candidate disease-causing variants. These variants were ranked based on their: (a) presence in a gene that was previously implicated in IRD; (b) minor allele frequency in the Exome Aggregation Consortium database (ExAC); (c) in silico pathogenicity assessment using the combined annotation dependent depletion (CADD) score; and (d) interaction of the corresponding protein with known IRD-associated proteins. Twelve unique variants were found in 11 different genes in 11 IRD probands. Novel autosomal recessive and dominant inheritance patterns were found for variants in Small Nuclear Ribonucleoprotein U5 Subunit 200 ( SNRNP200 ) and Zinc Finger Protein 513 ( ZNF513 ), respectively. Using our pathogenicity assessment, a variant in DEAH-Box Helicase 32 ( DHX32 ) was the top ranked novel candidate gene to be associated with IRDs, followed by eight medium and lower ranked candidate genes. The identification of candidate disease-associated sequence variants in 11 single families underscores the notion that the previously identified IRD-associated genes collectively carry > 90% of the defects implicated in IRDs. To identify multiple patients or families with variants in the same gene and thereby provide extra proof for pathogenicity, worldwide data sharing is needed.

  5. Identification of a Novel Mutation in BRD4 that Causes Autosomal Dominant Syndromic Congenital Cataracts Associated with Other Neuro-Skeletal Anomalies

    PubMed Central

    Jin, Hyun-Seok; Kim, Jeonhyun; Kwak, Woori; Jeong, Hyeonsoo; Lim, Gyu-Bin

    2017-01-01

    Congenital cataracts can occur as a non-syndromic isolated ocular disease or as a part of genetic syndromes accompanied by a multi-systemic disease. Approximately 50% of all congenital cataract cases have a heterogeneous genetic basis. Here, we describe three generations of a family with an autosomal dominant inheritance pattern and common complex phenotypes, including bilateral congenital cataracts, short stature, macrocephaly, and minor skeletal anomalies. We did not find any chromosomal aberrations or gene copy number abnormalities using conventional genetic tests; accordingly, we conducted whole-exome sequencing (WES) to identify disease-causing genetic alterations in this family. Based on family WES data, we identified a novel BRD4 missense mutation as a candidate causal variant and performed cell-based experiments by ablation of endogenous BRD4 expression in human lens epithelial cells. The protein expression levels of connexin 43, p62, LC3BII, and p53 differed significantly between control cells and cells in which endogenous BRD4 expression was inhibited. We inferred that a BRD4 missense mutation was the likely disease-causing mutation in this family. Our findings may improve the molecular diagnosis of congenital cataracts and support the use of WES to clarify the genetic basis of complex diseases. PMID:28076398

  6. Single nucleotide variations: Biological impact and theoretical interpretation

    PubMed Central

    Katsonis, Panagiotis; Koire, Amanda; Wilson, Stephen Joseph; Hsu, Teng-Kuei; Lua, Rhonald C; Wilkins, Angela Dawn; Lichtarge, Olivier

    2014-01-01

    Genome-wide association studies (GWAS) and whole-exome sequencing (WES) generate massive amounts of genomic variant information, and a major challenge is to identify which variations drive disease or contribute to phenotypic traits. Because the majority of known disease-causing mutations are exonic non-synonymous single nucleotide variations (nsSNVs), most studies focus on whether these nsSNVs affect protein function. Computational studies show that the impact of nsSNVs on protein function reflects sequence homology and structural information and predict the impact through statistical methods, machine learning techniques, or models of protein evolution. Here, we review impact prediction methods and discuss their underlying principles, their advantages and limitations, and how they compare to and complement one another. Finally, we present current applications and future directions for these methods in biological research and medical genetics. PMID:25234433

  7. De novo FBXO11 mutations are associated with intellectual disability and behavioural anomalies.

    PubMed

    Fritzen, Daniel; Kuechler, Alma; Grimmel, Mona; Becker, Jessica; Peters, Sophia; Sturm, Marc; Hundertmark, Hela; Schmidt, Axel; Kreiß, Martina; Strom, Tim M; Wieczorek, Dagmar; Haack, Tobias B; Beck-Wödl, Stefanie; Cremer, Kirsten; Engels, Hartmut

    2018-05-01

    Intellectual disability (ID) has an estimated prevalence of 1.5-2%. In most affected individuals, its genetic basis remains unclear. Whole exome sequencing (WES) studies have identified a multitude of novel causative gene defects and have shown that a large proportion of sporadic ID cases results from de novo mutations. Here, we present two unrelated individuals with similar clinical features and deleterious de novo variants in FBXO11 detected by WES. Individual 1, a 14-year-old boy, has mild ID as well as mild microcephaly, corrected cleft lip and alveolus, hyperkinetic disorder, mild brain atrophy and minor facial dysmorphism. WES detected a heterozygous de novo 1 bp insertion in the splice donor site of exon 3. Individual 2, a 3-year-old boy, showed ID and pre- and postnatal growth retardation, postnatal mild microcephaly, hyperkinetic and restless behaviour, as well as mild dysmorphism. WES detected a heterozygous de novo frameshift mutation. While ten individuals with ID and de novo variants in FBXO11 have been reported as part of larger studies, only one of the reports has some additional clinical data. Interestingly, the latter individual carries the identical mutation as our individual 2 and also displays ID, intrauterine growth retardation, microcephaly, behavioural anomalies, and dysmorphisms. Thus, we confirm deleterious de novo mutations in FBXO11 as a cause of ID and start the delineation of the associated clinical picture which may also comprise postnatal microcephaly or borderline small head size and behavioural anomalies.

  8. Identification of a novel MIP frameshift mutation associated with congenital cataract in a Chinese family by whole-exome sequencing and functional analysis.

    PubMed

    Long, Xigui; Huang, Yanru; Tan, Hu; Li, Zhuo; Zhang, Rui; Linpeng, Siyuan; Lv, Weigang; Cao, Yingxi; Li, Haoxian; Liang, Desheng; Wu, Lingqian

    2018-04-26

    To detect the underlying pathogenesis of congenital cataract in a four-generation Chinese family. Whole-exome sequencing (WES) of family members (III:4, IV:4, and IV:6) was performed. Sanger sequencing and bioinformatics analysis were subsequently conducted. Full-length WT-MIP or K228fs-MIP fused to HA markers at the N-terminal was transfected into HeLa cells. Next, quantitative real-time PCR, western blotting and immunofluorescence confocal laser scanning were performed. The age of onset for nonsyndromic cataracts in male patients was by 1-year old, earlier than for female patients, who exhibited onset at adulthood. A novel c.682_683delAA (p.K228fs230X) mutation in main intrinsic protein (MIP) cosegregated with the cataract phenotype. The instability index and unfolded states for truncated MIP were predicted to increase by bioinformatics analysis. The mRNA transcription level of K228fs-MIP was reduced compared with that of WT-MIP, and K228fs-MIP protein expression was also lower than that of WT-MIP. Immunofluorescence images showed that WT-MIP principally localized to the plasma membrane, whereas the mutant protein was trapped in the cytoplasm. Our study generated genetic and primary functional evidence for a novel c.682_683delAA mutation in MIP that expands the variant spectrum of MIP and help us better understand the molecular basis of cataract.

  9. Epilepsy with auditory features

    PubMed Central

    Licchetta, Laura; Baldassari, Sara; Palombo, Flavia; Menghi, Veronica; D'Aurizio, Romina; Leta, Chiara; Stipa, Carlotta; Boero, Giovanni; d'Orsi, Giuseppe; Magi, Alberto; Scheffer, Ingrid; Seri, Marco; Tinuper, Paolo; Bisulli, Francesca

    2015-01-01

    Objective: To identify novel genes implicated in epilepsy with auditory features (EAF) in phenotypically heterogeneous families with unknown molecular basis. Methods: We identified 15 probands with EAF in whom an LGI1 mutation had been excluded. We performed electroclinical phenotyping on all probands and available affected relatives. We used whole-exome sequencing (WES) in 20 individuals with EAF (including all the probands and 5 relatives) to identify single nucleotide variants, small insertions/deletions, and copy number variants. Results: WES revealed likely pathogenic variants in genes that had not been previously associated with EAF: a CNTNAP2 intragenic deletion, 2 truncating mutations of DEPDC5, and a missense SCN1A change. Conclusions: EAF is a clinically and molecularly heterogeneous disease. The association of EAF with CNTNAP2, DEPDC5, and SCN1A mutations widens the phenotypic spectrum related to these genes. CNTNAP2 encodes CASPR2, a member of the voltage-gated potassium channel complex in which LGI1 plays a role. The finding of a CNTNAP2 deletion emphasizes the importance of this complex in EAF and shows biological convergence. PMID:27066544

  10. De Novo Coding Variants Are Strongly Associated with Tourette Disorder.

    PubMed

    Willsey, A Jeremy; Fernandez, Thomas V; Yu, Dongmei; King, Robert A; Dietrich, Andrea; Xing, Jinchuan; Sanders, Stephan J; Mandell, Jeffrey D; Huang, Alden Y; Richer, Petra; Smith, Louw; Dong, Shan; Samocha, Kaitlin E; Neale, Benjamin M; Coppola, Giovanni; Mathews, Carol A; Tischfield, Jay A; Scharf, Jeremiah M; State, Matthew W; Heiman, Gary A

    2017-05-03

    Whole-exome sequencing (WES) and de novo variant detection have proven a powerful approach to gene discovery in complex neurodevelopmental disorders. We have completed WES of 325 Tourette disorder trios from the Tourette International Collaborative Genetics cohort and a replication sample of 186 trios from the Tourette Syndrome Association International Consortium on Genetics (511 total). We observe strong and consistent evidence for the contribution of de novo likely gene-disrupting (LGD) variants (rate ratio [RR] 2.32, p = 0.002). Additionally, de novo damaging variants (LGD and probably damaging missense) are overrepresented in probands (RR 1.37, p = 0.003). We identify four likely risk genes with multiple de novo damaging variants in unrelated probands: WWC1 (WW and C2 domain containing 1), CELSR3 (Cadherin EGF LAG seven-pass G-type receptor 3), NIPBL (Nipped-B-like), and FN1 (fibronectin 1). Overall, we estimate that de novo damaging variants in approximately 400 genes contribute risk in 12% of clinical cases. VIDEO ABSTRACT. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. KIF16B is a candidate gene for a novel autosomal-recessive intellectual disability syndrome.

    PubMed

    Alsahli, Saud; Arold, Stefan T; Alfares, Ahmed; Alhaddad, Bader; Al Balwi, Mohammed; Kamsteeg, Erik-Jan; Al-Twaijri, Waleed; Alfadhel, Majid

    2018-05-07

    Intellectual disability (ID) and global developmental delay are closely related; the latter is reserved for children under the age of 5 years as it is challenging to reliably assess clinical severity in this population. ID is a common condition, with up to 1%-3% of the population being affected and leading to a huge social and economic impact. ID is attributed to genetic abnormalities most of the time; however, the exact role of genetic involvement in ID is yet to be determined. Whole exome sequencing (WES) has gained popularity in the workup for ID, and multiple studies have been published examining the diagnostic yield in identification of the disease-causing variant (16%-55%), with the genetic involvement increasing as intelligence quotient decreases. WES has also accelerated novel disease gene discovery in this field. We identified a novel biallelic variant in the KIF16B gene (NM_024704.4:c.3611T > G) in two brothers that may be the cause of their phenotype. © 2018 Wiley Periodicals, Inc.

  12. Molecular genetics of cone-rod dystrophy in Chinese patients: New data from 61 probands and mutation overview of 163 probands.

    PubMed

    Huang, Li; Xiao, Xueshan; Li, Shiqiang; Jia, Xiaoyun; Wang, Panfeng; Sun, Wenmin; Xu, Yan; Xin, Wei; Guo, Xiangming; Zhang, Qingjiong

    2016-05-01

    Cone-rod dystrophy (CORD) is a common form of inherited retinal degeneration. Previously, we have conducted serial mutational analysis in probands with CORD either by Sanger sequencing or whole exome sequencing (WES). In the current study, variants in all genes from RetNet were selected from the whole exome sequencing data of 108 CORD probands (including 61 probands reported here for the first time) and were analyzed by multistep bioinformatics analysis, followed by Sanger sequencing and segregation validation. Data from the previous studies and new data from this study (163 probands in total) were summarized to provide an overview of the molecular genetics of CORD. The following potentially pathogenic mutations were identified in 93 of the 163 (57.1%) probands: CNGA3 (32.5%), ABCA4 (3.8%), ALMS1 (3.1%), GUCY2D (3.1%), CACNA1F (2.5%), CRX (1.8%), PDE6C (1.8%), CNGB3 (1.8%), GUCA1A (1.2%), UNC119 (0.6%), RPGRIP1 (1.2%), RDH12 (0.6%), KCNV2 (0.6%), C21orf2 (0.6%), CEP290 (0.6%), USH2A (0.6%) and SNRNP200 (0.6%). The 17 genes with mutations included 12 known CORD genes and five genes (ALMS1, RDH12, CEP290, USH2A, and SNRNP200) associated with other forms of retinal degeneration. Mutations in CNGA3 is most common in this cohort. This is a systematic molecular genetic analysis of Chinese patients with CORD. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. The importance of de novo mutations for pediatric neurological disease--It is not all in utero or birth trauma.

    PubMed

    Erickson, Robert P

    2016-01-01

    The advent of next generation sequencing (NGS, which consists of massively parallel sequencing to perform TGS (total genome sequencing) or WES (whole exome sequencing)) has abundantly discovered many causative mutations in patients with pediatric neurological disease. A surprisingly high number of these are de novo mutations which have not been inherited from either parent. For epilepsy, autism spectrum disorders, and neuromotor disorders, including cerebral palsy, initial estimates put the frequency of causative de novo mutations at about 15% and about 10% of these are somatic. There are some shared mutated genes between these three classes of disease. Studies of copy number variation by comparative genomic hybridization (CGH) proceded the NGS approaches but they also detect de novo variation which is especially important for ASDs. There are interesting differences between the mutated genes detected by CGS and NGS. In summary, de novo mutations cause a very significant proportion of pediatric neurological disease. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Whole exome or genome sequencing: nurses need to prepare families for the possibilities.

    PubMed

    Prows, Cynthia A; Tran, Grace; Blosser, Beverly

    2014-12-01

    A discussion of whole exome sequencing and the type of possible results patients and families should be aware of before samples are obtained. To find the genetic cause of a rare disorder, whole exome sequencing analyses all known and suspected human genes from a single sample. Over 20,000 detected DNA variants in each individual exome must be considered as possibly causing disease or disregarded as not relevant to the person's disease. In the process, unexpected gene variants associated with known diseases unrelated to the primary purpose of the test may be incidentally discovered. Because family members' DNA samples are often needed, gene variants associated with known genetic diseases or predispositions for diseases can also be discovered in their samples. Discussion paper. PubMed 2009-2013, list of references in retrieved articles, Google Scholar. Nurses need a general understanding of the scope of potential genomic information that may be revealed with whole exome sequencing to provide support and guidance to individuals and families during their decision-making process, while waiting for results and after disclosure. Nurse scientists who want to use whole exome sequencing in their study design and methods must decide early in study development if they will return primary whole exome sequencing research results and if they will give research participants choices about learning incidental research results. It is critical that nurses translate their knowledge about whole exome sequencing into their patient education and patient advocacy roles and relevant programmes of research. © 2014 John Wiley & Sons Ltd.

  15. Motivations, concerns and preferences of personal genome sequencing research participants: Baseline findings from the HealthSeq project

    PubMed Central

    Sanderson, Saskia C; Linderman, Michael D; Suckiel, Sabrina A; Diaz, George A; Zinberg, Randi E; Ferryman, Kadija; Wasserstein, Melissa; Kasarskis, Andrew; Schadt, Eric E

    2016-01-01

    Whole exome/genome sequencing (WES/WGS) is increasingly offered to ostensibly healthy individuals. Understanding the motivations and concerns of research participants seeking out personal WGS and their preferences regarding return-of-results and data sharing will help optimize protocols for WES/WGS. Baseline interviews including both qualitative and quantitative components were conducted with research participants (n=35) in the HealthSeq project, a longitudinal cohort study of individuals receiving personal WGS results. Data sharing preferences were recorded during informed consent. In the qualitative interview component, the dominant motivations that emerged were obtaining personal disease risk information, satisfying curiosity, contributing to research, self-exploration and interest in ancestry, and the dominant concern was the potential psychological impact of the results. In the quantitative component, 57% endorsed concerns about privacy. Most wanted to receive all personal WGS results (94%) and their raw data (89%); a third (37%) consented to having their data shared to the Database of Genotypes and Phenotypes (dbGaP). Early adopters of personal WGS in the HealthSeq project express a variety of health- and non-health-related motivations. Almost all want all available findings, while also expressing concerns about the psychological impact and privacy of their results. PMID:26036856

  16. In-depth investigations of adolescents and adults with holoprosencephaly identify unique characteristics.

    PubMed

    Weiss, Karin; Kruszka, Paul; Guillen Sacoto, Maria J; Addissie, Yonit A; Hadley, Donald W; Hadsall, Casey K; Stokes, Bethany; Hu, Ping; Roessler, Erich; Solomon, Beth; Wiggs, Edythe; Thurm, Audrey; Hufnagel, Robert B; Zein, Wadih M; Hahn, Jin S; Stashinko, Elaine; Levey, Eric; Baldwin, Debbie; Clegg, Nancy J; Delgado, Mauricio R; Muenke, Maximilian

    2018-01-01

    PurposeWith improved medical care, some individuals with holoprosencephaly (HPE) are surviving into adulthood. We investigated the clinical manifestations of adolescents and adults with HPE and explored the underlying molecular causes.MethodsParticipants included 20 subjects 15 years of age and older. Clinical assessments included dysmorphology exams, cognitive testing, swallowing studies, ophthalmic examination, and brain magnetic resonance imaging. Genetic testing included chromosomal microarray, Sanger sequencing for SHH, ZIC2, SIX3, and TGIF, and whole-exome sequencing (WES) of 10 trios.ResultsSemilobar HPE was the most common subtype of HPE, seen in 50% of the participants. Neurodevelopmental disabilities were found to correlate with HPE subtype. Factors associated with long-term survival included HPE subtype not alobar, female gender, and nontypical facial features. Four participants had de novo pathogenic variants in ZIC2. WES analysis of 11 participants did not reveal plausible candidate genes, suggesting complex inheritance in these cases. Indeed, in two probands there was a history of uncontrolled maternal type 1 diabetes.ConclusionIndividuals with various HPE subtypes can survive into adulthood and the neurodevelopmental outcomes are variable. Based on the facial characteristics and molecular evaluations, we suggest that classic genetic causes of HPE may play a smaller role in this cohort.

  17. Complex Landscape of Germline Variants in Brazilian Patients With Hereditary and Early Onset Breast Cancer.

    PubMed

    Torrezan, Giovana T; de Almeida, Fernanda G Dos Santos R; Figueiredo, Márcia C P; Barros, Bruna D de Figueiredo; de Paula, Cláudia A A; Valieris, Renan; de Souza, Jorge E S; Ramalho, Rodrigo F; da Silva, Felipe C C; Ferreira, Elisa N; de Nóbrega, Amanda F; Felicio, Paula S; Achatz, Maria I; de Souza, Sandro J; Palmero, Edenir I; Carraro, Dirce M

    2018-01-01

    Pathogenic variants in known breast cancer (BC) predisposing genes explain only about 30% of Hereditary Breast Cancer (HBC) cases, whereas the underlying genetic factors for most families remain unknown. Here, we used whole-exome sequencing (WES) to identify genetic variants associated to HBC in 17 patients of Brazil with familial BC and negative for causal variants in major BC risk genes ( BRCA1/2, TP53 , and CHEK2 c.1100delC). First, we searched for rare variants in 27 known HBC genes and identified two patients harboring truncating pathogenic variants in ATM and BARD1 . For the remaining 15 negative patients, we found a substantial vast number of rare genetic variants. Thus, for selecting the most promising variants we used functional-based variant prioritization, followed by NGS validation, analysis in a control group, cosegregation analysis in one family and comparison with previous WES studies, shrinking our list to 23 novel BC candidate genes, which were evaluated in an independent cohort of 42 high-risk BC patients. Rare and possibly damaging variants were identified in 12 candidate genes in this cohort, including variants in DNA repair genes ( ERCC1 and SXL4 ) and other cancer-related genes ( NOTCH2, ERBB2, MST1R , and RAF1 ). Overall, this is the first WES study applied for identifying novel genes associated to HBC in Brazilian patients, in which we provide a set of putative BC predisposing genes. We also underpin the value of using WES for assessing the complex landscape of HBC susceptibility, especially in less characterized populations.

  18. Exome sequencing reveals novel genetic loci influencing obesity-related traits in Hispanic children

    USDA-ARS?s Scientific Manuscript database

    To perform whole exome sequencing in 928 Hispanic children and identify variants and genes associated with childhood obesity.Single-nucleotide variants (SNVs) were identified from Illumina whole exome sequencing data using integrated read mapping, variant calling, and an annotation pipeline (Mercury...

  19. Intratumor heterogeneity in localized lung adenocarcinomas delineated by multiregion sequencing.

    PubMed

    Zhang, Jianjun; Fujimoto, Junya; Zhang, Jianhua; Wedge, David C; Song, Xingzhi; Zhang, Jiexin; Seth, Sahil; Chow, Chi-Wan; Cao, Yu; Gumbs, Curtis; Gold, Kathryn A; Kalhor, Neda; Little, Latasha; Mahadeshwar, Harshad; Moran, Cesar; Protopopov, Alexei; Sun, Huandong; Tang, Jiabin; Wu, Xifeng; Ye, Yuanqing; William, William N; Lee, J Jack; Heymach, John V; Hong, Waun Ki; Swisher, Stephen; Wistuba, Ignacio I; Futreal, P Andrew

    2014-10-10

    Cancers are composed of populations of cells with distinct molecular and phenotypic features, a phenomenon termed intratumor heterogeneity (ITH). ITH in lung cancers has not been well studied. We applied multiregion whole-exome sequencing (WES) on 11 localized lung adenocarcinomas. All tumors showed clear evidence of ITH. On average, 76% of all mutations and 20 out of 21 known cancer gene mutations were identified in all regions of individual tumors, which suggested that single-region sequencing may be adequate to identify the majority of known cancer gene mutations in localized lung adenocarcinomas. With a median follow-up of 21 months after surgery, three patients have relapsed, and all three patients had significantly larger fractions of subclonal mutations in their primary tumors than patients without relapse. These data indicate that a larger subclonal mutation fraction may be associated with increased likelihood of postsurgical relapse in patients with localized lung adenocarcinomas. Copyright © 2014, American Association for the Advancement of Science.

  20. Scalable whole-exome sequencing of cell-free DNA reveals high concordance with metastatic tumors.

    PubMed

    Adalsteinsson, Viktor A; Ha, Gavin; Freeman, Samuel S; Choudhury, Atish D; Stover, Daniel G; Parsons, Heather A; Gydush, Gregory; Reed, Sarah C; Rotem, Denisse; Rhoades, Justin; Loginov, Denis; Livitz, Dimitri; Rosebrock, Daniel; Leshchiner, Ignaty; Kim, Jaegil; Stewart, Chip; Rosenberg, Mara; Francis, Joshua M; Zhang, Cheng-Zhong; Cohen, Ofir; Oh, Coyin; Ding, Huiming; Polak, Paz; Lloyd, Max; Mahmud, Sairah; Helvie, Karla; Merrill, Margaret S; Santiago, Rebecca A; O'Connor, Edward P; Jeong, Seong H; Leeson, Rachel; Barry, Rachel M; Kramkowski, Joseph F; Zhang, Zhenwei; Polacek, Laura; Lohr, Jens G; Schleicher, Molly; Lipscomb, Emily; Saltzman, Andrea; Oliver, Nelly M; Marini, Lori; Waks, Adrienne G; Harshman, Lauren C; Tolaney, Sara M; Van Allen, Eliezer M; Winer, Eric P; Lin, Nancy U; Nakabayashi, Mari; Taplin, Mary-Ellen; Johannessen, Cory M; Garraway, Levi A; Golub, Todd R; Boehm, Jesse S; Wagle, Nikhil; Getz, Gad; Love, J Christopher; Meyerson, Matthew

    2017-11-06

    Whole-exome sequencing of cell-free DNA (cfDNA) could enable comprehensive profiling of tumors from blood but the genome-wide concordance between cfDNA and tumor biopsies is uncertain. Here we report ichorCNA, software that quantifies tumor content in cfDNA from 0.1× coverage whole-genome sequencing data without prior knowledge of tumor mutations. We apply ichorCNA to 1439 blood samples from 520 patients with metastatic prostate or breast cancers. In the earliest tested sample for each patient, 34% of patients have ≥10% tumor-derived cfDNA, sufficient for standard coverage whole-exome sequencing. Using whole-exome sequencing, we validate the concordance of clonal somatic mutations (88%), copy number alterations (80%), mutational signatures, and neoantigens between cfDNA and matched tumor biopsies from 41 patients with ≥10% cfDNA tumor content. In summary, we provide methods to identify patients eligible for comprehensive cfDNA profiling, revealing its applicability to many patients, and demonstrate high concordance of cfDNA and metastatic tumor whole-exome sequencing.

  1. Dynamical system modeling to simulate donor T cell response to whole exome sequencing-derived recipient peptides: Understanding randomness in alloreactivity incidence following stem cell transplantation.

    PubMed

    Koparde, Vishal; Abdul Razzaq, Badar; Suntum, Tara; Sabo, Roy; Scalora, Allison; Serrano, Myrna; Jameson-Lee, Max; Hall, Charles; Kobulnicky, David; Sheth, Nihar; Feltz, Juliana; Contaifer, Daniel; Wijesinghe, Dayanjan; Reed, Jason; Roberts, Catherine; Qayyum, Rehan; Buck, Gregory; Neale, Michael; Toor, Amir

    2017-01-01

    Quantitative relationship between the magnitude of variation in minor histocompatibility antigens (mHA) and graft versus host disease (GVHD) pathophysiology in stem cell transplant (SCT) donor-recipient pairs (DRP) is not established. In order to elucidate this relationship, whole exome sequencing (WES) was performed on 27 HLA matched related (MRD), & 50 unrelated donors (URD), to identify nonsynonymous single nucleotide polymorphisms (SNPs). An average 2,463 SNPs were identified in MRD, and 4,287 in URD DRP (p<0.01); resulting peptide antigens that may be presented on HLA class I molecules in each DRP were derived in silico (NetMHCpan ver2.0) and the tissue expression of proteins these were derived from determined (GTex). MRD DRP had an average 3,670 HLA-binding-alloreactive peptides, putative mHA (pmHA) with an IC50 of <500 nM, and URD, had 5,386 (p<0.01). To simulate an alloreactive donor cytotoxic T cell response, the array of pmHA in each patient was considered as an operator matrix modifying a hypothetical cytotoxic T cell clonal vector matrix; each responding T cell clone's proliferation was determined by the logistic equation of growth, accounting for HLA binding affinity and tissue expression of each alloreactive peptide. The resulting simulated organ-specific alloreactive T cell clonal growth revealed marked variability, with the T cell count differences spanning orders of magnitude between different DRP. Despite an estimated, uniform set of constants used in the model for all DRP, and a heterogeneously treated group of patients, higher total and organ-specific T cell counts were associated with cumulative incidence of moderate to severe GVHD in recipients. In conclusion, exome wide sequence differences and the variable alloreactive peptide binding to HLA in each DRP yields a large range of possible alloreactive donor T cell responses. Our findings also help understand the apparent randomness observed in the development of alloimmune responses.

  2. Dynamical system modeling to simulate donor T cell response to whole exome sequencing-derived recipient peptides: Understanding randomness in alloreactivity incidence following stem cell transplantation

    PubMed Central

    Suntum, Tara; Sabo, Roy; Scalora, Allison; Serrano, Myrna; Jameson-Lee, Max; Hall, Charles; Kobulnicky, David; Sheth, Nihar; Feltz, Juliana; Contaifer, Daniel; Wijesinghe, Dayanjan; Reed, Jason; Roberts, Catherine; Qayyum, Rehan; Buck, Gregory; Neale, Michael

    2017-01-01

    Quantitative relationship between the magnitude of variation in minor histocompatibility antigens (mHA) and graft versus host disease (GVHD) pathophysiology in stem cell transplant (SCT) donor-recipient pairs (DRP) is not established. In order to elucidate this relationship, whole exome sequencing (WES) was performed on 27 HLA matched related (MRD), & 50 unrelated donors (URD), to identify nonsynonymous single nucleotide polymorphisms (SNPs). An average 2,463 SNPs were identified in MRD, and 4,287 in URD DRP (p<0.01); resulting peptide antigens that may be presented on HLA class I molecules in each DRP were derived in silico (NetMHCpan ver2.0) and the tissue expression of proteins these were derived from determined (GTex). MRD DRP had an average 3,670 HLA-binding-alloreactive peptides, putative mHA (pmHA) with an IC50 of <500 nM, and URD, had 5,386 (p<0.01). To simulate an alloreactive donor cytotoxic T cell response, the array of pmHA in each patient was considered as an operator matrix modifying a hypothetical cytotoxic T cell clonal vector matrix; each responding T cell clone’s proliferation was determined by the logistic equation of growth, accounting for HLA binding affinity and tissue expression of each alloreactive peptide. The resulting simulated organ-specific alloreactive T cell clonal growth revealed marked variability, with the T cell count differences spanning orders of magnitude between different DRP. Despite an estimated, uniform set of constants used in the model for all DRP, and a heterogeneously treated group of patients, higher total and organ-specific T cell counts were associated with cumulative incidence of moderate to severe GVHD in recipients. In conclusion, exome wide sequence differences and the variable alloreactive peptide binding to HLA in each DRP yields a large range of possible alloreactive donor T cell responses. Our findings also help understand the apparent randomness observed in the development of alloimmune responses. PMID:29194460

  3. Whole-exome sequencing in amyotrophic lateral sclerosis suggests NEK1 is a risk gene in Chinese.

    PubMed

    Gratten, Jacob; Zhao, Qiongyi; Benyamin, Beben; Garton, Fleur; He, Ji; Leo, Paul J; Mangelsdorf, Marie; Anderson, Lisa; Zhang, Zong-Hong; Chen, Lu; Chen, Xiang-Ding; Cremin, Katie; Deng, Hong-Weng; Edson, Janette; Han, Ying-Ying; Harris, Jessica; Henders, Anjali K; Jin, Zi-Bing; Li, Zhongshan; Lin, Yong; Liu, Xiaolu; Marshall, Mhairi; Mowry, Bryan J; Ran, Shu; Reutens, David C; Song, Sharon; Tan, Li-Jun; Tang, Lu; Wallace, Robyn H; Wheeler, Lawrie; Wu, Jinyu; Yang, Jian; Xu, Huji; Visscher, Peter M; Bartlett, Perry F; Brown, Matthew A; Wray, Naomi R; Fan, Dongsheng

    2017-11-17

    Amyotrophic lateral sclerosis (ALS) is a progressive neurological disease characterised by the degeneration of motor neurons, which are responsible for voluntary movement. There remains limited understanding of disease aetiology, with median survival of ALS of three years and no effective treatment. Identifying genes that contribute to ALS susceptibility is an important step towards understanding aetiology. The vast majority of published human genetic studies, including for ALS, have used samples of European ancestry. The importance of trans-ethnic studies in human genetic studies is widely recognised, yet a dearth of studies of non-European ancestries remains. Here, we report analyses of novel whole-exome sequencing (WES) data from Chinese ALS and control individuals. WES data were generated for 610 ALS cases and 460 controls drawn from Chinese populations. We assessed evidence for an excess of rare damaging mutations at the gene level and the gene set level, considering only singleton variants filtered to have allele frequency less than 5 × 10 -5 in reference databases. To meta-analyse our results with a published study of European ancestry, we used a Cochran-Mantel-Haenszel test to compare gene-level variant counts in cases vs controls. No gene passed the genome-wide significance threshold with ALS in Chinese samples alone. Combining rare variant counts in Chinese with those from the largest WES study of European ancestry resulted in three genes surpassing genome-wide significance: TBK1 (p = 8.3 × 10 -12 ), SOD1 (p = 8.9 × 10 -9 ) and NEK1 (p = 1.1 × 10 -9 ). In the Chinese data alone, SOD1 and NEK1 were nominally significantly associated with ALS (p = 0.04 and p = 7 × 10 -3 , respectively) and the case/control frequencies of rare coding variants in these genes were similar in Chinese and Europeans (SOD1: 1.5%/0.2% vs 0.9%/0.1%, NEK1 1.8%/0.4% vs 1.9%/0.8%). This was also true for TBK1 (1.2%/0.2% vs 1.4%/0.4%), but the association with ALS in Chinese was not significant (p = 0.14). While SOD1 is already recognised as an ALS-associated gene in Chinese, we provide novel evidence for association of NEK1 with ALS in Chinese, reporting variants in these genes not previously found in Europeans.

  4. A novel NOTCH3 mutation identified in patients with oral cancer by whole exome sequencing.

    PubMed

    Yi, Yanjun; Tian, Zhuowei; Ju, Houyu; Ren, Guoxin; Hu, Jingzhou

    2017-06-01

    Oral cancer is a serious disease caused by environmental factors and/or susceptible genes. In the present study, in order to identify useful genetic biomarkers for cancer prediction and prevention, and for personalized treatment, we detected somatic mutations in 5 pairs of oral cancer tissues and blood samples using whole exome sequencing (WES). Finally, we confirmed a novel nonsense single-nucleotide polymorphism (SNP; chr19:15288426A>C) in the NOTCH3 gene with sanger sequencing, which resulted in a N1438T mutation in the protein sequence. Using multiple in silico analyses, this variant was found to mildly damaging effects on the NOTCH3 gene, which was supported by the results from analyses using PANTHER, SNAP and SNPs&GO. However, further analysis using Mutation Taster revealed that this SNP had a probability of 0.9997 to be 'disease causing'. In addition, we performed 3D structure simulation analysis and the results suggested that this variant had little effect on the solubility and hydrophobicity of the protein and thus on its function; however, it decreased the stability of the protein by increasing the total energy following minimization (-1,051.39 kcal/mol for the mutant and -1,229.84 kcal/mol for the native) and decreasing one stabilizing residue of the protein. Less stability of the N1438T mutant was also supported by analysis using I-Mutant with a DDG value of -1.67. Overall, the present study identified and confirmed a novel mutation in the NOTCH3 gene, which may decrease the stability of NOTCH3, and may thus prove to be helpful in cancer prognosis.

  5. De novo truncating variants in the AHDC1 gene encoding the AT-hook DNA-binding motif-containing protein 1 are associated with intellectual disability and developmental delay.

    PubMed

    Yang, Hui; Douglas, Ganka; Monaghan, Kristin G; Retterer, Kyle; Cho, Megan T; Escobar, Luis F; Tucker, Megan E; Stoler, Joan; Rodan, Lance H; Stein, Diane; Marks, Warren; Enns, Gregory M; Platt, Julia; Cox, Rachel; Wheeler, Patricia G; Crain, Carrie; Calhoun, Amy; Tryon, Rebecca; Richard, Gabriele; Vitazka, Patrik; Chung, Wendy K

    2015-10-01

    Whole-exome sequencing (WES) represents a significant breakthrough in clinical genetics, and identifies a genetic etiology in up to 30% of cases of intellectual disability (ID). Using WES, we identified seven unrelated patients with a similar clinical phenotype of severe intellectual disability or neurodevelopmental delay who were all heterozygous for de novo truncating variants in the AT-hook DNA-binding motif-containing protein 1 (AHDC1). The patients were all minimally verbal or nonverbal and had variable neurological problems including spastic quadriplegia, ataxia, nystagmus, seizures, autism, and self-injurious behaviors. Additional common clinical features include dysmorphic facial features and feeding difficulties associated with failure to thrive and short stature. The AHDC1 gene has only one coding exon, and the protein contains conserved regions including AT-hook motifs and a PDZ binding domain. We postulate that all seven variants detected in these patients result in a truncated protein missing critical functional domains, disrupting interactions with other proteins important for brain development. Our study demonstrates that truncating variants in AHDC1 are associated with ID and are primarily associated with a neurodevelopmental phenotype.

  6. Somatic Mutations in NEK9 Cause Nevus Comedonicus

    PubMed Central

    Levinsohn, Jonathan L.; Sugarman, Jeffrey L.; McNiff, Jennifer M.; Antaya, Richard J.; Choate, Keith A.

    2016-01-01

    Acne vulgaris (AV) affects most adolescents, and of those affected, moderate to severe disease occurs in 20%. Comedones, follicular plugs consisting of desquamated keratinocytes and sebum, are central to its pathogenesis. Despite high heritability in first-degree relatives, AV genetic determinants remain incompletely understood. We therefore employed whole-exome sequencing (WES) in nevus comedonicus (NC), a rare disorder that features comedones and inflammatory acne cysts in localized, linear configurations. WES identified somatic NEK9 mutations, each affecting highly conserved residues within its kinase or RCC1 domains, in affected tissue of three out of three NC-affected subjects. All mutations are gain of function, resulting in increased phosphorylation at Thr210, a hallmark of NEK9 kinase activation. We found that comedo formation in NC is marked by loss of follicular differentiation markers, expansion of keratin-15-positive cells from localization within the bulge to the entire sub-bulge follicle and cyst, and ectopic expression of keratin 10, a marker of interfollicular differentiation not present in normal follicles. These findings suggest that NEK9 mutations in NC disrupt normal follicular differentiation and identify NEK9 as a potential regulator of follicular homeostasis. PMID:27153399

  7. Whole-exome sequencing and immune profiling of early-stage lung adenocarcinoma with fully annotated clinical follow-up

    PubMed Central

    Kadara, H; Choi, M; Zhang, J; Parra, E R; Rodriguez-Canales, J; Gaffney, S G; Zhao, Z; Behrens, C; Fujimoto, J; Chow, C; Yoo, Y; Kalhor, N; Moran, C; Rimm, D; Swisher, S; Gibbons, D L; Heymach, J; Kaftan, E; Townsend, J P; Lynch, T J; Schlessinger, J; Lee, J; Lifton, R P; Wistuba, I I; Herbst, R S

    2017-01-01

    Abstract Background Lung adenocarcinomas (LUADs) lead to the majority of deaths attributable to lung cancer. We performed whole-exome sequencing (WES) and immune profiling analyses of a unique set of clinically annotated early-stage LUADs to better understand the pathogenesis of this disease and identify clinically relevant molecular markers. Methods We performed WES of 108 paired stage I-III LUADs and normal lung tissues using the Illumina HiSeq 2000 platform. Ten immune markers (PD-L1, PD-1, CD3, CD4, CD8, CD45ro, CD57, CD68, FOXP3 and Granzyme B) were profiled by imaging-based immunohistochemistry (IHC) in a subset of LUADs (n = 92). Associations among mutations, immune markers and clinicopathological variables were analyzed using ANOVA and Fisher’s exact test. Cox proportional hazards regression models were used for multivariate analysis of clinical outcome. Results LUADs in this cohort exhibited an average of 243 coding mutations. We identified 28 genes with significant enrichment for mutation. SETD2-mutated LUADs exhibited relatively poor recurrence- free survival (RFS) and mutations in STK11 and ATM were associated with poor RFS among KRAS-mutant tumors. EGFR, KEAP1 and PIK3CA mutations were predictive of poor response to adjuvant therapy. Immune marker analysis revealed that LUADs in smokers and with relatively high mutation burdens exhibited increased levels of immune markers. Analysis of immunophenotypes revealed that LUADs with STK11 mutations exhibited relatively low levels of infiltrating CD4+/CD8+ T-cells indicative of a muted immune response. Tumoral PD-L1 was significantly elevated in TP53 mutant LUADs whereas PIK3CA mutant LUADs exhibited markedly down-regulated PD-L1 expression. LUADs with TP53 or KEAP1 mutations displayed relatively increased CD57 and Granzyme B levels indicative of augmented natural killer (NK) cell infiltration. Conclusion(s) Our study highlights molecular and immune phenotypes that warrant further analysis for their roles in clinical outcomes and personalized immune-based therapy of LUAD. PMID:27687306

  8. Whole-exome sequencing and immune profiling of early-stage lung adenocarcinoma with fully annotated clinical follow-up.

    PubMed

    Kadara, H; Choi, M; Zhang, J; Parra, E R; Rodriguez-Canales, J; Gaffney, S G; Zhao, Z; Behrens, C; Fujimoto, J; Chow, C; Yoo, Y; Kalhor, N; Moran, C; Rimm, D; Swisher, S; Gibbons, D L; Heymach, J; Kaftan, E; Townsend, J P; Lynch, T J; Schlessinger, J; Lee, J; Lifton, R P; Wistuba, I I; Herbst, R S

    2017-01-01

    Lung adenocarcinomas (LUADs) lead to the majority of deaths attributable to lung cancer. We performed whole-exome sequencing (WES) and immune profiling analyses of a unique set of clinically annotated early-stage LUADs to better understand the pathogenesis of this disease and identify clinically relevant molecular markers. We performed WES of 108 paired stage I-III LUADs and normal lung tissues using the Illumina HiSeq 2000 platform. Ten immune markers (PD-L1, PD-1, CD3, CD4, CD8, CD45ro, CD57, CD68, FOXP3 and Granzyme B) were profiled by imaging-based immunohistochemistry (IHC) in a subset of LUADs (n = 92). Associations among mutations, immune markers and clinicopathological variables were analyzed using ANOVA and Fisher's exact test. Cox proportional hazards regression models were used for multivariate analysis of clinical outcome. LUADs in this cohort exhibited an average of 243 coding mutations. We identified 28 genes with significant enrichment for mutation. SETD2-mutated LUADs exhibited relatively poor recurrence- free survival (RFS) and mutations in STK11 and ATM were associated with poor RFS among KRAS-mutant tumors. EGFR, KEAP1 and PIK3CA mutations were predictive of poor response to adjuvant therapy. Immune marker analysis revealed that LUADs in smokers and with relatively high mutation burdens exhibited increased levels of immune markers. Analysis of immunophenotypes revealed that LUADs with STK11 mutations exhibited relatively low levels of infiltrating CD4+/CD8+ T-cells indicative of a muted immune response. Tumoral PD-L1 was significantly elevated in TP53 mutant LUADs whereas PIK3CA mutant LUADs exhibited markedly down-regulated PD-L1 expression. LUADs with TP53 or KEAP1 mutations displayed relatively increased CD57 and Granzyme B levels indicative of augmented natural killer (NK) cell infiltration. Our study highlights molecular and immune phenotypes that warrant further analysis for their roles in clinical outcomes and personalized immune-based therapy of LUAD. © The Author 2016. Published by Oxford University Press on behalf of the European Society for Medical Oncology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  9. Coffin-Siris syndrome with café-au-lait spots, obesity and hyperinsulinism caused by a mutation in the ARID1B gene

    PubMed Central

    Sonmez, Fatma Mujgan; Uctepe, Eyyup; Gunduz, Mehmet; Gormez, Zeliha; Erpolat, Seval; Oznur, Murat; Sagiroglu, Mahmut Samil; Demirci, Huseyin; Gunduz, Esra

    2016-01-01

    Summary Coffin-Siris syndrome (CSS) (MIM 135900) is characterized by developmental delay, severe speech impairment, distinctive facial features, hypertrichosis, aplasia or hypoplasia of the distal phalanx or nail of the fifth digit and agenesis of the corpus callosum. Recently, it was shown that mutations in the ARID1B gene are the main cause of CSS, accounting for 76% of identified mutations. Here, we report a 15 year-old female patient who was admitted to our clinic with seizures, speech problems, dysmorphic features, bilaterally big, large thumb, café-au-lait (CAL) spots, obesity and hyperinsulinism. First, the patient was thought to have an association of neurofibromatosis and Rubinstein Taybi syndrome. Because of the large size of the NF1 gene for neurofibromatosis and CREBBP gene for Rubinstein Taybi syndrome, whole exome sequence analysis (WES) was conducted and a novel ARID1B mutation was identified. The proband WES test identified a novel heterozygous frameshift mutation c.3394_3395insTA in exon 13 of ARID1B (NM_017519.2) predicting a premature stop codon p.(Tyr1132Leufs*67). Sanger sequencing confirmed the heterozygous c.3394_3395insTA mutation in the proband and that it was not present in her parents indicating de novo mutation. Further investigation and new cases will help to understand this phenomenon better. PMID:27672547

  10. Coffin-Siris syndrome with café-au-lait spots, obesity and hyperinsulinism caused by a mutation in the ARID1B gene.

    PubMed

    Sonmez, Fatma Mujgan; Uctepe, Eyyup; Gunduz, Mehmet; Gormez, Zeliha; Erpolat, Seval; Oznur, Murat; Sagiroglu, Mahmut Samil; Demirci, Huseyin; Gunduz, Esra

    2016-08-01

    Coffin-Siris syndrome (CSS) (MIM 135900) is characterized by developmental delay, severe speech impairment, distinctive facial features, hypertrichosis, aplasia or hypoplasia of the distal phalanx or nail of the fifth digit and agenesis of the corpus callosum. Recently, it was shown that mutations in the ARID1B gene are the main cause of CSS, accounting for 76% of identified mutations. Here, we report a 15 year-old female patient who was admitted to our clinic with seizures, speech problems, dysmorphic features, bilaterally big, large thumb, café-au-lait (CAL) spots, obesity and hyperinsulinism. First, the patient was thought to have an association of neurofibromatosis and Rubinstein Taybi syndrome. Because of the large size of the NF1 gene for neurofibromatosis and CREBBP gene for Rubinstein Taybi syndrome, whole exome sequence analysis (WES) was conducted and a novel ARID1B mutation was identified. The proband WES test identified a novel heterozygous frameshift mutation c.3394_3395insTA in exon 13 of ARID1B (NM_017519.2) predicting a premature stop codon p.(Tyr1132Leufs*67). Sanger sequencing confirmed the heterozygous c.3394_3395insTA mutation in the proband and that it was not present in her parents indicating de novo mutation. Further investigation and new cases will help to understand this phenomenon better.

  11. Digenic Inheritance of PROKR2 and WDR11 Mutations in Pituitary Stalk Interruption Syndrome.

    PubMed

    McCormack, Shana E; Li, Dong; Kim, Yeon Joo; Lee, Ji Young; Kim, Soo-Hyun; Rapaport, Robert; Levine, Michael A

    2017-07-01

    Pituitary stalk interruption syndrome (PSIS, ORPHA95496) is a congenital defect of the pituitary gland characterized by the triad of a very thin/interrupted pituitary stalk, an ectopic (or absent) posterior pituitary gland, and hypoplasia or aplasia of the anterior pituitary gland. Complex genetic patterns of inheritance of this disorder are increasingly recognized. The objective of this study was to identify a genetic cause of PSIS in an affected child. Whole exome sequencing (WES) was performed by using standard techniques, with prioritized genetic variants confirmed via Sanger sequencing. To investigate the effects of one candidate variant on mutant WDR11 function, Western blotting and coimmunofluorescence were used to assess binding capacity, and leptomycin B exposure along with immunofluorescence was used to assess nuclear localization. We describe a child who presented in infancy with combined pituitary hormone deficiencies and whose brain imaging demonstrated a small anterior pituitary, ectopic posterior pituitary, and a thin, interrupted stalk. WES demonstrated heterozygous missense mutations in two genes required for pituitary development, a known loss-of-function mutation in PROKR2 (c.253C>T;p.R85C) inherited from an unaffected mother, and a WDR11 (c.1306A>G;p.I436V) mutation inherited from an unaffected father. Mutant WDR11 loses its capacity to bind to its functional partner, EMX1, and to localize to the nucleus. WES in a child with PSIS and his unaffected family implicates a digenic mechanism of inheritance. In cases of hypopituitarism in which there is incomplete segregation of a monogenic genotype with the phenotype, the possibility that a second genetic locus is involved should be considered. Copyright © 2017 Endocrine Society

  12. Somatic HLA Mutations Expose the Role of Class I-Mediated Autoimmunity in Aplastic Anemia and its Clonal Complications.

    PubMed

    Babushok, Daria V; Duke, Jamie L; Xie, Hongbo M; Stanley, Natasha; Atienza, Jamie; Perdigones, Nieves; Nicholas, Peter; Ferriola, Deborah; Li, Yimei; Huang, Hugh; Ye, Wenda; Morrissette, Jennifer J D; Kearns, Jane; Porter, David L; Podsakoff, Gregory M; Eisenlohr, Laurence C; Biegel, Jaclyn A; Chou, Stella T; Monos, Dimitrios S; Bessler, Monica; Olson, Timothy S

    2017-10-10

    Acquired aplastic anemia (aAA) is an acquired deficiency of early hematopoietic cells, characterized by inadequate blood production, and a predisposition to myelodysplastic syndrome (MDS) and leukemia. Although its exact pathogenesis is unknown, aAA is thought to be driven by Human Leukocyte Antigen (HLA)-restricted T cell immunity, with earlier studies favoring HLA class II-mediated pathways. Using whole exome sequencing (WES), we recently identified two aAA patients with somatic mutations in HLA class I genes. We hypothesized that HLA class I mutations are pathognomonic for autoimmunity in aAA, but were previously underappreciated because the Major Histocompatibility Complex (MHC) region is notoriously difficult to analyze by WES. Using a combination of targeted deep sequencing of HLA class I genes and single nucleotide polymorphism array (SNP-A) genotyping we screened 66 aAA patients for somatic HLA class I loss. We found somatic HLA loss in eleven patients (17%), with thirteen loss-of-function mutations in HLA-A *33:03, HLA-A *68:01, HLA-B *14:02 and HLA-B *40:02 alleles. Three patients had more than one mutation targeting the same HLA allele. Interestingly, HLA-B *14:02 and HLA-B *40:02 were significantly overrepresented in aAA patients, compared to ethnicity-matched controls. Patients who inherited the targeted HLA alleles, regardless of HLA mutation status, had a more severe disease course with more frequent clonal complications as assessed by WES, SNP-A, and metaphase cytogenetics, and more frequent secondary MDS. The finding of recurrent HLA class I mutations provides compelling evidence for a predominant HLA class I-driven autoimmunity in aAA, and establishes a novel link between aAA patients' immunogenetics and clonal evolution.

  13. Somatic HLA mutations expose the role of class I–mediated autoimmunity in aplastic anemia and its clonal complications

    PubMed Central

    Duke, Jamie L.; Xie, Hongbo M.; Stanley, Natasha; Atienza, Jamie; Perdigones, Nieves; Nicholas, Peter; Ferriola, Deborah; Li, Yimei; Huang, Hugh; Ye, Wenda; Morrissette, Jennifer J. D.; Kearns, Jane; Porter, David L.; Podsakoff, Gregory M.; Eisenlohr, Laurence C.; Biegel, Jaclyn A.; Chou, Stella T.; Monos, Dimitrios S.; Bessler, Monica; Olson, Timothy S.

    2017-01-01

    Acquired aplastic anemia (aAA) is an acquired deficiency of early hematopoietic cells, characterized by inadequate blood production, and a predisposition to myelodysplastic syndrome (MDS) and leukemia. Although its exact pathogenesis is unknown, aAA is thought to be driven by human leukocyte antigen (HLA)–restricted T cell immunity, with earlier studies favoring HLA class II-mediated pathways. Using whole-exome sequencing (WES), we recently identified 2 patients with aAA with somatic mutations in HLA class I genes. We hypothesized that HLA class I mutations are pathognomonic for autoimmunity in aAA, but were previously underappreciated because the major histocompatibility complex (MHC) region is notoriously difficult to analyze by WES. Using a combination of targeted deep sequencing of HLA class I genes and single nucleotide polymorphism array (SNP-A) genotyping, we screened 66 patients with aAA for somatic HLA class I loss. We found somatic HLA loss in 11 patients (17%), with 13 loss-of-function mutations in HLA-A*33:03, HLA-A*68:01, HLA-B*14:02, and HLA-B*40:02 alleles. Three patients had more than 1 mutation targeting the same HLA allele. Interestingly, HLA-B*14:02 and HLA-B*40:02 were significantly overrepresented in patients with aAA compared with ethnicity-matched controls. Patients who inherited the targeted HLA alleles, regardless of HLA mutation status, had a more severe disease course with more frequent clonal complications as assessed by WES, SNP-A, and metaphase cytogenetics, and more frequent secondary MDS. The finding of recurrent HLA class I mutations provides compelling evidence for a predominant HLA class I-driven autoimmunity in aAA and establishes a novel link between immunogenetics and clonal evolution of patients with aAA. PMID:28971166

  14. Probable Diagnosis of a Patient with Niemann-Pick Disease Type C: Managing Pitfalls of Exome Sequencing.

    PubMed

    Zeiger, William A; Jamal, Nasheed I; Scheuner, Maren T; Pittman, Patricia; Raymond, Kimiyo M; Morra, Massimo; Mishra, Shri K

    2018-02-17

    Here, we present a case of a 31-year-old man with progressive cognitive decline, ataxia, and dystonia. Extensive laboratory, radiographic, and targeted genetic studies over the course of several years failed to yield a diagnosis. Initial whole exome sequencing through a commercial laboratory identified several variants of uncertain significance; however, follow-up clinical examination and testing ruled each of these out. Eventually, repeat whole exome sequencing identified a known pathogenic intronic variant in the NPC1 gene (NM_000271.4, c.1554-1009G>A) and an additional heterozygous exonic variant of uncertain significance in the NPC1 gene (NM_000271.4, c.2524T>C). Follow-up biochemical testing was consistent with a diagnosis of probable Niemann-Pick disease Type C (NP-C). This case illustrates the potential of whole exome sequencing for diagnosing rare complex neurologic diseases. It also identifies several potential common pitfalls that must be navigated by clinicians when interpreting commercial whole exome sequencing results.

  15. Novel compound heterozygous mutations in the OTOF Gene identified by whole-exome sequencing in auditory neuropathy spectrum disorder.

    PubMed

    Tang, Fengzhu; Ma, Dengke; Wang, Yulan; Qiu, Yuecai; Liu, Fei; Wang, Qingqing; Lu, Qiutian; Shi, Min; Xu, Liang; Liu, Min; Liang, Jianping

    2017-03-23

    Many hearing-loss diseases are demonstrated to have Mendelian inheritance caused by mutations in single gene. However, many deaf individuals have diseases that remain genetically unexplained. Auditory neuropathy is a sensorineural deafness in which sounds are able to be transferred into the inner ear normally but the transmission of the signals from inner ear to auditory nerve and brain is injured, also known as auditory neuropathy spectrum disorder (ANSD). The pathogenic mutations of the genes responsible for the Chinese ANSD population remain poorly understood. A total of 127 patients with non-syndromic hearing loss (NSHL) were enrolled in Guangxi Zhuang Autonomous Region. A hereditary deafness gene mutation screening was performed to identify the mutation sites in four deafness-related genes (GJB2, GJB3, 12S rRNA, and SLC26A4). In addition, whole-exome sequencing (WES) was applied to explore unappreciated mutation sites in the cases with the singularity of its phenotype. Well-characterized mutations were found in only 8.7% (11/127) of the patients. Interestingly, two mutations in the OTOF gene were identified in two affected siblings with ANSD from a Chinese family, including one nonsense mutation c.1273C > T (p.R425X) and one missense mutation c.4994 T > C (p.L1665P). Furthermore, we employed Sanger sequencing to confirm the mutations in each subject. Two compound heterozygous mutations in the OTOF gene were observed in the two affected siblings, whereas the two parents and unaffected sister were heterozygous carriers of c.1273C > T (father and sister) and c.4994 T > C (mother). The nonsense mutation p.R425X, contributes to a premature stop codon, may result in a truncated polypeptide, which strongly suggests its pathogenicity for ANSD. The missense mutation p.L1665P results in a single amino acid substitution in a highly conserved region. Two mutations in the OTOF gene in the Chinese deaf population were recognized for the first time. These findings not only extend the OTOF gene mutation spectrum for ANSD but also indicate that whole-exome sequencing is an effective approach to clarify the genetic characteristics in non-syndromic ANSD patients.

  16. Whole exome sequencing identifies a homozygous nonsense variation in ALMS1 gene in a patient with syndromic obesity.

    PubMed

    Das Bhowmik, Aneek; Gupta, Neerja; Dalal, Ashwin; Kabra, Madhulika

    In the present study we report on genetic analysis in a patient with developmental delay, truncal obesity and vision problem, to find the causative mutation. Whole exome sequencing was performed on genomic DNA extracted from whole blood of the patient which revealed a homozygous nonsense variant (c.2816T>A) in exon 8 of ALMS1 gene that results in a stop codon and premature truncation at codon 939 (p.L939Ter) of the protein. The mutation was confirmed by Sanger sequencing. Exome sequencing was helpful in establishing diagnosis of Alstrom syndrome in this patient. This case highlights the utility of exome sequencing in clinical practice. Copyright © 2016 Asia Oceania Association for the Study of Obesity. Published by Elsevier Ltd. All rights reserved.

  17. Screening of dementia genes by whole-exome sequencing in early-onset Alzheimer disease: input and lessons.

    PubMed

    Nicolas, Gaël; Wallon, David; Charbonnier, Camille; Quenez, Olivier; Rousseau, Stéphane; Richard, Anne-Claire; Rovelet-Lecrux, Anne; Coutant, Sophie; Le Guennec, Kilan; Bacq, Delphine; Garnier, Jean-Guillaume; Olaso, Robert; Boland, Anne; Meyer, Vincent; Deleuze, Jean-François; Munter, Hans Markus; Bourque, Guillaume; Auld, Daniel; Montpetit, Alexandre; Lathrop, Mark; Guyant-Maréchal, Lucie; Martinaud, Olivier; Pariente, Jérémie; Rollin-Sillaire, Adeline; Pasquier, Florence; Le Ber, Isabelle; Sarazin, Marie; Croisile, Bernard; Boutoleau-Bretonnière, Claire; Thomas-Antérion, Catherine; Paquet, Claire; Sauvée, Mathilde; Moreaud, Olivier; Gabelle, Audrey; Sellal, François; Ceccaldi, Mathieu; Chamard, Ludivine; Blanc, Frédéric; Frebourg, Thierry; Campion, Dominique; Hannequin, Didier

    2016-05-01

    Causative variants in APP, PSEN1 or PSEN2 account for a majority of cases of autosomal dominant early-onset Alzheimer disease (ADEOAD, onset before 65 years). Variant detection rates in other EOAD patients, that is, with family history of late-onset AD (LOAD) (and no incidence of EOAD) and sporadic cases might be much lower. We analyzed the genomes from 264 patients using whole-exome sequencing (WES) with high depth of coverage: 90 EOAD patients with family history of LOAD and no incidence of EOAD in the family and 174 patients with sporadic AD starting between 51 and 65 years. We found three PSEN1 and one PSEN2 causative, probably or possibly causative variants in four patients (1.5%). Given the absence of PSEN1, PSEN2 and APP causative variants, we investigated whether these 260 patients might be burdened with protein-modifying variants in 20 genes that were previously shown to cause other types of dementia when mutated. For this analysis, we included an additional set of 160 patients who were previously shown to be free of causative variants in PSEN1, PSEN2 and APP: 107 ADEOAD patients and 53 sporadic EOAD patients with an age of onset before 51 years. In these 420 patients, we detected no variant that might modify the function of the 20 dementia-causing genes. We conclude that EOAD patients with family history of LOAD and no incidence of EOAD in the family or patients with sporadic AD starting between 51 and 65 years have a low variant-detection rate in AD genes.

  18. Mendel,MD: A user-friendly open-source web tool for analyzing WES and WGS in the diagnosis of patients with Mendelian disorders

    PubMed Central

    D. Linhares, Natália; Pena, Sérgio D. J.

    2017-01-01

    Whole exome and whole genome sequencing have both become widely adopted methods for investigating and diagnosing human Mendelian disorders. As pangenomic agnostic tests, they are capable of more accurate and agile diagnosis compared to traditional sequencing methods. This article describes new software called Mendel,MD, which combines multiple types of filter options and makes use of regularly updated databases to facilitate exome and genome annotation, the filtering process and the selection of candidate genes and variants for experimental validation and possible diagnosis. This tool offers a user-friendly interface, and leads clinicians through simple steps by limiting the number of candidates to achieve a final diagnosis of a medical genetics case. A useful innovation is the “1-click” method, which enables listing all the relevant variants in genes present at OMIM for perusal by clinicians. Mendel,MD was experimentally validated using clinical cases from the literature and was tested by students at the Universidade Federal de Minas Gerais, at GENE–Núcleo de Genética Médica in Brazil and at the Children’s University Hospital in Dublin, Ireland. We show in this article how it can simplify and increase the speed of identifying the culprit mutation in each of the clinical cases that were received for further investigation. Mendel,MD proved to be a reliable web-based tool, being open-source and time efficient for identifying the culprit mutation in different clinical cases of patients with Mendelian Disorders. It is also freely accessible for academic users on the following URL: https://mendelmd.org. PMID:28594829

  19. Chromothripsis and ring chromosome 22: a paradigm of genomic complexity in the Phelan-McDermid syndrome (22q13 deletion syndrome)

    PubMed Central

    Kurtas, Nehir; Arrigoni, Filippo; Errichiello, Edoardo; Zucca, Claudio; Maghini, Cristina; D’Angelo, Maria Grazia; Beri, Silvana; Giorda, Roberto; Bertuzzo, Sara; Delledonne, Massimo; Xumerle, Luciano; Rossato, Marzia; Zuffardi, Orsetta; Bonaglia, Maria Clara

    2018-01-01

    Introduction Phelan-McDermid syndrome (PMS) is caused by SHANK3 haploinsufficiency. Its wide phenotypic variation is attributed partly to the type and size of 22q13 genomic lesion (deletion, unbalanced translocation, ring chromosome), partly to additional undefined factors. We investigated a child with severe global neurodevelopmental delay (NDD) compatible with her distal 22q13 deletion, complicated by bilateral perisylvian polymicrogyria (BPP) and urticarial rashes, unreported in PMS. Methods Following the cytogenetic and array-comparative genomic hybridization (CGH) detection of a r(22) with SHANK3 deletion and two upstream duplications, whole-genome sequencing (WGS) in blood and whole-exome sequencing (WES) in blood and saliva were performed to highlight potential chromothripsis/chromoanagenesis events and any possible BPP-associated variants, even in low-level mosaicism. Results WGS confirmed the deletion and highlighted inversion and displaced order of eight fragments, three of them duplicated. The microhomology-mediated insertion of partial Alu-elements at one breakpoint junction disrupted the topological associating domain joining NFAM1 to the transcriptional coregulator TCF20. WES failed to detect BPP-associated variants. Conclusions Although we were unable to highlight the molecular basis of BPP, our data suggest that SHANK3 haploinsufficiency and TCF20 misregulation, both associated with intellectual disability, contributed to the patient’s NDD, while NFAM1 interruption likely caused her skin rashes, as previously reported. We provide the first example of chromoanasynthesis in a constitutional ring chromosome and reinforce the growing evidence that chromosomal rearrangements may be more complex than estimated by conventional diagnostic approaches and affect the phenotype by global alteration of the topological chromatin organisation rather than simply by deletion or duplication of dosage-sensitive genes. PMID:29378768

  20. Engaging a Community for Rare Genetic Disease: Best Practices and Education From Individual Crowdfunding Campaigns

    PubMed Central

    Witte, Steven; Gouw, Arvin; Sanfilippo, Ana; Tsai, Richard; Fumagalli, Danielle; Yu, Christine; Lant, Karla; Lipitz, Nicole; Shepphird, Jennifer; Alvina, Fidelia B; Cheng-Ho Lin, Jimmy

    2018-01-01

    Background Genetic sequencing is critically important to diagnostic health care efforts in the United States today, yet it is still inaccessible to many. Meanwhile, the internet and social networking have made crowdfunding a realistic avenue for individuals and groups hoping to fund medical and research causes, including patients in need of whole exome genetic sequencing (WES). Objective Amplify Hope is an educational program designed to investigate what factors affect the success of medical crowdfunding campaigns. We conducted a needs assessment, a series of 25 interviews concerning crowdfunding, and provided training on best practices identified through our assessment for 11 individuals hoping to run their medical crowdfunding campaigns to raise money for patients to access trio WES to identify the mutated proteins that caused their apparent inherited disease. Methods The crowdfunding education was given in a 30-day training period with resources such as webinars, fact sheets and a crowdfunding training guide emailed to each participant. All campaigns were launched on the same date and were given 30 days to raise the same goal amount of US $5000. Reviewing the 4 crowdfunding campaigns that raised the goal amount within the 30-day period, we sought to identify features that made the 4 crowdfunding campaigns successful. In addition, we sought to assess which factors the resulting 75 donors report as influencing their decision to donate to a campaign. Finally, we investigated whether crowdfunding campaigns for exome sequencing had an impact on increasing applicant’s and donors’ knowledge of genomics. Results Of the 86 study inquiries, 11 participants submitted the required forms and launched their crowdfunding campaigns. A total of 4 of the 11 campaigns raised their goal amounts within 30 days. Conclusions We found that social media played an important role in all campaigns. Specifically, a strong social media network, an active outreach process to networks, as well as engagement within the study all correlated with a higher success rate. Amplify Hope donors were more likely to support projects that were near their fundraising goals, and they found video far more effective for learning about genomics than any other medium. PMID:29402763

  1. Somatic APC mosaicism and oligogenic inheritance in genetically unsolved colorectal adenomatous polyposis patients.

    PubMed

    Ciavarella, Michele; Miccoli, Sara; Prossomariti, Anna; Pippucci, Tommaso; Bonora, Elena; Buscherini, Francesco; Palombo, Flavia; Zuntini, Roberta; Balbi, Tiziana; Ceccarelli, Claudio; Bazzoli, Franco; Ricciardiello, Luigi; Turchetti, Daniela; Piazzi, Giulia

    2018-03-01

    Germline variants in the APC gene cause familial adenomatous polyposis. Inherited variants in MutYH, POLE, POLD1, NTHL1, and MSH3 genes and somatic APC mosaicism have been reported as alternative causes of polyposis. However, ~30-50% of cases of polyposis remain genetically unsolved. Thus, the aim of this study was to investigate the genetic causes of unexplained adenomatous polyposis. Eight sporadic cases with >20 adenomatous polyps by 35 years of age or >50 adenomatous polyps by 55 years of age, and no causative germline variants in APC and/or MutYH, were enrolled from a cohort of 56 subjects with adenomatous colorectal polyposis. APC gene mosaicism was investigated on DNA from colonic adenomas by Sanger sequencing or Whole Exome Sequencing (WES). Mosaicism extension to other tissues (peripheral blood, saliva, hair follicles) was evaluated using Sanger sequencing and/or digital PCR. APC second hit was investigated in adenomas from mosaic patients. WES was performed on DNA from peripheral blood to identify additional polyposis candidate variants. We identified APC mosaicism in 50% of patients. In three cases mosaicism was restricted to the colon, while in one it also extended to the duodenum and saliva. One patient without APC mosaicism, carrying an APC in-frame deletion of uncertain significance, was found to harbor rare germline variants in OGG1, POLQ, and EXO1 genes. In conclusion, our restrictive selection criteria improved the detection of mosaic APC patients. In addition, we showed for the first time that an oligogenic inheritance of rare variants might have a cooperative role in sporadic colorectal polyposis onset.

  2. CSN1 Somatic Mutations in Penile Squamous Cell Carcinoma.

    PubMed

    Feber, Andrew; Worth, Daniel C; Chakravarthy, Ankur; de Winter, Patricia; Shah, Kunal; Arya, Manit; Saqib, Muhammad; Nigam, Raj; Malone, Peter R; Tan, Wei Shen; Rodney, Simon; Freeman, Alex; Jameson, Charles; Wilson, Gareth A; Powles, Tom; Beck, Stephan; Fenton, Tim; Sharp, Tyson V; Muneer, Asif; Kelly, John D

    2016-08-15

    Other than an association with HPV infection, little is known about the genetic alterations determining the development of penile cancer. Although penile cancer is rare in the developed world, it presents a significant burden in developing countries. Here, we report the findings of whole-exome sequencing (WES) to determine the somatic mutational landscape of penile cancer. WES was performed on penile cancer and matched germline DNA from 27 patients undergoing surgical resection. Targeted resequencing of candidate genes was performed in an independent 70 patient cohort. Mutation data were also integrated with DNA methylation and copy-number information from the same patients. We identified an HPV-associated APOBEC mutation signature and an NpCpG signature in HPV-negative disease. We also identified recurrent mutations in the novel penile cancer tumor suppressor genes CSN1(GPS1) and FAT1 Expression of CSN1 mutants in cells resulted in colocalization with AGO2 in cytoplasmic P-bodies, ultimately leading to the loss of miRNA-mediated gene silencing, which may contribute to disease etiology. Our findings represent the first comprehensive analysis of somatic alterations in penile cancer, highlighting the complex landscape of alterations in this malignancy. Cancer Res; 76(16); 4720-7. ©2016 AACR. ©2016 American Association for Cancer Research.

  3. A glycogene mutation map for discovery of diseases of glycosylation

    PubMed Central

    Hansen, Lars; Lind-Thomsen, Allan; Joshi, Hiren J; Pedersen, Nis Borbye; Have, Christian Theil; Kong, Yun; Wang, Shengjun; Sparso, Thomas; Grarup, Niels; Vester-Christensen, Malene Bech; Schjoldager, Katrine; Freeze, Hudson H; Hansen, Torben; Pedersen, Oluf; Henrissat, Bernard; Mandel, Ulla; Clausen, Henrik; Wandall, Hans H; Bennett, Eric P

    2015-01-01

    Glycosylation of proteins and lipids involves over 200 known glycosyltransferases (GTs), and deleterious defects in many of the genes encoding these enzymes cause disorders collectively classified as congenital disorders of glycosylation (CDGs). Most known CDGs are caused by defects in glycogenes that affect glycosylation globally. Many GTs are members of homologous isoenzyme families and deficiencies in individual isoenzymes may not affect glycosylation globally. In line with this, there appears to be an underrepresentation of disease-causing glycogenes among these larger isoenzyme homologous families. However, genome-wide association studies have identified such isoenzyme genes as candidates for different diseases, but validation is not straightforward without biomarkers. Large-scale whole-exome sequencing (WES) provides access to mutations in, for example, GT genes in populations, which can be used to predict and/or analyze functional deleterious mutations. Here, we constructed a draft of a functional mutational map of glycogenes, GlyMAP, from WES of a rather homogenous population of 2000 Danes. We cataloged all missense mutations and used prediction algorithms, manual inspection and in case of carbohydrate-active enzymes family GT27 experimental analysis of mutations to map deleterious mutations. GlyMAP (http://glymap.glycomics.ku.dk) provides a first global view of the genetic stability of the glycogenome and should serve as a tool for discovery of novel CDGs. PMID:25267602

  4. Renal oncocytoma characterized by the defective complex I of the respiratory chain boosts the synthesis of the ROS scavenger glutathione.

    PubMed

    Kürschner, Gerrit; Zhang, Qingzhou; Clima, Rosanna; Xiao, Yi; Busch, Jonas Felix; Kilic, Ergin; Jung, Klaus; Berndt, Nikolaus; Bulik, Sascha; Holzhütter, Hermann-Georg; Gasparre, Giuseppe; Attimonelli, Marcella; Babu, Mohan; Meierhofer, David

    2017-12-01

    Renal oncocytomas are rare benign tumors of the kidney and characterized by a deficient complex I (CI) enzyme activity of the oxidative phosphorylation (OXPHOS) system caused by mitochondrial DNA (mtDNA) mutations. Yet, little is known about the underlying molecular mechanisms and alterations of metabolic pathways in this tumor. We compared renal oncocytomas with adjacent matched normal kidney tissues on a global scale by multi-omics approaches, including whole exome sequencing (WES), proteomics, metabolomics, and metabolic pathway simulation. The abundance of proteins localized to mitochondria increased more than 2-fold, the only exception was a strong decrease in the abundance for CI subunits that revealed several pathogenic heteroplasmic mtDNA mutations by WES. We also observed renal oncocytomas to dysregulate main metabolic pathways, shunting away from gluconeogenesis and lipid metabolism. Nevertheless, the abundance of energy carrier molecules such as NAD + , NADH, NADP, ATP, and ADP were significantly higher in renal oncocytomas. Finally, a substantial 5000-fold increase of the reactive oxygen species scavenger glutathione can be regarded as a new hallmark of renal oncocytoma. Our findings demonstrate that renal oncocytomas undergo a metabolic switch to eliminate ATP consuming processes to ensure a sufficient energy supply for the tumor.

  5. Renal oncocytoma characterized by the defective complex I of the respiratory chain boosts the synthesis of the ROS scavenger glutathione

    PubMed Central

    Clima, Rosanna; Xiao, Yi; Busch, Jonas Felix; Kilic, Ergin; Jung, Klaus; Berndt, Nikolaus; Bulik, Sascha; Holzhütter, Hermann-Georg; Gasparre, Giuseppe; Attimonelli, Marcella; Babu, Mohan; Meierhofer, David

    2017-01-01

    Renal oncocytomas are rare benign tumors of the kidney and characterized by a deficient complex I (CI) enzyme activity of the oxidative phosphorylation (OXPHOS) system caused by mitochondrial DNA (mtDNA) mutations. Yet, little is known about the underlying molecular mechanisms and alterations of metabolic pathways in this tumor. We compared renal oncocytomas with adjacent matched normal kidney tissues on a global scale by multi-omics approaches, including whole exome sequencing (WES), proteomics, metabolomics, and metabolic pathway simulation. The abundance of proteins localized to mitochondria increased more than 2-fold, the only exception was a strong decrease in the abundance for CI subunits that revealed several pathogenic heteroplasmic mtDNA mutations by WES. We also observed renal oncocytomas to dysregulate main metabolic pathways, shunting away from gluconeogenesis and lipid metabolism. Nevertheless, the abundance of energy carrier molecules such as NAD+, NADH, NADP, ATP, and ADP were significantly higher in renal oncocytomas. Finally, a substantial 5000-fold increase of the reactive oxygen species scavenger glutathione can be regarded as a new hallmark of renal oncocytoma. Our findings demonstrate that renal oncocytomas undergo a metabolic switch to eliminate ATP consuming processes to ensure a sufficient energy supply for the tumor. PMID:29285300

  6. Mutations in FLVCR2 associated with Fowler syndrome and survival beyond infancy.

    PubMed

    Kvarnung, M; Taylan, F; Nilsson, D; Albåge, M; Nordenskjöld, M; Anderlid, B M; Nordgren, A; Syk Lundberg, E

    2016-01-01

    Proliferative vasculopathy and hydranencephaly-hydrocephaly syndrome (PVHH, OMIM 225790), also known as Fowler syndrome, is a rare autosomal recessive disorder, caused by mutations in FLVCR2. Hallmarks of the syndrome are glomerular vasculopathy in the central nervous system, severe hydrocephaly, hypokinesia and arthrogryphosis. The disorder is considered prenatally lethal. We report the first patients, a brother and a sister, with Fowler syndrome and survival beyond infancy. The patients present a phenotype of severe intellectual and neurologic disability with seizures, absence of functional movements, and no means of communication. Imaging of the brain showed calcifications, profound ventriculomegaly with only a thin edging of the cerebral cortex and hypoplastic cerebellum. Investigation with whole-exome sequencing (WES) revealed, in both patients, a homozygous pathogenic mutation in FLVCR2, c.1289C>T, compatible with a diagnosis of Fowler syndrome. The results highlight the power of combining WES with a thorough clinical examination in order to identify disease-causing mutations in patients whose clinical presentation differs from previously described cases. Specifically, the findings demonstrate that Fowler syndrome is a diagnosis to consider, not only prenatally but also in severely affected children with gross ventriculomegaly on brain imaging. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. HABP2 p.G534E variant in patients with family history of thyroid and breast cancer

    PubMed Central

    Pinheiro, Maisa; Drigo, Sandra Aparecida; Tonhosolo, Renata; Andrade, Sonia C.S.; Marchi, Fabio Albuquerque; Jurisica, Igor; Kowalski, Luiz Paulo; Achatz, Maria Isabel; Rogatto, Silvia Regina

    2017-01-01

    Familial Papillary Thyroid Carcinoma (PTC) has been described as a hereditary predisposition cancer syndrome associated with mutations in candidate genes including HABP2. Two of 20 probands from families with history of PTC and breast carcinoma (BC) were evaluated by whole exome sequencing (WES) revealing HABP2 p.G534E. Sanger sequencing was used to confirm the involvement of this variant in three families (F1: 7 relatives; F2: 3 and F3: 3). The proband and his sister (with no malignant tumor so far) from F1 were homozygous for the variant whereas one relative with PTC from F2 was negative for the variant. Although the proband of the F3 with PTC was HABP2 wild type, three relatives presented the variant. Five of 170 healthy Brazilian individuals with no family history of BC or PTC and three of 50 sporadic PTC presented the p.G534E. These findings suggested no association of this variant with our familial PTC cases. Genes potentially associated with deregulation of the extracellular matrix organization pathway (CTSB, TNXB, COL4A3, COL16A1, COL24A1, COL5A2, NID1, LOXL2, MMP11, TRIM24 and MUSK) and DNA repair function (NBN and MSH2) were detected by WES, suggesting that other cancer-associated genes have pathogenic effects in the risk of familial PTC development. PMID:28402931

  8. Clinical utility of genetic testing in pediatric drug-resistant epilepsy: a pilot study.

    PubMed

    Ream, Margie A; Mikati, Mohamad A

    2014-08-01

    The utility of genetic testing in pediatric drug-resistant epilepsy (PDRE), its yield in "real life" clinical practice, and the practical implications of such testing are yet to be determined. To start to address the above gaps in our knowledge as they apply to a patient population seen in a tertiary care center. We retrospectively reviewed our experience with the use of clinically available genetic tests in the diagnosis and management of PDRE in one clinic over one year. Genetic testing included, depending on clinical judgment, one or more of the following: karyotype, chromosomal microarray, single gene sequencing, gene sequencing panels, and/or whole exome sequencing (WES). We were more likely to perform genetic testing in patients with developmental delay, epileptic encephalopathy, and generalized epilepsy. In our unique population, the yield of specific genetic diagnosis was relatively high: karyotype 14.3%, microarray 16.7%, targeted single gene sequencing 15.4%, gene panels 46.2%, and WES 16.7%. Overall yield of diagnosis from at least one of the above tests was 34.5%. Disease-causing mutations that were not clinically suspected based on the patients' phenotypes and representing novel phenotypes were found in 6.9% (2/29), with an additional 17.2% (5/29) demonstrating pharmacologic variants. Three patients were incidentally found to be carriers of recessive neurologic diseases (10.3%). Variants of unknown significance (VUSs) were identified in 34.5% (10/29). We conclude that genetic testing had at least some utility in our patient population of PDRE, that future similar larger studies in various populations are warranted, and that clinics offering such tests must be prepared to address the complicated questions raised by the results of such testing. Copyright © 2014. Published by Elsevier Inc.

  9. CEQer: a graphical tool for copy number and allelic imbalance detection from whole-exome sequencing data.

    PubMed

    Piazza, Rocco; Magistroni, Vera; Pirola, Alessandra; Redaelli, Sara; Spinelli, Roberta; Redaelli, Serena; Galbiati, Marta; Valletta, Simona; Giudici, Giovanni; Cazzaniga, Giovanni; Gambacorti-Passerini, Carlo

    2013-01-01

    Copy number alterations (CNA) are common events occurring in leukaemias and solid tumors. Comparative Genome Hybridization (CGH) is actually the gold standard technique to analyze CNAs; however, CGH analysis requires dedicated instruments and is able to perform only low resolution Loss of Heterozygosity (LOH) analyses. Here we present CEQer (Comparative Exome Quantification analyzer), a new graphical, event-driven tool for CNA/allelic-imbalance (AI) coupled analysis of exome sequencing data. By using case-control matched exome data, CEQer performs a comparative digital exonic quantification to generate CNA data and couples this information with exome-wide LOH and allelic imbalance detection. This data is used to build mixed statistical/heuristic models allowing the identification of CNA/AI events. To test our tool, we initially used in silico generated data, then we performed whole-exome sequencing from 20 leukemic specimens and corresponding matched controls and we analyzed the results using CEQer. Taken globally, these analyses showed that the combined use of comparative digital exon quantification and LOH/AI allows generating very accurate CNA data. Therefore, we propose CEQer as an efficient, robust and user-friendly graphical tool for the identification of CNA/AI in the context of whole-exome sequencing data.

  10. Genomic diagnosis for children with intellectual disability and/or developmental delay.

    PubMed

    Bowling, Kevin M; Thompson, Michelle L; Amaral, Michelle D; Finnila, Candice R; Hiatt, Susan M; Engel, Krysta L; Cochran, J Nicholas; Brothers, Kyle B; East, Kelly M; Gray, David E; Kelley, Whitley V; Lamb, Neil E; Lose, Edward J; Rich, Carla A; Simmons, Shirley; Whittle, Jana S; Weaver, Benjamin T; Nesmith, Amy S; Myers, Richard M; Barsh, Gregory S; Bebin, E Martina; Cooper, Gregory M

    2017-05-30

    Developmental disabilities have diverse genetic causes that must be identified to facilitate precise diagnoses. We describe genomic data from 371 affected individuals, 309 of which were sequenced as proband-parent trios. Whole-exome sequences (WES) were generated for 365 individuals (127 affected) and whole-genome sequences (WGS) were generated for 612 individuals (244 affected). Pathogenic or likely pathogenic variants were found in 100 individuals (27%), with variants of uncertain significance in an additional 42 (11.3%). We found that a family history of neurological disease, especially the presence of an affected first-degree relative, reduces the pathogenic/likely pathogenic variant identification rate, reflecting both the disease relevance and ease of interpretation of de novo variants. We also found that improvements to genetic knowledge facilitated interpretation changes in many cases. Through systematic reanalyses, we have thus far reclassified 15 variants, with 11.3% of families who initially were found to harbor a VUS and 4.7% of families with a negative result eventually found to harbor a pathogenic or likely pathogenic variant. To further such progress, the data described here are being shared through ClinVar, GeneMatcher, and dbGaP. Our data strongly support the value of large-scale sequencing, especially WGS within proband-parent trios, as both an effective first-choice diagnostic tool and means to advance clinical and research progress related to pediatric neurological disease.

  11. CanvasDB: a local database infrastructure for analysis of targeted- and whole genome re-sequencing projects

    PubMed Central

    Ameur, Adam; Bunikis, Ignas; Enroth, Stefan; Gyllensten, Ulf

    2014-01-01

    CanvasDB is an infrastructure for management and analysis of genetic variants from massively parallel sequencing (MPS) projects. The system stores SNP and indel calls in a local database, designed to handle very large datasets, to allow for rapid analysis using simple commands in R. Functional annotations are included in the system, making it suitable for direct identification of disease-causing mutations in human exome- (WES) or whole-genome sequencing (WGS) projects. The system has a built-in filtering function implemented to simultaneously take into account variant calls from all individual samples. This enables advanced comparative analysis of variant distribution between groups of samples, including detection of candidate causative mutations within family structures and genome-wide association by sequencing. In most cases, these analyses are executed within just a matter of seconds, even when there are several hundreds of samples and millions of variants in the database. We demonstrate the scalability of canvasDB by importing the individual variant calls from all 1092 individuals present in the 1000 Genomes Project into the system, over 4.4 billion SNPs and indels in total. Our results show that canvasDB makes it possible to perform advanced analyses of large-scale WGS projects on a local server. Database URL: https://github.com/UppsalaGenomeCenter/CanvasDB PMID:25281234

  12. CanvasDB: a local database infrastructure for analysis of targeted- and whole genome re-sequencing projects.

    PubMed

    Ameur, Adam; Bunikis, Ignas; Enroth, Stefan; Gyllensten, Ulf

    2014-01-01

    CanvasDB is an infrastructure for management and analysis of genetic variants from massively parallel sequencing (MPS) projects. The system stores SNP and indel calls in a local database, designed to handle very large datasets, to allow for rapid analysis using simple commands in R. Functional annotations are included in the system, making it suitable for direct identification of disease-causing mutations in human exome- (WES) or whole-genome sequencing (WGS) projects. The system has a built-in filtering function implemented to simultaneously take into account variant calls from all individual samples. This enables advanced comparative analysis of variant distribution between groups of samples, including detection of candidate causative mutations within family structures and genome-wide association by sequencing. In most cases, these analyses are executed within just a matter of seconds, even when there are several hundreds of samples and millions of variants in the database. We demonstrate the scalability of canvasDB by importing the individual variant calls from all 1092 individuals present in the 1000 Genomes Project into the system, over 4.4 billion SNPs and indels in total. Our results show that canvasDB makes it possible to perform advanced analyses of large-scale WGS projects on a local server. Database URL: https://github.com/UppsalaGenomeCenter/CanvasDB. © The Author(s) 2014. Published by Oxford University Press.

  13. Whole-Exome Sequencing Reveals GPIHBP1 Mutations in Infantile Colitis With Severe Hypertriglyceridemia

    PubMed Central

    Gonzaga-Jauregui, Claudia; Mir, Sabina; Penney, Samantha; Jhangiani, Shalini; Midgen, Craig; Finegold, Milton; Muzny, Donna M.; Wang, Min; Bacino, Carlos A.; Gibbs, Richard A.; Lupski, James R.; Kellermayer, Richard; Hanchard, Neil A.

    2014-01-01

    Severe congenital hypertriglyceridemia (HTG) is a rare disorder caused by mutations in genes affecting lipoprotein lipase (LPL) activity. Here we report a 5-week-old Hispanic girl with severe HTG (12,031 mg/dL, normal limit 150 mg/dL) who presented with the unusual combination of lower gastrointestinal bleeding and milky plasma. Initial colonoscopy was consistent with colitis, which resolved with reduction of triglycerides. After negative sequencing of the LPL gene, whole-exome sequencing revealed novel compound heterozygous mutations in GPIHBP1. Our study broadens the phenotype of GPIHBP1-associated HTG, reinforces the effectiveness of whole-exome sequencing in Mendelian diagnoses, and implicates triglycer-ides in gastrointestinal mucosal injury. PMID:24614124

  14. Whole-exome sequencing reveals GPIHBP1 mutations in infantile colitis with severe hypertriglyceridemia.

    PubMed

    Gonzaga-Jauregui, Claudia; Mir, Sabina; Penney, Samantha; Jhangiani, Shalini; Midgen, Craig; Finegold, Milton; Muzny, Donna M; Wang, Min; Bacino, Carlos A; Gibbs, Richard A; Lupski, James R; Kellermayer, Richard; Hanchard, Neil A

    2014-07-01

    Severe congenital hypertriglyceridemia (HTG) is a rare disorder caused by mutations in genes affecting lipoprotein lipase (LPL) activity. Here we report a 5-week-old Hispanic girl with severe HTG (12,031 mg/dL, normal limit 150 mg/dL) who presented with the unusual combination of lower gastrointestinal bleeding and milky plasma. Initial colonoscopy was consistent with colitis, which resolved with reduction of triglycerides. After negative sequencing of the LPL gene, whole-exome sequencing revealed novel compound heterozygous mutations in GPIHBP1. Our study broadens the phenotype of GPIHBP1-associated HTG, reinforces the effectiveness of whole-exome sequencing in Mendelian diagnoses, and implicates triglycerides in gastrointestinal mucosal injury.

  15. Exome sequencing for prenatal diagnosis of fetuses with sonographic abnormalities.

    PubMed

    Drury, Suzanne; Williams, Hywel; Trump, Natalie; Boustred, Christopher; Lench, Nicholas; Scott, Richard H; Chitty, Lyn S

    2015-10-01

    In the absence of aneuploidy or other pathogenic cytogenetic abnormality, fetuses with increased nuchal translucency (NT ≥ 3.5 mm) and/or other sonographic abnormalities have a greater incidence of genetic syndromes, but defining the underlying pathology can be challenging. Here, we investigate the value of whole exome sequencing in fetuses with sonographic abnormalities but normal microarray analysis. Whole exome sequencing was performed on DNA extracted from chorionic villi or amniocytes in 24 fetuses with unexplained ultrasound findings. In the first 14 cases sequencing was initially performed on fetal DNA only. For the remaining 10, the trio of fetus, mother and father was sequenced simultaneously. In 21% (5/24) cases, exome sequencing provided definitive diagnoses (Milroy disease, hypophosphatasia, achondrogenesis type 2, Freeman-Sheldon syndrome and Baraitser-Winter Syndrome). In a further case, a plausible diagnosis of orofaciodigital syndrome type 6 was made. In two others, a single mutation in an autosomal recessive gene was identified, but incomplete sequencing coverage precluded exclusion of the presence of a second mutation. Whole exome sequencing improves prenatal diagnosis in euploid fetuses with abnormal ultrasound scans. In order to expedite interpretation of results, trio sequencing should be employed, but interpretation can still be compromised by incomplete coverage of relevant genes. © 2015 John Wiley & Sons, Ltd.

  16. Self-guided management of exome and whole-genome sequencing results: changing the results return model.

    PubMed

    Yu, Joon-Ho; Jamal, Seema M; Tabor, Holly K; Bamshad, Michael J

    2013-09-01

    Researchers and clinicians face the practical and ethical challenge of if and how to offer for return the wide and varied scope of results available from individual exome sequencing and whole-genome sequencing. We argue that rather than viewing individual exome sequencing and whole-genome sequencing as a test for which results need to be "returned," that the technology should instead be framed as a dynamic resource of information from which results should be "managed" over the lifetime of an individual. We further suggest that individual exome sequencing and whole-genome sequencing results management is optimized using a self-guided approach that enables individuals to self-select among results offered for return in a convenient, confidential, personalized context that is responsive to their value system. This approach respects autonomy, allows individuals to maximize potential benefits of genomic information (beneficence) and minimize potential harms (nonmaleficence), and also preserves their right to an open future to the extent they desire or think is appropriate. We describe key challenges and advantages of such a self-guided management system and offer guidance on implementation using an information systems approach.

  17. Whole exome sequencing for familial bicuspid aortic valve identifies putative variants.

    PubMed

    Martin, Lisa J; Pilipenko, Valentina; Kaufman, Kenneth M; Cripe, Linda; Kottyan, Leah C; Keddache, Mehdi; Dexheimer, Phillip; Weirauch, Matthew T; Benson, D Woodrow

    2014-10-01

    Bicuspid aortic valve (BAV) is the most common congenital cardiovascular malformation. Although highly heritable, few causal variants have been identified. The purpose of this study was to identify genetic variants underlying BAV by whole exome sequencing a multiplex BAV kindred. Whole exome sequencing was performed on 17 individuals from a single family (BAV=3; other cardiovascular malformation, 3). Postvariant calling error control metrics were established after examining the relationship between Mendelian inheritance error rate and coverage, quality score, and call rate. To determine the most effective approach to identifying susceptibility variants from among 54 674 variants passing error control metrics, we evaluated 3 variant selection strategies frequently used in whole exome sequencing studies plus extended family linkage. No putative rare, high-effect variants were identified in all affected but no unaffected individuals. Eight high-effect variants were identified by ≥2 of the commonly used selection strategies; however, these were either common in the general population (>10%) or present in the majority of the unaffected family members. However, using extended family linkage, 3 synonymous variants were identified; all 3 variants were identified by at least one other strategy. These results suggest that traditional whole exome sequencing approaches, which assume causal variants alter coding sense, may be insufficient for BAV and other complex traits. Identification of disease-associated variants is facilitated by the use of segregation within families. © 2014 American Heart Association, Inc.

  18. CEQer: A Graphical Tool for Copy Number and Allelic Imbalance Detection from Whole-Exome Sequencing Data

    PubMed Central

    Piazza, Rocco; Magistroni, Vera; Pirola, Alessandra; Redaelli, Sara; Spinelli, Roberta; Redaelli, Serena; Galbiati, Marta; Valletta, Simona; Giudici, Giovanni; Cazzaniga, Giovanni; Gambacorti-Passerini, Carlo

    2013-01-01

    Copy number alterations (CNA) are common events occurring in leukaemias and solid tumors. Comparative Genome Hybridization (CGH) is actually the gold standard technique to analyze CNAs; however, CGH analysis requires dedicated instruments and is able to perform only low resolution Loss of Heterozygosity (LOH) analyses. Here we present CEQer (Comparative Exome Quantification analyzer), a new graphical, event-driven tool for CNA/allelic-imbalance (AI) coupled analysis of exome sequencing data. By using case-control matched exome data, CEQer performs a comparative digital exonic quantification to generate CNA data and couples this information with exome-wide LOH and allelic imbalance detection. This data is used to build mixed statistical/heuristic models allowing the identification of CNA/AI events. To test our tool, we initially used in silico generated data, then we performed whole-exome sequencing from 20 leukemic specimens and corresponding matched controls and we analyzed the results using CEQer. Taken globally, these analyses showed that the combined use of comparative digital exon quantification and LOH/AI allows generating very accurate CNA data. Therefore, we propose CEQer as an efficient, robust and user-friendly graphical tool for the identification of CNA/AI in the context of whole-exome sequencing data. PMID:24124457

  19. Unexpected allelic heterogeneity and spectrum of mutations in Fowler syndrome revealed by next-generation exome sequencing.

    PubMed

    Lalonde, Emilie; Albrecht, Steffen; Ha, Kevin C H; Jacob, Karine; Bolduc, Nathalie; Polychronakos, Constantin; Dechelotte, Pierre; Majewski, Jacek; Jabado, Nada

    2010-08-01

    Protein coding genes constitute approximately 1% of the human genome but harbor 85% of the mutations with large effects on disease-related traits. Therefore, efficient strategies for selectively sequencing complete coding regions (i.e., "whole exome") have the potential to contribute our understanding of human diseases. We used a method for whole-exome sequencing coupling Agilent whole-exome capture to the Illumina DNA-sequencing platform, and investigated two unrelated fetuses from nonconsanguineous families with Fowler Syndrome (FS), a stereotyped phenotype lethal disease. We report novel germline mutations in feline leukemia virus subgroup C cellular-receptor-family member 2, FLVCR2, which has recently been shown to cause FS. Using this technology, we identified three types of genetic abnormalities: point-mutations, insertions-deletions, and intronic splice-site changes (first pathogenic report using this technology), in the fetuses who both were compound heterozygotes for the disease. Although revealing a high level of allelic heterogeneity and mutational spectrum in FS, this study further illustrates the successful application of whole-exome sequencing to uncover genetic defects in rare Mendelian disorders. Of importance, we show that we can identify genes underlying rare, monogenic and recessive diseases using a limited number of patients (n=2), in the absence of shared genetic heritage and in the presence of allelic heterogeneity.

  20. Comprehensive cancer-gene panels can be used to estimate mutational load and predict clinical benefit to PD-1 blockade in clinical practice.

    PubMed

    Campesato, Luís Felipe; Barroso-Sousa, Romualdo; Jimenez, Leandro; Correa, Bruna R; Sabbaga, Jorge; Hoff, Paulo M; Reis, Luiz F L; Galante, Pedro Alexandre F; Camargo, Anamaria A

    2015-10-27

    Cancer gene panels (CGPs) are already used in clinical practice to match tumor's genetic profile with available targeted therapies. We aimed to determine if CGPs could also be applied to estimate tumor mutational load and predict clinical benefit to PD-1 and CTLA-4 checkpoint blockade therapy. Whole-exome sequencing (WES) mutation data obtained from melanoma and non-small cell lung cancer (NSCLC) patients published by Snyder et al. 2014 and Rizvi et al. 2015, respectively, were used to select nonsynonymous somatic mutations occurring in genes included in the Foundation Medicine Panel (FM-CGP) and in our own Institutional Panel (HSL-CGP). CGP-mutational load was calculated for each patient using both panels and was associated with clinical outcomes as defined and reported in the original articles. Higher CGP-mutational load was observed in NSCLC patients presenting durable clinical benefit (DCB) to PD-1 blockade (FM-CGP P=0.03, HSL-CGP P=0.01). We also observed that 69% of patients with high CGP-mutational load experienced DCB to PD-1 blockade, as compared to 20% of patients with low CGP-mutational load (FM-CGP and HSL-CGP P=0.01). Noteworthy, predictive accuracy of CGP-mutational load for DCB was not statistically different from that estimated by WES sequencing (P=0.73). Moreover, a high CGP-mutational load was significantly associated with progression-free survival (PFS) in patients treated with PD-1 blockade (FM-CGP P=0.005, HR 0.27, 95% IC 0.105 to 0.669; HSL-CGP P=0.008, HR 0.29, 95% IC 0.116 to 0.719). Similar associations between CGP-mutational load and clinical benefit to CTLA-4 blockade were not observed. In summary, our data reveals that CGPs can be used to estimate mutational load and to predict clinical benefit to PD-1 blockade, with similar accuracy to that reported using WES.

  1. Leiomodin-3 dysfunction results in thin filament disorganization and nemaline myopathy

    PubMed Central

    Yuen, Michaela; Sandaradura, Sarah A.; Dowling, James J.; Kostyukova, Alla S.; Moroz, Natalia; Quinlan, Kate G.; Lehtokari, Vilma-Lotta; Ravenscroft, Gianina; Todd, Emily J.; Ceyhan-Birsoy, Ozge; Gokhin, David S.; Maluenda, Jérome; Lek, Monkol; Nolent, Flora; Pappas, Christopher T.; Novak, Stefanie M.; D’Amico, Adele; Malfatti, Edoardo; Thomas, Brett P.; Gabriel, Stacey B.; Gupta, Namrata; Daly, Mark J.; Ilkovski, Biljana; Houweling, Peter J.; Davidson, Ann E.; Swanson, Lindsay C.; Brownstein, Catherine A.; Gupta, Vandana A.; Medne, Livija; Shannon, Patrick; Martin, Nicole; Bick, David P.; Flisberg, Anders; Holmberg, Eva; Van den Bergh, Peter; Lapunzina, Pablo; Waddell, Leigh B.; Sloboda, Darcée D.; Bertini, Enrico; Chitayat, David; Telfer, William R.; Laquerrière, Annie; Gregorio, Carol C.; Ottenheijm, Coen A.C.; Bönnemann, Carsten G.; Pelin, Katarina; Beggs, Alan H.; Hayashi, Yukiko K.; Romero, Norma B.; Laing, Nigel G.; Nishino, Ichizo; Wallgren-Pettersson, Carina; Melki, Judith; Fowler, Velia M.; MacArthur, Daniel G.; North, Kathryn N.; Clarke, Nigel F.

    2014-01-01

    Nemaline myopathy (NM) is a genetic muscle disorder characterized by muscle dysfunction and electron-dense protein accumulations (nemaline bodies) in myofibers. Pathogenic mutations have been described in 9 genes to date, but the genetic basis remains unknown in many cases. Here, using an approach that combined whole-exome sequencing (WES) and Sanger sequencing, we identified homozygous or compound heterozygous variants in LMOD3 in 21 patients from 14 families with severe, usually lethal, NM. LMOD3 encodes leiomodin-3 (LMOD3), a 65-kDa protein expressed in skeletal and cardiac muscle. LMOD3 was expressed from early stages of muscle differentiation; localized to actin thin filaments, with enrichment near the pointed ends; and had strong actin filament-nucleating activity. Loss of LMOD3 in patient muscle resulted in shortening and disorganization of thin filaments. Knockdown of lmod3 in zebrafish replicated NM-associated functional and pathological phenotypes. Together, these findings indicate that mutations in the gene encoding LMOD3 underlie congenital myopathy and demonstrate that LMOD3 is essential for the organization of sarcomeric thin filaments in skeletal muscle. PMID:25250574

  2. Targeted Re-Sequencing Emulsion PCR Panel for Myopathies: Results in 94 Cases.

    PubMed

    Punetha, Jaya; Kesari, Akanchha; Uapinyoying, Prech; Giri, Mamta; Clarke, Nigel F; Waddell, Leigh B; North, Kathryn N; Ghaoui, Roula; O'Grady, Gina L; Oates, Emily C; Sandaradura, Sarah A; Bönnemann, Carsten G; Donkervoort, Sandra; Plotz, Paul H; Smith, Edward C; Tesi-Rocha, Carolina; Bertorini, Tulio E; Tarnopolsky, Mark A; Reitter, Bernd; Hausmanowa-Petrusewicz, Irena; Hoffman, Eric P

    2016-05-27

    Molecular diagnostics in the genetic myopathies often requires testing of the largest and most complex transcript units in the human genome (DMD, TTN, NEB). Iteratively targeting single genes for sequencing has traditionally entailed high costs and long turnaround times. Exome sequencing has begun to supplant single targeted genes, but there are concerns regarding coverage and needed depth of the very large and complex genes that frequently cause myopathies. To evaluate efficiency of next-generation sequencing technologies to provide molecular diagnostics for patients with previously undiagnosed myopathies. We tested a targeted re-sequencing approach, using a 45 gene emulsion PCR myopathy panel, with subsequent sequencing on the Illumina platform in 94 undiagnosed patients. We compared the targeted re-sequencing approach to exome sequencing for 10 of these patients studied. We detected likely pathogenic mutations in 33 out of 94 patients with a molecular diagnostic rate of approximately 35%. The remaining patients showed variants of unknown significance (35/94 patients) or no mutations detected in the 45 genes tested (26/94 patients). Mutation detection rates for targeted re-sequencing vs. whole exome were similar in both methods; however exome sequencing showed better distribution of reads and fewer exon dropouts. Given that costs of highly parallel re-sequencing and whole exome sequencing are similar, and that exome sequencing now takes considerably less laboratory processing time than targeted re-sequencing, we recommend exome sequencing as the standard approach for molecular diagnostics of myopathies.

  3. Whole exome sequencing identifies genetic variants in inherited thrombocytopenia with secondary qualitative function defects

    PubMed Central

    Johnson, Ben; Lowe, Gillian C.; Futterer, Jane; Lordkipanidzé, Marie; MacDonald, David; Simpson, Michael A.; Sanchez-Guiú, Isabel; Drake, Sian; Bem, Danai; Leo, Vincenzo; Fletcher, Sarah J.; Dawood, Ban; Rivera, José; Allsup, David; Biss, Tina; Bolton-Maggs, Paula HB; Collins, Peter; Curry, Nicola; Grimley, Charlotte; James, Beki; Makris, Mike; Motwani, Jayashree; Pavord, Sue; Talks, Katherine; Thachil, Jecko; Wilde, Jonathan; Williams, Mike; Harrison, Paul; Gissen, Paul; Mundell, Stuart; Mumford, Andrew; Daly, Martina E.; Watson, Steve P.; Morgan, Neil V.

    2016-01-01

    Inherited thrombocytopenias are a heterogeneous group of disorders characterized by abnormally low platelet counts which can be associated with abnormal bleeding. Next-generation sequencing has previously been employed in these disorders for the confirmation of suspected genetic abnormalities, and more recently in the discovery of novel disease-causing genes. However its full potential has not yet been exploited. Over the past 6 years we have sequenced the exomes from 55 patients, including 37 index cases and 18 additional family members, all of whom were recruited to the UK Genotyping and Phenotyping of Platelets study. All patients had inherited or sustained thrombocytopenia of unknown etiology with platelet counts varying from 11×109/L to 186×109/L. Of the 51 patients phenotypically tested, 37 (73%), had an additional secondary qualitative platelet defect. Using whole exome sequencing analysis we have identified “pathogenic” or “likely pathogenic” variants in 46% (17/37) of our index patients with thrombocytopenia. In addition, we report variants of uncertain significance in 12 index cases, including novel candidate genetic variants in previously unreported genes in four index cases. These results demonstrate that whole exome sequencing is an efficient method for elucidating potential pathogenic genetic variants in inherited thrombocytopenia. Whole exome sequencing also has the added benefit of discovering potentially pathogenic genetic variants for further study in novel genes not previously implicated in inherited thrombocytopenia. PMID:27479822

  4. Impact of the number of mutations in survival and response outcomes to hypomethylating agents in patients with myelodysplastic syndromes or myelodysplastic/myeloproliferative neoplasms

    PubMed Central

    Montalban-Bravo, Guillermo; Takahashi, Koichi; Patel, Keyur; Wang, Feng; Xingzhi, Song; Nogueras, Graciela M.; Huang, Xuelin; Pierola, Ana Alfonso; Jabbour, Elias; Colla, Simona; Gañan-Gomez, Irene; Borthakur, Gautham; Daver, Naval; Estrov, Zeev; Kadia, Tapan; Pemmaraju, Naveen; Ravandi, Farhad; Bueso-Ramos, Carlos; Chamseddine, Ali; Konopleva, Marina; Zhang, Jianhua; Kantarjian, Hagop; Futreal, Andrew; Garcia-Manero, Guillermo

    2018-01-01

    The prognostic and predictive value of sequencing analysis in myelodysplastic syndromes (MDS) has not been fully integrated into clinical practice. We performed whole exome sequencing (WES) of bone marrow samples from 83 patients with MDS and 31 with MDS/MPN identifying 218 driver mutations in 31 genes in 98 (86%) patients. A total of 65 (57%) patients received therapy with hypomethylating agents. By univariate analysis, mutations in BCOR, STAG2, TP53 and SF3B1 significantly influenced survival. Increased number of mutations (≥ 3), but not clonal heterogeneity, predicted for shorter survival and LFS. Presence of 3 or more mutations also predicted for lower likelihood of response (26 vs 50%, p = 0.055), and shorter response duration (3.6 vs 26.5 months, p = 0.022). By multivariate analysis, TP53 mutations (HR 3.1, CI 1.3–7.5, p = 0.011) and number of mutations (≥ 3) (HR 2.5, CI 1.3–4.8, p = 0.005) predicted for shorter survival. A novel prognostic model integrating this mutation data with IPSS-R separated patients into three categories with median survival of not reached, 29 months and 12 months respectively (p < 0.001) and increased stratification potential, compared to IPSS-R, in patients with high/very-high IPSS-R. This model was validated in a separate cohort of 413 patients with untreated MDS. Although the use of WES did not provide significant more information than that obtained with targeted sequencing, our findings indicate that increased number of mutations is an independent prognostic factor in MDS and that mutation data can add value to clinical prognostic models. PMID:29515765

  5. Somatic and Germline TP53 Alterations in Second Malignant Neoplasms from Pediatric Cancer Survivors.

    PubMed

    Sherborne, Amy L; Lavergne, Vincent; Yu, Katharine; Lee, Leah; Davidson, Philip R; Mazor, Tali; Smirnoff, Ivan V; Horvai, Andrew E; Loh, Mignon; DuBois, Steven G; Goldsby, Robert E; Neglia, Joseph P; Hammond, Sue; Robison, Leslie L; Wustrack, Rosanna; Costello, Joseph F; Nakamura, Alice O; Shannon, Kevin M; Bhatia, Smita; Nakamura, Jean L

    2017-04-01

    Purpose: Second malignant neoplasms (SMNs) are severe late complications that occur in pediatric cancer survivors exposed to radiotherapy and other genotoxic treatments. To characterize the mutational landscape of treatment-induced sarcomas and to identify candidate SMN-predisposing variants, we analyzed germline and SMN samples from pediatric cancer survivors. Experimental Design: We performed whole-exome sequencing (WES) and RNA sequencing on radiation-induced sarcomas arising from two pediatric cancer survivors. To assess the frequency of germline TP53 variants in SMNs, Sanger sequencing was performed to analyze germline TP53 in 37 pediatric cancer survivors from the Childhood Cancer Survivor Study (CCSS) without any history of a familial cancer predisposition syndrome but known to have developed SMNs. Results: WES revealed TP53 mutations involving p53's DNA-binding domain in both index cases, one of which was also present in the germline. The germline and somatic TP53- mutant variants were enriched in the transcriptomes for both sarcomas. Analysis of TP53- coding exons in germline specimens from the CCSS survivor cohort identified a G215C variant encoding an R72P amino acid substitution in 6 patients and a synonymous SNP A639G in 4 others, resulting in 10 of 37 evaluable patients (27%) harboring a germline TP53 variant. Conclusions: Currently, germline TP53 is not routinely assessed in patients with pediatric cancer. These data support the concept that identifying germline TP53 variants at the time a primary cancer is diagnosed may identify patients at high risk for SMN development, who could benefit from modified therapeutic strategies and/or intensive posttreatment monitoring. Clin Cancer Res; 23(7); 1852-61. ©2016 AACR . ©2016 American Association for Cancer Research.

  6. Somatic and germline TP53 alterations in second malignant neoplasms from pediatric cancer survivors

    PubMed Central

    Sherborne, Amy L.; Lavergne, Vincent; Yu, Katharine; Lee, Leah; Davidson, Philip R.; Mazor, Tali; Smirnoff, Ivan; Horvai, Andrew; Loh, Mignon; DuBois, Steven G.; Goldsby, Robert E.; Neglia, Joseph; Hammond, Sue; Robison, Leslie L.; Wustrack, Rosanna; Costello, Joseph; Nakamura, Alice O.; Shannon, Kevin; Bhatia, Smita; Nakamura, Jean L.

    2016-01-01

    Purpose Second malignant neoplasms (SMNs) are severe late complications that occur in pediatric cancer survivors exposed to radiotherapy and other genotoxic treatments. To characterize the mutational landscape of treatment-induced sarcomas and to identify candidate SMN-predisposing variants we analyzed germline and SMN samples from pediatric cancer survivors. Experimental Design We performed whole exome sequencing (WES) and RNA sequencing on radiation-induced sarcomas arising from two pediatric cancer survivors. To assess the frequency of germline TP53 variants in SMNs, Sanger sequencing was performed to analyze germline TP53 in thirty-seven pediatric cancer survivors from the Childhood Cancer Survivor Study (CCSS) without history of a familial cancer predisposition syndrome but known to have developed SMNs. Results WES revealed TP53 mutations involving p53’s DNA binding domain in both index cases, one of which was also present in the germline. The germline and somatic TP53 mutant variants were enriched in the transcriptomes for both sarcomas. Analysis of TP53 coding exons in germline specimens from the CCSS survivor cohort identified a G215C variant encoding an R72P amino acid substitution in six patients and a synonymous single nucleotide polymorphism A639G in four others, resulting in ten out of 37 evaluable patients (27%) harboring a germline TP53 variant. Conclusions Currently, germline TP53 is not routinely assessed in pediatric cancer patients. These data support the concept that identifying germline TP53 variants at the time a primary cancer is diagnosed may identify patients at high risk for SMN development, who could benefit from modified therapeutic strategies and/or intensive post-treatment monitoring. PMID:27683180

  7. Impact of the number of mutations in survival and response outcomes to hypomethylating agents in patients with myelodysplastic syndromes or myelodysplastic/myeloproliferative neoplasms.

    PubMed

    Montalban-Bravo, Guillermo; Takahashi, Koichi; Patel, Keyur; Wang, Feng; Xingzhi, Song; Nogueras, Graciela M; Huang, Xuelin; Pierola, Ana Alfonso; Jabbour, Elias; Colla, Simona; Gañan-Gomez, Irene; Borthakur, Gautham; Daver, Naval; Estrov, Zeev; Kadia, Tapan; Pemmaraju, Naveen; Ravandi, Farhad; Bueso-Ramos, Carlos; Chamseddine, Ali; Konopleva, Marina; Zhang, Jianhua; Kantarjian, Hagop; Futreal, Andrew; Garcia-Manero, Guillermo

    2018-02-09

    The prognostic and predictive value of sequencing analysis in myelodysplastic syndromes (MDS) has not been fully integrated into clinical practice. We performed whole exome sequencing (WES) of bone marrow samples from 83 patients with MDS and 31 with MDS/MPN identifying 218 driver mutations in 31 genes in 98 (86%) patients. A total of 65 (57%) patients received therapy with hypomethylating agents. By univariate analysis, mutations in BCOR, STAG2, TP53 and SF3B1 significantly influenced survival. Increased number of mutations (≥ 3), but not clonal heterogeneity, predicted for shorter survival and LFS. Presence of 3 or more mutations also predicted for lower likelihood of response (26 vs 50%, p = 0.055), and shorter response duration (3.6 vs 26.5 months, p = 0.022). By multivariate analysis, TP53 mutations (HR 3.1, CI 1.3-7.5, p = 0.011) and number of mutations (≥ 3) (HR 2.5, CI 1.3-4.8, p = 0.005) predicted for shorter survival. A novel prognostic model integrating this mutation data with IPSS-R separated patients into three categories with median survival of not reached, 29 months and 12 months respectively ( p < 0.001) and increased stratification potential, compared to IPSS-R, in patients with high/very-high IPSS-R. This model was validated in a separate cohort of 413 patients with untreated MDS. Although the use of WES did not provide significant more information than that obtained with targeted sequencing, our findings indicate that increased number of mutations is an independent prognostic factor in MDS and that mutation data can add value to clinical prognostic models.

  8. Whole-exome sequencing identified a variant in EFTUD2 gene in establishing a genetic diagnosis.

    PubMed

    Rengasamy Venugopalan, S; Farrow, E G; Lypka, M

    2017-06-01

    Craniofacial anomalies are complex and have an overlapping phenotype. Mandibulofacial Dysostosis and Oculo-Auriculo-Vertebral Spectrum are conditions that share common craniofacial phenotype and present a challenge in arriving at a diagnosis. In this report, we present a case of female proband who was given a differential diagnosis of Treacher Collins syndrome or Hemifacial Microsomia without certainty. Prior genetic testing reported negative for 22q deletion and FGFR screenings. The objective of this study was to demonstrate the critical role of whole-exome sequencing in establishing a genetic diagnosis of the proband. The participants were 14½-year-old affected female proband/parent trio. Proband/parent trio were enrolled in the study. Surgical tissue sample from the proband and parental blood samples were collected and prepared for whole-exome sequencing. Illumina HiSeq 2500 instrument was used for sequencing (125 nucleotide reads/84X coverage). Analyses of variants were performed using custom-developed software, RUNES and VIKING. Variant analyses following whole-exome sequencing identified a heterozygous de novo pathogenic variant, c.259C>T (p.Gln87*), in EFTUD2 (NM_004247.3) gene in the proband. Previous studies have reported that the variants in EFTUD2 gene were associated with Mandibulofacial Dysostosis with Microcephaly. Patients with facial asymmetry, micrognathia, choanal atresia and microcephaly should be analyzed for variants in EFTUD2 gene. Next-generation sequencing techniques, such as whole-exome sequencing offer great promise to improve the understanding of etiologies of sporadic genetic diseases. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. Genetic assessment and folate receptor autoantibodies in infantile-onset cerebral folate deficiency (CFD) syndrome.

    PubMed

    Ramaekers, V Th; Segers, K; Sequeira, J M; Koenig, M; Van Maldergem, L; Bours, V; Kornak, U; Quadros, E V

    2018-05-01

    Cerebral folate deficiency (CFD) syndromes are defined as neuro-psychiatric conditions with low CSF folate and attributed to different causes such as autoantibodies against the folate receptor-alpha (FR) protein that can block folate transport across the choroid plexus, FOLR1 gene mutations or mitochondrial disorders. High-dose folinic acid treatment restores many neurologic deficits. Among 36 patients from 33 families the infantile-onset CFD syndrome was diagnosed based on typical clinical features and low CSF folate. All parents were healthy. Three families had 2 affected siblings, while parents from 4 families were first cousins. We analysed serum FR autoantibodies and the FOLR1 and FOLR2 genes. Among three consanguineous families homozygosity mapping attempted to identify a monogenetic cause. Whole exome sequencing (WES) was performed in the fourth consanguineous family, where two siblings also suffered from polyneuropathy as an atypical finding. Boys (72%) outnumbered girls (28%). Most patients (89%) had serum FR autoantibodies fluctuating over 5-6 weeks. Two children had a genetic FOLR1 variant without pathological significance. Homozygosity mapping failed to detect a single autosomal recessive gene. WES revealed an autosomal recessive polynucleotide kinase 3´phosphatase (PNKP) gene abnormality in the siblings with polyneuropathy. Infantile-onset CFD was characterized by serum FR autoantibodies as its predominant pathology whereas pathogenic FOLR1 gene mutations were absent. Homozygosity mapping excluded autosomal recessive inheritance of any single responsible gene. WES in one consanguineous family identified a PNKP gene abnormality that explained the polyneuropathy and also its contribution to the infantile CFD syndrome because the PNKP gene plays a dual role in both neurodevelopment and immune-regulatory function. Further research for candidate genes predisposing to FRα-autoimmunity is suggested to include X-chromosomal and non-coding DNA regions. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. Germline Missense Variants in the BTNL2 Gene Are Associated with Prostate Cancer Susceptibility

    PubMed Central

    FitzGerald, Liesel M.; Kumar, Akash; Boyle, Evan A.; Zhang, Yuzheng; McIntosh, Laura M.; Kolb, Suzanne; Stott-Miller, Marni; Smith, Tiffany; Karyadi, Danielle M.; Ostrander, Elaine A.; Hsu, Li; Shendure, Jay; Stanford, Janet L.

    2013-01-01

    Background Rare, inherited mutations account for 5%–10% of all prostate cancer (PCa) cases. However, to date, few causative mutations have been identified. Methods To identify rare mutations for PCa, we performed whole-exome sequencing (WES) in multiple kindreds (n = 91) from 19 hereditary prostate cancer (HPC) families characterized by aggressive or early onset phenotypes. Candidate variants (n = 130) identified through family- and bioinformatics-based filtering of WES data were then genotyped in an independent set of 270 HPC families (n = 819 PCa cases; n = 496 unaffected relatives) for replication. Two variants with supportive evidence were subsequently genotyped in a population-based case-control study (n = 1,155 incident PCa cases; n = 1,060 age-matched controls) for further confirmation. All participants were men of European ancestry. Results The strongest evidence was for two germline missense variants in the butyrophilin-like 2 (BTNL2) gene (rs41441651, p.Asp336Asn and rs28362675, p.Gly454Cys) that segregated with affection status in two of the WES families. In the independent set of 270 HPC families, 1.5% (rs41441651; P = 0.0032) and 1.2% (rs28362675; P = 0.0070) of affected men, but no unaffected men, carried a variant. Both variants were associated with elevated PCa risk in the population-based study (rs41441651: OR = 2.7; 95% CI, 1.27–5.87; P = 0.010; rs28362675: OR = 2.5; 95% CI, 1.16–5.46; P = 0.019). Conclusions Results indicate that rare BTNL2 variants play a role in susceptibility to both familial and sporadic prostate cancer. Impact Results implicate BTNL2 as a novel PCa susceptibility gene. PMID:23833122

  11. Mutation patterns in small cell and non-small cell lung cancer patients suggest a different level of heterogeneity between primary and metastatic tumors.

    PubMed

    Saber, Ali; Hiltermann, T Jeroen N; Kok, Klaas; Terpstra, M Martijn; de Lange, Kim; Timens, Wim; Groen, Harry J M; van den Berg, Anke

    2017-02-01

    Several studies have shown heterogeneity in lung cancer, with parallel existence of multiple subclones characterized by their own specific mutational landscape. The extent to which minor clones become dominant in distinct metastasis is not clear. The aim of our study was to gain insight in the evolution pattern of lung cancer by investigating genomic heterogeneity between primary tumor and its distant metastases. Whole exome sequencing (WES) was performed on 24 tumor and five normal samples of two small cell lung carcinoma (SCLC) and three non-SCLC (NSCLC) patients. Validation of somatic variants in these 24 and screening of 33 additional samples was done by single primer enrichment technology. For each of the three NSCLC patients, about half of the mutations were shared between all tumor samples, whereas for SCLC patients, this percentage was around 95. Independent validation of the non-ubiquitous mutations confirmed the WES data for the vast majority of the variants. Phylogenetic trees indicated more distance between the tumor samples of the NSCLC patients as compared to the SCLC patients. Analysis of 30 independent DNA samples of 16 biopsies used for WES revealed a low degree of intra-tumor heterogeneity of the selected sets of mutations. In the primary tumors of all five patients, variable percentages (19-67%) of the seemingly metastases-specific mutations were present albeit at low read frequencies. Patients with advanced NSCLC have a high percentage of non-ubiquitous mutations indicative of branched evolution. In contrast, the low degree of heterogeneity in SCLC suggests a parallel and linear model of evolution. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. Rare genetic variants in Tunisian Jewish patients suffering from age-related macular degeneration.

    PubMed

    Pras, Eran; Kristal, Dana; Shoshany, Nadav; Volodarsky, Dina; Vulih, Inna; Celniker, Gershon; Isakov, Ofer; Shomron, Noam; Pras, Elon

    2015-07-01

    To explore the molecular basis of familial, early onset, age-related macular degeneration (AMD) with diverse phenotypes, using whole exome sequencing (WES). We performed WES on four patients (two sibs from two families) manifesting early-onset AMD and searched for disease-causing genetic variants in previously identified macular degeneration related genes. Validation studies of the variants included bioinformatics tools, segregation analysis of mutations within the families and mutation screening in an AMD cohort of patients. The index patients were in their 50s when diagnosed and displayed a wide variety of clinical AMD presentations: from limited drusen in the posterior pole to multiple basal-laminar drusen extending peripherally. Severe visual impairment due to extensive geographic atrophy and/or choroidal-neovascularisation was common by the age of 75 years. Approximately, 400 000 genomic variants for each DNA sample were included in the downstream bioinformatics analysis, which ended in the discovery of two novel variants; in one family a single bp deletion was identified in the Hemicentin (HMCN1) gene (c.4162delC), whereas in the other, a missense variant (p.V412M) in the Complement Factor-I (CFI) gene was found. Screening for these variants in a cohort of patients with AMD identified another family with the CFI variant. This report uses WES to uncover rare genetic variants in AMD. A null-variant in HMCN1 has been identified in one AMD family, and a missense variant in CFI was discovered in two other families. These variants confirm the genetic complexity and significance of rare genetic variants in the pathogenesis of AMD. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  13. Novel Homozygous Missense Mutation in RYR1 Leads to Severe Congenital Ptosis, Ophthalmoplegia, and Scoliosis in the Absence of Myopathy.

    PubMed

    Dilaver, Nafi; Mazaheri, Neda; Maroofian, Reza; Zeighami, Jawaher; Seifi, Tahere; Zamani, Mina; Sedaghat, Alireza; Shariati, Gholam Reza; Galehdari, Hamid

    2017-12-01

    Ryanodine receptor 1 ( RYR1 ) is an intracellular calcium receptor primarily expressed in skeletal muscle with a role in excitation contraction. Both dominant and recessive mutations in the RYR1 gene cause a range of RYR1 -related myopathies and/or susceptibility to malignant hyperthermia (MH). Recently, an atypical manifestation of ptosis, variably presenting with ophthalmoplegia, facial paralysis, and scoliosis but without significant muscle weakness, has been reported in 9 cases from 4 families with bialleic variants in RYR1 . Two affected children from a consanguineous family with severe congenital ptosis, ophthalmoplegia, scoliosis, and distinctive long faces but without skeletal myopathy were studied. To identify the cause of the hereditary condition, DNA from the proband was subjected to whole exome sequencing (WES). WES revealed a novel homozygous missense variant in RYR1 (c.14066T>A; p.IIe4689Asn), which segregated within the family. Although the phenotype of the affected siblings in this study was similar to previously described cases, the clinical features were more severely expressed. Our findings contribute to the expansion of phenotypes related to RYR1 dysfunction. Additionally, it supports a new RYR1 -related clinical presentation without musculoskeletal involvement. It is important that individuals with RYR1 mutations are considered susceptible to MH, as 70% of the MH cases are caused by mutations in the RYR1 gene.

  14. Function-driven discovery of disease genes in zebrafish using an integrated genomics big data resource.

    PubMed

    Shim, Hongseok; Kim, Ji Hyun; Kim, Chan Yeong; Hwang, Sohyun; Kim, Hyojin; Yang, Sunmo; Lee, Ji Eun; Lee, Insuk

    2016-11-16

    Whole exome sequencing (WES) accelerates disease gene discovery using rare genetic variants, but further statistical and functional evidence is required to avoid false-discovery. To complement variant-driven disease gene discovery, here we present function-driven disease gene discovery in zebrafish (Danio rerio), a promising human disease model owing to its high anatomical and genomic similarity to humans. To facilitate zebrafish-based function-driven disease gene discovery, we developed a genome-scale co-functional network of zebrafish genes, DanioNet (www.inetbio.org/danionet), which was constructed by Bayesian integration of genomics big data. Rigorous statistical assessment confirmed the high prediction capacity of DanioNet for a wide variety of human diseases. To demonstrate the feasibility of the function-driven disease gene discovery using DanioNet, we predicted genes for ciliopathies and performed experimental validation for eight candidate genes. We also validated the existence of heterozygous rare variants in the candidate genes of individuals with ciliopathies yet not in controls derived from the UK10K consortium, suggesting that these variants are potentially involved in enhancing the risk of ciliopathies. These results showed that an integrated genomics big data for a model animal of diseases can expand our opportunity for harnessing WES data in disease gene discovery. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  15. A Recurrent De Novo Variant in NACC1 Causes a Syndrome Characterized by Infantile Epilepsy, Cataracts, and Profound Developmental Delay.

    PubMed

    Schoch, Kelly; Meng, Linyan; Szelinger, Szabolcs; Bearden, David R; Stray-Pedersen, Asbjorg; Busk, Oyvind L; Stong, Nicholas; Liston, Eriskay; Cohn, Ronald D; Scaglia, Fernando; Rosenfeld, Jill A; Tarpinian, Jennifer; Skraban, Cara M; Deardorff, Matthew A; Friedman, Jeremy N; Akdemir, Zeynep Coban; Walley, Nicole; Mikati, Mohamad A; Kranz, Peter G; Jasien, Joan; McConkie-Rosell, Allyn; McDonald, Marie; Wechsler, Stephanie Burns; Freemark, Michael; Kansagra, Sujay; Freedman, Sharon; Bali, Deeksha; Millan, Francisca; Bale, Sherri; Nelson, Stanley F; Lee, Hane; Dorrani, Naghmeh; Goldstein, David B; Xiao, Rui; Yang, Yaping; Posey, Jennifer E; Martinez-Agosto, Julian A; Lupski, James R; Wangler, Michael F; Shashi, Vandana

    2017-02-02

    Whole-exome sequencing (WES) has increasingly enabled new pathogenic gene variant identification for undiagnosed neurodevelopmental disorders and provided insights into both gene function and disease biology. Here, we describe seven children with a neurodevelopmental disorder characterized by microcephaly, profound developmental delays and/or intellectual disability, cataracts, severe epilepsy including infantile spasms, irritability, failure to thrive, and stereotypic hand movements. Brain imaging in these individuals reveals delay in myelination and cerebral atrophy. We observe an identical recurrent de novo heterozygous c.892C>T (p.Arg298Trp) variant in the nucleus accumbens associated 1 (NACC1) gene in seven affected individuals. One of the seven individuals is mosaic for this variant. NACC1 encodes a transcriptional repressor implicated in gene expression and has not previously been associated with germline disorders. The probability of finding the same missense NACC1 variant by chance in 7 out of 17,228 individuals who underwent WES for diagnoses of neurodevelopmental phenotypes is extremely small and achieves genome-wide significance (p = 1.25 × 10 -14 ). Selective constraint against missense variants in NACC1 makes this excess of an identical missense variant in all seven individuals more remarkable. Our findings are consistent with a germline recurrent mutational hotspot associated with an allele-specific neurodevelopmental phenotype in NACC1. Copyright © 2017 American Society of Human Genetics. All rights reserved.

  16. SYNE1 related cerebellar ataxia presents with variable phenotypes in a consanguineous family from Turkey.

    PubMed

    Yucesan, E; Ugur Iseri, Sibel A; Bilgic, B; Gormez, Z; Bakir Gungor, B; Sarac, A; Ozdemir, O; Sagiroglu, M; Gurvit, H; Hanagasi, H; Ozbek, U

    2017-12-01

    SYNE1 related autosomal recessive cerebellar ataxia type 1 (ARCA1) is a late-onset cerebellar ataxia with slow progression originally demonstrated in French-Canadian populations of Quebec, Canada. Nevertheless, recent studies on SYNE1 ataxia have conveyed the condition from a geographically limited pure cerebellar recessive ataxia to a complex multisystem phenotype that is relatively common on the global scale. To determine the underlying genetic cause of the ataxia phenotype in a consanguineous family from Turkey presenting with very slow progressive cerebellar symptoms including dysarthria, dysmetria, and gait ataxia, we performed SNP-based linkage analysis in the family along with whole exome sequencing (WES) in two affected siblings. We identified a homozygous variant in SYNE1 (NM_033071.3: c.13086delC; p.His4362GlnfsX2) in all four affected siblings. This variant presented herein has originally been associated with only pure ataxia in a single case. We thus present segregation and phenotypic manifestations of this variant in four affected family members and further extend the pure ataxia phenotype with upper motor neuron involvement and peripheral neuropathy. Our findings in turn established a precise molecular diagnosis in this family, demonstrating the use of WES combined with linkage analysis in families as a powerful tool for establishing a quick and precise genetic diagnosis of complex neurological phenotypes.

  17. Shared genetic predisposition in rheumatoid arthritis-interstitial lung disease and familial pulmonary fibrosis.

    PubMed

    Juge, Pierre-Antoine; Borie, Raphaël; Kannengiesser, Caroline; Gazal, Steven; Revy, Patrick; Wemeau-Stervinou, Lidwine; Debray, Marie-Pierre; Ottaviani, Sébastien; Marchand-Adam, Sylvain; Nathan, Nadia; Thabut, Gabriel; Richez, Christophe; Nunes, Hilario; Callebaut, Isabelle; Justet, Aurélien; Leulliot, Nicolas; Bonnefond, Amélie; Salgado, David; Richette, Pascal; Desvignes, Jean-Pierre; Lioté, Huguette; Froguel, Philippe; Allanore, Yannick; Sand, Olivier; Dromer, Claire; Flipo, René-Marc; Clément, Annick; Béroud, Christophe; Sibilia, Jean; Coustet, Baptiste; Cottin, Vincent; Boissier, Marie-Christophe; Wallaert, Benoit; Schaeverbeke, Thierry; Dastot le Moal, Florence; Frazier, Aline; Ménard, Christelle; Soubrier, Martin; Saidenberg, Nathalie; Valeyre, Dominique; Amselem, Serge; Boileau, Catherine; Crestani, Bruno; Dieudé, Philippe

    2017-05-01

    Despite its high prevalence and mortality, little is known about the pathogenesis of rheumatoid arthritis-associated interstitial lung disease (RA-ILD). Given that familial pulmonary fibrosis (FPF) and RA-ILD frequently share the usual pattern of interstitial pneumonia and common environmental risk factors, we hypothesised that the two diseases might share additional risk factors, including FPF-linked genes. Our aim was to identify coding mutations of FPF-risk genes associated with RA-ILD.We used whole exome sequencing (WES), followed by restricted analysis of a discrete number of FPF-linked genes and performed a burden test to assess the excess number of mutations in RA-ILD patients compared to controls.Among the 101 RA-ILD patients included, 12 (11.9%) had 13 WES-identified heterozygous mutations in the TERT , RTEL1 , PARN or SFTPC coding regions . The burden test, based on 81 RA-ILD patients and 1010 controls of European ancestry, revealed an excess of TERT , RTEL1 , PARN or SFTPC mutations in RA-ILD patients (OR 3.17, 95% CI 1.53-6.12; p=9.45×10 -4 ). Telomeres were shorter in RA-ILD patients with a TERT , RTEL1 or PARN mutation than in controls (p=2.87×10 -2 ).Our results support the contribution of FPF-linked genes to RA-ILD susceptibility. Copyright ©ERS 2017.

  18. Extremely high genetic diversity in a single tumor points to prevalence of non-Darwinian cell evolution.

    PubMed

    Ling, Shaoping; Hu, Zheng; Yang, Zuyu; Yang, Fang; Li, Yawei; Lin, Pei; Chen, Ke; Dong, Lili; Cao, Lihua; Tao, Yong; Hao, Lingtong; Chen, Qingjian; Gong, Qiang; Wu, Dafei; Li, Wenjie; Zhao, Wenming; Tian, Xiuyun; Hao, Chunyi; Hungate, Eric A; Catenacci, Daniel V T; Hudson, Richard R; Li, Wen-Hsiung; Lu, Xuemei; Wu, Chung-I

    2015-11-24

    The prevailing view that the evolution of cells in a tumor is driven by Darwinian selection has never been rigorously tested. Because selection greatly affects the level of intratumor genetic diversity, it is important to assess whether intratumor evolution follows the Darwinian or the non-Darwinian mode of evolution. To provide the statistical power, many regions in a single tumor need to be sampled and analyzed much more extensively than has been attempted in previous intratumor studies. Here, from a hepatocellular carcinoma (HCC) tumor, we evaluated multiregional samples from the tumor, using either whole-exome sequencing (WES) (n = 23 samples) or genotyping (n = 286) under both the infinite-site and infinite-allele models of population genetics. In addition to the many single-nucleotide variations (SNVs) present in all samples, there were 35 "polymorphic" SNVs among samples. High genetic diversity was evident as the 23 WES samples defined 20 unique cell clones. With all 286 samples genotyped, clonal diversity agreed well with the non-Darwinian model with no evidence of positive Darwinian selection. Under the non-Darwinian model, MALL (the number of coding region mutations in the entire tumor) was estimated to be greater than 100 million in this tumor. DNA sequences reveal local diversities in small patches of cells and validate the estimation. In contrast, the genetic diversity under a Darwinian model would generally be orders of magnitude smaller. Because the level of genetic diversity will have implications on therapeutic resistance, non-Darwinian evolution should be heeded in cancer treatments even for microscopic tumors.

  19. Extremely high genetic diversity in a single tumor points to prevalence of non-Darwinian cell evolution

    PubMed Central

    Ling, Shaoping; Hu, Zheng; Yang, Zuyu; Yang, Fang; Li, Yawei; Lin, Pei; Chen, Ke; Dong, Lili; Cao, Lihua; Tao, Yong; Hao, Lingtong; Chen, Qingjian; Gong, Qiang; Wu, Dafei; Li, Wenjie; Zhao, Wenming; Tian, Xiuyun; Hao, Chunyi; Hungate, Eric A.; Catenacci, Daniel V. T.; Hudson, Richard R.; Li, Wen-Hsiung; Lu, Xuemei; Wu, Chung-I

    2015-01-01

    The prevailing view that the evolution of cells in a tumor is driven by Darwinian selection has never been rigorously tested. Because selection greatly affects the level of intratumor genetic diversity, it is important to assess whether intratumor evolution follows the Darwinian or the non-Darwinian mode of evolution. To provide the statistical power, many regions in a single tumor need to be sampled and analyzed much more extensively than has been attempted in previous intratumor studies. Here, from a hepatocellular carcinoma (HCC) tumor, we evaluated multiregional samples from the tumor, using either whole-exome sequencing (WES) (n = 23 samples) or genotyping (n = 286) under both the infinite-site and infinite-allele models of population genetics. In addition to the many single-nucleotide variations (SNVs) present in all samples, there were 35 “polymorphic” SNVs among samples. High genetic diversity was evident as the 23 WES samples defined 20 unique cell clones. With all 286 samples genotyped, clonal diversity agreed well with the non-Darwinian model with no evidence of positive Darwinian selection. Under the non-Darwinian model, MALL (the number of coding region mutations in the entire tumor) was estimated to be greater than 100 million in this tumor. DNA sequences reveal local diversities in small patches of cells and validate the estimation. In contrast, the genetic diversity under a Darwinian model would generally be orders of magnitude smaller. Because the level of genetic diversity will have implications on therapeutic resistance, non-Darwinian evolution should be heeded in cancer treatments even for microscopic tumors. PMID:26561581

  20. Pathogenetics of alveolar capillary dysplasia with misalignment of pulmonary veins.

    PubMed

    Szafranski, Przemyslaw; Gambin, Tomasz; Dharmadhikari, Avinash V; Akdemir, Kadir Caner; Jhangiani, Shalini N; Schuette, Jennifer; Godiwala, Nihal; Yatsenko, Svetlana A; Sebastian, Jessica; Madan-Khetarpal, Suneeta; Surti, Urvashi; Abellar, Rosanna G; Bateman, David A; Wilson, Ashley L; Markham, Melinda H; Slamon, Jill; Santos-Simarro, Fernando; Palomares, María; Nevado, Julián; Lapunzina, Pablo; Chung, Brian Hon-Yin; Wong, Wai-Lap; Chu, Yoyo Wing Yiu; Mok, Gary Tsz Kin; Kerem, Eitan; Reiter, Joel; Ambalavanan, Namasivayam; Anderson, Scott A; Kelly, David R; Shieh, Joseph; Rosenthal, Taryn C; Scheible, Kristin; Steiner, Laurie; Iqbal, M Anwar; McKinnon, Margaret L; Hamilton, Sara Jane; Schlade-Bartusiak, Kamilla; English, Dawn; Hendson, Glenda; Roeder, Elizabeth R; DeNapoli, Thomas S; Littlejohn, Rebecca Okashah; Wolff, Daynna J; Wagner, Carol L; Yeung, Alison; Francis, David; Fiorino, Elizabeth K; Edelman, Morris; Fox, Joyce; Hayes, Denise A; Janssens, Sandra; De Baere, Elfride; Menten, Björn; Loccufier, Anne; Vanwalleghem, Lieve; Moerman, Philippe; Sznajer, Yves; Lay, Amy S; Kussmann, Jennifer L; Chawla, Jasneek; Payton, Diane J; Phillips, Gael E; Brosens, Erwin; Tibboel, Dick; de Klein, Annelies; Maystadt, Isabelle; Fisher, Richard; Sebire, Neil; Male, Alison; Chopra, Maya; Pinner, Jason; Malcolm, Girvan; Peters, Gregory; Arbuckle, Susan; Lees, Melissa; Mead, Zoe; Quarrell, Oliver; Sayers, Richard; Owens, Martina; Shaw-Smith, Charles; Lioy, Janet; McKay, Eileen; de Leeuw, Nicole; Feenstra, Ilse; Spruijt, Liesbeth; Elmslie, Frances; Thiruchelvam, Timothy; Bacino, Carlos A; Langston, Claire; Lupski, James R; Sen, Partha; Popek, Edwina; Stankiewicz, Paweł

    2016-05-01

    Alveolar capillary dysplasia with misalignment of pulmonary veins (ACDMPV) is a lethal lung developmental disorder caused by heterozygous point mutations or genomic deletion copy-number variants (CNVs) of FOXF1 or its upstream enhancer involving fetal lung-expressed long noncoding RNA genes LINC01081 and LINC01082. Using custom-designed array comparative genomic hybridization, Sanger sequencing, whole exome sequencing (WES), and bioinformatic analyses, we studied 22 new unrelated families (20 postnatal and two prenatal) with clinically diagnosed ACDMPV. We describe novel deletion CNVs at the FOXF1 locus in 13 unrelated ACDMPV patients. Together with the previously reported cases, all 31 genomic deletions in 16q24.1, pathogenic for ACDMPV, for which parental origin was determined, arose de novo with 30 of them occurring on the maternally inherited chromosome 16, strongly implicating genomic imprinting of the FOXF1 locus in human lungs. Surprisingly, we have also identified four ACDMPV families with the pathogenic variants in the FOXF1 locus that arose on paternal chromosome 16. Interestingly, a combination of the severe cardiac defects, including hypoplastic left heart, and single umbilical artery were observed only in children with deletion CNVs involving FOXF1 and its upstream enhancer. Our data demonstrate that genomic imprinting at 16q24.1 plays an important role in variable ACDMPV manifestation likely through long-range regulation of FOXF1 expression, and may be also responsible for key phenotypic features of maternal uniparental disomy 16. Moreover, in one family, WES revealed a de novo missense variant in ESRP1, potentially implicating FGF signaling in the etiology of ACDMPV.

  1. Pathogenetics of Alveolar Capillary Dysplasia with Misalignment of Pulmonary Veins

    PubMed Central

    Szafranski, Przemyslaw; Gambin, Tomasz; Dharmadhikari, Avinash V.; Akdemir, Kadir Caner; Jhangiani, Shalini N.; Schuette, Jennifer; Godiwala, Nihal; Yatsenko, Svetlana A.; Sebastian, Jessica; Madan-Khetarpal, Suneeta; Surti, Urvashi; Abellar, Rosanna G.; Bateman, David A.; Wilson, Ashley L.; Markham, Melinda H.; Slamon, Jill; Santos-Simarro, Fernando; Palomares, María; Nevado, Julián; Lapunzina, Pablo; Hon-Yin, Brian Chung; Wai-Lap, Wong; Chu, Yoyo Wing Yiu; Mok, Gary Tsz Kin; Eitan, Kerem; Reiter, Joel; Ambalavanan, Namasivayam; Anderson, Scott A.; Kelly, David R.; Shieh, Joseph; Rosenthal, Taryn C.; Scheible, Kristin; Steiner, Laurie; Iqbal, M. Anwar; McKinnon, Margaret; Hamilton, Sara Jane; Schlade-Bartusiak, Kamilla; English, Dawn; Hendson, Glenda; Roeder, Elizabeth R.; DeNapoli, Thomas S.; Littlejohn, Rebecca Okashah; Wolff, Daynna J.; Wagner, Carol L.; Yeung, Alison; Francis, David; Fiorino, Elizabeth K.; Edelman, Morris; Fox, Joyce; Hayes, Denise A.; Janssens, Sandra; De Baere, Elfride; Menten, Bjorn; Loccufier, Anne; Van Walleghem, Lieve; Moerman, Philippe; Sznajer, Yves; Lay, Amy S.; Kussmann, Jennifer L.; Chawla, Jasneek; Payton, Diane J.; Phillips, Gael E.; Brosens, Erwin; Tibboel, Dick; de Klein, Annelies; Maystadt, Isabelle; Fisher, Richard; Sebire, Neil; Male, Alison; Chopra, Maya; Pinner, Jason; Malcolm, Girvan; Peters, Gregory; Arbuckle, Susan; Lees, Melissa; Mead, Zoe; Quarrell, Oliver; Sayers, Richard; Owens, Martina; Shaw-Smith, Charles; Lioy, Janet; McKay, Eileen; de Leeuw, Nicole; Feenstra, Ilse; Spruijt, Liesbeth; Elmslie, Frances; Thiruchelvam, Timothy; Bacino, Carlos A.; Langston, Claire; Lupski, James R.; Sen, Partha; Popek, Edwina; Stankiewicz, Paweł

    2017-01-01

    Alveolar capillary dysplasia with misalignment of pulmonary veins (ACDMPV) is a lethal lung developmental disorder caused by heterozygous point mutations or genomic deletion copy-number variants (CNVs) of FOXF1 or its upstream enhancer involving fetal lung-expressed long noncoding RNA genes LINC01081 and LINC01082. Using custom-designed array comparative genomic hybridization, Sanger sequencing, whole exome sequencing (WES), and bioinformatic analyses, we studied 22 new unrelated families (20 postnatal and two prenatal) with clinically diagnosed ACDMPV. We describe novel deletion CNVs at the FOXF1 locus in 13 unrelated ACDMPV patients. Together with the previously reported cases, all 31 genomic deletions in 16q24.1, pathogenic for ACDMPV, for which parental origin was determined, arose de novo with 30 of them occurring on the maternally inherited chromosome 16, strongly implicating genomic imprinting of the FOXF1 locus in human lungs. Surprisingly, we have also identified four ACDMPV families with the pathogenic variants in the FOXF1 locus that arose on paternal chromosome 16. Interestingly, a combination of the severe cardiac defects, including hypoplastic left heart, and single umbilical artery were observed only in children with deletion CNVs involving FOXF1 and its upstream enhancer. Our data demonstrate that genomic imprinting at 16q24.1 plays an important role in variable ACDMPV manifestation likely through long-range regulation of FOXF1 expression, and may be also responsible for key phenotypic features of maternal uniparental disomy 16. Moreover, in one family, WES revealed a de novo missense variant in ESRP1, potentially implicating FGF signaling in etiology of ACDMPV. PMID:27071622

  2. Molecular Findings Among Patients Referred for Clinical Whole-Exome Sequencing

    PubMed Central

    Yang, Yaping; Muzny, Donna M.; Xia, Fan; Niu, Zhiyv; Person, Richard; Ding, Yan; Ward, Patricia; Braxton, Alicia; Wang, Min; Buhay, Christian; Veeraraghavan, Narayanan; Hawes, Alicia; Chiang, Theodore; Leduc, Magalie; Beuten, Joke; Zhang, Jing; He, Weimin; Scull, Jennifer; Willis, Alecia; Landsverk, Megan; Craigen, William J.; Bekheirnia, Mir Reza; Stray-Pedersen, Asbjorg; Liu, Pengfei; Wen, Shu; Alcaraz, Wendy; Cui, Hong; Walkiewicz, Magdalena; Reid, Jeffrey; Bainbridge, Matthew; Patel, Ankita; Boerwinkle, Eric; Beaudet, Arthur L.; Lupski, James R.; Plon, Sharon E.; Gibbs, Richard A.; Eng, Christine M.

    2015-01-01

    IMPORTANCE Clinical whole-exome sequencing is increasingly used for diagnostic evaluation of patients with suspected genetic disorders. OBJECTIVE To perform clinical whole-exome sequencing and report (1) the rate of molecular diagnosis among phenotypic groups, (2) the spectrum of genetic alterations contributing to disease, and (3) the prevalence of medically actionable incidental findings such as FBN1 mutations causing Marfan syndrome. DESIGN, SETTING, AND PATIENTS Observational study of 2000 consecutive patients with clinical whole-exome sequencing analyzed between June 2012 and August 2014. Whole-exome sequencing tests were performed at a clinical genetics laboratory in the United States. Results were reported by clinical molecular geneticists certified by the American Board of Medical Genetics and Genomics. Tests were ordered by the patient’s physician. The patients were primarily pediatric (1756 [88%]; mean age, 6 years; 888 females [44%], 1101 males [55%], and 11 fetuses [1% gender unknown]), demonstrating diverse clinical manifestations most often including nervous system dysfunction such as developmental delay. MAIN OUTCOMES AND MEASURES Whole-exome sequencing diagnosis rate overall and by phenotypic category, mode of inheritance, spectrum of genetic events, and reporting of incidental findings. RESULTS A molecular diagnosis was reported for 504 patients (25.2%) with 58% of the diagnostic mutations not previously reported. Molecular diagnosis rates for each phenotypic category were 143/526 (27.2%; 95% CI, 23.5%–31.2%) for the neurological group, 282/1147 (24.6%; 95% CI, 22.1%–27.2%) for the neurological plus other organ systems group, 30/83 (36.1%; 95% CI, 26.1%–47.5%) for the specific neurological group, and 49/244 (20.1%; 95% CI, 15.6%–25.8%) for the nonneurological group. The Mendelian disease patterns of the 527 molecular diagnoses included 280 (53.1%) autosomal dominant, 181 (34.3%) autosomal recessive (including 5 with uniparental disomy), 65 (12.3%) X-linked, and 1 (0.2%) mitochondrial. Of 504 patients with a molecular diagnosis, 23 (4.6%) had blended phenotypes resulting from 2 single gene defects. About 30% of the positive cases harbored mutations in disease genes reported since 2011. There were 95 medically actionable incidental findings in genes unrelated to the phenotype but with immediate implications for management in 92 patients (4.6%), including 59 patients (3%) with mutations in genes recommended for reporting by the American College of Medical Genetics and Genomics. CONCLUSIONS AND RELEVANCE Whole-exome sequencing provided a potential molecular diagnosis for 25% of a large cohort of patients referred for evaluation of suspected genetic conditions, including detection of rare genetic events and new mutations contributing to disease. The yield of whole-exome sequencing may offer advantages over traditional molecular diagnostic approaches in certain patients. PMID:25326635

  3. Phenotypic Heterogeneity in a DFNA20/26 family segregating a novel ACTG1 mutation.

    PubMed

    Yuan, Yongyi; Gao, Xue; Huang, Bangqing; Lu, Jingqiao; Wang, Guojian; Lin, Xi; Qu, Yan; Dai, Pu

    2016-02-01

    Genetic factors play an important role in hearing loss, contributing to approximately 60% of cases of congenital hearing loss. Autosomal dominant deafness accounts for approximately 20% of cases of hereditary hearing loss. Diseases with autosomal dominant inheritance often show pleiotropy, different degrees of penetrance, and variable expressivity. A three-generation Chinese family with autosomal dominant nonsyndromic hearing impairment (ADNSHI) was enrolled in this study. Audiometric data and blood samples were collected from the family. In total, 129 known human deafness genes were sequenced using next-generation sequencing (NGS) to identify the responsible gene mutation in the family. Whole Exome Sequencing (WES) was performed to exclude any other variant that cosegregated with the phenotype. The age of onset of the affected family members was the second decade of life. The condition began with high-frequency hearing impairment in all family members excluding III:2. The novel ACTG1 c.638A > G (p.K213R) mutation was found in all affected family members and was not found in the unaffected family members. A heterozygous c.638A > G mutation in ACTG1 and homozygous c.109G > A (p.V37I) mutation in GJB2 were found in III:2, who was born with hearing loss. The WES result concurred with that of targeted sequencing of known deafness genes. The novel mutation p.K213R in ACTG1 was found to be co-segregated with hearing loss and the genetic cause of ADNSHI in this family. A homozygous mutation associated with recessive inheritance only rarely co-acts with a dominant mutation to result in hearing loss in a dominant family. In such cases, the mutations in the two genes, as in ACTG1 and GJB2 in the present study, may result in a more severe phenotype. Targeted sequencing of known deafness genes is one of the best choices to identify the genetic cause in hereditary hearing loss families.

  4. Whole exome sequencing identifies genetic variants in inherited thrombocytopenia with secondary qualitative function defects.

    PubMed

    Johnson, Ben; Lowe, Gillian C; Futterer, Jane; Lordkipanidzé, Marie; MacDonald, David; Simpson, Michael A; Sanchez-Guiú, Isabel; Drake, Sian; Bem, Danai; Leo, Vincenzo; Fletcher, Sarah J; Dawood, Ban; Rivera, José; Allsup, David; Biss, Tina; Bolton-Maggs, Paula Hb; Collins, Peter; Curry, Nicola; Grimley, Charlotte; James, Beki; Makris, Mike; Motwani, Jayashree; Pavord, Sue; Talks, Katherine; Thachil, Jecko; Wilde, Jonathan; Williams, Mike; Harrison, Paul; Gissen, Paul; Mundell, Stuart; Mumford, Andrew; Daly, Martina E; Watson, Steve P; Morgan, Neil V

    2016-10-01

    Inherited thrombocytopenias are a heterogeneous group of disorders characterized by abnormally low platelet counts which can be associated with abnormal bleeding. Next-generation sequencing has previously been employed in these disorders for the confirmation of suspected genetic abnormalities, and more recently in the discovery of novel disease-causing genes. However its full potential has not yet been exploited. Over the past 6 years we have sequenced the exomes from 55 patients, including 37 index cases and 18 additional family members, all of whom were recruited to the UK Genotyping and Phenotyping of Platelets study. All patients had inherited or sustained thrombocytopenia of unknown etiology with platelet counts varying from 11×10 9 /L to 186×10 9 /L. Of the 51 patients phenotypically tested, 37 (73%), had an additional secondary qualitative platelet defect. Using whole exome sequencing analysis we have identified "pathogenic" or "likely pathogenic" variants in 46% (17/37) of our index patients with thrombocytopenia. In addition, we report variants of uncertain significance in 12 index cases, including novel candidate genetic variants in previously unreported genes in four index cases. These results demonstrate that whole exome sequencing is an efficient method for elucidating potential pathogenic genetic variants in inherited thrombocytopenia. Whole exome sequencing also has the added benefit of discovering potentially pathogenic genetic variants for further study in novel genes not previously implicated in inherited thrombocytopenia. Copyright© Ferrata Storti Foundation.

  5. A survey of tools for variant analysis of next-generation genome sequencing data

    PubMed Central

    Pabinger, Stephan; Dander, Andreas; Fischer, Maria; Snajder, Rene; Sperk, Michael; Efremova, Mirjana; Krabichler, Birgit; Speicher, Michael R.; Zschocke, Johannes

    2014-01-01

    Recent advances in genome sequencing technologies provide unprecedented opportunities to characterize individual genomic landscapes and identify mutations relevant for diagnosis and therapy. Specifically, whole-exome sequencing using next-generation sequencing (NGS) technologies is gaining popularity in the human genetics community due to the moderate costs, manageable data amounts and straightforward interpretation of analysis results. While whole-exome and, in the near future, whole-genome sequencing are becoming commodities, data analysis still poses significant challenges and led to the development of a plethora of tools supporting specific parts of the analysis workflow or providing a complete solution. Here, we surveyed 205 tools for whole-genome/whole-exome sequencing data analysis supporting five distinct analytical steps: quality assessment, alignment, variant identification, variant annotation and visualization. We report an overview of the functionality, features and specific requirements of the individual tools. We then selected 32 programs for variant identification, variant annotation and visualization, which were subjected to hands-on evaluation using four data sets: one set of exome data from two patients with a rare disease for testing identification of germline mutations, two cancer data sets for testing variant callers for somatic mutations, copy number variations and structural variations, and one semi-synthetic data set for testing identification of copy number variations. Our comprehensive survey and evaluation of NGS tools provides a valuable guideline for human geneticists working on Mendelian disorders, complex diseases and cancers. PMID:23341494

  6. Thiamine pyrophosphokinase deficiency causes a Leigh Disease like phenotype in a sibling pair: identification through whole exome sequencing and management strategies.

    PubMed

    Fraser, Jamie L; Vanderver, Adeline; Yang, Sandra; Chang, Taeun; Cramp, Laura; Vezina, Gilbert; Lichter-Konecki, Uta; Cusmano-Ozog, Kristina P; Smpokou, Patroula; Chapman, Kimberly A; Zand, Dina J

    2014-01-01

    We present a sibling pair with Leigh-like disease, progressive hypotonia, regression, and chronic encephalopathy. Whole exome sequencing in the younger sibling demonstrated a homozygous thiamine pyrophosphokinase (TPK) mutation. Initiation of high dose thiamine, niacin, biotin, α-lipoic acid and ketogenic diet in this child demonstrated improvement in neurologic function and re-attainment of previously lost milestones. The diagnosis of TPK deficiency was difficult due to inconsistent biochemical and diagnostic parameters, rapidity of clinical demise and would not have been made in a timely manner without the use of whole exome sequencing. Molecular diagnosis allowed for attempt at dietary modification with cofactor supplementation which resulted in an improved clinical course.

  7. Engaging a Community for Rare Genetic Disease: Best Practices and Education From Individual Crowdfunding Campaigns.

    PubMed

    Ortiz, Romina Alicia; Witte, Steven; Gouw, Arvin; Sanfilippo, Ana; Tsai, Richard; Fumagalli, Danielle; Yu, Christine; Lant, Karla; Lipitz, Nicole; Shepphird, Jennifer; Alvina, Fidelia B; Cheng-Ho Lin, Jimmy

    2018-02-05

    Genetic sequencing is critically important to diagnostic health care efforts in the United States today, yet it is still inaccessible to many. Meanwhile, the internet and social networking have made crowdfunding a realistic avenue for individuals and groups hoping to fund medical and research causes, including patients in need of whole exome genetic sequencing (WES). Amplify Hope is an educational program designed to investigate what factors affect the success of medical crowdfunding campaigns. We conducted a needs assessment, a series of 25 interviews concerning crowdfunding, and provided training on best practices identified through our assessment for 11 individuals hoping to run their medical crowdfunding campaigns to raise money for patients to access trio WES to identify the mutated proteins that caused their apparent inherited disease. The crowdfunding education was given in a 30-day training period with resources such as webinars, fact sheets and a crowdfunding training guide emailed to each participant. All campaigns were launched on the same date and were given 30 days to raise the same goal amount of US $5000. Reviewing the 4 crowdfunding campaigns that raised the goal amount within the 30-day period, we sought to identify features that made the 4 crowdfunding campaigns successful. In addition, we sought to assess which factors the resulting 75 donors report as influencing their decision to donate to a campaign. Finally, we investigated whether crowdfunding campaigns for exome sequencing had an impact on increasing applicant's and donors' knowledge of genomics. Of the 86 study inquiries, 11 participants submitted the required forms and launched their crowdfunding campaigns. A total of 4 of the 11 campaigns raised their goal amounts within 30 days. We found that social media played an important role in all campaigns. Specifically, a strong social media network, an active outreach process to networks, as well as engagement within the study all correlated with a higher success rate. Amplify Hope donors were more likely to support projects that were near their fundraising goals, and they found video far more effective for learning about genomics than any other medium. ©Romina Alicia Ortiz, Steven Witte, Arvin Gouw, Ana Sanfilippo, Richard Tsai, Danielle Fumagalli, Christine Yu, Karla Lant, Nicole Lipintz, Jennifer Shepphird, Fidelia B Alvina, Jimmy Cheng-Ho Lin. Originally published in the Interactive Journal of Medical Research (http://www.i-jmr.org/), 05.02.2018.

  8. Aggressive natural killer-cell leukemia mutational landscape and drug profiling highlight JAK-STAT signaling as therapeutic target.

    PubMed

    Dufva, Olli; Kankainen, Matti; Kelkka, Tiina; Sekiguchi, Nodoka; Awad, Shady Adnan; Eldfors, Samuli; Yadav, Bhagwan; Kuusanmäki, Heikki; Malani, Disha; Andersson, Emma I; Pietarinen, Paavo; Saikko, Leena; Kovanen, Panu E; Ojala, Teija; Lee, Dean A; Loughran, Thomas P; Nakazawa, Hideyuki; Suzumiya, Junji; Suzuki, Ritsuro; Ko, Young Hyeh; Kim, Won Seog; Chuang, Shih-Sung; Aittokallio, Tero; Chan, Wing C; Ohshima, Koichi; Ishida, Fumihiro; Mustjoki, Satu

    2018-04-19

    Aggressive natural killer-cell (NK-cell) leukemia (ANKL) is an extremely aggressive malignancy with dismal prognosis and lack of targeted therapies. Here, we elucidate the molecular pathogenesis of ANKL using a combination of genomic and drug sensitivity profiling. We study 14 ANKL patients using whole-exome sequencing (WES) and identify mutations in STAT3 (21%) and RAS-MAPK pathway genes (21%) as well as in DDX3X (29%) and epigenetic modifiers (50%). Additional alterations include JAK-STAT copy gains and tyrosine phosphatase mutations, which we show recurrent also in extranodal NK/T-cell lymphoma, nasal type (NKTCL) through integration of public genomic data. Drug sensitivity profiling further demonstrates the role of the JAK-STAT pathway in the pathogenesis of NK-cell malignancies, identifying NK cells to be highly sensitive to JAK and BCL2 inhibition compared to other hematopoietic cell lineages. Our results provide insight into ANKL genetics and a framework for application of targeted therapies in NK-cell malignancies.

  9. Genetics of Bladder-Exstrophy-Epispadias Complex (BEEC): Systematic Elucidation of Mendelian and Multifactorial Phenotypes

    PubMed Central

    Reutter, Heiko; Keppler-Noreuil, Kim; E. Keegan, Catherine; Thiele, Holger; Yamada, Gen; Ludwig, Michael

    2016-01-01

    The Bladder-Exstrophy-Epispadias Complex (BEEC) represents the severe end of the uro-rectal malformation spectrum, and has a profound impact on continence, and on sexual and renal function. While previous reports of familial occurrence, in-creased recurrence among first-degree relatives, high concordance rates among monozygotic twins, and chromosomal aberra-tions were suggestive of causative genetic factors, the recent identification of copy number variations (CNVs), susceptibility regions and genes through the systematic application of array based analysis, candidate gene and genome-wide association studies (GWAS) provide strong evidence. These findings in human BEEC cohorts are underscored by the recent description of BEEC(-like) murine knock-out models. Here, we discuss the current knowledge of the potential molecular mechanisms, mediating abnormal uro-rectal development leading to the BEEC, demonstrating the importance of ISL1-pathway in human and mouse and propose SLC20A1 and CELSR3 as the first BEEC candidate genes, identified through systematic whole-exome sequencing (WES) in BEEC patients. PMID:27013921

  10. Identification of a novel homozygous TRAPPC9 gene mutation causing non-syndromic intellectual disability, speech disorder, and secondary microcephaly.

    PubMed

    Abbasi, Ansar A; Blaesius, Kathrin; Hu, Hao; Latif, Zahid; Picker-Minh, Sylvie; Khan, Muhammad N; Farooq, Sundas; Khan, Muzammil A; Kaindl, Angela M

    2017-12-01

    TRAPPC9 gene mutations have been linked recently to autosomal recessive mental retardation 13 (MRT13; MIM#613192) with only eight families reported world-wide. We assessed patients from two consanguineous pedigrees of Pakistani descent with non-syndromic intellectual disability and postnatal microcephaly through whole exome sequencing (WES) and cosegregation analysis. Here we report six further patients from two pedigrees with homozygous TRAPPC9 gene mutations, the novel nonsense mutation c.2065G>T (p.E689*) and the previously identified nonsense mutation c.1423C>T (p.R475*). We provide an overview of previously reported clinical features and highlight common symptoms and variability of MRT13. Common findings are intellectual disability and absent speech, and frequently microcephaly, motor delay and pathological findings on MRI including diminished cerebral white matter volume are present. Mutations in TRAPPC9 should be considered in non-syndromic autosomal recessive intellectual disability with severe speech disorder. © 2017 Wiley Periodicals, Inc.

  11. Nonlinear tumor evolution from dysplastic nodules to hepatocellular carcinoma.

    PubMed

    Joung, Je-Gun; Ha, Sang Yun; Bae, Joon Seol; Nam, Jae-Yong; Gwak, Geum-Youn; Lee, Hae-Ock; Son, Dae-Soon; Park, Cheol-Keun; Park, Woong-Yang

    2017-01-10

    Dysplastic nodules are premalignant neoplastic nodules found in explanted livers with cirrhosis. Genetic signatures of premalignant dysplastic nodules (DNs) with concurrent hepatocellular carcinoma (HCC) may provide an insight in the molecular evolution of hepatocellular carcinogenesis. We analyzed four patients with multifocal nodular lesions and cirrhotic background by whole-exome sequencing (WES). The genomic profiles of somatic single nucleotide variations (SNV) and copy number variations (CNV) in DNs were compared to those of HCCs. The number and variant allele frequency of somatic SNVs of DNs and HCCs in each patient was identical along the progression of pathological grade. The somatic SNVs in DNs showed little conservation in HCC. Additionally, CNVs showed no conservation. Phylogenetic analysis based on SNVs and copy number profiles indicated a nonlinear segregation pattern, implying independent development of DNs and HCC in each patient. Thus, somatic mutations in DNs may be developed separately from other malignant nodules in the same liver, suggesting a nonlinear model for hepatocarcinogenesis from DNs to HCC.

  12. De novo and rare mutations in the HSPA1L heat shock gene associated with inflammatory bowel disease.

    PubMed

    Takahashi, Shinichi; Andreoletti, Gaia; Chen, Rui; Munehira, Yoichi; Batra, Akshay; Afzal, Nadeem A; Beattie, R Mark; Bernstein, Jonathan A; Ennis, Sarah; Snyder, Michael

    2017-01-26

    Inflammatory bowel disease (IBD) is a chronic, relapsing inflammatory disease of the gastrointestinal tract which includes ulcerative colitis and Crohn's disease. Genetic risk factors for IBD are not well understood. We performed a family-based whole exome sequencing (WES) analysis on a core family (Family A) to identify potential causal mutations and then analyzed exome data from a Caucasian pediatric cohort (136 patients and 106 controls) to validate the presence of mutations in the candidate gene, heat shock 70 kDa protein 1-like (HSPA1L). Biochemical assays of the de novo and rare (minor allele frequency, MAF < 0.01) mutation variant proteins further validated the predicted deleterious effects of the identified alleles. In the proband of Family A, we found a heterozygous de novo mutation (c.830C > T; p.Ser277Leu) in HSPA1L. Through analysis of WES data of 136 patients, we identified five additional rare HSPA1L mutations (p.Gly77Ser, p.Leu172del, p.Thr267Ile, p.Ala268Thr, p.Glu558Asp) in six patients. In contrast, rare HSPA1L mutations were not observed in controls, and were significantly enriched in patients (P = 0.02). Interestingly, we did not find non-synonymous rare mutations in the HSP70 isoforms HSPA1A and HSPA1B. Biochemical assays revealed that all six rare HSPA1L variant proteins showed decreased chaperone activity in vitro. Moreover, three variants demonstrated dominant negative effects on HSPA1L and HSPA1A protein activity. Our results indicate that de novo and rare mutations in HSPA1L are associated with IBD and provide insights into the pathogenesis of IBD, and also expand our understanding of the roles of HSP70s in human disease.

  13. Genetic screening and diagnosis in epilepsy?

    PubMed

    Sisodiya, Sanjay M

    2015-04-01

    Genetic discovery has been extremely rapid over the last year, with many new discoveries illuminating novel mechanisms and pathways. In particular, the application of whole exome and whole genome sequencing has identified many new genetic causes of the epilepsies. As such methods become increasingly available, it will be critical for practicing neurologists to be acquainted with them. This review surveys some important developments over the last year. The range of tests available to the clinician is wide, and likely soon to be dominated by whole exome and whole genome sequencing. Both whole exome and whole genome sequencing have usually proven to be more powerful than most existing tests. Many new genes have been implicated in the epilepsies, with emerging evidence of the involvement of particular multigene pathways. For the practicing clinician, it will be important to appreciate progress in the field, and to prepare for the application of novel genetic testing in clinical practice, as genetic data are likely to contribute importantly for many people with epilepsy.

  14. CoVaCS: a consensus variant calling system.

    PubMed

    Chiara, Matteo; Gioiosa, Silvia; Chillemi, Giovanni; D'Antonio, Mattia; Flati, Tiziano; Picardi, Ernesto; Zambelli, Federico; Horner, David Stephen; Pesole, Graziano; Castrignanò, Tiziana

    2018-02-05

    The advent and ongoing development of next generation sequencing technologies (NGS) has led to a rapid increase in the rate of human genome re-sequencing data, paving the way for personalized genomics and precision medicine. The body of genome resequencing data is progressively increasing underlining the need for accurate and time-effective bioinformatics systems for genotyping - a crucial prerequisite for identification of candidate causal mutations in diagnostic screens. Here we present CoVaCS, a fully automated, highly accurate system with a web based graphical interface for genotyping and variant annotation. Extensive tests on a gold standard benchmark data-set -the NA12878 Illumina platinum genome- confirm that call-sets based on our consensus strategy are completely in line with those attained by similar command line based approaches, and far more accurate than call-sets from any individual tool. Importantly our system exhibits better sensitivity and higher specificity than equivalent commercial software. CoVaCS offers optimized pipelines integrating state of the art tools for variant calling and annotation for whole genome sequencing (WGS), whole-exome sequencing (WES) and target-gene sequencing (TGS) data. The system is currently hosted at Cineca, and offers the speed of a HPC computing facility, a crucial consideration when large numbers of samples must be analysed. Importantly, all the analyses are performed automatically allowing high reproducibility of the results. As such, we believe that CoVaCS can be a valuable tool for the analysis of human genome resequencing studies. CoVaCS is available at: https://bioinformatics.cineca.it/covacs .

  15. Identification of a Heterozygous SPG11 Mutation by Clinical Exome Sequencing in a Patient With Hereditary Spastic Paraplegia: A Case Report.

    PubMed

    Oh, Ja-Young; Do, Hyun Jung; Lee, Seungok; Jang, Ja-Hyun; Cho, Eun-Hae; Jang, Dae-Hyun

    2016-12-01

    Next-generation sequencing, such as whole-genome sequencing, whole-exome sequencing, and targeted panel sequencing have been applied for diagnosis of many genetic diseases, and are in the process of replacing the traditional methods of genetic analysis. Clinical exome sequencing (CES), which provides not only sequence variation data but also clinical interpretation, aids in reaching a final conclusion with regards to genetic diagnosis. Sequencing of genes with clinical relevance rather than whole exome sequencing might be more suitable for the diagnosis of known hereditary disease with genetic heterogeneity. Here, we present the clinical usefulness of CES for the diagnosis of hereditary spastic paraplegia (HSP). We report a case of patient who was strongly suspected of having HSP based on her clinical manifestations. HSP is one of the diseases with high genetic heterogeneity, the 72 different loci and 59 discovered genes identified so far. Therefore, traditional approach for diagnosis of HSP with genetic analysis is very challenging and time-consuming. CES with TruSight One Sequencing Panel, which enriches about 4,800 genes with clinical relevance, revealed compound heterozygous mutations in SPG11 . One workflow and one procedure can provide the results of genetic analysis, and CES with enrichment of clinically relevant genes is a cost-effective and time-saving diagnostic tool for diseases with genetic heterogeneity, including HSP.

  16. Exome sequencing identifies variants in two genes encoding the LIM-proteins NRAP and FHL1 in an Italian patient with BAG3 myofibrillar myopathy.

    PubMed

    D'Avila, Francesca; Meregalli, Mirella; Lupoli, Sara; Barcella, Matteo; Orro, Alessandro; De Santis, Francesca; Sitzia, Clementina; Farini, Andrea; D'Ursi, Pasqualina; Erratico, Silvia; Cristofani, Riccardo; Milanesi, Luciano; Braga, Daniele; Cusi, Daniele; Poletti, Angelo; Barlassina, Cristina; Torrente, Yvan

    2016-06-01

    Myofibrillar myopathies (MFMs) are genetically heterogeneous dystrophies characterized by the disintegration of Z-disks and myofibrils and are associated with mutations in genes encoding Z-disk or Z-disk-related proteins. The c.626 C > T (p.P209L) mutation in the BAG3 gene has been described as causative of a subtype of MFM. We report a sporadic case of a 26-year-old Italian woman, affected by MFM with axonal neuropathy, cardiomyopathy, rigid spine, who carries the c.626 C > T mutation in the BAG3 gene. The patient and her non-consanguineous healthy parents and brother were studied with whole exome sequencing (WES) to further investigate the genetic basis of this complex phenotype. In the patient, we found that the BAG3 mutation is associated with variants in the NRAP and FHL1 genes that encode muscle-specific, LIM domain containing proteins. Quantitative real time PCR, immunohistochemistry and Western blot analysis of the patient's muscular biopsy showed the absence of NRAP expression and FHL1 accumulation in aggregates in the affected skeletal muscle tissue. Molecular dynamic analysis of the mutated FHL1 domain showed a modification in its surface charge, which could affect its capability to bind its target proteins. To our knowledge this is the first study reporting, in a BAG3 MFM, the simultaneous presence of genetic variants in the BAG3 and FHL1 genes (previously described as independently associated with MFMs) and linking the NRAP gene to MFM for the first time.

  17. Phosphoglucomutase-1 deficiency: Intrafamilial clinical variability and common secondary adrenal insufficiency.

    PubMed

    Loewenthal, Neta; Haim, Alon; Parvari, Ruti; Hershkovitz, Eli

    2015-12-01

    Phosphoglucomutase 1 (PGM1, EC 5.4.2.2) plays a critical role in glucose homeostasis and is also essential for protein N-glycosylation. The main clinical manifestations of PGM1 deficiency (MIM 614921) reported in 19 patients from different ethnic backgrounds include the following: cleft uvula/palate, Pierre Robin sequence, muscle weakness, dilated cardiomyopathy, growth retardation, elevated serum transaminases, hypoglycemia, and various endocrine abnormalities. We report the variable clinical picture of seven patients with PGM1 deficiency from a consanguineous family. Medical records of the patients were reviewed for clinical details and endocrine evaluation. Whole exome sequencing (WES) was performed. Seven patients aged 2-29 years were included, one patient died at 13 years old when getting off the school bus. All patients have an abnormal palatine structure (cleft palate, bifid uvula) and elevated serum transaminases, 4/7 have short stature (<-2 SDS) and one was diagnosed with growth hormone deficiency. Recurrent episodes of ketotic hypoglycemia were present in 6/7 patients. In two patients, hypoglycemic episodes have spontaneously resolved later on. Four out of seven patients have deteriorating adrenal function with abnormally low cortisol and ACTH levels during hypoglycemia and subnormal response of cortisol to low dose ACTH test . Serum electrolytes were within normal range. Hydrocortisone replacement therapy improved, but not entirely eliminated hypoglycemic episodes. WES revealed a previously described homozygous mutation c.112A>T, p.Asn38Tyr in the PGM1 gene. The clinical picture of PGM1 deficiency is variable among patients with the same mutation and genetic background. ACTH deficiency should be considered in any PGM1 deficient patient with hypoglycemia. © 2015 Wiley Periodicals, Inc.

  18. Comprehensive mutation profiling of mucinous gastric carcinoma.

    PubMed

    Rokutan, Hirofumi; Hosoda, Fumie; Hama, Natsuko; Nakamura, Hiromi; Totoki, Yasushi; Furukawa, Eisaku; Arakawa, Erika; Ohashi, Shoko; Urushidate, Tomoko; Satoh, Hironori; Shimizu, Hiroko; Igarashi, Keiko; Yachida, Shinichi; Katai, Hitoshi; Taniguchi, Hirokazu; Fukayama, Masashi; Shibata, Tatsuhiro

    2016-10-01

    Mucinous gastric carcinoma (MGC) is a unique subtype of gastric cancer with a poor survival outcome. Comprehensive molecular profiles and putative therapeutic targets of MGC remain undetermined. We subjected 16 tumour-normal tissue pairs to whole-exome sequencing (WES) and an expanded set of 52 tumour-normal tissue pairs to subsequent targeted sequencing. The latter focused on 114 genes identified by WES. Twenty-two histologically differentiated MGCs (D-MGCs) and 46 undifferentiated MGCs (U-MGCs) were analysed. Chromatin modifier genes, including ARID1A (21%), MLL2 (19%), MLL3 (15%), and KDM6A (7%), were frequently mutated (47%) in MGC. We also identified mutations in potential therapeutic target genes, including MTOR (9%), BRCA2 (9%), BRCA1 (7%), and ERBB3 (6%). RHOA mutation was detected only in 4% of U-MGCs and in no D-MGCs. MYH9 was recurrently (13%) mutated in MGC, with all these being of the U-MGC subtype (p = 0.023). Three U-MGCs harboured MYH9 nonsense mutations. MYH9 knockdown enhanced cell migration and induced intracytoplasmic mucin and cellular elongation. BCOR mutation was associated with improved survival. In U-MGCs, the MLH1 expression status and combined mutation status (TP53/BCL11B or TP53/MLL2) were prognostic factors. A comparative analysis of driver genes revealed that the mutation profile of D-MGC was similar to that of intestinal-type gastric cancer, whereas U-MGC was a distinct entity, harbouring a different mutational profile to intestinal- and diffuse-type gastric cancers. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  19. Monoallelic Mutations to DNAJB11 Cause Atypical Autosomal-Dominant Polycystic Kidney Disease.

    PubMed

    Cornec-Le Gall, Emilie; Olson, Rory J; Besse, Whitney; Heyer, Christina M; Gainullin, Vladimir G; Smith, Jessica M; Audrézet, Marie-Pierre; Hopp, Katharina; Porath, Binu; Shi, Beili; Baheti, Saurabh; Senum, Sarah R; Arroyo, Jennifer; Madsen, Charles D; Férec, Claude; Joly, Dominique; Jouret, François; Fikri-Benbrahim, Oussamah; Charasse, Christophe; Coulibaly, Jean-Marie; Yu, Alan S; Khalili, Korosh; Pei, York; Somlo, Stefan; Le Meur, Yannick; Torres, Vicente E; Harris, Peter C

    2018-05-03

    Autosomal-dominant polycystic kidney disease (ADPKD) is characterized by the progressive development of kidney cysts, often resulting in end-stage renal disease (ESRD). This disorder is genetically heterogeneous with ∼7% of families genetically unresolved. We performed whole-exome sequencing (WES) in two multiplex ADPKD-like pedigrees, and we analyzed a further 591 genetically unresolved, phenotypically similar families by targeted next-generation sequencing of 65 candidate genes. WES identified a DNAJB11 missense variant (p.Pro54Arg) in two family members presenting with non-enlarged polycystic kidneys and a frameshifting change (c.166_167insTT) in a second family with small renal and liver cysts. DNAJB11 is a co-factor of BiP, a key chaperone in the endoplasmic reticulum controlling folding, trafficking, and degradation of secreted and membrane proteins. Five additional multigenerational families carrying DNAJB11 mutations were identified by the targeted analysis. The clinical phenotype was consistent in the 23 affected members, with non-enlarged cystic kidneys that often evolved to kidney atrophy; 7 subjects reached ESRD from 59 to 89 years. The lack of kidney enlargement, histologically evident interstitial fibrosis in non-cystic parenchyma, and recurring episodes of gout (one family) suggested partial phenotypic overlap with autosomal-dominant tubulointerstitial diseases (ADTKD). Characterization of DNAJB11-null cells and kidney samples from affected individuals revealed a pathogenesis associated with maturation and trafficking defects involving the ADPKD protein, PC1, and ADTKD proteins, such as UMOD. DNAJB11-associated disease is a phenotypic hybrid of ADPKD and ADTKD, characterized by normal-sized cystic kidneys and progressive interstitial fibrosis resulting in late-onset ESRD. Copyright © 2018 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  20. A novel mutation in the TG gene (G2322S) causing congenital hypothyroidism in a Sudanese family: a case report.

    PubMed

    Watanabe, Y; Sharwood, E; Goodwin, B; Creech, M K; Hassan, H Y; Netea, M G; Jaeger, M; Dumitrescu, A; Refetoff, S; Huynh, T; Weiss, R E

    2018-05-02

    Congenital hypothyroidism (CH) has an incidence of approximately 1:3000, but only 15% have mutations in the thyroid hormone synthesis pathways. Genetic analysis allows for the precise diagnosis. A 3-week old girl presented with a large goiter, serum TSH > 100 mIU/L (reference range: 0.7-5.9 mIU/L); free T 4  < 3.2 pmol/L (reference range: 8.7-16 pmol/L); thyroglobulin (TG) 101 μg/L. Thyroid Tc-99 m scan showed increased radiotracer uptake. One brother had CH and both affected siblings have been clinically and biochemically euthyroid on levothyroxine replacement. Another sibling had normal thyroid function. Both Sudanese parents reported non-consanguinity. Peripheral blood DNA from the proposita was subjected to whole exome sequencing (WES). WES identified a novel homozygous missense mutation of the TG gene: c.7021G > A, p.Gly2322Ser, which was subsequently confirmed by Sanger sequencing and present in one allele of both parents. DNA samples from 354 alleles in four Sudanese ethnic groups (Nilotes, Darfurians, Nuba, and Halfawien) failed to demonstrate the presence of the mutant allele. Haplotyping showed a 1.71 centiMorgans stretch of homozygosity in the TG locus suggesting that this mutation occurred identical by descent and the possibility of common ancestry of the parents. The mutation is located in the cholinesterase-like (ChEL) domain of TG. A novel rare missense mutation in the TG gene was identified. The ChEL domain is critical for protein folding and patients with CH due to misfolded TG may present without low serum TG despite the TG gene mutations.

  1. Compound heterozygous NEK1 variants in two siblings with oral-facial-digital syndrome type II (Mohr syndrome)

    PubMed Central

    Monroe, Glen R; Kappen, Isabelle FPM; Stokman, Marijn F; Terhal, Paulien A; van den Boogaard, Marie-José H; Savelberg, Sanne MC; van der Veken, Lars T; van Es, Robert JJ; Lens, Susanne M; Hengeveld, Rutger C; Creton, Marijn A; Janssen, Nard G; Mink van der Molen, Aebele B; Ebbeling, Michelle B; Giles, Rachel H; Knoers, Nine V; van Haaften, Gijs

    2016-01-01

    The oral-facial-digital (OFD) syndromes comprise a group of related disorders with a combination of oral, facial and digital anomalies. Variants in several ciliary genes have been associated with subtypes of OFD syndrome, yet in most OFD patients the underlying cause remains unknown. We investigated the molecular basis of disease in two brothers with OFD type II, Mohr syndrome, by performing single-nucleotide polymorphism (SNP)-array analysis on the brothers and their healthy parents to identify homozygous regions and candidate genes. Subsequently, we performed whole-exome sequencing (WES) on the family. Using WES, we identified compound heterozygous variants c.[464G>C][1226G>A] in NIMA (Never in Mitosis Gene A)-Related Kinase 1 (NEK1). The novel variant c.464G>C disturbs normal splicing in an essential region of the kinase domain. The nonsense variant c.1226G>A, p.(Trp409*), results in nonsense-associated alternative splicing, removing the first coiled-coil domain of NEK1. Candidate variants were confirmed with Sanger sequencing and alternative splicing assessed with cDNA analysis. Immunocytochemistry was used to assess cilia number and length. Patient-derived fibroblasts showed severely reduced ciliation compared with control fibroblasts (18.0 vs 48.9%, P<0.0001), but showed no significant difference in cilia length. In conclusion, we identified compound heterozygous deleterious variants in NEK1 in two brothers with Mohr syndrome. Ciliation in patient fibroblasts is drastically reduced, consistent with a ciliary defect pathogenesis. Our results establish NEK1 variants involved in the etiology of a subset of patients with OFD syndrome type II and support the consideration of including (routine) NEK1 analysis in patients suspected of OFD. PMID:27530628

  2. Compound heterozygous NEK1 variants in two siblings with oral-facial-digital syndrome type II (Mohr syndrome).

    PubMed

    Monroe, Glen R; Kappen, Isabelle Fpm; Stokman, Marijn F; Terhal, Paulien A; van den Boogaard, Marie-José H; Savelberg, Sanne Mc; van der Veken, Lars T; van Es, Robert Jj; Lens, Susanne M; Hengeveld, Rutger C; Creton, Marijn A; Janssen, Nard G; Mink van der Molen, Aebele B; Ebbeling, Michelle B; Giles, Rachel H; Knoers, Nine V; van Haaften, Gijs

    2016-12-01

    The oral-facial-digital (OFD) syndromes comprise a group of related disorders with a combination of oral, facial and digital anomalies. Variants in several ciliary genes have been associated with subtypes of OFD syndrome, yet in most OFD patients the underlying cause remains unknown. We investigated the molecular basis of disease in two brothers with OFD type II, Mohr syndrome, by performing single-nucleotide polymorphism (SNP)-array analysis on the brothers and their healthy parents to identify homozygous regions and candidate genes. Subsequently, we performed whole-exome sequencing (WES) on the family. Using WES, we identified compound heterozygous variants c.[464G>C];[1226G>A] in NIMA (Never in Mitosis Gene A)-Related Kinase 1 (NEK1). The novel variant c.464G>C disturbs normal splicing in an essential region of the kinase domain. The nonsense variant c.1226G>A, p.(Trp409*), results in nonsense-associated alternative splicing, removing the first coiled-coil domain of NEK1. Candidate variants were confirmed with Sanger sequencing and alternative splicing assessed with cDNA analysis. Immunocytochemistry was used to assess cilia number and length. Patient-derived fibroblasts showed severely reduced ciliation compared with control fibroblasts (18.0 vs 48.9%, P<0.0001), but showed no significant difference in cilia length. In conclusion, we identified compound heterozygous deleterious variants in NEK1 in two brothers with Mohr syndrome. Ciliation in patient fibroblasts is drastically reduced, consistent with a ciliary defect pathogenesis. Our results establish NEK1 variants involved in the etiology of a subset of patients with OFD syndrome type II and support the consideration of including (routine) NEK1 analysis in patients suspected of OFD.

  3. Integrated molecular analysis of tumor biopsies on sequential CTLA-4 and PD-1 blockade reveals markers of response and resistance

    PubMed Central

    Roh, Whijae; Chen, Pei-Ling; Reuben, Alexandre; Spencer, Christine N.; Prieto, Peter A.; Miller, John P.; Gopalakrishnan, Vancheswaran; Wang, Feng; Cooper, Zachary A.; Reddy, Sangeetha M.; Gumbs, Curtis; Little, Latasha; Chang, Qing; Chen, Wei-Shen; Wani, Khalida; Petaccia De Macedo, Mariana; Chen, Eveline; Austin-Breneman, Jacob L.; Jiang, Hong; Roszik, Jason; Tetzlaff, Michael T.; Davies, Michael A.; Gershenwald, Jeffrey E.; Tawbi, Hussein; Lazar, Alexander J.; Hwu, Patrick; Hwu, Wen-Jen; Diab, Adi; Glitza, Isabella C.; Patel, Sapna P.; Woodman, Scott E.; Amaria, Rodabe N.; Prieto, Victor G.; Hu, Jianhua; Sharma, Padmanee; Allison, James P.; Chin, Lynda; Zhang, Jianhua; Wargo, Jennifer A.; Futreal, P. Andrew

    2018-01-01

    Immune checkpoint blockade produces clinical benefit in many patients. However better biomarkers of response are still needed, and mechanisms of resistance remain incompletely understood. To address this, we recently studied a cohort of melanoma patients treated with sequential checkpoint blockade against cytotoxic T lymphocyte antigen-4 (CTLA-4) followed by programmed death receptor-1 (PD-1), and identified immune markers of response and resistance. Building on these studies, we performed deep molecular profiling including T-cell receptor sequencing (TCR-seq) and whole exome sequencing (WES) within the same cohort, and demonstrated that a more clonal T cell repertoire was predictive of response to PD-1 but not CTLA-4 blockade. Analysis of copy number alterations identified a higher burden of copy number loss in non-responders to CTLA-4 and PD-1 blockade and found that it was associated with decreased expression of genes in immune-related pathways. The effect of mutational load and burden of copy number loss on response was non-redundant, suggesting the potential utility of a combinatorial biomarker to optimize patient care with checkpoint blockade therapy. PMID:28251903

  4. What are Whole Exome Sequencing and Whole Genome Sequencing?

    MedlinePlus

    ... the future. For more information about DNA sequencing technologies and their use: Genetics Home Reference discusses whether ... University in St. Louis describes the different sequencing technologies and what the new technologies have meant for ...

  5. Common Variable Immunodeficiency Caused by FANC Mutations.

    PubMed

    Sekinaka, Yujin; Mitsuiki, Noriko; Imai, Kohsuke; Yabe, Miharu; Yabe, Hiromasa; Mitsui-Sekinaka, Kanako; Honma, Kenichi; Takagi, Masatoshi; Arai, Ayako; Yoshida, Kenichi; Okuno, Yusuke; Shiraishi, Yuichi; Chiba, Kenichi; Tanaka, Hiroko; Miyano, Satoru; Muramatsu, Hideki; Kojima, Seiji; Hira, Asuka; Takata, Minoru; Ohara, Osamu; Ogawa, Seishi; Morio, Tomohiro; Nonoyama, Shigeaki

    2017-07-01

    Common variable immunodeficiency (CVID) is the most common adult-onset primary antibody deficiency disease due to various causative genes. Several genes, which are known to be the cause of different diseases, have recently been reported as the cause of CVID in patients by performing whole exome sequencing (WES) analysis. Here, we found FANC gene mutations as a cause of adult-onset CVID in two patients. B cells were absent and CD4 + T cells were skewed toward CD45RO + memory T cells. T-cell receptor excision circles (TRECs) and signal joint kappa-deleting recombination excision circles (sjKRECs) were undetectable in both patients. Both patients had no anemia, neutropenia, or thrombocytopenia. Using WES, we identified compound heterozygous mutations of FANCE in one patient and homozygous mutation of FANCA in another patient. The impaired function of FANC protein complex was confirmed by a monoubiquitination assay and by chromosome fragility test. We then performed several immunological evaluations including quantitative lymphocyte analysis and TRECs/sjKRECs analysis for 32 individuals with Fanconi anemia (FA). In total, 22 FA patients (68.8%) were found to have immunological abnormalities, suggesting that such immunological findings may be common in FA patients. These data indicate that FANC mutations are involved in impaired lymphogenesis probably by the accumulation of DNA replication stress, leading to CVID. It is important to diagnose FA because it drastically changes clinical management. We propose that FANC mutations can cause isolated immunodeficiency in addition to bone marrow failure and malignancy.

  6. Overlap between Parkinson disease and Alzheimer disease in ABCA7 functional variants

    PubMed Central

    Nuytemans, Karen; Maldonado, Lizmarie; Ali, Aleena; John-Williams, Krista; Beecham, Gary W.; Martin, Eden; Scott, William K.

    2016-01-01

    Objective: Given their reported function in phagocytosis and clearance of protein aggregates in Alzheimer disease (AD), we hypothesized that variants in ATP-binding cassette transporter A7 (ABCA7) might be involved in Parkinson disease (PD). Methods: ABCA7 variants were identified using whole-exome sequencing (WES) on 396 unrelated patients with PD and 222 healthy controls. In addition, we used the publicly available WES data from the Parkinson's Progression Markers Initiative (444 patients and 153 healthy controls) as a second, independent data set. Results: We observed a higher frequency of loss-of-function (LOF) variants and rare putative highly functional variants (Combined Annotation Dependent Depletion [CADD] >20) in clinically diagnosed patients with PD than in healthy controls in both data sets. Overall, we identified LOF variants in 11 patients and 1 healthy control (odds ratio [OR] 4.94, Fisher exact p = 0.07). Four of these variants have been previously implicated in AD risk (p.E709AfsX86, p.W1214X, p.L1403RfsX7, and rs113809142). In addition, rare variants with CADD >20 were observed in 19 patients vs 3 healthy controls (OR 2.85, Fisher exact p = 0.06). Conclusion: The presence of ABCA7 LOF variants in clinically defined PD suggests that they might be risk factors for neurodegeneration in general, especially those variants hallmarked by protein aggregation. More studies will be needed to evaluate the overall impact of this transporter in neurodegenerative disease. PMID:27066581

  7. Development of a Prognostic Marker for Lung Cancer Using Analysis of Tumor Evolution

    DTIC Science & Technology

    2017-08-01

    SUPPLEMENTARY NOTES 14. ABSTRACT The goal of this project is to sequence the exomes of single tumor cells from tumors in order to construct evolutionary trees...dissociation, tumor cell isolation, whole genome amplification, and exome sequencing. We have begun to sequence the exomes of single cells and to...of populations, the evolution of tumor cells within a tumor can be diagrammed on a phylogenetic tree. The more diverse a tumor’s phylogenetic tree

  8. Whole exome sequencing in recurrent early pregnancy loss.

    PubMed

    Qiao, Ying; Wen, Jiadi; Tang, Flamingo; Martell, Sally; Shomer, Naomi; Leung, Peter C K; Stephenson, Mary D; Rajcan-Separovic, Evica

    2016-05-01

    Exome sequencing can identify genetic causes of idiopathic recurrent pregnancy loss (RPL). We identified compound heterozygous deleterious mutations affecting DYNC2H1 and ALOX15 in two out of four families with RPL. Both genes have a role in early development. Bioinformatics analysis of all genes with rare and putatively pathogenic mutations in miscarriages and couples showed enrichment in pathways relevant to pregnancy loss, including the complement and coagulation cascades pathways. Next generation sequencing (NGS) is increasingly being used to identify known and novel gene mutations in children with developmental delay and in fetuses with ultrasound-detected anomalies. In contrast, NGS is rarely used to study pregnancy loss. Chromosome microarray analysis detects putatively causative DNA copy number variants (CNVs) in ∼2% of miscarriages and CNVs of unknown significance (predominantly parental in origin) in up to 40% of miscarriages. Therefore, a large number of miscarriages still have an unknown cause. Whole exome sequencing (WES) was performed using Illumina HiSeq 2000 platform on seven euploid miscarriages from four families with RPL. Golden Helix SVS v8.1.5 was used for data assessment and inheritance analysis for deleterious DNA variants predicted to severely disrupt protein-coding genes by introducing a frameshift, loss of the stop codon, gain of the stop codon, changes in splicing or the initial codon. Webgestalt (http://bioinfo.vanderbilt.edu/webgestalt/) was used for pathway and disease association enrichment analysis of a gene pool containing putatively pathogenic variants in miscarriages and couples in comparison to control gene pools. Compound heterozygous mutations in DYNC2H1 and ALOX15 were identified in miscarriages from two families with RPL. DYNC2H1 is involved in cilia biogenesis and has been associated with fetal lethality in humans. ALOX15 is expressed in placenta and its dysregulation has been associated with inflammation, placental, dysfunction, abnormal oxidative stress response and angiogenesis. The pool of putatively pathogenic single nucleotide variants (SNVs) and small insertions and deletions (indels) detected in the miscarriages showed enrichment in 'complement and coagulation cascades pathway', and 'ciliary motility disorders'. We conclude that CNVs, individual SNVs and pool of deleterious gene mutations identified by exome sequencing could contribute to RPL. The size of our sample cohort is small. The functional effect of candidate mutations should be evaluated to determine whether the mutations are causative. This is the first study to assess whether SNVs may contribute to the pathogenesis of miscarriage. Furthermore, our findings suggest that collective effect of mutations in relevant biological pathways could be implicated in RPL. The study was funded by Canadian Institutes of Health Research (grant MOP 106467) and Michael Smith Foundation of Health Research Career Scholar salary award to ERS. © The Author 2016. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. Whole exome sequencing in recurrent early pregnancy loss

    PubMed Central

    Qiao, Ying; Wen, Jiadi; Tang, Flamingo; Martell, Sally; Shomer, Naomi; Leung, Peter C.K.; Stephenson, Mary D.; Rajcan-Separovic, Evica

    2016-01-01

    STUDY HYPOTHESIS Exome sequencing can identify genetic causes of idiopathic recurrent pregnancy loss (RPL). STUDY FINDING We identified compound heterozygous deleterious mutations affecting DYNC2H1 and ALOX15 in two out of four families with RPL. Both genes have a role in early development. Bioinformatics analysis of all genes with rare and putatively pathogenic mutations in miscarriages and couples showed enrichment in pathways relevant to pregnancy loss, including the complement and coagulation cascades pathways. WHAT IS KNOWN ALREADY Next generation sequencing (NGS) is increasingly being used to identify known and novel gene mutations in children with developmental delay and in fetuses with ultrasound-detected anomalies. In contrast, NGS is rarely used to study pregnancy loss. Chromosome microarray analysis detects putatively causative DNA copy number variants (CNVs) in ∼2% of miscarriages and CNVs of unknown significance (predominantly parental in origin) in up to 40% of miscarriages. Therefore, a large number of miscarriages still have an unknown cause. STUDY DESIGN, SAMPLES/MATERIALS, METHODS Whole exome sequencing (WES) was performed using Illumina HiSeq 2000 platform on seven euploid miscarriages from four families with RPL. Golden Helix SVS v8.1.5 was used for data assessment and inheritance analysis for deleterious DNA variants predicted to severely disrupt protein-coding genes by introducing a frameshift, loss of the stop codon, gain of the stop codon, changes in splicing or the initial codon. Webgestalt (http://bioinfo.vanderbilt.edu/webgestalt/) was used for pathway and disease association enrichment analysis of a gene pool containing putatively pathogenic variants in miscarriages and couples in comparison to control gene pools. MAIN RESULTS AND THE ROLE OF CHANCE Compound heterozygous mutations in DYNC2H1 and ALOX15 were identified in miscarriages from two families with RPL. DYNC2H1 is involved in cilia biogenesis and has been associated with fetal lethality in humans. ALOX15 is expressed in placenta and its dysregulation has been associated with inflammation, placental, dysfunction, abnormal oxidative stress response and angiogenesis. The pool of putatively pathogenic single nucleotide variants (SNVs) and small insertions and deletions (indels) detected in the miscarriages showed enrichment in ‘complement and coagulation cascades pathway’, and ‘ciliary motility disorders’. We conclude that CNVs, individual SNVs and pool of deleterious gene mutations identified by exome sequencing could contribute to RPL. LIMITATIONS, REASONS FOR CAUTION The size of our sample cohort is small. The functional effect of candidate mutations should be evaluated to determine whether the mutations are causative. WIDER IMPLICATIONS OF THE FINDINGS This is the first study to assess whether SNVs may contribute to the pathogenesis of miscarriage. Furthermore, our findings suggest that collective effect of mutations in relevant biological pathways could be implicated in RPL. STUDY FUNDING AND COMPETING INTEREST(S) The study was funded by Canadian Institutes of Health Research (grant MOP 106467) and Michael Smith Foundation of Health Research Career Scholar salary award to ERS. PMID:26826164

  10. Identification of rare paired box 3 variant in strabismus by whole exome sequencing

    PubMed Central

    Gong, Hui-Min; Wang, Jing; Xu, Jing; Zhou, Zhan-Yu; Li, Jing-Wen; Chen, Shu-Fang

    2017-01-01

    AIM To identify the potentially pathogenic gene variants that contributes to the etiology of strabismus. METHODS A Chinese pedigree with strabismus was collected and the exomes of two affected individuals were sequenced using the next-generation sequencing technology. The resulting variants from exome sequencing were filtered by subsequent bioinformatics methods and the candidate mutation was verified as heterozygous in the affected proposita and her mother by sanger sequencing. RESULTS Whole exome sequencing and filtering identified a nonsynonymous mutation c.434G-T transition in paired box 3 (PAX3) in the two affected individuals, which were predicted to be deleterious by more than 4 bioinformatics programs. This altered amino acid residue was located in the conserved PAX domain of PAX3. This gene encodes a member of the PAX family of transcription factors, which play critical roles during fetal development. Mutations in PAX3 were associated with Waardenburg syndrome with strabismus. CONCLUSION Our results report that the c.434G-T mutation (p.R145L) in PAX3 may contribute to strabismus, expanding our understanding of the causally relevant genes for this disorder. PMID:28861346

  11. Identification of rare paired box 3 variant in strabismus by whole exome sequencing.

    PubMed

    Gong, Hui-Min; Wang, Jing; Xu, Jing; Zhou, Zhan-Yu; Li, Jing-Wen; Chen, Shu-Fang

    2017-01-01

    To identify the potentially pathogenic gene variants that contributes to the etiology of strabismus. A Chinese pedigree with strabismus was collected and the exomes of two affected individuals were sequenced using the next-generation sequencing technology. The resulting variants from exome sequencing were filtered by subsequent bioinformatics methods and the candidate mutation was verified as heterozygous in the affected proposita and her mother by sanger sequencing. Whole exome sequencing and filtering identified a nonsynonymous mutation c.434G-T transition in paired box 3 (PAX3) in the two affected individuals, which were predicted to be deleterious by more than 4 bioinformatics programs. This altered amino acid residue was located in the conserved PAX domain of PAX3. This gene encodes a member of the PAX family of transcription factors, which play critical roles during fetal development. Mutations in PAX3 were associated with Waardenburg syndrome with strabismus. Our results report that the c.434G-T mutation (p.R145L) in PAX3 may contribute to strabismus, expanding our understanding of the causally relevant genes for this disorder.

  12. Anaconda: AN automated pipeline for somatic COpy Number variation Detection and Annotation from tumor exome sequencing data.

    PubMed

    Gao, Jianing; Wan, Changlin; Zhang, Huan; Li, Ao; Zang, Qiguang; Ban, Rongjun; Ali, Asim; Yu, Zhenghua; Shi, Qinghua; Jiang, Xiaohua; Zhang, Yuanwei

    2017-10-03

    Copy number variations (CNVs) are the main genetic structural variations in cancer genome. Detecting CNVs in genetic exome region is efficient and cost-effective in identifying cancer associated genes. Many tools had been developed accordingly and yet these tools lack of reliability because of high false negative rate, which is intrinsically caused by genome exonic bias. To provide an alternative option, here, we report Anaconda, a comprehensive pipeline that allows flexible integration of multiple CNV-calling methods and systematic annotation of CNVs in analyzing WES data. Just by one command, Anaconda can generate CNV detection result by up to four CNV detecting tools. Associated with comprehensive annotation analysis of genes involved in shared CNV regions, Anaconda is able to deliver a more reliable and useful report in assistance with CNV-associate cancer researches. Anaconda package and manual can be freely accessed at http://mcg.ustc.edu.cn/bsc/ANACONDA/ .

  13. Whole exome sequencing: a state-of-the-art approach for defining (and exploring!) genetic landscapes in pediatric nephrology.

    PubMed

    Gulati, Ashima; Somlo, Stefan

    2018-05-01

    The genesis of whole exome sequencing as a powerful tool for detailing the protein coding sequence of the human genome was conceptualized based on the availability of next-generation sequencing technology and knowledge of the human reference genome. The field of pediatric nephrology enriched with molecularly unsolved phenotypes is allowing the clinical and research application of whole exome sequencing to enable novel gene discovery and provide amendment of phenotypic misclassification. Recent studies in the field have informed us that newer high-throughput sequencing techniques are likely to be of high yield when applied in conjunction with conventional genomic approaches such as linkage analysis and other strategies used to focus subsequent analysis. They have also emphasized the need for the validation of novel genetic findings in large collaborative cohorts and the production of robust corroborative biological data. The well-structured application of comprehensive genomic testing in clinical and research arenas will hopefully continue to advance patient care and precision medicine, but does call for attention to be paid to its integrated challenges.

  14. Myopathic mtDNA Depletion Syndrome Due to Mutation in TK2 Gene.

    PubMed

    Martín-Hernández, Elena; García-Silva, María Teresa; Quijada-Fraile, Pilar; Rodríguez-García, María Elena; Rivera, Henry; Hernández-Laín, Aurelio; Coca-Robinot, David; Fernández-Toral, Joaquín; Arenas, Joaquín; Martín, Miguel A; Martínez-Azorín, Francisco

    2017-01-01

    Whole-exome sequencing was used to identify the disease gene(s) in a Spanish girl with failure to thrive, muscle weakness, mild facial weakness, elevated creatine kinase, deficiency of mitochondrial complex III and depletion of mtDNA. With whole-exome sequencing data, it was possible to get the whole mtDNA sequencing and discard any pathogenic variant in this genome. The analysis of whole exome uncovered a homozygous pathogenic mutation in thymidine kinase 2 gene ( TK2; NM_004614.4:c.323 C>T, p.T108M). TK2 mutations have been identified mainly in patients with the myopathic form of mtDNA depletion syndromes. This patient presents an atypical TK2-related myopathic form of mtDNA depletion syndromes, because despite having a very low content of mtDNA (<20%), she presents a slower and less severe evolution of the disease. In conclusion, our data confirm the role of TK2 gene in mtDNA depletion syndromes and expanded the phenotypic spectrum.

  15. Molecular defects identified by whole exome sequencing in a child with Fanconi anemia.

    PubMed

    Zheng, Zhaojing; Geng, Juan; Yao, Ru-En; Li, Caihua; Ying, Daming; Shen, Yongnian; Ying, Lei; Yu, Yongguo; Fu, Qihua

    2013-11-10

    Fanconi anemia is a rare genetic disease characterized by bone marrow failure, multiple congenital malformations, and an increased susceptibility to malignancy. At least 15 genes have been identified that are involved in the pathogenesis of Fanconi anemia. However, it is still a challenge to assign the complementation group and to characterize the molecular defects in patients with Fanconi anemia. In the current study, whole exome sequencing was used to identify the affected gene(s) in a boy with Fanconi anemia. A recurring, non-synonymous mutation was found (c.3971C>T, p.P1324L) as well as a novel frameshift mutation (c.989_995del, p.H330LfsX2) in FANCA gene. Our results indicate that whole exome sequencing may be useful in clinical settings for rapid identification of disease-causing mutations in rare genetic disorders such as Fanconi anemia. © 2013 Elsevier B.V. All rights reserved.

  16. Novel ZBTB24 Mutation Associated with Immunodeficiency, Centromere Instability, and Facial Anomalies Type-2 Syndrome Identified in a Patient with Very Early Onset Inflammatory Bowel Disease.

    PubMed

    Conrad, Máire A; Dawany, Noor; Sullivan, Kathleen E; Devoto, Marcella; Kelsen, Judith R

    2017-12-01

    Very early onset inflammatory bowel disease, diagnosed in children ≤5 years old, can be the initial presentation of some primary immunodeficiencies. In this study, we describe a 17-month-old boy with recurrent infections, growth failure, facial anomalies, and inflammatory bowel disease. Immune evaluation, whole-exome sequencing, karyotyping, and methylation array were performed to evaluate the child's constellation of symptoms and examination findings. Whole-exome sequencing revealed that the child was homozygous for a novel variant in ZBTB24, the gene associated with immunodeficiency, centromere instability, and facial anomalies type-2 syndrome. This describes the first case of inflammatory bowel disease associated with immunodeficiency, centromere instability, and facial anomalies type-2 syndrome in a child with a novel disease-causing mutation in ZBTB24 found on whole-exome sequencing.

  17. Illustrative case studies in the return of exome and genome sequencing results

    PubMed Central

    Amendola, Laura M; Lautenbach, Denise; Scollon, Sarah; Bernhardt, Barbara; Biswas, Sawona; East, Kelly; Everett, Jessica; Gilmore, Marian J; Himes, Patricia; Raymond, Victoria M; Wynn, Julia; Hart, Ragan; Jarvik, Gail P

    2015-01-01

    Whole genome and exome sequencing tests are increasingly being ordered in clinical practice, creating a need for research exploring the return of results from these tests. A goal of the Clinical Sequencing and Exploratory Research (CSER) consortium is to gain experience with this process to develop best practice recommendations for offering exome and genome testing and returning results. Genetic counselors in the CSER consortium have an integral role in the return of results from these genomic sequencing tests and have gained valuable insight. We present seven emerging themes related to return of exome and genome sequencing results accompanied by case descriptions illustrating important lessons learned, counseling challenges specific to these tests and considerations for future research and practice. PMID:26478737

  18. Single-Exome sequencing identified a novel RP2 mutation in a child with X-linked retinitis pigmentosa.

    PubMed

    Lim, Hassol; Park, Young-Mi; Lee, Jong-Keuk; Taek Lim, Hyun

    2016-10-01

    To present an efficient and successful application of a single-exome sequencing study in a family clinically diagnosed with X-linked retinitis pigmentosa. Exome sequencing study based on clinical examination data. An 8-year-old proband and his family. The proband and his family members underwent comprehensive ophthalmologic examinations. Exome sequencing was undertaken in the proband using Agilent SureSelect Human All Exon Kit and Illumina HiSeq 2000 platform. Bioinformatic analysis used Illumina pipeline with Burrows-Wheeler Aligner-Genome Analysis Toolkit (BWA-GATK), followed by ANNOVAR to perform variant functional annotation. All variants passing filter criteria were validated by Sanger sequencing to confirm familial segregation. Analysis of exome sequence data identified a novel frameshift mutation in RP2 gene resulting in a premature stop codon (c.665delC, p.Pro222fsTer237). Sanger sequencing revealed this mutation co-segregated with the disease phenotype in the child's family. We identified a novel causative mutation in RP2 from a single proband's exome sequence data analysis. This study highlights the effectiveness of the whole-exome sequencing in the genetic diagnosis of X-linked retinitis pigmentosa, over the conventional sequencing methods. Even using a single exome, exome sequencing technology would be able to pinpoint pathogenic variant(s) for X-linked retinitis pigmentosa, when properly applied with aid of adequate variant filtering strategy. Copyright © 2016 Canadian Ophthalmological Society. Published by Elsevier Inc. All rights reserved.

  19. Whole Exome Sequencing Reveals a Monogenic Cause of Disease in ≈43% of 35 Families With Midaortic Syndrome.

    PubMed

    Warejko, Jillian K; Schueler, Markus; Vivante, Asaf; Tan, Weizhen; Daga, Ankana; Lawson, Jennifer A; Braun, Daniela A; Shril, Shirlee; Amann, Kassaundra; Somers, Michael J G; Rodig, Nancy M; Baum, Michelle A; Daouk, Ghaleb; Traum, Avram Z; Kim, Heung Bae; Vakili, Khashayar; Porras, Diego; Lock, James; Rivkin, Michael J; Chaudry, Gulraiz; Smoot, Leslie B; Singh, Michael N; Smith, Edward R; Mane, Shrikant M; Lifton, Richard P; Stein, Deborah R; Ferguson, Michael A; Hildebrandt, Friedhelm

    2018-04-01

    Midaortic syndrome (MAS) is a rare cause of severe childhood hypertension characterized by narrowing of the abdominal aorta in children and is associated with extensive vascular disease. It may occur as part of a genetic syndrome, such as neurofibromatosis, or as consequence of a pathological inflammatory disease. However, most cases are considered idiopathic. We hypothesized that in a high percentage of these patients, a monogenic cause of disease may be detected by evaluating whole exome sequencing data for mutations in 1 of 38 candidate genes previously described to cause vasculopathy. We studied a cohort of 36 individuals from 35 different families with MAS by exome sequencing. In 15 of 35 families (42.9%), we detected likely causal dominant mutations. In 15 of 35 (42.9%) families with MAS, whole exome sequencing revealed a mutation in one of the genes previously associated with vascular disease ( NF1 , JAG1 , ELN , GATA6 , and RNF213 ). Ten of the 15 mutations have not previously been reported. This is the first report of ELN , RNF213 , or GATA6 mutations in individuals with MAS. Mutations were detected in NF1 (6/15 families), JAG1 (4/15 families), ELN (3/15 families), and one family each for GATA6 and RNF213 Eight individuals had syndromic disease and 7 individuals had isolated MAS. Whole exome sequencing can provide conclusive molecular genetic diagnosis in a high fraction of individuals with syndromic or isolated MAS. Establishing an etiologic diagnosis may reveal genotype/phenotype correlations for MAS in the future and should, therefore, be performed routinely in MAS. © 2018 American Heart Association, Inc.

  20. Exome Sequencing and the Management of Neurometabolic Disorders.

    PubMed

    Tarailo-Graovac, Maja; Shyr, Casper; Ross, Colin J; Horvath, Gabriella A; Salvarinova, Ramona; Ye, Xin C; Zhang, Lin-Hua; Bhavsar, Amit P; Lee, Jessica J Y; Drögemöller, Britt I; Abdelsayed, Mena; Alfadhel, Majid; Armstrong, Linlea; Baumgartner, Matthias R; Burda, Patricie; Connolly, Mary B; Cameron, Jessie; Demos, Michelle; Dewan, Tammie; Dionne, Janis; Evans, A Mark; Friedman, Jan M; Garber, Ian; Lewis, Suzanne; Ling, Jiqiang; Mandal, Rupasri; Mattman, Andre; McKinnon, Margaret; Michoulas, Aspasia; Metzger, Daniel; Ogunbayo, Oluseye A; Rakic, Bojana; Rozmus, Jacob; Ruben, Peter; Sayson, Bryan; Santra, Saikat; Schultz, Kirk R; Selby, Kathryn; Shekel, Paul; Sirrs, Sandra; Skrypnyk, Cristina; Superti-Furga, Andrea; Turvey, Stuart E; Van Allen, Margot I; Wishart, David; Wu, Jiang; Wu, John; Zafeiriou, Dimitrios; Kluijtmans, Leo; Wevers, Ron A; Eydoux, Patrice; Lehman, Anna M; Vallance, Hilary; Stockler-Ipsiroglu, Sylvia; Sinclair, Graham; Wasserman, Wyeth W; van Karnebeek, Clara D

    2016-06-09

    Whole-exome sequencing has transformed gene discovery and diagnosis in rare diseases. Translation into disease-modifying treatments is challenging, particularly for intellectual developmental disorder. However, the exception is inborn errors of metabolism, since many of these disorders are responsive to therapy that targets pathophysiological features at the molecular or cellular level. To uncover the genetic basis of potentially treatable inborn errors of metabolism, we combined deep clinical phenotyping (the comprehensive characterization of the discrete components of a patient's clinical and biochemical phenotype) with whole-exome sequencing analysis through a semiautomated bioinformatics pipeline in consecutively enrolled patients with intellectual developmental disorder and unexplained metabolic phenotypes. We performed whole-exome sequencing on samples obtained from 47 probands. Of these patients, 6 were excluded, including 1 who withdrew from the study. The remaining 41 probands had been born to predominantly nonconsanguineous parents of European descent. In 37 probands, we identified variants in 2 genes newly implicated in disease, 9 candidate genes, 22 known genes with newly identified phenotypes, and 9 genes with expected phenotypes; in most of the genes, the variants were classified as either pathogenic or probably pathogenic. Complex phenotypes of patients in five families were explained by coexisting monogenic conditions. We obtained a diagnosis in 28 of 41 probands (68%) who were evaluated. A test of a targeted intervention was performed in 18 patients (44%). Deep phenotyping and whole-exome sequencing in 41 probands with intellectual developmental disorder and unexplained metabolic abnormalities led to a diagnosis in 68%, the identification of 11 candidate genes newly implicated in neurometabolic disease, and a change in treatment beyond genetic counseling in 44%. (Funded by BC Children's Hospital Foundation and others.).

  1. Exome Sequencing and the Management of Neurometabolic Disorders

    PubMed Central

    Tarailo-Graovac, M.; Shyr, C.; Ross, C.J.; Horvath, G.A.; Salvarinova, R.; Ye, X.C.; Zhang, L.-H.; Bhavsar, A.P.; Lee, J.J.Y.; Drögemöller, B.I.; Abdelsayed, M.; Alfadhel, M.; Armstrong, L.; Baumgartner, M.R.; Burda, P.; Connolly, M.B.; Cameron, J.; Demos, M.; Dewan, T.; Dionne, J.; Evans, A.M.; Friedman, J.M.; Garber, I.; Lewis, S.; Ling, J.; Mandal, R.; Mattman, A.; McKinnon, M.; Michoulas, A.; Metzger, D.; Ogunbayo, O.A.; Rakic, B.; Rozmus, J.; Ruben, P.; Sayson, B.; Santra, S.; Schultz, K.R.; Selby, K.; Shekel, P.; Sirrs, S.; Skrypnyk, C.; Superti-Furga, A.; Turvey, S.E.; Van Allen, M.I.; Wishart, D.; Wu, J.; Wu, J.; Zafeiriou, D.; Kluijtmans, L.; Wevers, R.A.; Eydoux, P.; Lehman, A.M.; Vallance, H.; Stockler-Ipsiroglu, S.; Sinclair, G.; Wasserman, W.W.; van Karnebeek, C.D.

    2016-01-01

    BACKGROUND Whole-exome sequencing has transformed gene discovery and diagnosis in rare diseases. Translation into disease-modifying treatments is challenging, particularly for intellectual developmental disorder. However, the exception is inborn errors of metabolism, since many of these disorders are responsive to therapy that targets pathophysiological features at the molecular or cellular level. METHODS To uncover the genetic basis of potentially treatable inborn errors of metabolism, we combined deep clinical phenotyping (the comprehensive characterization of the discrete components of a patient’s clinical and biochemical phenotype) with whole-exome sequencing analysis through a semiautomated bioinformatics pipeline in consecutively enrolled patients with intellectual developmental disorder and unexplained metabolic phenotypes. RESULTS We performed whole-exome sequencing on samples obtained from 47 probands. Of these patients, 6 were excluded, including 1 who withdrew from the study. The remaining 41 probands had been born to predominantly nonconsanguineous parents of European descent. In 37 probands, we identified variants in 2 genes newly implicated in disease, 9 candidate genes, 22 known genes with newly identified phenotypes, and 9 genes with expected phenotypes; in most of the genes, the variants were classified as either pathogenic or probably pathogenic. Complex phenotypes of patients in five families were explained by coexisting monogenic conditions. We obtained a diagnosis in 28 of 41 probands (68%) who were evaluated. A test of a targeted intervention was performed in 18 patients (44%). CONCLUSIONS Deep phenotyping and whole-exome sequencing in 41 probands with intellectual developmental disorder and unexplained metabolic abnormalities led to a diagnosis in 68%, the identification of 11 candidate genes newly implicated in neurometabolic disease, and a change in treatment beyond genetic counseling in 44%. (Funded by BC Children’s Hospital Foundation and others.) PMID:27276562

  2. Whole Exome Sequencing of Pediatric Gastric Adenocarcinoma Reveals an Atypical Presentation of Li-Fraumeni Syndrome

    PubMed Central

    Chang, Vivian Y.; Federman, Noah; Martinez-Agosto, Julian; Tatishchev, Sergei F.; Nelson, Stanley F.

    2014-01-01

    Background Gastric adenocarcinoma is a rare diagnosis in childhood. A 14-year old male patient presented with metastatic gastric adenocarcinoma, and a strong family history of colon cancer. Clinical sequencing of CDH1 and APC were negative. Whole exome sequencing was therefore applied to capture the majority of protein-coding regions for the identification of single-nucleotide variants, small insertion/deletions, and copy number abnormalities in the patient’s germline as well as primary tumor. Materials and Methods DNA was extracted from the patient’s blood, primary tumor, and the unaffected mother’s blood. DNA libraries were constructed and sequenced on Illumina HiSeq2000. Data were post-processed using Picard and Samtools, then analyzed with the Genome Analysis Toolkit. Variants were annotated using an in-house Ensembl-based program. Copy number was assessed using ExomeCNV. Results Each sample was sequenced to a mean depth of coverage of greater than 120×. A rare non-synonymous coding SNV in TP53 was identified in the germline. There were 10 somatic cancer protein-damaging variants that were not observed in the unaffected mother genome. ExomeCNV comparing tumor to the patient’s germline, identified abnormal copy number, spanning 6,946 genes. Conclusion We present an unusual case of Li-Fraumeni detected by whole exome sequencing. There were also likely driver somatic mutations in the gastric adenocarcinoma. These results highlight the need for more thorough and broad scale germline and cancer analyses to accurately inform patients of inherited risk to cancer and to identify somatic mutations. PMID:23015295

  3. Creation of knock out and knock in mice by CRISPR/Cas9 to validate candidate genes for human male infertility, interest, difficulties and feasibility.

    PubMed

    Kherraf, Zine-Eddine; Conne, Beatrice; Amiri-Yekta, Amir; Kent, Marie Christou; Coutton, Charles; Escoffier, Jessica; Nef, Serge; Arnoult, Christophe; Ray, Pierre F

    2018-06-15

    High throughput sequencing (HTS) and CRISPR/Cas9 are two recent technologies that are currently revolutionizing biological and clinical research. Both techniques are complementary as HTS permits to identify new genetic variants and genes involved in various pathologies and CRISPR/Cas9 permits to create animals or cell models to validate the effect of the identified variants, to characterize the pathogeny of the identified variants and the function of the genes of interest and ultimately to provide ways of correcting the molecular defects. We analyzed a cohort of 78 infertile men presenting with multiple morphological anomalies of the sperm flagella (MMAF), a severe form of male infertility. Using whole exome sequencing (WES), homozygous mutations in autosomal candidate genes were identified in 63% of the tested subjects. We decided to produce by CRISPR/cas9 four knock-out (KO) and one knock-in (KI) mouse lines to confirm these results and to increase our understanding of the physiopathology associated with these genetic variations. Overall 31% of the live pups obtained presented a mutational event in one of the targeted regions. All identified events were insertions or deletions localized near the PAM sequence. Surprisingly we observed a high rate of germline mosaicism as 30% of the F1 displayed a different mutation than the parental event characterized on somatic tissue (tail), indicating that CRISPR/Cas9 mutational events kept happening several cell divisions after the injection. Overall, we created mouse models for 5 distinct loci and in each case homozygous animals could be obtained in approximately 6 months. These results demonstrate that the combined use of WES and CRISPR/Cas9 is an efficient and timely strategy to identify and validate mutations responsible for infertility phenotypes in human. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Analysis of Rare, Exonic Variation amongst Subjects with Autism Spectrum Disorders and Population Controls

    PubMed Central

    Liu, Li; Sabo, Aniko; Neale, Benjamin M.; Nagaswamy, Uma; Stevens, Christine; Lim, Elaine; Bodea, Corneliu A.; Muzny, Donna; Reid, Jeffrey G.; Banks, Eric; Coon, Hillary; DePristo, Mark; Dinh, Huyen; Fennel, Tim; Flannick, Jason; Gabriel, Stacey; Garimella, Kiran; Gross, Shannon; Hawes, Alicia; Lewis, Lora; Makarov, Vladimir; Maguire, Jared; Newsham, Irene; Poplin, Ryan; Ripke, Stephan; Shakir, Khalid; Samocha, Kaitlin E.; Wu, Yuanqing; Boerwinkle, Eric; Buxbaum, Joseph D.; Cook, Edwin H.; Devlin, Bernie; Schellenberg, Gerard D.; Sutcliffe, James S.; Daly, Mark J.; Gibbs, Richard A.; Roeder, Kathryn

    2013-01-01

    We report on results from whole-exome sequencing (WES) of 1,039 subjects diagnosed with autism spectrum disorders (ASD) and 870 controls selected from the NIMH repository to be of similar ancestry to cases. The WES data came from two centers using different methods to produce sequence and to call variants from it. Therefore, an initial goal was to ensure the distribution of rare variation was similar for data from different centers. This proved straightforward by filtering called variants by fraction of missing data, read depth, and balance of alternative to reference reads. Results were evaluated using seven samples sequenced at both centers and by results from the association study. Next we addressed how the data and/or results from the centers should be combined. Gene-based analyses of association was an obvious choice, but should statistics for association be combined across centers (meta-analysis) or should data be combined and then analyzed (mega-analysis)? Because of the nature of many gene-based tests, we showed by theory and simulations that mega-analysis has better power than meta-analysis. Finally, before analyzing the data for association, we explored the impact of population structure on rare variant analysis in these data. Like other recent studies, we found evidence that population structure can confound case-control studies by the clustering of rare variants in ancestry space; yet, unlike some recent studies, for these data we found that principal component-based analyses were sufficient to control for ancestry and produce test statistics with appropriate distributions. After using a variety of gene-based tests and both meta- and mega-analysis, we found no new risk genes for ASD in this sample. Our results suggest that standard gene-based tests will require much larger samples of cases and controls before being effective for gene discovery, even for a disorder like ASD. PMID:23593035

  5. Clinical implications of genomic profiles in metastatic breast cancer with a focus on TP53 and PIK3CA, the most frequently mutated genes.

    PubMed

    Kim, Ji-Yeon; Lee, Eunjin; Park, Kyunghee; Park, Woong-Yang; Jung, Hae Hyun; Ahn, Jin Seok; Im, Young-Hyuck; Park, Yeon Hee

    2017-04-25

    Breast cancer (BC) has been genetically profiled through large-scale genome analyses. However, the role and clinical implications of genetic alterations in metastatic BC (MBC) have not been evaluated. Therefore, we conducted whole-exome sequencing (WES) and RNA-Seq of 37 MBC samples and targeted deep sequencing of another 29 MBCs. We evaluated somatic mutations from WES and targeted sequencing and assessed gene expression and performed pathway analysis from RNA-Seq. In this analysis, PIK3CA was the most commonly mutated gene in estrogen receptor (ER)-positive BC, while in ER-negative BC, TP53 was the most commonly mutated gene (p = 0.018 and p < 0.001, respectively). TP53 stopgain/loss and frameshift mutation was related to low expression of TP53 in contrast nonsynonymous mutation was related to high expression. The impact of TP53 mutation on clinical outcome varied with regard to ER status. In ER-positive BCs, wild type TP53 had a better prognosis than mutated TP53 (median overall survival (OS) (wild type vs. mutated): 88.5 ± 54.4 vs. 32.6 ± 10.7 (months), p = 0.002). In contrast, mutated TP53 had a protective effect in ER-negative BCs (median OS: 0.10 vs. 32.6 ± 8.2, p = 0.026). However, PIK3CA mutation did not affect patient survival. In gene expression analysis, CALM1, a potential regulator of AKT, was highly expressed in PIK3CA-mutated BCs. In conclusion, mutation of TP53 was associated with expression status and affect clinical outcome according to ER status in MBC. Although mutation of PIK3CA was not related to survival in this study, mutation of PIK3CA altered the expression of other genes and pathways including CALM1 and may be a potential predictive marker of PI3K inhibitor effectiveness.

  6. Molecular Diagnosis of Usher Syndrome: Application of Two Different Next Generation Sequencing-Based Procedures

    PubMed Central

    Licastro, Danilo; Mutarelli, Margherita; Peluso, Ivana; Neveling, Kornelia; Wieskamp, Nienke; Rispoli, Rossella; Vozzi, Diego; Athanasakis, Emmanouil; D'Eustacchio, Angela; Pizzo, Mariateresa; D'Amico, Francesca; Ziviello, Carmela; Simonelli, Francesca; Fabretto, Antonella; Scheffer, Hans; Gasparini, Paolo; Banfi, Sandro; Nigro, Vincenzo

    2012-01-01

    Usher syndrome (USH) is a clinically and genetically heterogeneous disorder characterized by visual and hearing impairments. Clinically, it is subdivided into three subclasses with nine genes identified so far. In the present study, we investigated whether the currently available Next Generation Sequencing (NGS) technologies are already suitable for molecular diagnostics of USH. We analyzed a total of 12 patients, most of which were negative for previously described mutations in known USH genes upon primer extension-based microarray genotyping. We enriched the NGS template either by whole exome capture or by Long-PCR of the known USH genes. The main NGS sequencing platforms were used: SOLiD for whole exome sequencing, Illumina (Genome Analyzer II) and Roche 454 (GS FLX) for the Long-PCR sequencing. Long-PCR targeting was more efficient with up to 94% of USH gene regions displaying an overall coverage higher than 25×, whereas whole exome sequencing yielded a similar coverage for only 50% of those regions. Overall this integrated analysis led to the identification of 11 novel sequence variations in USH genes (2 homozygous and 9 heterozygous) out of 18 detected. However, at least two cases were not genetically solved. Our result highlights the current limitations in the diagnostic use of NGS for USH patients. The limit for whole exome sequencing is linked to the need of a strong coverage and to the correct interpretation of sequence variations with a non obvious, pathogenic role, whereas the targeted approach suffers from the high genetic heterogeneity of USH that may be also caused by the presence of additional causative genes yet to be identified. PMID:22952768

  7. SEXCMD: Development and validation of sex marker sequences for whole-exome/genome and RNA sequencing.

    PubMed

    Jeong, Seongmun; Kim, Jiwoong; Park, Won; Jeon, Hongmin; Kim, Namshin

    2017-01-01

    Over the last decade, a large number of nucleotide sequences have been generated by next-generation sequencing technologies and deposited to public databases. However, most of these datasets do not specify the sex of individuals sampled because researchers typically ignore or hide this information. Male and female genomes in many species have distinctive sex chromosomes, XX/XY and ZW/ZZ, and expression levels of many sex-related genes differ between the sexes. Herein, we describe how to develop sex marker sequences from syntenic regions of sex chromosomes and use them to quickly identify the sex of individuals being analyzed. Array-based technologies routinely use either known sex markers or the B-allele frequency of X or Z chromosomes to deduce the sex of an individual. The same strategy has been used with whole-exome/genome sequence data; however, all reads must be aligned onto a reference genome to determine the B-allele frequency of the X or Z chromosomes. SEXCMD is a pipeline that can extract sex marker sequences from reference sex chromosomes and rapidly identify the sex of individuals from whole-exome/genome and RNA sequencing after training with a known dataset through a simple machine learning approach. The pipeline counts total numbers of hits from sex-specific marker sequences and identifies the sex of the individuals sampled based on the fact that XX/ZZ samples do not have Y or W chromosome hits. We have successfully validated our pipeline with mammalian (Homo sapiens; XY) and avian (Gallus gallus; ZW) genomes. Typical calculation time when applying SEXCMD to human whole-exome or RNA sequencing datasets is a few minutes, and analyzing human whole-genome datasets takes about 10 minutes. Another important application of SEXCMD is as a quality control measure to avoid mixing samples before bioinformatics analysis. SEXCMD comprises simple Python and R scripts and is freely available at https://github.com/lovemun/SEXCMD.

  8. Gorlin syndrome and desmoplastic medulloblastoma: Report of 3 cases with unfavorable clinical course and novel mutations.

    PubMed

    Gururangan, Sridharan; Robinson, Giles; Ellison, David W; Wu, Gang; He, Xuelian; Lu, Q Richard; McLendon, Roger; Grant, Gerald; Driscoll, Timothy; Neuberg, Ronnie

    2015-10-01

    We present three cases of genetically confirmed Gorlin syndrome with desmoplastic medulloblastoma (DMB) in whom tumor recurred despite standard therapy. One patient was found to have a novel germline missense PTCH1 mutation. Molecular analysis of recurrent tumor using fluorescent in situ hybridization (FISH) revealed PTEN and/ or PTCH1 loss in 2 patients. Whole exome sequencing (WES) of tumor in one patient revealed loss of heterozygosity of PTCH1 and a mutation of GNAS gene in its non-coding 3' -untranslated region (UTR) with corresponding decreased protein expression. While one patient died despite high-dose chemotherapy (HDC) plus stem cell rescue (ASCR) and palliative radiotherapy, two patients are currently alive for 18+ and 120+ months respectively following retrieval therapy that did not include irradiation. Infants with DMB and GS should be treated aggressively with chemotherapy at diagnosis to prevent relapse but radiotherapy should be avoided. The use of molecular prognostic markers for DMB should be routinely used to identify the subset of tumors that might have an aggressive course. © 2015 Wiley Periodicals, Inc.

  9. Dysregulation of NRXN1 by mutant MIR8485 leads to calcium overload in pre-synapses inducing neurodegeneration in Multiple sclerosis.

    PubMed

    Kattimani, Yogita; Veerappa, Avinash M

    2018-04-09

    To identify Damaging mutations in microRNAs (miRNAs) and 3' untranslated regions (UTRs) of target genes to establish Multiple sclerosis (MS) disease pathway. Female aged 16, with Relapsing Remitting Multiple sclerosis (RRMS) was reported with initial symptoms of blurred vision, severe immobility, upper and lower limb numbness and backache. Whole Exome Sequencing (WES) and disease pathway analysis was performed to identify mutations in miRNAs and UTRs. We identified Deleterious/Damaging multibase mutations in MIR8485 and NRXN1. miR-8485 was found carrying frameshift homozygous deletion of bases CA, while NRXN1 was found carrying nonframeshift homozygous substitution of bases CT to TC in exon 8 replacing Serine with Leucine. Mutations in miR-8485 and NRXN1 was found to alter calcium homeostasis and NRXN1/NLGN1 cell adhesion molecule binding affinities. The miR-8485 mutation leads to overexpression of NRXN1 altering pre-synaptic Ca 2+ homeostasis, inducing neurodegeneration. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Personalized In Vitro and In Vivo Cancer Models to Guide Precision Medicine

    PubMed Central

    Pauli, Chantal; Hopkins, Benjamin D.; Prandi, Davide; Shaw, Reid; Fedrizzi, Tarcisio; Sboner, Andrea; Sailer, Verena; Augello, Michael; Puca, Loredana; Rosati, Rachele; McNary, Terra J.; Churakova, Yelena; Cheung, Cynthia; Triscott, Joanna; Pisapia, David; Rao, Rema; Mosquera, Juan Miguel; Robinson, Brian; Faltas, Bishoy M.; Emerling, Brooke E.; Gadi, Vijayakrishna K.; Bernard, Brady; Elemento, Olivier; Beltran, Himisha; Dimichelis, Francesca; Kemp, Christopher J.; Grandori, Carla; Cantley, Lewis C.; Rubin, Mark A.

    2017-01-01

    Precision Medicine is an approach that takes into account the influence of individuals' genes, environment and lifestyle exposures to tailor interventions. Here, we describe the development of a robust precision cancer care platform, which integrates whole exome sequencing (WES) with a living biobank that enables high throughput drug screens on patient-derived tumor organoids. To date, 56 tumor-derived organoid cultures, and 19 patient-derived xenograft (PDX) models have been established from the 769 patients enrolled in an IRB approved clinical trial. Because genomics alone was insufficient to identify therapeutic options for the majority of patients with advanced disease, we used high throughput drug screening effective strategies. Analysis of tumor derived cells from four cases, two uterine malignancies and two colon cancers, identified effective drugs and drug combinations that were subsequently validated using 3D cultures and PDX models. This platform thereby promotes the discovery of novel therapeutic approaches that can be assessed in clinical trials and provides personalized therapeutic options for individual patients where standard clinical options have been exhausted. PMID:28331002

  11. Association Between Germline Mutation in VSIG10L and Familial Barrett Neoplasia.

    PubMed

    Fecteau, Ryan E; Kong, Jianping; Kresak, Adam; Brock, Wendy; Song, Yeunjoo; Fujioka, Hisashi; Elston, Robert; Willis, Joseph E; Lynch, John P; Markowitz, Sanford D; Guda, Kishore; Chak, Amitabh

    2016-10-01

    Esophageal adenocarcinoma and its precursor lesion Barrett esophagus have seen a dramatic increase in incidence over the past 4 decades yet marked genetic heterogeneity of this disease has precluded advances in understanding its pathogenesis and improving treatment. To identify novel disease susceptibility variants in a familial syndrome of esophageal adenocarcinoma and Barrett esophagus, termed familial Barrett esophagus, by using high-throughput sequencing in affected individuals from a large, multigenerational family. We performed whole exome sequencing (WES) from peripheral lymphocyte DNA on 4 distant relatives from our multiplex, multigenerational familial Barrett esophagus family to identify candidate disease susceptibility variants. Gene variants were filtered, verified, and segregation analysis performed to identify a single candidate variant. Gene expression analysis was done with both quantitative real-time polymerase chain reaction and in situ RNA hybridization. A 3-dimensional organotypic cell culture model of esophageal maturation was utilized to determine the phenotypic effects of our gene variant. We used electron microscopy on esophageal mucosa from an affected family member carrying the gene variant to assess ultrastructural changes. Identification of a novel, germline disease susceptibility variant in a previously uncharacterized gene. A multiplex, multigenerational family with 14 members affected (3 members with esophageal adenocarcinoma and 11 with Barrett esophagus) was identified, and whole-exome sequencing identified a germline mutation (S631G) at a highly conserved serine residue in the uncharacterized gene VSIG10L that segregated in affected members. Transfection of S631G variant into a 3-dimensional organotypic culture model of normal esophageal squamous cells dramatically inhibited epithelial maturation compared with the wild-type. VSIG10L exhibited high expression in normal squamous esophagus with marked loss of expression in Barrett-associated lesions. Electron microscopy of squamous esophageal mucosa harboring the S631G variant revealed dilated intercellular spaces and reduced desmosomes. This study presents VSIG10L as a candidate familial Barrett esophagus susceptibility gene, with a putative role in maintaining normal esophageal homeostasis. Further research assessing VSIG10L function may reveal pathways important for esophageal maturation and the pathogenesis of Barrett esophagus and esophageal adenocarcinoma.

  12. Association Between Germline Mutation in VSIG10L and Familial Barrett Neoplasia

    PubMed Central

    Fecteau, Ryan E.; Kong, Jianping; Kresak, Adam; Brock, Wendy; Song, Yeunjoo; Fujioka, Hisashi; Elston, Robert; Willis, Joseph E.; Lynch, John P.; Markowitz, Sanford D.; Guda, Kishore; Chak, Amitabh

    2016-01-01

    IMPORTANCE Esophageal adenocarcinoma and its precursor lesion Barrett esophagus have seen a dramatic increase in incidence over the past 4 decades yet marked genetic heterogeneity of this disease has precluded advances in understanding its pathogenesis and improving treatment. OBJECTIVE To identify novel disease susceptibility variants in a familial syndrome of esophageal adenocarcinoma and Barrett esophagus, termed familial Barrett esophagus, by using high-throughput sequencing in affected individuals from a large, multigenerational family. DESIGN, SETTING, AND PARTICIPANTS We performed whole exome sequencing (WES) from peripheral lymphocyte DNA on 4 distant relatives from our multiplex, multigenerational familial Barrett esophagus family to identify candidate disease susceptibility variants. Gene variants were filtered, verified, and segregation analysis performed to identify a single candidate variant. Gene expression analysis was done with both quantitative real-time polymerase chain reaction and in situ RNA hybridization. A 3-dimensional organotypic cell culture model of esophageal maturation was utilized to determine the phenotypic effects of our gene variant. We used electron microscopy on esophageal mucosa from an affected family member carrying the gene variant to assess ultrastructural changes. MAIN OUTCOMES AND MEASURES Identification of a novel, germline disease susceptibility variant in a previously uncharacterized gene. RESULTS A multiplex, multigenerational family with 14 members affected (3 members with esophageal adenocarcinoma and 11 with Barrett esophagus) was identified, and whole-exome sequencing identified a germline mutation (S631G) at a highly conserved serine residue in the uncharacterized gene VSIG10L that segregated in affected members. Transfection of S631G variant into a 3-dimensional organotypic culture model of normal esophageal squamous cells dramatically inhibited epithelial maturation compared with the wild-type. VSIG10L exhibited high expression in normal squamous esophagus with marked loss of expression in Barrett-associated lesions. Electron microscopy of squamous esophageal mucosa harboring the S631G variant revealed dilated intercellular spaces and reduced desmosomes. CONCLUSIONS AND RELEVANCE This study presents VSIG10L as a candidate familial Barrett esophagus susceptibility gene, with a putative role in maintaining normal esophageal homeostasis. Further research assessing VSIG10L function may reveal pathways important for esophageal maturation and the pathogenesis of Barrett esophagus and esophageal adenocarcinoma. PMID:27467440

  13. The rapid evolution of molecular genetic diagnostics in neuromuscular diseases.

    PubMed

    Volk, Alexander E; Kubisch, Christian

    2017-10-01

    The development of massively parallel sequencing (MPS) has revolutionized molecular genetic diagnostics in monogenic disorders. The present review gives a brief overview of different MPS-based approaches used in clinical diagnostics of neuromuscular disorders (NMDs) and highlights their advantages and limitations. MPS-based approaches like gene panel sequencing, (whole) exome sequencing, (whole) genome sequencing, and RNA sequencing have been used to identify the genetic cause in NMDs. Although gene panel sequencing has evolved as a standard test for heterogeneous diseases, it is still debated, mainly because of financial issues and unsolved problems of variant interpretation, whether genome sequencing (and to a lesser extent also exome sequencing) of single patients can already be regarded as routine diagnostics. However, it has been shown that the inclusion of parents and additional family members often leads to a substantial increase in the diagnostic yield in exome-wide/genome-wide MPS approaches. In addition, MPS-based RNA sequencing just enters the research and diagnostic scene. Next-generation sequencing increasingly enables the detection of the genetic cause in highly heterogeneous diseases like NMDs in an efficient and affordable way. Gene panel sequencing and family-based exome sequencing have been proven as potent and cost-efficient diagnostic tools. Although clinical validation and interpretation of genome sequencing is still challenging, diagnostic RNA sequencing represents a promising tool to bypass some hurdles of diagnostics using genomic DNA.

  14. North Carolina macular dystrophy (MCDR1) caused by a novel tandem duplication of the PRDM13 gene

    PubMed Central

    Sullivan, Lori S.; Wheaton, Dianna K.; Locke, Kirsten G.; Jones, Kaylie D.; Koboldt, Daniel C.; Fulton, Robert S.; Wilson, Richard K.; Blanton, Susan H.; Birch, David G.; Daiger, Stephen P.

    2016-01-01

    Purpose To identify the underlying cause of disease in a large family with North Carolina macular dystrophy (NCMD). Methods A large four-generation family (RFS355) with an autosomal dominant form of NCMD was ascertained. Family members underwent comprehensive visual function evaluations. Blood or saliva from six affected family members and three unaffected spouses was collected and DNA tested for linkage to the MCDR1 locus on chromosome 6q12. Three affected family members and two unaffected spouses underwent whole exome sequencing (WES) and subsequently, custom capture of the linkage region followed by next-generation sequencing (NGS). Standard PCR and dideoxy sequencing were used to further characterize the mutation. Results Of the 12 eyes examined in six affected individuals, all but two had Gass grade 3 macular degeneration features. Large central excavation of the retinal and choroid layers, referred to as a macular caldera, was seen in an age-independent manner in the grade 3 eyes. The calderas are unique to affected individuals with MCDR1. Genome-wide linkage mapping and haplotype analysis of markers from the chromosome 6q region were consistent with linkage to the MCDR1 locus. Whole exome sequencing and custom-capture NGS failed to reveal any rare coding variants segregating with the phenotype. Analysis of the custom-capture NGS sequencing data for copy number variants uncovered a tandem duplication of approximately 60 kb on chromosome 6q. This region contains two genes, CCNC and PRDM13. The duplication creates a partial copy of CCNC and a complete copy of PRDM13. The duplication was found in all affected members of the family and is not present in any unaffected members. The duplication was not seen in 200 ethnically matched normal chromosomes. Conclusions The cause of disease in the original family with MCDR1 and several others has been recently reported to be dysregulation of the PRDM13 gene, caused by either single base substitutions in a DNase 1 hypersensitive site upstream of the CCNC and PRDM13 genes or a tandem duplication of the PRDM13 gene. The duplication found in the RFS355 family is distinct from the previously reported duplication and provides additional support that dysregulation of PRDM13, not CCNC, is the cause of NCMD mapped to the MCDR1 locus. PMID:27777503

  15. North Carolina macular dystrophy (MCDR1) caused by a novel tandem duplication of the PRDM13 gene.

    PubMed

    Bowne, Sara J; Sullivan, Lori S; Wheaton, Dianna K; Locke, Kirsten G; Jones, Kaylie D; Koboldt, Daniel C; Fulton, Robert S; Wilson, Richard K; Blanton, Susan H; Birch, David G; Daiger, Stephen P

    2016-01-01

    To identify the underlying cause of disease in a large family with North Carolina macular dystrophy (NCMD). A large four-generation family (RFS355) with an autosomal dominant form of NCMD was ascertained. Family members underwent comprehensive visual function evaluations. Blood or saliva from six affected family members and three unaffected spouses was collected and DNA tested for linkage to the MCDR1 locus on chromosome 6q12. Three affected family members and two unaffected spouses underwent whole exome sequencing (WES) and subsequently, custom capture of the linkage region followed by next-generation sequencing (NGS). Standard PCR and dideoxy sequencing were used to further characterize the mutation. Of the 12 eyes examined in six affected individuals, all but two had Gass grade 3 macular degeneration features. Large central excavation of the retinal and choroid layers, referred to as a macular caldera, was seen in an age-independent manner in the grade 3 eyes. The calderas are unique to affected individuals with MCDR1. Genome-wide linkage mapping and haplotype analysis of markers from the chromosome 6q region were consistent with linkage to the MCDR1 locus. Whole exome sequencing and custom-capture NGS failed to reveal any rare coding variants segregating with the phenotype. Analysis of the custom-capture NGS sequencing data for copy number variants uncovered a tandem duplication of approximately 60 kb on chromosome 6q. This region contains two genes, CCNC and PRDM13 . The duplication creates a partial copy of CCNC and a complete copy of PRDM13 . The duplication was found in all affected members of the family and is not present in any unaffected members. The duplication was not seen in 200 ethnically matched normal chromosomes. The cause of disease in the original family with MCDR1 and several others has been recently reported to be dysregulation of the PRDM13 gene, caused by either single base substitutions in a DNase 1 hypersensitive site upstream of the CCNC and PRDM13 genes or a tandem duplication of the PRDM13 gene. The duplication found in the RFS355 family is distinct from the previously reported duplication and provides additional support that dysregulation of PRDM13 , not CCNC , is the cause of NCMD mapped to the MCDR1 locus.

  16. Clinical and genetic characterization of leukoencephalopathies in adults.

    PubMed

    Lynch, David S; Rodrigues Brandão de Paiva, Anderson; Zhang, Wei Jia; Bugiardini, Enrico; Freua, Fernando; Tavares Lucato, Leandro; Macedo-Souza, Lucia Inês; Lakshmanan, Rahul; Kinsella, Justin A; Merwick, Aine; Rossor, Alexander M; Bajaj, Nin; Herron, Brian; McMonagle, Paul; Morrison, Patrick J; Hughes, Deborah; Pittman, Alan; Laurà, Matilde; Reilly, Mary M; Warren, Jason D; Mummery, Catherine J; Schott, Jonathan M; Adams, Matthew; Fox, Nick C; Murphy, Elaine; Davagnanam, Indran; Kok, Fernando; Chataway, Jeremy; Houlden, Henry

    2017-05-01

    Leukodystrophies and genetic leukoencephalopathies are a rare group of disorders leading to progressive degeneration of cerebral white matter. They are associated with a spectrum of clinical phenotypes dominated by dementia, psychiatric changes, movement disorders and upper motor neuron signs. Mutations in at least 60 genes can lead to leukoencephalopathy with often overlapping clinical and radiological presentations. For these reasons, patients with genetic leukoencephalopathies often endure a long diagnostic odyssey before receiving a definitive diagnosis or may receive no diagnosis at all. In this study, we used focused and whole exome sequencing to evaluate a cohort of undiagnosed adult patients referred to a specialist leukoencephalopathy service. In total, 100 patients were evaluated using focused exome sequencing of 6100 genes. We detected pathogenic or likely pathogenic variants in 26 cases. The most frequently mutated genes were NOTCH3, EIF2B5, AARS2 and CSF1R. We then carried out whole exome sequencing on the remaining negative cases including four family trios, but could not identify any further potentially disease-causing mutations, confirming the equivalence of focused and whole exome sequencing in the diagnosis of genetic leukoencephalopathies. Here we provide an overview of the clinical and genetic features of these disorders in adults. © The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain.

  17. Novel DDR2 mutation identified by whole exome sequencing in a Moroccan patient with spondylo-meta-epiphyseal dysplasia, short limb-abnormal calcification type.

    PubMed

    Mansouri, Maria; Kayserili, Hülya; Elalaoui, Siham Chafai; Nishimura, Gen; Iida, Aritoshi; Lyahyai, Jaber; Miyake, Noriko; Matsumoto, Naomichi; Sefiani, Abdelaziz; Ikegawa, Shiro

    2016-02-01

    Spondylo-meta-epiphyseal dysplasia (SMED), short limb-abnormal calcification type (SMED, SL-AC), is a very rare autosomal recessive disorder with various skeletal changes characterized by premature calcification leading to severe disproportionate short stature. Twenty-two patients have been reported until now, but only five mutations (four missense and one splice-site) in the conserved sequence encoding the tyrosine kinase domain of the DDR2 gene has been identified. We report here a novel DDR2 missense mutation, c.370C > T (p.Arg124Trp) in a Moroccan girl with SMED, SL-AC, identified by whole exome sequencing. Our study has expanded the mutational spectrum of this rare disease and it has shown that exome sequencing is a powerful and cost-effective tool for the diagnosis of clinically heterogeneous disorders such as SMED. © 2015 Wiley Periodicals, Inc.

  18. Whole Exome Sequencing of Patients with Steroid-Resistant Nephrotic Syndrome.

    PubMed

    Warejko, Jillian K; Tan, Weizhen; Daga, Ankana; Schapiro, David; Lawson, Jennifer A; Shril, Shirlee; Lovric, Svjetlana; Ashraf, Shazia; Rao, Jia; Hermle, Tobias; Jobst-Schwan, Tilman; Widmeier, Eugen; Majmundar, Amar J; Schneider, Ronen; Gee, Heon Yung; Schmidt, J Magdalena; Vivante, Asaf; van der Ven, Amelie T; Ityel, Hadas; Chen, Jing; Sadowski, Carolin E; Kohl, Stefan; Pabst, Werner L; Nakayama, Makiko; Somers, Michael J G; Rodig, Nancy M; Daouk, Ghaleb; Baum, Michelle; Stein, Deborah R; Ferguson, Michael A; Traum, Avram Z; Soliman, Neveen A; Kari, Jameela A; El Desoky, Sherif; Fathy, Hanan; Zenker, Martin; Bakkaloglu, Sevcan A; Müller, Dominik; Noyan, Aytul; Ozaltin, Fatih; Cadnapaphornchai, Melissa A; Hashmi, Seema; Hopcian, Jeffrey; Kopp, Jeffrey B; Benador, Nadine; Bockenhauer, Detlef; Bogdanovic, Radovan; Stajić, Nataša; Chernin, Gil; Ettenger, Robert; Fehrenbach, Henry; Kemper, Markus; Munarriz, Reyner Loza; Podracka, Ludmila; Büscher, Rainer; Serdaroglu, Erkin; Tasic, Velibor; Mane, Shrikant; Lifton, Richard P; Braun, Daniela A; Hildebrandt, Friedhelm

    2018-01-06

    Steroid-resistant nephrotic syndrome overwhelmingly progresses to ESRD. More than 30 monogenic genes have been identified to cause steroid-resistant nephrotic syndrome. We previously detected causative mutations using targeted panel sequencing in 30% of patients with steroid-resistant nephrotic syndrome. Panel sequencing has a number of limitations when compared with whole exome sequencing. We employed whole exome sequencing to detect monogenic causes of steroid-resistant nephrotic syndrome in an international cohort of 300 families. Three hundred thirty-five individuals with steroid-resistant nephrotic syndrome from 300 families were recruited from April of 1998 to June of 2016. Age of onset was restricted to <25 years of age. Exome data were evaluated for 33 known monogenic steroid-resistant nephrotic syndrome genes. In 74 of 300 families (25%), we identified a causative mutation in one of 20 genes known to cause steroid-resistant nephrotic syndrome. In 11 families (3.7%), we detected a mutation in a gene that causes a phenocopy of steroid-resistant nephrotic syndrome. This is consistent with our previously published identification of mutations using a panel approach. We detected a causative mutation in a known steroid-resistant nephrotic syndrome gene in 38% of consanguineous families and in 13% of nonconsanguineous families, and 48% of children with congenital nephrotic syndrome. A total of 68 different mutations were detected in 20 of 33 steroid-resistant nephrotic syndrome genes. Fifteen of these mutations were novel. NPHS1 , PLCE1 , NPHS2 , and SMARCAL1 were the most common genes in which we detected a mutation. In another 28% of families, we detected mutations in one or more candidate genes for steroid-resistant nephrotic syndrome. Whole exome sequencing is a sensitive approach toward diagnosis of monogenic causes of steroid-resistant nephrotic syndrome. A molecular genetic diagnosis of steroid-resistant nephrotic syndrome may have important consequences for the management of treatment and kidney transplantation in steroid-resistant nephrotic syndrome. Copyright © 2018 by the American Society of Nephrology.

  19. Whole exome sequencing frequently detects a monogenic cause in early onset nephrolithiasis and nephrocalcinosis.

    PubMed

    Daga, Ankana; Majmundar, Amar J; Braun, Daniela A; Gee, Heon Yung; Lawson, Jennifer A; Shril, Shirlee; Jobst-Schwan, Tilman; Vivante, Asaf; Schapiro, David; Tan, Weizhen; Warejko, Jillian K; Widmeier, Eugen; Nelson, Caleb P; Fathy, Hanan M; Gucev, Zoran; Soliman, Neveen A; Hashmi, Seema; Halbritter, Jan; Halty, Margarita; Kari, Jameela A; El-Desoky, Sherif; Ferguson, Michael A; Somers, Michael J G; Traum, Avram Z; Stein, Deborah R; Daouk, Ghaleb H; Rodig, Nancy M; Katz, Avi; Hanna, Christian; Schwaderer, Andrew L; Sayer, John A; Wassner, Ari J; Mane, Shrikant; Lifton, Richard P; Milosevic, Danko; Tasic, Velibor; Baum, Michelle A; Hildebrandt, Friedhelm

    2018-01-01

    The incidence of nephrolithiasis continues to rise. Previously, we showed that a monogenic cause could be detected in 11.4% of individuals with adult-onset nephrolithiasis or nephrocalcinosis and in 16.7-20.8% of individuals with onset before 18 years of age, using gene panel sequencing of 30 genes known to cause nephrolithiasis/nephrocalcinosis. To overcome the limitations of panel sequencing, we utilized whole exome sequencing in 51 families, who presented before age 25 years with at least one renal stone or with a renal ultrasound finding of nephrocalcinosis to identify the underlying molecular genetic cause of disease. In 15 of 51 families, we detected a monogenic causative mutation by whole exome sequencing. A mutation in seven recessive genes (AGXT, ATP6V1B1, CLDN16, CLDN19, GRHPR, SLC3A1, SLC12A1), in one dominant gene (SLC9A3R1), and in one gene (SLC34A1) with both recessive and dominant inheritance was detected. Seven of the 19 different mutations were not previously described as disease-causing. In one family, a causative mutation in one of 117 genes that may represent phenocopies of nephrolithiasis-causing genes was detected. In nine of 15 families, the genetic diagnosis may have specific implications for stone management and prevention. Several factors that correlated with the higher detection rate in our cohort were younger age at onset of nephrolithiasis/nephrocalcinosis, presence of multiple affected members in a family, and presence of consanguinity. Thus, we established whole exome sequencing as an efficient approach toward a molecular genetic diagnosis in individuals with nephrolithiasis/nephrocalcinosis who manifest before age 25 years. Copyright © 2017 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  20. Sequence data and association statistics from 12,940 type 2 diabetes cases and controls.

    PubMed

    Flannick, Jason; Fuchsberger, Christian; Mahajan, Anubha; Teslovich, Tanya M; Agarwala, Vineeta; Gaulton, Kyle J; Caulkins, Lizz; Koesterer, Ryan; Ma, Clement; Moutsianas, Loukas; McCarthy, Davis J; Rivas, Manuel A; Perry, John R B; Sim, Xueling; Blackwell, Thomas W; Robertson, Neil R; Rayner, N William; Cingolani, Pablo; Locke, Adam E; Tajes, Juan Fernandez; Highland, Heather M; Dupuis, Josee; Chines, Peter S; Lindgren, Cecilia M; Hartl, Christopher; Jackson, Anne U; Chen, Han; Huyghe, Jeroen R; van de Bunt, Martijn; Pearson, Richard D; Kumar, Ashish; Müller-Nurasyid, Martina; Grarup, Niels; Stringham, Heather M; Gamazon, Eric R; Lee, Jaehoon; Chen, Yuhui; Scott, Robert A; Below, Jennifer E; Chen, Peng; Huang, Jinyan; Go, Min Jin; Stitzel, Michael L; Pasko, Dorota; Parker, Stephen C J; Varga, Tibor V; Green, Todd; Beer, Nicola L; Day-Williams, Aaron G; Ferreira, Teresa; Fingerlin, Tasha; Horikoshi, Momoko; Hu, Cheng; Huh, Iksoo; Ikram, Mohammad Kamran; Kim, Bong-Jo; Kim, Yongkang; Kim, Young Jin; Kwon, Min-Seok; Lee, Juyoung; Lee, Selyeong; Lin, Keng-Han; Maxwell, Taylor J; Nagai, Yoshihiko; Wang, Xu; Welch, Ryan P; Yoon, Joon; Zhang, Weihua; Barzilai, Nir; Voight, Benjamin F; Han, Bok-Ghee; Jenkinson, Christopher P; Kuulasmaa, Teemu; Kuusisto, Johanna; Manning, Alisa; Ng, Maggie C Y; Palmer, Nicholette D; Balkau, Beverley; Stančáková, Alena; Abboud, Hanna E; Boeing, Heiner; Giedraitis, Vilmantas; Prabhakaran, Dorairaj; Gottesman, Omri; Scott, James; Carey, Jason; Kwan, Phoenix; Grant, George; Smith, Joshua D; Neale, Benjamin M; Purcell, Shaun; Butterworth, Adam S; Howson, Joanna M M; Lee, Heung Man; Lu, Yingchang; Kwak, Soo-Heon; Zhao, Wei; Danesh, John; Lam, Vincent K L; Park, Kyong Soo; Saleheen, Danish; So, Wing Yee; Tam, Claudia H T; Afzal, Uzma; Aguilar, David; Arya, Rector; Aung, Tin; Chan, Edmund; Navarro, Carmen; Cheng, Ching-Yu; Palli, Domenico; Correa, Adolfo; Curran, Joanne E; Rybin, Dennis; Farook, Vidya S; Fowler, Sharon P; Freedman, Barry I; Griswold, Michael; Hale, Daniel Esten; Hicks, Pamela J; Khor, Chiea-Chuen; Kumar, Satish; Lehne, Benjamin; Thuillier, Dorothée; Lim, Wei Yen; Liu, Jianjun; Loh, Marie; Musani, Solomon K; Puppala, Sobha; Scott, William R; Yengo, Loïc; Tan, Sian-Tsung; Taylor, Herman A; Thameem, Farook; Wilson, Gregory; Wong, Tien Yin; Njølstad, Pål Rasmus; Levy, Jonathan C; Mangino, Massimo; Bonnycastle, Lori L; Schwarzmayr, Thomas; Fadista, João; Surdulescu, Gabriela L; Herder, Christian; Groves, Christopher J; Wieland, Thomas; Bork-Jensen, Jette; Brandslund, Ivan; Christensen, Cramer; Koistinen, Heikki A; Doney, Alex S F; Kinnunen, Leena; Esko, Tõnu; Farmer, Andrew J; Hakaste, Liisa; Hodgkiss, Dylan; Kravic, Jasmina; Lyssenko, Valeri; Hollensted, Mette; Jørgensen, Marit E; Jørgensen, Torben; Ladenvall, Claes; Justesen, Johanne Marie; Käräjämäki, Annemari; Kriebel, Jennifer; Rathmann, Wolfgang; Lannfelt, Lars; Lauritzen, Torsten; Narisu, Narisu; Linneberg, Allan; Melander, Olle; Milani, Lili; Neville, Matt; Orho-Melander, Marju; Qi, Lu; Qi, Qibin; Roden, Michael; Rolandsson, Olov; Swift, Amy; Rosengren, Anders H; Stirrups, Kathleen; Wood, Andrew R; Mihailov, Evelin; Blancher, Christine; Carneiro, Mauricio O; Maguire, Jared; Poplin, Ryan; Shakir, Khalid; Fennell, Timothy; DePristo, Mark; de Angelis, Martin Hrabé; Deloukas, Panos; Gjesing, Anette P; Jun, Goo; Nilsson, Peter; Murphy, Jacquelyn; Onofrio, Robert; Thorand, Barbara; Hansen, Torben; Meisinger, Christa; Hu, Frank B; Isomaa, Bo; Karpe, Fredrik; Liang, Liming; Peters, Annette; Huth, Cornelia; O'Rahilly, Stephen P; Palmer, Colin N A; Pedersen, Oluf; Rauramaa, Rainer; Tuomilehto, Jaakko; Salomaa, Veikko; Watanabe, Richard M; Syvänen, Ann-Christine; Bergman, Richard N; Bharadwaj, Dwaipayan; Bottinger, Erwin P; Cho, Yoon Shin; Chandak, Giriraj R; Chan, Juliana Cn; Chia, Kee Seng; Daly, Mark J; Ebrahim, Shah B; Langenberg, Claudia; Elliott, Paul; Jablonski, Kathleen A; Lehman, Donna M; Jia, Weiping; Ma, Ronald C W; Pollin, Toni I; Sandhu, Manjinder; Tandon, Nikhil; Froguel, Philippe; Barroso, Inês; Teo, Yik Ying; Zeggini, Eleftheria; Loos, Ruth J F; Small, Kerrin S; Ried, Janina S; DeFronzo, Ralph A; Grallert, Harald; Glaser, Benjamin; Metspalu, Andres; Wareham, Nicholas J; Walker, Mark; Banks, Eric; Gieger, Christian; Ingelsson, Erik; Im, Hae Kyung; Illig, Thomas; Franks, Paul W; Buck, Gemma; Trakalo, Joseph; Buck, David; Prokopenko, Inga; Mägi, Reedik; Lind, Lars; Farjoun, Yossi; Owen, Katharine R; Gloyn, Anna L; Strauch, Konstantin; Tuomi, Tiinamaija; Kooner, Jaspal Singh; Lee, Jong-Young; Park, Taesung; Donnelly, Peter; Morris, Andrew D; Hattersley, Andrew T; Bowden, Donald W; Collins, Francis S; Atzmon, Gil; Chambers, John C; Spector, Timothy D; Laakso, Markku; Strom, Tim M; Bell, Graeme I; Blangero, John; Duggirala, Ravindranath; Tai, E Shyong; McVean, Gilean; Hanis, Craig L; Wilson, James G; Seielstad, Mark; Frayling, Timothy M; Meigs, James B; Cox, Nancy J; Sladek, Rob; Lander, Eric S; Gabriel, Stacey; Mohlke, Karen L; Meitinger, Thomas; Groop, Leif; Abecasis, Goncalo; Scott, Laura J; Morris, Andrew P; Kang, Hyun Min; Altshuler, David; Burtt, Noël P; Florez, Jose C; Boehnke, Michael; McCarthy, Mark I

    2017-12-19

    To investigate the genetic basis of type 2 diabetes (T2D) to high resolution, the GoT2D and T2D-GENES consortia catalogued variation from whole-genome sequencing of 2,657 European individuals and exome sequencing of 12,940 individuals of multiple ancestries. Over 27M SNPs, indels, and structural variants were identified, including 99% of low-frequency (minor allele frequency [MAF] 0.1-5%) non-coding variants in the whole-genome sequenced individuals and 99.7% of low-frequency coding variants in the whole-exome sequenced individuals. Each variant was tested for association with T2D in the sequenced individuals, and, to increase power, most were tested in larger numbers of individuals (>80% of low-frequency coding variants in ~82 K Europeans via the exome chip, and ~90% of low-frequency non-coding variants in ~44 K Europeans via genotype imputation). The variants, genotypes, and association statistics from these analyses provide the largest reference to date of human genetic information relevant to T2D, for use in activities such as T2D-focused genotype imputation, functional characterization of variants or genes, and other novel analyses to detect associations between sequence variation and T2D.

  1. Sequence data and association statistics from 12,940 type 2 diabetes cases and controls

    PubMed Central

    Jason, Flannick; Fuchsberger, Christian; Mahajan, Anubha; Teslovich, Tanya M.; Agarwala, Vineeta; Gaulton, Kyle J.; Caulkins, Lizz; Koesterer, Ryan; Ma, Clement; Moutsianas, Loukas; McCarthy, Davis J.; Rivas, Manuel A.; Perry, John R. B.; Sim, Xueling; Blackwell, Thomas W.; Robertson, Neil R.; Rayner, N William; Cingolani, Pablo; Locke, Adam E.; Tajes, Juan Fernandez; Highland, Heather M.; Dupuis, Josee; Chines, Peter S.; Lindgren, Cecilia M.; Hartl, Christopher; Jackson, Anne U.; Chen, Han; Huyghe, Jeroen R.; van de Bunt, Martijn; Pearson, Richard D.; Kumar, Ashish; Müller-Nurasyid, Martina; Grarup, Niels; Stringham, Heather M.; Gamazon, Eric R.; Lee, Jaehoon; Chen, Yuhui; Scott, Robert A.; Below, Jennifer E.; Chen, Peng; Huang, Jinyan; Go, Min Jin; Stitzel, Michael L.; Pasko, Dorota; Parker, Stephen C. J.; Varga, Tibor V.; Green, Todd; Beer, Nicola L.; Day-Williams, Aaron G.; Ferreira, Teresa; Fingerlin, Tasha; Horikoshi, Momoko; Hu, Cheng; Huh, Iksoo; Ikram, Mohammad Kamran; Kim, Bong-Jo; Kim, Yongkang; Kim, Young Jin; Kwon, Min-Seok; Lee, Juyoung; Lee, Selyeong; Lin, Keng-Han; Maxwell, Taylor J.; Nagai, Yoshihiko; Wang, Xu; Welch, Ryan P.; Yoon, Joon; Zhang, Weihua; Barzilai, Nir; Voight, Benjamin F.; Han, Bok-Ghee; Jenkinson, Christopher P.; Kuulasmaa, Teemu; Kuusisto, Johanna; Manning, Alisa; Ng, Maggie C. Y.; Palmer, Nicholette D.; Balkau, Beverley; Stančáková, Alena; Abboud, Hanna E.; Boeing, Heiner; Giedraitis, Vilmantas; Prabhakaran, Dorairaj; Gottesman, Omri; Scott, James; Carey, Jason; Kwan, Phoenix; Grant, George; Smith, Joshua D.; Neale, Benjamin M.; Purcell, Shaun; Butterworth, Adam S.; Howson, Joanna M. M.; Lee, Heung Man; Lu, Yingchang; Kwak, Soo-Heon; Zhao, Wei; Danesh, John; Lam, Vincent K. L.; Park, Kyong Soo; Saleheen, Danish; So, Wing Yee; Tam, Claudia H. T.; Afzal, Uzma; Aguilar, David; Arya, Rector; Aung, Tin; Chan, Edmund; Navarro, Carmen; Cheng, Ching-Yu; Palli, Domenico; Correa, Adolfo; Curran, Joanne E.; Rybin, Dennis; Farook, Vidya S.; Fowler, Sharon P.; Freedman, Barry I.; Griswold, Michael; Hale, Daniel Esten; Hicks, Pamela J.; Khor, Chiea-Chuen; Kumar, Satish; Lehne, Benjamin; Thuillier, Dorothée; Lim, Wei Yen; Liu, Jianjun; Loh, Marie; Musani, Solomon K.; Puppala, Sobha; Scott, William R.; Yengo, Loïc; Tan, Sian-Tsung; Taylor, Herman A.; Thameem, Farook; Wilson, Gregory; Wong, Tien Yin; Njølstad, Pål Rasmus; Levy, Jonathan C.; Mangino, Massimo; Bonnycastle, Lori L.; Schwarzmayr, Thomas; Fadista, João; Surdulescu, Gabriela L.; Herder, Christian; Groves, Christopher J.; Wieland, Thomas; Bork-Jensen, Jette; Brandslund, Ivan; Christensen, Cramer; Koistinen, Heikki A.; Doney, Alex S. F.; Kinnunen, Leena; Esko, Tõnu; Farmer, Andrew J.; Hakaste, Liisa; Hodgkiss, Dylan; Kravic, Jasmina; Lyssenko, Valeri; Hollensted, Mette; Jørgensen, Marit E.; Jørgensen, Torben; Ladenvall, Claes; Justesen, Johanne Marie; Käräjämäki, Annemari; Kriebel, Jennifer; Rathmann, Wolfgang; Lannfelt, Lars; Lauritzen, Torsten; Narisu, Narisu; Linneberg, Allan; Melander, Olle; Milani, Lili; Neville, Matt; Orho-Melander, Marju; Qi, Lu; Qi, Qibin; Roden, Michael; Rolandsson, Olov; Swift, Amy; Rosengren, Anders H.; Stirrups, Kathleen; Wood, Andrew R.; Mihailov, Evelin; Blancher, Christine; Carneiro, Mauricio O.; Maguire, Jared; Poplin, Ryan; Shakir, Khalid; Fennell, Timothy; DePristo, Mark; de Angelis, Martin Hrabé; Deloukas, Panos; Gjesing, Anette P.; Jun, Goo; Nilsson, Peter; Murphy, Jacquelyn; Onofrio, Robert; Thorand, Barbara; Hansen, Torben; Meisinger, Christa; Hu, Frank B.; Isomaa, Bo; Karpe, Fredrik; Liang, Liming; Peters, Annette; Huth, Cornelia; O'Rahilly, Stephen P; Palmer, Colin N. A.; Pedersen, Oluf; Rauramaa, Rainer; Tuomilehto, Jaakko; Salomaa, Veikko; Watanabe, Richard M.; Syvänen, Ann-Christine; Bergman, Richard N.; Bharadwaj, Dwaipayan; Bottinger, Erwin P.; Cho, Yoon Shin; Chandak, Giriraj R.; Chan, Juliana CN; Chia, Kee Seng; Daly, Mark J.; Ebrahim, Shah B.; Langenberg, Claudia; Elliott, Paul; Jablonski, Kathleen A.; Lehman, Donna M.; Jia, Weiping; Ma, Ronald C. W.; Pollin, Toni I.; Sandhu, Manjinder; Tandon, Nikhil; Froguel, Philippe; Barroso, Inês; Teo, Yik Ying; Zeggini, Eleftheria; Loos, Ruth J. F.; Small, Kerrin S.; Ried, Janina S.; DeFronzo, Ralph A.; Grallert, Harald; Glaser, Benjamin; Metspalu, Andres; Wareham, Nicholas J.; Walker, Mark; Banks, Eric; Gieger, Christian; Ingelsson, Erik; Im, Hae Kyung; Illig, Thomas; Franks, Paul W.; Buck, Gemma; Trakalo, Joseph; Buck, David; Prokopenko, Inga; Mägi, Reedik; Lind, Lars; Farjoun, Yossi; Owen, Katharine R.; Gloyn, Anna L.; Strauch, Konstantin; Tuomi, Tiinamaija; Kooner, Jaspal Singh; Lee, Jong-Young; Park, Taesung; Donnelly, Peter; Morris, Andrew D.; Hattersley, Andrew T.; Bowden, Donald W.; Collins, Francis S.; Atzmon, Gil; Chambers, John C.; Spector, Timothy D.; Laakso, Markku; Strom, Tim M.; Bell, Graeme I.; Blangero, John; Duggirala, Ravindranath; Tai, E. Shyong; McVean, Gilean; Hanis, Craig L.; Wilson, James G.; Seielstad, Mark; Frayling, Timothy M.; Meigs, James B.; Cox, Nancy J.; Sladek, Rob; Lander, Eric S.; Gabriel, Stacey; Mohlke, Karen L.; Meitinger, Thomas; Groop, Leif; Abecasis, Goncalo; Scott, Laura J.; Morris, Andrew P.; Kang, Hyun Min; Altshuler, David; Burtt, Noël P.; Florez, Jose C.; Boehnke, Michael; McCarthy, Mark I.

    2017-01-01

    To investigate the genetic basis of type 2 diabetes (T2D) to high resolution, the GoT2D and T2D-GENES consortia catalogued variation from whole-genome sequencing of 2,657 European individuals and exome sequencing of 12,940 individuals of multiple ancestries. Over 27M SNPs, indels, and structural variants were identified, including 99% of low-frequency (minor allele frequency [MAF] 0.1–5%) non-coding variants in the whole-genome sequenced individuals and 99.7% of low-frequency coding variants in the whole-exome sequenced individuals. Each variant was tested for association with T2D in the sequenced individuals, and, to increase power, most were tested in larger numbers of individuals (>80% of low-frequency coding variants in ~82 K Europeans via the exome chip, and ~90% of low-frequency non-coding variants in ~44 K Europeans via genotype imputation). The variants, genotypes, and association statistics from these analyses provide the largest reference to date of human genetic information relevant to T2D, for use in activities such as T2D-focused genotype imputation, functional characterization of variants or genes, and other novel analyses to detect associations between sequence variation and T2D. PMID:29257133

  2. The Autism Simplex Collection: an international, expertly phenotyped autism sample for genetic and phenotypic analyses.

    PubMed

    Buxbaum, Joseph D; Bolshakova, Nadia; Brownfeld, Jessica M; Anney, Richard Jl; Bender, Patrick; Bernier, Raphael; Cook, Edwin H; Coon, Hilary; Cuccaro, Michael; Freitag, Christine M; Hallmayer, Joachim; Geschwind, Daniel; Klauck, Sabine M; Nurnberger, John I; Oliveira, Guiomar; Pinto, Dalila; Poustka, Fritz; Scherer, Stephen W; Shih, Andy; Sutcliffe, James S; Szatmari, Peter; Vicente, Astrid M; Vieland, Veronica; Gallagher, Louise

    2014-01-01

    There is an urgent need for expanding and enhancing autism spectrum disorder (ASD) samples, in order to better understand causes of ASD. In a unique public-private partnership, 13 sites with extensive experience in both the assessment and diagnosis of ASD embarked on an ambitious, 2-year program to collect samples for genetic and phenotypic research and begin analyses on these samples. The program was called The Autism Simplex Collection (TASC). TASC sample collection began in 2008 and was completed in 2010, and included nine sites from North America and four sites from Western Europe, as well as a centralized Data Coordinating Center. Over 1,700 trios are part of this collection, with DNA from transformed cells now available through the National Institute of Mental Health (NIMH). Autism Diagnostic Interview-Revised (ADI-R) and Autism Diagnostic Observation Schedule-Generic (ADOS-G) measures are available for all probands, as are standardized IQ measures, Vineland Adaptive Behavioral Scales (VABS), the Social Responsiveness Scale (SRS), Peabody Picture Vocabulary Test (PPVT), and physical measures (height, weight, and head circumference). At almost every site, additional phenotypic measures were collected, including the Broad Autism Phenotype Questionnaire (BAPQ) and Repetitive Behavior Scale-Revised (RBS-R), as well as the non-word repetition scale, Communication Checklist (Children's or Adult), and Aberrant Behavior Checklist (ABC). Moreover, for nearly 1,000 trios, the Autism Genome Project Consortium (AGP) has carried out Illumina 1 M SNP genotyping and called copy number variation (CNV) in the samples, with data being made available through the National Institutes of Health (NIH). Whole exome sequencing (WES) has been carried out in over 500 probands, together with ancestry matched controls, and this data is also available through the NIH. Additional WES is being carried out by the Autism Sequencing Consortium (ASC), where the focus is on sequencing complete trios. ASC sequencing for the first 1,000 samples (all from whole-blood DNA) is complete and data will be released in 2014. Data is being made available through NIH databases (database of Genotypes and Phenotypes (dbGaP) and National Database for Autism Research (NDAR)) with DNA released in Dist 11.0. Primary funding for the collection, genotyping, sequencing and distribution of TASC samples was provided by Autism Speaks and the NIH, including the National Institute of Mental Health (NIMH) and the National Human Genetics Research Institute (NHGRI). TASC represents an important sample set that leverages expert sites. Similar approaches, leveraging expert sites and ongoing studies, represent an important path towards further enhancing available ASD samples.

  3. Genetic landscape of metastatic and recurrent head and neck squamous cell carcinoma

    PubMed Central

    Hedberg, Matthew L.; Goh, Gerald; Chiosea, Simion I.; Bauman, Julie E.; Freilino, Maria L.; Zeng, Yan; Wang, Lin; Diergaarde, Brenda B.; Gooding, William E.; Lui, Vivian W.Y.; Herbst, Roy S.; Lifton, Richard P.; Grandis, Jennifer R.

    2015-01-01

    BACKGROUND. Recurrence and/or metastasis occurs in more than half of patients with head and neck squamous cell carcinoma (HNSCC), and these events pose the greatest threats to long-term survival. We set out to identify genetic alterations that underlie recurrent/metastatic HNSCC. METHODS. Whole-exome sequencing (WES) was performed on genomic DNA extracted from fresh-frozen whole blood and patient-matched tumor pairs from 13 HNSCC patients with synchronous lymph node metastases and 10 patients with metachronous recurrent tumors. Mutational concordance within and between tumor pairs was used to analyze the spatiotemporal evolution of HNSCC in individual patients and to identify potential therapeutic targets for functional evaluation. RESULTS. Approximately 86% and 60% of single somatic nucleotide variants (SSNVs) identified in synchronous nodal metastases and metachronous recurrent tumors, respectively, were transmitted from the primary index tumor. Genes that were mutated in more than one metastatic or recurrent tumor, but not in the respective primary tumors, include C17orf104, inositol 1,4,5-trisphosphate receptor, type 3 (ITPR3), and discoidin domain receptor tyrosine kinase 2 (DDR2). Select DDR2 mutations have been shown to confer enhanced sensitivity to SRC-family kinase (SFK) inhibitors in other malignancies. Similarly, HNSCC cell lines harboring endogenous and engineered DDR2 mutations were more sensitive to the SFK inhibitor dasatinib than those with WT DDR2. CONCLUSION. In this WES study of patient-matched tumor pairs in HNSCC, we found synchronous lymph node metastases to be genetically more similar to their paired index primary tumors than metachronous recurrent tumors. This study outlines a compendium of somatic mutations in primary, metastatic, and/or recurrent HNSCC cancers, with potential implications for precision medicine approaches. FUNDING. National Cancer Institute, American Cancer Society, Agency for Science, Technology and Research of Singapore, and Gilead Sciences Inc. PMID:26619122

  4. Sequence variants of KHDRBS1 as high penetrance susceptibility risks for primary ovarian insufficiency by mis-regulating mRNA alternative splicing.

    PubMed

    Wang, Binbin; Li, Lin; Zhu, Ying; Zhang, Wei; Wang, Xi; Chen, Beili; Li, Tengyan; Pan, Hong; Wang, Jing; Kee, Kehkooi; Cao, Yunxia

    2017-10-01

    Does a novel heterozygous KHDRBS1 variant, identified using whole-exome sequencing (WES) in two patients with primary ovarian insufficiency (POI) in a pedigree, cause defects in mRNA alternative splicing? The heterozygous variant of KHDRBS1 was confirmed to cause defects in alternative splicing of many genes involved in DNA replication and repair. Studies in mice revealed that Khdrbs1 deficient females are subfertile, which manifests as delayed sexual maturity and significantly reduced numbers of secondary and pre-antral follicles. No mutation of KHDRBS1, however, has been reported in patients with POI. This genetic and functional study used WES to find putative mutations in a POI pedigree. Altogether, 215 idiopathic POI patients and 400 healthy controls were screened for KHDRBS1 mutations. Two POI patients were subjected to WES to identify sequence variants. Mutational analysis of the KHDRBS1 gene in 215 idiopathic POI patients and 400 healthy controls were performed. RNA-sequencing was carried out to find the mis-regulation of gene expression due to KHDRBS1 mutation. Bioinformatics was used to analyze the change in alternative splicing events. We identified a heterozygous mutation (c.460A > G, p.M154V) in KHDRBS1 in two patients. Further mutational analysis of 215 idiopathic POI patients with the KHDRBS1 gene found one heterozygous mutation (c.263C > T, p.P88L). We failed to find these two mutations in 400 healthy control women. Using RNA-sequencing, we found that the KGN cells expressing the M154V KHDRBS1 mutant had different expression of 66 genes compared with wild-type (WT) cells. Furthermore, 145 genes were alternatively spliced in M154V cells, and these genes were enriched for DNA replication and repair function, revealing a potential underlying mechanism of the pathology that leads to POI. Although the in vitro assays demonstrated the effect of the KHDRBS1 variant on alternative splicing, further studies are needed to validate the in vivo effects on germ cell and follicle development. This finding provides researchers and clinicians a better understanding of the etiology and molecular mechanism of POI. This study was supported by the Ministry of Science and Technology of China (2012CB944704; 2012CB966702), National Research Institute for Family Planning (2017GJZ05), the National Natural Science Foundation of China (31171429) and Beijing Advanced Innovation Center for Structural Biology. The authors declare no conflict of interest. © The Author 2017. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  5. Characterization of mutations of the phosphoinositide-3-kinase regulatory subunit, PIK3R2, in perisylvian polymicrogyria: a next generation sequencing study

    PubMed Central

    Mirzaa, Ghayda; Conti, Valerio; Timms, Andrew E.; Smyser, Christopher D.; Ahmed, Sarah; Carter, Melissa; Barnett, Sarah; Hufnagel, Robert B.; Goldstein, Amy; Narumi-Kishimoto, Yoko; Olds, Carissa; Collins, Sarah; Johnston, Kathreen; Deleuze, Jean-François; Nitschké, Patrick; Friend, Kathryn; Harris, Catharine; Goetsch, Allison; Martin, Beth; Boyle, Evan August; Parrini, Elena; Mei, Davide; Tattini, Lorenzo; Slavotinek, Anne; Blair, Ed; Barnett, Christopher; Shendure, Jay; Chelly, Jamel; Dobyns, William B.; Guerrini, Renzo

    2015-01-01

    SUMMARY Background Bilateral perisylvian polymicrogyria (BPP), the most common form of regional polymicrogyria, causes the congenital bilateral perisylvian syndrome, featuring oromotor dysfunction, cognitive impairment and epilepsy. BPP is etiologically heterogeneous, but only a few genetic causes have been reported. The aim of this study was to identify additional genetic etiologies of BPP and delineate their frequency in this patient population. Methods We performed child-parent (trio)-based whole exome sequencing (WES) on eight children with BPP. Following the identification of mosaic PIK3R2 mutations in two of these eight children, we performed targeted screening of PIK3R2 in a cohort of 118 children with BPP who were ascertained from 1980 until 2015 using two methods. First, we performed targeted sequencing of the entire PIK3R2 gene by single molecule molecular inversion probes (smMIPs) on 38 patients with BPP with normal-large head size. Second, we performed amplicon sequencing of the recurrent PIK3R2 mutation (p.Gly373Arg) on 80 children with various types of polymicrogyria including BPP. One additional patient underwent clinical WES independently, and was included in this study given the phenotypic similarity to our cohort. All patients included in this study were children (< 18 years of age) with polymicrogyria enrolled in our research program. Findings Using WES, we identified a mosaic mutation (p.Gly373Arg) in the regulatory subunit of the PI3K-AKT-MTOR pathway, PIK3R2, in two children with BPP. Of the 38 patients with BPP and normal-large head size who underwent targeted next generation sequencing by smMIPs, we identified constitutional and mosaic PIK3R2 mutations in 17 additional children. In parallel, one patient was found to have the recurrent PIK3R2 mutation by clinical WES. Seven patients had BPP alone, and 13 had BPP in association with features of the megalencephaly-polymicrogyria-polydactyly-hydrocephalus syndrome (MPPH). Nineteen patients had the same mutation (Gly373Arg), and one had a nearby missense mutation (p.Lys376Glu). Across the entire cohort, mutations were constitutional in 12 and mosaic in eight patients. Among mosaic patients, we observed substantial variation in alternate (mutant) allele levels ranging from 2·5% (10/377) to 36·7% (39/106) of reads, equivalent to 5–73·4% of cells analyzed. Levels of mosaicism varied from undetectable to 17·1% (37/216) of reads in blood-derived compared to 29·4% (2030/6889) to 43·3% (275/634) in saliva-derived DNA. Interpretation Constitutional and mosaic mutations in the PIK3R2 gene are associated with a spectrum of developmental brain disorders ranging from BPP with a normal head size to the megalencephaly-polymicrogyria-polydactyly-hydrocephalus syndrome. The phenotypic variability and low-level mosaicism challenging conventional molecular methods have important implications for genetic testing and counseling. PMID:26520804

  6. Comprehensive Rare Variant Analysis via Whole-Genome Sequencing to Determine the Molecular Pathology of Inherited Retinal Disease.

    PubMed

    Carss, Keren J; Arno, Gavin; Erwood, Marie; Stephens, Jonathan; Sanchis-Juan, Alba; Hull, Sarah; Megy, Karyn; Grozeva, Detelina; Dewhurst, Eleanor; Malka, Samantha; Plagnol, Vincent; Penkett, Christopher; Stirrups, Kathleen; Rizzo, Roberta; Wright, Genevieve; Josifova, Dragana; Bitner-Glindzicz, Maria; Scott, Richard H; Clement, Emma; Allen, Louise; Armstrong, Ruth; Brady, Angela F; Carmichael, Jenny; Chitre, Manali; Henderson, Robert H H; Hurst, Jane; MacLaren, Robert E; Murphy, Elaine; Paterson, Joan; Rosser, Elisabeth; Thompson, Dorothy A; Wakeling, Emma; Ouwehand, Willem H; Michaelides, Michel; Moore, Anthony T; Webster, Andrew R; Raymond, F Lucy

    2017-01-05

    Inherited retinal disease is a common cause of visual impairment and represents a highly heterogeneous group of conditions. Here, we present findings from a cohort of 722 individuals with inherited retinal disease, who have had whole-genome sequencing (n = 605), whole-exome sequencing (n = 72), or both (n = 45) performed, as part of the NIHR-BioResource Rare Diseases research study. We identified pathogenic variants (single-nucleotide variants, indels, or structural variants) for 404/722 (56%) individuals. Whole-genome sequencing gives unprecedented power to detect three categories of pathogenic variants in particular: structural variants, variants in GC-rich regions, which have significantly improved coverage compared to whole-exome sequencing, and variants in non-coding regulatory regions. In addition to previously reported pathogenic regulatory variants, we have identified a previously unreported pathogenic intronic variant in CHM in two males with choroideremia. We have also identified 19 genes not previously known to be associated with inherited retinal disease, which harbor biallelic predicted protein-truncating variants in unsolved cases. Whole-genome sequencing is an increasingly important comprehensive method with which to investigate the genetic causes of inherited retinal disease. Copyright © 2017. Published by Elsevier Inc.

  7. Novel mutations in RASGRP2, which encodes CalDAG-GEFI, abrogate Rap1 activation, causing platelet dysfunction

    PubMed Central

    Lozano, María Luisa; Cook, Aaron; Bastida, José María; Paul, David S.; Iruin, Gemma; Cid, Ana Rosa; Adan-Pedroso, Rosa; Ramón González-Porras, José; Hernández-Rivas, Jesús María; Fletcher, Sarah J.; Johnson, Ben; Morgan, Neil; Ferrer-Marin, Francisca; Vicente, Vicente; Sondek, John; Watson, Steve P.; Bergmeier, Wolfgang

    2016-01-01

    In addition to mutations in ITG2B or ITGB3 genes that cause defective αIIbβ3 expression and/or function in Glanzmann’s thrombasthenia patients, platelet dysfunction can be a result of genetic variability in proteins that mediate inside-out activation of αIIbβ3. The RASGRP2 gene is strongly expressed in platelets and neutrophils, where its encoded protein CalDAG-GEFI facilitates the activation of Rap1 and subsequent activation of integrins. We used next-generation sequencing (NGS) and whole-exome sequencing (WES) to identify 2 novel function-disrupting mutations in RASGRP2 that account for bleeding diathesis and platelet dysfunction in 2 unrelated families. By using a panel of 71 genes, we identified a homozygous change (c.1142C>T) in exon 10 of RASGRP2 in a 9-year-old child of Chinese origin (family 1). This variant led to a p.Ser381Phe substitution in the CDC25 catalytic domain of CalDAG-GEFI. In 2 Spanish siblings from family 2, WES identified a nonsense homozygous variation (c.337C>T) (p.Arg113X) in exon 5 of RASGRP2. CalDAG-GEFI expression was markedly reduced in platelets from all patients, and by using a novel in vitro assay, we found that the nucleotide exchange activity was dramatically reduced in CalDAG-GEFI p.Ser381Phe. Platelets from homozygous patients exhibited agonist-specific defects in αIIbβ3 integrin activation and aggregation. In contrast, α- and δ-granule secretion, platelet spreading, and clot retraction were not markedly affected. Integrin activation in the patients’ neutrophils was also impaired. These patients are the first cases of a CalDAG-GEFI deficiency due to homozygous RASGRP2 mutations that are linked to defects in both leukocyte and platelet integrin activation. PMID:27235135

  8. Whole-exome sequencing reveals genetic variants associated with chronic kidney disease characterized by tubulointerstitial damages in North Central Region, Sri Lanka.

    PubMed

    Nanayakkara, Shanika; Senevirathna, S T M L D; Parahitiyawa, Nipuna B; Abeysekera, Tilak; Chandrajith, Rohana; Ratnatunga, Neelakanthi; Hitomi, Toshiaki; Kobayashi, Hatasu; Harada, Kouji H; Koizumi, Akio

    2015-09-01

    The familial clustering observed in chronic kidney disease of uncertain etiology (CKDu) characterized by tubulointerstitial damages in the North Central Region of Sri Lanka strongly suggests the involvement of genetic factors in its pathogenesis. The objective of the present study is to use whole-exome sequencing to identify the genetic variants associated with CKDu. Whole-exome sequencing of eight CKDu cases and eight controls was performed, followed by direct sequencing of candidate loci in 301 CKDu cases and 276 controls. Association study revealed rs34970857 (c.658G > A/p.V220M) located in the KCNA10 gene encoding a voltage-gated K channel as the most promising SNP with the highest odds ratio of 1.74. Four rare variants were identified in gene encoding Laminin beta2 (LAMB2) which is known to cause congenital nephrotic syndrome. Three out of four variants in LAMB2 were novel variants found exclusively in cases. Genetic investigations provide strong evidence on the presence of genetic susceptibility for CKDu. Possibility of presence of several rare variants associated with CKDu in this population is also suggested.

  9. Whole Exome Analysis of Early Onset Alzheimer’s Disease

    DTIC Science & Technology

    2013-04-01

    FTD), FTD with Parkinsonism , and early-onset Alzheimer Disease (EOAD)-like presentations. Using whole exome capture with subsequent sequencing, we...dementia. The MAPT R406W mutation is associated with EOAD-like symptoms and Parkinsonism without FTD, as well as distinct cognitive courses. KEY...OUTCOMES: Carney RM, Kohli MA, Kunkle BW, Naj AC, Gilbert JR, Züchner S, PERICAK-VANCE MA, Parkinsonism and distinct dementia patterns in a

  10. Comprehensive comparison of three commercial human whole-exome capture platforms.

    PubMed

    Asan; Xu, Yu; Jiang, Hui; Tyler-Smith, Chris; Xue, Yali; Jiang, Tao; Wang, Jiawei; Wu, Mingzhi; Liu, Xiao; Tian, Geng; Wang, Jun; Wang, Jian; Yang, Huangming; Zhang, Xiuqing

    2011-09-28

    Exome sequencing, which allows the global analysis of protein coding sequences in the human genome, has become an effective and affordable approach to detecting causative genetic mutations in diseases. Currently, there are several commercial human exome capture platforms; however, the relative performances of these have not been characterized sufficiently to know which is best for a particular study. We comprehensively compared three platforms: NimbleGen's Sequence Capture Array and SeqCap EZ, and Agilent's SureSelect. We assessed their performance in a variety of ways, including number of genes covered and capture efficacy. Differences that may impact on the choice of platform were that Agilent SureSelect covered approximately 1,100 more genes, while NimbleGen provided better flanking sequence capture. Although all three platforms achieved similar capture specificity of targeted regions, the NimbleGen platforms showed better uniformity of coverage and greater genotype sensitivity at 30- to 100-fold sequencing depth. All three platforms showed similar power in exome SNP calling, including medically relevant SNPs. Compared with genotyping and whole-genome sequencing data, the three platforms achieved a similar accuracy of genotype assignment and SNP detection. Importantly, all three platforms showed similar levels of reproducibility, GC bias and reference allele bias. We demonstrate key differences between the three platforms, particularly advantages of solutions over array capture and the importance of a large gene target set.

  11. Molecular Genetics of the Usher Syndrome in Lebanon: Identification of 11 Novel Protein Truncating Mutations by Whole Exome Sequencing

    PubMed Central

    Reddy, Ramesh; Fahiminiya, Somayyeh; El Zir, Elie; Mansour, Ahmad; Megarbane, Andre; Majewski, Jacek; Slim, Rima

    2014-01-01

    Background Usher syndrome (USH) is a genetically heterogeneous condition with ten disease-causing genes. The spectrum of genes and mutations causing USH in the Lebanese and Middle Eastern populations has not been described. Consequently, diagnostic approaches designed to screen for previously reported mutations were unlikely to identify the mutations in 11 unrelated families, eight of Lebanese and three of Middle Eastern origins. In addition, six of the ten USH genes consist of more than 20 exons, each, which made mutational analysis by Sanger sequencing of PCR-amplified exons from genomic DNA tedious and costly. The study was aimed at the identification of USH causing genes and mutations in 11 unrelated families with USH type I or II. Methods Whole exome sequencing followed by expanded familial validation by Sanger sequencing. Results We identified disease-causing mutations in all the analyzed patients in four USH genes, MYO7A, USH2A, GPR98 and CDH23. Eleven of the mutations were novel and protein truncating, including a complex rearrangement in GPR98. Conclusion Our data highlight the genetic diversity of Usher syndrome in the Lebanese population and the time and cost-effectiveness of whole exome sequencing approach for mutation analysis of genetically heterogeneous conditions caused by large genes. PMID:25211151

  12. Molecular genetics of the Usher syndrome in Lebanon: identification of 11 novel protein truncating mutations by whole exome sequencing.

    PubMed

    Reddy, Ramesh; Fahiminiya, Somayyeh; El Zir, Elie; Mansour, Ahmad; Megarbane, Andre; Majewski, Jacek; Slim, Rima

    2014-01-01

    Usher syndrome (USH) is a genetically heterogeneous condition with ten disease-causing genes. The spectrum of genes and mutations causing USH in the Lebanese and Middle Eastern populations has not been described. Consequently, diagnostic approaches designed to screen for previously reported mutations were unlikely to identify the mutations in 11 unrelated families, eight of Lebanese and three of Middle Eastern origins. In addition, six of the ten USH genes consist of more than 20 exons, each, which made mutational analysis by Sanger sequencing of PCR-amplified exons from genomic DNA tedious and costly. The study was aimed at the identification of USH causing genes and mutations in 11 unrelated families with USH type I or II. Whole exome sequencing followed by expanded familial validation by Sanger sequencing. We identified disease-causing mutations in all the analyzed patients in four USH genes, MYO7A, USH2A, GPR98 and CDH23. Eleven of the mutations were novel and protein truncating, including a complex rearrangement in GPR98. Our data highlight the genetic diversity of Usher syndrome in the Lebanese population and the time and cost-effectiveness of whole exome sequencing approach for mutation analysis of genetically heterogeneous conditions caused by large genes.

  13. Whole Exome Sequencing and Heterologous Cellular Electrophysiology Studies Elucidate a Novel Loss-of-Function Mutation in the CACNA1A-Encoded Neuronal P/Q-Type Calcium Channel in a Child With Congenital Hypotonia and Developmental Delay.

    PubMed

    Weyhrauch, Derek L; Ye, Dan; Boczek, Nicole J; Tester, David J; Gavrilova, Ralitza H; Patterson, Marc C; Wieben, Eric D; Ackerman, Michael J

    2016-02-01

    A 4-year-old boy born at 37 weeks' gestation with intrauterine growth retardation presented with developmental delay with pronounced language and gross motor delay, axial hypotonia, and dynamic hypertonia of the extremities. Investigations including the Minnesota Newborn Screen, thyroid stimulating hormone/thyroxin, and inborn errors of metabolism screening were negative. Cerebral magnetic resonance imaging and spectroscopy were normal. Genetic testing was negative for coagulopathy, Smith-Lemli-Opitz, fragile X, and Prader-Willi/Angelman syndromes. Whole genome array analysis was unremarkable. Whole exome sequencing was performed through a commercial testing laboratory to elucidate the underlying etiology for the child's presentation. A de novo mutation was hypothesized. In attempt to establish pathogenicity of our candidate variant, cellular electrophysiologic functional analysis of the putative de novo mutation was performed using patch-clamp technology. Whole exome sequencing revealed a p.P1353L variant in the CACNA1A gene, which encodes for the α1-subunit of the brain-specific P/Q-type calcium channel (CaV2.1). This presynaptic high-voltage-gated channel couples neuronal excitation to the vesicular release of neurotransmitter and is implicated in several neurologic disorders. DNA Sanger sequencing confirmed that the de novo mutation was absent in both parents and present in the child only. Electrophysiologic analysis of P1353L-CACNA1A demonstrated near complete loss of function, with a 95% reduction in peak current density. Whole exome sequencing coupled with cellular electrophysiologic functional analysis of a de novoCACNA1A missense mutation has elucidated the probable underlying pathophysiologic mechanism responsible for the child's phenotype. Genetic testing of CACNA1A in patients with congenital hypotonia and developmental delay may be warranted. Copyright © 2016. Published by Elsevier Inc.

  14. A homozygous nonsense CEP250 mutation combined with a heterozygous nonsense C2orf71 mutation is associated with atypical Usher syndrome.

    PubMed

    Khateb, Samer; Zelinger, Lina; Mizrahi-Meissonnier, Liliana; Ayuso, Carmen; Koenekoop, Robert K; Laxer, Uri; Gross, Menachem; Banin, Eyal; Sharon, Dror

    2014-07-01

    Usher syndrome (USH) is a heterogeneous group of inherited retinitis pigmentosa (RP) and sensorineural hearing loss (SNHL) caused by mutations in at least 12 genes. Our aim is to identify additional USH-related genes. Clinical examination included visual acuity test, funduscopy and electroretinography. Genetic analysis included homozygosity mapping and whole exome sequencing (WES). A combination of homozygosity mapping and WES in a large consanguineous family of Iranian Jewish origin revealed nonsense mutations in two ciliary genes: c.3289C>T (p.Q1097*) in C2orf71 and c.3463C>T (p.R1155*) in centrosome-associated protein CEP250 (C-Nap1). The latter has not been associated with any inherited disease and the c.3463C>T mutation was absent in control chromosomes. Patients who were double homozygotes had SNHL accompanied by early-onset and severe RP, while patients who were homozygous for the CEP250 mutation and carried a single mutant C2orf71 allele had SNHL with mild retinal degeneration. No ciliary structural abnormalities in the respiratory system were evident by electron microscopy analysis. CEP250 expression analysis of the mutant allele revealed the generation of a truncated protein lacking the NEK2-phosphorylation region. A homozygous nonsense CEP250 mutation, in combination with a heterozygous C2orf71 nonsense mutation, causes an atypical form of USH, characterised by early-onset SNHL and a relatively mild RP. The severe retinal involvement in the double homozygotes indicates an additive effect caused by nonsense mutations in genes encoding ciliary proteins. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  15. 15 years of research on Oral-Facial-Digital syndromes: from 1 to 16 causal genes

    PubMed Central

    Bruel, Ange-Line; Franco, Brunella; Duffourd, Yannis; Thevenon, Julien; Jego, Laurence; Lopez, Estelle; Deleuze, Jean-François; Doummar, Diane; Giles, Rachel H.; Johnson, Colin A.; Huynen, Martijn A.; Chevrier, Véronique; Burglen, Lydie; Morleo, Manuela; Desguerres, Isabelle; Pierquin, Geneviève; Doray, Bérénice; Gilbert-Dussardier, Brigitte; Reversade, Bruno; Steichen-Gersdorf, Elisabeth; Baumann, Clarisse; Panigrahi, Inusha; Fargeot-Espaliat, Anne; Dieux, Anne; David, Albert; Goldenberg, Alice; Bongers, Ernie; Gaillard, Dominique; Argente, Jesús; Aral, Bernard; Gigot, Nadège; St-Onge, Judith; Birnbaum, Daniel; Phadke, Shubha R.; Cormier-Daire, Valérie; Eguether, Thibaut; Pazour, Gregory J.; Herranz-Pérez, Vicente; Lee, Jaclyn S.; Pasquier, Laurent; Loget, Philippe; Saunier, Sophie; Mégarbané, André; Rosnet, Olivier; Leroux, Michel R.; Wallingford, John B.; Blacque, Oliver E.; Nachury, Maxence V.; Attie-Bitach, Tania; Rivière, Jean-Baptiste; Faivre, Laurence; Thauvin-Robinet, Christel

    2017-01-01

    Oral-facial-digital syndromes (OFDS) gather rare genetic disorders characterized by facial, oral and digital abnormalities associated with a wide range of additional features (polycystic kidney disease, cerebral malformations and several others) to delineate a growing list of OFD subtypes. The most frequent, OFD type I, is caused by a heterozygous mutation in the OFD1 gene encoding a centrosomal protein. The wide clinical heterogeneity of OFDS suggests the involvement of other ciliary genes. For 15 years, we have aimed to identify the molecular bases of OFDS. This effort has been greatly helped by the recent development of whole exome sequencing (WES). Here, we present all our published and unpublished results for WES in 24 OFDS cases. We identified causal variants in five new genes (C2CD3, TMEM107, INTU, KIAA0753, IFT57) and related the clinical spectrum of four genes in other ciliopathies (C5orf42, TMEM138, TMEM231, WDPCP) to OFDS. Mutations were also detected in two genes previously implicated in OFDS. Functional studies revealed the involvement of centriole elongation, transition zone and intraflagellar transport defects in OFDS, thus characterizing three ciliary protein modules: the complex KIAA0753-FOPNL-OFD1, a regulator of centriole elongation; the MKS module, a major component of the transition zone; and the CPLANE complex necessary for IFT-A assembly. OFDS now appear to be a distinct subgroup of ciliopathies with wide heterogeneity, which makes the initial classification obsolete. A clinical classification restricted to the three frequent/well-delineated subtypes could be proposed, and for patients who do not fit one of these 3 main subtypes, a further classification could be based on the genotype. PMID:28289185

  16. A case study of an integrative genomic and experimental therapeutic approach for rare tumors: identification of vulnerabilities in a pediatric poorly differentiated carcinoma.

    PubMed

    Dela Cruz, Filemon S; Diolaiti, Daniel; Turk, Andrew T; Rainey, Allison R; Ambesi-Impiombato, Alberto; Andrews, Stuart J; Mansukhani, Mahesh M; Nagy, Peter L; Alvarez, Mariano J; Califano, Andrea; Forouhar, Farhad; Modzelewski, Beata; Mitchell, Chelsey M; Yamashiro, Darrell J; Marks, Lianna J; Glade Bender, Julia L; Kung, Andrew L

    2016-10-31

    Precision medicine approaches are ideally suited for rare tumors where comprehensive characterization may have diagnostic, prognostic, and therapeutic value. We describe the clinical case and molecular characterization of an adolescent with metastatic poorly differentiated carcinoma (PDC). Given the rarity and poor prognosis associated with PDC in children, we utilized genomic analysis and preclinical models to validate oncogenic drivers and identify molecular vulnerabilities. We utilized whole exome sequencing (WES) and transcriptome analysis to identify germline and somatic alterations in the patient's tumor. In silico and in vitro studies were used to determine the functional consequences of genomic alterations. Primary tumor was used to generate a patient-derived xenograft (PDX) model, which was used for in vivo assessment of predicted therapeutic options. WES revealed a novel germline frameshift variant (p.E1554fs) in APC, establishing a diagnosis of Gardner syndrome, along with a somatic nonsense (p.R790*) APC mutation in the tumor. Somatic mutations in TP53, MAX, BRAF, ROS1, and RPTOR were also identified and transcriptome and immunohistochemical analyses suggested hyperactivation of the Wnt/ß-catenin and AKT/mTOR pathways. In silico and biochemical assays demonstrated that the MAX p.R60Q and BRAF p.K483E mutations were activating mutations, whereas the ROS1 and RPTOR mutations were of lower utility for therapeutic targeting. Utilizing a patient-specific PDX model, we demonstrated in vivo activity of mTOR inhibition with temsirolimus and partial response to inhibition of MEK. This clinical case illustrates the depth of investigation necessary to fully characterize the functional significance of the breadth of alterations identified through genomic analysis.

  17. CEP250 mutations associated with mild cone-rod dystrophy and sensorineural hearing loss in a Japanese family.

    PubMed

    Kubota, Daiki; Gocho, Kiyoko; Kikuchi, Sachiko; Akeo, Keiichiro; Miura, Masahiro; Yamaki, Kunihiko; Takahashi, Hiroshi; Kameya, Shuhei

    2018-05-02

    CEP250 encodes the C-Nap1 protein which belongs to the CEP family of proteins. C-Nap1 has been reported to be expressed in the photoreceptor cilia and is known to interact with other ciliary proteins. Mutations of CEP250 cause atypical Usher syndrome which is characterized by early-onset sensorineural hearing loss (SNHL) and a relatively mild retinitis pigmentosa. This study tested the hypothesis that the mild cone-rod dystrophy (CRD) and SNHL in a non-consanguineous Japanese family was caused by CEP250 mutations. Detailed ophthalmic and auditory examinations were performed on the proband and her family members. Whole exome sequencing (WES) was used on the DNA obtained from the proband. Electrophysiological analysis revealed a mild CRD in two family members. Adaptive optics (AO) imaging showed reduced cone density around the fovea. Auditory examinations showed a slight SNHL in both patients. WES of the proband identified compound heterozygous variants c.361C>T, p.R121*, and c.562C>T, p.R188* in CEP250. The variants were found to co-segregate with the disease in five members of the family. The variants of CEP250 are both null variants and according to American College of Medical Genetics and Genomics (ACMG) standards and guideline, these variants are classified into the very strong category (PVS1). The criteria for both alleles will be pathogenic. Our data indicate that mutations of CEP250 can cause mild CRD and SNHL in Japanese patients. Because the ophthalmological phenotypes were very mild, high-resolution retinal imaging analysis, such as AO, will be helpful in diagnosing CEP250-associated disease.

  18. GRIN1 mutations cause encephalopathy with infantile-onset epilepsy, and hyperkinetic and stereotyped movement disorders.

    PubMed

    Ohba, Chihiro; Shiina, Masaaki; Tohyama, Jun; Haginoya, Kazuhiro; Lerman-Sagie, Tally; Okamoto, Nobuhiko; Blumkin, Lubov; Lev, Dorit; Mukaida, Souichi; Nozaki, Fumihito; Uematsu, Mitsugu; Onuma, Akira; Kodera, Hirofumi; Nakashima, Mitsuko; Tsurusaki, Yoshinori; Miyake, Noriko; Tanaka, Fumiaki; Kato, Mitsuhiro; Ogata, Kazuhiro; Saitsu, Hirotomo; Matsumoto, Naomichi

    2015-06-01

    Recently, de novo mutations in GRIN1 have been identified in patients with nonsyndromic intellectual disability and epileptic encephalopathy. Whole exome sequencing (WES) analysis of patients with genetically unsolved epileptic encephalopathies identified four patients with GRIN1 mutations, allowing us to investigate the phenotypic spectrum of GRIN1 mutations. Eighty-eight patients with unclassified early onset epileptic encephalopathies (EOEEs) with an age of onset <1 year were analyzed by WES. The effect of mutations on N-methyl-D-aspartate (NMDA) receptors was examined by mapping altered amino acids onto three-dimensional models. We identified four de novo missense GRIN1 mutations in 4 of 88 patients with unclassified EOEEs. In these four patients, initial symptoms appeared within 3 months of birth, including hyperkinetic movements in two patients (2/4, 50%), and seizures in two patients (2/4, 50%). Involuntary movements, severe developmental delay, and intellectual disability were recognized in all four patients. In addition, abnormal eye movements resembling oculogyric crises and stereotypic hand movements were observed in two and three patients, respectively. All the four patients exhibited only nonspecific focal and diffuse epileptiform abnormality, and never showed suppression-burst or hypsarrhythmia during infancy. A de novo mosaic mutation (c.1923G>A) with a mutant allele frequency of 16% (in DNA of blood leukocytes) was detected in one patient. Three mutations were located in the transmembrane domain (3/4, 75%), and one in the extracellular loop near transmembrane helix 1. All the mutations were predicted to impair the function of the NMDA receptor. Clinical features of de novo GRIN1 mutations include infantile involuntary movements, seizures, and hand stereotypies, suggesting that GRIN1 mutations cause encephalopathy resulting in seizures and movement disorders. Wiley Periodicals, Inc. © 2015 International League Against Epilepsy.

  19. Homozygous loss of function BRCA1 variant causing a Fanconi-anemia-like phenotype, a clinical report and review of previous patients.

    PubMed

    Freire, Bruna L; Homma, Thais K; Funari, Mariana F A; Lerario, Antônio M; Leal, Aline M; Velloso, Elvira D R P; Malaquias, Alexsandra C; Jorge, Alexander A L

    2018-03-01

    Fanconi Anemia (FA) is a rare and heterogeneous genetic syndrome. It is associated with short stature, bone marrow failure, high predisposition to cancer, microcephaly and congenital malformation. Many genes have been associated with FA. Previously, two adult patients with biallelic pathogenic variant in Breast Cancer 1 gene (BRCA1) had been identified in Fanconi Anemia-like condition. The proband was a 2.5 year-old girl with severe short stature, microcephaly, neurodevelopmental delay, congenital heart disease and dysmorphic features. Her parents were third degree cousins. Routine screening tests for short stature was normal. We conducted whole exome sequencing (WES) of the proband and used an analysis pipeline to identify rare nonsynonymous genetic variants that cause short stature. We identified a homozygous loss-of-function BRCA1 mutation (c.2709T > A; p. Cys903*), which promotes the loss of critical domains of the protein. Cytogenetic study with DEB showed an increased chromosomal breakage. We screened heterozygous parents of the index case for cancer and we detected, in her mother, a metastatic adenocarcinoma in an axillar lymph node with probable primary site in the breast. It is possible to consolidate the FA-like phenotype associated with biallelic loss-of-function BRCA1, characterized by microcephaly, short stature, developmental delay, dysmorphic face features and cancer predisposition. In our case, the WES allowed to establish the genetic cause of short stature in the context of a chromosome instability syndrome. An identification of BRCA1 mutations in our patient allowed precise genetic counseling and also triggered cancer screening for the patient and her family members. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  20. Germline CDKN2A/P16INK4A mutations contribute to genetic determinism of sarcoma.

    PubMed

    Jouenne, Fanélie; Chauvot de Beauchene, Isaure; Bollaert, Emeline; Avril, Marie-Françoise; Caron, Olivier; Ingster, Olivier; Lecesne, Axel; Benusiglio, Patrick; Terrier, Philippe; Caumette, Vincent; Pissaloux, Daniel; de la Fouchardière, Arnaud; Cabaret, Odile; N'Diaye, Birama; Velghe, Amélie; Bougeard, Gaelle; Mann, Graham J; Koscielny, Serge; Barrett, Jennifer H; Harland, Mark; Newton-Bishop, Julia; Gruis, Nelleke; Van Doorn, Remco; Gauthier-Villars, Marion; Pierron, Gaelle; Stoppa-Lyonnet, Dominique; Coupier, Isabelle; Guimbaud, Rosine; Delnatte, Capucine; Scoazec, Jean-Yves; Eggermont, Alexander M; Feunteun, Jean; Tchertanov, Luba; Demoulin, Jean-Baptiste; Frebourg, Thierry; Bressac-de Paillerets, Brigitte

    2017-09-01

    Sarcomas are rare mesenchymal malignancies whose pathogenesis is poorly understood; both environmental and genetic risk factors could contribute to their aetiology. We performed whole-exome sequencing (WES) in a familial aggregation of three individuals affected with soft-tissue sarcoma (STS) without TP53 mutation (Li-Fraumeni-like, LFL) and found a shared pathogenic mutation in CDKN2A tumour suppressor gene. We searched for individuals with sarcoma among 474 melanoma-prone families with a CDKN2A -/+ genotype and for CDKN2A mutations in 190 TP53 -negative LFL families where the index case was a sarcoma. Including the initial family, eight independent sarcoma cases carried a germline mutation in the CDKN2A /p16 INK4A gene. In five out of seven formalin-fixed paraffin-embedded sarcomas, heterozygosity was lost at germline CDKN2A mutations sites demonstrating complete loss of function. As sarcomas are rare in CDKN2A /p16 INK4A carriers, we searched in constitutional WES of nine carriers for potential modifying rare variants and identified three in platelet-derived growth factor receptor ( PDGFRA ) gene. Molecular modelling showed that two never-described variants could impact the PDGFRA extracellular domain structure. Germline mutations in CDKN2A /P16 INK4A , a gene known to predispose to hereditary melanoma, pancreatic cancer and tobacco-related cancers, account also for a subset of hereditary sarcoma. In addition, we identified PDGFRA as a candidate modifier gene. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  1. Whole Exome Sequencing Identifies Rare Protein-Coding Variants in Behçet's Disease.

    PubMed

    Ognenovski, Mikhail; Renauer, Paul; Gensterblum, Elizabeth; Kötter, Ina; Xenitidis, Theodoros; Henes, Jörg C; Casali, Bruno; Salvarani, Carlo; Direskeneli, Haner; Kaufman, Kenneth M; Sawalha, Amr H

    2016-05-01

    Behçet's disease (BD) is a systemic inflammatory disease with an incompletely understood etiology. Despite the identification of multiple common genetic variants associated with BD, rare genetic variants have been less explored. We undertook this study to investigate the role of rare variants in BD by performing whole exome sequencing in BD patients of European descent. Whole exome sequencing was performed in a discovery set comprising 14 German BD patients of European descent. For replication and validation, Sanger sequencing and Sequenom genotyping were performed in the discovery set and in 2 additional independent sets of 49 German BD patients and 129 Italian BD patients of European descent. Genetic association analysis was then performed in BD patients and 503 controls of European descent. Functional effects of associated genetic variants were assessed using bioinformatic approaches. Using whole exome sequencing, we identified 77 rare variants (in 74 genes) with predicted protein-damaging effects in BD. These variants were genotyped in 2 additional patient sets and then analyzed to reveal significant associations with BD at 2 genetic variants detected in all 3 patient sets that remained significant after Bonferroni correction. We detected genetic association between BD and LIMK2 (rs149034313), involved in regulating cytoskeletal reorganization, and between BD and NEIL1 (rs5745908), involved in base excision DNA repair (P = 3.22 × 10(-4) and P = 5.16 × 10(-4) , respectively). The LIMK2 association is a missense variant with predicted protein damage that may influence functional interactions with proteins involved in cytoskeletal regulation by Rho GTPase, inflammation mediated by chemokine and cytokine signaling pathways, T cell activation, and angiogenesis (Bonferroni-corrected P = 5.63 × 10(-14) , P = 7.29 × 10(-6) , P = 1.15 × 10(-5) , and P = 6.40 × 10(-3) , respectively). The genetic association in NEIL1 is a predicted splice donor variant that may introduce a deleterious intron retention and result in a noncoding transcript variant. We used whole exome sequencing in BD for the first time and identified 2 rare putative protein-damaging genetic variants associated with this disease. These genetic variants might influence cytoskeletal regulation and DNA repair mechanisms in BD and might provide further insight into increased leukocyte tissue infiltration and the role of oxidative stress in BD. © 2016, American College of Rheumatology.

  2. Genotyping tumour DNA in cerebrospinal fluid and plasma of a HER2-positive breast cancer patient with brain metastases

    PubMed Central

    Siravegna, Giulia; Geuna, Elena; Mussolin, Benedetta; Crisafulli, Giovanni; Bartolini, Alice; Galizia, Danilo; Casorzo, Laura; Sarotto, Ivana; Scaltriti, Maurizio; Sapino, Anna; Bardelli, Alberto; Montemurro, Filippo

    2017-01-01

    Background Central nervous system (CNS) involvement contributes to significant morbidity and mortality in patients with human epidermal growth factor receptor 2 (HER2)-positive metastatic breast cancer (mBC) and represents a major challenge for clinicians. Liquid biopsy of cerebrospinal fluid (CSF)-derived circulating tumour DNA (ctDNA) harbours clinically relevant genomic alterations in patients with CNS metastases and could be effective in tracking tumour evolution. Methods In a HER2-positive mBC patient with brain metastases, we applied droplet digital PCR (ddPCR) and next-generation whole exome sequencing (WES) analysis to measure ctDNA dynamic changes in CSF and plasma collected during treatment. Results Baseline CSF-derived ctDNA analysis revealed TP53 and PIK3CA mutations as well as ERBB2 and cMYC amplification. Post-treatment ctDNA analysis showed decreased markers level in plasma, consistent with extra-CNS disease control, while increased in the CSF, confirming poor treatment benefit in the CNS. Discussion Analysis of ctDNA in the CSF of HER2-positive mBC is feasible and could represent a useful companion for clinical management of brain metastases. PMID:29067216

  3. A recognizable systemic connective tissue disorder with polyvalvular heart dystrophy and dysmorphism associated with TAB2 mutations.

    PubMed

    Ritelli, M; Morlino, S; Giacopuzzi, E; Bernardini, L; Torres, B; Santoro, G; Ravasio, V; Chiarelli, N; D'Angelantonio, D; Novelli, A; Grammatico, P; Colombi, M; Castori, M

    2018-01-01

    Deletions encompassing TAK1-binding protein 2 (TAB2) associated with isolated and syndromic congenital heart defects. Rare missense variants are found in patients with a similar phenotype as well as in a single individual with frontometaphyseal dysplasia. We describe a family and an additional sporadic patient with polyvalvular heart disease, generalized joint hypermobility and related musculoskeletal complications, soft, velvety and hyperextensible skin, short limbs, hearing impairment, and facial dysmorphism. In the first family, whole-exome sequencing (WES) disclosed the novel TAB2 c.1398dup (p.Thr467Tyrfs*6) variant that eliminates the C-terminal zinc finger domain essential for activation of TAK1 (TGFβ-activated kinase 1)-dependent signaling pathways. The sporadic case carryed a ~2 Mb de novo deletion including 28 genes also comprising TAB2. This study reveal an association between TAB2 mutations and a phenotype resembling Ehlers-Danlos syndrome with severe polyvalvular heart disease and subtle facial dysmorphism. Our findings support the existence of a wider spectrum of clinical phenotypes associated with TAB2 perturbations and emphasize the role of TAK1 signaling network in human development. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. An automatic and efficient pipeline for disease gene identification through utilizing family-based sequencing data.

    PubMed

    Song, Dandan; Li, Ning; Liao, Lejian

    2015-01-01

    Due to the generation of enormous amounts of data at both lower costs as well as in shorter times, whole-exome sequencing technologies provide dramatic opportunities for identifying disease genes implicated in Mendelian disorders. Since upwards of thousands genomic variants can be sequenced in each exome, it is challenging to filter pathogenic variants in protein coding regions and reduce the number of missing true variants. Therefore, an automatic and efficient pipeline for finding disease variants in Mendelian disorders is designed by exploiting a combination of variants filtering steps to analyze the family-based exome sequencing approach. Recent studies on the Freeman-Sheldon disease are revisited and show that the proposed method outperforms other existing candidate gene identification methods.

  5. CIDR

    Science.gov Websites

    CIDR Skip navigation Home About CIDR General Highlights Newsletter Staff Employment Opportunities Genotyping General Information Genome Wide Association Custom FFPE Sample Options Methylation Linkage Consortium Developed Mouse Whole Genome Sequencing General Information Whole Genome Whole Exome Custom

  6. CIDR

    Science.gov Websites

    Initiation Application Schedule Service Information and Pricing Services Sample Requirements Pricing SNP Genotyping General Information Genome Wide Association Custom FFPE Sample Options Methylation Linkage Consortium Developed Mouse Whole Genome Sequencing General Information Whole Genome Whole Exome Custom

  7. Whole-exome analysis of foetal autopsy tissue reveals a frameshift mutation in OBSL1, consistent with a diagnosis of 3-M Syndrome.

    PubMed

    Marshall, Christian R; Farrell, Sandra A; Cushing, Donna; Paton, Tara; Stockley, Tracy L; Stavropoulos, Dimitri J; Ray, Peter N; Szego, Michael; Lau, Lynette; Pereira, Sergio L; Cohn, Ronald D; Wintle, Richard F; Abuzenadah, Adel M; Abu-Elmagd, Muhammad; Scherer, Stephen W

    2015-01-01

    We report a consanguineous couple that has experienced three consecutive pregnancy losses following the foetal ultrasound finding of short limbs. Post-termination examination revealed no skeletal dysplasia, but some subtle proximal limb shortening in two foetuses, and a spectrum of mildly dysmorphic features. Karyotype was normal in all three foetuses (46, XX) and comparative genomic hybridization microarray analysis detected no pathogenic copy number variants. Whole-exome sequencing and genome-wide homozygosity mapping revealed a previously reported frameshift mutation in the OBSL1 gene (c.1273insA p.T425nfsX40), consistent with a diagnosis of 3-M Syndrome 2 (OMIM #612921), which had not been anticipated from the clinical findings. Our study provides novel insight into the early clinical manifestations of this form of 3-M syndrome, and demonstrates the utility of whole exome sequencing as a tool for prenatal diagnosis in particular when there is a family history suggestive of a recurrent set of clinical symptoms.

  8. Identification of a novel mutation in a Chinese family with Nance-Horan syndrome by whole exome sequencing.

    PubMed

    Hong, Nan; Chen, Yan-hua; Xie, Chen; Xu, Bai-sheng; Huang, Hui; Li, Xin; Yang, Yue-qing; Huang, Ying-ping; Deng, Jian-lian; Qi, Ming; Gu, Yang-shun

    2014-08-01

    Nance-Horan syndrome (NHS) is a rare X-linked disorder characterized by congenital nuclear cataracts, dental anomalies, and craniofacial dysmorphisms. Mental retardation was present in about 30% of the reported cases. The purpose of this study was to investigate the genetic and clinical features of NHS in a Chinese family. Whole exome sequencing analysis was performed on DNA from an affected male to scan for candidate mutations on the X-chromosome. Sanger sequencing was used to verify these candidate mutations in the whole family. Clinical and ophthalmological examinations were performed on all members of the family. A combination of exome sequencing and Sanger sequencing revealed a nonsense mutation c.322G>T (E108X) in exon 1 of NHS gene, co-segregating with the disease in the family. The nonsense mutation led to the conversion of glutamic acid to a stop codon (E108X), resulting in truncation of the NHS protein. Multiple sequence alignments showed that codon 108, where the mutation (c.322G>T) occurred, was located within a phylogenetically conserved region. The clinical features in all affected males and female carriers are described in detail. We report a nonsense mutation c.322G>T (E108X) in a Chinese family with NHS. Our findings broaden the spectrum of NHS mutations and provide molecular insight into future NHS clinical genetic diagnosis.

  9. Cryopyrin-associated Periodic Syndrome Caused by a Myeloid-Restricted Somatic NLRP3 Mutation

    PubMed Central

    Zhou, Qing; Aksentijevich, Ivona; Wood, Geryl M.; Walts, Avram D.; Hoffmann, Patrycja; Remmers, Elaine F.; Kastner, Daniel L.; Ombrello, Amanda K.

    2015-01-01

    Objective To identify the cause of disease in an adult patient presenting with recent onset fevers, chills, urticaria, fatigue, and profound myalgia, who was negative for cryopyrin-associated periodic syndrome (CAPS) NLRP3 mutations by conventional Sanger DNA sequencing. Methods We performed whole-exome sequencing and targeted deep sequencing using DNA from the patient’s whole blood to identify a possible NLRP3 somatic mutation. We then screened for this mutation in subcloned NLRP3 amplicons from fibroblasts, buccal cells, granulocytes, negatively-selected monocytes, and T and B lymphocytes and further confirmed the somatic mutation by targeted sequencing of exon 3. Results We identified a previously reported CAPS-associated mutation, p.Tyr570Cys, with a mutant allele frequency of 15% based on exome data. Targeted sequencing and subcloning of NLRP3 amplicons confirmed the presence of the somatic mutation in whole blood at a ratio similar to the exome data. The mutant allele frequency was in the range of 13.3%–16.8% in monocytes and 15.2%–18% in granulocytes; Notably, this mutation was either absent or present at a very low frequency in B and T lymphocytes, buccal cells, and in the patient’s cultured fibroblasts. Conclusion These data document the possibility of myeloid-restricted somatic mosaicism in the pathogenesis of CAPS, underscoring the emerging role of massively-parallel sequencing in clinical diagnosis. PMID:25988971

  10. Barley whole exome capture: a tool for genomic research in the genus Hordeum and beyond

    PubMed Central

    Mascher, Martin; Richmond, Todd A; Gerhardt, Daniel J; Himmelbach, Axel; Clissold, Leah; Sampath, Dharanya; Ayling, Sarah; Steuernagel, Burkhard; Pfeifer, Matthias; D'Ascenzo, Mark; Akhunov, Eduard D; Hedley, Pete E; Gonzales, Ana M; Morrell, Peter L; Kilian, Benjamin; Blattner, Frank R; Scholz, Uwe; Mayer, Klaus FX; Flavell, Andrew J; Muehlbauer, Gary J; Waugh, Robbie; Jeddeloh, Jeffrey A; Stein, Nils

    2013-01-01

    Advanced resources for genome-assisted research in barley (Hordeum vulgare) including a whole-genome shotgun assembly and an integrated physical map have recently become available. These have made possible studies that aim to assess genetic diversity or to isolate single genes by whole-genome resequencing and in silico variant detection. However such an approach remains expensive given the 5 Gb size of the barley genome. Targeted sequencing of the mRNA-coding exome reduces barley genomic complexity more than 50-fold, thus dramatically reducing this heavy sequencing and analysis load. We have developed and employed an in-solution hybridization-based sequence capture platform to selectively enrich for a 61.6 megabase coding sequence target that includes predicted genes from the genome assembly of the cultivar Morex as well as publicly available full-length cDNAs and de novo assembled RNA-Seq consensus sequence contigs. The platform provides a highly specific capture with substantial and reproducible enrichment of targeted exons, both for cultivated barley and related species. We show that this exome capture platform provides a clear path towards a broader and deeper understanding of the natural variation residing in the mRNA-coding part of the barley genome and will thus constitute a valuable resource for applications such as mapping-by-sequencing and genetic diversity analyzes. PMID:23889683

  11. Analyzing Somatic Genome Rearrangements in Human Cancers by Using Whole-Exome Sequencing | Office of Cancer Genomics

    Cancer.gov

    Although exome sequencing data are generated primarily to detect single-nucleotide variants and indels, they can also be used to identify a subset of genomic rearrangements whose breakpoints are located in or near exons. Using >4,600 tumor and normal pairs across 15 cancer types, we identified over 9,000 high confidence somatic rearrangements, including a large number of gene fusions.

  12. Advanced Development of TIES-Enhancing Access to Tissue for Cancer Research | Informatics Technology for Cancer Research (ITCR)

    Cancer.gov

    Archived human tissues are an essential resource for translational research. Formalin-fixed, paraffin embedded (FFPE) tissues from cancer patients are used in a wide range of assays, including RT-PCR, SNP profiling, multiplex biomarkers, imaging biomarkers, targeted exome, whole exome, and whole genome sequencing. Remainder FFPE tissues generated during patient care are ‘retrospective'; use of these tissues under specific conditions does not require consent.

  13. Novel candidate genes may be possible predisposing factors revealed by whole exome sequencing in familial esophageal squamous cell carcinoma.

    PubMed

    Forouzanfar, Narjes; Baranova, Ancha; Milanizadeh, Saman; Heravi-Moussavi, Alireza; Jebelli, Amir; Abbaszadegan, Mohammad Reza

    2017-05-01

    Esophageal squamous cell carcinoma is one of the deadliest of all the cancers. Its metastatic properties portend poor prognosis and high rate of recurrence. A more advanced method to identify new molecular biomarkers predicting disease prognosis can be whole exome sequencing. Here, we report the most effective genetic variants of the Notch signaling pathway in esophageal squamous cell carcinoma susceptibility by whole exome sequencing. We analyzed nine probands in unrelated familial esophageal squamous cell carcinoma pedigrees to identify candidate genes. Genomic DNA was extracted and whole exome sequencing performed to generate information about genetic variants in the coding regions. Bioinformatics software applications were utilized to exploit statistical algorithms to demonstrate protein structure and variants conservation. Polymorphic regions were excluded by false-positive investigations. Gene-gene interactions were analyzed for Notch signaling pathway candidates. We identified novel and damaging variants of the Notch signaling pathway through extensive pathway-oriented filtering and functional predictions, which led to the study of 27 candidate novel mutations in all nine patients. Detection of the trinucleotide repeat containing 6B gene mutation (a slice site alteration) in five of the nine probands, but not in any of the healthy samples, suggested that it may be a susceptibility factor for familial esophageal squamous cell carcinoma. Noticeably, 8 of 27 novel candidate gene mutations (e.g. epidermal growth factor, signal transducer and activator of transcription 3, MET) act in a cascade leading to cell survival and proliferation. Our results suggest that the trinucleotide repeat containing 6B mutation may be a candidate predisposing gene in esophageal squamous cell carcinoma. In addition, some of the Notch signaling pathway genetic mutations may act as key contributors to esophageal squamous cell carcinoma.

  14. Genomic and clinical profiling of a national nephrotic syndrome cohort advocates a precision medicine approach to disease management.

    PubMed

    Bierzynska, Agnieszka; McCarthy, Hugh J; Soderquest, Katrina; Sen, Ethan S; Colby, Elizabeth; Ding, Wen Y; Nabhan, Marwa M; Kerecuk, Larissa; Hegde, Shivram; Hughes, David; Marks, Stephen; Feather, Sally; Jones, Caroline; Webb, Nicholas J A; Ognjanovic, Milos; Christian, Martin; Gilbert, Rodney D; Sinha, Manish D; Lord, Graham M; Simpson, Michael; Koziell, Ania B; Welsh, Gavin I; Saleem, Moin A

    2017-04-01

    Steroid Resistant Nephrotic Syndrome (SRNS) in children and young adults has differing etiologies with monogenic disease accounting for 2.9-30% in selected series. Using whole exome sequencing we sought to stratify a national population of children with SRNS into monogenic and non-monogenic forms, and further define those groups by detailed phenotypic analysis. Pediatric patients with SRNS were identified via a national United Kingdom Renal Registry. Whole exome sequencing was performed on 187 patients, of which 12% have a positive family history with a focus on the 53 genes currently known to be associated with nephrotic syndrome. Genetic findings were correlated with individual case disease characteristics. Disease causing variants were detected in 26.2% of patients. Most often this occurred in the three most common SRNS-associated genes: NPHS1, NPHS2, and WT1 but also in 14 other genes. The genotype did not always correlate with expected phenotype since mutations in OCRL, COL4A3, and DGKE associated with specific syndromes were detected in patients with isolated renal disease. Analysis by primary/presumed compared with secondary steroid resistance found 30.8% monogenic disease in primary compared with none in secondary SRNS permitting further mechanistic stratification. Genetic SRNS progressed faster to end stage renal failure, with no documented disease recurrence post-transplantation within this cohort. Primary steroid resistance in which no gene mutation was identified had a 47.8% risk of recurrence. In this unbiased pediatric population, whole exome sequencing allowed screening of all current candidate genes. Thus, deep phenotyping combined with whole exome sequencing is an effective tool for early identification of SRNS etiology, yielding an evidence-based algorithm for clinical management. Copyright © 2016 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  15. Xenograft tumors derived from malignant pleural effusion of the patients with non-small-cell lung cancer as models to explore drug resistance.

    PubMed

    Xu, Yunhua; Zhang, Feifei; Pan, Xiaoqing; Wang, Guan; Zhu, Lei; Zhang, Jie; Wen, Danyi; Lu, Shun

    2018-05-09

    Non-small cell lung cancer (NSCLC) patients with epidermal growth factor receptor (EGFR) mutations or anaplastic lymphoma kinase (ALK) fusions show dramatic responses to specific tyrosine kinase inhibitors (TKIs); however, after 10-12 months, secondary mutations arise that confer resistance. We generated a murine xenograft model using patient-derived NSCLC cells isolated from the pleural fluid of two patients with NSCLC to investigate the mechanisms of resistance against the ALK- and EGFR-targeted TKIs crizotinib and osimertinib, respectively. Genotypes of patient biopsies and xenograft tumors were determined by whole exome sequencing (WES), and patients and xenograft-bearing mice received targeted treatment (crizotinib or osimertinib) accordingly. Xenograft mice were also treated for prolonged periods to identify whether the development of drug resistance and/or treatment responses were associated with tumor size. Finally, the pathology of patients biopsies and xenograft tumors were compared histologically. The histological characteristics and chemotherapy responses of xenograft tumors were similar to the actual patients. WES showed that the genotypes of the xenograft and patient tumors were similar (an echinoderm microtubule-associated protein-like 4-ALK (EML4-ALK) gene fusion (patient/xenograft: CTC15035 EML4-ALK ) and EGFR L858R and T790M mutations (patient/xenograft: CTC15063 EGFR L858R, T790M )). After continuous crizotinib or osimertinib treatment, WES data suggested that acquired ALK E1210K mutation conferred crizotinib resistance in the CTC15035 EML4-ALK xenograft, while decreased frequencies of EGFR L858R and T790M mutations plus the appearance of v-RAF murine sarcoma viral oncogene homolog B (BRAF) G7V mutations and phosphatidylinositol-4-phosphate 3-kinase catalytic subunit type 2 alpha (PIK3C2A) A86fs frame shift mutations led to osimertinib resistance in the CTC15063 EGFR L858R, T790M xenografts. We successfully developed a new method of generating drug resistance xenograft models from liquid biopsies using microfluidic technology, which might be a useful tool to investigate the mechanisms of drug resistance in NSCLC.

  16. Mutations in signal recognition particle SRP54 cause syndromic neutropenia with Shwachman-Diamond-like features.

    PubMed

    Carapito, Raphael; Konantz, Martina; Paillard, Catherine; Miao, Zhichao; Pichot, Angélique; Leduc, Magalie S; Yang, Yaping; Bergstrom, Katie L; Mahoney, Donald H; Shardy, Deborah L; Alsaleh, Ghada; Naegely, Lydie; Kolmer, Aline; Paul, Nicodème; Hanauer, Antoine; Rolli, Véronique; Müller, Joëlle S; Alghisi, Elisa; Sauteur, Loïc; Macquin, Cécile; Morlon, Aurore; Sancho, Consuelo Sebastia; Amati-Bonneau, Patrizia; Procaccio, Vincent; Mosca-Boidron, Anne-Laure; Marle, Nathalie; Osmani, Naël; Lefebvre, Olivier; Goetz, Jacky G; Unal, Sule; Akarsu, Nurten A; Radosavljevic, Mirjana; Chenard, Marie-Pierre; Rialland, Fanny; Grain, Audrey; Béné, Marie-Christine; Eveillard, Marion; Vincent, Marie; Guy, Julien; Faivre, Laurence; Thauvin-Robinet, Christel; Thevenon, Julien; Myers, Kasiani; Fleming, Mark D; Shimamura, Akiko; Bottollier-Lemallaz, Elodie; Westhof, Eric; Lengerke, Claudia; Isidor, Bertrand; Bahram, Seiamak

    2017-11-01

    Shwachman-Diamond syndrome (SDS) (OMIM #260400) is a rare inherited bone marrow failure syndrome (IBMFS) that is primarily characterized by neutropenia and exocrine pancreatic insufficiency. Seventy-five to ninety percent of patients have compound heterozygous loss-of-function mutations in the Shwachman-Bodian-Diamond syndrome (sbds) gene. Using trio whole-exome sequencing (WES) in an sbds-negative SDS family and candidate gene sequencing in additional SBDS-negative SDS cases or molecularly undiagnosed IBMFS cases, we identified 3 independent patients, each of whom carried a de novo missense variant in srp54 (encoding signal recognition particle 54 kDa). These 3 patients shared congenital neutropenia linked with various other SDS phenotypes. 3D protein modeling revealed that the 3 variants affect highly conserved amino acids within the GTPase domain of the protein that are critical for GTP and receptor binding. Indeed, we observed that the GTPase activity of the mutated proteins was impaired. The level of SRP54 mRNA in the bone marrow was 3.6-fold lower in patients with SRP54-mutations than in healthy controls. Profound reductions in neutrophil counts and chemotaxis as well as a diminished exocrine pancreas size in a SRP54-knockdown zebrafish model faithfully recapitulated the human phenotype. In conclusion, autosomal dominant mutations in SRP54, a key member of the cotranslation protein-targeting pathway, lead to syndromic neutropenia with a Shwachman-Diamond-like phenotype.

  17. COPA mutations impair ER-Golgi transport causing hereditary autoimmune-mediated lung disease and arthritis

    PubMed Central

    Watkin, Levi B.; Jessen, Birthe; Wiszniewski, Wojciech; Vece, Timothy; Jan, Max; Sha, Youbao; Thamsen, Maike; Santos-Cortez, Regie L. P.; Lee, Kwanghyuk; Gambin, Tomasz; Forbes, Lisa; Law, Christopher S.; Stray-Petersen, Asbjørg; Cheng, Mickie H.; Mace, Emily M.; Anderson, Mark S.; Liu, Dongfang; Tang, Ling Fung; Nicholas, Sarah K.; Nahmod, Karen; Makedonas, George; Canter, Debra; Kwok, Pui-Yan; Hicks, John; Jones, Kirk D.; Penney, Samantha; Jhangiani, Shalini N.; Rosenblum, Michael D.; Dell, Sharon D.; Waterfield, Michael R.; Papa, Feroz R.; Muzny, Donna M.; Zaitlen, Noah; Leal, Suzanne M.; Gonzaga-Jauregui, Claudia; Boerwinkle, Eric; Eissa, N. Tony; Gibbs, Richard A.; Lupski, James R.; Orange, Jordan S.; Shum, Anthony K.

    2015-01-01

    Advances in genomics have allowed unbiased genetic studies of human disease with unexpected insights into the molecular mechanisms of cellular immunity and autoimmunity1. We performed whole exome sequencing (WES) and targeted sequencing in patients with an apparent Mendelian syndrome of autoimmune disease characterized by high-titer autoantibodies, inflammatory arthritis and interstitial lung disease (ILD). In five families, we identified four unique deleterious variants in the Coatomer subunit alpha (COPA) gene all located within the same functional domain. We hypothesized that mutant COPA leads to a defect in intracellular transport mediated by coat protein complex I (COPI)2–4. We show that COPA variants impair binding of proteins targeted for retrograde Golgi to ER transport and demonstrate that expression of mutant COPA leads to ER stress and the upregulation of Th17 priming cytokines. Consistent with this pattern of cytokine expression, patients demonstrated a significant skewing of CD4+ T cells toward a T helper 17 (Th17) phenotype, an effector T cell population implicated in autoimmunity5,6. Our findings uncover an unexpected molecular link between a vesicular transport protein and a syndrome of autoimmunity manifested by lung and joint disease. These findings provide a unique opportunity to understand how alterations in cellular homeostasis caused by a defect in the intracellular trafficking pathway leads to the generation of human autoimmune disease. PMID:25894502

  18. Novel algorithmic approach predicts tumor mutation load and correlates with immunotherapy clinical outcomes using a defined gene mutation set.

    PubMed

    Roszik, Jason; Haydu, Lauren E; Hess, Kenneth R; Oba, Junna; Joon, Aron Y; Siroy, Alan E; Karpinets, Tatiana V; Stingo, Francesco C; Baladandayuthapani, Veera; Tetzlaff, Michael T; Wargo, Jennifer A; Chen, Ken; Forget, Marie-Andrée; Haymaker, Cara L; Chen, Jie Qing; Meric-Bernstam, Funda; Eterovic, Agda K; Shaw, Kenna R; Mills, Gordon B; Gershenwald, Jeffrey E; Radvanyi, Laszlo G; Hwu, Patrick; Futreal, P Andrew; Gibbons, Don L; Lazar, Alexander J; Bernatchez, Chantale; Davies, Michael A; Woodman, Scott E

    2016-10-25

    While clinical outcomes following immunotherapy have shown an association with tumor mutation load using whole exome sequencing (WES), its clinical applicability is currently limited by cost and bioinformatics requirements. We developed a method to accurately derive the predicted total mutation load (PTML) within individual tumors from a small set of genes that can be used in clinical next generation sequencing (NGS) panels. PTML was derived from the actual total mutation load (ATML) of 575 distinct melanoma and lung cancer samples and validated using independent melanoma (n = 312) and lung cancer (n = 217) cohorts. The correlation of PTML status with clinical outcome, following distinct immunotherapies, was assessed using the Kaplan-Meier method. PTML (derived from 170 genes) was highly correlated with ATML in cutaneous melanoma and lung adenocarcinoma validation cohorts (R 2  = 0.73 and R 2  = 0.82, respectively). PTML was strongly associated with clinical outcome to ipilimumab (anti-CTLA-4, three cohorts) and adoptive T-cell therapy (1 cohort) clinical outcome in melanoma. Clinical benefit from pembrolizumab (anti-PD-1) in lung cancer was also shown to significantly correlate with PTML status (log rank P value < 0.05 in all cohorts). The approach of using small NGS gene panels, already applied to guide employment of targeted therapies, may have utility in the personalized use of immunotherapy in cancer.

  19. Deficiency in GnRH receptor trafficking due to a novel homozygous mutation causes idiopathic hypogonadotropic hypogonadism in three prepubertal siblings.

    PubMed

    Zhang, Rui; Linpeng, Siyuan; Li, Zhuo; Cao, Yingxi; Tan, Hu; Liang, Desheng; Wu, Lingqian

    2018-08-30

    Idiopathic hypogonadotropic hypogonadism (IHH) is characterized by low levels of gonadotropins and delayed or absent sexual development. Most of the patients are diagnosed in late adolescence or early adulthood. Determining the diagnosis of IHH in prepubertal patients can be challenging. Making a timely, correct diagnosis has important clinical implications. Here we aimed to identify the genetic cause of IHH in three prepubertal siblings from a Chinese Han family and give appropriate treatment advice. Using whole exome sequencing (WES), we identified a novel homozygous GNRHR mutation (NM_000406; c.364C>T, p.L122F) in two prepubertal boys with cryptorchidism and micropenis. Sanger sequencing showed that their younger asymptomatic sister also had the homozygous GNRHR mutation. This mutation was inherited from the father and the mother. Immunofluorescence analysis showed that in permeabilized cells, expression of the mutant receptor on the cell membrane was significantly lower than that of wild-type. Calcium mobilization assays demonstrated that c.364C>T in the GNRHR gene is a complete loss-of-function mutation that caused IHH. These results may contribute to the genetic diagnosis of the three prepubertal siblings with IHH. According to this diagnosis, timely hormonal treatment can be given for the three prepubertal patients to induce pubertal development, especially for the asymptomatic female. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Utility of whole exome sequencing in the diagnosis of Usher syndrome: Report of novel compound heterozygous MYO7A mutations.

    PubMed

    Ramzan, Khushnooda; Al-Owain, Mohammed; Huma, Rozeena; Al-Hazzaa, Selwa A F; Al-Ageel, Sarah; Imtiaz, Faiqa; Al-Sayed, Moeenaldeen

    2018-05-01

    Next generation sequencing (NGS), such as targeted panel sequencing, whole-exome sequencing and whole-genome sequencing has led to an exponential increase of elucidated genetic causes in both rare diseases, and common but heterogeneous disorders. NGS is applied in both research and clinical settings, and the clinical exome sequencing (CES), which provides not only the sequence variation data but also clinical interpretation, aids in reaching a final conclusion with regards to a genetic diagnosis. Usher syndrome is a group of disorders, characterized by bilateral sensorineural hearing loss, with or without vestibular dysfunction and retinitis pigmentosa. The index patient, a 2-year-old child was initially diagnosed with nonsyndromic hearing impairment. Homozygosity mapping followed by CES was utilized as a diagnostic tool to identify the genetic basis of his hearing loss. A paternally inherited novel insertion, c.198_199insA (p.Val67Serfs*73) and a maternally inherited novel deletion, c.1219_1226del (p.Phe407Aspfs*33) in gene MYO7A were found in compound heterozygous state in the index patient. The result expands the mutational spectrum of MYO7A. In addition it helped in early diagnosis of the syndrome, for planning and adjustments for the patient, and as well as for future family planning. This study highlights the clinical effectiveness of CES for Usher syndrome diagnosis in a child presented with congenital hearing loss. Copyright © 2018. Published by Elsevier B.V.

  1. Prenatal whole exome sequencing: the views of clinicians, scientists, genetic counsellors and patient representatives.

    PubMed

    Quinlan-Jones, Elizabeth; Kilby, Mark D; Greenfield, Sheila; Parker, Michael; McMullan, Dominic; Hurles, Matthew E; Hillman, Sarah C

    2016-10-01

    Focus groups were conducted with individuals involved in prenatal diagnosis to determine their opinions relating to whole exome sequencing in fetuses with structural anomalies. Five representatives of patient groups/charities (PRGs) and eight clinical professionals (CPs) participated. Three focus groups occurred (the two groups separately and then combined). Framework analysis was performed to elicit themes. A thematic coding frame was identified based on emerging themes. Seven main themes (consent, analysis, interpretation/reinterpretation of results, prenatal issues, uncertainty, incidental findings and information access) with subthemes emerged. The main themes were raised by both groups, apart from 'analysis', which was raised by CPs only. Some subthemes were raised by PRGs and CPs (with different perspectives). Others were raised either by PRGs or CPs, showing differences in patient/clinician agendas. Prenatal consent for whole exome sequencing is not a 'perfect' process, but consent takers should be fully educated regarding the test. PRGs highlighted issues involving access to results, feeling that women want to know all information. PRGs also felt that patients want reinterpretation of results over time, whilst CPs felt that interpretation should be performed at the point of testing only. © 2016 John Wiley & Sons, Ltd. © 2016 John Wiley & Sons, Ltd.

  2. Growth hormone deficiency with advanced bone age: phenotypic interaction between GHRH receptor and CYP21A2 mutations diagnosed by sanger and whole exome sequencing.

    PubMed

    Correa, Fernanda A; França, Marcela M; Fang, Qing; Ma, Qianyi; Bachega, Tania A; Rodrigues, Andresa; Ozel, Bilge A; Li, Jun Z; Mendonca, Berenice B; Jorge, Alexander A L; Carvalho, Luciani R; Camper, Sally A; Arnhold, Ivo J P

    2017-12-01

    Isolated growth hormone deficiency (IGHD) is the most common pituitary hormone deficiency and, clinically, patients have delayed bone age. High sequence similarity between CYP21A2 gene and CYP21A1P pseudogene poses difficulties for exome sequencing interpretation. A 7.5 year-old boy born to second-degree cousins presented with severe short stature (height SDS -3.7) and bone age of 6 years. Clonidine and combined pituitary stimulation tests revealed GH deficiency. Pituitary MRI was normal. The patient was successfully treated with rGH. Surprisingly, at 10.8 years, his bone age had advanced to 13 years, but physical exam, LH and testosterone levels remained prepubertal. An ACTH stimulation test disclosed a non-classic congenital adrenal hyperplasia due to 21-hydroxylase deficiency explaining the bone age advancement and, therefore, treatment with cortisone acetate was added. The genetic diagnosis of a homozygous mutation in GHRHR (p.Leu144His), a homozygous CYP21A2 mutation (p.Val282Leu) and CYP21A1P pseudogene duplication was established by Sanger sequencing, MLPA and whole-exome sequencing. We report the unusual clinical presentation of a patient born to consanguineous parents with two recessive endocrine diseases: non-classic congenital adrenal hyperplasia modifying the classical GH deficiency phenotype. We used a method of paired read mapping aided by neighbouring mis-matches to overcome the challenges of exome-sequencing in the presence of a pseudogene.

  3. SAAS-CNV: A Joint Segmentation Approach on Aggregated and Allele Specific Signals for the Identification of Somatic Copy Number Alterations with Next-Generation Sequencing Data.

    PubMed

    Zhang, Zhongyang; Hao, Ke

    2015-11-01

    Cancer genomes exhibit profound somatic copy number alterations (SCNAs). Studying tumor SCNAs using massively parallel sequencing provides unprecedented resolution and meanwhile gives rise to new challenges in data analysis, complicated by tumor aneuploidy and heterogeneity as well as normal cell contamination. While the majority of read depth based methods utilize total sequencing depth alone for SCNA inference, the allele specific signals are undervalued. We proposed a joint segmentation and inference approach using both signals to meet some of the challenges. Our method consists of four major steps: 1) extracting read depth supporting reference and alternative alleles at each SNP/Indel locus and comparing the total read depth and alternative allele proportion between tumor and matched normal sample; 2) performing joint segmentation on the two signal dimensions; 3) correcting the copy number baseline from which the SCNA state is determined; 4) calling SCNA state for each segment based on both signal dimensions. The method is applicable to whole exome/genome sequencing (WES/WGS) as well as SNP array data in a tumor-control study. We applied the method to a dataset containing no SCNAs to test the specificity, created by pairing sequencing replicates of a single HapMap sample as normal/tumor pairs, as well as a large-scale WGS dataset consisting of 88 liver tumors along with adjacent normal tissues. Compared with representative methods, our method demonstrated improved accuracy, scalability to large cancer studies, capability in handling both sequencing and SNP array data, and the potential to improve the estimation of tumor ploidy and purity.

  4. SAAS-CNV: A Joint Segmentation Approach on Aggregated and Allele Specific Signals for the Identification of Somatic Copy Number Alterations with Next-Generation Sequencing Data

    PubMed Central

    Zhang, Zhongyang; Hao, Ke

    2015-01-01

    Cancer genomes exhibit profound somatic copy number alterations (SCNAs). Studying tumor SCNAs using massively parallel sequencing provides unprecedented resolution and meanwhile gives rise to new challenges in data analysis, complicated by tumor aneuploidy and heterogeneity as well as normal cell contamination. While the majority of read depth based methods utilize total sequencing depth alone for SCNA inference, the allele specific signals are undervalued. We proposed a joint segmentation and inference approach using both signals to meet some of the challenges. Our method consists of four major steps: 1) extracting read depth supporting reference and alternative alleles at each SNP/Indel locus and comparing the total read depth and alternative allele proportion between tumor and matched normal sample; 2) performing joint segmentation on the two signal dimensions; 3) correcting the copy number baseline from which the SCNA state is determined; 4) calling SCNA state for each segment based on both signal dimensions. The method is applicable to whole exome/genome sequencing (WES/WGS) as well as SNP array data in a tumor-control study. We applied the method to a dataset containing no SCNAs to test the specificity, created by pairing sequencing replicates of a single HapMap sample as normal/tumor pairs, as well as a large-scale WGS dataset consisting of 88 liver tumors along with adjacent normal tissues. Compared with representative methods, our method demonstrated improved accuracy, scalability to large cancer studies, capability in handling both sequencing and SNP array data, and the potential to improve the estimation of tumor ploidy and purity. PMID:26583378

  5. Identification of Small Exonic CNV from Whole-Exome Sequence Data and Application to Autism Spectrum Disorder

    PubMed Central

    Poultney, Christopher S.; Goldberg, Arthur P.; Drapeau, Elodie; Kou, Yan; Harony-Nicolas, Hala; Kajiwara, Yuji; De Rubeis, Silvia; Durand, Simon; Stevens, Christine; Rehnström, Karola; Palotie, Aarno; Daly, Mark J.; Ma’ayan, Avi; Fromer, Menachem; Buxbaum, Joseph D.

    2013-01-01

    Copy number variation (CNV) is an important determinant of human diversity and plays important roles in susceptibility to disease. Most studies of CNV carried out to date have made use of chromosome microarray and have had a lower size limit for detection of about 30 kilobases (kb). With the emergence of whole-exome sequencing studies, we asked whether such data could be used to reliably call rare exonic CNV in the size range of 1–30 kilobases (kb), making use of the eXome Hidden Markov Model (XHMM) program. By using both transmission information and validation by molecular methods, we confirmed that small CNV encompassing as few as three exons can be reliably called from whole-exome data. We applied this approach to an autism case-control sample (n = 811, mean per-target read depth = 161) and observed a significant increase in the burden of rare (MAF ≤1%) 1–30 kb CNV, 1–30 kb deletions, and 1–10 kb deletions in ASD. CNV in the 1–30 kb range frequently hit just a single gene, and we were therefore able to carry out enrichment and pathway analyses, where we observed enrichment for disruption of genes in cytoskeletal and autophagy pathways in ASD. In summary, our results showed that XHMM provided an effective means to assess small exonic CNV from whole-exome data, indicated that rare 1–30 kb exonic deletions could contribute to risk in up to 7% of individuals with ASD, and implicated a candidate pathway in developmental delay syndromes. PMID:24094742

  6. Rare variants in RTEL1 are associated with familial interstitial pneumonia.

    PubMed

    Cogan, Joy D; Kropski, Jonathan A; Zhao, Min; Mitchell, Daphne B; Rives, Lynette; Markin, Cheryl; Garnett, Errine T; Montgomery, Keri H; Mason, Wendi R; McKean, David F; Powers, Julia; Murphy, Elissa; Olson, Lana M; Choi, Leena; Cheng, Dong-Sheng; Blue, Elizabeth Marchani; Young, Lisa R; Lancaster, Lisa H; Steele, Mark P; Brown, Kevin K; Schwarz, Marvin I; Fingerlin, Tasha E; Schwartz, David A; Lawson, William E; Loyd, James E; Zhao, Zhongming; Phillips, John A; Blackwell, Timothy S

    2015-03-15

    Up to 20% of cases of idiopathic interstitial pneumonia cluster in families, comprising the syndrome of familial interstitial pneumonia (FIP); however, the genetic basis of FIP remains uncertain in most families. To determine if new disease-causing rare genetic variants could be identified using whole-exome sequencing of affected members from FIP families, providing additional insights into disease pathogenesis. Affected subjects from 25 kindreds were selected from an ongoing FIP registry for whole-exome sequencing from genomic DNA. Candidate rare variants were confirmed by Sanger sequencing, and cosegregation analysis was performed in families, followed by additional sequencing of affected individuals from another 163 kindreds. We identified a potentially damaging rare variant in the gene encoding for regulator of telomere elongation helicase 1 (RTEL1) that segregated with disease and was associated with very short telomeres in peripheral blood mononuclear cells in 1 of 25 families in our original whole-exome sequencing cohort. Evaluation of affected individuals in 163 additional kindreds revealed another eight families (4.7%) with heterozygous rare variants in RTEL1 that segregated with clinical FIP. Probands and unaffected carriers of these rare variants had short telomeres (<10% for age) in peripheral blood mononuclear cells and increased T-circle formation, suggesting impaired RTEL1 function. Rare loss-of-function variants in RTEL1 represent a newly defined genetic predisposition for FIP, supporting the importance of telomere-related pathways in pulmonary fibrosis.

  7. The Autism Simplex Collection: an international, expertly phenotyped autism sample for genetic and phenotypic analyses

    PubMed Central

    2014-01-01

    Background There is an urgent need for expanding and enhancing autism spectrum disorder (ASD) samples, in order to better understand causes of ASD. Methods In a unique public-private partnership, 13 sites with extensive experience in both the assessment and diagnosis of ASD embarked on an ambitious, 2-year program to collect samples for genetic and phenotypic research and begin analyses on these samples. The program was called The Autism Simplex Collection (TASC). TASC sample collection began in 2008 and was completed in 2010, and included nine sites from North America and four sites from Western Europe, as well as a centralized Data Coordinating Center. Results Over 1,700 trios are part of this collection, with DNA from transformed cells now available through the National Institute of Mental Health (NIMH). Autism Diagnostic Interview-Revised (ADI-R) and Autism Diagnostic Observation Schedule-Generic (ADOS-G) measures are available for all probands, as are standardized IQ measures, Vineland Adaptive Behavioral Scales (VABS), the Social Responsiveness Scale (SRS), Peabody Picture Vocabulary Test (PPVT), and physical measures (height, weight, and head circumference). At almost every site, additional phenotypic measures were collected, including the Broad Autism Phenotype Questionnaire (BAPQ) and Repetitive Behavior Scale-Revised (RBS-R), as well as the non-word repetition scale, Communication Checklist (Children’s or Adult), and Aberrant Behavior Checklist (ABC). Moreover, for nearly 1,000 trios, the Autism Genome Project Consortium (AGP) has carried out Illumina 1 M SNP genotyping and called copy number variation (CNV) in the samples, with data being made available through the National Institutes of Health (NIH). Whole exome sequencing (WES) has been carried out in over 500 probands, together with ancestry matched controls, and this data is also available through the NIH. Additional WES is being carried out by the Autism Sequencing Consortium (ASC), where the focus is on sequencing complete trios. ASC sequencing for the first 1,000 samples (all from whole-blood DNA) is complete and data will be released in 2014. Data is being made available through NIH databases (database of Genotypes and Phenotypes (dbGaP) and National Database for Autism Research (NDAR)) with DNA released in Dist 11.0. Primary funding for the collection, genotyping, sequencing and distribution of TASC samples was provided by Autism Speaks and the NIH, including the National Institute of Mental Health (NIMH) and the National Human Genetics Research Institute (NHGRI). Conclusions TASC represents an important sample set that leverages expert sites. Similar approaches, leveraging expert sites and ongoing studies, represent an important path towards further enhancing available ASD samples. PMID:25392729

  8. Identification of a novel mutation in a Chinese family with Nance-Horan syndrome by whole exome sequencing*

    PubMed Central

    Hong, Nan; Chen, Yan-hua; Xie, Chen; Xu, Bai-sheng; Huang, Hui; Li, Xin; Yang, Yue-qing; Huang, Ying-ping; Deng, Jian-lian; Qi, Ming; Gu, Yang-shun

    2014-01-01

    Objective: Nance-Horan syndrome (NHS) is a rare X-linked disorder characterized by congenital nuclear cataracts, dental anomalies, and craniofacial dysmorphisms. Mental retardation was present in about 30% of the reported cases. The purpose of this study was to investigate the genetic and clinical features of NHS in a Chinese family. Methods: Whole exome sequencing analysis was performed on DNA from an affected male to scan for candidate mutations on the X-chromosome. Sanger sequencing was used to verify these candidate mutations in the whole family. Clinical and ophthalmological examinations were performed on all members of the family. Results: A combination of exome sequencing and Sanger sequencing revealed a nonsense mutation c.322G>T (E108X) in exon 1 of NHS gene, co-segregating with the disease in the family. The nonsense mutation led to the conversion of glutamic acid to a stop codon (E108X), resulting in truncation of the NHS protein. Multiple sequence alignments showed that codon 108, where the mutation (c.322G>T) occurred, was located within a phylogenetically conserved region. The clinical features in all affected males and female carriers are described in detail. Conclusions: We report a nonsense mutation c.322G>T (E108X) in a Chinese family with NHS. Our findings broaden the spectrum of NHS mutations and provide molecular insight into future NHS clinical genetic diagnosis. PMID:25091991

  9. Brief Report: Cryopyrin-Associated Periodic Syndrome Caused by a Myeloid-Restricted Somatic NLRP3 Mutation.

    PubMed

    Zhou, Qing; Aksentijevich, Ivona; Wood, Geryl M; Walts, Avram D; Hoffmann, Patrycja; Remmers, Elaine F; Kastner, Daniel L; Ombrello, Amanda K

    2015-09-01

    To identify the cause of disease in an adult patient presenting with recent-onset fevers, chills, urticaria, fatigue, and profound myalgia, who was found to be negative for cryopyrin-associated periodic syndrome (CAPS) NLRP3 mutations by conventional Sanger DNA sequencing. We performed whole-exome sequencing and targeted deep sequencing using DNA from the patient's whole blood to identify a possible NLRP3 somatic mutation. We then screened for this mutation in subcloned NLRP3 amplicons from fibroblasts, buccal cells, granulocytes, negatively selected monocytes, and T and B lymphocytes and further confirmed the somatic mutation by targeted sequencing of exon 3. We identified a previously reported CAPS-associated mutation, p.Tyr570Cys, with a mutant allele frequency of 15% based on exome data. Targeted sequencing and subcloning of NLRP3 amplicons confirmed the presence of the somatic mutation in whole blood at a ratio similar to the exome data. The mutant allele frequency was in the range of 13.3-16.8% in monocytes and 15.2-18% in granulocytes. Notably, this mutation was either absent or present at a very low frequency in B and T lymphocytes, in buccal cells, and in the patient's cultured fibroblasts. Our findings indicate the possibility of myeloid-restricted somatic mosaicism in the pathogenesis of CAPS, underscoring the emerging role of massively parallel sequencing in clinical diagnosis. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.

  10. Whole Exome Analysis of Early Onset Alzheimer’s Disease

    DTIC Science & Technology

    2016-04-01

    Early Onset Alzheimer’s Disease 5a. CONTRACT NUMBER W81XWH-12-1-0013 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR( S ) Margaret A. Pericak...relationship between SORL1, AD, and Parkinsonism . 16 Appendix V: ABCA7 Frameshift Deletion Associated with Alzheimer’s Disease in African Americans...onset Alzheimer disease identified using whole-exome sequencing G. W. Beecham1, B. W. Kunkle1, B. Vardarajan2, P. L. Whitehead1, S . Rolati1, E. R

  11. Identifying Mendelian disease genes with the Variant Effect Scoring Tool

    PubMed Central

    2013-01-01

    Background Whole exome sequencing studies identify hundreds to thousands of rare protein coding variants of ambiguous significance for human health. Computational tools are needed to accelerate the identification of specific variants and genes that contribute to human disease. Results We have developed the Variant Effect Scoring Tool (VEST), a supervised machine learning-based classifier, to prioritize rare missense variants with likely involvement in human disease. The VEST classifier training set comprised ~ 45,000 disease mutations from the latest Human Gene Mutation Database release and another ~45,000 high frequency (allele frequency >1%) putatively neutral missense variants from the Exome Sequencing Project. VEST outperforms some of the most popular methods for prioritizing missense variants in carefully designed holdout benchmarking experiments (VEST ROC AUC = 0.91, PolyPhen2 ROC AUC = 0.86, SIFT4.0 ROC AUC = 0.84). VEST estimates variant score p-values against a null distribution of VEST scores for neutral variants not included in the VEST training set. These p-values can be aggregated at the gene level across multiple disease exomes to rank genes for probable disease involvement. We tested the ability of an aggregate VEST gene score to identify candidate Mendelian disease genes, based on whole-exome sequencing of a small number of disease cases. We used whole-exome data for two Mendelian disorders for which the causal gene is known. Considering only genes that contained variants in all cases, the VEST gene score ranked dihydroorotate dehydrogenase (DHODH) number 2 of 2253 genes in four cases of Miller syndrome, and myosin-3 (MYH3) number 2 of 2313 genes in three cases of Freeman Sheldon syndrome. Conclusions Our results demonstrate the potential power gain of aggregating bioinformatics variant scores into gene-level scores and the general utility of bioinformatics in assisting the search for disease genes in large-scale exome sequencing studies. VEST is available as a stand-alone software package at http://wiki.chasmsoftware.org and is hosted by the CRAVAT web server at http://www.cravat.us PMID:23819870

  12. Identification of small exonic CNV from whole-exome sequence data and application to autism spectrum disorder.

    PubMed

    Poultney, Christopher S; Goldberg, Arthur P; Drapeau, Elodie; Kou, Yan; Harony-Nicolas, Hala; Kajiwara, Yuji; De Rubeis, Silvia; Durand, Simon; Stevens, Christine; Rehnström, Karola; Palotie, Aarno; Daly, Mark J; Ma'ayan, Avi; Fromer, Menachem; Buxbaum, Joseph D

    2013-10-03

    Copy number variation (CNV) is an important determinant of human diversity and plays important roles in susceptibility to disease. Most studies of CNV carried out to date have made use of chromosome microarray and have had a lower size limit for detection of about 30 kilobases (kb). With the emergence of whole-exome sequencing studies, we asked whether such data could be used to reliably call rare exonic CNV in the size range of 1-30 kilobases (kb), making use of the eXome Hidden Markov Model (XHMM) program. By using both transmission information and validation by molecular methods, we confirmed that small CNV encompassing as few as three exons can be reliably called from whole-exome data. We applied this approach to an autism case-control sample (n = 811, mean per-target read depth = 161) and observed a significant increase in the burden of rare (MAF ≤1%) 1-30 kb CNV, 1-30 kb deletions, and 1-10 kb deletions in ASD. CNV in the 1-30 kb range frequently hit just a single gene, and we were therefore able to carry out enrichment and pathway analyses, where we observed enrichment for disruption of genes in cytoskeletal and autophagy pathways in ASD. In summary, our results showed that XHMM provided an effective means to assess small exonic CNV from whole-exome data, indicated that rare 1-30 kb exonic deletions could contribute to risk in up to 7% of individuals with ASD, and implicated a candidate pathway in developmental delay syndromes. Copyright © 2013 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  13. The (in)famous GWAS P-value threshold revisited and updated for low-frequency variants.

    PubMed

    Fadista, João; Manning, Alisa K; Florez, Jose C; Groop, Leif

    2016-08-01

    Genome-wide association studies (GWAS) have long relied on proposed statistical significance thresholds to be able to differentiate true positives from false positives. Although the genome-wide significance P-value threshold of 5 × 10(-8) has become a standard for common-variant GWAS, it has not been updated to cope with the lower allele frequency spectrum used in many recent array-based GWAS studies and sequencing studies. Using a whole-genome- and -exome-sequencing data set of 2875 individuals of European ancestry from the Genetics of Type 2 Diabetes (GoT2D) project and a whole-exome-sequencing data set of 13 000 individuals from five ancestries from the GoT2D and T2D-GENES (Type 2 Diabetes Genetic Exploration by Next-generation sequencing in multi-Ethnic Samples) projects, we describe guidelines for genome- and exome-wide association P-value thresholds needed to correct for multiple testing, explaining the impact of linkage disequilibrium thresholds for distinguishing independent variants, minor allele frequency and ancestry characteristics. We emphasize the advantage of studying recent genetic isolate populations when performing rare and low-frequency genetic association analyses, as the multiple testing burden is diminished due to higher genetic homogeneity.

  14. Increased frequency of de novo copy number variants in congenital heart disease by integrative analysis of single nucleotide polymorphism array and exome sequence data.

    PubMed

    Glessner, Joseph T; Bick, Alexander G; Ito, Kaoru; Homsy, Jason; Rodriguez-Murillo, Laura; Fromer, Menachem; Mazaika, Erica; Vardarajan, Badri; Italia, Michael; Leipzig, Jeremy; DePalma, Steven R; Golhar, Ryan; Sanders, Stephan J; Yamrom, Boris; Ronemus, Michael; Iossifov, Ivan; Willsey, A Jeremy; State, Matthew W; Kaltman, Jonathan R; White, Peter S; Shen, Yufeng; Warburton, Dorothy; Brueckner, Martina; Seidman, Christine; Goldmuntz, Elizabeth; Gelb, Bruce D; Lifton, Richard; Seidman, Jonathan; Hakonarson, Hakon; Chung, Wendy K

    2014-10-24

    Congenital heart disease (CHD) is among the most common birth defects. Most cases are of unknown pathogenesis. To determine the contribution of de novo copy number variants (CNVs) in the pathogenesis of sporadic CHD. We studied 538 CHD trios using genome-wide dense single nucleotide polymorphism arrays and whole exome sequencing. Results were experimentally validated using digital droplet polymerase chain reaction. We compared validated CNVs in CHD cases with CNVs in 1301 healthy control trios. The 2 complementary high-resolution technologies identified 63 validated de novo CNVs in 51 CHD cases. A significant increase in CNV burden was observed when comparing CHD trios with healthy trios, using either single nucleotide polymorphism array (P=7×10(-5); odds ratio, 4.6) or whole exome sequencing data (P=6×10(-4); odds ratio, 3.5) and remained after removing 16% of de novo CNV loci previously reported as pathogenic (P=0.02; odds ratio, 2.7). We observed recurrent de novo CNVs on 15q11.2 encompassing CYFIP1, NIPA1, and NIPA2 and single de novo CNVs encompassing DUSP1, JUN, JUP, MED15, MED9, PTPRE SREBF1, TOP2A, and ZEB2, genes that interact with established CHD proteins NKX2-5 and GATA4. Integrating de novo variants in whole exome sequencing and CNV data suggests that ETS1 is the pathogenic gene altered by 11q24.2-q25 deletions in Jacobsen syndrome and that CTBP2 is the pathogenic gene in 10q subtelomeric deletions. We demonstrate a significantly increased frequency of rare de novo CNVs in CHD patients compared with healthy controls and suggest several novel genetic loci for CHD. © 2014 American Heart Association, Inc.

  15. Rare Variants in RTEL1 Are Associated with Familial Interstitial Pneumonia

    PubMed Central

    Cogan, Joy D.; Zhao, Min; Mitchell, Daphne B.; Rives, Lynette; Markin, Cheryl; Garnett, Errine T.; Montgomery, Keri H.; Mason, Wendi R.; McKean, David F.; Powers, Julia; Murphy, Elissa; Olson, Lana M.; Choi, Leena; Cheng, Dong-Sheng; Blue, Elizabeth Marchani; Young, Lisa R.; Lancaster, Lisa H.; Steele, Mark P.; Brown, Kevin K.; Schwarz, Marvin I.; Fingerlin, Tasha E.; Schwartz, David A.; Lawson, William E.; Loyd, James E.; Zhao, Zhongming; Phillips, John A.; Blackwell, Timothy S.

    2015-01-01

    Rationale: Up to 20% of cases of idiopathic interstitial pneumonia cluster in families, comprising the syndrome of familial interstitial pneumonia (FIP); however, the genetic basis of FIP remains uncertain in most families. Objectives: To determine if new disease-causing rare genetic variants could be identified using whole-exome sequencing of affected members from FIP families, providing additional insights into disease pathogenesis. Methods: Affected subjects from 25 kindreds were selected from an ongoing FIP registry for whole-exome sequencing from genomic DNA. Candidate rare variants were confirmed by Sanger sequencing, and cosegregation analysis was performed in families, followed by additional sequencing of affected individuals from another 163 kindreds. Measurements and Main Results: We identified a potentially damaging rare variant in the gene encoding for regulator of telomere elongation helicase 1 (RTEL1) that segregated with disease and was associated with very short telomeres in peripheral blood mononuclear cells in 1 of 25 families in our original whole-exome sequencing cohort. Evaluation of affected individuals in 163 additional kindreds revealed another eight families (4.7%) with heterozygous rare variants in RTEL1 that segregated with clinical FIP. Probands and unaffected carriers of these rare variants had short telomeres (<10% for age) in peripheral blood mononuclear cells and increased T-circle formation, suggesting impaired RTEL1 function. Conclusions: Rare loss-of-function variants in RTEL1 represent a newly defined genetic predisposition for FIP, supporting the importance of telomere-related pathways in pulmonary fibrosis. PMID:25607374

  16. A gradient-boosting approach for filtering de novo mutations in parent-offspring trios.

    PubMed

    Liu, Yongzhuang; Li, Bingshan; Tan, Renjie; Zhu, Xiaolin; Wang, Yadong

    2014-07-01

    Whole-genome and -exome sequencing on parent-offspring trios is a powerful approach to identifying disease-associated genes by detecting de novo mutations in patients. Accurate detection of de novo mutations from sequencing data is a critical step in trio-based genetic studies. Existing bioinformatic approaches usually yield high error rates due to sequencing artifacts and alignment issues, which may either miss true de novo mutations or call too many false ones, making downstream validation and analysis difficult. In particular, current approaches have much worse specificity than sensitivity, and developing effective filters to discriminate genuine from spurious de novo mutations remains an unsolved challenge. In this article, we curated 59 sequence features in whole genome and exome alignment context which are considered to be relevant to discriminating true de novo mutations from artifacts, and then employed a machine-learning approach to classify candidates as true or false de novo mutations. Specifically, we built a classifier, named De Novo Mutation Filter (DNMFilter), using gradient boosting as the classification algorithm. We built the training set using experimentally validated true and false de novo mutations as well as collected false de novo mutations from an in-house large-scale exome-sequencing project. We evaluated DNMFilter's theoretical performance and investigated relative importance of different sequence features on the classification accuracy. Finally, we applied DNMFilter on our in-house whole exome trios and one CEU trio from the 1000 Genomes Project and found that DNMFilter could be coupled with commonly used de novo mutation detection approaches as an effective filtering approach to significantly reduce false discovery rate without sacrificing sensitivity. The software DNMFilter implemented using a combination of Java and R is freely available from the website at http://humangenome.duke.edu/software. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  17. Rare Variant Association Test with Multiple Phenotypes

    PubMed Central

    Lee, Selyeong; Won, Sungho; Kim, Young Jin; Kim, Yongkang; Kim, Bong-Jo; Park, Taesung

    2016-01-01

    Although genome-wide association studies (GWAS) have now discovered thousands of genetic variants associated with common traits, such variants cannot explain the large degree of “missing heritability,” likely due to rare variants. The advent of next generation sequencing technology has allowed rare variant detection and association with common traits, often by investigating specific genomic regions for rare variant effects on a trait. Although multiply correlated phenotypes are often concurrently observed in GWAS, most studies analyze only single phenotypes, which may lessen statistical power. To increase power, multivariate analyses, which consider correlations between multiple phenotypes, can be used. However, few existing multi-variant analyses can identify rare variants for assessing multiple phenotypes. Here, we propose Multivariate Association Analysis using Score Statistics (MAAUSS), to identify rare variants associated with multiple phenotypes, based on the widely used Sequence Kernel Association Test (SKAT) for a single phenotype. We applied MAAUSS to Whole Exome Sequencing (WES) data from a Korean population of 1,058 subjects, to discover genes associated with multiple traits of liver function. We then assessed validation of those genes by a replication study, using an independent dataset of 3,445 individuals. Notably, we detected the gene ZNF620 among five significant genes. We then performed a simulation study to compare MAAUSS's performance with existing methods. Overall, MAAUSS successfully conserved type 1 error rates and in many cases, had a higher power than the existing methods. This study illustrates a feasible and straightforward approach for identifying rare variants correlated with multiple phenotypes, with likely relevance to missing heritability. PMID:28039885

  18. Variants in the PRPF8 Gene are Associated with Glaucoma.

    PubMed

    Micheal, Shazia; Hogewind, Barend F; Khan, Muhammad Imran; Siddiqui, Sorath Noorani; Zafar, Saemah Nuzhat; Akhtar, Farah; Qamar, Raheel; Hoyng, Carel B; den Hollander, Anneke I

    2018-05-01

    Glaucoma is the cause of irreversible blindness worldwide. Mutations in six genes have been associated with juvenile- and adult-onset familial primary open angle glaucoma (POAG) prior to this report but they explain only a small proportion of the genetic load. The aim of the study is to identify the novel genetic cause of the POAG in the families with adult-onset glaucoma. Whole exome sequencing (WES) was performed on DNA of two affected individuals, and predicted pathogenic variants were evaluated for segregation in four affected and three unaffected Dutch family members by Sanger sequencing. We identified a pathogenic variant (p.Val956Gly) in the PRPF8 gene, which segregates with the disease in Dutch family. Targeted Sanger sequencing of PRPF8 in a panel of 40 POAG families (18 Pakistani and 22 Dutch) revealed two additional nonsynonymous variants (p.Pro13Leu and p.Met25Thr), which segregate with the disease in two other Pakistani families. Both variants were then analyzed in a case-control cohort consisting of Pakistani 320 POAG cases and 250 matched controls. The p.Pro13Leu and p.Met25Thr variants were identified in 14 and 20 cases, respectively, while they were not detected in controls (p values 0.0004 and 0.0001, respectively). Previously, PRPF8 mutations have been associated with autosomal dominant retinitis pigmentosa (RP). The PRPF8 variants associated with POAG are located at the N-terminus, while all RP-associated mutations cluster at the C-terminus, dictating a clear genotype-phenotype correlation.

  19. Identification of Novel Compound Mutations in PLA2G6-Associated Neurodegeneration Patient with Characteristic MRI Imaging.

    PubMed

    Guo, Sen; Yang, Liu; Liu, Huijie; Chen, Wei; Li, Jinchen; Yu, Ping; Sun, Zhong Sheng; Chen, Xiang; Du, Jie; Cai, Tao

    2017-08-01

    Neurodegeneration with brain iron accumulation comprises a heterogeneous group of disorders characterized clinically by progressive motor dysfunction. Accurate identification of de novo and rare inherited mutations is important for determining causative genes of undiagnosed neurological diseases. In the present study, we report a unique case with cerebellar ataxia symptoms and social communication difficulties in an intermarriage family. MRI showed a marked cerebellar atrophy and the "eye-of-the-tiger"-like sign in the medial globus pallidus. Potential genetic defects were screened by whole-exome sequencing (WES) for the patient and four additional family members. A previously undescribed de novo missense mutation (c.1634A>G, p.K545R) in the exon 12 of the PLA2G6 gene was identified. A second rare variant c.1077G>A at the end of exon 7 was also identified, which was inherited from the mother, and resulted in a frame-shift mutation (c.1074_1077del.GTCG) due to an alternative splicing. In conclusion, the identification of the "eye-of-the-tiger"-like sign in the globus pallidus of the patient expands the phenotypic spectrum of PLA2G6-associated disorders and reveals its value in differential diagnosis of PLA2G6-associated disorders.

  20. Rare Compound Heterozygous Frameshift Mutations in ALMS1 Gene Identified Through Exome Sequencing in a Taiwanese Patient With Alström Syndrome.

    PubMed

    Tsai, Meng-Che; Yu, Hui-Wen; Liu, Tsunglin; Chou, Yen-Yin; Chiou, Yuan-Yow; Chen, Peng-Chieh

    2018-01-01

    Alström syndrome (AS) is a rare autosomal recessive disorder that shares clinical features with other ciliopathy-related diseases. Genetic mutation analysis is often required in making differential diagnosis but usually costly in time and effort using conventional Sanger sequencing. Herein we describe a Taiwanese patient presenting cone-rod dystrophy and early-onset obesity that progressed to diabetes mellitus with marked insulin resistance during adolescence. Whole exome sequencing of the patient's genomic DNA identified a novel frameshift mutation in exons 15 (c.10290_10291delTA, p.Lys3431Serfs * 10) and a rare mutation in 16 (c.10823_10824delAG, p.Arg3609Alafs * 6) of ALMS1 gene. The compound heterozygous mutations were predicted to render truncated proteins. This report highlighted the clinical utility of exome sequencing and extended the knowledge of mutation spectrum in AS patients.

  1. Analyzing Somatic Genome Rearrangements in Human Cancers by Using Whole-Exome Sequencing

    PubMed Central

    Yang, Lixing; Lee, Mi-Sook; Lu, Hengyu; Oh, Doo-Yi; Kim, Yeon Jeong; Park, Donghyun; Park, Gahee; Ren, Xiaojia; Bristow, Christopher A.; Haseley, Psalm S.; Lee, Soohyun; Pantazi, Angeliki; Kucherlapati, Raju; Park, Woong-Yang; Scott, Kenneth L.; Choi, Yoon-La; Park, Peter J.

    2016-01-01

    Although exome sequencing data are generated primarily to detect single-nucleotide variants and indels, they can also be used to identify a subset of genomic rearrangements whose breakpoints are located in or near exons. Using >4,600 tumor and normal pairs across 15 cancer types, we identified over 9,000 high confidence somatic rearrangements, including a large number of gene fusions. We find that the 5′ fusion partners of functional fusions are often housekeeping genes, whereas the 3′ fusion partners are enriched in tyrosine kinases. We establish the oncogenic potential of ROR1-DNAJC6 and CEP85L-ROS1 fusions by showing that they can promote cell proliferation in vitro and tumor formation in vivo. Furthermore, we found that ∼4% of the samples have massively rearranged chromosomes, many of which are associated with upregulation of oncogenes such as ERBB2 and TERT. Although the sensitivity of detecting structural alterations from exomes is considerably lower than that from whole genomes, this approach will be fruitful for the multitude of exomes that have been and will be generated, both in cancer and in other diseases. PMID:27153396

  2. Mutations in signal recognition particle SRP54 cause syndromic neutropenia with Shwachman-Diamond–like features

    PubMed Central

    Konantz, Martina; Paillard, Catherine; Miao, Zhichao; Pichot, Angélique; Leduc, Magalie S.; Yang, Yaping; Bergstrom, Katie L.; Mahoney, Donald H.; Shardy, Deborah L.; Alsaleh, Ghada; Naegely, Lydie; Kolmer, Aline; Paul, Nicodème; Hanauer, Antoine; Rolli, Véronique; Müller, Joëlle S.; Alghisi, Elisa; Sauteur, Loïc; Macquin, Cécile; Morlon, Aurore; Sancho, Consuelo Sebastia; Amati-Bonneau, Patrizia; Procaccio, Vincent; Mosca-Boidron, Anne-Laure; Marle, Nathalie; Goetz, Jacky G.; Unal, Sule; Akarsu, Nurten A.; Radosavljevic, Mirjana; Chenard, Marie-Pierre; Rialland, Fanny; Grain, Audrey; Béné, Marie-Christine; Eveillard, Marion; Vincent, Marie; Guy, Julien; Faivre, Laurence; Thauvin-Robinet, Christel; Thevenon, Julien; Fleming, Mark D.; Bottollier-Lemallaz, Elodie; Westhof, Eric; Isidor, Bertrand

    2017-01-01

    Shwachman-Diamond syndrome (SDS) (OMIM #260400) is a rare inherited bone marrow failure syndrome (IBMFS) that is primarily characterized by neutropenia and exocrine pancreatic insufficiency. Seventy-five to ninety percent of patients have compound heterozygous loss-of-function mutations in the Shwachman-Bodian-Diamond syndrome (sbds) gene. Using trio whole-exome sequencing (WES) in an sbds-negative SDS family and candidate gene sequencing in additional SBDS-negative SDS cases or molecularly undiagnosed IBMFS cases, we identified 3 independent patients, each of whom carried a de novo missense variant in srp54 (encoding signal recognition particle 54 kDa). These 3 patients shared congenital neutropenia linked with various other SDS phenotypes. 3D protein modeling revealed that the 3 variants affect highly conserved amino acids within the GTPase domain of the protein that are critical for GTP and receptor binding. Indeed, we observed that the GTPase activity of the mutated proteins was impaired. The level of SRP54 mRNA in the bone marrow was 3.6-fold lower in patients with SRP54-mutations than in healthy controls. Profound reductions in neutrophil counts and chemotaxis as well as a diminished exocrine pancreas size in a SRP54-knockdown zebrafish model faithfully recapitulated the human phenotype. In conclusion, autosomal dominant mutations in SRP54, a key member of the cotranslation protein-targeting pathway, lead to syndromic neutropenia with a Shwachman-Diamond–like phenotype. PMID:28972538

  3. Comprehensive Genomic Characterization of Upper Tract Urothelial Carcinoma.

    PubMed

    Moss, Tyler J; Qi, Yuan; Xi, Liu; Peng, Bo; Kim, Tae-Beom; Ezzedine, Nader E; Mosqueda, Maribel E; Guo, Charles C; Czerniak, Bogdan A; Ittmann, Michael; Wheeler, David A; Lerner, Seth P; Matin, Surena F

    2017-10-01

    Upper urinary tract urothelial cancer (UTUC) may have unique etiologic and genomic factors compared to bladder cancer. To characterize the genomic landscape of UTUC and provide insights into its biology using comprehensive integrated genomic analyses. We collected 31 untreated snap-frozen UTUC samples from two institutions and carried out whole-exome sequencing (WES) of DNA, RNA sequencing (RNAseq), and protein analysis. Adjusting for batch effects, consensus mutation calls from independent pipelines identified DNA mutations, gene expression clusters using unsupervised consensus hierarchical clustering (UCHC), and protein expression levels that were correlated with relevant clinical variables, The Cancer Genome Atlas, and other published data. WES identified mutations in FGFR3 (74.1%; 92% low-grade, 60% high-grade), KMT2D (44.4%), PIK3CA (25.9%), and TP53 (22.2%). APOBEC and CpG were the most common mutational signatures. UCHC of RNAseq data segregated samples into four molecular subtypes with the following characteristics. Cluster 1: no PIK3CA mutations, nonsmokers, high-grade

  4. Combined variants in factor VIII and prostaglandin synthase-1 amplify hemorrhage severity across three generations of descendants.

    PubMed

    Nance, D; Campbell, R A; Rowley, J W; Downie, J M; Jorde, L B; Kahr, W H; Mereby, S A; Tolley, N D; Zimmerman, G A; Weyrich, A S; Rondina, M T

    2016-11-01

    Essentials Co-existent damaging variants are likely to cause more severe bleeding and may go undiagnosed. We determined pathogenic variants in a three-generational pedigree with excessive bleeding. Bleeding occurred with concurrent variants in prostaglandin synthase-1 (PTGS-1) and factor VIII. The PTGS-1 variant was associated with functional defects in the arachidonic acid pathway. Background Inherited human variants that concurrently cause disorders of primary hemostasis and coagulation are uncommon. Nevertheless, rare cases of co-existent damaging variants are likely to cause more severe bleeding and may go undiagnosed. Objective We prospectively sought to determine pathogenic variants in a three-generational pedigree with excessive bleeding. Patients/methods Platelet number, size and light transmission aggregometry to multiple agonists were evaluated in pedigree members. Transmission electron microscopy determined platelet morphology and granule content. Thromboxane release studies and light transmission aggregometry in the presence or absence of prostaglandin G 2 assessed specific functional defects in the arachidonic acid pathway. Whole exome sequencing (WES) and targeted nucleotide sequence analysis identified potentially deleterious variants. Results Pedigree members with excessive bleeding had impaired platelet aggregation with arachidonic acid, epinephrine and low-dose ADP, as well as reduced platelet thromboxane B 2 release. Impaired platelet aggregation in response to 2MesADP was rescued with prostaglandin G 2 , a prostaglandin intermediate downstream of prostaglandin synthase-1 (PTGS-1) that aids in the production of thromboxane. WES identified a non-synonymous variant in the signal peptide of PTGS-1 (rs3842787; c.50C>T; p.Pro17Leu) that completely co-segregated with disease phenotype. A variant in the F8 gene causing hemophilia A (rs28935203; c.5096A>T; p.Y1699F) was also identified. Individuals with both variants had more severe bleeding manifestations than characteristic of mild hemophilia A alone. Conclusion We provide the first report of co-existing variants in both F8 and PTGS-1 genes in a three-generation pedigree. The PTGS-1 variant was associated with specific functional defects in the arachidonic acid pathway and more severe hemorrhage. © 2016 International Society on Thrombosis and Haemostasis.

  5. Novel compound heterozygous mutations in the GPR98 (USH2C) gene identified by whole exome sequencing in a Moroccan deaf family.

    PubMed

    Bousfiha, Amale; Bakhchane, Amina; Charoute, Hicham; Detsouli, Mustapha; Rouba, Hassan; Charif, Majida; Lenaers, Guy; Barakat, Abdelhamid

    2017-10-01

    In the present work, we identified two novel compound heterozygote mutations in the GPR98 (G protein-coupled receptor 98) gene causing Usher syndrome. Whole-exome sequencing was performed to study the genetic causes of Usher syndrome in a Moroccan family with three affected siblings. We identify two novel compound heterozygote mutations (c.1054C > A, c.16544delT) in the GPR98 gene in the three affected siblings carrying post-linguale bilateral moderate hearing loss with normal vestibular functions and before installing visual disturbances. This is the first time that mutations in the GPR98 gene are described in the Moroccan deaf patients.

  6. Whole-exome sequencing identifies common and rare variant metabolic QTLs in a Middle Eastern population.

    PubMed

    Yousri, Noha A; Fakhro, Khalid A; Robay, Amal; Rodriguez-Flores, Juan L; Mohney, Robert P; Zeriri, Hassina; Odeh, Tala; Kader, Sara Abdul; Aldous, Eman K; Thareja, Gaurav; Kumar, Manish; Al-Shakaki, Alya; Chidiac, Omar M; Mohamoud, Yasmin A; Mezey, Jason G; Malek, Joel A; Crystal, Ronald G; Suhre, Karsten

    2018-01-23

    Metabolomics-genome-wide association studies (mGWAS) have uncovered many metabolic quantitative trait loci (mQTLs) influencing human metabolic individuality, though predominantly in European cohorts. By combining whole-exome sequencing with a high-resolution metabolomics profiling for a highly consanguineous Middle Eastern population, we discover 21 common variant and 12 functional rare variant mQTLs, of which 45% are novel altogether. We fine-map 10 common variant mQTLs to new metabolite ratio associations, and 11 common variant mQTLs to putative protein-altering variants. This is the first work to report common and rare variant mQTLs linked to diseases and/or pharmacological targets in a consanguineous Arab cohort, with wide implications for precision medicine in the Middle East.

  7. NGS-based approach to determine the presence of HPV and their sites of integration in human cancer genome.

    PubMed

    Chandrani, P; Kulkarni, V; Iyer, P; Upadhyay, P; Chaubal, R; Das, P; Mulherkar, R; Singh, R; Dutt, A

    2015-06-09

    Human papilloma virus (HPV) accounts for the most common cause of all virus-associated human cancers. Here, we describe the first graphic user interface (GUI)-based automated tool 'HPVDetector', for non-computational biologists, exclusively for detection and annotation of the HPV genome based on next-generation sequencing data sets. We developed a custom-made reference genome that comprises of human chromosomes along with annotated genome of 143 HPV types as pseudochromosomes. The tool runs on a dual mode as defined by the user: a 'quick mode' to identify presence of HPV types and an 'integration mode' to determine genomic location for the site of integration. The input data can be a paired-end whole-exome, whole-genome or whole-transcriptome data set. The HPVDetector is available in public domain for download: http://www.actrec.gov.in/pi-webpages/AmitDutt/HPVdetector/HPVDetector.html. On the basis of our evaluation of 116 whole-exome, 23 whole-transcriptome and 2 whole-genome data, we were able to identify presence of HPV in 20 exomes and 4 transcriptomes of cervical and head and neck cancer tumour samples. Using the inbuilt annotation module of HPVDetector, we found predominant integration of viral gene E7, a known oncogene, at known 17q21, 3q27, 7q35, Xq28 and novel sites of integration in the human genome. Furthermore, co-infection with high-risk HPVs such as 16 and 31 were found to be mutually exclusive compared with low-risk HPV71. HPVDetector is a simple yet precise and robust tool for detecting HPV from tumour samples using variety of next-generation sequencing platforms including whole genome, whole exome and transcriptome. Two different modes (quick detection and integration mode) along with a GUI widen the usability of HPVDetector for biologists and clinicians with minimal computational knowledge.

  8. Spatial and temporal clonal evolution of intrahepatic cholangiocarcinoma.

    PubMed

    Dong, Liang-Qing; Shi, Yang; Ma, Li-Jie; Yang, Liu-Xiao; Wang, Xiao-Ying; Zhang, Shu; Wang, Zhi-Chao; Duan, Meng; Zhang, Zhao; Liu, Long-Zi; Zheng, Bo-Hao; Ding, Zhen-Bin; Ke, Ai-Wu; Gao, Da-Ming; Yuan, Ke; Zhou, Jian; Fan, Jia; Xi, Ruibin; Gao, Qiang

    2018-07-01

    Intrahepatic cholangiocarcinoma (ICC) is the second-most lethal primary liver cancer. Little is known about intratumoral heterogeneity (ITH) and its impact on ICC progression. We aimed to investigate the ITH of ICC in the hope of helping to develop new therapeutic strategies. We obtained 69 spatially distinct regions from six operable ICCs. Patient-derived primary cancer cells (PDPCs) were established for each region, followed by whole-exome sequencing (WES) and multi-level validation. We observed widespread ITH for both somatic mutations and clonal architecture, shaped by multiple mechanisms, like clonal "illusion", parallel evolution and chromosome instability. A median of 60.3% of mutations were heterogeneous, among which 85% of the driver mutations were located on the branches of tumor phylogenetic trees. Many truncal and clonal driver mutations occurred in tumor suppressor genes, such as TP53, SMARCB1 and PBRM1 that are involved in DNA repair and chromatin-remodeling. Genome doubling occurred in most cases (5/6) after the accumulation of truncal mutations and was shared by all intratumoral sub-regions. In all cases, ongoing chromosomal instability is evident throughout the evolutionary trajectory of ICC. The recurrence of ICC1239 provided evidence to support the polyclonal metastatic seeding in ICC. The change of mutation landscape and internal diversity among subclones during metastasis, such as the loss of chemoresistance mediator, can be used for new treatment strategies. Targeted therapy against truncal alterations, such as IDH1, JAK1, and KRAS mutations and EGFR amplification, was developed in 5/6 patients. Integrated investigations of spatial ITH and clonal evolution may provide an important molecular foundation for enhanced understanding of tumorigenesis and progression in ICC. We applied multiregional whole-exome sequencing to investigate the evolution of intrahepatic cholangiocarcinoma (ICC). The results revealed that many factors, such as parallel evolution and chromosome instability, may participate and promote the branch diversity of ICC. Interestingly, in one patient with primary and recurrent metastatic tumors, we found evidence of polyclonal metastatic seeding, indicating that symbiotic communities of multiple clones existed and were maintained during metastasis. More realistically, some truncal alterations, such as IDH1, JAK1, and KRAS mutations and EGFR amplification, could be promising treatment targets in patients with ICC. Copyright © 2018 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  9. Comprehensive benchmarking of SNV callers for highly admixed tumor data

    PubMed Central

    Bohnert, Regina; Vivas, Sonia

    2017-01-01

    Precision medicine attempts to individualize cancer therapy by matching tumor-specific genetic changes with effective targeted therapies. A crucial first step in this process is the reliable identification of cancer-relevant variants, which is considerably complicated by the impurity and heterogeneity of clinical tumor samples. We compared the impact of admixture of non-cancerous cells and low somatic allele frequencies on the sensitivity and precision of 19 state-of-the-art SNV callers. We studied both whole exome and targeted gene panel data and up to 13 distinct parameter configurations for each tool. We found vast differences among callers. Based on our comprehensive analyses we recommend joint tumor-normal calling with MuTect, EBCall or Strelka for whole exome somatic variant calling, and HaplotypeCaller or FreeBayes for whole exome germline calling. For targeted gene panel data on a single tumor sample, LoFreqStar performed best. We further found that tumor impurity and admixture had a negative impact on precision, and in particular, sensitivity in whole exome experiments. At admixture levels of 60% to 90% sometimes seen in pathological biopsies, sensitivity dropped significantly, even when variants were originally present in the tumor at 100% allele frequency. Sensitivity to low-frequency SNVs improved with targeted panel data, but whole exome data allowed more efficient identification of germline variants. Effective somatic variant calling requires high-quality pathological samples with minimal admixture, a consciously selected sequencing strategy, and the appropriate variant calling tool with settings optimized for the chosen type of data. PMID:29020110

  10. Sensitivity to sequencing depth in single-cell cancer genomics.

    PubMed

    Alves, João M; Posada, David

    2018-04-16

    Querying cancer genomes at single-cell resolution is expected to provide a powerful framework to understand in detail the dynamics of cancer evolution. However, given the high costs currently associated with single-cell sequencing, together with the inevitable technical noise arising from single-cell genome amplification, cost-effective strategies that maximize the quality of single-cell data are critically needed. Taking advantage of previously published single-cell whole-genome and whole-exome cancer datasets, we studied the impact of sequencing depth and sampling effort towards single-cell variant detection. Five single-cell whole-genome and whole-exome cancer datasets were independently downscaled to 25, 10, 5, and 1× sequencing depth. For each depth level, ten technical replicates were generated, resulting in a total of 6280 single-cell BAM files. The sensitivity of variant detection, including structural and driver mutations, genotyping, clonal inference, and phylogenetic reconstruction to sequencing depth was evaluated using recent tools specifically designed for single-cell data. Altogether, our results suggest that for relatively large sample sizes (25 or more cells) sequencing single tumor cells at depths > 5× does not drastically improve somatic variant discovery, characterization of clonal genotypes, or estimation of single-cell phylogenies. We suggest that sequencing multiple individual tumor cells at a modest depth represents an effective alternative to explore the mutational landscape and clonal evolutionary patterns of cancer genomes.

  11. Homozygosity Mapping and Whole Exome Sequencing to Detect SLC45A2 and G6PC3 Mutations in a Single Patient with Oculocutaneous Albinism and Neutropenia

    PubMed Central

    Cullinane, Andrew R.; Vilboux, Thierry; O’Brien, Kevin; Curry, James A.; Maynard, Dawn M.; Carlson-Donohoe, Hannah; Ciccone, Carla; Markello, Thomas C.; Gunay-Aygun, Meral; Huizing, Marjan; Gahl, William A.

    2011-01-01

    We evaluated a 32 year-old woman whose oculocutaneous albinism, bleeding diathesis, neutropenia, and history of recurrent infections prompted consideration of the diagnosis of Hermansky-Pudlak syndrome type 2 (HPS-2). This was ruled out due to the presence of platelet delta granules and absence of AP3B1 mutations. Since parental consanguinity suggested an autosomal recessive mode of inheritance, we employed homozygosity mapping, followed by whole exome sequencing, to identify two candidate disease-causing genes, SLC45A2 and G6PC3. Conventional di-deoxy sequencing confirmed pathogenic mutations in SLC45A2, associated with oculocutaneous albinism type 4 (OCA-4), and G6PC3, associated with neutropenia. The substantial reduction of SLC45A2 protein in the patient’s melanocytes caused the mis-localization of tyrosinase from melanosomes to the plasma membrane and also led to the incorporation of tyrosinase into exosomes and secretion into the culture medium, explaining the hypopigmentation in OCA-4. Our patient’s G6PC3 mRNA expression level was also reduced, leading to increased apoptosis of her fibroblasts under ER stress. This report describes the first North American patient with OCA-4, the first culture of human OCA-4 melanocytes, and the use of homozygosity mapping followed by whole exome sequencing to identify disease-causing mutations in multiple genes in a single affected individual. PMID:21677667

  12. Application of exome sequencing in the search for genetic causes of rare disorders of copper metabolism.

    PubMed

    Fuchs, Sabine A; Harakalova, Magdalena; van Haaften, Gijs; van Hasselt, Peter M; Cuppen, Edwin; Houwen, Roderick H J

    2012-07-01

    The genetic defect in a number of rare disorders of metal metabolism remains elusive. The limited number of patients with these disorders impedes the identification of the causative gene through positional cloning, which requires numerous families with multiple affected individuals. However, with next-generation sequencing all coding DNA (exomes) or whole genomes of patients can be sequenced to identify genes that are consistently mutated in patients. With this strategy only a limited number of patients and/or pedigrees is needed, bringing the elucidation of the genetic cause of even very rare diseases within reach. The main challenge associated with whole exome sequencing is the identification of the disease-causing mutation(s) among abundant genetic candidate variants. We describe several strategies to manage this data wealth, including comparison with control databases, increasing the number of patients and controls, and reducing the genomic region under investigation through homozygosity mapping. In this review we introduce a number of rare disorders of copper metabolism, with a suspected but yet unknown monogenetic cause, as an attractive target for this strategy. We anticipate that use of these novel techniques will identify the basic defect in the disorders described in this review, as well as in other genetic disorders of metal metabolism, in the next few years.

  13. Exome copy number variation detection: Use of a pool of unrelated healthy tissue as reference sample.

    PubMed

    Wenric, Stephane; Sticca, Tiberio; Caberg, Jean-Hubert; Josse, Claire; Fasquelle, Corinne; Herens, Christian; Jamar, Mauricette; Max, Stéphanie; Gothot, André; Caers, Jo; Bours, Vincent

    2017-01-01

    An increasing number of bioinformatic tools designed to detect CNVs (copy number variants) in tumor samples based on paired exome data where a matched healthy tissue constitutes the reference have been published in the recent years. The idea of using a pool of unrelated healthy DNA as reference has previously been formulated but not thoroughly validated. As of today, the gold standard for CNV calling is still aCGH but there is an increasing interest in detecting CNVs by exome sequencing. We propose to design a metric allowing the comparison of two CNV profiles, independently of the technique used and assessed the validity of using a pool of unrelated healthy DNA instead of a matched healthy tissue as reference in exome-based CNV detection. We compared the CNV profiles obtained with three different approaches (aCGH, exome sequencing with a matched healthy tissue as reference, exome sequencing with a pool of eight unrelated healthy tissue as reference) on three multiple myeloma samples. We show that the usual analyses performed to compare CNV profiles (deletion/amplification ratios and CNV size distribution) lack in precision when confronted with low LRR values, as they only consider the binary status of each CNV. We show that the metric-based distance constitutes a more accurate comparison of two CNV profiles. Based on these analyses, we conclude that a reliable picture of CNV alterations in multiple myeloma samples can be obtained from whole-exome sequencing in the absence of a matched healthy sample. © 2016 WILEY PERIODICALS, INC.

  14. Asparagine synthetase deficiency detected by whole exome sequencing causes congenital microcephaly, epileptic encephalopathy and psychomotor delay.

    PubMed

    Ben-Salem, Salma; Gleeson, Joseph G; Al-Shamsi, Aisha M; Islam, Barira; Hertecant, Jozef; Ali, Bassam R; Al-Gazali, Lihadh

    2015-06-01

    Deficiency of Asparagine Synthetase (ASNSD, MIM 615574) is a very rare autosomal recessive disorder presenting with some brain abnormalities. Affected individuals have congenital microcephaly and progressive encephalopathy associated with severe intellectual disability and intractable seizures. The loss of function of the asparagine synthetase (ASNS, EC 6.3.5.4), particularly in the brain, is the major cause of this particular congenital microcephaly. In this study, we clinically evaluated an affected child from a consanguineous Emirati family presenting with congenital microcephaly and epileptic encephalopathy. In addition, whole-exome sequencing revealed a novel homozygous substitution mutation (c.1193A > C) in the ASNS gene. This mutation resulted in the substitution of highly conserved tyrosine residue by cysteine (p.Y398C). Molecular modeling analysis predicts hypomorphic and damaging effects of this mutation on the protein structure and altering its enzymatic activity. Therefore, we conclude that the loss of ASNS function is most likely the cause of this condition in the studied family. This report brings the number of reported families with this very rare disorder to five and the number of pathogenic mutations in the ASNS gene to four. This finding extends the ASNS pathogenic mutations spectrum and highlights the utility of whole-exome sequencing in elucidation the causes of rare recessive disorders that are heterogeneous and/or overlap with other conditions.

  15. Use of whole exome sequencing for the identification of Ito-based arrhythmia mechanism and therapy.

    PubMed

    Sturm, Amy C; Kline, Crystal F; Glynn, Patric; Johnson, Benjamin L; Curran, Jerry; Kilic, Ahmet; Higgins, Robert S D; Binkley, Philip F; Janssen, Paul M L; Weiss, Raul; Raman, Subha V; Fowler, Steven J; Priori, Silvia G; Hund, Thomas J; Carnes, Cynthia A; Mohler, Peter J

    2015-05-26

    Identified genetic variants are insufficient to explain all cases of inherited arrhythmia. We tested whether the integration of whole exome sequencing with well-established clinical, translational, and basic science platforms could provide rapid and novel insight into human arrhythmia pathophysiology and disease treatment. We report a proband with recurrent ventricular fibrillation, resistant to standard therapeutic interventions. Using whole-exome sequencing, we identified a variant in a previously unidentified exon of the dipeptidyl aminopeptidase-like protein-6 (DPP6) gene. This variant is the first identified coding mutation in DPP6 and augments cardiac repolarizing current (Ito) causing pathological changes in Ito and action potential morphology. We designed a therapeutic regimen incorporating dalfampridine to target Ito. Dalfampridine, approved for multiple sclerosis, normalized the ECG and reduced arrhythmia burden in the proband by >90-fold. This was combined with cilostazol to accelerate the heart rate to minimize the reverse-rate dependence of augmented Ito. We describe a novel arrhythmia mechanism and therapeutic approach to ameliorate the disease. Specifically, we identify the first coding variant of DPP6 in human ventricular fibrillation. These findings illustrate the power of genetic approaches for the elucidation and treatment of disease when carefully integrated with clinical and basic/translational research teams. © 2015 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.

  16. Adrenal Insufficiency, Sex Reversal, and Angelman Syndrome due to Uniparental Disomy Unmasking a Mutation in CYP11A1.

    PubMed

    Kim, Ahlee; Fujimoto, Masanobu; Hwa, Vivian; Backeljauw, Philippe; Dauber, Andrew

    2018-01-01

    Cholesterol side-chain cleavage enzyme (P450scc) deficiency is a rare genetic disorder causing primary adrenal insufficiency with or without a 46,XY disorder of sexual development (DSD). Herein, we report a case of the combination of primary adrenal insufficiency, a DSD (testes with female external genitalia in a setting of a 47,XXY karyotype), and Angelman syndrome. Comprehensive genetic analyses were performed, including a single nucleotide polymorphism microarray and whole-exome sequencing. In vitro studies were performed to evaluate the pathogenicity of the novel mutation that was identified by whole-exome sequencing. The patient was found to have segmental uniparental disomy (UPD) of chromosome 15 explaining her diagnosis of Angelman syndrome. Whole-exome sequencing further revealed a novel homozygous intronic variant in CYP11A1, the gene encoding P450scc, found within the region of UPD. In vitro studies confirmed that this variant led to decreased efficiency of CYP11A1 splicing. We report the first case of the combination of 2 rare genetic disorders, Angelman syndrome, and P450scc deficiency. After 20 years of diagnostic efforts, significant advances in genetic diagnostic technology allowed us to determine that these 2 disorders originate from a unified genetic etiology, segmental UPD unmasking a novel recessive mutation in CYP11A1. © 2018 S. Karger AG, Basel.

  17. Identification of Candidate Gene Variants in Korean MODY Families by Whole-Exome Sequencing.

    PubMed

    Shim, Ye Jee; Kim, Jung Eun; Hwang, Su-Kyeong; Choi, Bong Seok; Choi, Byung Ho; Cho, Eun-Mi; Jang, Kyoung Mi; Ko, Cheol Woo

    2015-01-01

    To date, 13 genes causing maturity-onset diabetes of the young (MODY) have been identified. However, there is a big discrepancy in the genetic locus between Asian and Caucasian patients with MODY. Thus, we conducted whole-exome sequencing in Korean MODY families to identify causative gene variants. Six MODY probands and their family members were included. Variants in the dbSNP135 and TIARA databases for Koreans and the variants with minor allele frequencies >0.5% of the 1000 Genomes database were excluded. We selected only the functional variants (gain of stop codon, frameshifts and nonsynonymous single-nucleotide variants) and conducted a case-control comparison in the family members. The selected variants were scanned for the previously introduced gene set implicated in glucose metabolism. Three variants c.620C>T:p.Thr207Ile in PTPRD, c.559C>G:p.Gln187Glu in SYT9, and c.1526T>G:p.Val509Gly in WFS1 were respectively identified in 3 families. We could not find any disease-causative alleles of known MODY 1-13 genes. Based on the predictive program, Thr207Ile in PTPRD was considered pathogenic. Whole-exome sequencing is a valuable method for the genetic diagnosis of MODY. Further evaluation is necessary about the role of PTPRD, SYT9 and WFS1 in normal insulin release from pancreatic beta cells. © 2015 S. Karger AG, Basel.

  18. Isolated and Syndromic Retinal Dystrophy Caused by Biallelic Mutations in RCBTB1, a Gene Implicated in Ubiquitination.

    PubMed

    Coppieters, Frauke; Ascari, Giulia; Dannhausen, Katharina; Nikopoulos, Konstantinos; Peelman, Frank; Karlstetter, Marcus; Xu, Mingchu; Brachet, Cécile; Meunier, Isabelle; Tsilimbaris, Miltiadis K; Tsika, Chrysanthi; Blazaki, Styliani V; Vergult, Sarah; Farinelli, Pietro; Van Laethem, Thalia; Bauwens, Miriam; De Bruyne, Marieke; Chen, Rui; Langmann, Thomas; Sui, Ruifang; Meire, Françoise; Rivolta, Carlo; Hamel, Christian P; Leroy, Bart P; De Baere, Elfride

    2016-08-04

    Inherited retinal dystrophies (iRDs) are a group of genetically and clinically heterogeneous conditions resulting from mutations in over 250 genes. Here, homozygosity mapping and whole-exome sequencing (WES) in a consanguineous family revealed a homozygous missense mutation, c.973C>T (p.His325Tyr), in RCBTB1. In affected individuals, it was found to segregate with retinitis pigmentosa (RP), goiter, primary ovarian insufficiency, and mild intellectual disability. Subsequent analysis of WES data in different cohorts uncovered four additional homozygous missense mutations in five unrelated families in whom iRD segregates with or without syndromic features. Ocular phenotypes ranged from typical RP starting in the second decade to chorioretinal dystrophy with a later age of onset. The five missense mutations affect highly conserved residues either in the sixth repeat of the RCC1 domain or in the BTB1 domain. A founder haplotype was identified for mutation c.919G>A (p.Val307Met), occurring in two families of Mediterranean origin. We showed ubiquitous mRNA expression of RCBTB1 and demonstrated predominant RCBTB1 localization in human inner retina. RCBTB1 was very recently shown to be involved in ubiquitination, more specifically as a CUL3 substrate adaptor. Therefore, the effect on different components of the CUL3 and NFE2L2 (NRF2) pathway was assessed in affected individuals' lymphocytes, revealing decreased mRNA expression of NFE2L2 and several NFE2L2 target genes. In conclusion, our study puts forward mutations in RCBTB1 as a cause of autosomal-recessive non-syndromic and syndromic iRD. Finally, our data support a role for impaired ubiquitination in the pathogenetic mechanism of RCBTB1 mutations. Copyright © 2016 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  19. Fifteen years of research on oral-facial-digital syndromes: from 1 to 16 causal genes.

    PubMed

    Bruel, Ange-Line; Franco, Brunella; Duffourd, Yannis; Thevenon, Julien; Jego, Laurence; Lopez, Estelle; Deleuze, Jean-François; Doummar, Diane; Giles, Rachel H; Johnson, Colin A; Huynen, Martijn A; Chevrier, Véronique; Burglen, Lydie; Morleo, Manuela; Desguerres, Isabelle; Pierquin, Geneviève; Doray, Bérénice; Gilbert-Dussardier, Brigitte; Reversade, Bruno; Steichen-Gersdorf, Elisabeth; Baumann, Clarisse; Panigrahi, Inusha; Fargeot-Espaliat, Anne; Dieux, Anne; David, Albert; Goldenberg, Alice; Bongers, Ernie; Gaillard, Dominique; Argente, Jesús; Aral, Bernard; Gigot, Nadège; St-Onge, Judith; Birnbaum, Daniel; Phadke, Shubha R; Cormier-Daire, Valérie; Eguether, Thibaut; Pazour, Gregory J; Herranz-Pérez, Vicente; Goldstein, Jaclyn S; Pasquier, Laurent; Loget, Philippe; Saunier, Sophie; Mégarbané, André; Rosnet, Olivier; Leroux, Michel R; Wallingford, John B; Blacque, Oliver E; Nachury, Maxence V; Attie-Bitach, Tania; Rivière, Jean-Baptiste; Faivre, Laurence; Thauvin-Robinet, Christel

    2017-06-01

    Oral-facial-digital syndromes (OFDS) gather rare genetic disorders characterised by facial, oral and digital abnormalities associated with a wide range of additional features (polycystic kidney disease, cerebral malformations and several others) to delineate a growing list of OFDS subtypes. The most frequent, OFD type I, is caused by a heterozygous mutation in the OFD1 gene encoding a centrosomal protein. The wide clinical heterogeneity of OFDS suggests the involvement of other ciliary genes. For 15 years, we have aimed to identify the molecular bases of OFDS. This effort has been greatly helped by the recent development of whole-exome sequencing (WES). Here, we present all our published and unpublished results for WES in 24 cases with OFDS. We identified causal variants in five new genes ( C2CD3 , TMEM107 , INTU , KIAA0753 and IFT57 ) and related the clinical spectrum of four genes in other ciliopathies ( C5orf42 , TMEM138 , TMEM231 and WDPCP ) to OFDS. Mutations were also detected in two genes previously implicated in OFDS. Functional studies revealed the involvement of centriole elongation, transition zone and intraflagellar transport defects in OFDS, thus characterising three ciliary protein modules: the complex KIAA0753-FOPNL-OFD1, a regulator of centriole elongation; the Meckel-Gruber syndrome module, a major component of the transition zone; and the CPLANE complex necessary for IFT-A assembly. OFDS now appear to be a distinct subgroup of ciliopathies with wide heterogeneity, which makes the initial classification obsolete. A clinical classification restricted to the three frequent/well-delineated subtypes could be proposed, and for patients who do not fit one of these three main subtypes, a further classification could be based on the genotype. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  20. Bi-allelic Mutations in PKD1L1 Are Associated with Laterality Defects in Humans.

    PubMed

    Vetrini, Francesco; D'Alessandro, Lisa C A; Akdemir, Zeynep C; Braxton, Alicia; Azamian, Mahshid S; Eldomery, Mohammad K; Miller, Kathryn; Kois, Chelsea; Sack, Virginia; Shur, Natasha; Rijhsinghani, Asha; Chandarana, Jignesh; Ding, Yan; Holtzman, Judy; Jhangiani, Shalini N; Muzny, Donna M; Gibbs, Richard A; Eng, Christine M; Hanchard, Neil A; Harel, Tamar; Rosenfeld, Jill A; Belmont, John W; Lupski, James R; Yang, Yaping

    2016-10-06

    Disruption of the establishment of left-right (L-R) asymmetry leads to situs anomalies ranging from situs inversus totalis (SIT) to situs ambiguus (heterotaxy). The genetic causes of laterality defects in humans are highly heterogeneous. Via whole-exome sequencing (WES), we identified homozygous mutations in PKD1L1 from three affected individuals in two unrelated families. PKD1L1 encodes a polycystin-1-like protein and its loss of function is known to cause laterality defects in mouse and medaka fish models. Family 1 had one fetus and one deceased child with heterotaxy and complex congenital heart malformations. WES identified a homozygous splicing mutation, c.6473+2_6473+3delTG, which disrupts the invariant splice donor site in intron 42, in both affected individuals. In the second family, a homozygous c.5072G>C (p.Cys1691Ser) missense mutation was detected in an individual with SIT and congenital heart disease. The p.Cys1691Ser substitution affects a highly conserved cysteine residue and is predicted by molecular modeling to disrupt a disulfide bridge essential for the proper folding of the G protein-coupled receptor proteolytic site (GPS) motif. Damaging effects associated with substitutions of this conserved cysteine residue in the GPS motif have also been reported in other genes, namely GPR56, BAI3, and PKD1 in human and lat-1 in C. elegans, further supporting the likely pathogenicity of p.Cys1691Ser in PKD1L1. The identification of bi-allelic PKD1L1 mutations recapitulates previous findings regarding phenotypic consequences of loss of function of the orthologous genes in mice and medaka fish and further expands our understanding of genetic contributions to laterality defects in humans. Copyright © 2016 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  1. Molecular Characterization and Putative Pathogenic Pathways of Tuberous Sclerosis Complex-Associated Renal Cell Carcinoma.

    PubMed

    Park, Jeong Hwan; Lee, Cheol; Chang, Mee Soo; Kim, Kwangsoo; Choi, Seongmin; Lee, Hyunjung; Lee, Hyun-Seob; Moon, Kyung Chul

    2018-06-17

    Tuberous sclerosis complex-associated renal cell carcinoma (TSC-RCC) has distinct clinical and histopathologic features and is considered a specific subtype of RCC. The genetic alterations of TSC1 or TSC2 are responsible for the development of TSC. In this study, we assessed the mTOR pathway activation and aimed to evaluate molecular characteristics and pathogenic pathways of TSC-RCC. Two cases of TSC-RCC, one from a 31-year-old female and the other from an 8-year-old male, were assessed. The mTOR pathway activation was determined by immunohistochemistry. The mutational spectrum of both TSC-RCCs was evaluated by whole exome sequencing (WES), and pathogenic pathways were analyzed. Differentially expressed genes were analyzed by NanoString Technologies nCounter platform. The mTOR pathway activation and the germline mutations of TSC2 were identified in both TSC-RCC cases. The WES revealed several cancer gene alterations. In Case 1, genetic alterations of CHD8, CRISPLD1, EPB41L4A, GNA11, NOTCH3, PBRM1, PTPRU, RGS12, SETBP1, SMARCA4, STMN1, and ZNRF3 were identified. In Case 2, genetic alterations of IWS1 and TSC2 were identified. Further, putative pathogenic pathways included chromatin remodeling, G protein-coupled receptor, Notch signaling, Wnt/β-catenin, PP2A and the microtubule dynamics pathway in Case 1, and mRNA processing and the PI3K/AKT/mTOR pathway in Case 2. Additionally, the ALK and CRLF2 mRNA expression was upregulated and CDH1, MAP3K1, RUNX1, SETBP1, and TSC1 mRNA expression was downregulated in both TSC-RCCs. We present mTOR pathway activation and molecular characteristics with pathogenic pathways in TSC-RCCs, which will advance our understanding of the pathogenesis of TSC-RCC. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  2. Mutation profiles in early-stage lung squamous cell carcinoma with clinical follow-up and correlation with markers of immune function.

    PubMed

    Choi, M; Kadara, H; Zhang, J; Parra, E R; Rodriguez-Canales, J; Gaffney, S G; Zhao, Z; Behrens, C; Fujimoto, J; Chow, C; Kim, K; Kalhor, N; Moran, C; Rimm, D; Swisher, S; Gibbons, D L; Heymach, J; Kaftan, E; Townsend, J P; Lynch, T J; Schlessinger, J; Lee, J; Lifton, R P; Herbst, R S; Wistuba, I I

    2017-01-01

    Lung squamous cell carcinoma (LUSC) accounts for 20–30% of non-small cell lung cancers (NSCLCs). There are limited treatment strategies for LUSC in part due to our inadequate understanding of the molecular underpinnings of the disease. We performed whole-exome sequencing (WES) and comprehensive immune profiling of a unique set of clinically annotated early-stage LUSCs to increase our understanding of the pathobiology of this malignancy. Matched pairs of surgically resected stage I-III LUSCs and normal lung tissues (n = 108) were analyzed by WES. Immunohistochemistry and image analysis-based profiling of 10 immune markers were done on a subset of LUSCs (n = 91). Associations among mutations, immune markers and clinicopathological variables were statistically examined using analysis of variance and Fisher’s exact test. Cox proportional hazards regression models were used for statistical analysis of clinical outcome. This early-stage LUSC cohort displayed an average of 209 exonic mutations per tumor. Fourteen genes exhibited significant enrichment for somatic mutation: TP53, MLL2, PIK3CA, NFE2L2, CDH8, KEAP1, PTEN, ADCY8, PTPRT, CALCR, GRM8, FBXW7, RB1 and CDKN2A. Among mutated genes associated with poor recurrence-free survival, MLL2 mutations predicted poor prognosis in both TP53 mutant and wild-type LUSCs. We also found that in treated patients, FBXW7 and KEAP1 mutations were associated with poor response to adjuvant therapy, particularly in TP53-mutant tumors. Analysis of mutations with immune markers revealed that ADCY8 and PIK3CA mutations were associated with markedly decreased tumoral PD-L1 expression, LUSCs with PIK3CA mutations exhibited elevated CD45ro levels and CDKN2A-mutant tumors displayed an up-regulated immune response. Our findings pinpoint mutated genes that may impact clinical outcome as well as personalized strategies for targeted immunotherapies in early-stage LUSC.

  3. Loss-of-function variants in NFIA provide further support that NFIA is a critical gene in 1p32-p31 deletion syndrome: A four patient series.

    PubMed

    Revah-Politi, Anya; Ganapathi, Mythily; Bier, Louise; Cho, Megan T; Goldstein, David B; Hemati, Parisa; Iglesias, Alejandro; Juusola, Jane; Pappas, John; Petrovski, Slavé; Wilson, Ashley L; Aggarwal, Vimla S; Anyane-Yeboa, Kwame

    2017-12-01

    The association between 1p32-p31 contiguous gene deletions and a distinct phenotype that includes anomalies of the corpus callosum, ventriculomegaly, developmental delay, seizures, and dysmorphic features has been long recognized and described. Recently, the observation of overlapping phenotypes in patients with chromosome translocations that disrupt NFIA (Nuclear factor I/A), a gene within this deleted region, and NFIA intragenic deletions has led to the hypothesis that NFIA is a critical gene within this region. The wide application and increasing accessibility of whole exome sequencing (WES) has helped identify new cases to support this hypothesis. Here, we describe four patients with loss-of-function variants in the NFIA gene identified through WES. The clinical presentation of these patients significantly overlaps with the phenotype described in previously reported cases of 1p32-p31 deletion syndrome, NFIA gene disruptions and intragenic NFIA deletions. Our cohort includes a mother and daughter as well as an unrelated individual who share the same nonsense variant (c.205C>T, p.Arg69Ter; NM_001145512.1). We also report a patient with a frameshift NFIA variant (c.159_160dupCC, p.Gln54ProfsTer49). We have compared published cases of 1p32-p31 microdeletion syndrome, translocations resulting in NFIA gene disruption, intragenic deletions, and loss-of-function mutations (including our four patients) to reveal that abnormalities of the corpus callosum, ventriculomegaly/hydrocephalus, macrocephaly, Chiari I malformation, dysmorphic features, developmental delay, hypotonia, and urinary tract defects are common findings. The consistent overlap in clinical presentation provides further evidence of the critical role of NFIA haploinsufficiency in the development of the 1p32-p31 microdeletion syndrome phenotype. © 2017 Wiley Periodicals, Inc.

  4. Whole-Exome Sequencing Identifies Rare and Low-Frequency Coding Variants Associated with LDL Cholesterol

    PubMed Central

    Lange, Leslie A.; Hu, Youna; Zhang, He; Xue, Chenyi; Schmidt, Ellen M.; Tang, Zheng-Zheng; Bizon, Chris; Lange, Ethan M.; Smith, Joshua D.; Turner, Emily H.; Jun, Goo; Kang, Hyun Min; Peloso, Gina; Auer, Paul; Li, Kuo-ping; Flannick, Jason; Zhang, Ji; Fuchsberger, Christian; Gaulton, Kyle; Lindgren, Cecilia; Locke, Adam; Manning, Alisa; Sim, Xueling; Rivas, Manuel A.; Holmen, Oddgeir L.; Gottesman, Omri; Lu, Yingchang; Ruderfer, Douglas; Stahl, Eli A.; Duan, Qing; Li, Yun; Durda, Peter; Jiao, Shuo; Isaacs, Aaron; Hofman, Albert; Bis, Joshua C.; Correa, Adolfo; Griswold, Michael E.; Jakobsdottir, Johanna; Smith, Albert V.; Schreiner, Pamela J.; Feitosa, Mary F.; Zhang, Qunyuan; Huffman, Jennifer E.; Crosby, Jacy; Wassel, Christina L.; Do, Ron; Franceschini, Nora; Martin, Lisa W.; Robinson, Jennifer G.; Assimes, Themistocles L.; Crosslin, David R.; Rosenthal, Elisabeth A.; Tsai, Michael; Rieder, Mark J.; Farlow, Deborah N.; Folsom, Aaron R.; Lumley, Thomas; Fox, Ervin R.; Carlson, Christopher S.; Peters, Ulrike; Jackson, Rebecca D.; van Duijn, Cornelia M.; Uitterlinden, André G.; Levy, Daniel; Rotter, Jerome I.; Taylor, Herman A.; Gudnason, Vilmundur; Siscovick, David S.; Fornage, Myriam; Borecki, Ingrid B.; Hayward, Caroline; Rudan, Igor; Chen, Y. Eugene; Bottinger, Erwin P.; Loos, Ruth J.F.; Sætrom, Pål; Hveem, Kristian; Boehnke, Michael; Groop, Leif; McCarthy, Mark; Meitinger, Thomas; Ballantyne, Christie M.; Gabriel, Stacey B.; O’Donnell, Christopher J.; Post, Wendy S.; North, Kari E.; Reiner, Alexander P.; Boerwinkle, Eric; Psaty, Bruce M.; Altshuler, David; Kathiresan, Sekar; Lin, Dan-Yu; Jarvik, Gail P.; Cupples, L. Adrienne; Kooperberg, Charles; Wilson, James G.; Nickerson, Deborah A.; Abecasis, Goncalo R.; Rich, Stephen S.; Tracy, Russell P.; Willer, Cristen J.; Gabriel, Stacey B.; Altshuler, David M.; Abecasis, Gonçalo R.; Allayee, Hooman; Cresci, Sharon; Daly, Mark J.; de Bakker, Paul I.W.; DePristo, Mark A.; Do, Ron; Donnelly, Peter; Farlow, Deborah N.; Fennell, Tim; Garimella, Kiran; Hazen, Stanley L.; Hu, Youna; Jordan, Daniel M.; Jun, Goo; Kathiresan, Sekar; Kang, Hyun Min; Kiezun, Adam; Lettre, Guillaume; Li, Bingshan; Li, Mingyao; Newton-Cheh, Christopher H.; Padmanabhan, Sandosh; Peloso, Gina; Pulit, Sara; Rader, Daniel J.; Reich, David; Reilly, Muredach P.; Rivas, Manuel A.; Schwartz, Steve; Scott, Laura; Siscovick, David S.; Spertus, John A.; Stitziel, Nathaniel O.; Stoletzki, Nina; Sunyaev, Shamil R.; Voight, Benjamin F.; Willer, Cristen J.; Rich, Stephen S.; Akylbekova, Ermeg; Atwood, Larry D.; Ballantyne, Christie M.; Barbalic, Maja; Barr, R. Graham; Benjamin, Emelia J.; Bis, Joshua; Boerwinkle, Eric; Bowden, Donald W.; Brody, Jennifer; Budoff, Matthew; Burke, Greg; Buxbaum, Sarah; Carr, Jeff; Chen, Donna T.; Chen, Ida Y.; Chen, Wei-Min; Concannon, Pat; Crosby, Jacy; Cupples, L. Adrienne; D’Agostino, Ralph; DeStefano, Anita L.; Dreisbach, Albert; Dupuis, Josée; Durda, J. Peter; Ellis, Jaclyn; Folsom, Aaron R.; Fornage, Myriam; Fox, Caroline S.; Fox, Ervin; Funari, Vincent; Ganesh, Santhi K.; Gardin, Julius; Goff, David; Gordon, Ora; Grody, Wayne; Gross, Myron; Guo, Xiuqing; Hall, Ira M.; Heard-Costa, Nancy L.; Heckbert, Susan R.; Heintz, Nicholas; Herrington, David M.; Hickson, DeMarc; Huang, Jie; Hwang, Shih-Jen; Jacobs, David R.; Jenny, Nancy S.; Johnson, Andrew D.; Johnson, Craig W.; Kawut, Steven; Kronmal, Richard; Kurz, Raluca; Lange, Ethan M.; Lange, Leslie A.; Larson, Martin G.; Lawson, Mark; Lewis, Cora E.; Levy, Daniel; Li, Dalin; Lin, Honghuang; Liu, Chunyu; Liu, Jiankang; Liu, Kiang; Liu, Xiaoming; Liu, Yongmei; Longstreth, William T.; Loria, Cay; Lumley, Thomas; Lunetta, Kathryn; Mackey, Aaron J.; Mackey, Rachel; Manichaikul, Ani; Maxwell, Taylor; McKnight, Barbara; Meigs, James B.; Morrison, Alanna C.; Musani, Solomon K.; Mychaleckyj, Josyf C.; Nettleton, Jennifer A.; North, Kari; O’Donnell, Christopher J.; O’Leary, Daniel; Ong, Frank; Palmas, Walter; Pankow, James S.; Pankratz, Nathan D.; Paul, Shom; Perez, Marco; Person, Sharina D.; Polak, Joseph; Post, Wendy S.; Psaty, Bruce M.; Quinlan, Aaron R.; Raffel, Leslie J.; Ramachandran, Vasan S.; Reiner, Alexander P.; Rice, Kenneth; Rotter, Jerome I.; Sanders, Jill P.; Schreiner, Pamela; Seshadri, Sudha; Shea, Steve; Sidney, Stephen; Silverstein, Kevin; Smith, Nicholas L.; Sotoodehnia, Nona; Srinivasan, Asoke; Taylor, Herman A.; Taylor, Kent; Thomas, Fridtjof; Tracy, Russell P.; Tsai, Michael Y.; Volcik, Kelly A.; Wassel, Chrstina L.; Watson, Karol; Wei, Gina; White, Wendy; Wiggins, Kerri L.; Wilk, Jemma B.; Williams, O. Dale; Wilson, Gregory; Wilson, James G.; Wolf, Phillip; Zakai, Neil A.; Hardy, John; Meschia, James F.; Nalls, Michael; Singleton, Andrew; Worrall, Brad; Bamshad, Michael J.; Barnes, Kathleen C.; Abdulhamid, Ibrahim; Accurso, Frank; Anbar, Ran; Beaty, Terri; Bigham, Abigail; Black, Phillip; Bleecker, Eugene; Buckingham, Kati; Cairns, Anne Marie; Caplan, Daniel; Chatfield, Barbara; Chidekel, Aaron; Cho, Michael; Christiani, David C.; Crapo, James D.; Crouch, Julia; Daley, Denise; Dang, Anthony; Dang, Hong; De Paula, Alicia; DeCelie-Germana, Joan; Drumm, Allen DozorMitch; Dyson, Maynard; Emerson, Julia; Emond, Mary J.; Ferkol, Thomas; Fink, Robert; Foster, Cassandra; Froh, Deborah; Gao, Li; Gershan, William; Gibson, Ronald L.; Godwin, Elizabeth; Gondor, Magdalen; Gutierrez, Hector; Hansel, Nadia N.; Hassoun, Paul M.; Hiatt, Peter; Hokanson, John E.; Howenstine, Michelle; Hummer, Laura K.; Kanga, Jamshed; Kim, Yoonhee; Knowles, Michael R.; Konstan, Michael; Lahiri, Thomas; Laird, Nan; Lange, Christoph; Lin, Lin; Lin, Xihong; Louie, Tin L.; Lynch, David; Make, Barry; Martin, Thomas R.; Mathai, Steve C.; Mathias, Rasika A.; McNamara, John; McNamara, Sharon; Meyers, Deborah; Millard, Susan; Mogayzel, Peter; Moss, Richard; Murray, Tanda; Nielson, Dennis; Noyes, Blakeslee; O’Neal, Wanda; Orenstein, David; O’Sullivan, Brian; Pace, Rhonda; Pare, Peter; Parker, H. Worth; Passero, Mary Ann; Perkett, Elizabeth; Prestridge, Adrienne; Rafaels, Nicholas M.; Ramsey, Bonnie; Regan, Elizabeth; Ren, Clement; Retsch-Bogart, George; Rock, Michael; Rosen, Antony; Rosenfeld, Margaret; Ruczinski, Ingo; Sanford, Andrew; Schaeffer, David; Sell, Cindy; Sheehan, Daniel; Silverman, Edwin K.; Sin, Don; Spencer, Terry; Stonebraker, Jackie; Tabor, Holly K.; Varlotta, Laurie; Vergara, Candelaria I.; Weiss, Robert; Wigley, Fred; Wise, Robert A.; Wright, Fred A.; Wurfel, Mark M.; Zanni, Robert; Zou, Fei; Nickerson, Deborah A.; Rieder, Mark J.; Green, Phil; Shendure, Jay; Akey, Joshua M.; Bustamante, Carlos D.; Crosslin, David R.; Eichler, Evan E.; Fox, P. Keolu; Fu, Wenqing; Gordon, Adam; Gravel, Simon; Jarvik, Gail P.; Johnsen, Jill M.; Kan, Mengyuan; Kenny, Eimear E.; Kidd, Jeffrey M.; Lara-Garduno, Fremiet; Leal, Suzanne M.; Liu, Dajiang J.; McGee, Sean; O’Connor, Timothy D.; Paeper, Bryan; Robertson, Peggy D.; Smith, Joshua D.; Staples, Jeffrey C.; Tennessen, Jacob A.; Turner, Emily H.; Wang, Gao; Yi, Qian; Jackson, Rebecca; Peters, Ulrike; Carlson, Christopher S.; Anderson, Garnet; Anton-Culver, Hoda; Assimes, Themistocles L.; Auer, Paul L.; Beresford, Shirley; Bizon, Chris; Black, Henry; Brunner, Robert; Brzyski, Robert; Burwen, Dale; Caan, Bette; Carty, Cara L.; Chlebowski, Rowan; Cummings, Steven; Curb, J. David; Eaton, Charles B.; Ford, Leslie; Franceschini, Nora; Fullerton, Stephanie M.; Gass, Margery; Geller, Nancy; Heiss, Gerardo; Howard, Barbara V.; Hsu, Li; Hutter, Carolyn M.; Ioannidis, John; Jiao, Shuo; Johnson, Karen C.; Kooperberg, Charles; Kuller, Lewis; LaCroix, Andrea; Lakshminarayan, Kamakshi; Lane, Dorothy; Lasser, Norman; LeBlanc, Erin; Li, Kuo-Ping; Limacher, Marian; Lin, Dan-Yu; Logsdon, Benjamin A.; Ludlam, Shari; Manson, JoAnn E.; Margolis, Karen; Martin, Lisa; McGowan, Joan; Monda, Keri L.; Kotchen, Jane Morley; Nathan, Lauren; Ockene, Judith; O’Sullivan, Mary Jo; Phillips, Lawrence S.; Prentice, Ross L.; Robbins, John; Robinson, Jennifer G.; Rossouw, Jacques E.; Sangi-Haghpeykar, Haleh; Sarto, Gloria E.; Shumaker, Sally; Simon, Michael S.; Stefanick, Marcia L.; Stein, Evan; Tang, Hua; Taylor, Kira C.; Thomson, Cynthia A.; Thornton, Timothy A.; Van Horn, Linda; Vitolins, Mara; Wactawski-Wende, Jean; Wallace, Robert; Wassertheil-Smoller, Sylvia; Zeng, Donglin; Applebaum-Bowden, Deborah; Feolo, Michael; Gan, Weiniu; Paltoo, Dina N.; Sholinsky, Phyliss; Sturcke, Anne

    2014-01-01

    Elevated low-density lipoprotein cholesterol (LDL-C) is a treatable, heritable risk factor for cardiovascular disease. Genome-wide association studies (GWASs) have identified 157 variants associated with lipid levels but are not well suited to assess the impact of rare and low-frequency variants. To determine whether rare or low-frequency coding variants are associated with LDL-C, we exome sequenced 2,005 individuals, including 554 individuals selected for extreme LDL-C (>98th or <2nd percentile). Follow-up analyses included sequencing of 1,302 additional individuals and genotype-based analysis of 52,221 individuals. We observed significant evidence of association between LDL-C and the burden of rare or low-frequency variants in PNPLA5, encoding a phospholipase-domain-containing protein, and both known and previously unidentified variants in PCSK9, LDLR and APOB, three known lipid-related genes. The effect sizes for the burden of rare variants for each associated gene were substantially higher than those observed for individual SNPs identified from GWASs. We replicated the PNPLA5 signal in an independent large-scale sequencing study of 2,084 individuals. In conclusion, this large whole-exome-sequencing study for LDL-C identified a gene not known to be implicated in LDL-C and provides unique insight into the design and analysis of similar experiments. PMID:24507775

  5. Whole-exome sequencing identifies rare and low-frequency coding variants associated with LDL cholesterol.

    PubMed

    Lange, Leslie A; Hu, Youna; Zhang, He; Xue, Chenyi; Schmidt, Ellen M; Tang, Zheng-Zheng; Bizon, Chris; Lange, Ethan M; Smith, Joshua D; Turner, Emily H; Jun, Goo; Kang, Hyun Min; Peloso, Gina; Auer, Paul; Li, Kuo-Ping; Flannick, Jason; Zhang, Ji; Fuchsberger, Christian; Gaulton, Kyle; Lindgren, Cecilia; Locke, Adam; Manning, Alisa; Sim, Xueling; Rivas, Manuel A; Holmen, Oddgeir L; Gottesman, Omri; Lu, Yingchang; Ruderfer, Douglas; Stahl, Eli A; Duan, Qing; Li, Yun; Durda, Peter; Jiao, Shuo; Isaacs, Aaron; Hofman, Albert; Bis, Joshua C; Correa, Adolfo; Griswold, Michael E; Jakobsdottir, Johanna; Smith, Albert V; Schreiner, Pamela J; Feitosa, Mary F; Zhang, Qunyuan; Huffman, Jennifer E; Crosby, Jacy; Wassel, Christina L; Do, Ron; Franceschini, Nora; Martin, Lisa W; Robinson, Jennifer G; Assimes, Themistocles L; Crosslin, David R; Rosenthal, Elisabeth A; Tsai, Michael; Rieder, Mark J; Farlow, Deborah N; Folsom, Aaron R; Lumley, Thomas; Fox, Ervin R; Carlson, Christopher S; Peters, Ulrike; Jackson, Rebecca D; van Duijn, Cornelia M; Uitterlinden, André G; Levy, Daniel; Rotter, Jerome I; Taylor, Herman A; Gudnason, Vilmundur; Siscovick, David S; Fornage, Myriam; Borecki, Ingrid B; Hayward, Caroline; Rudan, Igor; Chen, Y Eugene; Bottinger, Erwin P; Loos, Ruth J F; Sætrom, Pål; Hveem, Kristian; Boehnke, Michael; Groop, Leif; McCarthy, Mark; Meitinger, Thomas; Ballantyne, Christie M; Gabriel, Stacey B; O'Donnell, Christopher J; Post, Wendy S; North, Kari E; Reiner, Alexander P; Boerwinkle, Eric; Psaty, Bruce M; Altshuler, David; Kathiresan, Sekar; Lin, Dan-Yu; Jarvik, Gail P; Cupples, L Adrienne; Kooperberg, Charles; Wilson, James G; Nickerson, Deborah A; Abecasis, Goncalo R; Rich, Stephen S; Tracy, Russell P; Willer, Cristen J

    2014-02-06

    Elevated low-density lipoprotein cholesterol (LDL-C) is a treatable, heritable risk factor for cardiovascular disease. Genome-wide association studies (GWASs) have identified 157 variants associated with lipid levels but are not well suited to assess the impact of rare and low-frequency variants. To determine whether rare or low-frequency coding variants are associated with LDL-C, we exome sequenced 2,005 individuals, including 554 individuals selected for extreme LDL-C (>98(th) or <2(nd) percentile). Follow-up analyses included sequencing of 1,302 additional individuals and genotype-based analysis of 52,221 individuals. We observed significant evidence of association between LDL-C and the burden of rare or low-frequency variants in PNPLA5, encoding a phospholipase-domain-containing protein, and both known and previously unidentified variants in PCSK9, LDLR and APOB, three known lipid-related genes. The effect sizes for the burden of rare variants for each associated gene were substantially higher than those observed for individual SNPs identified from GWASs. We replicated the PNPLA5 signal in an independent large-scale sequencing study of 2,084 individuals. In conclusion, this large whole-exome-sequencing study for LDL-C identified a gene not known to be implicated in LDL-C and provides unique insight into the design and analysis of similar experiments. Copyright © 2014 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  6. Whole Exome Sequencing identifies a splicing mutation in NSUN2 as a cause of a Dubowitz-like syndrome

    PubMed Central

    Martinez, Fernando; Lee, Jeong Ho; Lee, Ji Eun; Blanco, Sandra; Nickerson, Elizabeth; Gabriel, Stacey; Frye, Michaela; Al-Gazali, Lihadh; Gleeson, Joseph G.

    2016-01-01

    Dubowitz Syndrome is an autosomal recessive disorder characterized by the constellation of mild microcephaly, growth and mental retardation, eczema and peculiar facies, but causes are still unknown. We studied a multiplex consanguineous family with many features of Dubowitz syndrome using whole exome sequencing and identified a splice mutation in NSUN2, encoding a conserved RNA methyltransferase. NSUN2 has been implicated in Myc-induced cell proliferation and mitotic spindle stability, which might help explain the varied clinical presentations that can include chromosomal instability and immunological defects. Patient cells displayed loss of NSUN2-specific methylation at two residues of the aspartate tRNA. Our findings establish NSUN2 as the first causal gene with relationship to the Dubowitz syndrome spectrum phenotype. PMID:22577224

  7. Whole Genome Sequencing of High-Risk Families to Identify New Mutational Mechanisms of Breast Cancer Predisposition

    DTIC Science & Technology

    2014-10-01

    INTRODUCTION: Despite tremendous advances in mutation detection with gene panels and exome sequencing the majority of high risk breast...2a. Align reads to the reference sequence (months 4-10) 2b. Identify SNPs, indels, CNVs and rearrangements by bioinformatic tools (months 4-10) 2c

  8. BALSA: integrated secondary analysis for whole-genome and whole-exome sequencing, accelerated by GPU.

    PubMed

    Luo, Ruibang; Wong, Yiu-Lun; Law, Wai-Chun; Lee, Lap-Kei; Cheung, Jeanno; Liu, Chi-Man; Lam, Tak-Wah

    2014-01-01

    This paper reports an integrated solution, called BALSA, for the secondary analysis of next generation sequencing data; it exploits the computational power of GPU and an intricate memory management to give a fast and accurate analysis. From raw reads to variants (including SNPs and Indels), BALSA, using just a single computing node with a commodity GPU board, takes 5.5 h to process 50-fold whole genome sequencing (∼750 million 100 bp paired-end reads), or just 25 min for 210-fold whole exome sequencing. BALSA's speed is rooted at its parallel algorithms to effectively exploit a GPU to speed up processes like alignment, realignment and statistical testing. BALSA incorporates a 16-genotype model to support the calling of SNPs and Indels and achieves competitive variant calling accuracy and sensitivity when compared to the ensemble of six popular variant callers. BALSA also supports efficient identification of somatic SNVs and CNVs; experiments showed that BALSA recovers all the previously validated somatic SNVs and CNVs, and it is more sensitive for somatic Indel detection. BALSA outputs variants in VCF format. A pileup-like SNAPSHOT format, while maintaining the same fidelity as BAM in variant calling, enables efficient storage and indexing, and facilitates the App development of downstream analyses. BALSA is available at: http://sourceforge.net/p/balsa.

  9. Somatic mutation profiles of clear cell endometrial tumors revealed by whole exome and targeted gene sequencing.

    PubMed

    Le Gallo, Matthieu; Rudd, Meghan L; Urick, Mary Ellen; Hansen, Nancy F; Zhang, Suiyuan; Lozy, Fred; Sgroi, Dennis C; Vidal Bel, August; Matias-Guiu, Xavier; Broaddus, Russell R; Lu, Karen H; Levine, Douglas A; Mutch, David G; Goodfellow, Paul J; Salvesen, Helga B; Mullikin, James C; Bell, Daphne W

    2017-09-01

    The molecular pathogenesis of clear cell endometrial cancer (CCEC), a tumor type with a relatively unfavorable prognosis, is not well defined. We searched exome-wide for novel somatically mutated genes in CCEC and assessed the mutational spectrum of known and candidate driver genes in a large cohort of cases. We conducted whole exome sequencing of paired tumor-normal DNAs from 16 cases of CCEC (12 CCECs and the CCEC components of 4 mixed histology tumors). Twenty-two genes-of-interest were Sanger-sequenced from another 47 cases of CCEC. Microsatellite instability (MSI) and microsatellite stability (MSS) were determined by genotyping 5 mononucleotide repeats. Two tumor exomes had relatively high mutational loads and MSI. The other 14 tumor exomes were MSS and had 236 validated nonsynonymous or splice junction somatic mutations among 222 protein-encoding genes. Among the 63 cases of CCEC in this study, we identified frequent somatic mutations in TP53 (39.7%), PIK3CA (23.8%), PIK3R1 (15.9%), ARID1A (15.9%), PPP2R1A (15.9%), SPOP (14.3%), and TAF1 (9.5%), as well as MSI (11.3%). Five of 8 mutations in TAF1, a gene with no known role in CCEC, localized to the putative histone acetyltransferase domain and included 2 recurrently mutated residues. Based on patterns of MSI and mutations in 7 genes, CCEC subsets molecularly resembled serous endometrial cancer (SEC) or endometrioid endometrial cancer (EEC). Our findings demonstrate molecular similarities between CCEC and SEC and EEC and implicate TAF1 as a novel candidate CCEC driver gene. Cancer 2017;123:3261-8. © 2017 American Cancer Society. © 2017 American Cancer Society.

  10. Exome Sequence Analysis of 14 Families With High Myopia.

    PubMed

    Kloss, Bethany A; Tompson, Stuart W; Whisenhunt, Kristina N; Quow, Krystina L; Huang, Samuel J; Pavelec, Derek M; Rosenberg, Thomas; Young, Terri L

    2017-04-01

    To identify causal gene mutations in 14 families with autosomal dominant (AD) high myopia using exome sequencing. Select individuals from 14 large Caucasian families with high myopia were exome sequenced. Gene variants were filtered to identify potential pathogenic changes. Sanger sequencing was used to confirm variants in original DNA, and to test for disease cosegregation in additional family members. Candidate genes and chromosomal loci previously associated with myopic refractive error and its endophenotypes were comprehensively screened. In 14 high myopia families, we identified 73 rare and 31 novel gene variants as candidates for pathogenicity. In seven of these families, two of the novel and eight of the rare variants were within known myopia loci. A total of 104 heterozygous nonsynonymous rare variants in 104 genes were identified in 10 out of 14 probands. Each variant cosegregated with affection status. No rare variants were identified in genes known to cause myopia or in genes closest to published genome-wide association study association signals for refractive error or its endophenotypes. Whole exome sequencing was performed to determine gene variants implicated in the pathogenesis of AD high myopia. This study provides new genes for consideration in the pathogenesis of high myopia, and may aid in the development of genetic profiling of those at greatest risk for attendant ocular morbidities of this disorder.

  11. Whole exome sequencing of rare variants in EIF4G1 and VPS35 in Parkinson disease

    PubMed Central

    Nuytemans, Karen; Bademci, Guney; Inchausti, Vanessa; Dressen, Amy; Kinnamon, Daniel D.; Mehta, Arpit; Wang, Liyong; Züchner, Stephan; Beecham, Gary W.; Martin, Eden R.; Scott, William K.

    2013-01-01

    Objective: Recently, vacuolar protein sorting 35 (VPS35) and eukaryotic translation initiation factor 4 gamma 1 (EIF4G1) have been identified as 2 causal Parkinson disease (PD) genes. We used whole exome sequencing for rapid, parallel analysis of variations in these 2 genes. Methods: We performed whole exome sequencing in 213 patients with PD and 272 control individuals. Those rare variants (RVs) with <5% frequency in the exome variant server database and our own control data were considered for analysis. We performed joint gene-based tests for association using RVASSOC and SKAT (Sequence Kernel Association Test) as well as single-variant test statistics. Results: We identified 3 novel VPS35 variations that changed the coded amino acid (nonsynonymous) in 3 cases. Two variations were in multiplex families and neither segregated with PD. In EIF4G1, we identified 11 (9 nonsynonymous and 2 small indels) RVs including the reported pathogenic mutation p.R1205H, which segregated in all affected members of a large family, but also in 1 unaffected 86-year-old family member. Two additional RVs were found in isolated patients only. Whereas initial association studies suggested an association (p = 0.04) with all RVs in EIF4G1, subsequent testing in a second dataset for the driving variant (p.F1461) suggested no association between RVs in the gene and PD. Conclusions: We confirm that the specific EIF4G1 variation p.R1205H seems to be a strong PD risk factor, but is nonpenetrant in at least one 86-year-old. A few other select RVs in both genes could not be ruled out as causal. However, there was no evidence for an overall contribution of genetic variability in VPS35 or EIF4G1 to PD development in our dataset. PMID:23408866

  12. Estimating genotype error rates from high-coverage next-generation sequence data.

    PubMed

    Wall, Jeffrey D; Tang, Ling Fung; Zerbe, Brandon; Kvale, Mark N; Kwok, Pui-Yan; Schaefer, Catherine; Risch, Neil

    2014-11-01

    Exome and whole-genome sequencing studies are becoming increasingly common, but little is known about the accuracy of the genotype calls made by the commonly used platforms. Here we use replicate high-coverage sequencing of blood and saliva DNA samples from four European-American individuals to estimate lower bounds on the error rates of Complete Genomics and Illumina HiSeq whole-genome and whole-exome sequencing. Error rates for nonreference genotype calls range from 0.1% to 0.6%, depending on the platform and the depth of coverage. Additionally, we found (1) no difference in the error profiles or rates between blood and saliva samples; (2) Complete Genomics sequences had substantially higher error rates than Illumina sequences had; (3) error rates were higher (up to 6%) for rare or unique variants; (4) error rates generally declined with genotype quality (GQ) score, but in a nonlinear fashion for the Illumina data, likely due to loss of specificity of GQ scores greater than 60; and (5) error rates increased with increasing depth of coverage for the Illumina data. These findings, especially (3)-(5), suggest that caution should be taken in interpreting the results of next-generation sequencing-based association studies, and even more so in clinical application of this technology in the absence of validation by other more robust sequencing or genotyping methods. © 2014 Wall et al.; Published by Cold Spring Harbor Laboratory Press.

  13. Whole-Exome Sequencing Study of Thyrotropin-Secreting Pituitary Adenomas.

    PubMed

    Sapkota, Santosh; Horiguchi, Kazuhiko; Tosaka, Masahiko; Yamada, Syozo; Yamada, Masanobu

    2017-02-01

    Thyrotropin (TSH)-secreting pituitary adenomas (TSHomas) are a rare cause of hyperthyroidism, and the genetic aberrations responsible remain unknown. To identify somatic genetic abnormalities in TSHomas. A single-nucleotide polymorphism (SNP) array analysis was performed on 8 TSHomas. Four tumors with no allelic losses or limited loss of heterozygosity were selected, and whole-exome sequencing was performed, including their corresponding blood samples. Somatic variants were confirmed by Sanger sequencing. A set of 8 tumors was also assessed to validate candidate genes. Twelve patients with sporadic TSHomas were examined. The overall performance of whole-exome sequencing was good, with an average coverage of each base in the targeted region of 97.6%. Six DNA variants were confirmed as candidate driver mutations, with an average of 1.5 somatic mutations per tumor. No mutations were recurrent. Two of these mutations were found in genes with an established role in malignant tumorigenesis (SMOX and SYTL3), and 4 had unknown roles (ZSCAN23, ASTN2, R3HDM2, and CWH43). Similarly, an SNP array analysis revealed frequent chromosomal regions of copy number gains, including recurrent gains at loci harboring 4 of these 6 genes. Several candidate somatic mutations and changes in copy numbers for TSHomas were identified. The results showed no recurrence of mutations in the tumors studied but a low number of mutations, thereby highlighting their benign nature. Further studies on a larger cohort of TSHomas, along with the use of epigenetic and transcriptomic approaches, may reveal the underlying genetic lesions. Copyright © 2017 by the Endocrine Society

  14. Whole-exome sequencing of primary plasma cell leukemia discloses heterogeneous mutational patterns.

    PubMed

    Cifola, Ingrid; Lionetti, Marta; Pinatel, Eva; Todoerti, Katia; Mangano, Eleonora; Pietrelli, Alessandro; Fabris, Sonia; Mosca, Laura; Simeon, Vittorio; Petrucci, Maria Teresa; Morabito, Fortunato; Offidani, Massimo; Di Raimondo, Francesco; Falcone, Antonietta; Caravita, Tommaso; Battaglia, Cristina; De Bellis, Gianluca; Palumbo, Antonio; Musto, Pellegrino; Neri, Antonino

    2015-07-10

    Primary plasma cell leukemia (pPCL) is a rare and aggressive form of plasma cell dyscrasia and may represent a valid model for high-risk multiple myeloma (MM). To provide novel information concerning the mutational profile of this disease, we performed the whole-exome sequencing of a prospective series of 12 pPCL cases included in a Phase II multicenter clinical trial and previously characterized at clinical and molecular levels. We identified 1, 928 coding somatic non-silent variants on 1, 643 genes, with a mean of 166 variants per sample, and only few variants and genes recurrent in two or more samples. An excess of C > T transitions and the presence of two main mutational signatures (related to APOBEC over-activity and aging) occurring in different translocation groups were observed. We identified 14 candidate cancer driver genes, mainly involved in cell-matrix adhesion, cell cycle, genome stability, RNA metabolism and protein folding. Furthermore, integration of mutation data with copy number alteration profiles evidenced biallelically disrupted genes with potential tumor suppressor functions. Globally, cadherin/Wnt signaling, extracellular matrix and cell cycle checkpoint resulted the most affected functional pathways. Sequencing results were finally combined with gene expression data to better elucidate the biological relevance of mutated genes. This study represents the first whole-exome sequencing screen of pPCL and evidenced a remarkable genetic heterogeneity of mutational patterns. This may provide a contribution to the comprehension of the pathogenetic mechanisms associated with this aggressive form of PC dyscrasia and potentially with high-risk MM.

  15. Muscle RAS oncogene homolog (MRAS) recurrent mutation in Borrmann type IV gastric cancer.

    PubMed

    Yasumoto, Makiko; Sakamoto, Etsuko; Ogasawara, Sachiko; Isobe, Taro; Kizaki, Junya; Sumi, Akiko; Kusano, Hironori; Akiba, Jun; Torimura, Takuji; Akagi, Yoshito; Itadani, Hiraku; Kobayashi, Tsutomu; Hasako, Shinichi; Kumazaki, Masafumi; Mizuarai, Shinji; Oie, Shinji; Yano, Hirohisa

    2017-01-01

    The prognosis of patients with Borrmann type IV gastric cancer (Type IV) is extremely poor. Thus, there is an urgent need to elucidate the molecular mechanisms underlying the oncogenesis of Type IV and to identify new therapeutic targets. Although previous studies using whole-exome and whole-genome sequencing have elucidated genomic alterations in gastric cancer, none has focused on comprehensive genetic analysis of Type IV. To discover cancer-relevant genes in Type IV, we performed whole-exome sequencing and genome-wide copy number analysis on 13 patients with Type IV. Exome sequencing identified 178 somatic mutations in protein-coding sequences or at splice sites. Among the mutations, we found a mutation in muscle RAS oncogene homolog (MRAS), which is predicted to cause molecular dysfunction. MRAS belongs to the Ras subgroup of small G proteins, which includes the prototypic RAS oncogenes. We analyzed an additional 46 Type IV samples to investigate the frequency of MRAS mutation. There were eight nonsynonymous mutations (mutation frequency, 17%), showing that MRAS is recurrently mutated in Type IV. Copy number analysis identified six focal amplifications and one homozygous deletion, including insulin-like growth factor 1 receptor (IGF1R) amplification. The samples with IGF1R amplification had remarkably higher IGF1R mRNA and protein expression levels compared with the other samples. This is the first report of MRAS recurrent mutation in human tumor samples. Our results suggest that MRAS mutation and IGF1R amplification could drive tumorigenesis of Type IV and could be new therapeutic targets. © 2016 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

  16. Exome capture sequencing identifies a novel mutation in BBS4

    PubMed Central

    Wang, Hui; Chen, Xianfeng; Dudinsky, Lynn; Patenia, Claire; Chen, Yiyun; Li, Yumei; Wei, Yue; Abboud, Emad B.; Al-Rajhi, Ali A.; Lewis, Richard Alan; Lupski, James R.; Mardon, Graeme; Gibbs, Richard A.; Perkins, Brian D.

    2011-01-01

    Purpose Leber congenital amaurosis (LCA) is one of the most severe eye dystrophies characterized by severe vision loss at an early stage and accounts for approximately 5% of all retinal dystrophies. The purpose of this study was to identify a novel LCA disease allele or gene and to develop an approach combining genetic mapping with whole exome sequencing. Methods Three patients from King Khaled Eye Specialist Hospital (KKESH205) underwent whole genome single nucleotide polymorphism genotyping, and a single candidate region was identified. Taking advantage of next-generation high-throughput DNA sequencing technologies, whole exome capture sequencing was performed on patient KKESH205#7. Sanger direct sequencing was used during the validation step. The zebrafish model was used to examine the function of the mutant allele. Results A novel missense mutation in Bardet-Biedl syndrome 4 protein (BBS4) was identified in a consanguineous family from Saudi Arabia. This missense mutation in the fifth exon (c.253G>C;p.E85Q) of BBS4 is likely a disease-causing mutation as it segregates with the disease. The mutation is not found in the single nucleotide polymorphism (SNP) database, the 1000 Genomes Project, or matching normal controls. Functional analysis of this mutation in zebrafish indicates that the G253C allele is pathogenic. Coinjection of the G253C allele cannot rescue the mislocalization of rhodopsin in the retina when BBS4 is knocked down by morpholino injection. Immunofluorescence analysis in cell culture shows that this missense mutation in BBS4 does not cause obvious defects in protein expression or pericentriolar localization. Conclusions This mutation likely mainly reduces or abolishes BBS4 function in the retina. Further studies of this allele will provide important insights concerning the pleiotropic nature of BBS4 function. PMID:22219648

  17. [Identification of novel pathogenic gene mutations in pediatric acute myeloid leukemia by whole-exome resequencing].

    PubMed

    Shiba, Norio

    2015-12-01

    A new class of gene mutations, identified in the pathogenesis of adult acute myeloid leukemia (AML), includes DNMT3A, IDH1/2, TET2 and EZH2. However, these mutations are rare in pediatric AML cases, indicating that pathogeneses differ between adult and pediatric forms of AML. Meanwhile, the recent development of massively parallel sequencing technologies has provided a new opportunity to discover genetic changes across entire genomes or proteincoding sequences. In order to reveal a complete registry of gene mutations, we performed whole exome resequencing of paired tumor-normal specimens from 19 pediatric AML cases using Illumina HiSeq 2000. In total, 80 somatic mutations or 4.2 mutations per sample were identified. Many of the recurrent mutations identified in this study involved previously reported targets in AML, such as FLT3, CEBPA, KIT, CBL, NRAS, WT1 and EZH2. On the other hand, several genes were newly identified in the current study, including BCORL1 and major cohesin components such as SMC3 and RAD21. Whole exome resequencing revealed a complex array of gene mutations in pediatric AML genomes. Our results indicate that a subset of pediatric AML represents a discrete entity that could be discriminated from its adult counterpart, in terms of the spectrum of gene mutations.

  18. Pleiotropic Effects of Variants in Dementia Genes in Parkinson Disease.

    PubMed

    Ibanez, Laura; Dube, Umber; Davis, Albert A; Fernandez, Maria V; Budde, John; Cooper, Breanna; Diez-Fairen, Monica; Ortega-Cubero, Sara; Pastor, Pau; Perlmutter, Joel S; Cruchaga, Carlos; Benitez, Bruno A

    2018-01-01

    Background: The prevalence of dementia in Parkinson disease (PD) increases dramatically with advancing age, approaching 80% in patients who survive 20 years with the disease. Increasing evidence suggests clinical, pathological and genetic overlap between Alzheimer disease, dementia with Lewy bodies and frontotemporal dementia with PD. However, the contribution of the dementia-causing genes to PD risk, cognitive impairment and dementia in PD is not fully established. Objective: To assess the contribution of coding variants in Mendelian dementia-causing genes on the risk of developing PD and the effect on cognitive performance of PD patients. Methods: We analyzed the coding regions of the amyloid-beta precursor protein ( APP ), Presenilin 1 and 2 ( PSEN1, PSEN2 ), and Granulin ( GRN ) genes from 1,374 PD cases and 973 controls using pooled-DNA targeted sequence, human exome-chip and whole-exome sequencing (WES) data by single variant and gene base (SKAT-O and burden tests) analyses. Global cognitive function was assessed using the Mini-Mental State Examination (MMSE) or the Montreal Cognitive Assessment (MoCA). The effect of coding variants in dementia-causing genes on cognitive performance was tested by multiple regression analysis adjusting for gender, disease duration, age at dementia assessment, study site and APOE carrier status. Results: Known AD pathogenic mutations in the PSEN1 (p.A79V) and PSEN2 (p.V148I) genes were found in 0.3% of all PD patients. There was a significant burden of rare, likely damaging variants in the GRN and PSEN1 genes in PD patients when compared with frequencies in the European population from the ExAC database. Multiple regression analysis revealed that PD patients carrying rare variants in the APP, PSEN1, PSEN2 , and GRN genes exhibit lower cognitive tests scores than non-carrier PD patients ( p = 2.0 × 10 -4 ), independent of age at PD diagnosis, age at evaluation, APOE status or recruitment site. Conclusions: Pathogenic mutations in the Alzheimer disease-causing genes ( PSEN1 and PSEN2) are found in sporadic PD patients. PD patients with cognitive decline carry rare variants in dementia-causing genes. Variants in genes causing Mendelian neurodegenerative diseases exhibit pleiotropic effects.

  19. Whole-exome sequencing identifies USH2A mutations in a pseudo-dominant Usher syndrome family.

    PubMed

    Zheng, Sui-Lian; Zhang, Hong-Liang; Lin, Zhen-Lang; Kang, Qian-Yan

    2015-10-01

    Usher syndrome (USH) is an autosomal recessive (AR) multi-sensory degenerative disorder leading to deaf-blindness. USH is clinically subdivided into three subclasses, and 10 genes have been identified thus far. Clinical and genetic heterogeneities in USH make a precise diagnosis difficult. A dominant‑like USH family in successive generations was identified, and the present study aimed to determine the genetic predisposition of this family. Whole‑exome sequencing was performed in two affected patients and an unaffected relative. Systematic data were analyzed by bioinformatic analysis to remove the candidate mutations via step‑wise filtering. Direct Sanger sequencing and co‑segregation analysis were performed in the pedigree. One novel and two known mutations in the USH2A gene were identified, and were further confirmed by direct sequencing and co‑segregation analysis. The affected mother carried compound mutations in the USH2A gene, while the unaffected father carried a heterozygous mutation. The present study demonstrates that whole‑exome sequencing is a robust approach for the molecular diagnosis of disorders with high levels of genetic heterogeneity.

  20. India Allele Finder: a web-based annotation tool for identifying common alleles in next-generation sequencing data of Indian origin.

    PubMed

    Zhang, Jimmy F; James, Francis; Shukla, Anju; Girisha, Katta M; Paciorkowski, Alex R

    2017-06-27

    We built India Allele Finder, an online searchable database and command line tool, that gives researchers access to variant frequencies of Indian Telugu individuals, using publicly available fastq data from the 1000 Genomes Project. Access to appropriate population-based genomic variant annotation can accelerate the interpretation of genomic sequencing data. In particular, exome analysis of individuals of Indian descent will identify population variants not reflected in European exomes, complicating genomic analysis for such individuals. India Allele Finder offers improved ease-of-use to investigators seeking to identify and annotate sequencing data from Indian populations. We describe the use of India Allele Finder to identify common population variants in a disease quartet whole exome dataset, reducing the number of candidate single nucleotide variants from 84 to 7. India Allele Finder is freely available to investigators to annotate genomic sequencing data from Indian populations. Use of India Allele Finder allows efficient identification of population variants in genomic sequencing data, and is an example of a population-specific annotation tool that simplifies analysis and encourages international collaboration in genomics research.

  1. CIDR

    Science.gov Websites

    NIH CIDR Program Studies For whole exome sequencing projects, we pretest all samples using a high -density SNP array (>200,000 markers). For custom targeted sequencing, we pretest all samples using a 96 pretest samples using a 96 SNP GoldenGate assay. This extensive pretesting allows us to unambiguously tie

  2. A Case of KCNQ2-Associated Movement Disorder Triggered by Fever.

    PubMed

    Dhamija, Radhika; Goodkin, Howard P; Bailey, Russell; Chambers, Chelsea; Brenton, J Nicholas

    2017-12-01

    The differential diagnosis of fever-induced movement disorders in childhood is broad. Whole exome sequencing has yielded new insights into those cases with a suspected genetic basis. We report the case of an 8-year-old boy with a history of neonatal seizures who presented with near-continuous hyperkinetic movements of his limbs during a febrile illness. Initial diagnostic testing did not explain his abnormalities; however, given the suspicion for a channelopathy, whole exome sequencing was performed and it demonstrated a de novo pathogenic heterozygous variant in KCNQ2. There is an expanding phenotypic spectrum of heterozygous alterations in KCNQ2; however, this report provides the first description of a pathogenic KCNQ2 variant fever-induced hyperkinetic movement disorder in childhood. We also review the literature of cases previously published with the same pathogenic variant.

  3. Whole exome sequencing and array-based molecular karyotyping as aids to prenatal diagnosis in fetuses with suspected Simpson-Golabi-Behmel syndrome.

    PubMed

    Kehrer, Christina; Hoischen, Alexander; Menkhaus, Ralf; Schwab, Eva; Müller, Andreas; Kim, Sarah; Kreiß, Martina; Weitensteiner, Valerie; Hilger, Alina; Berg, Christoph; Geipel, Anne; Reutter, Heiko; Gembruch, Ulrich

    2016-10-01

    Simpson-Golabi-Behmel (SGBS) syndrome type 1 and type 2 represent rare X-linked prenatal overgrowth disorders. The aim of our study is to describe the prenatal sonographic features as well as the genetic work-up. Retrospective analysis of four cases with a pre- or postnatal diagnosis of SGBS in a single tertiary referral center within a period of 4 years. In the study period, four male fetuses with SGBS were detected. The final diagnosis was made prenatally in three cases. In all cases the second trimester anomaly scan revealed left sided congenital diaphragmatic hernia (CDH) with additional anomalies; three fetuses with SGBS type 1 showed fetal overgrowth. In two of these, whole exome sequencing showed a possible frameshift mutation and a point mutation in the gene GPC3, respectively. In the third case, multiplex ligation-dependent probe amplification (MLPA) revealed a hemizygous duplication of exon 3-7 in the gene GPC3. In the fourth case, SGBS type 2 was confirmed by array comparative genomic hybridization (CGH) of amniotic fluid cells showing a deletion of the gene OFD1. We could demonstrate, that in the presence of a CDH, syndromes of the fetus can be increasingly differentiated by detailed sonography followed by a selective and graded molecular diagnostic using microarray techniques and whole exome sequencing. © 2016 John Wiley & Sons, Ltd. © 2016 John Wiley & Sons, Ltd.

  4. Genomic characterization of biliary tract cancers identifies driver genes and predisposing mutations.

    PubMed

    Wardell, Christopher P; Fujita, Masashi; Yamada, Toru; Simbolo, Michele; Fassan, Matteo; Karlic, Rosa; Polak, Paz; Kim, Jaegil; Hatanaka, Yutaka; Maejima, Kazuhiro; Lawlor, Rita T; Nakanishi, Yoshitsugu; Mitsuhashi, Tomoko; Fujimoto, Akihiro; Furuta, Mayuko; Ruzzenente, Andrea; Conci, Simone; Oosawa, Ayako; Sasaki-Oku, Aya; Nakano, Kaoru; Tanaka, Hiroko; Yamamoto, Yujiro; Michiaki, Kubo; Kawakami, Yoshiiku; Aikata, Hiroshi; Ueno, Masaki; Hayami, Shinya; Gotoh, Kunihito; Ariizumi, Shun-Ichi; Yamamoto, Masakazu; Yamaue, Hiroki; Chayama, Kazuaki; Miyano, Satoru; Getz, Gad; Scarpa, Aldo; Hirano, Satoshi; Nakamura, Toru; Nakagawa, Hidewaki

    2018-05-01

    Biliary tract cancers (BTCs) are clinically and pathologically heterogeneous and respond poorly to treatment. Genomic profiling can offer a clearer understanding of their carcinogenesis, classification and treatment strategy. We performed large-scale genome sequencing analyses on BTCs to investigate their somatic and germline driver events and characterize their genomic landscape. We analyzed 412 BTC samples from Japanese and Italian populations, 107 by whole-exome sequencing (WES), 39 by whole-genome sequencing (WGS), and a further 266 samples by targeted sequencing. The subtypes were 136 intrahepatic cholangiocarcinomas (ICCs), 101 distal cholangiocarcinomas (DCCs), 109 peri-hilar type cholangiocarcinomas (PHCs), and 66 gallbladder or cystic duct cancers (GBCs/CDCs). We identified somatic alterations and searched for driver genes in BTCs, finding pathogenic germline variants of cancer-predisposing genes. We predicted cell-of-origin for BTCs by combining somatic mutation patterns and epigenetic features. We identified 32 significantly and commonly mutated genes including TP53, KRAS, SMAD4, NF1, ARID1A, PBRM1, and ATR, some of which negatively affected patient prognosis. A novel deletion of MUC17 at 7q22.1 affected patient prognosis. Cell-of-origin predictions using WGS and epigenetic features suggest hepatocyte-origin of hepatitis-related ICCs. Deleterious germline mutations of cancer-predisposing genes such as BRCA1, BRCA2, RAD51D, MLH1, or MSH2 were detected in 11% (16/146) of BTC patients. BTCs have distinct genetic features including somatic events and germline predisposition. These findings could be useful to establish treatment and diagnostic strategies for BTCs based on genetic information. We here analyzed genomic features of 412 BTC samples from Japanese and Italian populations. A total of 32 significantly and commonly mutated genes were identified, some of which negatively affected patient prognosis, including a novel deletion of MUC17 at 7q22.1. Cell-of-origin predictions using WGS and epigenetic features suggest hepatocyte-origin of hepatitis-related ICCs. Deleterious germline mutations of cancer-predisposing genes were detected in 11% of patients with BTC. BTCs have distinct genetic features including somatic events and germline predisposition. Copyright © 2018 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  5. Biallelic Mutations in DNAJC12 Cause Hyperphenylalaninemia, Dystonia, and Intellectual Disability.

    PubMed

    Anikster, Yair; Haack, Tobias B; Vilboux, Thierry; Pode-Shakked, Ben; Thöny, Beat; Shen, Nan; Guarani, Virginia; Meissner, Thomas; Mayatepek, Ertan; Trefz, Friedrich K; Marek-Yagel, Dina; Martinez, Aurora; Huttlin, Edward L; Paulo, Joao A; Berutti, Riccardo; Benoist, Jean-François; Imbard, Apolline; Dorboz, Imen; Heimer, Gali; Landau, Yuval; Ziv-Strasser, Limor; Malicdan, May Christine V; Gemperle-Britschgi, Corinne; Cremer, Kirsten; Engels, Hartmut; Meili, David; Keller, Irene; Bruggmann, Rémy; Strom, Tim M; Meitinger, Thomas; Mullikin, James C; Schwartz, Gerard; Ben-Zeev, Bruria; Gahl, William A; Harper, J Wade; Blau, Nenad; Hoffmann, Georg F; Prokisch, Holger; Opladen, Thomas; Schiff, Manuel

    2017-02-02

    Phenylketonuria (PKU, phenylalanine hydroxylase deficiency), an inborn error of metabolism, can be detected through newborn screening for hyperphenylalaninemia (HPA). Most individuals with HPA harbor mutations in the gene encoding phenylalanine hydroxylase (PAH), and a small proportion (2%) exhibit tetrahydrobiopterin (BH 4 ) deficiency with additional neurotransmitter (dopamine and serotonin) deficiency. Here we report six individuals from four unrelated families with HPA who exhibited progressive neurodevelopmental delay, dystonia, and a unique profile of neurotransmitter deficiencies without mutations in PAH or BH 4 metabolism disorder-related genes. In these six affected individuals, whole-exome sequencing (WES) identified biallelic mutations in DNAJC12, which encodes a heat shock co-chaperone family member that interacts with phenylalanine, tyrosine, and tryptophan hydroxylases catalyzing the BH 4 -activated conversion of phenylalanine into tyrosine, tyrosine into L-dopa (the precursor of dopamine), and tryptophan into 5-hydroxytryptophan (the precursor of serotonin), respectively. DNAJC12 was undetectable in fibroblasts from the individuals with null mutations. PAH enzyme activity was reduced in the presence of DNAJC12 mutations. Early treatment with BH 4 and/or neurotransmitter precursors had dramatic beneficial effects and resulted in the prevention of neurodevelopmental delay in the one individual treated before symptom onset. Thus, DNAJC12 deficiency is a preventable and treatable cause of intellectual disability that should be considered in the early differential diagnosis when screening results are positive for HPA. Sequencing of DNAJC12 may resolve any uncertainty and should be considered in all children with unresolved HPA. Copyright © 2017 American Society of Human Genetics. All rights reserved.

  6. Thyroid Hypoplasia in Congenital Hypothyroidism Associated with Thyroid Peroxidase Mutations.

    PubMed

    Stoupa, Athanasia; Chaabane, Rim; Guériouz, Manelle; Raynaud-Ravni, Catherine; Nitschke, Patrick; Bole-Feyset, Christine; Mnif, Mouna; Ammar Keskes, Leila; Hachicha, Mongia; Belguith, Neila; Polak, Michel; Carré, Aurore

    2018-05-23

    Primary congenital hypothyroidism (CH) affects about 1:3000 newborns worldwide and is mainly caused by defects in thyroid gland development (thyroid dysgenesis, TD) or hormone synthesis. A genetic cause is identified in less than 10% of TD patients. Our aim was to identify novel candidate genes in patients with TD using next-generation sequencing tools. We used whole exome sequencing (WES) to study two families, a consanguineous Tunisian family (one child with severe thyroid hypoplasia) and a French family (two newborn siblings, with a thyroid in situ that was not enlarged on ultrasound at diagnosis). Variants in candidate genes were filtered according to type of variation, frequency in public and in-house databases, in silico prediction tools, and inheritance mode. We unexpectedly identified three different variants of the thyroid peroxidase (TPO) gene. A homozygous missense mutation (c.875C>T, p.S292F) was found in the Tunisian patient with severe thyroid hypoplasia. The two French siblings were compound heterozygotes (c.387delC/c.2578G>A, p.N129Kfs*80/p.G860R) for TPO mutations. All three mutations have been previously described in patients with goitrous CH. In our patients treatment was initiated immediately after diagnosis and the effect, if any, of TSH stimulation of these thyroids remains unclear. We report the first cases of thyroid hypoplasia at diagnosis during neonatal period in patients with CH and TPO mutations. These cases highlight the importance of screening for TPO mutations not only in goitrous CH, but also in thyroids of normal or small size, and they broaden the clinical spectrum of described phenotypes.

  7. Somatic Genetic Variation in Solid Pseudopapillary Tumor of the Pancreas by Whole Exome Sequencing

    PubMed Central

    Guo, Meng; Luo, Guopei; Jin, Kaizhou; Long, Jiang; Cheng, He; Lu, Yu; Wang, Zhengshi; Yang, Chao; Xu, Jin; Ni, Quanxing; Yu, Xianjun; Liu, Chen

    2017-01-01

    Solid pseudopapillary tumor of the pancreas (SPT) is a rare pancreatic disease with a unique clinical manifestation. Although CTNNB1 gene mutations had been universally reported, genetic variation profiles of SPT are largely unidentified. We conducted whole exome sequencing in nine SPT patients to probe the SPT-specific insertions and deletions (indels) and single nucleotide polymorphisms (SNPs). In total, 54 SNPs and 41 indels of prominent variations were demonstrated through parallel exome sequencing. We detected that CTNNB1 mutations presented throughout all patients studied (100%), and a higher count of SNPs was particularly detected in patients with older age, larger tumor, and metastatic disease. By aggregating 95 detected variation events and viewing the interconnections among each of the genes with variations, CTNNB1 was identified as the core portion in the network, which might collaborate with other events such as variations of USP9X, EP400, HTT, MED12, and PKD1 to regulate tumorigenesis. Pathway analysis showed that the events involved in other cancers had the potential to influence the progression of the SNPs count. Our study revealed an insight into the variation of the gene encoding region underlying solid-pseudopapillary neoplasm tumorigenesis. The detection of these variations might partly reflect the potential molecular mechanism. PMID:28054945

  8. MARS variant associated with both recessive interstitial lung and liver disease and dominant Charcot-Marie-Tooth disease.

    PubMed

    Rips, Jonathan; Meyer-Schuman, Rebecca; Breuer, Oded; Tsabari, Reuven; Shaag, Avraham; Revel-Vilk, Shoshana; Reif, Shimon; Elpeleg, Orly; Antonellis, Anthony; Harel, Tamar

    2018-04-12

    Aminoacyl-tRNA synthetases (ARSs) are ubiquitously expressed enzymes responsible for charging tRNA with cognate amino acids during protein translation. Non-canonical functions are increasingly recognized, and include transcription and translation control and extracellular signaling. Monoallelic mutations in genes encoding several ARSs have been identified in axonal Charcot-Marie-Tooth (CMT2) disease, whereas biallelic mutations in ARS loci have been associated with multi-tissue syndromes, variably involving the central nervous system, lung, and liver. We report a male infant of non-consanguineous origin, presenting with successive onset of transfusion-dependent anemia, hypothyroidism, cholestasis, interstitial lung disease, and developmental delay. Whole-exome sequencing (WES) revealed compound heterozygosity for two variants (p.Tyr307Cys and p.Arg618Cys) in MARS, encoding methionyl-tRNA synthetase. Biallelic MARS mutations are associated with interstitial lung and liver disease (ILLD). Interestingly, the p.Arg618Cys variant, inherited from an unaffected father, was previously reported in a family with autosomal dominant late-onset CMT2. Yeast complementation assays confirmed pathogenicity of p.Arg618Cys, yet suggested retained function of p.Tyr307Cys. Our findings underscore the phenotypic variability associated with ARS mutations, and suggest genetic or environmental modifying factors in the onset of monoallelic MARS-associated CMT2. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  9. Biallelic UNC80 mutations caused infantile hypotonia with psychomotor retardation and characteristic facies 2 in two Chinese patients with variable phenotypes.

    PubMed

    He, Yunjuan; Ji, Xing; Yan, Hui; Ye, Xiantao; Liu, Yu; Wei, Wei; Xiao, Bing; Sun, Yu

    2018-06-20

    Biallelic UNC80 mutations cause infantile hypotonia with psychomotor retardation and characteristic facies 2 (IHPRF2), which is characterized by hypotonia, developmental delay (DD)/intellectual disability (ID), intrauterine growth retardation, postnatal growth retardation and characteristic facial features. We report two unrelated Chinese patients with compound heterozygous UNC80 mutations inherited from their parents, as identified by whole-exome sequencing (WES). Mutations c.3719G>A (p.W1240*)/c.4926_4937del (p.N1643_L1646del) and c.4963C>T (p.R1655C)/c.8385C>G (p.Y2795*) were identified in patient 1 and patient 2, respectively. Although both patients presented with DD/ID and hypotonia, different manifestations also occurred. Patient 1 presented with infantile hypotonia, epilepsy and hyperactivity without growth retardation, whereas patient 2 presented with persistent hypotonia, growth retardation and self-injury without epilepsy. Furthermore, we herein summarize the genotypes and phenotypes of patients with UNC80 mutations reported in the literature, revealing that IHPRF2 is a phenotypically heterogeneous disease. Common facial dysmorphisms include a thin upper lip, a tented upper lip, a triangular face, strabismus and microcephaly. To some extent, the manifestations of IHPRF2 mimic those of Angelman syndrome (AS)-like syndromes. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Customisation of the exome data analysis pipeline using a combinatorial approach.

    PubMed

    Pattnaik, Swetansu; Vaidyanathan, Srividya; Pooja, Durgad G; Deepak, Sa; Panda, Binay

    2012-01-01

    The advent of next generation sequencing (NGS) technologies have revolutionised the way biologists produce, analyse and interpret data. Although NGS platforms provide a cost-effective way to discover genome-wide variants from a single experiment, variants discovered by NGS need follow up validation due to the high error rates associated with various sequencing chemistries. Recently, whole exome sequencing has been proposed as an affordable option compared to whole genome runs but it still requires follow up validation of all the novel exomic variants. Customarily, a consensus approach is used to overcome the systematic errors inherent to the sequencing technology, alignment and post alignment variant detection algorithms. However, the aforementioned approach warrants the use of multiple sequencing chemistry, multiple alignment tools, multiple variant callers which may not be viable in terms of time and money for individual investigators with limited informatics know-how. Biologists often lack the requisite training to deal with the huge amount of data produced by NGS runs and face difficulty in choosing from the list of freely available analytical tools for NGS data analysis. Hence, there is a need to customise the NGS data analysis pipeline to preferentially retain true variants by minimising the incidence of false positives and make the choice of right analytical tools easier. To this end, we have sampled different freely available tools used at the alignment and post alignment stage suggesting the use of the most suitable combination determined by a simple framework of pre-existing metrics to create significant datasets.

  11. Identification of novel point mutations in splicing sites integrating whole-exome and RNA-seq data in myeloproliferative diseases.

    PubMed

    Spinelli, Roberta; Pirola, Alessandra; Redaelli, Sara; Sharma, Nitesh; Raman, Hima; Valletta, Simona; Magistroni, Vera; Piazza, Rocco; Gambacorti-Passerini, Carlo

    2013-11-01

    Point mutations in intronic regions near mRNA splice junctions can affect the splicing process. To identify novel splicing variants from exome sequencing data, we developed a bioinformatics splice-site prediction procedure to analyze next-generation sequencing (NGS) data (SpliceFinder). SpliceFinder integrates two functional annotation tools for NGS, ANNOVAR and MutationTaster and two canonical splice site prediction programs for single mutation analysis, SSPNN and NetGene2. By SpliceFinder, we identified somatic mutations affecting RNA splicing in a colon cancer sample, in eight atypical chronic myeloid leukemia (aCML), and eight CML patients. A novel homozygous splicing mutation was found in APC (NM_000038.4:c.1312+5G>A) and six heterozygous in GNAQ (NM_002072.2:c.735+1C>T), ABCC 3 (NM_003786.3:c.1783-1G>A), KLHDC 1 (NM_172193.1:c.568-2A>G), HOOK 1 (NM_015888.4:c.1662-1G>A), SMAD 9 (NM_001127217.2:c.1004-1C>T), and DNAH 9 (NM_001372.3:c.10242+5G>A). Integrating whole-exome and RNA sequencing in aCML and CML, we assessed the phenotypic effect of mutations on mRNA splicing for GNAQ, ABCC 3, HOOK 1. In ABCC 3 and HOOK 1, RNA-Seq showed the presence of aberrant transcripts with activation of a cryptic splice site or intron retention, validated by the reverse transcription-polymerase chain reaction (RT-PCR) in the case of HOOK 1. In GNAQ, RNA-Seq showed 22% of wild-type transcript and 78% of mRNA skipping exon 5, resulting in a 4-6 frameshift fusion confirmed by RT-PCR. The pipeline can be useful to identify intronic variants affecting RNA sequence by complementing conventional exome analysis.

  12. Ethical and legal implications of whole genome and whole exome sequencing in African populations.

    PubMed

    Wright, Galen E B; Koornhof, Pieter G J; Adeyemo, Adebowale A; Tiffin, Nicki

    2013-05-28

    Rapid advances in high throughput genomic technologies and next generation sequencing are making medical genomic research more readily accessible and affordable, including the sequencing of patient and control whole genomes and exomes in order to elucidate genetic factors underlying disease. Over the next five years, the Human Heredity and Health in Africa (H3Africa) Initiative, funded by the Wellcome Trust (United Kingdom) and the National Institutes of Health (United States of America), will contribute greatly towards sequencing of numerous African samples for biomedical research. Funding agencies and journals often require submission of genomic data from research participants to databases that allow open or controlled data access for all investigators. Access to such genotype-phenotype and pedigree data, however, needs careful control in order to prevent identification of individuals or families. This is particularly the case in Africa, where many researchers and their patients are inexperienced in the ethical issues accompanying whole genome and exome research; and where an historical unidirectional flow of samples and data out of Africa has created a sense of exploitation and distrust. In the current study, we analysed the implications of the anticipated surge of next generation sequencing data in Africa and the subsequent data sharing concepts on the protection of privacy of research subjects. We performed a retrospective analysis of the informed consent process for the continent and the rest-of-the-world and examined relevant legislation, both current and proposed. We investigated the following issues: (i) informed consent, including guidelines for performing culturally-sensitive next generation sequencing research in Africa and availability of suitable informed consent documents; (ii) data security and subject privacy whilst practicing data sharing; (iii) conveying the implications of such concepts to research participants in resource limited settings. We conclude that, in order to meet the unique requirements of performing next generation sequencing-related research in African populations, novel approaches to the informed consent process are required. This will help to avoid infringement of privacy of individual subjects as well as to ensure that informed consent adheres to acceptable data protection levels with regard to use and transfer of such information.

  13. Ethical and legal implications of whole genome and whole exome sequencing in African populations

    PubMed Central

    2013-01-01

    Background Rapid advances in high throughput genomic technologies and next generation sequencing are making medical genomic research more readily accessible and affordable, including the sequencing of patient and control whole genomes and exomes in order to elucidate genetic factors underlying disease. Over the next five years, the Human Heredity and Health in Africa (H3Africa) Initiative, funded by the Wellcome Trust (United Kingdom) and the National Institutes of Health (United States of America), will contribute greatly towards sequencing of numerous African samples for biomedical research. Discussion Funding agencies and journals often require submission of genomic data from research participants to databases that allow open or controlled data access for all investigators. Access to such genotype-phenotype and pedigree data, however, needs careful control in order to prevent identification of individuals or families. This is particularly the case in Africa, where many researchers and their patients are inexperienced in the ethical issues accompanying whole genome and exome research; and where an historical unidirectional flow of samples and data out of Africa has created a sense of exploitation and distrust. In the current study, we analysed the implications of the anticipated surge of next generation sequencing data in Africa and the subsequent data sharing concepts on the protection of privacy of research subjects. We performed a retrospective analysis of the informed consent process for the continent and the rest-of-the-world and examined relevant legislation, both current and proposed. We investigated the following issues: (i) informed consent, including guidelines for performing culturally-sensitive next generation sequencing research in Africa and availability of suitable informed consent documents; (ii) data security and subject privacy whilst practicing data sharing; (iii) conveying the implications of such concepts to research participants in resource limited settings. Summary We conclude that, in order to meet the unique requirements of performing next generation sequencing-related research in African populations, novel approaches to the informed consent process are required. This will help to avoid infringement of privacy of individual subjects as well as to ensure that informed consent adheres to acceptable data protection levels with regard to use and transfer of such information. PMID:23714101

  14. Understanding the Human Genome Project -- A Fact Sheet

    MedlinePlus

    ... cost of sequencing whole exomes or genomes, groundbreaking comparative genomic studies are now identifiying the causes of ... the role of ethical, legal, and social implications research more important than ever. National Human Genome Research ...

  15. Whole-exome sequencing reveals a rare interferon gamma receptor 1 mutation associated with myasthenia gravis.

    PubMed

    Qi, Guoyan; Liu, Peng; Gu, Shanshan; Yang, Hongxia; Dong, Huimin; Xue, Yinping

    2018-04-01

    Our study is aimed to explore the underlying genetic basis of myasthenia gravis. We collected a Chinese pedigree with myasthenia gravis, and whole-exome sequencing was performed on the two affected siblings and their parents. The candidate pathogenic gene was identified by bioinformatics filtering, which was further verified by Sanger sequencing. The homozygous mutation c.G40A (p.V14M) in interferon gamma receptor 1was identified. Moreover, the mutation was also detected in 3 cases of 44 sporadic myasthenia gravis patients. The p.V14M substitution in interferon gamma receptor 1 may affect the signal peptide function and the translocation on cell membrane, which could disrupt the binding of the ligand of interferon gamma and antibody production, contributing to myasthenia gravis susceptibility. We discovered that a rare variant c.G40A in interferon gamma receptor 1 potentially contributes to the myasthenia gravis pathogenesis. Further functional studies are needed to confirm the effect of the interferon gamma receptor 1 on the myasthenia gravis phenotype.

  16. Homozygous nonsense mutation in SGCA is a common cause of limb-girdle muscular dystrophy in Assiut, Egypt.

    PubMed

    Reddy, Hemakumar M; Hamed, Sherifa A; Lek, Monkol; Mitsuhashi, Satomi; Estrella, Elicia; Jones, Michael D; Mahoney, Lane J; Duncan, Anna R; Cho, Kyung-Ah; Macarthur, Daniel G; Kunkel, Louis M; Kang, Peter B

    2016-10-01

    The genetic causes of limb-girdle muscular dystrophy (LGMD) have been studied in numerous countries, but such investigations have been limited in Egypt. A cohort of 30 families with suspected LGMD from Assiut, Egypt, was studied using immunohistochemistry, homozygosity mapping, Sanger sequencing, and whole exome sequencing. Six families were confirmed to have pathogenic mutations, 4 in SGCA and 2 in DMD. Of these, 3 families harbored a single nonsense mutation in SGCA, suggesting that this may be a common mutation in Assiut, Egypt, originating from a founder effect. The Assiut region in Egypt appears to share at least several of the common LGMD genes found in other parts of the world. It is notable that 4 of the 6 mutations were ascertained by means of whole exome sequencing, even though it was the last approach adopted. This illustrates the power of this technique for identifying causative mutations for muscular dystrophies. Muscle Nerve 54: 690-695, 2016. © 2016 Wiley Periodicals, Inc.

  17. Whole exome sequencing identifies driver mutations in asymptomatic computed tomography-detected lung cancers with normal karyotype.

    PubMed

    Belloni, Elena; Veronesi, Giulia; Rotta, Luca; Volorio, Sara; Sardella, Domenico; Bernard, Loris; Pece, Salvatore; Di Fiore, Pier Paolo; Fumagalli, Caterina; Barberis, Massimo; Spaggiari, Lorenzo; Pelicci, Pier Giuseppe; Riva, Laura

    2015-04-01

    The efficacy of curative surgery for lung cancer could be largely improved by non-invasive screening programs, which can detect the disease at early stages. We previously showed that 18% of screening-identified lung cancers demonstrate a normal karyotype and, following high-density genome scanning, can be subdivided into samples with 1) numerous; 2) none; and 3) few copy number alterations. Whole exome sequencing was applied to the two normal karyotype, screening-detected lung cancers, constituting group 2, as well as normal controls. We identified mutations in both tumors, including KEAP1 (commonly mutated in lung cancers) in one, and TP53, PMS1, and MSH3 (well-characterized DNA-repair genes) in the other. The two normal karyotype screening-detected lung tumors displayed a typical lung cancer mutational profile that only next generation sequencing could reveal, which offered an additional contribution to the over-diagnosis bias concept hypothesized within lung cancer screening programs. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Genetic evolution of pancreatic cancer: lessons learnt from the pancreatic cancer genome sequencing project

    PubMed Central

    Iacobuzio-Donahue, Christine A

    2012-01-01

    Pancreatic cancer is a disease caused by the accumulation of genetic alterations in specific genes. Elucidation of the human genome sequence, in conjunction with technical advances in the ability to perform whole exome sequencing, have provided new insight into the mutational spectra characteristic of this lethal tumour type. Most recently, exomic sequencing has been used to clarify the clonal evolution of pancreatic cancer as well as provide time estimates of pancreatic carcinogenesis, indicating that a long window of opportunity may exist for early detection of this disease while in the curative stage. Moving forward, these mutational analyses indicate potential targets for personalised diagnostic and therapeutic intervention as well as the optimal timing for intervention based on the natural history of pancreatic carcinogenesis and progression. PMID:21749982

  19. Evaluation of exome variants using the Ion Proton Platform to sequence error-prone regions.

    PubMed

    Seo, Heewon; Park, Yoomi; Min, Byung Joo; Seo, Myung Eui; Kim, Ju Han

    2017-01-01

    The Ion Proton sequencer from Thermo Fisher accurately determines sequence variants from target regions with a rapid turnaround time at a low cost. However, misleading variant-calling errors can occur. We performed a systematic evaluation and manual curation of read-level alignments for the 675 ultrarare variants reported by the Ion Proton sequencer from 27 whole-exome sequencing data but that are not present in either the 1000 Genomes Project and the Exome Aggregation Consortium. We classified positive variant calls into 393 highly likely false positives, 126 likely false positives, and 156 likely true positives, which comprised 58.2%, 18.7%, and 23.1% of the variants, respectively. We identified four distinct error patterns of variant calling that may be bioinformatically corrected when using different strategies: simplicity region, SNV cluster, peripheral sequence read, and base inversion. Local de novo assembly successfully corrected 201 (38.7%) of the 519 highly likely or likely false positives. We also demonstrate that the two sequencing kits from Thermo Fisher (the Ion PI Sequencing 200 kit V3 and the Ion PI Hi-Q kit) exhibit different error profiles across different error types. A refined calling algorithm with better polymerase may improve the performance of the Ion Proton sequencing platform.

  20. LipidSeq: a next-generation clinical resequencing panel for monogenic dyslipidemias.

    PubMed

    Johansen, Christopher T; Dubé, Joseph B; Loyzer, Melissa N; MacDonald, Austin; Carter, David E; McIntyre, Adam D; Cao, Henian; Wang, Jian; Robinson, John F; Hegele, Robert A

    2014-04-01

    We report the design of a targeted resequencing panel for monogenic dyslipidemias, LipidSeq, for the purpose of replacing Sanger sequencing in the clinical detection of dyslipidemia-causing variants. We also evaluate the performance of the LipidSeq approach versus Sanger sequencing in 84 patients with a range of phenotypes including extreme blood lipid concentrations as well as additional dyslipidemias and related metabolic disorders. The panel performs well, with high concordance (95.2%) in samples with known mutations based on Sanger sequencing and a high detection rate (57.9%) of mutations likely to be causative for disease in samples not previously sequenced. Clinical implementation of LipidSeq has the potential to aid in the molecular diagnosis of patients with monogenic dyslipidemias with a high degree of speed and accuracy and at lower cost than either Sanger sequencing or whole exome sequencing. Furthermore, LipidSeq will help to provide a more focused picture of monogenic and polygenic contributors that underlie dyslipidemia while excluding the discovery of incidental pathogenic clinically actionable variants in nonmetabolism-related genes, such as oncogenes, that would otherwise be identified by a whole exome approach, thus minimizing potential ethical issues.

  1. LipidSeq: a next-generation clinical resequencing panel for monogenic dyslipidemias[S

    PubMed Central

    Johansen, Christopher T.; Dubé, Joseph B.; Loyzer, Melissa N.; MacDonald, Austin; Carter, David E.; McIntyre, Adam D.; Cao, Henian; Wang, Jian; Robinson, John F.; Hegele, Robert A.

    2014-01-01

    We report the design of a targeted resequencing panel for monogenic dyslipidemias, LipidSeq, for the purpose of replacing Sanger sequencing in the clinical detection of dyslipidemia-causing variants. We also evaluate the performance of the LipidSeq approach versus Sanger sequencing in 84 patients with a range of phenotypes including extreme blood lipid concentrations as well as additional dyslipidemias and related metabolic disorders. The panel performs well, with high concordance (95.2%) in samples with known mutations based on Sanger sequencing and a high detection rate (57.9%) of mutations likely to be causative for disease in samples not previously sequenced. Clinical implementation of LipidSeq has the potential to aid in the molecular diagnosis of patients with monogenic dyslipidemias with a high degree of speed and accuracy and at lower cost than either Sanger sequencing or whole exome sequencing. Furthermore, LipidSeq will help to provide a more focused picture of monogenic and polygenic contributors that underlie dyslipidemia while excluding the discovery of incidental pathogenic clinically actionable variants in nonmetabolism-related genes, such as oncogenes, that would otherwise be identified by a whole exome approach, thus minimizing potential ethical issues. PMID:24503134

  2. Whole-Exome Sequencing to Decipher the Genetic Heterogeneity of Hearing Loss in a Chinese Family with Deaf by Deaf Mating

    PubMed Central

    Qing, Jie; Yan, Denise; Zhou, Yuan; Liu, Qiong; Wu, Weijing; Xiao, Zian; Liu, Yuyuan; Liu, Jia; Du, Lilin; Xie, Dinghua; Liu, Xue Zhong

    2014-01-01

    Inherited deafness has been shown to have high genetic heterogeneity. For many decades, linkage analysis and candidate gene approaches have been the main tools to elucidate the genetics of hearing loss. However, this associated study design is costly, time-consuming, and unsuitable for small families. This is mainly due to the inadequate numbers of available affected individuals, locus heterogeneity, and assortative mating. Exome sequencing has now become technically feasible and a cost-effective method for detection of disease variants underlying Mendelian disorders due to the recent advances in next-generation sequencing (NGS) technologies. In the present study, we have combined both the Deafness Gene Mutation Detection Array and exome sequencing to identify deafness causative variants in a large Chinese composite family with deaf by deaf mating. The simultaneous screening of the 9 common deafness mutations using the allele-specific PCR based universal array, resulted in the identification of the 1555A>G in the mitochondrial DNA (mtDNA) 12S rRNA in affected individuals in one branch of the family. We then subjected the mutation-negative cases to exome sequencing and identified novel causative variants in the MYH14 and WFS1 genes. This report confirms the effective use of a NGS technique to detect pathogenic mutations in affected individuals who were not candidates for classical genetic studies. PMID:25289672

  3. Increased Probability of Co-Occurrence of Two Rare Diseases in Consanguineous Families and Resolution of a Complex Phenotype by Next Generation Sequencing

    PubMed Central

    Lal, Dennis; Neubauer, Bernd A.; Toliat, Mohammad R.; Altmüller, Janine; Thiele, Holger; Nürnberg, Peter; Kamrath, Clemens; Schänzer, Anne; Sander, Thomas; Hahn, Andreas; Nothnagel, Michael

    2016-01-01

    Massively parallel sequencing of whole genomes and exomes has facilitated a direct assessment of causative genetic variation, now enabling the identification of genetic factors involved in rare diseases (RD) with Mendelian inheritance patterns on an almost routine basis. Here, we describe the illustrative case of a single consanguineous family where this strategy suffered from the difficulty to distinguish between two etiologically distinct disorders, namely the co-occurrence of hereditary hypophosphatemic rickets (HRR) and congenital myopathies (CM), by their phenotypic manifestation alone. We used parametric linkage analysis, homozygosity mapping and whole exome-sequencing to identify mutations underlying HRR and CM. We also present an approximate approach for assessing the probability of co-occurrence of two unlinked recessive RD in a single family as a function of the degree of consanguinity and the frequency of the disease-causing alleles. Linkage analysis and homozygosity mapping yielded elusive results when assuming a single RD, but whole-exome sequencing helped to identify two mutations in two genes, namely SLC34A3 and SEPN1, that segregated independently in this family and that have previously been linked to two etiologically different diseases. We assess the increase in chance co-occurrence of rare diseases due to consanguinity, i.e. under circumstances that generally favor linkage mapping of recessive disease, and show that this probability can increase by several orders of magnitudes. We conclude that such potential co-occurrence represents an underestimated risk when analyzing rare or undefined diseases in consanguineous families and should be given more consideration in the clinical and genetic evaluation. PMID:26789268

  4. Tumor Biology and Immunology | Center for Cancer Research

    Cancer.gov

    Tumor Biology and Immunology The Comparative Brain Tumor Consortium is collaborating with National Center for Advanced Translational Sciences to complete whole exome sequencing on canine meningioma samples. Results will be published and made publicly available.

  5. Case Report: Whole exome sequencing helps in accurate molecular diagnosis in siblings with a rare co-occurrence of paternally inherited 22q12 duplication and autosomal recessive non-syndromic ichthyosis.

    PubMed Central

    Gupta, Aayush; Sharma, Yugal; Deo, Kirti; Vellarikkal, Shamsudheen; Jayarajan, Rijith; Dixit, Vishal; Verma, Ankit; Scaria, Vinod; Sivasubbu, Sridhar

    2015-01-01

    Lamellar ichthyosis (LI), considered an autosomal recessive monogenic genodermatosis, has an incidence of approximately 1 in 250,000. Usually associated with mutations in the transglutaminase gene ( TGM1), mutations in six other genes have, less frequently, been shown to be causative. Two siblings, born in a collodion membrane, presented with fish like scales all over the body. Karyotyping revealed duplication of the chromosome arm on 22q12+ in the father and two siblings. Whole exome sequencing revealed a homozygous p.Gly218Ser variation in TGM1; a variation reported earlier in an isolated Finnish population in association with autosomal recessive non-syndromic ichthyosis. This concurrence of a potentially benign 22q12+ duplication and LI, both rare individually, is reported here likely for the first time. PMID:26594337

  6. Whole Exome Sequencing of a Patient with Metastatic Hidradenocarcinoma and Review of the Literature

    PubMed Central

    Gupta, Eva; Guthrie, Kimberly J.; Krishna, Murli; Asmann, Yan; Parker, Alexander S.; Joseph, Richard W.

    2015-01-01

    Hidradenocarcinoma is a rare malignancy of the sweat glands with only a few cases reported in literature. The management of these tumors is based on the extent of disease with local disease managed with surgical resection. These can tumors carry a high potential of lymphatic and vascular spread and local and distant metastases are not uncommon. Given the rarity of the tumor and lack of genetic and clinical data about these tumors, there is no consensus on the proper management of metastatic disease. Here in we report the first case of metastatic hidradenocarcinoma with detailed molecular profiling including whole exome sequencing. We identified mutations in multiple genes including two that are potentially targetable: PTCH1 and TCF7L1. Further work is necessary to not only confirm the presence of these mutations but also to confirm the clinical significance. PMID:25918615

  7. Whole exome sequencing of a patient with metastatic hidradenocarcinoma and review of the literature.

    PubMed

    Gupta, Eva; Guthrie, Kimberly J; Krishna, Murli; Asmann, Yan; Parker, Alexander S; Joseph, Richard W

    2015-02-11

    Hidradenocarcinoma is a rare malignancy of the sweat glands with only a few cases reported in literature. The management of these tumors is based on the extent of disease with local disease managed with surgical resection. These can tumors carry a high potential of lymphatic and vascular spread and local and distant metastases are not uncommon. Given the rarity of the tumor and lack of genetic and clinical data about these tumors, there is no consensus on the proper management of metastatic disease. Here in we report the first case of metastatic hidradenocarcinoma with detailed molecular profiling including whole exome sequencing. We identified mutations in multiple genes including two that are potentially targetable: PTCH1 and TCF7L1. Further work is necessary to not only confirm the presence of these mutations but also to confirm the clinical significance.

  8. Whole-genome and multisector exome sequencing of primary and post-treatment glioblastoma reveals patterns of tumor evolution

    PubMed Central

    Kim, Hoon; Zheng, Siyuan; Amini, Seyed S.; Virk, Selene M.; Mikkelsen, Tom; Brat, Daniel J.; Grimsby, Jonna; Sougnez, Carrie; Muller, Florian; Hu, Jian; Sloan, Andrew E.; Cohen, Mark L.; Van Meir, Erwin G.; Scarpace, Lisa; Laird, Peter W.; Weinstein, John N.; Lander, Eric S.; Gabriel, Stacey; Getz, Gad; Meyerson, Matthew; Chin, Lynda; Barnholtz-Sloan, Jill S.

    2015-01-01

    Glioblastoma (GBM) is a prototypical heterogeneous brain tumor refractory to conventional therapy. A small residual population of cells escapes surgery and chemoradiation, resulting in a typically fatal tumor recurrence ∼7 mo after diagnosis. Understanding the molecular architecture of this residual population is critical for the development of successful therapies. We used whole-genome sequencing and whole-exome sequencing of multiple sectors from primary and paired recurrent GBM tumors to reconstruct the genomic profile of residual, therapy resistant tumor initiating cells. We found that genetic alteration of the p53 pathway is a primary molecular event predictive of a high number of subclonal mutations in glioblastoma. The genomic road leading to recurrence is highly idiosyncratic but can be broadly classified into linear recurrences that share extensive genetic similarity with the primary tumor and can be directly traced to one of its specific sectors, and divergent recurrences that share few genetic alterations with the primary tumor and originate from cells that branched off early during tumorigenesis. Our study provides mechanistic insights into how genetic alterations in primary tumors impact the ensuing evolution of tumor cells and the emergence of subclonal heterogeneity. PMID:25650244

  9. A dominant negative mutation at the ATP binding domain of AMHR2 is associated with a defective anti-Müllerian hormone signaling pathway.

    PubMed

    Li, Lin; Zhou, Xueya; Wang, Xi; Wang, Jing; Zhang, Wei; Wang, Binbin; Cao, Yunxia; Kee, Kehkooi

    2016-09-01

    Does a heterozygous mutation in AMHR2, identified in whole-exome sequencings (WES) of patients with primary ovarian insufficiency (POI), cause a defect in anti-Müllerian hormone (AMH) signaling? The I209N mutation at the adenosine triphosphate binding domain of AMHR2 exerts dominant negative defects in the AMH signaling pathway. Previous studies have demonstrated the associations of several sequence variants in AMH or AMHR2 with POI, but no functional assay has been performed to verify whether there was any defect on AMH signaling. Ninety-six unrelated female Chinese Han patients were diagnosed with idiopathic POI and subjected to WES. In silico analysis was done for the sequence variants followed by molecular assays to examine the functional effects of the sequence variants in human granulosa cells. In silico analysis, immunostaining, Western analysis, genome-wide expression analysis, quantitatively polymerase chain reaction were applied to the characterization of the sequence variants. We identified one novel heterozygous missense variant, p.Ala17Glu (A17E), in AMHR2. Subsequently, A17E and two independently reported missense variants, p.Ile209Asn (I209N) and p.Leu354Phe (L354F), were evaluated for effects on the AMH signaling pathway. In silico analysis predicted that all three variants may be deleterious. However, only one variant, I209N, showed severe defects in transducing the AMH signal as well as impaired SMAD1/5/8 phosphorylation. Furthermore, using genome-wide gene expression analysis, we identified genes whose expression was affected by the mutation, these included genes previously reported to participate in AMH signaling as well as newly identified genes. They are EMILIN2, FAM155A, GATA2, HES5, ID1, ID2, RLTPR, SMAD7, CBL, MALAT1 and SMARCA2. None. Although the in vitro assays demonstrated the causative effect of I209N on AMH signaling, further studies need to validate its long-term effects on folliculogenesis and POI. These results will aid both researchers and clinicians in understanding the molecular pathology of AMH signaling and POI to develop diagnostic assays or therapeutics approaches. Research funding is provided by the Ministry of Science and Technology of China [2012CB944704; 2012CB966702], and the National Natural Science Foundation of China [Grant number: 31171429]. The authors declare no conflict of interest. © The Author 2016. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. Whole exome sequence analysis of Peters anomaly

    PubMed Central

    Weh, Eric; Reis, Linda M.; Happ, Hannah C.; Levin, Alex V.; Wheeler, Patricia G.; David, Karen L.; Carney, Erin; Angle, Brad; Hauser, Natalie

    2015-01-01

    Peters anomaly is a rare form of anterior segment ocular dysgenesis, which can also be associated with additional systemic defects. At this time, the majority of cases of Peters anomaly lack a genetic diagnosis. We performed whole exome sequencing of 27 patients with syndromic or isolated Peters anomaly to search for pathogenic mutations in currently known ocular genes. Among the eight previously recognized Peters anomaly genes, we identified a de novo missense mutation in PAX6, c.155G>A, p.(Cys52Tyr), in one patient. Analysis of 691 additional genes currently associated with a different ocular phenotype identified a heterozygous splicing mutation c.1025+2T>A in TFAP2A, a de novo heterozygous nonsense mutation c.715C>T, p.(Gln239*) in HCCS, a hemizygous mutation c.385G>A, p.(Glu129Lys) in NDP, a hemizygous mutation c.3446C>T, p.(Pro1149Leu) in FLNA, and compound heterozygous mutations c.1422T>A, p.(Tyr474*) and c.2544G>A, p.(Met848Ile) in SLC4A11; all mutations, except for the FLNA and SLC4A11 c.2544G>A alleles, are novel. This is the frst study to use whole exome sequencing to discern the genetic etiology of a large cohort of patients with syndromic or isolated Peters anomaly. We report five new genes associated with this condition and suggest screening of TFAP2A and FLNA in patients with Peters anomaly and relevant syndromic features and HCCS, NDP and SLC4A11 in patients with isolated Peters anomaly. PMID:25182519

  11. MMP21 is mutated in human heterotaxy and is required for normal left-right asymmetry in vertebrates.

    PubMed

    Guimier, Anne; Gabriel, George C; Bajolle, Fanny; Tsang, Michael; Liu, Hui; Noll, Aaron; Schwartz, Molly; El Malti, Rajae; Smith, Laurie D; Klena, Nikolai T; Jimenez, Gina; Miller, Neil A; Oufadem, Myriam; Moreau de Bellaing, Anne; Yagi, Hisato; Saunders, Carol J; Baker, Candice N; Di Filippo, Sylvie; Peterson, Kevin A; Thiffault, Isabelle; Bole-Feysot, Christine; Cooley, Linda D; Farrow, Emily G; Masson, Cécile; Schoen, Patric; Deleuze, Jean-François; Nitschké, Patrick; Lyonnet, Stanislas; de Pontual, Loic; Murray, Stephen A; Bonnet, Damien; Kingsmore, Stephen F; Amiel, Jeanne; Bouvagnet, Patrice; Lo, Cecilia W; Gordon, Christopher T

    2015-11-01

    Heterotaxy results from a failure to establish normal left-right asymmetry early in embryonic development. By whole-exome sequencing, whole-genome sequencing and high-throughput cohort resequencing, we identified recessive mutations in MMP21 (encoding matrix metallopeptidase 21) in nine index cases with heterotaxy. In addition, Mmp21-mutant mice and mmp21-morphant zebrafish displayed heterotaxy and abnormal cardiac looping, respectively, suggesting a new role for extracellular matrix remodeling in the establishment of laterality in vertebrates.

  12. MMP21 is mutated in human heterotaxy and is required for normal left-right asymmetry in vertebrates

    PubMed Central

    Guimier, Anne; Gabriel, George C.; Bajolle, Fanny; Tsang, Michael; Liu, Hui; Noll, Aaron; Schwartz, Molly; El Malti, Rajae; Smith, Laurie D.; Klena, Nikolai T.; Jimenez, Gina; Miller, Neil A.; Oufadem, Myriam; Moreau de Bellaing, Anne; Yagi, Hisato; Saunders, Carol J.; Baker, Candice N.; Di Filippo, Sylvie; Peterson, Kevin A.; Thiffault, Isabelle; Bole-Feysot, Christine; Cooley, Linda D.; Farrow, Emily G.; Masson, Cécile; Schoen, Patric; Deleuze, Jean-François; Nitschké, Patrick; Lyonnet, Stanislas; de Pontual, Loic; Murray, Stephen A.; Bonnet, Damien; Kingsmore, Stephen F.; Amiel, Jeanne; Bouvagnet, Patrice; Lo, Cecilia W.; Gordon, Christopher T.

    2017-01-01

    Heterotaxy results from a failure to establish normal left-right asymmetry early in embryonic development. By whole exome sequencing, whole genome sequencing and high-throughput cohort resequencing we identified recessive mutations in matrix metallopeptidase 21 (MMP21), in nine index cases with heterotaxy. In addition, Mmp21 mutant mice and morphant zebrafish display heterotaxy and abnormal cardiac looping, respectively, suggesting a novel role for extra-cellular remodeling in the establishment of laterality in vertebrates. PMID:26437028

  13. Exome sequencing identifies a novel mutation of the GDI1 gene in a Chinese non-syndromic X-linked intellectual disability family

    PubMed Central

    Duan, Yongheng; Lin, Sheng; Xie, Lichun; Zheng, Kaifeng; Chen, Shiguo; Song, Hui; Zeng, Xuchun; Gu, Xueying; Wang, Heyun; Zhang, Linghua; Shao, Hao; Hong, Wenxu; Zhang, Lijie; Duan, Shan

    2017-01-01

    Abstract X-linked intellectual disability (XLID) has been associated with various genes. Diagnosis of XLID, especially for non-syndromic ones (NS-XLID), is often hampered by the heterogeneity of this disease. Here we report the case of a Chinese family in which three males suffer from intellectual disability (ID). The three patients shared the same phenotype: no typical clinical manifestation other than IQ score ≤ 70. For a genetic diagnosis for this family we carried out whole exome sequencing on the proband, and validated 16 variants of interest in the genomic DNA of all the family members. A missense mutation (c.710G > T), which mapped to exon 6 of the Rab GDP-Dissociation Inhibitor 1 (GDI1) gene, was found segregating with the ID phenotype, and this mutation changes the 237th position in the guanosine diphosphate dissociation inhibitor (GDI) protein from glycine to valine (p. Gly237Val). Through molecular dynamics simulations we found that this substitution results in a conformational change of GDI, possibly affecting the Rab-binding capacity of this protein. In conclusion, our study identified a novel GDI1 mutation that is possibly NS-XLID causative, and showed that whole exome sequencing provides advantages for detecting novel ID-associated variants and can greatly facilitate the genetic diagnosis of the disease. PMID:28863211

  14. Jannovar: a java library for exome annotation.

    PubMed

    Jäger, Marten; Wang, Kai; Bauer, Sebastian; Smedley, Damian; Krawitz, Peter; Robinson, Peter N

    2014-05-01

    Transcript-based annotation and pedigree analysis are two basic steps in the computational analysis of whole-exome sequencing experiments in genetic diagnostics and disease-gene discovery projects. Here, we present Jannovar, a stand-alone Java application as well as a Java library designed to be used in larger software frameworks for exome and genome analysis. Jannovar uses an interval tree to identify all transcripts affected by a given variant, and provides Human Genome Variation Society-compliant annotations both for variants affecting coding sequences and splice junctions as well as untranslated regions and noncoding RNA transcripts. Jannovar can also perform family-based pedigree analysis with Variant Call Format (VCF) files with data from members of a family segregating a Mendelian disorder. Using a desktop computer, Jannovar requires a few seconds to annotate a typical VCF file with exome data. Jannovar is freely available under the BSD2 license. Source code as well as the Java application and library file can be downloaded from http://compbio.charite.de (with tutorial) and https://github.com/charite/jannovar. © 2014 WILEY PERIODICALS, INC.

  15. Expanding the clinical spectrum of COL1A1 mutations in different forms of glaucoma.

    PubMed

    Mauri, Lucia; Uebe, Steffen; Sticht, Heinrich; Vossmerbaeumer, Urs; Weisschuh, Nicole; Manfredini, Emanuela; Maselli, Edoardo; Patrosso, Mariacristina; Weinreb, Robert N; Penco, Silvana; Reis, André; Pasutto, Francesca

    2016-08-02

    Primary congenital glaucoma (PCG) and early onset glaucomas are one of the major causes of children and young adult blindness worldwide. Both autosomal recessive and dominant inheritance have been described with involvement of several genes including CYP1B1, FOXC1, PITX2, MYOC and PAX6. However, mutations in these genes explain only a small fraction of cases suggesting the presence of further candidate genes. To elucidate further genetic causes of these conditions whole exome sequencing (WES) was performed in an Italian patient, diagnosed with PCG and retinal detachment, and his unaffected parents. Sanger sequencing of the complete coding region of COL1A1 was performed in a total of 26 further patients diagnosed with PCG or early onset glaucoma. Exclusion of pathogenic variations in known glaucoma genes as CYP1B1, MYOC, FOXC1, PITX2 and PAX6 was additionally done per Sanger sequencing and Multiple Ligation-dependent Probe Amplification (MLPA) analysis. In the patient diagnosed with PCG and retinal detachment, analysis of WES data identified compound heterozygous variants in COL1A1 (p.Met264Leu; p.Ala1083Thr). Targeted COL1A1 screening of 26 additional patients detected three further heterozygous variants (p.Arg253*, p.Gly767Ser and p.Gly154Val) in three distinct subjects: two of them diagnosed with early onset glaucoma and mild form of osteogenesis imperfecta (OI), one patient with a diagnosis of PCG at age 4 years. All five variants affected evolutionary, highly conserved amino acids indicating important functional restrictions. Molecular modeling predicted that the heterozygous variants are dominant in effect and affect protein stability and thus the amount of available protein, while the compound heterozygous variants act as recessive alleles and impair binding affinity to two main COL1A1 binding proteins: Hsp47 and fibronectin. Dominant inherited mutations in COL1A1 are known causes of connective tissues disorders such as OI. These disorders are also associated with different ocular abnormalities, although recognition of the common pathology for both features is seldom being recognized. Our results expand the role of COL1A1 mutations in different forms of early-onset glaucoma with and without signs of OI. Thus, we suggest including COL1A1 mutation screening in the genetic work-up of glaucoma cases and detailed ophthalmic examinations with fundus analysis in patients with OI.

  16. Mutations in SULT2B1 Cause Autosomal-Recessive Congenital Ichthyosis in Humans.

    PubMed

    Heinz, Lisa; Kim, Gwang-Jin; Marrakchi, Slaheddine; Christiansen, Julie; Turki, Hamida; Rauschendorf, Marc-Alexander; Lathrop, Mark; Hausser, Ingrid; Zimmer, Andreas D; Fischer, Judith

    2017-06-01

    Ichthyoses are a clinically and genetically heterogeneous group of genodermatoses associated with abnormal scaling of the skin over the whole body. Mutations in nine genes are known to cause non-syndromic forms of autosomal-recessive congenital ichthyosis (ARCI). However, not all genetic causes for ARCI have been discovered to date. Using whole-exome sequencing (WES) and multigene panel screening, we identified 6 ARCI-affected individuals from three unrelated families with mutations in Sulfotransferase family 2B member 1 (SULT2B1), showing their causative association with ARCI. Cytosolic sulfotransferases form a large family of enzymes that are involved in the synthesis and metabolism of several steroids in humans. We identified four distinct mutations including missense, nonsense, and splice site mutations. We demonstrated the loss of SULT2B1 expression at RNA and protein levels in keratinocytes from individuals with ARCI by functional analyses. Furthermore, we succeeded in reconstructing the morphologic skin alterations in a 3D organotypic tissue culture model with SULT2B1-deficient keratinocytes and fibroblasts. By thin layer chromatography (TLC) of extracts from these organotypic cultures, we could show the absence of cholesterol sulfate, the metabolite of SULT2B1, and an increased level of cholesterol, indicating a disturbed cholesterol metabolism of the skin upon loss-of-function mutation in SULT2B1. In conclusion, our study reveals an essential role for SULT2B1 in the proper development of healthy human skin. Mutation in SULT2B1 leads to an ARCI phenotype via increased proliferation of human keratinocytes, thickening of epithelial layers, and altered epidermal cholesterol metabolism. Copyright © 2017 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  17. Intra-tumor genetic heterogeneity and mortality in head and neck cancer: analysis of data from the Cancer Genome Atlas.

    PubMed

    Mroz, Edmund A; Tward, Aaron D; Tward, Aaron M; Hammon, Rebecca J; Ren, Yin; Rocco, James W

    2015-02-01

    Although the involvement of intra-tumor genetic heterogeneity in tumor progression, treatment resistance, and metastasis is established, genetic heterogeneity is seldom examined in clinical trials or practice. Many studies of heterogeneity have had prespecified markers for tumor subpopulations, limiting their generalizability, or have involved massive efforts such as separate analysis of hundreds of individual cells, limiting their clinical use. We recently developed a general measure of intra-tumor genetic heterogeneity based on whole-exome sequencing (WES) of bulk tumor DNA, called mutant-allele tumor heterogeneity (MATH). Here, we examine data collected as part of a large, multi-institutional study to validate this measure and determine whether intra-tumor heterogeneity is itself related to mortality. Clinical and WES data were obtained from The Cancer Genome Atlas in October 2013 for 305 patients with head and neck squamous cell carcinoma (HNSCC), from 14 institutions. Initial pathologic diagnoses were between 1992 and 2011 (median, 2008). Median time to death for 131 deceased patients was 14 mo; median follow-up of living patients was 22 mo. Tumor MATH values were calculated from WES results. Despite the multiple head and neck tumor subsites and the variety of treatments, we found in this retrospective analysis a substantial relation of high MATH values to decreased overall survival (Cox proportional hazards analysis: hazard ratio for high/low heterogeneity, 2.2; 95% CI 1.4 to 3.3). This relation of intra-tumor heterogeneity to survival was not due to intra-tumor heterogeneity's associations with other clinical or molecular characteristics, including age, human papillomavirus status, tumor grade and TP53 mutation, and N classification. MATH improved prognostication over that provided by traditional clinical and molecular characteristics, maintained a significant relation to survival in multivariate analyses, and distinguished outcomes among patients having oral-cavity or laryngeal cancers even when standard disease staging was taken into account. Prospective studies, however, will be required before MATH can be used prognostically in clinical trials or practice. Such studies will need to examine homogeneously treated HNSCC at specific head and neck subsites, and determine the influence of cancer therapy on MATH values. Analysis of MATH and outcome in human-papillomavirus-positive oropharyngeal squamous cell carcinoma is particularly needed. To our knowledge this study is the first to combine data from hundreds of patients, treated at multiple institutions, to document a relation between intra-tumor heterogeneity and overall survival in any type of cancer. We suggest applying the simply calculated MATH metric of heterogeneity to prospective studies of HNSCC and other tumor types.

  18. Best Practices and Joint Calling of the HumanExome BeadChip: The CHARGE Consortium

    PubMed Central

    Grove, Megan L.; Yu, Bing; Cochran, Barbara J.; Haritunians, Talin; Bis, Joshua C.; Taylor, Kent D.; Hansen, Mark; Borecki, Ingrid B.; Cupples, L. Adrienne; Fornage, Myriam; Gudnason, Vilmundur; Harris, Tamara B.; Kathiresan, Sekar; Kraaij, Robert; Launer, Lenore J.; Levy, Daniel; Liu, Yongmei; Mosley, Thomas; Peloso, Gina M.; Psaty, Bruce M.; Rich, Stephen S.; Rivadeneira, Fernando; Siscovick, David S.; Smith, Albert V.; Uitterlinden, Andre; van Duijn, Cornelia M.; Wilson, James G.; O’Donnell, Christopher J.; Rotter, Jerome I.; Boerwinkle, Eric

    2013-01-01

    Genotyping arrays are a cost effective approach when typing previously-identified genetic polymorphisms in large numbers of samples. One limitation of genotyping arrays with rare variants (e.g., minor allele frequency [MAF] <0.01) is the difficulty that automated clustering algorithms have to accurately detect and assign genotype calls. Combining intensity data from large numbers of samples may increase the ability to accurately call the genotypes of rare variants. Approximately 62,000 ethnically diverse samples from eleven Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium cohorts were genotyped with the Illumina HumanExome BeadChip across seven genotyping centers. The raw data files for the samples were assembled into a single project for joint calling. To assess the quality of the joint calling, concordance of genotypes in a subset of individuals having both exome chip and exome sequence data was analyzed. After exclusion of low performing SNPs on the exome chip and non-overlap of SNPs derived from sequence data, genotypes of 185,119 variants (11,356 were monomorphic) were compared in 530 individuals that had whole exome sequence data. A total of 98,113,070 pairs of genotypes were tested and 99.77% were concordant, 0.14% had missing data, and 0.09% were discordant. We report that joint calling allows the ability to accurately genotype rare variation using array technology when large sample sizes are available and best practices are followed. The cluster file from this experiment is available at www.chargeconsortium.com/main/exomechip. PMID:23874508

  19. Sequenza: allele-specific copy number and mutation profiles from tumor sequencing data.

    PubMed

    Favero, F; Joshi, T; Marquard, A M; Birkbak, N J; Krzystanek, M; Li, Q; Szallasi, Z; Eklund, A C

    2015-01-01

    Exome or whole-genome deep sequencing of tumor DNA along with paired normal DNA can potentially provide a detailed picture of the somatic mutations that characterize the tumor. However, analysis of such sequence data can be complicated by the presence of normal cells in the tumor specimen, by intratumor heterogeneity, and by the sheer size of the raw data. In particular, determination of copy number variations from exome sequencing data alone has proven difficult; thus, single nucleotide polymorphism (SNP) arrays have often been used for this task. Recently, algorithms to estimate absolute, but not allele-specific, copy number profiles from tumor sequencing data have been described. We developed Sequenza, a software package that uses paired tumor-normal DNA sequencing data to estimate tumor cellularity and ploidy, and to calculate allele-specific copy number profiles and mutation profiles. We applied Sequenza, as well as two previously published algorithms, to exome sequence data from 30 tumors from The Cancer Genome Atlas. We assessed the performance of these algorithms by comparing their results with those generated using matched SNP arrays and processed by the allele-specific copy number analysis of tumors (ASCAT) algorithm. Comparison between Sequenza/exome and SNP/ASCAT revealed strong correlation in cellularity (Pearson's r = 0.90) and ploidy estimates (r = 0.42, or r = 0.94 after manual inspecting alternative solutions). This performance was noticeably superior to previously published algorithms. In addition, in artificial data simulating normal-tumor admixtures, Sequenza detected the correct ploidy in samples with tumor content as low as 30%. The agreement between Sequenza and SNP array-based copy number profiles suggests that exome sequencing alone is sufficient not only for identifying small scale mutations but also for estimating cellularity and inferring DNA copy number aberrations. © The Author 2014. Published by Oxford University Press on behalf of the European Society for Medical Oncology.

  20. Exome sequencing-driven discovery of coding polymorphisms associated with common metabolic phenotypes.

    PubMed

    Albrechtsen, A; Grarup, N; Li, Y; Sparsø, T; Tian, G; Cao, H; Jiang, T; Kim, S Y; Korneliussen, T; Li, Q; Nie, C; Wu, R; Skotte, L; Morris, A P; Ladenvall, C; Cauchi, S; Stančáková, A; Andersen, G; Astrup, A; Banasik, K; Bennett, A J; Bolund, L; Charpentier, G; Chen, Y; Dekker, J M; Doney, A S F; Dorkhan, M; Forsen, T; Frayling, T M; Groves, C J; Gui, Y; Hallmans, G; Hattersley, A T; He, K; Hitman, G A; Holmkvist, J; Huang, S; Jiang, H; Jin, X; Justesen, J M; Kristiansen, K; Kuusisto, J; Lajer, M; Lantieri, O; Li, W; Liang, H; Liao, Q; Liu, X; Ma, T; Ma, X; Manijak, M P; Marre, M; Mokrosiński, J; Morris, A D; Mu, B; Nielsen, A A; Nijpels, G; Nilsson, P; Palmer, C N A; Rayner, N W; Renström, F; Ribel-Madsen, R; Robertson, N; Rolandsson, O; Rossing, P; Schwartz, T W; Slagboom, P E; Sterner, M; Tang, M; Tarnow, L; Tuomi, T; van't Riet, E; van Leeuwen, N; Varga, T V; Vestmar, M A; Walker, M; Wang, B; Wang, Y; Wu, H; Xi, F; Yengo, L; Yu, C; Zhang, X; Zhang, J; Zhang, Q; Zhang, W; Zheng, H; Zhou, Y; Altshuler, D; 't Hart, L M; Franks, P W; Balkau, B; Froguel, P; McCarthy, M I; Laakso, M; Groop, L; Christensen, C; Brandslund, I; Lauritzen, T; Witte, D R; Linneberg, A; Jørgensen, T; Hansen, T; Wang, J; Nielsen, R; Pedersen, O

    2013-02-01

    Human complex metabolic traits are in part regulated by genetic determinants. Here we applied exome sequencing to identify novel associations of coding polymorphisms at minor allele frequencies (MAFs) >1% with common metabolic phenotypes. The study comprised three stages. We performed medium-depth (8×) whole exome sequencing in 1,000 cases with type 2 diabetes, BMI >27.5 kg/m(2) and hypertension and in 1,000 controls (stage 1). We selected 16,192 polymorphisms nominally associated (p < 0.05) with case-control status, from four selected annotation categories or from loci reported to associate with metabolic traits. These variants were genotyped in 15,989 Danes to search for association with 12 metabolic phenotypes (stage 2). In stage 3, polymorphisms showing potential associations were genotyped in a further 63,896 Europeans. Exome sequencing identified 70,182 polymorphisms with MAF >1%. In stage 2 we identified 51 potential associations with one or more of eight metabolic phenotypes covered by 45 unique polymorphisms. In meta-analyses of stage 2 and stage 3 results, we demonstrated robust associations for coding polymorphisms in CD300LG (fasting HDL-cholesterol: MAF 3.5%, p = 8.5 × 10(-14)), COBLL1 (type 2 diabetes: MAF 12.5%, OR 0.88, p = 1.2 × 10(-11)) and MACF1 (type 2 diabetes: MAF 23.4%, OR 1.10, p = 8.2 × 10(-10)). We applied exome sequencing as a basis for finding genetic determinants of metabolic traits and show the existence of low-frequency and common coding polymorphisms with impact on common metabolic traits. Based on our study, coding polymorphisms with MAF above 1% do not seem to have particularly high effect sizes on the measured metabolic traits.

  1. Identification of co-occurrence in a patient with Dent's disease and ADA2-deficiency by exome sequencing.

    PubMed

    Günthner, Roman; Wagner, Matias; Thurm, Tobias; Ponsel, Sabine; Höfele, Julia; Lange-Sperandio, Bärbel

    2018-04-05

    Patients with co-occurrence of two independent pathologies pose a challenge for clinicians as the phenotype often presents as an unclear syndrome. In these cases, exome sequencing serves as a powerful instrument to determine the underlying genetic causes. Here, we present the case of a 4-year old boy with proteinuria, microhematuria, hypercalciuria, nephrocalcinosis, livedo-like rash, recurrent abdominal pain, anemia and continuously elevated CRP. Single exome sequencing revealed the pathogenic nonsense mutation p.(Arg98*) in the CLCN5 gene causing the X-linked inherited, renal tubular disorder Dent's disease. Furthermore, the two pathogenic and compound heterozygous missense variants p.(Gly47Ala) and p.(Pro251Leu) in the CECR1 gene could be identified. Mutations in the CECR1 gene are associated with a hereditary form of polyarteritis nodosa, called ADA2-deficiency. Both parents were carriers of a single heterozygous variant in CECR1 and the mother was carrier of the CLCN5 variant. This case evidently demonstrates the advantage of whole exome sequencing compared to single gene testing as the pathology in the CECR1 gene might have only been diagnosed after the occurrence of signs of systemic vasculitis like strokes or hemorrhages. Therefore, treatment and prevention can now start early to improve the outcome of these patients. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Genome at Juncture of Early Human Migration: A Systematic Analysis of Two Whole Genomes and Thirteen Exomes from Kuwaiti Population Subgroup of Inferred Saudi Arabian Tribe Ancestry

    PubMed Central

    Alsmadi, Osama; Hebbar, Prashantha; Antony, Dinu; Behbehani, Kazem; Thanaraj, Thangavel Alphonse

    2014-01-01

    Population of the State of Kuwait is composed of three genetic subgroups of inferred Persian, Saudi Arabian tribe and Bedouin ancestry. The Saudi Arabian tribe subgroup traces its origin to the Najd region of Saudi Arabia. By sequencing two whole genomes and thirteen exomes from this subgroup at high coverage (>40X), we identify 4,950,724 Single Nucleotide Polymorphisms (SNPs), 515,802 indels and 39,762 structural variations. Of the identified variants, 10,098 (8.3%) exomic SNPs, 139,923 (2.9%) non-exomic SNPs, 5,256 (54.3%) exomic indels, and 374,959 (74.08%) non-exomic indels are ‘novel’. Up to 8,070 (79.9%) of the reported novel biallelic exomic SNPs are seen in low frequency (minor allele frequency <5%). We observe 5,462 known and 1,004 novel potentially deleterious nonsynonymous SNPs. Allele frequencies of common SNPs from the 15 exomes is significantly correlated with those from genotype data of a larger cohort of 48 individuals (Pearson correlation coefficient, 0.91; p <2.2×10−16). A set of 2,485 SNPs show significantly different allele frequencies when compared to populations from other continents. Two notable variants having risk alleles in high frequencies in this subgroup are: a nonsynonymous deleterious SNP (rs2108622 [19:g.15990431C>T] from CYP4F2 gene [MIM:*604426]) associated with warfarin dosage levels [MIM:#122700] required to elicit normal anticoagulant response; and a 3′ UTR SNP (rs6151429 [22:g.51063477T>C]) from ARSA gene [MIM:*607574]) associated with Metachromatic Leukodystrophy [MIM:#250100]. Hemoglobin Riyadh variant (identified for the first time in a Saudi Arabian woman) is observed in the exome data. The mitochondrial haplogroup profiles of the 15 individuals are consistent with the haplogroup diversity seen in Saudi Arabian natives, who are believed to have received substantial gene flow from Africa and eastern provenance. We present the first genome resource imperative for designing future genetic studies in Saudi Arabian tribe subgroup. The full-length genome sequences and the identified variants are available at ftp://dgr.dasmaninstitute.org and http://dgr.dasmaninstitute.org/DGR/gb.html. PMID:24896259

  3. Mutations in the collagen XII gene define a new form of extracellular matrix-related myopathy.

    PubMed

    Hicks, Debbie; Farsani, Golara Torabi; Laval, Steven; Collins, James; Sarkozy, Anna; Martoni, Elena; Shah, Ashoke; Zou, Yaqun; Koch, Manuel; Bönnemann, Carsten G; Roberts, Mark; Lochmüller, Hanns; Bushby, Kate; Straub, Volker

    2014-05-01

    Bethlem myopathy (BM) [MIM 158810] is a slowly progressive muscle disease characterized by contractures and proximal weakness, which can be caused by mutations in one of the collagen VI genes (COL6A1, COL6A2 and COL6A3). However, there may be additional causal genes to identify as in ∼50% of BM cases no mutations in the COL6 genes are identified. In a cohort of -24 patients with a BM-like phenotype, we first sequenced 12 candidate genes based on their function, including genes for known binding partners of collagen VI, and those enzymes involved in its correct post-translational modification, assembly and secretion. Proceeding to whole-exome sequencing (WES), we identified mutations in the COL12A1 gene, a member of the FACIT collagens (fibril-associated collagens with interrupted triple helices) in five individuals from two families. Both families showed dominant inheritance with a clinical phenotype resembling classical BM. Family 1 had a single-base substitution that led to the replacement of one glycine residue in the triple-helical domain, breaking the Gly-X-Y repeating pattern, and Family 2 had a missense mutation, which created a mutant protein with an unpaired cysteine residue. Abnormality at the protein level was confirmed in both families by the intracellular retention of collagen XII in patient dermal fibroblasts. The mutation in Family 2 leads to the up-regulation of genes associated with the unfolded protein response (UPR) pathway and swollen, dysmorphic rough-ER. We conclude that the spectrum of causative genes in extracellular matrix (ECM)-related myopathies be extended to include COL12A1.

  4. Truncating Variants in NAA15 Are Associated with Variable Levels of Intellectual Disability, Autism Spectrum Disorder, and Congenital Anomalies.

    PubMed

    Cheng, Hanyin; Dharmadhikari, Avinash V; Varland, Sylvia; Ma, Ning; Domingo, Deepti; Kleyner, Robert; Rope, Alan F; Yoon, Margaret; Stray-Pedersen, Asbjørg; Posey, Jennifer E; Crews, Sarah R; Eldomery, Mohammad K; Akdemir, Zeynep Coban; Lewis, Andrea M; Sutton, Vernon R; Rosenfeld, Jill A; Conboy, Erin; Agre, Katherine; Xia, Fan; Walkiewicz, Magdalena; Longoni, Mauro; High, Frances A; van Slegtenhorst, Marjon A; Mancini, Grazia M S; Finnila, Candice R; van Haeringen, Arie; den Hollander, Nicolette; Ruivenkamp, Claudia; Naidu, Sakkubai; Mahida, Sonal; Palmer, Elizabeth E; Murray, Lucinda; Lim, Derek; Jayakar, Parul; Parker, Michael J; Giusto, Stefania; Stracuzzi, Emanuela; Romano, Corrado; Beighley, Jennifer S; Bernier, Raphael A; Küry, Sébastien; Nizon, Mathilde; Corbett, Mark A; Shaw, Marie; Gardner, Alison; Barnett, Christopher; Armstrong, Ruth; Kassahn, Karin S; Van Dijck, Anke; Vandeweyer, Geert; Kleefstra, Tjitske; Schieving, Jolanda; Jongmans, Marjolijn J; de Vries, Bert B A; Pfundt, Rolph; Kerr, Bronwyn; Rojas, Samantha K; Boycott, Kym M; Person, Richard; Willaert, Rebecca; Eichler, Evan E; Kooy, R Frank; Yang, Yaping; Wu, Joseph C; Lupski, James R; Arnesen, Thomas; Cooper, Gregory M; Chung, Wendy K; Gecz, Jozef; Stessman, Holly A F; Meng, Linyan; Lyon, Gholson J

    2018-05-03

    N-alpha-acetylation is a common co-translational protein modification that is essential for normal cell function in humans. We previously identified the genetic basis of an X-linked infantile lethal Mendelian disorder involving a c.109T>C (p.Ser37Pro) missense variant in NAA10, which encodes the catalytic subunit of the N-terminal acetyltransferase A (NatA) complex. The auxiliary subunit of the NatA complex, NAA15, is the dimeric binding partner for NAA10. Through a genotype-first approach with whole-exome or genome sequencing (WES/WGS) and targeted sequencing analysis, we identified and phenotypically characterized 38 individuals from 33 unrelated families with 25 different de novo or inherited, dominantly acting likely gene disrupting (LGD) variants in NAA15. Clinical features of affected individuals with LGD variants in NAA15 include variable levels of intellectual disability, delayed speech and motor milestones, and autism spectrum disorder. Additionally, mild craniofacial dysmorphology, congenital cardiac anomalies, and seizures are present in some subjects. RNA analysis in cell lines from two individuals showed degradation of the transcripts with LGD variants, probably as a result of nonsense-mediated decay. Functional assays in yeast confirmed a deleterious effect for two of the LGD variants in NAA15. Further supporting a mechanism of haploinsufficiency, individuals with copy-number variant (CNV) deletions involving NAA15 and surrounding genes can present with mild intellectual disability, mild dysmorphic features, motor delays, and decreased growth. We propose that defects in NatA-mediated N-terminal acetylation (NTA) lead to variable levels of neurodevelopmental disorders in humans, supporting the importance of the NatA complex in normal human development. Copyright © 2018 American Society of Human Genetics. All rights reserved.

  5. Haploinsufficiency at the human IFNGR2 locus contributes to mycobacterial disease

    PubMed Central

    Kong, Xiao-Fei; Vogt, Guillaume; Itan, Yuval; Macura-Biegun, Anna; Szaflarska, Anna; Kowalczyk, Danuta; Chapgier, Ariane; Abhyankar, Avinash; Furthner, Dieter; Djambas Khayat, Claudia; Okada, Satoshi; Bryant, Vanessa L.; Bogunovic, Dusan; Kreins, Alexandra; Moncada-Vélez, Marcela; Migaud, Mélanie; Al-Ajaji, Sulaiman; Al-Muhsen, Saleh; Holland, Steven M.; Abel, Laurent; Picard, Capucine; Chaussabel, Damien; Bustamante, Jacinta; Casanova, Jean-Laurent; Boisson-Dupuis, Stéphanie

    2013-01-01

    Mendelian susceptibility to mycobacterial diseases (MSMD) is a rare syndrome, the known genetic etiologies of which impair the production of, or the response to interferon-gamma (IFN-γ). We report here a patient (P1) with MSMD whose cells display mildly impaired responses to IFN-γ, at levels, however, similar to those from MSMD patients with autosomal recessive (AR) partial IFN-γR2 or STAT1 deficiency. Whole-exome sequencing (WES) and Sanger sequencing revealed only one candidate variation for both MSMD-causing and IFN-γ-related genes. P1 carried a heterozygous frame-shift IFNGR2 mutation inherited from her father. We show that the mutant allele is intrinsically loss-of-function and not dominant-negative, suggesting haploinsufficiency at the IFNGR2 locus. We also show that Epstein-Barr virus transformed B lymphocyte cells from 10 heterozygous relatives of patients with AR complete IFN-γR2 deficiency respond poorly to IFN-γ, in some cases as poorly as the cells of P1. Naive CD4+ T cells and memory IL-4-producing T cells from these individuals also responded poorly to IFN-γ, whereas monocytes and monocyte-derived macrophages (MDMs) did not. This is consistent with the lower levels of expression of IFN-γR2 in lymphoid than in myeloid cells. Overall, MSMD in this patient is probably due to autosomal dominant (AD) IFN-γR2 deficiency, resulting from haploinsufficiency, at least in lymphoid cells. The clinical penetrance of AD IFN-γR2 deficiency is incomplete, possibly due, at least partly, to the variability of cellular responses to IFN-γ in these individuals. PMID:23161749

  6. Whole-exome sequencing of 228 patients with sporadic Parkinson's disease.

    PubMed

    Sandor, Cynthia; Honti, Frantisek; Haerty, Wilfried; Szewczyk-Krolikowski, Konrad; Tomlinson, Paul; Evetts, Sam; Millin, Stephanie; Keane, Thomas; McCarthy, Shane A; Durbin, Richard; Talbot, Kevin; Hu, Michele; Webber, Caleb; Ponting, Chris P; Wade-Martins, Richard

    2017-01-24

    Parkinson's disease (PD) is the most common neurodegenerative movement disorder, affecting 1% of the population over 65 years characterized clinically by both motor and non-motor symptoms accompanied by the preferential loss of dopamine neurons in the substantia nigra pars compacta. Here, we sequenced the exomes of 244 Parkinson's patients selected from the Oxford Parkinson's Disease Centre Discovery Cohort and, after quality control, 228 exomes were available for analyses. The PD patient exomes were compared to 884 control exomes selected from the UK10K datasets. No single non-synonymous (NS) single nucleotide variant (SNV) nor any gene carrying a higher burden of NS SNVs was significantly associated with PD status after multiple-testing correction. However, significant enrichments of genes whose proteins have roles in the extracellular matrix were amongst the top 300 genes with the most significantly associated NS SNVs, while regions associated with PD by a recent Genome Wide Association (GWA) study were enriched in genes containing PD-associated NS SNVs. By examining genes within GWA regions possessing rare PD-associated SNVs, we identified RAD51B. The protein-product of RAD51B interacts with that of its paralogue RAD51, which is associated with congenital mirror movements phenotypes, a phenotype also comorbid with PD.

  7. MACARON: A python framework to identify and re-annotate multi-base affected codons in whole genome/exome sequence data.

    PubMed

    Khan, Waqasuddin; Saripella, Ganapathi Varma-; Ludwig, Thomas; Cuppens, Tania; Thibord, Florian; Génin, Emmanuelle; Deleuze, Jean-Francois; Trégouët, David-Alexandre

    2018-05-03

    Predicted deleteriousness of coding variants is a frequently used criterion to filter out variants detected in next-generation sequencing projects and to select candidates impacting on the risk of human diseases. Most available dedicated tools implement a base-to-base annotation approach that could be biased in presence of several variants in the same genetic codon. We here proposed the MACARON program that, from a standard VCF file, identifies, re-annotates and predicts the amino acid change resulting from multiple single nucleotide variants (SNVs) within the same genetic codon. Applied to the whole exome dataset of 573 individuals, MACARON identifies 114 situations where multiple SNVs within a genetic codon induce an amino acid change that is different from those predicted by standard single SNV annotation tool. Such events are not uncommon and deserve to be studied in sequencing projects with inconclusive findings. MACARON is written in python with codes available on the GENMED website (www.genmed.fr). david-alexandre.tregouet@inserm.fr. Supplementary data are available at Bioinformatics online.

  8. Whole-exome sequencing, without prior linkage, identifies a mutation in LAMB3 as a cause of dominant hypoplastic amelogenesis imperfecta.

    PubMed

    Poulter, James A; El-Sayed, Walid; Shore, Roger C; Kirkham, Jennifer; Inglehearn, Chris F; Mighell, Alan J

    2014-01-01

    The conventional approach to identifying the defective gene in a family with an inherited disease is to find the disease locus through family studies. However, the rapid development and decreasing cost of next generation sequencing facilitates a more direct approach. Here, we report the identification of a frameshift mutation in LAMB3 as a cause of dominant hypoplastic amelogenesis imperfecta (AI). Whole-exome sequencing of three affected family members and subsequent filtering of shared variants, without prior genetic linkage, sufficed to identify the pathogenic variant. Simultaneous analysis of multiple family members confirms segregation, enhancing the power to filter the genetic variation found and leading to rapid identification of the pathogenic variant. LAMB3 encodes a subunit of Laminin-5, one of a family of basement membrane proteins with essential functions in cell growth, movement and adhesion. Homozygous LAMB3 mutations cause junctional epidermolysis bullosa (JEB) and enamel defects are seen in JEB cases. However, to our knowledge, this is the first report of dominant AI due to a LAMB3 mutation in the absence of JEB.

  9. Landscape of somatic mutations and clonal evolution in mantle cell lymphoma.

    PubMed

    Beà, Sílvia; Valdés-Mas, Rafael; Navarro, Alba; Salaverria, Itziar; Martín-Garcia, David; Jares, Pedro; Giné, Eva; Pinyol, Magda; Royo, Cristina; Nadeu, Ferran; Conde, Laura; Juan, Manel; Clot, Guillem; Vizán, Pedro; Di Croce, Luciano; Puente, Diana A; López-Guerra, Mónica; Moros, Alexandra; Roue, Gael; Aymerich, Marta; Villamor, Neus; Colomo, Lluís; Martínez, Antonio; Valera, Alexandra; Martín-Subero, José I; Amador, Virginia; Hernández, Luis; Rozman, Maria; Enjuanes, Anna; Forcada, Pilar; Muntañola, Ana; Hartmann, Elena M; Calasanz, María J; Rosenwald, Andreas; Ott, German; Hernández-Rivas, Jesús M; Klapper, Wolfram; Siebert, Reiner; Wiestner, Adrian; Wilson, Wyndham H; Colomer, Dolors; López-Guillermo, Armando; López-Otín, Carlos; Puente, Xose S; Campo, Elías

    2013-11-05

    Mantle cell lymphoma (MCL) is an aggressive tumor, but a subset of patients may follow an indolent clinical course. To understand the mechanisms underlying this biological heterogeneity, we performed whole-genome and/or whole-exome sequencing on 29 MCL cases and their respective matched normal DNA, as well as 6 MCL cell lines. Recurrently mutated genes were investigated by targeted sequencing in an independent cohort of 172 MCL patients. We identified 25 significantly mutated genes, including known drivers such as ataxia-telangectasia mutated (ATM), cyclin D1 (CCND1), and the tumor suppressor TP53; mutated genes encoding the anti-apoptotic protein BIRC3 and Toll-like receptor 2 (TLR2); and the chromatin modifiers WHSC1, MLL2, and MEF2B. We also found NOTCH2 mutations as an alternative phenomenon to NOTCH1 mutations in aggressive tumors with a dismal prognosis. Analysis of two simultaneous or subsequent MCL samples by whole-genome/whole-exome (n = 8) or targeted (n = 19) sequencing revealed subclonal heterogeneity at diagnosis in samples from different topographic sites and modulation of the initial mutational profile at the progression of the disease. Some mutations were predominantly clonal or subclonal, indicating an early or late event in tumor evolution, respectively. Our study identifies molecular mechanisms contributing to MCL pathogenesis and offers potential targets for therapeutic intervention.

  10. 76 FR 49777 - Government-Owned Inventions; Availability for Licensing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-11

    ... Treatment of Melanoma Description of Technology: Using whole-exome sequencing of matched normal and.../ transcription domain-associated protein (TRRAP) gene, found the glutamate receptor ionotropic N-methyl D... therapeutic proteins that target this pathway. Potential Commercial Applications: Diagnostic array for the...

  11. Genetics Home Reference: anauxetic dysplasia

    MedlinePlus

    ... one gene that provides instructions for making a protein component of the RNase MRP enzyme complex can also cause anauxetic ... A, Donskoi M, Kenna TJ, Thomas GP, Clark GR, Duncan EL, Brown MA. Whole-exome re-sequencing in a family quartet identifies POP1 mutations as ...

  12. Mutational and structural analysis of diffuse large B-cell lymphoma using whole genome sequencing | Office of Cancer Genomics

    Cancer.gov

    Abstract: Diffuse large B-cell lymphoma (DLBCL) is a genetically heterogeneous cancer comprising at least two molecular subtypes that differ in gene expression and distribution of mutations. Recently, application of genome/exome sequencing and RNA-seq to DLBCL has revealed numerous genes that are recurrent targets of somatic point mutation in this disease.

  13. Exome capture sequencing reveals new insights into hepatitis B virus-induced hepatocellular carcinoma at the early stage of tumorigenesis.

    PubMed

    Chen, Yong; Wang, Lijuan; Xu, Hexiang; Liu, Xingxiang; Zhao, Yingren

    2013-10-01

    Hepatocellular carcinoma (HCC), the most common type of liver cancer, is the third primary cause of cancer-related mortality worldwide. The molecular mechanisms underlying the initiation and formation of HCC remain obscure. In the present study, we performed exome sequencing using tumor and normal tissues from 3 hepatitis B virus (HBV)-positive BCLC stage A HCC patients. Bioinformatic analysis was performed to find candidate protein-altering somatic mutations. Eighty damaging mutations were validated and 59 genes were reported to be mutated in HBV-related HCCs for the first time here. Further analysis using whole genome sequencing (WGS) data of 88 HBV-related HCC patients from the European Genome-phenome Archive database showed that mutations in 33 of the 59 genes were also detected in other samples. Variants of two newly found genes, ZNF717 and PARP4, were detected in more than 10% of the WGS samples. Several other genes, such as FLNA and CNTN2, are also noteworthy. Thus, the exome sequencing analysis of three BCLC stage A patients provides new insights into the molecular events governing the early steps of HBV-induced HCC tumorigenesis.

  14. Late-onset spastic paraplegia: Aberrant SPG11 transcripts generated by a novel splice site donor mutation.

    PubMed

    Kawarai, Toshitaka; Miyamoto, Ryosuke; Mori, Atsuko; Oki, Ryosuke; Tsukamoto-Miyashiro, Ai; Matsui, Naoko; Miyazaki, Yoshimichi; Orlacchio, Antonio; Izumi, Yuishin; Nishida, Yoshihiko; Kaji, Ryuji

    2015-12-15

    We identified a novel homozygous mutation in the splice site donor (SSD) of intron 30 (c.5866+1G>A) in consanguineous Japanese SPG11 siblings showing late-onset spastic paraplegia using the whole-exome sequencing. Phenotypic variability was observed, including age-at-onset, dysarthria and pes cavus. Coding DNA sequencing revealed that the mutation affected the recognition of the constitutive SSD of intron 30, splicing upstream onto a nearby cryptic SSD in exon 30. The use of constitutive splice sites of intron 29 was confirmed by sequencing. The mutant transcripts are mostly subject to degradation by the nonsense-mediated mRNA decay system. SPG11 transcripts, escaping from the nonsense-mediated mRNA decay pathway, would generate a truncated protein (p.Tyr1900Phefs5X) containing the first 1899 amino acids and followed by 4 aberrant amino acids. This study showed a successful clinical application of whole-exome sequencing in spastic paraplegia and demonstrated a further evidence of allelic heterogeneity in SPG11. The confirmation of aberrant transcript by splice site mutation is a prerequisite for a more precise molecular diagnosis. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Impact of NGS in the medical sciences: Genetic syndromes with an increased risk of developing cancer as an example of the use of new technologies

    PubMed Central

    Lapunzina, Pablo; López, Rocío Ortiz; Rodríguez-Laguna, Lara; García-Miguel, Purificación; Martínez, Augusto Rojas; Martínez-Glez, Víctor

    2014-01-01

    The increased speed and decreasing cost of sequencing, along with an understanding of the clinical relevance of emerging information for patient management, has led to an explosion of potential applications in healthcare. Currently, SNP arrays and Next-Generation Sequencing (NGS) technologies are relatively new techniques used to scan genomes for gains and losses, losses of heterozygosity (LOH), SNPs, and indel variants as well as to perform complete sequencing of a panel of candidate genes, the entire exome (whole exome sequencing) or even the whole genome. As a result, these new high-throughput technologies have facilitated progress in the understanding and diagnosis of genetic syndromes and cancers, two disorders traditionally considered to be separate diseases but that can share causal genetic alterations in a group of developmental disorders associated with congenital malformations and cancer risk. The purpose of this work is to review these syndromes as an example of a group of disorders that has been included in a panel of genes for NGS analysis. We also highlight the relationship between development and cancer and underline the connections between these syndromes. PMID:24764758

  16. Distinct mutations with different inheritance mode caused similar retinal dystrophies in one family: a demonstration of the importance of genetic annotations in complicated pedigrees.

    PubMed

    Chen, Xue; Sheng, Xunlun; Liu, Yani; Li, Zili; Sun, Xiantao; Jiang, Chao; Qi, Rui; Yuan, Shiqin; Wang, Xuhui; Zhou, Ge; Zhen, Yanyan; Xie, Ping; Liu, Qinghuai; Yan, Biao; Zhao, Chen

    2018-05-29

    Retinitis pigmentosa (RP) is the most common form of inherited retinal dystrophy presenting remarkable genetic heterogeneity. Genetic annotations would help with better clinical assessments and benefit gene therapy, and therefore should be recommended for RP patients. This report reveals the disease causing mutations in two RP pedigrees with confusing inheritance patterns using whole exome sequencing (WES). Twenty-five participants including eight patients from two families were recruited and received comprehensive ophthalmic evaluations. WES was applied for mutation identification. Bioinformatics annotations, intrafamilial co-segregation tests, and in silico analyses were subsequently conducted for mutation verification. All patients were clinically diagnosed with RP. The first family included two siblings born to parents with consanguineous marriage; however, no potential pathogenic variant was found shared by both patients. Further analysis revealed that the female patient carried a recurrent homozygous C8ORF37 p.W185*, while the male patient had hemizygous OFD1 p.T120A. The second family was found to segregate mutations in two genes, TULP1 and RP1. Two patients born to consanguineous marriage carried homozygous TULP1 p.R419W, while a recurrent heterozygous RP1 p.L762Yfs*17 was found in another four patients presenting an autosomal dominant inheritance pattern. Crystal structural analysis further indicated that the substitution from arginine to tryptophan at the highly conserved residue 419 of TULP1 could lead to the elimination of two hydrogen bonds between residue 419 and residues V488 and S534. All four genes, including C8ORF37, OFD1, TULP1 and RP1, have been previously implicated in RP etiology. Our study demonstrates the coexistence of diverse inheritance modes and mutations affecting distinct disease causing genes in two RP families with consanguineous marriage. Our data provide novel insights into assessments of complicated pedigrees, reinforce the genetic complexity of RP, and highlight the need for extensive molecular evaluations in such challenging families with diverse inheritance modes and mutations.

  17. Identification of novel point mutations in splicing sites integrating whole-exome and RNA-seq data in myeloproliferative diseases

    PubMed Central

    Spinelli, Roberta; Pirola, Alessandra; Redaelli, Sara; Sharma, Nitesh; Raman, Hima; Valletta, Simona; Magistroni, Vera; Piazza, Rocco; Gambacorti-Passerini, Carlo

    2013-01-01

    Point mutations in intronic regions near mRNA splice junctions can affect the splicing process. To identify novel splicing variants from exome sequencing data, we developed a bioinformatics splice-site prediction procedure to analyze next-generation sequencing (NGS) data (SpliceFinder). SpliceFinder integrates two functional annotation tools for NGS, ANNOVAR and MutationTaster and two canonical splice site prediction programs for single mutation analysis, SSPNN and NetGene2. By SpliceFinder, we identified somatic mutations affecting RNA splicing in a colon cancer sample, in eight atypical chronic myeloid leukemia (aCML), and eight CML patients. A novel homozygous splicing mutation was found in APC (NM_000038.4:c.1312+5G>A) and six heterozygous in GNAQ (NM_002072.2:c.735+1C>T), ABCC3 (NM_003786.3:c.1783-1G>A), KLHDC1 (NM_172193.1:c.568-2A>G), HOOK1 (NM_015888.4:c.1662-1G>A), SMAD9 (NM_001127217.2:c.1004-1C>T), and DNAH9 (NM_001372.3:c.10242+5G>A). Integrating whole-exome and RNA sequencing in aCML and CML, we assessed the phenotypic effect of mutations on mRNA splicing for GNAQ, ABCC3, HOOK1. In ABCC3 and HOOK1, RNA-Seq showed the presence of aberrant transcripts with activation of a cryptic splice site or intron retention, validated by the reverse transcription-polymerase chain reaction (RT-PCR) in the case of HOOK1. In GNAQ, RNA-Seq showed 22% of wild-type transcript and 78% of mRNA skipping exon 5, resulting in a 4–6 frameshift fusion confirmed by RT-PCR. The pipeline can be useful to identify intronic variants affecting RNA sequence by complementing conventional exome analysis. PMID:24498620

  18. MCM5: a new actor in the link between DNA replication and Meier-Gorlin syndrome.

    PubMed

    Vetro, Annalisa; Savasta, Salvatore; Russo Raucci, Annalisa; Cerqua, Cristina; Sartori, Geppo; Limongelli, Ivan; Forlino, Antonella; Maruelli, Silvia; Perucca, Paola; Vergani, Debora; Mazzini, Giuliano; Mattevi, Andrea; Stivala, Lucia Anna; Salviati, Leonardo; Zuffardi, Orsetta

    2017-05-01

    Meier-Gorlin syndrome (MGORS) is a rare disorder characterized by primordial dwarfism, microtia, and patellar aplasia/hypoplasia. Recessive mutations in ORC1, ORC4, ORC6, CDT1, CDC6, and CDC45, encoding members of the pre-replication (pre-RC) and pre-initiation (pre-IC) complexes, and heterozygous mutations in GMNN, a regulator of cell-cycle progression and DNA replication, have already been associated with this condition. We performed whole-exome sequencing (WES) in a patient with a clinical diagnosis of MGORS and identified biallelic variants in MCM5. This gene encodes a subunit of the replicative helicase complex, which represents a component of the pre-RC. Both variants, a missense substitution within a conserved domain critical for the helicase activity, and a single base deletion causing a frameshift and a premature stop codon, were predicted to be detrimental for the MCM5 function. Although variants of MCM5 have never been reported in specific human diseases, defect of this gene in zebrafish causes a phenotype of growth restriction overlapping the one associated with orc1 depletion. Complementation experiments in yeast showed that the plasmid carrying the missense variant was unable to rescue the lethal phenotype caused by mcm5 deletion. Moreover cell-cycle progression was delayed in patient's cells, as already shown for mutations in the ORC1 gene. Altogether our findings support the role of MCM5 as a novel gene involved in MGORS, further emphasizing that this condition is caused by impaired DNA replication.

  19. Whole-exome sequencing identifies recurrent SF3B1 R625 mutation and comutation of NF1 and KIT in mucosal melanoma.

    PubMed

    Hintzsche, Jennifer D; Gorden, Nicholas T; Amato, Carol M; Kim, Jihye; Wuensch, Kelsey E; Robinson, Steven E; Applegate, Allison J; Couts, Kasey L; Medina, Theresa M; Wells, Keith R; Wisell, Joshua A; McCarter, Martin D; Box, Neil F; Shellman, Yiqun G; Gonzalez, Rene C; Lewis, Karl D; Tentler, John J; Tan, Aik Choon; Robinson, William A

    2017-06-01

    Mucosal melanomas are a rare subtype of melanoma, arising in mucosal tissues, which have a very poor prognosis due to the lack of effective targeted therapies. This study aimed to better understand the molecular landscape of these cancers and find potential new therapeutic targets. Whole-exome sequencing was performed on mucosal melanomas from 19 patients and 135 sun-exposed cutaneous melanomas, with matched peripheral blood samples when available. Mutational profiles were compared between mucosal subgroups and sun-exposed cutaneous melanomas. Comparisons of molecular profiles identified 161 genes enriched in mucosal melanoma (P<0.05). KIT and NF1 were frequently comutated (32%) in the mucosal subgroup, with a significantly higher incidence than that in cutaneous melanoma (4%). Recurrent SF3B1 R625H/S/C mutations were identified and validated in 7 of 19 (37%) mucosal melanoma patients. Mutations in the spliceosome pathway were found to be enriched in mucosal melanomas when compared with cutaneous melanomas. Alternative splicing in four genes were observed in SF3B1-mutant samples compared with the wild-type samples. This study identified potential new therapeutic targets for mucosal melanoma, including comutation of NF1 and KIT, and recurrent R625 mutations in SF3B1. This is the first report of SF3B1 R625 mutations in vulvovaginal mucosal melanoma, with the largest whole-exome sequencing project of mucosal melanomas to date. The results here also indicated that the mutations in SF3B1 lead to alternative splicing in multiple genes. These findings expand our knowledge of this rare disease.

  20. Whole-exome sequencing identifies recurrent SF3B1 R625 mutation and comutation of NF1 and KIT in mucosal melanoma

    PubMed Central

    Hintzsche, Jennifer D.; Gorden, Nicholas T.; Amato, Carol M.; Kim, Jihye; Wuensch, Kelsey E.; Robinson, Steven E.; Applegate, Allison J.; Couts, Kasey L.; Medina, Theresa M.; Wells, Keith R.; Wisell, Joshua A.; McCarter, Martin D.; Box, Neil F.; Shellman, Yiqun G.; Gonzalez, Rene C.; Lewis, Karl D.; Tentler, John J.

    2017-01-01

    Mucosal melanomas are a rare subtype of melanoma, arising in mucosal tissues, which have a very poor prognosis due to the lack of effective targeted therapies. This study aimed to better understand the molecular landscape of these cancers and find potential new therapeutic targets. Whole-exome sequencing was performed on mucosal melanomas from 19 patients and 135 sun-exposed cutaneous melanomas, with matched peripheral blood samples when available. Mutational profiles were compared between mucosal subgroups and sun-exposed cutaneous melanomas. Comparisons of molecular profiles identified 161 genes enriched in mucosal melanoma (P<0.05). KIT and NF1 were frequently comutated (32%) in the mucosal subgroup, with a significantly higher incidence than that in cutaneous melanoma (4%). Recurrent SF3B1 R625H/S/C mutations were identified and validated in 7 of 19 (37%) mucosal melanoma patients. Mutations in the spliceosome pathway were found to be enriched in mucosal melanomas when compared with cutaneous melanomas. Alternative splicing in four genes were observed in SF3B1-mutant samples compared with the wild-type samples. This study identified potential new therapeutic targets for mucosal melanoma, including comutation of NF1 and KIT, and recurrent R625 mutations in SF3B1. This is the first report of SF3B1 R625 mutations in vulvovaginal mucosal melanoma, with the largest whole-exome sequencing project of mucosal melanomas to date. The results here also indicated that the mutations in SF3B1 lead to alternative splicing in multiple genes. These findings expand our knowledge of this rare disease. PMID:28296713

  1. Exome and deep sequencing of clinically aggressive neuroblastoma reveal somatic mutations that affect key pathways involved in cancer progression

    PubMed Central

    Lasorsa, Vito Alessandro; Formicola, Daniela; Pignataro, Piero; Cimmino, Flora; Calabrese, Francesco Maria; Mora, Jaume; Esposito, Maria Rosaria; Pantile, Marcella; Zanon, Carlo; De Mariano, Marilena; Longo, Luca; Hogarty, Michael D.; de Torres, Carmen; Tonini, Gian Paolo; Iolascon, Achille; Capasso, Mario

    2016-01-01

    The spectrum of somatic mutation of the most aggressive forms of neuroblastoma is not completely determined. We sought to identify potential cancer drivers in clinically aggressive neuroblastoma. Whole exome sequencing was conducted on 17 germline and tumor DNA samples from high-risk patients with adverse events within 36 months from diagnosis (HR-Event3) to identify somatic mutations and deep targeted sequencing of 134 genes selected from the initial screening in additional 48 germline and tumor pairs (62.5% HR-Event3 and high-risk patients), 17 HR-Event3 tumors and 17 human-derived neuroblastoma cell lines. We revealed 22 significantly mutated genes, many of which implicated in cancer progression. Fifteen genes (68.2%) were highly expressed in neuroblastoma supporting their involvement in the disease. CHD9, a cancer driver gene, was the most significantly altered (4.0% of cases) after ALK. Other genes (PTK2, NAV3, NAV1, FZD1 and ATRX), expressed in neuroblastoma and involved in cell invasion and migration were mutated at frequency ranged from 4% to 2%. Focal adhesion and regulation of actin cytoskeleton pathways, were frequently disrupted (14.1% of cases) thus suggesting potential novel therapeutic strategies to prevent disease progression. Notably BARD1, CHEK2 and AXIN2 were enriched in rare, potentially pathogenic, germline variants. In summary, whole exome and deep targeted sequencing identified novel cancer genes of clinically aggressive neuroblastoma. Our analyses show pathway-level implications of infrequently mutated genes in leading neuroblastoma progression. PMID:27009842

  2. Exome and deep sequencing of clinically aggressive neuroblastoma reveal somatic mutations that affect key pathways involved in cancer progression.

    PubMed

    Lasorsa, Vito Alessandro; Formicola, Daniela; Pignataro, Piero; Cimmino, Flora; Calabrese, Francesco Maria; Mora, Jaume; Esposito, Maria Rosaria; Pantile, Marcella; Zanon, Carlo; De Mariano, Marilena; Longo, Luca; Hogarty, Michael D; de Torres, Carmen; Tonini, Gian Paolo; Iolascon, Achille; Capasso, Mario

    2016-04-19

    The spectrum of somatic mutation of the most aggressive forms of neuroblastoma is not completely determined. We sought to identify potential cancer drivers in clinically aggressive neuroblastoma.Whole exome sequencing was conducted on 17 germline and tumor DNA samples from high-risk patients with adverse events within 36 months from diagnosis (HR-Event3) to identify somatic mutations and deep targeted sequencing of 134 genes selected from the initial screening in additional 48 germline and tumor pairs (62.5% HR-Event3 and high-risk patients), 17 HR-Event3 tumors and 17 human-derived neuroblastoma cell lines.We revealed 22 significantly mutated genes, many of which implicated in cancer progression. Fifteen genes (68.2%) were highly expressed in neuroblastoma supporting their involvement in the disease. CHD9, a cancer driver gene, was the most significantly altered (4.0% of cases) after ALK.Other genes (PTK2, NAV3, NAV1, FZD1 and ATRX), expressed in neuroblastoma and involved in cell invasion and migration were mutated at frequency ranged from 4% to 2%.Focal adhesion and regulation of actin cytoskeleton pathways, were frequently disrupted (14.1% of cases) thus suggesting potential novel therapeutic strategies to prevent disease progression.Notably BARD1, CHEK2 and AXIN2 were enriched in rare, potentially pathogenic, germline variants.In summary, whole exome and deep targeted sequencing identified novel cancer genes of clinically aggressive neuroblastoma. Our analyses show pathway-level implications of infrequently mutated genes in leading neuroblastoma progression.

  3. Whole-genome and multisector exome sequencing of primary and post-treatment glioblastoma reveals patterns of tumor evolution.

    PubMed

    Kim, Hoon; Zheng, Siyuan; Amini, Seyed S; Virk, Selene M; Mikkelsen, Tom; Brat, Daniel J; Grimsby, Jonna; Sougnez, Carrie; Muller, Florian; Hu, Jian; Sloan, Andrew E; Cohen, Mark L; Van Meir, Erwin G; Scarpace, Lisa; Laird, Peter W; Weinstein, John N; Lander, Eric S; Gabriel, Stacey; Getz, Gad; Meyerson, Matthew; Chin, Lynda; Barnholtz-Sloan, Jill S; Verhaak, Roel G W

    2015-03-01

    Glioblastoma (GBM) is a prototypical heterogeneous brain tumor refractory to conventional therapy. A small residual population of cells escapes surgery and chemoradiation, resulting in a typically fatal tumor recurrence ∼ 7 mo after diagnosis. Understanding the molecular architecture of this residual population is critical for the development of successful therapies. We used whole-genome sequencing and whole-exome sequencing of multiple sectors from primary and paired recurrent GBM tumors to reconstruct the genomic profile of residual, therapy resistant tumor initiating cells. We found that genetic alteration of the p53 pathway is a primary molecular event predictive of a high number of subclonal mutations in glioblastoma. The genomic road leading to recurrence is highly idiosyncratic but can be broadly classified into linear recurrences that share extensive genetic similarity with the primary tumor and can be directly traced to one of its specific sectors, and divergent recurrences that share few genetic alterations with the primary tumor and originate from cells that branched off early during tumorigenesis. Our study provides mechanistic insights into how genetic alterations in primary tumors impact the ensuing evolution of tumor cells and the emergence of subclonal heterogeneity. © 2015 Kim et al.; Published by Cold Spring Harbor Laboratory Press.

  4. Exome Sequencing Fails to Identify the Genetic Cause of Aicardi Syndrome.

    PubMed

    Lund, Caroline; Striano, Pasquale; Sorte, Hanne Sørmo; Parisi, Pasquale; Iacomino, Michele; Sheng, Ying; Vigeland, Magnus D; Øye, Anne-Marte; Møller, Rikke Steensbjerre; Selmer, Kaja K; Zara, Federico

    2016-09-01

    Aicardi syndrome (AS) is a well-characterized neurodevelopmental disorder with an unknown etiology. In this study, we performed whole-exome sequencing in 11 female patients with the diagnosis of AS, in order to identify the disease-causing gene. In particular, we focused on detecting variants in the X chromosome, including the analysis of variants with a low number of sequencing reads, in case of somatic mosaicism. For 2 of the patients, we also sequenced the exome of the parents to search for de novo mutations. We did not identify any genetic variants likely to be damaging. Only one single missense variant was identified by the de novo analyses of the 2 trios, and this was considered benign. The failure to identify a disease gene in this study may be due to technical limitations of our study design, including the possibility that the genetic aberration leading to AS is situated in a non-exonic region or that the mutation is somatic and not detectable by our approach. Alternatively, it is possible that AS is genetically heterogeneous and that 11 patients are not sufficient to reveal the causative genes. Future studies of AS should consider designs where also non-exonic regions are explored and apply a sequencing depth so that also low-grade somatic mosaicism can be detected.

  5. Comparison and evaluation of two exome capture kits and sequencing platforms for variant calling.

    PubMed

    Zhang, Guoqiang; Wang, Jianfeng; Yang, Jin; Li, Wenjie; Deng, Yutian; Li, Jing; Huang, Jun; Hu, Songnian; Zhang, Bing

    2015-08-05

    To promote the clinical application of next-generation sequencing, it is important to obtain accurate and consistent variants of target genomic regions at low cost. Ion Proton, the latest updated semiconductor-based sequencing instrument from Life Technologies, is designed to provide investigators with an inexpensive platform for human whole exome sequencing that achieves a rapid turnaround time. However, few studies have comprehensively compared and evaluated the accuracy of variant calling between Ion Proton and Illumina sequencing platforms such as HiSeq 2000, which is the most popular sequencing platform for the human genome. The Ion Proton sequencer combined with the Ion TargetSeq Exome Enrichment Kit together make up TargetSeq-Proton, whereas SureSelect-Hiseq is based on the Agilent SureSelect Human All Exon v4 Kit and the HiSeq 2000 sequencer. Here, we sequenced exonic DNA from four human blood samples using both TargetSeq-Proton and SureSelect-HiSeq. We then called variants in the exonic regions that overlapped between the two exome capture kits (33.6 Mb). The rates of shared variant loci called by two sequencing platforms were from 68.0 to 75.3% in four samples, whereas the concordance of co-detected variant loci reached 99%. Sanger sequencing validation revealed that the validated rate of concordant single nucleotide polymorphisms (SNPs) (91.5%) was higher than the SNPs specific to TargetSeq-Proton (60.0%) or specific to SureSelect-HiSeq (88.3%). With regard to 1-bp small insertions and deletions (InDels), the Sanger sequencing validated rates of concordant variants (100.0%) and SureSelect-HiSeq-specific (89.6%) were higher than those of TargetSeq-Proton-specific (15.8%). In the sequencing of exonic regions, a combination of using of two sequencing strategies (SureSelect-HiSeq and TargetSeq-Proton) increased the variant calling specificity for concordant variant loci and the sensitivity for variant loci called by any one platform. However, for the sequencing of platform-specific variants, the accuracy of variant calling by HiSeq 2000 was higher than that of Ion Proton, specifically for the InDel detection. Moreover, the variant calling software also influences the detection of SNPs and, specifically, InDels in Ion Proton exome sequencing.

  6. Whole exome sequencing identifies a POLRID mutation segregating in a father and two daughters with findings of Klippel-Feil and Treacher Collins syndromes.

    PubMed

    Giampietro, Philip F; Armstrong, Linlea; Stoddard, Alex; Blank, Robert D; Livingston, Janet; Raggio, Cathy L; Rasmussen, Kristen; Pickart, Michael; Lorier, Rachel; Turner, Amy; Sund, Sarah; Sobrera, Nara; Neptune, Enid; Sweetser, David; Santiago-Cornier, Alberto; Broeckel, Ulrich

    2015-01-01

    We report on a father and his two daughters diagnosed with Klippel-Feil syndrome (KFS) but with craniofacial differences (zygomatic and mandibular hypoplasia and cleft palate) and external ear abnormalities suggestive of Treacher Collins syndrome (TCS). The diagnosis of KFS was favored, given that the neck anomalies were the predominant manifestations, and that the diagnosis predated later recognition of the association between spinal segmentation abnormalities and TCS. Genetic heterogeneity and the rarity of large families with KFS have limited the ability to identify mutations by traditional methods. Whole exome sequencing identified a nonsynonymous mutation in POLR1D (subunit of RNA polymerase I and II): exon2:c.T332C:p.L111P. Mutations in POLR1D are present in about 5% of individuals diagnosed with TCS. We propose that this mutation is causal in this family, suggesting a pathogenetic link between KFS and TCS. © 2014 Wiley Periodicals, Inc.

  7. Discovery of somatic mutations in the progression of chronic myeloid leukemia by whole-exome sequencing.

    PubMed

    Huang, Y; Zheng, J; Hu, J D; Wu, Y A; Zheng, X Y; Liu, T B; Chen, F L

    2014-02-19

    We performed whole-exome sequencing in samples representing accelerated phase (AP) and blastic crisis (BC) in a subject with chronic myeloid leukemia (CML). A total of 12.74 Gb clean data were generated, achieving a mean depth coverage of 64.45 and 69.53 for AP and BC samples, respectively, of the target region. A total of 148 somatic variants were detected, including 76 insertions and deletions (indels), 64 single-nucleotide variations (SNV), and 8 structural variations (SV). On the basis of annotation and functional prediction analysis, we identified 3 SNVs and 6 SVs that showed a potential association with CML progression. Among the genes that harbor the identified variants, GATA2 has previously been reported to play important roles in the progression from AP to BC in CML. Identification of these genes will allow us to gain a better understanding of the pathological mechanism of CML and represents a critical advance toward new molecular diagnostic tests for the development of potential therapies for CML.

  8. A Novel Computational Strategy to Identify A-to-I RNA Editing Sites by RNA-Seq Data: De Novo Detection in Human Spinal Cord Tissue

    PubMed Central

    Picardi, Ernesto; Gallo, Angela; Galeano, Federica; Tomaselli, Sara; Pesole, Graziano

    2012-01-01

    RNA editing is a post-transcriptional process occurring in a wide range of organisms. In human brain, the A-to-I RNA editing, in which individual adenosine (A) bases in pre-mRNA are modified to yield inosine (I), is the most frequent event. Modulating gene expression, RNA editing is essential for cellular homeostasis. Indeed, its deregulation has been linked to several neurological and neurodegenerative diseases. To date, many RNA editing sites have been identified by next generation sequencing technologies employing massive transcriptome sequencing together with whole genome or exome sequencing. While genome and transcriptome reads are not always available for single individuals, RNA-Seq data are widespread through public databases and represent a relevant source of yet unexplored RNA editing sites. In this context, we propose a simple computational strategy to identify genomic positions enriched in novel hypothetical RNA editing events by means of a new two-steps mapping procedure requiring only RNA-Seq data and no a priori knowledge of RNA editing characteristics and genomic reads. We assessed the suitability of our procedure by confirming A-to-I candidates using conventional Sanger sequencing and performing RNA-Seq as well as whole exome sequencing of human spinal cord tissue from a single individual. PMID:22957051

  9. Exome sequencing in amyotrophic lateral sclerosis identifies risk genes and pathways.

    PubMed

    Cirulli, Elizabeth T; Lasseigne, Brittany N; Petrovski, Slavé; Sapp, Peter C; Dion, Patrick A; Leblond, Claire S; Couthouis, Julien; Lu, Yi-Fan; Wang, Quanli; Krueger, Brian J; Ren, Zhong; Keebler, Jonathan; Han, Yujun; Levy, Shawn E; Boone, Braden E; Wimbish, Jack R; Waite, Lindsay L; Jones, Angela L; Carulli, John P; Day-Williams, Aaron G; Staropoli, John F; Xin, Winnie W; Chesi, Alessandra; Raphael, Alya R; McKenna-Yasek, Diane; Cady, Janet; Vianney de Jong, J M B; Kenna, Kevin P; Smith, Bradley N; Topp, Simon; Miller, Jack; Gkazi, Athina; Al-Chalabi, Ammar; van den Berg, Leonard H; Veldink, Jan; Silani, Vincenzo; Ticozzi, Nicola; Shaw, Christopher E; Baloh, Robert H; Appel, Stanley; Simpson, Ericka; Lagier-Tourenne, Clotilde; Pulst, Stefan M; Gibson, Summer; Trojanowski, John Q; Elman, Lauren; McCluskey, Leo; Grossman, Murray; Shneider, Neil A; Chung, Wendy K; Ravits, John M; Glass, Jonathan D; Sims, Katherine B; Van Deerlin, Vivianna M; Maniatis, Tom; Hayes, Sebastian D; Ordureau, Alban; Swarup, Sharan; Landers, John; Baas, Frank; Allen, Andrew S; Bedlack, Richard S; Harper, J Wade; Gitler, Aaron D; Rouleau, Guy A; Brown, Robert; Harms, Matthew B; Cooper, Gregory M; Harris, Tim; Myers, Richard M; Goldstein, David B

    2015-03-27

    Amyotrophic lateral sclerosis (ALS) is a devastating neurological disease with no effective treatment. We report the results of a moderate-scale sequencing study aimed at increasing the number of genes known to contribute to predisposition for ALS. We performed whole-exome sequencing of 2869 ALS patients and 6405 controls. Several known ALS genes were found to be associated, and TBK1 (the gene encoding TANK-binding kinase 1) was identified as an ALS gene. TBK1 is known to bind to and phosphorylate a number of proteins involved in innate immunity and autophagy, including optineurin (OPTN) and p62 (SQSTM1/sequestosome), both of which have also been implicated in ALS. These observations reveal a key role of the autophagic pathway in ALS and suggest specific targets for therapeutic intervention. Copyright © 2015, American Association for the Advancement of Science.

  10. High-Throughput Sequencing of Germline and Tumor From Men with Early-Onset Metastatic Prostate Cancer

    DTIC Science & Technology

    2016-12-01

    AWARD NUMBER: W81XWH-13-1-0371 TITLE: High-Throughput Sequencing of Germline and Tumor From Men with Early- Onset Metastatic Prostate Cancer...DATES COVERED 30 Sep 2013 - 29 Sep 2016 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER High-Throughput Sequencing of Germline and Tumor From Men with...presenting with metastatic prostate cancer at a young age (before age 60 years). Whole exome sequencing identified a panel of germline variants that have

  11. Potential Uses and Inherent Challenges of Using Genome-Scale Sequencing to Augment Current Newborn Screening.

    PubMed

    Berg, Jonathan S; Powell, Cynthia M

    2015-10-05

    Since newborn screening (NBS) began in the 1960s, technological advances have enabled its expansion to include an increasing number of disorders. Recent developments now make it possible to sequence an infant's genome relatively quickly and economically. Clinical application of whole-exome and whole-genome sequencing is expanding at a rapid pace but presents many challenges. Its utility in NBS has yet to be demonstrated and its application in the pediatric population requires examination, not only for potential clinical benefits, but also for the unique ethical challenges it presents. Copyright © 2015 Cold Spring Harbor Laboratory Press; all rights reserved.

  12. Germline whole exome sequencing and large-scale replication identifies FANCM as a likely high grade serous ovarian cancer susceptibility gene.

    PubMed

    Dicks, Ed; Song, Honglin; Ramus, Susan J; Oudenhove, Elke Van; Tyrer, Jonathan P; Intermaggio, Maria P; Kar, Siddhartha; Harrington, Patricia; Bowtell, David D; Group, Aocs Study; Cicek, Mine S; Cunningham, Julie M; Fridley, Brooke L; Alsop, Jennifer; Jimenez-Linan, Mercedes; Piskorz, Anna; Goranova, Teodora; Kent, Emma; Siddiqui, Nadeem; Paul, James; Crawford, Robin; Poblete, Samantha; Lele, Shashi; Sucheston-Campbell, Lara; Moysich, Kirsten B; Sieh, Weiva; McGuire, Valerie; Lester, Jenny; Odunsi, Kunle; Whittemore, Alice S; Bogdanova, Natalia; Dürst, Matthias; Hillemanns, Peter; Karlan, Beth Y; Gentry-Maharaj, Aleksandra; Menon, Usha; Tischkowitz, Marc; Levine, Douglas; Brenton, James D; Dörk, Thilo; Goode, Ellen L; Gayther, Simon A; Pharoah, D P Paul

    2017-08-01

    We analyzed whole exome sequencing data in germline DNA from 412 high grade serous ovarian cancer (HGSOC) cases from The Cancer Genome Atlas Project and identified 5,517 genes harboring a predicted deleterious germline coding mutation in at least one HGSOC case. Gene-set enrichment analysis showed enrichment for genes involved in DNA repair (p = 1.8×10 -3 ). Twelve DNA repair genes - APEX1, APLF, ATX, EME1, FANCL, FANCM, MAD2L2, PARP2, PARP3, POLN, RAD54L and SMUG1 - were prioritized for targeted sequencing in up to 3,107 HGSOC cases, 1,491 cases of other epithelial ovarian cancer (EOC) subtypes and 3,368 unaffected controls of European origin. We estimated mutation prevalence for each gene and tested for associations with disease risk. Mutations were identified in both cases and controls in all genes except MAD2L2 , where we found no evidence of mutations in controls. In FANCM we observed a higher mutation frequency in HGSOC cases compared to controls (29/3,107 cases, 0.96 percent; 13/3,368 controls, 0.38 percent; P=0.008) with little evidence for association with other subtypes (6/1,491, 0.40 percent; P=0.82). The relative risk of HGSOC associated with deleterious FANCM mutations was estimated to be 2.5 (95% CI 1.3 - 5.0; P=0.006). In summary, whole exome sequencing of EOC cases with large-scale replication in case-control studies has identified FANCM as a likely novel susceptibility gene for HGSOC, with mutations associated with a moderate increase in risk. These data may have clinical implications for risk prediction and prevention approaches for high-grade serous ovarian cancer in the future and a significant impact on reducing disease mortality.

  13. Genetics Home Reference: PURA syndrome

    MedlinePlus

    ... lead to a reduced amount of functional Purα protein. Although it is not understood how a partial loss of Purα function leads to the ... KJ, Gawne-Cain M; DDD study, Magee AC, Turnpenny PD, Baralle D. Whole exome sequencing in family trios reveals de novo mutations in ...

  14. Dynamical System Modeling to Simulate Donor T Cell Response to Whole Exome Sequencing-Derived Recipient Peptides Demonstrates Different Alloreactivity Potential in HLA-Matched and -Mismatched Donor-Recipient Pairs.

    PubMed

    Abdul Razzaq, Badar; Scalora, Allison; Koparde, Vishal N; Meier, Jeremy; Mahmood, Musa; Salman, Salman; Jameson-Lee, Max; Serrano, Myrna G; Sheth, Nihar; Voelkner, Mark; Kobulnicky, David J; Roberts, Catherine H; Ferreira-Gonzalez, Andrea; Manjili, Masoud H; Buck, Gregory A; Neale, Michael C; Toor, Amir A

    2016-05-01

    Immune reconstitution kinetics and subsequent clinical outcomes in HLA-matched recipients of allogeneic stem cell transplantation (SCT) are variable and difficult to predict. Considering SCT as a dynamical system may allow sequence differences across the exomes of the transplant donors and recipients to be used to simulate an alloreactive T cell response, which may allow better clinical outcome prediction. To accomplish this, whole exome sequencing was performed on 34 HLA-matched SCT donor-recipient pairs (DRPs) and the nucleotide sequence differences translated to peptides. The binding affinity of the peptides to the relevant HLA in each DRP was determined. The resulting array of peptide-HLA binding affinity values in each patient was considered as an operator modifying a hypothetical T cell repertoire vector, in which each T cell clone proliferates in accordance with the logistic equation of growth. Using an iterating system of matrices, each simulated T cell clone's growth was calculated with the steady-state population being proportional to the magnitude of the binding affinity of the driving HLA-peptide complex. Incorporating competition between T cell clones responding to different HLA-peptide complexes reproduces a number of features of clinically observed T cell clonal repertoire in the simulated repertoire, including sigmoidal growth kinetics of individual T cell clones and overall repertoire, Power Law clonal frequency distribution, increase in repertoire complexity over time with increasing clonal diversity, and alteration of clonal dominance when a different antigen array is encountered, such as in SCT. The simulated, alloreactive T cell repertoire was markedly different in HLA-matched DRPs. The patterns were differentiated by rate of growth and steady-state magnitude of the simulated T cell repertoire and demonstrate a possible correlation with survival. In conclusion, exome wide sequence differences in DRPs may allow simulation of donor alloreactive T cell response to recipient antigens and may provide a quantitative basis for refining donor selection and titration of immunosuppression after SCT. Copyright © 2016 American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights reserved.

  15. An efficient and scalable analysis framework for variant extraction and refinement from population-scale DNA sequence data.

    PubMed

    Jun, Goo; Wing, Mary Kate; Abecasis, Gonçalo R; Kang, Hyun Min

    2015-06-01

    The analysis of next-generation sequencing data is computationally and statistically challenging because of the massive volume of data and imperfect data quality. We present GotCloud, a pipeline for efficiently detecting and genotyping high-quality variants from large-scale sequencing data. GotCloud automates sequence alignment, sample-level quality control, variant calling, filtering of likely artifacts using machine-learning techniques, and genotype refinement using haplotype information. The pipeline can process thousands of samples in parallel and requires less computational resources than current alternatives. Experiments with whole-genome and exome-targeted sequence data generated by the 1000 Genomes Project show that the pipeline provides effective filtering against false positive variants and high power to detect true variants. Our pipeline has already contributed to variant detection and genotyping in several large-scale sequencing projects, including the 1000 Genomes Project and the NHLBI Exome Sequencing Project. We hope it will now prove useful to many medical sequencing studies. © 2015 Jun et al.; Published by Cold Spring Harbor Laboratory Press.

  16. Reanalysis of BRCA1/2 negative high risk ovarian cancer patients reveals novel germline risk loci and insights into missing heritability

    PubMed Central

    Dyson, Gregory; Levin, Nancy K.; Chaudhry, Sophia; Rosati, Rita; Kalpage, Hasini; Simon, Michael S.; Tainsky, Michael A.

    2017-01-01

    While up to 25% of ovarian cancer (OVCA) cases are thought to be due to inherited factors, the majority of genetic risk remains unexplained. To address this gap, we sought to identify previously undescribed OVCA risk variants through the whole exome sequencing (WES) and candidate gene analysis of 48 women with ovarian cancer and selected for high risk of genetic inheritance, yet negative for any known pathogenic variants in either BRCA1 or BRCA2. In silico SNP analysis was employed to identify suspect variants followed by validation using Sanger DNA sequencing. We identified five pathogenic variants in our sample, four of which are in two genes featured on current multi-gene panels; (RAD51D, ATM). In addition, we found a pathogenic FANCM variant (R1931*) which has been recently implicated in familial breast cancer risk. Numerous rare and predicted to be damaging variants of unknown significance were detected in genes on current commercial testing panels, most prominently in ATM (n = 6) and PALB2 (n = 5). The BRCA2 variant p.K3326*, resulting in a 93 amino acid truncation, was overrepresented in our sample (odds ratio = 4.95, p = 0.01) and coexisted in the germline of these women with other deleterious variants, suggesting a possible role as a modifier of genetic penetrance. Furthermore, we detected loss of function variants in non-panel genes involved in OVCA relevant pathways; DNA repair and cell cycle control, including CHEK1, TP53I3, REC8, HMMR, RAD52, RAD1, POLK, POLQ, and MCM4. In summary, our study implicates novel risk loci as well as highlights the clinical utility for retesting BRCA1/2 negative OVCA patients by genomic sequencing and analysis of genes in relevant pathways. PMID:28591191

  17. A case report of novel mutation in PRF1 gene, which causes familial autosomal recessive hemophagocytic lymphohistiocytosis.

    PubMed

    Bordbar, Mohammad Reza; Modarresi, Farzaneh; Farazi Fard, Mohammad Ali; Dastsooz, Hassan; Shakib Azad, Nader; Faghihi, Mohammad Ali

    2017-05-03

    Hemophagocytic Lymphohistiocytosis (HLH) is a life-threatening immunodeficiency and multi-organ disease that affects people of all ages and ethnic groups. Common symptoms and signs of this disease are high fever, hepatosplenomegaly, and cytopenias. Familial form of HLH disease, which is an autosomal recessive hematological disorder is due to disease-causing mutations in several genes essential for NK and T-cell granule-mediated cytotoxic function. For an effective cytotoxic response from cytotoxic T lymphocyte or NK cell encountering an infected cell or tumor cell, different processes are required, including trafficking, docking, priming, membrane fusion, and entry of cytotoxic granules into the target cell leading to apoptosis. Therefore, genes involved in these steps play important roles in the pathogenesis of HLH disease which include PRF1, UNC13D (MUNC13-4), STX11, and STXBP2 (MUNC18-2). Here, we report a novel missense mutation in an 8-year-old boy suffered from hepatosplenomegaly, hepatitis, epilepsy and pancytopenia. The patient was born to a first-cousin parents with no previous documented disease in his parents. To identify mutated gene in the proband, Whole Exome Sequencing (WES) utilizing next generation sequencing was used on an Illumina HiSeq 2000 platform on DNA sample from the patient. Results showed a novel deleterious homozygous missense mutation in PRF1 gene (NM_001083116: exon3: c. 1120 T > G, p.W374G) in the patient and then using Sanger sequencing it was confirmed in the proband and his parents. Since his parents were heterozygous for the identified mutation, autosomal recessive pattern of inheritance was confirmed in the family. Our study identified a rare new pathogenic missense mutation in PRF1 gene in patient with HLH disease and it is the first report of mutation in PRF1 in Iranian patients with this disease.

  18. Whole-exome sequencing in a single proband reveals a mutation in the CHST8 gene in autosomal recessive peeling skin syndrome

    PubMed Central

    Cabral, Rita M.; Kurban, Mazen; Wajid, Muhammad; Shimomura, Yutaka; Petukhova, Lynn; Christiano, Angela M.

    2015-01-01

    Generalized peeling skin syndrome (PSS) is an autosomal recessive genodermatosis characterized by lifelong, continuous shedding of the upper epidermis. Using whole-genome homozygozity mapping and whole-exome sequencing, we identified a novel homozygous missense mutation (c.229C>T, R77W) within the CHST8 gene, in a large consanguineous family with non-inflammatory PSS type A. CHST8 encodes a Golgi transmembrane N-acetylgalactosamine-4-O-sulfotransferase (GalNAc4-ST1), which we show by immunofluorescence staining to be expressed throughout normal epidermis. A colorimetric assay for total sulfated glycosaminoglycan (GAG) quantification, comparing human keratinocytes (CCD1106 KERTr) expressing wild type and mutant recombinant GalNAc4-ST1, revealed decreased levels of total sulfated GAGs in cells expressing mutant GalNAc4-ST1, suggesting loss of function. Western blotting revealed lower expression levels of mutant recombinant GalNAc4-ST1 compared to wild type, suggesting that accelerated degradation may result in loss of function, leading to PSS type A. This is the first report describing a mutation as the cause of PSS type A. PMID:22289416

  19. Whole-exome sequencing in a single proband reveals a mutation in the CHST8 gene in autosomal recessive peeling skin syndrome.

    PubMed

    Cabral, Rita M; Kurban, Mazen; Wajid, Muhammad; Shimomura, Yutaka; Petukhova, Lynn; Christiano, Angela M

    2012-04-01

    Generalized peeling skin syndrome (PSS) is an autosomal recessive genodermatosis characterized by lifelong, continuous shedding of the upper epidermis. Using whole-genome homozygozity mapping and whole-exome sequencing, we identified a novel homozygous missense mutation (c.229C>T, R77W) within the CHST8 gene, in a large consanguineous family with non-inflammatory PSS type A. CHST8 encodes a Golgi transmembrane N-acetylgalactosamine-4-O-sulfotransferase (GalNAc4-ST1), which we show by immunofluorescence staining to be expressed throughout normal epidermis. A colorimetric assay for total sulfated glycosaminoglycan (GAG) quantification, comparing human keratinocytes (CCD1106 KERTr) expressing wild type and mutant recombinant GalNAc4-ST1, revealed decreased levels of total sulfated GAGs in cells expressing mutant GalNAc4-ST1, suggesting loss of function. Western blotting revealed lower expression levels of mutant recombinant GalNAc4-ST1 compared to wild type, suggesting that accelerated degradation may result in loss of function, leading to PSS type A. This is the first report describing a mutation as the cause of PSS type A. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. Guidance to rational use of pharmaceuticals in gallbladder sarcomatoid carcinoma using patient-derived cancer cells and whole exome sequencing.

    PubMed

    Feng, Feiling; Cheng, Qingbao; Yang, Liang; Zhang, Dadong; Ji, Shunlong; Zhang, Qiangzu; Lin, Yihui; Li, Fugen; Xiong, Lei; Liu, Chen; Jiang, Xiaoqing

    2017-01-17

    Gallbladder sarcomatoid carcinoma is a rare cancer with no clinical standard treatment. With the rapid development of next generation sequencing, it has been able to provide reasonable treatment options for patients based on genetic variations. However, most cancer drugs are not approval for gallbladder sarcomatoid carcinoma indications. The correlation between drug response and a genetic variation needs to be further elucidated. Three patient-derived cells-JXQ-3D-001, JXQ-3D-002, and JXQ-3D-003, were derived from biopsy samples of one gallbladder sarcomatoid carcinoma patient with progression and have been characterized. In order to study the relationship between drug sensitivity and gene alteration, genetic mutations of three patient-derived cells were discovered by whole exome sequencing, and drug screening has been performed based on the gene alterations and related signaling pathways that are associated with drug targets. It has been found that there are differences in biological characteristics such as morphology, cell proliferation, cell migration and colony formation activity among these three patient-derived cells although they are derived from the same patient. Their sensitivities to the chemotherapy drugs-Fluorouracil, Doxorubicin, and Cisplatin are distinct. Moreover, none of common chemotherapy drugs could inhibit the proliferations of all three patient-derived cells. Comprehensive analysis of their whole exome sequencing demonstrated that tumor-associated genes TP53, AKT2, FGFR3, FGF10, SDHA, and PI3KCA were mutated or amplified. Part of these alterations are actionable. By screening a set of compounds that are associated with the genetic alteration, it has been found that GDC-0941 and PF-04691502 for PI3K-AKT-mTOR pathway inhibitors could dramatically decrease the proliferation of three patient-derived cells. Importantly, expression of phosphorylated AKT and phosphorylated S6 were markedly decreased after treatments with PI3K-AKT-mTOR pathway inhibitors GDC-0941 (0.5 μM) and PF-04691502 (0.1 μM) in all three patient-derived cells. These data suggested that inhibition of the PI3K-AKT-mTOR pathway that was activated by PIK3CA amplification in all three patient-derived cells could reduce the cell proliferation. A patient-derived cell model combined with whole exome sequencing is a powerful tool to elucidate relationship between drug sensitivities and genetic alternations. In these gallbladder sarcomatoid carcinoma patient-derived cells, it is found that PIK3CA amplification could be used as a biomarker to indicate PI3K-AKT-mTOR pathway activation. Block of the pathway may benefit the gallbladder sarcomatoid carcinoma patient with this alternation in hypothesis. The real efficacy needs to be confirmed in vivo or in a clinical trial.

Top